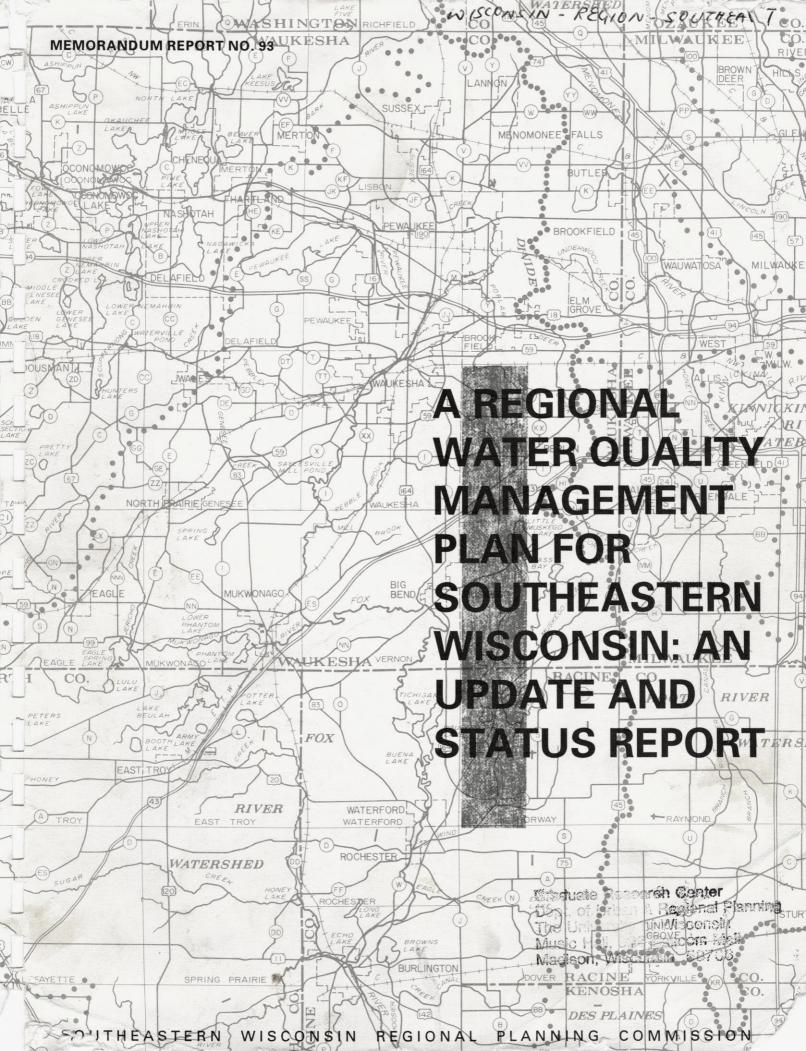


A regional water quality management plan for southeastern Wisconsin: an update and status report.


[s.l.]: Southeastern Wisconsin Regional Planning Commission, 1995-03

https://digital.library.wisc.edu/1711.dl/7BD6OW7XJ76HC8F

http://rightsstatements.org/vocab/InC/1.0/

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION

KENOSHA COUNTY

Leon T. Dreger Thomas J. Gorlinski Sheila M. Siegler

MILWAUKEE COUNTY

Daniel J. Diliberti William Ryan Drew Patrick Marchese

OZAUKEE COUNTY

Leroy A. Bley Thomas H. Buestrin, Treasurer Elroy J. Schreiner

RACINE COUNTY

David B. Falstad, Chairman Martin J. Itzin Jean M. Jacobson, Secretary

WALWORTH COUNTY

John D. Ames Anthony F. Balestrieri Allen L. Morrison, Vice-Chairman

WASHINGTON COUNTY

Lawrence W. Hillman Daniel S. Schmidt Patricia A. Strachota

WAUKESHA COUNTY

Duane H. Bluemke Robert F. Hamilton Paul G. Vrakas

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION STAFF

Special acknowledgement is due Dr. Jeffrey A. Thornton, SEWRPC Principal Planner, Ms. Tiffany G. Lyden, SEWRPC Research Analyst, and Messrs. Edward J. Schmidt, and Theodore C. Hikade, SEWRPC Research Aides for their contributions to the conduct of this study and the preparation of this report.

MEMORANDUM REPORT NUMBER 93

A REGIONAL WATER QUALITY MANAGEMENT PLAN FOR SOUTHEASTERN WISCONSIN: AN UPDATE AND STATUS REPORT

Prepared by the

Southeastern Wisconsin Regional Planning Commission P. O. Box 1607 Old Courthouse 916 N. East Avenue Waukesha, Wisconsin 53187-1607

The preparation of this report was financed in part by the Wisconsin Department of Natural Resources under the continuing water quality management planning program conducted cooperatively by the Department and the Regional Planning Commission.

March 1995

Inside Region \$25.00 Outside Region \$50.00

	· · · · · · · · · · · · · · · · · · ·
	_
	_
	1
	•
	_
	_
	_
	•
	•
	_
	_
	1
	•
	•

SEWRPC Memorandum Report No. 93

REGIONAL WATER QUALITY MANAGEMENT PLANNING IN SOUTHEASTERN WISCONSIN: A PLAN UPDATE AND STATUS REPORT

Table of Contents

Chapter I - INTRODUCTION
Background
Chapter II - SURFACE WATER RESOURCESWATER USE OBJECTIVES AND STANDARDS, DATA SOURCES, AND ANALYTICAL PROCEDURES
Surface Water Resource Description
Lakes
Introduction
PLAN UPDATE AND STATUS REPORT Introduction
Public and Private Wastewater Treatment Systems and Sewer Service Areas

Existing unsewered urban bevelopment outside the Proposed Sanitary	
Sewer Service Area	69
Miscellaneous Potential Pollution Sources	69
Nonpoint Source Pollution Abatement Plan Element	
Existing Conditions and Status of Plan Implementation	
Current Plan Recommendations	
Water Quality Monitoring Plan Element	
Existing Conditions and Status of Implementation	
Current Plan Recommendations	74
Lake Management Plan Element	76
Existing Conditions and Status of Plan Implementation	76
Current Plan Recommendations	
Water Quality and Biological Conditions	79
Streams	
Toxic and Hazardous Substances	82
Lakes	04
Compliance with Water Use Objectives	90
Water Quality Management Issues Remaining to be Addressed	91
Chapter V - FOX RIVER WATERSHEDREGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT	
Introduction	93
Land Use Plan Element	95
Point Source Pollutant Control Plan Elements	102
Public and Private Wastewater Treatment Systems and Sewer Service	
	102
	119
	121
Point Sources of Wastewater Other Than Public and Private Sewage	121
Transmont Diants	1 0 2
	123
Existing Unsewered Urban Development Outside the Proposed Sanitary	
	123
	129
	135
Existing Conditions and Status of Plan Implementation	136
Water Quality Monitoring Plan Element	142
	142
	144
	145
	145
	153
	156
	156
	191
· · · · · · · · · · · · · · · · · · ·	198
Water Quality Management Issues Remaining to be Addressed	200
Village of North Prairie Sewage Treatment Plant Evaluation	200
Powers, Benedict, and Tombeau Lakes Area and Pell Lake Area	
	200
	201
	201
	201
	201 201
Defeati rectassification prafuactons	4 U L

Chapter	VI	-	KINNICKINNIC R	IVER	WATE	RSHED	-REGIONAL	WATER	QUALITY	MANAGEMENT
			PLAN UPDATE AN	ID STA	TUS !	REPORT				

Introduction				202
Land Use Plan Element				202
Point Source Pollution Control Plan Elements				204
Public and Private Wastewater Treatment Systems and Sewer	Servi	ce		
Areas				208
Sewer Flow Relief Devices				208
Intercommunity Trunk Sewer				212
Point Sources of Wastewater Other Than Public and Private	Sewag	çe		
Treatment Plants				212
Existing Unsewered Urban Development Outside the Proposed				
Sewer Service Area				212
Miscellaneous Potential Pollution Sources			•	216
Nonpoint Source Pollution Abatement Plan Element				216
Existing Conditions and Status of Plan Implementation				218
Current Plan Recommendations	• •	• •	•	219
Water Quality Monitoring Plan Element	• • •	• •		220
Existing Conditions and Status of Implementation		• •	•	220
Current Plan Recommendations	• • •	• •	•	220
Lake Management Plan Element	• • •	• •	•	220
Water Quality and Biological Conditions	• • •	• •	•	222
Strooms		• •	•	222
Streams			•	
Toxic and Hazardous Substances			•	229
Compliance with Water Use Objectives			•	235
Water Quality Management Issues Remaining to be Addressed			•	235
Chapter VII - MENOMONEE RIVER WATERSHEDREGIONAL WATER QUALIT	LY MAN	INGER	EN I	
				236
PLAN UPDATE AND STATUS REPORT Introduction			•	
PLAN UPDATE AND STATUS REPORT Introduction			•	236
PLAN UPDATE AND STATUS REPORT Introduction			•	236 236
PLAN UPDATE AND STATUS REPORT Introduction		 	• .	236 236
PLAN UPDATE AND STATUS REPORT Introduction		 	• ,	236 236 242
PLAN UPDATE AND STATUS REPORT Introduction		 		236 236 242 243
PLAN UPDATE AND STATUS REPORT Introduction		 .ce		236 236 242 243 247
PLAN UPDATE AND STATUS REPORT Introduction		 .ce 	•	236 236 242 243 247 249
PLAN UPDATE AND STATUS REPORT Introduction			• .	236 236 242 243 247 249
Introduction	Servi		• .	236 236 242 243 247 249
Introduction	Servi			236 236 242 243 247 249 250
Introduction	Servi			236 236 242 243 247 249 250 250 258
Introduction	Servi			236 236 242 243 247 249 250 258 261
Introduction	Servi Servi Sevag			236 236 242 243 247 249 250 250 258 261 261
Introduction	Servi Servi Servi			236 236 242 243 247 249 250 258 261 261 265
Introduction	Servi			236 236 242 243 247 249 250 258 261 261 265 265
Introduction	Servi			236 236 242 243 247 249 250 258 261 261 265 265
Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations	Servi			236 236 242 243 247 249 250 258 261 265 265 265
Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations Lake Management Plan Element	Servi			236 236 242 243 247 249 250 258 261 265 265 265 265 265
Introduction	Servi			236 236 242 243 247 249 250 258 261 265 265 265 267 267
Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations Lake Management Plan Element Water Quality and Biological Conditions Streams	Servi			236 236 242 243 247 249 250 258 261 265 265 265 267 267 267
PLAN UPDATE AND STATUS REPORT Introduction	Servi			236 236 242 243 247 249 250 258 261 265 265 265 267 267 267 267
Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations Lake Management Plan Element Water Quality and Biological Conditions Streams	Servi			236 236 242 243 247 249 250 258 261 265 265 265 267 267 267

Chapter VIII	, MILWAUKEE RIVER	WATERSHEDREGIONAL	WATER	QUALITY	MANAGEMENT
	PLAN UPDATE AND	STATUS REPORT			

Introduction		. 296
Point Source Pollutant Control Plan Elements	Service	. 301
Areas		. 302
Sewer System Flow Relief Devices		. 312
Intercommunity Trunk Sewer		. 313
Point Sources of Wastewater Other Than Public and Private	Sewage	
Treatment Plants		. 317
Existing Unsewered Urban Development Outside the Proposed	Sanitary	
Sewer Service Area		
Miscellaneous Potential Pollution Sources		. 324
Nonpoint Source Pollution Abatement Plan Element		. 328
Existing Conditions and Status of Plan Implementation		. 328
Current Plan Recommendations		. 335
Water Quality Monitoring Plan Element		. 336
Existing Conditions and Status of Implementation		. 336
Current Plan Recommendations		. 336
Lakes Management Plan Element		. 338
Existing Conditions and Status of Plan Implementation		. 220
Current Plan Recommendations		. 338
Current Plan Recommendations		. 340
Water Quality and Biological Conditions		. 340
Streams		. 340
Toxic and Hazardous Substances		. 363
Lakes		. 370
Compliance with Water Use Objectives		. 378
Water Quality Management Issues Remaining to be Addressed		. 382
Chapter IX - WATERSHED OF MINOR STREAMS DIRECT DRAINAGE AREA TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT		
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT	ENT PLAN	
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMM UPDATE AND STATUS REPORT Introduction	ENT PLAN	. 383
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMY UPDATE AND STATUS REPORT Introduction	ENT PLAN	. 383 . 385
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction	ENT PLAN	. 383 . 385
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMY UPDATE AND STATUS REPORT Introduction	ENT PLAN Service	. 383 . 385 . 390
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction	ENT PLAN	. 383 . 385 . 390
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMY UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices	ENT PLAN Service	. 383 . 385 . 390 . 391 . 401
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer	ENT PLAN	. 383 . 385 . 390 . 391 . 401
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction	ENT PLAN Service Service	. 383 . 385 . 390 . 391 . 401 . 403
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants	ENT PLAN Service Service Sewage	. 383 . 385 . 390 . 391 . 401 . 403
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed	ENT PLAN Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources	ENT PLAN Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 409
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 409
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element	ENT PLAN Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 409 . 411 . 412
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation	ENT PLAN Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 409 . 411 . 412
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 409 . 409 . 411 . 412 . 412
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations Lake Management Plan Element	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 409 . 411 . 412 . 412 . 412
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations Lake Management Plan Element Water Quality and Biological Conditions	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 409 . 411 . 412 . 412 . 412 . 413 . 413
TO LAKE MICHIGANREGIONAL WATER QUALITY MANAGEMI UPDATE AND STATUS REPORT Introduction Land Use Plan Element Point Source Pollutant Control Plan Elements Public and Private Wastewater Treatment Systems and Sewer Areas Sewer Flow Relief Devices Intercommunity Trunk Sewer Point Sources of Wastewater Other Than Public and Private Treatment Plants Existing Unsewered Urban Development Outside the Proposed Sewer Service Area Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation Current Plan Recommendations Water Quality Monitoring Plan Element Existing Conditions and Status of Implementation Current Plan Recommendations Lake Management Plan Element	ENT PLAN Service Service Sewage Sanitary	. 383 . 385 . 390 . 391 . 401 . 403 . 408 . 408 . 409 . 419 . 412 . 412 . 412 . 413 . 413

Water Quality Management Issues Remaining to be Addressed Subregional Sewerage System Plan Implementation Lake Michigan Estuary Water Quality Planning		420
Chapter X - OAK CREEK WATERSHEDREGIONAL WATER QUALITY MANAGUE UPDATE AND STATUS REPORT	EMENT PLAN	
Introduction		422
Land Use Plan Element		422
Point Source Pollutant Control Plan Elements		428
Public and Private Wastewater Treatment Systems and Sewer		
Areas		429
Sewer Flow Relief Devices		433
Intercommunity Trunk Sewer		433
Point Sources of Wastewater Other Than Public and Private Treatment Plants		433
Existing Unsewered Urban Development Outside the Proposed	Sanitary	
Sewer Service Area		
Miscellaneous Potential Pollution Sources		
Nonpoint Source Pollution Abatement Plan Element		438
Existing Conditions and Status of Plan Implementation		438
Current Plan Recommendations		439
Water Quality Monitoring Plan Element		440
Existing Conditions and Status of Implementation		440
Current Plan Recommendations		440
Lake Management Plan Element		442
Water Quality and Biological Conditions		442
Streams		442
Compliance with Water Use Objectives		459
Water Quality Management Issues Remaining to be Addressed		459
Chapter XI - PIKE RIVER WATERSHEDREGIONAL WATER QUALITY MANA UPDATE AND STATUS REPORT	AGEMENT PLAN	
Introduction		460
Land Use Plan Element		
Point Source Pollutant Control Plan Elements		466
Public and Private Wastewater Treatment Systems and Sewer	Service	
Areas		456
Sewer Flow Relief Devices		469
Intercommunity Trunk Sewer		471
Point Sources of Wastewater Other Than Public and Private		
Treatment Plants		471
Existing Unsewered Urban Development Outside the Proposed		
Sewer Service Area	Sanitary	474
Sewer Service Area	Sanitary	474 474
Miscellaneous Potential Pollution Sources	Sanitary	
	Sanitary	474
Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element	Sanitary	474 477
Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element Existing Conditions and Status of Plan Implementation	Sanitary	474 477 477
Miscellaneous Potential Pollution Sources	Sanitary	474 477 477 478 479 479
Miscellaneous Potential Pollution Sources Nonpoint Source Pollution Abatement Plan Element	Sanitary	474 477 477 478 479 479
Miscellaneous Potential Pollution Sources	Sanitary	474 477 478 479 479 479
Miscellaneous Potential Pollution Sources	Sanitary	474 477 477 478 479 479 479 481
Miscellaneous Potential Pollution Sources	Sanitary	474 477 478 479 479 479

Water Quality Management Issues Remaining to be Addressed			486
Chapter XII - ROCK RIVER WATERSHEDREGIONAL WATER QUALITY MAI UPDATE AND STATUS REPORT	NAGEMENT	PLAN	
Introduction			487
Land Use Plan Element			493
Point Source Pollutant Control Plan Elements			496
Public and Private Wastewater Treatment Systems and Sewer	Service		
Areas			496
Sewer Flow Relief Devices			510
Intercommunity Trunk Sewer			510
Point Sources of Wastewater Other Than Public and Private	Sewage		
Treatment Plants			513
Existing Unsewered Urban Development Outside the Proposed			
Sewer Service Area			516
Miscellaneous Potential Pollution Sources			516
Nonpoint Source Pollution Abatement Plan Element	• • • •		519
Existing Conditions and Status of Plan Implementation			519
Current Plan Recommendations			523
Water Quality Monitoring Plan Element			524
Existing Conditions and Status of Implementation			524
Current Plan Recommendations			525
Lake Management Plan Element			525
Existing Condition and Status of Plan Implementation			525
Current Plan Recommendations			531
Water Quality and Biological Conditions			534
Streams			534
Lakes			544
Compliance with Water Use Objectives		• •	549
Water Quality Management Issues Remaining to be Addressed		• •	553
Northwestern Waukesha County Sewerage System Evaluation .		• •	553
Reassessment of the Future Needs for Nonpoint Source Contra	role in	• •	555
the Oconomowoc and Turtle Creek Watershed Areas	LOIS III		558
Stream Reclassification Evaluation		• •	558
beream Recrassification Evaluation		• •	330
Chapter XIII - ROOT RIVER WATERSHEDREGIONAL WATER QUALITY MA UPDATE AND STATUS REPORT	ANAGEMENT	PLAN	N
Introduction			559
Land Use Plan Element		• •	559
Point Source Pollutant Control Plan Elements			564
Public and Private Wastewater Treatment Systems and Sewer	Service	• •	504
Areas			566
Sewer System Flow Relief Devices			577
Intercommunity Trunk Sewer			579
Point Sources of Wastewater Other Than Public and Private	Sewage		
Treatment Plants			579
Existing Unsewered Urban Development Outside the Proposed	Sanitary	r	
Sewer Service Area			581
Miscellaneous Potential Pollution Sources			581
Nonpoint Source Pollution Abatement Plan Element			586
Existing Conditions and Status of Plan Implementation			586
Current Plan Recommendations			589
Water Quality Monitoring Plan Element			589
Existing Conditions and Status of Implementation			589
Current Plan Recommendations		. •	591

Lake Management Plan Element			591 591 593
Streams			593
Compliance with Water Use Objectives			605
Water Quality Management Issues Remaining to be Addressed			609
Sanitary Sewerage and Water Supply System Plan Implementa Reassessment of the Future Levels of Nonpoint Source Cont	tion		609
the Entire Root River Watershed			609
Milwaukee Metropolitan Sewerage District Facility Plan Up			609
Stream Reclassification Evaluation			610
Chapter XIV - SAUK CREEK WATERSHEDREGIONAL WATER QUALITY MAD UPDATE AND STATUS REPORT	NAGEMENT	PLAN	
Introduction			611
Land Use Plan Element			611
Point Source Pollutant Control Plan Elements			617
Public and Private Wastewater Treatment Systems and Sewer	Service		
Areas			617 621
Sewer Flow Relief Devices		• •	623
Intercommunity Trunk Sewer	· · · · ·	• •	023
Treatment Plants			623
Existing Unsewered Urban Development Outside the Proposed	Sanitary	•	
Sewer Service Area			623
Miscellaneous Potential Pollution Sources			625
Nonpoint Source Pollution Abatement Plan Element			625
Existing Conditions and Status of Plan Implementation			626
Current Plan Recommendations			627
Water Quality Monitoring Plan Element			628
Existing Conditions and Status of Implementation			628
Current Plan Recommendations			628
Lake Management Plan Element			628
Water Quality and Biological Conditions			628
Streams			628
Compliance with Water Use Objectives			634
Water Quality Management Issues Remaining to be Addressed		• •	634
Chapter XV - SHEBOYGAN RIVER WATERSHEDREGIONAL WATER QUALIT PLAN UPDATE AND STATUS REPORT	Y MANAGEM	ENT	
Introduction			635
Land Use Plan Element			635
Point Source Pollutant Control Plan Elements			641
Public and Private Wastewater Treatment Systems and Sewer			
Areas			641
Sewer Flow Relief Devices			647
Intercommunity Trunk Sewer			649
Point Sources of Wastewater Other Than Public and Private Treatment Plants			649
Existing Unsewered Urban Development Outside the Proposed			547
Sewer Service Area			649
Miscellaneous Potential Pollution Sources			650
Nonpoint Source Pollution Abatement Plan Element			650
Existing Conditions and Status of Plan Implementation			651
Current Plan Recommendations			652

Water Quality Monitoring Plan Element	53
Current Plan Recommendations	
Lake Management Plan Element	
Water Quality and Biological Conditions	
Streams	
Compliance with Water Use Objectives	58
Water Quality Management Issues Remaining to be Addressed 65	58
Reassessment of the Future Levels of Nonpoint Source Controls	
in the Onion River Watershed	5 C
Stream Reclassification Evaluation	50
Chapter XVI - STATUS OF GROUNDWATER MANAGEMENT PLAN ELEMENT	
Introduction and Background	
Groundwater Resources Description	
Regional Groundwater Management Planning Program	57
Purpose and Objectives	57
Scope of Work	57
Current Status and Schedule for Completion	;9
Chapter XVII, DESIGNATED MANAGEMENT AGENCIESREGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT	
Introduction	1
Point Source Pollution Abatement and Sludge Management Plan Element	
Implementation	12
Nonpoint Source Pollution Abatement Plan Element Implementation 67	/ 8
Lakes Management Plan Element Implementation	
Water Quality and Biological Condition Monitoring Plan Element	
Implementation	8 (
Summary	
Chapter XVIII, SUMMARY AND RECOMMENDATIONSREGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT	
Introduction and Background	۱۸
Water Quality Inventory and Analysis	
Streams	
Takes	
Lakes	
Land Use Plan Element	
Urban Development and Density	
Major Regional Commercial and Industrial Centers	
Park and Outdoor Recreation Areas	
Environmentally Sensitive Areas	
Prime Agricultural Lands	
Point Source Pollution Abatement Plan Element	
Sewer Service Areas	
Public Sewage Treatment Facilities	٠5
Private Sewage Treatment Plants	1
Sewage Treatment Plant Sludge Management	3
Abatement of Pollution from Sewer System Flow Relief Devices 75	5
Intercommunity Trunk Sewers	6
Other Point Source Discharges	
Existing Unsewered Urban Development Outside the Proposed	_
Sanitary Sewer Service Area	
Miscellaneous Point Source-Related Recommendations	o

Nonpoint Source Pollution Abatement Plan Element
Water Quality Monitoring Plan Element
Lake Management Plan Element
Milwaukee Harbor Estuary Plan Recommendations
Status of Groundwater Management Plan Element
Designated Management Agencies
Major Water Quality Management Issues Remaining to be Addressed 780
Sewer Service Areas and Sewerage System Evaluations
Evaluation of Water Use Objectives
Evaluation of Specific Water Quality Trends
Summary and Conclusion
Appendix A - NONPOINT SOURCE POLLUTION CONTROL, STREAM CHANNEL REHABILITATION AND LAKE REHABILITATION MEASURES REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

Chapter I

INTRODUCTION

BACKGROUND

In 1979, the Commission completed and adopted a regional water quality management plan. The plan, designed in part to meet the Congressional mandate that the waters of the United States be made to the extent practicable "fishable and swimmable," is set forth in SEWRPC Planning Report No. 30, A Regional Water Quality Management Plan for Southeastern Wisconsin: 2000, Volume One, Inventory Findings, September 1978; Volume Two, Alternative Plans, February 1979; and Volume Three, Recommended Plan, June 1979. The plan provides recommendations for the control of water pollution from such point sources as sewage treatment plants, separate and combined sewer overflows, and industrial waste outfalls; and from such nonpoint sources as urban and rural stormwater runoff. The plan was subsequently endorsed by the Wisconsin Natural Resources Board and approved by the U. S. Environmental Protection Agency.

The regional water quality management plan is one of the more important plan elements adopted by the Commission since, in addition to providing clear and concise recommendations for the control of water pollution, it provides the basis for the continued eligibility of local units of government for Federal and State financial aids in partial support of sewerage system development and redevelopment; for the issuance of waste discharge permits by the Wisconsin Department of Natural Resources; for the review and approval of public sanitary sewer extensions by that Department; for the review and approval of private sanitary sewer extensions and large onsite sewage disposal systems and holding tanks by the Wisconsin Department of Industry, Labor and Human Relations; and for Federal and State financial assistance in support of local nonpoint source water pollution control projects.

Since adoption of the plan in 1979, the Commission has carried on a continuing regional water quality management planning program. That program is intended, to the extent that available fiscal resources permit, to meet the planning requirements set forth in Chapter NR 121 of the Wisconsin Administrative Code. Those rules envision periodic amendment, revision, and updating of the original plan as may be found necessary and desirable. This document is intended to help meet those planning requirements by providing for a restatement of the plan as updated over time through the amendment and revision process, by reporting on the extent to which the plan as amended has been implemented since its adoption, by identifying—to the extent that data are available—progress toward meeting the surface water quality objectives and supporting standards, and by identifying those issues which need to be addressed in the continuing planning process and which, therefore, may lead to further amendments, revisions, and updates of the plan.

PLAN REFINEMENT AND DETAILING EFFORTS SINCE PLAN ADOPTION

The adopted regional water quality management plan is a systems level plan intended to be refined, detailed, and, as necessary, amended through the following types of subregional planning and plan implementation efforts:

1. Sewer Service Area Plans

The plan explicitly calls for the Commission to work with the designated management agencies to refine and detail the general sanitary sewer service areas identified in the original plan. These service areas are particularly important because they provide the basis for State regulatory approval of sanitary sewer extensions, and incorporate provisions attendant to the protection of environmentally sensitive lands. Since adoption of the original plan in 1979, such detailed sewer service area plans have been completed and adopted for 67 of the 85 initially identified sewer service areas.

2. <u>Detailed Sewerage Facilities Plans</u>

The plan calls for the preparation on a case-by-case basis of detailed sewerage facility plans implementing the sewage treatment plant and trunk sewer improvements identified in the system plan. Responsibility for the preparation of these detailed plans lies with the designated management agency or agencies concerned. At times, these detailed facility planning efforts require reevaluation of system level recommendations and, therefore, may result in amendments to the system plan owing to changed circumstances.

3. <u>Detailed Nonpoint Source Pollution Abatement Plans</u>

The plan recommends that the designated management agencies concerned prepare detailed nonpoint source pollution abatement plans to identify precisely how the quantitative nonpoint source pollution reduction goals set forth at the system level of planning can best be achieved. Since adoption of the original plan, the State of Wisconsin created a nonpoint source pollution abatement program that has served as the basis for carrying out this system plan recommendation. That program is overseen by the Wisconsin Department of Natural Resources and involves both detailed "second level" planning and funding of plan implementation efforts. In carrying out this program, the Department works closely with the designated nonpoint source pollution management agencies identified in the system plan, focusing its efforts in particular through the seven county land conservation committees.

4. Comprehensive Inland Lake Water Quality Management Plans

The plan recommends that detailed inland land water quality management plans be prepared for the major lakes within the Region; that is, for those lakes having a surface water area of 50 acres or more. There are 101 such major lakes within the Region. Primary responsibility for carrying out this detailed planning lies with the designated management agencies concerned, primarily inland lake protection and rehabilitation districts.

5. Special Studies

The plan also envisions that from time-to-time special in-depth studies would be undertaken to address unique water quality problems. One such major study has been completed since adoption of the original plan, that

being a comprehensive study of the Milwaukee Harbor estuary. This study had particularly important implications for the definition of the level of protection to be provided by abatement of combined sewer overflows in Milwaukee, and resulted in a recommendation to provide as well certain in-stream treatment measures.

Many of the foregoing plan refinement and detailing efforts have led over the years since adoption of the original plan to formal amendments of that plan by the Regional Planning Commission and the Wisconsin Department of Natural Resources. A list of those plan amendments, which were adopted only after public hearings and designated management agency approval, is set forth in Table I-1.

In addition to these subregional planning efforts which are intended to refine and detail and, as necessary, amend and revise the regional water quality management plan, the Commission carries on an important related regional planning effort. This effort is the regional land use planning program, which results from time-to-time in an updated and revised regional land use plan. The original regional water quality management plan directly incorporated the second generation regional land use plan that had been adopted by the Commission in 1978. Under the continuing regional planning program, the Commission prepared and adopted in 1991 a third generation regional land use plan. That plan also stands as an amendment to the systems level regional water quality management plan, and is being incorporated into the detailed sanitary sewer area plans as those plans are prepared initially and revised from time-to-time.

SCHEME OF PRESENTATION

As noted above, this report has as its basic purpose restating the regional water quality management plan as updated over time through the amendment and revision process, and identifying issues which remain to be addressed in the continuing planning process. Toward this end, the remainder of this report has been organized as follows:

- 1. <u>Chapter II--Surface Water Resources, Water Use Objectives and Standards, and Data Sources and Analytical Procedures</u>
 - Chapter II provides an overview of the surface water resources in the Region and includes a discussion of the water use objectives and standards that apply to those resources. In addition, the chapter describes the procedures and data sources used to evaluate, to the extent possible given available data, the degree to which the water use objectives in the Region have been met since adoption of the original plan.
- 2. <u>Chapter III--Land Use Plan Element</u>
 Chapter III provides a brief description of the land use element of the regional water quality management plan, that element being the third generation regional land use plan.
- 3. <u>Chapters IV Through XV--Regional Water Quality Management Plan Status Report and Update for Each to the Twelve Watersheds in Southeastern Wisconsin</u>
 - These 12 chapters provide, for each of the 12 major watersheds of the Region, the following information:

Table I-1

AMENDMENTS TO THE REGIONAL WATER QUALITY
MANAGEMENT PLAN FOR SOUTHEASTERN WISCONSIN: 1979-1993

Plan Element Regional Water Quality Management Plan	Plan Document	SEWRPC Date of Adoption	WDNR Date of Adoption
Regional Water Quality F		Date of Adoption	Date of Adoption
			Date of Macperen
	Planning Report No. 30, A Regional Water Quality	July 12, 1979	August 2, 1979
	Management Plan for Southeastern Wisconsin,		,
	Volume One, Inventory Findings; Volume Two,		
	Alternative Plans; Volume Three, Recommended		·
	Plan		
Amendment-Root River	Community Assistance Planning Report No. 37,	March 6, 1980	March 5, 1980
Watershed	A Nonpoint Source Water Pollution Control Plan	•	,
	for the Root River Watershed		
Amendment-Walworth County (Community Assistance Planning Report No. 56	December 4, 1991	
Metropolitan	(2nd Edition), Sanitary Sewer Service Areas for		
Sewerage District	the Walworth County Metropolitan Sewerage		
	District, Walworth County, Wisconsin		1
Amendment-Cities of	Amendment to the Regional Water Quality	December 3, 1981	February 2, 1982
Brookfield	Management Plan-2000, Cities of Brookfield		
and Waukesha	and Waukesha		·
		v , , , , , , , , , , , , , , , , , , ,	N 1 00 1007
Amendment-City of Muskego	Community Assistance Planning Report No. 64	March 3, 1986	March 20, 1987
	(2nd Edition), Sanitary Sewer Service Area for		
	the City of Muskego		
	Community Assistance Planning Report No. 48,	September 9, 1982	February 3, 1983
Waukesha County	A Water Quality Management Plan for Ashippun		
	Lake, Waukesha County, Wisconsin		
- I	Community Assistance Planning Report No. 53,	September 9, 1982	February 3, 1983
Waukesha County	A Water Quality Management Plan for Okauchee		
	Lake, Waukesha County, Wisconsin		
	Community Assistance Planning Report No. 47,	September 9, 1982	February 3, 1983
Waukesha County	A Water Quality Management Plan for Lac La		
	Belle, Waukesha County, Wisconsin		
	Community Assistance Planning Report No. 54,	December 2, 1982	February 3, 1983
Waukesha County	A Water Quality Management Plan for North		
	Lake, Waukesha County, Wisconsin		
Amendment—City of West Bend	Community Assistance Planning Report No. 35,	December 2, 1982	June 5, 1984
	Sanitary Sewer Service Area for the City of		
	West Bend, Washington County, Wisconsin		
Amendment-Village of Grafton	Amendment to the Regional Water Quality	December 2, 1982	February 7, 1983
	Management Plan-2000, Village of Grafton		
Amendment-City of Brookfield	Amendment to the Regional Water Quality	December 2, 1982	September 13, 1984
	Management Plan-2000, City of Brookfield		
Amendment-Village of Sussex (Community Assistance Planning Report No. 84,	June 16, 1983	March 12, 1984
	Sanitary Sewer Service Area for the Village of		
	Sussex, Waukesha County, Wisconsin		
	Community Assistance Planning Report No. 70,	September 8, 1983	March 19, 1984
Germantown	Sanitary Sewer Service Area for the Village of		
	Germantown, Washington County, Wisconsin		
•	Community Assistance Planning Report No. 90,	December 1, 1983	May 23, 1984
Saukville	Sanitary Sewer Service Area for the Village of		
	Saukville, Ozaukee County, Wisconsin		
•	Community Assistance Planning Report No. 95,	December 1, 1983	June 7, 1984
Port Washington	Sanitary Sewer Service Area for the City of		
	Port Washington, Ozaukee County, Wisconsin		
Amendment-Belgium Area	Amendment to the Regional Water Quality	December 1, 1983	January 18, 1984
	Management Plan-2000, Onion River Priority		
	Watershed Plan		
Amendment-Geneva Lake Area	Amendment to the Regional Water Quality	December 1, 1983	October 5, 1987
	Management Plan-2000, Geneva Lake Area		
	Communities		
Amendment-Village of Butler C	Community Assistance Planning Report No. 99,	March 1, 1984	April 30, 1984
	Sanitary Sewer Service Area for the Village of		
	Butler, Waukesha County, Wisconsin		
Amendment-City of Hartford C	Community Assistance Planning Report No. 92,	June 21, 1984	October 26, 1984
	Sanitary Sewer Service Area for the City of		
	Hartford, Washington County, Wisconsin		
Amendment-Mukwonago Area	Amendment to the Regional Water Quality	June 21, 1984	August 30, 1984
	Management Plan-2000, Village of Mukwonago,		
	Towns of East Troy and Mukwonago		

Table 1 (continued)

	1		
Plan Element	Plan Document	SEWRPC Date of Adoption	WDNR Date of Adoption
Amendment-Village of Fredonia	Community Assistance Planning Report No. 96, Sanitary Sewer Service Area for the Village of Fredonia, Ozaukee County, Wisconsin	September 13, 1984	October 11, 1984
Amendment-Village of East Troy	Community Assistance Planning Report No. 112 (2nd Edition), Sanitary Sewer Service Area for the Village of East Troy and Environs, Walworth County, Wisconsin	June 16, 1993	October 20, 1993
Amendment—City of Milwaukee	Amendment to the Regional Water Quality Management Plan-2000, City of Milwaukee	September 13, 1984	December 19, 1984
Amendment-Town of Pleasant Prairie	Community Assistance Planning Report No. 88, A Land Use Management Plan for the Chiwaukee Prairie-Carol Beach Area of the Town of Pleasant Prairie, Kenosha County, Wisconsin	March 11, 1985	October 21, 1985
Amendment-Village of Belgium	Community Assistance Planning Report No. 97 (3rd Edition), Sanitary Sewer Service Area for the Village of Belgium, Ozaukee County, Wisconsin	September 15, 1993	October 15, 1993
Amendment-Town of Addison	Community Assistance Planning Report No. 103, Sanitary Sewer Service Area for the Allenton Area, Washington County, Wisconsin	March 11, 1985	August 8, 1985
Amendment-Town of Yorkville	Amendment to the Regional Water Quality Management Plan-2000, Town of Yorkville	March 11, 1985	August 8, 1985
Amendment-Village of Williams Bay	Amendment to the Regional Water Quality Management Plan-2000, Village of Williams Bay/Walworth County Metropolitan Sewerage District	March 11, 1985	September 30, 1985
Amendment-Town of Trenton City of West Bend	Amendment to the Regional Water Quality Management Plan-2000, City of West Bend/ Town of Trenton	March 11, 1985	July 10, 1985
Amendment-Village of Hartland	Community Assistance Planning Report No. 93, Sanitary Sewer Service Area for the Village of Hartland, Waukesha County, Wisconsin	June 17, 1985	July 11, 1986
Amendment-Village of Jackson	Community Assistance Planning Report No. 124, Sanitary Sewer Service Area for the Village of Jackson, Washington County, Wisconsin	June 17, 1985	July 11, 1986
Amendment—Pewaukee Area	Community Assistance Planning Report No. 113, Sanitary Sewer Service Area for the Town of Pewaukee Sanitary District No. 3, Lake Pewaukee Sanitary District, and Village of Pewaukee, Waukesha County, Wisconsin	June 17, 1985	July 11, 1986
Amendment—City of Waukesha	Community Assistance Planning Report No. 100, Sanitary Sewer Service Area for the City of Waukesha and Environs, Waukesha County, Wisconsin	December 2, 1985	November 20, 1987
Amendment-Village of Slinger	Community Assistance Planning Report No. 128 (2nd Edition), <u>Sanitary Sewer Service Area for</u> the Village of Slinger, Washington County, Wisconsin	September 15, 1993	April 26, 1994
Amendment—Kenosha Area	Community Assistance Planning Report No. 106, <u>Sanitary Sewer Service Areas for the City of</u> <u>Kenosha and Environs, Kenosha County, Wisconsin</u>	December 2, 1985	August 31, 1987
Amendment—Town of Eagle	Amendment to the Regional Water Quality Management Plan-2000, Eagle Spring Lake Sanitary District	December 2, 1985	November 2, 1987
Amendment—Town of Salem	Community Assistance Planning Report No. 143, Sanitary Sewer Service Area for the Town of Salem Utility District No. 2, Kenosha County, Wisconsin	March 3, 1986	December 11, 1986
Amendment-Friess Lake, Washington County	Community Assistance Planning Report No. 98, A Water Quality Management Plan for Friess Lake, Washington County, Wisconsin	March 3, 1986	October 5, 1987
Amendment-Geneva Lake, Walworth County	Community Assistance Planning Report No. 60, A Water Quality Management Plan for Geneva Lake, Walworth County, Wisconsin	March 3, 1986	October 5, 1987
Amendment-Pewaukee Lake, Waukesha County	Community Assistance Planning Report No. 58, A Water Quality Management Plan for Pewaukee Lake, Waukesha County, Wisconsin	March 3, 1986	October 5, 1987

Table 1 (continued)

Plan Element	Plan Document	SEWRPC Date of Adoption	WDNR Date of Adoption	
Amendment-Waterford/ Rochester Area	Community Assistance Planning Report No. 141, Sanitary Sewer Service Area for the Waterford/ Rochester Area, Racine County, Wisconsin	June 16, 1986	December 9, 1986	
Amendment—City of Burlington	Community Assistance Planning Report No. 78, Sanitary Sewer Service Area for the City of Burlington, Racine County, Wisconsin	June 16, 1986	July 13, 1987	
Amendment-City of Waukesha/Town of Pewaukee	Amendment to the Regional Water Quality Management Plan-2000, City of Waukesha/ Town of Pewaukee	December 1, 1986	November 20, 1987	
Amendment-Salem/Paddock Lake/Bristol Area	Community Assistance Planning Report No. 145, Sanitary Sewer Service Area for the Town of Salem Utility District No. 1, Village of Paddock Lake, and Town of Bristol Utility District Nos. 1 and 1B, Kenosha County, Wisconsin	December 1, 1986	January 13, 1988	
Amendment-Racine Area	Community Assistance Planning Report No. 147, Sanitary Sewer Service Area for the City of Racine and Environs, Racine County, Wisconsin	December 1, 1986	January 13, 1988	
Amendment-Town of Lyons	Amendment to the Regional Water Quality Management Plan-2000, Country Estates Sanitary District/Town of Lyons	March 2, 1987	August 25, 1987	
Amendment-Village of Silver Lake	Community Assistance Planning Report No. 119, Sanitary Sewer Service Area, Village of Silver Lake, Kenosha County, Wisconsin	June 15, 1987	January 13, 1988	
Amendment-Village of Twin Lakes	Community Assistance Planning Report No. 149, Sanitary Sewer Service Area, Village of Twin Lakes, Kenosha County, Wisconsin	June 15, 1987	March 23, 1988	
Amendment-Cedarburg/ Grafton Area	Community Assistance Planning Report No. 91, Sanitary Sewer Service Area for the City of Cedarburg and the Village of Grafton, Ozaukee County, Wisconsin	June 15, 1987	December 23, 1987	
Amendment—Town of Walworth	Amendment to the Regional Water Quality Management Plan-2000, Town of Walworth Utility District No. 1/Walworth County Metropolitan Sewerage District	June 15, 1987	November 2, 1987	
Amendment-City of West Bend	Amendment to the Regional Water Quality Management Plan-2000, City of West Bend	June 15, 1987	January 13, 1988	
Amendment-City of Whitewater	Community Assistance Planning Report No. 94, Sanitary Sewer Service Area for the City of Whitewater, Walworth County, Wisconsin	September 14, 1987	March 23, 1988	
Amendment-Town of Lyons	Community Assistance Planning Report No. 158 (2nd Edition), Sanitary Sewer Service Area for the Town of Lyons Sanitary District No. 2, Walworth County, Wisconsin	September 15, 1993	April 28, 1994	
Amendment—City of Hartford	Amendment to the Regional Water Quality Management Plan-2000, City of Hartford	September 14, 1987		
Amendment-Milwaukee Harbor Estuary Plan	Planning Report No. 37, <u>A Water Resources</u> <u>Management Plan for the Milwaukee Harbor</u> <u>Estuary</u> , Volume One, <u>Inventory Findings</u> ; Volume Two, <u>Alternative</u> and Recommended Plans	December 7, 1987	June 4, 1990	
Amendment-City of New Berlin	Community Assistance Planning Report No. 157, Sanitary Sewer Service Area for the City of New Berlin, Waukesha County, Wisconsin	December 7, 1987	May 2, 1988	
Amendment-Village of Sussex	Amendment to the Regional Water Quality Management Plan-2000, Village of Sussex	December 7, 1987	August 9, 1988	
Amendment-Kenosha Area	Amendment to the Regional Water Quality Management Plan-2000, City of Kenosha and Environs	December 7, 1987	December 7, 1989	
Amendment-Village of Kewaskum	Community Assistance Planning Report No. 161, <u>Sanitary Sewer Service Area for the Village of</u> <u>Kewaskum, Washington County, Wisconsin</u>	March 7, 1988	October 24, 1988	
Amendment-Town of Darien	Amendment to the Regional Water Quality Management Plan-2000, Town of Darien/ Walworth County Metropolitan Sewerage District	June 20, 1988	October 24, 1988	
Amendment-Village of Sussex	Amendment to the Regional Water Quality Management Plan-2000, Village of Sussex	June 20, 1988	January 14, 1993	

Table 1 (continued)

Plan Element	Plan Document	SEWRPC Date of Adoption	WDNR Date of Adoption
Amendment-Village of Darien	Community Assistance Planning Report No. 123 (2nd Edition), Sanitary Sewer Service Area for the Village of Darien, Walworth County,	September 23, 1992	January 14, 1993
Amendment-West Bend Area	Misconsin Amendment to the Regional Water Quality Management Plan-2000, City of West Bend/Town of	September 12, 1988	November 17, 1988
Amendment-Hartford Area	Mest Bend Amendment to the Regional Water Quality Management Plan-2000, City of Hartford	September 12, 1988	January 9, 1989
Amendment-Town of Waterford	Amendment to the Regional Water Quality Management Plan-2000, Western Racine County Sewerage District	September 12, 1988	December 16, 1988
Amendment-Hartford Area	Amendment to the Regional Water Quality Management Plan-2000, City of Hartford	December 5, 1988	April 18, 1989
Amendment-City of Waukesha	Amendment to the Regional Water Quality Management Plan-2000, City of Waukesha	December 5, 1988	April 5, 1989
Amendment-Oconomowoc Area	Community Assistance Planning Report No. 172, Sanitary Sewer Service Area for the City of Oconomowoc and Environs, Waukesha County, Wisconsin	March 6, 1989	October 17, 1989
Amendment-Village of Genoa City	Community Assistance Planning Report No. 175, Sanitary Sewer Service Area for the Village of Genoa City, Kenosha and Walworth Counties, Wisconsin	March 6, 1989	August 14, 1989
Amendment-Village of Germantown	Amendment to the Regional Water Quality Management Plan-2000, Village of Germantown	March 6, 1989	June 5, 1989
Amendment—Racine Area	Amendment to the Regional Water Quality Management Plan-2000, City of Racine and Environs	March 6, 1989	June 5, 1989
Amendment—Upper Fox River Watershed	Amendment to the Regional Water Quality Management Plan-2000, Upper Fox River Watershed-Brookfield and Sussex Sewage Treatment Plants	May 15, 1989	September 1989
Amendment-Racine Area	Amendment to the Regional Water Quality Management Plan-2000, City of Racine and Environs	June 19, 1989	August 14, 1989
Amendment-Lake Geneva Area	Amendment to the Regional Water Quality Management Plan-2000, City of Lake Geneva and Environs	June 19, 1989	July 19, 1989
Amendment-Town of Geneva	Amendment to the Regional Water Quality Management Plan-2000, Town of Geneva, Walworth County Metropolitan Sewerage District	November 6, 1989	August 9, 1991
Amendment-Town of Waterford	Amendment to the Regional Water Quality Management Plan-2000, Western Racine County Sewerage District	December 4, 1989	February 20, 1990
Amendment-Delavan Lake Area	Amendment to the Regional Water Quality Management Plan-2000, Delavan Lake Sanitary District/Walworth County Metropolitan Sewerage District	December 4, 1989	February 20, 1990
Amendment-East Troy Area	Amendment to the Regional Water Quality Management Plan-2000, Towns of East Troy, LaFayette, and Spring Prairie, and Village of East Troy	December 4, 1989	March 26, 1990
Amendment—Waukesha Area	Amendment to the Regional Water Quality Management Plan-2000, City of Waukesha and Town of Waukesha	June 20, 1990	October 12, 1990
Amendment-Village of Silver Lake	Amendment to the Regional Water Quality Management Plan-2000, Village of Silver Lake and Salem Utility District No. 2	June 20, 1990	October 12, 1990
Amendment—Village of Union Grove	Community Assistance Planning Report No. 180, Sanitary Sewer Service Area for the Village of Union Grove and Environs, Racine County, Wisconsin	September 12, 1990	August 19, 1991
Amendment-Town of Somers	Amendment to the Regional Water Quality Management Plan-2000, Kenosha and Racine Sanitary Sewer Service Areas	September 12, 1990	January 15, 1991

Table 1 (continued)

		SEWRPC	WDNR	
Plan Element	Plan Document	Date of Adoption	Date of Adoption	
Amendment—City of Franklin	Community Assistance Planning Report No. 176, Sanitary Sewer Service Area for the City of Franklin, Milwaukee County, Wisconsin	December 5, 1990	July 31, 1991	
Amendment—Village of Mukwonago	Community Assistance Planning Report No. 191, Sanitary Sewer Service Area for the Village of	December 5, 1990	August 19, 1991	
Amendment-Village of Dousman	Mukwonago, Waukesha County, Wisconsin Community Assistance Planning Report No. 192, Sanitary Sewer Service Area for the Village of Dousman, Waukesha County, Wisconsin	December 5, 1990	July 31, 1991	
Amendment-Towns of Yorkville and Mt. Pleasant	Amendment to the Regional Water Quality Management Plan-2000, Towns of Yorkville and Mt. Pleasant	December 5, 1990	February 15, 1991	
Amendment-Town of Bristol	Amendment to the Regional Water Quality Management Plan-2000, Town of Bristol	March 6, 1991	July 22, 1991	
Amendment-Village of Pewaukee	Amendment to the Regional Water Quality Management Plan-2000, Village of Pewaukee	March 6, 1991	July 22, 1991	
Amendment-Town of Brookfield	Amendment to the Regional Water Quality Management Plan-2000, Brookfield and Waukesha Sanitary Sewer Service Areas	March 6, 1991	July 22, 1991	
Amendment—Delavan Area	Amendment to the Regional Water Quality Management Plan-2000, Walworth County Metropolitan Sewerage District/Delavan-	March 6, 1991	July 22, 1991	
Amendment-Oconomowoc Lake, Waukesha County	Delavan Lake Sanitary Sewer Service Area Community Assistance Planning Report No. 181, A Water Quality Management Plan for Oconomowoc Lake, Waukesha County, Wisconsin	June 19, 1991		
Amendment-Town of Salem	Amendment to the Regional Water Quality Management Plan-2000, Town of Salem	June 19, 1991	September 30, 1991	
Amendment-Town of Caledonia	Amendment to the Regional Water Quality Management Plan-2000, Town of Caledonia	June 19, 1991		
Amendment-Village of Hartland	Amendment to the Regional Water Quality Management Plan-2000, Village of Hartland	June 19, 1991	September 30, 1991	
Amendment-Town of Caledonia	Amendment to the Regional Water Quality Management Plan-2000, Town of Caledonia	September 11, 1991	December 11, 1991	
Amendment—Town of Norway	Amendment to the Regional Water Quality Management Plan-2000, Town of Norway	September 11, 1991	December 11, 1991	
Amendment-Town of Rochester	Amendment to the Regional Water Quality Management Plan-2000, Town of Rochester	September 11, 1991	November 26, 1991	
Amendment-Town of Norway	Amendment to the Regional Water Quality Management Plan-2000, Town of Norway	September 11, 1991		
Amendment-Brookfield/Elm Grove Area	Community Assistance Planning Report No. 109, Sanitary Sewer Service Area for the City and Town of Brookfield and the Village of Elm Grove, Waukesha County, Wisconsin	December 4, 1991	July 20, 1992	
Amendment-Racine Area	Amendment to the Regional Water Quality Management Plan-2000, City of Racine and Environs	December 4, 1991	December 26, 1991	
Amendment—Pewaukee Lake Area	Amendment to the Regional Water Quality Management Plan: 2000, Lake Pewaukee Sanitary District	December 4, 1991	April 7, 1992	
Amendment—West Bend Area	Amendment to the Regional Water Quality Management Plan: 2000, City of West Bend/Town of West Bend	December 4, 1991	February 5, 1992	
Amendment-Town of Salem	Amendment to the Regional Water Quality Management Plan: 2000, Town of Salem	December 4, 1991	March 27, 1992	
Amendment-City of Mequon and Village of Thiensville	Community Assistance Planning Report No. 188, Sanitary Sewer Service Area for the City of Mequon and the Village of Thiensville, Ozaukee County, Wisconsin	January 15, 1992	September 23, 1992	
Amendment-City of West Bend/Town of West Bend/Silver Lake Sanitary District	Amendment to the Regional Water Quality Management Plan-2000, City of West Bend/Town of West Bend/Silver Lake Sanitary District	March 4, 1992	September 11, 1992	
Amendment-Town of Somers	Amendment to the Regional Water Quality Management Plan-2000, Town of Somers	June 17, 1992	September 11, 1992	

Table 1 (continued)

		arimba	I mun
Plan Element	Plan Document	SEWRPC Date of Adoption	WDNR
Amendment—Delafield-		L	Date of Adoption
Amendment-Delaileid- Nashotah Area	Community Assistance Planning Report No. 127, Sanitary Sewer Service Area for the City of	January 18, 1993	April 29, 1993
Nashotan Area	Delafield and the Village of Nashotah and		
	Environs, Waukesha County, Wisconsin		
	Environs, waukesna County, wisconsin	i	
Amendment-City of Lake	Community Assistance Planning Report No. 203,	January 18, 1993	April 29, 1993
Geneva and	Sanitary Sewer Service Area for the City of		
Environs	Lake Geneva and Environs, Walworth County,		j
	Wisconsin		
Amendment-Eagle Lake Sewer	Community Assistance Planning Report No. 206,	January 18, 1993	April 29, 1993
Utility District	Sanitary Sewer Service Area for the Eagle Lake		· ·
	Sewer Utility District, Racine County,		
	Wisconsin		
Amendment-Village of	Amendment to the Regional Water Quality	January 18, 1993	May 14, 1993
Hartland	Management Plan: 2000, Village of Hartland		
Amendment-Village of Newburg	Community Assistance Planning Report No. 205,	March 3, 1993	June 21, 1993
	Sanitary Sewer Service Area for the Village		
	of Newburg, Ozaukee and Washington Counties,		
	Wisconsin		
Amendment-Village of	Amendment to the Regional Water Quality	March 3, 1993	May 14, 1993
Twin Lakes	Management Plan-2000, Village of Twin Lakes		İ
Amendment—City of Muskego	Amendment to the Regional Water Quality	March 3, 1993	April 29, 1993
	Management Plan: 2000, City of Muskego		
Amendment-Villages of	Community Assistance Planning Report No. 208,	June 16, 1993	September 10, 1993
Lannon and	Sanitary Sewer Service Areas for the Villages		
Menomonee Falls	of Lannon and Menomonee Falls, Waukesha County,		
	Wisconsin		
Amendment—City of New Berlin	Amendment to the Regional Water Quality	June 16, 1993	
	Management Plan-2000, City of New Berlin		
Amendment-Racine Area	Amendment to the Regional Water Quality	June 16, 1993	August 24, 1993
	Management Plan-2000, City of Racine		
	and Environs		
Amendment-Powers Lake,	Community Assistance Planning Report No. 196,	September 15, 1993	
Kenosha and	A Management Plan for Powers Lake, Kenosha		
Walworth Counties	and Walworth Counties, Wisconsin		
Amendment-Wind Lake,	Community Assistance Planning Report No. 198,	September 15, 1993	
Racine County	A Management Plan for Wind Lake, Racine		
	County, Wisconsin		
Amendment-Walworth County	Amendment to the Regional Water Quality	December 1, 1993	February 15, 1994
Metropolitan	Management Plan-2000, Town of Geneva, Walworth		
Sewerage District	County Metropolitan Sewerage District		

- a. A description of the various elements of the regional water quality management plan as amended and as applied to the particular watershed concerned.
- b. A description of the extent to which the key elements of the regional water quality management plan have been implemented since adoption of the original plan.
- c. A description, based on the best available data, of the existing water quality conditions and of the extent to which the water quality objectives and standards in the watershed have been met.
- d. A description of the substantive water quality management issues within the watershed that remain to be addressed in the continuing planning process.
- 4. Chapter XVI--Status of Groundwater Quality Management Plan Element
 This chapter describes the status of the preparation of a proposed new
 element of a regional water quality management plan; namely, a groundwater management element.
- 5. <u>Chapter XVII--Designated Management Agencies and Responsibilities</u>
 This chapter identifies, by plan element, all of the designated management agencies given responsibility for implementation of the regional water quality management plan.
- 6. Chapter XVIII--Summary and Recommendations
 This chapter provides a summary of the information presented in the report, focusing in particular on the restatement of the regional water quality management plan as amended and updated; on the extent to which the water use objectives and supporting water quality standards have been met; and on the remaining water quality management issues to be addressed in the continuing planning effort.

Chapter II

SURFACE WATER RESOURCES--WATER USE OBJECTIVES AND STANDARDS, DATA SOURCES, AND ANALYTICAL PROCEDURES

This regional water quality management plan includes a collection of current data on which an assessment of the existing water quality conditions in the streams and lakes of the planning area, and an analysis of the ability of those conditions to support proposed water uses, has been made. In addition, such data are compared to historic data in order to assess the changes which have occurred in surface water quality since the preparation of the initial regional water quality management plan.

The initial water quality management plan presented a description of the existing surface water system along with existing and planned water use objectives and water quality data available through 1976. This chapter includes a general description of the existing surface water system; presents updated information on water use objectives and standards; and includes a general description of the data available and the procedures used to present the current state of surface water quality. Chapters IV through XV present for each of the 12 watersheds in the Region: available data on water quality and other surface water conditions for stream reaches and lakes; an assessment of the degree to which the water use objectives are currently being met; and, to the extent the data permit, an assessment of the changes which have occurred in water quality conditions since the initial regional water quality management planning effort was completed, thus providing a measure of the effect of plan implementation to date.

SURFACE WATER RESOURCE DESCRIPTION

Lakes and streams constitute an extremely valuable part of the natural resource base of Southeastern Wisconsin. Inasmuch as they are focal points for waterrelated recreational activities popular with the inhabitants of the Region, lakes and streams provide extremely attractive sites for properly planned residential development; and, when viewed in the context of open space areas, greatly enhance the aesthetic aspects of the environment. While highly valued by the urban and rural populations of the Region, lakes and streams are extremely susceptible to deterioration through the activities of those very Water quality can degenerate as a result of pollutant loadings from malfunctioning or improperly placed septic tank systems, inadequate sewage treatment facilities, runoff from rural, urban, and urbanizing lands. Lakes and streams are also adversely affected by the excessive development of lacustrine and riverine areas in combination with the filling of peripheral wetlands, which removes valuable nutrient and sediment traps while adding nutrient and sediment sources. The regional surface water resources must be properly managed and land uses carefully located and designed to achieve a reasonable balance between public and private use and enjoyment of those surface water resources.

Streams

As shown on Map II-1, the surface drainage system of Southeastern Wisconsin may be viewed as existing within 11 individual watersheds. Five of these, the Root River, Menomonee River, Kinnickinnic River, Oak Creek, and Pike River watersheds, are contained entirely within the Region. In addition to the 11 watersheds, numerous small catchment areas immediately adjacent to the Lake Michigan shoreline drain directly to the Lake via local natural streams or artificial drainageways; these tributary areas together may be considered to comprise a twelfth watershed. The Region contains only a very small part of the Des Plaines and Fox River watersheds and of the Wisconsin portion of the large Rock River watershed. The streams of the Rock River watershed within the Region are limited to the headwater portions of such tributaries to the Rock River as the Bark and Oconomowoc Rivers and Turtle Creek.

Three of the 12 watersheds contained wholly or partly in Southeastern Wisconsin, the Fox, Rock, and Des Plaines River watersheds, with a combined area of 1,681 square miles, or 63 percent of the area of the Region, lie west of the subcontinental divide. As a result, the rivers and streams within these catchment areas flow in a generally southerly and southwesterly direction and are part of the Mississippi River drainage system. The rivers and streams in the nine watersheds comprising the remainder of Southeastern Wisconsin, with a combined area of 1,008 square miles, or 37 percent of the area of the Region, flow in a generally southerly and easterly direction and discharge into Lake Michigan and are a part of the Great Lakes-St. Lawrence River drainage system. A summary of the relative sizes of the watersheds within Southeastern Wisconsin is presented in Table II-1 and a graphical representation of the range of watershed sizes is shown in Figure II-1.

One of the most interesting, variable, and occasionally unpredictable features of each watershed is the ever changing, sometimes widely fluctuating, discharges and stages of its stream system. The stream systems of the Region generally receive a relatively uniform flow of groundwater from the shallow aquifers underlying the Region. This groundwater discharge constitutes the base flow of the streams. The streams also periodically intercept surface water runoff from rainfall and snowmelt which is superimposed on the base flow and sometimes causes the streams to leave their channels and occupy the adjacent floodlands. The volume of water drained annually from Southeastern Wisconsin by the stream system is equivalent to seven to eight inches of water spread over the sevencounty Region, and amounts to about one-fourth of the average annual precipitation.

Major streams are defined herein as perennial streams which maintain, at a minimum, a small, continuous flow throughout the year except under unusual drought conditions. Within the Region, there are approximately 1,148 miles of such major streams, as summarized by county in Table II-2. The length of major streams per county ranges from a low of 101 linear miles in Racine County to a high of 333 linear miles in Waukesha County. The latter county also has the largest number of major lakes, and is therefore particularly well endowed with surface water resources.

Lakes

Major inland lakes are defined herein as those having 50 acres or more of surface water area, a size capable of supporting reasonable recreational use with relatively little degradation of the resource. There are 101 such major inland lakes within the Region, the location and relative sizes of which are

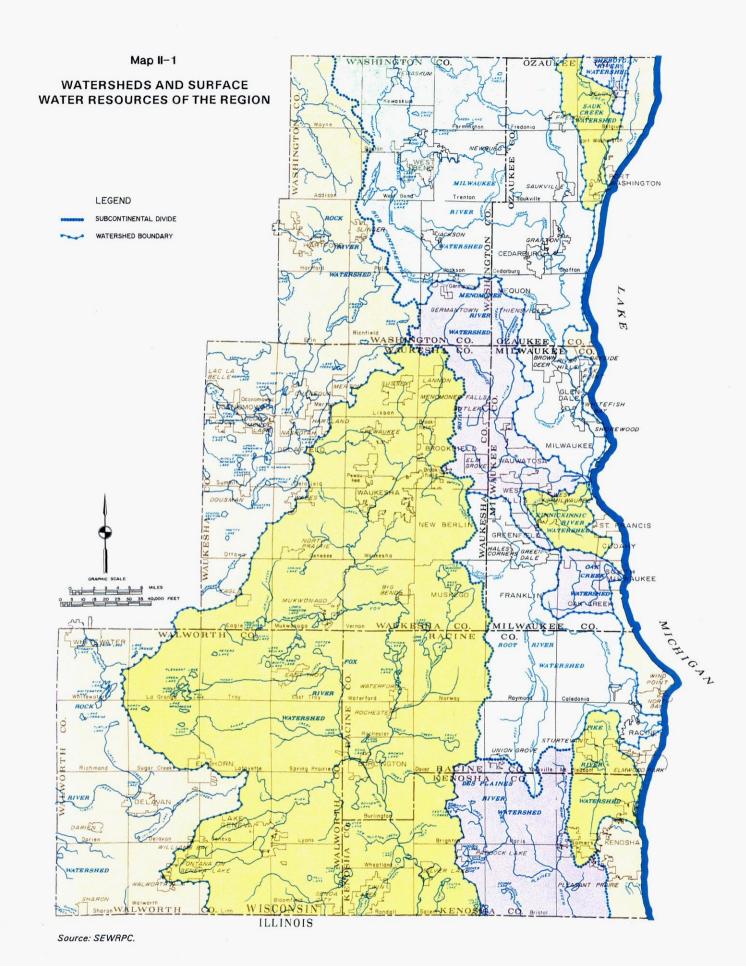


Table II-1
WATERSHEDS IN THE REGION BY COUNTY

	County															
	Ke	nosha	Mil	waukee	Ozaukee Racine Walworth		Washington Wau		ukesha	Total Watershed						
Watershed ^{a, b}	Area (square miles)	Percent of Watershed	Area Within Region (square miles)	Percent of Region												
Fox River ^{d,f}	96.06	10.28	0.26	0.03			164.78	17.63	337.06 239.43	36.06 39.21	0.25 177.65	0.02 29.10	336.30 193.51	35.98 31.69	934.71 610.59	34.76 22.71
Rock River ^d Milwaukee River ^{e,f} Root River ^{C,e,f}	1.99	1.02	57.90 57.75	13.31 29.47	151.25	34.78	123.16	62.85			225.80	51.91	13.06	6,66	434.95 195.96	16.17 7.29
Root River (c,e,f) Menomonee River (d) Des Plaines River (d)	123.53	91.82	56.34	40.92	11.63	8.45	11.00	8.18			31.98	23.22	37.74	27.41	137.69	5.12
Minor Tributaries to		1												• • •	134.53	5.00
Lake Michigan ^{C,e}	27.23 29.59	29.42 57.55	18.32	19.79 	27.28	29.48	19.72 21.83	21.31 42.45							92.55 51.42	3,44 1,91
Sauk Creek ^e		-:-	27.74	100.00	34.09	100.00									34.09 27.74	1.27 1.03
Kinnickinnic River ^{C, e, f}			24.17	100.00	10.84	100.00									24.17 10.84	0.90 0.40
Total	278.40	10.35	242.48	9.02	235.09	8.74	340.49	12.66	576.49	21,44	435.68	16.20	580.61	21.59	2,689.24	100.00

NOTE: Watershed areas are approximations based upon aggregations of U. S. Public Land Survey quarter sections.

Source: SEWRPC.

Table II-2
MAJOR LAKES IN THE REGION BY COUNTY

	Major Lakes ^a						
,		Surface Area					
County	Number ^b	Acres	Percent of Region				
Kenosha	17	3,414	9.4				
Milwaukee							
Ozaukee	3	358	1.0				
Racine	11	3,516	9.6				
Walworth	27	12,597	34.5				
Washington	14	2,634	7.2				
Waukesha	33	13,998	38.3				
Region	101	36,517	100.0				

^aA major lake is defined as one having 50 acres or more of surface water.

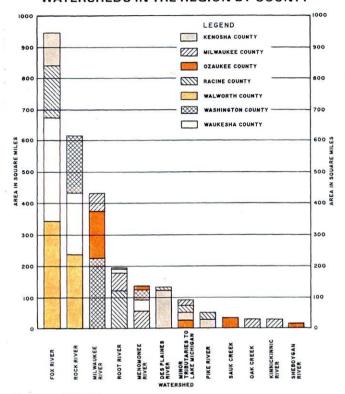
Source: Wisconsin Department of Natural Resources and SEWRPC.

 $^{^{} heta}$ Includes only that area of each watershed that lies within the Southeastern Wisconsin Region.

 $^{^{\}it b}$ Watersheds are listed in order of decreasing size within the Region.

^cIndicates watershed wholly contained within the Region.

d Indicates watershed west of the subcontinental divide that is tributary to the Mississippi River basin. Three watersheds having a combined area of about 1,680 square miles, or about 62 percent of the Region, are in this category.


e Indicates watershed east of the subcontinental divide that is tributary to the Great Lakes-St. Lawrence River basin. Nine watersheds having a combined area of about 1,009 square miles, or about 38 percent of the Region are in this category.

Indicates watershed for which comprehensive watershed plan has been prepared and adopted by the Regional Planning Commission.

bThere are 101 major lakes in the Region. Four of these lakes lie in more than one county in the Region, including Benedict Lake and Powers Lake, which lie in Kenosha and Walworth Counties; Lake Denoon, which lies in Racine and Waukesha Counties; and Lake Five, which lies in Washington and Waukesha Counties. The number of lakes as reported by county in this table, therefore, adds up to more than 101.

Figure II-1

SIZE AND DISTRIBUTION OF WATERSHEDS IN THE REGION BY COUNTY

Source: SEWRPC.

shown on Map II-1.¹ Tabular summaries of selected physical characteristics of the major lakes of Southeastern Wisconsin are presented by watershed in the following chapters. The major lakes in the Region have a combined surface water area of about 36,500 acres, or about 2 percent of the total area of the Region. The number of major inland lakes per county ranges from none in Milwaukee County to 33 in Waukesha County; the combined surface water areas of the major lakes per county ranges from none in Milwaukee County to about 14,000 acres in Waukesha County. Lake Geneva is by far the largest inland lake in Southeastern Wisconsin, with an area of 5,262 acres, more than twice as large as Pewaukee Lake, which, with an area of 2,493 acres, is the second largest inland lake in the Region.

In addition to the major lakes, there are numerous "minor" lakes and ponds in the Region encompassing less than 50 acres of surface water area. These minor lakes have a combined surface area of about four square miles, or about 0.15 percent of the Region. These smaller lakes generally have few riparian owners and, in many cases, have marginal fisheries. In most cases, the primary values of the minor lakes are aesthetic. However, these lakes do provide a valuable resource and serve to provide an important ecological and recreational function. In some cases, these smaller lakes are located in highly urban areas, thus providing a readily available resource to large numbers of people. Minor lakes can be a fragile but important resource, and their ecological and aesthetic values may be lost unless properly managed.

The inland lakes of Southeastern Wisconsin are almost exclusively of glacial origin, formed by depressions in outwash deposits, terminal and interlobate moraines, and ground moraines. Some lakes, such as Green Lake in northeastern Washington County or Browns Lake in southwestern Racine County, owe their origins to kettles, that is, depressions formed in the glacial drift as a result of the melting of ice blocks that became separated from the melting continental ice sheet, and of the subsequent subsidence of sand and gravel contained on and within those blocks. By virtue of their origin, glacially formed lakes are fairly regular in shape, with their deepest points located predictably near the center of the basin, or near the center of each of several connected basins. The beaches are characteristically gravel or sand on the windswept north, east, and south shores, while fine sediments and encroaching vegetation are common on the protected west shores and in bays.

Management Plan for Southeastern Wisconsin--2000, reported the existence of 100 major lakes in the Region. Since the previous inventory, East Lake Flowage has been created as a major lake through an impoundment effort in the Bong State Recreation Area in the Town of Brighton, and an unnamed major lake has been created from an abandoned quarry in the Village of Pleasant Prairie. West Bend Pond in Washington County, classified as a major lake in previous inventory, is no longer a major lake due to the removal in 1987 of the dam which formed the pond. In addition, the classification of two other lakes has been changed on the basis of revised inventory data. Previously classified as a minor lake, Lac du Cours in Ozaukee County is now classified as a major lake on the basis of a revised area measurement of 56 acres. Previously classified as a major lake, Saylesville Mill Pond in Waukesha County is no longer classified as a major lake on the basis of a revised area measurement of 45 acres.

WATER USE OBJECTIVES AND SUPPORTING WATER QUALITY STANDARDS

The Wisconsin Department of Natural Resources (DNR) is required, under Section 144.025(2)(b) of the Wisconsin Statutes and the State Water Resources Act of 1965, to establish a set of water use objectives and supporting water quality standards applicable to all surface waters of the State. Under the Federal Water Pollution Control Act of 1965, the establishment of such objectives and standards is required for all navigable waters in the United States. The Federal Water Pollution Control Act further requires that these objectives and standards be periodically reviewed and revised as appropriate. Under the Wisconsin Resource Development Board, predecessor to the Wisconsin Natural Resources Board, a set of water use objectives and standards for Wisconsin surface waters was initially adopted for interstate waters on June 1, 1967, and for intrastate waters on September 1, 1968. These objectives and standards were then revised by the Wisconsin Natural Resources Board in 1977.

The initial regional water quality management plan included consideration of a set of water use objectives which were considered to be applicable for Southeastern Wisconsin and which were consistent with the water use objectives and standards for the State as they were revised by the Wisconsin Department of Natural Resources in 1977. In the initial regional plan, the following five combinations of water use objectives were formulated for application in Southeastern Wisconsin:

- 1. Salmon spawning fishery and aquatic life, recreational use, and minimum aesthetic standards
- 2. Trout fishery and aquatic life, recreational use, and minimum standards
- 3. Warmwater fishery and aquatic life, recreational use, and minimum standards
- 4. Warmwater fishery and aquatic life, limited recreational use, and minimum standards
- 5. Limited fishery and aquatic life, limited recreational use, and minimum standards

Of the five water use objective combinations, only the first three, providing for a full warmwater fishery and full body contact recreational use, are fully compatible with the national goal of "fishable and swimmable" waters, as set forth in Public Law 92-500.

The current Wisconsin Department of Natural Resources water use objectives and supporting standards, as of December 1992, are set forth in Chapters NR 102, 104, and 105 of the Wisconsin Administrative Code. In addition, Chapter NR 103, which became effective on August 1, 1991, establishes water quality-related rules for wetlands. The rules set forth in Chapter NR 103 consist of two parts: 1) a set of standards intended to protect water quality-related functions of wetlands including sediment and pollution control, stormwater and floodwater storage, hydrologic cycle maintenance, shoreline erosion protection, habitat protection for aquatic organisms and other wildlife species, and recreational uses; and 2) implementation procedures for application of the water quality standards. Because the application of the rules set forth in Chapter NR 103 are site specific and require consideration of the specific activity proposed within

or adjacent to a wetland, wetland water quality objectives and standards are not specifically addressed in this report. Rather, it is assumed that the procedures documented in Chapter NR 103 will be applied by the Wisconsin Department of Natural Resources on a site-specific, case-by-case basis.

"Fishable" Waters

The revisions which have been made by the Wisconsin Department of Natural Resources to the surface water use objectives since the preparation of the regional water quality management plan consist primarily of combining the salmon and trout fishery categories into one coldwater fishery category, adding a new Great Lakes community category, and further subdividing the warmwater fishery and limited fishery biological use categories based upon the type of biological community which can be supported. Six biological use objectives have been developed by the Wisconsin Department of Natural Resources for application to all of the State surface waters, including both streams and lakes. These objectives are set forth in Chapter NR 102.04 (3) of the Wisconsin Administrative Code, and are based upon the type of aquatic life uses a particular water body should be able to safely and consistently support. Sub-section NR 102.04 (4) sets forth the applicable standards relating to these use objectives. Standards for recreational use, public health and welfare, and wild and domestic animals are set forth in Sub-sections NR 102.04 (5), (6) and (7), respectively, of the Wisconsin Administrative Code.

Each biological use objective represents the type of aquatic community a particular lake or stream reach is expected to be able to sustain. Because the existence of a particular aquatic community is dictated in large part by the level of water quality present in a particular water body, the assigned biological use serves as a measure of the water quality conditions, which are either currently being met or which could potentially be achieved under prescribed types and levels of management. The biological use objectives are detailed as follows:

<u>Great Lakes Communities</u> - Streams classified under this category are those waters which drain to Lake Michigan, and its bays, arms, and inlets, which serve as spawning areas for anadromous fishes.

<u>Cold Water Communities</u> - Streams classified under this category are capable of supporting a community of coldwater fish and other aquatic life, or serve as spawning areas for coldwater sport fish species. This category includes, but is not restricted to, surface waters identified as trout waters by the Wisconsin Department of Natural Resources. Also included in this classification are coldwater streams which, too small to support sport fish, are capable of supporting an abundant and diverse population of forage fish and macroinvertebrates which are intolerant of pollution.

<u>Warmwater Sport Fish Communities</u> - Under this classification, streams are capable of supporting a warmwater sport fishery or serve as spawning areas for warmwater sport fish species such as walleye, bluegill, largemouth bass, and smallmouth bass. Also present are aquatic macroinvertebrates which are relatively intolerant of pollution.

<u>Warmwater Forage Fish Communities</u> - This category includes surface waters with natural water quality and habitat capable of supporting an abundant, usually diverse, community of forage fish (shiners, minnows) and/or aquatic macroinvertebrates (insects, clams, crayfish) which are relatively intolerant of pollution. These streams are generally too small to support sport

fish species. Streams capable of supporting valuable populations of pollution-tolerant forage fish are also included in this classification.

<u>Limited Forage Fish Communities (Intermediate Surface Waters)</u> - Streams within this classification are of limited capacity, naturally poor water quality and deficient habitat. These intermediate surface waters are capable of supporting only a limited community of pollution-tolerant forage fish and aquatic macroinvertebrates.

<u>Limited Aquatic Life (Marginal Surface Waters)</u> - Streams with this classification have a severely limited capacity, naturally poor water quality and deficient habitat. These marginal surface waters are only capable of supporting a limited community of aquatic life.

Those surface waters assigned a biological use objective as a Great Lakes community, coldwater community, warmwater sportfish community, or warmwater forage fish community, are characterized as surface waters which are considered in the Federal Water Pollution Control Act Amendment of 1972, Public Law 92-500, to be suitable for the protection and propagation of a balanced fish and other aquatic life community. These waters typically exhibit the highest degree of water quality and can be expected to meet the "fishable" criterion specified in Public Law 92-500. The remaining two biological use objectives are assigned when a particular surface water is unable to maintain the afore-described water quality conditions and resultant aquatic communities, or have been the subject of irretrievable physical alterations which limit uses. These water use objectives are described as supporting limited forage fish communities (intermediate surface waters) and limited aquatic life (marginal surface waters), respectively, in Sub-section NR 104.02 (3) of the Wisconsin Administrative Code.

"Swimmable" Waters

Two recreational use objectives considered applicable to surface waters in Southeastern Wisconsin for planning purposes in the initial regional plan were used in this updated report as a means of classifying surface waters according to varying degrees of human recreational use. For this purpose, the surface waters are divided into two categories: those waters that have a water quality which is considered safe and acceptable for full recreational use and those waters considered safe and acceptable for only limited recreational use. Surface waters classified as safe for full recreational use include those which have expected water quality conditions considered safe for human recreation where immersion of the head is expected and frequent. Recreational activities in this classification include swimming, waterskiing, windsurfing, and similar activities where significant contact with water is likely to occur. Limited recreational use waters include those used for human recreational use where immersion of the head is not frequent and contact is accidental or incidental and therefore less frequent, such as boating and sailing. As was done in preparing the initial water quality management plan, the Commission staff, when establishing the recreational use objectives for a particular water body or watercourse within the Region, in addition to giving consideration to potential bacterial contamination levels, gave consideration to both the degree of channelization and physical alteration, and physical attributes of the water body or watercourse, and to the nutrient levels within the waters, where known. streams and lakes which had excessive nutrient levels, which could not as a practical matter be sufficiently reduced, were placed in a limited recreational use category on the basis that the biological response to these conditions would result in a condition that would place limitations on the recreational uses.

Additionally, those streams which were found to have bacterial levels which could not be practically reduced to meet the standards described in the subsequent section, or which had physical characteristics which limited their use, were also placed in the limited recreation use category.

As was done in the initial regional water quality management plan, an attempt was made to assign all surface waters in the Region to an appropriate combination of those use objectives which would fully meet the national goal of "fishable and swimmable" waters. Consideration was given to the potential of each stream reach and of each major lake to meet objectives consistent with the national goal of "fishable and swimmable" waters. This consideration took into account the results of available inventories of the physical characteristics and conditions of the lakes and streams, existing water quality, sources of pollution in tributary drainage areas, characteristics of land uses in tributary drainage areas, and the locations and extent of in-place pollutants. This assessment was also based, in part, upon review of the analyses conducted under the initial regional water quality management planning program and subsequent field inspections and analyses conducted by the Wisconsin Department of Natural Resources staff, supplemented by inventory data collected by the U.S. Geological Survey, the Regional Planning Commission, and local agencies.

Water Use Objectives

In updating the initial regional water quality management plan, consistent with the objectives set forth in the initial regional water quality management plan refined to reflect the foregoing amended requirements of the Wisconsin Administrative Code and other considerations as set forth above, eight combinations of water use objectives were established by Commission staff for application to surface waters in the Region. These combinations of water use objectives are as follows:

- Coldwater biological community and full recreational use
- Warmwater sport fish community and full recreational use
- Warmwater sport fish community and limited recreational use
- Warmwater forage fish community and full recreational use
- Warmwater forage fish and limited recreational use
- Limited forage fish community and limited recreational use
- Limited aquatic life and limited recreational use

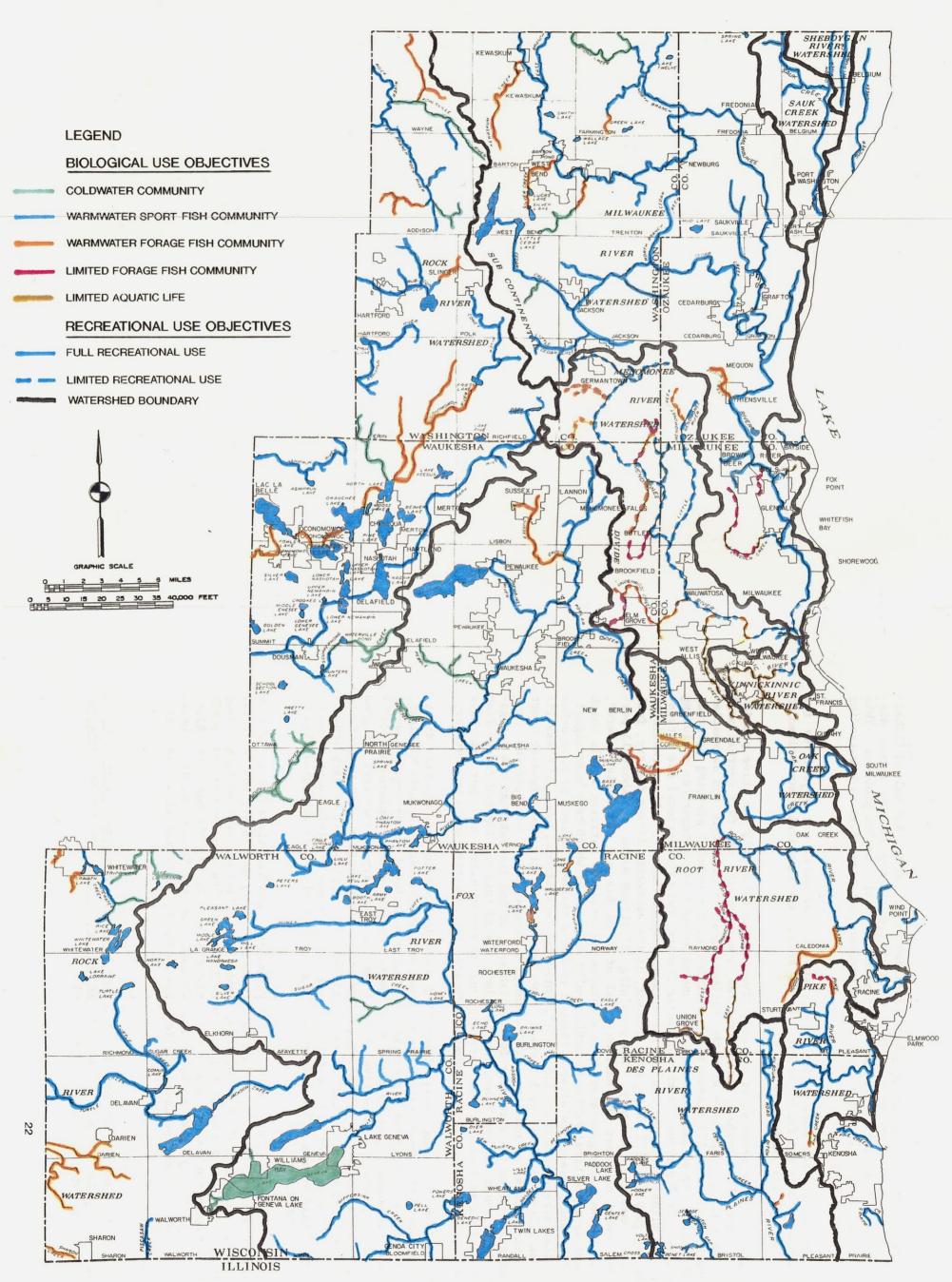
Waters supporting a limited forage fish community or limited aquatic life were deemed, by definition, to be incapable of supporting full recreational use, given that the conditions which impaired the survival of aquatic organisms would also be likely to impair human use of the system.

In addition to the above combinations of classifications, the Wisconsin Department of Natural Resources has two other special classifications used for the highest-quality lakes and streams. These classifications are Outstanding Resource Waters and Exceptional Resource Waters, as defined in Chapter NR 102 of the Wisconsin Administrative Code:

Outstanding Resource Waters have the highest value as a resource, excellent water quality and high-quality fisheries. They do not receive wastewater discharges and point source discharges will not be allowed in the future unless the quality of such a discharge meets or exceeds the quality of the receiving water. This classification includes national and State wild and scenic rivers and the highest quality, Class I trout streams in the State.

<u>Exceptional Resource Waters</u> have excellent water quality and valued fisheries but already receive wastewater discharges or may receive future discharges necessary to correct environmental or public health problems. This classification includes trout stream segments not classified as Outstanding Resource Waters.

The results of the application of the analysis of water use objectives for selected streams and for major lakes in the Region are graphically summarized on Map II-2 and are summarized below.


Streams: Of the seven water use objective combinations, only the three providing for the three highest biological uses, combined with the full recreational use, are fully compatible with the national goal of "fishable and swimmable" Of the 1,223 stream miles analyzed in the updated planning program, 1,066 miles, or 87 percent, fall into one of these three categories: including 86 miles, or 7 percent, in the coldwater fishery, full recreational use category; 868 miles, or 71 percent, in the warmwater sport fishery, full recreational use category; and 112 miles, or 9 percent, in the warmwater forage fishery, full recreational use category. The remaining 157 stream miles, or about 13 percent, would not meet the national goal of "fishable and swimmable waters". These stream miles generally have excessive bacterial or nutrient levels which cannot as a practical matter be sufficiently reduced; or which have been significantly and permanently altered through concrete channelization; or have other physical alterations which limit their potential recreational use. Of these 157 stream miles, 59 miles, or 5 percent, have been placed into the warmwater sport fish and limited recreational use category; 27 stream miles, or 2 percent, have been placed into the warmwater forage fish and limited recreational use category; 35 stream miles, or 3 percent, have been placed into the limited forage fish and limited recreational use category; and 34 stream miles, or 3 percent, have been placed into the limited aquatic life and limited recreational use category.

The 1,223-mile stream network identified above does not include the Lake Michigan estuary portions of any of the regional streams that drain to Lake Michigan, except for the Milwaukee Harbor estuary which was included in the regional water quality management plan by means of a special estuary study completed in 1987. No specific water use objectives for the remaining estuary reaches were assigned under the areawide water quality management planning program. Because of the complexity of the estuaries, it is envisioned that supplemental estuary studies will have to be undertaken to fully assess the water quality related problems of these estuaries and to intelligently assign appropriate water use objectives to all the estuaries.

Within Southeastern Wisconsin, Bluff, Potawatomi, and Van Slyke Creeks, all in Walworth County, totaling 5.0 stream miles, or 0.4 percent of all the perennial stream miles within the Region, are currently classified as Outstanding Resource Waters. The East Branch of the Milwaukee River from the Long Lake outlet to STH 28 in Washington County; and, Genesee Creek above STH 59, the Mukwonago River from Eagle Springs Lake to Upper Phantom Lake, and the Oconomowoc River below North Lake to Okauchee Lake, all in Waukesha County, totaling 21.4 miles, or

²SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>; Volume One, <u>Inventory Findings</u>; Volume Two, <u>Alternative and Recommended Plans</u>; December 1987.

RECOMMENDED WATER USE OBJECTIVES FOR LAKES AND STREAMS IN SOUTHEASTERN WISCONSIN: 2010

1.8 percent of streams in the Region, are currently classified as Exceptional Resource Waters.

Of the 101 major lakes in the Region, 98 lakes fall into water use objective categories that are deemed to be fully compatible with the national goal of "fishable and swimmable" waters. Of these 98 lakes, one--Geneva Lake-has been recommended for the maintenance of a coldwater biological community and full recreational use. The lake is the largest inland lake in the Region, with a surface area of 5,262 acres, or 14.5 percent of the total lake surface area of Within the Region, 97 lakes have been placed into the warmwater sport fish and full recreational use category, occupying a total area of 30,746 acres, or 84 percent of the lake area in Southeastern Wisconsin. The remaining three lakes -- Echo Lake, Kee Nong Go Mong Lake, and the Buena Lake portion of the Waterford Impoundment in Racine County, together totaling 400 acres, or 1.1 percent of the lake surface area in the Region--have been placed into the warmwater forage fish and limited recreational use category because of estimated excessive nutrient loadings to the lakes which cannot, as a practical matter, be sufficiently reduced, resulting in accelerating rates of lake fertilization and attendant aquatic plant growth. Two lakes, Lulu Lake in Walworth County and Spring Lake in Waukesha County, are also classified as Outstanding Resource Waters, occupying 189 acres in surface area, or 0.5 percent of the combined surface area of all major lakes in the Region.

Water Quality Standards

In conjunction with the above stated water-use objectives, specific chemical and biological standards were developed for use in the plan updating process in order to quantitatively evaluate the water quality of specific surface waters. The standards are defined as characteristics of a water body which must be maintained to warrant it suitable for specific uses. When applied to specific waters, the standards serve to determine if, and to what extent, the water body is meeting its current water-use objectives. Additionally, standards are established and followed as a means for governing water management decisions.

The currently adopted standards were developed for planning purposes based upon consideration of those set forth in the initial areawide water quality management plan and the Wisconsin Administrative Code--Chapters NR 102, 104, and 105-as well as from additional sources, including U.S. Environmental Protection Agency (EPA) water quality criteria. These standards, as they apply to specific biological use objectives and recreational use objectives for the Southeastern Wisconsin Region, are set forth in Tables II-3 and II-4.

Historically, water quality standards were applied based upon the belief that water pollution was essentially a dry-weather, low-streamflow problem. This practice was based on analyses of stream water quality conditions affected by sewage treatment plant discharges. Such plants normally discharge sewage effluent at a relatively constant rate and quality, thereby causing the most severe water quality problems when receiving streamflows--and hence, dilution--are low. The Wisconsin Department of Natural Resources currently requires that all instream water quality standards be met during all but the very lowest flow conditions, such conditions being defined as flows less than the 7-day average, 1-in-10-year recurrence interval low flow.

Under the Commission's regional water quality management planning programs, however, it was determined that a probabilistic approach to the application of certain water quality standards, whereby the percent of time a given standard

Table II-3

APPLICABLE WATER USE OBJECTIVES AND WATER QUALITY STANDARDS FOR LAKES AND STREAMS WITHIN THE SOUTHEASTERN WISCONSIN REGION^a

	Combi	nations of Water	Use Objectives Add	opted for Southeaste	rn Wisconsin Inla	nd Lakes and Strea	msb,c
Water Quality Parameters	Coldwater Community and Full Body Recreational Use	Warmwater Sport fish Community and Full Recreational Use	Warmwater Sport fish Community and Limited Recreational Use	Warmwater Forage Fish Community and Full Recreational Use	Warmwater Forage Fish Community and Limited Recreational Use	Limited Forage Fish Community and Limited Recreational Used	Limited Aquatic Life and Limited Recreational Use
Temperature ^{e,f,g} (°F)	Background	89.0 maximum	89.0 maximum	89.0 maximum	89.0 maximum		
Dissolved Oxygeng (mg/1)	6.0 and 7.0 ^h minimum	5.0 minimum ⁱ	5.0 minimum ⁱ	5.0 minimum ⁱ	5.0 minimum ⁱ	3.0 minimumj	3.0 minimum ^j
pH Range ^k (S.U.)	6.0 - 9.0	6.0 - 9.0	6.0 - 9.0	6.0 - 9.0	6.0 - 9.0	6.0 - 9.0	6.0 - 9.0
Total Phosphorous ¹ (mg/1)	0.1, 0.02 maximum	0.1, 0.02 maximum		0.1, 0.02 maximum			
Un-ionized Ammonia Nitrogen (mg/l)	0.02 maximum	0.04 maximum	0.04 maximum	0.04 maximum	0.04 maximum	3.0, 6.0 maximum ^m	
Chloride ⁿ (mg/l)	1,000 maximum	1,000 maximum	1,000 maximum	1,000 maximum	1,000 maximum	1,000 maximum	
Fecal Coliform (MFFCC)	200, 400 maximum ^o	200, 400 maximum ^o	1,000, 2,000 maximum ^p	200, 400 maximum ^o	1,000; 2,000 maximum ^P	1,000; 2,000 maximumP	1,000; 2,000 maximum ^p

Includes SEWRPC interpretations of all basic water use categories established by the Wisconsin Department of Natural Resources and additional categories established under the areawide water quality management planning program, plus those combinations of water use categories applicable to the Southeastern Wisconsin Region. It is recognized that under both extremely high and extremely low flow conditions, instream water quality levels can be expected to violate the established water quality standards for short periods of time without damaging the overall health of the stream. It is important to note the critical differences between the official State and federally adopted water quality standards—composed of "use designations" and "water quality criteria"—and the water use objectives and supporting standards of the Regional Planning Commission described here. The U.S. Environmental Protection Agency and the Wisconsin Department of Natural Resources, being regulatory agencies, utilize water quality standards as a basis for enforcement actions and compliance monitoring. This requires that the standards have a rigid basis in research findings and in field experience. The Commission, by contrast, must forecast regulations and technology far into the future, documenting the assumptions used to analyze conditions and problems which may not currently exist anywhere, much less in or near Southeastern Wisconsin. As a result, more recent—and sometimes more controversial—study findings must sometimes be applied. This results from the Commission's use of the water quality standards as criteria to measure the relative merits of alternative plans.

Footnotes continue.

b All waters shall meet the following minimum standards at all times and under all flow conditions: substances that will cause objectionable deposits on the shore or in the bed of a body of water, floating or submerged debris, oil, scum, or other material, and material producing color, odor, taste or unsightliness shall not be present in such amounts as to interfere with public rights in waters of the State. Substances in concentrations or combinations which are toxic or harmful to humans shall not be present in amounts found to be of public health significance, nor shall substances be present in amounts which are acutely harmful to animal, plant or aquatic life.

Footnotes to Table II-3

- C Standards presented in the table have been applied for planning purposes to lakes over 50 acres in surface area and to major streams of the Region.
- d No un-ionized ammonia nitrogen standard has been established for streams or lakes classified as supporting limited forage fish communities. The maximum standard for total ammonia, as set forth in Chapter NR 104 of the Wisconsin Administrative Code, is included in the table.
- There shall be no temperature changes that may adversely affect aquatic life. Natural daily and seasonal temperature fluctuations shall be maintained. The maximum temperature rise at the edge of the mixing zone above the natural temperature shall not exceed 5°F for streams.
- f There shall be no significant artificial increases in temperature where natural trout reproduction is to be maintained.
- 8 Dissolved oxygen and temperature standards apply to continuous streams and the leeches of stratified lakes and to the unstratified lakes; the dissolved oxygen standard does not apply to the hypolimnion of stratified inland lakes. However, trends in the period of anaerobic conditions in the hypolimnion of deep inland lakes should be considered important to the maintenance of their natural water quality.
- h Dissolved oxygen in classified trout streams shall not be artificially lowered to less than 6.0 mg/l at any time, nor shall the dissolved oxygen be lowered to less than 7.0 mg/l during the spawning season.
- i Standard noted is applied using a probabilistic analyses approach as defined in this chapter; absolute minimum standard of 3.0 mg/l of dissolved oxygen also applies.
- J Standard noted is applied using a probabilistic analyses approach as defined in this chapter; absolute minimum standard of 1.5 mg/l of dissolved oxygen also applies.
- k The pH shall be within the stated range with no change greater than 0.5 units outside the estimated natural seasonal maximum and minimum.
- 1 In streams classified for full recreational use, the total phosphorus concentration shall not exceed 0.1 mg/l. In lakes classified for full recreational use, the total phosphorus concentration shall not exceed 0.02 mg/l during spring when maximum mixing is underway. A phosphorus standard does not apply to streams and lakes classified for limited recreational use. Total phosphorus standards were developed by the Commission for use in the initial water quality management plan from U.S. Environmental Protection Agency recommendations set forth in Quality Criteria for Water, 1976.
- m Standard is for total ammonia. Ammonia Nitrogen, expressed as N, at all points in the receiving water of Limited Forage Fish Communities should not be greater than 3 mg/l during warm temperature conditions (May October), and 6 mg/l during cold temperatures (November April), to minimize the zone of toxicity and to reduce dissolved oxygen depletion caused by oxidation of the ammonia.
- n Threshold concentration for the propagation of freshwater fish above which the effects on aquatic life may become significant as determined by the California State Water Pollution Control Board, 1952.
- O The fecal coliform count (MFFCC) should not exceed 200 per 100 ml as a geometric mean based on no less than 5 samples per month, nor exceed 400 per 100 ml in more than 10% of all samples during any month.
- P The fecal coliform count (MFFCC) should not exceed 1000 per 100 ml as a geometric mean based on no less than 5 samples per month, nor exceed 2000 per 100 ml in more than 10% of all samples during any month.

Source: Wisconsin Department of Natural Resources and SEWRPC.

Table II-4

ACUTE AND CHRONIC TOXICITY CRITERIA^a

	Acute Toxicity (μg/l)							Chronic Toxicity $(\mu g/1)$		
:		Water Use Objective						Water Object		
Water Quality Parameters	C	Coldwater Others				All Water Use				
	Hardn	ess (mg	CaCO ₃ /1)	Hardn	ess (mg	CaCO ₃ /1)	Hardn	ess (m	gCaCO ₃ /1)	
	50	100	200	50	100	200	50	100	200	
Cadmium	1.8	3.9	8.6	13.3	29.0	63.3	0.2	0.5	1.0	
Copper	8.6	16.6	31.8	8.6	16.6	31.9	6.0	11.2	22.1	
Lead	70.0	169.1	408.6	70.0	169.1	408.6	4.2	10.1	24.4	
Zinc	57.4	103.3	185.8	62.7	112.8	202.9	27.6	49.6	89.2	

 $^{^{\}mathrm{a}}\mathrm{Values}$ set forth in Chapter NR 105 of the Wisconsin Administrative Code.

Source: Wisconsin Department of Natural Resources.

should be allowed to be violated would be specified, would allow the assessment and resolution of water quality problems during high-flow as well as low-flow conditions. This approach is considered appropriate for planning, as opposed to regulatory, purposes as it allows the use of standards as criteria to measure the relative merits of alternative plans. Accordingly, analyses were conducted, under the initial regional water quality management plan, to determine the percentage of the time certain standards should be allowed to be violated except under specified conditions. A 95 percent compliance level was selected as the criterion for meeting the water quality standards for some parameters which directly affect desirable forms of aquatic life; namely, dissolved oxygen, temperature, un-ionized ammonia nitrogen, and pH. A 90 percent compliance level was selected as the criterion for parameters which do not directly affect desirable forms of aquatic life; namely, phosphorus, fecal coliform organisms, The analyses indicated that if these compliance levels were always met other than during periods of extreme low-flow conditions, the duration of the violation could be expected to be relatively short and the intensity of the violation to be relatively low, so that desirable uses and forms of aquatic life should not be adversely affected. Furthermore, the analyses indicated that even those surface waters which currently support full recreational uses and healthy fish and aquatic life communities often did not meet applicable water quality standards at all times. Thus, some level of violation of the standards was considered acceptable.

This probabilistic approach to water quality standards application was also used where applicable in the preparation of the regional water quality management plan update as a supplement to the current exemption in the standards for flow conditions lower than the 7-day average, 1-in-10-year recurrence interval low flow. This approach was generally used in considering the achievement of the water use objectives based upon modeling data developed in the initial plan for conditions arising from pollutant control levels which approximate current conditions. The probabilistic compliance level approach was not applied to those parameters for which seasonal standards—or standards based on acute and chronic toxicity criteria—were developed. For dissolved oxygen, an absolute minimum standard is also considered, as noted in Table II-3. For metals, values based on acute toxicity are presented and the application of such standards and criteria is specific and no probabilistic compliance level procedure is used. Chronic toxicity levels are also presented for metals and were considered based upon the 90 percent compliance level noted above.

Sediment Quality Standards

In addition to dissolved contaminants, contaminants also accumulate in lake and stream sediments. The Federal Water Resources Development Act of 1992 recognized the widespread existence of contaminated sediments and required that existing information on such sediments be compiled in a register. In response to this directive, the Wisconsin Department of Natural Resources (DNR) undertook a review of the existing data available in the State with a view toward developing statewide criteria for the identification and prioritization of contaminated sediment sites. The Department's draft report was published in mid-1994. The criteria set forth in this report supersede previously published EPA criteria and, hence, have been adopted for use as an assessment tool in this plan.

³Wisconsin Department of Natural Resources, <u>Inventory of Statewide Contaminated</u>
<u>Sediment Sites and Development of a Prioritization System</u>, June 1994.

The assessment criteria proposed in the draft DNR report are based on the potential for the contaminants present in the sediments at a particular site to create biological impacts. Two levels of potential impact are proposed: the lowest effect level (LEL) and the severe effect level (SEL) which represented the 5th and 95th percentiles, respectively, of a database compiled and analyzed in a comprehensive reference study prepared by the Ontario Ministry of the Environment. These values were considered by the DNR to be applicable within the State of Wisconsin. The lowest and severe effect levels for a selected set of parameters are shown in Table II-5.

Available data on the sediment quality were assembled for use in assessing the potential contamination of sediments within the Region. These data are presented in Chapters IV through XV for the major watersheds in the Region.

CURRENT SURFACE WATER QUALITY EVALUATION, DATA SOURCES AND PROCEDURES

Water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964-65 Commission benchmark stream water quality study, the 1965-75 Commission stream water quality monitoring effort, the 1976 Commission sampling program for the regional water quality management plan, and the Wisconsin Department of Natural Resources sampling programs in 1973 and 1976.

The water quality biological condition and sediment quality data have been collected since the initial regional plan by sampling programs operated by other agencies and local units of government, including the Wisconsin Department of Natural Resources, the Milwaukee Metropolitan Sewerage District, the U. S. Geological Survey, the U. S. Environmental Protection Agency, and local lake organizations. In many cases, data have been collected for local or subregional purposes and thus do not represent a uniform data base comparable to that which was available for the initial regional plan, which included the results of modeling of the stream system. Therefore, the assessment of the probability of achieving the established water use objectives has relied in part upon the uniform areawide characterization of surface water conditions developed under the initial plan and expanded for the Milwaukee Harbor estuary study. 4 Simulation modeling conducted during the earlier planning programs, 5 in most cases. Simulation of water quality conditions was carried out under various levels of point source and nonpoint source pollution control, and under both the then current 1975 land use conditions and under planned year 2000 land use conditions. While these modeling data cannot be used to precisely quantify the current 1990 water quality conditions, review of those data and a knowledge of the current status of the pollution control recommendations provides insight into the current water quality conditions and the potential for achieving the established water use objectives under current conditions.

Streams

Where data were available, various biotic and water quality indices were calculated for stream reaches within the Region. A water quality index value was

⁴SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, December 1987.

⁵SEWRPC Planning Report No. 30, <u>A Regional Water Quality Management Plan for Southeastern Wisconsin--2000</u>, Volume Two, <u>Alternative Plans</u>, February 1979.

Table II-5

LOWEST AND SEVERE EFFECT LEVELS OF CONTAMINANTS PRESENT IN SEDIMENTS IN WISCONSIN

Chemicals	Lowest Effect Level ^a	Severe Effect Level ^a
As (Arsenic)	6	85
Cd (Cadmium)	1.1	9
Cr (Chromium)	31	145
Cu (Copper)	25	390
Hg (Mercury)	0.15	1.3
Ni (Nickel)	31	75
Pb (Lead)	31	250
Zn (Zinc)	120	820
Total PAH (Polycyclic Aromatic Hydrocarbons)	4	500
Total PCB (Polychlorinated Bi-phenyls)	0.07	26.4
Aldrin	0.002	0.4
Chlordane	0.007	0.3
Total DDT	0.007	0.6
op + pp DDT	0.008	3.6
pp DDD	0.008	0.3
pp DDE	0.005	1
Mirex	0.007	
TCDD (dioxin) μg/kg	0.0003	
NH ₃ -N	75	
Oils and Grease	1,000	
CN (Cyanide)	0.1	

 $^{^{\}rm a}$ Concentrations are in mg/kg dry sediment, with the exception of TCDD, which is in $\mu{\rm g}/{\rm kg}\,.$

Source: Wisconsin Department of Natural Resources and SEWRPC.

calculated for selected reaches. This index value was based upon six water quality parameters: fecal coliform counts, pH, and dissolved oxygen, chloride, nitrate-nitrogen, and total phosphorus concentrations. The same index was used in the initial regional water quality management plan. For each water quality station where current data were available, the observed levels of each of the six selected parameters were assigned a score in the range of from 0 to 100. The parameter scores were then combined, through the use of selected weighing values, to prepare a general water quality index classification for each sampling station. Where the available data permit, the resulting ratings, based upon data obtained since the completion of the initial plan, are presented and compared to the 1964 and 1975 indices, along with descriptions of existing water quality conditions and trends, for each of the 12 major watersheds in the Region. These data are presented in Chapters IV through XV. Available water quality data collected since the completion of the initial plan are also summarized graphically in Chapters IV through XV.

Two biotic indices were also calculated where data were available. The Hilsenhoff Biotic Index (HBI) is the ratio of pollution-tolerant species or genera of arthropods--benthic animals--present in a stream sample population. species or genus is assigned a pollution tolerance value of between 0 and 5, with 0 representing the least tolerant species and 5 the most tolerant species. At each stream station, and for each species or genus present, the number of individual animals present is multiplied by the tolerance coefficient value for that species or genus, and a total score determined. The total score is divided by the total number of individuals present in the sample to derive the index value. HBI values of less than 2.75 were considered indicative of good water quality, while values in excess of 4.0 were considered indicative of poor water quality. The resulting index values, based upon data obtained since the completion of the initial plan together with selected sampling data, are presented, along with descriptions of existing water quality conditions and trends, for each of the 12 major watersheds in the Region. These data are also presented in Chapters IV through XV.

Similarly, where data were available, an Index of Biotic Integrity (IBI) value was calculated. This index is a numerical description of the stream fishery, being comprised of the summation of ten scores and two correction factors. These scores are derived from metrics which reflect species richness and composition--rankings are given on the basis of the total number of native fish species, the number of darter species, the number of sucker species, the number of sunfish species, the number of pollution-intolerant species, and the percentage of pollution-tolerant species, their trophic and reproductive function-rankings are given on the basis of the percentage of omnivores, the percentage of insectivores, the percentage of top carnivores, and the percentage of simple lithophilous spawners, and fish abundance and condition--rankings are given on the basis of the number of pollution-intolerant individuals per 300 meters sampled and the percentage of deformities, eroded fins, lesions or tumors (DELT). Fish abundance and condition rankings, or the correction factors, are used only in cases where the IBI scores have extreme values--for example, where there are

⁶See also: SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin</u>: 1964-1974, June 1978.

⁷ Wisconsin Department of Natural Resources Technical Bulletin No. 132, <u>Using A Biotic Index to Evaluate Water Quality in Streams</u>, 1982.

very low numbers of fishes or a high percentage of DELT fishes. IBI values of close to 100 are considered indicative of good water quality, while values near zero are considered indicative of poor water quality. Negative scores are rounded to zero. Scores differing by at least 25 points are considered to represent clear differences between sites. Where adequate data are available, the resulting index values, based upon data obtained since the completion of the initial plan, together with selected sampling data, are presented along with descriptions of existing water quality conditions and trends for each of the 12 major watersheds in the Region. These data are also presented in Chapters IV through XV.

Lakes

The 101 major lakes in the Region have been classified and are discussed according to trophic status where data exist. Trophic state classifications form a continuum from very nutrient poor lakes--classified as ultra-oligotrophic or oligotrophic -- through mesotrophic to very nutrient rich lakes -- classified as eutrophic or hypertrophic. The nutrient status of the lakes -- generally assessed by means of their nitrogen and phosphorus concentrations and nitrogen to phosphorus ratios -- is directly related to the nature and magnitude of plant growth that occurs in the lake. The relative proportions of nitrogen to phosphorus concentrations determines which of these essential plant nutrients controls plant growth--the "limiting nutrient"--as well as the type of algal growth that will occur--the lower the nitrogen to phosphorus ratio the more likely the lake is to be enriched and the more likely it is to have an algal flora dominated by nuisance, scum-forming blue-green algae. Eutrophic--or "well-fed"--lakes tend to have large numbers of few species of plants and animals, or unbalanced ecosystems dominated by the less desirable plants and animals; whereas, the oligotrophic--or nutrient poor--lakes tend to have small numbers of many species of plants and animals. The middle state--mesotrophy--contains moderate numbers of numerous species of plants and animals. Mesotrophy tends to be the most acceptable state for multiple use waterbodies and tends to be the natural state of most Southeastern Wisconsin waterbodies9--58 of the 101 major lakes in the Region have been assessed as mesotrophic using the trophic state classification described further below.

The trophic state classifications were assigned, where data were available, based on the phosphorus and chlorophyll concentrations and water clarity, with consideration being given to the levels of use impairment caused by algal and aquatic plant growth. The most commonly available data were water clarity data-determined as Secchi disc transparency--obtained through the Wisconsin Department of Natural Resources citizen-based Self-help Monitoring Program, the DNR Long-term Trends Monitoring Program, and specific lake studies conducted by the U. S. Geological Survey under the Chapter NR 119 Lake Management Planning Grant Program. These data were used to calculate the Carlson Trophic State Index

⁸ United States Department of Agriculture, Forest Service General Technical Report No. NG-149, <u>Using The Index of Biotic Integrity (IBI) to Measure Environmental Quality in Warmwater Streams of Wisconsin</u>, April 1992.

⁹Lillie, R.A. and J.W. Mason, "Limnological Characteristics of Wisconsin Lakes," DNR Technical Bulletin No. 138, 1983.

(TSI) values and Wisconsin Trophic State Index (WTSI) values for these lakes. ¹⁰ These index values present numerical representations of water quality conditions in lakes based on a scale that ranges from 0 or ultra-oligotrophic to 100 or hypertrophic. Scores of about 50 are indicative of borderline eutrophy. The WTSI modifies the original Carlson TSI value to account for the greater humic-or tea-stained--coloration present in Wisconsin lake waters. Where data permit, both the Carlson and Wisconsin trophic state ratings are reported in the descriptions of water quality conditions in these lakes by watershed, as set forth in Chapters IV through XV.

The changes that have occurred in the water quality status of the lakes since 1975, as documented in the initial regional water quality management plan, are reported for the major lakes in each of the 12 major watersheds in the Region, as set forth in Chapters IV through XV, insofar as data exist. Assessment of change in water quality is based on a comparison of TSI values derived from 1981 survey based on satellite imagery and other available pre-1981 data sources, with index values calculated from post-1981 lake monitoring. The 1979-81 satellite imagery data 11, while tabulated, have limitations -- the TSI was based only upon chlorophyll-a levels estimated from satellite imagery rather than upon chlorophyll-a and total phosphorus concentrations and water clarity observed in the lakes--which preclude their use in such assessments. The TSIs calculated from Wisconsin Department of Natural Resources Self-help monitoring data, while generally based solely on Secchi disc transparencies, in contrast. represent a readily available measured characterization of the status of the major lakes of Southeastern Wisconsin and likewise are presented in the following 12 chapters. However, because of these limitations in the data, as well as the inherently general nature of the Trophic State Index, the TSI values should be used with caution when comparing overall lake conditions. This is especially true when the variability inherent in the data is taken into account. For this reason, a change in TSI value of at least 10 units was required before a change in lake water quality was accepted as an assumed change. A change of 10 TSI units is equivalent to a change of approximately three to six feet in Secchi disc transparency in the mid-range mesotrophy. Even then, field data should be acquired before any lake management response, or alteration of existing lake management response, is contemplated. The WTSI values were not used in these assessments but are presented in order to facilitate future assessments when this refined index is brought into general use by the Wisconsin Department of Natural Resources.

SUMMARY

The assessment of water quality conditions requires a comparison of observed conditions to desired conditions. Thus, this plan update presents available

¹⁰The two trophic state index schemes are described in detail in R.E. Carlson, "A Trophic State Index for Lakes," <u>Limnology and Oceanography</u>, Volume 22, pp. 361-368, 1977; and R.A. Lillie, S. Graham, and P. Rasmussen, "Trophic State Index Equations and Regional Predictive Equations for Wisconsin Lakes," DNR <u>Research Management Findings</u>, No. 35, May 1993. It should be noted that Wisconsin Trophic State Index values are currently being adopted by the DNR for future use in water quality assessments.

¹¹ Wisconsin Water Quality Assessment Report to Congress, 1992; and Wisconsin's Lakes-A Trophic Assessment, January 1983.

data upon which the assessment of current water quality and biological conditions can be made. Changes in water quality conditions which are apparent since preparation of the initial plan are also discussed where this data allow. In addition, a comparison of the water quality conditions of streams and lakes based upon available water quality sampling data obtained since 1975, or in some cases, estimated based upon modeling data developed in the initial plan, to the water use objectives and supporting standards described in this chapter. The resulting assessments are summarized by watershed in Chapters IV through XV. This approach was used to underpin the watershed-based approach to water quality management detailed in the following chapters.

_
'all and the state of the state

-
•
_
_
_
-
4
1
•
(
_
*
_

Chapter III

LAND USE PLAN ELEMENT

INTRODUCTION

The most fundamental and basic element of the regional water quality management plan is the land use element. The future distribution of urban and rural land uses will determine to a large degree the character, magnitude, and distribution of point and nonpoint sources of pollution; the practicality of as well as the need for various lake, stream, and groundwater system management plans; and ultimately, the quality of the surface waters and the groundwater pollution potential of the Region. Accordingly, the selection and use of a regional land use plan is an essential element in synthesizing a regional water quality management plan.

The Southeastern Wisconsin Regional Planning Commission prepared and adopted on September 23, 1992, a new regional land use plan for the design year 2010. This plan is set forth in full in SEWRPC Planning Report No. 40, A Regional Land Use Plan for Southeastern Wisconsin - 2010. This land use plan was intended to update and revise as necessary the previously adopted SEWRPC regional land use plan for the year 2000, which was prepared and adopted by the Commission on December 19, 1977, and which served as the basis of the land use element of the 1979 regional water quality management plan. The year 2000 plan is documented in SEWRPC Planning Report No. 25, A Regional Land Use Plan and a Regional Transportation Plan for Southeastern Wisconsin: 2000. The design year 2010 plan is based upon the same basic concepts as the year 2000 plan, refining and detailing the previous plan as required with respect to changes in the levels and spatial distribution of population, households, and employment; land use patterns; and public facility and utility systems development.

YEAR 2000 PLAN RECOMMENDATIONS

The year 2000 land use plan emphasized a compact, centralized regional settlement pattern, with the location, intensity, and character of urban development being largely controlled by the effects of the urban land market. However, the plan sought to influence the urban land market in three significant areas in an effort to achieve a more healthful, attractive, and more efficient regional settlement pattern.

First, the year 2000 plan recommended that intensive urban development occur only in those areas of the Region covered by soils suitable for such development; and not subject to special hazards, such as flooding and shoreline erosion; and furthermore, those areas which would be readily served by essential municipal facilities and services, including centralized public sanitary sewerage and water supply. The plan recommended that new residential development occur primarily

in planned neighborhood units at medium densities. A total of 22 major industrial centers and 16 major commercial centers were envisioned to exist within existing or proposed urban areas by the plan year 2000.

Second, the plan recommended the protection of all of the remaining primary environmental corridors of the Region from intrusion by incompatible urban development. The preservation of the primary environmental corridors in essentially natural, open uses, was envisioned to contribute to an anticipated integrated system of park and related open spaces within the Region.

Third, the design year 2000 plan proposed the retention, in essentially rural use, of almost all the remaining prime agricultural lands. These prime agricultural lands consist of the most productive farm lands and farm units in the Region.

STATUS OF IMPLEMENTATION OF THE YEAR 2000 LAND USE PLAN

In many respects, actual growth and change within the Region between 1970, the base year of the year 2000 plan, and 1985, the base year of the year 2010 plan, occurred in close conformance with design year 2000 regional land use plan recommendations and forecasts. However, it should be noted that this period also experienced a continuation of certain trends which were at variance with the plan.

Between 1970 and 1985, residential development in the Region occurred at a rate somewhat higher than envisioned under the adopted regional land use plan. While more that 70 percent of all housing units were built at medium or high residential densities in accordance with plan recommendations, substantial development of residential land occurred at lower densities.

Additional land use development, with respect to major recreational, commercial, and industrial centers, proceeded in substantial conformance with regional land use plan recommendations. Between 1970 and 1985, continued development of the majority of the recommended major park sites occurred in accordance with specific recommendations. Two of five proposed commercial sites and three of five proposed industrial sites also achieved major regional commercial or industrial site status between 1970 and 1985.

Significant progress was made in the protection of primary environmental corridor lands in the Region between 1970 and 1985. In 1970, approximately 72 square miles of primary environmental corridor lands were protected through public ownership. By 1985, 147 square miles, or about 31 percent of primary corridor lands in the Region, were publicly owned and thereby permanently protected against inappropriate urban development. Urban development in other areas of the Region, however, was largely responsible for the loss of almost eight square miles, or approximately 2 percent of the total primary environmental corridor lands.

Substantial progress was also made in the protection of prime agricultural lands between 1970 and 1985 through the application of exclusive agricultural zoning. This zoning served to protect about 585 square miles of prime agricultural lands within the Region. While the regional land use plan recommended the preservation of most prime agricultural lands, the plan recognized that the loss of certain prime farmland would be necessary to accommodate continued urban growth and development within the Region. In total, about 160 square miles of prime

farmland was lost to urban development in the Region between 1963 and 1985. About 27 square miles of this total was located in, or adjacent to, expanding urban areas, consistent with the year 2000 land use plan recommendations. The remaining 133 square miles were located in outlying rural areas generally recommended to remain in agricultural and related use under the year 2000 land use plan.

YEAR 2010 PLAN--ALTERNATIVE FUTURES

During periods of major change in social and economic conditions, there is great uncertainty as to whether or not historic trends will continue. In order to deal with this uncertainty, the Southeastern Wisconsin Regional Planning Commission incorporated the use of "alternative futures" into the preparation of the new year 2010 land use plan. Under this approach, the development and evaluation of alternative land use plans is based not upon a single most probable forecast of future socio-economic conditions, but rather upon a number of alternative futures chosen to represent a range of conditions which may occur over the plan design period. The alternative futures are intended to supplement the recommended plan by indicating a range of possible future conditions with respect to the level and distribution of population, households, economic activity, and attendant land use patterns in the Region. The purpose of the approach is to allow the evaluation of the performance of alternative plans over a variety of possible future conditions in order to identify those alternatives that perform well under a wide range of such conditions.

Under the alternative futures approach, three alternative future growth scenarios were postulated for Southeastern Wisconsin. The sets of conditions postulated for each "future" were intended to represent consistent, reasonable scenarios of future changes in resident population and economic activity levels in the Region through the year 2010. Two scenarios, the "high-growth" scenario and the "low-growth" scenario, were intended to represent reasonable extremes, while the third scenario, the "intermediate-growth" scenario, was intended to represent the most-likely future.

From these three growth scenarios, four individual alternative futures land use plans plus the recommended land use plan were developed for the design year 2010. Each plan was based upon different potential growth rates and development patterns. Three of these plans envision a decentralized regional settlement The "high-growth decentralized" plan was designed to accommodate the future population and economic activity levels that could be anticipated under a high-growth scenario. The "intermediate-growth decentralized" plan and the "low-growth decentralized plan were designed to accommodate the population and economic activity levels that would be anticipated under the intermediate- and low-growth scenarios, respectively. The fourth plan, the "high-growth centralized" plan, was designed to accommodate population and economic activity levels anticipated under the high-growth scenario, emphasizing a centralized, rather than a decentralized development pattern for the Region as did the other three Together, these four alternative futures land use plans alternative futures. were intended to conceptually bracket the new recommended year 2010 regional land use plan, which was based upon an intermediate-growth centralized scenario. While many variations of the four alternative futures plans are possible, it is believed that the four alternative futures plans, in conjunction with the recommended plan, provide a good representation of the range of possible future conditions with respect to the overall scale and distribution of land use development in the Region through the year 2010.

As might be expected, population and employment levels anticipated under the three growth scenarios vary considerably. Under the high-growth scenario, the resident population of the Region would increase by about 551,000 persons, or 31 percent, from about 1,765,000 persons in 1980 to about 2,316,000 persons by the year 2010. The intermediate-growth scenario envisions a population increase of about 107,000 persons, or 6 percent, to a level of about 1,872,000 persons by the year 2010. Conversely, the low-growth scenario envisions a decrease in the regional population of about 248,000 persons, or 14 percent, to a level of about 1,517,000 persons by the year 2010.

Under the high-growth scenario, total regional employment would increase by about 368,000 jobs, or 42 percent, from about 884,000 jobs in 1980 to about 1,252,000 jobs by 2010. Under the intermediate-growth scenario, employment would increase by about 167,000 jobs, or 19 percent, to about 1,051,000 jobs by 2010. Under the low-growth scenario, total employment would approximate 871,000 jobs by 2010, about 13,000 jobs, or about 2 percent, less than the 1980 level.

As a practical matter, the design of a regional land use plan must be targeted toward a single set of population and employment forecasts. It was the collective judgment of the Advisory Committee guiding the preparation of the design year 2010 plan that future population and employment levels in the Region would be most closely approximated by the intermediate-growth scenario. Accordingly, the Committee directed that the new land use plan be prepared to accommodate the population and employment forecasts attendant to that scenario, with some adjustments to reflect 1990 benchmark population and employment data. It was thus determined that the new regional land use plan should accommodate a design year population of 1,911,000 persons, and a design year employment level of about 1,095,000 jobs. While the new year 2010 regional land use plan is based upon the intermediate-growth scenario, potential land use patterns associated with population and economic activity levels under the low-growth and high-growth scenarios were also explored under the current planning program.

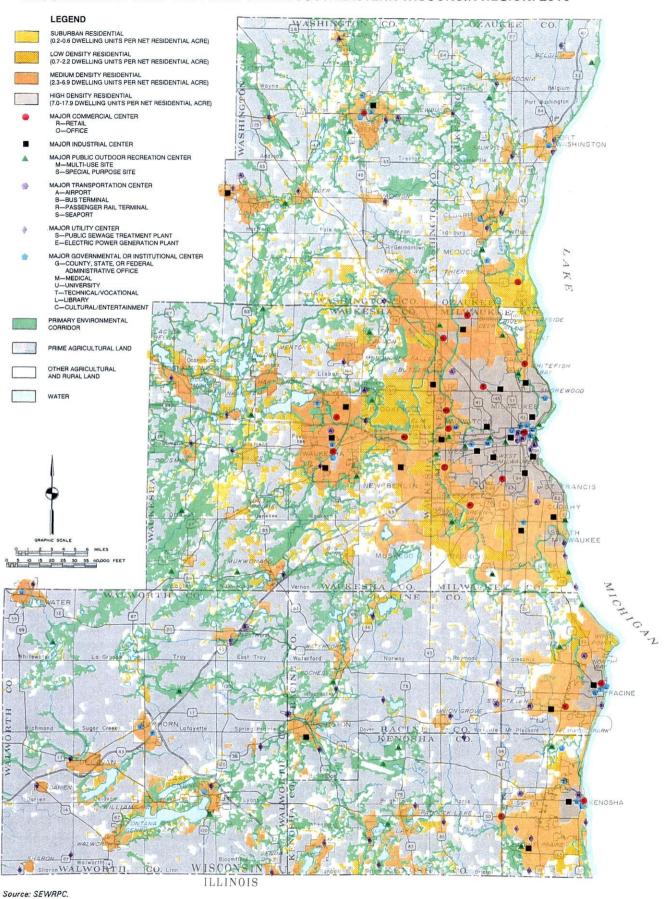
The new year 2010 regional land use plan, as described in the following sections, has been scaled to a carefully selected set of population, household, and employment forecasts for the Region. Consideration of these alternative future conditions is particularly important in local plan implementation activities associated with the regional water quality management plan. It is recommended that the local, detailed facility planning for both point and nonpoint source pollution abatement projects give consideration to the range of possible future conditions. As an example, the design of certain facilities which can readily be expanded in stages may be based initially on the recommended intermediategrowth centralized plan, or even on the low-growth stage of that recommended plan,, recognizing that the expansion of such facilities can be readily accommodated if a higher-growth future occurs. Examples of such a facility would be treatment plants designed for modular expansion or detention basins in areas where adequate open land is reserved. Conversely, certain facilities which cannot be readily expanded may be designed initially using the higher growth future condition. Such facilities might include gravity flow trunk sewers being built in areas where development is taking place, making replacement or reinforcement costly. Facilities crossing wetlands or other environmentally sensitive areas may also warrant design based upon a higher growth future in order to avoid future disruption. By considering the range of future conditions, the most robust as well as cost-effective and environmentally sound alternative design can be selected. To this end, design year 2010 population data under the recommended plan and under a high-growth decentralized land use scenario are provided herein

for each sewer service area in the Region in order to provide a reasonable range of conditions to be considered in subsequent facility planning.

LAND USE PLAN ELEMENT

The adopted regional land use plan for design year 2010 for the Southeastern Wisconsin Region, as it was adopted on September 23, 1992, is shown in graphic summary on Map III-1. The regional land use plan recommends the promotion of compact, centralized land use development in the Region, with development generally occurring in concentric rings along the periphery of, and outward from, existing urban centers. While the plan continues to recognize the importance of market forces in determining the location, intensity, and character of urban development, it--like the two predecessor regional land use plans--seeks to influence the operation of the urban land market in order to promote a more orderly and economic settlement pattern. This settlement pattern would generally avoid further intensification of existing, and the creation of new, areawide developmental and environmental problems. In this regard, the plan recommends that new urban development occur either at densities consistent with the provision of public centralized sanitary sewer, water supply, and mass transit facilities and services, or in locations where such facilities and services can be readily and economically provided. Additionally, the plan seeks to encourage the location of new urban development primarily in those areas of the Region which are covered by soils suitable for such development and not subject to special hazards, such as flooding and erosion.

Urban Development and Density


In order to accommodate the anticipated increases in population, households, and employment levels from 1985 to 2010, the year 2010 regional land use plan proposes to accommodate portions of this growth through the conversion of certain existing rural lands to urban land uses. In 1985, approximately 605 square miles, or about 22 percent of the Region, were devoted to urban land uses. The recommended land use plan anticipates a conversion of about 86 square miles of rural land to urban use by the year 2010, increasing the total stock of urban land to 691 square miles, or to about 26 percent of the total area of the Region.

The land use plan envisions that most new urban development would occur in planned neighborhood development units at medium density, with a typical single-family lot size of one-quarter acre and a typical multi-family development averaging about 10 dwelling units per net acre. Urban development would be provided with basic urban services and facilities, including, importantly, public sanitary sewer and water supply services. The plan envisions that by the year 2010 about 85 percent of all urban land and about 91 percent of the total population of the Region would be served with public sanitary sewer and water supply services.

The year 2010 land use plan seeks to discourage scattered, "leap frog" urban development--urban sprawl--in outlying areas of the Region, both through encouragement of higher density development in those areas of the Region that can be most readily served by essential urban services, and through the maintenance of rural development densities in these rural, outlying areas, that is, average lot sizes of at least five acres per dwelling unit. With proper attention to soil and other natural resource base limitations, such development can be sustained without public sanitary sewer, water supply, or urban storm drainage facilities; high-value woodland and wetland areas can be preserved; and wildlife can continue to sustain itself in the area.

Map III-1

RECOMMENDED LAND USE PLAN FOR THE SOUTHEASTERN WISCONSIN REGION: 2010

Under the plan, the population density within the developed area of the Region would decline from a 1985 level of about 3,600 persons per square mile to a year 2010 level of about 2,800 persons per square mile, continuing the trend toward declining densities evident in the Region since 1920. The rate of decline would be significantly reduced, however, by implementation of plan proposals to develop the majority of new urban land within the Region at medium, rather than low, densities and to provide such development with public sanitary sewer and water supply services.

Major Regional Commercial and Industrial Centers

In the Southeastern Wisconsin Region in 1985, there were 14 existing major commercial centers, encompassing a total of almost 1,100 acres of commercial land uses. The recommended land use plan proposes retaining all 14 existing sites as major commercial centers through the year 2010 and also proposes the expansion of certain of these centers. It is anticipated that with the expansion of the centers, 300 acres, in addition to the existing 1,100 acres, of commercial land would be occupied.

In addition to the proposed expansion of the centers, the plan recommends the development of five new major commercial centers in the Region. Four of the five centers are proposed as office centers and would include Park Place in northwestern Milwaukee County, development of which is currently underway; a strip office development along IH 43 in the City of Mequon, which is also under development; a new research park to be located near the Milwaukee County Institutions grounds in the City of Wauwatosa; and a new office center located near the intersection of IH 94 and CTH J in the Town of Pewaukee. The fifth proposed commercial center is a retail center located near the intersection of IH 94 and STH 50 in Kenosha County, development of which is underway.

In 1985, there were 22 major industrial centers identified in the Region. The recommended regional land use plan proposes to retain all of these sites as major industrial centers and further proposes to add three new major industrial centers by the year 2010. The three proposed new centers would be located in or near the Cities of Burlington and Hartford and the Village of Pleasant Prairie. Consideration has been given to these new industrial centers as sewer service area plans are being prepared for the individual service areas in the Region.

Park and Outdoor Recreation Area

Under the recommended year 2010 land use plan, about 4,100 acres of land for intensive, public recreational land use would be added to the existing 26,000 acres currently designated as recreational lands. The additional recreational areas called for under the plan are based in part on neighborhood development standards, which seek to provide adequate neighborhood park land in developing areas. The recreational land use recommendations of the regional land use plan also reflect specific park site acquisition and development proposals set forth in the county park and open space plans prepared by the Commission for each of the seven counties in the Region.

The year 2010 regional land use plan proposes a system of 31 major parks of regional size and significance to serve the needs of the Region through the year 2010. Such parks have an area of at least 250 acres and provide opportunities for a variety of resource-oriented outdoor recreational activities. Twenty-nine of the 31 sites were recommended as major park sites under the year 2000 regional land use plan. Of the 29 previously recommended sites, only two--Sugar Creek in

Walworth County and Paradise Valley in Washington County--have yet to be publicly acquired.

The year 2010 plan recognizes the development of two major parks not identified in the year 2000 plan, namely, Mitchell Park, an approximately 800-acre site located in the City and Town of Brookfield, and an approximately 400-acre unnamed site surrounding a major lake recently created from an abandoned quarry in the Village of Pleasant Prairie. Facility development at these sites as envisioned in local site plans would qualify both sites as major parks.

The development of a water quality management plan in accordance with proposed land use objectives for the design year 2010 will be important to the full and beneficial use of both resource and non-resource related outdoor recreation facilities.

Environmentally Sensitive Lands

Environmental corridors are defined as linear areas in the landscape containing concentrations of natural resource and natural resource-related amenities. These corridors generally lie along the major stream valleys, around major lakes, and in the Kettle Moraine area of southeastern Wisconsin. Almost all of the remaining high-value wetlands, woodlands, wildlife habitat areas, major bodies of surface water, and delineated floodlands and shorelands are contained within these corridors. In addition, significant groundwater recharge and discharge areas, many of the most important recreational and scenic areas, and the best remaining potential park sites are located within the environmental corridors. Such environmental corridors are, in effect, a composite of the most important individual elements of the natural resource base in southeastern Wisconsin and have immeasurable environmental, ecological, and recreational value.

As part of the regional land use planning program, each of these natural resource and resource-related elements was mapped on 1 inch equals 400 feet scale, ratioed and rectified aerial photographs. A point system for value rating the various elements of the resource base was established, as summarized in Table III-1. The primary environmental corridors were delineated using this rating system. To qualify for inclusion in a primary environmental corridor, an area must exhibit a point value of 10 or more. In addition, a primary environmental corridor must be at least 400 acres in size, be at least two miles long, and have a minimum width of 200 feet. This environmental corridor refinement process is more fully described in SEWRPC Technical Record, Volume 4, No. 2, in an article entitled, "Refining the Delineation of Environmental Corridors in Southeastern Wisconsin."

The primary environmental corridors encompassed about 468 square miles, or 17 percent of the Region in 1985. Under the recommended regional land use plan for the year 2010, these corridors, as shown on Map III-1, would be protected and preserved in essentially natural, open uses. In addition to the proposed retention of existing corridors, the year 2010 land use plan proposes that 3,600 acres of adjacent floodland areas currently in agricultural or other open use, be restored to a wetland condition, and thereby incorporated into the environmental corridor network. In accordance with the regional land use plan and the county park and open space plans for each of the individual seven counties, these lands are recommended for county or State acquisition for open space preservation purposes, or for protection through joint State, county-local zoning.

Table III-1

VALUES ASSIGNED TO NATURAL RESOURCE
BASE AND RESOURCE BASE-RELATED ELEMENTS
IN THE PROCESS OF DELINEATING PRIMARY
AND SECONDARY ENVIRONMENTAL CORRIDORS

	Point
Resource Base or Related Element	Value
Natural Resource Base	
Lake	
Major (50 acres or more)	20
Minor (five to 49 acres)	20
Rivers or Streams (perennial)	10
Shoreland	
Lake or Perennial River or Stream	10
Intermittent Stream	5
Floodland (100-year recurrence interval)	3
Wetland	10
Wet, Poorly Drained, or Organic Soil	5
Woodland	10
Wildlife Habitat	
High-Value	10
Medium-Value	7
Low-Value	5
Steep Slope	
20 Percent or More	7
13-19 Percent	5
Prairie	10
Natural Resource Base-Related	
Existing Park or Open Space Site	
Rural Open Space Site	5
Other Park and Open Space Site	2
Potential Park Site	
High-Value	3
Medium-Value	2
Low-Value	1
Historic Site	
Structure	1
Other Cultural	1
Archaeological	2
Scenic Viewpoint	5
Scientific Area	
State Scientific Area	15
State Significance	15
County Significance	10
Local Significance	5

Source: SEWRPC.

The preservation of primary environmental corridors is considered essential to the protection and wise use of the natural resource base of the rapidly urbanizing Region. Preservation of these corridors in natural, open uses provides significant areas of habitat for wildlife, maintains the existence of high quality woodlands and wetlands, significantly contributes to the prevention of new and the intensification of existing environmental problems such as flooding and water pollution, and contributes to the preservation of the Region's cultural heritage and natural beauty.

It is recommended that lands identified as primary environmental corridors not be developed for intensive urban use. Accordingly, the plan further recommends that sanitary sewers not be extended into such corridors for the purpose of accommodating urban development in the corridors. It was, however, recognized in the plan that it would be necessary in some cases to construct sanitary sewers across and through primary environmental corridors, and that certain land uses requiring sanitary sewer service could be properly located in the corridors, including park and outdoor recreation facilities and certain institutional uses. In some cases very low density single-family residential development on five-acre lots, compatible with the preservation of the corridors in essentially natural open uses, may also be permitted to occupy corridor lands and it may be desirable to extend sewers into the corridors to serve such uses. Basically, however, the plan element seeks to ensure that the primary environmental corridor lands are not destroyed through conversion to intensive urban uses.

Secondary environmental corridors are also identified in the year 2010 regional land use plan. The secondary environmental corridors, while not as significant as the primary environmental corridors in terms of the overall resource values, should be considered for preservation as the process of urban development proceeds, because such corridors often provide economical drainageways, as well as needed "green space," through developing residential neighborhoods. To qualify for inclusion in a secondary environmental corridor, an area must exhibit a point value of 10 or more, with such a corridor having a minimum area of 100 acres and a minimum length of one mile.

Isolated natural areas are also identified in the year 2010 regional land use plan. Isolated natural areas generally consist of those natural resource base elements that have "inherent natural" value such as wetlands, woodlands, wildlife habitat areas, and surface water areas, but that are separated physically from the primary and secondary environmental corridors by intensive urban and agricultural land uses. Since isolated natural areas may provide the only available wildlife habitat in an area, provide good locations for local parks and nature study areas, and lend aesthetic character and natural diversity to an area, these areas should also be protected and preserved in a natural state to the extent practicable. An isolated natural area must be at least five acres in size.

As service area plans are developed for the individual sewer service areas in the Region, the primary environmental corridors, secondary environmental corridors, and isolated natural areas are documented, quantified, and mapped in order to assist the designated management agencies in the protection of the primary environmental corridors and in considering protection of other environmentally sensitive lands.

Prime Agricultural Lands

In an urbanizing area such as southeastern Wisconsin, the demands of a growing urban population typically require certain conversion of rural land to urban land

use. While general agricultural lands are subject to this conversion, the year 2010 plan seeks to minimize the development of new urban uses on lands which have been designated as prime agricultural lands. Those areas, as shown on Map III-1, totaled just over 1,047 square miles, or 39 percent of the Region, in 1985. The recommended year 2010 land use plan proposes to convert to urban use only those prime agricultural lands which were already committed to urban development due to proximity to existing and expanding concentrations of urban uses and the prior commitment of heavy capital investment in utility extensions. The recommended plan proposes to convert only about 16 square miles, or just over 1 percent of the remaining prime agricultural lands to urban use by the year 2010.

The preservation of prime agricultural lands has important implications for water quality management planning. Prime agricultural land preservation will assist in the implementation of sound soil and water conservation practices and nonpoint source water pollution abatement measures, such as conservation tillage, crop rotation, contour plowing, cover crops, terracing, diversion structures and dikes, water and grade control structures, and grassed waterways, and will facilitate implementation of appropriate wind erosion measures, streambank erosion measures, and pesticide, fertilizer, and animal controls. Well-managed agricultural land contributes less pollutants to surface waters than urban land uses. Accordingly, implementation of the prime agricultural land component of the year 2010 regional land use plan element will be important to the implementation of the nonpoint source pollution abatement plan element and to the achievement of the recommended water use objectives and supporting water quality standards.

_
•
-
_
_
•
1
_
•
_
8

Chapter IV

DES PLAINES RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto, and progress made toward plan implementation from 1975--the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Des Plaines River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Des Plaines River watershed as part of the continuing water quality planning process. The status of the initial adopted plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. addition, a separate section on lake management is included. Designated management agencies for plan implementation are presented in Chapter XVII on a regional basis.

The Des Plaines River watershed is located in the southeasterly portion of the Region. That part of the watershed contained within the Region--about 134-square miles--is only a small part of a much larger watershed. The main stem of the Des Plaines River rises in Racine County south of the Village of Union Grove and flows approximately 22 miles southerly and easterly through Kenosha County before crossing the State line about 1.5 miles east of IH 94 into Illinois where it continues southerly to join the Kankakee River to form the Illinois River. Rivers and streams in the watershed are part of the Mississippi River drainage system as the watershed lies west of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Des Plaines River and its principal tributaries, are shown on Map IV-1.

There are six major lakes in the watershed having a surface area of 50 acres or more: Benet/Shangrila Lakes, East Lake Flowage, George Lake, Hooker Lake, Paddock Lake, and an unnamed lake formed by an abandoned quarry in the Village of Pleasant Prairie. Physical characteristics of the major lakes in the Des Plaines River watershed are set forth in Table IV-1. The data indicate that major lakes in the watershed have a combined surface area of about 667 acres, or less than 1 percent of the total area of the watershed.

Map IV-1
DES PLAINES RIVER WATERSHED

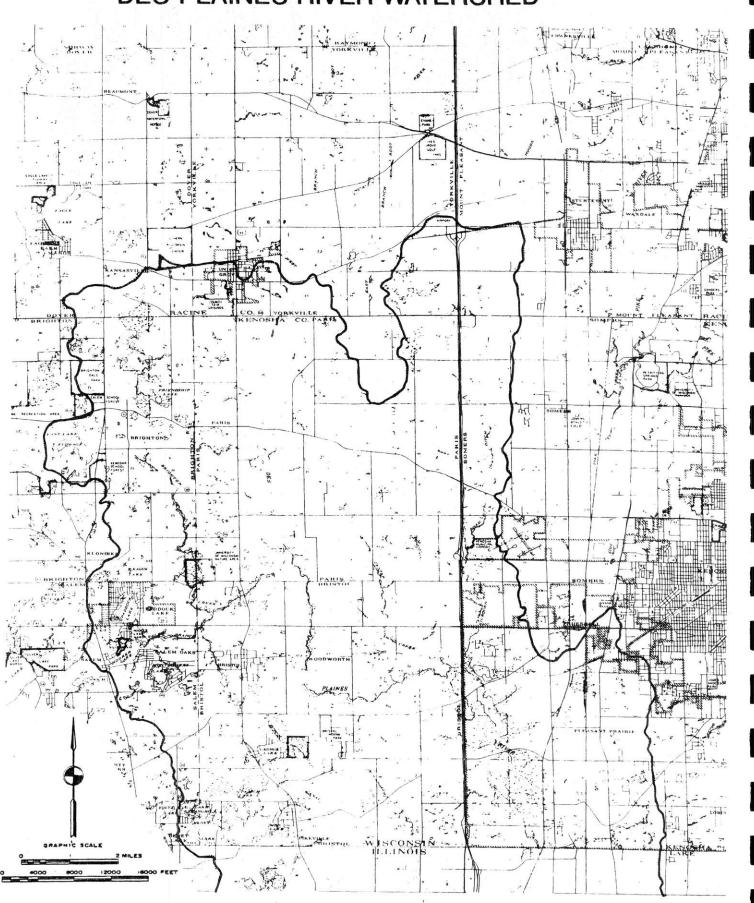


Table IV-1

PHYSICAL CHARACTERISTICS OF MAJOR LAKES IN THE DES PLAINES RIVER WATERSHED

WATERSHED Lake Name	Surface Area (acres)	Direct Tributary Drainage Area (acres)	Shoreline (miles)	Maximum Depth (feet)	Mean Depth (feet)	Volume (acre-feet)
DES PLAINES RIVER Benet/Shangrila Lake East Lake Flowage	186ª 123	407 850	6.20 3.07	24 N/A	4.7 N/A	874 N/A
George Lake Hooker Lake Paddock Lake	59 87 112	2,187 1,244 291	1.18 1.90 3.42	16 24 32	6.4 11.3 11.4	389.4 983 1,277
Unnamed Lake	100	68	2.10	N/A	N/A	N/A
Total	667	5,047	17.87			

^{*}Includes six acres in Illinois.

Source: SEWRPC

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendation, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describesthe changes in land uses which have occurred within the Des Plaines River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table IV-2 summarizes the existing land uses in the Des Plaines River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed is presently experiencing a relatively rapid conversion of land from rural to urban use in certain areas, about 88 percent of the watershed was still in rural and other open space land use in 1990. These uses included about 68 percent of the total watershed in agricultural and related rural uses, 6 percent in woodlands, about 9 percent in surface water and wetlands, and about 5 percent in other open lands. The remaining 12 percent of the total watershed was devoted to urban uses. Existing 1990 land uses within the watershed are shown on Map IV-2.

Within the Des Plaines River watershed, major concentrations of urban development have been rapidly taking place in the portion of the watershed east of IH 94 and just west of IH 94 at STH 50, the areas where public sanitary sewer service and water supply facilities are now available. Other urban-related land uses are located in the western portions of the watershed around Lakes Paddock, George, Hooker, Montgomery, and Benet/Shangrila; within the unincorporated Village of Bristol surrounding STH 45 south of STH 50; and within the corporate limits of Union Grove.

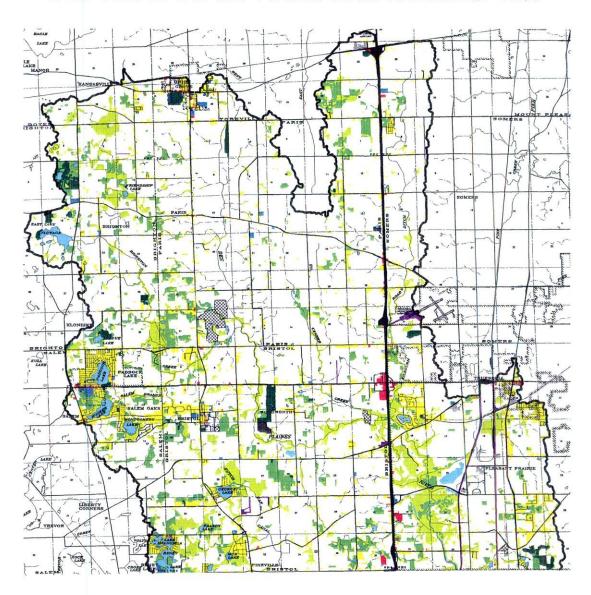
As shown in Table IV-2, from 1975 to 1990, urban land uses in the watershed increased from about 8,070 acres, or 12.6 square miles to about 10,030 acres, or 15.7 square miles, or by about 24 percent. Also, as shown in Table IV-2, residential land represents the largest urban land use in the watershed. Residential use has significantly increased within the watershed, from about 3,970 acres, or about 6.2 square miles in 1975 to 4,700 acres, or about 7.3 square miles in 1990, an 18 percent increase. Commercial and industrial lands increased from about 200 acres, or about 0.31 square mile, to 440 acres, or 0.69 square mile, an increase of 118 percent.

The 15.7 square miles of urban land uses in the watershed as of 1990 exceeded the approximated 1990 planned level of about 14.9 square miles set forth in the adopted year 2000 land use plan. The current status of development in the Des Plaines River watershed and adjacent portions of Kenosha County was considered

Table IV-2

LAND USE IN THE DES PLAINES RIVER WATERSHED: 1975 AND 1990a

	1975		1	L990	Change 1975-1990		
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	
Urban							
Residential	3,971	4.6	4,695	5.5	724	18.2	
Commercial	97	0.1	185	0.1	88	90.7	
Industrial	104	0.1	254	0.3	150	144.2	
Transportation,					:		
Communication,					!		
and Utilities ^b	3,174	3.7	3,915	4.5	741	23.3	
Governmental and							
Institutional	233	0.3	248	0.3	15	6.4	
Recreational	492	0.6	737	0.9	245	50.8	
Subtotal	8,071	9.4	10,034	11.6	1,963	24.3	
Rural							
Agricultural and							
Related	62,001	72.0	58,793	68.3	-3,200	- 5.2	
Lakes, Rivers,	ŕ		,	- I	Í		
Streams, and							
Wetlands	8,061	9.4	7,953	9.2	- 108	- 1.3	
Woodlands	4,645	5.4	4,765	5.5	120	2.6	
Open Lands, ^c	3,324	3.8	4,557	5.3	1,233	37.1	
Landfills, and			·				
Extractive							
Subtota1	78,031	90.6	76,068	88.3	-1,963	- 2.5	
Total	86,102	100.0	86,102	100.0			


^aAs approximated by whole U.S. Public Land Survey one-quarter sections.


Source: SEWRPC.

bIncludes all off-street parking.

 $^{^{\}rm c}{\rm Includes}$ both rural and urban open lands.

LAND USES IN THE DES PLAINES RIVER WATERSHED: 1990

The Des Plaines River watershed is about 134 square miles in areal extent, or about 5 percent of the total area of the Region. In 1990 about 16 square miles, or about 11 percent of the watershed, was in urban land uses.

Source: SEWRPC

in developing the new year 2010 land use plan element described in Chapter III for the Region.

Table IV-3 summarizes the year 2010 planned land use conditions recommended in the adopted year 2010 land use plan in the Des Plaines River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban uses are expected to increase along the IH 94 corridor in the City of Kenosha, the Village of Pleasant Prairie, and the Towns of Bristol and Somers; the STH 50 corridor in the City of Kenosha, the Village of Pleasant Prairie, and the Towns of Salem and Bristol; in an around the Villages of Paddock Lake and Union Grove; and in the unincorporated Village of Bristol. The year 2010 plan also proposes the addition of a major retail commercial center located near the intersection of IH 94 and STH 50, development of which was underway by 1985, and also the addition of a major industrial center located in the southwestern portion of the Village of Pleasant Prairie which was under development by 1990.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Des Plaines River watershed, as indicated in Table IV-3, is projected to increase from the 1990 total of about 15.7 square miles, or about 12 percent of the total area of the watershed, to about 20.3 square miles, or about 15 percent of the total area of the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 22.5 square miles, or about 17 percent of the total watershed by the year It is important to note that the 83 to 85 percent of the watershed remaining in rural use would be comprised, in part, of primary environmental corridor lands consisting of the best remaining natural resource features and, as recommended in the year 2010 regional land use plan, is proposed to be largely preserved in open space uses through joint State-local zoning or public In addition, certain other lands classified as wetlands and floodlands outside the primary environmental corridor are, in some cases, precluded from being developed by State and Federal regulations. demand for urban land will have to be satisfied primarily through the conversion of a large portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 119.0 square miles in 1990 to about 114.0 square miles in the year 2010 under the intermediate growth-centralized land use plan and to about 112.0 square miles under the high growth decentralized land use plan. decreases from about 4 to 6 percent between 1990 and 2010 for the two year-2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Des Plaines River watershed--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described

Table IV-3

EXISTING AND PLANNED LAND USE IN THE DES PLAINES RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

			Yea	Year 2010: Intermediate Growth- Centralized Land Use			Year 2010: High Growth- Decentralized Land Use			
	Existir	g 1990	20	10	Change 1	1990-2010	2010		Change 1990-2010	
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
Urban										
Residential	4,695	5.5	6,171	7.2	1,476	31.4	6,496	7.6	1,801	38.4
Commercial	185	0.2	317	0.4	132	71.4	424	0.5	239	129.2
Industrial	254	0.3	634	0.7	380	149.6	1,155	1.3	901	354.7
Transportation,			1		:		·		l	
Communication,			l		İ				İ	
and Utilities ^b	3,915	4.6	4,625	5.4	710	18.1	5,040	5.8	1,125	28.7
Governmental and			1							
Institutional	248	0.3	290	0.3	42	16.9	301	0.4	53	21.3
Recreational	737	0.9	966	1.1	229	31.1	998	1.2	261	35.4
Subtotal	10,034	11.8	13,003	15.1	2,969	29.1	14,414	16.8	4,380	43.0
Rural										
Agricultural and										
Related	58,793	68.2	57,810	67.1	- 983	- 1.7	56,516	65.6	-2,277	- 3.9
Lakes, Rivers, Streams,							-			
and Wetlands	7,953	9.2	7,736	9.0	- 217	- 2.7	7,736	9.0	- 217	- 2.7
Woodlands	4,765	5.5	4,663	5.4	- 162	- 2.1	4,658	5.4	- 107	- 2.3
Open Lands, C Landfills,	4,557	5.3	2,890	3.4	-1,667	-36.6	2,778	3.2	-1,779	- 39.0
Dumps, and Extractive										
Subtotal	76,068	88.2	73,099	84.9	-2,969	- 3.9	71,688	83.2	-4,380	- 5.8
Total	86,102	100.0	86,102	100.0	0		86,102	100.0	0	

^aAs approximated by whole U.S. Public Land Survey one-quarter sections.

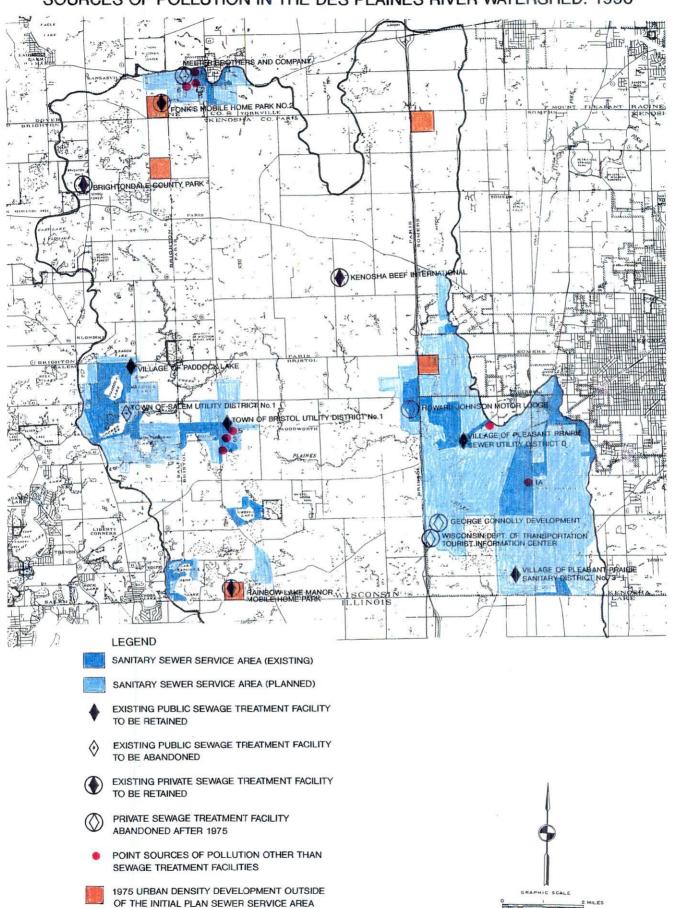
Source: SEWRPC.

bIncludes all off-street parking.

CIncludes both rural and urban unused lands.

in the initial plan. This section also includes a status report on the public sanitary sewer service areas in the watershed.

<u>Existing Conditions and Status of Plan Implementation</u>: In 1975, there were five public sewage treatment facilities located in the Des Plaines River watershed, as shown on Map IV-3. The two plants which served the Town of Pleasant Prairie Sanitary District No. 73-11 and the Town of Pleasant Prairie Utility District "D"1 discharged treated effluent directly to the main stem of the Des Plaines River via small tributaries; the two plants which served the Village of Paddock Lake and the Town of Salem Utility District No. 1 discharged to Brighton Creek and to the Salem Branch of Brighton Creek, respectively; and the plant which served the Town of Bristol Utility District No. 1 discharged treated effluent directly to a tributary of the Des Plaines River. No public sewage treatment plants have been abandoned since 1975. The status of implementation in regard to the abandonment, upgrading, and expansion of the public and private sewage treatment plants in the Des Plaines River watershed, as recommended in the initial regional water quality management plan, is summarized in Table IV-4.


As can be seen by review of Table IV-4, full implementation of the initial plan would provide for the upgrading and expansion of the Town of Bristol Utility District No. 1, the Village of Paddock Lake, and the Village of Pleasant Prairie Sewer Utility District "D" facilities. Implementation of these recommendations has been largely completed. The initial plan also included recommendations for the upgrading of the Village of Pleasant Prairie Sanitary District No. 73-1 plant and the abandonment of the Town of Salem Utility District No. 1 plant. The former recommendation has not yet been carried out. As recommended in an amendment to the initial plan, the Town of Salem Utility District No. 1 plant has been abandoned and connection of that service area to the Town of Salem Utility District No. 2 sewerage facilities has been completed. Three of the four public sewage treatment plants operating in the watershed have not fully provided facilities to specifically reduce the phosphorus concentrations in plant effluent to the levels identified in the initial plan as being needed to fully meet the water use objectives. The steps needed to achieve the recommended level of phosphorus control have been partially implemented by the completion of a study by the Wisconsin Department of Natural Resources to refine the procedure for establishing site-specific phosphorus limitations on all public sewage treatment plants, and in 1993, by the adoption of rules to allow for placement of such limitations. To date, such procedures have not been implemented for plants in the Des Plaines River watershed with the exception of the Village of Pleasant Prairie Sanitary District No. 73-1 facility which does have facilities to provide a conventional level of phosphorus removal. As specific sewage treatment plant permits are issued for the remaining public sewage treatment plants, the use of the identified procedure should result in findings requiring Selected characteristics of the public sewage reduced phosphorus loadings. treatment plants currently existing in the watershed are given in Table IV-5.

In addition to the publicly owned sewage treatment facilities, eight private sewage treatment plants were in existence in 1975 in the Des Plaines River

¹In 1989, the Town of Pleasant Prairie was incorporated as a Village and the name of these special purpose units of government were changed to the Village of Pleasant Prairie Utility District "D" and the Village of Pleasant Prairie Sanitary District No. 73-1, respectively.

Map IV-3

SEWER SERVICE AREAS, SEWAGE TREATMENT PLANTS AND OTHER POINT SOURCES OF POLLUTION IN THE DES PLAINES RIVER WATERSHED: 1990

Source: SEWRPC.

Table IV-4

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE DES PLAINES RIVER WATERSHED: 1990

Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Town of Bristol Utility District No. 1	Bristol Creek tributary of	Upgrade and expand	Completed ² (1988)
Village of Paddock Lake Village of Pleasant Prairie	Des Plaines River Brighton Creek Tributary of Des	Upgrade and expand Upgrade ^b	Completed ^a (1989) No action
Sanitary District No. 73-1 Village of Pleasant Prairie Sewer Utility District "D"	Plaines River Tributary of Des Plaines River	Upgrade and expand ^b	Completed ^a (1985)
Town of Salem Utility District No. 1	Salem Branch of Brighton Creek	Abandon plant ^c	No action ^c
Private Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Brightondale County Park Fonk's Mobile Home Park	Soil Absorption Tributary to the Des Plaines River	Maintain and Upgrade as needed Maintain and Upgrade as needed	Plant maintained Plant maintained
Kenosha Beef International Company ^d	Soil Absorption	Maintain and Upgrade as needed	Plant maintained
Meeter Brothers Company	Tributary to the Des Plaines River	Maintain and Upgrade as needed	Plant abandoned due to industry change (1987)
Rainbow Lake Manor Mobile Home Park ^e	Soil Absorption	Maintain and Upgrade as needed	Plant maintained
George Connolly Developments	Tributary to the Des Plaines River	Abandon plant ^f	Plant abandoned ^g
Howard Johnson Motor Lodge	Des Plaines River	Abandon plant	Plant abandoned (1989)
Wisconsin Tourist Information Center	Tributary to the Des Plaines River	Abandon plant ^f	Plant abandoned (1991)

^a Plant upgrading and expansion was completed representing implementation of the plan recommendations, except for the provision of phosphorus removal facilities which have not yet been provided.

8The private treatment plant serving the George Connolly Development was never placed into operation.

Source: SEWRPC.

b A proposed revision to the initial regional water quality management plan, documented in <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area</u>, recommends the abandonment of the Village of Pleasant Prairie Sanitary District No. 73-1 and of the Village of Pleasant Prairie Sewer Utility District "D" sewage treatment plants and for sanitary sewer needs to be provided for by the Kenosha Water Utility's sewage treatment plant.

^c The Town of Salem Utility District No. 1 sewage treatment plant was recommended to be retained in the initial regional water quality management plan. A 1991 amendment to the regional water quality management plan-2000 for the Town of Salem recommended the plant to be abandoned and for the Town of Salem Utility District No. 1 sewer service area to be served by the Town of Salem Utility District No. 2 sewage treatment plant. The plant was abandoned in 1993.

dFormerly Kenosha Packing Company.

eFormerly Paramski Mobile Home Park.

The George Connolly Development and Wisconsin Tourist Information Center sewage treatment plants were recommended to be retained in the initial regional water quality management plan. A 1987 amendment to the regional water quality management plan-2000 for the City of Kenosha and environs recommended the plants be abandoned that sewer service be provided for by the Village of Pleasant Prairie Sanitary District No. 73-1.

SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE TREATMENT PLANTS IN THE DES PLAINES RIVER WATERSHED: 1990

Name of Public Sewage Treatment Plant	1990 Estimated Total Area Served (square miles)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Sewage Treatment Unit Processes ^a	Name of Receiving Water to which Effluent is Disposed	WPDES Permit Expiration Date
Town of Bristol Utility District No. 1	0.8	1,200	1965, 1971, 1988	Contact stabilization activated sludge, clarification, chlorination	Des Plaines River via Bristol Creek tributary	12/31/93
Village of Paddock Lake	0.8	2,300	1958, 1967, 1988	Oxidation ditch, clarification, microscreen, chlorination, dechlorination, ultraviolet disinfection	Brighton Creek	12/31/99
Village of Pleasant Prairie Sanitary District No. 73-1	0.1	600	1975	Contact stabilization activated sludge, clarification, chemical phosphorus removal, sand filtration, chlorination	Des Plaines River via unnamed tributary	9/30/2000
Village of Pleasant Prairie Sewer Utility District D	1.2	1,700	1966, 1985	Oxidation ditch clarification, chlorination, post aeration	Des Plaines River via Pleasant Prairie tributary	6/30/99
Town of Salem Utility District No. 1 ^b	0.4	1,100	1970	Activated sludge, clarification, chlorination, polishing pond, contact stabilization	Salem Branch	9/30/89

Table IV-5

Table IV-5 (continued)

		Hyd	raulic Load (mgd)	iing ^c			OD ₅ Loading ounds per d		Suspended Solids Loading ^C (pounds per day)				
	Existing			Number of Months in	Existing			Number of Months in	Existing			Number of Months in 1990 in which the	
Name of Public Sewage Treatment Plant	me of Public Sewage Haximum Design Honthly Average Honthly Average Loading Exceeded Average Honth		Maximum Monthly Average	Design Average Annual	1990 in which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Monthly Average Loadings Exceeded the Design Capacity				
Town of Bristol Utility District No. 1	0.34	0.49	0.48	1	366	501	860	0	450	615	729	0	
Village of Paddock Lake	0.47	0.71	0.49	4	574	814	570	3	701	1,148	513	8	
Village of Pleasant Prairie Sanitary District No. 73-1	0.21	0.26	0.40	0	145	192	800	0	167	317		:-	
Village of Pleasant Prairie Sewer Utility District D	0.50	0.75	0.50	4	407	499	602	0	814	1,424			
Town of Salem Utility District No. 1	0.20	0.31	0.30	1	198	313	510	0	170	200			

In addition, plants typically include headworks and miscellaneous processes such as pumping, flow metering and sampling, screening and grit removal, as well as sludge handling and disposal facilities.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b The sewage treatment plant serving the Town of Salem Utility District No. 1 was abandoned in 1993 and its service area connected to the Town of Salem Utility District No. 2 sewerage system.

C Loadings data were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data unless noted

These plants served the following land uses: Fonk's Mobile Home Park No. 2 in Racine County; and Brightondale County Park, George Connolly Development, Howard Johnson Motor Lodge, Kenosha Packing Company (currently Kenosha Beef International Company), Meeter Brothers Company, Wisconsin Tourist Information Center, and Paramski Mobil Home Park (currently Rainbow Lake Manor Mobile Home Park) in Kenosha County. As indicated in Table IV-4, one private sewage treatment plant in the watershed as of 1975 was recommended to be abandoned in the initial plan. A subsequent amendment to the plan recommended the abandonment of two additional plants. As of 1990, each of these three plants had been abandoned. In addition, the Meeter Brothers private plant had also ceased operation because the industry the plant supported is no longer in business at this location. The remaining four private plants were recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES).

The initial regional water quality management plan included a set of specific options to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the Des Plaines River watershed. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social effects that may be experienced due to sludge disposal. At the present time, such reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were nine sewer service areas identified within, or partially within, the Des Plaines River watershed: Bristol-George Lake, Bristol-IH 94 and Pleasant Prairie North, Cross Lake, Hooker-Montgomery Lakes, Kenosha, Paddock Lake, Pleasant Prairie South, By 1990, all of these areas had undergone refinements as recommended. The boundaries of the sewer service areas, as currently refined, are shown on Map IV-3. Table IV-6 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service area names following the refinement process. The planned sewer service areas in the Des Plaines River watershed, as refined through 1993, total about 32 square miles, or about 24 percent of the total watershed area, as shown in Table IV-6.

Table IV-6

PLANNED SANITARY SEWER SERVICE AREAS IN THE DES PLAINES RIVER WATERSHED: 1993

Name of Initially Defined Sanitary Sewer Service Area(s) Bristol-George Lake	Planned Sewer Service Area (square miles) 2.3	Name of Refined and Detailed Sanitary Sewer Service Area(s) Bristol	Date of SEWRPC Adoption of Plan Amendment December 1, 1986	Plan Amendment Document SEWRPC CAPR No. 145, Sanitary Sewer Service Area for the Town of Salem Utility District No. 1, Village of Paddock Lake, and Town of Bristol Utility District Nos. 1 and 1B, Kenosha County,
Bristol-IH 94 Pleasant Prairie North	5.8	Bristol/ Pleasant Prairie	December 2, 1985	SEWRPC CAPR No. 106, Sanitary Sewer Service Areas for the City of Kenosha and Environs, Kenosha County, Wisconsin
Camp-Center Lakes Cross Lake Rock Lake Wilmot	0.5	Salem South	March 3, 1986	SEWRPC CAPR No. 143, Sanitary Sewer Service Area for the Town of Salem Utility District No. 2, Kenosha County, Wisconsin
Hooker- Montgomery Lakes	2.7	Salem North	December 1, 1986	SEWRPC CAPR No. 145 Sanitary Sewer Service Area for the Town of Salem Utility District No. 1, Village of Paddock Lake, and Town of Bristol Utility District Nos. 1 and 1B, Kenosha County, Wisconsin
Kenosha Pleasant Park Somers	13.8	Kenosha	December 2, 1985	SEWRPC CAPR No. 106, Sanitary Sewer Service Areas for the City of Kenosha and Environs, Kenosha County, Wisconsin
Paddock Lake	2.0	Paddock Lake	December 1, 1986	SEWRPC CAPR No. 145 Sanitary Sewer Service Area for the Town of Salem Utility District No. 1, Village of Paddock Lake, and Town of Bristol Utility District Nos. 1 and 1B, Kenosha County, Wisconsin
Pleasant Prairie South	3.4	Pleasant Prairie South	December 2, 1985	SEWRPC CAPR No. 106, Sanitary Sewer Service Areas for the City of Kenosha and Environs, Kenosha County, Wisconsin
Union Grove	1.6	Union Grove	September 12, 1990	SEWRPC CAPR No. 180, Sanitary Sewer Service Area for the Village of Union Grove and Environs, Racine County, Wisconsin
Total	32.1			

Note: CAPR - Community Assistance Planning Report

Source: SEWRPC

Current Plan Recommendations: The current point source plan element recommendations provide for the continued operation with expansion and upgrading, as necessary, of the Town of Bristol Utility District No. 1 and the Village of Paddock Lake sewage treatment plants, as well as the abandonment of the Town of Salem Utility District No. 1 sewage treatment plant and connection of that service area to the Town of Salem Utility District No. 2 sewerage system. The Town of Salem Utility District No. 1 sewage treatment plant in the process of being abandoned in 1993. Estimated approximate dates for beginning facility planning for the expansion and upgrading of existing sewage treatment plants are indicated in Table IV-7. This recommendation regarding plant facility upgrading and expansion, as needed, also applies to the treatment plant solids management element for the public sewage treatment plants recommended to be retained.

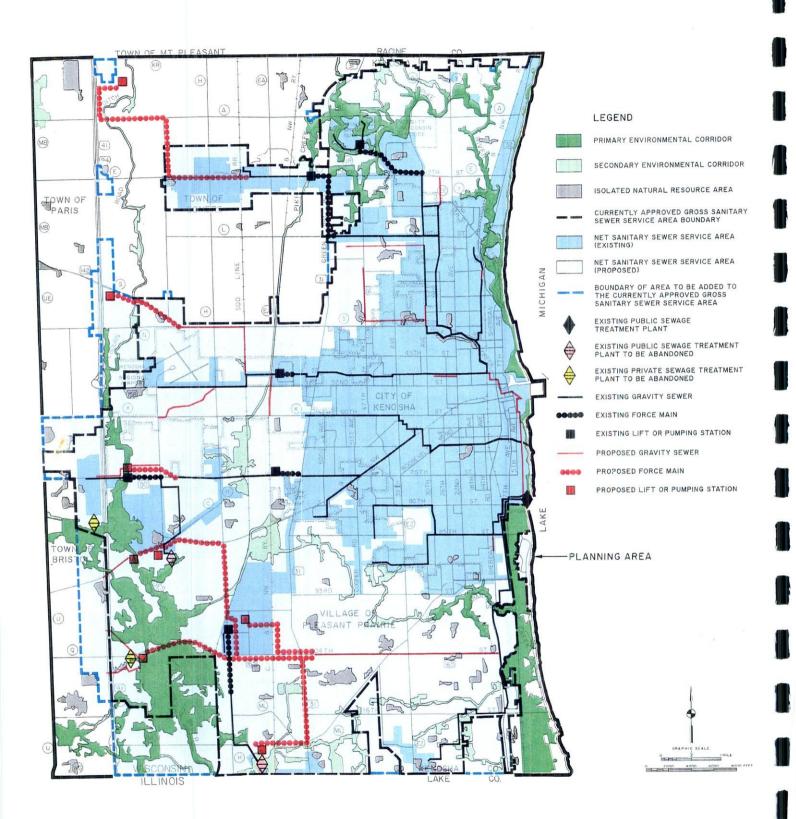
With regard to the two treatment plants operated by the Village of Pleasant Prairie Sanitary District No. 73-1 and the Village of Pleasant Prairie Sewer Utility District "D", further consideration should be given to evaluating a potential change in the recommendations set forth in the initial plan. potential change is based upon the findings of a 1992 sanitary sewerage and water supply system plan which was completed for the greater Kenosha area. findings and recommendations of the planning work are contained in a report prepared by Ruekert & Mielke, Inc., entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area. That report, which was prepared for a study area including all of Kenosha County extending from Lake Michigan to a distance of one mile west of IH 94, includes portions of the Des The report identified the sanitary sewer and water Plaines River watershed. supply needs of that planning area, and evaluated alternative means of meeting those needs; recommended a coordinated set of design year 2010 sewerage and water supply system plans for the area; identified the intergovernmental, administrative, legal, and fiscal issues inherent in the implementation of the system plans; and recommended an institutional structure for implementation of those The recommended sewerage system and planned service area developed in this subregional system plan are shown on Map IV-4A. As of December 1994, the intergovernmental actions and approval needed to proceed with the attendant changes to the regional water quality management plan had not been put in place. Thus, the inclusion of these plan recommendations in the updated plan is pending intergovernmental agreement on the recommendations.

On the basis of the recommendations contained in this subregional sewerage system plan, the following revisions to the initially adopted plan are proposed, pending approval of the system plan by the local units of government involved:

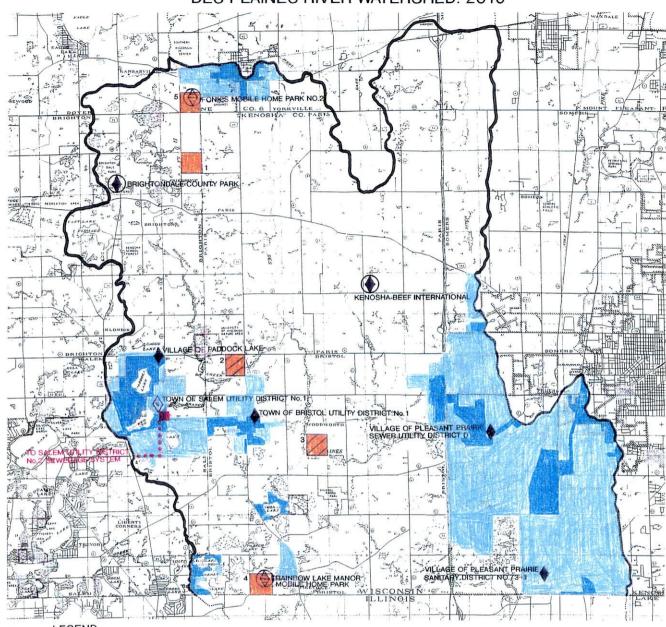
- 1. The sewer service areas as set forth in the adopted plan are to be revised to conform with those set forth under the recommended Kenosha area sewerage system plan as shown in Map IV-4a.
- 2. The Kenosha Water Utility sewage treatment plant is designated as the sole public sewage treatment plant to serve the area considered, as shown on Map IV-4; and the two public sewage treatment plants operated by the Village of Pleasant Prairie Sewer Utility District D and the Village of Pleasant Prairie Sanitary District No. 73-1 are recommended to be abandoned during the planning period.
- The intercommunity trunk sewers needed to provide service, as shown on Map IV-4a, are recommended to be added to the regional plan recommendations.

Table IV-7

SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS
IN THE DES PLAINES RIVER WATERSHED: 1990 AND 2010


]	Existing 19	90				Planned Year	2010		·
							1	ate Growth-C Land Use Pla		Hig	centralized Use Plan	
Name of Public Sewage Treatment Plant	Sewer Service Areas	Design Capacity- Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Total Area Served (square mile)	Resident Population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
Town of Bristol Utility District No. 1	Bristol	0.48	0.34	0.8	1,300	2.3	2,500	0.49	1998	2,700	0.52	1996
Village of Paddock Lake	Paddock Lake	0.49	0.47	0.8	2,700	2.1	4,000	0.63	1995	4,300	0.67	1995
Village of Pleasant Prairie Sanitary District No. 73-1	Pleasant Prairie South	0.40	0.21	0.1	600	3.4	2,200	0.41	1998	3,100	0.52	1996
Village of Pleasant Prairie Sewer Utility District "D"	Bristol/ Pleasant Prairie	0.50	0.50	1.2	1,700	6.7	5,500	0.98	1995	6,500	1.1	1995

^aApproximate year in which facility planning for a plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average design flows compared to average annual and maximum monthly flows, and age of facilities based upon date of last major construction.


Source: SEWRPC.

Map IV-4A

RECOMMENDED SEWERAGE SYSTEM FACILITIES FOR THE GREATER KENOSHA UTILITY PLANNING AREA AS DEVELOPED IN 1992 SUBREGIONAL SYSTEM PLAN

Map IV-4 UPDATED REGIONAL WATER QUALITY MANAGEMENT POINT SOURCE PLAN FOR THE DES PLAINES RIVER WATERSHED: 2010

LEGEND

SANITARY SEWER SERVICE AREA (EXISTING)

SANITARY SEWER SERVICE AREA (PLANNED)

♦ EXISTING PUBLIC SEWAGE TREATMENT FACILITY TO BE RETAINED

EXISTING PUBLIC SEWAGE TREATMENT FACILITY TO BE ABANDONED

EXISTING PRIVATE SEWAGE TREATMENT FACILITY TO BE RETAINED

EXISTING PRIVATE SEWAGE TREATMENT FACILITY TO BE ABANDONED

EXISTING PRIVATE SEWAGE TREATMENT FACILITY TO EVALUATE CONNECTION TO PUBLIC SYSTEM

PROPOSED LIFT OR PUMPING STATION

PROPOSED FORCE MAIN

1975 URBAN DENSITY DEVELOPMENT OUTSIDE OF PLANNED SEWER SERVICE AREA.

ADDITIONAL URBAN DENSITY DEVELOPMENT SINCE 1975 OUTSIDE OF PLANNED SEWER SERVICE AREA

Source: SEWRPC.

The current point source pollution abatement plan element, including the planned sewer service areas, and including the components noted above to be held in abeyance pending approval by the City of Kenosha is summarized on Map IV-4. Table IV-7 presents selected design data for the public sewage treatment plants which are recommended to be maintained in the Des Plaines River watershed, including the two plants which are currently under consideration for abandonment. It is important to note that four of the five plants recorded monthly average hydraulic loadings during 1990 which equaled or exceeded the average design capacities of the plants, as shown in Table IV-5. Of these, two sewage treatment plants have recorded more than one month in 1990 in which the monthly average loadings exceeded the design capacity. The Town of Salem Utility District No. 1 has since been abandoned, with service currently being provided by the Town of Salem Sewer Utility District No. 2.

Table IV-7 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the four public sewage treatment plants in the Des Plaines River watershed. Under both the intermediate growth-centralized and high growth-decentralized land use plans, all of the public plants are anticipated to have average annual hydraulic loading rates equal to or higher than the average annual design capacity. In addition, the Village of Pleasant Prairie Sewer Utility District "D" sewage treatment plant currently has average annual hydraulic loading rates that equal the average annual design capacity of the plant. Thus, there are expected to be expansions of existing plants to provide for increased capacities, or the abandonments of selected plants and the connection of existing service areas to plants with adequate capacity.

Based upon review and analysis of the data in Tables IV-5 and IV-7, including estimates of future condition loadings on an annual average and maximum monthly basis, and based upon the age of the current facilities, estimates of the timing of needed facility planning were made. It appears that facility planning should be initiated within the next three years for all four public sewage treatment plants in the watershed, or, in the case of the two plants operated by the Village of Pleasant Prairie, plans for plant abandonment should be developed.

The current planned sanitary sewer service areas in the Des Plaines River watershed are shown on Map IV-4. The existing and planned year 2010 population data for each sewer service area is presented in Chapter XVIII on a regional basis. In the Des Plaines River watershed, these sewer service areas include: Bristol, Bristol/Pleasant Prairie, Salem South, Salem North, Kenosha, Paddock Lake, Pleasant Prairie South, and Union Grove sewer service areas.

As noted above, each of the sewer service areas in the watershed have been refined as part of the ongoing regional water quality management plan updating process. Thus, no specific additional refinements are envisioned to be needed for the currently planned sewer service areas at this time. It is recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plants, there were four private sewage treatment plants in operation within the Des Plaines River watershed in 1990. These

facilities generally serve isolated enclaves of urban land uses which are located beyond the current limits of the planned sanitary public sewer service areas. It should be noted that while the private sewage treatment plant serving the Bong Recreation Area is physically located in the Des Plaines River watershed, the plant discharges effluent to Peterson Creek in the Fox River watershed. All four plants are recommended to be retained, with two exceptions. relatively close proximity of the Fonk's Mobile Home Park No. 2 to the Union Grove sewer service area and the Rainbow Lake Manor Mobile Home Park to the Bristol service area indicate that there is the potential for consolidation of treatment facilities in these two instances. Thus, it is recommended that at the time each of these two private plants require significant upgrading or modification that detailed facility planning be conducted to evaluate the alternative of connecting these two land uses to the adjacent public sanitary sewer systems. For the two remaining private sewage treatment plants serving the Brightondale County Park and the Kenosha Beef International Company, the need for upgrading and level of treatment should be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System permitting process.

Sewer Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were three known separate sewer system flow relief devices located in the Des Plaines River watershed: one bypass to Brighton Creek from the Village of Paddock Lake; and two bypasses to the Des Plaines River, one from the Town of Bristol and one from the Village of Pleasant Prairie. These bypasses have all been eliminated as the plants were upgraded, as recommended in the adopted regional water quality management plan. As of 1990, there were no known points of sanitary sewage flow relief in the Des Plaines River watershed. However, there were reported infrequent discharges of untreated sewage from the Town of Bristol Utility District No. 1 sewerage system resulting from structural pipe failures in the system between pumping station No. 1 and the sewage treatment plant.

<u>Current Plan Recommendations</u>: As noted above, there are currently no known points of sewage flow relief in the sanitary sewerage systems in the Des Plaines River watershed. However, there have been structural pipe fractures in the local sewer system in the Town of Bristol Utility District No. 1 which have resulted in infrequent bypasses from the tributary sanitary sewer system by overflowing due to pipe ruptures. Sewer system improvements, including upgrading of the pumping station, force main replacement, and a new trunk sewer, have been designed and are expected to be under construction late in 1993 to correct this problem.

Intercommunity Trunk Sewers

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan as updated, recommended the construction of three intercommunity trunk sewers in the Des Plaines River watershed, as shown in Table IV-8. One trunk sewer would connect the urban development in the Town of Bristol in the vicinity of IH 94 and STH 50 to the Pleasant Prairie Sewer Utility District "D" sewerage system. Construction of the trunk sewer was completed in 1987. An additional trunk sewer connecting the Town of Salem Utility District No. 1 to the Town of Salem Utility District No. 2 sewerage system was added to the plan in 1991 to enable abandonment of the Town of Salem Utility District No. 1 plant. This trunk sewer was completed in 1993. In addition, a portion of the trunk sewer connecting Cross and Rock Lakes in the Fox River watershed to the Town of Salem Utility District No. 2 extends into the

Table IV-8

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE DES PLAINES RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Implementation
Bristol-Pleasant Prairie	Completed (1987)
Benet/Shangrila Lake ^a	Completed (1983)
Salem ^b	No action ^b

^a The Benet/Shangrila trunk sewer is part of the Cross-Rock Lakes trunk sewer located in the Fox River watershed.

Source: SEWRPC.

^b A trunk sewer providing for conveyance of sewage from the Town of Salem Utility District No. 1 sewer service area to the Town of Salem Utility District No. 2 sewerage system was added to the plan based upon a December 1991 amendment. Construction of the trunk sewer was completed in 1993.

Des Plaines River watershed to connect urban development around Benet and Shangrila Lakes. This trunk sewer was completed in 1983.

Current Plan Recommendations: The current regional water quality management plan includes recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the Des Plaines River watershed. As of 1990, the intercommunity trunk sewers recommended to be constructed in the watershed under the initial plan had been constructed. Upon approval of two plan amendment documents, based upon the aforementioned 1992 sanitary sewer and water supply system plan for the greater Kenosha area and a sanitary sewer and water supply system plan for the greater Racine area², seven new trunk sewers would be added to the plan. Four of these new trunk sewers would convey wastewater from the Pleasant Prairie-Bristol portion of the service area to the City of Kenosha sewerage system, two would connect development in the Town of Somers along IH 94 to the City of Kenosha sewerage system, and one would connect development in Racine County along IH 94 in the northern portion of the watershed to the City of Racine sewerage system, as shown on Maps IV-4A and XIII-4A.

<u>Point Sources of Wastewater Other Than Public</u> and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of six known point sources of pollution identified in the Des Plaines River watershed other than public and private sewage treatment plants. These sources consisted primarily of six outfalls through which industrial cooling, process, rinse, wash waters, and filter backwash waters were discharged directly or indirectly to the surface water system. Of these, three were identified as discharging only cooling water. The remaining three were discharging other types of wastewater. The initial regional water quality management plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-bycase basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were eight such point sources of wastewater discharging to the Des Plaines River and its major tributaries directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table IV-9 summarizes selected characteristics of these other point sources and Map IV-3 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 14 known point sources of wastewater other than public and private sewage treatment plants discharging to surface waters in the Des Plaines River watershed. These other point sources of wastewater, primarily industrial cooling process, rinse, and wash water, discharge directly or following treatment to the groundwater or the surface waters. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

²A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area, Alvord, Burdick, and Howson, 1992.

Table IV-9

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF POLLUTION IN THE DES PLAINES RIVER WATERSHED: 1990a

Facility Name	County	Map ID #b	Permit Type	Permit Number	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
American Roller Co.	Racine	1	General	0044938-3	9-30-95	3069	Fabricated rubber products	Des Plaines River via storm sewer and unnamed tributary	
Bardon Rubber Products Company, Inc.	Racine	2	General	0044938-3	9-30-95	3069	Fabricated rubber products	Des Plaines River via unnamed tributary	
Bristol Water Utility	Kenosha	3	General	0045640-1	9-30-95	4941	Water supply	Des Plaines River via unnamed tributary	
Contact Rubber Corp.	Kenosha	4	General	0044938-3	9-30-95	3069	Fabricated rubber products	Salem Branch Creek via unnamed tributary	
I.T.O. Industries, Inc.	Kenosha	5	General	0046540-2	9-30-95	3679	Electrical components	Des Plaines River via unnamed tributary	.
Plastic Parts, Inc.	Racine	6	General	0044938-3	9-30-95	3089	Plastics products	Des Plaines River via storm sewer and unnamed tributary	'
Tri-Clover, Inc.	Kenosha	7	General	0044938-3	9-30-95	3494	Valves and pipe fittings	Des Plaines River via unnamed tributary	
Wisconsin Electric Power-Pleasant Prairie	Kenosha	1 A	Specific	0043583	3-31-93	4911	Electric services	Jerome Creek	1,2,3,4

^a Table IV-9 includes eight known, permitted point sources of wastewater discharging to the Des Plaines River and its tributaries, or to the groundwater system in the Des Plaines River watershed. As of 1993, there were 14 known, permitted point sources of water pollution.

- 1. Holding pond
- 2. Dechlorination
- 3. Chlorination
- 4. pH Control

Source: SEWRPC

b See Map IV-3: "Sewer Service Areas and Point Sources of Pollution in the Des Plaines River Watershed: 1990."

c The number code refers to the following treatment systems:

<u>Existing Unsewered Urban Development Outside</u> the Proposed Sanitary Sewer Service Area

In 1975, there were five enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area. As of 1990, two of these areas have been added to the planned 2010 sewer service area. Two new enclaves of urban development have been created beyond the planned sewer service areas, as shown on Map IV-4. The corresponding urban enclave population and the distance to the nearest planned year 2010 sewer service area are listed in Table IV-10. Two of these areas are served by a private sewage treatment plants. The remaining three areas are covered by soils, and have lot sizes, which have a high probability of not meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. Thus, for these three urban enclaves in the Des Plaines River watershed, the plan recommends that an inspection and maintenance program for the onsite sewage disposals system be instituted and that the conduct of further site-specific planning to determine the best wastewater management practice be conducted at such time as significant problems became evident. These areas should consider alternative methods of waste disposal and an intensive inspection and maintenance program for conventional systems, as well as the possibility of connection to the public sanitary sewer service areas.

Miscellaneous Potential Pollution Sources

Landfills: Landfills in the Des Plaines River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and can be subsequently transported to surface waters. There are currently two active landfills and 27 known abandoned landfills located in the Des Plaines River watershed. None of these landfills are known to be negatively affecting surface waters.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Des Plaines River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or groundwater. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1993, there were 11 leaking underground storage tanks in the Des Plaines River watershed identified by the Department of Natural Resources. None of these sites were permitted to discharge remediation wastewater directly to surface or ground waters. While there is little evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Table IV-10

EXISTING URBAN DEVELOPMENT OUTSIDE OF THE PLANNED PUBLIC SANITARY SEWER SERVICE AREA IN THE DES PLAINES RIVER WATERSHED: 2010

Number*	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
	Kenosha County		
1	Town of Brighton-Section 12°	240	2.0
2	Town of Bristol-Section 6°	101	2.0
3	Town of Bristol-Section 16°	109	0.6
4	Mud Lake ^d	200	0.5
	Racine County		
5	Town of Dover-Section 36d	270	0.4
	Total	920	

^{*}See Map IV-4.

^bUrban development is defined in this context as concentrations of urban land uses within any given U.S. Public Land Survey quarter section that has at least 32 housing units, or an average of one housing unit per five gross acres, and is not served by public sanitary sewers.

Source: SEWRPC

^c Based upon consideration of soils, lot sizes, and density, further site-specific planning should be conducted during the planning period to determine the best means of providing for wastewater management.

^d Served by a private sewage treatment plant.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters. As of 1990, there were no permitted sites discharging to surface or ground waters in the Des Plaines River watershed.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the adopted regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Des Plaines River watershed, the adopted plan generally recommended nonpoint source control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent in addition to construction site erosion control, onsite sewage disposal, septic system management, and streambank erosion control. The plan also recommended that additional nonpoint source controls be provided within certain areas. Within the urban areas of the Hooker Lake and George Lake drainage areas, the plan recommends a reduction in nonpoint sources of pollution of about 50 percent. Within the rural areas of the Hooker Lake and George Lake drainage areas, the plan recommends reduction in nonpoint source pollutants of 75 and 50 percent, respectively.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, the local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program was established in 1978 by the Wisconsin Legislature and currently provides funds for individual projects or land management practices to local governments and private landowners upon completion of the detailed plans. The funds are provided through local assistance grants administered by the Wisconsin Department of Natural Resources.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Des Plaines River watershed through local regulation and programs. The watershed has not yet been selected for inclusion in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. However, limited implementation has been achieved through programs which include the regulation of onsite sewage disposal systems under programs currently administered by Kenosha and Racine Counties. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of new systems and for program resolution of failing systems where they are identified. In addition, since the completion of the adopted regional water quality management plan, public sewer

systems have been installed for the urban development surrounding Benet-Shangri-la Lake, as recommended in the regional plan, thereby reducing onsite system pollutant discharges to the surface water and groundwater systems in the water-shed. Significant progress has been made in the area of construction site erosion control. As of January 1993, the City of Kenosha and Villages of Paddock Lake and Pleasant Prairie had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities.

With regard to rural nonpoint source control, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations and sets forth criteria whereby the Department of Natural Resources may issue permits for animal feeding operations. This program is administered by the Department of Natural Resources which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program and other programs, such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and the wetland restoration programs administered by the Wisconsin Department of Natural Resources and others, are utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have some positive water quality impact.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. levels are defined as soil loss tolerances, or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conserva-Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection, as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Kenosha and Racine Counties. Thus, these plans cover all of the rural lands in the Des Plaines River watershed. identify priority areas for cropland soil erosion control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

During 1994, work was initiated by the Regional Planning Commission on a comprehensive watershed plan³ for the Des Plaines River watershed in cooperation with Kenosha and Racine Counties. This comprehensive plan will establish the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas in the watershed. Such subsequent

³See SEWRPC Prospectus, <u>Des Plaines River Watershed Planning Prospectus</u>, September 1991.

planning would be directed toward reducing the nonpoint source pollutant loadings as well as providing for local drainage needs in the watershed.

While these local programs described above have resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

Current Plan Recommendations

It is recommended that construction erosion controls, onsite sewage disposal systems management, and streambank erosion control measures, plus land management practices designed to provide about a 25 percent reduction in nonpoint source pollutant loadings from the urban and rural lands be carried out throughout the Des Plaines River watershed. Within the urban areas in the drainage areas of George Lake and Hooker Lake, it is recommended that additional practices providing for levels of control for about a 50 percent reduction in nonpoint source loadings be provided. Also, it is recommended that additional practices providing for about a 75 percent reduction in nonpoint source loading from rural lands be provided in the Hooker Lake drainage area. The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most cost-effective manner. In this regard, the watershed should be included in the Wisconsin Nonpoint Source Water Pollution Abatement Program in order to make State cost-sharing programs available for nonpoint source pollution control In addition, detailed stormwater management plans in urban areas and detailed farmland management plans in rural areas should be conducted to define the practices to be installed. The current priority ranking of watersheds for inclusion in that program is documented in a memorandum4 prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included the Des Plaines River watershed in the medium category, indicating that inclusion in the program will likely be delayed until late in the planning period or beyond, unless the process of selection is changed and/or funding levels are increased. Because a comprehensive water resources planning program will be completed for the Des Plaines River watershed, the implementation of the nonpoint source pollution abatement component of that plan should be given a priority. recommended that further consideration be given to including the Des Plaines River watershed in the priority watershed program.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.

⁴See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Non-point Source Management Purposes in Southwestern Wisconsin: 1993."

As of 1993, long-term monitoring has been carried out in the Des Plaines River watershed on a sustained basis only by the U.S. Geological Survey at the station located at Russell Road on the Des Plaines River main stem about 0.5 miles downstream of the Wisconsin-Illinois State line, as shown on Map IV-5. After 1991, collection of water quality data at this station was terminated.

Currently, three of the six major lakes in the Des Plaines River watershed--Benet/Shangrila, George, and Hooker Lakes--are being monitored as part of the DNR Self-help Monitoring Program. In addition, limited additional water quality monitoring has been carried out by the U.S. Geological Survey, the Wisconsin Department of Natural Resources, and local lake management agencies.

The Wisconsin Department of Natural Resources has placed increased emphasis on monitoring and assessment of surface water quality⁵ in all watersheds. The Department now envisions carrying out a one-year intensive monitoring program in the Des Plaines River watershed about once every five to seven years as part of the Fox-Illinois River Basin monitoring.

Current Plan Recommendation


Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be re-initiated by the U.S. Geological Survey at Station Dp-4 on a continuing, long-term basis. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at Dp-1, -2, and -3 and at five selected additional stations, with one station each on Brighton Creek, Dutch Gap Canal, Kilbourn Road Ditch, Center Creek, and Jerome Creek. It is recommended that this program be conducted within the next five years and repeated at approximately five- to seven-year intervals. These recommendations can be coordinated with and are consistent with the Department's current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each basin in the Region in an approximate five- to seven-year rotating cycle.

The lake monitoring program should consist, at a minimum, of one intensive monitoring effort to establish baseline conditions and of the long-term participation in the DNR Self-help Monitoring Program that can be conducted by citizenvolunteer residents on the lakes. As noted earlier, three lakes already participate in this program. For each lake, it is recommended that the monitoring program should be expanded to establish current conditions during a two-year or more period of extensive monitoring followed by a continual long-term monitoring program designed to detect changes in water quality conditions. In this regard, the monitoring program should be tailored to provide data needed for preparation or updating of comprehensive lake management plans for the major lakes in the watershed. Such programs have been undertaken on Paddock Lake. The water quality sampling program should be carried out at spring turnover (April) and during June, July, and August, during two subsequent years, with samples collected weekly.

⁵Wisconsin Department of Natural Resources, <u>Surface Water Monitoring Strategy</u>, WR299-92, 1992.

Map IV-5

LOCATION OF WATER QUALITY SAMPLING

Existing Conditions and Status of Plan Implementation

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of the major lakes in the Des Plaines River watershed and for consideration of other lake management measures. Institutional recommendations were also made for the formation of new special purpose units of government where none exist to carry out the plan implementation measures. For each major lake in the Des Plaines River watershed, the initial plan recommended that a comprehensive lake management plan be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. As noted in the previous sections, the preparation of such a comprehensive plan requires supporting water quality monitoring programs to be established.

The status of lake management, protection, and rehabilitation efforts on and around the major lakes in the Des Plaines River watershed is discussed for each major lake in the following paragraphs:

Benet/Shangrila Lake: Since preparation of the initial plan, the area has been included in the Town of Salem Utility District No. 2 and the urban development surrounding the lake has been provided with a public sanitary sewer system, as recommended in the initial plan. The lake has an approved aquatic plant management plan and has been involved in a herbicide-based aquatic plant management program. Shangrila Lake is included in the DNR Self-Help Monitoring Program and is subject to ongoing water clarity monitoring.

<u>East Lake Flowage</u>: The East Lake Flowage is managed by the Wisconsin Department of Natural Resources as part of the Bong Recreation Area. No specific plan implementation activities are documented as of 1993.

George Lake: An inland lake protection and rehabilitation district has been created at George Lake. The district has obtained a Chapter NR 119 Lake Management Planning Grant to assist in the preparation of components of a lake management plan. An aquatic plant management plan has been prepared and approved for this lake, which has used herbicide-based aquatic plant controls; and an aquatic plant harvester has recently been purchased for use on this water body. The urban areas surrounding the lake is served by a public sanitary sewer system as recommended in the initial plan. Extensive nutrient, pest, and soils conservation management practices have been put into place in the western portions of the watershed. Both sediment and nutrient loads have been substantially reduced. The lake is included in the DNR Self-Help Monitoring Program.

<u>Hooker Lake</u>: An inland lake protection and rehabilitation district was recently formed around the lake. The district has received a Chapter NR 119 Lake Management Planning Grant to assist in the preparation of a lake management plan. An aquatic plant management plan has been prepared and approved for this lake which has used herbicide-based aquatic plant control measures. This lake is

⁶George Lake Rehabilitation and Protection District Planning Grant #1006-1, Updated Feasibility Study--Core Sample Results Water Usage Ordinance, June 1994.

⁷Aron & Associates, <u>Hooker Lake Community Survey</u>, 1991.

enrolled in the DNR Self-Help Monitoring Program and is subject to ongoing water clarity monitoring. The urban development around the lake is included in the Town of Salem Utility District No. 1 and is served by a public sanitary sewer system.

<u>Paddock Lake</u>: The lake has an inland lake protection and rehabilitation district and a Chapter NR 119 Lake Management Planning Grant was received to assist in preparing a lake management plan. The district is seeking to resolve problems associated with organic lake sediment and nuisance aquatic plant growths. Paddock Lake has an approved aquatic plant management plan. While not currently enrolled in the DNR Self-Help Monitoring Program, the lake water quality is being monitored under the Planning Grant Program. Urban development around the lake is served by a public sanitary sewer system. This lake has been the subject of an Office of Inland Lake Renewal feasibility study. Recent data suggest that the lake is now eutrophic.

<u>Unnamed Quarry Lake in the Village of Pleasant Prairie</u>: This lake is proposed to be managed as part of a new regional park recommended to be located on the property surrounding the lake. Currently, plans are being prepared by the Village of Pleasant Prairie to develop the site.

Current Plan Recommendations

Management measures recommended and in-lake measures which are considered potentially applicable and should be considered in more detail are shown in Table IV-11 for the six major lakes in the Des Plaines River watershed. The initial plan recommendations relating to the preparation of comprehensive lake management plans and the conduct of supporting water quality, biological condition, and water budget monitoring programs are reaffirmed in the updated plan recommendations for the Des Plaines River watershed. The management recommendations for the four lakes considered in detail in the initial plan-Benet/Shangrila, George, Hooker, and Paddock Lakes--are based upon review of the lake planning set forth in the initial plan and the current status of implementation of the recommendations, as well as any subsequent local planning.

It is recognized that the preparation of comprehensive lake management plans may need to be conducted in a staged manner in order to best utilize available resources. In this regard, the water quality and biological condition monitoring, aquatic plant management, and watershed protection measure planning and implementation are considered to be logical components of the comprehensive plans which can be conducted under separate planning programs, if designed to be integrated into a comprehensive lake management plan.

In addition to the recommendations noted for the major lakes in the Des Plaines River watershed, it is recommended that water quality planning and supporting monitoring be conducted for those lakes and similar water bodies in the watershed which are less than 50 acres in size, such as Montgomery Lake, where such activities are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable

⁸Woodward-Clyde, Inc., <u>Paddock Lake Investigations and Management Plan</u>, February 1994.

⁹Aron & Associates, <u>Paddock Lake Plant Management Plan</u>, August 1993.

Table IV-11

MANAGEMENT MEASURES RECOMMENDED FOR THE MAJOR LAKES IN THE DES PLAINES RIVER WATERSHED: 1993a

					Watersh	ed-Based	Measures					In-Lake Mana	gement Mea	sures		
Lake Name	Area (acre)	Water Quality Monitoring	Prepare Comprehensive Management Plan	Public Sanitary Sewer Service	Onsite Sewage System Mgmt	Rural NPS Mgmt	Urban NPS Mgmt	Construction Site NPS Management	Live- stock Mgmt	Macro- phyte Harvest	Aeration	Nutrient Inactivation	Dredge	Sediment Cover	Water Level Mgmt	Fish Mgmt
Benet/ Shangrila	186	0	+	0	-	-	+	+	-	+	-	+	+	+	-	+
East Lake Flowage	123	+	+	-	+	+	-	-	-	-	-	-	-	_	+	0
George	59	0	0	0	-	+	+	+	0	0	-	+	+	+	+	+
Hooker	87	0	0	0	-	+	+	+	-	+	-	+	+	+	-	+
Paddock	112	0	0	0	-	-	+	+	-	+	-	+	+	-	-	+
Unnamed Quarry Lake	100	+	+	+	-	+	+	+	-	-	-	-	-	-	-	+

0 - On-going measures.

+ = Management measures proposed or recommended for further consideration.

- - Management measures not specifically recommended for further consideration.

a Management measures recommended for further consideration in local management plans are summarized from those adopted in SEWRPC Planning Report No. 30, modified as necessary as the result of subsequent implementation actions, monitoring programs, and planning studies referenced in the previous section of the text.

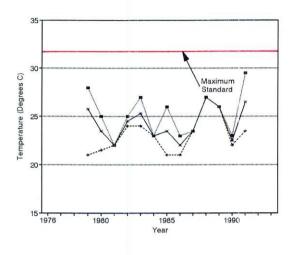
Source: SEWRPC.

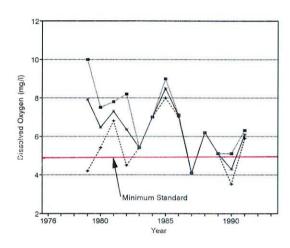
for consideration on the major lakes in the watershed can be considered for lake management purposes.

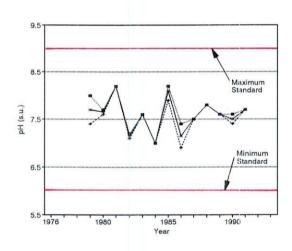
WATER QUALITY AND BIOLOGICAL CONDITIONS

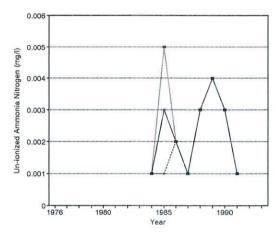
Streams

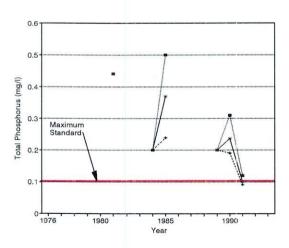
Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study, the 1965 through 1975 Commission stream water quality monitoring effort; the U.S. Geological Survey sampling programs from 1964 to 1977; the Wisconsin Department of Natural Resources (DNR) sampling programs in 1973 and 1976; and the 1976 Commission monitoring program conducted under the regional water quality management planning effort. Available data collected in those programs for the Des Plaines River watershed included samplings at three Commission stations: one on Brighton Creek and two on the Des Plaines River; at one DNR station on the Des Plaines River; and at one U.S. Geological Survey station on the Des Plaines River in Lake County, Illinois, at Russell Road, about 0.5 mile downstream of the Wisconsin-Illinois State line. The sampling station locations are shown on Map IV-5.

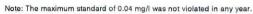

Long-term post-1976 comparable water quality data were collected at the U.S. Geological Survey sampling station Dp-4, located about 0.5 mile downstream of the Wisconsin-Illinois State line, as shown on Map IV-5. Biological condition data collected by the U.S. Environmental Protection Agency in 1979 through 1980 were also available for use in the assessment of current water quality condi-In addition to the limited data obtained since preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Des Plaines River watershed.

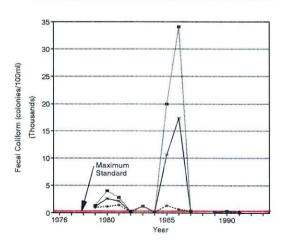

The water quality data obtained at the U.S. Geological Survey sampling station Dp-4 on the main stem of the Des Plaines River at Russell Road in Illinois, for the period 1976 through 1991, are summarized in Figure IV-1. The data have been used to assess current water quality conditions to evaluate water quality trends and the occurrence of change over time, and to evaluate current conditions with respect to water quality standards. The water quality standards indicated in Figure IV-1 are those set forth for specific biological and recreational use objectives as described in Chapter II.

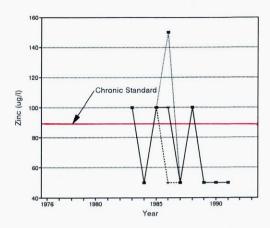

Review of those data for station Dp-4 indicates that there were no apparent significant changes in water quality conditions from 1979 to 1988, with a possible improvement following 1988 as evidenced by reduced volatile solids and phosphorus and less variability in dissolved oxygen levels. This improvement may be attributed, in part, to the improvements which were made between 1985 and 1989 to the Paddock Lake, Bristol, and Pleasant Prairie Sewer Utility District "D" sewage treatment plants. Although phosphorus levels have appeared to decline over the sampling period, it should be noted that these levels still exceed the standard established for streams with full recreational water use

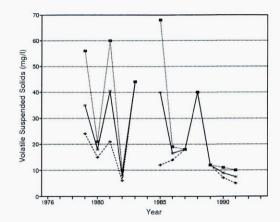

Figure IV-1


WATER QUALITY DATA FOR THE DES PLAINES RIVER AT STATION Dp-4: 1976-1993

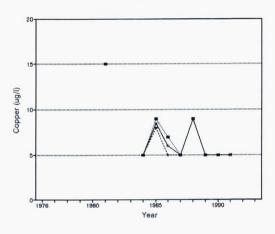






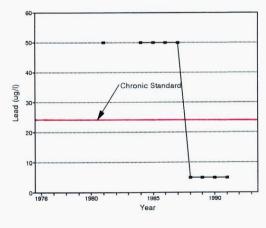


Note: The maximum standard of 200/400 colonies per 100 ml was violated in all years.


Figure IV-1 (cont'd)

Note: The acute standard of 202.9 ug/l was not violated in any year.

Values graphed at 50 ug/l were indicated to be less than 50 ug/l.


Note: The acute standard of 31.9 ug/l was not violated in any year.

The chronic standard of 22.1 ug/l was not violated in any year.

Values graphed at 3 ug/l were indicated to be less than 3 ug/l.

Note: The acute standard of 63.3 ug/l was not violated in any year.

Values graphed at 3 ug/l were indicated to be less than 3 ug/l.

LEGEND

MAXIMUM VALUE

MINIMUM VALUE

AVERAGE VALUE

DES PLAINES RIVER WATERSHED

UNION
RENOSHA

DES PLAINES

WATERSHED

WATERSHED

SOMES DES PLAINES

WATERSHED

PADDOCK
LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

PADDOCK

SILVER LAKE

SILVER LAKE

PADDOCK

SILVER LAKE

SILVER LAKE

PADDOCK

SILVER LAKE

SOMES DES PLAINES

PADDOCK

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LAKE

SILVER LA

Note: The acute standard of 408.6 ug/l was not violated in any year.

Values graphed at 50 ug/l prior to 1988 were indicated to be less than 50 ug/l and values graphed at 5 ug/l from 1988 to 1991 were indicated to be less than 5 ug/l.

Source: U.S. Geological Survey and SEWRPC.

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

objectives, as set forth in Chapter II. Temperature, pH, and un-ionized ammonia nitrogen levels remained variable with no apparent trends, but were within acceptable limits as defined by the water quality standards for the Des Plaines River main stem set forth in Chapter II. Fecal coliform levels exceed the standards. Chronic standards for some metals are also exceeded, as discussed in the next section.

Toxic and Hazardous Substances

Sampling and analysis for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Des Plaines River watershed from 1973 through 1977. In the three in-stream water quality samples for which toxic and hazardous substances were tested, levels of heptachlor epoxide, a persistent pesticide, were exceeded only once. Sample analyses for cadmium, chromium, copper, lead, mercury, nickel, zinc, PCBs, and DDT, DDE, DDD, aldrin, heptachlor, lindane, dieldrin, methoxychlor, and phthalate uncovered no violations of U.S. Environmental Protection Agency recommended levels.

Recent sampling of metals were collected by the U.S. Geological Survey from 1981 through 1991 at Station Dp-4 on the Des Plaines River, as shown in Figure IV-1. The data indicate that chronic toxicity level standards were exceeded for selected metals. However, the acute toxicity standards were not violated. It should be noted that the chronic standard for lead was not exceeded after 1988. No recent stream or lake bottom sediment analyses were conducted for toxic and hazardous substances.

Since the completion of the initial regional water quality management plan, one spill of a toxic substance into a stream within the Des Plaines River watershed has been documented by the Wisconsin Department of Natural Resources. The spill occurred in the Kilbourn Road Ditch as a result of a fuel storage accident.

<u>Water Quality Assessments</u>: Based upon recent available data, the water quality and biological characteristics of the Des Plaines River and its major tributaries were assessed with the results set forth in Table IV-12. Fish population and diversity was recorded as fair in the mainstem of the Des Plaines River and in Kilbourn Road Ditch, and as poor in Dutch Gap Canal, Center Creek, and the Salem Branch of Brighton Creek. An assessment of a good to fair fish population and diversity was reported for Brighton Creek. There were no recorded fish kills documented in any of the stream reaches in the Des Plaines River watershed.

Standards are not expected to be fully met for dissolved oxygen concentrations, phosphorus, and fecal coliforms in most streams of the Des Plaines River watershed. Ammonia nitrogen levels did appear to meet standards. No comprehensive data were available on water column toxic pollutants. However, limited data collected by the U.S. Geological Survey at Station Dp-4 suggest that the standards for chronic toxicity for zinc and cadmium have been occasionally exceeded, with the other metal concentrations generally within the acceptable levels, as defined in Chapter II.

No recent data were available on biotic index ratings, which are biological indicators of water quality within a stream system. High levels of streambed sedimentation were noted in the Kilbourn Road Ditch, the Des Plaines River, and Center Creek. Moderate to high levels of streambed sedimentation were noted in the remaining stream reaches of the Des Plaines River watershed.

Table IV-12

CHARACTERISTICS OF STREAMS IN THE DES PLAINES RIVER WATERSHED

					W	ater Qua	lity Problem	ns b			
Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills	DO	NH ₃	Total P	Fecal Coliform	Toxics	Biotic Index Rating	Streambed Sedimentation Substrate	Physical Modifications to Channel ^C
Brighton Creek and Salem Branch	17.5	Good to fair Brighton Creek PoorSalem Branch	No	Yes	No	Yes	Yes			Moderate to High (silt)	Moderate
Dutch Gap Canal	5.8	Poor	No	Yes	No	Yes	Yes			Moderate to High (silt)	Major
Kilbourn Road Ditch	14.8	Poor	No		No	Yes	Yes			High (silt)	Major
Des Plaines River Upstream STH 50	8.8	Poor	No	Yes	No	Yes	Yes			High (silt)	Major
Des Plaines River Downstream STH 50	15.7	Poor	No	Yes	No	Yes	Yes	Yes		High (silt)	Major
Center Creek	5.8	Poor	No	Yes	No	Yes	Yes			High (silt)	Major

a Based upon a 1994 SEWRPC fishery survey of the Des Plaines River watershed.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b The most recent water quality data available as described in Figure IV-1 were used to evaluate water quality in the Des Plaines River system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for the Des Plaines River watershed stream reaches based upon simulated year 2000 land use conditions and current level of pollutant control, if appropriate.

C Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

Table IV-13 sets forth the water quality index classifications 10 used in the initial plan for 1964, 1974-1975, and for 1990-1991 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table IV-13, recent comparative data were available only for station Dp-4, located on the Des Plaines River at Russell Road in Illinois. This station is shown on Map IV-5. The data were used for comparative purposes with earlier data from station Dp-4. The limited data available indicate that water quality conditions in 1964 and 1974-75 have improved from "fair" to "fair to good" based on 1990-91 data. This improvement can be attributed, in part, to upgrading of the Town of Bristol and Village of Pleasant Prairie Sewer Utility District "D" sewage treatment plants.

A summary of potential pollution sources in the Des Plaines River watershed by stream reach is shown in tabular summary in Table IV-14. Review of the data indicate that the only notable conversion of lands from rural to urban uses has occurred in the area tributary to the Des Plaines River in the vicinity of and downstream of STH 50 and in the area tributary to the Kilbourn Road Ditch. It should also be noted that the majority of the permitted industrial discharges in the watershed discharge to the Des Plaines River. Data on nonpoint source pollution, public and private sewage treatment plants discharging to surface waters, and additional potential impacts to surface water quality are included in Table IV-14.

<u>Lakes</u>

Lake water quality data available for use in preparing the initial regional water quality management plan were obtained from the Wisconsin Department of Natural Resources quarterly lake monitoring program for selected lakes, and Southeastern Wisconsin Regional Planning Commission and Wisconsin Department of Natural Resources lake use reports. Post-1975 data on phosphorus and chlorophyll-a concentrations and Secchi disc measurements for major lakes in the Des Plaines River watershed, where available, are presented in Table IV-15.

<u>Toxic and Hazardous Substances</u>: There have been no reported substance spills in lakes in this watershed as reported up to 1993.

<u>Water Quality Assessments</u>: Data from Table IV-15 were used in the calculation of trophic state indices for each of the major lakes where data were available. Trophic states, indicating degrees of nutrient enrichment in the lakes, were assigned using the Wisconsin Trophic State Index¹¹ for each major lake in the Des Plaines River watershed where data were available, as indicated in Table IV-16. The available trophic state index values using the Carlson Trophic State Index¹² are also provided for current and historic conditions, as shown in Table IV-17.

¹⁰For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin: 1964-1975</u>, June 1978.

¹¹R.A. Lillie et al, "Trophic State Index Equations and Regional Predictive Equations for Wisconsin Lakes," Research Management Findings, No. 35, May 1993.

 $^{^{12}}$ Robert E. Carlson, "A Trophic State Index for Lakes," Limnology and Oceanography, Vol. 22(2), March 1977.

Table IV-13

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS OF THE DES PLAINES RIVER WATERSHED 1964, 1974-75, AND 1990-91

Main Stem Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July and August 1990-1991
Dp-2 Dp-3 Dp-4	Fair Fair Fair	Fair Fair Fair	 Fair to Good
Tributary Station ^a			
Dp-1	Excellent	Fair	
Watershed Average	Fair	Fair	

^{*} See Map IX-5 for sampling station locations.

Source: U.S. Geological Survey and SEWRPC.

Table IV-14 SURMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE DES PLAINES RIVER WATERSHED: 1990

	Extent of Conv.	ersion of Lands to Urban ^b					Remaining	Potential Sur	face Water Pollution Sou	rces	
Stream Reach [®]	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstement Efforts ^C
Brighton Creek and Salem Branch	insignificant	insignificant		×	x	2		1		Town of Salem Utility District No. 1 public sewage treatment plant recommended for abandonment	1,2
Dutch Gap Canal	insignificant	insignificant			X						••
Kilbourn Road Ditch	insignificant	moderate	1990-fuel spill	x	x						
Des Plaines River Upstream of STH 50	insignificant	insignificant			x	1	1	5		Meeter Brothers and Company private sewage treatment plant abandoned in 1981. Fonk's Mobile Home Park No. 2 private sewage treatment plant to evaluate connection to public system	1
Des Plaines River downstream of STH 50	insignificant	major		x	x	2		2		Wisconsin Tourist Information Center private sewage treatment plant abandoned in 1991 Village of Pleasant Prairie Sewer Utility District "D" and Village of Pleasant Prairie Sanitary District No. 73-1 public sewage treatment plants are recommended for abandonment pending approval of plan amendment by the City of Kenosha	
Center Creek	insignificant	insignificant			x					Howard Johnson Motor Lodge private sewage treatment plant abandoned in 1989	

^a Includes the tributary drainage area of each stream reach.

Source: Wisconsin Department of Natural Resources and SEWRPC.

 $^{\mathtt{c}}$ Number codes refer to the following ongoing pollution abatement efforts:

b Extent of urban land conversions were determined as a percentage of the watershed as follows: > 20% major

moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

^{1.} Construction Erosion Control Ordinances in place

^{2.} Abandonment of Sewage Treatment Plant Underway

Table IV-15 WATER QUALITY OF THE MAJOR LAKES IN THE DES PLAINES RIVER WATERSHED

			To	tal Phosphoru	(mg/l)			Ch.	loroph y ll- <u>a</u> (,	μg/1)			Secchi Disk (feet)				
Lake Name	Area (acre)	Maximum	Minimum	Average ²	Date of Data	Sourceb	Maximum	Minimum	Average ²	Date of Data	Sourceb	Maximum	Minimum	Average *	Date of Data	Sourceb	
Benet/ Shangrila Lake	188	0.54	0.01	0.17(16)	1977-78	LSF						3.0	1.5	2.25(2)	1991	Self-Help	
East Lake Flowage	123	0.24	0.10	0.15(3)	1977	LSF						1.0	1.0	1.0(1)	1977	LSF	
George Lake	59	0.22	0.03	0.08(38)	1976-80	LSF						7.0	1.25	2.7(35)	1988-92	Self-Help	
Hooker Lake	87	0.18	0.02	0.05(17)	1977-92	LSF/USGS	19.00	9.00	13.00(4)	1992	USGS	7.2	2.6	5.4(10)	1991-92	Self-Help	
Paddock Lake	112						8.37	0.54	2.2(15)	1977	ERA	6.25					
Unnamed Lake/ Pleasant Prairie	100																

*Number in parentheses refers to number of samples taken.

b The following sources were cited:

LSF......Wisconsin Department of Natural Resources, Lake Survey Forms

SELF-HELP...Wisconsin Self-Help Lake Monitoring Program Data, 1986-1988

ERAEnvironmental Resource Assessment Report

USGSU.S. Geological Survey, Water Resources Data-Wisconsin (annual)

Source: Wisconsin Department of Natural Resources and SEWRPC.

Table IV-16

TROPHIC STATE INDEX VALUES FOR MAJOR LAKES WITHIN THE DES PLAINES RIVER WATERSHED^a

	Wisconsin Trophic State Index Values ^b				
Lake Name	Total-P	Chlorophyll- <u>a</u>	Secchi	Mean	
Benet/Shangrila	68.0		65.6	66.8	
East Lake Flowage	67.0		67.0	67.0	
George Lake	62.1		57.1	59.6	
Hooker Lake	58.9	54.1	51.7	54.9	
Paddock Lake	72.8	40.7	56.2	56.6	
Unnamed Lake/ Pleasant Prairie					

^a Wisconsin Trophic State Index values were calculated using water chemistry data shown in Table IV-15.

Below 44 = oligotrophic 45 - 53 = mesotrophic 54 - 75 = eutrophic

Above 75 = hypertrophic

Source: Wisconsin Department of Natural Resources and SEWRPC.

^b Wisconsin Trophic State Index ranges:

Table IV-17

COMPARISON OF TROPHIC STATE INDEX VALUES FOR MAJOR LAKES
IN THE DES PLAINES RIVER WATERSHED^a

	Carlson Trophic State Index Values ^b			
Lake Name	Satellite Information 1979-1981	Water Chemistry pre-1981	Water Chemistry 1981-1991	
Benet/Shangrila	51	70	67	
East Lake Flowage		77		
George Lake	57	62	64	
Hooker Lake	51	58	54	
Paddock Lake	49	57		
Unnamed Lake/ Pleasant Prairie				

*Carlson TSI values were calculated from available data from spring measurements for phosphorus and from summer measurements for chlorophyll-a and water clarity. Water Chemistry Values were calculated from data shown in Table IV-15. Satellite information values were determined from Wisconsin's Lakes-A Trophic Assessment Using Landsat Digital Data, 1983.

bCarlson Trophic State Index ranges:

Below 40 = oligotrophic 40 - 50 = mesotrophic 50 - 60 = eutrophic Above 60 = hypertrophic

Source: Wisconsin Department of Natural Resources, U.S. Environmental Protection Agency, and SEWRPC

The data available indicate all of the lakes may be classified as in the eutrophic, or nutrient-enriched, range. Two of these lakes--Benet/Shangrila and Paddock--are classified as drained lakes. George, Hooker, and East Lake Flowage are drainage lakes. East Lake Flowage is part of the Wisconsin Department of Natural Resources Bong Recreation Area and is managed by the Department for a variety of wildlife and recreational uses. There are no water quality data available for the unnamed lake in U.S. Public Survey Section 20, Township 1 North, Range 23 East, in the Village of Pleasant Prairie which was created in the late 1980s at a now abandoned quarry site. No conclusions regarding changes in water quality conditions between 1976 and 1991 can be drawn based upon the limited data available.

Fish kills, primarily related to seasonal fluctuations in water temperature and dissolved oxygen levels, as well as spawning activities, do not normally occur in the lakes in the Des Plaines River watershed. Since the initial plan, one recorded fish kill occurred in Hooker Lake in June 1984. However, this occurrence does not appear to be chronic. Thus, despite the obvious concerns that this episode creates among lake users, it does not appear to warrant special consideration at this time.

Compliance with Water Use Objectives

As indicated in Chapter II, all of the stream reaches studied in the Des Plaines River watershed, as of 1993, are recommended for warmwater sportfish and full recreational uses, except for the tributary extending from the main stem to the Village of Pleasant Prairie sewage treatment plant, which is recommended for a warmwater forage fish and limited recreational use. These water use objectives and associated water quality standards are discussed in Chapter II.

Based upon the available data for sampling stations in the watershed, the main stem of the Des Plaines River downstream of STH 50 did not fully meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. More recent data available for the period of 1979 through 1991 and analyses indicate that there has been some modest improvement in water quality conditions. However, some of the standards associated with the recommended water use objectives continue to not be fully achieved. As shown in Figure IV-1, violations of the dissolved oxygen, total phosphorus, and fecal coliform levels occurred at station Dp-4 on the main stem of the Des Plaines River just south of the Wisconsin-Illinois border. Based upon a review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of the dissolved oxygen, fecal coliform, and phosphorus standards also occur at upstream stations.

There are currently two stream reaches for which the water use objectives set forth herein are higher than the objectives set forth in Chapter NR 104 of the Wisconsin Administrative Code. Chapter NR 104 classifies a portion of Salem Branch downstream of the now abandoned Town of Salem Utility District No. 1 sewage treatment plant as capable of supporting a limited forage fish community, while the objectives set forth herein recommend a warmwater sport fish objective. Chapter NR 104 classifies the tributary of the Des Plaines River to the Village of Pleasant Prairie sewage treatment plant as a limited forage fishery, while the recommended objectives set forth herein provide for a warmwater forage fishery and limited recreational use. It is recommended that stream appraisals to further assess the potential for a higher use objective be conducted for Salem Branch and the Pleasant Prairie tributary. These appraisals are recom-

mended to be carried out as part of the next one-year monitoring period envisioned to be carried out in the Des Plaines River watershed.

The waters of Benet/Shangrila Lakes, East Lake Flowage, George Lake, Hooker Lake, Paddock Lake, and the unnamed quarry lake in Pleasant Prairie are recommended for the maintenance of a warmwater sport fishery and full recreational use. George and Paddock Lakes, for which complete water quality data were available between 1965 and 1975, violated the standards for total phosphorus of 0.02 mg/l recommended by the Commission. In addition, George Lake and Benet/Shangrila Lake violated the dissolved oxygen standard on at least one occasion between 1965 and 1975. Modeling data developed in the initial plan indicates that Lakes George, Paddock, Benet/Shangrila, and Hooker did not meet the phosphorus standard.

As shown in Table IV-15, recent monitoring data are available for Benet/Shangrila, George, and Hooker Lakes to assess the current compliance with water quality standards for the major lakes in the Des Plaines River watershed. Based upon that data as summarized in the Carlson Trophic State Index values set forth in Table IV-17, most lakes in the watershed could be expected to have an annual average total phosphorus concentration in excess of the 0.02 mg/l standard, which is represented by a TSI value in excess of approximately 47. All of the lakes in the watershed for which data were available had TSI values in excess of this value and hence would not be expected to meet the standard. No data were available for the unnamed quarry lake in the Village of Pleasant Prairie.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

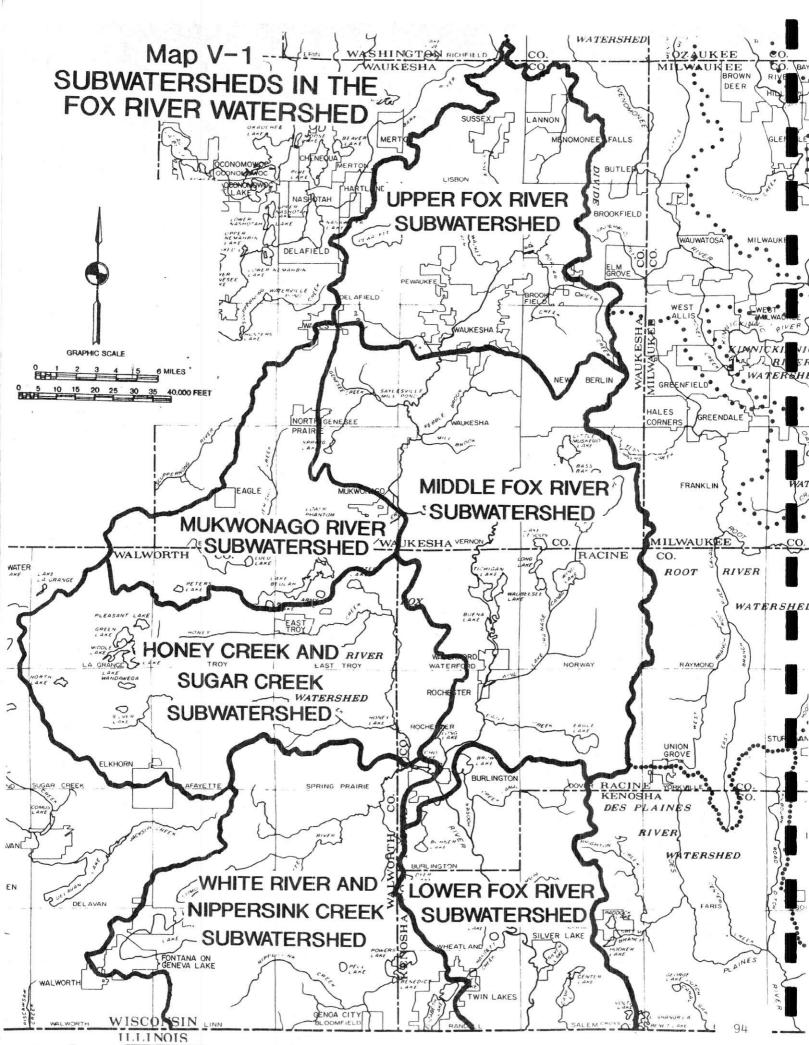
There are three water quality-related issues remaining to be resolved in the Des Plaines River watershed. The only major issue remaining to be resolved with regard to point sources of pollution deals with the implementation of the findings and recommendations set forth in the system level plan documented in the report prepared by Ruekert & Mielke, Inc., entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area, October 1991. The recommendations of that plan include revisions to the planned sewer service areas in the greater Kenosha area and provisions to abandon the two existing sewage treatment plants operated by the Village of Pleasant Prairie, with the areas served by these plants being connected to the City of Kenosha sewage system for treatment plant purposes. As of December 1994, the intergovernmental agreements needed to proceed with an amendment of the regional water quality management plan to incorporate the findings of the 1991 system plan had not been forthcoming. An amendment to the plan continues to be needed in this regard.

The second issue relates to the need for a second level nonpoint source pollution abatement program to be carried out in the watershed. It is recommended that the Wisconsin Department of Natural Resources and Racine and Kenosha Counties undertake the preparation of a detailed planning program as part of, or as a follow-up to the ongoing Des Plaines River comprehensive planning program being carried out by the Southeastern Wisconsin Regional Planning Commission for Kenosha and Racine Counties.

In addition to these two major issues, it is also recommended that the Wisconsin Department of Natural Resources conduct a water quality and biological condition survey of Salem Branch and the Pleasant Prairie tributary, in order to reevaluate the current water use objectives during the next monitoring period when the

Department will be devoting its efforts in the Des Plaines River watershed as is envisioned within the next five to seven years.

Chapter V


FOX RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975--the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Fox River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Fox River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included. Plan implementation setting forth designated management agency responsibilities is presented in Chapter XVII on a regional basis.

The Fox River watershed is located in the south central portion of the Region. That part of the watershed contained within the Region--about 934 square miles--is only a small part of a much larger watershed. The main stem of the Fox River rises in Waukesha County near the Village of Lannon and flows approximately 81 miles south through Racine and Kenosha Counties before crossing the State line just east of the Salem-Randall Town line. The river continues to flow in a southerly direction to its confluence with the Illinois River. Rivers and streams in the watershed are part of the Mississippi River drainage system as the watershed lies west of the subcontinental divide. The boundaries of the basin and its principal subwatersheds, together with the locations of the main channels of the Fox River and its principal tributaries, are shown on Map V-1.

Within the Southeastern Wisconsin Region, the Fox River watershed contains 45 major lakes having a surface area of 50 acres or more. These lakes are distributed within six subwatersheds: the Lower Fox River, Middle Fox River, Upper Fox River, Honey/Sugar Creeks, Mukwonago River, and White River/Nippersink Creek subwatersheds. The major lakes in the Lower Fox River subwatershed are Bohner Lake, Browns Lake, Camp Lake, Center Lake, Cross Lake, Dyer Lake, Lilly Lake, Silver Lake-Kenosha, and Voltz Lake. The major lakes in the Middle Fox River watershed are Big Muskego Lake, Lake Denoon, Eagle Lake, Kee Nong Go Mong Lake, Little Muskego Lake, Long Lake, Spring Lake-Waukesha, the Waterford Impoundment comprised of Buena and Tichigan Lakes, Waubeesee Lake, and Wind Lake. The major lake in the Upper Fox River subwatershed is Pewaukee Lake. The major lakes in the Honey/Sugar Creeks subwatershed are the three Lauderdale Lakes-Green, Middle, and Mill Lakes, North Lake-Walworth, Pleasant Lake, Potter Lake, Silver

Lake-Walworth, and Wandawega Lake. The major lakes in the Mukwonago River subwatershed are Army Lake, Lake Beulah, Booth Lake, Eagle Spring Lake, Lower Phantom Lake, Lulu Lake, Peters Lake, and Upper Phantom Lake. The major lakes in the White River/Nippersink Creek subwatershed are Benedict/Tombeau Lake, Lake Como, Echo Lake, Elizabeth Lake, Geneva Lake, Lake Mary, Pell Lake, and Powers Lake. Physical characteristics of the major lakes in the Fox River watershed are set forth in Table V-1. The data indicate that major lakes in the watershed have a combined surface water area of about 21,872 acres, or about 4 percent of the total area of the watershed.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendation, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Fox River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table V-2 summarizes the existing land uses in the Fox River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed contains numerous urbanized areas, 83 percent of the watershed was still in rural and other open land uses in 1990. These rural uses included about 52 percent of the total watershed in agricultural and related rural uses, about 9 percent in woodlands, about 16 percent in surface water and wetlands, and about 6 percent in other open lands. The remaining 17 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map V-2.

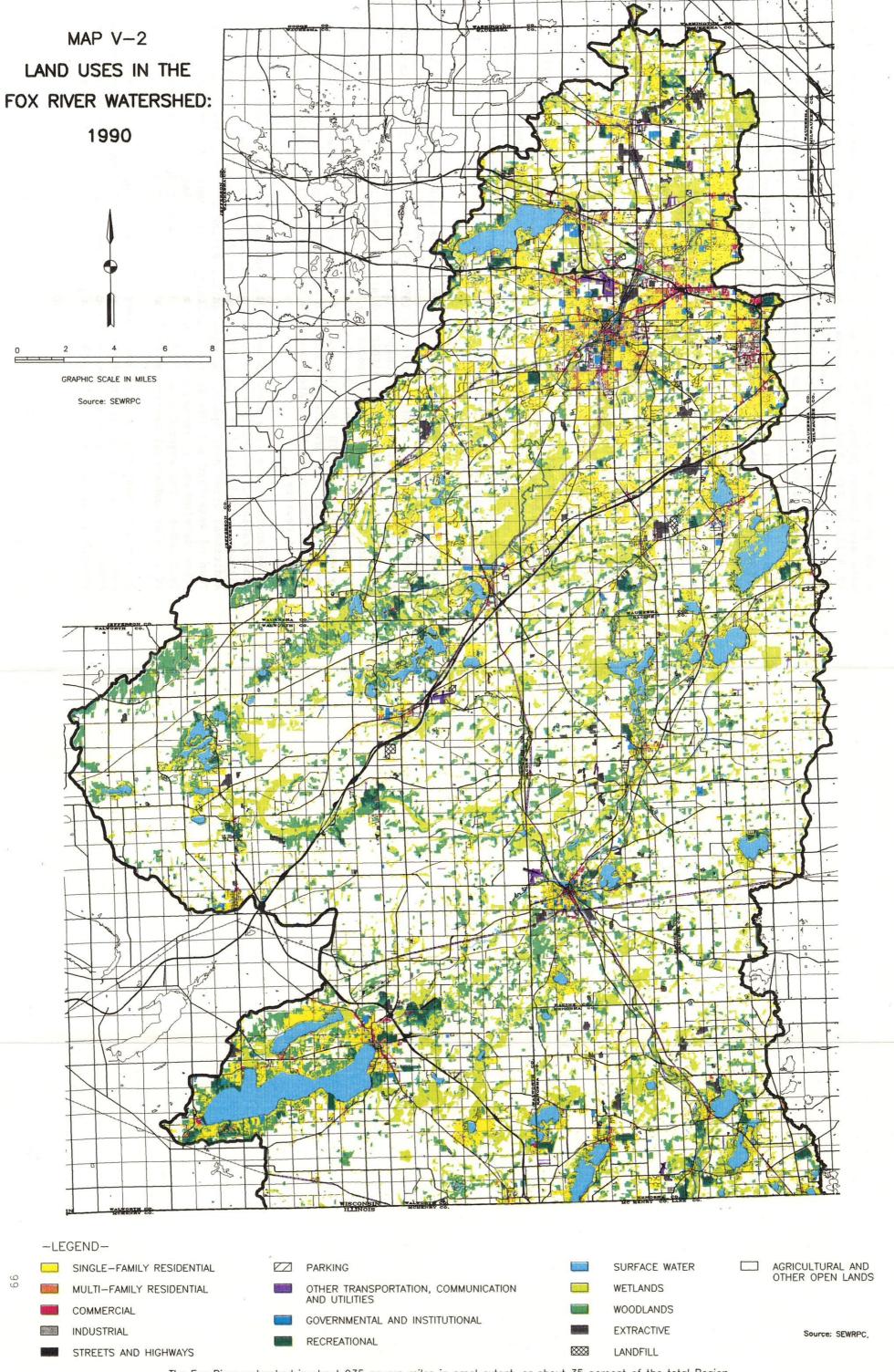
Within the Fox River watershed, major concentrations of urban development exist in all four counties, with the majority of urban development increases since 1975 occurring in Waukesha County. Urban development has been taking place rapidly in and around the Cities of Muskego, New Berlin, and Waukesha, and the Town of Pewaukee, and along the Blue Mound Road corridor in the City and Town of Brookfield. Other concentrations of urban-related land uses within Waukesha County are located in the Village of Pewaukee and around Pewaukee Lake; in the Village and the Town of Mukwonago; and within the Towns of Vernon and Genesee. In addition, scattered urban development has occurred throughout the watershed in Waukesha County. The Fox River watershed contains two major commercial centers, the Waukesha Central Business District in downtown Waukesha and the Blue Mound Road corridor in Brookfield; and four major industrial centers, Pewaukee, Waukesha North and South, and New Berlin, all in Waukesha County.

Table V-1

					r	
SUBWATERSHED Lake Name	Surface Area (acres)	Direct Tributary Drainage Area (acres)	Shoreline (miles)	Maximum Depth (feet)	Mean Depth (feet)	Volume (acre- feet)
FOX RIVER UPPER Pewaukee Lake	2,493	14,819	13.7	45.0	10.0	24,930
FOX RIVER MIDDLE Big Muskego Lake Denoon Lake Eagle Lake Kee Nong Go Mong Lake Little Muskego Lake Long Lake Spring Lake (Waukesha County) Waterford Impoundment (Buena & Tichigan Lakes) Waubeesee Lake Wind Lake	2,177 162 520 88 506 102 105 1,133	12,150 1,013 2,910 1,337 7,067 1,858 3,096 14,375 553 8,381	26.13 2.4 4.37 2.5 5.7 3.4 2.2 28 3.1 9.3	4.0 55 15 25 65 5 22 63 73 47	2.5 18 7.0 8.7 15 2.5 5 6	5,469 2,940 3,640 770 7,170 259 553 8,244 2,450 8,995
FOX RIVER LOWER Bohner Lake Browns Lake Camp Lake Center Lake Cross Lake Dyer Lake Lilly Lake Silver Lake (Kenosha Co) Voltz Lake	135 396 461 129 87 56 88 464 52	1,098 526 2,566 2,243 436 1,353 307 3,191 257	1.9 5.7 4.8 6.5 2.2 1.16 1.3 4.1 2.3	30 44 19 28 35 13 6 44 24	9.2 8 5 8 11.8 5 4.7 10	1,243 3,135 2,328 1,136 1,027 275 415 4,819 362

Table V-1 (cont'd)

SUBWATERSHED Lake Name	Surface Area (acres)	Direct Tributary Drainage Area (acres)	Shoreline (miles)	Maximum Depth (feet)	Mean Depth (feet)	Volume (acre- feet)
HONEY/SUGAR CREEKS						
Lauderdale Lakes (Green, Middle, Mill)	841	5,429	16	57	15	12,591
North Lake	191	9,131	4.8	2.8	2.0	382
(Walworth County) Pleasant Lake	155	1,216	2.7	29	12.5	1,910
Potter Lake	162	380	2.2	26	8	1,296
Silver Lake	85	270	1.5	3.0	2.8	211
(Walworth County)						
Wandawega Lake	119	910	2.25	8	4	476
MUKWONAGO RIVER						
Army Lake	78	356	1.5	17	8	625
Beulah Lake	834	5,283	15.3	- 58	17	14,279
Booth Lake	113	146	1.79	24	12.2	1,396
Eagle Spring Lake	311	5,859	4.0	8	3.6	1,127
Lulu Lake	84	10,317	2.4	40	24	2,009
Peters Lake	64	1,295	1.51	8	3	215
Upper/Lower Phantom Lake	540	20,178	3.91	29	5.1	2,750
WHITE RIVER/ NIPPERSINK CREEK						
Benedict Lake	78	2,589	3.7	37	15.4	1,888
Lake Como	946	4,058	8.0	9	4.3	4,033
Echo Lake	71	3,476	2.46	11	1.8	129
Elizabeth Lake	865	5,029	5.4	32	11	6,900
Geneva Lake	5,262	12,750	20.2	135	61	320,982
Lake Mary	315	1,143	3.5	33	9	1,957
Pell Lake	86	1,011	1.8	13	3.6	314
Powers Lake	459	2,426	5.3	33	16.2	7,453
TOTAL	21,872	172,788	240.98		- -	463,067


Table V-2 $\mbox{LAND USE IN THE FOX RIVER WATERSHED:} \quad \mbox{1975 and } \mbox{1990}^{\underline{a}}$

	1	975	1	990	Change	1975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	43,658	7.3	56,783	9.5	13,125	30.1
Commercial	1,558	0.3	2,147	0.4	589	37.8
Industrial	1,674	0.3	2,580	0.4	906	54.1
Transportation, Communication, and Utilities ^b	27,958	4.7	31,469	5.2	3,511	12.6
Governmental and			1		-,	
Institutional	3,015	0.5	3,185	5.3	170	5.6
Recreational	7,336	1.2	8,068	1.4	732	10.0
Subtotal	85,199	14.3	104,232	17.4	19,033	22.3
Rural						
Agricultural				1		
and Related	341,385	57.0	313,435	52.3	-27,950	- 8.2
Lakes, Rivers,	0 11,000	1 37.00	313,433	32.3	-27,750	- 0.2
Streams and		İ				1
Wetlands	94,570	15.8	94,342	15.8	- 228	- 0.4
Woodlands	51,542	8.6	51,183	8.6	- 359	- 0.7
Open Lands ^c ,	1,	"	01,100	""	337	- 0.,
Landfills, Dumps,						
and Extractive	26,004	4.3	35,508	5.9	9,504	99.4
Subtotal	513,501	85.7	494,468	82.6	-19,033	- 3.7
Total	598,700	100.0	598,700	100.0	0	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

c Includes both rural and urban open lands.

In the portion of the watershed contained in Walworth County, urban-related land uses are located primarily in and around the City of Lake Geneva, the Villages of Williams Bay, Fontana on Geneva Lake, East Troy, and Genoa City, and in unincorporated areas around Geneva Lake and the Lauderdale Lakes. Other urban-related land uses occur to the north of Lake Como, around Pell Lake, and within the City of Elkhorn. In the portion of the watershed located within Racine County, urban development is concentrated in the City of Burlington and the Villages of Rochester and Waterford, and around Tichigan Lake, the Waterford Impoundment, Browns and Bohner Lakes. In Kenosha County, urban-related land uses within the watershed are concentrated around Powers, Camp, Center, Silver, Elizabeth, and Mary Lakes.

As shown in Table V-2, from 1975 to 1990, urban land uses in the watershed increased from about 85,200 acres, or 133 square miles, to about 104,200 acres, or 163 square miles, or by about 22 percent. As shown in Table V-2, residential land represents the largest urban land use in the watershed. Residential use has significantly increased within the watershed, from about 43,600 acres, or about 68 square miles in 1975 to about 56,800 acres, or about 89 square miles in 1990, a 30 percent increase. Commercial and industrial land uses increased from 3,200 acres, or about 5.0 square miles, to 4,700 acres, or about 7.3 square miles, an increase of 47 percent.

The 163 square miles of urban land uses in the watershed as of 1990 approximated, but exceeded somewhat, the staged 1990 planned increase in urban land of about 153 square miles envisioned in the adopted year 2000 land use plan. The current status of development in the Fox River watershed and in adjacent portions of Waukesha, Walworth, Racine, and Kenosha Counties was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table V-3 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Fox River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban land uses are expected to increase in Waukesha County within and around the Cities of Brookfield, New Berlin, and Waukesha; in and around the Villages of Sussex and Lannon; east of Little Muskego Lake within the City of Muskego; and in the Town of Pewaukee, between IH-94 and STH 190, just east of Pewaukee Lake. The adopted year 2010 land use plan also proposes the addition of a major commercial office center in Waukesha County, to be located near the intersection of I-94 and CTH J in the Town of Pewaukee.

In Walworth County, the adopted year 2010 land use plan anticipates increased urbanization in the Village of Fontana, and limited urban growth in the City of Elkhorn, the Village of Genoa City, and the Village and Town of East Troy. Additional urban development is expected for Racine County in the Village and Town of Waterford and the City of Burlington. In Kenosha County, additional urban development is envisioned in and around the Villages of Silver Lake and Twin Lakes. The adopted year 2010 land use plan also proposes the development of a major industrial center, to be located in Burlington.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Fox River watershed, as indicated in Table V-3, is projected to increase from the 1990

Table V-3

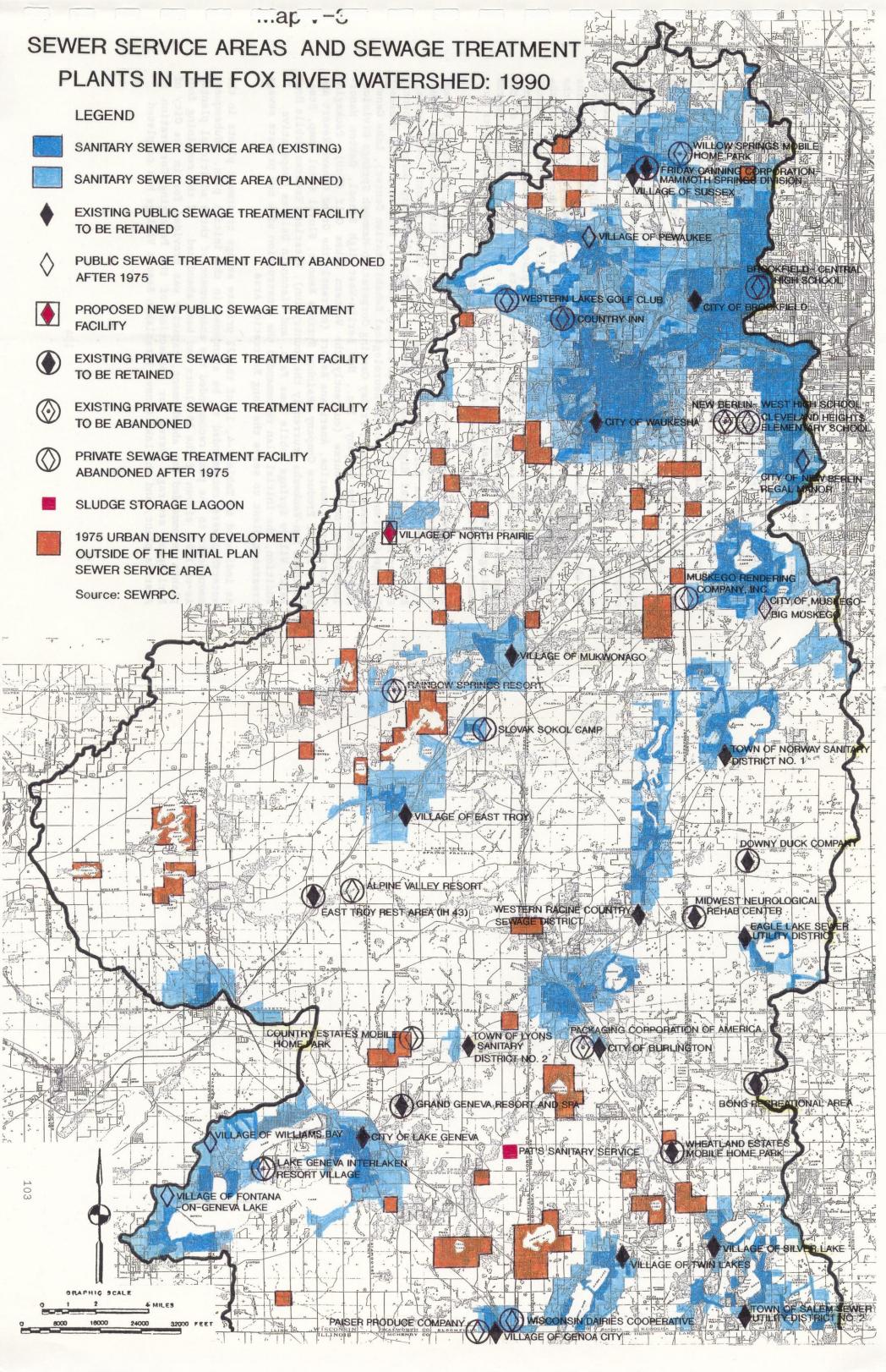
EXISTING AND PLANNED LAND USE IN THE FOX RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

			Y		ermediate Grov ized Land Use	rth -	Year 2010 High Growth - Decentralized Land Use			
	Existi	ng 1990	2010		Change 1990-2010		20	2010		990-2010
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
Urban										
Residential	56,783	9.5	65,226	10.9	8,443	14.8	78,497	13.1	21,714	38.2
Commercial	2,147	0.4	2,267	0.4	120	5.6	2,516	0.4	360	17.2
Industrial	2,580	0.4	3,350	0.6	770	29.8	4,316	0.7	1,736	67.3
Transportation,		į								
Communication,										
and Utilities ^b	31,469	5.2	34,705	5.8	3,236	10.3	38,939	6.5	7,470	23.7
Governmental and		İ					1			
Institutional	3,185	0.5	3,489	0.6	304	9.5	3,813	0.7	628	19.7
Recreational	8,068	1.4	9,227	1.5	1,159	14.4	9,730	1.6	1,662	20.6
Subtotal	104,232	17.4	118,264	19.8	14,032	13.5	137,811	23.0	33,579	32.2
Rural										
Agricultural	1	ŀ								
and Related	313,435 ^d	52.3	314,135	52.5	700 ^d	0.2 ^d	297,445	49.7	- 15,990	- 5.1
Lakes, Rivers, Streams,										
and Wetlands	94,342	15.8	93,116	15.5	- 1,226	- 1.3	93,116	15.6	- 1,226	- 1.3
Woodlands	51,183	8.6	50,202	8.4	- 981	- 1.9	49,783	8.3	- 1,400	- 2.7
Open Lands, C Landfills,	35,508	5.9	22,983	3.8	- 12,525	- 34.3	20,545	3.4	- 14,963	- 42.1
Dumps, and Extractive			l							
Subtotal	494,468	82.6	480,436	80.2	- 5,351	- 4.15	460,889	77.0	- 33,579	- 6.8
Total	598,700	100.0	598,700	100.0	0		598,700	100.0	0	

a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

c Includes both rural and urban open lands.


d Existing 1990 agricultural and related land uses are at about the same level as projected 2010 levels under the intermediate growth-centralized land use plan.

total of about 163 square miles, or about 17 percent of the total area of the watershed, to about 185 square miles, or about 20 percent of the total area of the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 215 square miles, or about 23 percent of the total watershed by year 2010. It is important to note that the 83 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space use through joint State-local zoning or public acquisition. certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 773 square miles in 1990 to about 751 square miles in the year 2010 under the intermediate growthcentralized land use plan and to about 721 square miles under the high growthdecentralized land use plan, decreases of about 3 and 7 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Fox River watershed--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary sewer service areas located in the watershed.

Public and Private Wastewater Treatment Systems and Sewer Service Areas Existing Conditions and Status of Plan Implementation: In 1975, there were sixteen public sewage treatment facilities located in the Fox River watershed, as shown on Map V-3. The City of Waukesha, City of Burlington, City of Brookfield, Village of Silver Lake, and the Western Racine County Sewerage District sewage treatment plants discharged directly to the main stem of the Fox River. The Village of Fontana on Geneva Lake and the Village of Williams Bay treatment plants utilized soil absorption for the discharge of treated effluent; the Village of Twin Lakes treatment plant discharged to Bassett Creek; the City of Lake Geneva treatment plant discharged to the White River; the City of Muskego treatment plant discharged to Big Muskego Lake; the City of New Berlin Regal Manor plant discharged to Deer Creek; the Village of East Troy plant discharged to Honey Creek; the Village of Genoa City plant discharged to Nippersink Creek; the Village of Mukwonago plant discharged to the Mukwonago River; the Village of Pewaukee plant discharged to the Pewaukee River; and the Village of Sussex plant discharged to Sussex Creek. Of these sixteen plants, the plants operated by the Cities of Muskego and New Berlin, and the Villages of Pewaukee, Williams Bay, and Fontana on Geneva Lake were abandoned after 1975, as recommended in the initial plan. The status of implementation in regard to the abandonment,

upgrading and expansion, and construction of the public and private sewage treatment plants in the Fox River watershed, as recommended in the initial regional water quality management plan, is summarized in Table V-4.

As can be seen by review of Table V-4, full implementation of the initial plan would provide for the upgrading and expansion, as needed, of eight plants: the City of Brookfield, City of Waukesha, City of Lake Geneva, Village of East Troy, Village of Genoa City, Village of Sussex, Village of Twin Lakes, and Western Racine County Sewerage District No. 2 sewage treatment plants. Implementation of these recommendations has been largely completed. The initial plan also included recommendations for the upgrading of the City of Burlington and Village of Silver Lake plants and for the construction of six new plants, five of which have been constructed. Construction of the Village of North Prairie plant and the upgrading of the Village of Silver Lake plant has not yet been completed. Upgrading and expansion of the Village of Twin Lakes plant has been partially The plants in the watershed have not fully provided facilities to completed. specifically reduce the phosphorus concentrations in plant effluents to the levels identified in the initial plan as being needed to fully meet the water use objectives. The steps needed to achieve the recommended level of phosphorus control have been partially implemented by the completion of a study by the Wisconsin Department of Natural Resources to refine the procedure for establishing site specific phosphorus limitations on all public sewage treatment plants, and in 1993, the adoption of rules to allow for placement of such limitations. Thus, as specific sewage treatment plant permits are issued, the use of the identified procedure should result in findings requiring reduced phosphorus loadings. Selected characteristics of the public sewage treatment plants currently existing in the watershed are given in Table V-5.

In addition to the publicly-owned sewage treatment facilities, 22 private sewage treatment plants were in existence in 1975 in the Fox River watershed. These plants served the following land uses: Alpine Valley Resort (two plants), Brookfield Central High School, Cleveland Heights Elementary School, Country Estates Mobile Home Park, Downy Duck Company, East Troy Rest Area, Holy Redeemer College (currently the Midwest Neurological Rehabilitation Center), Lake Geneva Interlaken Resort Village, Friday Canning Corporation-Mammoth Springs Division, Muskego Rendering Company, Inc., New Berlin-West High School, Oakton Manor-Tumblebrook Golf Course (currently the Western Lakes Golf Club), Packaging Corporation of America, Americana Resort (currently the Grand Geneva Resort and Spa), Paiser Produce Company, Rainbow Springs Resort, Sloval Sokol Camp, Steeplechase Inn-Waukesha (currently the Country Inn), Wheatland Estates Mobile Home Park, Willow Springs Mobile Home Park, and Wisconsin Dairies Cooperative. In addition, the initial plan recommended the construction of a new private sewage treatment plant to serve the Bong Recreation Area.

As indicated in Table V-4, 12 of the 22 private sewage treatment plants in the watershed were recommended to be abandoned in the initial plan. Subsequent amendments to the plan recommended the abandonment of three additional plants. As of 1990, eleven of the 15 plants had been abandoned. Of the remaining four plants recommended for abandonment, capacity was provided for in the City of Burlington sewerage system for connection of the Packaging Corporation of America plant, and the Lake Geneva Interlaken Resort Village has completed

Table V-4

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN
FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS
IN THE FOX RIVER WATERSHED: 1990

Public Savers			
Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
City of Brookfield	Fox River	Upgrade and expand	Completed first of two phases
City of Burlington	Fox River	Upgrade	Local facility plan completed (1990)
Eagle Lake Sewer Utility District	Eagle Creek	Construct new plant	Completed ^C (1978)
Village of East Troy	Honey Creek	Upgrade and expand	Completed (1982)
City of Lake Geneva	White River	Upgrade and expand	Completed (1986)
Village of Genoa City	Nippersink Creek	Upgrade and expand	Completed ^C (1985)
Town of Lyons Sanitary District No. 2	White River	Construct new plant	Completed ^c (1981)
Village of Mukwonago	Mukwonago River ^d	Construct new plant	Completed (1980)
Village of North Prairie	Soil Absorption	Construct new plant	Facility plan completed (1989)
Town of Norway Sanitary District No. 1	Wind Lake Drainage Canal	Construct new plant	Completed ^c (1978)
Town of Salem Sewer Utility District No. 2	Fox River	Construct new plant	Completed (1981)
Village of Silver Lake	Fox River	Upgrade	No action
Village of Sussex	Sussex Creek Bassett Creek	Upgrade and expande	Facility plan underway ^e Partially completed (1988)
Village of Twin Lakes	Fox River	Upgrade and expand Upgrade and expand	Construction completed (1996)
City of Waukesha Western Racine County	Fox River	Upgrade and expand	Completed (1987)
Sewerage District	TOX NIVEL	opgrade and expand	
Village of Fontana-on-	Soil Absorption	Abandon plant-	Plant abandoned (1986)
Geneva Lake	•	connection to new	
		Fontana-Walworth plant	
City of Muskego-Big Muskego	Big Muskego Lake	Abandon plant	Plant abandoned (1984)
City of New Berlin-	Deer Creek	Abandon plant	Plant abandoned (1984)
Regal Manor	Pewaukee River	Abandan alams	Plant abandoned (1981)
Village of Pewaukee Village of Williams Bay	Soil Absorption	Abandon plant Abandon plant	Plant abandoned (1986)
VIIIage OI WIIIIams Day	Soil Absorption	Abandon plant	Tient abandoned (1986)
Private Sewage	Discount of Beetley	P1 P	Implementation Chapus
Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Bong Recreational Area	Peterson Creek	Construct new plant	Plant constructed (1980)
Grand Geneva Resort and Spag	White River	Maintain and upgrade	Plant maintained
	l	as needed	
Downy Duck Company	Soil Absorption	Maintain and upgrade as needed	Plant maintained
East Troy Rest Area (IH 43)	Tributary to Sugar Creek	Maintain and upgrade as needed	Plant maintained and upgraded
Midwest Neurological Rehabilitation Centerh	Tributary to Wind Lake Canal	Maintain and upgrade as needed	Plant maintained
Friday Canning Corporation-	Soil Absorption	Maintain and upgrade	Plant maintained
Mammoth Springs Division Wheatland Estates Mobile	Minor Tributary to	as needed Maintain and upgrade	No action
Home Park	the Fox River	as needed	
Lake Geneva Interlaken Resort Village	Soil Absorption	Abandon plant	Facility planning underway to enable abandonment
Willow Springs Mobile Home Park	Soil Absorption	Abandon plant	No action
Rainbow Springs Resort	Tributary to Mukwonago River	Abandon plantj	Not in operation
New Berlin-West High School	Tributary to Poplar Creek	Abandon plant	No action
Packaging Corporation of America	Tributary to Fox River	Abandon plant	No action; Capacity provided in Burlington sewerage syste for connection

Table V-4 (cont'd)

Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementarion Status
Alpine Valley Resort (two plants)	Soil Absorption	Abandon plants ^k	Plants abandoned (1990)
Brookfield Central High School	Soil Absorption	Abandon plant	Plant abandoned (1980)
Cleveland Heights Elementary School	Tributary to Poplar Creek	Abandon plant	Plant abandoned (1986)
Country Estates Mobile Home Park	Tributary to Ore Creek	Abandon plant ¹	Plant abandoned with connection to Town of Lyons Sanitary District No. 2 (1988)
Muskego Rendering Company, Inc.	Soil absorption	Abandon plant	Plant abandoned (1981)
Western Lakes Golf Club ^m	Pewaukee Lake	Abandon plant	Plant abandoned (1980)
Paiser Produce Company	Soil Absorption	Abandon plant	Plant abandoned (1978)
Slovak Sokol Camp	Soil Absorption	Abandon plant	Plant abandoned (1982)
Country Inn-Waukesha ⁿ	Soil Absorption	Abandon plant	Plant abandoned (1984)
Wisconsin Dairies Cooperative	Nippersink Creek	Abandon plant	Plant abandoned (1979)

^a Facility planning for a second phase expansion and upgrading was under preparation as of 1993.

b New plant was placed into service May 1992.

^c Plant upgrading and expansion was completed representing implementation of the plan recommendations, excepting for the provision of phosphorus removal facilities which have not yet been provided.

d New plant discharge recommended to be conveyed to the Fox River mainstem in an outfall sewer.

e The Sussex plant was recommended for abandonment in the initial regional water quality management plan. A 1989 amendment to the Regional Water Quality Management Plan-2000 for the Upper Fox River Watershed Brookfield and Sussex Sewage Treatment Plants provided for the plant to be a permanent facility after upgrading and expansion. The permanent facility was under construction during 1994.

f A major expansion and upgrading of the Waukesha sewage treatment plant was under construction during 1993.

⁸ Formerly the Americana Resort.

h Formerly Holy Redeemer College.

¹ The Lake Geneva Interlaken Resort village sewage treatment plant was abandoned in 1993 with the resort connected to the Walworth County Metropolitan Sewerage District.

J The Rainbow Springs Resort sewage treatment plant was recommended to be retained in the initial regional water quality management plan. A 1987 amendment to the regional water quality management plan for the Village of Mukwonago, Towns of East Troy and Mukwonago recommended the plant to be abandoned and for the Rainbow Springs Resort sewer service area to be served by the Village of Mukwonago sewage treatment plant.

k The Alpine Valley Resort sewage treatment plants were recommended to be retained in the initial regional water quality management plan. A 1989 amendment to the Regional Water Quality Management Plan-2000 for the Towns of East Troy, LaFayette, and Spring Prairie, and Village of East Troy recommended the plants to be abandoned and for the Alpine Valley Resort sewer service area to be served by the Village of East Troy sewage treatment plant.

¹ The Country Estates Mobile Home Park sewage treatment plant was recommended to be retained in the initial regional water quality management plan. A 1987 amendment to the Regional Water Quality Management Plan-2000 for the Country Estates Sanitary District, Town of Lyons recommended the plant to be abandoned and for the Country Estates sewer service area to be served by the Town of Lyons Sanitary District No. 2 sewage treatment plant.

m Formerly Oakton Manor - Tumblebrook Golf Course.

n Formerly Steeplechase Inn.

Table V-5
. SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE TREATMENT PLANTS IN THE FOX RIVER WATERSHED: 1990

Name of Public Sewage Treatment Plant	1990 Estimated Total Area Served (square miles)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Major Sewage Treatment Unit Processes ^a	Name of Receiving Water to which Effluent is Disposed	WPDES Permit Expiration Date
City of Brookfield	14.8	33,800	1973, 1982, 1988 ^c	Phosphorus removal, activated sludge, clarification sand filtration, chlorination, dechlorination, post aeration	Fox River	6/30/98
City of Burlington	3.3	10,400	1934, 1938, 1962, 1972, 1975 ^d	Activated sludge (contact stabilization), clarification, phosphorus removal, chlorination, post aeration	Fox River	3//31/99
Eagle Lake Sewer Utility District	0.6	1,200	1978	Activated sludge, rotating biological contactor, clarification, chlorination, sand filters	Eagle Creek	9/30/98
Village of East Troy	1.1	3,600	1960, 1982	Activated sludge, clarification, phosphorus removal, sand filtration, chlorination	Honey Creek	6/30/98
City of Lake Geneva	2.6	6,400	1930, 1966, 1986	Oxidation ditch, clarification, seepage cell system	Groundwater system and the White River	6/30/99
Village of Genoa City	0.6	1,200	1923, 1959, 1985	Oxidation ditch, clarification, chlorination	Nippersink Creek	6/30/98
Town of Lyons Sanitary District No. 2	0.3	1,000	1981	Oxidation ditch, clarification, ultraviolet disinfection	White River	6/30/98
Village of Mukwonago	1.0	4,400	1950, 1971, 1980	Activated sludge, clarification, phosphorus removal, chlorination basin	Fox River	6/30/98
Town of Norway Sanitary District No. 1	3.5	4,900	1978	Activated sludge, clarification, phosphorus removal, sand filtration, chlorination	Wind Lake Drainage Canal	3/31/92
Town of Salem Sewer Utility District No. 2	2.6	4,900	1981	Activated sludge, clarification, phosphorus removal, chlorination, dechlorination	Fox River	3/31/97
Village of Silver Lake	0.6	1,800	1967, 1987, 1988	Activated sludge, clarification, chlorination, dechlorination	Fox River	12/31/98
Village of Sussex	1.7	4,400	1960, 1975, 1978 ^e	Activated sludge (contact stabilization), clarification, filtration, phosphorus removal, chlorination	Sussex Creek	6/30/96
Village of Twin Lakes	2.3	4,000	1958, 1972, 1975, 1988	Activated sludge (contact stabilization), trickling filter, clarification, phosphorus removal, chlorination, polishing pond	Bassett Creek via unnamed tributary	12/31/93
City of Waukesha	14.6	57,000	1949, 1967, 1979 ^f	Primary trickling filter, clarification, secondary trickling filters, clarification, sand filters, phosphorus removal, chlorination	Fox River	12/31/93
Western Racine County Sewerage District	3.7	6,400	1968, 1987	Activated sludge (contact stabilization), clarification, phosphorus removal, chlorination	Fox River	12/31/99

Table V-5 (cont'd)

		Hyd	raulic Load (mgd)	lingb		1	BOD ₅ Loading (pounds/day	,) B _p			ded Solids l (pounds/day	
	Exi	sting			Exi	sting			Exi	sting		
Name of Public Sewage Treatment Plant	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Flow Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity
City of Brookfield	6.74	10.36	10.0°	1	8,332	9,422	15,200	0	7,885	9,163	22,500	0
City of Burlington	2.15	2.57	2.5 ^d	1	5,754	6,792	5,000	12	4,091	5,260		0
Eagle Lake Sewer Utility District	0.19	0.34	0.4	0	160	220	680	0	153	243		0
Village of East Troy	0.27	0.30	0.70	0	562	642	1,197	0	625	705	1,408	0
City of Lake Geneva	1.24	1.56	1.74	0	2,154	2,597	2,221	4	1,818	2,189	2,605	0
Village of Genoa City	0.07	0.09	0.22	0	85	140	494	0	67	100		0
Town of Lyons Sanitary District No. 2	0.08	0.12	0.10	2	142	161	282	0	81	93		0
Village of Mukwonago	0.51	0.68	1.5	0	606	698	2,502	0	605	796	3,129	0
Town of Norway Sanitary District No. 1	0.67	1.03	0.75	5	798	1,109	1,275	0	1,076	2,463	1,500	1
Town of Salem Sewer Utility District No. 2	0.78	1.09	1.57	0	698	1,021	2,550	0	3,000	1,563	3,000	0
Village of Silver Lake	0.22	0.29	0.36	0	197	247	510	0	275	356		0
Village of Sussex	0.98	1.46	1.00 ^e	3	1,092	1,168	1,580	0	1,025	1,195	2,000	0
Village of Twin Lakes	0.37	0.43	0.71	0	474	600	1,390	0	533	673		0
City of Waukesha	8.74	11.74	16.0 ^f	0	14,956	31,168	20,000	2	27,727	79,042		0
Western Racine County Sewerage District	0.71	0.99	1.00	0	1,212	1,858	1,700	1	1,319	1,843	2,080	0

^aIn addition, plants typical include headworks and miscellaneous processes such as pumping, flow metering and sampling, screening and grit removal, as well as sludge handling and disposal facilities. ^bLoadings data were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data unless noted.

CAs of 1994, the City of Brookfield had completed facility planning for a sewage treatment plant expansion to provide for a capacity of 12.5 mgd on an average annual basis.

dIn May of 1992, the City of Burlington completed construction of a new sewage treatment plant with a design capacity of 3.5 mgd on an average annual basis.

eAs of 1994, the Village of Sussex plant was under construction providing for a design capacity of 3.2 mgd on an average annual basis and 4.0 on a maximum monthly basis.

fAs of 1994, the City of Waukesha plant was under construction providing for an upgrading and expansion project with a design capacity of 14.0 mgd on an average dry weather basis and 18.5 mgd on an average wet weather basis.

Source: Wisconsin Department of Natural Resources and SEWRPC.

facility planning to enable its abandonment. In addition, capacity is being provided in the Village of Sussex sewage treatment plant, presently under construction, for the Willow Springs Mobile Home Park. No action has been taken with regard to the abandonment of New Berlin-West High School sewage treatment plant. The remaining private plants were recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES) permit.

In addition to these private sewage treatment plants, there is also a sludge storage lagoon operated by Pat's Sanitary Service in the northwest one-quarter of U.S. Public Land Survey Section 36, Township 21 North, Range 18 East, Town of Lyons, as shown on Map V-3. This lagoon is permitted under the WPDES.

The initial regional water quality management plan included a set of specific options to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the Fox River watershed. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Wisconsin Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social affects that may be experienced due to sludge disposal. At the present time, such reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were 35 sewer service areas identified within, or partially within, the Fox River watershed: Brookfield West, Burlington, Camp-Center Lakes, Cross Lake, Rock Lake, Wilmot, Elkhorn, Walworth County Institutions, Lake Como, Williams Bay, Fontana, Walworth, Eagle Lake, East Troy, Potter Lake, Genoa City, Hartland, Lake Geneva, Lyons, Menomonee Falls, Mukwonago, Muskego, New Berlin, Paddock Lake, North Prairie, Pewaukee, Silver Lake, Sussex-Lannon, Tichigan Lake, Twin Lakes, Waterford/Rochester, Wales, Waukesha, and Wind Lake. Currently, all of these areas, with the exception of North Prairie, Wales, Fontana, Walworth, and Wind

¹The Lake Geneva Interlaken Resort Village plant was abandoned in 1993 and the resort was connected to the Walworth County Metropolitan Sewerage District sewerage system.

Lake, have undergone refinements as recommended². The boundaries of the sewer service areas through 1993 are shown on Map V-3. Table V-6 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer service area in the Fox River watershed, as refined through 1993, totals about 188 square miles, or about 20 percent of the total watershed area, as shown in Table V-6.

Current Plan Recommendations: The current point source plan element recommendations provide for the continued operation with expansion and upgrading, as necessary, of the City of Brookfield, City of Burlington, City of Waukesha, City of Lake Geneva, Village of East Troy, Village of Genoa City, Village of Silver Lake, Village of Twin Lakes and Western Racine County Sewerage District sewage treatment plants. This same recommendation applies to the plants constructed or reconstructed since the initial plan in accordance with the plan recommendations, including the Village of Mukwonago, the Eagle Lake Sewer Utility, Town of Lyons Sanitary District No. 2, Town of Norway Sanitary District No. 1, and the Town of Salem Sewer Utility District No. 2 sewage treatment plants. Estimated approximate dates for beginning facility planning for the expansion and upgrading of existing sewage treatment plants are indicated in Table V-7. This recommendation regarding plant facility upgrading and expansion, as needed, also applies to the treatment plant solids management element for the 15 public sewage treatment plants recommended to be retained.

With regard to the Village of Sussex plant, an amendment to the regional water quality management plan³ served to change the initial recommendation which recommended the abandonment of the Sussex sewage treatment plant and the subsequent connection of its tributary service area to the City of Brookfield sewage treatment plant. This amendment was based upon an evaluation of a formal request for a plan amendment by a joint sewer study committee comprised of the following four communities, Sussex, Lisbon, Menomonee Falls, and Lannon, and of a facility plan prepared by Strand Associates, Inc. for the committee.4 amendment identified the sanitary sewer needs of the area, and evaluated alternative means of meeting those needs; evaluated the alternatives set forth in the facility plan; and set forth a recommendation as an amendment to the initial water quality plan. The amendment recommended expansion and reconstruction of the Sussex sewage treatment plant and recommended designation of the plant as a permanent facility to serve the Villages of Lannon and Sussex, and portions of the Village of Menomonee Falls and Town of Lisbon.

²In addition, as of June 1994, the sewer service area for Bohner Lake was identified and refined as set forth in the <u>Amendment to the Regional Water Quality Management Plan-2000, City of Burlington/Bohner Lake Sanitary Sewer Service Areas.</u>

³Amendment to the Regional Water Quality Management Plan - 2000 for the Upper Fox River Watershed Brookfield and Sussex Sewage Treatment Plants, May 1989.

⁴Reevaluation of Regional Wastewater Treatment for Upper Fox River Watershed, Strand Associates, Inc., August 1988.

Table V-6

PLANNED SANITARY SEWER SERVICE AREAS IN THE FOX RIVER WATERSHED: 1993a,b

T				
Name of Initially Refined Sanitary Sewer Service Area(s)	Planned Sewer Service Area in Fox River Watershed (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
	Refined	Sanitary Sewer Serv	vice Areas	
. 	0.1	Alpine Valley	December 4, 1989	Amendment to the Regional Water Quality Management Plan-2000, Towns of East Troy, LaFayette, and Spring Prairie, and Village of East Troy
Brookfield East Elm Grove Brookfield West	13.4	Brookfield East Brookfield West	December 4, 1991	SEWRPC CAPR No. 109, Sanitary Sewer Service Area for the City and Town of Brookfield and the Village of Elm Grove, Waukesha County, Wisconsin
Burlington	10.3	Burlington	June 16, 1986	SEWRPC CAPR No. 78, Sanitary Sewer Service Area for the City of Burlington, Racine County, Wisconsin
Camp-Center Lakes Cross Lake Rock Lake Wilmot	6.7	Salem South	March 3, 1986	SEWRPC CAPR No. 143, Sanitary Sewer Service Area for the Town of Salem Utility District No. 2, Kenosha County, Wisconsin
Delavan Delavan Lake Elkhorn Walworth County Institutions Lake Como Williams Bay	14.8	Delavan-Delavan Lake Elkhorn Lake Como Williams Bay Geneva National- Interlaken	December 4, 1991	SEWRPC CAPR No. 56, 2nd Edition, Sanitary Sewer Service Areas for the Walworth County Metropolitan Sewerage District
Eagle Lake	2.2	Eagle Lake	January 18, 1993	SEWRPC CAPR No. 206, Sanitary Sewer Service Area for the Eagle Lake Sewer Utility District, Racine County, Wisconsin
	0.9	Eagle Spring Lake	December 2, 1985	Amendment to the Regional Water Quality Management Plan-2000, Eagle Spring Lake Sanitary District
East Troy Potter Lake	8.1	East Troy Potter Lake Army Lake	June 16, 1993	SEWRPC CAPR No. 112, 2nd Edition, <u>Sanitary Sewer Service</u> Area for the Village of East Troy and Environs, Walworth County, Wisconsin
Genoa City	1.6	Genoa City	March 6, 1989	SEWRPC CAPR No. 175, Sanitary Sewer Service Area for the Village of Genoa City, Kenosha and Walworth Counties, Wisconsin
Hartland	0.8	Hartland	June 17, 1985	SEWRPC CAPR No. 93, <u>Sanitary</u> Sewer Service Area for the Village of Hartland, Waukesha County, Wisconsin

Table V-6 (cont'd)

Name of Initially Refined Sanitary Sewer Service Area(s)	Planned Sewer Service Area in Fox River Watershed (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Flan Amendment Document
Hooker-Montgomery Lakes	0.8	Salem North	December 1, 1986	SEWRPC CAPR No. 145, Sanitary Sewer Service Area for the Town of Salem Utility District No. 2, Kenosha County, Wisconsin
Lake Geneva	8.3	Lake Geneva	January 18, 1993	SEWRPC CAPR No. 203, Sanitary Sewer Service Area for the City of Lake Geneva and Environs, Walworth County, Wisconsin
Lyons	1.5	Lyons Country Estates Sanitary District	September 15, 1993	SEWRPC CAPR No. 153, 2nd Edition, Sanitary Sewer Service Area for the Town of Lyons Sanitary District No. 2, Walworth County, Wisconsin
Menomonee Falls	7.4	Lannon Menomonee Falls	June 16, 1993	SEWRPC CAPR No. 203, Sanitary Sewer Service Area for the Villages of Lannon and Menomonee Falls, Waukesha County, Wisconsin
Mukwonago	7.8	Mukwonago	December 5, 1990	SEWRPC CAPR No. 191, <u>Sanitary</u> <u>Sewer Service Area for the</u> <u>Village of Mukwonago, Waukesha</u> <u>County, Wisconsin</u>
	0.3	Mukwonago County Park	June 21, 1984	Amendment to the Regional Water Quality Management Plan-2000, Village of Mukwonago, Towns of East Troy and Mukwonago
Muskego	12.0	Muskego	March 3, 1986	SEWRPC CAPR No. 64, Sanitary Sewer Service Area for the City of Muskego, Waukesha County, Wisconsin
New Berlin	8.5	New Berlin	December 7, 1987	SEWRPC CAPR No. 157, Sanitary Sewer Service Area for the City of New Berlin, Waukesha County, Wisconsin
Paddock Lake	0.1	Paddock Lake	December 1, 1986	SEWRPC CAPR No. 145, Sanitary Sewer Service Area of the Town of Salem Utility District No. 1, Village of Paddock Lake, and Town of Bristol Utility District Nos. 1 and 1B, Kenesha County, Wisconsin
Pewaukee	26.1	Pewaukee	June 17, 1985	SEWRPC CAPR No. 113, Sanitary Sewer Service Area for the Town of Pewaukee Sanitary District No. 3, Lake Pewaukee Sanitary District, and Village of Pewaukee, Waukesha County, Wisconsin
	1.4	Rainbow Springs	June 21, 1984	Amendment to the Regional Water Quality Management Plan-2000, Village of Mukwonago, Towns of East Troy and Mukwonago

Table V-6 (cont'd)

	 	T		The state of the s
Name of Initially Refined Sanitary Sewer Service Area(s)	Planned Sewer Service Area in Fox River Watershed (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
Silver Lake	1.9	Silver Lake	June 15, 1987	SEWRPC CAPR No. 119, <u>Sanitary</u> <u>Sewer Service Area for the</u> <u>Village of Silver Lake, Kenosha</u> <u>County, Wisconsin</u>
Sussex-Lannon ^b	4.8	Sussex	June 16, 1983	SEWRPC CAPR No. 84, Sanitary Sewer Service Area for the Village of Sussex, Waukesha County, Wisconsin
Twin Lakes	7.8	Twin Lakes	June 15, 1987	SEWRPC CAPR No. 149, <u>Sanitary</u> <u>Sewer Service Area for the</u> <u>Village of Twin Lakes, Kenosha</u> <u>County, Wisconsin</u>
Waterford/Rochester Tichigan Lake	9.3	Waterford/ Rochester	June 16, 1986	SEWRPC CAPR No. 141, Sanitary Sewer Service Area for the Waterford/Rochester Area, Racine County, Wisconsin
Waukesha	30.6	Waukesha	December 2, 1985	SEWRPC CAPR No. 100, Sanitary Sewer Service Area for the City of Waukesha and Environs, Waukesha County, Wisconsin
Subtotal	187.5			
	U	nrefined Sanitary Se	ewer Service Areas	
Denoon Lake Fontana North Prairie Sussex (part) ^b Wales Walworth Wind Lake	1.4 4.3 1.9 2.6 1.3 0.3 5.3			
Subtotal	17.1			
Total	204.6			

^aAs of June 1994, the sewer service area for Bohner Lake was identified and refined as set forth in the <u>Amendment to the Regional Water Quality Management Plan--2000, City of Burlington/Bohner Lake Sanitary Sewer Service Areas.</u> The refined sanitary sewer service area encompasses 1.5 square miles.

^bAs of September 1994, the Sussex sewer service area was amended as set forth in SEWRPC Community Assistance Planning Report No. 84, 2nd Edition, <u>Sanitary Sewer Service Area for the Village of Sussex, Waukesha County, Wisconsin</u>. The refined sanitary sewer service area encompasses 7.4 square miles.

Note: CAPR - Community Assistance Planning Report

SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS
IN THE FOX RIVER WATERSHED: 1990 AND 2010

									Planned Year	r 2010		
				Existing :	1990		Intermed	liate Growth Land Use P	Centralized lan	High	Growth Decent Land Use Pla	
Name of Public Sewer Sewage Treatment Plant Service Ar	Sewer Service Area	Design Capacity- Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Total Area Served (square mile)	Resident population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
City of Brookfield	Brookfield West, Pewaukee	10.00 ^b	6.74	14.8	33,800	47.7	52,100	12.50 ^b	>2010 ^b	78,800	15.5	2010 ^b
City of Burlington	Burlington, Bohner Lake	3.50 ^c	2.15	3.3	10,400	11.8	13,500	2.54	>2010 ^c	18,800	3.20	2000°
Eagle Lake Sewer Utility District	Eagle Lake	0.40	0.19	0.6	1,200	2.2	1,200	0.19	1998	1,800	0.27	1996
Village of East Troy	East Troy, Potter Lake, Army Lake, Alpine Valley	0.70	0.27	1.1	3,600	8.2	5,500	0.51	2002	9,200	0.97	1996
City of Lake Geneva	Lake Geneva	1.74	1.24	2.6	6,400	8.3	9,200	1.59	2000	16,800	2.54	1996
Village of Genoa City	Genoa City	0.22	0.10	0.6	1,200	1.6	1,800	0.18	2005	3,000	0.32	2000
Town of Lyons Sanitary District No.2	Lyons	0.10	0.08	0.3	1,000	1.5	1,500	0.14	1997	2,400	0.26	1995
Village of Mukwonago	Mukwonago, Eagle Spring Lake, Mukwonago County Park, Rainbow Springs	1.50	0.51	1.0	4,400	10.4	7,500	1.0	2000	19,200	2.46	1998
Village of North Prairie (proposed plant) ^d	North Prairie					1.9				3,600	0.45	
Town of Norway Sanitary District No. 1	Wind Lake Lake Denoon	0.75	0.67	3.5	4,900	6.7	5,900	0.80	1995	6,800	0.91	1995
Town of Salem Sewer Utility District No. 2	Salem South Salem North	1.57	0.78	2.6	4,900	10.7 ^e	9,300 ^e	1.33 ^e	2000	10,200 ^e	1.44 ^e	1998
Village of Silver Lake	Silver Lake	0.36	0.22	0.6	1,800	1.9	2,900	0.36	1995	3,200	0.40	1995
Village of Sussex	Sussex, Lannon, Menomonee Falls	3.2 ^f	0.98	1.7	4,400	13.7	19,800	2.91	>2010	33,100	4.57	2000
Village of Twin Lakes	Twin Lakes	0.50	0.37	2.3	4,000	7.8	7,000	0.70	1995	7,400	0.80	1995

Table V-7

Table V-7 (continued)

			Existing 1990			Planned Year 2010						
							Intermediate Growth Centralized Land Use Plan			High Growth Decentralized Land Use Plan		
Name of Public Sewage Treatment Plant	Sewer Service Area	,	Average Hydraulic Loading (mgd)	Total Area Served (square mile)	Resident population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
City of Waukesha	Waukesha	14.08	8.74	13.4	57,000	30.6	74,300	14.008	2003	105,900	15.0	2000
Western Racine County Sewerage District	Waterford, Rochester	1.00	0.71	3.7	6,400	9.3	8,700	1.00	2007	10,600	1.24	1998

a Approximate year in which facility planning for a plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average design flows compared to average annual and maximum monthly flows and age of facilities based upon date of last major construction.

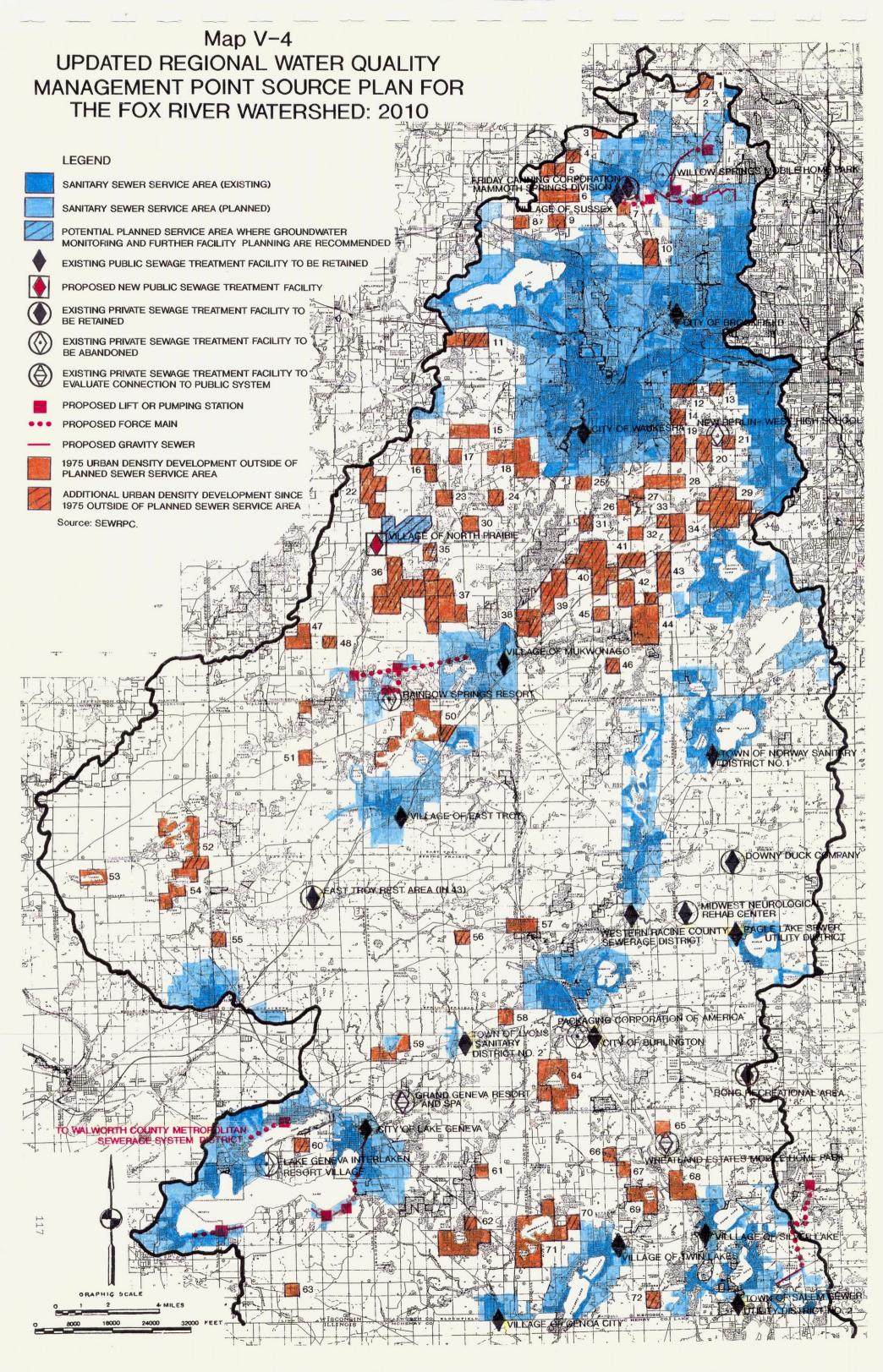
8 Based upon March 1990 facility plan. During 1993, an addition and expansion of the City of Waukesha sewage treatment plant was under construction providing for a hydraulic capacity of 14.0 mgd on an average annual basis and 18.5 mgd on a wet weather average basis.

b Facility planning for plant expansion and upgrading completed. Design flows based upon design year 2014 as documented in a May 1993 facility plan.

^C Based upon new plant which was placed into service in 1992.

d Alternative of constructing a new plant and the alternatives of connection to an existing sewerage system and continued use of onsite sewage disposal systems are recommended to be evaluated in further subregional system planning.

e Includes Salem North sewer service area. As of 1993, Town of Salem Utility District No. 1 sewage treatment plan was abandoned and service area was served by Town of Salem Utility District No. 2.


f During 1993, the Village of Sussex sewage treatment plant was under construction providing for an upgraded and expanded plant with a hydraulic design capacity of 3.2 mgd on an average annual basis and 4.0 mgd on a maximum monthly basis.

With regard to the proposed Village of North Prairie sewage treatment plant, a facility plan⁵ was prepared in two phases during 1986 through 1989 which concluded that the lowest cost alternative means of providing for sanitary sewage disposal was the continued reliance of onsite systems, including replacement as needed using conventional, mound type, or other special soil absorption systems or holding tanks. It was also recommended in the facility plan that the Village continue to periodically monitor the groundwater system in the Village for potential degradation from onsite sewage disposal systems. This facility planning effort was the subject of public informational meetings held during 1988 and 1989. Based upon the findings of the facility plan, the plan includes a recommendation for future periodic groundwater monitoring and onsite sewage disposal system surveillance to be conducted to assess the viability of onsite systems. It is further recommended that at such time as there is evidence that onsite sewage systems are not a viable long-term solution for all or portions of the Village, then additional subregional planning should be conducted to determine the most cost-effective means of providing sanitary sewer service. evaluations should include alternatives providing for the connection of the Village to the Village of Mukwonago, or alternatively, the City of Waukesha sewerage system, as well as the potential construction of a new plant.

The current point source pollution abatement plan element, including the planned sewer service areas, is summarized on Map V-4. Table V-7 presents selected design data for the 15 public sewage treatment plants which are recommended to be maintained in the Fox River watershed. It is important to note that five plants recorded monthly average hydraulic loadings during 1990 which equaled or exceeded the average design capacities of the plants, as shown in Table V-5. Of these, three sewage treatment plants have recorded more than one month in 1990 in which the monthly average loadings exceeded the design capacity. One of these plants -- the City of Burlington -- has since been reconstructed at a new site with an increased capacity. Thus, no further capacity problems exist at that The Village of Sussex sewage treatment plant is currently under construction to provide for increased capacity, and the City of Brookfield has completed facility planning for a plant expansion. Other plants which are currently approaching their design capacities are the Town of Norway Sanitary District No. 1 and the Town of Lyons Sanitary District No. 2 sewage treatment In addition, facility planning should be initiated in the near future for the Village of Silver Lake and the Village of Twin Lakes sewage treatment plants due to the age of major portions of the plant facilities.

Table V-7 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the 15 public sewage treatment plants in the Fox River watershed. Under the intermediate growth-centralized land use plan, seven of the 16 public plants are anticipated to have average annual hydraulic loading rates equal to or higher than the average annual design capacity. Under the high growth-decentralized land use plan, 12 of the existing plants are anticipated to have loading rates equal to or higher than the average annual design capacity. Thus, there is expected to be significant additional treatment plant expansion and associated costs under the higher growth decentralized future scenario than would be expected under the intermediate growth-centralized land use plan.

⁵Ruekert & Mielke, Inc., <u>Village of North Prairie Wastewater Facility Plan</u>, <u>Phase One</u>, July 1986; <u>Phase Two</u>, December 1989.

Based upon review and analysis of the data in Tables V-5 and V-7, including estimates of future condition loadings on an annual average and maximum monthly basis, and based upon the age of the current facilities, estimates of the timing of needed facility planning were made. It appears that facility planning should be initiated during the next three years by the Village of Silver Lake, the Village of Twin Lakes, the Town of Norway Sanitary District No. 1, the Town of Lyons Sanitary District No. 2, and the Western Racine County Sewerage District to consider the need for expansion and upgrading of their sewage treatment plants. As noted earlier, four plants have recently undergone facility planning and/or construction, and no additional facility planning is expected to be needed for the plants operated by the Cities of Brookfield, Burlington, and Waukesha, and the Village of Sussex. The remaining five sewage treatment plants are expected to begin facility planning to consider the need for plant expansions later in the planning period, assuming that development occurs in accordance with the recommended year 2010 land use plan as described for the intermediate growth-centralized land use future condition. Should development occur as envisioned under the high growth-decentralized land use future scenario, facility planning for nearly all of the public sewage treatment plants in the Fox River watershed should be initiated within the next three years, except for the Brookfield, Burlington, Genoa City, Sussex, and Waukesha plants which recently completed facility planning or construction programs. Continued review of plant operations and State required compliance maintenance reports for all plants will provide the basis for determining the timing for initiating facility planning programs to explore plant expansion alternatives.

The current planned sanitary sewer service areas in the Fox River watershed are shown on Map V-4. The existing and planned year 2010 population data for each sewer service area is presented in Chapter XVIII on a regional basis. All or portions of the following sewer service areas are located in the Fox River watershed: Alpine Valley, Brookfield West, Burlington, Salem South, Country Estates Sanitary District, Denoon Lake, Elkhorn, Fontana, Lake Como, Williams Bay, Eagle Lake, Eagle Spring Lake, East Troy, Potter Lake, Army Lake, Walworth, Geneva National-Interlaken, Genoa City, Hartland, Salem North, Lake Geneva, Lyons, Lannon, Menomonee Falls, Mukwonago, Mukwonago County Park, Muskego, New Berlin, North Prairie, Paddock Lake, Pewaukee, Rainbow Springs, Silver Lake, Sussex, Twin Lakes, Waterford/Rochester, Wales, Waukesha, and Wind Lake. Together, the planned service areas within the watershed total about 205 square miles, or about 22 percent of the Fox River watershed.

As noted above, most of the sewer service areas in the watershed have been refined as part of the ongoing regional water quality management plan updating process. Additional refinements are envisioned to be needed for the Denoon Lake, Fontana, Walworth, and Wind Lake sewer service areas. It is recommended that these refinements be conducted in 1995 and 1996. In addition, the North Prairie and Wales sewer service areas will have to be refined at such time as public sanitary sewer services are implemented in those areas. It is recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plants, there were ten private sewage treatment plants in operation within the Fox River watershed in 1990, plus the plant serving the

Bong Recreation Area which is located in the Des Plaines River watershed but discharges effluent through a drainage system to Peterson Creek, a tributary of the Fox River. These facilities generally serve isolated enclaves of urban land uses which are located beyond the current limits of the planned sanitary public sewer service areas. The updated plan recommends that four of the 11 plants in operation, be abandoned: the Lake Geneva Interlaken Resort, the Packaging Corporation of America, the New Berlin West High School, and the Willow Springs Mobile Home Park. A 1987 amendment to the initial water quality plan recommended that the Rainbow Springs Resort also be abandoned, with service provided for by the Village of Mukwonago sewage treatment plant. In addition, the relatively close proximity of the Grand Geneva Resort and Spa to the Lake Geneva sewer service area indicates that there is potential for the consolidation of treatment facilities in this instance. Thus, it is recommended that at the time this private plants require significant upgrading or modification, that detailed facility planning be conducted to evaluate the alternative of connecting the land uses to the City of Lake Geneva public sanitary sewer systems. remaining five private sewage treatment plants serving the Bong Recreation Area, the Downy Duck Farm, the Friday Canning Company, the Midwest Neurological Rehabilitation Center, the East Troy Rest Area IH 43, and the Wheatland Mobile Home Park, the need for upgrading and level of treatment should be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System permitting process. The Wheatland Mobile Home Park plant recommendations would be reevaluated as part of the subregional evaluation for the Town of Wheatland area as recommended in the last section of this chapter.

Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were 20 known separate sewer system flow relief devices located in the Fox River watershed: one bypass discharging to the White River from the City of Lake Geneva; one bypass discharging to Honey Creek from the Village of East Troy; one bypass to Nippersink Creek from the Village of Genoa City; one bypass to the Silver Lake Outlet Canal from the Village of Silver Lake; one bypass into Big Muskego Lake from the City of Muskego; and eight bypasses discharging into the Fox River from the City of Waukesha. In addition, as of 1975, the City of Waukesha also maintained two portable pumping locations which discharged to the Fox River, while the City of Brookfield maintained two portable pumping locations discharging to Deer Creek and Fox Creek. The Village of Sussex maintained one portable pumping station that discharged to Sussex Creek, while the Village of Menomonee Falls had two portable pumping stations discharging to the Fox River. the period of 1988 through 1993, the only flow relief devices which existed in the sanitary sewer systems were selected bypasses and portable pumping station sites which physically remained in the sewerage system but which function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. As shown in Table V-8, 41 reported points of sanitary sewer system flow relief were reported during 1988 through 1993 in the Fox River watershed. These flow relief points are located in ten sewerage systems. However, these flow relief points have only been in operation infrequently, with the average discharge occurrence frequency over this fiveyear period being about once per five years per flow relief location. equates to an average of about eight isolated overflow occurrences per year considering all the reported bypassing.

⁶The Lake Geneva Interlaken Resort Village plant was abandoned in 1993.

Table V-8

KNOWN SEWAGE FLOW RELIEF DEVICES IN THE FOX RIVER WATERSHED: 1988-1993

		Sewage	Flow Relief				
Sewerage System	Sewage Treatment Plant Flow Relief Device	Cross- overs	Pumping Station Bypasses	Other Bypasses	Portable Pumping System Locations	Total	Comments
City of Brookfield			2		14	16	Used only in case of equipment failure or extreme wet weather conditions
Village of Twin Lakes			1			1	Used only in case of severe wet weather conditions
Town of Linn Sanitary District	1					1	Used only in case of equipment failure
Village of Pewaukee			2			2	Used only in case of extreme wet weather
City of Waukesha	1		5			6	Bypasses are used infrequently, only when unanticipated equipment failure occurs
Town of Norway Sanitary District No. 1	1		2			3	Used only in the case of equipment failure or extreme wet weather conditions
Village of Waterford			1			1	Used only in case of equipment failure
Village of Sussex	1				4	5	Portable pumps used at pumping stations and used only in cases of extreme wet weather or equipment failure conditions
Fontana- Walworth Water Pollution Control Commission			3			3	Used only in case of equipment failure or extreme wet weather conditions
Walworth County Metropolitan Sewerage District			3			3	Used only in case of equipment failure or extreme wet weather conditions
TOTAL	4		19		18	41	

<u>Current Plan Recommendations</u>: It is recommended that the Cities of Brookfield and Waukesha; the Villages of Pewaukee, Sussex, Twin Lakes, and Waterford; the Town of Norway Sanitary District No. 1 and the Town of Lyons Sanitary District No. 2 continue to monitor the sewerage system operations to ensure that the use of the existing sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading be conducted with the assumption that there will be no planned bypasses of untreated sewage and that the use of all flow relief devices will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewers

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan as updated, recommended the construction of 25 intercommunity trunk sewers in the Fox River watershed, as shown in Table V-9. Five of these trunk sewers would connect outlying communities to the City of Brookfield sewage treatment plant. These trunk sewers have been fully constructed except for the Poplar Creek and River Road trunk sewers. Creek trunk sewer is only partially completed to near the southern limits of the City of Brookfield and has not been extended into the City of New Berlin due to a change in the New Berlin sewer service area, which would defer the remaining portion of this sewer until after the year 2000. In addition, the westerly portion of the River Road trunk sewer in the City of Brookfield has not yet been constructed. Construction of the New Berlin-Hales Corners and Franklin-Muskego trunk sewers to enable the abandonment of the City of New Berlin Regal Manor and the City of Muskego-Northeast and Big Muskego sewage treatment plants have been completed. The trunk sewer connecting the Village of Lannon and portions of the Village of Menomonee Falls to the Village of Sussex sewerage system has not yet been completed. The two trunk sewers providing for the relocation of the Mukwonago sewage treatment plant and the connection of the Potter Lake community to the East Troy sewerage system have been completed. The trunk sewers to connect the Lake Denoon area to the Town of Norway Sanitary District No. 1 sewerage system and the Tichigan Lake area to the Western Racine County Sewerage District sewerage system have been constructed. Three trunk sewers connecting the Town of Salem Sewer Utility District No 2 service area have also been completed. trunk sewer to connect the urban development south of Geneva Lake in the Town of Linn to the City of Lake Geneva sewerage system has not yet been constructed. Connections of the Geneva National Sanitary District and the Village of Williams Bay to the Walworth County Metropolitan sewerage system have been completed. However, the connection of the Como Lake North area has not yet been construct-The trunk sewer connecting urban development along the southwest shore of Geneva Lake to the Village of Fontana on Geneva Lake sewerage system has not been implemented, while the trunk sewer needed to connect Fontana on Geneva Lake to the Fontana-Walworth Water Pollution Control Commission has been completed. It should also be noted that a portion of the trunk sewer connecting the Town of Salem Utility District No. 1 in the Des Plaines River watershed to the Town of Salem Utility District No. 2 sewerage system is located in the Fox River watershed and that trunk sewer has been completed.

<u>Current Plan Recommendations</u>: The current regional water quality management plan includes recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the Fox River watershed, as shown on Map V-4.

Table V-9

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE FOX RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status	<u>of Impleme</u>	entation
Northwest-River Road	Partially	completed	(1987)
Springdale	Completed	(1979 and	1990)
Pewaukee Lake-Pewaukee	Completed	(1979)	
Pewaukee-Brookfield	Completed	(1980)	
Poplar Creek	Partially	completed	
Lannon-Sussex ^a	No action	L	
New Berlin-Hales Corners	Completed	(1984)	
Franklin-Muskego	Completed	(1984)	
Mukwonago	Completed	(1980)	
Potter Lake-East Troy	Completed	(1982)	
Eagle Spring-Mukwonago	No Action		
Muskego-Norway	Completed	(1978)	
Tichigan Lake-Rochester	Completed	(1988)	
Silver Lake-Camp Lake	Completed	(1981)	
Wilmot	Completed	•	
Cross-Rock Lakes	Completed	(1983)	
Lake Geneva South	No action		
Como Lake North ^b	No action		
Geneva Lake National to WalcoMet ^c	Completed	(1990)	
Williams Bay-Delavan Lake ^d	Completed	(1986)	
Fontana-Linn	No action		
Fontana-Walworth	Completed	(1986)	

^aLannon-Sussex trunk sewer added to the plan based upon a May 1989 plan amendment. Facility planning was completed in 1994.

bComo Lake North trunk sewer connecting the north shore of Como Lake to the City of Lake Geneva sewage treatment plant was deleted from the plan and a new trunk sewer connecting the north shore of Como Lake to the Walworth County Metropolitan sewerage system was added to the plan based upon a December 1991 plan amendment.

^cGeneva National-WalCoMet trunk sewer added to plan based upon a November 1989 plan amendment.

^dWilliams Bay-Delavan Lake trunk sewer added to plan based upon a March 1985 plan amendment.

Four intercommunity trunk sewers in the Fox River watershed are currently recommended to be constructed. These trunk sewers include connections from Menomonee Falls and Lannon to the Sussex sewerage system; from the south shore of Geneva Lake to the City of Lake Geneva sewerage system; from the north shore of Lake Como to the Walworth County Metropolitan Sewerage District sewerage system via the Geneva National Sanitary District sewerage system; and a trunk sewer connecting Eagle Spring Lake, Mukwonago County Park, and Rainbow Springs Resort to the Village of Mukwonago sewerage system. In addition, the remaining portion of the River Road trunk sewer connecting portions of the Town of Pewaukee and the Town and City of Brookfield to the City of Brookfield sewerage system is recommended to be completed.

Point Sources of Wastewater Other Than Public and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of 37 known point sources of pollution identified in the Fox River watershed other than public and private sewage treatment plants. These sources discharge industrial cooling, process, rinse, wash, and filter backwash waters through 54 outfalls directly or indirectly to the surface water or groundwater system. Of these point source outfalls, three were identified as minor or intermittent discharges. The remaining 34 were other types of wastewater discharges, predominantly--24, or about 71 percent of those remaining--cooling water. The initial regional water quality plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were 84 such known point sources of wastewater discharging to the Fox River and its major tributaries or to the groundwater system directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table V-10 summarizes selected characteristics of these other point sources and Map V-5 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 116 known point sources of wastewater other than public and private sewage treatment plants discharging to surface waters or groundwater in the Fox River watershed. These point sources of wastewater discharge primarily industrial cooling, process, rinse, and wash water directly, or following treatment, to the groundwater or the surface waters. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

<u>Existing Unsewered Urban Development Outside</u> the Proposed Sanitary Sewer Service Area

As of 1975, there were 42 enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area. As of 1990, four of these areas had been added to the planned 2010 sewer service area as part of the plan amendment process. Due to increased urban growth within the watershed since 1975, 34 new enclaves of urban development have been created beyond the planned sewer service areas, and 16 of the urban development enclaves identified in the initial plan have been expanded, as shown on Map V-4. The corresponding

Table V-10

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE FOX RIVER WATERSHED: 1990a

Facility Name	County	Map ID#b	Permit Type	Permit Number	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
APS Industries	Waukesha	1	General	0046507-2	9-30-95			Groundwater discharge	
Ace Redi-Mix, Inc.	Waukesha	2	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Alby Block Co.	Racine	3	General	0046507-2	9-30-95	3271	Concrete block and brick	Groundwater discharge	
Basset Ready Mix	Kenosha	4	General	0046507-2	9-30-95	3273	Ready-mix concrete	Absorption pit	
Burlington Swimming Pool	Racine	5	General	0046523-2	9-30-95		Municipal pool	Echo Lake via storm sewer	
Carroll College Van Male Pool	Waukesha	6	General	0046523-2	9-30-95	8221	College/University	Fox River via storm sewer	
East Trov Ready Mix	Walworth	7	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Echo Lake Farm Produce Co., Inc.	Racine	8	General	0044938-3	9-30-95	2015	Poultry slaughtering & processing	Echo Lake	
Elmbrook Memorial Hospital	Waukesha	9	General	0044938-3	9-30-95	8062	General med. & surgical hospital	Fox River via storm sewer	
GE Medical Systems - C.T.	Waukesha	10	General	0044938-3	9-30-95	3844/3845	Electro. med. equip, etc.	Poplar Creek via unnamed trib.	
Hales Corners Block Co.	Racine	11	General	0046507-2	9-30-95	3271	Concrete block and brick	Groundwater discharge	
Halquist Stone Co., Inc.	Waukesha	12	General	0046515-2	9-30-95	3281	Cut stone & stone products	Sussex Creek	
Herb's Service	Walworth	d	General	0046566-1	9-30-95	5541	Gasoline service station	Lake Geneva	
J.W. Peter & Sons	Racine	14	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Jacob's Ready-Mix	Walworth	15	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Lake Geneva Culligan Water Cond.	Racine	16	General	0046540-1	9-30-95	1711	Plumbing: water conditioning	Fox River via storm sewer	
Lake Geneva Water Treatment Plant	Walworth	17	General	0046540-1	9-30-95	4941	Water supply	White River	
Lanson Industries, Inc.	Waukesha	18	General	0044938-3	9-30-95	3699	Electric equipment & supplies	Muskego Canal via unnamed trib.	
Lavelle Industries, Inc.	Racine	19	General	0044938-3	9-30-95	3069	Fabricated rubber products	Fox River via storm sewer	100
Maple Leaf Farms-Burlington Feed Mill	Racine	20	General	0044938-3	.9-30-95	2048	Prepared animal feeds	Fox River via storm sewer	
Meyer Material Co. KD Pit	Kenosha	21	General	0046515-2	9-30-95	1442	Construction sand & gravel	Groundwater discharge	
Milupa Company	Walworth	22	General	0044938-3	9-30-95	2023	Dry/condensed/evap. products	Honey Creek via storm sewer	
Milwaukee Chaplet & Mfg. Co. Inc.	Waukesha	23	General	0044938-3	9-30-95	3559	Special industry machinery	Deer Creek	
Muskego H.S. (Pool)	Waukesha	24	General	0046523-2	9-30-95	8211	Secondary school	Muskego Canal via unnamed trib.	
New Berlin Public Schools	Waukesha	25	General	0046523-2	9-30-95	8299	Schools/educational serv.	Deer Creek via drainage ditch	
N. B. Public Schools: Eisenhower H.S.	Waukesha	26	General	0046523-2	9-30-95	8211	Secondary school	Deer Creek via drainage ditch	
N. B. Public Schools: N.B. West H.S.	Waukesha	27	General	0046523-2	9-30-95	8211	Secondary school	Poplar Creek via unnamed trib.	
New Berlin Redi-Mix Inc.	Waukesha	28	General	0046507-2	9-30-95	3273	Ready-mix concrete	Mill Creek via unnamed trib.	
Outboard Marine Corp. Research Ctr.	Waukesha	29	General	0044938-3	9-30-95	3733	Commercial nonphysical research	Pewaukee River via storm sewer	
Park & Rec.: Eisenhower Pool	Waukesha	30	General	0046523-2	9-30-95		Municipal pool	Deer Creek via drainage ditch	
Quality Aluminum Casting Co.	Waukesha	31	General	SPEC PERM	9-30-95	3363	Copper foundry	Fox River via storm sewer	
Quality Concrete Products Co., Inc.	Waukesha	32	General	0046507-2	9-30-95	3271	Concrete block & brick	Groundwater discharge	
R. Frederick Redi-Mix	Waukesha	33	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Recreation Ctr. Pool - Genoa City	Walworth	34	General	0046523-2	9-30-95	7999	Amusement & recreation	Nippersink Creek via storm sewer	
Rubber Products Inc.	Waukesha	35	General	0044938-3	9-30-95	3069	Fabricated rubber products	Pewaukee River	
S & M Rotogravure Service Inc.	Waukesha	36	General	0044938-3	9-30-95	2754	Commercial printing-gravure	Deer Creek via drainage ditch	
Sanofi Bio Ingredients Inc.	Waukesha	37	General	0044938-3	9-30-95	2022	Cheese-natural & processed	Fox River via storm sewer	
Spancrete Industries, Inc.	Waukesha	38	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Stanek Tool Corp.	Waukesha	39	General	0044938-3	9-30-95	3544	Special dies, tools, jigs, etc.	Deer Creek via drainage ditch	
Taylor Dynamometer & Mach. Co. Inc.	Waukesha	40	General	0044938-3	9-30-95	3829	Measuring & control devices	Deer Creek	22

Table V-10 (cont'd)

Facility Name	County	Map ID#b	Permit Type	Permit Number	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
Trent Tube DivCrucible Materials	Walworth	d	General	0046566-2	9-30-95	3317	Steel pipe and tubes	Honey Creek via storm sewer	
Trent Tube IncPlant #1	Walworth	42	General	0044938-3	9-30-95	3317	Steel pipe and tubes	Honey Creek via storm sewer	
Uhen's Garage	Kenosha	d	General	0046566-2	9-30-95	5541	Gasoline service station	Groundwater discharge	
Waukesha Block Co., Inc.	Waukesha	44	General	0046507-2	9-30-95	3271	Concrete block & brick	Groundwater discharge	
Waukesha Board of Education	Waukesha	45	General	0046523-2	9-30-95	8299	School/educational serv.	Fox River via storm sewer	
Wauk. Bd. of Ed.: Central Middle Sch.	Waukesha	46	General	0046523-2	9-30-95	8211	Secondary school	Fox River via storm sewer	
Wauk. Bd. of Ed.: North H.S. Pool	Waukesha	47	General	0046523-2	9-30-95	8211	Secondary school	Brandy Brook via unnamed trib.	
Waukesha Bd. of Ed: South H.S. Pool	Waukesha	48	General	0046523-2	9-30-95	8211	Secondary school	Fox River via storm sewer	
Waukesha Concrete Products Co., Inc.	Waukesha	49	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Wauk. Cty. Trans. Dept.: Crites Field	Waukesha	50	General	0046531-1	9-30-90	4581	Airports/field services	Fox River via storm sewer	
Waukesha Foundry, Inc.	Waukesha	51	General	SPEC PERM	9-30-95	3325	Steel foundry	Fox River via storm sewer	
Waukesha Lime & Stone Co., Inc.	Waukesha	52	General	0046515-2	9-30-95	3295/3274	Lime/ground/treat. minerals	Fox River	
Waukesha Park & Rec. Dept (WPR)	Waukesha	53	General	0046523-2	9-30-95	9199	General government	Fox River via storm sewer	
Waukesha P&R Dept.: Buchner Pool	Waukesha	54	General	0046523-2	9-30-95		Municipal pool	Fox River via storm sewer	
Waukesha P&R Dept.: Horeb Pool	Waukesha	55	General	0046523-2	9-30-95		Municipal pool	Fox River via storm sewer	
Waukesha YMCA	Waukesha	56	General	0046523-2	9-30-95	7991	Physical fitness facility	Fox River via storm sewer	
West Shore Pipeline Co.	Racine	e	General	0046566-1	9-30-95	5171	Petroleum bulk stations, term.	Goose Lk Branch Canal via ditch	
Western Bituminous Co.	Waukesha	58	General	0046515-2	9-30-95	2951	Asphalt paving, mixtures, blocks	Groundwater discharge	
Williams Bay Water Utility	Walworth	59	General	0046540-1	9-30-95	4941	Water supply	Lake Geneva	
Wilmot Ready Mix Inc.	Kenosha	60	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Wislanco Stone Co.	Waukesha	61	General	0046501-1	9-30-95	3281	Cut stone & stone products	Groundwater discharge	
YWCA of Waukesha	Waukesha	62	General	0046523-2	9-30-95	7991	Physical fitness facility	Fox River via storm sewer	
AT&T (Switching Center-Waukesha)	Waukesha	1A	Specific	0023132	06-30-92	4812	Radio/phone communications	Fox River via unnamed trib.	None
Akerman, Inc.	Waukesha	2A	Specific	0043206	06-30-91	3499	Fabricated metals products	Fox River via unnamed trib.	None
American National Can Co.	Racine	3A	Specific	0027251	03-31-91	3221	Glass containers	Fox River via storm sewer	1, 2
Amron Corp.	Waukesha	4A	Specific	0026417	12-31-91	3479	Metal coating & allied services	Fox River via storm sewer	2, 3, 4, 5
Beatrice Cheese, Inc.	Waukesha	5A	Specific	0070891	06-30-92	5143	Dairy prod. exc. dried or canned	Groundwater discharge	None
Continental Plastic Containers	Racine	6A	Specific	0052710	12-31-88	3081	Unsupported plastics film & sheet	Groundwater discharge	6
Cooper Power Systems, RTE Division	Waukesha	7A	Specific	0001350	03-31-93	3612	Transformers - exc. electric	Fox River	2
Melson Meat Co, Inc.	Waukesha	10A	Specific	0048097		2011	Meat packing plant	Groundwater discharge	None
Navistar International Trans. Corp. Packaging Corp. of America	Waukesha Racine	11A 12A	Specific Specific	0000566 0027073	06-30-91 12-31-92	3321 2653	Gray & ductile iron foundry Corrugated & solid fiber boxes	Fox River via storm sewer Fox River via unnamed tributary	None 11, 12, 13
			<u> </u>					+	
Plastic Molded Concepts, IncEagle	Waukesha	13A	Specific	0047015	03-31-95	3444	Special dies, tools, jigs, fixt.	Eagle Spring Lk. via unnamed trib.	None None
QuadGraphics - Pewaukee	Waukesha	14A	Specific	0043800	09-30-91	2752	Commerical printing - lithographic	Fox River via drainage ditch	None
S & M Rotogravure Service, Inc.	Waukesha	15A	Specific	0042188	06-30-89	2754	Commercial printing - gravure	Deer Creek via drainage ditch	None None
S & R Egg Farms, Inc Genesee	Waukesha	16A	Specific	0056600	06-30-91	6252	Chicken eggs	Groundwater discharge	None
S & R Egg Farms, Inc LaGrange	Walworth	17A 18A	Specific	0056537 0038938	06-30-91 03-31-92	0252 3317	Chicken eggs	Groundwater discharge Honey Creek via storm sewer	2, 4, 5, 1
Trent Tube DivCrucible Materials	Walworth		Specific	0038938	12-31-92	1442	Steel pipe and tubes	Sussex Creek Via storm sewer	2, 4, 3, 1
Vulcan Materials Co Sussex	Waukesha	19A 20A	Specific	0001198		1442 4953	Construction sand and gravel Refuse systems	Sussex Creek Muskego Lake via unnamed trib.	1, 8
Waste Mgmt. of WI: Metro Landfill	Milwaukee		Specific	0045250	12-31-90	0.000		Muskego Lake via unnamed trib. Pewaukee River	None
Wauk. County Trans. DeptEmissions	Waukesha	21A	Specific	0047953	06 30 03	9512 3519	Air, water, solid waste management Internal combustion engines	Fox River	None
Waukesha Engine Div Dresser Ind.	Waukesha	22A	Specific		06-30-92	500,000	Internal combustion engines		None None
WI Electric, Hwy. 59 Landfill 918	Waukesha	23A	Specific	0047686 0048038		3324		Groundwater discharge	None
Wisconsin Precision Casting Corp.	Walworth	24A	Specific	0048038		3324	Steel investment foundries	Honey Creek via drainage ditch	None

Footnotes follow.

Table V-10 (cont'd)

a Table V-10 includes 84 known, permitted sources of wastewater discharging to the Fox River and its tributaries, or to the groundwater system in the Fox River watershed. As of 1993, there were 116 known, permitted point sources of water pollution.

b See Map V-5, Point Sources of Pollution Other Than Sewage Treatment Facilities in the Fox River Watershed: 1990.

^c The number code refers to the following treatment systems:

1. Gravity sedimentation

2. Oil and grease removal

3. Multimedia filters

4. Pressure filters

5. Tube/Plate settlers

6. Land disposal - general

7. Stabilization lagoon

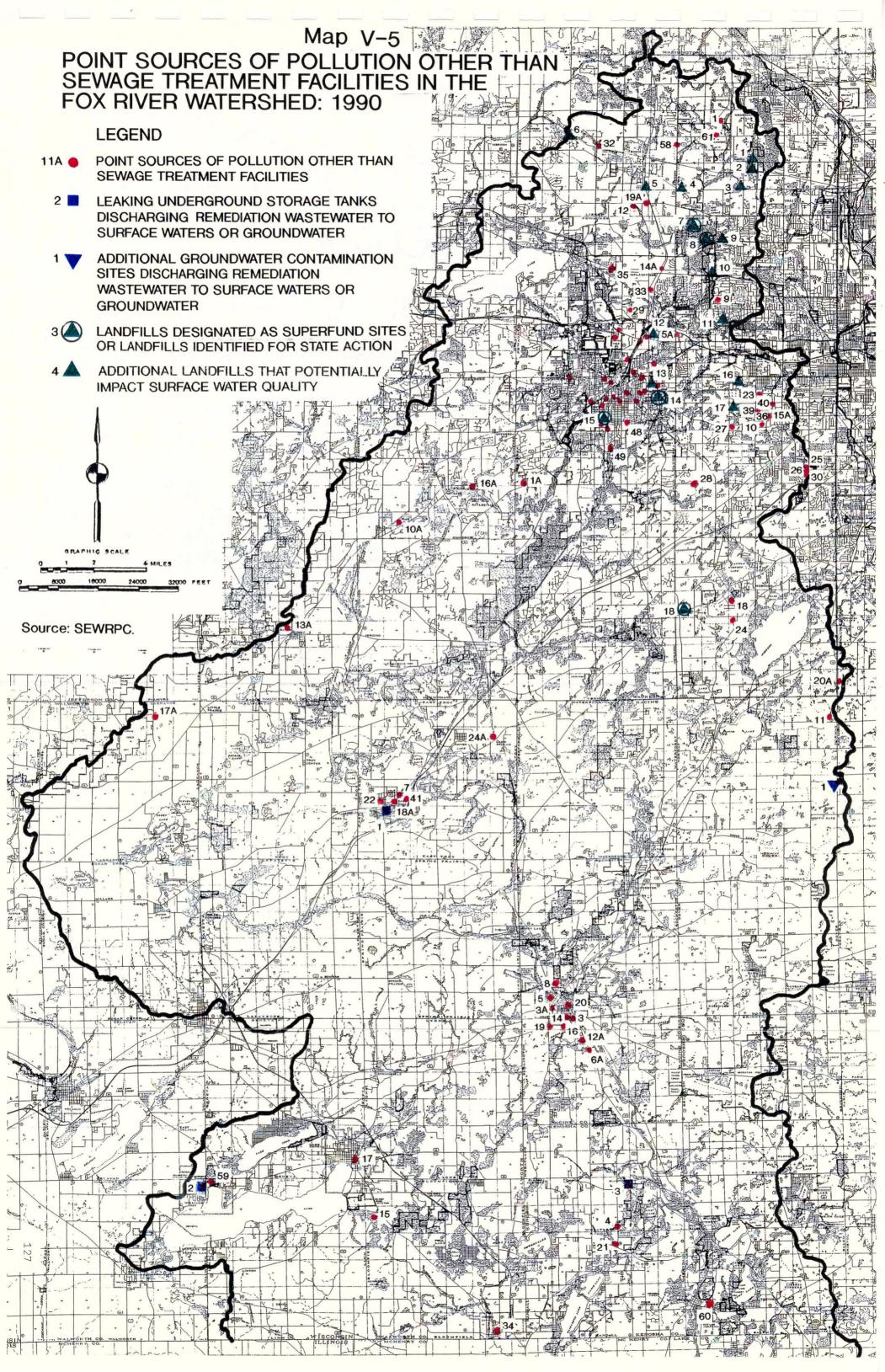
8. Holding pond

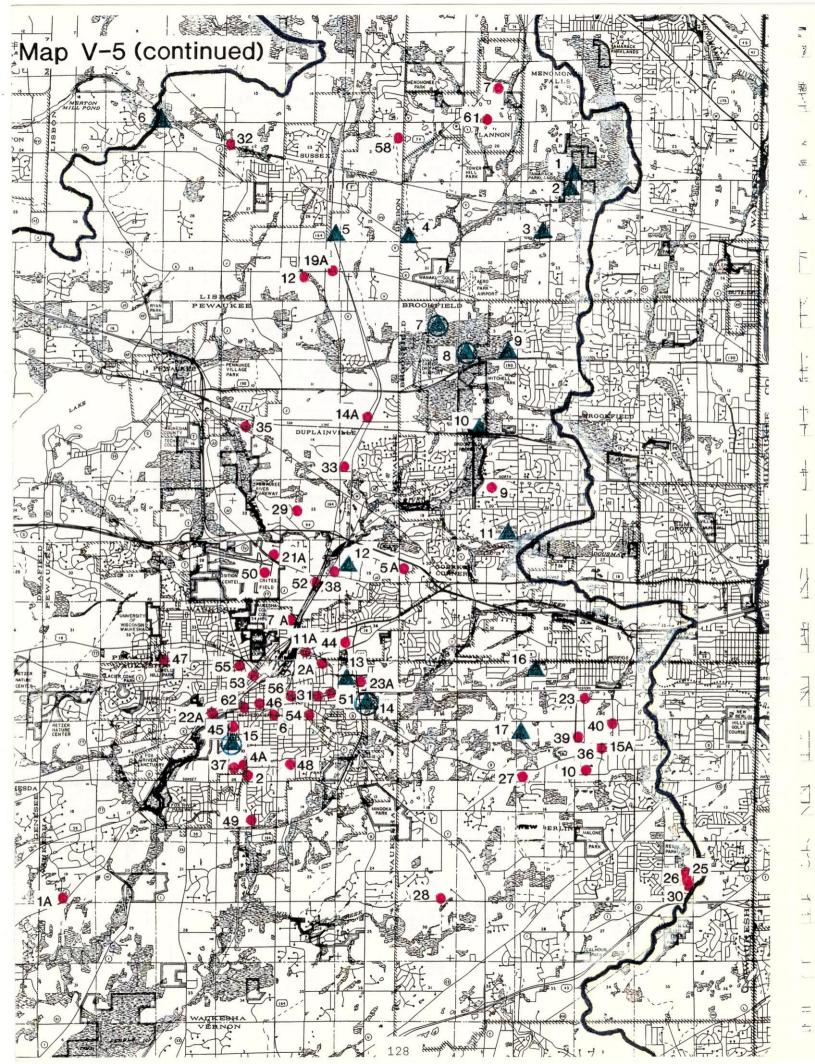
9. Spray Irrigation

10. Absorption pond

11. ACT sludge extended air

12. Sand filters


13. Chlorination


14. Chemical conversion/addition

d Permitted as Leaking Underground Storage Tank (LUST) remediation sites discharging to surface or ground waters as of 1990. As of 1993, there were four additional Leaking Underground Storage Tank remediation sites discharging to surface or ground waters in the Fox River Watershed. See Table V-12, "Miscellaneous Potential Pollution Sources in the Fox River Watershed: 1990", for map identification number.

e Reported as a ground water contamination site as of 1990. Remediation waste water from site is permitted to discharge to surface water. See Table V-12, "Miscellaneous Potential Pollution Sources in the Fox River Watershed: 1990", for map identification number.

Source: Wisconsin Department of Natural Resources and SEWRPC.

urban enclave population and the distance to the nearest planned year 2010 sewer service area are listed in Table V-11. One of these areas is served by a private sewage treatment plant. As shown in Table V-11, approximately one-half of these areas--37 of the 72 areas--are covered by soils and have lot sizes which indicate a high probability of meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. The remaining areas have soils and lot sizes having a high probability of not meeting these criteria and alternative wastewater disposal methods should be considered for incorporation into public sanitary sewer service areas. Many of these latter areas are located adjacent to lakes where alternative forms of wastewater management should be investigated during the planning period including the urban enclaves around Genesee Lakes, Lilly Lake, Powers Lake, Benedict-Tombeau Lake, Pell Lake, Booth Lake, Beulah Lake, North Lake, and Honey Lake. Generally, for all of the remaining enclaves located in areas where soils are not considered to meet current criteria, it is recommended that an inspection and maintenance program for the onsite sewage disposal system be instituted and that further site-specific planning to determine the best wastewater management practices be conducted at such time as significant problems become evident.

Miscellaneous Potential Pollution Sources

<u>Landfills</u>: Landfills in the Fox River watershed, including those currently abandoned, have the potential to affect water quality through release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and can be subsequently transported to surface waters.

There are currently seven active landfills and 170 known abandoned landfills located in the Fox River watershed. Two of the abandoned landfills, the Master Disposal Service Landfill in the Town of Brookfield and the Muskego Sanitary Landfill located in the City of Muskego, were designated as high priority sites for the U.S. Environmental Protection Agency Superfund program which provides for the identification, evaluation, and clean up of hazardous waste sites. Three of the abandoned landfills, the City of Waukesha Sanitary Landfill located in the City of Waukesha, the Anchor Coatings, Inc. Landfill and the Martha Zaretzke Landfill, both located in the Town of Brookfield, have been identified for consideration under State programs for possible clean-up action due to the potential for groundwater and/or surface water contamination. The location of these and other landfills which are potentially impacting surface or groundwater in the Fox River watershed are shown on Map V-5 and listed in Table V-12.

In August 1984, the Master Disposal Service Landfill was designated as a high priority site for the Superfund program. The landfill, operational from 1962 until 1983, received various municipal and industrial wastes, including hazardous waste. Oil and other debris were reportedly released into channels at the site which drain into the Fox River. Analyses conducted in 1990 and 1991 to determine impacts of the landfill on surface water found significantly elevated levels of iron downstream of the site in the main drainage channel and in the Fox River. Levels of cadmium exceeding Federal and State ambient water quality criteria were also detected downstream of the site, while no cadmium was detected upstream of the site. Elevated levels of some volatile organic compounds and

Table V-11

EXISTING URBAN DEVELOPMENT OUTSIDE OF THE PLANNED PUBLIC SANITARY SEWER SERVICE AREA IN THE FOX RIVER WATERSHED: 2010

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)	
	Waukesha County			
1	Village of Menomonee Falls-Section 5 ^c	310	0.5	
2	Village of Menomonee Falls-Section 6 ^c	115	0.5	
3	Town of Lisbon-Section 15	134		
4	Town of Lisbon-Section 21	169	0.5	
5	Town of Lisbon-Section 20	347	1.0	
6	Town of Lisbon-Sections 28 and 29	717	0.5	
7	Town of Lisbon-Section 35°	138	0.3	
8	Town of Lisbon-Section 31 ^c	309	0.3	
9	Town of Lisbon-Section 32 ^c	238	0.5	
10	Town of Pewaukee-Sections 1 and 12 ^c	258		
11	Town of Delafield-Sections 26 and 27°	423		
12	City of New Berlin-Section 6°	486		
13	City of New Berlin-Section 5 ^c	225		
14	City of New Berlin-Section 7c	113		
15	Town of Genesee-Sections 10 and 11c	917	0.5	
16	Town of Genesee-Sections 16 and 21	298	1.1	
17	Town of Genesee-Section 15	130	1.2	
18	Town of Genesee and Town of Waukesha Sections 13, 18, and 19	1398		
19	City of New Berlin-Section 18	312		
20	City of New Berlin-Section 17 ^c	389	1.0	
21	City of New Berlin-Section 16 ^c	323	0.5	

Table V-11 (cont'd)

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
22	Town of Genesee-Sections 19 and 30c	566	2.7
23	Town of Genesee-Section 27	177	2.8
24	Town of Genesee-Section 25c	102	1.7
25	Town of Waukesha-Section 21	447	
26	Town of Waukesha-Section 26	378	1.0
27	Town of Waukesha-Section 26	150	1.0
28	City of New Berlin and Town of Waukesha-Sections 19 and 24 ^c	698	0.5
29	City of New Berlin-Sections 28, 29, 32, 33, and 34	1973	
30	Town of Genesee-Section 35	330	3.0
31	Town of Waukesha-Section 33	100	1.6
32	Town of Waukesha-Section 35°	121	2.5
33	Town of Waukesha-Section 36	138	1.6
34	City of New Berlin-Section 31	774	1.0
35	Town of Mukwonago-Section 4 ^c	113	3.0
36	Town of Mukwonago-Sections 5, 7, 8, 17, and 18	1545	1.7
37	Town of Mukwonago-Sections 9, 10, 15, 16, and 21	1791	0.5
38	Town of Vernon-Sections 18 and 19 ^c	732	
39	Town of Vernon-Sections 8 and 17	719	1.3
40	Town of Vernon-Sections 3, 4, and 10^{c}	1725	2.6
41	Town of Vernon-Section 2 ^c	302	2.2
42	Town of Vernon-Sections 11 and 14	331	1.6
43	Town of Vernon-Sections 1 and 12	667	
44	Town of Vernon-Sections 13, 14, 23, and 24	1852	0.7
45	Town of Vernon-Section 15°	124	2.6

Table V-11 (cont'd)

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)		
46	Town of Vernon-Section 27	176	2.0		
47	Village of Eagle-Section 22	1130	1.3		
48	Town of Eagle-Section 23	153	0.8		
	Walworth County				
49	Town of Troy-Section 3°	133	1.0		
50	Town of East Troy-Sections 4, 5, 8, 9, 10, and 18°	817			
51	Town of Troy-Section 15	122	1.5		
52	Town of Sugar Creek and Town of LaGrange-Sections 1, 25, 26, 35, 36°	595	3.5		
53	Town of Sugar Creek-Section 5°	118	4.2		
54	Town of Sugar Creek-Sections 1, 2, and 11	736	2.1		
55	Town of Lafayette-Section 19	190	0.5		
56	Town of Spring Prairie-Section 22	114	2.3		
57	Town of Spring Prairie and Town of Rochester-Sections 13 and 18°	499	1.0		
58	Town of Lyons-Section 1°	62	0.5		
59	Town of Lyons-Sections 7 and 8°	534			
60	Town of Geneva-Section 34	180	1.0		
61	Town of Bloomfield-Section 2°	118	2.6		
62	Town of Bloomfield-Sections 14, 15, 16, 21, and 22	1894	1.5		
63	Town of Linn-Section 28	115	2.3		
	Racine County				
64	Town of Burlington-Sections 17, 18, 19, and 20°	1651	1.7		
	Kenosha County				
65	Town of Wheatland-Section 25 ^d	516	2.5		

Table V-11 (cont'd)

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)	
66	Town of Wheatland-Section 34°	131	2.3	
67	Town of Wheatland-Section 3°	132	2.0	
68	Town of Wheatland and Town of Salem- Sections 1, 7, and 12°	579		
69	Town of Wheatland-Section 11°	561	1.3	
70	Town of Randall-Section 17	158		
71	Town of Randall and Town of Wheatland and Town of Bloomfield-Sections 7, 13, 17, 18, 19, and 24	1068	0.5	
72	Town of Randall-Section 35	256	0.2	
	Total	36,689		

a See Map V-4

Source: SEWRPC.

^b Urban development is defined in this context as concentrations of urban land uses within any given U.S. Public Land Survey quarter section that has at least 32 housing units, or an average of one housing unit per five gross acres, and is not served by public sanitary sewers.

^c Based upon consideration of soils, lot sizes, and density, further site-specific planning should be conducted during the planning period to determine the best means of providing for wastewater management.

d Served by a private sewage treatment plant.

Table V-12
MISCELLANEOUS POTENTIAL POLLUTION SOURCES IN THE FOX RIVER WATERSHED: 1990

Map ID Number ^a	Landfills Indicated to Be Potential Pollution Sources	Civil Division Location	Surface Water Potentially Impacted
1 2 3 4	Industrial Waste Corp. Landfill ^b Mill Lands, Inc. Landfill ^b Unnamed landfill - Village of Menomonee Falls Section 28 ^b Unnamed landfill - Village of Menomonee Falls Section 30 ^b Vulcan Materials Landfill ^b	Waukesha County: Village of Menomonee Falls Village of Menomonee Falls Village of Menomonee Falls Village of Menomonee Falls Town of Lisbon	Fox River Fox River Fox River Sussex Creek
6 7° 8d 9 10 11 12 13 14° 15° 16	Milwaukee Road Landfill ^b Martha Zaretzke Landfill Master Disposal Sanitary Landfill Fly ash disposal site ^b Unnamed landfill-City of Brookfield Section 17 ^b United Waste Systems Landfill ^b Johnson Sand and Gravel Landfill ^b Unnamed landfill-Town of Waukesha Sec. 1 ^b Anchor Coatings, Inc. Landfill City of Waukesha Sanitary Landfill Industrial Waste Corp. Landfill ^b Bodus Landfill ^b , e	Town of Lisbon Town of Brookfield Town of Brookfield City of Brookfield City of Brookfield City of Brookfield Town of Pewaukee Town of Waukesha City of Waukesha City of Waukesha City of New Berlin City of New Berlin	Sussex Creek Fox River Fox River Fox River Poplar Creek Fox River Fox River Fox River Poplar Creek Fox River
18 ^d	Muskego Sanitary Landfill Leaking Underground Storage Tank Sitesf,8	City of Muskego	Receiving Water
1 2 3	Trent Tube-Division of Crucible Materials Herb's Service Uhen's Garage	Village of East Troy, Walworth County Village of Williams Bay, Walworth County Town of Wheatland,	Honey Creek Lake Geneva groundwater
	Additional Groundwater Contamination Sites ^f ,h	Kenosha County	Receiving Water
1	West Shore Pipeline Company	Town of Norway, Racine County	Wind Lake Drainage Canal tributary

^a Refers to Map V-5, Point Sources of Pollution other than Sewage Treatment facilities in the Fox River Water-shed: 1990.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b As indicated in Wisconsin Department of Natural Resources, Upper Fox River Priority Watershed Stream Appraisals, February 1993.

^C Identified for State action.

d Superfund site.

e Bodus Landfill was determined to have collected mixed industrial wastes during its operation and is considered by the U.S. Environmental Protection Agency to have potentially accepted hazardous wastes. A comprehensive site assessment has not yet been completed.

f Includes those sites which are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters.

g As of 1993, there were three additional leaking underground storage tank sites in the Fox River watershed whose remediation discharges were permitted under the Wisconsin Pollutant Discharge Elimination System: Horn Oil Company in the Village of Mukwonago, Waukesha County which is permitted to discharge to Vernon Marsh via a drainage ditch; Burlington Consumer Cooperative in the City of Burlington, Racine County which is permitted to discharge to the Fox River; and Genesee Aggregate Corporation in the Village of Sussex, Waukesha County which is permitted to discharge to groundwater.

h As of 1993, there was one additional groundwater contamination site whose remediation discharges were permitted under the Wisconsin Pollutant Discharge Elimination System: STS Consultants LTD-Waukesha Foods Warehouse in the City of Waukesha, Waukesha County which is permitted to discharge to the Fox River.

inorganic compounds were also found in groundwater downgradient of the site. Remedial actions are currently underway at this landfill site.

The Muskego Sanitary Landfill was designated as a Superfund site in September 1985. During its operation from 1954 to 1981, household, municipal, industrial, and commercial wastes were accepted at the site, including waste oils and paint products. Samples taken from on-site monitoring wells and residential wells near the site indicated contamination of groundwater from volatile organic compounds and other chemical contaminants. As permanent surface water features are not present on or near the site, impacts to surface water are considered minimal. Remediation efforts for the Muskego Sanitary Landfill are currently underway.

Leaking Underground Storage Tanks: Leaking Underground Storage Tanks in the Fox River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground water. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1990, there were three known, permitted leaking underground storage tank sites that were discharging remediation waters to surface waters and one known, permitted leaking underground storage tank discharging remediation waters to groundwater in the Fox River watershed, as indicated in Table V-12 and shown on Map V-5. As of 1993, there were three additional leaking underground storage tanks in the Fox River watershed whose remediation wastewaters were permitted to discharge to surface or ground waters, as shown in Table V-12.

As of 1993, there were 365 additional leaking underground storage tanks in the Fox River watershed identified by the DNR that were not discharging remediation wastewater directly to surface or ground waters. While there is little evidence to document the impact of these individual point sources on water quality within the watershed, it can reasonably be assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters. As of 1990, there was one permitted site discharging to surface water, as indicated in Table V-12. As of 1993, there was one additional such site known to be discharging to surface water, as indicated in Table V-12.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from

livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Fox River watershed, the initial plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control, onsite sewage disposal system management, and streambank erosion control. The plan recommended that additional nonpoint source controls be provided in certain areas. Within the urban areas of the Big Muskego, Denoon, Little Muskego, Pewaukee, Waubeesee, and Wind Lake drainage areas, the plan recommends a reduction of nonpoint source pollution by about 50 percent. Within the rural areas of the Big Muskego, Center, Denoon, Eagle Spring, Little Muskego, Pewaukee, and Wind Lake drainage areas, the plan recommends a reduction of about 75 percent. Finally, in the rural areas of the Benedict/Tombeau, Dyer, Kee Nong Go Mong, Lulu, North-Walworth, Pell, Powers, and Waubeesee Lake drainage areas, the plan recommends a reduction in nonpoint source pollution of about 50 percent.

In 1970, the Commission prepared a comprehensive plan⁷ for the Fox River watershed. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas and for rural nonpoint source management planning in the watershed.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Fox River watershed through a variety of local and State regulations and programs. These programs include the regulation of onsite sewage disposal systems under programs currently administered by Kenosha, Racine, Walworth, and Waukesha Counties in the unincorporated areas and by the local units of government in incorporated areas served by onsite systems. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of newer systems, and for problem resolution of failing systems where they are identified. Significant progress has also been made in the area of construction site erosion control. As of January 1993, Waukesha and Walworth Counties; the Cities of Brookfield, Muskego, New Berlin, and Waukesha; the Villages of Fontana on Geneva Lake and Williams Bay; and the Town of Delafield had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities. The Villages of Big Bend, North Prairie, Silver Lake, and Sussex, and the Towns of Lisbon, Norway, Mukwonago, and Salem also had ordinances providing for construction site erosion control requirements which were developed independently from the model.

With regard to rural nonpoint source pollution controls, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations. This program is administered by the Wisconsin Department of Natural Resources, which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program has been used in a few selected cases in

⁷SEWRPC Planning Report No. 12, <u>A Comprehensive Plan for the Fox River Water-shed</u>, February 1970.

the Fox River watershed. Other programs, such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others are utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have positive water quality impacts.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. levels are defined as soil loss tolerances or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conserva-Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Kenosha, Racine and Waukesha Counties. In addition, an agricultural soil erosion control plan for Walworth County was prepared by a consultant. Thus, these plans have been prepared for all rural areas of the Fox River watershed in Southeastern Wisconsin. Those plans identify priority areas for cropland soil erosion control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While the local programs described above have probably resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program was established in 1978 by the Wisconsin State Legislature and provides cost-sharing funds for an individual project, or land management practice, to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources.

As of 1993, there were two priority watershed projects⁸ underway in the Fox River watershed. These projects are the Upper Fox River priority watershed project⁹ and the Little Muskego, Big Muskego, and Wind Lakes priority watershed project.¹⁰

Little Muskego, Big Muskego, and Wind Lake Priority Watershed Project: The Little Muskego, Big Muskego, and Wind Lakes Priority Watershed Project was designated a "priority watershed" in 1991. Planning for the Little Muskego, Big Muskego, and Wind Lakes priority watershed project was completed in 1993, and implementation of practices began in January 1994 and will continue for eight years. Rural elements of the Little Muskego, Big Muskego, Wind Lake priority watershed project are administered by both the Waukesha and Racine County Land Conservation Committees. Urban elements of the project are being implemented by other local units of government including the Cities of Muskego and New Berlin, the Town of Norway, the Big Muskego/Bass Bay Lake District, the Little Muskego Lake District, and the Wind Lake Management District.

The Little Muskego, Big Muskego, and Wind Lake priority watershed project established pollutant reduction goals of 55 percent for sediment and 60 percent for phosphorus. The program had no specific reduction goal for metals and other toxic materials from urban runoff. However, the plan indicated that controls of these materials would be achieved by the practices needed to meet reductions for sediment and phosphorus. The loading reductions noted above were based upon further lake modeling analyses work conducted by the Wisconsin Department of Natural Resources staff for Big Muskego and Little Muskego Lakes and upon the completed modeling work conducted by the Regional Planning Commission for Wind Lake. The nonpoint source pollutant reduction goals set forth in the Little Muskego, Big Muskego, and Wind lakes priority watershed project are similar to those established in the initial regional water quality management plan.

To achieve the recommended pollutant reduction goals, the Little Muskego, Big Muskego, and Wind Lakes priority watershed plan included recommendations and funding eligibility for the following projects:

Rural Land Management --

- Provision of streambank erosion control practices for fourteen specific sites with a total of about 6,900 feet of eroding streambank. Upon full implementation, the installation of erosion control measures would reduce the sediment loading from streambanks in the study subwatershed by about 60 percent.
- Preparation of detailed conservation plans to develop the best management practices for about 2,000 acres of cropland. Upon full implementation, these practices would reduce the sediment loading from croplands in the study subwatershed by about 60 percent.

⁸During 1994, a third priority watershed project was initiated for the Camp-Center Lakes subwatershed.

⁹Wisconsin Department of Natural Resources, <u>A Nonpoint Source Pollution Control Plan for the Upper Fox River Priority Watershed Project</u>, November 1993.

¹⁰Wisconsin Department of Natural Resources, <u>A Nonpoint source Pollution Control Plan for the Muskego/Wind Lakes Priority Watershed Project</u>, October 1993.

• Installation of facilities and management practices for two barnyards representing a reduction of about 87 percent of the phosphorus loading from barnyards in the study subwatershed.

<u>Urban Land Management</u>--The plan generally recommends to municipalities the initial development of a "core program" of urban land management practices. This core program provides for: implementation of construction erosion controls; the institution of public information and education programs on nonpoint source pollution abatement; and the institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers. The plan further recommends the development of a "segmented program" providing for stormwater management planning, possible stormwater ordinance requirements, streambank stabilization, street sweeping, and the design and construction of management practices. Specific core and segmented program elements include:

- Provision of construction site erosion control for about 900 acres of new urban development which is expected in the watershed during the planning period. Implementation of such controls should reduce the sediment and phosphorus loading from construction sites up to 75 percent.
- Conduct information and education programs to educate policy makers, elected officials, and citizens about urban and rural nonpoint pollution.
- The preparation of detailed stormwater management plans to determine the best practices to be installed in the urban areas. These plans address water quantity and quality problems in developed and developing urban areas.

<u>Upper Fox River Priority Watershed Project</u>: The Upper Fox River priority watershed project was designated a "priority watershed" in 1990. Planning for the Upper Fox River priority watershed project was completed in 1993, and implementation of practices began in January 1994 and will continue for eight years.

Rural elements of the Upper Fox River priority watershed project are administered by the Waukesha County Land Conservation Committee. Urban elements of the project are being administered by the Cities of Brookfield, New Berlin, and Waukesha; the Villages of Hartland, Lannon, Menomonee Falls, Pewaukee, Sussex, and Wales; the Towns of Brookfield and Pewaukee; and the Pewaukee Lake Sanitary District.

The Upper Fox River priority watershed project established nonpoint source pollutant reduction goals to obtain sediment loading reductions and phosphorus reductions ranging from 49 to 75 percent for the subareas considered. These loading reductions were based primarily upon field inventories of the streams in the Upper Fox River watershed. Observations were made of the sediment imbeddedness and biological conditions of each stream and a corresponding judgement was made with regard to the reductions needed in the stream sediment loading for restoring biological uses. In addition, the pollutant reduction goals were based upon a qualitative consideration of the toxicity of metals in urban runoff.

The nonpoint source pollutant reductions set forth in the Upper Fox River priority watershed plan are consistent with the recommendations of the initial

plan for the area tributary to Pewaukee Lake. For the remaining areas of the Upper Fox River watershed, the priority watershed project reduction goals exceed those of the initial areawide water quality management plan.

The recommendations of the priority watershed plan for the rural areas are plans generally low in cost and are generally consistent with the County soil erosion control plans and other County land conservation programs. Certain components of the plan recommendations for the urban and urbanizing areas such as construction erosion control, are expected to be readily implemented. However, other components of the recommended plan such as retrofitting urban land management practices in developed areas are costly and full implementation will be difficult.

To achieve these pollutant reduction goals, the Upper Fox River priority watershed project includes recommendations and funding eligibility for the following rural and urban nonpoint source control measures. The levels of nonpoint source reduction used to develop the cost-eligible practices are generally similar to those recommended in the initial plan for the area tributary to Pewaukee Lake. However, higher levels of reduction are used in the priority watershed plan than were recommended in the initial plan for the remainder of the Upper Fox River subwatershed. The plan also recommended that further detailed stormwater management planning and assessments be carried out as part of the subsequent plan implementation actions.

Rural Land Management --

- Provision of fencing and other streambank erosion control practices for about 36,000 feet of eroding streambank. Upon full implementation, the installation of erosion control measures would reduce the sediment loading from streambanks in the study subwatershed by about 75 percent.
- Formation of detailed conservation plans to develop the best management practices for about 1,300 acres of cropland. Upon full implementation, these practices would reduce the sediment loading from croplands in the study subwatershed by about 50 to 70 percent.
- Installation of management practices for 17 barnyards representing a reduction of about 69 percent of the phosphorus loading from barnyards in the study subwatershed.
- Installation of facilities and management practices for 16 livestock operations to change manure spreading practices. This will reduce the phosphorus loading from such operations by about 70 percent.
- Improved nutrient and pesticide management for eligible cropland.

<u>Urban Land Management</u>--The plan generally recommends to municipalities the initial development of a "core program" of urban land management practices. This core program provides for implementation of construction erosion controls; the institution of a public information and education program on nonpoint source pollution abatement; and institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers. The plan further recommends the development of a "segmented program" providing for the stormwater management planning, possible stormwater ordinance requirements, streambank stabilization, street sweeping,

and the design and construction of management practices is also recommended. Specific core and segmented programs include:

- Provision of construction site erosion control for about 6,000 acres of new urban development which is expected in the watershed during the planning period. Implementation of such controls should reduce the sediment and phosphorus loading from construction sites by about 70 percent.
- Provision of nonpoint source control practices on about 5,400 acres of existing urban land and about 6,000 acres of new urban land are targeted for nonpoint source control. Possible urban nonpoint source pollution control practices include wet detention ponds, infiltration devices, street sweeping, and public information and education programs to develop good housekeeping practices.
- Preparation of detailed stormwater management plans to determine the best practices to be installed in the urban areas. These plans address water quantity and water quality problems in developed and developing urban areas

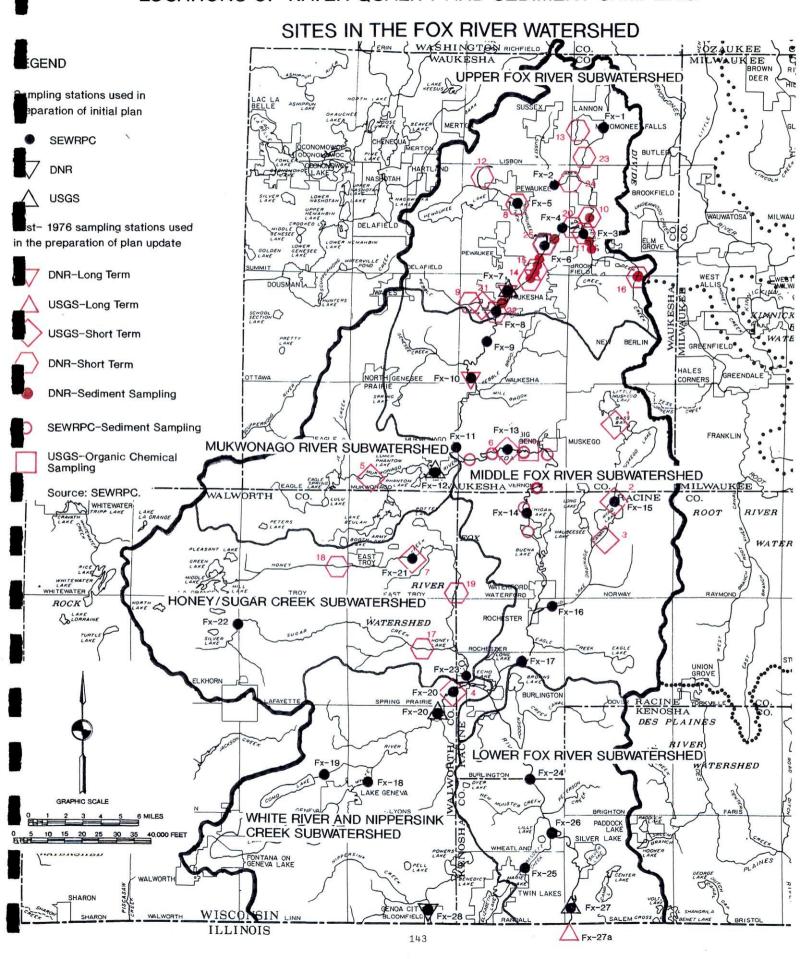
Current Plan Recommendations: It is recommended that construction site erosion control, onsite sewage system management, and streambank erosion controls, plus land management practices designed to provide about a 25 percent reduction in nonpoint source pollutant loadings be carried out throughout the Fox River watershed. Additional nonpoint source controls are recommended to be provided in certain areas to provide from about 50 to 75 percent reduction in nonpoint Within the urban areas in the drainage areas of Denoon, source pollution. Little Muskego, Pewaukee, Waubeesee, and Wind Lakes, it is recommended that additional practices providing for levels of control for about a 50 percent reduction in nonpoint source loadings be provided. Also, it is recommended that additional practices providing for about a 50 percent reduction in nonpoint source pollutant loadings be provided in the Benedict/Tombeau, Dyer, Kee Nong Go Mong, Lulu, North-Walworth, Pell, Powers, and Waubeesee Lake drainage areas and about a 75 percent reduction in nonpoint source loading from rural lands be provided in the Center, Denoon, Eagle Spring, and Pewaukee drainage areas. addition, it is recommended that nonpoint source control measures to achieve a 55 percent reduction in sediment and a 60 percent reduction in phosphorus be carried out in the Big Muskego, Little Muskego, and Wind Lakes drainage area. It is further recommended that the levels of control set forth above as developed for the urban and urbanizing areas under the Upper Fox River priority watershed project, be utilized as the initial basis for stormwater management planning and project eligibility under the State priority watershed program. These levels of reduction are recommended to be refined based upon subsequent detailed stormwater management planning and based upon additional monitoring and quantitative analyses which are recommended to be conducted during the plan implementation period. These data and consideration of estimated costs and available funds for the urban practices are recommended to be evaluated to Such refinement would include define the recommended final level of control. further consideration of toxics reduction requirements.

The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most cost-effective manner. In this regard, additional portions of the Fox River watershed should be included in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in order to make state cost-sharing funds and related programs available for nonpoint source pollution control measures. addition, detailed stormwater management plans in urban areas and farmland management plans in rural areas should be conducted to determine the practices to be installed. The current priority ranking of watersheds for inclusion in that program is documented in a memorandum¹¹ prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included the Fox River watersheds in the high category, indicating that inclusion in the program will be possible in the future, when the existing planning projects are completed, or additional funds and staff become available within the Department of Natural Resources.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation


While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.

As of 1993, long-term monitoring has been carried out in the Fox River watershed on a sustained basis by the Wisconsin Department of Natural Resources (DNR) at two stations located on the Fox River main stem, one at CTH I just south of the City of Waukesha and one at Prairie Avenue in the City of Waukesha; and by the U.S. Geological Survey at one station located on the Fox River main stem at Russell Road about 1.5 miles south of the Wisconsin-Illinois State line, as shown on Map V-6. In addition, during 1991 and 1992, water quality and biological assessment monitoring has been carried out in the Upper Fox River subwatershed by the Wisconsin Department of Natural Resources. Short-term monitoring has also been conducted at 27 sites by the DNR during the period 1988 through 1993, as described later in this chapter. Some of these water quality sampling surveys were limited to one sample and only a few basic parameters were analyzed as dictated by the specific intended use of the surveys. However, data collected at about 25 sites, as shown on Map V-6, was considered to be potentially useful for review along with the long-term monitoring data to characterize the water quality.

Currently, water quality monitoring is being carried out on several lakes as part of the DNR Self-help Program, including Benedict/Tombeau, Beulah, Big Muskego, Bohner, Booth, Camp, Center, Cross, Eagle, Eagle Spring, Elizabeth, Geneva, Lilly, Little Muskego, Mary, Pell, Pleasant, Powers, Silver Lakes (Kenosha County), Spring Lake (Waukesha County), Upper Phantom and Waubeesee Lakes and the Waterford Impoundment (Racine County). In addition, limited additional water quality monitoring has been carried out on some of the major

¹¹See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Nonpoint Source Management Purposes in Southeastern Wisconsin: 1993."

LOCATIONS OF WATER QUALITY AND SEDIMENT SAMPLING

lakes in the watershed by the U.S. Geological Survey, the Wisconsin Department of Natural Resources, local lake management agencies, and the Southeastern Wisconsin Regional Planning Commission.

Water resource appraisal monitoring was conducted in 1990 for the Upper Fox River watershed as part of the Upper Fox River Priority Watershed Project. Future evaluation monitoring is anticipated to be conducted for the Upper Fox River watershed as part of the evaluation phase of the priority watershed project. The Department has placed increased emphasis on monitoring and assessment of surface water quality¹² in all watersheds and now envisions carrying out a one-year intensive monitoring program in the Fox River watershed about once every five to seven years.

As part of the process of reviewing and evaluating public sewage treatment plant effluent requirements for meeting water quality standards, the DNR is currently conducting a study to assess the total maximum daily pollutant loadings from both point source and nonpoint sources which would desirably be discharged to the Upper Fox River in the reaches of the River most directly affected by the Sussex, Brookfield, and Waukesha sewage treatment plants. The analysis is being conducted to estimate the total allowable loadings to the Upper Fox River system based upon established dissolved oxygen and phosphorus standards. The total maximum daily loads calculated are anticipated to potentially affect the permitting of point sources of pollution and the level of control recommended to be achieved through nonpoint source pollution abatement programs in the watershed.

Current Plan Recommendation

Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the Wisconsin Department of Natural Resources and U.S. Geological Survey at stations Fx-7, Fx-10, and Fx-27a on a continuing long-term basis. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at these three stations and at 14 selected additional stations, with three stations located on the main stem of the Fox River and one station each located on Sussex Creek, Genesee Creek, Poplar Creek, Honey Creek, Sugar Creek, the Pewaukee River, the Mukwonago River, the White River, the Wind Lake Drainage Canal, Nippersink Creek, and Bassett Creek. It is recommended that this program be conducted within the next five to seven years and repeated at approximately five- to seven-year intervals. These recommendations can be coordinated with and are consistent with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five- to seven-year rotating cycle.

The lake monitoring program for each lake should consist, at a minimum, of one intensive monitoring effort to establish baseline conditions and of the long-term participation in the DNR Self-help Monitoring Program that can be conducted by citizen-volunteer residents on the lakes. As noted earlier, several lakes already participate in this program. For each lake, it is recommended that the monitoring program should be expanded to establish current conditions during a

¹²Wisconsin Department of Natural Resources, <u>Surface Water Monitoring Strategy</u>, WR299-92, 1992.

two-year or more period of intensive monitoring followed by a continual long-term monitoring program designed to detect changes in water quality conditions. In this regard, the monitoring program should be tailored to provide data needed for preparation or updating of comprehensive lake management plans for the major lakes in the watershed. Such programs are being undertaken by the U.S. Geological Survey on Lakes Denoon, Waubeesee, Powers, Big Muskego, Kee Nong Go Mong, Eagle Spring, Little Muskego, Eagle and Potter, and the DNR under the Long-Term Trends Program on Browns and Pewaukee Lakes. The water quality sampling program should be carried out at spring turnover (April) and during June, July, and August, during two subsequent years, with samples collected weekly.

LAKES MANAGEMENT PLAN ELEMENT

Existing Condition and Status of Plan Implementation

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of the major lakes in the Fox River watershed and for consideration of other lake management measures. Institutional recommendations were also made for the formation of new special purpose units of government where none exist to carry out the plan implementation measures. For each major lake in the Fox River watershed, the initial plan recommended that a comprehensive lake management plan be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. As noted in the previous section, the preparation of such a comprehensive plan requires that supporting water quality monitoring programs be established.

The status of lake management, protection, and rehabilitation efforts on and around the major lakes in the Fox River watershed is discussed for each major lake in the following paragraphs:

<u>Army Lake:</u> No specific plan implementation activities are documented for this lake as of 1993. The urban development surrounding the lake is recommended to be provided with a public sanitary sewer system.

<u>Benedict/Tombeau Lakes:</u> Both lakes are enrolled in the DNR Self-help Monitoring Program and are subject to on-going water clarity monitoring by citizen volunteers.

Beulah Lake: The Town of East Troy Sanitary District No. 1 is actively involved in operating an aquatic plant harvesting program on the lake. Incipient growths of Myriophyllum spicatum, Eurasian water milfoil, have been observed and were targeted for specific control measures including manual controls, sediment covering, and site specific chemical treatments beginning in 1993 when a Eurasian Water Milfoil Plan was completed for the Lake. The Sanitary District also participates in the DNR Self-help Monitoring Program and maintains dissolved oxygen and temperature profiles for five sample sites on the Lake.

<u>Big Muskego Lake:</u> The Big Muskego/Bass Bay Protection and Rehabilitation District was formed of properties around the Lake and has conducted lake water quality studies with the assistance of a Chapter NR 119 Lake Management Planning Grant. Water level manipulations have been recommended in the Wind Lake Manage-

ment Plan which is currently being implemented. ¹³ The District is participating in the DNR Self-help Monitoring Program and has an active public information role. The lake is included in the Muskego-Wind Lakes Priority Watershed Project planning area ¹⁴ and, together with Wind Lake, is the subject of a U.S. Environmental Protection Agency Clean Lakes grant to partially fund the costs of an anticipated drawdown pursuant to the Big Muskego Lake management elements of the Wind Lake Management Plan. ¹⁵ The area adjacent to Bass Bay on the northern shore of the Lake is currently provided with a public sanitary sewer system with that system being connected to the Milwaukee Metropolitan sewerage system; the local sewage treatment plant which historically discharged to the lake was abandoned in 1984, as was recommended in the initial plan.

Bohner Lake: The Bohners Lake Improvement Association obtained an NR 119 Lake Management Planning Grant and has completed a plan addressing nonpoint source pollution-related problems at its inlet. This study recommended application of watershed-based soil loss control measures or use of a sediment control structure at the lake inlet. The Association is a participant in the DNR Selfhelp Monitoring Program. An approved aquatic plant management plan has been prepared for the Lake and serves as the basis for aquatic plant management activities on the Lake. A sanitary district was formed of properties around the lake and facility planning recommending a public sanitary sewer system for the urban development around the lake was completed. 17

<u>Booth Lake:</u> A portion of the urban development surrounding the lake is recommended to be provided with a public sanitary sewer system. The Booth Lake Property Owners Association participates in the DNR Self-help Monitoring Program. Booth Lake has recently been included in a DNR sensitive areas survey which determined that the entire waterbody was potentially sensitive to habitat disturbances.

<u>Browns Lake:</u> This is a DNR Long-term Trend Monitoring lake, the lakeshore of which has been provided with a public sanitary sewer system by the Browns Lake Sanitary District. The District also conducts aquatic plant management activities on the Lake in accordance with an approved aquatic plant management plan. 18

¹³ SEWRPC Community Assistance Plan No. 198, <u>A Management Plan for Wind Lake</u>, Racine County, Wisconsin, December 1991.

¹⁴Wisconsin Department of Natural Resources, Publication No. WR-340-93, <u>A Non-point Source Control Plan for the Muskego-Wind Lakes Priority Watershed Project</u>, October 1993.

¹⁵Muskego-Wind Lakes Priority Watershed Newsletter, <u>Big Muskego Lake-Bass Bay</u> Management Alternatives, March 1994.

¹⁶R.A. Smith & Associates, Inc., <u>Bohners Lake Inlet Watershed Study</u>, March 1993.

¹⁷Crispell-Snyder, Inc., <u>Bohners Lake Facilities Plan</u>, May 1992.

¹⁸Aron & Associates, <u>Browns Lake Plant Management Plan</u>, 1992.

<u>Camp Lake</u>: Lake management actions on Camp Lake are conducted under the auspices of the Camp and Center Lake Rehabilitation District, which is preparing a lake management plan with the assistance of funding provided under the Chapter NR 119 Lake Management Planning Grant Program. The present studies are being conducted to develop a proposed dam improvement project. Camp Lake has an approved aquatic plant management plan. Camp and Center Lakes are also included in the nonpoint source pollution abatement priority lakes watershed planning program initiated during 1993. On-going water clarity monitoring is conducted through the DNR Self-help Monitoring Program. All of the urban development around the lake is provided with a public sanitary sewer system, as was recommended in the initial plan.

Center Lake: Adjoining Camp Lake, the Camp and Center Lake Rehabilitation District conducts regular monitoring of this Lake under the DNR Self-help Monitoring Program. The District is also undertaking preparation of a lake management plan with assistance of funding provided by the Chapter NR 119 Lake Management Planning Grant Program and is participating with other governmental units in the nonpoint source pollution abatement priority watershed planning program initiated on Camp and Center Lakes during 1993. This lake also has an approved aquatic plant management plan. All of the urban development of the lakeshore is provided with a public sanitary sewer system, as was recommended in the initial plan.

<u>Lake Como:</u> The Town of Geneva conducts an aquatic plant management program on the lake and has an approved aquatic plant management plan. Small portions of the developed areas on the southwestern shore of the Lake, including the Interlaken Resort, are connected to a public sanitary sewer system operated by the Geneva National Sanitary District. The Town of Geneva has received a Chapter NR 119 Lake Management Planning Grant to assist in completing a sewerage system facilities study to evaluate the best means to extend sewer services to the urban development around this lake. The urban development around this lake is recommended to be provided with a public sanitary sewer system.

<u>Cross Lake:</u> This lake has a property owners association which participates in the DNR Self-help Monitoring Program. The urban development of the lakeshore is provided with a public sanitary sewer system, as was recommended in the initial plan.

Lake Denoon: The Lake Denoon Advancement Association has received a Chapter NR 119 Lake Management Planning Grant to assist in preparing water quality elements of a lake management plan for the lake. Water quality studies are being carried out by Tri-Lakes Conservation Inc., which serves Lake Denoon and its neighbors Waubeesee and Kee Nong Go Mong Lakes. A stormwater detention pond system has been proposed, and partially implemented by the Association, to reduce nonpoint source loads on the Lake. The urban development of the lakeshore and areas north of the lake are provided with a public sanitary sewer system, as was recommended in the initial plan.

<u>Dyer Lake:</u> No recent data are available and no specific plan implementation activities have been documented for this lake as of 1993.

Eagle Lake: A watershed-wide lake user survey was completed in 1991. This survey documented the continued decline of the lake's water quality as perceived by the surrounding community, a decline supported by the monitoring data. In conjunction with this perceived decline in water quality, a fish eradication project was conducted on the Lake during 1992. The Eagle Lake Property Owners Improvement Association have received a Chapter NR 119 Lake Management Planning Grant to assist in the preparation of a lake management plan, the aquatic plant management portion of which has been completed. The Association participates in the DNR Self-help Monitoring Program. The urban areas of the lake have been provided with a public sanitary sewer system as recommended in the initial plan. Dam and dike modifications were undertaken during 1992.

Eagle Spring Lake: A management plan for the lake is being prepared with financial assistance being awarded to the Eagle Spring Lake District under the Chapter NR 119 Lake Management Planning Grant Program. This program is also financing in part water quality studies being carried out by the USGS. The District also participates in on-going monitoring under the DNR Self-help Monitoring Program. The urban development around the lake is recommended to be provided with a public sanitary sewer system.

<u>Echo Lake:</u> The southern and eastern shores of the Echo Lake have been provided with a public sanitary sewer system.

Elizabeth Lake: Refinement of the lake management proposals developed for this lake under the earlier lake management plan has been undertaken with the financial assistance of a Chapter NR 119 Lake Management Planning Grant awarded to the Twin Lakes Protection and Rehabilitation District. Both watershed and inlake management measures were recommended in this plan refinement. Specifically, adoption of construction site erosion ordinances, preparation of a stormwater plan, and close liaison with government units in the watershed was recommended. In the lake, limited dredging was suggested. The District undertakes regular water clarity monitoring of the lake under the DNR Self-help Monitoring Program. The urban development of the lakeshore is provided with a public sanitary sewer system.

<u>Geneva Lake:</u> Geneva Lake was the first of Wisconsin's lakes to have a lake association, and several local associations continue to be active around the lake. The Geneva Lake Environmental Agency, created by intergovernmental agreement between the lakeshore municipalities, is actively involved in lake management activities both on the lake and in the immediate watershed. One of the lake associations, The Geneva Lake Conservancy, Inc., has received funding to permit the Geneva Lake Environmental Agency to undertake watershed nonpoint source contaminant modelling with assistance from the Chapter NR 119 Lake Management Planning Grant Program. In addition, the DNR conducts an ongoing monitoring program of the wetlands located in Big Foot Beach State Park. An

¹⁹Michael J. Losik & Associates, Inc., <u>Eagle Lake Lake Management Planning Grant</u>, October 1992.

²⁰Aron & Associates, <u>Eagle Lake Plant Management Plan</u>, May 1995.

²¹Discovery Group Ltd and Blue Water Science, <u>Lake Management Plan: Twin Lakes</u>
<u>Protective and Rehabilitation District, Twin Lakes, Wisconsin</u>, February 1993;
Aron & Associates, <u>Twin Lakes Plant Management Plan</u>, May 1995.

approved aquatic plant management plan has been prepared for Geneva Lake, and the lake is monitored regularly under the DNR Self-help Monitoring Program. A lake management plan for the Lake was prepared and approved in 1985. The incorporated communities, including the City of Lake Geneva and the Villages of Williams Bay and Fontana on Geneva Lake, are provided with public sanitary sewer systems.

<u>Kee Nong Go Mong Lake (Long Lake):</u> Water quality studies are currently being carried out by Tri-Lakes Conservation, Inc. with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program. Tri-Lakes Conservation Inc. serves Kee Nong Go Mong Lake, Lake Denoon and Waubeesee Lake. Enrollment of this lake in the DNR Self-help Monitoring Program is recommended. A water use management plan for the lake's outlet channel, the Anderson Canal, is being implemented.²³

Lauderdale Lakes: Lauderdale Lakes comprise the three interconnected lake basins of Green, Middle and Mill Lakes. The lakes are currently being monitored as part of the planning program being undertaken by the Lauderdale Lakes Improvement Association, Lauderdale Lakes Protection and Rehabilitation District, and Town of LaGrange, with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program. The District is evaluating several options for the treatment of sanitary sewerage/septage generated by surrounding households. Continued reliance on onsite and clustered sewage disposal systems is currently the District's preferred alternative. Lauderdale Lakes have an approved aquatic plant management plan.

<u>Lilly Lake:</u> The Lilly Lake Rehabilitation District participates in the DNR Self-help Monitoring Program.

<u>Little Muskego Lake:</u> Both the Little Muskego Lake Association and Little Muskego Lake Protection and Rehabilitation District are actively involved with lake management issues, including the installation and maintenance of a controversial aeration system. As a result of investigations conducted with the financial assistance of Phase I and Phase II Chapter NR 119 Lake Management Planning Grants, the effectiveness of the aeration system in the lake was assessed and the system was shut down in 1991. Under a Phase III Lake Management Planning Grant, a lake management plan is being prepared in which aeration will again be evaluated as a management option for the Lake. The lake organizations also have an approved aquatic plant management plan. The DNR also recently completed a sensitive area survey of the Lake. The Lake is included in the

²² SEWRPC Community Assistance Planning Report No. 60, <u>A Water Quality Management Plan for Geneva Lake</u>, <u>Walworth County</u>, <u>Wisconsin</u>, October 1985.

²³ SEWRPC Community Assistance Planning Report No. 182, <u>A Water Use Management Plan for Waubeesee Lake and the Anderson Canal, Racine County, Wisconsin</u>, December 1990.

²⁴R.A. Smith & Associates, Inc. <u>Final Report for the Lauderdale Lakes Area and Wastewater Feasibility Study for the Lauderdale Lakes Management District</u>, March 1992; and RUST Environment and Infrastructure, Inc., <u>Facilities Plan for Wastewater Collection and Treatment Facilities</u>, <u>Lauderdale Lakes</u>, <u>Wisconsin</u>, 1994.

Muskego-Wind Lakes Priority Watershed planning area²⁵ under whose auspices an appraisal of lake water quality was recently completed. Monitoring of the lake is undertaken as part of the DNR Self-help Monitoring Program. The lakeshore is provided with a public sanitary sewer system.

<u>Long Lake (Burlington/Rochester, Racine County):</u> No recent data are available on this lake, and no specific plan implementation activities have been documented as of 1993.

<u>Lulu Lake</u>: No specific plan implementation activities have been documented for this lake as of 1993 but it is currently classified by the DNR as an "Outstanding Resource Water." Some aspects of the management of the lake are being addressed in the water quality management plan being prepared for Eagle Spring Lake which is located immediately downstream.

Lake Mary (Marie Lake): Refinement of the proposals relating to the Twin Lakes-Lakes Elizabeth and Mary--contained in the previous lake management plan for the lakes was undertaken with the financial assistance through a Chapter NR 119 Lake Management Planning Grant awarded to the Twin Lakes Protection and Rehabilitation District. The refined plan has been summarized above and recommends both in-lake and watershed-based protection actions be implemented by the District and surrounding units of government. The District undertakes regular water clarity monitoring of the lakes under the DNR Self-help Monitoring Program. All of the urban development around the lake is provided with a public sanitary sewer system.

North Lake (Walworth County): No recent data are available and no specific plan implementation activities have been documented for this lake as of 1993.

<u>Pell Lake:</u> A previously inactive lake association has been recently resurrected by lakeshore residents in response to growing concerns over aquatic plant growth in the waterbody. The Association has enrolled in the DNR Self-help Monitoring Program and is initiating the collection of Secchi disc transparency readings as of 1994. A sanitary district was formed of properties around the Lake and facility planning recommending a public sanitary sewer system for the urban development around the lake is completed.²⁶

<u>Peters Lake:</u> No specific plan implementation activities have been documented for this Lake as of 1993.

<u>Pewaukee Lake:</u> This lake is a DNR Long-term Trends Monitoring Lake. The Lake Pewaukee Sanitary District conducts an aquatic plant harvesting operation in accordance with an approved aquatic plant management plan, and conducts lake-related environmental education outreach programs throughout the District. This District, and the Village and Town of Pewaukee, provide sewerage services to the larger part of the lakeshore as was recommended in the initial plan. The Lake Pewaukee Sanitary District also participates in the DNR Self-help Monitoring Program, and has received Chapter NR 119 Lake Management Planning Grant funding to assist in conducting studies of nutrient loading and boat traffic effects on

²⁵Wisconsin Department of Natural Resources Publication No. WR-340-93, op.cit.

²⁶Baxter and Woodman, Inc., <u>Pell Lake Sanitary District No. 1 Facilities Planning Report</u>, June 1993.

the lake. A lake management plan for Pewaukee Lake has been prepared. The lake is included in the Upper Fox River priority watershed planning area.

<u>Pleasant Lake:</u> Recently concerns have been raised about the presence of <u>Myriophyllum spicatum</u>, Eurasian water milfoil, in this lake, and the Wisconsin Department of Natural Resources has assisted residents in controlling this plant, including limiting its spread to other waterbodies. The Pleasant Lake Protection and Rehabilitation District conducts regular water clarity monitoring of the lake as part of the DNR Self-help Monitoring Program.

<u>Potter Lake</u>: The lakeshore area of Potter Lake is sewered by the Town of East Troy Sanitary District No. 2. Water quality monitoring in the lake is being conducted by the Potter Lake Protection and Rehabilitation District with funding assistance provided under Chapter NR 119. Compilation of an aquatic plant management plan has been completed, and a lake management plan will probably also be prepared as a result of these studies. On-going water clarity monitoring through participation of the District in the DNR Self-help Monitoring Program is recommended.

<u>Powers Lake:</u> A recently completed lake management plan for Powers Lake²⁹ has been adopted and is being implemented. The plan recommended public acquisition and protection of environmentally valuable areas in the watershed, which is currently being carried out by the Powers Lake Management District. In addition, the plan includes recreational use management measures such as ordinance revisions and dissemination of information to the public. An approved aquatic plant management plan has also been prepared for this lake.³⁰ The Powers Lake Management District has received a Chapter NR 119 Lake Management Planning Grant to partially fund water quality studies on the lake; on-going water clarity monitoring is also being conducted under the DNR Self-help Monitoring Program. A detailed facility plan³¹ was prepared considering alternatives for sewage disposal for the Powers, Benedict, and Tombeau Lakes area. That plan recommends the development of a public sanitary sewer system to serve the urban development around the Lake.

<u>Silver Lake (Kenosha County):</u> The eastern and western shores of the Lake are sewered. The Lake is enrolled in the DNR Self-help Monitoring Program.

<u>Silver Lake (Walworth County):</u> No specific plan implementation activities have been reported for the lake as of 1993.

²⁷ SEWRPC Community Assistance Planning Report No. 58, <u>A Water Quality Management Plan for Pewaukee Lake, Waukesha County, Wisconsin</u>, March 1984.

²⁸Aron & Associates, <u>Potters Lake Plant Management Plan</u>, 1992; Aron & Associates, <u>Potters Lake Community Survey</u>, March 1992.

²⁹ SEWRPC Community Assistance Planning Report No. 196, <u>A Management Plan for Powers Lake</u>, <u>Kenosha and Walworth Counties</u>, <u>Wisconsin</u>, November 1991.

³⁰ Aron & Associates, <u>Powers Lake Plant Management Plan</u>, March 1994.

³¹Crispell-Snyder, Inc., <u>Powers-Benedict-Tombeau Lakes Facility Plan</u>, May 1992.

<u>Spring Lake (Waukesha County):</u> Ongoing water clarity monitoring under the DNR Self-help Monitoring Program is being conducted. This lake is currently classified by the DNR as an "Outstanding Resource Water."

<u>Upper and Lower Phantom Lakes</u>: The Phantom Lakes Management District is considering preparation of a lake management plan and applying for funding under Chapter NR 119. The District has completed an aquatic plant management plan for these lakes. The District is also enrolled in the DNR Self-help Monitoring Program for Upper Phantom Lake and is beginning to develop a water clarity data base. Lower Phantom Lake was formerly enrolled in the program but is not currently participating. Re-enrollment is recommended. The eastern portion of the Lower Phantom Lake lakeshore is provided with a public sanitary sewer system which is part of the Village of Mukwonago sewerage system. Urban development around the remaining shoreline is recommended to be provided with a public sanitary sewer system.

<u>Voltz Lake</u>: Lake management plan elements being prepared for this lake with the assistance of Chapter NR 119 Lake Management Planning Grant funds provided to the Voltz Lake Management District include assessments of the lake's watershed and sediment characteristics. Watershed management measures aimed at reducing soil and contaminant losses were recommended, including the control of aquatic plants in the lake and watershed; mechanical and manual aquatic plan control was recommended for use within the lake.³³ Urban development on the lakeshore is provided with a public sanitary sewer system.

<u>Wandawega Lake:</u> No specific plan implementation activities have been reported for this lake as of 1993.

<u>Waterford Impoundment:</u> The Waterford Impoundment is made up of two waterbodies; namely, Buena Lake and Tichigan Lake. On-going involvement in the DNR Self-help Monitoring Program is conducted on Tichigan Lake. The Town of Waterford received a Chapter NR 119 Lake Management Planning Grant to partially fund regular monitoring of the lake's water quality and to prepare an aquatic plant management plan for the impoundment.³⁴ Urban development on the lakeshore is provided with a public sanitary sewer system as was recommended in the initial plan.

<u>Waubeesee Lake:</u> Waubeesee Lake is situated downstream from Kee Nong Go Mong Lake, and connected to that lake by the Anderson Canal. The recommended water use management plan prepared for the Canal and Waubeesee Lake³⁵ adopted many of the measures proposed in the 1979 plan, adding recreational use management and protection of environmentally sensitive areas. Urban development around the lake is provided with public sanitary sewer service by the Town of Norway Sanitary District No. 1, as was recommended in the initial plan. Tri-Lakes

SEWRPC Memorandum Report No. 81, An Aquatic Plant Management Plan for the Phantom Lakes, Waukesha County, Wisconsin, July 1993.

³³Applied Ecological Services, Inc., <u>Lake and Watershed Assessment and Management Recommendations Report: Voltz Lake Near Trevor, Wisconsin</u>, May 1992.

³⁴Aron & Associates, <u>Waterford Impoundment Aquatic Plant Survey</u>, May 1995; Aron & Associates, <u>Town of Waterford Community Survey</u>, 1994.

³⁵ SEWRPC Community Assistance Planning Report No. 182, op.cit.

Conservation, Inc, the lake organization covering Waubeesee Lake, Lake Denoon, and Kee Nong Go Mong Lake, is enrolled in the DNR Self-help Monitoring Program and conducts regular water clarity monitoring of the lake. The lake association is also conducting additional water quality studies on the lake with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program.

Wind Lake: Wind Lake is located downstream of Little Muskego and Big Muskego Lakes. The Muskego Canal discharges into Wind Lake on the north and is drained to the south by the Wind Lake Drainage Canal. It was recommended in the initial plan that additional urban nonpoint source contaminant control measures be employed together with livestock waste and construction erosion controls. This recommendation was reenforced by the recently completed lake management plan prepared for Wind Lake, which emphasized a watershed-based approach combined with in-lake measures, including nutrient inactivation, macrophytes harvesting, limited dredging and protection of environmentally sensitive areas.³⁶ Lake, together with Big and Little Muskego Lakes, has been included in the Muskego-Wind Lakes Priority Watershed planning area. 37 The urban development along the Wind Lake shoreline has been provided with a public sanitary sewer system as recommended in the initial plan. While the Wind Lake Management District has previously been enrolled in the DNR Self-help Monitoring Program, on-going monitoring of the Lake is being conducted by the U.S. Geological Survey. Currently, the District has received Chapter NR 119 Lake Management Planning grants and U.S. Environmental Protection Agency grants for water quality restoration activities. An aquatic plant management plan has also been prepared and approved.

Current Plan Recommendations

Management measures recommended and in-lake measures which are considered potentially applicable and should be considered in more detail are shown in Table V-13 for the 42 major lakes in the Fox River watershed. The initial plan recommendations relating to the preparation of comprehensive lake management plans and the conduct of supporting water quality and water budget monitoring programs for each lake are reaffirmed in the updated plan recommendations for the Fox River watershed. The management recommendations for the lakes are based upon review of the lake planning set forth in the initial plan and the current status of implementation of the recommendations, biological condition, as well as any subsequent local planning.

It is recognized that the preparation of comprehensive lake management plans may need to be conducted in a staged manner in order to best utilize available resources. In this regard, the water quality and biological condition monitoring, aquatic plant management, and watershed protection measure planning and implementation are considered to be logical components of the comprehensive plans which can be conducted under separate planning programs, if designed to be integrated into a comprehensive lake management plan.

In addition to the recommendations noted for the major lakes in the Fox River watershed, it is recommended that water quality planning and supporting

³⁶ SEWRPC Community Assistance Planning Report No. 198, A Management Plan for Wind Lake, Racine County, Wisconsin, December 1991.

³⁷Wisconsin Department of Natural Resources Publication No. WR-340-93, op.cit.

Table V-13

MANAGEMENT MEASURES TO BE CONSIDERED IN LOCAL MANAGEMENT PLANS FOR THE MAJOR LAKES IN THE FOX RIVER WATERSHED: 1993a

	T	T			-					T						
ll .					W	atershed-ba	ased Measur	es				In-lake M	lanagement	Measures		
Subwatershed Lake Name	Area (acre)	Water Quality Monitoring	Prepare Comprehensive Management Plan	Public Sanitary Sewer Service	Onsite Sewage System Mgmt	Rural NPS Mgmt	Urban NPS Mgmt	Construc- tion Site NPS Mgmt	Live- Stock Mgmt	Macro- phyte Harvest	Aeration	Nutrient Inactiva- tion	Dredge	Sediment Cover	Water Level Mgmt	Fish Mgmt
FOX RIVER-UPPER Pewaukee Lake	2,493	0	0	0	-	0	0	+	+	0	-	+	0	-		
FOX RIVER-MIDDLE Big Muskego Lake Denoon Lake Eagle Lake Kee Nong Go Mong Lake Little Muskego Lake Long Lake (Racine Co.) Spring Lake (Waukesha) Waterford Impoundment Waubeesee Lake Wind Lake	2,177 162 520 88 506 102 105 1,233 129 936	0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 -		0 + + + + 0 + + + 0	0 + + + 0 + + 0	0 0 + 0 0 - 0 + 0	* * * * * *	- + 0 + 0 + - - +		- + + - - - - - +	+ + + + + + - 0	* * * * * * * * * * * * * * * * * * * *	0	0 + + + + + + + + + + + + + + + + + + +
FOX RIVER-LOWER Bohner Lake Browns Lake Camp Lake Center Lake Cross Lake Dyer Lake Lilly Lake Silver Lake (Kenosha) Voltz Lake	135 396 461 129 87 56 88 464 52	0 0 0 0 0 + 0 +	0 + 0 0 + + + 0 0	0 0 0 0 0 - + 0	*	+ + 0 0 + + + +	+ + 0 0 + - + + +	- + 0 0 0 - - 0		0 + + + + + + + + + +		+ + - + + + + +	+ + + + - + + + +	+ + + + + + + + +		
HONEY/SUGAR CREERS Lauderdale Lakes North Lake (Walworth) Pleasant Lake Potters Lake Silver Lake (Walw) Wandawega Lake	841 191 155 162 85	0 + 0 0 + +	0 + + 0 + +	+ - 0 -	* * * - *	:	: : : :		-	0 + + 0 - +	:	+ - + -	- + + + +	:		:

154

Urban

NPS

Mgmt

0

0

Construc-

tion Site

NPS Mgmt

0

Live-

Stock

Mgmt

Macro-

phyte

Harvest

0

0

0

0

0

Aeration

In-lake Management Measures

Dredge

Water

Level

Mgmt

Sediment

Cover

Fish

Mgmt

Nutrient

Inactiva-

tion

Watershed-based Measures

Rural

NPS

Mgmt

0

0

Subwatershed

MUKWONAGO RIVER Army Lake

Eagle Spring Lake

Lower Phantom Lake

Upper Phantom Lake

Lake Name

Beulah Lake

Booth Lake

Lulu Lake

Peters Lake

WHITE RIVER/ NIPPERSINK CREEK Benedict Lake

Como Lake

Echo Lake

Lake Mary

Pell Lake

Powers Lake

Elizabeth Lake

Geneva Lake

0	-	on-going	management	measures

+ - management measures proposed or recommended for further consideration

Water

Quality

Monitoring

0

0

0

0

0

0

0

0

Area

(acre)

78

834

113

311

433

84

64

107

78

946

71

865

315

86

459

5,262

- - management measures not specifically recommended for further consideration

Prepare

Comprehensive

Management

Plan

0

0

0

0

0

0

Public

Sanitary

Sewer

Service

0

0

0

0

0

0

Onsite

Sewage

System

Mgmt

amanagement measures recommended for further consideration in local management plans are summarized from those adopted in SEWRPC Planning Report No. 30, modified as necessary as the result of subsequent implementation actions, monitoring programs, and planning studies referenced in the text of this report.

Source: SEWRPC

monitoring be conducted for those lakes and similar water bodies in the water-shed which are less than 50 acres in size, where such activities are deemed to be important for water quality protection. In such cases, management techniques similar to those recommended to be applicable for consideration on the major lakes in the watershed can be considered for lake management purposes.

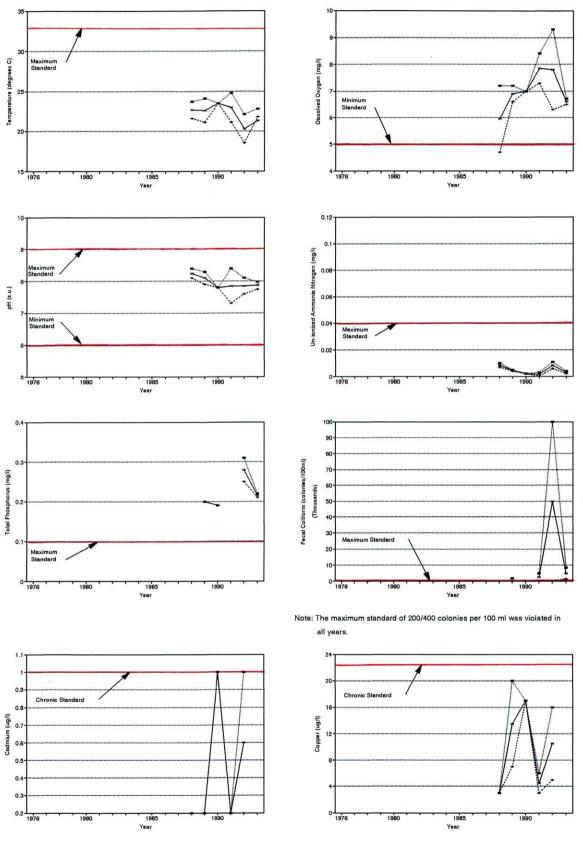
WATER QUALITY AND BIOLOGICAL CONDITIONS

Streams

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; the 1966 through 1968 Commission and Wisconsin Department of Natural Resources (DNR) monitoring program for the Fox River watershed planning program; and the 1976 Commission monitoring program conducted under the regional water quality management planning effort. Available data collected in those programs for the Fox River watershed included samplings at twenty-eight Commission stations--twelve on the Fox River main stem and sixteen on its tributaries; at one DNR station on the Nippersink Creek; and at four U.S. Geological Survey (USGS) stations--two on the Fox River main stem and one each on the Mukwonago and White Rivers tributary to the Fox River. One additional USGS sampling site was located on the Fox River in Lake County, Illinois, near Channel Lake, about 1.2 miles south of the Wisconsin-Illinois State line. The sampling station locations are shown on Map V-6.

Long-term post-1976 comparable water quality data have been collected at the current DNR sampling stations Fx-10 on the Fox River at CTH I and Fx-7 on the Fox River at Prairie Street just north of the City of Waukesha sewage treatment plant, and USGS sampling station Fx-27a on the Fox River just south of the Wisconsin-Illinois State line near Channel Lake, as shown on Map V-6. resource appraisal information including biological condition and water quality data collected by the DNR during 1991 through 1992 were also available for use in the assessment of current water quality conditions in the Upper Fox River watershed. 38 The DNR has collected water quality data on a short-term basis at 30 locations in the Fox River watershed. Some of these water quality sampling surveys were limited to one sample and in the number of parameters analyzed due to the specific purpose of the survey. Data collected at 25 sites from 1988 through 1993 were used, along with the long-term data previously noted, to characterize water quality conditions. These 25 sites are shown on Map V-6. Those data were used in this chapter to assess current water quality conditions as discussed in the next section and, where appropriate, to make a generalized comparison to historic conditions. Data on water quality and biological conditions were also collected for the Fox River main stem between the Village of Rochester and the Wilmot Dam for a University of Wisconsin-Stevens Point study in the summer of 1983. In addition to the data obtained since the preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000

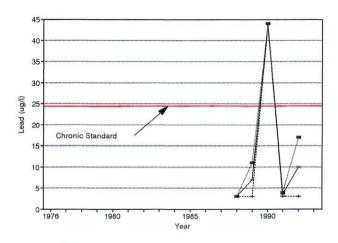
³⁸Wisconsin Department of Natural Resources, <u>Upper Fox River Priority Watershed Appraisal</u>, February 1993.

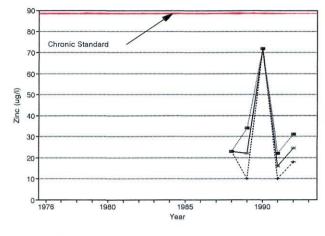

land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Fox River watershed.

The long-term water quality data obtained at DNR stations Fx-7 and Fx-10 on the main stem of the Fox River at Prairie Street and CTH I, respectively, and at the USGS sampling station Fx-27a on the main stem of the Fox River near Channel Lake in Illinois, for the period 1976 through 1993, are summarized in Figures V-1 through V-3. The short-term data collected by the DNR and local units of government during the period 1988 through 1993 are summarized in Figures V-4 through V-8 and in Table V-14. Both the long-term and short-term sampling data have been used to assess current water quality conditions to evaluate water quality trends and the occurrence of changes over time, and to evaluate current conditions with respect to water quality standards. The water quality standards indicated in Figures V-1 through V-3 and in Table V-14 are those set forth for specific biological and recreational use objectives as described in Chapter II. The relationship of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria is discussed in detail in Chapter II.

Review of those data for station Fx-7 and Fx-10 indicates that there appears to be an increase in dissolved oxygen levels at both stations since 1985; a decrease in phosphorus levels at station Fx-10 since 1982; and an improvement in un-ionized ammonia nitrogen levels at Fx-10 since 1979. No other significant changes in water quality conditions can be identified. These improvements may be attributed, in part, to the upgrading of the City of Waukesha sewage treatment plant in 1979; to the completion in 1985 of a major plant upgrading at the City of Brookfield sewage treatment plant; the abandonment of smaller existing public sewage treatment plants, including the Village of Pewaukee and the City of New Berlin Regal Manors plants between 1981 and 1985; and to the reduction in pollutant loadings from industrial point sources. Although phosphorus levels have declined over the sampling period, it should be noted that these levels still exceed the standard for streams with full recreational water use objectives, as set forth in Chapter II. Temperature, dissolved oxygen, pH, and chloride levels remained variable with no apparent trends, but were within the acceptable limits as defined by the water quality standards for the Fox River main stem set forth in Chapter II.

Review of the data at the USGS station Fx-27a, near Channel Lake just south of the Wisconsin-Illinois State Line, indicates no apparent significant changes in water quality conditions from 1976 through 1991 at that location, with the exception of chloride levels and the possible slight improvement in dissolved oxygen and phosphorus levels and a slight increase in un-ionized ammonia nitrogen levels. Chloride levels appear to have increased continuously. However, the levels are still within acceptable limits as defined by the standards associated with the water use objectives for the Fox River main stem set forth in Chapter II. The increase in chlorides may be the result of new urban development which has occurred in the watershed and the impacts of increased winter road maintenance, salt-spreading operations associated with urban development. The slight improvement in dissolved oxygen and phosphorus levels is likely due to the upstream treatment plant improvements noted above. The un-ionized ammonia nitrogen levels are still within acceptable limits. Chronic standards for some metals were also exceeded, as discussed in the next section.


Figure V-1 WATER QUALITY DATA FOR THE FOX RIVER AT STATION Fx-7: 1976-1993



Note: The acute standard of 63.3 ug/l was not violated in any year.

Note: The acute standard of 31.9 ug/l was not violated in any year.

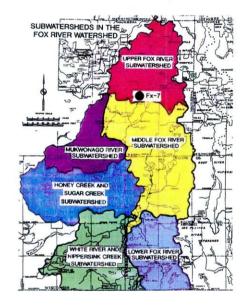
Figure V-1 (cont'd)

Note: The acute standard of 408.6 ug/l was not violated in any year.

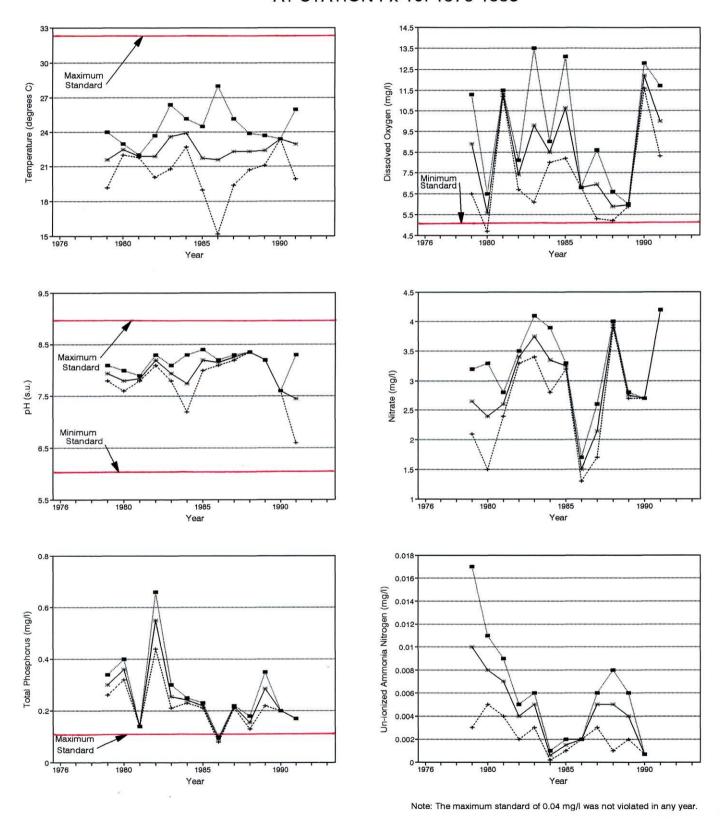
Note: The acute standard of 202.9 ug/l was not violated in any year.

MAXIMUM VALUE

MINIMUM VALUE


AVERAGE VALUE

Note: Graphs indicate maximum, minimum, and average values for July and August data.


Standards indicated are those established for warmwater sport fish and full recreational use objectives.

See chapter II for relationship of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

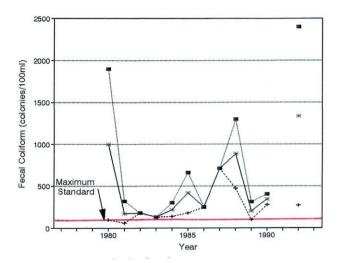
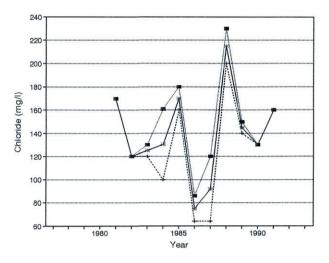

Source: Wisconsin Department of Natural Resources and SEWRPC.

Figure V-2 WATER QUALITY DATA FOR THE FOX RIVER AT STATION Fx-10: 1976-1993

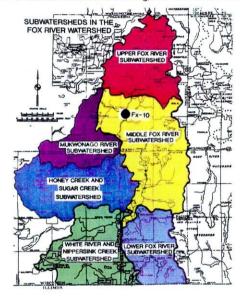
Figure V-2 (Cont'd)

LEGEND

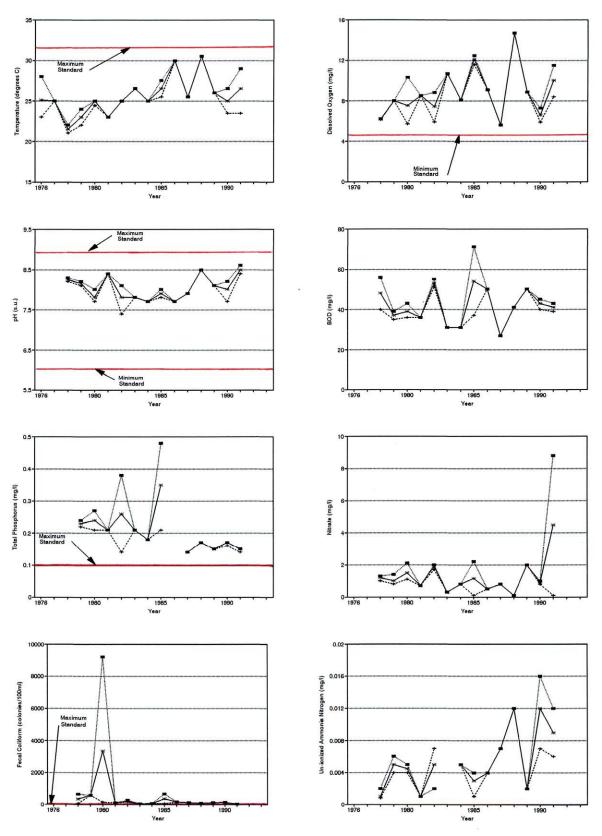
MAXIMUM VALUE


MINIMUM VALUE

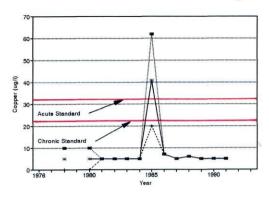
AVERAGE VALUE

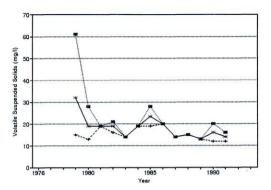

Note: Graphs indicate maximum, minimum and average values for July and August data.

Standards indicated are those established for warm water sport fish and full recreational use objectives. See chapter II for relationships to these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

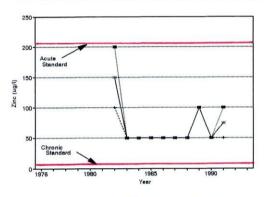

Source: Wisconsin Department of Natural Resources and SEWRPC.

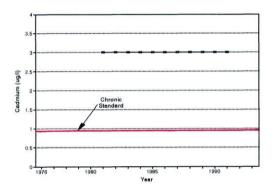
Note: The maximum standard of 1000 mg/l was not violated in any year.


Figure V-3 WATER QUALITY DATA FOR THE FOX RIVER AT STATION Fx-27a: 1976-1993

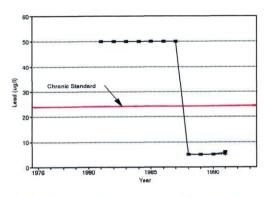


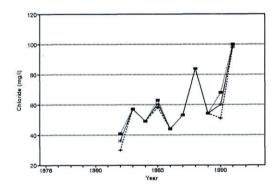
Note: The maximum standard of 200/400 colonies per 100 ml was violated in all years.


Note: The maximum standard of 0.04 mg/l was not violated in any year.


Figure V-3 (cont'd)

Note: Values graphed at 5.0 ug/l were indicated to be less than 5.0 ug/l.

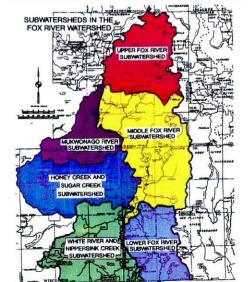




Note: Values graphed at 50 ug/l were indicated to be less than 50 ug/l.

Note: The acute standard of 63.3 ug/l was not violated in any year.

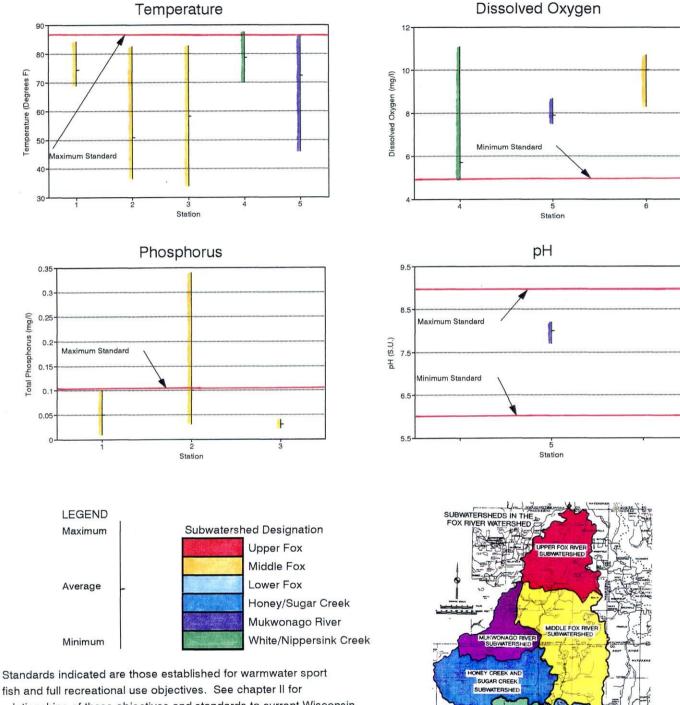
Values graphed at 3.0 ug/l were indicated to be less than 3.0 ug/l


Note: The acute standard of 409 ug/l was not violated in any year.

Values graphed at 50 ug/l prior to 1988 were indicated to
be less than 50 ug/l and values graphed at 5.0 ug/l

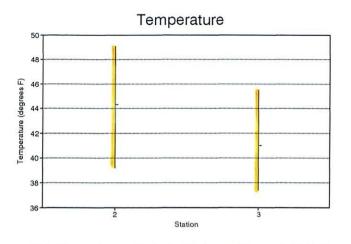
from 1988 to 1991 were indicated to be less than 5.0 ug/l.

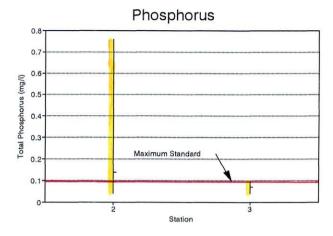
Note: The maximum standard of 1000 mg/l was not violated in any year.



Note: Graphs indicate maximum, minimum, and average values for July and August data.

Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.


Source: U.S. Geological Survey and SEWRPC.


Figure V-4
Fox River Watershed Short-Term Water Quality Sampling Data: 1988

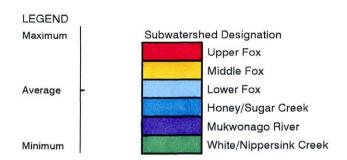
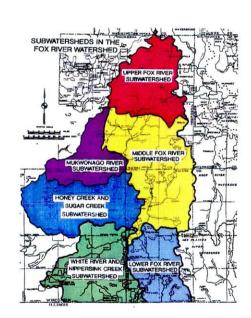
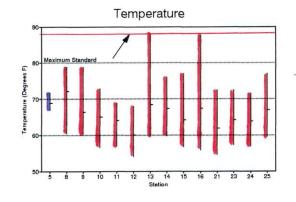
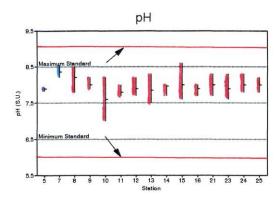
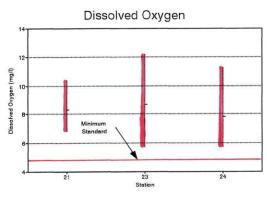
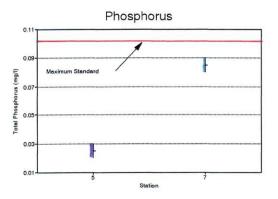
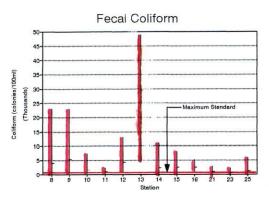

Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table V-14 for summarized water quality data.

Figure V-5
Fox River Watershed Short-Term Water Quality Sampling Data: 1989

Note: The maximum standard of 89 degrees F was not violated in any sample

Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table V-14 for summarized water quality data.

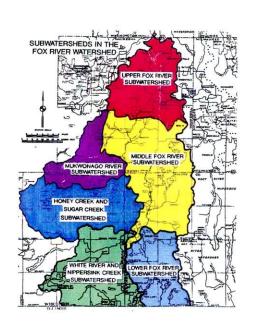
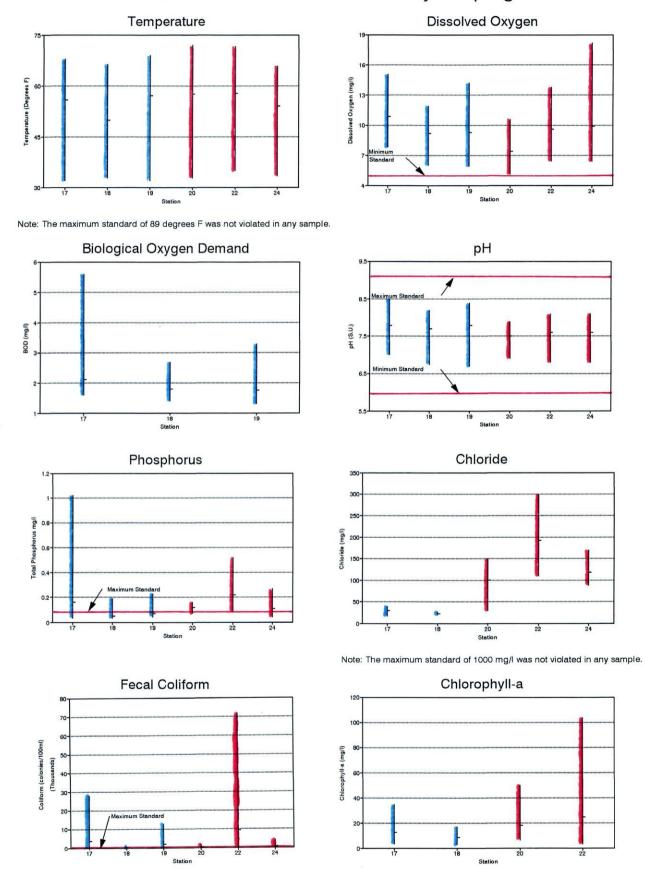
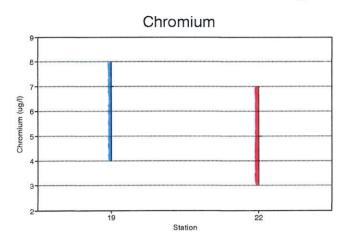






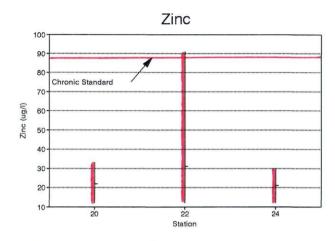

Figure V-6
Fox River Watershed Short-Term Water Quality Sampling Data: 1990

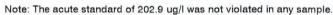


Note: The maximum standard of 200/400 colonies per 100ml was violated in all samples.

Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table V-14 for summarized water quality data.


Figure V-7
Fox River Watershed Short-Term Water Quality Sampling Data: 1992



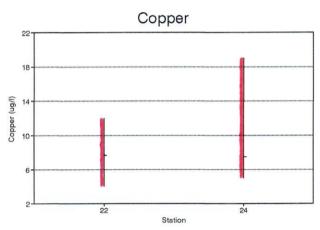
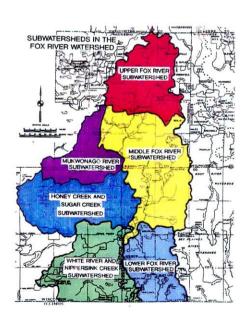
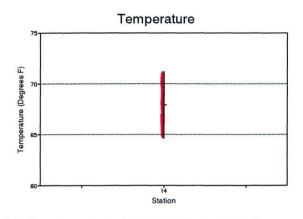
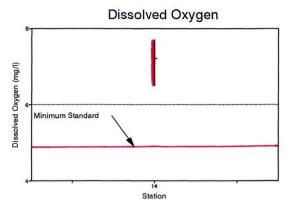
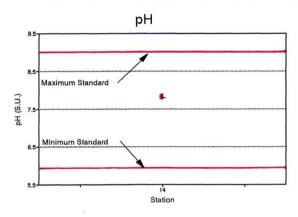

Note: The maximum standard of 200/400 colonies per 100ml was violated in all samples.

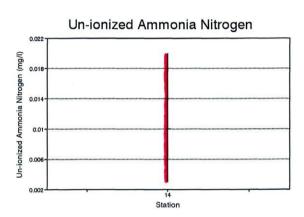
Figure V-7 (cont'd)

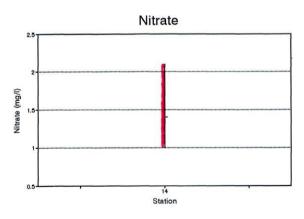
Note: The chronic standard of 22.1 ug/l was not violated in any sample.

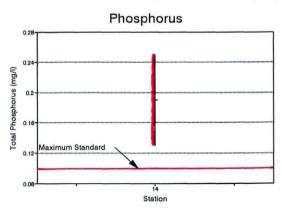
The acute standard of 31.9 ug/l was not violated in any sample.

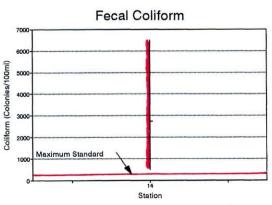
Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table V-14 for summarized water quality data.

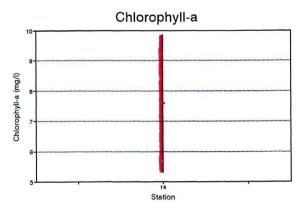






Figure V-8
Fox River Watershed Short-Term Water Quality Sampling Data: 1993

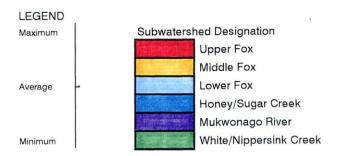



Note: The maximum standard of 89 degrees F was not violated in any year.





Note: The maximum standard of .04 mg/l was not violated in any sample.



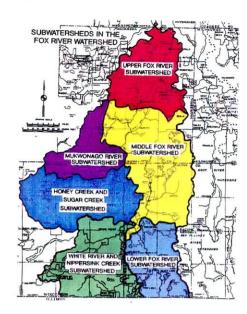


Figure V-8 (Cont'd)

Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table V-14 for summarized water quality data.

Sampling Station Number and Subwatershed ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
1 MF	Temperature (oF)	Maximum of 89.0	68.9-84.2	No	May-June 1988	3
	Phosphorus (mg/1)	Maximum of 0.1	0.09-0.15	Yes	January-September 1988	13
2 MF	Temperature (°F)	Maximum of 89.0	36.5-82.6 39.2-49.1	No No	February-December 1988 February-April 1989	7 3
	Phosphorus (mg/1)	Maximum of 0.1	0.03-0.34 0.04-0.76	Yes Yes	January-December 1988 January-October 1989	31 20
3 MF	Temperature (°F)	Maximum of 89.0	33.8-82.8 37.4-45.5	No No	July-December 1988 February-April 1989	2 3
	Phosphorus (mg/1)	Maximum of 0.1	0.022-0.04 0.04-0.10	No Yes	January-December 1988 January-August 1989	8 9
4 WN	Temperature (°F)	Maximum of 89.0	70.0-87.4	No	July 1988	2
	Dissolved Oxygen (mg/l)	Minimum of 5.0	4.9-11.1	Yes	July 1988	2
5 MK	Temperature (°F)	Maximum of 89.0	45.9-86.2 66.9-71.8	No No	August 1988 July 1990	6 2
	Dissolved Oxygen (mg/l)	Minimum of 5.0	7.5-8.7	No	August 1988	2
	Phosphorus (mg/1)	Maximum of 0.1	0.02-0.03	No	June-July 1990	2
	pH (s.u)	Maximum of 9.0; Minimum of 6.0	7.7-8.2 7.83-7.93	No No	August 1988 June-July 1990	2 22
6 MF	Dissolved Oxygen (mg/l)	Minimum of 5.0	8.3-10.7	No	July-August 1988	2
7 HS	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	8.2-8.54	No	June-July 1990	22
	Ammonia (mg/l)	Maximum of 0.04	0.04-0.28	Yes	June-July 1990	2
	Phosphorus (mg/1)	Maximum of 0.1	0.08-0.09	No	June-July 1990	2
8 UF	Temperature (oF)	Maximum of 89.0	60.4-78.8	No	August-September 1990	6
	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	7.8-8.5	No	August-September 1990	6

Table V-14 (continued)

Sampling Station Number and Subwatershed ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
8 UF	Fecal Coliform (colonies per 100ml)	Maximum of 200/400	250-23,000	Yes	August 1990	5
9 UF	Temperature (oF)	Maximum of 89.0	60.4-78.8	No	August-September 1990	6
	pH (s.u)	Maximum of 9.0; minimum of 6.0	7.9-8.2	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	370-23,000	Yes	August-September 1990	5
10 UF	Temperature (oF)	Maximum of 89.0	56.5-72.9	No	August-September 1990	6
	pH (s.u)	Maximum of 9.0; minimum of 6.0	7.0-8.2	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	360-7,400	Yes	August-September 1990	5
11 UF	Temperature (°F)	Maximum of 89.0	57.0-68.9	No	August-September 1990	6
	pH (s.u)	Maximum of 9.0; minimum of 6.0	7.7-8.2	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	170-2,300	Yes	August-September 1990	5
12 UF	Temperature (°F)	Maximum of 89.0	54.0-68.0	No	August-September 1990	6
	pH (s.u)	Maximum of 9.0; minimum of 6.0	7.7-8.2	No	August-September 1990	6
	Fecal Coliform (colonies per 100ml)	Maximum of 200/400	820-13,000	Yes	August-September 1990	6
13 UF	Temperature (oF)	Maximum of 89.0	59.7-88.3	No	August-September 1990	6
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.5-8.3	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	4,200-49,000	Yes	August-September 1990	5
14 UF	Temperature (°F)	Maximum of 89.0	59.7-76.1 64.6-71.2	No No	August-September 1990 August-September 1993	6 2
	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	7.70-8.00 7.75-7.90	No No	August-September 1990 August-September 1993	6 2

Sampling Station Number and Subwatershed ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	40-11,000 49-6,500	Yes Yes	August-September 1990 August-September 1993	6 2
	Nitrate (mg/l)		1.2-2.1		August-September 1993	3
	Dissolved Oxygen (mg/l)	Minimum of 5.0	6.5-7.7	No	August-September 1993	2
	Chlorophyll-a (mg/l)		5.3-9.8		August-September 1993	2
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	0.003-0.020	No	August-September 1993	3
	Phosphorus (mg/l)	Maximum of 0.1	0.13-0.25	Yes	August-September 1993	3
15 UF	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	160-8,200	Yes	August-September 1990	5
	Temperature (oF)	Maximum of 89.0	56.7-77.0	No	August-September 1990	7
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.6-8.6	No	August-September 1990	7
16 UF	Temperature (oF)	Maximum of 89.0	55.8-87.8	No	August-September 1990	6
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.7-8.0	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	650-5,200	Yes	August-September 1990	5
17 HS	Temperature (oF)	Maximum of 89.0	32.0-68.0	No	May-October 1992	10
	Dissolved Oxygen (mg/l)	Minimum of 5.0	7.8-15.1	No	May-December 1992	10
	Biological Oxygen Demand (mg/1)		1.6-5.6		May-December 1992	8
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.0-8.5	No	May-December 1992	10
	Phosphorus (mg/l)	Maximum of 0.1	0.03-1.02	Yes	May-December 1992	9
	Chloride (mg/l)	Maximum of 1000.0	17.0-40.0	No	May-December 1992	9
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	10-28,000	Yes	May-December 1992	8
	Chlorophyll-a (mg/l)		3.39-35.0		May-October 1992	7

Table V-14 (continued)

Sampling Station Number and Subwatershed ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
18 HS	Temperature (°F)	Maximum of 89.0	32.7-66.4	No	May-December 1992	7
	Dissolved Oxygen (mg/l)	Minimum of 5.0	6.0-11.9	No	May-December 1992	7
	Biological Oxygen Demand (mg/1)		1.4-2.7		May-December 1992	6
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	6.74-8.2	No	May-December 1992	7
	Phosphorus (mg/l)	Maximum of 0.1	0.03-0.19	Yes	May-December 1992	7
	Chloride (mg/l)	Maximum of 1000.0	20.0-27.0	No	May-December 1992	7
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	20-320	No	May-December 1992	6
	Chlorophyll-a (mg/l)		3.0-17.0		May-December 1992	7
19 HS	Temperature (oF)	Maximum of 89.0	32.0-69.1	No	May-December 1992	11
	Dissolved Oxygen (mg/l)	Minimum of 5.0	5.9-14.2	No	May-December 1992	11
	Biological Oxygen Demand (mg/1)		1.3-3.3		May-October 1992	. 7
	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	6.7-8.4	No	May-December 1992	9
	Phosphorus (mg/1)	Maximum of 0.1	0.04-0.23	Yes	May-October 1992	7
	Fecal Coliform (colonies per 100 ml)	Maximum of200/400	30-13,000	Yes	May-October 1992	8
	Chromium (ug/1)		4.0-8.0		May-October 1992	7
20 UF	Temperature (°F)	Maximum of 89.0	32.7-71.8	No	May-October 1992	11
	Dissolved Oxygen (mg/l)	Minimum of 5.0	5.1-10.6	No	May-October 1992	11
	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	6.90-7.90	No	June-December 1992	10
	Phosphorus (mg/1)	Maximum of 0.1	0.07-0.16 0.10-0.25	Yes Yes	June-November 1992 August-September 1993	7
	Chloride (mg/1)	Maximum of 1000.0	30.0-150.0	No	June-November 1992	7

Sampling Station Number and Subwatershed ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
20 UF	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	100-1,800	Yes	June-November 1992	8
	Chlorophyll-a (mg/l)		6.3-50.0		July-November 1992	7
	Zinc (ug/l)	Chronic maximum of 89.2; acute maximum of 202.9	12.0-33.0	No	July-November 1992	7
21 UF	Temperature (°F)	Maximum of 89.0	54.5-72.5	No	August-September 1990	6
	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	7.7-8.3	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	260-2,900	Yes	August-September 1990	6
	Dissolved Oxygen (mg/1)	Minimum of 5.0	6.8-10.4	No	August-September 1990	6
22 UF	Temperature (°F)	Maximum of 89.0	34.9-71.8	No	May-December 1992	12
	Dissolved Oxygen (mg/l)	Minimum of 5.0	6.4-13.8	No	May-December 1992	12
	pH (s.u.)	Maximum of 9.0; Minimum of 6.0	6.8-8.1	No	May-December 1992	10
	Phosphorus (mg/l)	Maximum of 0.1	0.09-0.52	Yes	May-December 1992	9
	Chloride (mg/l)	Maximum of 1000.0	110.0-300.0	No	May-December 1992	9
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	50-72,000	Yes	May-December 1992	5
	Chlorophyll-a (mg/l)		3.39-104.00		May-December 1992	9
	Chromium (ug/1)		3.0-7.0		May-December 1992	9
	Zinc (ug/l)	Chronic maximum of 89.2; acute maximum of 202.9	12.0-91.0	Yes (chronic)	May-December 1992	9
	Copper (ug/1)	Chronic maximum of 22.1; acute maximum of 31.9	4.0-12.0	No	May-December 1992	9
23 UF	Temperature (°F)	Maximum of 89.0	57.2-72.5	No	August-September 1990	6
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.6-8.3	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	110-2,300	Yes	August-September 1990	6

Table V-14 (continued)

Sampling Station Number and Subwatershed ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
23 UF	Dissolved Oxygen (mg/l)	Minimum of 5.0	5.7-12.2	No	August-September 1990	6
24 UF	Temperature (oF)	Maximum of 89.0	56.9-71.6 33.3-66.0	No No	August-September 1990 May-December 1992	6 10
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.8-8.3 6.8-8.1	No No	August-September 1990 May-December 1992	6 10
	Dissolved Oxygen (mg/l)	Minimum of 5.0	5.7-11.3 6.4-18.2	No No	August-September 1990 May-December 1992	6 10
	Phosphorus (mg/1)	Maximum of 0.1	0.04-0.27	Yes	May-December 1992	9
	Chloride (mg/l)	Maximum of 1000.0	88.0-170.0	No	May-December 1992	8
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	100-4,300	Yes	May-December 1992	9
	Zinc (ug/1)	Chronic maximum of 89.2; acute maximum of 202.9	12.0-30.0	No	May-December 1992	9
	Copper (ug/1)	Chronic maximum of 22.1; acute maximum of 31.9	5.0-19.0	No	May-December 1992	9
25 UF	Temperature (°F)	Maximum of 89.0	59.5-77.0	No	August-September 1990	6
	pH (s.u.)	Maximum of 9.0; minimum of 6.0	7.8-8.2	No	August-September 1990	6
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	140-5,900	Yes	August-September 1990	6

a Subwatershed codes are as follows: UF-Upper Fox, MF- Middle Fox, LF-Lower Fox, MK-Mukwonago River, HS-Honey/Sugar Creek, WN-White/Nippersink Creeks; see map V-6 for detailed locations.

bStandards indicated are those established for warmwater sport fish and full recreational use objectives. See Chapter II for relationships of these objectives and standards to current Wisconsin Department Of Natural Resources stream classifications and water quality criteria.

The remaining water quality data collected on a short-term basis throughout the watershed do not illustrate trends. However, these data do illustrate that the phosphorus standards are exceeded in the Upper and Middle Fox River and Honey/Sugar Creek systems.

Toxic and Hazardous Substances: No known stream water or bottom sediment sampling for toxic and hazardous materials had been available for use in preparing the initial regional water quality management plan. Recent data on toxic and hazardous substances in the Fox River were collected by the Wisconsin Department of Natural Resources and the U.S. Geological Survey at stations Fx-7 and Fx-27a, respectively, as shown in Figures V-1 and V-3. These data indicate that levels of lead occasionally violated chronic toxicity level standards as established by the Wisconsin Department of Natural Resources for stations Fx-7 and Fx-27a. Levels of zinc and cadmium occasionally violated chronic toxicity level standards for station Fx-27a and levels of copper violated chronic and acute toxicity standards at station Fx-27a on one occasion.

In 1979, bottom sediment sampling was conducted by the Wisconsin Department of Natural Resources for three locations in the Fox River watershed. Results indicated that sediments within Honey Creek downstream of East Troy were moderately polluted by iron and heavily polluted by chromium and nickel. Fox River sediments in the City of Waukesha were moderately polluted by lead, zinc, iron, and nickel, and heavily polluted by copper.

Post-1976 data on toxic and hazardous substances present in stream sediments in the Fox River were collected by the Wisconsin Department of Natural Resources as part of the water quality appraisals for the Upper Fox River priority watershed plan and by the Regional Planning Commission in the Middle Fox River as part of a water level management plan refinement. 39 Data collected in 1993 at ten locations in the Upper Fox River subwatershed and seven locations in the Middle Fox River subwatershed indicated the presence of polycyclic aromatic hydrocarbons (PAHs) at 14 of the sampling stations, and polychlorinated biphenyls (PCBs) at six of the sampling stations as set forth in Table V-15. Higher levels of PAHs than stated in the lowest effect level (LEL) guidelines set forth in the draft screening criteria proposed by the Wisconsin Department of Natural Resources 40 were recorded in those sediments sampled in the Fox River downstream of IH 94, while higher levels of PCBs were observed in those sediments sampled in the Fox River and tributaries in the City of Waukesha. The data also indicated higher levels of heavy metals in the aforementioned river and tributary reaches than those levels recorded at other sampling stations. Concentrations of most metals included in the screening criteria also exceeded the Lowest Effect Level guidelines downstream of IH-94. Oil and grease concentrations also exceeded the LEL at four locations in the Middle Fox River downstream of IH 43, as set forth in Table 15. Copper concentrations exceeded the Severe Effect Level (SEL) guidelines at the Barstow Impoundment Recreational Center, Main Street and River Avenue, and in the Waterford Impoundment. Chromium concentrations exceeded the

³⁹SEWRPC Community Assistance Planning Report No. 5, <u>Drainage and Water Level</u> Control Plan for the Waterford-Rochester-Wind Lake Area of the Lower Fox River Watershed, May 1975.

⁴⁰Wisconsin Department of Natural Resources, (Draft) <u>Inventory of Statewide</u> <u>Contaminated Sediment Sites and Development of a Prioritization System</u>, June 1994.

Table V-15

CONCENTRATIONS OF TOXIC AND HAZARDOUS SUBSTANCES FOUND IN SEDIMENT SAMPLES
IN THE FOX RIVER WATERSHED: 1993-1994

					Sampling Station	ns-Upper Fox R	iver Subwat	ershed		
			Fox River Ma	ain Stem	Fox River Tr at Frame		Fox Ri	Fox River Tributaries		
Substances Sampled	стн ү	Springdale Road	Sunset Drive	Barstow Impoundment- Boat Landing	Barstow Impoundment- Recreation Center	Arcadian Avenue	Main Street	Deer Creek at IH 94	Poplar Creek at Barker Road	Poplar Creek Tributary at CTH Y
Heavy Metals (mg/kg)						-				
Arsenic	2.76 0.73 19.0 20.0 17.0 0.08 13.0 120.0	5.66 1.01 15.0 20.0 19.0 0.12 12.0 94.0	10.0 1.11 32.0 50.0 26.0 0.31 15.0	12.3 1.45 26.0 66.0 68.0 0.19 19.0 200.0	14.7 1.07 24.0 160.0 46.0 0.18 22.0 180.0	9.73 1.92 74.0 93.0 110.0 0.06 120.0 280.0	8.63 4.49 150.0 110.0 290.0 1.1 150.0 350.0	5.15 1.38 39.0 61.0 53.0 0.22 22.0 260.0	9.02 0.77 13.0 19.0 23.0 0.05 12.0 96.0	7.06 0.59 9.0 19.0 24.0 0.05 10.0
Total Polycyclic Aromatic Hydrocarbons (µg/kg)	0.70	1.12	59.2	28.7	17.6		11.0	34.5	1.6	
Total Polychlorinated Biphenyls (µg/kg)			150	50		630	740		240	160

Source: Wisconsin Department of Natural Resources

Table V-15 (continued)

CONCENTRATIONS OF TOXIC AND HAZARDOUS SUBSTANCES FOUND IN SEDIMENT SAMPLES IN THE FOX RIVER WATERSHED: 1993-1994

			Sampling S	tations-Middle	Fox River Subwat	ershed	
				Fox River Ma	ain Stem		
Substances Sampled	IH 43	Center Road	East Troy Railroad	CTH LL	River Avenue	Edgewood Golf Course	Waterford Impoundment
Heavy Metals (mg/kg)							
Arsenic	1.7 2.0 10.0 6.0 13.0 0.0 6.0 26.0	5.66 1.01 15.0 20.0 19.0 0.12 12.0 94.0	10.0 1.11 32.0 50.0 26.0 0.31 15.0 170.0	12.3 1.45 26.0 66.0 68.0 0.19 19.0 200.0	14.7 1.07 24.0 160.0 46.0 0.18 22.0 180.0	9.73 1.92 74.0 93.0 110.0 0.06 120.0 280.0	8.63 4.49 150.0 110.0 290.0 1.1 150.0 350.0
Total Polycyclic Aromatic Hydrocarbons (µg/kg)	45	48	148	50	7	0.0	80
Total Polychlorinated Biphenyls (mg/kg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aldrin (µg/kg)	0.0 0.0 0.0 0.0 0.0 15,900.0	0.0 0.0 0.0 0.0 0.0 360.0	0.0 0.0 0.0 0.0 0.0 1100.0	0.0 0.0 0.0 0.0 850.0	0.0 0.0 0.0 0.0 1,200.0	0.0 0.0 0.0 0.0 0.0 560.0	0.0 0.0 0.0 0.0 0.0 1,400.0
CN (mg/kg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0

NOTE: Values recorded as 0.0 are below sthe limit of detection.

SEL at Main Street and in the Waterford Impoundment. Lead and nickel concentrations exceeded the SEL in the Fox River Tributary at Frame Park and in the Waterford Impoundment. Sampling station locations are shown on Map V-6.

Surface water quality sampling data of non-agricultural volatile and semivolatile organic chemicals in the Fox River were collected by the U.S. Geological Survey in 1988.⁴¹ The data were collected from one station on the Fox River near the Village of Big Bend, as indicated on Map V-6. Results of the analysis indicated that all of the chemicals sampled for were at concentrations below the minimum detection levels established for each chemical. Where toxicity criteria had been developed by the U.S. Environmental Protection Agency for selected chemicals, it should be noted that sampled concentrations were well below the levels of toxicity.

Since the completion of the initial regional water quality management plan, 15 spills of toxic substances into streams within the Fox River watershed have been documented by the Wisconsin Department of Natural Resources. Of these spills, nine have occurred in the main stem of the Fox River, five in the City of Waukesha, two in the City of Burlington, and two in the Village of Waterford. The remaining spills have occurred in tributaries of the Fox River, including the White and Pewaukee Rivers, and Honey, Deer, Pebble, and Spring Creeks. The majority of the substances that were spilled into surface waters were gasoline or related petroleum products.

<u>Water Quality Assessments:</u> Based upon the recent available data, the water quality and biological characteristics of the Fox River and its major tributaries were assessed, with the results set forth in Table V-16. Fish populations and diversity range from fair to good throughout. The portions of Genesee Creek above STH 59, and Potawatomi and Van Slyke Creeks support Class I trout fisheries. A 2.5-mile reach of Genesee Creek immediately downstream of STH 59, and Southwick and Spring Brook Creeks support Class II trout fisheries.

Fish kills were documented in three streams in the Fox River watershed - Muskego Canal, Pebble Brook, and the Fox River main stem in the City of Waukesha. Fish kills are primarily related to seasonal fluctuations in water temperature and levels of dissolved oxygen as well as spawning activity. The specific causes and severity of each documented fish kill is shown in Table V-16.

Standards were not fully met for dissolved oxygen concentrations and fecal coliforms in the majority of the streams in the Upper Fox River subwatershed and in the Honey/Sugar Creeks subwatershed. In addition, fecal coliform levels exceeded the standard in the Fox River from the confluence with Pebble Creek to IH 43 and from Echo Lake to the State line; and in the majority of the stream reaches in the White River/Nippersink Creek subwatershed. Problems with phosphorus concentrations were also estimated to exceed standards in parts of the Upper Fox River subwatershed, in the Lower Fox River, and in Honey Creek.

Metals concentrations which exceeded standards set forth in Chapter II were identified during a 1989 sampling survey conducted by consultants for the City

⁴¹U.S. Geological Survey, "Surface Water Quality Assessment of the Upper Illinois River Basin in Illinois, Indiana, and Wisconsin: Data on Man-made Non-agricultural Volatile and Semivolatile Organic Chemicals in Water, May 1988 through March 1990," Open-File Report 92-46F, 1993.

Table V-16

CHARACTERISTICS OF STREAMS IN SUBWATERSHEDS WITHIN THE FOX RIVER WATERSHED

					Wate	er Qualit	y Problems ^c				
SUBWATERSHED Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH ₃	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation (substrate)	Physical Modifications to Channel ^l
FOX RIVER UPPER											
a. Fox River u/s Mill Road	5.2	Fair	No	Yes	No	No	Yes		Fair	Moderate (sand and silt)	Major
b. Fox River d/s Mill Road to Sussex Creek inflow	4.7	Fair	No	Yes	No	No	Yes		Fair	Moderate (sand and silt)	Major
c. Sussex Creek	7.7	Fair	No	Yes	No	Yes	Yes		Very poor	High (cobble, gravel, sand)	Moderate
d. Fox River d/s Sussex Creek to Watertown Road	6.8	Fair	No	Yes	No	Yes	Yes		Fair	Moderate (cobble, gravel, silt)	Moderate
e. Fox River d/s Watertown Road to Prairie Avenue	4.4	Fair	Yes ^e	Yes	No	Yes	Yes	Yes	Fair ^f	Moderate (boulders, rubble, gravel, sand)	Major
f. Fox River d/s Prairie Ave. to Pebble Creek inflow	2.7	Fair	No	Yes	No	Yes	Yes		Fair ^f	Moderate (boulders, rubble,	Moderate
g. Deer Creek	7.0	Fair	No	Yes	No	Yes	Yes		Fair	gravel, sand) High (clay, silt and concrete)	Moderate
h. Pebble Creek and Brandy Brook)	6.8	Fair	No	Yes	No	No	Yes		Fair	Moderate (sand, cobble, gravel, and silt)	High
i. Poplar Creek	7.0	Fair	No	Yes	No	Yes	Yes	No	Fair ^f	High (sand and gravel)	Moderate
j. Pewaukee River	7.5	Good	No	Yes	No	No	Yes	No	Poor	High (cobble and gravel)	Moderate
TOTAL	59.8									5 ,	

Water Quality Problems $^{\rm C}$

SUBWATERSHED Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation (substrate)	Physical Modifications to Channel ¹
FOX RIVER MIDDLE a. Fox River d/s Pebble Creek inflow to I-43	13.3	Fair to good	No	No	No	Yes	Yes			Moderate (silt	None
b. Fox River d/s I-43 to	13.7	Fair to	No	No	No	No	No			Moderate (silt and	Moderate
Waterford Impoundment c. Fox River d/s Waterford Impoundment to Echo Lake inflow	10.6	good Fair to good	No	Yes	No	No	No			sand) Low to moderate (silt and sand)	Moderate
d. Fox River d/s Echo Lake inflow to Spring Brook inflow	1.3	Fair	No	No	No	No	No			Moderate (sand and silt)	Low
e. Muskego Canal	2.4		Yesg	No	No	Yes	No			High (silt and sand)	Major
f. Wind Lake Drainage Canal	12.8		No	No	No	No	No			High (silt and sand)	Major
g. Genesee Creek and Spring Creek	11.2	Good ^h	No	No	No	No	No			Low to moderate (silt)	Low
h. Eagle Creek	5.5		No	No	No	No	Yes			Low to moderate (silt)	Low
i. Pebble Brook, Mill Brook, and Mill Creek TOTAL	<u>13.7</u> 84.5	Good	Yes	Yes	No	No	Yes		·	Low to moderate (silt, gravel, sand)	Low
FOX RIVER LOWER											
a. Fox River d/s Spring Brook Creek inflow to CTH JB	9.8	Fair	No	No	No	Yes	Yes			Moderate (sand and silt)	Low
b. Fox River d/s CTH JB to State Line	14.1	Fair	No	No	No	Yes	Yes	Yes		Moderate (sand and silt)	Low
c. Hoosier, Palmer, and Peterson Creeks	21.8	Fair ⁱ	No							Moderate (silt)	Moderate
d. Bassett Creek	5.1	Fair	No	No	No	No	No			Moderate (silt and sand)	Low
e. New Munster Creek	4.7		No	No	No	No	No			Moderate (sand and silt)	Low
TOTAL	55.5									and Silt,	
HONEY/SUGAR CREEKS a. Honey Creek and Spring Creek	34.8	Honey Creek -fair	No	Yes	No	Yes	Yes			High (silt)	Moderate
b. Sugar Creek and Spring Brook Creek	34.1	Fair ^j	No	Yes	No	Yes	Yes			Moderate (sand and silt)	Moderate
TOTAL	68.9										

Table V-16 (continued)

					Water Quality Problems ^c						
SUBWATERSHED Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation (substrate)	Physical Modifications to Channel ¹
MUKWONAGO RIVER a. Mukwonago River u/s Eagle Spring Lake	6.3	Good	No	No	No	No	No			Moderate (silt and sand)	None
b. Mukwonago River d/s Eagle Spring L. to Phantom Lakes	9.7	Good	No	No	No	No	No			Low (sand and silt)	None
c. Mukwonago River d/s Phantom Lakes	2.3	Good	No	No	No	No	No	No	Excellent	Low (sand, silt)	None
d. Jericho Creek TOTAL	6.9 25.2	Fair	No	No	No	No	No			Low (silt, sand)	None
WHITE RIVER/NIPPERSINK CREEK a. White River	22.5	Fair to	No	No	No	No	Yes			Low to moderate (sand and silt)	Moderate
b. Como Creek	3.6		No	No	No	No	Yes				Moderate
c. Ore Creek	11.5		No	No	No	No	Yes			Moderate (sand, silt)	Moderate
d. Lake Ivanhoe outlet	8.4		No	No	No	No	Yes			Light (sand)	Low
e. Nippersink Creek	21.6		No	No	No	No	Yes			Moderate (sand and silt)	Moderate
f. Potawatomi, Van Slyke, and Southwick Creeks	3.1	$Good^{\mathbf{k}}$	No							Moderate (sand and silt)	None
TOTAL	70.7										

^aBased upon stream appraisal documentation set forth in the November 1993 Upper Fox River Priority Watershed Plan and professional judgement of area fish managers. ^bUnless otherwise noted, fish kills are assumed to be the result of natural fluctuations in water conditions.

^cThe most recent water quality data available as described in Figures V-1 through V-10 were used to evaluate water quality in the Fox River system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Fox River watershed stream reaches based upon simulated year 2000 land use conditions and current level of pollutant control, if appropriate.

dExcept where otherwise indicated, biotic index ratings are based upon the Index of Biotic Integrity (IBI) discussed in U.S. Department of Agriculture, Forest Service, General Technical Report NC-149, "Using the Index of Biotic Integrity (IBI) To Measure Environmental Quality in Warmwater Streams of Wisconsin," Lyons, April 1992.

eUndetermined cause.

fBiotic index rating is based upon the Hilsenhoff Biotic Index (HBI) discussed in Wisconsin Department of Natural Resources Technical Bulletin No. 132, "Using a Biotic Index to Evaluate Water Quality in Streams," Hilsenhoff, 1982.

8Due to decreased water discharge from dam.

hGenesee Creek is a Class I trout stream upstream of STH 59, and a Class II trout stream downstream of STH 59.

iPalmer Creek is a Class III trout stream.

jSpring Brook Creek is a Class II trout stream.

kPotawatomi and Van Slyke Creeks are Class I trout streams. Southwick Creek is a Class II trout stream.

1 Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

of Waukesha at locations both upstream and downstream of the Waukesha sewage treatment plant. The metals concentrations were variable and exceeded the standards for chromium, lead, and zinc on occasions. Only limited data were available on water column toxic pollutants at additional locations in the watershed, as noted in Table V-16. Additional data collected by the U. S. Geological Survey at station Fx-27a suggest that the standards for toxicity for copper and zinc have been occasionally exceeded only on very limited occurrences and generally metal concentrations appear to be within the acceptable levels, as defined in Chapter II.

The biotic index ratings, which are biological indicators of water quality within a stream system, were fair except for Pewaukee River which had a poor rating, Sussex Creek which had a very poor rating, and Mukwonago River downstream of Phantom Lakes which had an excellent rating. High levels of streambed sedimentation were noted in selected sections of the Fox River between IH 43 and the Waterford Impoundment, the upper reaches of the Pewaukee River, Poplar Creek, Honey Creek, Sussex Creek, Deer Creek, and in the Wind Lake and Muskego Canals. Elsewhere, the levels were generally low to moderate.

Table V-17 sets forth water quality index classifications 42 used in the initial plan for 1964, 1974-75, and for 1990-92 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table V-17, recent comparative water quality data were available for four stations on the Fox River main stem; one in the City of Waukesha, Fx-7; one just downstream of the City of Waukesha, Fx-10; one just upstream of the Village of Big Bend, Fx-13; and one just downstream of the Wisconsin-Illinois State Line, Fx-27a; and for four stations on tributaries of the Fox River: two on the Pewaukee River, one on Poplar Creek, and one on Honey Creek. stations and additional locations where water quality data were collected by the Wisconsin Department of Natural Resources are shown on Map V-6. obtained for USGS sampling station Fx-27a, just downstream of the Wisconsin-Illinois State Line, were used for comparative purposes in conjunction with earlier data from station Fx-27, located on the Fox River just upstream of the The limited data available indicate that water quality conditions from 1974-75 through 1990-92 have remained "fair" at stations Fx-6, Fx-7, and Fx-10, and have remained "good" at stations Fx-13 and Fx-27. Improvements in water quality conditions were indicated at station Fx-5 from where the classification was "poor" in 1974-75 and was "fair" in 1990-92. These improvements can be attributed, in part, to the abandonment of the Village of Pewaukee sewage treatment plant which occurred in 1981. Water quality improvements from a classification of "fair" in 1974-75 to "good" in 1990-92 were also noted at station Fx-21, located downstream of the Village of East Troy sewage treatment plant which was upgraded in 1982. Water quality conditions at station Fx-3 on Poplar Creek decreased from "fair" to "poor" from 1974-75 to 1990-92, most likely as a result of increased urban development and associated construction site erosion in the tributary area.

A summary of potential pollution sources in the Fox River watershed by stream reach is shown in tabular summary in Table V-18. Review of the data indicate the majority of the conversion of lands from rural to urban uses has occurred in

⁴²For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin: 1964-1975</u>, June 1978.

Table V-17

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS
OF THE FOX RIVER WATERSHED 1964, 1974-1975, AND 1990-92

Water Quality	July, August,		July, August,
Sampling	September, and	August of the	and September
Stations ^a	October of 1964	Years 1974-1975	1990-1992
Main Stem Stations			
n. 1	.		
Fx-1	Fair	Fair	
Fx-4	Poor	Fair	
Fx-7	Fair	Fair	Fair
Fx-8	Poor	Fair	
Fx-9	Poor	Fair	
Fx-10	Poor	Fair	Fair
Fx-11	Fair	Fair	
Fx-13	Good	Good	Good ^b
Fx-14	Good	Good	
Fx-17	Good	Good	
Fx-24	Fair	Fair	
Fx-27	Good	Good	Good
Tributary Stations			
IIIbucary Scattons		·	
Fx-2	Fair	Fair	••
Fx-3	Fair	Fair	Poor
Fx-5	Poor	Poor	Fair
Fx-6	Good	Fair	Fair
Fx-12	Excellent	Excellent	
Fx-15	Poor	Fair	
Fx-16	Good	Good	
Fx-18	Fair	Fair	
Fx-19	Fair	Fair	
Fx-20	Fair	Fair	
Fx-21	Good	Fair	Good
Fx-22	Good	Good	
Fx-23	Good	Fair	
Fx-25	Poor	Fair	
Fx-26	Fair	Fair	
Fx-28	Good	Fair	
Watershed			
	Fair	Fair	To i
Average	Fall	rair	Fair

^{*}See Map V-6 for sampling station locations.

Source: SEWRPC.

 $^{^{\}mathrm{b}}\mathrm{Recent}$ short-term water quality data available for these stations were used to calculate 1990-1992 water quality indices.

Table V-18

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE FOX RIVER WATERSHED: 1990

		ersion of Lands									
Subwatershed Stream Reach ²	from Rural Historical 1976-1990	Expected	Documented Toxic Spills 1976-1990	Urban Nonpoint Source	Rural Nonpoint Source	Public Sewage Treatment	Private Sewage Treatment	Number of Permitted Industrial	Other Known Potential Impacts		Ongoing Pollution Abatement Efforts ^C
UPPER FOX RIVER Fox River upstream Mill Road	insignificant	insignificant	1976-1990	Pollution x	Pollution x	Plants	Plants	Discharges	to Surface Water Quality Industrial Waste Corp. landfill (abandoned)	Comments	1,2
Fox River downstream Mill Road to Sussex Creek inflow	insignificant	insignificant		x	х				Martha Zaretzke landfille (inactive) Mill Lands, Inc. landfill (abandoned) Unnamed landfills in Village of Menomonee Falls, Sec. 30 (inactive) and Sec. 28 (inactive)	Willow Springs Mobile Home Park private sewage treatment plant recommended for abandonment	1,2
Sussex Creek	significant	insignificant		x	x	1		2	Milwaukee Road landfill (inactive) Vulcan Materials landfill (inactive)		1,2
Fox River d/s Sussex Creek to Watertown Road	moderate	moderate		×	x	1		3	Unnamed landfill in City of Brookfield Sec. 17 (inactive) Master Disposal Sanitary Landfill ^f (inactive) Fly ash disposal site in City of Brookfield Sec. 5 (inactive)		1,2,3
Fox River d/s Watertown Road to Prairie Avenue (Waukesha)	moderated	moderate ^d	1978 - gasoline 1984 - petroleum product 1986 - unknown 1988 - unknown 1988 - petroleum	x		1		14	Johnson Sand and Gravel landfill (abandoned) Unnamed Landfill Town of Waukesha, Sec. 1 (abandoned)		1,2
Fox River d/s Prairie Avenue to Pebble Creek inflow	moderated	moderate ^d		x				3	City of Waukesha sanitary landfill (abandoned)		1,2,3
Deer Creek	moderated	significant ^d		x				5		City of New Berlin-Regal Manor private sewage treatment plant abandoned in 1984.	1,2

	Extent of Conve						Remainin	g Potential Su	urface Water Pollution Sources		
Subwatershed Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^c
Pebble Creek and Brandy Brook	significant	moderate		×	x			1			1,2
Poplar Creek	significant	moderate		x	x		1	2	United Waste Systems Landfill (abandoned) Bodus Landfill (abandoned) ^h Industrial Waste Corp. landfill (active)	Cleveland Heights Elementary School private sewage treatment plant abandoned in 1986 New Berlin-West High School private sewage treatment plant recommended for abandonment	1,2
Pewaukee River	significant	moderate	1984 - unknown 1986 - oil	x	x			4		Village of Pewaukee public sewage treatment plant abandoned in 1981	1,2
MIDDLE FOX RIVER Fox River d/s Pebbel Creek inflow	moderate	significant		x	x			3			2
Fox River d/s IH 43-Waterford Impoundment	insignificant	significant			x						2
Fox River d/s Waterford Impoundment to Echo Lake inflow	insignificant	significant	1978-Kerosene Solvent 1990-Diesel Fuel	x	х						
Fox River d/s Echo Lake Inflow to Spring Brook inflow	insignificant ^d		1978-Oil 1990-Petroleum Product	x	x	1	1	4	,	Packaging Corporation of America private sewage treatment plant recommended for abandonment	
Muskego Canal	moderate	significant			x			2			2,4
Wind Lake Drainage Canal	insignificant	insignificant			x	1	1	1	West Shore Pipeline Company- Broken pipeline remediation efforts permitted to discharge treated wastewater to Wind Lake Drainage Canal Tributary		2,4

187

Table V-18 (continued)

		ersion of Lands to Urban ^b					Remainin	g Potential S	urface Water Pollution Sources		
Subwatershed Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^c
Genesee Creek and Spring Creek	major	moderate			x						2
Eagle Creek	insignificant	insignificant			x	1					
Pebble Brook, Mill Brook, and Mill Creek	major	moderate		x	x			1			2
LOWER FOX RIVER Fox River d/s Spring Brook Creek to CTH JB	insignificant	significant		x	x			2			2
Fox River d/s CTH JB to State Line	insignificant	moderate			x	2	1				2
Hoosier, Palmer and Peterson Creeks	insignificant	insignificant			x		18	2			2
Bassett Creek	significant	significant			×	1					2
New Munster Creek	insignificant	insignificant			x						2
MUKWONAGO RIVER Mukwonago River u/s of Eagle Spring Lake	insignificant	insignificant			x						2
Mukwonago River Eagle Spring Lake to Phantom Lakes	significant	significant			х		1			Classified as an Exceptional Resource Water Rainbow Springs private sewage treatment is currently not in operation	2
Mukwonago River d/s Phantom Lakes	significant	significant		x	x	1					2
Jericho Creek	major	significant			x						2

0

		Extent of Conve						Remaining	Potential Su	urface Water Pollution Sources		
	Subwatershed Stream Reach ²	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^c
	HONEY/SUGAR CREEKS Honey Creek	insignificant	significant		x	х	1		4	Leaking Underground Storage Tank site permitted to discharge remediation wastewater to Honey Creek		2
	Sugar Creek and Spring Brook Creek	insignificant	insignificant			x		1				2
	WHITE RIVER / NIPPERSINK CREEK White River	insignificant	significant	1984-Gas-oil mixture 1988-Diesel fuel 1986-Gasoline	х	x	2	1	1			2
	Como Creek	insignificant	significant		x	x						2
180	Ore Creek	insignificant	significant			x					Country Estates mobile home park private sewage treatment plant abandoned in 1988	2
	Lake Ivanhoe Outlet	insignificant	insignificant			x						2
	Nippersink Creek	insignificant	significant			х	1	1	1		Wisconsin Dairies Cooperative private sewage treatment plant was abandoned in 1979	2
	Potawatomi, Van Slyke and Southwick Creeks	significant	significant		x	x			1			2

a Includes the tributary drainage area of each stream reach.

major > 20% 10 - 20% moderate significant 5 - 10% insignificant 0 - 5%

- C Letter codes refer to the following ongoing pollution abatement efforts:

 Upper Fox River Priority Watershed Nonpoint Source Plan Implementation Underway

 - 2. Construction Erosion Control Ordinances in place
 3. Sewage Treatment Plant Upgrading Underway
 4. Muskego-Wind Lakes Priority Watershed Nonpoint Source Plan Implementation Underway

Footnotes continue.

b Extent of urban land conversions were determined as a percentage of the watershed as follows:

Table V-18 (continued)

- d Considerable urban development existing pre-1976.
- e Landfill identified for State action.
- f Superfund site
- g The private sewage treatment plant serving the Bong Recreational Area is located in the Des Plaines River watershed. Treated effluent from the plant is discharged to Peterson Creek in the Fox River watershed.
- h Bodus landfill was determined to have collected mixed industrial wastes during its operation and is considered by the U.S. Environmental Protection Agency to have potentially accepted hazarious wastes.

the Upper Fox River and Mukwonago River subwatersheds. It should also be noted that a majority of the documented spills of toxic substances and the majority of the permitted industrial discharges have occurred in streams in the Upper Fox and Middle Fox River subwatersheds. Data on nonpoint source pollution, public and private sewage treatment plants discharging to surface waters, and additional potential impacts to surface water quality are included in Table V-18.

Lakes

Lake water quality data available for use in preparing the initial regional water quality management plan were obtained from the Wisconsin Department of Natural Resources quarterly lake monitoring program for selected lakes; U.S. Environmental Protection Agency (EPA) national eutrophication survey--reports on Browns Lake, Como Lake, Geneva Lake, Middle Lake, Pewaukee Lake, and Tichigan Lake; and Southeastern Wisconsin Regional Planning Commission and Wisconsin Department of Natural Resources lake use reports. Post-1975 data on phosphorus and chlorophyll concentrations and water clarity for major lakes in the Fox River watershed, where available, are presented in Table V-19.

<u>Toxic and Hazardous Substances:</u> A number of the lakes in this watershed were subjected to substance spills. These include Big Muskego Lake, Lake Como, Geneva Lake, Powers Lake, Pewaukee Lake, and Phantom Lakes. The majority of the substances that were spilled into these surface waters were gasoline or related petroleum products.

<u>Water Quality Assessments:</u> Data from Table V-19 were used in the calculation of trophic state indices for each of the major lakes where data were available. Trophic states, indicating degrees of nutrient enrichment in the lakes, were assigned using the Wisconsin Trophic State Index⁴³ for each major lake in the Fox River watershed where data were available, as indicated in Table V-20. The available trophic state index values using the Carlson Trophic State Index are also provided for current and historic conditions, as shown in Table V-21. These data are presented using the Carlson Trophic State Index⁴⁴ in order to present the newer data on a comparable basis to the historic data which used that Index.

The data available, as shown in Table V-20 indicate that all of the lakes may be classified in the mesotrophic to eutrophic range. Mesotrophic lakes have moderate levels of nutrient enrichment whereas eutrophic lakes are nutrient-rich lakes. Beulah, Bohner, Eagle Spring, Geneva, the three Lauderdale Lakes, Pewaukee, Powers, Silver-Kenosha, Spring, Lower Phantom, and Waubeesee Lakes are all drainage lakes classified in the mesotrophic range. Booth, Peters, and Pleasant Lakes are mesotrophic seepage lakes and Browns, Center, and Upper Phantom Lakes are mesotrophic spring lakes. Benedict/Tombeau Lake and Lake Mary are also mesotrophic, and are classified as drained lakes. Elizabeth and Wandawega Lakes, drainage and seepage lakes respectively, are currently classified as mesoeutrophic lakes.

⁴³The Wisconsin State Index is set forth in "Trophic State Index Equations and Regional Predictive Equations for Wisconsin Lakes," R.A. Lillie et al, Research Management Findings, No. 35, May 1993.

⁴⁴The Carlson Trophic State Index is set forth in "A Trophic State Index for Lakes," Robert E. Carlson, Limnology and Oceanography, Vol. 22(2), March 1977.

 $\label{eq:Table V-19}$ Water quality of the major lakes in the fox river watershed

			Tota	l Phosphorus (mg/1)			Chlo	rophyll-a (µ	g/1)			Se	ecchi Disk (fe	et)	
SUBWATERSHED Lake Name	Area (acre)	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ^a	Date of Data	Sourceb
FOX RIVER-UPPER Pewaukee Lake	2,439	0.36	0.016	0.058(67)	1986-87	LTT	15.0	2.0	9.95(22)	1986-87	LTT	19.7	2.8	6.64(33)	1986-87	LTT
POX RIVER-MIDDLE Big Muskego Lake Denoon Lake Eagle Lake Kee Nong Go Mong Little Muskego Lake Long Lake (Racine Co.) Spring Lake (Waukesha County) Waterford Impoundment Buena Lake Tichigan Lake Waubeesee Lake Wind Lake	2,177 162 520 88 506 102 105	0.31 0.35 0.12 0.55 0.99 0.07 	0.03 0.01 <0.01 0.01 0.01 0.03 	0.11(30) 0.11(16) 0.06(41) 0.07(33) 0.09(132) 0.05(8) 0.28(41) 0.43(32) 0.18(119)	1989-93 1991-92 1975-92 1989-92 1987-90 1977-78 1973-80 1988-92 1985-90	USGS USGS LSF USGS USGS LSF LSF USGS USGS	100.0 22.0 44.0 31.0 81.0 	31.0 4.0 1.0 5.9 3.0 1.0 1.8	48.7(15) 9.4(8) 14.8(73) 12.5(24) 23.8(53) 6.0(1) 2.9(16) 22.7(40)	1989-93 1991-92 1976-92 1988-92 1987-90 1980	USGS USGS SEWRPC USGS USGS STORET	5.5 8.9 11.0 7.2 7.0 4.0 10.0	1.0 4.9 1.75 2.0 3.5 1.3 4.5	2.18(61) 6.5(8) 4.66(18) 5.1(25) 4.39(7) 2.5(4) 7.0(23) 4.88(33) 12.3(31) 5.49(20)	1989-93 1991-92 1991-92 1988-92 1991 1977-78 1980	SELF-HELP USGS SELF-HELP USGS SELF-HELP LSF SELF-HELP SELF-HELP SELF-HELP SELF-HELP
FOX RIVER-LOWER Bohner Lake Browns Lake Camp Lake Center Lake Cross Lake Dyer Lake Lilly Lake Silver Lake (Kenosha) Voltz Lake	135 396 461 129 87 56 88 464 52	0.09 0.23 0.07 0.75 0.16 0.11 4.76 0.07	0.01 0.012 <0.01 0.03 0.01 0.04 <0.01 <0.01	0.04(14) 0.033(53) 0.04(20) 0.08(3) 0.07(3) 0.06(3) 0.11(358) 0.03(28) 0.20(3)	1977-78 1986-87 1975-78 1977 1977 1977 1978-82 1973-77	LSF LTT LSF LSF LSF STORET LSF	5.2 1.00 33.0	1.0 2.0 2.0	3.1(2) 5.18(18) 7.9(139)	1977-78 1986-87 1978-81	LSF LTT STORET	10.0 16.4 5.0 30.0 11.5 6.0 11.25 5.5	4.75 1.7 5.0 1.0 4.0 3.0 5.0 2.5	7.65(23) 6.88(33) 5.0(1) 14.0(10) 5.94(26) 10.0(1) 5.5(11) 8.4(33) 4.06(4)	1989-91 1986-87 1989 1989-92 1989-92 1977 1975-78 1987-91 1989	SELF-HELP LTT SELF-HELP SELF-HELP SELF-HELP LSF LSF SELF-HELP SELF-HELP
HONEY/SUGAR CREEKS Lauderdale Lakes Green Middle Mill North Lake (Walworth) Pleasant Lake Potter Lake Silver Lake (Walworth) Wandawega Lake	311 259 271 191 155 162 85	 0.02 0.34 0.07	 0.01 0.05 <0.01	 0.33(1) 0.02(3) 0.27(3) 0.03(10)	 1978 1978 1975-78 1978-79	STORET LSF LSF LSF	11.0 6.0 6.0 20.00	3.0 5.0 5.0 10.0	6.3(3) 5.3(3) 5.5(2) 5.0(2) 15.0(2)	1980-81 1980-81 1980-81 1980-81 1980-81	STORET STORET STORET STORET STORET	27.9 18.4 19.25 3.9 7.0	6.9 6.9 4.25 2.3 2.9	14.3(3) 12.0(3) 9.7(130) 3.1(2) 4.8(5)	1980-81 1980-81 1986-92 1980-81 1978-79	STORET STORET SELF-HELP STORET LSF

Table V-19 (continued)

	1	Total Phosphorus (mg/l)						Chlorophyll-a (µg/l)					Secchi Disk (feet)			
SUBWATERSHED Lake Name	Area (acre)	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ^a	Date of Data	Source ^b
MUKWONAGO RIVER																
Army Lake	78															
Beulah Lake	834						l		<5.0(1)	1980	STORET	14.0	4.5	8.43(26)	1991	SELF-HELP
Booth Lake	113	0.01	<0.01	0.01(3)	1978	LSF			5.0(1)	1980	STORET	10.5	7.5	9.31(4)	1991	SELF-HELP
Eagle Spring Lake	311	0.09	<0.01	0.02(27)	1975-92	LSF/USGS	10.0	4.0	6.6(9)	1980-92	USGS	6.2	3.9	4.8(9)	1980-92	USGS
Lulu Lake	84					N/A										
Peters Lake	64	0.18	0.03	0.08(3)	1978	LSF			16.1(1)	1978	LSF			5.0(1)	1978	LSF
Upper Phantom Lake	107	0.03	<0.01	0.02(14)	1977-80	LSF	9.8	9.8	5.5(3)	1977-80	LSF	17.5	7.0	11.7(5)	1991-92	SELF-HELP
Lower Phantom lake	433	0.14	<0.01	0.03(15)	1975-80	LSF			3.9(1)	1980	LSF	11.0	11.0	11.0(8)	1986	SELF-HELP
WHITE RIVER/ NIPPERSINK CREEK																
Benedict Lake	78	0.04	0.03	0.037(3)	1977	LSF						4.0	14.0	8.63(43)	1989-92	SELF-HELP
Lake Como	946	0.15	0.01	0.062(30)	1975-79	LSF	62.48	61.0	61.7(2)	1976-77	LSF	6.0	0.85	2.25(13)	1975-79	LSF
Echo Lake	71															
Elizabeth Lake	865	0.10	<0.01	0.03(76)	1973-91	LSF	14.7	4.0	8.6(11)	1976-78	LSF	9.0	4.5	6.28(35)	1991-92	SELF-HELP
Geneva Lake	5262	0.127	0.007	0.023(129)	1975-90	STORET	8.0	2.0	4.2(20)	1988-90	STORET	27.89	6.56	14.2(50)	1986-89	SELF-HELP
Lake Mary	315	0.09	<0.01	0.021(69)	1973-91	LSF	6.06	3.0	4.7(7)	1976-78	LSF	8.5	5.5	7.3(20)	1987-91	SELF-HELP
Pell Lake	86											4.0	2.0	3.16(3)	1988	SELF-HELP
Powers Lake	459	0.055	<0.005	0.02(56)	1986-92	USGS	13.0	1.0	3.3(26)	1986-92	USGS	18.0	5.5	10.31(94)	1986-92	SELF-HELF

a Number in parentheses refers to number of samples taken

LSF......Wisconsin Department of Natural Resources, Lake Survey Forms

Source: SEWRPC.

b The following sources were cited:

Table V-20

TROPHIC STATE INDEX VALUES FOR MAJOR LAKES WITHIN THE FOX RIVER WATERSHED²

	Wiscon	sin Trophic State	Index Va	ılues ^b
Subwatershed Lake Name	Total-P	Chlorophyll- <u>a</u>	Secchi	Mean
FOX RIVER UPPER				
Pewaukee Lake	57.4	50.1	51.8	53.1
FOX RIVER MIDDLE				
Big Muskego Lake	64.7	64.1	50.4	59.7
Lake Denoon	64.5	51.7	50.1	55.5
Eagle Lake	61.0	60.8	54.9	58.9
Kee Nong Go Mong Lake	63.5	53.9	53.6	57.0
Little Muskego Lake	63.2	58.5	55.8	59.2
Long Lake	58.6			58.6
Spring Lake (Waukesha County)		45.2	44.1	44.7
Waterford Impoundment				
Buena Lake	70.0			
Tichigan Lake	72.0		54.3	63.2
Waubeesee Lake Wind Lake	64.8	42.8	40.9	49.5
wind take	68.6	58.2	60.0	62.3
FOX RIVER LOWER				
Bohner Lake	56.8	43.3	44.7	48.3
Browns Lake	54.3	47.1	44.4	48.6
Camp Lake	56.8		54.2	55.5
Center Lake	62.2		39.1	50.7
Cross Lake	61.2		52.4	56.8
Dyer Lake	60.0			60.0
Lilly Lake	64.7	50.3	52.6	55.9
Silver Lake (Kenosha County)	54.6		48.8	51.7
Voltz Lake	69.4		56.9	63.2
HONEY/SUGAR CREEK	i			
Lauderdale Lakes				
Green Lake		48.6	38.9	43.8
Middle Lake		47.3	41.4	44.4
Mill Lake		47.5		47.5
North Lake (Walworth County)	73.3			73.3
Pleasant Lake	51.5	46.8	42.4	46.9
Potter Lake	71.7	55.1	43.7	56.8
Silver Lake (Walworth County)				
Wandawega Lake	56.4		54.6	55.5

Table V-20 (continued)

	Wiscons	sin Trophic State	Index Va	lues ^b
Subwatershed Lake Name	Total-P	Chlorophyll- <u>a</u>	Secchi	Mean
MUKWONAGO RIVER				
Army Lake				
Beulah Lake		<46.8	46.5	46.7
Booth Lake	46.1	46.8	44.9	45.9
Eagle Spring Lake	52.9	49.7	54.5	52.3
Lulu Lake				
Peters Lake	62.2	55.6	36.8	51.5
Lower Phantom Lake	54.6	45.0	42.6	47.4
Upper Phantom Lake	51.5	47.5	44.7	47.9
WHITE RIVER/NIPPERSINK CREEK				
Benedict Lake	56.2		45.9	51.1
Lake Como	60.3	65.7	65.6	63.9
Echo Lake				
Elizabeth Lake	55.6	51.9	50.6	52.7
Geneva Lake	52.5	45.5	39.2	45.7
Lake Mary	52.5	46.6	48.5	49.2
Pell Lake			60.4	60.4
Powers Lake	51.5	43.8	43.5	46.8

^a Wisconsin Trophic State Index Values were calculated using water chemistry data shown in Table V-19.

below 44 = oligotrophic

44 - 53 = mesotrophic

54 - 75 = eutrophic

above 75 = hypertrophic

b Wisconsin Trophic State Index ranges:

Table V-21

COMPARISON OF TROPHIC STATE INDEX VALUES FOR MAJOR LAKES
IN THE FOX RIVER WATERSHED^a

	Carlson Tr	rophic State I	ndex Values ^b
SUBWATERSHED Lake Name	Satellite Information 1979-1981	Water Chemistry Pre - 1981	Water Chemistry 1981-1991
FOX RIVER UPPER Pewaukee Lake	49		59
FOX RIVER MIDDLE Big Muskego Lake Lake Denoon Eagle Lake Kee Nong Go Mong Lake Little Muskego Lake Long Lake Spring Lake (Waukesha County) Waterford Impoundment Buena Lake Tichigan Lake Waubeesee Lake	59 47 55 50 48 51 56 54 50	 65 61 85 72	70 49 52 55 62 51 54 46 69
Wind Lake FOX RIVER LOWER Bohner Lake Browns Lake Camp Lake Center Lake Cross Lake Dyer Lake Lilly Lake Silver Lake (Kenosha County) Voltz Lake	55 52 49 52 50 49 50 50 51	49 53 54 61 57 53 57 48 73	45 51 54 35 52 50 57
HONEY/SUGAR CREEK Lauderdale Lakes Green Lake Middle Lake Mill Lake North Lake (Walworth County) Pleasant Lake Potter Lake Silver Lake (Walworth County) Wandawega Lake	48 46 48 56 48 52 50	53 53 52 88 46 85 61	49 51 45 78

Table V-21 (continued)

	Carlson Tr	cophic State I	ndex Values ^b
SUBWATERSHED Lake Name	Satellite Information 1979-1981	Water Chemistry Pre - 1981	Water Chemistry 1981-1991
MUKWONAGO RIVER Army Lake Beulah Lake Booth Lake Eagle Spring Lake Lulu Lake Peters Lake Lower Phantom Lake Upper Phantom Lake	48 46 47 49 48 48 46 48	52 48 56 50	 46 45 49 43 44
WHITE RIVER/NIPPERSINK CREEK Benedict Lake Lake Como Echo Lake Elizabeth Lake Geneva Lake Lake Mary Pell Lake Powers Lake	46 62 55 50 50 48 53 48	59 73 56 55 	44 52 48 47 60 45

^a Carlson TSI values were calculated from available data from spring measurements for phosphorus and from summer measurements for chlorophyll-a and water clarity. Water Chemistry Values were calculated from data shown in Table V-19. Satellite Information Values were determined from Wisconsin's Lakes- A Trophic Assessment Using Landsat Digital Data, 1983.

below 40 = oligotrophic 40 - 50 = mesotrophic

50 - 60 = eutrophic

above 60 = hypertrophic

Source: Wisconsin Department of Natural Resources, U.S. Environmental Protection Agency and SEWRPC.

b Carlson Trophic State Index Ranges:

Big Muskego, Camp, Como, Cross, Dyer, Eagle, Kee Nong Go Mong, Little Muskego, Long, Buena, Tichigan, Voltz, and Wind Lakes are all drainage lakes classified in the eutrophic range. Lilly, Pell, and Potter Lakes are classified as eutrophic seepage lakes. North Lake (Walworth County), also a seepage lake, is considered very eutrophic or slightly hypertrophic. No current data are available to make assessments of trophic status for Echo and Lulu Lake, drainage and drained lakes respectively, or for Army, Denoon, and Silver (Walworth County) Lakes, classified as seepage lakes. Based upon a comparison of available TSI data, few conclusions regarding changes in water quality conditions between 1976 and 1991 can be drawn based upon the limited data available, although slight improvements in water quality may have occurred in the Waterford Impoundment-Tichigan and Buena Lakes; Eagle Lake, Center Lake, Voltz Lake, and Benedict Lake.

In addition, periodic fish kills primarily related to seasonal fluctuations in water temperature and levels of dissolved oxygen as well as spawning activity have occurred on Beulah Lake in 1985, Lake Como in 1991, Geneva Lake in 1981 and 1985, Little Muskego Lake in 1981, Wandawega Lake in 1988, and Wind Lake in 1981 and 1987. However, these occurrences do not appear to be chronic. Thus, despite the obvious concern that those episodes create among lake users, they do not appear to warrant special planning consideration at this time.

Compliance with Water Use Objectives

As indicated in Chapter II, the majority of the stream reaches studied in the Fox River watershed are generally recommended for warmwater sport fish and full recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II. Potawatomi, Van Slyke, Southwick, Pebble, Brandy, and Spring Brook Creeks, and Genesee Creek upstream of Spring Creek are recommended for coldwater communities and full recreational uses because of their potential to support trout populations. Van Slyke and Potawatomi Creeks and a portion of Genesee Creek have been designated as Class I trout streams, and Southwick Creek and portions of Genesee and Spring Brook Creeks are designated as Class II trout streams. The remaining portion of Spring Brook Creek is designated as a Class III trout stream. 45 Sussex Creek has limitations for sport fish habitat and is recommended for warmwater forage fish and full recreational use. However, Sculpins, a coldwater fish species, have been found in the stream, indicating the potential for upgrading--perhaps through habitat reconstruction projects. The remaining streams are recommended for warmwater sport fish and full recreational uses. In addition, as noted in Chapter II, special designations as "Outstanding Resource Waters" have been given to Potawatomi and Van Slyke Creeks in Walworth County. In addition, Genesee Creek above STH 59 and the Mukwonago River from Eagle Springs Lake to Upper Phantom Lake, both in Waukesha County, have been designated as "Exceptional Resource Waters".

Based upon the available data for sampling stations in the watershed, the main stem of the Fox River and most of its major tributaries did not meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. As part of the Upper Fox River priority watershed planning program, the DNR staff conducted field inspections and limited sampling in order to assess the water quality and biological conditions on all of the streams in the Upper Fox River subwatershed. Those

⁴⁵Wisconsin Department of Natural Resources Publication No. FM-213-72, reissued as Publication No. 6-3600(80), <u>Wisconsin Trout Streams</u>, 1980.

investigations indicated that during 1990 and 1991 none of the streams in the Upper Fox River watershed fully met the recommended water use objectives. Based upon a review of the data summarized in Figures V-1 through V-10 and in Table V-14, and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of the fecal coliform and phosphorus standards also occur along the entire main stem of the Fox River and the recommended water use objectives continue to be partially met in the majority of the major streams in the watershed. However, the recommended water use objectives are likely to be met in the Mukwonago River where the only significant source of pollution which existed in 1975--the Village of Mukwonago sewage treatment plant discharge--has been removed and now discharges to the Fox River downstream of the Mukwonago In addition, Genesee, Spring, Potawatomi, Van Slyke, Southwick, and Palmer Creeks may also potentially be meeting the water use objectives based upon the observed uses in those streams. It is also expected that selected tributaries of the Middle and Lower Fox subwatersheds may largely meet the standards associated with the recommended water use objectives.

There are currently three stream reaches for which the water use objectives set forth herein are higher than the objectives set forth in Chapter NR 104 of the Wisconsin Administrative Code. These include Eagle Creek, Deer Creek, and Poplar Creek. Chapter NR 104 classifies portions of Poplar and Eagle Creeks as capable of supporting limited forage fish communities and Deer Creek and the remaining portions of Poplar and Eagle Creeks as capable of supporting only limited aquatic life communities, while the objectives set forth herein recommend a warmwater sport fish objective for all three streams. Under the Upper Fox River Priority Watershed Planning Program, the necessary stream appraisals have been conducted by the DNR staff to support upgrading the objectives for Deer Creek and Poplar Creek. It is recommended that a stream appraisal to further assess the potential for a higher use objective be conducted for Eagle It is further recommended that a stream appraisal to evaluate the potential for a higher use objective be conducted for Sussex Creek, due to the recording of Sculpins, a coldwater species, in the creek. Sussex Creek is currently recommended for warmwater forage fish. These stream appraisals are recommended to be part of the next one-year monitoring period envisioned to be carried out in the Fox River watershed.

The waters of the lakes in the Fox River watershed--excepting Lakes Geneva, Echo, Kee Nong Go Mong, and the Waterford Impoundment -- are recommended for the maintenance of a warmwater sport fishery and full recreational use. Geneva Lake is recommended for maintenance of coldwater sport fish and full recreational Echo Lake, Lake Kee Nong Go Mong, and the Waterford Impoundment -- only the Buena Lake portion--are recommended for maintenance of a warmwater sport fishery and limited recreational use as a result of high levels of fecal coliform or total phosphorus. In addition, as discussed in Chapter II, special designation as "Outstanding Resource Waters" has been given to Lulu Lake in Walworth County and Spring Lake in Waukesha County. All of the lakes for which water quality data were available between 1965 and 1975, except for Booth and Browns Lakes, violated the standards for total phosphorus of 0.02 mg/l recommended by the Commission. Pleasant and Silver (Walworth County) Lakes were also estimated to meet the standard based upon modeling data developed in the initial plan. addition, over half of the lakes for which data were available during this period--13, or 59 percent--violated the dissolved oxygen standard on at least one occasion between 1965 and 1975.

As shown in Table V-19, recent monitoring data were available for most lakes in this watershed from the DNR Self-help Monitoring Program data base or from monitoring studies conducted under the auspices of the Chapter NR 119 Lake Management Planning Grant Program. These data were used to assess compliance with water quality standards for the major lakes in the Fox River watershed. Based upon these data, as summarized in the Carlson TSI values set forth in Table V-21, most lakes in the watershed could be expected to have average total phosphorus concentration in excess of the 0.02 mg/l standard, which is represented by a TSI value in excess of approximately 47. Waubeesee, Bohner, Center, Pleasant, Beulah, Booth, Lower Phantom, Upper Phantom, Benedict, and Powers Lakes have TSI values of less than 47, based upon water quality monitoring data obtained between 1981 and 1991, and thus, would be expected to meet the standard.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon local facility planning, land use decisions, and identified onsite sewerage system problems, there is a need to conduct subsequent subregional sewerage system evaluations for six specific areas in the Fox River watershed. These areas include the Village of North Prairie and environs in Waukesha County; the Benedict, Tombeau, and Powers Lakes area in Kenosha County; the Pell Lake area in Walworth County; the Village of Big Bend and Town of Vernon areas in Waukesha County; and the Town of Wheatland-Silver Lake area in Kenosha County. Subregional studies potentially leading to formal amendments to the regional water quality management plan are recommended to be conducted as budgeting and local support becomes available. In addition, an amendment to the regional water quality management plan for the Bohner Lake area was under preparation early in 1994. That amendment would add the urban development around Bohner Lake to the planned sewer service area of the City of Burlington based upon local facility planning studies.

In addition to the issues noted above relating to sewerage system planning, it is also recommended that the Wisconsin Department of Natural Resources conduct a water quality and biological condition survey of Eagle Creek and Sussex Creek in order to reevaluate the current water use objectives.

Village of North Prairie Sewage Treatment Plant Evaluation

Based upon the findings of a facility plan prepared for the Village of North Prairie, 46 it is recommended that the public sewer service recommendation for the Village of North Prairie be reevaluated in a subsequent planning study which would include the connection of the Village to the Village of Mukwonago or City of Waukesha sewerage systems.

Powers, Benedict, and Tombeau Lakes Area and

Pell Lake Area Sewerage System Evaluation

Recommendations for new sewerage systems to serve the Powers, Benedict, and Tombeau Lakes area, and the Pell Lake area were documented in local facility plans. 47 , 48 The facility plans recommended that these areas be served by a

⁴⁶Ruekert & Mielke, Inc., <u>Village of North Prairie Wastewater Facility Plan</u>, Phase One, July 1986; Phase Two, December 1989.

⁴⁷Crispell-Snyder, Inc., <u>Powers, Benedict, and Tombeau Lakes Facility Plan</u>, May 1992.

new public sewage treatment plant to be located in the Town of Bloomfield west of the Powers, Benedict, and Tombeau Lakes area and east of Pell Lake. A regional plan amendment evaluation of these recommendations, as well as the potential for interconnection to existing plants is required and will be documented in a separate plan amendment. The amendment would include cost effectiveness analyses.

Town of Wheatland Sewerage System Evaluation

A local facility plan prepared for the Town of Wheatland⁴⁹ recommends the installation of a public sanitary sewerage system for a portion of the Town. A regional plan amendment evaluation is needed to determine the best means of providing treatment plant capacity for the area.

Town of Vernon-Big Bend Sewerage System Evaluation

Land use developments and local initiatives have indicated a need to consider further the potential need for a public sanitary sewerage system to serve the Village of Big Bend and portions of the Town of Vernon. The alternatives to be considered would include the use of a public sanitary sewer system and the continued use of onsite systems. If a public sanitary sewerage systems is found to be the best alternative for all or portions of the study area, construction of a new treatment plant as well as connection to the Village of Mukwonago and/or to the City of Waukesha sewerage system would be considered in this subsequent subregional study. That subsequent study would include a cost-effectiveness analysis of the alternatives.

Bohner Lake Sewerage System

Recommendations have been made in a local facility $plan^{50}$ for a new sewerage system to serve the Bohner Lake area in Racine County. The facility plan recommended the development of a public sanitary sewerage system for the urban development surrounding Bohner Lake and the connection of that system to the City of Burlington sewerage system for treatment purposes. Review of the facility plan indicates no new cost-effectiveness issue will have to be explored and the recommendations of the facility plan are proposed to be incorporated into an amendment to the regional plan.

Stream Reclassification Evaluations

Eagle Creek, Deer Creek, and Poplar Creek are currently included under the limited forage fish or limited aquatic life classifications in Chapter NR 104 of the Wisconsin Administrative Code. However, it is recommended that the objective for these streams be upgraded to provide for a warmwater sport fish classification. The necessary surveys and stream appraisals needed to support this change have been conducted by the Wisconsin Department of Natural Resources for Deer Creek and Poplar Creek as part of the Upper Fox River Priority Watershed Planning Program. It is recommended that the Department include further stream appraisals for Eagle Creek as part of the monitoring program for the Fox River watershed during the next period when the Department is devoting its monitoring efforts in the Fox River watershed as is envisioned within the next five years.

⁴⁸Baxter & Woodman, Inc., <u>Pell Lake Sanitary Facilities Planning Report</u>, June 1993.

⁴⁹Ruekert & Mielke, Inc., <u>Town of Wheatland Facility Plan</u>, September 1992.

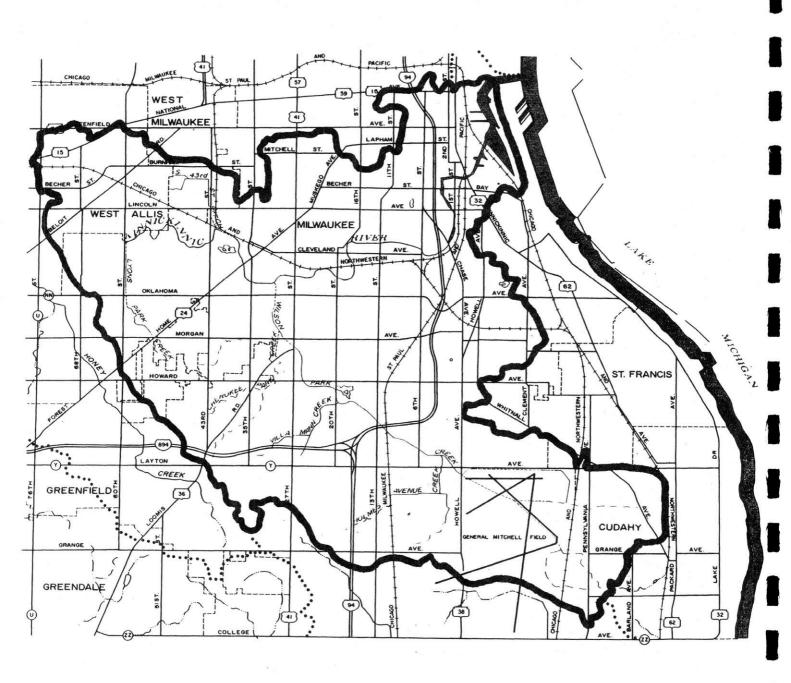
⁵⁰Crispell-Snyder, Inc., <u>Bohner Lake Facilities Plan</u>, May 1992.

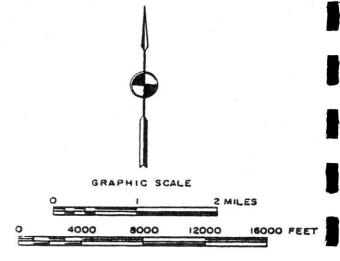
1	
_	
\$	
.	
■	

Chapter VI

KINNICKINNIC RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION


This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975 -- the base year of the initial plan--to 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Kinnickinnic River watershed through 1993, where available. Finally, this chapter presents a description of any substantive water quality management issues that remain to be addressed in the Kinnickinnic River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a brief separate section on lake management is included, which is limited for the Kinnickinnic River watershed as there are no major lakes located within the watershed. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.


The Kinnickinnic River watershed is located in the south central portion of Milwaukee County and covers an area of approximately 26 square miles. The Kinnickinnic River, approximately 8.0 miles in length and receiving discharge from approximately 8.2 miles of perennial stream tributaries, discharges into Lake Michigan through the Milwaukee Harbor estuary. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Kinnickinnic River and its principal tributaries, are shown on Map VI-1. The Kinnickinnic River watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan implementation, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Kinnickinnic River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data is presented for the watershed in order to permit consideration

Map VI-1 KINNICKINNIC RIVER WATERSHED

of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table VI-1 summarizes the existing land uses in the Kinnickinnic River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. The watershed is almost completely developed for urban uses, with 8 percent of the watershed in open space uses in 1990. Existing land uses in the Kinnickinnic River watershed are shown in graphic summary on Map VI-2.

The Kinnickinnic River watershed lies completely within Milwaukee County and includes lands located in the Cities of Cudahy, Greenfield, Milwaukee, Oak Creek, St. Francis, West Allis, and West Milwaukee. There are four major industrial centers, Milwaukee South, Milwaukee Near South, West Milwaukee, and West Allis, a major commercial retail center, the Southgate-Point Loomis centers, and the General Mitchell International Airport are all located within the watershed.

As shown in Table VI-1, from 1975 to 1990, urban land uses in the watershed increased from about 14,700 acres, or 23.0 square miles, to about 15,100 acres or 23.6 square miles, or by less than 3 percent. As shown in Table VI-1, urban-residential and urban-transportation lands represent the largest urban land use in the watershed. Residential use has increased within the watershed, from about 5,600 acres in 1975 to about 5,700 acres in 1990, an increase of about 1 percent. Commercial land uses increased from about 500 acres to about 570 acres, an increase of 13 percent.

Table VI-2 summarizes the year 2010 planned land use conditions recommended in the adopted year 2010 land use plan in the Kinnickinnic River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban lands are anticipated to remain relatively constant, with some urban redevelopment expected to occur in the already urbanized portions of the watershed.

It is important to note that a portion of the watershed is comprised of primary environmental corridor lands consisting of the best remaining natural resource features and, as recommended in the year 2010 land use plan, is proposed to be preserved through joint State-local zoning or public acquisition.

POINT SOURCE POLLUTION CONTROL PLAN ELEMENTS

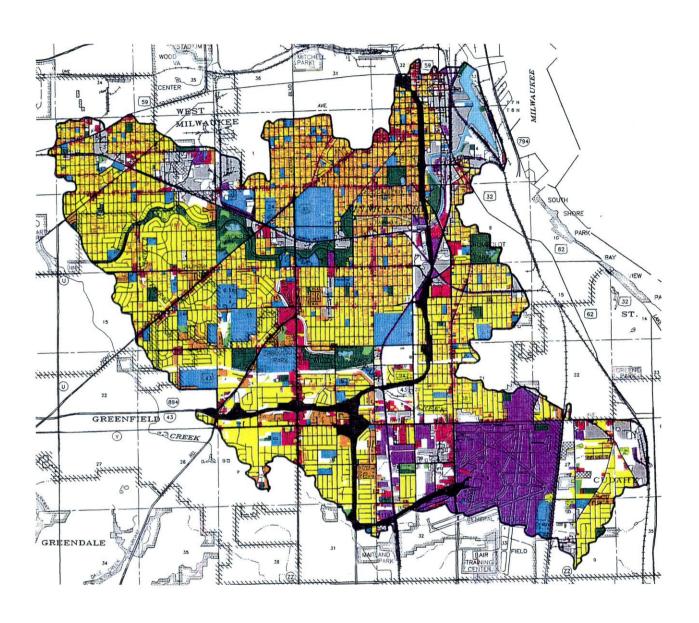
This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Kinnickinnic River watershed--including points of public sanitary sewage

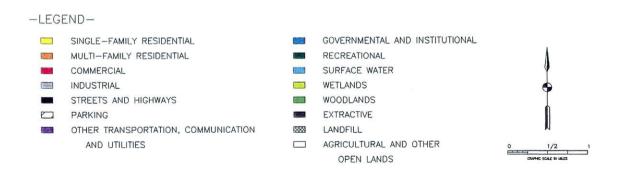
Table VI-1

LAND USE IN THE KINNICKINNIC RIVER WATERSHED: 1975 and 1990^a

	19	75	1990		Change 1	975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban Residential Commercial Industrial Transportation, Communication,	5,608 505 988	34.2 3.1 6.0	5,676 569 977	34.6 3.5 5.9	68 64 - 11	1.2 12.6 - 1.1
and Utilities" Governmental and Institutional Recreational	5,757 1,199 678	35.1 7.3 4.1	6,010 1,152 699	36.6 7.0 4.2	253 - 47 21	4.4 - 3.9 3.1
Subtotal	14,735	89.8	15,083	91.9	348	2.4
Rural Agricultural and Related Lakes, Rivers, Streams and Wetlands Woodlands Open Lands, C Landfills,	131 194 83 1,266	0.8 1.2 0.5 7.7	111 192 92 931	0.7 1.2 0.6 5.7	- 20 - 2 9 - 335	- 15.3 - 1.0 10.8 - 26.5
Dumps, and Extractive Subtotal	1,674	10.2	1,326	8.1	- 348	- 20.8
Total	16,409	100.0	16,409	100.0	0	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.


Source: SEWRPC.


b Includes all off-street parking.

^c Includes both rural and urban open lands.

MAP VI-2

LAND USES IN THE KINNICKINNIC RIVER WATERSHED: 1990

The Kinnickinnic River watershed is about 26 square miles in areal extent, or about 1 percent of the total Region.

			Yea	r 2010 Interm Centralized		th -	Year 2010 High Growth - Decentralized Land Use				
	Existing	3 1990	20	2010		1990-2010	20	10	Change 1990-2010		
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	
Urban											
Residential	5,676	34.6	5,699	34.7	23	0.4	5,659	34.5	- 17	- 0.3	
Commercial	569	3.5	537	3.3	- 32	- 5.6	540	3.3	- 29	- 5.1	
Industrial Transportation,	977	5.9	1,039	6.3	62	6.3	1,074	6.5	97	9.9	
Communication,											
and Utilitiesb	6,010	36.6	5,958	36.3	- 52	- 0.9	5,961	36.3	- 49	- 0.8	
Governmental and	.,		,				,				
Institutional	1,152	7.0	1,213	7.4	61	5.3	1,211	7.4	59	5.1	
Recreational	699	4.2	690	4.2	- 9	- 1.3	688	4.2	- 11	- 1.6	
Subtotal	15,083	91.9	15,136	92.2	53	0.4	15,133	92.2	50	0.3	
Rural											
Agricultural and								1			
Related	111	0.7	116	0.7	5	4.5	116	0.7	5	4.5	
Lakes, Rivers,											
Streams, and Wetlands	192	1.2	191	1.2	- 1	- 0.5	191	1.2	- 1	- 0.5	
Woodlands	92	0.6	83	0.5	- 9	- 9.8	83	0.5	- 9	- 9.8	
Open Lands, C Landfills,	931	5.7	883	5.4	- 48	- 5.2	886	5.4	- 45	- 4.8	
Dumps, Extractive											
Subtotal	1,326	8.1	1,273	7.8	- 53	- 4.0	1,276	7.8	- 50	- 3.8	
Total	16,409	100.0	16,409	100.0	0		16,409	100.0	0		

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.

b Includes all off-street parking.

^c Includes both rural and urban open lands.

collection system overflows and industrial wastewater treatment systems and discharges. This section also includes a status report on the public sanitary sewer service areas within the watershed.

With regard to the point source plan element related to the Kinnickinnic River, the most significant recommendations in the initial plan and the most significant implementation actions are related to the Milwaukee Metropolitan Sewerage District's water pollution abatement program. This program includes: rehabilitation of the sanitary sewer system; construction of relief sewers; improvement and expansion of the Jones Island and South Shore sewage treatment plants; provision of large subterranean conveyance and storage-deep tunnel facilities to contain separate and combined sewer peak flows in excess of the capacity of the sewerage system; development of a solids management program; and provision of trunk sewers to serve the various communities comprising the District area. As of 1993, the District pollution abatement program was nearing completion, with the deep tunnel system expected to be on line during 1994.

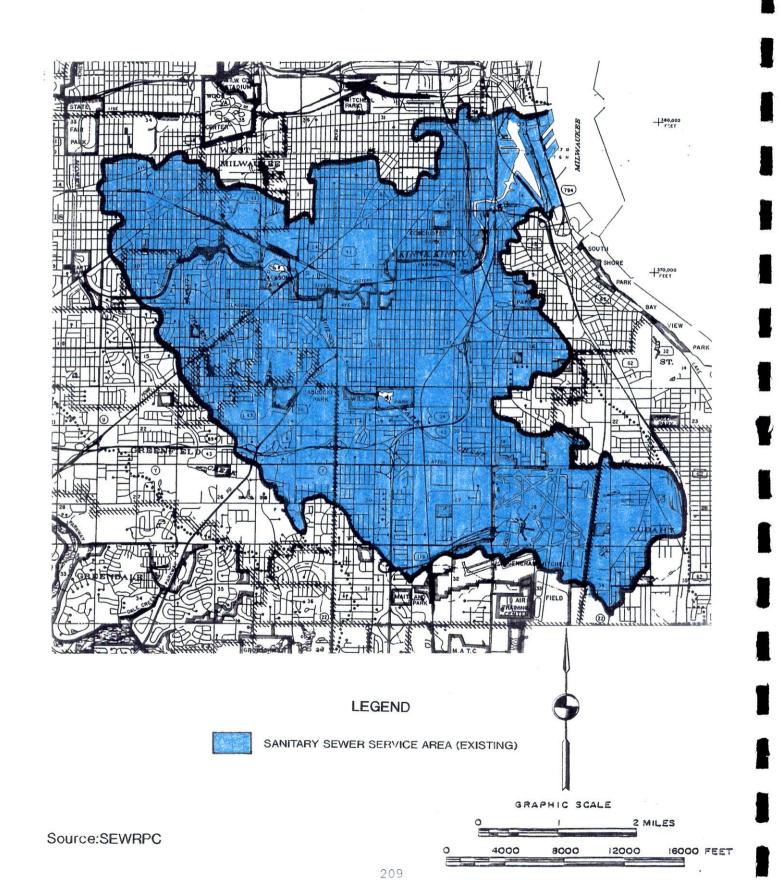
It should be noted that during 1995, the Milwaukee Metropolitan Sewerage District initiated work on an update of its Section 201 sewerage facility plan¹ for the entire Milwaukee metropolitan service area. The update will have a plan year 2010, the same as the update of the regional plan. It is recommended that that facility plan re-examine certain system level decisions that were made in the past including trunk sewer needs, and the retention of the one remaining small sewage treatment plan in the Milwaukee metropolitan area--the City of South Milwaukee plant. The resultant facilities plan update is intended, then, upon its adoption by all of the agencies concerned to constitute an amendment to the regional water quality management plan update herein presented. Such an amendment could impact on the facilities within the Kinnickinnic River watershed.

<u>Public and Private Wastewater Treatment Systems and Sewer Services Areas</u>

<u>Existing Conditions and Status of Plan Implementation</u>: In 1975, there were no public or private sewage treatment plants located in or discharging into the Kinnickinnic River watershed. As of 1990, no new sewage treatment plants had been constructed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. As indicated on Map VI-3, the entire Kinnickinnic River watershed, approximately 26 square miles, is served by sanitary sewer and is part of the larger Milwaukee Metropolitan Sewerage District service area which is currently unrefined.

<u>Current Plan Recommendations</u>: The current point source plan element includes the recommendation to prepare a refinement of the Milwaukee Metropolitan Sewerage District sewer service area.


Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were 23 combined sewer outfalls and 29 known sanitary sewer flow relief devices located

¹Milwaukee Metropolitan Sewerage District, MMSD Wastewater System Plan; June 1980.

Map VI-3

SEWER SERVICE AREAS IN THE KINNICKINNIC RIVER WATERSHED: 1990 AND 2010

in the Kinnickinnic River watershed. Of the latter, four were sanitary sewerage system bypasses; two were relief pumping stations; four were portable pumping stations; and the remaining 19 were crossovers. Of the total 52 flow relief devices and combined sewer outfalls, 40 discharged directly to the main stem of the Kinnickinnic River; seven discharged directly to Wilson Park Creek; two discharged directly to the S. 43rd Street ditch; two discharged directly to Lyons Park Creek; and one discharged directly to Cherokee Park Creek.

By 1993, work was completed by the Milwaukee Metropolitan Sewerage District on a system-wide upgrade of its sewerage conveyance and storage facilities, including completion of the Inline Storage System and major relief sewers. As a result of this work, many of the flow relief devices within the watershed have been Those which remain include combined sewer overflows, selected bypasses and crossovers, and portable pumping station sites which physically remain in the sewerage system but are expected to function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. As shown in Table VI-3, 39 points of sanitary sewer system flow relief--including 24 combined sewer overflows--were reported to exist during 1993 in the Kinnickinnic River watershed. These flow relief points were located in three sewerage systems. With the completion of the Inline Storage System, bypassing of sewage from the combined sewer overflows is expected to occur an average of about one to two times per year. The Milwaukee Harbor estuary study² documented that this level of reduction in combined sewer overflow discharges would be adequate to meet water quality standards in the estuary portion of the Kinnickinnic River, assuming other water quality improvement measures recommended were carried out. Bypassing from the other sanitary sewer flow relief devices is expected to be further eliminated over time as additional sewerage system upgrading is completed by the Cities of Milwaukee⁵ and West Allis and the Milwaukee Metropolitan Sewerage District.

Current Plan Recommendations: It is recommended that the Cities of Milwaukee and West Allis and the Milwaukee Metropolitan Sewerage District continue to monitor the sewerage system operations to ensure that the use of the existing sanitary sewer system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system upgrading be conducted with the assumption that there will be no planned bypasses of untreated sewage from the sanitary sewerage system and that the use of all flow relief devices within the sanitary sewerage system will ultimately be eliminated, with the only bypasses remaining designed to

²SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, December 1987.

³During 1994, the City of Milwaukee developed specific preliminary plans to eliminate 52 of the 106 crossovers in the City's sanitary sewer system. In most cases, the crossovers were conveyed to other locations in the Milwaukee Intercepting Sewer System where adequate capacity was available. These plans were being refined and reviewed with the Milwaukee Metropolitan Sewerage District staff at years end.

Table VI-3

KNOWN SEWAGE FLOW RELIEF DEVICES
IN THE KINNICKINNIC RIVER WATERSHED: 1988-1993

		Sewage	Flow Relief	Devices in	the Sewer Sy	/stem		
Sewerage System	Sewage Treatment Plant Flow Relief Device	Combined Sewer Overflow	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
City of Milwaukee			10ª				10	Used only in case of extreme wet weather
City of West Allis						1	1	Used only in case of extreme wet weather
Milwaukee Metropolitan Sewerage District		24	1		3		28	Used only in case of extreme wet weather, CSO bypassing expected about one to two times per year
TOTAL		24	11		3	1	39	

^a Nine of these crossovers are equipped with electric pumps to facilitate bypassing.

Source: SEWRPC.

protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewers

<u>Existing Conditions and Status of Plan Implementation</u>: No intercommunity trunk sewers were recommended for construction in the initial regional water quality management plan.

<u>Current Plan Recommendations</u>: The current regional water quality management plan recommends the continued maintenance of existing intercommunity trunk sewers in the <u>Kinnickinnic River watershed</u>. No additional trunk sewers are recommended for construction.

Point Sources of Wastewater Other Than Public

and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of 30 known point sources of pollution identified in the Kinnickinnic River watershed other than public and private sewage treatment plants. These sources discharged industrial cooling, process, rinse, wash, and filter backwash waters through 60 outfalls directly or indirectly to the surface water system. Of these point source outfalls, 30 were identified as discharging only cooling water and 30 were identified as discharging other types of wastewaters. The initial regional plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System (WPDES) permit process.

As of 1990, there were 50 such point sources of wastewater discharging to the Kinnickinnic River and its major tributaries or to the groundwater system directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table VI-4 summarizes selected characteristics of these other point sources and Map VI-4 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of such wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 43 known point sources of wastewater other than public and private sewage treatment plants discharging to surface waters in the Kinnickinnic River watershed. These point sources of wastewater discharge primarily industrial cooling, process, rinse, and wash water directly, or following treatment, to the groundwater or the surface waters of the Kinnickinnic River watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside

the Proposed Sanitary Sewer Service Area

Because the entire Kinnickinnic watershed was served by sanitary sewer prior to 1975, there were no enclaves of unsewered urban development located outside of the then recommended year 2000 or currently recommended year 2010 sewer service area.

Table VI-4

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE KINNICKINNIC RIVER WATERSHED: 1990a

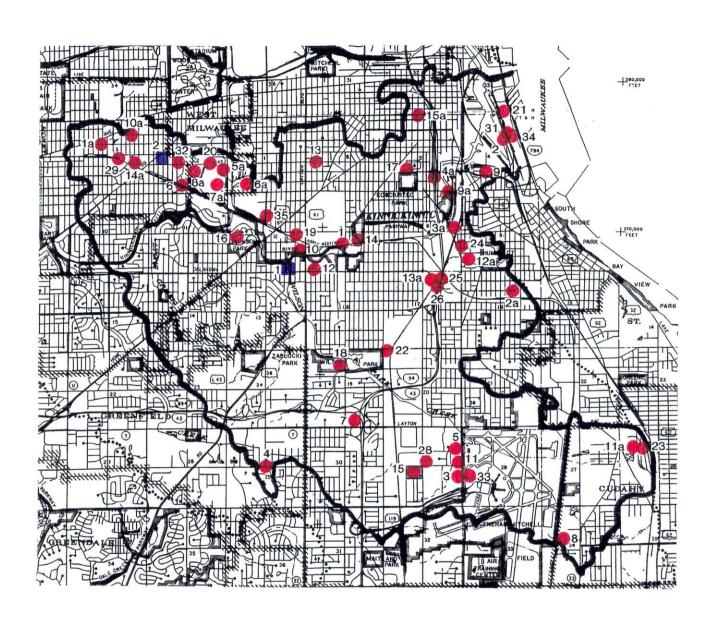
Facility Name	County	Map ID No.b	Permit Type	Permit Number	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^c
Acme Galvanizing, Inc.	Milwaukee	1	General	0044938-3	9-30-95	3471	Plating and polishing metal	Kinnickinnic River	
Advance Boiler & Tank Co.	Milwaukee	2	General	0044938-3	9-30-95	3443	Fabricated plate work	Kinnickinnic River Canal	
Behmke Residence	Milwaukee	3	General	HEAT PUMP		8811	Private household	Holmes Avenue Creek	
Columns Tennis & Swim Club	Milwaukee	4	General	0046523-2	9-30-95	7997	Membership sports & rec. club	Villa Mann Creek via storm sewer	
The Grand Hotel	Milwaukee	5	General	0046523-2	9-30-95	7011	Hotels and motels	Wilson Park Creek	
Grebe Bakeries, Inc.	Milwaukee	6	General	0044938-3	9-30-95	2051	Bread, cake, etc. products	West Milwaukee Ditch	
Howard Johnson's Motor Lodge	Milwaukee	7	General	0046523-1	9-30-95	7011	Hotels & motels	Wilson Park Cr. via storm sewer	
Joy-Mark, Inc.	Milwaukee	8	General	0044938-3	9-30-95	3297	Nonclay refractories	Wilson Park Cr. via storm sewer	
Magnetek, IncLouis Allis Division	Milwaukee	9	General	0044938-3	9-30-95	3621/3625	Motors, generators, relays, etc.	Kinnickinnic River	
Maynard Steel Casting Co.	Milwaukee	10	General	0044938-3	9-30-95	3325	Steel foundry	Kinnickinnic River	
Midway Motor Lodge Airport	Milwaukee	11	General	0046523-2	9-30-95	7011	Hotels and motels	Holmes Avenue Creek	
Milwaukee School Dist: Pulaski H.S.	Milwaukee	12	General	0046523-2	9-30-95	8211	Secondary school	Kinnickinnic River	
Milwaukee Boys and Girls Club	Milwaukee	13	General	0046523-2	9-30-95	7999	Amusement & Recreation	Kinnickinnic River via storm sewer	
Milw. Cty. PR&C: Pulaski Pool	Milwaukee	14	General	0046523-1	9-30-95		Municipal pool	Kinnickinnic River	
Milw. Cty. PR&C: Holler Park Pool	Milwaukee	15	General	0046523-2	9-30-95		Municipal pool	Holmes Ave. Creek via storm sewer	
Milw. Cty. PR&C: Jackson Park Pool	Milwaukee	16	General	0046523-2	9-30-95		Municipal pool	Kinnickinnic River	
Milw. Cty. PR&C: Kosciuszko Pk. Pool	Milwaukee	17	General	0046523-2	9-30-95		Municipal pool	Kinnickinnic River via storm sewer	
Milw. Cty. PR&C: Wilson Park Pools	Milwaukee	18	General	0046523-2	9-30-95		Municipal pool	Wilson Park Creek	
Milw. Malleable & Gray Iron Works	Milwaukee	19	General	0044938-2	9-30-95	3321/3322	Iron foundries	Kinnickinnic River via storm sewer	
Milwaukee Marble Company	Milwaukee	20	General	0046515-1	9-30-95	3281	Cut stone and stone products	West Milw. Ditch via storm sewer	
Milwaukee Metro. Sewerage District	Milwaukee	21	General	0046566-1	9-30-95	4952	Sewerage systems	Kinnickinnic River Canal	
Milwaukee Wilbert Vault Co.	Milwaukee	22	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Moore Oil Container Corp.	Milwaukee	23	General	0044938-2	9-30-95			Edgerton Channel via ditch	
Pelton Casteel, Inc.	Milwaukee	24	General	SPEC PERM		3325	Steel foundry	Kinnickinnic River via ditch	
Raytec (Bruner) Corp.	Milwaukee	25	General	0044938-2	9-30-95	3589	Service industry machinery	Kinnickinnic R. via storm sewer	
Rex Works, Inc.	Milwaukee	26	General	0044938-3	9-30-95	3531	Construction machinery	Kinnickinnic R. via storm sewer	
St. Lukes Medical Center	Milwaukee	d	General	0044938-3	9-30-95	8062	General med. & surgical hospital	Wilson Park Creek	
Southeastern Wisconsin Products Co.	Milwaukee	28	General	0044938-3	9-30-95	2099	Food preparation	Holmes Ave. Creek via storm sewer	
Spinweld Division-Coating, Inc.	Milwaukee	29	General	0044938-3	9-30-95	3471/3479	Plating, polishing, coating, etc.	West Milw. Ditch via storm sewer	
Super America, Inc.	Milwaukee	d	General	0046566-1	9-30-95	5541	Gasoline service station	West Milw. Ditch via storm sewer	

Table VI-4 (continued)

Facility Name	County	Map ID No.b	Permit Type	Permit Number	Expiration Date	Standard Industrial Classification Code	Industri≄l Activity	Receiving Water	Treatment System ^c
Support Terminal Services, Inc.	Milwaukee	31	General	0046531-1	9-30-95			Lake Michigan	
Teledyne Wisc. Motors-Plant No. 1	Milwaukee	32	General	0044938-3	9-30-95	3519	Internal combustion engines	West Milw. Ditch via storm sewer	
Uno-ven CoMitchell Field	Milwaukee	33	General	0046531-1	9-30-95	5171	Petroleum bulk stations & term.	Wilson Park Creek via storm sewer	
West Shore Pipeline CoJones Island	Milwaukee	34	General	0046531-1	9-30-95	5171	Petroleum bulk stations & term.	Lake Michigan	
Wisconsin Gas Co35th Street Plant	Milwaukee	35	General	SPEC PERM		4923	Gas transmission & distribution	Kinnickinnic R. via storm sewer	
Briggs & Stratton Corp. W. Allis/68th	Milwaukee	1A	Specific	0000493	03-31-92	3519	Internal combustion engines	West Milw. Ditch via storm sewer	None
Chrysler Motors Corp.	Milwaukee	2A	Specific	0026557	06-30-92	3714	Motor vehicle parts	Kinnickinnic R. via storm sewer	None
Dillingham Construction - KK-2 NA	Milwaukee	3A	Specific	0047414	08-31-94	1622	Bridge, tunnel, elevated hwys.	Kinnickinnic River	1, 2, 3, 4
Dillingham Const KK-3 NA Inc.	Milwaukee	4A	Specific	0047406	08-31-94	1622	Bridge, tunnel, elevated hwys.	Kinnickinnic River	1, 2, 3, 4
Fleischmann Kurth Malting Co.	Milwaukee	5Λ	Specific	0027693	03-31-89	2083	Malt	West Milwaukee Ditch	None
Froedtert Malting Corp. FMC	Milwaukee	6A	Specific	0026166	12-31-89	2083	Malt	West Milwaukee Ditch	None
General Electric Co Hotpoint	Milwaukee	7.A	Specific	0027499	03-31-90	3639	Household appliances	West Milwaukee Ditch	None
General Electric Co Med. Sys.	Milwaukee	8A	Specific	0027791	12-31-89	3829	Measuring & controlling devices	West Milw. Ditch via storm sewer	4
JF Shea Co., Inc KK LM Tunnel	Milwaukee	9A	Specific	0047601	01-31-95	1422	Crushed and broken limestone	Kinnickinnic River	5, 6
Motor Casting Co Plt. 2 Milw.	Milwaukee	10A	Specific	0001431	09-30-88	3321	Grey & ductile iron foundry	West Milw. Ditch via storm sewer	None
Patrick Cudahy Inc.	Milwaukee	11A	Specific	0001660	06-30-94	2011	Meat packing plants	Edgerton Channel	None
Pelton Casteel Inc.	Milwaukee	12A	Specific	0001481	09-30-90	3325	Steel foundries	Kinnickinnic River via ditch	None
Rexworks Inc.	Milwaukee	13A	Specific	0001627	06-30-90	3531	Construction machinery	Kinnickinnic R. via storm sewer	None
Unit Drop Forge Co., Inc.	Milwaukee	14A	Specific	0026484	12-31-89	3312	Blast furnaces and steel mills	West Milw. Ditch via storm sewer	4
WI University Great Lakes Research	Milwaukee	15A	Specific	0045942	03-31-89	0921	Fish hatcheries and preserves	Kinnickinnic R. via storm sewer	None

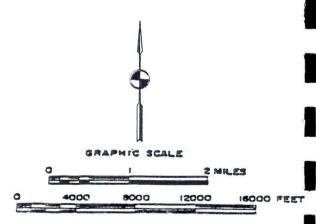
a Table VI-4 includes 50 known, permitted sources of wastewater discharging to the Milwaukee River and its tributaries, or to the groundwater system in the Kinnickinnic River watershed. As of 1993, there were 43 known, permitted point sources of pollution.

b See Map VI-4, Point Sources of Pollution Other Than Sewage Treatment Facilities in the Kinnickinnic River Watershed: 1990.


C The number code refers to the following treatment systems:

- 1. Chemical conversion/addition
- 2. Coagulation flocculation
- 3. Gravity sedimentation
- 4. Oil and grease removal
- 5. Solids Treatment/Removal
- 6. Tube/Plate settlers

d Permitted as Leaking Underground Storage Tank (LUST) remediation sites discharging to surface waters as of 1990. As of 1993, there was one addition LUST remediation site discharging to a surface water in the Kinnickinnic River watershed. See Table VI-5, "Miscellaneous Potential Pollution Sources in the Kinnickinnic River Watershed: 1990", for map identification numbers.


Source: Wisconsin Department of Natural Resources and SEWRPC.

Map VI-4 POINT SOURCES OF POLLUTION OTHER THAN SEWAGE TREATMENT FACILITIES IN THE KINNICKINNIC RIVER WATERSHED: 1990

- POINT SOURCES OF POLLUTION OTHER THAN SEWAGE TREATMENT FACILITIES
- LEAKING UNDERGROUND STORAGE TANKS
 DISCHARGING REMEDIATION WASTEWATER TO
 SURFACE WATERS OR GROUNDWATER

Miscellaneous Potential Pollution Sources

Landfills: Landfills in the Kinnickinnic River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills generally contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and can be subsequently transported to surface waters.

There are currently no active landfills and ten abandoned landfills located in the Kinnickinnic River watershed. None of the abandoned landfills in the Kinnickinnic River watershed, through 1993, have been reported as negatively impacting surrounding surface waters.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Kinnickinnic River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground water. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1990, there were two known, permitted leaking underground storage tank sites that were discharging remediation waters to surface waters in the Kinnic-kinnic River watershed, as indicated in Table VI-5 and shown on Map VI-4. As of 1993, there was one additional leaking underground storage tank in the Kinnic-kinnic River watershed whose remediation wastewaters were permitted to discharge to a surface water, as shown in Table VI-5.

As of 1993, there were 222 additional leaking underground storage tanks in the Kinnickinnic River watershed identified by the DNR that were not discharging remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leading underground storage tanks may have the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters. As of 1993, there were no permitted sites discharging to surface or ground waters.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse

Table VI-5

MISCELLANEOUS POTENTIAL POLLUTION SOURCES IN THE KINNICKINNIC RIVER WATERSHED: 1990

Map Identification Number ^a	Landfills Indicated to be Potential Pollution Sources	Civil Division Location	Surface Water Potentially Impacted
	None		
	Leaking Underground Storage Tank Sites ^b , ^c		
1	St. Luke's Medical Center	City of Milwaukee	Kinnickinnic River
2	SuperAmerica, Inc.	City of West Allis	Kinnickinnic River
	Additional Groundwater Contamination Sites ^b		
	None		

^a Refers to Map VI-4, "Point Sources of Pollution Other than Sewage Treatment Facilities in the Kinnickinnic River Watershed: 1990"

Source: Wisconsin Department of Natural Resources and SEWRPC.

^b Includes those sites which are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters.

^c As of 1993, there was one additional leaking underground storage tank site in the Kinnickinnic River watershed whose remediation discharges were permitted under the Wisconsin Pollutant Discharge Elimination System: Industrial Refrigeration in the City of Greenfield, Milwaukee County, which is permitted to discharge to the Kinnickinnic River.

sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Kinnickinnic River watershed, the adopted plan generally recommended urban nonpoint source pollution control practices designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control and streambank erosion control. However, the plan did not specifically recommend the application of control practices in the northern portion of the watershed where the deep tunnel combined sewer overflow abatement plan has been implemented and where a relatively high level of nonpoint source control will be achieved by the conveyance of most of the stormwater to the Milwaukee Metropolitan Sewerage District sewerage system.

In 1978 the Commission prepared a comprehensive watershed plan⁴ for the Kinnic-kinnic River watershed in cooperation with various Federal, State, and local authorities. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas in the watershed. Such subsequent planning was and will continue to be directed toward reducing nonpoint source pollutant loadings as well as providing for local drainage needs in the watershed.

Implementation of the recommended nonpoint source control practices has been achieved in the Kinnickinnic River watershed on a limited basis through local regulation and programs. In the area of construction site erosion control, significant progress has been made. As of January 1993, the Cities of Cudahy, Greenfield, Milwaukee, and West Allis, and the Village of West Milwaukee had adopted construction erosion control ordinances based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities. It should be noted that the ordinance for the City of Cudahy applies only to subdivisions.

While the local programs described above have probably resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program, is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program was established in 1978 by the Wisconsin Legislature and provides cost-sharing funds for the cost of an individual project or land management

⁴See SEWRPC Planning Report No. 32, <u>A Comprehensive Plan for the Kinnickinnic River Watershed</u>, December 1978.

practice to local governments and private landowners upon completion of the detailed plans. The funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources.

The Kinnickinnic River watershed was designated a "priority watershed" in 1990. Planning for the Kinnickinnic River Priority watershed project was completed in 1994, and implementation of practices began in September 1994 and will continue for eight years.

The Kinnickinnic River priority watershed project established nonpoint source pollutant reduction goals to obtain an overall nonpoint source pollutant loading reduction of 25 percent for the subareas considered, and to achieve a high level of nonpoint source sediment and toxic pollution reduction in areas deemed "critical," such as older, highly industrialized lands. The nonpoint source pollutant reductions set forth in the Kinnickinnic River priority watershed plan are consistent with the recommendations of the initial plan and of the Milwaukee Harbor estuary study.

To achieve these pollutant reduction goals, the Kinnickinnic River priority water shed project includes recommendations and funding eligibility for the following urban nonpoint source control measures. The plan generally recommends to municipalities the initial development of a "core program" of urban land management practices. This core program provides for implementation of construction erosion controls; the institution of a public information and education program on nonpoint source pollution abatement; and institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers. The plan further recommends the development of a "segmented program" providing for the stormwater management planning, possible stormwater ordinance requirements, streambank stabilization, street sweeping, and the design and construction of management practices is also recommended. Specific core and segmented programs include:

- Provision of construction site erosion control practices for all new urban development and redevelopment in the watershed.
- The installation of erosion control measures for 4,200 feet of eroding streambank.
- Provision of nonpoint source control practices on about 4,600 acres of urban land targeted for nonpoint source control. Possible urban nonpoint source pollution control practices including wet detention ponds, infiltration devices, street sweeping, and public information and education programs to develop good housekeeping practices.
- Preparation of detailed stormwater management plans be prepared to determine the best practices to be installed in the urban areas.

Current Plan Recommendations

It is recommended that construction site erosion control and streambank erosion control, plus land management practices, designed to provide about a 25 percent reduction in nonpoint source pollutant loadings, and the implementation of construction site erosion control be carried out throughout the Kinnickinnic River watershed, as was recommended in the initial plan and in the Kinnickinnic River

priority watershed plan. In addition, the recommendations regarding critical area nonpoint source controls directed toward toxic pollutants be implemented as set forth in the Kinnickinnic River priority watershed plan noted above. The type of practices recommended to be considered for this level of nonpoint source control are summarized in Appendix A.

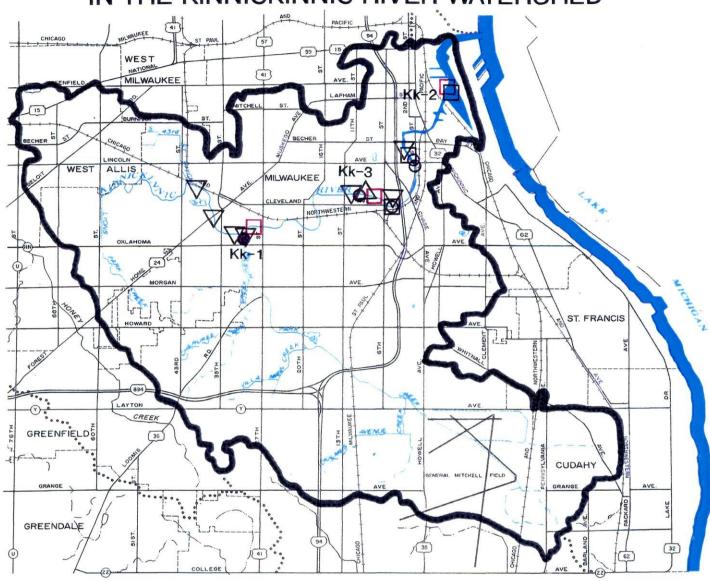
WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous section, the most direct measure of impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program. As of 1993, long-term monitoring has been carried out in the Kinnic-kinnic River watershed on a sustained basis by the Milwaukee Metropolitan Sewerage District for five stations along the main stem of the Kinnickinnic River. Data from three of these stations were used to document current long-term water quality conditions in the watershed, as shown on Map VI-5.

Short-term monitoring was also conducted at one site in the Kinnickinnic River watershed by the Wisconsin Department of Natural Resources during the period 1988 through 1993, as described later in this chapter.

Current Plan Recommendation


Continued water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that present water quality data collection be continued by the Milwaukee Metropolitan Sewerage District at the current stations on the Kinnickinnic River. Such data represents an adequate program for purposes of characterizing water quality conditions and assessing changes in those conditions. It is also recommended that an intensive biological conditions monitoring survey be conducted by the Wisconsin Department of Natural Resources as part of its next survey period focusing on the Kinnickinnic River, which is expected in the next five to seven years. This program should include monitoring at one station each on Wilson Park Creek and Lyons Creek.

LAKES MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological condition monitoring programs to be established.

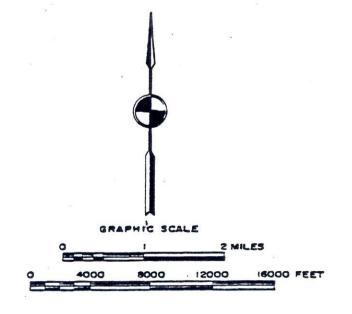
As noted above, there are no major lakes in the Kinnickinnic River watershed. However, there are smaller water bodies such as park-oriented ponds in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality

Map VI-5 LOCATION OF WATER QUALITY SAMPLING STATIONS IN THE KINNICKINNIC RIVER WATERSHED

LEGEND

Sampling stations used in preparation of initial plan

▽ DNR


SEWRPC

O CITY OF MILWAUKEE HEALTH DEPARTMENT

Post-1976 sampling stations

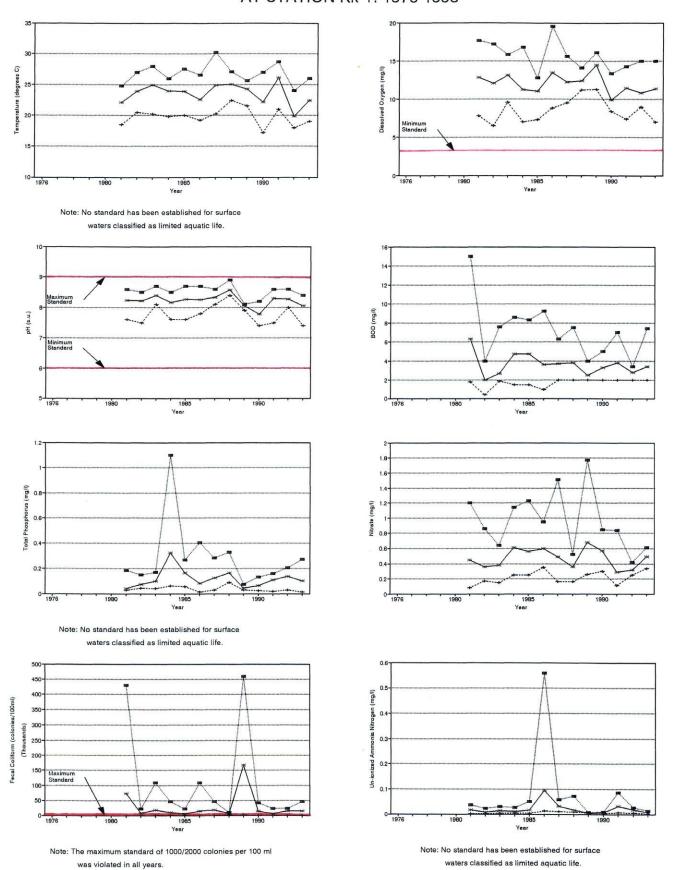
MMSD Long Term

Source: SEWRPC.

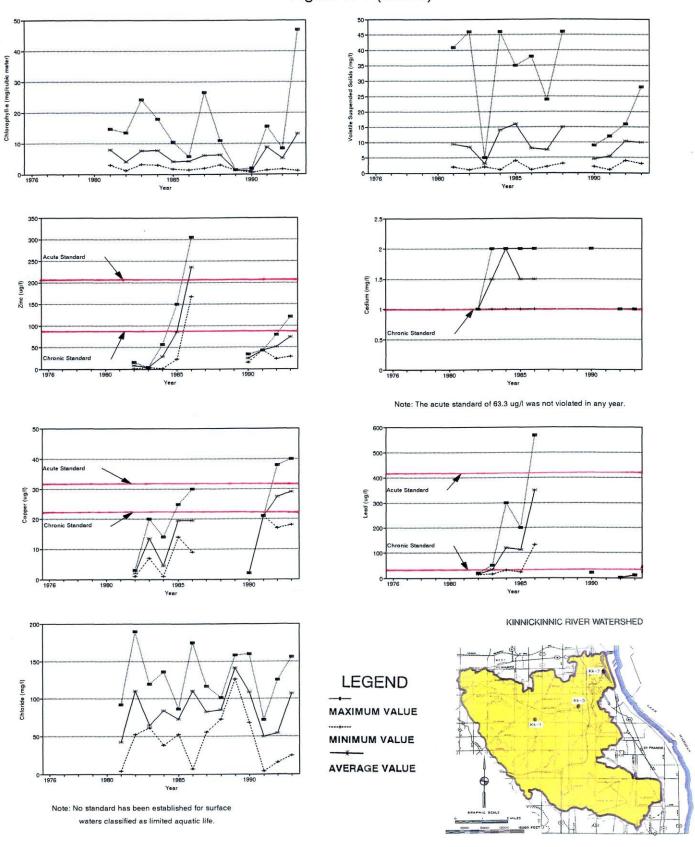
protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are applicable for management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS

Streams

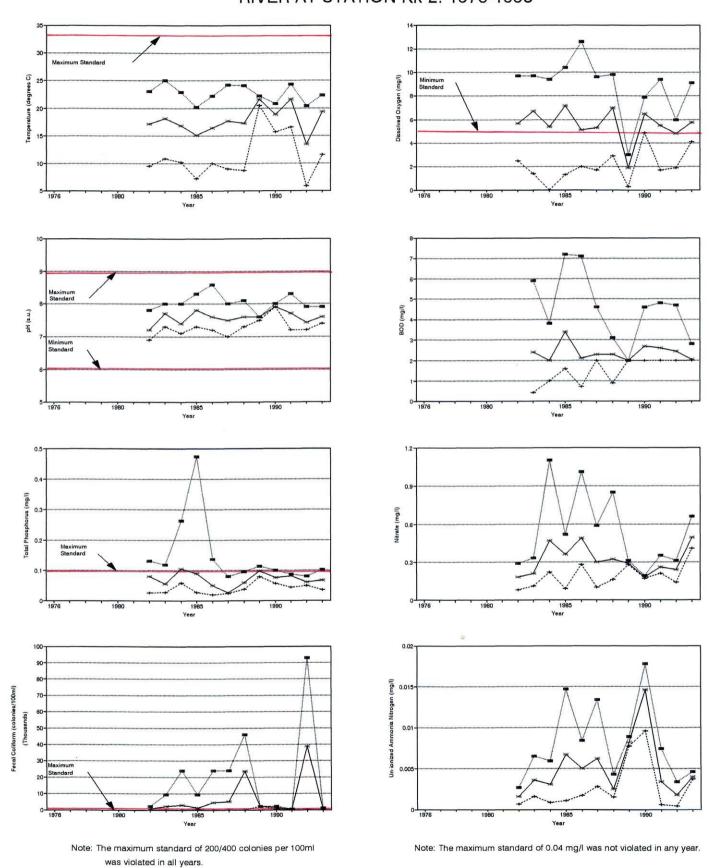

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study, the 1965 through 1975 Commission stream water quality management planning effort, the 1976 Commission monitoring program conducted under the regional water quality management planning effort, and the Wisconsin Department of Natural Resources (DNR) sampling programs in 1973 and 1976. Available data collected in those programs for the Kinnickinnic River watershed included samplings at two Commission stations, both on the main stem of the Kinnickinnic River; at seven DNR stations; at one U.S. Geological Survey (USGS) station; and at four City of Milwaukee Health Department stations. The sampling station locations are shown on Map VI-5.

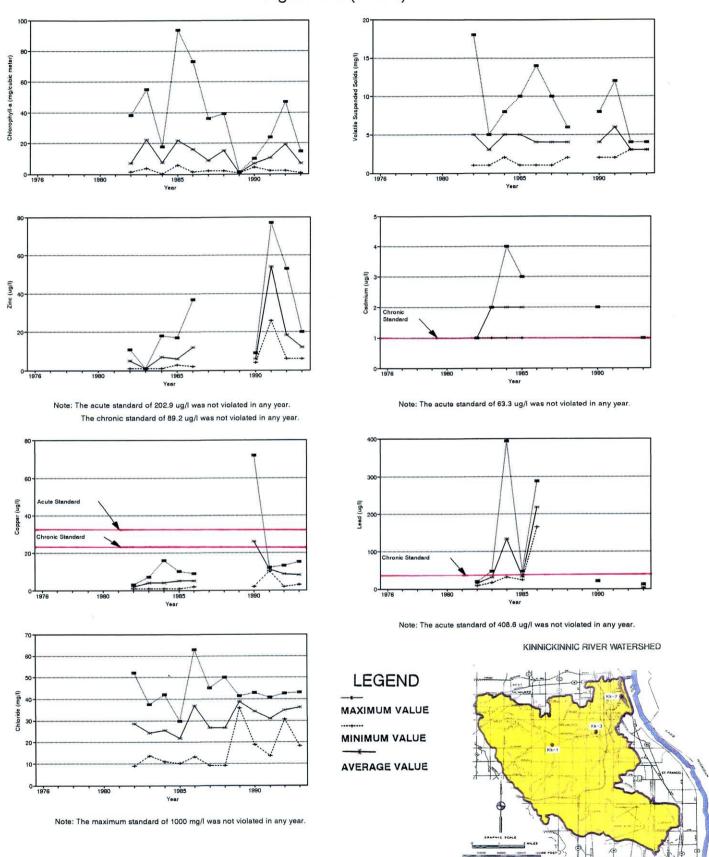
Long-term post-1976 comparable water quality data were collected by the Milwaukee Metropolitan Sewerage District for five stations on the Kinnickinnic River. The DNR has also collected water quality data on a short-term basis at one location in the Kinnickinnic River watershed on the main stem at 7th Street. Water resource appraisal information including biological condition and water quality data collected by the DNR were also available for use in the assessment of current water quality conditions in the Kinnickinnic River watershed.5 addition to the data obtained since the preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Kinnickinnic River watershed.


Long-term water quality data collected by the Milwaukee Metropolitan Sewerage District at three sampling stations on the Kinnickinnic River-at Kk-1 on the main stem of the Kinnickinnic River at 27th Street, at Kk-2 in the inner harbor at Greenfield Avenue, and at Kk-3 on the main stem at 7th Street, for the period 1976 through 1993, are summarized in Figures VI-1 through VI-3. The data have been used to assess current water quality trends and the occurrence of changes over time, and to evaluate current conditions with respect to water quality standards. Review of those data indicates that there were no apparent trends in water quality conditions. The water quality standard for dissolved oxygen was generally met at stations Kk-1 and Kk-3 in the free flowing reaches of the river, and the standard for pH was achieved at stations Kk-1 and Kk-2, but violations were reported at station Kk-3. The dissolved oxygen standard was violated at

⁵Wisconsin Department of Natural Resources, <u>Kinnickinnic River Stream Appraisals</u>, November 1984.

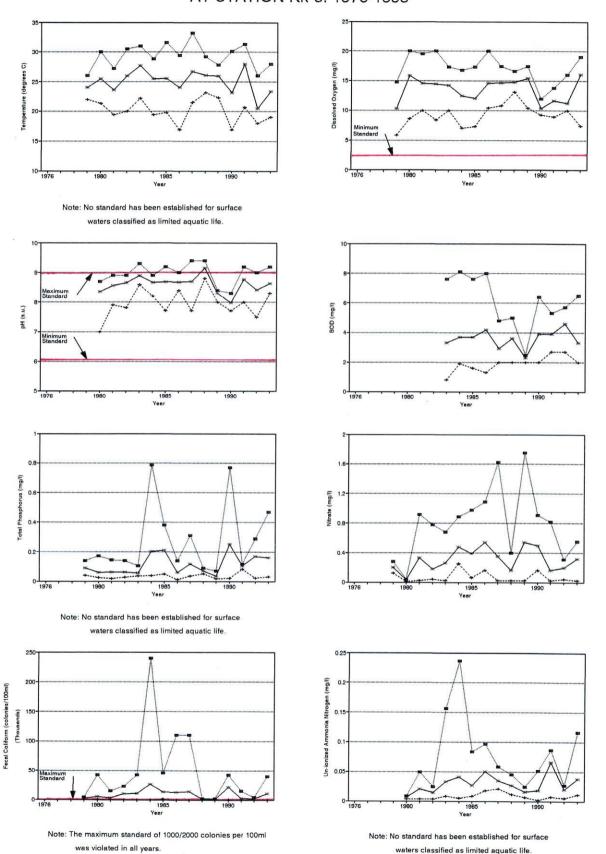
Figure VI-1 WATER QUALITY DATA FOR THE KINNICKINNIC RIVER AT STATION Kk-1: 1976-1993

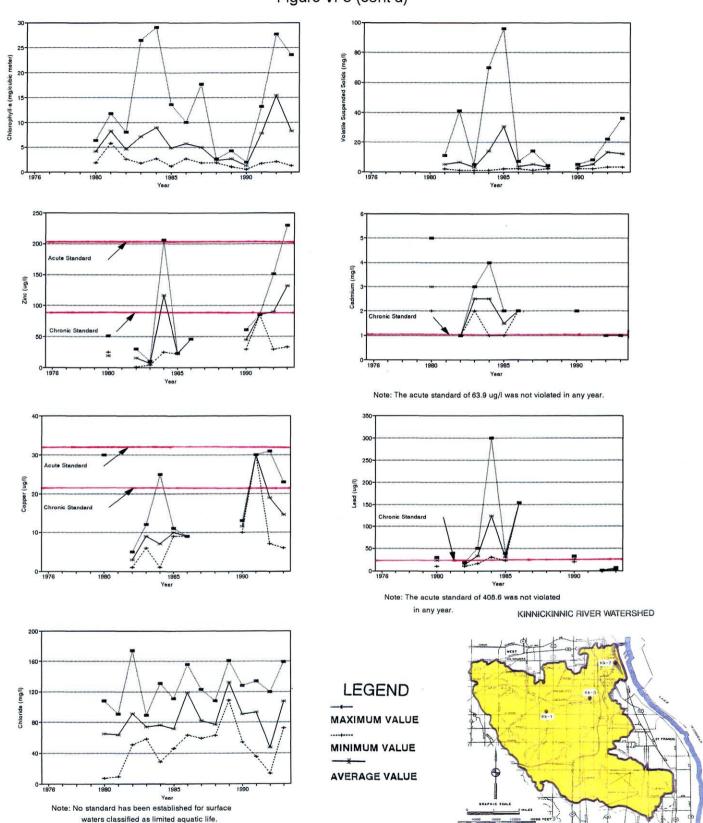

Figure VI-1 (cont'd)


Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for limited aquatic life and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Figure VI-2 WATER QUALITY DATA FOR THE KINNICKINNIC RIVER AT STATION Kk-2: 1976-1993


Figure VI-2 (cont'd)


Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Figure VI-3 WATER QUALITY DATA FOR THE KINNICKINNIC RIVER AT STATION Kk-3: 1976-1993

Figure VI-3 (cont'd)

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for limited aquatic life and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

station Kk-2 in the inner harbor. Fecal coliform levels exceeded the standard at all three locations. As noted in the subsequent section, standards for metals are also exceeded at all stations.

Toxic and Hazardous Substances

Sampling and analysis for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Kinnickinnic River watershed from 1973 through 1977. The analyses indicated that recommended levels of mercury were exceeded in four of 73 samples, and that recommended PCB levels were exceeded in one out of 12 water quality samples. Sample analyses for cadmium, chromium, copper, lead, nickel, zinc, DDT, DDE, DDD, aldrin, heptachlor, heptachlor epoxide, lindane, dieldrin, methoxychlor, and phthalate uncovered no violations of U.S. Environmental Protection Agency (EPA) recommended levels. Sampling and analyses of bottom sediments were conducted on the Kinnickinnic River, and detectable levels of cadmium, chromium, copper, lead, mercury, nickel, zinc, and PCBs were observed; however, no criteria were established to assess the recorded concentrations.

Recent data on metals in the Kinnickinnic River watershed were collected by the Milwaukee Metropolitan Sewerage District, as shown in Figures VI-1 through VI-3. Available data collected from stations Kk-1, 2, and 3 from 1976 to 1993 indicated that lead, copper, and cadmium concentrations at all stations violated chronic toxicity level standards as established by the Wisconsin Department of Natural Resources. Levels of zinc also violated chronic toxicity standards at two stations, Kk-1 and Kk-3.

Sediment contamination with PAHs is a general problem in the sediments of the Kinnickinnic River portions of the Milwaukee Harbor estuary, as documented in the Milwaukee Harbor estuary study⁶ and the remedial action plan for the Milwaukee Harbor estuary.⁷ Additional data on the sediment chemistry of the Kinnickinnic River are reported by Ni, Gun, and Christensen⁸ and by Masterson and Bannerman.⁹ Both studies report PAH concentrations that exceed the Lowest Effect Level (LEL) guidelines proposed as screening criteria for contaminated sediments by the Wisconsin Department of Natural Resources.¹⁰ In addition, data on copper and oil

⁶SEWRPC Planning Report No. 37, op.cit.

⁷Wisconsin Department of Natural Resources, <u>Milwaukee Estuary, Remedial Action Plan</u>, March 1991.

⁸Fay Ni, Michael F. Gun, and Erik R. Christensen, <u>Toxic Organic Contaminants in the Sediments of the Milwaukee Harbor Estuary</u>; Final Report, Milwaukee Metropolitan Sewerage District, March 1992.

⁹John P. Masterson and Roger T. Bannerman, "Impacts of Stormwater Runoff on Urban Streams in Milwaukee County, Wisconsin;" in <u>Proceedings of the National Symposium on Water Quality</u>, AWRA, November 1994; pp. 123-133.

¹⁰Wisconsin Department of Natural Resources (Draft) <u>Inventory of Statewide Contaminated Sediment Sites and Development of a Prioritization System</u>, June 1994.

and grease concentrations in the Kinnickinnic River sediments reported by Masterson and Bannerman also exceeded the proposed LEL guidelines.

Since the completion of the initial regional water quality management plan, 34 spills of toxic substances into streams within the Kinnickinnic River watershed have been documented by the Wisconsin Department of Natural Resources. Of these spills, 29 have occurred in the main stem of the Kinnickinnic River, all within the City of Milwaukee. The remaining five spills occurred in the Wilson Park Creek tributary. The majority of the substances that were spilled into surface waters were oil or related petroleum products.

<u>Water Quality Assessments</u>: Based upon the available data, the water quality and biological characteristics of the Kinnickinnic River and its major tributaries were assessed with the results set forth in Table VI-6. Fish populations and diversity are poor throughout much of the watershed due largely to the conversion of the natural stream channel to a concrete channel. Downstream of the location where the concrete channel ends on the Kinnickinnic River downstream of 5th Street, the fish population and diversity are rated as good. No reported fish kills have been recorded in the Kinnickinnic River watershed.

Standards were not expected to be fully met for fecal coliform for all stations considered in the Kinnickinnic River watershed. Problems with dissolved oxygen concentrations occurred in the Kinnickinnic River downstream of First Street. For those stream reaches recommended for warmwater sport fish and limited recreational uses, standards were not met for concentrations of un-ionized ammonia nitrogen or total phosphorus. Problems with water column toxic pollutants were noted in the Kinnickinnic River downstream of 27th Street and in Wilson Park Creek. Where data were available, the biotic index ratings, which are biological indicators of water quality within a stream system, were poor. High levels of streambed sedimentation were noted in Wilson Park Creek and the Kinnickinnic River upstream of 27th Street. Moderate levels of streambed sedimentation were noted in the Kinnickinnic River downstream of First Street.

Table VI-7 sets forth the water quality index classifications¹¹ used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table VI-7, recent data were used from the Milwaukee Metropolitan Sewerage District for three stations on the Kinnickinnic River: at 27th Street, at 7th Street, and at Greenfield Avenue. These stations are shown on Map VI-5. The data from the station at 27th Street were used for comparative purposes in conjunction with earlier data from station Kk-1, located on the Kinnickinnic River at 29th Street. The limited comparative data available indicate that water quality conditions have generally remained "fair" from 1964 to 1974-75 and to 1990-91.

A summary of potential pollution sources in the Kinnickinnic River watershed by stream reach is shown in tabular summary in Table VI-8. Review of the data indicate the majority of the conversion of lands from rural to urban uses

¹¹For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

Table VI-6

CHARACTERISTICS OF STREAMS IN THE KINNICKINNIC RIVER WATERSHED

	Fish Stream Population Record				Wate	er Qualit	y Problems ^b		Biotic	Streambed	Physical Modifications
Stream Reach	Length (miles)	and Diversity ^a	Fish Kills	DO	NH3	Total P	Fecal Coliform	Toxics	Index Rating ^c	Sedimentation (substrate)	to Channel ^d
a. Kinnickinnic River upstream 27th Street	3.9	Poor	No	No			Yes		Poor	High (gravel, sand, silt, concrete)	Major
b. Kinnickinnic River downstream 27th Street to 5th Street	2.2	Poor	No	No			Yes	Yes		(concrete)	Major
c. Kinnickinnic River downstream 5th Street to 1st Street	1.3	Good	No	No	Yes	Yes	Yes	Yes	Poor	 (gravel, sand)	Major
d. Kinnickinnic River downstream 1st Street	1.4	Good	No	Yes	Yes	Yes	Yes	Yes	Poor	Moderate (gravel, sand)	Major
e. Lyons Creek f. Wilson Park Creek	1.4 <u>5.1</u>	Poor	No No	No No			Yes Yes	 Yes	 Poor	High (gravel, sand, silt)	Major Major
TOTAL	15.3									, 5110,	

^a Based upon stream appraisal documentation set forth in Wisconsin Department of Natural Resources <u>Kinnickinnic River Stream Appraisals</u>, November 1984, and professional judgement of area fish managers.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b The most recent water quality data available as described in Figures VI-1 through VI-3 were used to evaluate water quality in the Kinnickinnic River system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Kinnickinnic River watershed stream reaches based upon simulated year 2000 land use conditions and current level of pollutant control, if appropriate.

^c Biotic index ratings are based upon the Hilsenhoff Biotic Index (HBI) discussed in Wisconsin Department of Natural Resources Technical Bulletin No. 132, "Using a Biotic Index to Evaluate Water Quality in Streams," Hilsenhoff, 1982.

d Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS OF THE KINNICKINNIC RIVER WATERSHED 1964, 1974-1975, AND 1990-1991

Table VI-7

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Main Stem Stations Kk-1 Kk-2 Kk-3	Fair 	Fair 	Fair Fair/Good Fair
Watershed Average	Fair	Fair	Fair

 $^{^{\}rm a}$ See Map VI-5 for sampling station locations.

Source: SEWRPC.

Table VI-8

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE KINNICKINNIC RIVER WATERSHED: 1990

		Extent of Conv	version of Lands to Urban ^b			P	emaining Pot	ential Surfa	ce Water Poll	ution Sources	
	Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Ongoing Pollution Abatement Efforts ^C
	Kinnickinnic River upstream 27th Street	Insignificant ^d	Insignificant ^d	1978-oil 1983-unknown 1983-gelatinous scum 1986-unknown	х				15	Leaking Underground Storage Tank (LUST) site permitted to discharge remediation waste- water to the Kinnickinnic River	1,2
000	Kinnickinnic River downstream 27th Street to 5th Street	Insignificant ^d	Insignificant ^d	1978-foundary sand 1982-green liquid 1983-unknown 1983-gelatinous scum 1984-oil 1984-oil 1986-oil 1986-milky substance 1991-Water with cement floor grindings	X				4		1,2
	Kinnickinnic River downstream 5th Street to 1st Street	Insignificant ^d	Insignificantd	1985-fuel oil 1992-diesel fuel	х				10		1,2
	Kinnickinnic River downstream 1st Street to Jones Island Ferry	Insignificant ^d	Insignificant ^d	1978-oil 1982-light oil 1985-oil cutting 1985-coal dust 1987-waste oil 1987-hydraulic oil 1987-pasoline 1987-waste oil 1988-heavy dark oil residue 1988-ground seepage 1989-lube oil 1989-oil-based paint 1990-oil-based paint	x				6		1,2
	Lyons Creek	Insignificant ^d	Insignificant ^d		x				0		1,2

Table VI-8 (continued)

	Extent of Conversion of Lands from Rural to Urban ^b				Remaining Potential Surface Water Pollution Sources							
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Ongoing Pollution Abatement Efforts ^c		
Wilson Park Creek	Insignificant ^d	Insignificnt ^d	1986-oil substance 1990-diesel fuel 1990-petroleum product 1990-petroleum product 1991-petroleum (sheen)	x				12	LUST site permitted to discharge remediation wastewater to the Kinnickinnic River	1,2		

 $^{^{\}mathbf{a}}$ Includes the tributary drainage area of each stream reach.

major > 20% 10 - 20% moderate significant 5 - 10% insignificant 0 - 5%

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Extent of urban land conversions were determined as a percentage of the watershed as follows:

C Number codes refer to the following ongoing pollution abatement efforts:
1. Construction Erosion Control Ordinances in place

^{2.} Kinnickinnic Priority Watershed Nonpoint Source Plan implementation underway.

d Considerable urban development existing pre-1976.

occurred prior to 1976. It should be noted that the majority of the documented spills of toxic substances occurred in the Kinnickinnic River main stem from 27th Street to 5th Street and downstream of 1st Street. The majority of the permitted industrial discharges occur in the Kinnickinnic River upstream of 27th Street and in Wilson Park Creek. Data on nonpoint source pollution and additional potential impacts to surface water quality are included in Table VI-8.

Compliance with Water Use Objectives

As indicated in Chapter II, the majority of the stream reaches in the Kinnic-kinnic River watershed, as of 1993, are generally recommended for limited aquatic life and limited recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II. The Kinnickinnic River downstream of 5th Street, which is not concrete-lined, is recommended for warmwater sport fish and limited recreational uses.

Based upon the available data for sampling stations in the watershed, the main stem of the Kinnickinnic River did not fully meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. More recent data available for the period of 1976 through 1991 indicate that the dissolved oxygen standards associated with the recommended water use objective are largely met, while the fecal coliform standards continue to be violated. As shown in Figures VI-1 through VI-3, and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of the fecal coliform levels also occur along the entire main stem of the Kinnickinnic River and in Wilson Park and Lyons Creeks. In addition, metals standards were noted to be violated for all stations except for the main stem above 27th Street and for Lyons Park Creek.

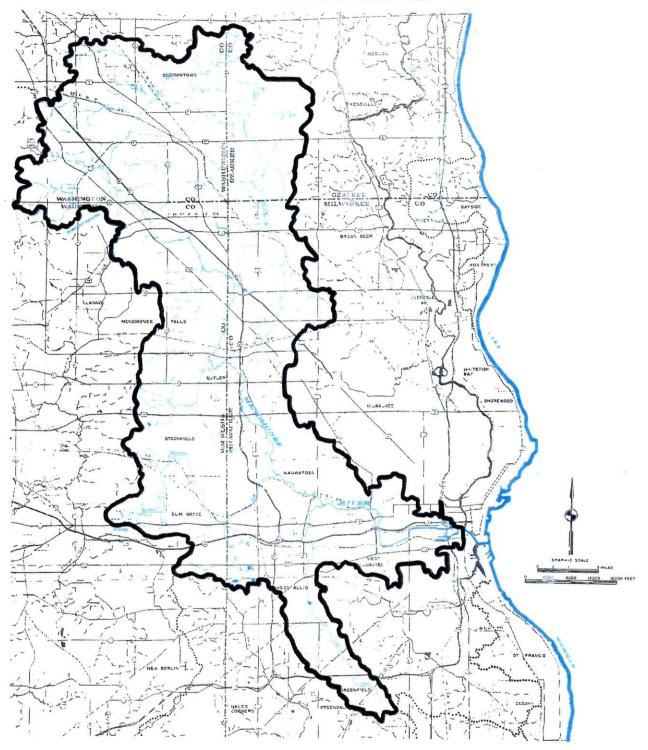
WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon the current status of pollution abatement planning and land use decisions, there are no major water quality issues remaining to be addressed specific to the Kinnickinnic River watershed. A potential future amendment to the regional plan for the Kinnickinnic River watershed may potentially be developed under the facility plan update initiated by the Milwaukee Metropolitan Sewerage District in 1995. That plan update is anticipated to institute an amendment to the regional plan once it is adopted by all of the agencies involved.

Chapter VII

MENOMONEE RIVER WATERSHED REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION


This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto, and progress made toward plan implementation from 1975--the base year of the initial plan--through 1990--the base year of the plant update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Menomonee River watershed through 1993, where available. Finally, this chapter presents a description of any substantive water quality management issues that remain to be addressed in the Menomonee River watershed as part of the continuing water quality planning process. initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a brief separate section on lake management is included which is limited for the Menomonee River watershed as there are no major lakes in the watershed. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.

The Menomonee River watershed is located in the east central portion of the Region and covers an area of approximately 135 square miles. The Menomonee River originates in southeastern Washington County, and flows approximately 28 miles through the northeastern corner of Waukesha County and through western and central Milwaukee County to its confluence with the Milwaukee River. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Menomonee River watershed and its principal tributaries, are shown on Map VII-1. The Menomonee River watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendation, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Menomonee River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution

Map VII-1
MENOMONEE RIVER WATERSHED

discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table VII-1 summarizes the existing land uses in the Menomonee River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed is largely urbanized, 41 percent of the watershed was still in rural and other open space land uses in 1990. These rural and open space uses included about 22 percent of the total area of the watershed in agricultural and related rural uses, about 2 percent in woodlands, about 8 percent in surface water and wetlands, and about 9 percent in other open lands. The remaining approximately 59 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map VII-2.

Urban development exists in much of the Menomonee River watershed, with concentrated development generally occurring in portions of Milwaukee, Washington, and Waukesha Counties. Concentrations of urban-related land use are located in and around the Village of Menomonee Falls, particularly along the STH 175 corridor, in the Villages of Elm Grove and Germantown, and in the Cities of Brookfield, Greenfield, Wauwatosa, West Allis, and Milwaukee. The watershed contains two major commercial centers, Blue Mound Road and Mayfair, and five major industrial centers, Milwaukee Granville, Butler, West Allis West, Menomonee Valley East, and Menomonee Valley West.

As shown in Table VII-1, from 1975 to 1990, urban land uses in the watershed increased from about 46,000 acres, or about 72 square miles, to about 51,000 acres, or 79 square miles, or by about 10 percent. As shown in Table VII-1, residential land represents the largest urban land use in the watershed. Residential use has increased within the watershed, from about 22,000 acres, or about 34 square miles in 1975 to about 24,000 acres, or about 38 square miles in 1990, a 10 percent increase. Commercial and industrial land uses increased significantly, from about 3,400 acres, or about 5.3 square miles, to about 4,300 acres, or about 6.8 square miles, an increase of 28 percent.

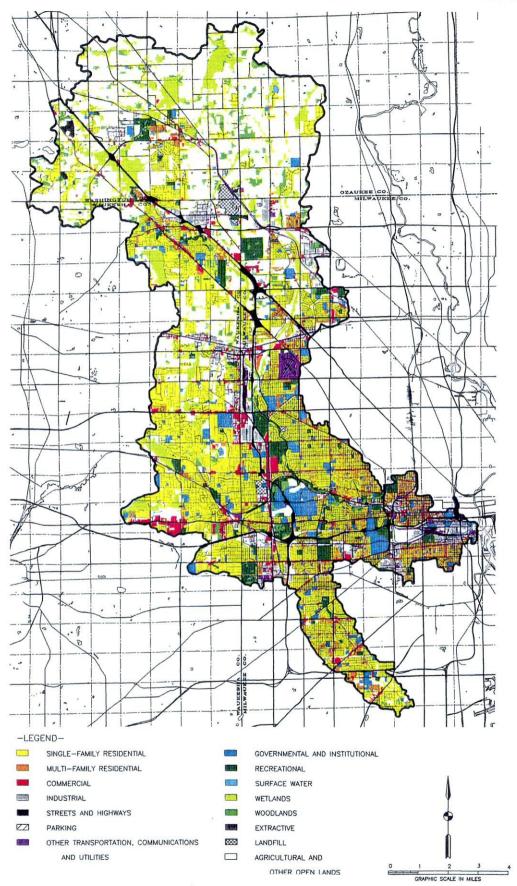
The 79-square miles of urban land uses in the watershed as of 1990 approximate the same amount under the staged 1990 planned urban land envisioned in the adopted year 2000 land use plan. The current status of development in the Menomonee River watershed and in adjacent portions of Milwaukee, Ozaukee, Washington, and Waukesha Counties was considered in developing the new, year 2010 land use plan element described in Chapter III for the Region as a whole.

Table VII-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Menomonee River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban land uses are expected to increase in the Villages of Butler and Menomonee Falls, in the southern portion of the Village of Germantown, and in the northwestern portion of Milwaukee County. In addition, some urban re-development is anticipated to occur in portions of the already urbanized areas in and around Milwaukee County. The year 2010 land use plan additionally proposes two major commercial centers to be located in the

Table VII-1

LAND USE IN THE MENOMONEE RIVER WATERSHED: 1975 AND 1990^a

	19	75	19	990	Change	1975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	22,139	25.6	24,247	29.1	2,108	9.5
Commercial	1,314	1.5	1,618	1.9	304	23.1
Industrial	2,072	2.4	2,719	3.2	647	31.25
Transportation,	•	<u> </u>				
Communication,						
and Utilities ^b	14,423	16.7	15,835	18.3	1,412	9.8
Governmental and		1				
Institutional	3,198	3.7	3,220	3.7	22	0.7
Recreational	2,861	3.3	2,966	3.4	105	3.7
Subtotal	46,007	53.2	50,605	58.6	4,598	10.0
Rural						
Agricultural		l				
and Related	24,528	28.4	19,035	22.0	-5,493	- 22.4
Lakes, Rivers, Streams	2 1,020		1,,000	1	1 3,475	- 22.7
and Wetlands	6,720	7.8	7,077	8.2	357	5.3
Woodlands	2,326	2.7	2,185	2.5	- 141	- 6.1
Open Lands, Landfills,	_,520		-,105	-:-5	1 ***	1 3
Dumps, and Extractive ^C	6,798	7.9	7,477	8.7	679	- 10.1
Subtotal	40,372	46.8	35,774	41.4	-4,598	- 11.4
Total	86,379	100.0	86,379	100.0	0	


a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

^C Includes both rural and urban lands.

MAP VII-2

LAND USES IN THE MENOMONEE RIVER WATERSHED: 1990

The Menomonee River watershed is about 135 square miles in areal extent, or about 5 percent of the total Region. In 1990 about 79 square miles, or about 59 percent of the watershed, was in urban land uses.

Table VII-2

EXISTING AND PLANNED LAND USE IN THE MENOMONEE RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

			Yea		mediate Growt ed Land Use	h -	Year 2010 High Growth - Decentralized Land Use			
	Existing 1990		20	10	Change 1	Change 1990-2010		10	Change 1990-2010	
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
Urban										
Residential	24,247	28.1	26,529	30.7	2,282	9.4	30,177	34.9	5,930	24.5
Commercial	1,618	1.9	1,677	2.0	59	3.6	1,788	2.1	170	10.5
Industrial	2,719	3.2	3,109	3.6	390	14.3	3,381	3.9	662	24.3
Transportation,										
Communication,										
and Utilities ^b	15,835	18.3	16,707	19.3	872	5.5	18,048	20.9	2,213	14.0
Governmental and										
Institutional	3,220	3.7	3,374	3.9	154	5.2	3,486	4.0	266	8.3
Recreational	2,966	3.4	3,450	4.0	484	16.3	3,563	4.1	597	20.1
Subtotal	50,605	58.6	54,846	63.5	4,241	8.4	60,443	69.9	9,838	19.4
Rural										•
Agricultural										
and Related	19,035	22.0	18,156	21.0	- 879	- 4.6	13,431	15.6	-5,604	- 29.4
Lakes, Rivers,										
Streams, and Wetlands	7,077	8.2	6,531	7.6	- 546	- 7.7	6,531	7.6	- 546	- 7.7
Woodlands	2,185	2.5	2,184	2.5	- 1	0.0	2,111	2.4	- 74	- 3.4
Open Lands, ^c Landfills,										
Dumps and Extractive	7,477	8.7	4,662	5.4	-2,815	-37.6	3,863	4.5	-3,614	- 48.3
Subtotal	35,774	41.4	31,533	36.5	-4,241	-11.8	25,936	30.1	-9,838	- 27.5
Total	86,379	100.0	86,379	100.0	0		86,379	100.0	0	

a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

c Includes both rural and urban open lands.

Menomonee River watershed. The plan proposes a research park to be located in the southwestern portion of the City of Wauwatosa in the vicinity of the Milwaukee County Institutions grounds, and a major commercial office center--Park Place--which was largely completed as of 1990 and is located in the northwestern portion of Milwaukee County.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Menomonee River watershed, as indicated in Table VII-2, is projected to increase from the 1990 total of about 79 square miles, or about 59 percent of the total area of the watershed, to about 86 square miles, or about 64 percent of the total area of the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 94 square miles, or about 70 percent of the total watershed by year 2010. It is important to note that the 30 to 37 percent of the watershed remaining in rural and other open space uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and, as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space uses through joint State-local zoning or public acquisition. certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 56 square miles in 1990 to about 49 square miles in the year 2010 under the intermediate growthcentralized land use plan and to about 41 square miles under the high growthdecentralized land use plan, decreases of about 13 to 25 percent between 1990 and 2010 for the two year 2010 plans considered.

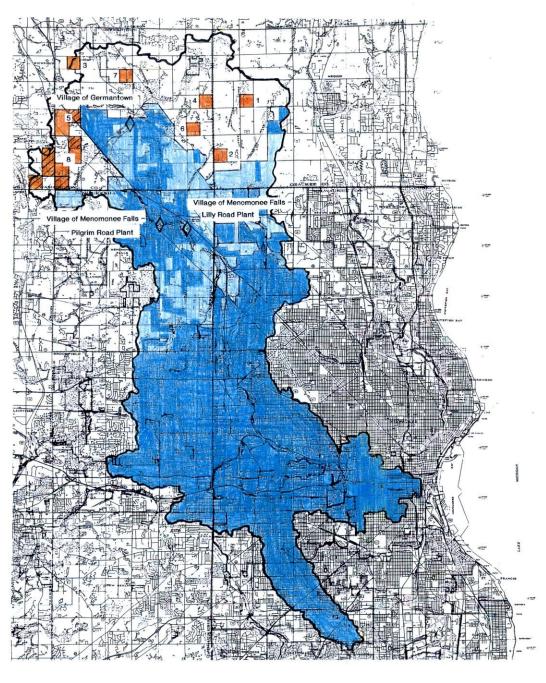
POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Menomonee River watershed--including consideration of public and private sewage treatment plants, points of public sanitary sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary sewer service areas located in the watershed.

With regard to the point source plan element related to the Menomonee River, the most significant recommendations in the initial plan and the most significant implementation actions are related to the Milwaukee Metropolitan Sewerage District water pollution abatement program. This program includes: rehabilitation of the sanitary sewer system; construction of relief sewers; improvement and expansion of the Jones Island and South Shore sewage treatment plants;

provision of large subterranean conveyance and storage-deep tunnel facilities to contain separate and combined sewer peak flows in excess of the capacity of the sewerage system; development of a solids management program; and provision of trunk sewers to serve the various communities comprising the District service area. As of 1993, the District's pollution abatement program was nearing completing, with the deep tunnel system expected to be online during 1994.

It should be noted that, during 1995, the Milwaukee Metropolitan Sewerage District initiated work on an update of its Section 201 sewerage facility plan¹ for the entire Milwaukee metropolitan service area. The update will have a plan year 2010, the same as the update of the regional plan. It is recommended that that facility plan re-examine certain system level decisions that were made in the past, including trunk sewer needs, and the retention of the one remaining small sewage treatment plant in the Milwaukee metropolitan area--the City of South Milwaukee plant. The resultant sewerage facilities plan update is intended, then, upon its adoption by all of the agencies concerned, to constitute an amendment to the regional water quality management plan update herein presented. Such an amendment could impact on the facilities within the Menomonee River watershed


Public and Private Wastewater Treatment Systems and Sewer Service Areas Existing Conditions and Status of Plan Implementation: In 1975, there were three public sewage treatment facilities located in the Menomonee River watershed, as shown on Map VII-3. All three plants, the Village of Germantown Old Village Plant and the Village of Menomonee Falls Pilgrim Road and Lilly Road plants, discharged treated effluent directly to the main stem of the Menomonee River. All three plants were abandoned after 1975 and the attendant service areas were connected to the Milwaukee metropolitan sewerage system for treatment purposes. as recommended in the initial water quality plan. The status of implementation in regard to the abandonment of public and private sewage treatment plants in the Menomonee River watershed, as recommended in the initial regional water quality management plan, is summarized in Table VII-3. Currently, the Milwaukee Metropolitan Sewerage District's Jones Island and South Shore plants serve the existing sewered portions of the Menomonee River watershed. It should be noted that in 1975, the base year of the initial plan, and in 1990, there were no privately owned sewage treatment plants discharging to the stream system of the Menomonee River watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were eight sewer service areas identified within, or partially within, the Menomonee River watershed: Mequon, Germantown, Menomonee Falls, Butler, Brookfield East, Elm Grove, New Berlin, and the Milwaukee Metropolitan Sewerage District. Currently, all of the sewer service areas within the watershed have undergone refinements as recommended, with the exception of the Milwaukee Metropolitan Sewerage District which is currently almost entirely served by sewer. The boundaries of the sewer service areas in the watershed, through 1993, are shown on Map VII-3. Table VII-4 lists the plan amendment prepared for each refinement and the date the Commission

¹Milwaukee Metropolitan Sewerage District, <u>MMSD Wastewater System Plan</u>, June 1990.

Map VII-3

SEWER SERVICE AREAS IN THE MENOMONEE RIVER WATERSHED: 1990 AND 2010

1975 URBAN DENSITY DEVELOPMENT OUTSIDE OF THE INITIAL PLAN SEWER SERVICE AREA

ADDITIONAL URBAN DENSITY DEVELOPMENT SINCE 1975 OUTSIDE OF PLANNED SEWER SERVICE AREA: 2010

V

PUBLIC SEWAGE TREATMENT FACILITY ABANDONED AFTER 1975

Table VII-3

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC SEWAGE TREATMENT PLANTS
IN THE MENOMONEE RIVER WATERSHED: 1990

Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Village of Germantown	Menomonee River	Abandon plant	Plant abandoned (1986)
Village of Menomonee Falls- Pilgrim Road	Menomonee River	Abandon plant	Plant abandoned (1981)
Village of Menomonee Falls- Lilly Road	Menomonee River	Abandon plant	Plant abandoned (1981)

Table VII-4

PLANNED SANITARY SEWER SERVICE AREAS IN THE MENOMONEE RIVER WATERSHED: 1993

				
Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
	Refined Sanit	ary Sewer Service Ar	ea	
Brookfield East Elm Grove Brookfield West	22.6	Brookfield East Brookfield West	December 4, 1991	SEWRPC CAPR No. 109, Sanitary Sewer Service Area for the City and Town of Brookfield and the Village of Elm Grove, Waukesha County, Wisconsin
Butler	0.8	Butler	March 1, 1984	SEWRPC CAPR No. 99, Sanitary Sewer Service Area for the Village of Butler, Waukesha County, Wisconsin
Germantown	8.0	Germantown	September 8, 1983	SEWRPC CAPR No. 70, Sanitary Sewer Service Area for the Village of Germantown, Washington County, Wisconsin
Menomonee Falls	17.3	Menomonee Falls Lannon	June 16, 1993	SEWRPC CAPR No. 208, Sanitary Sewer Service Areas for the Villages of Lannon and Menomonee Falls
Mequon Thiensville	3.3	Mequon- Thiensville	January 15, 1992	SEWRPC CAPR No. 188, Sanitary Sewer Service Area for the City of Mequon and the Village of Thiensville, Ozaukee County, Wisconsin
New Berlin	0.7	New Berlin	December 7, 1989	SEWRPC CAPR No. 157, Sanitary Sewer Service Area for the City of New Berlin, Waukesha County, Wisconsin
Subtotal	52.7			
	Unrefined San	itary Sewer Service	Areas	
Milwaukee Metropolitan Sewerage District	56.3			
Subtotal	56.3			
Total	109.0			

Note: CAPR - Community Assistance Planning Report

adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service area names following the refinement process. The planned sewer service area in the Menomonee River watershed, as refined through 1993, totals about 53 square miles, or about 39 percent of the total watershed area, as shown in Table VII-4.

<u>Current Plan Recommendations</u>: The current planned sanitary sewer service areas in the Menomonee River watershed are shown on Map VII-3. The existing and planned year 2010 population data for each sewer service area are presented in Chapter XVIII on a regional basis. All or portions of the following these sewer service areas are located in the Menomonee River watershed: Brookfield East and West, Butler, Germantown, Menomonee Falls, Mequon, the Milwaukee Metropolitan Sewerage District, and New Berlin. Together, the planned service areas within the watershed total about 109 square miles, or about 81 percent of the Menomonee River watershed.

As noted above, all of the service areas within the watershed have been refined as part of the ongoing regional water quality management plan updating process, with the exception of the Milwaukee Metropolitan Sewerage District sewer service area. The refinement of the Milwaukee Metropolitan Sewerage District service area is recommended to be conducted during 1995 and 1996. It is also recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

Sewer Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were 26 combined sewer outfalls and 140 known separate sewer system flow relief devices located in the Menomonee River watershed. Of the latter, 73 were crossovers, seven were bypasses, 28 were relief pumping stations, and 32 were portable pumping stations. Of the total of 166 flow relief devices, six discharged to the Burnham Canal from the City of Milwaukee; two discharged to the South Menomonee Canal Branch from the City of Milwaukee; 106 discharged to the Menomonee River, 45 from the City of Milwaukee, 41 from the City of Wauwatosa, two from the Village of Butler, and 18 from the Village of Menomonee Falls; one discharged to Butler Ditch from the City of Brookfield; 15 discharged to Underwood Creek, two from the City of Brookfield, five from the City of West Allis, and eight from the City of Wauwatosa; and 36 discharged to Honey Creek, 18 from the City of West Allis, 12 from the City of Wauwatosa, and six from the City of Milwaukee.

By 1993, work was completed by the Milwaukee Metropolitan Sewerage District on its Water Pollution Abatement Program, including construction of the Inline Storage System and major relief sewers. As a result of this project, many of the flow relief devices within the watershed have recently been eliminated. Those which remain include combined sewer overflows, selected bypasses and crossovers, and portable pumping station sites which physically remain in the sewerage system but are expected to function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. As shown in Table VII-5, 89 points of sanitary sewer system flow relief--including

Table VII-5

KNOWN SEWAGE FLOW RELIEF DEVICES IN THE MENOMONEE RIVER WATERSHED: 1988-1993

		Sewage 1	Flow Relie	of Devices i	n the Sewer	System		
Sewerage System	Sewage Treatment Plant Flow Relief Device	Combined Sewer Overflow	Cross-	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
Village of Germantown						3	3	Used only in case of equipment failure or extreme wet weather conditions
Village of Menomonee Falls						3	3	Used only in case of extreme wet weather conditions
City of Milwaukee			18 ^a				18	Used only in case of extreme wet weather conditions
City of Brookfield					1	8	9	Used only in case of equipment failure or extreme wet weather conditions
City of Wauwatosa			9				9	Used only in case of extreme wet weater conditions
Village of Elm Grove						2	2	Used only in case of extreme wet weather conditions
City of West Allis						6	6	Used only in case of extreme wet weather conditions
Milwaukee Metropolitan Sewerage District		30	4		5		39	Used only in cases of extreme wet weather, CSO bypassing expected about twice per year
TOTAL		30	31		6	22	89	

 $^{^{\}mathrm{a}}$ Ten of these crossovers are equipped with electric pumps to facilitate bypassing.

30 combined sewer overflows--were reported to exist as of 1993 in the Menomonee River watershed. These flow relief points were located in eight sewerage systems. With the completion of the Inline Storage System, bypassing of sewage from the combined sewer overflows is expected to occur an average of about one to two times per year. The Milwaukee Harbor estuary study² documented that this level of reduction in combined sewer overflow discharges would be adequate to meet water quality standards in the estuary portion of the Menomonee River, assuming the other water quality improvement measures recommended are carried out. Bypassing from other sanitary sewer flow relief devices is expected to be further reduced over time as additional system upgrading is completed by the Milwaukee Metropolitan Sewerage District and the other local units of government operating sanitary sewer systems.³

Current Plan Recommendations: It is recommended that the Cities of Brookfield, Milwaukee, Wauwatosa, and West Allis; the Villages of Elm Grove, Germantown, and Menomonee Falls; and the Milwaukee Metropolitan Sewerage District continue to monitor the sewerage system operations to ensure that the use of the existing sanitary sewer system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading be conducted with the assumption that there will be no planned bypasses of untreated sewage from the sanitary sewerage system and that the use of all flow relief devices within the sanitary sewerage system will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewer

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan as updated, recommended the construction of four intercommunity trunk sewers in the Menomonee River watershed, as shown in Table VII-6. One trunk sewer would connect portions of the City of Brookfield and Village of Menomonee Falls to the Milwaukee Metropolitan sewerage system. One trunk sewer would connect the Village of Germantown to the Milwaukee Metropolitan Sewerage system, permitting the abandonment of the Germantown sewage treatment plant. The Menomonee River and the Underwood Creek sewers would provide needed additional capacity to convey wastewater from the Villages of Menomonee Falls and Elm Grove, and the Cities of Brookfield and Wauwatosa to the Milwaukee Metropolitan sewerage system.

²SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, December 1987.

³During 1994, the City of Milwaukee developed specific preliminary plans to eliminate 52 of the 106 crossovers in the City's sanitary sewer system. In most cases, the crossovers were conveyed to other locations in the Milwaukee intercepting sewer system where adequate capacity was available. These plans were being refined and reviewed with the Milwaukee Metropolitan Sewerage District staff at years end.

<u>Current Plan Recommendations:</u> As noted in Table VI-6, all four trunk sewers recommended in the initial plan have been constructed. No new intercommunity trunk sewers are planned for construction.

Point Sources of Wastewater Other Than Public

and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of 48 known point sources of pollution identified in the Menomonee River watershed other than public and private sewage treatment plants. These sources discharged industrial cooling, process, rinse, and wash waters through 78 outfalls directly, or indirectly, to the surface water system. Of these point sources outfalls, 37 were identified as discharging only cooling water. The remaining 41 were discharging other types of wastewater. The initial regional water quality plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were 132 such point sources of wastewater discharging to the Menomonee River and its major tributaries or to the groundwater system directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table VII-7 summarizes selected characteristics of these other point sources and Map VII-4 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 120 known point sources of wastewater discharging to surface waters other than public and private sewage treatment plants in the Menomonee River watershed. These point sources of wastewater discharge primarily industrial cooling, process, rinse, and wash water directly, or following treatment, to the groundwater or the surface waters of the Menomonee River watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside

the Proposed Sanitary Sewer Service Area

In 1975, there were eight enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area in the Menomonee River watershed. As of 1990, none of these areas had been added to the planned 2010 sewer service area. Due to increased urban growth within the watershed since 1975, two of the urban development enclaves identified in the initial plan have been expanded, as indicated on Map VII-3. The corresponding urban enclave population and the distance to the nearest planned year 2010 sewer service area are listed in Table VII-8. As shown in Table VII-8, three of the eight areas are covered by soils and have lot sizes which indicate a high probability of meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. The remaining five areas have soils and lot sizes having a high probability of not meeting these criteria and alternative wastewater disposal methods should be considered. Thus, for these five areas,

Table VII-6

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE MENOMONEE RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Imple	mentation
Brookfield-Menomonee Falls	Completed (1981	.)
Germantown	Completed (1986)
Menomonee River	Completed (1977)
Underwood Creek	Completed (1983)

Table VII-7

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE MENOMONEE RIVER WATERSHED: 1990²

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification	Industrial Activit y	Receiving Water	Treatment System ^C
Advance Metal Treating, Inc.	Waukesha	1	General	0044938-3	9-30-95	3398	Metal heat treating	Menomonee River via storm sewer	
Aldrich Chemical Co St. Paul	Milwaukee	2	General	0044938-3	9-30-95	2819	Industrial inorganic chemicals	Menomonee River Canal	
Aldrich Chemical Co Ember	Milwaukee	3	General	0044938-3	9-30-95	2819	Industrial inorganic chemicals	Menomonee River Canal	
Amoco Oil Company - Milwaukee Term.	Milwaukee	4	General	0046531-1	9-30-95	5171	Petroleum bulk stations & terminals	Lt. Menomonee R. via unnamed trib.	
Ampco Metal Manufacturing, Inc.	Milwaukee	5	General	0044938-3	9-30-95	3351	Copper rolling and drawing	Groundwater discharge	
APITECH/Division of Applied Power	Waukesha	6	General	0044938-3	9-30-95	3531	Construction machinery	Menomonee River	
Arcron Ltd Menomonee Falls	Waukesha	7	General	0044938-3	9-30-95	3499	Fabricated metal products	Nor-X-Way Channel	
Borden Dairy Div Borden, Inc.	Milwaukee	ė	General	0044938-3	9-30-95	2021-26	Dairy products	Underwood Creek via storm sewer	
Briggs & Stratton	Waukesha	٥	General	0044938-3	9-30-95	3519	Internal combustion engines	Menomonee River via storm sewer	
C&NW Transportation Co., Butler Yd.	Milwaukee	10	General	0046531-1	9-30-90	4013	Switching & terminal services	Menomonee River	
Canw Transportation Co., Butler Id.	MIIWAUKee	10	General	0048551-1	7-30-70	4013	Switching & terminal services	Hellomonee Kivei	
Chris Hansen's Lab., Inc.	Milwaukee	11	General	SPEC PERM	9-30-95	2869	Industrial inorganic chemicals	Honey Creek via storm sewer	
Citgo Petroleum Corp Granville	Milwaukee	12	General	0046531-1	9-30-90	5171	Petroleum bulk stations & term.	Lt. Menomonee R. via unnamed trib.	
Clark Oil & Refining CorpGranville	Milwaukee	13	General	0046531-1	9-30-90	5171	Petroleum bulk stations & term.	Lt. Menomonee R. via unnamed trib.	
Concrete Molded Products, Inc.	Washington	14	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Continental Equipment Corp.	Milwaukee	15	General	0044938-3	9-30-95	3452	Bolts, nuts, rivets, & washers	Noyes Creek via storm sewer	
Cronin Enterprises - Cronin Oil Term.	Milwaukee	16	General	0046531-1	9-30-90	5171	Petroleum bulk stations & term.	Underwood Creek via unnamed trib.	
Eaton Corp Controls Div.	Milwaukee	17	General	0044938-3	9-30-95	3494	Valves and pipe fittings	Menomonee River via storm sewer	
Elite Fitness & Racquet Club	Milwaukee	18	General	0046523-2	9-30-95	7991	Physical fitness facility	Underwood Creek via unnamed trib.	
Elm Grove Municipal Pool	Waukesha	19	General	0046523-2	9-30-95		Municipal pool	Underwood Creek	
Empire Level Mfg. Corp.	Milwaukee	20	General	0044938-3	9-30-95	3423	Hand and edge tools	Underwood Creek	
Enerpac Group Applied Power, Inc.	Waukesha	21	General	0044938-3	9-30-95	3492/3714	Fluid power valves/mtr. parts	Menomonee River	
Falk Corp. R&D Center	Milwaukee	22	General	0044938-3	9-30-95	3566	Speed changers, drives & gears	Menomonee River Canal	
Falk Corp Plant #2	Milwaukee	22	General	0044938-3	9-30-95	3566	Speed changers, drives & gears	Menomonee River via storm sewer	
Fulton Manufacturing Corp.	Milwaukee	23	General	0044938-3	9-30-95	3568	Power transmission equipment	Honey Creek via storm sewer	
Gebhardt-Vogel Tanning Co.	Milwaukee	25	General	0044938-3	9-30-95	3111	Leather tanning and finishing	Menomonee River Canal	
Germantown Sewage Utility	Washington	d	General	0044938-3	9-30-95	4952	Sewerage systems	Menomonee River	
	Milwaukee	27	General	0046566-1	9-30-95	2033	Canned fruits/vegetables, etc.	Menomonee River via storm sewer	
The Godfrey Company		27		0046507-2	9-30-95	3272	Concrete products	Nor-X-Way Channel	
Great Lakes Concrete Products	Waukesha	28 29	General	0046507-2	9-30-95	32/2	Gray & ductile iron, steel foundry	Menomonee River	
Grede Foundries, Inc Wauwatosa	Milwaukee	30	General		9-30-95	8211		Honey Creek	
Greenfield High School (Pool)	Milwaukee	30	General	0046523-2	9-30-93	8211	Secondary school	noney Creek	
Handschy Ind.	Waukesha	31	General	0044938-3	9-30-95	2893	Printing ink	Menomonee River	
Harley Davidson Motors	Milwaukee	32	General	0044938-3	9-30-95	3751	Motorcycles, bicycles, parts	Menomonee R. via storm sewer	
Hentzen Coatings, Inc.	Milwaukee	33	General	0044938-3	9-30-95	2851	Paints and allied products	Noyes Ck. via storm sewer	
Inland Diesel, Inc.	Waukesha	34	General	0044938-3	9-30-95	3519	Internal compustion engines	Menomonee River	
J. W. Speaker Corp.	Washington	35	General	0044938-3	9-30-95	3647	Vehicular lighting equipment	Menomonee River	
James Mews Companies, Inc.	Milwaukee	36	General	0046507-2	9-30-95			Groundwater discharge	
John's Oil Company	Milwaukee	37	General	0046566-2	9-30-95	5171	Petroleum bulk stations & term.	Underwood Ck. via unnamed trib.	
Koch Refining Company	Milwaukee	38	General	0046531-1	9-30-90	5171	Petroleum bulk stations & term.	Lt. Menomonee R. via unnamed trib.	
Kraft Food Service Corp.	Waukesha	a	General	SPEC PERM	9-30-95			Nor-X-Way Channel	
L. T. Hampel Corp.	Washington	40	General	0044938-3	9-30-95	3089	Plastics products	West Branch Menomonee River	
r. r. namber corb.	-asuring con	I 40	General	004473643	1 ,-30-33	1 3307	TIMBULUS PLOGGESS	"TOO DIEMEN MONOMEN MIVEL	

Table VII-7 (continued)

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification	Industrial Activity	Receiving Water	Treatment System ^c
Longfellow Jr. High School	Milwaukee	41	General	0046523-2	9-30-95	8211	Secondary School	Menomonee R. via storm sewer	
M. A. Gerett Div. of Western Ind.	Waukesha	42	General	0044938-3	9-30-95	3469	Metal stampings	Menomonee R. via storm sewer	
Marathon Oil Company	Milwaukee	43	General	0046531-1	9-30-90	5171	Petroleum bulk stations & term.	Ltl. Meno. R. via unnamed trib.	
Materson Company	Milwaukee	44	General	SPEC PERM	9-30-95			Menomonee R. via storm sewer	
McCarty Park Pool	Milwaukee	45	General	0046523-2	9-30-95		Municipal pool	Honey Creek	
Menomonee Falls School District	Waukesha	46	General	0046523-2	9-30-95	8299	Schools & educational services	Menomonee River via storm sewer	
Meno. Falls Sch. Dist.: South H.S.	Waukesha	47	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
Meno. Falls Sch. Dist.: Middle Sc.	Waukesha	48	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River	
Mid City Foundry Co.	Milwaukee	49	General	0044938-2	9-30-95	3321	Gray & ductile iron foundry	Meno.R. Canal v/ Burnhams Canal	
Milwaukee Board of Schools	Milwaukee	50	General	0046523-2	9-30-95	8299	Schools & educational services	Menomonee River via storm sewer	
Milw. Bd. of Sch.: Hamilton H.S.	Milwaukee	51	General	0046523-2	9-30-95	8211	Secondary school	Honey Creek	
Milw. Bd. of Sch.: Juneau Jr/Sr. H.S.	Milwaukee	52	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
Milw. Bd. of Sch.: Vincent Harold	Milwaukee	53	General	0046523-2	9-30-95	8211	Secondary school	Lt. Menomonee River	
Milwaukee Brush Mfg. Co.	Waukesha	54	General	0044938-3	9-30-95	3496/3991	Fabricated wire prod., brushes	Nor-X-Way Channel	
Milwaukee Cold Storage Co.	Milwaukee	55	General	0044938-3	9-30-95	5142	Packaged frozen foods	Meno. R. Canal via Burnham Canal	
Milwaukee County Parks, Rec.& Culture	Milwaukee	56	General	0046523-2	9-30-95	9199	General government	Menomonee River	
Milwaukee Co. PR&C: Noyes Park Pool	Milwaukee	57	General	0046523-2	9-30-95		Municipal pool	Noyes Creek	
Milw. Co. PR&C: Washington Park Pool	Milwaukee	58	General	0046523-2	9-30-95		Municipal pool	Menomonee River via storm sewer	
Milwaukee Electric Tool Corp.	Waukesha	59	General	0044938-3	9-30-95	3546	Power driven hand tools	Menomonee R. via unnamed trib.	
Milwaukee Faucets, Inc.	Milwaukee	60	General	0044938-3	9-30-95	3432	Plumbing fixtures fittings & trim	Menomonee R. via storm sewer	
Milwaukee Lutheran H.S.	Milwaukee	61	General	0045623-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
Mobil Oil Corp.	Milwaukee	a	General	0046566-2	9-30-95	5171	Petroleum bulk station & terminal	Honey Creek via storm sewer	
Mohawk Cold Storage DivWiscold Inc.	Milwaukee	63	General	0044938-3	9-30-95	5142	Packaged frozen foods	Menomonee River via unnamed trib.	
The Neilson Wheel Company	Milwaukee	64	General	0044938-3	9-30-95	3499	Fabricated metal products	Little Menomonee River	
Orchard Business Park	Milwaukee	65	General	0046531-1	9-30-90	6512	Non-residential bldg. operators	Menomonee River via storm sewer	
Perlick Corporation	Milwaukee	66	General	0044938-3	9-30-95	3585	Refrigeration & heating equipment	Noyes Creek	
Rainbow Park Pool	Milwaukee	67	General	0046523-2	9-30-95		Municipal pool	Underwood Creek via unnamed trib.	
Reuben Residence	Waukesha	68	General	HEAT PUMP	9-30-95	8811	Private household	Underwood Creek via storm sewer	
Safer Drycleaning Center	Waukesha	69	General	0044938-3	9-30-95	7216	Drycleaning, exc. rugs	Butler Ditch	
School District of Elmbrook	Waukesha	70	General	0046523-2	9-30-95	8299	Schools & educational services	Butler Ditch	
Sch. Dist. Elmbrook: Brkfd.Central HS	Waukesha	71	General	0046523-2	9-30-95	8211	Secondary school	Dousman Ditch via storm sewer	
Sch. Dist. Elmbrook: Brkfd.East HS	Waukesha	72	General	0046523-2	9-30-95	8211	Secondary school	Underwood Creek via drainage ditch	
Service Heat Treating Inc.	Milwaukee	73	General	0044938-3	9-30-95			Little Meno. R. via unnamed trib.	
Silgan Containers Corp.	Waukesha	74	General	0044938-3	9-30-95	3411	Metal cans	Nor-X-Way Channel	
Smith & Nephew Roylan Inc.	Waukesha	75	General	0044938-3	9-30-95	3086/3089	Plastics, foam products	Nor-X-Way Channel	
Stone Container Corp.	Washington	76	General	0044938-2	9-30-95	2653	Corrugated and solid fiber boxes	Groundwater discharge	
Super Excavators	Waukesha	77	General	0046531-1	9-30-90	1794	Excavation work	Lilly Creek	
Super Steel Products CorpTower Ave.	Milwaukee	78	General	0044983-3	9-30-95	3441/3499	Fab. struc. metal & products	Little Meno. R. via storm sewer	
Tews Lime & Cement Co.	Milwaukee	79	General	0046507-1	9-30-95	3274/3273	Lime and Ready-mix concrete	Menomonee River via storm sewer	
Thiele Tanning Company	Milwaukee	80	General	0044938-3	9-30-95	3111	Leather tanning and finishing	Menomonee River Canal	

Table VII-7 (continued)

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification	Industrial Activity	Receiving Water	Treatment System ^C
U.S. Oil CoMilw. Petro. Prod. Term.	Milwaukee	81	General	0046531-1	9-30-90	2992/2911/2899	Chem preps., petro. refining, etc.	Little Meno. R. via unnamed trib.	
USA Concrete	Waukesha	82	General	0046507-1	9-30-95	3273	Ready-mix concrete	Lilly Creek	
Uno-ven Company-Granville Term	Milwaukee	83	General	0046531-1	9-30-90	5171	Petroleum bulk stations & term.	Little Meno. R. via unnamed trib.	
Waco Oil Company	Milwaukee	d	General	0046566-1	9-30-95	5171	Petroleum bulk station & term.	Menomonee River	
Washington High School (Pool)	Washington	85	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River	
Wauwatosa School District	Milwaukee	86	General	0046523-2	9-30-95	8299	Schools & educational services	Underwood Creek via unnamed trib.	
Wauwatosa Sch. Dist. East HS Pool	Milwaukee	87	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
Wauwatosa Sch. Dist. West HS Pool	Milwaukee	88	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
Wauwatosa Sch. Dist. Whitman Jr. HS	Milwaukee	89	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
West Allis Central H.S. (Pool)	Milwaukee	90	General	0046523-2	9-30-95	8211	Secondary school	Honey Creek via storm sewer	
West Milwaukee H.S. (Pool)	Milwaukee	d	General	0046523-2	9-30-95	8211	Secondary school	Menomonee River via storm sewer	
West Shore Pipeline Co.	Milwaukee	е	General	0046566-2	9-30-95	5171	Petroleum bulk station & terminal	Underwood Creek	
West Shore Pipeline Co., Granville	Milwaukee	93	General	0046531-1	9-30-90	5171	Petroleum bulk station & terminal	Little Meno. R. via unnamed trib.	
West Surburban Branch YMCA	Milwaukee	94	General	0046523-2	9-30-95	7991	Physical fitness facility	Underwood Creek via unnamed trib.	
Wirth Park Swimming Pool	Waukesha	95	General	0046523-2	9-30-95		Municipal pool	Dousman Ditch	
Wisconsin Lintel Company	Washington	96	General	0046507-2	9-30-95	3272	Concrete products	Absorption-gravel driveway	
Wright Junior H.S. (Pool)	Milwaukee	97	General	0046523-2	9-30-95	8211	Secondary schools	Honey Creek via storm sewer	
YMCA of of Metro Milw. Tri-Co. Branch	Waukesha	98	General	0046523-2	9-30-95	7991	Physical fitness facility	Menomonee River via storm sewer	
A-C Reorganization Trust	Milwaukee	1A	Specific	0026778	9-30-89	3523	Farm machinery & equipment	Honey Creek via storm sewer	3,6
American Concrete Pipe Co., Inc.	Milwaukee	2A	Specific	0044181	3-31-85	3272	Concrete products	Menomonee River via storm sewer	None
Acua-Tech, Inc. (Thiem-Beazer East)	Milwaukee	3A	Specific	0041688	9-30-87	2891	Adhesives and sealants	Underwood Creek via storm sewer	None
Bradley Corp.	Waukesha	4A	Specific	0041734	9-30-87	3432	Plumbing fixtures, fittings, trim	Nor-X-Way Channel	None
Briggs & Stratton Corp-Wauwatosa	Milwaukee	5A	Specific	0026514	12-31-89	3519	Internal combustion engines	Menomonee River via storm sewer	5
Briggs & Stratton Corp-W Allis/83rd	Milwaukee	6A	Specific	0000507	6-30-92	3321	Gray and ductile iron foundries	Honey Creek	None
Chicago Milwaukee Corp.	Milwaukee	7A	Specific	0027057	3-31-90	4013	Switching and terminal services	Menomonee River	6, 2, 4
Falk Corporation	Milwaukee	8A	Specific	0001139	9-30-86	3566	Speed changers, drives, and gears	Menomonee River	7, 3, 4
Gehl Guernsey Farms, Inc.	Washington	9A	Specific	0033219	12-31-90	2022/2023/2099	Cheese, dry/evap prod., food prep.	Menomonee River	None
Harnischfeger Corp.	Milwaukee	10A	Specific	0025321	9-30-86	3536	Hoists, cranes, and monorails	Menomonee River via storm sewer	None
J.F.Shea Co. Inc.:Crosstown Coll 5/6	Milwaukee	11A	Specific	0047155	6-30-93	1622	Bridge, tunnel & elev. hwy. const.	Menomonee River Canal	3,6
J.F.Shea Co. Inc.:Crosstown Coll 7	Milwaukee	12A	Specific	0047163	6-30-93	1622	Bridge, tunnel & elev. hwy. const.	Menomonee River Canal	3,6
Kearney & Trecker Corp.	Milwaukee	13A	Specific	0033146	3-31-89	3541	Machine tools, metal cutting types	Underwood Creek via storm sewer	None
Lakeview Hospital	Milwaukee	14A	Specific	0044105	3-31-90	8069	Specialty hosp, exc. psychiatric	Underwood Creek via unnamed trib.	None
Masterson Company	Milwaukee	15A	Specific	0068951	9-30-90			Menomonee River via storm sewer	None
Miller Brewing Company	Milwaukee	16A	Specific	0000744	3-31-91	2082	Malt beverage	Menomonee River via storm sewer	None
The Neilson Wheel Co., Inc.	Milwaukee	17A	Specific	0048542		3499	Fabricated metal products	Little Meno. R. via storm sewer	None
Pressed Steel Tank Co., Inc.	Milwaukee	18A	Specific	0045705	1-31-96	3443	Fabricated plate work(boiler shops)	Menomonee River via storm sewer	6
Rexnord Corp Milwaukee Factory	Milwaukee	19A	Specific	0026573	9-30-89	3714	Motor vehicle parts, accessories	Menomonee River via storm sewer	None
Sears Roebuck & Co. (Brookfield Sq.)	Waukesha	20A	Specific	0048178		5311	Department store	Dousman Ditch via drainage ditch	None
Soo Line Railroad Co.	Milwaukee	21A	Specific	0045993	3-31-88	4013	Switching and terminal services	Menomonee River	6
Stroh Die Casting Co., Inc.	Milwaukee	22A	Specific	0042285	9-30-92	3364	Nonferrous die casting excl. alum.	Menomonee River via unnamed trib.	None

Table VII-7 (continued)

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification	Industrial Activity	Receiving Water	Treatment System ^C
Sunlite Plastics, Inc.	Washington	23A	Specific	0047465		3089	Plastics products	Menomonee River via Willow Creek	None
United Parcel Service, Inc.	Waukesha	24A	Specific	0042030	3-31-96	4212	Local trucking without storage	Underwood Creek	8
Universal Foods Corp.	Milwaukee	25A	Specific	0042137	9-30-89	2022/2099	Cheese and Food preparation	Menomonee River via storm sewer	9
Veterans Administration Med. Center	Milwaukee	26A	Specific	0044199	12-31-89	8069	Specialty hosp exc. psychiatric	Menomonee River via storm sewer	None
Waste Mgmt. of WI - Controlled Basin	Waukesha	27A	Specific	0047635		4953	Refuse systems	Menomonee River via unnamed trib.	None
Waste Mgmt. cf WI - MF/N.Am.Reg./EMD	Waukesha	28A	Specific	0044440	12-31-90	4953	Refuse systems	Menomonee River via unnamed trib.	3
Waste Mgmt. of WI - Omega Hills	Washington	29A	Specific	0045381	12-31-90	4953	Refuse systems	Menomonee River via unnamed trib.	3
Western Metal Spec. Div.	Milwaukee	30A	Specific	0039004	3-31-90	344	Sheet metal work	Menomonee River	None
WI Electric Power Co Germantown	Washington	31A	Specific	0042757	6-30-93	4911	Electric services	Menomonee River via unnamed trib.	6
WI Electric Power Co Milw Htg.Plt.	Milwaukee	32A	Specific	0001686	12-31-92	4961	Steam and air conditioning supply	Menomonee River Canal	None
WI Elec. Power Co Valley Pwr. Plt.	Milwaukee	33A	Specific	0000931	12-31-91	4911	Electric services	Menomonee River Canal	3, 1, 7, 10
Zignego Ready-mix: West Allis Plant	Milwaukee	34A	Specific	0057185	12-31-93	3273	Ready-mix concrete	Underwood Creek via unnamed trib.	None

^a Table VII-7 includes 132 such point sources of waste water discharging to the Menomonee River and its tributaries, or to the groundwater system in the Menomonee River watershed. As of 1993, there were 120 known, permitted point sources of water pollution.

1. Chemical conversion/addition

5. Holding pond6. Oil and grease removal

9. Spray Irrigation 10. Tube/Plate settlers

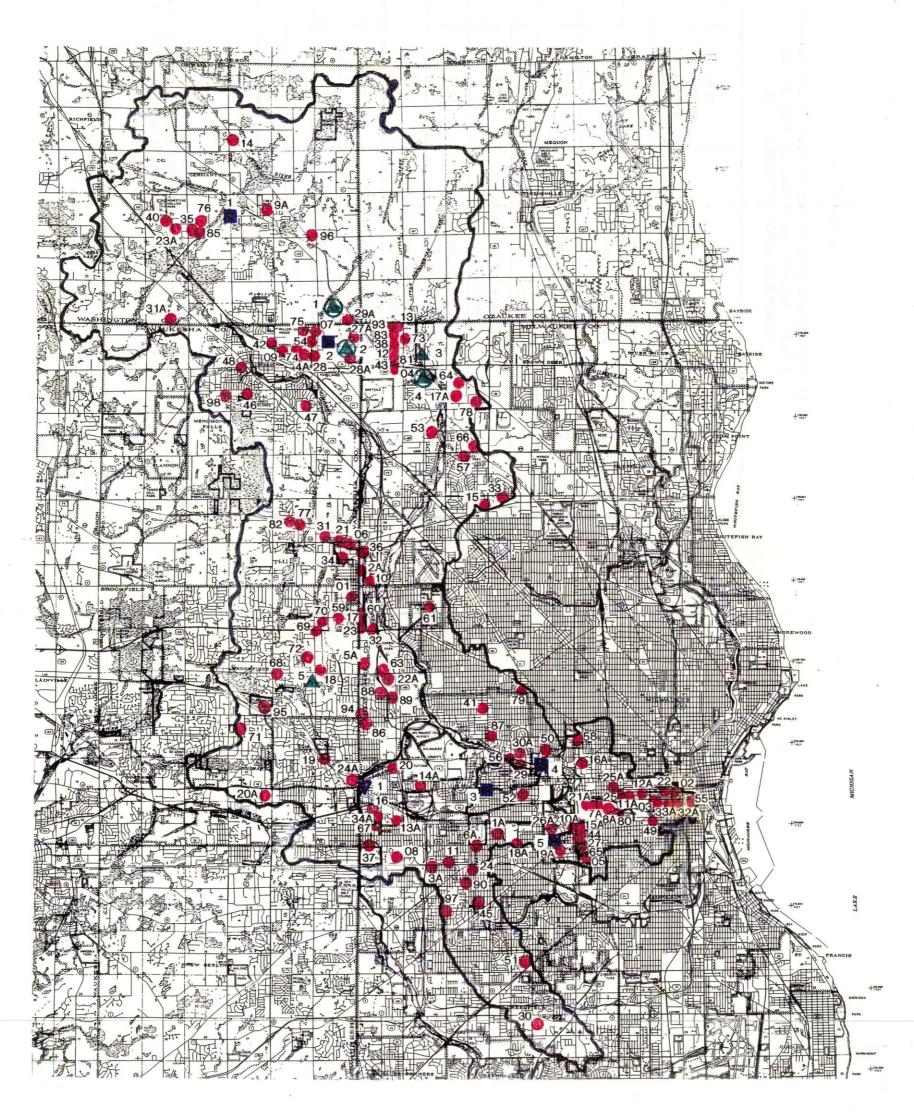
Dissolved air flotation
 Gravity sedimentation

4. Gravity thickening

pH control
 Screening

d Permitted as Leaking Underground Storage Tanks (LUST) remediation site discharging to surface or ground waters as of 1990. As of 1993, there were 11 additional LUST remediation sites discharging to surface or ground waters in the Menomonee River watershed. See Table VII-9, "Miscellaneous Potential Pollution Sources in the Menomonee River Watershed: 1990" for map identification numbers.

Source: Wisconsin Department of Natural Resources and SEWRPC.


b See Map VII-4, "Point Sources of Pollution Other Than Sewage Treatment Facilities in the Menomonee River Watershed: 1990".

^C The number code refers to the following treatment systems:

e Reported as a groundwater contamination site as of 1990. Remediation wastewater from site is permitted to discharge to surface waters. As of 1993, there was one additional LUST remediation site discharging to surface or ground waters in the Menomonee River watershed. See Table VII-9 for map identification number.

Map VII-4

POINT SOURCES OF POLLUTION OTHER THAN SEWAGE TREATMENT FACILITIES IN THE MENOMONEE RIVER WATERSHED: 1990

LEGEND

- POINT SOURCES OF POLLUTION OTHER THAN SEWAGE TREATMENT FACILITIES
- LEAKING UNDERGROUND STORAGE TANKS DISCHARGING REMEDIATION WASTEWATER TO SURFACE WATERS OR GROUNDWATER
- ADDITIONAL GROUNDWATER CONTAMINATION SITES DISCHARGING REMEDIATION WASTEWATER TO SURFACE WATERS OR GROUNDWATER
- LANDFILLS DESIGNATED AS SUPERFUND SITES LANDFILLS IDENTIFIED FOR STATE ACTION
- ADDITIONAL LANDFILLS THAT POTENTIALLY IMPACT SURFACE WATER QUALITY

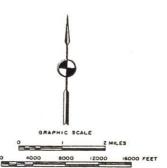


Table VII-8

EXISTING URBAN DEVELOPMENT OUTSIDE OF THE PLANNED PUBLIC SANITARY SEWER SERVICE AREA IN THE MENOMONEE RIVER WATERSHED: 2010

Numberª	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
	Ozaukee County		
1°	City of Mequon - Section 17	127	1.0
2°	City of Mequon - Section 30	163	1.0
	Washington County		
3	Village of Germantown - Section 7	152	1.3
4	Village of Germantown - Section 13	154	1.1
5°	Village of Germantown - Section 19	453	0.1
6	Village of Germantown - Section 24	120	0.5
7°	Dhiensville-Rockfield	148	0.8
8°	Willow Creek	1155	0.4
	Total	2472	

a See Map VII-3

b Urban development is defined in this context as concentrations of urban land uses within any given U.S. Public Land Survey quarter section that has at least 32 housing units, or an average of one housing unit per five gross acres, and is not served by public sanitary sewers.

^c Based upon consideration of soils, lot sizes, and density, further site-specific planning should be conducted during the planning period to determine the best means of providing for wastewater management.

it is recommended an inspection and maintenance program for the onsite sewage disposal systems be instituted and that further site-specific planning be conducted to determine the best wastewater management practice at such time as significant problems become evident.

Miscellaneous Potential Pollution Sources

<u>Landfills</u>: Landfills in the Menomonee River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and can be subsequently transported to surface waters.

There are currently two active landfills and 55 abandoned landfills located in the Menomonee River watershed. Two of the abandoned landfills—the Boundary Road landfill (formerly known as Lauer I sanitary landfill) in the Village of Menomonee Falls and the Omega Hills North landfill in the Village of Germantown—were designated as high priority sites for the U.S. Environmental Protection Agency Superfund program which provides for the identification, evaluation, and clean—up of hazardous waste sites. The location of these sites and other landfills which are potentially impacting surface or groundwater in the Menomonee River watershed are shown on Map VII-4 and listed in Table VII-9. In addition, the Moss American Company, a former creosote treatment facility site located in the City of Milwaukee adjacent to the Little Menomonee River, is designated as a high priority Superfund site.

The Boundary Road landfill is located west of the Milwaukee-Waukesha County line and south of the Wisconsin Southern Railroad Company railway in the northeast corner of the Village of Menomonee Falls. The 58-acre landfill site was in operation from 1959 to 1972. Waste Management of Wisconsin, Inc. is the site Surface water may run off the site by way of drainage ditches located immediately to the west of the site and to the east across Boundary Road. A pond and wetland are located immediately to the south of the site. The surface drainage of the lands in the vicinity of the landfill is to the south and east to the Dretzka Park tributary of the Menomonee River. Contaminants detected in the groundwater include chlorinated and non-chlorinated volatile organic compounds. Surface water samples taken in the vicinity show low levels of contaminants. Further feasibility studies have been prepared to evaluate cleanup alternatives. The preliminary recommended plan provides for regrading of the landfill cover, the addition of a new composite cover system, installing a landfill gas extraction system, continuing and expanding the leachate extraction system, and continued monitoring.

The Omega Hills North landfill is located in the southeast corner of the Village of Germantown just north of the Waukesha-Washington County line and just west of the Wisconsin and Southern Railroad Company railway. The site covers 83 acres and was licensed to accept hazardous wastes from 1977 until 1982. The site stopped accepting hazardous wastes in 1982 and liquid wastes in 1983. In 1989, the site stopped accepting all wastes and a clay cover was installed. The surface drainage in the vicinity of the landfill drains largely to the south and

Table VII-9

MISCELLANEOUS POTENTIAL POLLUTION SOURCES IN THE MENOMONEE RIVER WATERSHED: 1990

Map Identification Number ^a	Landfills Indicated to be Potential Pollution Sources	Civil Division Location	Surface Water Potentially Impacted
1 ^b	Omega Hills North	Village of	Little Menomonee River
2 ^b	Lauer I Sanitary Landfill ^c	Germantown Village of Menomonee Falls	Tributary to Menomonee River
3 4 ^b 5	Geipel Landfill ^d Moss American City of Brookfield ^d	City of Milwaukee City of Milwaukee	Little Menomonee River Little Menomonee River
3	City of Brookfield	City of Brookfield	Underwood Creek
	Leaking Underground Storage Tank Sites ^{e,f}		Receiving Water
1	Germantown Sewage Utility	Village of Germantown	Menomonee River
2	Kraft Food Service Corp.	Village of Menomonee Falls	Nor-X-Way Channel
3	Mobil Oil Corporation	City of Wauwatosa	Honey Creek
4	Waco Oil Company	City of Milwaukee	Menomonee River
5	West Milwaukee High School	Village of West Milwaukee	Menomonee River
	Additional Groundwater Contamination Sites ^{e,g}		Receiving Water
1	West Shore Pipeline Company	City of Wauwatosa	Underwood Creek

^a Refers to Map VII-4, "Point Sources of Pollution Other Than Sewage Treatment Facilities in the Menomonee River Watershed: 1990."

Source: Wisconsin Department of Natural Resources and SEWRPC.

b SuperFund site.

c Also referred to as Boundary Road Landfill.

d Indicated to be potential pollution source in DNR Water Resource Appraisal for the Menomonee River Watershed dated August 1992.

^e Includes those sites which are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters.

f As of 1993, there were 11 additional LUST sites in the Menomonee River watershed whose remediation discharges were permitted under the WPDES: Auto Service Association in City of Brookfield discharges to Dousman Ditch; CDS Investments in the City of New Berlin discharges to the Menomonee River, Speedy Lube gas station in the City of Wauwatosa discharges to Underwood Creek; Fleming Companies, Inc. in the City of Milwaukee discharges to the Menomonee River; John's Oil Company in the City of West Allis discharges to Underwood Creek, M & I Northern Bank in the City of Brookfield discharges to the Menomonee River; Moser's Automotive in the Village of Menomonee Falls discharges to Butler Ditch; Murphy Oil USA, Inc. in the Village of Menomonee Falls discharges to the Little Menomonee River; Sprinkman Sons Corp. in the City of Milwaukee discharges to the Little Menomonee River; and Tenley Automotive in the City of Milwaukee discharges to the Little Menomonee River; and Tenley Automotive in the City of Milwaukee discharges to the Little Menomonee River.

east to the Dretzka Park tributary of the Menomonee River, with the area west of the landfill draining to the Nor-X-Way Channel tributary of the Menomonee River. Currently, leachate at the site is being collected and treated, while investigations leading to the selection of final cleanup remedies for the landfill are taking place.

In 1984, the Moss-American site was designated as a high-priority site for the Superfund program. During its operation--from 1921 to 1976, the Moss-American factory treated railroad ties with a creosote and fuel oil mixture. analyses which have been conducted over the years since the operation ceased, have indicated the presence of creosote and other chemicals in the area soil and groundwater, and in the Little Menomonee River. There have been documented cases of chemical skin burns by persons from the sediments in the Little Menomonee River. Alternative and recommended plans were set forth in the Menomonee River watershed plan⁴ for resolving the identified problem. That plan recommended that the residual creosote pollution problem in the Little Menomonee River within Milwaukee County be resolved by excavating a new parallel channel, filling the existing channel, and restoring the site. The recommended pollution abatement measure would be applied along a 3.46-mile-long reach of the Little Menomonee River and would result in a significant reduction in creosote exposure hazard. Following additional site investigations and feasibility studies, the previous site operator, under U.S. Environmental Protection Agency and Wisconsin Department of Natural Resources supervision, is in the initial phases of designing the pollution abatement program for the site. The project, which was identified by the Superfund remedial action plans after evaluation of alternatives, includes:

- Rerouting of the Little Menomonee River from the Moss-American site to its mouth.
- Removal and biological treatment of highly contaminated soil and river sediment using an onsite treatment system.
- Burial of remaining sediments in the current streambed with soil excavated from the new channel.
- Burial of the untreated soil and the treated material from the treatment system onsite under a soil cover.
- Collection and treatment of contaminated groundwater with discharge to the sanitary sewerage system.
- Treatment of the landfilled soil onsite and disposal of it onsite in a specially designed landfill.

The recommended remedial action plan is consistent with recommendations contained in the adopted Menomonee River watershed plan.

⁴SEWRPC Planning Report No. 26, <u>A Comprehensive Plan for the Menomonee River Watershed</u>, Volume 1, <u>Inventory Findings</u>, Volume 2, <u>Alternative Plans and Recommended Plan</u>, October 1976.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Menomonee River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground water. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1990, there were five known, permitted leaking underground storage tank sites that were discharging remediation waters to surface waters, as indicated in Table VII-9 and shown on Map VII-4. As of 1993, there were 11 additional leaking underground storage tanks in the Menomonee River watershed whose remediation wastewaters were permitted to discharge to surface or ground waters, as shown in Table VII-9.

As of 1993, there were 526 additional leaking underground storage tanks in the Menomonee River watershed identified by the DNR that were not discharging remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks may have detrimental effects on water quality.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the WPDES program to discharge remediation wastewater to surface or ground waters. As of 1990, there was one permitted site discharging to surface water. As of 1993, there was one additional such site known to be discharging to surface water in the Menomonee River watershed, as indicated in Table VII-9.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the adopted regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Menomonee River watershed, the adopted plan generally recommended non-point source controls for both rural and urban lands designed to reduce the pollutant loadings from nonpoint sources by 25 percent, in addition to construction erosion control, septic system management, and streambank erosion control. No nonpoint source controls were recommended in the portion of the watershed where the deep tunnel combined sewer overflow abatement plan has been implemented and where a relatively high level of nonpoint source control will be achieved by the conveyance of most of the stormwater to the Milwaukee Metropolitan Sewerage District sewerage system.

In 1976, the Commission prepared a comprehensive watershed plan⁵ for the Menomonee River watershed in cooperation with various Federal, State and local authorities. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas in the watershed. Such subsequent planning was and will continue to be directed toward reducing nonpoint source pollutant loadings as well as providing for local drainage needs in the watershed.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Menomonee River watershed through local regulation and programs. In the area of construction site erosion control measures, significant progress has been made. As of January 1993, Waukesha County; the Cities of Brookfield, Mequon, Milwaukee, and New Berlin; and the Villages of Germantown, Elm Grove, Menomonee Falls, and West Milwaukee had adopted construction erosion control ordinances based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and the League of Wisconsin Municipalities. In addition, Washington County and the Village of Butler had ordinances which pre-dated the model.

While new development is largely being served by sanitary sewer, the existing unsewered development within the watershed is regulated by onsite sewage disposal system programs administered by the City of Mequon and the Villages of Germantown and Menomonee Falls. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of new systems, and for problem resolution of failing systems where they are identified. Since the completion of the adopted regional water quality management plan, public sewer systems have been installed for the urban development within portions of the Village of Menomonee Falls and Germantown, as recommended in the regional plan, thereby reducing onsite system pollutant discharges to the surface water and groundwater systems in the watershed.

With regard to rural nonpoint source control implementation actions, programs such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others are utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have positive water quality impacts. Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. Tolerable levels are defined as soil loss tolerances, or T-values, which are the maximum average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection, as priority counties for soil erosion control.

⁵See SEWRPC Planning Report No. 26, <u>A Comprehensive Plan for the Menomonee River Watershed</u>, Volume One: <u>Inventory Findings and Forecast</u>, Volume Two: <u>Alternative Plans and Recommended Plan</u>.

The Commission has prepared agricultural soil erosion control plans for Washington, Ozaukee, and Waukesha Counties. Thus, all of the rural areas in the Menomonee River watershed have been addressed through such planning. Those plans identify priority areas for cropland soil erosion control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While the local programs described above have probably resulted in some reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This program was established in 1978 by the Wisconsin Legislature and provides cost-sharing funds for the cost of an individual project or land management practice to local governments and private landowners upon completion of the detailed plans. The funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. The Menomonee River watershed was designated a "priority watershed" in 1984. Planning for the Menomonee River priority watershed project⁶ was completed in 1991, and implementation of practices began in October 1991 and will continue for eight years.

The Menomonee River priority watershed program established nonpoint source pollutant control reduction goals of 50 percent for sediment and 50 to 70 percent for phosphorus for the subareas considered. Additional goals of 50 percent for heavy metal nonpoint source pollutant loadings were also established. These loading reductions were based primarily upon field inventories of the streams in the Menomonee River watershed. Observations were made of the sediment imbeddedness and biological conditions of each stream and a corresponding judgement was made with regard to the reductions needed in the stream sediment loading for restoring biological uses. In addition, the pollutant reduction goals were based upon a qualitative consideration of the toxicity of metals in urban runoff. The recommendations of the priority watershed plan for the rural areas are generally low in cost and are generally consistent with the County soil erosion control plans and other County land conservation programs. Certain components of the plan

⁶Wisconsin Department of Natural Resources, Publication No. WR-300-92, <u>A Nonpoint Source Control Plan for the Menomonee River Priority Watershed Project</u>, March 1992.

recommendations for the urban and urbanizing areas, such as construction erosion control, are expected to be readily implemented. However, other components of the recommended plan, such as retrofitting urban land management practices in developed areas are costly and full implementation will be difficult. The plan also recommends that further detailed stormwater management planning and assessments be carried out as part of the subsequent plan implementation actions in order to refine the recommendations.

To achieve these objectives, the Menomonee River priority watershed program includes recommendations and funding eligibility for the rural and urban nonpoint source control measures presented below.

Rural Land Management:

- Provision of streambank erosion control practices for about 1,200 feet of eroding streambank.
- Development of detailed conservation plans to develop best management practices for about 5,300 acres of cropland.
- Installation of management practices for six barnyards.
- Installation of facilities and management practices for ten livestock operations in the watershed.
- · Obtaining easements along streams in selected areas.

<u>Urban Land Management</u>: The plan generally recommends to municipalities the initial development of a "core program" of urban land management practices. This core program provides for implementation of construction erosion controls; the institution of a public information and education program on nonpoint source pollution abatement; and institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers. The plan further recommends the development of a "segmented program" providing for the stormwater management planning, possible stormwater ordinance requirements, streambank stabilization, street sweeping, and the design and construction of management practices is also recommended. Specific core and segmented programs include:

- Provision of construction site erosion control ordinances and implementation actions for control of about 7,000 acres of new urban development which is expected in the watershed during the planning period.
- Provision of nonpoint source control practices on about 32,000 acres of existing urban land and about 7,400 acres of new urban land are targeted for nonpoint source control. Possible urban nonpoint source pollution control practices include wet detention ponds, infiltration devices, street sweeping, and public information and education programs to develop good housekeeping practices.
- Provision of erosion control measures for about 7,300 lineal feet of streambank.

 Preparation of detailed stormwater management plans to determine the best practices to be installed in the urban areas. These plans address water quantity and water quality problems in developed and developing urban areas.

Current Plan Recommendations

It is recommended that construction site erosion control, onsite sewerage system management, and streambank erosion control, in addition to land management practices that would provide at least a 25 percent reduction in nonpoint source loadings be carried out throughout the Menomonee River watershed. It is further recommended that rural land management measures needed to achieve the levels of control set forth in the Menomonee River priority watershed study for sediment control from rural areas be carried out. It is also recommended that the urban land management practices set forth in the Menomonee River priority watershed plan be utilized as the initial basis for stormwater management planning and project eligibility under the State priority watershed program. These levels of reduction in the urban areas are recommended to be refined based upon subsequent detailed stormwater management planning, and based upon additional monitoring and quantitative analyses which are recommended to be conducted during the plan implementation period. These data and consideration of estimated costs and available funds for the urban practices are recommended to be evaluated to refine the recommended final level of control. Such refinement would include further consideration of toxics reduction requirements.

The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program. As of 1993, long-term monitoring has been carried out in the Menomonee River watershed on a sustained basis by the Milwaukee Metropolitan Sewerage District for eight stations located on the Menomonee River main stem. Data from five of these stations were used to document current long-term water quality conditions in the watershed, as shown on Map VII-5. Short-term monitoring has also been conducted at one site by the Wisconsin Department of Natural Resources and at one site by the U.S. Geological Survey during the period 1988 through 1993, as described later in this chapter.

Current Plan Recommendations

Continued water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the Milwaukee Metropolitan Sewerage District for all current stations on the Menomonee River on a continuing long-term basis. In addition, it is recommended an intensive water quality and biological condition monitoring program be conducted over a one-year period at five selected additional stations, with one station each located on Little Menomonee River, Little Menomonee Creek, Butler Ditch, Underwood Creek, and Honey Creek. This monitoring program would

Map VII-5 LOCATIONS OF WATER QUALITY SAMPLING STATIONS IN THE MENOMONEE RIVER WATERSHED Mn-2 Mn-3 Mn-5 Mn-7b Mn-8 Mn-9 Mn-**LEGEND** Post-1976 sampling stations used in Sampling station used in preparation of initial plan preparation of plan update **USGS-Short Term SEWRPC**

- △ USGS
- ☐ MMSD

- MMSD-Long Term
- DNR-Sediment Samples
- USGS-Sediment Samples

also include biological monitoring at stations on the Menomonee River main stem at locations currently being sampled by the Milwaukee Metropolitan Sewerage District. It is recommended that this program be conducted within the next five to seven years and repeated at approximately five- to seven-year intervals. These recommendations can be coordinated with, and are consistent with, the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five- to seven-year rotating cycle.

LAKES MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological condition monitoring programs to be established.

As noted above, there are no major lakes in the Menomonee River watershed. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are considered applicable for management purposes.

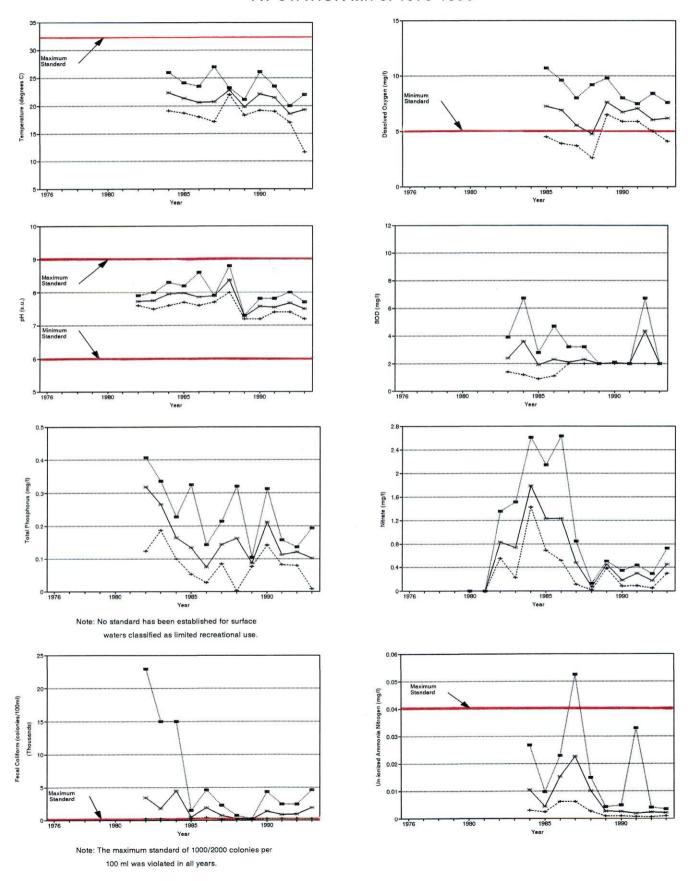
WATER QUALITY AND BIOLOGICAL CONDITIONS

<u>Streams</u>

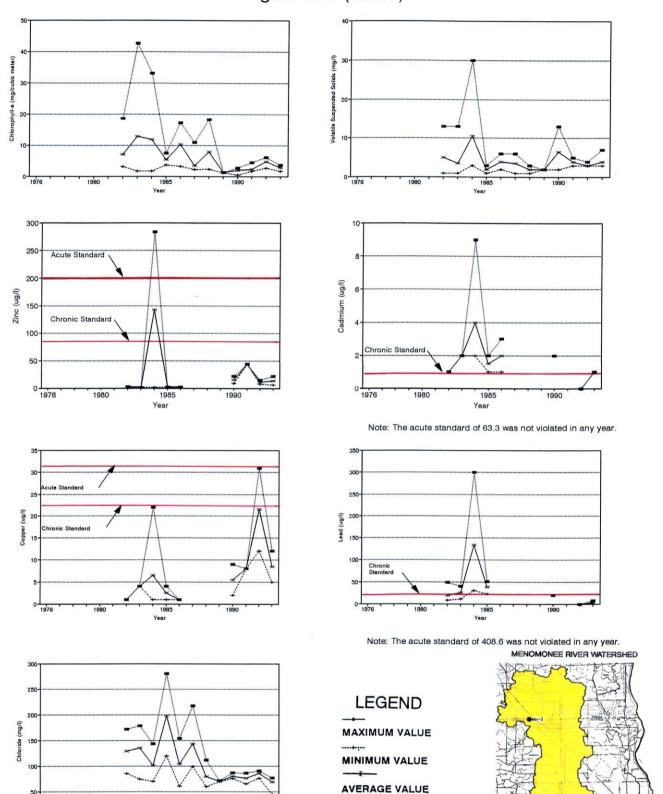
Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study, the 1965 through 1975 Commission stream water quality monitoring effort, the 1976 Commission monitoring program conducted under the regional water quality management planning effort, and the 1964 through 1974 U.S. Geological Survey (USGS) and Milwaukee Metropolitan Sewerage District (MMSD) sampling programs. Available data collected in those programs for the Menomonee River watershed included samplings at 14 Commission stations: 11 on the main stem of the Menomonee River, one on Underwood Creek, one on Honey Creek, and one on the Little Menomonee River; and at one USGS station and four MMSD sampling stations, all on the main stem of the Menomonee River. The sampling station locations are shown on Map VII-5.

Long-term 1976 comparable water quality data have been collected by the Milwaukee Metropolitan Sewerage District for eight stations on the Menomonee River. Water resource appraisal information including biological condition and water quality data collected by the Wisconsin Department of Natural Resources (DNR) for the Menomonee River Nonpoint Source Priority Watershed Project were also available for use in the assessment of current water quality conditions. Water quality data has also been collected on a short-term basis at two locations in the Menomonee

River watershed. Data collected at one short-term site, along with long-term data from five MMSD stations, are shown on Map VII-5. These data were used in this chapter to assess current water quality conditions as discussed in the next section and, where appropriate, to make a generalized comparison to historic conditions. In addition to the data obtained since preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the thencurrent 1975 land use conditions and under planned year 2000 land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Menomonee River watershed.


Long-term water quality data collected by the MMSD at five sampling stations on the main stem of the Menomonee River--Mn-3, at County Line Road; Mn-6, at 127th Street; Mn-7a, at Hampton Avenue; Mn-10, at N. 70th Street; and Mn-13, at Muskego Avenue--are summarized in Figures VII-1 through VII-5. The short-term data collected by the USGS in 1990 are summarized in Figure VII-1 through VII-6 and in Table VII-10. The water quality standards indicated in Figures VII-1 through VII-6 and in Table VII-10 are those set forth for specific biological and recreational use objectives as described in Chapter II. The relations of these objectives and standards to current DNR stream classifications and water quality criteria is discussed in detail in Chapter II.

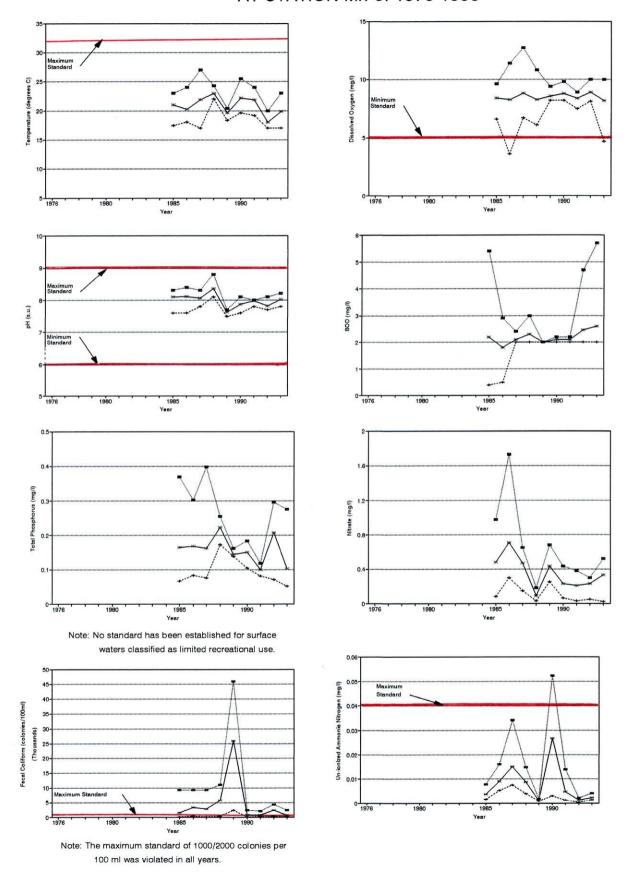
Review of those data indicate general decreases in levels of chlorophyll-a for all five stations. Both stations Mn-3 and Mn-6 indicate decreases in phosphorus, un-ionized ammonia nitrogen, nitrate nitrogen, and chlorides. In addition, the variability of most of the measured constituents at these two stations was reduced. These improvements are likely due at least in part to the abandonment of the three public sewage treatment plants operated by the Villages of Menomonee Falls and Germantown and to the reduction in the bypassing of sewage through flow relief devices. Levels of dissolved oxygen, un-ionized ammonia nitrogen, and fecal coliform remained variable at all stations, with occasional violations of the dissolved oxygen and un-ionized ammonia nitrogen water quality standards, and frequent violations of the fecal coliform water quality standards associated with the water use objectives for the Menomonee River main stem set forth in Chapter Temperature and pH levels remained variable with no apparent trends, but were generally within acceptable limits at all stations. As noted in the subsequent section, the levels of most metals exceeded chronic toxicity standards at all stations.


Toxic and Hazardous Substances

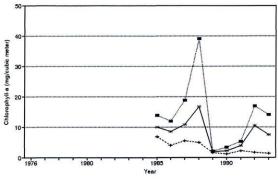
Sampling and analysis for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Commission and the Wisconsin Department of Natural Resources at three sampling stations in the Menomonee River from 1973 through 1974. Specifically, 21 of 105, or 20 percent, of the samples collected violated the recommended criteria for lead. Sample analyses for cadmium, cobalt, copper, mercury, nickel, and zinc uncovered no violations of U.S. Environmental Protection Agency (EPA) recommended levels.

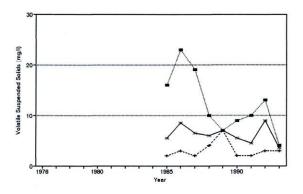
Figure VII-1 WATER QUALITY DATA FOR THE MENOMONEE RIVER AT STATION Mn-3: 1976-1993

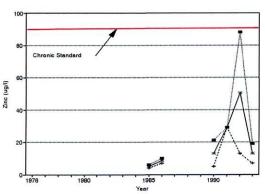
Figure VII-1 (cont'd)


Note: The maximum standard of 1000mg/l was not violated in any year.

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.


Note: Graphs indicate maximum, minimum, and average values for July and August data.


Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.


Figure VII-2 WATER QUALITY DATA FOR THE MENOMONEE RIVER AT STATION Mn-6: 1976-1993

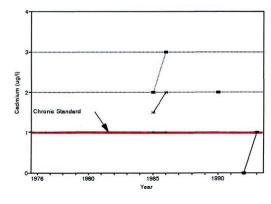
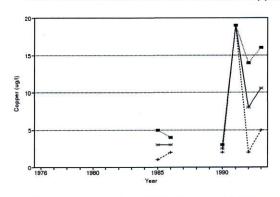
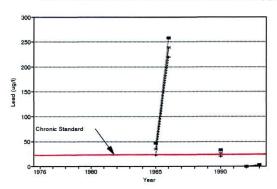
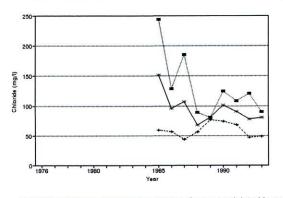


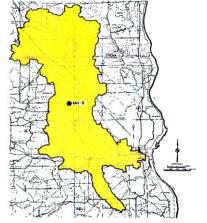
Figure VII-2 (cont'd)





Note: The acute standard of 202.9 was not violated in any year.

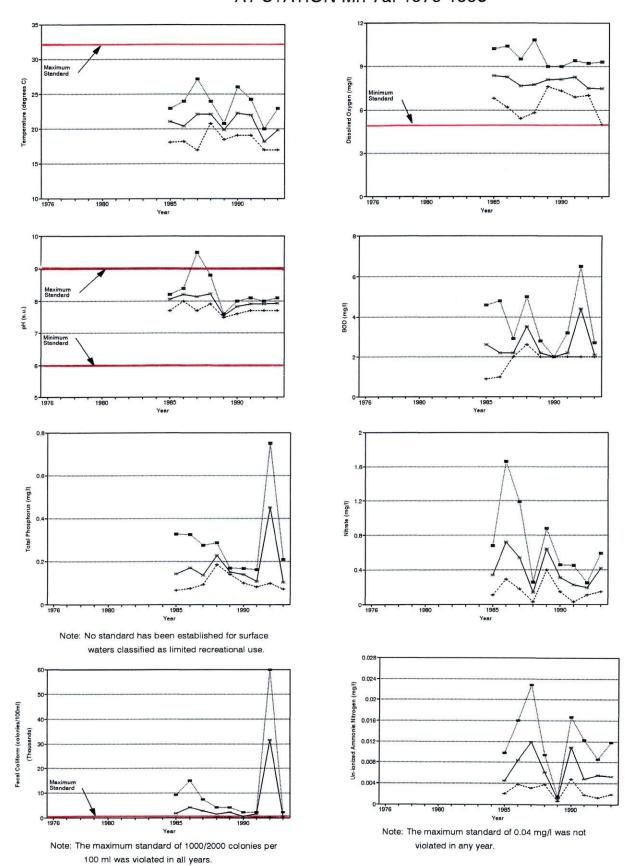




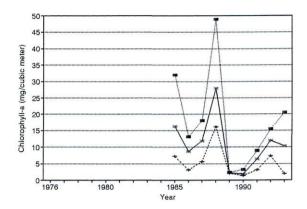
Note: The acute standard of 31.9 ug/l was not violated in any year. Note: The chronic standard of 22.1 ug/l was not violated in any year.

Note: The acute standard of 408.6 was not violated in any year.

MENOMONEE RIVER WATERSHED


Note: The maximum standard of 1000 mg/l was not violated in any year.

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.


Note: Graphs indicate maximum, minimum, and average values for July and August data.

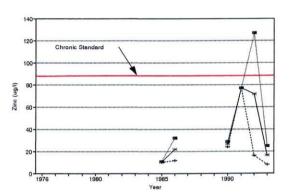

Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Figure VII-3 WATER QUALITY DATA FOR THE MENOMONEE RIVER AT STATION Mn-7a: 1976-1993

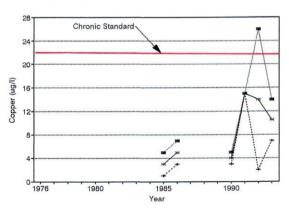
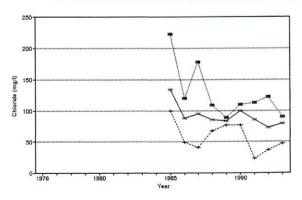
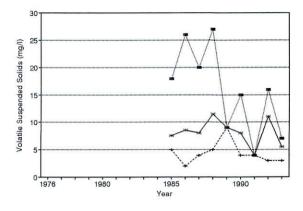
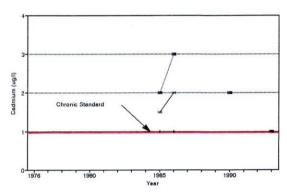


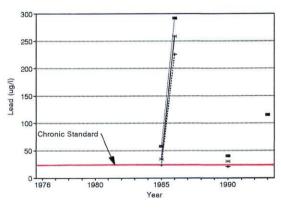
Figure VII-3 (cont'd)



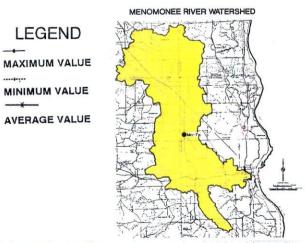
Note: The acute standard of 202.9 ug/l was not violated in any year.



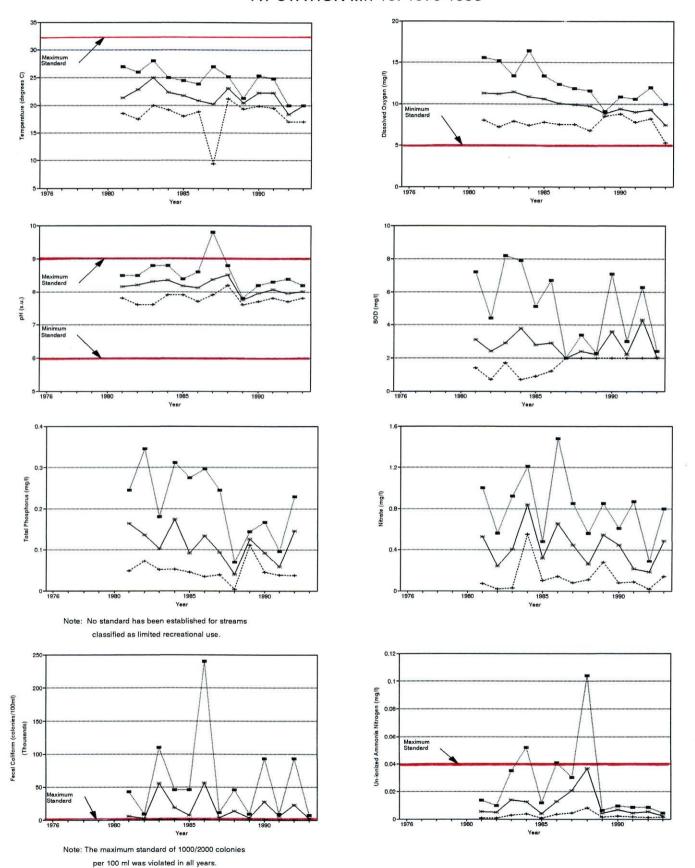

Note: The acute standard of 31.9 ug/l was not violated in any year.

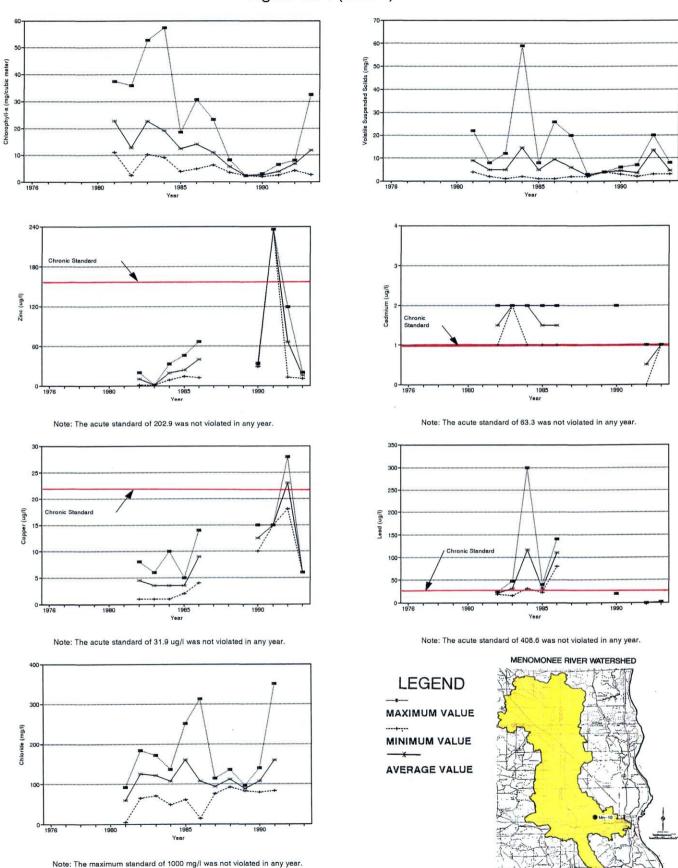

Note: The standard of 1000 mg/l was not violated in any year.

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.



Note: The acute standard of 63.3 ug/l was not violated in any year.

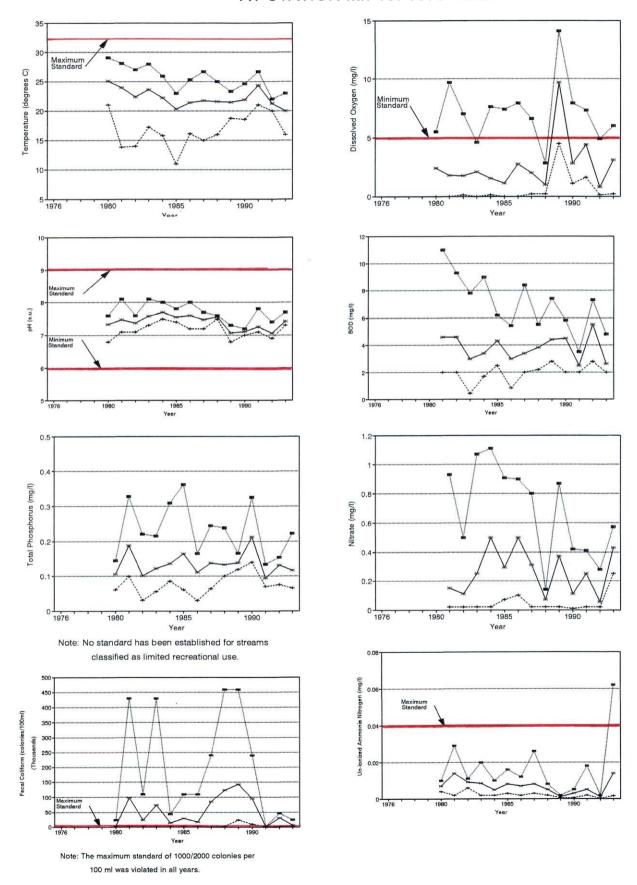

Note: The acute standard of 408.6 ug/l was not violated in any year.


Note: Graphs indicate maximum, minimum, and average values for July and August data.

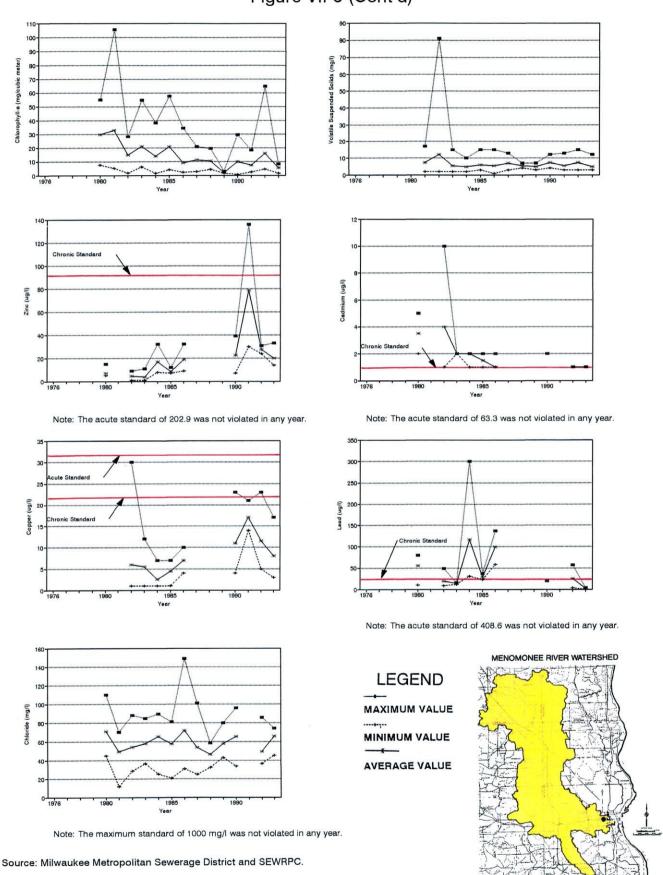
Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Figure VII-4 WATER QUALITY DATA FOR THE MENOMONEE RIVER AT STATION Mn-10: 1976-1993

Figure VII-4 (cont'd)

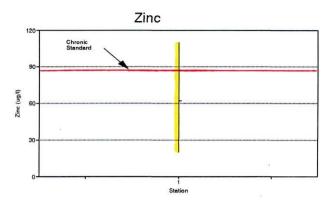


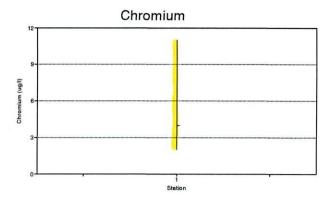
Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

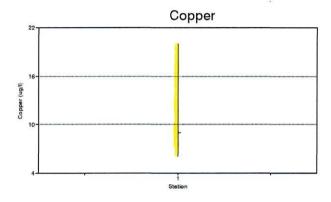

Note: Graphs indicate maximum, minimum, and average values for July and August data.

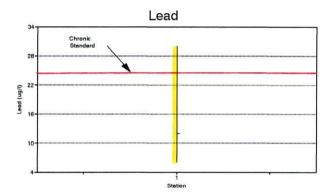
Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

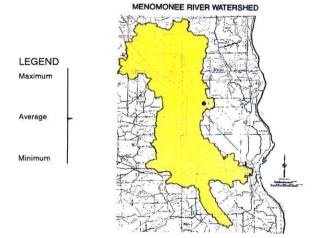
Figure VII-5 WATER QUALITY DATA FOR THE MENOMONEE RIVER AT STATION Mn-13: 1976-1993




Figure VII-5 (Cont'd)


Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.


Figure VII-6
Menomonee River Watershed Short-Term Water Quality Sampling Data: 1990


Note: The acute standard of 202.9 ug/l was not violated in any year.

Note: The chronic standard of 22.1 ug/l was not violated in any year. Note: The acute standard of 31.9 ug/l was not violated in any year. Note: The acute standard of 408.6 ug/l was not violated in any year.

Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table VII-10 for summarized water quality data.

Source: U.S. Geological Survey and SEWRPC.

Table VII-10

MENOMONEE RIVER WATERSHED SHORT-TERM
STREAM WATER QUALITY SAMPLING DATA: 1990

Sampling Station Number	Parameter (Units)	Applicable Standards ^a	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
1	Zinc (ug/1)	Chronic maximum of 89.2; Acute maximum of 202.9	20 - 110	Yes No	May - June 1990	7
	Chromiumm (ug/1)		2 - 11		May - June 1990	7
	Copper (ug/1)	Chronic maximum of 22.1; Acute maximum of 31.9	6 - 20	No No	May - June 1990	7
	Lead (ug/1)	Chronic maximum of 24.4; Acute maximum of 408.6	6 - 30	Yes No	May - June 1990	7

^a Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See Chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Source: U.S. Geological Survery, Wisconsin Department of Natural Resources and SEWRPC.

Recent data on metals substances in the Menomonee River were collected by the Milwaukee Metropolitan Sewerage District at stations Mn-3, Mn-6, Mn-7a, Mn-10, and Mn-13; and by the Wisconsin Department of Natural Resources at a station inthe Little Menomonee River, as shown in Figures VII-1 through VII-6. These data indicate that levels of zinc, cadmium, copper, and lead consistently violated chronic toxicity level standards as established by Department of Natural Resources for all stations on the Menomonee River main stem, with the exception of zinc and copper levels at station Mn-6, which remained within the acceptable limits. Short-term data collected in a tributary to the Little Menomonee River in 1990 indicated that levels of zinc and lead violated the chronic toxicity level standards.

Post-1976 data on toxic and hazardous substances present in stream sediments were collected in the Menomonee River portion of the Milwaukee Harbor estuary as part of the Milwaukee Harbor estuary study⁷ and the remedial action plan for the Milwaukee Harbor estuary,⁸ reported sediments contaminated with organics and metals. Sediment concentrations of ammonia, lead, zinc, and cadmium exceeded the proposed DNR Severe Effect Level (SEL) guidelines⁹ at most sites sampled; copper concentrations exceeded the Lowest Effect Level guidelines. Further studies of sediment chemistry have been reported by Palmer,¹⁰ and Ni, Gin, and Christensen.¹¹ In these studies, total PCB concentrations in the sediments of the Lower Menomonee River exceeded the Lowest Effect Level (LEL) guidelines proposed by the Department of Natural Resources at both stations, with extremely high values being reported from the two additional Menomonee Canal stations. Similarly, PAH concentrations exceeded the LEL guidelines, with the most severe contamination being reported from the Lower Menomonee River.

Additional data collection by the U.S. Geological Survey and the Wisconsin Department of Natural Resources between 1989 and 1992, and set forth in Table VII-11, show that the proposed screening criteria were exceeded at most sites. The LEL criteria were exceeded at all 18 sampling sites on the Menomonee River main stem, Little Menomonee River, and Lilly Creek. Severe Effect Level guidelines for selected heavy metals were exceeded at Hoyt Park--copper and lead--and

⁷SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, 1987.

⁸Wisconsin Department of Natural Resources, <u>Remedial Action Plan, Milwaukee</u> <u>Harbor Estuary</u>, 1991.

⁹Wisconsin Department of Natural Resources, (Draft) <u>Inventory of Statewide</u> <u>Contaminated Sediment Sites and Development of a Prioritization System</u>, June 1994.

¹⁰Lauran Palmer, <u>Evaluation of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in the Menomonee River, Canals, and Milwaukee Harbor</u>, UW-SP Report, August 1993.

¹¹Fan Ni, Michael F. Gin, and Erik R. Christensen, <u>Toxic Organic Contaminants in the Sediments of the Milwaukee Harbor Estuary</u>, Final Report, Milwaukee Metropolitan Sewerage District, 1992.

Table VII-11

CONCENTRATIONS OF TOXIC AND HAZARDOUS SUBSTANCES FOUND IN SEDIMENT SAMPLES IN THE MENOMONEE RIVER WATERSHED: 1989-1992

					Sampling	Stations	3												
			Menor	monee River Ma	in Stem					Lit	tle Menomo	nee River					Lilly C	reek	
Substances Sampled	CTH F	Germantown	Mount Mary College	Lilly Road	C&NW Railway	Hoyt Park	Wauwa- tosa	Friestadt Road	Brown Road	C&NW Railway	Calumet Road	Good Hope Road	Good Hope Road	Mill Road	STH 100	Mill Road	Silver Spring Road	Nicolet Avenue	Mouth
Heavy Metals (mg/kg)												1989	1992						
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc	5.0 2.0 30.0 33.0 30.0 0.06 20.0 140.0	1.0 2.0 40.0 48.0 40.0 0.2 30.0 140.0	6.0 3.0 30.0 49.0 80.0 0.4 20.0 280.0	3.0 :.0 30.0 4:.0 90.0 0.2 20.0 260.0	4.0 2.0 30.0 50.0 60.0 0.08 30.0 250.0	6.0 4.0 70.0 140.0 260.0 0.2 40.0 540.0	7.0 5.0 70.0 130.0 40.0 0.2 40.0 850.0	38.0 1.0 20.0 29.0 20.0 0.06 20.0 93.0	2.9 1.0 95.0 190.0	5.8 7.0 56.0 2,100.0	4.5 1.0 29.0 220.0	7.0 1.0 37.0 160.0	4.0 1.0 20.0 2.0 10.0 0.2 10.0 93.0	5.5 1.0 22.0 100.0	3.5 1.0 69.0 180.0	10.0 2.0 30.0 41.0 50.0 0.04 20.0 190.0	2.0 1.0 20.0 40.0 30.0 0.04 30.0 130.0	12.0 1.0 20.0 23.0 20.0 0.04 20.0 77.0	5.0 2.0 20.0 26.0 50.0 0.06 20.0 120.0
Total Polycyclic Aromatic Hydrocarbons (mg/kg)	0.0	0.0	21.7	50.6	48.1	114.5	42.5	0.3	46.7	61.8	119.4	10.5	2,262.9	118.5	35.2	25.1	5.4	0.0	36.6
Total Polychlorinated Biphenyls (µg/kg)	10.0	10.0	·	20.0	10.0			10.0									10.0	10.0	10.0
Aldrin Chlordane Total DDT op+pp DDT pp DDD pp DDE Mirex TCDD NHg-N (mg/1) ONG (mg/1) CN (mg/1)	1.0 10.0 3.0 7.0 8.0 1.0	1.0 10.0 1.0 1.0 1.0 1.0	1.0 20.0 18.0 34.0 22.0 1.0 0.5	1.0 7.0 12.0 7.0 1.0 	1.0 10.0 10.0 30.0 5.0 1.0	1.0 20.0 17.0 30.0 11.0 1.0 0.5	1.0 20.0 13.0 13.0 1.0 2.5	1.0 10.0 1.0 6.0 13.0 1.0 	 2.9	 5.8	 4.5	1.0 21.0 16.0 1.0 0.5	 7.0	 5.6	 3.5	1.0 10.0 1.0 4.0 3.0 1.0 0.5	1.0 10.0 1.0 1.0 1.0 1.0	1.0 20.0 4.0 2.0 5.0 1.0 0.5	1.0 10.0 6.0 8.0 19.0 1.0 0.5

Note: Values recorded as 0.0 are below the limit of detection.

Source: Wisconsin Department of Natural Resources, U.S. Geological Survey, and SEWRPC.

Wauwatosa--copper and zinc--on the Menomonee River main stem, and at Friestadt Road--arsenic--and the Chicago & North Western railroad crossing--zinc--on the Little Menomonee River. PAH SEL guidelines were exceeded at Good Hope Road on the Little Menomonee River during 1992. This latter exceedance may be related to a chemical spill within the Little Menomonee River watershed on Good Hope Road immediately prior to the date the sample was obtained and is unlikely to reflect the normal condition of the river sediments at this location.

Since the completion of the initial regional water quality management plan, 62 spills of toxic substances into streams within the Menomonee River watershed have been documented by the Wisconsin Department of Natural Resources. Of these spills, 27 have occurred in the main stem of the Menomonee River, 20 in the City of Milwaukee, three in the Village of Menomonee Falls, two in the City of Wauwatosa, and one each in the Villages of Germantown and Butler. The remaining spills have occurred in tributaries of the Menomonee River, including Honey Creek, Underwood Creek, the Little Menomonee River, Butler Ditch, Lilly Creek, and South Menomonee and Burnham Canals. The majority of the substances that were spilled into surface waters were oil or related petroleum products.

<u>Water Quality Assessments</u>: Based upon the available data, the water quality and biological characteristics of the Menomonee River and its major tributaries were assessed, with the results set forth in Table VII-12. Fish populations and diversity ranged from poor to good in stream reaches where data were available.

Fish kills were documented in five streams in the Menomonee River watershed--Honey Creek, Underwood Creek, the Nor-X-Way Channel, Burnham Canal, and the Menomonee River main stem in the Cities of Wauwatosa and Milwaukee. Where known, the specific cause of each documented fish kill is shown in Table VII-12.

Standards were not fully met for fecal coliform levels in the majority of the Menomonee River watershed. Dissolved oxygen concentrations exceeded the standards in the Menomonee River main stem from CTH Q to Lilly Road and downstream of 25th Street, as well as in South Menomonee and Burnham Canals. In addition, un-ionized ammonia nitrogen levels exceeded the standards in the Menomonee River from STH 145 to Lilly Road, from Silver Spring Drive to Capitol Drive, and downstream of 70th Street. Metals concentrations exceeded chronic toxicity standards set forth in Chapter II at all sampling stations.

In general, the biotic index ratings, which are biological indicators of water quality within a stream system, were fair to very poor, except for the Menomonee River West Branch which had a good rating and Little Menomonee Creek which had a good to fair rating. Moderate levels of streambed sedimentation were noted throughout much of the watershed.

Table VII-12 sets forth the water quality index classifications 12 used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As

¹²For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

Table VII-12

CHARACTERISTICS OF STREAMS IN THE MENOMONEE RIVER WATERSHED

Γ						Wat	er Quali	ty Problems ^c				
	Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	инз	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation (substrate)	Physical Modifications to Channel ^e
	North Branch of Menomonee River upstream STH 145	10.0		No	No	No		Yes			Moderate	
	Menomonee River West Branch	4.2	Good	No	No	No		Yes	Yes	Good	Low (gravel, rubble)	Low
	Menomonee River Downstream STH 145 to CTH Q	3.8		No	No	Yes		Yes	Yes	Fair	Moderate	
	Menomonee River Downstream CTH Q to Lilly Road	3.8		No	Yes	Yes		Yes	Yes	Fair	Moderate	
	Menomonee River Downstream Lilly Road to Good Hope Road	7.1		No	No	No		Yes	Yes	Fair	Moderate (sand, gravel, rubble)	
2	Menomonee River Downstream Good Hope Road to Silver Spring	2.7		No	No	No		Yes	Yes	Fair	Moderate	
	Menomonee River Downstream Silver Spring to Hampton Avenue	2.1		No	No	Yes		Yes	Yes	Poor	Moderate	
	Menomonee River Downstream Hampton Avenue to Capitol Drive	1.3		Yes ^f	No	Yes		Yes	Yes	Poor		
1	Menomonee River Downstream Capitol Drive to North Avenue	2.7		No	No	No		Yes	Yes	Poor	Moderate	
	Menomonee River Downstream North Avenue to 70th Street	2.4	Poor	No	No	No		Yes	Yes	Poor	Moderate (rubble, sand, silt)	
	Menomonee River Downstream 70th Street to 25th Street	4.4	Poor	Yesg	No	Yes		Yes	Yes	Very poor	Moderate (rubble, sand, silt)	Major
	Menomonee River Downstream 25th Street to 2nd Street	1.7	Good	Yesh	Yes	Yes		Yes	Yes			
	South Menomonee and Burnham Canals	1.5	Good	Yes	Yes			Yes	Yes		Moderate	Major
	Honey Creek	8.4	Poor	Yes ^f	No	No		Yes	Yes	Fair-very poor	Moderate (concrete, rubble, gravel)	Major

Table VII-12 (continued)

					Wat	er Quali	ty Problems ^c	:			
Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation (substrate)	Physical Modifications to Channel ^e
Underwood Creek	8.9	Poor	Yes ⁱ	No	No		Yes	Yes	Fair-poor	Moderate (concrete)	Major
Little Menomonee Creek	2.3	Fair	No	No	No		Yes		Good-fair	Moderate (silt, clay, sand, gravel, rubble)	Low
Little Menomonee River	9.7	Fair	No	No	No		Yes	Yes	Fair-Poor	Moderate	
Butler Ditch	2.4	Poor	No	No	No		Yes		Poor	Moderate (sand, gravel, rubble)	
Dousman Ditch	2.5	Poor	No	No	No		Yes	Yes			Major
Lilly Creek	3.4	Good	No	No	No		Yes	Yes	Poor	Moderate	Major
Nor-X-Way Channel	4.5	Good	Yesf	No	No		Yes		Fair-poor	Low (clay, silt, sand, gravel, rubble)	Moderate
Willow Creek	3.2	Fair	No	No	No		Yes		Fair	Moderate (sand)	Moderate

a Based upon stream appraisal documentation set forth in the 1992 Water Resource Appraisals for the Menomonee River watershed and professional judgement of area fish managers.

Source: SEWRPC.

b Unless otherwise noted, fish kills are assumed to be the result of natural fluctuations in water conditions.

^C The most recent water quality data available as described in Figures VII-1 through VII-5 were used to evaluate water quality in the Menomonee River system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Menomonee River watershed stream reaches based upon simulated year 2000 land use conditions and current levels of pollutant control.

d Biotic index ratings are based upon the Hilsenhoff Biotic Index (HBI) discussed in DNR Technical Bulletin No. 132, "Using a Biotic Index to Evaluate Water Quality in Streams," Hilsenhoff 1982.

e Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures, or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

f Undetermined cause.

g Due to a spill of spent pickle liquor.

h Due to suspected industrial discharge.

i Due to a spill of #2 heating oil from a petroleum pipeline.

indicated in Table VII-13, recent comparative data were available for five stations along the main stem of the Menomonee River. These stations and an additional station where water quality data was collected by the Department of Natural Resources are shown on Map VII-5. The data obtained for MMSD sampling station Mn-7a, the Menomonee River at Hampton Avenue, were used for comparative purposes in conjunction with earlier data from the Menomonee River at Capitol Drive. The data indicate that at stations Mn-6, Mn-7a, and Mn-10, water quality conditions have remained "fair" in 1964, 1974-75, and in 1990-91. In the upper reaches of the Menomonee River at station Mn-3, water quality conditions declined from "good" in 1964 to "fair" in 1974-75, and have remained "fair" based on 1990-91 data.

A summary of potential pollution sources in the Menomonee River watershed by stream reach is shown in tabular summary in Table VII-14. Review of the data indicate that the majority of the conversion of lands from rural to urban uses has occurred within Milwaukee County, with much of the conversion having occurred prior to 1976. More recent conversion of lands to urban uses has occurred in the Villages of Menomonee Falls and Germantown. It should be noted that the majority of the documented spills of toxic substances and the majority of the permitted industrial discharges occur in the Menomonee River main stem, from 70th Street downstream to 25th Street, and in the South Menomonee and Burnham Canals, Honey Creek, Underwood Creek, and the Little Menomonee River. It should also be noted that three abandoned landfills are indicated to be potentially impacting the Little Menomonee River, two of these were designated as high priority sites for the U.S. Environmental Protection Agency Superfund program.

Compliance with Water Use Objectives

As indicated in Chapter II, the major stream reaches in the Menomonee River watershed as of 1993, are generally recommended for warmwater sport fish and limited recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II. The West Branch of the Menomonee River, the Menomonee River main stem from USH 41 to the Falk Corporation Dam, Honey Creek downstream of Wisconsin Avenue, Underwood Creek upstream of Watertown Plank Road, Little Menomonee Creek, Lilly Creek, Willow Creek, and the Nor-X-Way Channel from Donges Bay Road to Warren Street have limitations for sport fish habitat and are therefore recommended for warmwater forage fish and limited recreational uses. Butler Ditch, Dousman Ditch, and the remaining portions of the Nor-X-Way Channel are recommended for limited forage fish and limited recreational uses. Stream reaches recommended for limited aquatic life and limited recreational uses include portions of Honey Creek and portions of Underwood Creek. The Menomonee River portion of the Milwaukee Harbor estuary is recommended for warmwater sport fish and limited recreational use.

Based upon the available data for sampling stations in the watershed, the main stem of the Menomonee River and its major tributaries did not fully meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. As part of the Menomonee River priority watershed planning program the Wisconsin Department of Natural Resources staff conducted field inspections and limited sampling in order to assess the water quality and biological conditions on all of the streams in the Menomonee River watershed. Those investigations indicated that the majority of the streams in the watershed did not fully meet the recommended water use objectives. Based upon a review of the data summarized in Figures VII-1 through

Table VII-13

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS
OF THE MENOMONEE RIVER WATERSHED 1964, 1974-1975, AND 1990-91

Main Stem Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Mn-1	Fair	Fair	
Mn-2	Poor	Fair	
Mn-3	Good	Fair	Fair
Mn-4	Poor	Fair	
Mn-5	Poor	Poor	
Mn-6	Fair	Fair	Fair
Mn-7a	Fair	Fair	Fair ^b
Mn-7b	Fair	Fair	
Mn-10	Fair	Fair	Fair
Mn-13			Fair
Tributary Stations			
Mn-7	Fair	Fair	
Mn-8	Fair	Fair	
Mn-9	Fair	Fair	
Watershed Average	Fair	Fair	Fair

^a See Map VII-5 for sampling station locations.

Source: SEWRPC.

^b Recent data collected from the Menomonee River at Hampton Avenue were used for comparison purposes with previous data from the Menomonee River at Capitol Drive, located approximately 1.1 miles downstream from the Hampton Avenue station.

Table VII-14

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE MENOMONEE RIVER WATERSHED: 1990

	Extent of Conve	rsion of Lands to Urban ^b					Remaining	g Potential S	urface Water Pollution Sources		
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^C
North Branch Menomonee River Upstream STH 145	Insignificant	Insignificant			x						1,3
Menomonee River West Branch	Insignificant	Insignificant			x			1			1,3
Menomonee River Downstream STH 145 to CTH Q	Major ^d	Major ^e		х	x			4	Leaking underground storage tank site permitted to discharge remediation wastewater to Menomonee River	Village of Germantown public sewage treatment plant abandoned in 1986	1,2,3
Menomonee River Downstream CTH Q to Lilly Road	Moderate	Moderate	1982-gasoline 1991-fuel oil	x				6		Village of Menomonee Falls- Pilgrim Road public STP abandoned in 1981	1,2
Menomonee River Downstream Lilly Road to Good Hope Road	Significant ^d	Major ^e	1989-white liquid 1987-oil	х	-			3	Lauer I sanitary landfill8 (abandoned)	Village of Menomonee Falls- Lilly Road public STP abandoned in 1981	1,2
Menomonee River Downstream Good Hope Road to Silver Spring	Insignificant	Major ^e		x				3			1,2
Menomonee River Downstream Silver Spring to Hampton Avenue	Moderate	Insignificant ^f	1983-fuel oil 1983-oil 1987-petroleum	х				3			1,2
Menomonee River Downstream Hampton Avenue to Capitol Drive	Significant ^f	Insignificantf	1987-gasoline	х				6			1,2
Menomonee River Downstream Capitol Drive to North Avenue	Insignificant ^f	Insignificant ^f	1984-unknown 1986-unknown 1992-diesel fuel	х				7			1,2

Table VII-14 (continued)

	Extent of Conve	rsion of Lands to Urban ^b					Remaining	g Potential Su	urface Water Pollution Sources		
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^C
Menomonee River Downstream North Avenue to 70th Street	Insignificant ^f	Insignificant ^f	1990-vegetable oil	x				1		- -	2
Menomonee River Downstream 70th Street to 25th Street	Insignificant ^f	In s ignificant ^f	1979-waste oil 1980-oil 1980-oil 1981-oil 1982-sewage 1984-oil 1985-oil 1986-fuel oil 1988-light sheen only 1991-cutting oil 1992-gasoline	x				20	Two leaking underground storage tank sites permitted to discharge remediation wastewater to Menomonee River		1,2
Menomonee River Downstream 25th Street to Milwaukee River	Insignificantf	Insignificant ^f	1985-cil 1986-refrigera- tion lube cil 1991-ethylene glycol 1992-dye	x							1,2
South Menomonee and Burnham Canals	Insignificant ^f	Insignificant ^f	1980-sewage water 1982-diesel fuel 1985-oil 1986-lube oil 1986-waste soil 1987-blue powder 1989-petroleum product (sheen)	х				11			1,2
Honey Creek	Insignificant ^f	Insignificant ^f	1984-gasoline 1984-unknown 1986-unknown 1986-gasoline 1986-oil or gas 1987-sludge 1988-oily scum 1989-petroleum product (sheen) 1990-unknown red substance	x				9	Leaking underground storage tank site permitted to discharge remediation wastewater to Honey Greek		1,2

Table VII-14 (continued)

	Extent of Conve	ersion of Lands L to Urban ^b					Remaining	g Potential S	urface Water Pollution Sources		
Stream Reach ²	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstement Efforts ^C
Underwood Creek	Significant ^f	Significant ^f	1986-unknown 1987-oil sheen 1987-concrete wash water 1988-oil 1992-gasoline 1992-oil	x			••	16	Leaking underground storage tank site permitted to discharge remediation wastewater to Underwood Creek City of Brookfield landfill (abandoned)		1,2
Little Menomonee Creek	Insignificant	Insignificant			x						1,3
Little Menomonee River	significant	Significant	1986-oil 1987-gasoline 1987-oily substance 1988-pstroleum product 1989-unknown 1989-oil or gas 1991-oil sheen	x	x			17	Omega Hills North landfill8 (abandoned) Geipel landfill (abandoned) Moss American landfill8 (abandoned)		1,2,3
Butler Ditch	Moderate ^f	Insignificantf	1978-cil 1978-fuel cil 1979-cil	x				2			1,2
Dousman Ditch	Significantf	Insignificantf		x	••			3			1,2
Lilly Creek	Significant	Major ^e	1988-oil	x				2	•-		1,2
Nor-X-Way Channel	Moderate	Moderate		X	x			6	Leaking underground storage tank site permitted to discharge remediation wastewater to Nor-X-Way channel		1,2,3
Willow Creek	Significant	Insignificant		x	x			1			1,2,3

Footnotes follow.

Table VII-14 (continued)

a Includes the tributary drainage area of each stream reach.

b Extent of urban land conversions were determined as a percentage of the watershed as follows:

major > 20% 10 - 20% moderate significant 5 - 10% insignificant 0 - 5%

C Letter codes refer to the following ongoing pollution abatement efforts: 1. Construction Erosion Control Ordinances in place

- 2. Urban Nonpoint Source Controls Implemented
- 3. Rural Monpoint Source Controls Implemented
- d The amount of post-1976 urban development has increased significantly in comparison to pre-1976 urban development.
- * The amount of post-1990 urban development is anticipated to increase significantly in comparison to pre-1990 urban development
- f Considerable urban development existing pre-1976.
- 8 Superfund site

Source: Wisconsin Department of Natural Resources and SEWRPC.

291

VII-5, and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is expected that violations of the fecal coliform standards occur in the main stem of the Menomonee River and in most of its tributaries. Dissolved oxygen and ammonia nitrogen levels do not meet the standards in the reaches of the Menomonee River main stem downstream of 25th Street. Thus, the recommended water use objectives are only partially being achieved in the majority of the major streams in the watershed.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon local nonpoint source pollution abatement planning and land use decisions, the only significant water quality management issue which remains to be addressed is the final level of control which is needed and which is achievable for urban nonpoint source pollution abatement. It is recommended that this issue be examined further following a period of implementation of the ongoing nonpoint source pollution priority watershed program, taking into account subsequent monitoring data and levels of funding available and anticipated.

A potential future amendment to the regional plan for the Menomonee River watershed may potentially be developed under the facility plan update initiated by the Milwaukee Metropolitan Sewerage District in 1995. That plan update is anticipated to constitute an amendment to the regional plan once it is adopted by all of the agencies involved.

		_
		I
	-	
		r
		l
	•	,
		ı
		ı
		-
		ı
	9	l
		j
	_	
		l
		j
	-	
		l
		,
		ı
		l
		,
		ì
		l
		l
	•	l
)
	_	
		ĺ
	•)
		ı
	_	i
	•	l
	•	ĺ
		l
		ļ
		ĺ
	T.	
	1	
	•	
	_	ļ
		,
	_	
	_	ı
	_	

Chapter VIII

MILWAUKEE RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975 -- the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Milwaukee River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Milwaukee River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.

The Milwaukee River watershed is located in the northeastern and north-central portions of the Region. The portion of the watershed contained within the Region-about 433 square miles--is only a part of a larger--approximately 698-square-mile--watershed. The headwater portion of the watershed lies adjacent to the Region in Dodge, Fond du Lac, and Sheboygan Counties. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin and its principal subwatersheds, together with the locations of the main channels of the Milwaukee River and its principal tributaries, are shown on Map VIII-1.

Within the Southeastern Wisconsin Region, the Milwaukee River watershed contains twelve major lakes having a surface area of 50 acres or more. These lakes are distributed within four subwatersheds: the Cedar Creek, the East/West Branch, and the South Branch subwatersheds. The major lakes in the Cedar Creek subwatershed are Big Cedar Lake, Little Cedar Lake, and Mud Lake. The major lakes in the East/West Branch subwatershed are Barton Pond, Lucas Lake, Silver Lake and Smith Lake. The major lakes in the North Branch subwatershed are Green Lake, Spring Lake, Lake Twelve, and Wallace Lake. The major lake in the South Branch subwatershed is Lac du Cours. Physical characteristics of the major lakes in the Milwaukee River watershed are set forth in Table VIII-1. The data indicate that the major lakes in the Southeastern Wisconsin portion of the watershed have a combined surface water area of about 2,070 acres, or less than 1 percent of the total area of the watershed within Southeastern Wisconsin.

Map VIII-1
SUBWATERSHEDS IN THE MILWAUKEE RIVER WATERSHED

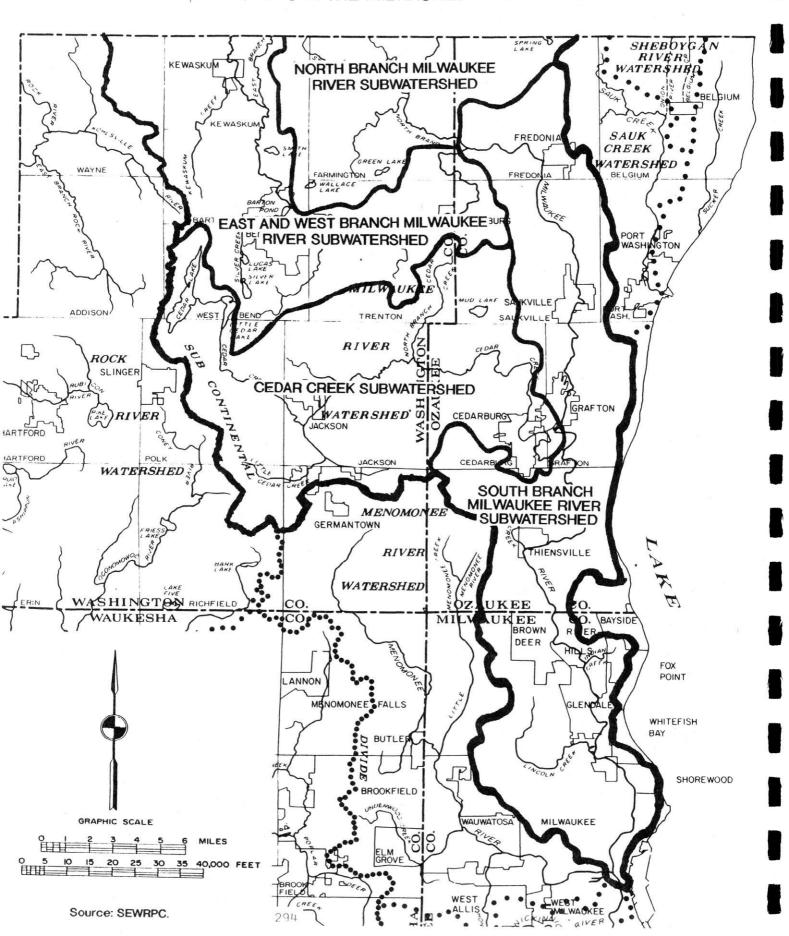


Table VIII-1

PHYSICAL CHARACTERISTICS OF MAJOR LAKES IN THE MILWAUKEE RIVER WATERSHED

SUBWATERSHED Lake Name	Surface Area (acres)	Direct Tributary Drainage Area (acres)	Shoreline (miles)	Maximum Depth (feet)	Mean Depth (feet)	Volume (acre- feet)
CEDAR CREEK Big Cedar Lake Little Cedar Lake Mud Lake (Ozaukee County)	932	5,495	3.8	105	34	31,983
	246	1,718	4.4	56	13	3,153
	245	4,233	3.9	4	2.5	645
MILWAUKEE RIVER-EAST/WEST Barton Pond Lucas Lake Silver Lake (Washington County) Smith Lake	67	687	3.0	5	3	189
	78	484	2.4	15	6	461
	118	602	2.7	47	20	2,306
	86	545	1.8	5	3	252
MILWAUKEE RIVER-NORTH Green Lake (Washington County) Spring Lake (Ozaukee County) Lake Twelve Wallace Lake	71	505	3.8	37	17	1,195
	66ª	162	1.6	22	7	462
	53	348	1.3	20	7	341
	52	282	1.5	35	11	558
MILWAUKEE RIVER-SOUTH Lac du Cours TOTAL	56 2,070	 15,061	1.2			 41,545

^aIncludes 9 acres in Sheboygan County.

Source: SEWRPC

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically describes the changes in land use which have occurred within the Milwaukee River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table VIII-2 summarizes the existing land uses in the Southeastern Wisconsin portion of the Milwaukee River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed contains a number of urbanized areas, 75 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 48 percent of the total area of the watershed in agricultural and related rural uses, about 7 percent in woodlands, about 14 percent in surface water and wetlands, and about 6 percent in other open lands. The remaining 25 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map VIII-2.

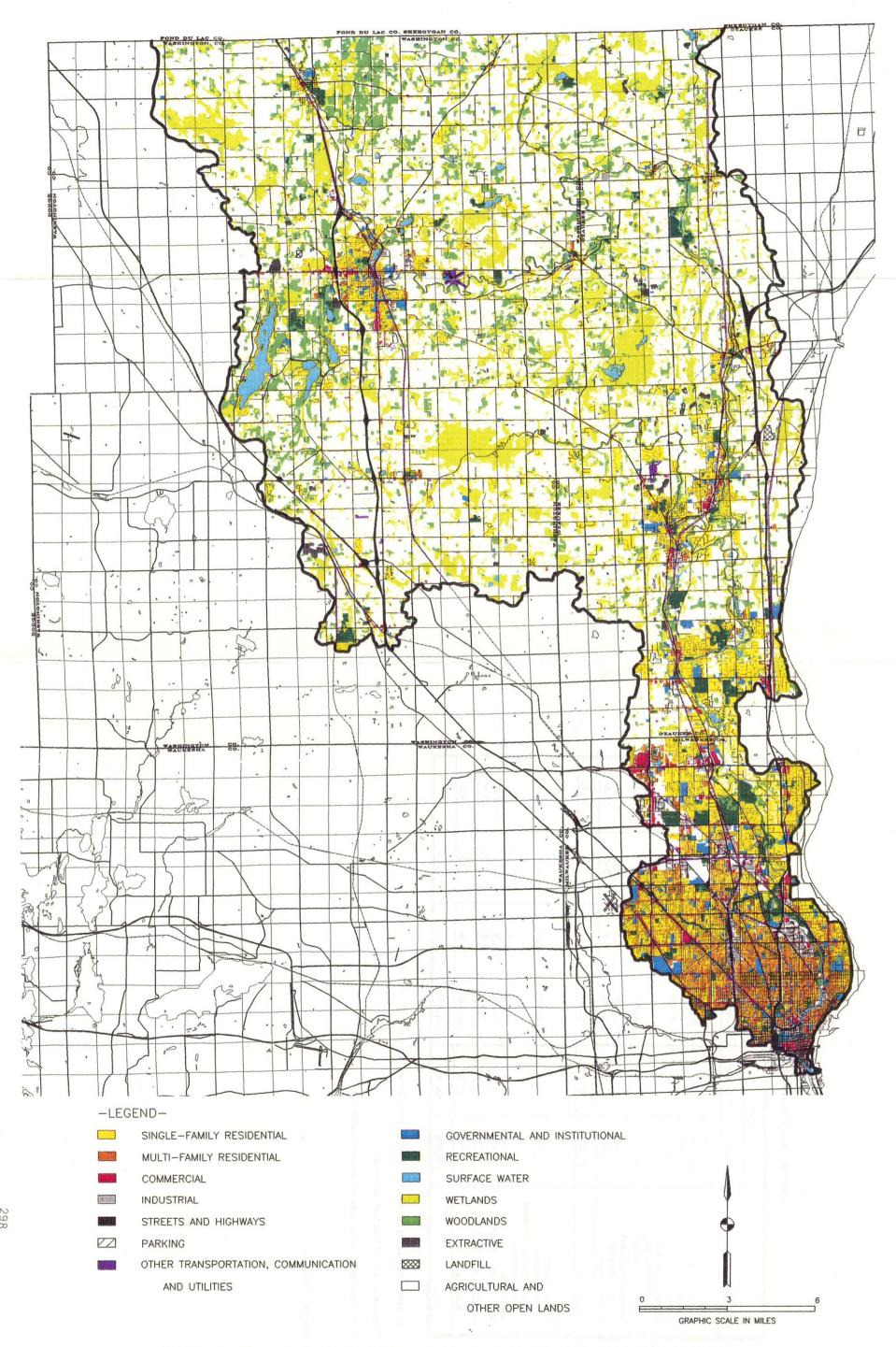
Within the Milwaukee River watershed, urban-related land uses are located primarily in Milwaukee County which is nearly fully developed, with limited concentrations of urban development located in Ozaukee and Washington Counties. In the portion of Washington County that lies within the Milwaukee River watershed, the Villages of Jackson and Kewaskum, the areas around both Big and Little Cedar Lakes and Silver Lake, and the City of West Bend all contain concentrations of urban-related land uses. In addition, a major commercial office center and a major industrial center are located in the City of West Bend. Within Ozaukee County, urban development has been rapidly taking place in the southern portion of the county, in and around the City of Cedarburg, the Village of Grafton, and north of Milwaukee County in the City of Mequon and the Village of Thiensville.

The portion of the watershed that lies within Milwaukee County contains, almost exclusively, urban-related land uses. While urban development is still taking place in limited amounts to the west of and in the Village of Brown Deer, high concentrations of already developed urban land are located in the Villages of Fox Point, Whitefish Bay, and Shorewood, and the Cities of Glendale, Wauwatosa, and Milwaukee. In addition, three major industrial centers, Milwaukee North, Milwaukee Glendale, and Milwaukee Near North; and four major commercial retail centers, Northridge, Capitol Court, Bay Shore, and the Milwaukee Central Business District, are located within or partially within the watershed.

Table VIII-2

LAND USE IN THE MILWAUKEE RIVER WATERSHED: 1975 and 1990^a

	19	75	19	990	Change	1975 - 1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban		ĺ	1			
Residential	29,322	10.6	34,557	12.5	5,235	17.9
Commercial	1,653	0.6	2,028	0.7	375	22.7
Industrial	2,014	0.7	2,435	0.9	439	21.8
Transportation, Communication,						
and Utilities	21,016	7.6	23,341	8.4	2,325	11.1
Governmental and	,				_,	
Institutional	3,062	1.1	3,281	1.2	219	7.2
Recreational	4,136	1.5	4,684	1.7	548	13.3
Subtotal	61,203	22.1	70,326	25.4	9,123	14.92
Rural						
Agricultural and Related Lakes, Rivers, Streams and Wetlands	147,177	53.2	132,990	48.0	-14,187	- 9.6
Woodlands	39,085	14.1	39,648	14.3	563	1.4
Open Lands, c Landfills,	17,571	6.3	18,019	6.5	448	2.5
Dumps, and Extractive	11,940	4.3	15,993	5.8	4,053	33.9
Subtotal	215,773	77.9	206,650	74.6	- 9,123	- 4.2
Total	276,976	100.0	276,976	100.0	0	


^a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.

^b Includes all off-street parking.

c Includes both rural and urban open lands.

MAP VIII-2 LAND USES IN THE MILWAUKEE RIVER WATERSHED: 1990

The Milwaukee River watershed is about 433 square miles in areal extent, or 16 percent of the total Region. In 1990 about 110 square miles, or about 25 percent of the watershed, was in urban land uses.

As shown in Table VIII-2, from 1975 to 1990, urban land uses in the watershed increased from about 61,200 acres, or 96 square miles, to about 70,300 acres, or about 110 square miles, or by about 15 percent. As shown in Table VIII-2, residential land represents the largest urban land use in the watershed. Residential use has significantly increased within the watershed, from about 29,300 acres, or about 46 square miles in 1975, to about 34,600 acres, or about 54 square miles in 1990, an 18 percent increase. Commercial and industrial land uses increased from about 3,700 acres, or six square miles, to 4,500 acres, or seven square miles, an increase of 22 percent.

The 110 square miles of urban land uses in the watershed as of 1990 approximated the staged 1990 planned level of about 111 square miles envisioned in the adopted year 2000 land use plan. The current status of development in the Milwaukee River watershed and in adjacent portions of Milwaukee, Washington, and Ozaukee Counties was considered in developing the new year 2010 land use plan element described in Chapter III for the Region.

Table VIII-3 summarizes the year 2010 planned land use conditions recommended in the adopted year 2010 land use plan in the Milwaukee River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban land uses are expected to increase in Washington County in the Village of Jackson, in the Village of Kewaskum along USH 45, and in and around the City of West Bend. In Ozaukee County, increases in urban-related land uses are anticipated in and around the Cities of Cedarburg and Mequon, and in the Villages of Saukville, Grafton, and Thiensville. A major commercial office center has additionally been proposed for the City of Mequon in the year 2010 land use plan.

In the portion of the watershed contained within Milwaukee County, urban-related land uses are expected to increase in the northwestern corner of the county, with urban re-development occurring throughout the remainder of the county. Under year 2010 planned land use conditions, the entire portion of the watershed contained within Milwaukee County is expected to be developed as urban.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Milwaukee River watershed, as indicated in Table VIII-3, is projected to increase from the 1990 total of about 110 square miles, or about 25 percent of the total area of the watershed, to about 118 square miles, or about 27 percent of the total area of the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 136 square miles, or about 31 percent of the total watershed by year 2010. It is important to note that the 69 to 73 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space uses through joint State-local zoning or public acquisition. In addition, certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a large portion of the remaining agricultural and other open lands of the watershed from rural to urban uses.

Table VIII-3

EXISTING AND PLANNED LAND USE IN THE MILWAUKEE RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

			Yea		mediate Grow ed Land Use	th -		Year 2010 Hi Decentraliz		
	Existi	ng 1990	20	10	Change 1	990-2010	20	010	Change 1990-2010	
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
Urban Residential Commercial Industrial Transportation, Communication,	34,557 2,028 2,435	12.5 0.7 0.9	37,502 2,005 3,214	13.5 0.7 1.2	2,945 - 23 779	8.5 - 1.1 32.0	44,887 2,133 4,045	16.2 0.8 1.4	10,330 105 1,610	29.9 5.2 66.1
and Utilities ⁶ Governmental and Institutional Recreational	23,341 3,281 4,684	8.4 1.2 1.7	24,463 3,357 4,899	8.8 1.2 1.8	1,122 76 215	4.8 2.3 4.6	27,144 3,573 5,150	9.8 1.3 1.9	3,803 292 466	16.3 8.9 10.0
Subtotal	70,326	25.4	75,440	27.2	5,114	7.3	86,932	31.4	16,606	23.6
Rural Agricultural and Related Lakes, Rivers, Streams, and Wetlands Woodlands Open Lands, Landfills, Dumps,	132,990 39,648 18,019	48.0 14.3 6.5	135,238 38,893 17,374	48.8 14.1 6.3	2,248 - 755 - 645 -5,962	1.7 - 1.9 - 3.6	125,304 38,893 17,236 8,611	45.2 14.1 6.2 3.1	-7,686 - 755 - 783	- 5.8 - 1.9 - 4.4 - 46.2
and Extractive Subtotal	206,650	74.6	201,536	72.8	-5,114	- 2.5	90,044	68.6	-16,606	- 8.0
Total	276,976	100.0	276,976	100.0	0		276,976	100.0	0	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.

^b Includes all off-street parking.

^c Includes both rural and urban open lands.

Rural land uses may be expected to decline collectively from about 323 square miles in 1990 to about 315 square miles in the year 2010 under the intermediate growth-centralized land use plan and to about 297 square miles under the high growth-decentralized land use plan, decreases of about 2 to 8 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

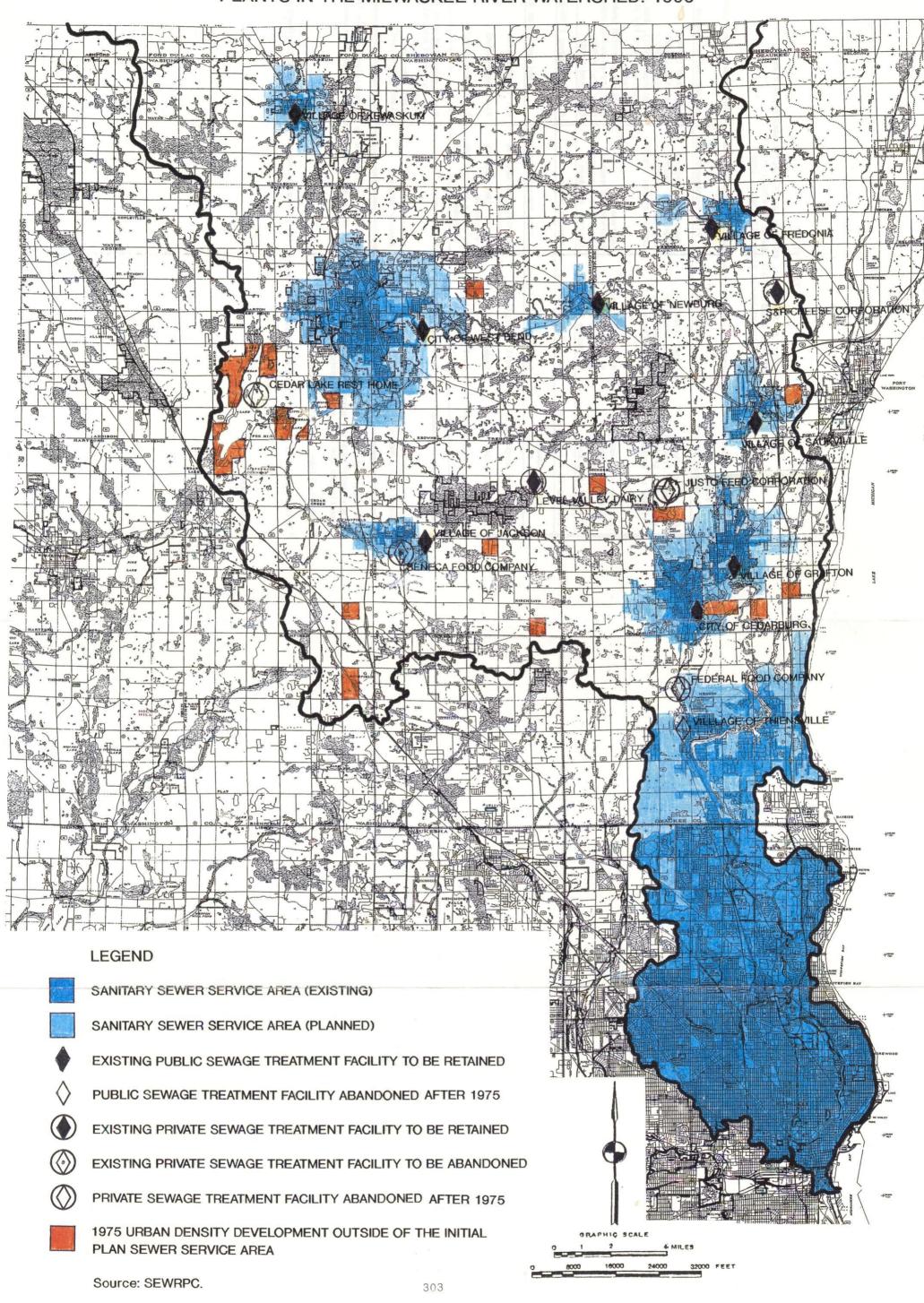
This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Milwaukee River watershed--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary sewer service areas located in the watershed.

With regard to the point source plan element related to the Milwaukee River, the most significant recommendations in the initial plan and the most significant implementation actions are related to the Milwaukee Metropolitan Sewerage District's water pollution abatement program. This program includes: rehabilitation of the sanitary sewer system; construction of relief sewers; improvement and expansion of the Jones Island and South Shore sewage treatment plants; provision of large subterranean conveyance and storage-deep tunnel facilities to contain separate and combined sewer peak flows in excess of the capacity of the sewerage system; development of solids management program; and provision of trunk sewers to serve the various communities comprising the District area. As of 1993, the District pollution abatement program was nearing completion, with the deep tunnel system expected to be on line during 1994.

It should be noted that, during 1995, the Milwaukee Metropolitan Sewerage District initiated work on an update of its Section 201 sewerage facility plan¹ for the entire Milwaukee metropolitan service area. The update will have a plan year 2010, the same as the update of the regional plan. It is recommended that that facility plan re-examine certain system level decisions that were made in the past, including trunk sewer needs and the retention of the one remaining small sewage treatment plant in the Milwaukee metropolitan area--the City of South Milwaukee plant. The resultant sewerage facilities plan update is intended then, upon its adoption by all of the agencies concerned, to constitute an amendment to the regional water quality management plan update herein presented. Such an amendment could impact on the facilities within the Milwaukee River watershed.

¹Milwaukee Metropolitan Sewerage District, MMSD Wastewater System Plan, June 1990.

Public and Private Wastewater Treatment Systems and Sewer Service Areas Existing Conditions and Status of Plan Implementation: In 1975, there were nine public sewage treatment facilities located in the portion of the Milwaukee River watershed within the Region, as shown on Map VIII-3. The Village of Fredonia, Village of Grafton, Village of Kewaskum, Village of Newburg, Village of Saukville, and the City of West Bend sewage treatment plants discharged to the main stem of the Milwaukee River. The City of Cedarburg and Village of Jackson sewage treatment plants discharged to Cedar Creek, and the Village of Thiensville sewage treatment plant discharged to the Milwaukee River. plants, the plant operated by the Village of Thiensville was abandoned, and a new plant was constructed for the Village of Jackson after 1975, as recommended in the initial plan. The status of implementation in regard to the abandonment, upgrading and expansion, and construction of the public and private sewage treatment plants in the Milwaukee River watershed, as recommended in the initial regional water quality management plan, is summarized in Table VIII-4.


As can be seen by review of Table VIII-4, full implementation of the initial plan would provide for the upgrading and expansion, as needed, of six plants: the City of West Bend and City of Cedarburg plants, and the Village of Fredonia, Village of Grafton, Village of Newburg, and Village of Saukville sewage treatment plants. Implementation of these recommendations has been largely completed. The initial plan also included recommendations for the construction of a new plant for the Village of Jackson, and the upgrading of the Village of Kewaskum plant. The Village of Jackson plant has been constructed but currently requires further upgrading. Facility planning is currently being carried out for the upgrading of the Village of Jackson plant, and for the upgrading of the Village of Kewaskum and Village of Newburg plants.

The plants in the watershed have not fully provided facilities to specifically reduce the phosphorus concentrations in plant effluent to the levels identified in the initial plan as being needed to fully meet the water use objectives. steps needed to achieve the recommended level of phosphorus control have been partially implemented by the completion of a study by the Wisconsin Department of Natural Resources to refine the procedure for establishing site specific phosphorus limitations on all public sewage treatment plants, and in 1993, by the adoption of rules to allow for placement of such limitations. specific sewage treatment plant permits are issued, the use of the identified procedure should result in findings requiring reduced phosphorus loadings. To date, all of the public plants in the watershed except for the Village of Newburg and Village of Fredonia plants have installed facilities to provide a conventional level of phosphorus removal. Selected characteristics of the public sewage treatment plants currently existing in the watershed are given in Table VIII-5.

In addition to the publicly-owned sewage treatment facilities, six private sewage treatment plants were in existence in 1975 in the portion of the Milwaukee River watershed contained within the Region. These plants served the following land uses: the Cedar Lake Home Campus, Federal Foods Company, Justo Feed Corporation, Level Valley Dairy, Libby, McNeill and Libby-Jackson facility (currently Seneca Food Company) and S & R Cheese Corporation.

As indicated in Table VIII-4, three of these private sewage treatment plants in the watershed were recommended to be abandoned in the initial plan. As of 1990,

SEWER SERVICE AREAS AND SEWAGE TREATMENT PLANTS IN THE MILWAUKEE RIVER WATERSHED: 1990

Table VIII-4

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE MILWAUKEE RIVER WATERSHED: 1990

			· · · · · · · · · · · · · · · · · · ·	
Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status	
City of Cedarburg	Cedar Creek	Upgrade and expand	Completed (1990)	
Village of Fredonia	Milwaukee River	Upgrade and expand	Completed (1982)	
Village of Grafton	Milwaukee River	Upgrade and expand	Completed (1984)	
Village of Jackson	Cedar Creek	Construct new plant	Completed (1981), New upgrade required, facility planning underway	
Village of Kewaskum	Milwaukee River	Upgrade	Facility planning underway	
Village of Newburg	Milwaukee River	Upgrade and expand	Facility planning underway	
Village of Saukville	Milwaukee River	Upgrade and expand	Completed (1981)	
City of West Bend	Milwaukee River	Upgrade and expand	Completed (1980)	
Village of Thiensville	Milwaukee River	Abandon plant	Plant abandoned (1987)	
Private Sewage				
Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status	
Justo Feed Corporation	Soil absorption	Maintain and upgrade as needed	Not in operation	
Level Valley Dairy	Cedar Creek	Maintain and upgrade as needed	Plant maintained	
S&R Cheese Corporation	Soil absorption	Maintain and upgrade as needed	Plant maintained	
Cedar Lake Home Campus	Soil absorption	Abandon plant ^a	Plant abandoned with connection to West Bend sewerage system (1988)	
Federal Food Company	Soil absorption	Abandon plant	Plant abandoned	
Seneca Food Company ⁶	Soil absorption and Cedar Creek	Abandon plant	Plant maintained ^c	

^a The Cedar Lake Home Campus private sewage treatment plant was recommended to be maintained in the initial regional water quality management plan. A 1988 amendment to the plan recommended the plant be abandoned, with connection to the City of West Bend sewerage system.

Source: SEWRPC

^b Formerly Libby, McNeill, & Libby, Inc.-Jackson facility.

^c Private plant is currently used as a supplementary facility to the Village of Jackson sewage treatment plant.

Table VIII-5

SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE TREATMENT PLANTS
IN THE MILWAUKEE RIVER WATERSHED: 1990

Name of Public Sewage Treatment Plant	1990 Estimated Total Area Served (square mile)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Major Sewage Treatment Unit Processes ^a	Name of Receiving Water to Which Effluent is Disposed	WPDES Permit Expiration Date
City of Cedarburg	2.8	10,100	1925, 1935, 1960, 1973, 1979, 1990	Oxidation ditch, flocculation- clarification, phosphorus removal, chlorination/ dechlorination, post aeration	Cedar Creek	6/30/98
Village of Fredonia	0.8	1,800	1939, 1962, 1982	Flow equalization, activated biological filter, activated sludge clarification, chlorination	Milwaukee River	12/31/99
Village of Grafton	2.3	9,300	1934, 1960, 1970, 1984	Clarification, two-stage activated sludge system, clarification phosphorus removal, chlorination/ dechlorination, post aeration	Milwaukee River	6/30/97
Village of Jackson	0.5	2,500	1939, 1981	Clarification, rotating biological contactors, clarification, sand filtration, phosphorus removal, chlorination	Cedar Creek	9/30/89
Village of Kewaskum	0.7	2,500	1955, 1972, 1980	Activated sludge, clarification, phosphorus removal, chlorination/declorination	Milwaukee River	6/30/93
Village of Newburg	0.6	1,000	1966	Activated sludge, clarification, chlorination	Milwaukee River	6/30/87
Village of Saukville	0.7	3,700	1959, 1981	Activated sludge, phosphorus removal, chlorination/ dechlorination	Milwaukee River	12/31/98
City of West Bend	6.1	23,900	1967, 1973, 1980	Biotowers, clarification, activated sludge, clarification, chlorination, post aeration, nitrification, phosphorus removal, sand filters	Milwaukee River	3/31/95

Table VIII-5 (continued)

		Byo	raulic Load	ing ^b (mgd)		BOD5 Loa	ding ^b (poun	ds/day)	Suspended Solids Loading ^b (pounds/day)			
	Existing				Existing				Existing			
Name of Public Sewage Treatment Plant	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity
City of Cedarburg	1.58	2.435	2.75	0	2,068	2,566	4,590	0	1,826	2,185	3,670	0
Village of Fredonia	0.185	0.235	0.60	0	256	301	651	0	282	334		0
Village of Grafton	1.33	1.58	2.20	0	1,475	1,769	2,875	0	1,930	2,464	3,765	0
Village of Jackson	0.47	0.63	0.87	0	1,215	1,660	1,724	0	1,429	2,733	1,700	2
Village of Kewaskum	0.36	0.58	0.50	1 ~	1,294	1,802	2,200	0	848	1,277		0
Village of Newburg	0.07	0.09	0.08	2	125	172	136	1	104	125		0
Village of Saukville	0.56	0.79	1.00	0	786	1,028	1,668	0	701	854	2,085	0
City of West Bend	3.45	4.09	9.00	0	4,818	6,306	13,000	0	6,272	7,828	15,250	0

^{*} In addition, plants typically include headworks and miscellaneous processes such as pumping, flow metering and sampling, screening and grit removal, as well as sludge handling and disposal facilities.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Loadings data were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data.

the Cedar Lake Home Campus and the Federal Foods Company plant had been abandoned and the Seneca Food Company plant is in limited use as a supplementary facility to the Village of Jackson sewage treatment plant. The Justo Feed Corporation plant has ceased operation. The two remaining private plants were recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES) permit program.

The initial regional water quality management plan included a set of specific to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the Milwaukee River watershed. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Wisconsin Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social effects that may be experienced due to sludge disposal. At the present time, such reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were 12 sewer service areas identified in, or partially in, the Milwaukee River watershed: Cedarburg, Fredonia, Grafton, Jackson, Kewaskum, Mequon, Milwaukee Metropolitan Sewerage District, Newburg, Saukville, Thiensville, Waubeka, and West Bend. Currently, all of these areas, with the exception of the Milwaukee Metropolitan Sewerage District, had undergone refinements as recommended. The boundaries of the sewer service areas through 1993 are shown on Map VIII-3. lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer service area in the Milwaukee River watershed, as refined through 1993, totals about 72 square miles, or about 17 percent of the total watershed area within the Region, as shown in Table VIII-6.

<u>Current Plan Recommendations</u>: The current point source plan element recommendations provide for the continued operation, with expansion and upgrading as necessary, of the City of Cedarburg, Village of Fredonia, Village of Grafton, Village of Newburg, Village of Saukville, and City of West Bend sewage treatment plants, as well as the upgrading of the Village of Kewaskum and Village of Jackson plants. Estimated approximate dates for beginning facility planning for

Table VIII-6

PLANNED SANITARY SEWER SERVICE AREAS IN THE MILWAUKEE RIVER WATERSHED: 1993

Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sanitary Sewer Service Area (square mile)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
	Re	fined Sanitary Se	wer Service Areas	
Cedarburg Grafton	14.3	Cedarburg Grafton	June 15, 1987	SEWRPC CAPR No. 91, Sanitary Sewer Service Area for the City of Cedarburg and the Village of Grafton, Ozaukee County, Wisconsin
Fredonia Waubeka	2.2	Fredonia Waubeka	September 13, 1984	SEWRPC CAPR No. 96, Sanitary Sewer Service Area for the Village of Fredonia, Ozaukee County, Wisconsin
Jackson	2.7	Jackson	June 17, 1984	SEWRPC CAPR No. 124, Sanitary Sewer Service Area for the Village of Jackson, Washington County, Wisconsin
Kewaskum	3.8	Kewaskum	March 7, 1988	SEWRPC CAPR No. 161, Sanitary Sewer Service Area for the Village of Kewaskum, Washington County, Wisconsin
Mequon Thiensville	20.9	Mequon Thiensville	January 15, 1992	SEWRPC CAPR No. 188, Sanitary Sewer Service Area for the City of Mequon and the Village of Thiensville, Ozaukee County, Wisconsin
Newburg	2.2	Newburg	March 3, 1993	SEWRPC CAPR No. 205, Sanitary Sewer Service Area for the Village of Newburg, Ozaukee and Washington Counties, Wisconsin
Saukville	4.3	Saukville	December 1, 1983	SEWRPC CAPR No. 90, Sanitary Sewer Service Area for the Village of Saukville, Ozaukee County, Wisconsin
West Bend	21.2	West Bend	December 2, 1982	SEWRPC CAPR No. 35, Sanitary Sewer Service Area for the City of West Bend, Washington County, Wisconsin
Subtotal	71.6			
	Unr	efined Sanitary S	ewer Service Areas	
Milwaukee Metropolitan Sewerage District	57.9			
Subtotal	57.9			
Total	129.5			

NOTE: CAPR - Community Assistance Planning Report

the expansion and upgrading of existing sewage treatment plans are indicated in Table VIII-7. This recommendation regarding plant facility upgrading and expansion, as needed, also applies to the treatment plant solids management element for the eight public sewage treatment plants recommended to be retained.

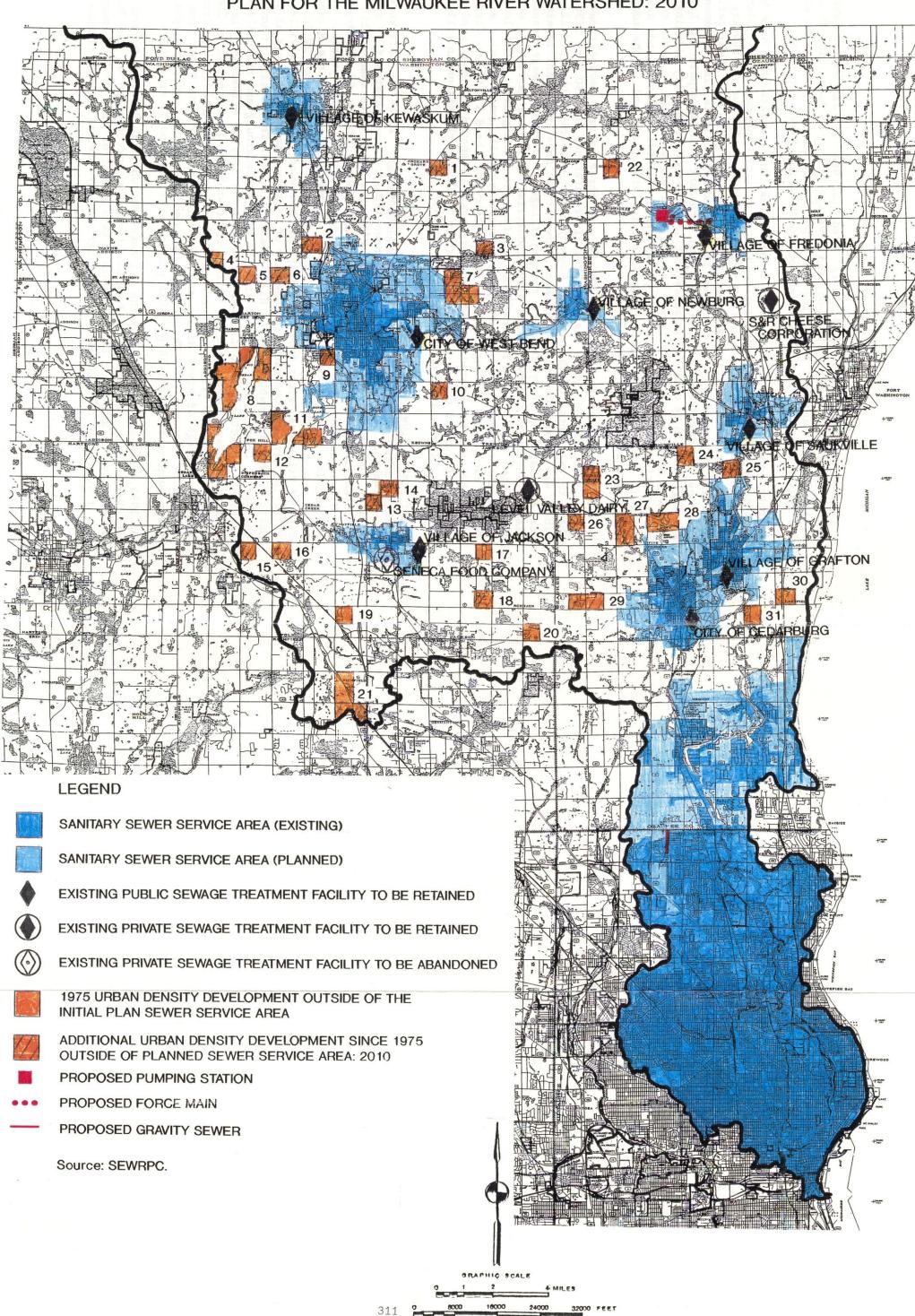
The current point source pollution abatement plan element, including the planned sewer service areas, is summarized on Map VIII-4. Table VIII-7 presents selected design data for the eight public sewage treatment plants which are recommended to be maintained in the Milwaukee River watershed. It is important to note that the Village of Newburg plant recorded monthly average flows during 1990 which equaled or exceeded the average design capacity of the plant, as shown in Table VIII-5.

Table VIII-7 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the eight public sewage treatment plants in the Milwaukee River watershed. Under the intermediate growth-centralized land use plan, one plant is anticipated to have average annual hydraulic loading rates equal to or higher than the average annual design capacity. Under the high growth-decentralized land use plan, seven of the existing plants are anticipated to have loading rates equal to or higher than the average annual design capacity. Thus, there is expected to be significant additional treatment plant expansion and associated costs under the higher growth decentralized future scenario than would be expected under the intermediate growth-centralized land use plan.

Based upon review and analysis of the data in Tables VIII-5 and VIII-7, including estimates of future condition loadings on an annual average and maximum monthly basis, and based upon the age of the current facilities, estimates of timing of needed facility planning were made. It appears that facility planning should be initiated during the next three years by the Villages of Kewaskum, Newburg, and Jackson to consider the need for expansion and upgrading of their sewage treatment plants. It should be noted that the need for facility planning for the Kewaskum plant is dependent upon decisions to be made regarding the continued use of the treatment plant by a major dairy plant. No additional facility planning is expected to be needed until after the year 2000 for the plants operated by the Cities of Cedarburg and West Bend, and Villages of Fredonia, Grafton, Jackson, and Saukville, assuming that development occurs in accordance with the recommended year 2010 land use plan as described for the intermediate growth-centralized land use future condition. Should development occur as envisioned under the high growth-decentralized land use future scenario, facility planning for nearly all of the public sewage treatment plants in the Milwaukee River watershed should be initiated by the year 2000, except for the City of West Bend and City of Cedarburg which currently have adequate capacity until late in the planning period to provide service for development under the high growth-decentralized land use future scenario. Continued review of plant operations and State-required compliance maintenance reports for all plants will provide the basis for determining the timing for initiating facility planning programs to explore plant expansion alternatives.

The current planned sanitary sewer service areas in the Milwaukee River water-shed are shown on Map VIII-4. The existing and planned year 2010 population data for each sewer service area are presented in Chapter XVIII on a regional basis. All or portions of the following sewer service areas are located in the

Table VIII-7 SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS IN THE MILHAUKEE RIVER WATERSHED: 1990 AND 2010


			E	xisting 19	90		Planned Year 2010					
							Intermediate Growth Centralized Land Use Plan			High Growth Decentralized Land Use Plan		
Name of Public Sewage Treatment Plant	Sewer Service Area	Design Capacity Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Area Served (square mile)	Resident Population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
City of Cedarburg	Cedarburg	2.75	1.58	2.8	10,100	7.4	12,400	1.87	>2010	27,800	3.80	2005
Village of Fredonia	Fredonia, Waubeka	0.60	0.18	0.8	1,600	2.3	2,300	0.24	2005	6,500	0.76	2000
Village of Grafton	Grafton	2.20	1.33	2.3	9,300	6.9	11,500	1.60	>2010	24,100	3.18	2000
Village of Jackson	Jackson	0.87	0.47	0.5	2,500	2.7	3,500	0.59	1995	7,800	1.13	1995
Village of Kewaskum	Kewaskum	0.50	0.36	0.7	2,500	3.8	2,900	0.42	1996	7,100	0.94	1996
Village of Newburg	Newburg	0.08	0.07	0.6	1,000	2.2	1,100	0.08	1995	2,000	0.09	1995
Village of Saukville	Saukville	1.00	. 0.56	0.7	3,700	4.3	4,300	0.63	2005	8,600	1.17	2000
City of West Bend	West Bend	9.00	3.45	6.1	23,900	21.2	32,500	4.53	2005	53,800	7.18	2004

^aApproximate year in which facility planning for a plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average design flows compared to average annual and maximum monthly flows and age of facilities based upon date of last major construction.

Source: SEWRPC

Map VIII-4

UPDATED REGIONAL WATER QUALITY MANAGEMENT POINT SOURCE PLAN FOR THE MILWAUKEE RIVER WATERSHED: 2010

Milwaukee River watershed: Cedarburg, Fredonia, Grafton, Jackson, Kewaskum, Mequon, Newburg, Milwaukee Metropolitan Sewerage District, Saukville, Thiensville, Waubeka, and West Bend. Together, the planned service areas total about 130 square miles, or about 30 percent of the Milwaukee River watershed.

As noted above, most of the sewer service areas in the watershed have been refined as part of the ongoing regional water quality management plan updating process. Additional refinements are envisioned to be needed for the Newburg and the Milwaukee Metropolitan Sewerage District sewer service areas. These refinements are recommended to be conducted in 1995 and 1996. It is also recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plants, there were three private sewage treatment plants in operation within the Milwaukee River watershed in 1990. In 1990, of these three plants, the Seneca Food Company plant, formerly Libby, McNeill and Libby, was recommended for abandonment; however, to date, the plant remains in use as a supplementary facility to the Village of Jackson sewage treatment plant. The remaining two plants serve industrial facilities generating wastewater which requires special treatment considerations and generally are located beyond the current limits of the planned sanitary public sewer service areas. For the two plants serving the Level Valley Dairy and the S & R Cheese Corporation, the need for upgrading and level of treatment should be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System permitting process.

Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were 61 known combined sewer outfalls and 127 known separate sewer system flow relief devices located in the portion of the Milwaukee River watershed within the Southeastern Wisconsin Region. Of the combined sewer outfalls, 60 discharged to the Milwaukee River and one discharged to Lincoln Creek. Of the separate sewer system flow relief devices, 49 discharged to the main stem of the Milwaukee River, two from the City of Glendale, seven from the City of Mequon, 20 from the City of Milwaukee, eight from the Village of Shorewood; five from the Village of Whitefish Bay, and one each from the City of West Bend and the Villages of Brown Deer, Fredonia, Newburg, River Hills, Saukville, and Thiensville; four discharged to Cedar Creek, two each from the City of Cedarburg and the Village of Jackson; 54 discharged to Lincoln Creek from the City of Milwaukee; six discharged to Beaver Creek from the Village of Brown Deer; 13 discharged to Indian Creek, 11 from the Village of Fox Point and one each from the City of Glendale and the Village of River Hills; and one discharged to Pigeon Creek from the Village of Thiensville. The devices included 27 sanitary sewerage bypasses, seven pumping stations, 16 portable pumping stations, and 77 crossovers.

By 1993, work was completed by the Milwaukee Metropolitan Sewerage District on its Water Pollution Abatement Program, including construction of the Inline Storage System and major relief sewers. As a result of this project, many of the flow relief devices within the watershed have recently been eliminated.

Those which remain include combined sewer overflows, selected bypasses and crossovers, and portable pumping station sites which physically remain in the sewerage system but are expected to function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. As shown in Table VIII-8, 186 points of sanitary sewer system flow relief--including 67 combined sewer overflows--were reported to exist as of 1993 in the Milwaukee River watershed. These flow relief points were located in 15 sewerage systems. The fact that the total number of relief devices is nearly the same as reported in 1975, even though a significant number of devices have been eliminated, is the result of additional field inventories conducted during the period after 1975, which revealed a larger number of such devices in existence. With the completion of the Inline Storage System, bypassing of sewage from the combined sewer overflows is expected to occur an average of about two times per year. The Milwaukee Harbor estuary study documented that this level of reduction in combined sewer overflow discharges would be adequate to meet water quality standards in the estuary portion of the Milwaukee River, assuming other water quality improvement measures recommended were carried out. Bypassing from other sanitary sewer flow relief devices is expected to be further reduced over time as additional sewerage system upgrading is accomplished by the Milwaukee Metropolitan Sewerage District and other local units of government operating sewer systems.²

Current Plan Recommendations: It is recommended that the Cities of Cedarburg, Mequon, Milwaukee, and West Bend; the Villages of Brown Deer, Fredonia, Grafton, Jackson, Kewaskum, Newburg, River Hills, Saukville, Shorewood, and Whitefish Bay; and the Milwaukee Metropolitan Sewerage District continue to monitor the sanitary sewer system operations to ensure that the use of the existing sanitary sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading be conducted with the assumption that there will be no planned bypasses of untreated sewage from the sanitary sewerage system and that the use of all flow relief devices within the sanitary sewerage system will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewers

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan, as updated, recommended the construction of eight intercommunity trunk sewers in the Milwaukee River watershed, as shown in Table VIII-9. Four of these trunk sewers would provide additional conveyance capacity in the Milwaukee Metropolitan sewer system; one trunk sewer would connect Thiensville to the Mequon sewerage system to permit the abandonment of the

²During 1994, the City of Milwaukee developed specific preliminary plans to eliminate 52 of the 106 crossovers in the City's sanitary sewer system. In most cases, the crossovers were conveyed to other locations in the Milwaukee intercepting sewer system where adequate capacity was available. These plans were being refined and reviewed with the Milwaukee Metropolitan Sewerage District staff at years end.

Table VIII-8

KNOWN SEWAGE FLOW RELIEF DEVICES IN
THE MILWAUKEE RIVER WATERSHED: 1988-1993

			Sewage Flow	Relief Devic	es in the S	ewer System		<u> </u>
Sewerage System	Sewage Treatment Flow Relief Device	Combined Sewer Overflow	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
Village of Kewaskum	0	0	0	0	1	0	1	Used only in case of equipment failure
City of West Bend	0	0	0	1	0	0	1	Used only in case of equipment failure
Village of Jackson	0	0	0	0	1	0	1	Used only in case of extreme wet weather
Village of Newburg	0	0	0	1	0	0	1	Used only in case of extreme wet weather
Village of Fredonia	0	0	0	0	0	1	1	Used only in case of extreme wet weather
Village of Saukville	0	0	0	0	0	1	1	Used only in case of extreme wet weather
Village of Grafton	0	0	0	2	0	1	3	Used only in case of equipment failure or extreme wet weather
City of Cedarburg	0	0	0	1	0	0	1	Used only in case of extreme wet weather
City of Mequon	0	0	0	3	0	0	3	Used only in case of extreme wet weather
Village of Brown Deer	0	0	2	0	0	0	2	Crossovers are fitted with manually-operated gate valves
Village of River Hills	0	0	0	0	0	2	2	Used only in case of extreme wet weather
Village of Whitefish Bay	0	0	2	0	0	3	5	Used only in case of extreme wet weather
Village of Shorewood	0	0	5	0	0	0	5	Crossovers are fitted with manually-operated gate values
City of Milwaukee	0	1 ^a	76 ^b	0	0	0	77	Used only in case of extreme wet weather

Table VIII-8 (continued)

			Sewage Flow Relief Devices in the Sewer System								
Sewerage System	Sewage Treatment Flow Relief Device	Combined Sewer Overflow	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments			
Milwaukee Metropolitan Sewerage District	0	66	16	0	0	0	82	Crossovers used only in case of extreme wet weather; CSO bypassing expected about twice per year			
Total	0	67	101	8	2	8	186				

^a Proposed to be abandoned in 1995.

Source: SEWRPC.

 $^{^{\}mathrm{b}}$ Fifty-three of these crossovers are equipped with electric pumps to facilitate bypassing.

Table VIII-9

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE MILWAUKEE RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Implementation
Northridge	Not Completed
North Branch	Completed (1983)
East Branch	Completed (1983)
Milwaukee River Relief	No Action ^a
Thiensville-Mequon	Completed (1987)
Waubeka-Fredonia	Not Completed
Jackson	Completed (1981)
Silver Lake-West Bend Trunk Sewer ^b	Completed (1993) ^b

^a Construction of this trunk sewer was completed in 1994.

Source: SEWRPC.

^b The Silver Lake-West Bend trunk sewer was added to the plan based upon a March 1992 plan amendment. Construction of this trunk sewer was completed in 1993.

Village of Thiensville sewage treatment plant; one would connect the Waubeka sanitary sewer service area to the Village of Fredonia sewage treatment plant; one would permit the relocation of the Village of Jackson sewage treatment plant; and one would permit connection of the Silver Lake Sanitary District sewer system to the City of West Bend sewerage system. These trunk sewers have been fully constructed, with the exception of the Northridge and Waubeka-Fredonia trunk sewers.

<u>Current Plan Recommendations</u>: The current regional water quality management plan includes recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the Milwaukee River watershed within the Region, as shown on Map VIII-4. Two intercommunity trunk sewers in the Milwaukee River watershed are currently recommended to be constructed. These trunk sewers include the Northridge sewer, which would provide capacity for the northwestern portion of the service area tributary to the Sewerage District sewerage system; and the Waubeka-Fredonia sewer, which would connect urban development in the Waubeka area to the Village of Fredonia sewerage system.

Point Sources of Wastewater Other Than Public

and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of 68 known point sources of pollution identified in the Milwaukee River watershed other than public and private sewage treatment plants. These sources discharge industrial cooling, process, rinse, wash, and filter backwash waters through 118 outfalls directly or indirectly to the surface water system. Of these 118 point source outfalls, 45 discharged directly to the main stem of the Milwaukee River, 42 discharged indirectly to the main stem of the Milwaukee River, 31 discharged to other tributaries, and one outfall discharged to a soil absorption basin. Eighty-two--or about 70 percent--of the outfalls discharged cooling water only. The initial regional water quality plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were 120 known such point sources of wastewater discharging to the Milwaukee River and its major tributaries or the groundwater system directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table VIII-10 summarizes selected characteristics of these other point sources and Map VIII-5 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 152 known, permitted point sources of wastewater other than public and private sewage treatment plants discharging to surface waters or groundwater in the Milwaukee River watershed. These point sources of wastewater discharge, primarily industrial cooling, process, rinse, and wash water, discharge directly, or following treatment, to the groundwater or the surface waters of the Milwaukee River watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Table VIII-10

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE MILWAUKEE RIVER WATERSHED: 1990®

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^c
American Landmark Management	Milwaukee	1	General	0044938-3	9/30/95			Milwaukee River	
Amity Leather Products Company	Washington	2	General	0044938-3	9/30/95	3172	Personal leather goods	Milwaukee River via storm sewer	
Amoco Oil Co. (Estabrook Apts.)	Milwaukee	d	General	0046566-3	9/30/95		rersonal leather goods	Milwaukee River	
Aqua-Chem, Inc.	Milwaukee	4	General	0044938-3	9/30/95	3443	Fabricated plate work(boiler shops)	Lincoln Creek via storm sewer	
Architectural Concrete Products, Inc.	Milwaukee	5	General	0046507-2	9/30/95	3272	Concrete products	Lincoln Creek via storm sewer	
Autotrol Corporation	Milwaukee	6	General	0044938-3	9/30/95	3493	Steel springs except wire	Milwaukee River via storm sewer	
Badger Middle School	Washington	7	General	0046523-2	9/30/95	8211	Secondary school	Milwaukee River via storm sewer	
Bardes Plastics, Inc.	Milwaukee	8	General	0044938-3	9/30/95	3082	Unsupported plastics profile shapes	Lincoln Creek	
Bend Industries, Inc.	Washington	9	General	0046507-2	9/30/95	3271	Concrete block and brick	Leach field	
Brown Deer High School Pool	Milwaukee	10	General	0046523-2	9/30/95	8211	Secondary school	Milwaukee River via unnamed trib.	
Cedarburg Swimming Pool	Ozaukee	11	General	0046523-2	9/30/95		Municipal pool	Cedar Creek via storm sewer	
Cera-mite Corporation	Ozaukee	12	General	0044938-3	9/30/95	3675	Electronic capacitors	Milwaukee River via storm sewer	
Charter Processing Inc.	Ozaukee	13	General	0044938-3	9/30/95	3452/3496	Bolts, nuts, rivets, misc. prod.	Milwaukee River via storm sewer	
Continental Can Company	Milwaukee	14	General	0044938-3	9/30/95	3411	Metal cans	Milwaukee River via storm sewer	
Crown Cork & Seal Company, Inc.	Milwaukee	15	General	0044938-3	9/30/95	3466	Crowns and closures	Lincoln Creek via storm sewer	
Culligan Water Conditioning	Milwaukee	16	General	0046540-1	9/30/95	1711	Plumbing & soft water conditioners	Lincoln Creek via storm sewer	
Culligan Water Conditioning-West Bend	Washington	17	General	0046540-1	9/30/95	1711	Plumbing & soft water conditioning	Milwaukee River via storm sewer	
Dickmann Manufacturingg Co., Inc.	Ozaukee	18	General	NEW		3499/3496	Fabricated metals & wire products	Milwaukee River via storm sewer	
E.R. Wagner Manufacturing Company	Milwaukee	19	General	0044938-3	9/30/95	3429/3469	Hardware; Metal stampings	Lincoln Creek	
Eaton CorpCutler Hammer Prod. Div.	Milwaukee	20	General	SPEC PERM		3812/3625	Search & navigation equipment, etc.	Lincoln Creek	
Eaton CorpOper. & Tech. Center	Milwaukee	21	General	0044938-3	9/30/95	3812/3625	Search & navigation equipment, etc.	Lincoln Creek via storm sewer	
Federal Distributing, Inc.	Milwaukee	d	General	0046566-2	9/30/95			Milwaukee River via Brown Deer Creek Tributary	
Franchise Mailing Systems	Milwaukee	23	General	SPEC PERM		7331	Direct mail advertising services	Milwaukee River via storm sewer	
Fred Usinger, Inc.	Milwaukee	24	General	0044938-3	9/39/95	2013	Sausages & other meat products	Milwaukee River	
Gehl Company	Washington	25	General	0044938-3	9/30/95	3523	Farm machinery and equipment	Milwaukee River	
Glen Hills Middle School (Pool)	Milwaukee	26	General	0046523-2	9/30/95	8211	Secondary schools	Milwaukee River via storm sewer	
Grafton High School (Pool)	Ozaukee	27	General	0046523-2	9/30/95	8211	Secondary school	Milwaukee River via storm sewer	
Great Lakes Biochemical Co., Inc.	Milwaukee	28	General	0044938-3	9/30/95	2835	Diagnostic substances	Milwaukee River	
Henri's Food Products Co., Inc.	Milwaukee	29	General	0044938-3	9/30/95	2035	Pickles, sauces & salad dressings	Milwaukee River via storm sewer	
Hercules, Incorporated	Milwaukee	30	General	0044938-3	9/30/95	2821	Plastics materials and resins	Milwaukee River	
Homestead High School (Pool)	Ozaukee	31,	General	0046523-2	9/30/95	8211	Secondary school	Lincoln Creek via storm sewer	
Interstate Drop Forge, Inc.	Milwaukee	d	General	0044938-3 & 0046566-2	9/30/95	3462	Iron and steel forgings	Lincoln Creek via storm sewer	
Johnson Controls, IncCivic Drive	Milwaukee	33	General	NPR-LET		3822/3561	Environmental cont.; Pumping equip.	Lincoln Creek via storm sewer	
Johnson Controls, IncGlen Park	Milwaukee	34	General	0044938-3	9/30/95	3822	Environmental controls	Milwaukee River	
Kettle Moraine YMCA	Washington	35	General	0046523-2	9/30/95	7997	Membership sports & rec. club	Milwaukee River via Silver Creek	
Kewaskum Frozen Foods, Inc.	Washington	36	General	0044938-3	9/30/95	2011	Meat packing plants	Milwaukee River	
Le Club	Milwaukee	37	General	0046523-2	9/30/95	7997	Membership sports & recreation club	Milwaukee River	
Leeson Electric Corp.	Ozaukee	38	General	0044938-3	9/30/95	3621/3546	Motors, generators, light fixtures	Lincoln Creek via storm sewer	
Longview Fibre Company	Milwaukee	39 40	General	0044938-3	9/30/95	2653	Corrugated and solid fiber boxes	Milwaukee River via storm sewer	
Marigold Foods, Inc.	Washington	40	General	0044938-3	9/30/95	2026	Fluid milk	Milwaukee River	

Table VIII-10 (cont'd)

					1000 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v - 100 v				
Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^c
racility Rame	County	NO.	Туре	reimit No.	Date	Code	Industrial Activity	Receiving water	5,500
Marshall Fields - Grand Avenue	Milwaukee	41	General	0044938-3	9/30/95	5311	Department store	Milwaukee River	
Meadow Brook Park Pool (Grafton)	Ozaukee	42	General	0046523-2	9/30/95	NA	Municipal pool	Milwaukee River via storm sewer	
Meguon Swimming Pool	Ozaukee	43	General	0046523-2	9/30/95	NA	Municipal pool	Milwaukee River	
Milw. Bd. Sch. Dir.: Custer H.S.	Milwaukee	44	General	0046523-2	9/30/95	8211	Secondary school	Lincoln Creek vis storm sewer	
Milw. Bd. Sch. Dir.: Madison H.S.	Milwaukee	45	General	0046523-2	9/30/95	8211	Secondary school	Lincoln Creek via storm sewer	
Milw. Bd. Sch. Dir.: Marshall H.S.	Milwaukee	46	General	0046523-2	9/30/95	8211	Secondary school	Lincoln Creek via storm sewer	
The Milwaukee Center	Milwaukee	47	General	SPEC PERM	9/30/95	6512	Non residential building operat.	Milwaukee River	l
Milwaukee Country Club	Milwaukee	48	General	0046523-2	9/30/95	7997	Membership sports & rec. club	Milwaukee River	
Milwaukee County Dineen Park Pool	Milwaukee	49	General	0046523-2	9/30/95	NA	Municipal pool	Lincoln Creek via storm sewer	
Milwaukee County Lincoln Park Pool	Milwaukee	50	General	0046523-2	9/30/95	N/A	Municipal pool	Milwaukee River via storm sewer	
Milwaukee County McGovern Park Pool	Milwaukee	51	General	0046523-2	9/30/95	N/A	Municipal pool	Lincoln Creek via storm sewer	
Milwaukee Gear Co., Inc.	Milwaukee	52	General	0044938-3	9/30/95	3398	Metal heat treating	Milwaukee River via storm sewer	
Northridge Lakes	Milwaukee	53	General	0046523-2	9/30/95	6513	Apartment bldg. operators	Beaver Creek	
North Shore Water Commission	Milwaukee	54	General	SPEC PERM		4941	Water supply	Groundwater discharge	
North Suburban YMCA: Schreoder Pool	Milwaukee	55	General	0046523-1	9/30/95	7991	Physical fitness club	Milwaukee River	
Oster - Sunbeam Joint Ventures	Milwaukee	56	General	SPEC PERM	9/30/95	3634	Electrical housewares and fans	Milwaukee River via storm sewer	
Ozaukee Country Club	Ozaukee	57	General	0046523-2	9/30/95	7997	Membership sports & rec. club	Milwaukee River	
Pereles Brothers, Inc.	Milwaukee	58	General	0044938-3	9/30/95	3089	Plastics products	Lincoln Creek via storm sewer	
Perry Printing Co Milwaukee Div.	Milwaukee	59	General	0044938-3	9/30/95	2752	Commerical printing - lithographic	Beaver Creek via drainage ditch	
Phoenix Products Company, Inc.	Milwaukee	60	General	0044938-3	9/30/95	2671	Paper & laminated packaging	Lincoln Creek via storm sewer	
Pressure Cast, Div. Leggett & Platt	Ozaukee	61	General	0044938-3	9/30/95	3363	Aluminum die casting	Milwaukee River	
Production Stamping Corp.	Milwaukee	62	General	0044938-3	9/30/95	3469	Metal stampings	Brown Deer Creek	
Rexford Paper Company	Milwaukee	63	General	0044938-3	9/30/95	2672	Paper coated and laminated pkg.	Lincoln Creek via storm sewer	
Rexnord CorpPlastics Division	Ozaukee	64	General	0044938-3	9/30/95	3714	Motor vehicle parts, relays, etc.	Milwaukee River	
Rexnord CorpStearns Division	Milwaukee	65	General	0044938-3	9/30/95	3625	Relays and industrial controls	Milwaukee River Canal	
Riveredge Nature Center	Washington	66	General	0044938-3	9/30/95	9512	Nature conservancy	Milwaukee River	
Rose Industries, Inc.	Milwaukee	67	General	0044938-3	9/30/95	3531	Construction machinery	Brown Deer Creek	
Rostad Aluminum Corp.	Ozaukee	68	General	0044938-3	9/30/95	3363	Aluminum die casting	Milwaukee River via storm sewer	
Rowe Sand & Gravel, Inc.	Ozaukee	69	General	0045615-2	9/30/95	3281	Cut stone & stone products	Cedar Creek	
Schmitz Ready Mix-Mequon	Ozaukee	70	General	0046507-2	9/30/95	3273	Ready-mix concrete	Groundwater discharge	
Sealcraft Packaging Corp.	Milwaukee	71	General	0044938-3	9/30/95	3089	Plastics	Milwaukee River via storm sewer	
Sherwood Medical (Beatreme Foods)	Washington	72	General	SPEC PERM	9/30/93	3842	Surgical appl. & supplies	Cedar Creek	
Shorewood High School (Pool)	Milwaukee	73	General	0046523-2	9/30/95	8211	Secondary school	Milwaukee River via storm sewer	
Square D CoRichards Street Plant	Milwaukee	74	General	0044938-3	9/30/95	3625	Relays and industrial controls	Milwaukee River via storm sewer	
Stainless Foundry & Engineering, Inc.	Milwaukee	75	General	0044938-3	9/30/95	3324/3325	Steel & steel investment found	Lincoln Creek via storm sewer	
Super Steel Products CorpCalumet	Milwaukee	76	General	0044938-3	9/30/95	3499	Fabricated metal products	Lincoln Creek	
Treat All Metals, Inc.	Milwaukee	77	General	0044938-3	9/30/95	3398	Metal heat treating	Milwaukee River via storm sewer	
USEM/Doerr Electric Corp.	Ozaukee	78	General	0044938-3	9/30/95	3621	Motors and generators	Cedar Creek via unnamed trib.	
United Division-Mid City Foundry Co.	Ozaukee	79	General	0044938-3	9/30/95	3321	Gray and ductile iron foundries	Milwaukee River via storm sewer	
Universal Foods CorpBioventures	Milwaukee	80	General	0044938-3	9/30/95	2022/2099	Cheese and Food preparation	Lincoln Creek via storm sewer	
				1 -371755	1 2,00,20	1 2027,2077		1	<u> </u>

υ Τ

					 					
			Map				Standard Industrial			
			ID	Permit		Expiration				Treatment
	Facility Name	County	No.b	Type	Permit No.	Date	Code	Industrial Activity	Receiving Water	System
-		†	 	 ′ ′ ·						
	iversal Strap, Inc.	Washington	81	General	0044938-3	9/30/95	2396	Automotive & apparel trim	Hasmer Creek	
	porized Coatings, Inc.	Milwaukee	82	General	0044938-3	9/30/95	3471	Plating and polishing	Lincoln Creek via storm sewer	
	H. Brady CoCoated Products Div.	Milwaukee	83	General	0044938-3	9/30/95	2672	Papercoated and laminated prod.	Lincoln Creek via storm sewer	
	H. Brady CoParkland Court	Milwaukee	84	General	0044938-3	9/30/95	3679	Electronic components	Lincoln Creek via storm sewer	
	st Bend High School (Pool)	Washington	85	General	0046523-2	9/30/95	8211	Secondary school	Milwaukee River via storm sewer	
	st Bend Water Utility	Washington	86	General	0046566-1	9/30/95	4941	Water supply	Milwaukee River	
	lke Dairy Company	Milwaukee	87	General	0044938-3	9/30/95	5143	Dairy products - wholesale	Milwaukee River via storm sewer	
	sconsin Color Press, Inc.	Milwaukee	88	General	0044938-3	9/30/95	2759/2752	Commercial printing: nec & litho.	Lincoln Creek via storm sewer	
	sconsin Paperboard CorpNewark	Milwaukee	89	General	0044938-3	9/30/95	2631	Paperboard mills	Milwaukee River	
	sconsin Thermoset Molding, Inc.	Milwaukee	90	General	0044938-3	9/30/95	3089	Plastic products	Milwaukee River via storm sewer	
	ight Metal Processors, Inc.	Milwaukee	91 92	General	0044938-3	9/30/95	3479	Metal coating and allied services	Lincoln Creek via storm sewer	
		Milwaukee	92	General	0046523-2	9/30/95	7991	Physical fitness facility	Milwaukee River via storm sewer	
11	hrs Ready-Mix, Inc.	Washington	93	General	0046507-2	9/30/95	3273	Ready-mix concrete	Groundwater discharge	
A.	O. Smith Automotive Products Co.	Milwaukee	14	Specific	0027278	12-31-94	3714	Motor vehicle parts & accessories	Lincoln Creek via storm sewer	None
	cast Industrial Corp. Meta Mold Div	Ozaukee	2A	Specific	0000604	03-31-92	3363	Aluminum die casting	Cedar Creek	None
	ua-Chem, IncCleaver Brooks	Milwaukee	3A	Specific	0043559	12-31-89	3443	Fabricated plate work	Milwaukee River via storm sewer	None
	ua-Chem, IncNorth Plant #2	Milwaukee	4A	Specific	0004502	12-31-89	3443	Fabricated plate work	Milwaukee River via storm sewer	None
	dger Meter, Inc.	Milwaukee	5A	Specific	0033529	12-31-89	3824	Fluid meters and counting devices	Milwaukee River via storm sewer	7
В	atreme Foods (Sherwood Medical)	Washington	6A	Specific	0046965	12-31-91	2022	Cheese-natural & processed	Hasmer Creek	None
∮ B:	eri's Cheese, Inc.	Washington	7A	Specific	0057355	09-30-92	2022	Cheese-natural & processed	Groundwater discharge	None
₹ В:	ewery Works, Inc.	Milwaukee	A8	Specific	0046736	01-31-96	7699	Repair services	Milwaukee River via storm sewer	None
1 B:	iggs & Stratton CorpGlendale	Milwaukee	9A	Specific	0000621	12-31-89	3499	Fabricated metal products	Brown Deer Creek	7
Bı	ookside Poultry Farms, Inc.	Washington	10A	Specific	0056677	12-31-93	0259	Poultry & eggs	Groundwater discharge	None
T .	ok Composites & Polymers	Ozaukee		C	0007771	06-30-95	0001	D1		7
	or Composites & Folymers orence Eiseman, Inc.	Milwaukee	11A 12A	Specific Specific	0027731 0033901	03-31-90	2821 2361	Plastics materials and resins	Milwaukee River	None
	F. Shea Co., Inc. (NSW Dropshaft)	Milwaukee	13A	Specific	0033901	06-30-93	1622	Girl & children's clothing Bridge, tunnel & elev. hwy. const.	Milwaukee River	6, 8
	hnson Brass & Mach. Foundry Inc.	Ozaukee	14A	Specific	0047121	06-30-89	3365/3366/3369	Aluminum, copper, nonferrous findy.	Milwaukee River	6
	hnson Control Globe Battery	Milwaukee	15A	Specific	0007923	12-31-91	3625	Relays and industrial controls	Lincoln Creek via unnamed trib.	None
	e Kelch Corp.	Ozaukee	16A	Specific	0044083	07-31-95	3545	Machine tool accessories	Milwaukee River	None
	rrison Knudsen Co., Inc.	Milwaukee	17A	Specific	0047139	04-30-90	1622	Bridge, tunnel and elev. hwy. const.	Lincoln Creek via storm sewer	None
	C Milwaukee Plant 5	Milwaukee	18A	Specific	0000558	06-30-89	3519	Internal combustion engines	Lincoln Creek via storm sewer	None
1	ter Division-Sunbeam	Milwaukee	19A	Specific	0001023	09-30-90	3634	Electric housewares and fans	Milwaukee River vis storm sewer	None
				*						
	aefke Brake and Supply Corp.	Washington	20A	Specific	0025291	09-30-90	3714	Motor vehicles parts & accessories	Milwaukee River	None
	gal Ware, Inc.	Washington	21A	Specific	0000060	12-31-89	3631	Household cooking equipment	Milwaukee River	None
	haefer Livestock Operation	Washington	22A	Specific	0056723	09/30/95	0219	General livestock	Milwaukee River	None
	rminal Storage Company	Milwaukee	23A	Specific	0042684	03-31-90	4225	General warehousing and storage	Milwaukee River Canal	None
	st Bend Company	Washington	24A	Specific	0027294	09-30-92	3634	Electric housewares and fans	Milwaukee River	None
	Electric Power CoCommerce Plant	Milwaukee	25A	Specific	0000892	09-30-90	4911	Electric services	Milwaukee River	. 5
	Paperboard Corp.	Milwaukee	26A	Specific	0054984	09-30-90	2611	Pulp mills	Milwaukee River	None
W.	University-Milwaukee Power Plant	Milwaukee	27A	Specific	0040282	08-31-95	4961	Steam and air-conditioning supply	Lake Michigan via storm sewer	None

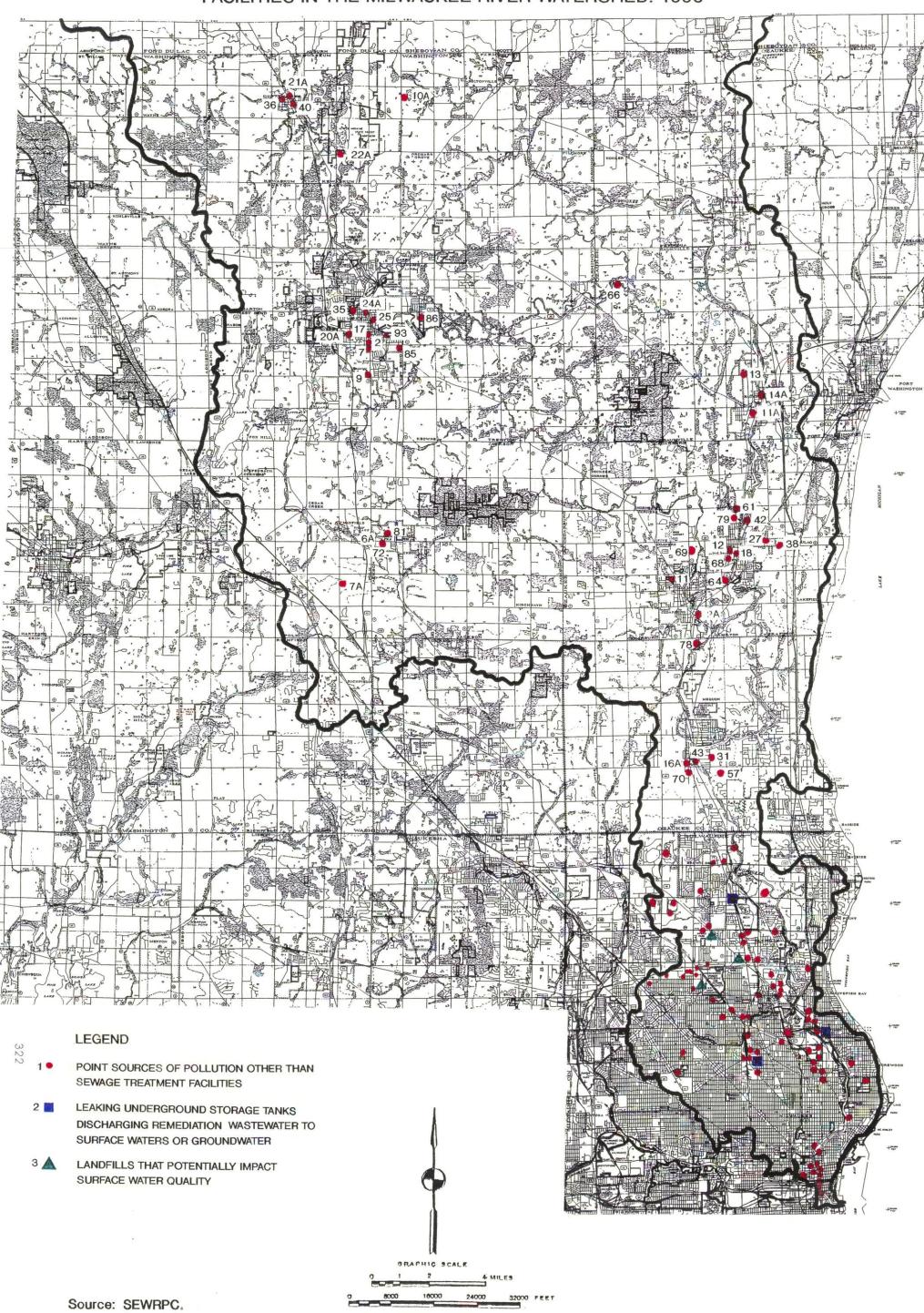
Footnotes follow.

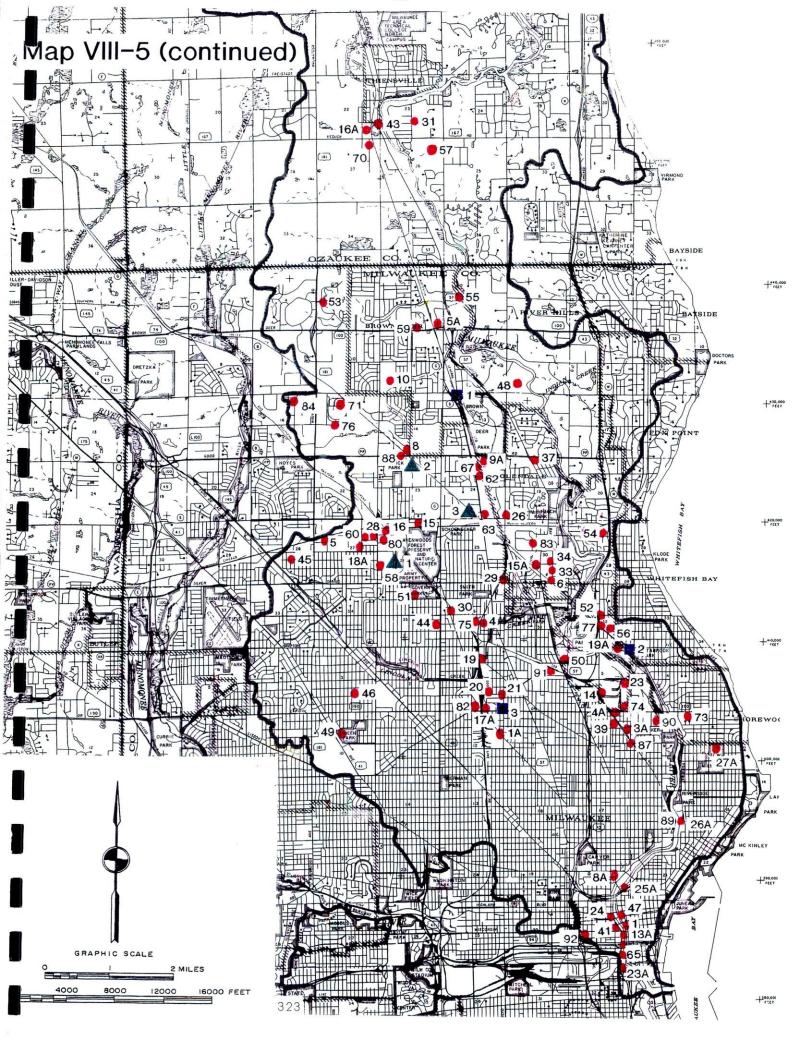
Table VIII-10 (cont'd)

Table VIII-10 includes 120 known, permitted sources of wastewater discharging to the Milwaukee River and its tributaries, or to the groundwater systems in the Milwaukee River watershed. As of 1993, there were 152 known, permitted point sources of water pollution.

b See Map VII-5, "Point Sources of Pollution other than Sewage Treatment Facilities in the Milwaukee River Watershed: 1990."

C The number code refers to the following treatment systems:


1. ACT sludge extended air 5. Filters-general 9. Secondary clarification 2. Absorption pond 6. Gravity sedimentation 10. Septic tanks 3. Aerated lagoon 7. Holding pond 11. Spray irrigation 4. Anserobic digestion 8. Oil and grease removal 12. Stabilization lagoon


d Permitted as Leaking Underground Storage Tank (LUST) remediation site discharging to surface or groundwater as of 1990. As of 1993, there were seven additional LUST remediation sites discharging to surface or ground waters in the Milwaukee River watershed. See Table VIII-12, "Miscellaneous Potential Pollution Sources in the Milwaukee River Watershed: 1990", for map identification number.

Source: Wisconsin Department of Natural Resources and SEWRPC.

Map VIII-5

POINT SOURCES OF POLLUTION OTHER THAN SEWAGE TREATMENT FACILITIES IN THE MILWAUKEE RIVER WATERSHED: 1990

Existing Unsewered Urban Development Outside the Proposed Sanitary Sewer Service Area

As of 1975, there were 14 enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area. As of 1990, three of those areas had been added to the planned 2010 sewer service area. increased urban growth within the watershed since 1975, twenty new enclaves of urban development have been created beyond the planned sewer service areas and three of the urban development enclaves identified in the original plan have been expanded, as shown on Map VIII-4. The corresponding urban enclave population and the distance to the nearest planned year 2010 sewer service area are listed in Table VIII-11. As shown in Table VIII-11, approximately one-half of these areas--17 of the 31 sites--are covered by soils, and have lot sizes, which indicate a high probability of meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. The remaining areas have soils and lot sizes having a high probability of not meeting these criteria and alternative wastewater disposal methods should be considered. Two of these latter areas are located adjacent to Big and Little Cedar Lakes where alternative forms of wastewater management have been investigated during 19893 and 1991.4 Based upon the studies completed, the installation of a public sanitary sewer system for these two lake areas was not recommended. However, it is recommended that this conclusion be reconsidered later in the planning period based upon the then current conditions of the onsite sewerage systems in the area. Thus, for these two areas and for the remaining enclaves located in areas where soils are not considered to meet current criteria for conventional onsite systems, it is recommended that an inspection and maintenance program for the onsite sewerage disposal system be initiated and that further site-specific planning be conducted to determine the best wastewater management practice at such time as significant problems become evident.

Miscellaneous Potential Pollution Sources

<u>Landfills</u>: Landfills in the Milwaukee River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and can be subsequently transported to surface waters.

There are currently three active landfills and 95 known abandoned landfills located in the Milwaukee River watershed. Three of the abandoned landfills in the Milwaukee River watershed have been reported to be potentially impacting Lincoln Creek. The location of these landfills are shown on Map VIII-5 and listed in Table VIII-12.

³See <u>Tri Lakes Sanitary Study</u>, Ruekert & Mielke, Inc., November 1989.

⁴See <u>Silver and Little Cedar Lake Sewerage Facility Plan</u>, Ruekert & Mielke, Inc., August 1991.

Table VIII-11

EXISTING URBAN DEVELOPMENT OUTSIDE OF THE PLANNED PUBLIC SANITARY SEWER SERVICE AREA IN THE MILWAUKEE RIVER WATERSHED: 2010

		1990 Estimated	Distance from Year 2010 Sewer
Numbera	Major Urban Concentration ^b	Resident Population	Service Area (miles)
	Washington County		(2202)
1°	Town of Farmington-Section 20	129	2.5
2	Town of Barton-Section 4	118	0.3
3°	Town of Barton-Section 33	133	1.3
4 ^c	Town of Barton-Section 6	113	2.1
5°	Town of Barton-Section 20	108	1.0
6°	Town of Barton-Section 33	113	
7°	Town of Trenton-Sections 5, 8, and 9	457	
8°	Big Cedar Lake	1,290	0.9
9	Town of West Bend-Section 22	194	
10	Little Cedar Lake	220	0.5
11	Town of West Bend-Section 33 and 34	402	0.9
12	Town of Polk-Section 4	158	2.4
13	Town of Jackson-Section 7	129	0.5
14	Town of Jackson-Section 7	159	0.9
15°	Town of Polk-Section 21	109	2.5
16	Town of Polk-Section 22	115	1.5
17	Town of Jackson-Section 22	179	1.7
18 ^c	Town of Jackson-Section 27	216	1.9
19	Town of Polk-Section 36	172	1.7
20	Town of Jackson-Section 36	214	3.0
21°	Town of Richfield-Sections 12 and 13	590	3.8
	Ozaukee County		
22	Town of Fredonia-Section 19	128	1.3
23	Town of Cedarburg-Section 5 and 8	299	2.1

Table VIII-11 (Cont'd)

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
24 ^c	Town of Cedarburg-Section 2	142	0.8
25	Town of Cedarburg-Section 1	143	
26	Town of Cedarburg-Section 18	239	2.1
27°	Town of Cedarburg-Section 16	242	0.4
28	Town of Cedarburg-Section 15	486	
29	Town of Cedarburg-Sections 29 and 30	235	0.5
30°	Town of Grafton-Section 29	175	0.5
31°	Town of Grafton-Section 31	210	2.0
	Total	7,994	39

a See Map VIII-4

Source: SEWRPC.

^b Urban development is defined in this context as concentrations of urban land uses within any given U.S. Public Land Survey quarter section that has at least 32 housing units, or an average of one housing unit per five gross acres, and is not served by public sanitary sewers.

^c Based upon consideration of soils, lot sizes, and density, further site specific planning should be conducted during the planning period to determine the best means of providing for wastewater management.

Table VIII-12

MISCELLANEOUS POTENTIAL POLLUTION SOURCES IN THE MILWAUKEE RIVER WATERSHED: 1990

Map ID Number ^a	Landfills Indicated to be Potential Pollution Sources	Civil Division Location	Surface Water Potentially Impacted
1 2 3	U.S. Army Reserve Landfill- Havenwoods Park ^b Village of Whitefish Bay ^b City of Milwaukee Landfill ^b	City of Milwaukee City of Milwaukee City of Milwaukee	Lincoln Greek Lincoln Greek Lincoln Greek
	Leaking Underground Storage Tank Sites ^{c,d}		Receiving Water
1 2 3	Federal Distributing, Inc. Amoco Oil Company Interstate Drop Forge, Inc.	Village of Brown Deer City of Milwaukee City of Milwaukee	Milwaukee River Milwaukee River Lincoln Creek
	Additional Groundwater Contamination Sites ^c , ^c		
	None		

^aRefers to Map VIII-5, "Point Sources of Pollution Other Than Sewage Treatment Facilities in the Milwaukee River Watershed: 1990."

bAs indicated in Wisconsin Department of Natural Resources Milwaukee River South Branch Watershed Water Resource Appraisal and Stream Classification, 1989.

^cIncludes those sites which are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters.

dAs of 1993, there were seven additional leaking underground storage tank sites in the Milwaukee River watershed whose remediation discharges were permitted under the Wisconsin Pollutant Discharge Elimination System: Eddie's Service in the Village of Saukville, which is permitted to discharge to the Milwaukee River via a storm sewer; Herbst Service Station in the Village of Jackson, which is permitted to discharge to a tributary of Cedar Creek; Jacobus Company-West Bend Bulk Terminal in the City of West Bend, which is permitted to discharge to the Milwaukee River via a storm sewer; O'Connor Oil Company, Cooper Environmental, in the City of West Bend which is permitted to discharge into the Milwaukee River via a storm sewer; Ozaukee County Highway Department in the Town of Saukville, which is permitted to discharge to groundwater; TriPar Oil in the City of West Bend, which is permitted to discharge to the Milwaukee River via a storm sewer.—all in Ozaukee County; and Milwaukee Gear Company in the City of Milwaukee, Milwaukee County, which is permitted to discharge to the Milwaukee River via a storm sewer.

^cAs of 1993, there was one groundwater contamination site whose remediation discharges were permitted under the Wisconsin Pollutant Discharge Elimination System: Moore Oil Company in the City of Milwaukee, which is permitted to discharge to Lincoln Creek.

Source: Wisconsin Department of Natural Resources and SEWRPC.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Milwaukee River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1990, there were three known permitted leaking underground storage tank sites that were discharging remediation waters to surface waters in the Milwaukee River watershed, as indicated in Table VIII-12 and shown on Map VIII-5. As of 1993, there were seven additional leaking underground storage tanks in the Milwaukee River watershed whose remediation wastewaters were permitted to discharge to surface or ground waters, as shown in Table VIII-12.

As of 1993, there were 622 additional leaking underground storage tanks in the Milwaukee River watershed identified by the Wisconsin Department of Natural Resources that were not discharging remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks have the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters. As of 1993, there was one permitted site discharging to surface water in the Milwaukee River watershed, as indicated in Table VIII-12.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Milwaukee River watershed, the adopted plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control, onsite sewage disposal system management, and streambank erosion control. The plan also recommended that additional nonpoint source controls be provided in the Lake Twelve drainage area, which would reduce nonpoint sources of pollution by about 75 percent in the rural areas. No nonpoint source controls were recommended in

the southern portion of the watershed where the deep tunnel-combined sewer overflow abatement plan has been implemented.

In 1971, the Commission prepared a comprehensive plan⁵ for the Milwaukee River watershed. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas and for rural nonpoint source management planning in the watershed.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Milwaukee River watershed through a variety of local and State regulations and programs. These programs include the regulation of onsite sewage disposal systems under programs currently administered by Washington, Ozaukee, and Milwaukee Counties in the unincorporated areas and by the local units of government in incorporated areas served by onsite systems. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of newer systems, and for problem resolution of failing systems where they are identified.

Significant progress has been made in the area of construction site erosion control. As of January 1993, the Cities of Cedarburg, Glendale, Mequon, and Milwaukee; the Villages of Fredonia, Germantown, Grafton, Jackson, Kewaskum, Newburg, and Saukville; and the Town of Cedarburg had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities. In addition, Washington County, the City of West Bend, and the Villages of River Hills and Thiensville had ordinances which were developed independently from the model, while an ordinance based on the model is currently being drafted for the Town of Grafton. The Cities of Mequon and West Bend also have developed stormwater ordinances.

With regard to rural nonpoint source pollution control, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations. This program is administered by the Wisconsin Department of Natural Resources, which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program has been used in selected cases in the Milwaukee River watershed. Other programs, such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others are being utilized in the Milwaukee River watershed primarily for cropland soil erosion control and wildlife habitat purposes, and will have positive water quality impacts.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. Tolerable levels are defined as soil loss tolerances or T-values, which are the maximum

⁵SEWRPC Planning Report No. 13, <u>A Comprehensive Plan for the Milwaukee River Watershed</u>, Volume One, <u>Inventory Findings and Forecasts</u>, 1969; Volume Two, <u>Alternative Plans and Recommended Plan</u>, 1970.

annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Washington and Ozaukee Counties. identify priority areas for cropland soil erosion control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

The local programs described above and the Wisconsin Department of Natural Resources priority watershed program described below have probably resulted in some reduction in the pollutant loadings from nonpoint sources. However, this element of the plan has only been partially implemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This program was established in 1978 by the Wisconsin Legislature and provides costsharing funds for individual projects or land management practices to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. Four such programs are currently underway in the Milwaukee River watershed: the North Branch Milwaukee River Priority Watershed Project, the East and West Branch Milwaukee River Priority Watershed Project, the Milwaukee River South Priority Watershed Project, and the Cedar Creek Priority Watershed Project.6

⁶Wisconsin Department of Natural Resources Publications No. WR-253-90, <u>A Nonpoint Source Control Plan for the North Branch Milwaukee River Priority Watershed Project</u>, June 1989; WR-255-90, <u>A Nonpoint Source Control Plan for the East and West Branches of the Milwaukee River Priority Watershed Project</u>, February 1989; WR-245-91, <u>A Nonpoint Source Control Plan for the Milwaukee River South Priority Watershed Project</u>, December 1991; and, <u>A Nonpoint Source Control Plan for the Cedar Creek Priority Watershed Project</u>, 1992.

North Branch Milwaukee River Priority Watershed Project: The North Branch Milwaukee River watershed was designated a "priority watershed" in 1984. Planning for the North Branch Milwaukee River priority watershed was completed in 1989 and implementation of practices will continue for about an eight-year period, to July 1997. Rural elements of the North Branch Milwaukee River priority watershed project are administered by the Fond du Lac, Ozaukee, Sheboygan, and Washington County Land Conservation Committees. Urban elements of project are being administered by the Villages of Adell, Cascade, and Random Lake.

The North Branch Milwaukee River priority watershed project established nonpoint source pollutant reduction goals to obtain loading reductions for sediment and phosphorus ranging from 10 to 40 percent for the subareas considered. Additional control recommendations were established for barnyards and livestock operations. These loading reductions were based primarily upon field inventories of the streams in the North Milwaukee River watershed. Observations were made of the sediment imbeddedness and biological conditions of each stream and a corresponding judgement was made with regard to the reductions needed in the stream sediment loading for restoring biological uses. The nonpoint source pollutant reductions set forth in the North Branch Milwaukee River priority watershed plan are generally consistent with the recommendations of the initial plan.

In order to achieve these objectives, the North Branch Milwaukee River priority watershed program includes recommendations and funding eligibility for the nonpoint source control measures presented below.

Rural Land Management --

- Provision of fencing and other streambank erosion control practices for about 65,000 feet of eroding streambank.
- Formation of detailed conservation plans to develop the best management practices for about 12,000 acres of cropland.
- Installation of management practice for 64-86 barnyards and the installation of improved practices for manure spreading on 1,600 acres.

Urban Land Management --

- Provision of construction site erosion control for new urban development which is expected in the watershed during the planning period.
- Preparation of detailed stormwater management plans to determine the best practices to be installed in the urban and urbanizing areas.

East and West Branches of the Milwaukee River Priority Watershed Program: The East and West branches of the Milwaukee River watershed was designated as a "priority watershed" in 1984. Planning for the watershed project was completed in 1989 and implementation of practices will continue for an eight-year period to July 1997. Rural elements of the East and West Branches of the Milwaukee River priority watershed project are administered by the Dodge, Fond du Lac, Ozaukee, Sheboygan, and Washington County Lake Conservation Committees. Urban elements of the project are being administered by the City of West Bend and the Villages of Kewaskum, Campbellsport, and Newburg.

The East and West Branches of the Milwaukee River priority watershed project established nonpoint source pollutant reduction goals to obtain loading reductions of from 10 to 50 percent for sediment and from 25 to 50 percent for phosphorus. These loading reductions were based primarily upon field inventories of the streams in the East and West Branches of the Milwaukee River watershed. Observations were made of the sediment imbeddedness and biological condition of each stream and a corresponding judgement was made with regard to the reductions needed in the stream sediment loading for restoring biological uses. The recommendations of the priority watershed plan for the rural areas are generally low in cost and are generally consistent with the County soil erosion control plans and other County land conservation programs. However, priority watershed plan recommendations for the urban areas are costly and full implementation will be difficult. The plan recommends that further detailed stormwater management planning and assessments of the levels of control required to meet the water use objectives be carried out as part of the subsequent plan implementation actions.

In order to achieve these objectives, the East and West Branch Milwaukee River priority watershed program includes recommendations and funding eligibility for the rural and urban nonpoint source control measures presented below.

Rural Land Management --

- The provision of fencing and other streambank erosion controls at 76 sites with a total of about 23,000 feet of eroding streambank.
- Preparation of detailed conservation plans to develop the best management practices for about 14,000 acres of cropland.
- Installation of facilities and management practices for 63 barnyards and improved practices for manure spreading on 1,200 acres.

<u>Urban Land Management--</u>

- Provision of construction erosion control for urban development which is expected in the watershed during the planning period.
- The preparation of detailed stormwater management plans to determine the best practices to be installed in the urban and urbanizing areas.
- Institution of public information and education programs on nonpoint source pollution abatement; and the institution of sound urban "house-keeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers.

Milwaukee River South Priority Watershed Project: The Milwaukee River South watershed was designated as a "priority watershed" in 1984. Planning for the watershed project was completed in 1991 and implementation of practices will continue for an eight-year period ending in October 1999. Rural elements of the Milwaukee River South priority watershed project are administered by the Ozaukee County Land Conservation Committee. Urban elements of the project are being administered by the incorporated municipalities in the project area.

The Milwaukee River South priority watershed project established nonpoint source pollutant loading reduction goals of 50 percent for sediment, from 50 to 70 percent for phosphorus, and 50 percent for heavy metals. These loading reduc-

tions were based primarily upon field inventories of the streams in the Milwaukee River South watershed. Observations were made of the sediment imbeddedness and biological condition of each stream and a corresponding judgement was made with regard to the reductions needed in the stream sediment loading for restoring biological uses. In addition, the pollutant reduction goals were based upon a qualitative consideration of the toxicity of metals in urban runoff. The nonpoint source pollutant reductions set forth in the Milwaukee River South priority watershed plan for the rural areas are generally low in cost and are generally consistent with the County soil erosion control plans and other County land conservation programs. However, priority watershed plan recommendations for the urban areas are costly and full implementation will be difficult. The plan recommends that further detailed stormwater management planning and assessments of the levels of control required to meet the water use objectives be carried out as part of the subsequent plan implementation actions.

In order to achieve these objectives, the Milwaukee River South priority watershed program includes recommendations and funding eligibility for the rural and urban nonpoint source control measures presented below.

Rural Land Management --

- Provision of fencing and other streambank erosion control practices for about 36,000 feet of eroding streambank.
- Formation of detailed conservation plans to develop the best management practices for about 14,000 acres of cropland.
- Installation of management practices for 43 barnyards.
- The installation of facilities and management practices for 29 livestock operations to change manure spreading practices.

<u>Urban Land Management</u>--The plan generally recommends to municipalities the initial development of a "core program" of urban land management practices. This core program provides for implementation of construction erosion controls; the institution of a public information and education program on nonpoint source pollution abatement; and institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizes. The plan further recommends the development of a "segmented program" providing for the stormwater management planning, possible stormwater ordinance requirements, streambank stabilization, street sweeping, and the design and construction of management practices is also recommended. Specific core and segmented programs include:

- Provision of construction erosion control for new urban development which is expected in the watershed during the planning period.
- Provision of nonpoint source control practices on about 16,000 to 35,000 acres of existing urban development and about 7,000 acres of new urban land targeted for nonpoint source control. Possible urban nonpoint source pollution control practices include wet detention ponds, infiltration devices, street sweeping, and public information and education programs to develop good housekeeping practices.

- Preparation of detailed stormwater management plans to determine the best practices to be installed in the urban and urbanizing areas.
- Provision of streambank erosion control measures at 16 sites, located primarily along Indian and Lincoln Creeks.

<u>Cedar Creek Priority Watershed Project</u>: The Cedar Creek watershed was designated as a priority watershed in 1984. Planning for the watershed project was completed in 1992 and implementation of practices will continue for an eight-year period ending in March 2000. Rural elements of the Cedar Creek priority watershed project are administered by the Ozaukee and Washington County Land Conservation Committees. Urban elements of the project are being administered by the City of Cedarburg, the Villages of Jackson and Grafton, and the Big Cedar Lake and Little Cedar Lake Protection and Rehabilitation Districts.

The Cedar Creek priority watershed project established nonpoint source pollutant loading reduction goals of from 50 to 75 percent for sediment. Additional reduction goals of 50 percent were established for urban stormwater pollutants, and of 60 percent for nutrient loadings to surface waters from animal waste sources and eroding uplands.

These loading reductions were based primarily upon field inventories of the streams in the Cedar Creek watershed. Observations were made of the sediment imbeddedness and biological condition of each stream and a corresponding judgement was made with regard to the reductions needed in the stream sediment loading for restoring biological uses. In addition, the pollutant reduction goals were based upon a qualitative consideration of the toxicity of metals in urban runoff. The recommendations of the priority watershed plan for the rural areas are generally low in cost and are generally consistent with the County soil erosion control plans and other County land conservation programs. However, priority watershed plan recommendations for the urban areas are costly and full implementation will be difficult. The plan recommends that further detailed stormwater management planning and assessments of the levels of control required to meet the water use objectives be carried out as part of the subsequent plan implementation actions.

In order to achieve these objectives, the Cedar Creek watershed program includes recommendations and funding eligibility for the rural and urban nonpoint source control measures presented below.

Rural Land Management:

- Provision of fencing and other streambank erosion control practices for 23 sites where cattle access is suspected to be causing degradation of habitat and/or water quality.
- Formation of detailed conservation plans to develop the best management practices for about 22,000 acres of cropland.
- Installation of management practices for 24 barnyards.
- Installation of facilities and management practices for 22 livestock operations to change manure spreading practices.

• Purchase of four conservation easements in selected areas of the watershed where it is demonstrated to be the least-cost practicable control alternative.

<u>Urban Land Management</u>--The plan generally recommends to municipalities the initial development of a "core program" of urban land management practices. This core program provides for implementation of construction erosion controls; the institution of a public information and education program on nonpoint source pollution abatement; and institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizes. The plan further recommends the development of a "segmented program" providing for the stormwater management planning, possible stormwater ordinance requirements, streambank stabilization, street sweeping, and the design and construction of management practices is also recommended. Specific core and segmented programs include:

- Provision of construction erosion control for new urban development which is expected in the watershed during the planning period.
- Provision of nonpoint source control practices on existing urban and new urban land targeted for nonpoint source control. Possible urban nonpoint source pollution control practices include wet detention ponds, infiltration devices, street sweeping, and public information and education programs to develop good housekeeping practices.
- Preparation of detailed stormwater management plans to determine the best practices to be installed in the urban and urbanizing areas.

Current Plan Recommendations

It is recommended that construction site erosion control, onsite sewerage system management, and streambank erosion control, in addition to land management practices designed to provide about a 25 percent reduction in nonpoint source pollutant loadings are recommended to be carried out throughout the Milwaukee River watershed. Within the rural areas in the drainage area of Lake Twelve, it is recommended that additional practices providing for levels of control for about a 75 percent reduction in nonpoint source loadings be provided. further recommended that the levels of control set forth above as developed for the four priority watershed projects be utilized as the initial basis for subsequent stormwater management planning purposes and for project eligibility under the State priority watershed program. These levels of reduction are recommended to be refined based upon subsequent detailed stormwater management planning and based upon additional monitoring and quantitative analyses which are recommended to be conducted during the plan implementation period. data and consideration of estimated costs and available funds for the urban practices are recommended to be evaluated to define the recommended final level of control. Such refinement would include further consideration of toxics reduction requirements.

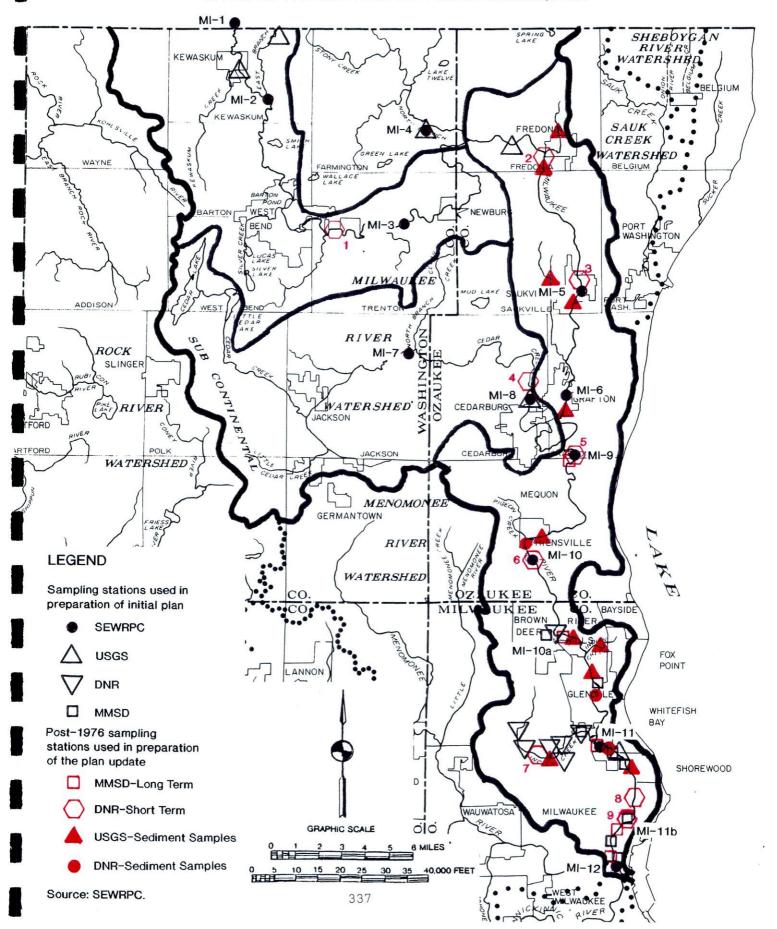
The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous section, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.

As of 1993, long-term monitoring has been carried out in the Milwaukee River watershed on a sustained basis by the U.S. Geological Survey at one station located on the Milwaukee River main stem and by the Milwaukee Metropolitan Sewerage District at nine stations located on the Milwaukee River main stem. Data from five of the Milwaukee Metropolitan Sewerage District sampling stations, as shown on Map VIII-6, were used to document current long-term water quality conditions in the watershed. Short-term monitoring has also been conducted at 13 sites by either the Department of Natural Resources or the U.S. Geological Survey during the period 1988 through 1993.


Currently, water quality monitoring is being carried out in several lakes as part of the DNR Self-help Monitoring Program, including Big Cedar Lake, Green Lake, Little Cedar Lake, Silver Lake (Washington County), and Wallace Lake. In addition, limited water quality monitoring has been carried out on the major lakes in the watershed by the U.S. Geological Survey, the Wisconsin Department of Natural Resources, and by local lake management agencies.

Current Plan Recommendation

Continued water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District on the Milwaukee River on a continuing long-term basis. addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at M1-4, M1-5, M1-6, and M1-8, and at ten selected additional stations, with one station each on Silver, Kewaskum, Quaas, Stony, Wallace, Little Cedar, Indian, Pigeon, and Lincoln Creeks, and one on the Milwaukee River East Branch. During the same one-year period, it is recommended that biological monitoring be conducted on the stations which water quality data are collected by the Milwaukee Metropolitan Sewerage District. It is recommended that this program be conducted within the next five to seven years and repeated at five- to seven-year intervals. These recommendations can be coordinated with and are consistent with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five- to seven-year rotating cycle.

The lake monitoring program for each lake should consist, at a minimum, of one intensive monitoring effort to establish baseline conditions and of long-term participation in the DNR Self-help Monitoring Program that can be conducted by citizen-volunteer residents on the lakes. As noted earlier, several lakes already participate in this program. For each lake, it is recommended that the monitoring program should be expanded to establish current conditions during a

Map VIII-6
LOCATIONS OF WATER QUALITY AND SEDIMENT SAMPLING
SITES IN THE MILWAUKEE RIVER WATERSHED

two-year or more period of intensive monitoring followed by a continual long-term monitoring program designed to detect changes in water quality conditions. In this regard, the monitoring program should be tailored to provide data needed for preparation or updating of comprehensive lake management plans for the major lakes in the watershed. Such programs are being undertaken by the Department of Natural Resources on Big Cedar Lake in Washington County as part of the Long-Term Trends Program. The water quality sampling program should be carried out at spring turnover (April) and during June, July, and August during two subsequent years with samples collected weekly.

LAKES MANAGEMENT PLAN ELEMENT

Existing Condition and Status of Plan Implementation

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of the major lakes in the Milwaukee River watershed and for consideration of other lake management measures. Institutional recommendations were also made for the formation of new special purpose units of government where none exist to carry out the plan implementation measures. For each major lake in the Milwaukee River watershed, the initial plan recommended that a comprehensive lake management plan be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. As noted in the previous sections, the preparation of such a comprehensive plan requires supporting water quality monitoring programs to be established.

The status of lake management, protection, and rehabilitation efforts on and around the major lakes in the Milwaukee River watershed is discussed for each major lake in the following paragraphs:

<u>Barton Pond</u>: Barton Pond is located within the East and West Branches of the Milwaukee River Priority watershed planning area. The urban development around the pond is within the City of West Bend sewer service area and is provided with a public sanitary sewer system. Water quality assessments of this pond have not been made. Enrollment of this waterbody in the DNR Self-help Monitoring Program is recommended.

<u>Big Cedar Lake:</u> Big Cedar Lake is located within the Cedar Creek priority watershed planning area. The lake is a DNR Long-term Trend Monitoring lake, and the Big Cedar Lake Protection and Rehabilitation District and Big Cedar Lake Sanitary District participate in the DNR Self-help Monitoring Program. An approved aquatic plant management plan has been prepared for this lake.⁷

<u>Green Lake</u>: Green Lake is located within the East and West Branch of the Milwaukee River priority watershed. The Green Lake Association participates in the DNR Self-help Monitoring Program.

<u>Lac Du Cours</u>: Lac Du Cours is located within the Milwaukee River South priority watershed planning area. No specific water quality data are available and no specific plan implementation activities have been documented on this lake as

⁷Aron & Associates, <u>Big Cedar Lake Plant Management Plan</u>, April 1993.

of 1993. Enrollment of this lake in the DNR Self-help Monitoring Program is recommended.

<u>Little Cedar Lake:</u> Little Cedar Lake is located within the Cedar Creek priority watershed planning area. The Little Cedar Lake Protection District participates in the DNR Self-help Monitoring Program. Sewerage services are provided by the Little Cedar Lake Protection District.

<u>Lucas Lake</u>: Lucas Lake is located within the East and West Branch of the Milwaukee River priority watershed planning area. Enrollment of this lake in the DNR Self-help Monitoring Program is recommended.

<u>Mud Lake (Ozaukee County):</u> Mud Lake is located within the Cedar Creek priority watershed. This lake has been assigned to the limited forage fish community and limited recreational use category due to its highly eutrophic character and shallow water depth in the initial plan but has been reassigned to the maintenance of warmwater sportfish and full recreational use as a result of detailed investigations carried out by the Wisconsin Department of Natural Resources during the Cedar Creek priority watershed project water resources appraisal process.⁸

<u>Silver Lake (Washington County):</u> Silver Lake is located within the current East and West Branch of the Milwaukee River Priority Watershed Program planning area. The Silver Lake District, Silver Lake Association, and the Silver Lake Sanitary District are participants in the DNR Self-help Monitoring Program. Jointly, these organizations have developed an aquatic plant management plan for the lake. The urban development around the lake is provided with a public sanitary sewer system.

 $\underline{\text{Smith Lake}}$: Smith Lake is located within the East and West Branch of the Milwaukee River priority watershed planning area. It is recommended that Smith Lake enroll in the DNR Self-help Monitoring Program.

<u>Spring Lake:</u> Spring Lake is located within the North Branch Milwaukee River priority watershed planning area. It is recommended that Spring Lake enroll in the DNR Self-help Monitoring Program.

<u>Lake Twelve</u>: Lake Twelve is located within the North Branch Milwaukee River priority watershed planning area. It is recommended that Lake Twelve enroll in the DNR Self-help Monitoring Program.

<u>Wallace Lake</u>: Wallace Lake is located within the North Branch Milwaukee River priority watershed planning area and within the West Bend sanitary sewer service area. The Wallace Lake Sanitary District provides sewerage services to the lakeshore area and conducts regular monitoring of the lake as a participant in the DNR Self-help Monitoring Program.

⁸Wisconsin Department of Natural Resources Publication No. WR-336-93, <u>Nonpoint Source Control Plan for the Cedar Creek Priority Watershed Project</u>, August 1993.

Current Plan Recommendations

Management measures recommended and in-lake measures which are considered potentially applicable and should be considered in more detail are shown in Table VIII-13 for the twelve major lakes in the Milwaukee River watershed. The initial plan recommendations relating to the preparation of comprehensive lake management plans and the conduct of supporting water quality, biological conditions, and water budget monitoring programs are reaffirmed in the updated plan recommendations for the Milwaukee River watershed. The management recommendations for the lakes are based upon review of the lake planning set forth in the initial plan and the current status of implementation of the recommendations, as well as any subsequent local planning.

It is recognized that the preparation of comprehensive lake management plans may need to be conducted in a staged manner in order to best utilize available resources. In this regard, the water quality monitoring, aquatic plant management, and watershed protection measure planning and implementation are considered to be logical components of the comprehensive plans which can be conducted under separate planning programs, if designed to be integrated into a comprehensive lake management plan.

In addition to the recommendations noted for the major lakes in the Milwaukee River watershed, it is recommended that water quality planning and supporting monitoring be conducted for those lakes and similar water bodies in the watershed which are less than 50 acres in size, where such activities are deemed to be important for water quality protection. In such cases, management techniques similar to those recommended to be applicable for consideration on the major lakes in the watershed can be considered for lake management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS

Streams

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; the 1976 Commission monitoring program conducted under the regional water quality management planning effort; in addition to the U.S. Geological Survey (USGS), the Wisconsin Department of Natural Resources and the Milwaukee Metropolitan Sewerage District sampling programs. Available data collected in those programs for the Milwaukee River watershed included samplings at twelve Commission stations: nine on the Milwaukee River main stem and three on its tributaries; at seven DNR stations; at six USGS stations; and at eight Milwaukee Metropolitan Sewerage District stations. The sampling station locations are shown on Map VIII-6.

Long-term post-1976 water quality data have been collected by the Milwaukee Metropolitan Sewerage District for nine stations on the Milwaukee River. Water resource appraisal information, including biological condition and water quality data collected by the Wisconsin Department of Natural Resources for the Milwaukee River Nonpoint Source Priority Watershed Projects and the Milwaukee River

Table VIII-13

MANAGEMENT MEASURES TO BE CONSIDERED IN LOCAL MANAGEMENT PLANS FOR THE MAJOR LAKES IN THE MILWAUKEE RIVER WATERSHED: 1993**

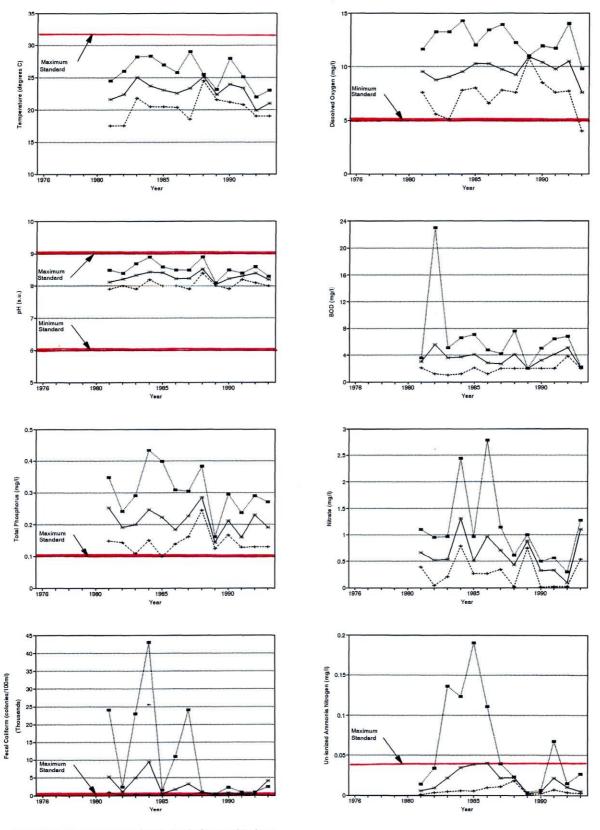
				Watershed-based Measures						In-lake Management Measures						
SUBWATERSHED Lake Name	Area (acres)	Water Quality Monitoring	Prepare Comprehensive Management Plan	Public Sanitary Sewer Service	Onsite Sewage System Mgmt	Rural NPS Mgmc	Urban NPS Mgmt	Construc- tion Site NPS Mgmt	Live- stock Mgmt	Macro- phyte Harvest	Aeration	Nutrient Inactiva- tion	Dredge	Sediment Cover	Water Level Mgmt	Fish Mgmt
CEDAR CREEK Big Cedar Lake Little Cedar Lake Mud Lake (Ozaukee Co.)	932 246 245	o o +	* *	- - -	+ + -	0	0	0 0 -	÷	o - -	- - -	+ + -	- + -	- + -	:	÷ ÷
MILWAUKEE RIVER- EAST/WEST Barton Pond Lucas Lake Silver Lake (Washington) Smith Lake	67 78 118 86	+ + 0 +	* * *	0 - 0 -	- + - +	0 0	0000	0 0 -	- - - +	- + 0 +	- - -	- + +	+ + - +	* * *	- - - -	* * *
MILWAUKEE RIVER-NORTH Green Lake (Washington) Spring Lake (Ozaukee) Lake Twelve Wallace Lake	71 66 53 52	o + +	* * *	- - - o	+ + + -	0 0 0	0 0 0	• `	- - -	- - - +	-	+ + +	- + +	+ + +	:	+ + +
MILWAUKEE RIVER-SOUTH Lac du Cours	56	+	+	0	-	0	٥		-	-	-	-	-	-	-	

NOTE: o - on-going management measures; + - management measures proposed or recommended for further consideration; - - management measures not specifically recommended for further consideration

Source: SEWRPC.

a Management measures recommended for further consideration in local management plan are summarized from those adopted in SEWRPC Planning Report No. 30, modified as necessary as the results of subsequent implementation actions, monitoring programs, and planning studies.

Basin Integrated Resource Management Plans, were also available for use in the assessment of current water quality conditions. Water quality data have also been collected on a short-term basis at 13 locations in the Milwaukee River watershed. Data collected at nine sites from 1988 through 1993, along with long-term data from five Milwaukee Metropolitan Sewerage District stations, as shown on Map VIII-6, were used to assess current water quality conditions as discussed in the next section and, where appropriate, to make a generalized comparison to historic conditions.


In addition to the data obtained since preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Milwaukee River watershed.

Long-term water quality data collected by the Milwaukee Metropolitan Sewerage District at five sampling stations on the main stem of the Milwaukee River-M1-9, at Pioneer Road; M1-10a, at Brown Deer Road; M1-11, at Port Washington Road; M1-11b, at Walnut Street; and M1-12, at the Chicago and North Western railway near the confluence of the Milwaukee and Menomonee Rivers--are summarized in Figures VIII-1 through VIII-5. The short-term data collected by the U.S. Geological Survey and the Wisconsin Department of Natural Resources during the period 1988 through 1993 are summarized in Figures VIII-6 through VIII-9 and in Table VIII-14. The water quality standards indicated in Figures VIII-1 through VIII-9 and in Table VIII-14 are those set forth for specific biological and recreational use objectives as described in Chapter II.

Review of those data for stations M1-9, 10a, 11, and 11b, indicates that following 1980, there appears to be improvements in water quality conditions as evidenced by reduced variabilities and, in some cases, reduced concentrations in BOD, volatile suspended solids, un-ionized ammonia nitrogen, fecal coliform, and Improvements were also noted at stations M1-11a and M1-11b, with reduced levels of chlorophyll-a. These improvements may be attributed, in part, to the completion, after 1980, of plant upgradings for the Cities of Cedarburg and West Bend and Villages of Grafton, Fredonia, and Saukville; to the abandonments of the Village of Thiensville sewage treatment plant in 1984; to the reduction in the frequency of sanitary sewer flow bypassing due to the increased conveyance facilities installed under the Milwaukee Metropolitan Sewerage District water pollution abatement program; and to other sewer system rehabilitation actions. Water quality improvements may additionally be attributed, in part, to the reduction in pollutant loadings from industrial point sources and to the limited implementation of nonpoint source pollution abatement programs within the watershed as part of the Milwaukee River priority watershed program. Temperature, dissolved oxygen, and pH levels remained variable with no apparent

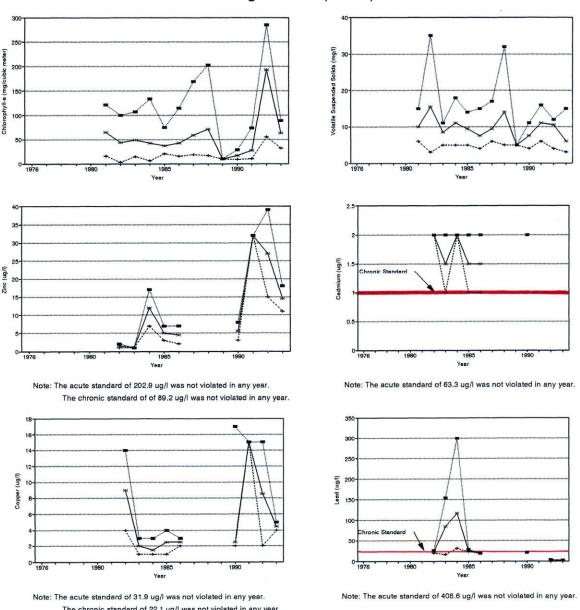
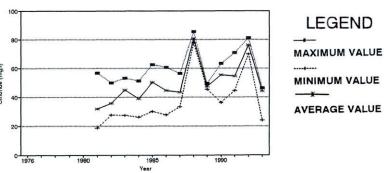
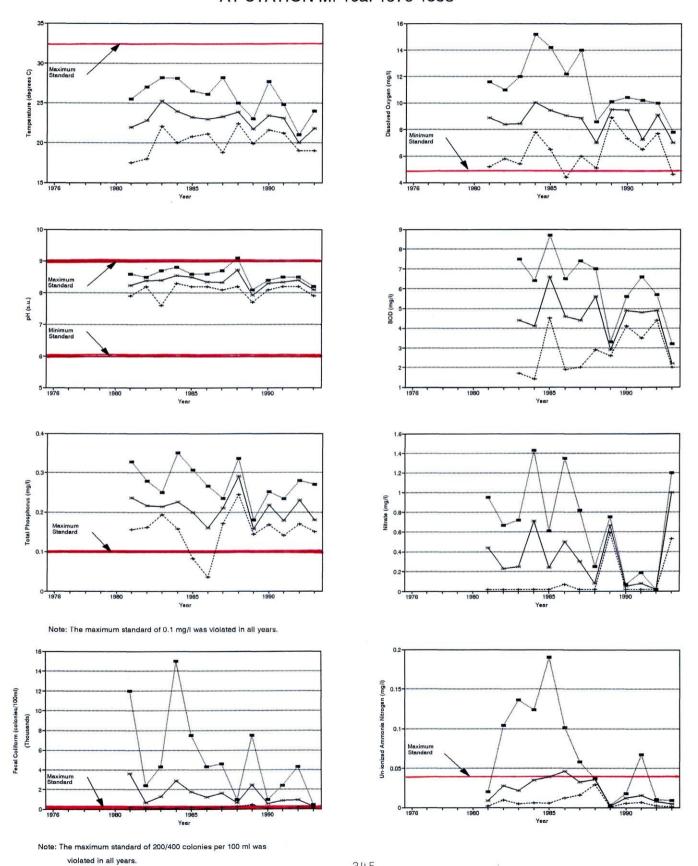

⁹Wisconsin Department of Natural Resources. "Milwaukee River Basin Integrated Management Plans-North Branch, 1990; South Branch, 1992."

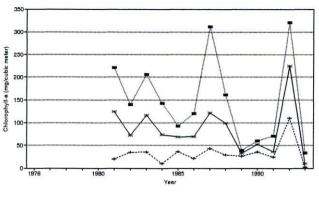
Figure VIII-1 WATER QUALITY DATA FOR THE MILWAUKEE RIVER AT STATION MI-9: 1976-1993

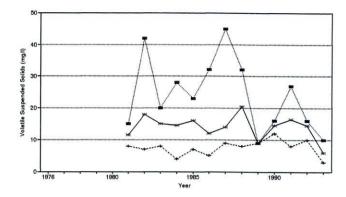


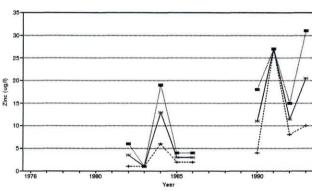
Note: The maximum standard of 200/400 colonies per 100 ml was violated in all years.

Figure VIII-1 (cont'd)


The chronic standard of 22.1 ug/l was not violated in any year.


Note: The maximum standard of 1000 mg/l was not violated in any year. Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.


SUBWATERSHEDS IN THE MILWAUKEE RIVER WATERSHED


Figure VIII-2 WATER QUALITY DATA FOR THE MILWAUKEE RIVER AT STATION MI-10a: 1976-1993

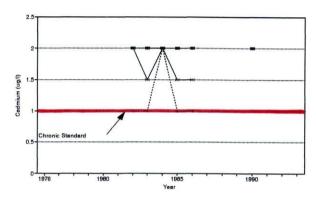
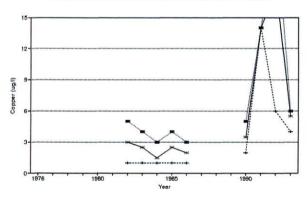
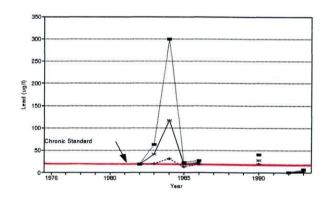


Figure VIII-2 (cont'd)

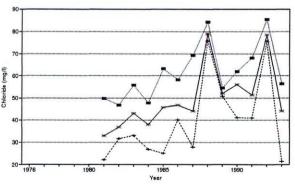


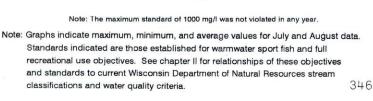


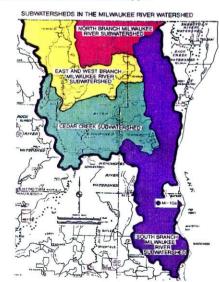
Note: The acute standard of 202.9 ug/l was not violated in any year.

The chronic standard of of 89.2 ug/l was not violated in any year.

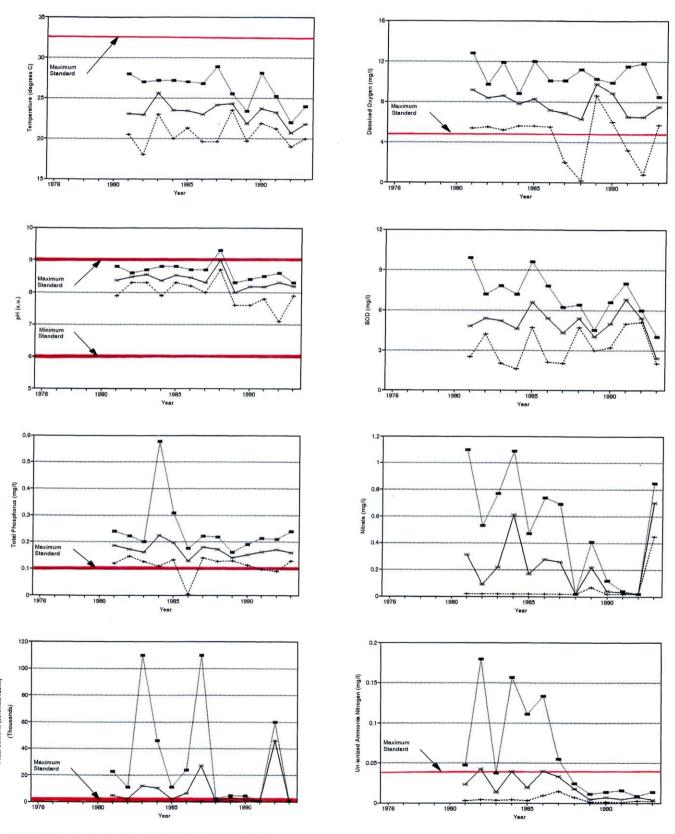
Note: The acute standard of 63.3 ug/l was not violated in any year.




Note: The acute standard of 31.9 ug/l was not violated in any year.


The chronic standard of 22.1 ug/l was not violated in any year.

Note: The acute standard of 408.6 ug/l was not violated in any year.



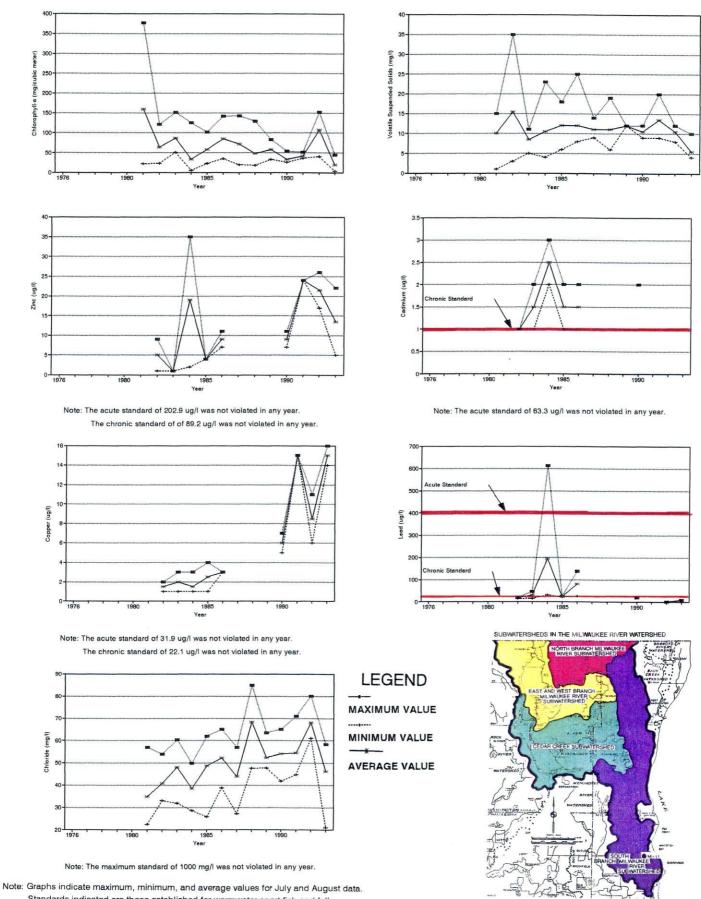
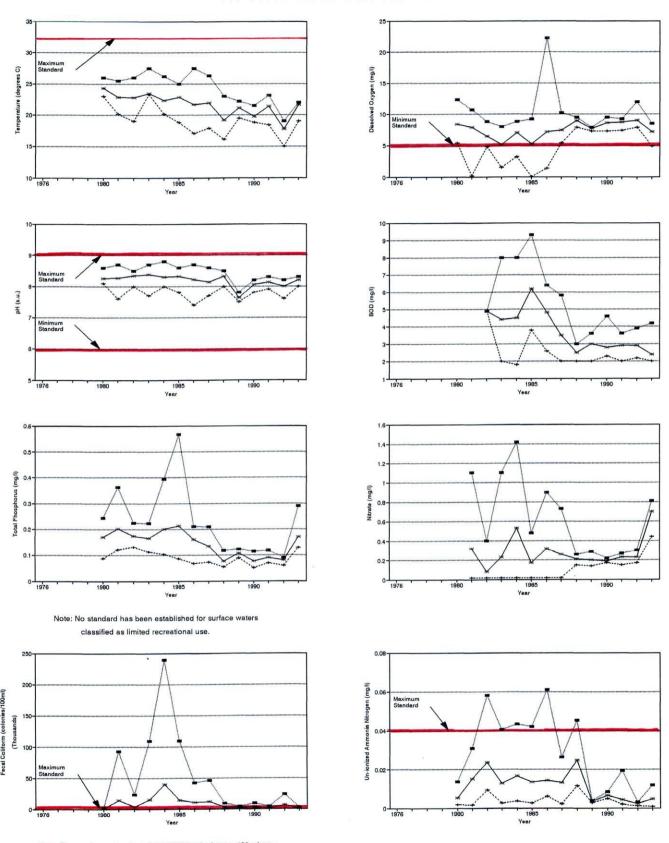

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

Figure VIII-3 WATER QUALITY DATA FOR THE MILWAUKEE RIVER AT STATION MI-11: 1976-1993

Note: The maximum standard of 200/400 colonies per 100 ml was violated in all years.

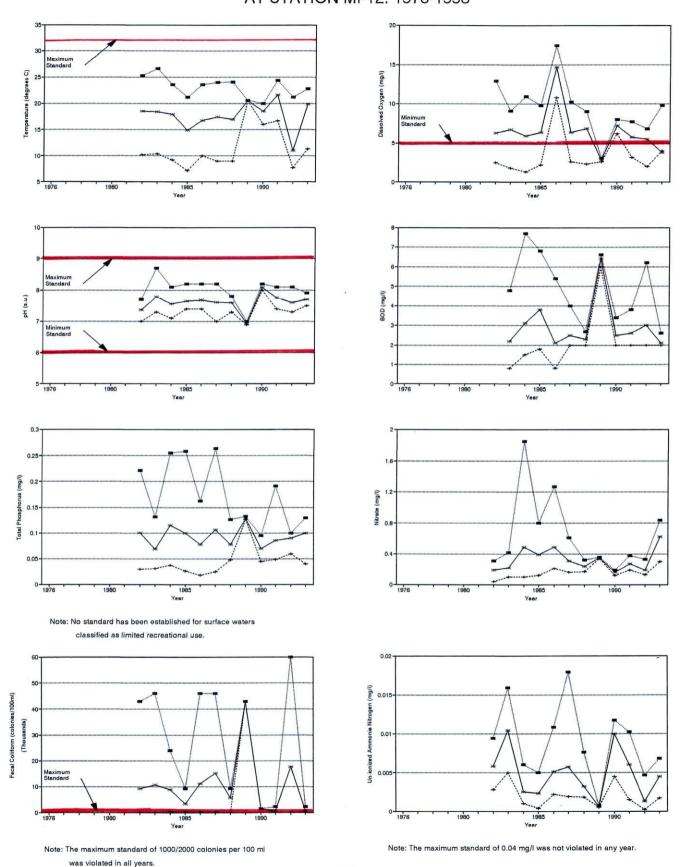

Figure VIII-3 (cont'd)

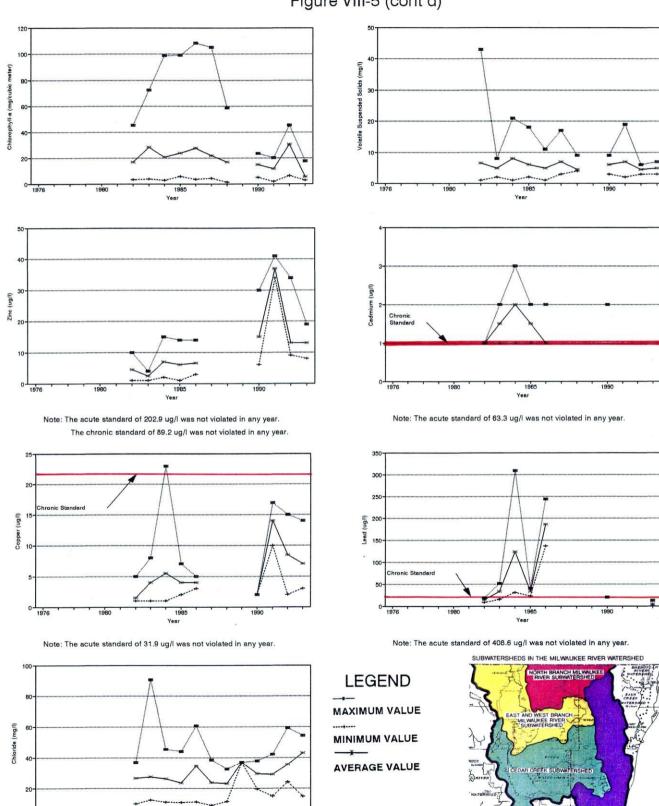
Standards indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

Figure VIII-4 WATER QUALITY DATA FOR THE MILWAUKEE RIVER AT STATION MI-11b: 1976-1993

Note: The maximum standard of 1000/2000 colonies per 100 ml was violated in all years.


Figure VIII-4 (cont'd)


Note: Graphs indicate maximum, minimum, and average values for July and August data.

Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

Figure VIII-5 WATER QUALITY DATA FOR THE MILWAUKEE RIVER AT STATION MI-12: 1976-1993

Figure VIII-5 (cont'd)

Note: The maximum standard of 1000 mg/l was not violated in any year.

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives 352 and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

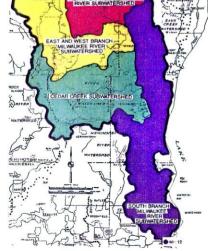
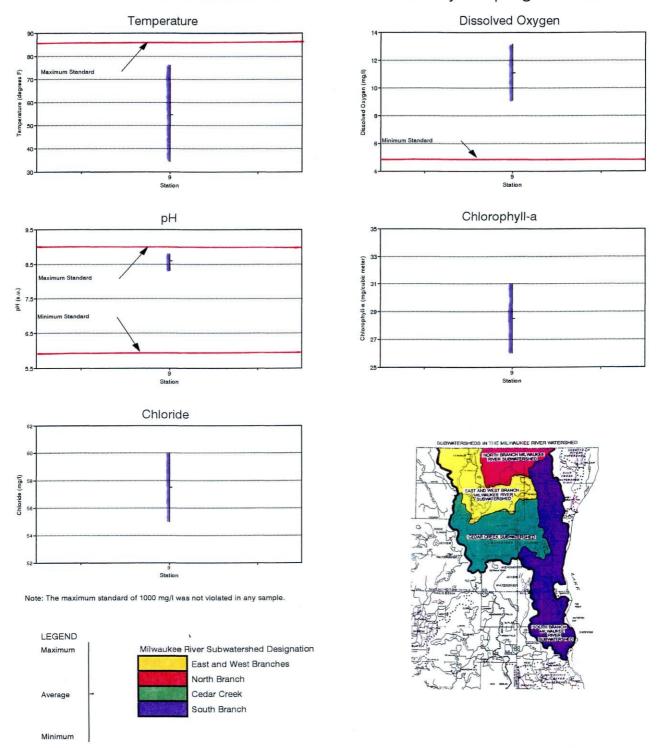



Figure VIII-6
Milwaukee River Watershed Short-Term Water Quality Sampling Data: 1990

Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classification and water quality criteria. Refer to Table VIII-14 for summarized water quality data.

Figure VIII-7
Milwaukee River Watershed Short-Term Water Quality Sampling Data: 1991

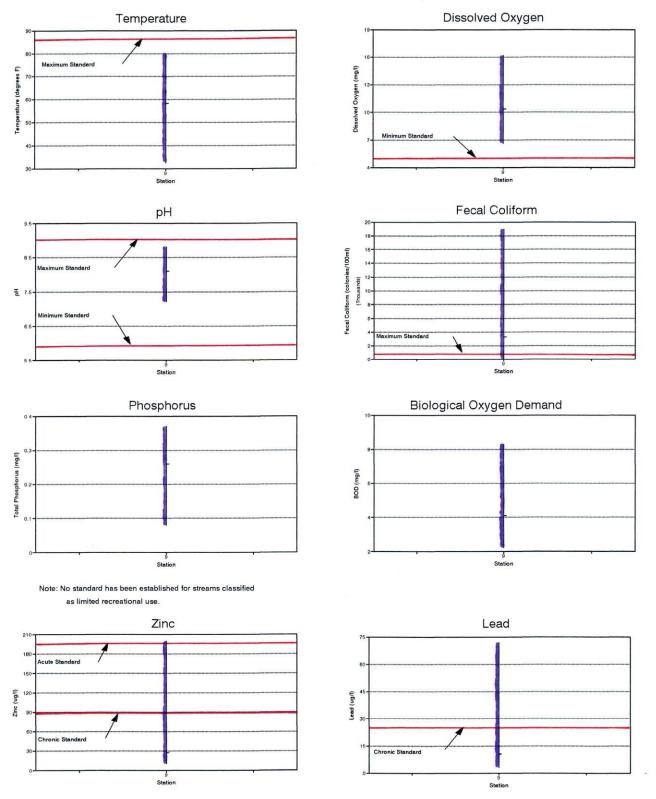
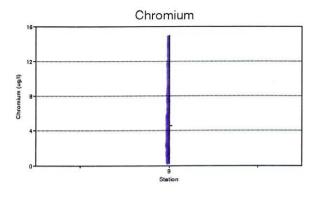
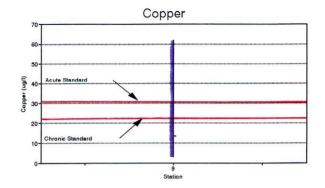
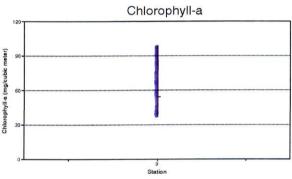
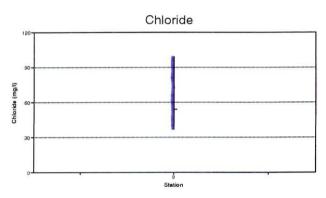






Figure VIII-7 (cont'd)

Standards indicated are those established for warmwater sport fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table VIII-14 for summarized water quality data.

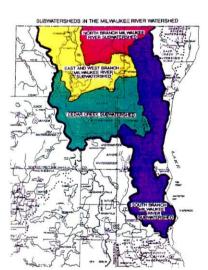
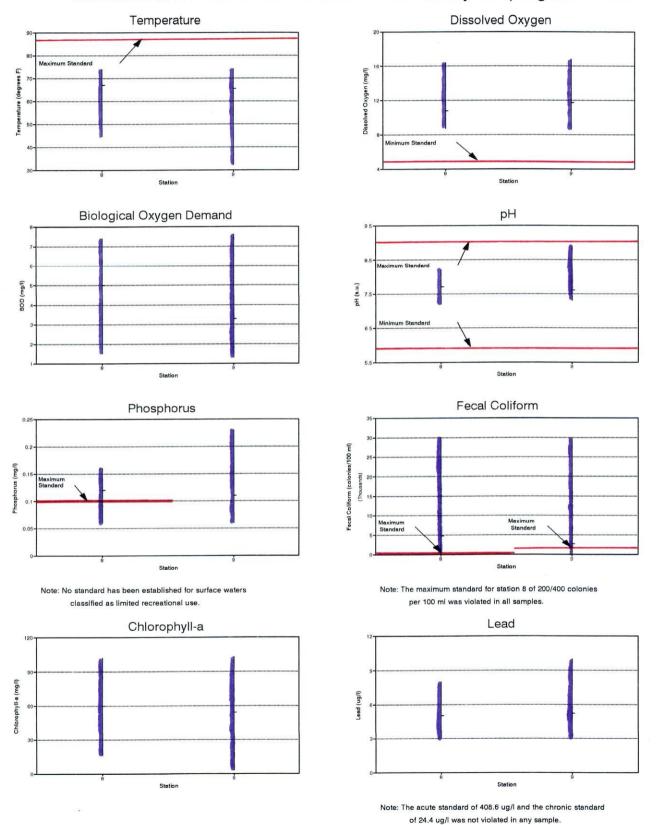
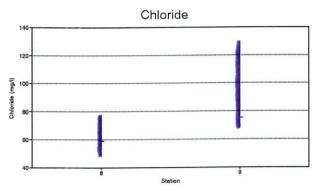
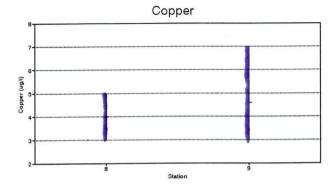
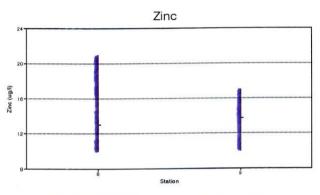
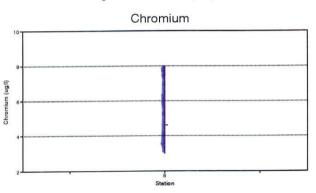
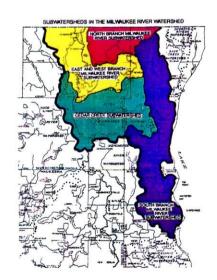





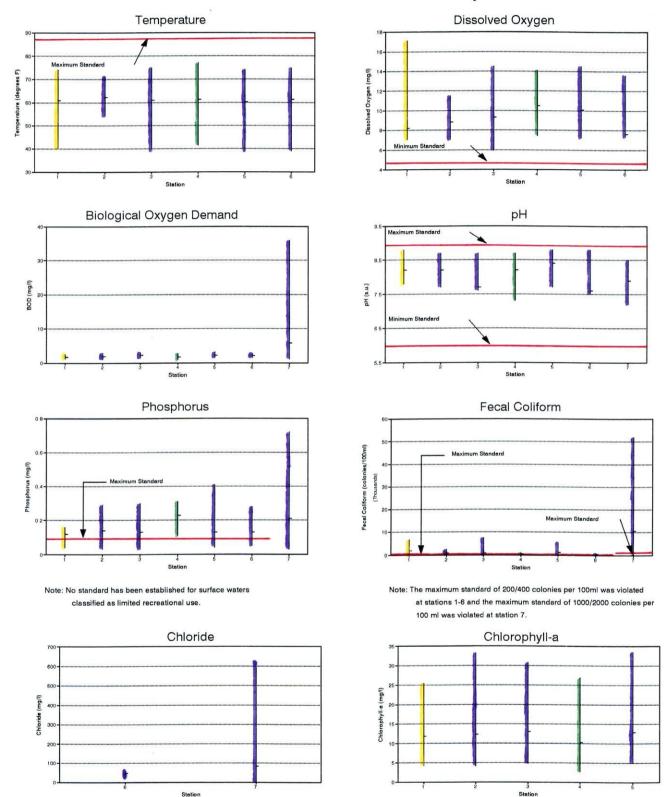
Figure VIII-8
Milwaukee River Watershed Short-Term Water Quality Sampling Data: 1992

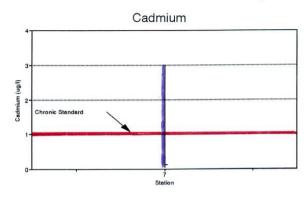

Figure VIII-8 (cont'd)

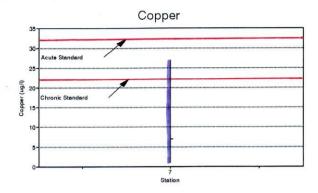


Note: The maximum standard of 1000 mg/l was not violated in any sample.


Note: The acute standard of 31.9 ug/l and the chronic standard of 22.1 ug/l were not violated in any sample.


Note: The acute standard of 202.9 ug/l and the chronic standard of 89.2 ug/l were not violated in any sample.


Standards indicated are those established for warmwater sport fish and full recreational use objectives, with the exception of station 9. Standards indicated for station 9 are those established for warmwater sportfish and limited recreational use. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classification and water quality criteria. Refer to Table VIII-14 for summarized water quality data.


Figure VIII-9
Milwaukee River Watershed Short-Term Water Quality Data: 1993

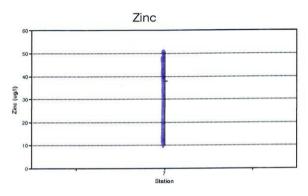
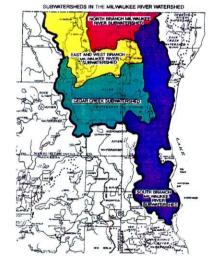

Note: The maximum standard of 1000 mg/l was not violated in any sample.

Figure VIII-9 (cont'd)



Note: The acute standard of 63.3 ug/l was not violated in any sample.

Note: The acute standard of 202.9 ug/l and the chronic standard of 89.2 ug/l were not violated in any sample.

Standards indicated are those established for warmwater sport fish and full recreational use objectives, with the exception of station 7. Standards indicated for station 7 are those established for limited forage fish and limited recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table VIII-14 for summarized water quality data.

Table VIII-14

MILWAUKEE RIVER WATERSHED SHORT-TERM STREAM WATER QUALITY SAMPLING DATA: 1988-1993

Sampling Station Number and Subwatershed ^a	Parameter (units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
1EW	Temperature (°F) Dissolved Oxygen (mg/1) Biological Oxygen Demand (mg/1) pH (S.U.) Phosphorus (mg/1) Fecal Coliform (colonies per 100 ml) Chlorophyll-a (mg/1)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400	40.3-74.1 7.0-17.1 1.2-2.6 7.8-8.8 0.04-0.16 20-6,800 4.2-25.5	No No No Yes Yes 	May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993	11 11 11 11 11 10
2S	Temperature (oF) Dissolved Oxygen (mg/1) Biological Oxygen Demand (mg/1) pH (S.U.) Phosphorus (mg/1) Fecal Coliform (colonies per 100 ml) Chlorophyll-a (mg/1)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400	54.1-71.2 7.0-11.5 1.0-2.9 7.7-8.7 0.03-0.29 40-2,500 4.0-33.2	No No No Yes Yes 	March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993	11 11 10 11 11 11
38	Temperature (oF) Dissolved Oxygen (mg/l) Biological Oxygen Demand (mg/l) pH (S.U.) Phosphorus (mg/l) Fecal Coliform (colonies per 100 ml) Chlorophyll-a (mg/l)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400	40.3-75.0 5.9-14.5 1.5-3.0 7.7-8.7 0.03-0.30 10-7,500 4.7-30.8	No No No Yes Yes 	May-December 1993 May-December 1993 May-December 1993 May-December 1993 May-December 1993 May-December 1993 May-December 1993	11 11 7 12 12 11
4CC	Temperature (oF) Dissolved Oxygen (mg/1) Biological Oxygen Demand (mg/1) pH (S.U.) Phosphorus (mg/1) Fecal Coliform (colonies per 100 ml) Chlorophyll-a (mg/1)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400	41.4-77.2 7.4-14.1 1.0-2.7 7.3-8.7 0.11-0.31 10-900 2.6-26.9	No No No Yes Yes	May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993	11 11 10 11 11 11
58	Temperature (oF) Dissolved Oxygen (mg/l) Biological Oxygen Demand (mg/l) pH (S.U.) Phosphorus (mg/l) Fecal Coliform (colonies per 100 ml) Chlorophyll-a (mg/l)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400	38.8-74.1 7.2-14.5 1.4-3.2 7.7-8.8 0.04-0.41 10-5,500 4.9-33.5	No No No Yes Yes	May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993 May-November 1993	12 12 7 12 12 8 8

Table VIII-14 (continued)

Sampling Station Number and Subwatershed ^a	Parameter (units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
68	Temperature (oF) Dissolved Oxygen (mg/1) Biological Oxygen Demand (mg/1) pH (S.U.) Phosphorus (mg/1) Fecal Coliform (colonies per 100 ml) Chloride (mg/1)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400 Maximum of 1,000	39.0-74.7 7.3-13.6 1.4-2.8 7.5-8.8 0.05-0.28 20-670 22-58	No No No Yes Yes No	May-December 1993 May-December 1993 May-December 1993 May-December 1993 May-December 1993 May-December 1993 May-December 1993	11 11 6 11 11 5
75	Biological Oxygen Demand (mg/l) pH (S.U.) Phosphorus (mg/l) Fecal Coliform (colonies per 100 ml) Chloride (mg/l) Cadmium (µg/l) Copper (µg/l) Zinc (µg/l)	Maximum of 9.0, Minimum of 6.0 Maximum of 1,000/2,000 Maximum of 1,000 Acute of 63.3, Chronic of 1.0 Acute of 31.9, Chronic of 22.1 Acute of 202.9, Chronic of 89.2	1.1-36.0 7.2-8.5 0.03-0.72 10-52,000 2-620 0.04-3.0 1.0-27.0	Yes No Yes- chronic Yes- chronic	March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993 March-December 1993	46 51 50 44 43 64 65
88	Temperature (oF) Dissolved Oxygen (mg/1) Biological Oxygen Demand (mg/1) pH (S.U.) Phosphorus (mg/1) Fecal Coliform (colonies per 100 ml) Chlorophy11-a (mg/1) Chloride (mg/1) Copper (µg/1) Zinc (µg/1) Lead (µg/1)	Maximum of 89.0 Minimum of 5.0 Maximum of 9.0, Minimum of 6.0 Maximum of 0.1 Maximum of 200/400 Maximum of 1,000 Acute of 31.9, Chronic of 22.1 Acute of 202.9, Chronic of 89.2 Acute of 408.6, Chronic of 24.4	44.8-73.9 8.7-16.4 1.5-7.4 7.2-8.2 0.06-0.16 60-30,000 16-102 48-78 3-5 10-21 3-8	No No No Yes Yes No No No	July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992 July-October 1992	9 9 7 8 7 9 6 3 3

Table VIII-14 (continued)

Sampling Station Number and Subwatershed ^a	Parameter (units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
98	Temperature (oF)	Maximum of 89.0	34.3-76.1	No	August-December 1990	3
	•	1	32.4-80.1	No	January-December 1991	17
			32.2-474.1	No	January-October 1992	17
	Dissolved Oxygen (mg/l)	Minimum of 5.0	9.1-13.2	No	August-December 1990	3
	, ,		6.6-16.8	No	January-December 1991	17
			8.6-16.8	No	January-October 1992	17
	pH (S.U.)	Maximum of 9.0, Minimum of 6.0	8.3-8.8	No	August-December 1990	2
			7.2-8.8	No	January-December 1991	16
			7.3-8.9	No	January-October 1992	17
	Phosphorus (mg/l)		.0837		January-December 1991	16
· ·			.0623		January-October 1992	17
	Fecal Coliform (colonies per 100 ml)	Maximum of 1,000/2,000	100-19,000	Yes	January-December 1991	12
	-		10-30,000	Yes	January-October 1992	14
	Biological Oxygen Demand (mg/1)		2.2-8.3		January-December 1991	13
			1.3-7.6		January-October 1992	17
	Chlorophyl-a (mg/l)		26-31		August-December 1990	2
			3-110		January-December 1991	16
			3-103		January-October 1992	13
	Chloride (mg/l)	Maximum of 1,000	55-60	No	August-December 1990	2
			37-92	No	January-December 1991	16
			68-130	No	January-October 1992	14
	Copper (µg/1)	Acute of 31.9, Chronic of 22.9	3-62	Yes-chronic	January-December 1991	15
				& Acute	:	
1			3-7	No	January-October 1992	7
	Zinc (µg/1)	Acute of 202.9,	10-200	Yes-Chronic	January-December 1991	16
		Chronic of 89.2	10-17	No	January-October 1992	15
	Lead (µg/1)	Acute of 408.6,	3-72	Yes-Chronic	January-December 1991	16
	_	Chronic of 24.4	3-10	No	January-October 1992	11
	Chromium (µg/1)		0.2-15		January-December 1991	16
			3-8		January-October 1992	5

aSubwatershed codes are as follows: EW - East-West Branch of the Milwaukee River; N = North Branch of the Milwaukee River; CC = Cedar Creek; S = South Branch of the Milwaukee River. See Map VIII-6 for detailed locations.

bStandards indicated are those established for warmwater sport fish and full recreational use objectives with the exception of Station 7S and 9S. Standards indicated for Station 7S are those established for limited forage fish and limited recreational use objectives. Standards indicated for Station 9S are those established for warmwater sport fish and limited recreational use objectives.

trends, but generally met the standards, with limited exceedances of the dissolved oxygen standard. Phosphorus and fecal coliform levels generally exceeded the standards, while un-ionized ammonia nitrogen levels generally met but occasionally exceeded the standard.

Chloride levels appear to be increasing between 1981 and 1992 at stations, M1-9, 10a, and 11. However, the levels still meet the standards. The increase in chloride levels may be the result of new urban development which has occurred in the watershed in Ozaukee and northern Milwaukee Counties and the associated winter road maintenance.

Review of the data at station M1-12 indicates no apparent significant changes in water quality conditions. Temperature and pH levels remained variable with no apparent trends, but were generally within acceptable limits. Violations of the dissolved oxygen standard occurred some of the time and the fecal coliform levels exceeded the standards most of the time.

The remaining water quality data collected on a short-term basis throughout the watershed do not illustrate trends. However, these data do illustrate that fecal coliform and phosphorus standards are exceeded some of the time in the downstream portions of Cedar Creek, East and West Branch of the Milwaukee River, and in the upper reaches of the Milwaukee River main stem, while the dissolved oxygen standard is generally achieved.

As discussed in the subsequent section, chronic toxicity standards for some metals were exceeded in the lower reach of the Milwaukee River.

Toxic and Hazardous Substances: Available data on toxic pollutants gathered by the Wisconsin Department of Natural Resources during a three year period between 1973 and 1976, indicated that levels of mercury, polychlorinated biphenyls (PCBs) and various biocides--aldrin, heptachlor, heptachlor epoxide and phthalate--exceeded U.S. Environmental Protection Agency standards on at least one occasion from 1973 to 1976. Additional data indicated other heavy metals and toxicants--cadmium, chromium, copper, lead, mercury, nickel, zinc and PCBs--did not violate recommended U.S. Environmental Protection Agency standards. However, such were found to be in the stream sediments.

Recent data on water column toxic and hazardous substances in the Milwaukee River were collected by the U.S. Geological Survey (USGS) and the Milwaukee Metropolitan Sewerage District (MMSD). These data indicate that levels of cadmium and lead have violated chronic toxicity level standards for heavy metals, and that levels of copper occasionally violate chronic toxicity level standards in the lower stream reaches of the Milwaukee River. These metal standards were generally not exceeded at the two most upstream stations. Furthermore, only infrequent and small lead standard violations were reported after 1985.

Post-1976 data on toxic and hazardous substances present in stream sediments in the Milwaukee River were collected by the Wisconsin Department of Natural Resources (DNR), the Milwaukee Metropolitan Sewerage District, and the U.S. Geological Survey. Data collected between 1989 and 1993 by the DNR and USGS at seven stations on the Milwaukee River main stem, and four stations on tributary streams to the Milwaukee River indicated the presence of polycyclic aromatic

hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) at seven sites. Samples obtained from five of these sites exceeded the Lowest Effect Level (LEL) sediment quality screening criteria proposed by the DNR. 10 At Estabrook Park in the City of Milwaukee, the PAH concentration exceeded the Severe Effect Level (SEL) guidelines. Data on heavy metal concentrations in these sediments also generally exceeded the LEL guidelines, as set forth in Table VIII-15 and on Map VIII-6. Concentrations of other toxic substances, including some DDT-derivatives, also exceeded the SEL at five stations.

Data collected in 1990 by the MMSD at seven locations in the Milwaukee River main stem from Lincoln Creek downstream to the Milwaukee harbor indicated the presence of PCBs and PAHs at all sampling stations. Higher levels of PCBs were recorded in those sediments sampled nearer to the harbor, while higher levels of PAHs were observed in those sediments sampled nearer to the confluence with Lincoln Creek. Concentrations of PCBs and PAHs exceeded the proposed LEL guidelines at all stations.

In 1991 and 1992, sediment sampling data were also collected in the Milwaukee River as part of the North Avenue Dam Feasibility Study¹² which was undertaken to analyze potential impacts of a change in the management of the North Avenue Dam. Data collected from mudflat and channel sediments upstream of the dam indicated that the majority of the chemicals sampled exceeded the LEL sediment quality guideline concentrations proposed by the DNR for the study area. Results indicated that higher concentrations of PCBs and PAHs had accumulated in the mudflat sediments than in the channel sediments of the river.

Additional sediment data were collected in Cedar Creek in 1991 by the DNR. 13 Sediments sampled above four dams within the City of Cedarburg were found to be highly contaminated with PCBs which exceeded the LEL guidelines at all stations sampled and the SEL guidelines in the Columbia, Wire & Nail, and Hamilton dams. These sediments were determined to have a high potential to contaminate large volumes of river sediment downstream, particularly during periods of high stream flow.

¹⁰Wisconsin Department of Natural Resources, (draft) <u>Inventory of Statewide</u> <u>Contaminated Sediment Sites and Development of a Prioritization System</u>, June 1994.

¹¹Fan Ni, Michael F. Gin, and Erik R. Christensen, <u>Toxic Organic Contaminants</u> in the Sediments of the Milwaukee Harbor Estuary, Final Report, Milwaukee Metropolitan Sewerage District, 1992.

¹²Woodward-Clyde Consultants, <u>North Avenue Dam Feasibility Study</u>, Final Report, April 1994.

¹³ Steve Westenbroek, <u>Cedar Creek PCB Mass Balance</u>, (draft) Wisconsin Department of Natural Resources, 1993.

Table VIII-15

CONCENTRATIONS OF TOXIC AND HAZARDOUS SUBSTANCES FOUND IN SEDIMENT SAMPLES IN THE MILWAUKEE RIVER WATERSHED: 1989-1993

						Sampling :	Stations					
				Milwa	aukee River Mair	Stem			м	ilwaukee Rive	r Tributari	es
	Substances Sampled	STH 60	Fireman Park	Tennis Club	Kletzsch Park	Esta- brook Park	C&NW RR	Thiens- ville	Lincoln Creek	Fredonia Creek	Mole Creek	Indian Creek
	Heavy Metals (mg/kg)											
365	Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Total Polycyclic	1.0 5.0 30.0 49.0 120.0 0.1 20.0 200.0	6.0 6.0 60.0 45.0 80.0 0.3 30.0 220.0	4.0 3.0 30.0 41.0 80.0 0.2 20.0 180.0	7.0 5.0 50.0 79.0 170.0 0.2 40.0 380.0		3.0 3.0 50.0 70.0 150.0 0.2 30.0 280.0	11	4.0 2.0 20.0 39.0 80.0 0.07 30.0 160.0	7.0 1.0 1.0 44.0 40.0 0.06 20.0 140.0	5.0 1.0 20.0 25.0 20.0 0.07 10.0 76.0	4.0 1.0 20.0 42.0 30.0 0.06 30.0 97.0
	Aromatic Hydrocarbons (mg/kg)											
	Total Polychlorinated Biphenyls (ug/kg)				10.0 (1989, USGS) 0.05 (1993, DNR)	36,000		0.05		10.0	10.0	10.0
	Aldrin (µg/kg) Chlordane Total DDT op+pp DDT pp DDD pp DDE Mirex TCDD NH3-N (mg/kg) O&G (mg/kg) CN (mg/kg)	1.0 10.0 1.0 6.0 2.0 1.0 	1.0 15.0 6.0 25.0 43.0 1.0 0.5	1.0 10.0 2.0 2.0 5.0 1.0 0.9	1.0 10.0 3.0 3.0 5.0 1.0 4.4	 	1.0 10.0 7.0 10.0 5.0 1.0 0.7	 	1.0 20.0 3.0 11.0 4.0 1.0 0.5	1.0 10.0 1.0 5.0 2.0 1.0 0.5	1.0 10.0 1.0 3.0 2.0 1.0 0.8	1.0 10.0 3.0 11.0 20.0 1.0 0.5

NOTE: Values recorded as 0.0 are below the limit of detection.

Source: Wisconsin Department of Natural Resources, U.S. Geological Survey, and SEWRPC.

Data collected in 1992 for a DNR study of the impacts of stormwater runoff on urban streams in Milwaukee County¹⁴ recorded high levels of pollutants within the water column and in bottom sediments of Lincoln Creek. Concentrations of oil and grease, PAHs, and heavy metals in Lincoln Creek all exceeded those concentrations recorded at a reference site located in a non-urbanized portion of the Milwaukee River. These pollutants were linked to stormwater discharges, accentuated during periods of high stream flow.

Since the completion of the initial regional water quality management plan, 63 spills of toxic substances into streams of known locations in the Milwaukee River watershed have been documented by the Wisconsin Department of Natural Resources. Of these spills, 39 have occurred in the main stem of the Milwaukee River and 20 have occurred in Lincoln Creek. The remaining spills have occurred in smaller tributaries of the Milwaukee River, including Beaver Creek and Pigeon Creek. The majority of the substances that were spilled into surface waters were gasoline or related petroleum products.

<u>Water Quality Assessments</u>: Based upon recent available data, the water quality and biological characteristics of the Milwaukee River and its major tributaries were assessed, with the results set forth in Table VIII-16. Where data were available, fish populations and diversity ranged from fair to good.

Fish kills were documented at eight locations in the Milwaukee River watershed-Lincoln Creek, Cedar Creek, Pigeon Creek, Brown Deer Creek, and in the Milwaukee River main stem in the Villages of Grafton and Kewaskum and in the Cities of West Bend and Milwaukee. Fish kills are generally related to seasonal fluctuations in water temperature and levels of dissolved oxygen as well as spawning activity, but can also be related to human activity such as the discharge of pollutants into surface water. Where known, the specific cause of each documented fish kill is shown in Table VIII-16.

Standards are not expected to be met for ammonia nitrogen and phosphorus concentrations, and for fecal coliform levels in the majority of the Milwaukee River main stem from about CTH C in Ozaukee County downstream to the Milwaukee Harbor estuary. Levels of fecal coliform are also not expected to fully meet the standards in Lincoln, Indian, Kewaskum, and Silver Creeks, in the North Branch of the Milwaukee River, and the lower portions of Cedar Creek. In addition, dissolved oxygen concentrations are estimated not to meet the standard in the lower reaches of Cedar Creek, Lincoln Creek, Pigeon Creek, and in the Milwaukee River main stem downstream of Wells Street.

As noted in Table VIII-16, available data on toxics indicate problems with water column toxic pollutants in the lower portions of the Milwaukee River and in Lincoln Creek, and in the lower portions of Cedar Creek. Data collected by the Milwaukee Metropolitan Sewerage District at five stations on the Milwaukee River main stem indicate that the standards for chronic toxicity for cadmium and lead have been exceeded and that violations of chronic toxicity standards for zinc and copper were reported at Station M1-11b. The standards for acute toxicity,

¹⁴John P. Masterson and Roger T. Bannerman, <u>Impacts of Stormwater Runoff on Urban Streams in Milwaukee County, Wisconsin</u>, Wisconsin Department of Natural Resources, 1994.

Table VIII-16

CHARACTERISTICS OF STREAMS IN SUBWATERSHEDS WITHIN THE MILWAUKEE RIVER WATERSHED

											T
	Stream	Fish Population	Recorded Fish		Wate	er Qualit	y Problems ^c	:	Biotic Index	Streambed Sedimentation	Physical Modifications to
SUBWATERSHED Stream Reach	Length (miles)	and Diversity ^a	Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Rating ^d	(substrate)	Channel ⁶
CEDAR CREEK											
a. Cedar Creek u/s Little	8.0	Good		No	No	No	No		Good-fair	Moderate (sand, silt,	Moderate
Cedar Creek inflow b. Little Cedar Creek	7.2	Good								gravel, rubble) Moderate (sand and gravel)	Major
c. Cedar Creek d/s Little Cedar Creek inflow- CTH M	9.8	Good		Yes	No	No	Yes		Fair-poor	Moderate (silt,sand, gravel)	Major
d. Cedar Creek d/s CTH M to STH 60	9.5	Good		Yes	No	No	No		Fair	Moderate (silt,sand, gravel, rubble)	Low
e. Cedar Creek d/s STH 60	6.7 7.3	Good	Yes	No	No	Yes	Yes	Yes	Very good-	Moderate Moderate (sand, silt,	Low
f. North Branch	7.3					, ,	••		fair	gravel, rubble)	
g. Friedens Creek	3.2								Very good -good	Moderate (sand, silt)	Moderate
h. Lehner Creek	<u>1.8</u>	Good							Very good- good		
TOTAL	53.5								9000		
MILWAUKEE RIVER- EAST AND WEST BRANCHES											
a. Milwaukee River d/s North Washington Co line-CTH H	5.4	Good	Yes ^f	No	No	No	No		Excellent ^g	Moderate (sand, gravel, silt)	Low
b. Milwaukee River d/s CTH H to Woodford Drive	4.9	Poor		No	No	No	No			High (sand, gravel, silt, rubble)	
c. Milwaukee River d/s Woodford Drive to STH 33	13.6	Fair	Yes ^f	No	No	Yes	No		Good-poor ^g	High (sand, gravel, rubble)	
d. Milwaukee River d/s STH 33	9.9			No	No	Yes	No		Good	High (sand, gravel, rubble)	
e. Kewaskum Creek	6.4	Good		No	No	No	Yes			Moderate	Major
f. Silver Creek	4.0	Fair		No	No	No	Yes		Good	High (silt, sand, gravel)	Major
g. Quaas Creek	4.9	Good							Very good- fair	Moderate (sand, silt, gravel, rubble)	Low
h. East Branch Milwaukee River d/s north Washington	<u>5.0</u>	Fair								Low (gravel & sand)	Low
County Line TOTAL	54.1										

SUBWATERSHED	Stream Length	Fish Population and	Recorded Fish		Wate	er Qualii	y Problems ^c	;	Biotic Index	Streambed Sedimentation	Physical Modifications to
Stream Reach	(miles)	Diversity ^a	Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Rating ^d	(substrate)	Channel ^e
MILWAUKEE RIVER-NORTH a. North Branch of	8.5	Good		No	No	No	Yes		Excellent ⁹	Moderate-high	
Milwaukee River b. Stony Creek	10.0								-good 	Moderate (silt, gravel)	Moderate
c. Wallace Creek TOTAL	<u>8.6</u> 27.1	Good	••							Low	
MILWAUKEE RIVER-SOUTH											
a. Milwaukee River Upstream STH 33	11.1			No.	No	No	Yes		Good	Moderate (boulder, cobble, gravel)	
b. Milwaukee River downstream STH 33 to STH 57	13.7	Good		No	No	Yes	Yes	Yes	Good	Moderate (boulder, cobble, gravel)	
c. Milwaukee River downstream	4.5	Fair-good	Yes ^h	No	Yes	Yes	Yes	Yes	Good	Low to Moderate (cobble, gravel)	
d. Milwaukee River downstream	13.4	Good		No	Yes	Yes	Yes	Yes	Good	High (cobble, gravel)	
e. Milwaukee River downstream Meguon Road to Brown Deer Rd	6.1		Yes	No	Yes	Yes	Yes	Yes	Good	High (cobble, gravel)	
f. Milwaukee River d/s Brown Deer RdPort Washington Rd.	10.4			No	Yes	Yes	Yes	Yes		High (cobble, gravel)	
g. Milwaukee River d/s Port Wash. Road to North Avenue	3.8		Yes ⁱ	No	Yes	Yes	Yes	Yes		3	
h. Milwaukee River downstream North Avenue to Walnut St.	0.9		, 	No	Yes		Yes	Yes			Moderate
i. Milwaukee River downstream Walnut Street to Wells St.	0.8			No	Yes		Yes	Yes			Moderate
j. Milwaukee River downstream Wells Street to Water St.	0.6			Yes	Yes		Yes	Yes			Moderate
k. Milwaukee River downstream Water Street	0.8			Yes	Yes		Yes	Yes			Moderate
l. Lincoln Creek m. Indian Creek	9.4 1.9	Fair 	Yes	Yes Yes	No No	·	Yes Yes	Yes	Very poor Very Poor		Major Major
n. Brown Deer Creek	1.9		Yes ^j						Very Poor	Moderate (sand, gravel, bubble)	Moderate
o. Pigeon Creek	2.4	Good	Yes ^k	Yes	No	No	No		Fair-Good	Low-moderate (gravel, cobble)	Low
TOTAL	80.7									(graver, cobbre)	

Footnotes follow.

Table VIII-16 (cont'd)

^aBased upon stream appraisal documentation set forth in the DNR Water Resource Appraisals for the Cedar Creek, East/West Branch, North Branch, and South Branch Milwaukee River watershed.

^bUnless otherwise noted, fish kills are assumed to be the result of natural fluctuations in water conditions.

^cThe most recent water quality data available as described in Figures VIII-1 through VIII-5 in addition to data available from DNR Water Resource Appraisals used to evaluate water quality in the Milwaukee River system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Milwaukee River watershed stream reaches based upon year 2000 land use conditions, and current levels of pollution control, if appropriate.

^dExcept where otherwise indicated, biotic index ratings are based upon the Hilsenhoff Biotic Index (HBI) discussed in Wisconsin Department of Natural Resources Technical Bulletin No. 132. "Using a Biotic Index to Evaluate Water Quality in Streams," Hilsenhoff, 1982.

Physical modifications to the channel were defined as: Major if 50 percent or more of the stream reach was modified by structural measures or was deepened or straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

^fReported to be due to a discharge of ammonia.

⁹Based upon the Index of Biotic Integrity (IBI) discussed in U.S. Department of Agriculture, Forest Service, General Technical Report NC-149, "Using the Index of Biotic Integrity (IBI) to Measure Environmental Quality in Warmwater Streams of Wisconsin," Lyons, April 1992.

how fish kills were reported in this stream reach. A light fish kill recorded in 1980 was reported to be a result of cooling water discharge through a storm sewer. The cause of a moderate kill recorded in 1990 was undetermined.

Undetermined source.

Reported to be due to a discharge of lubricating and cutting oils.

^kReported to be due to a discharge of chlorine.

Subsequent sampling in 1987 resulted in an Index of Biotic Integrity (IBI) rating of excellent.

as defined in Chapter II, were exceeded only on very limited occurrences. Since 1985, no significant violations of the lead standard have been reported.

The biotic index ratings, which are biological indicators of water quality within a stream system, ranged from very poor to excellent in the watershed. Where data were available in the Milwaukee River South branch subwatershed, Milwaukee River tributaries generally received poorer biotic index ratings than main stem stream reaches. Moderate to high and high levels of streambed sedimentation were observed in the North Branch of the Milwaukee River and in the Milwaukee River from CTH C downstream to Port Washington Road, respectively. High levels were also noted in the Milwaukee River downstream of the north Washington County line to STH 33 and in Silver Creek. Elsewhere, the levels were generally low to moderate.

Table VIII-17 sets forth the water quality index classifications¹⁵ used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table VIII-17, recent comparative water quality data were available for four stations on the Milwaukee River main stem; one in the Town of Grafton, M1-9; one at Brown Deer Road, M1-10a; one at Port Washington Road, M1-11; and one just upstream of the Milwaukee Harbor estuary, M1-12. These stations are shown on Map VIII-6. The limited comparative data available indicate that water quality conditions from 1974-75 and to 1990-92 have remained "fair" at Stations M1-9, M1-10, and M1-12. Water quality conditions at Station M1-11 have remained "good" from 1974-75 to 1990-92.

A summary of potential pollution sources in the Milwaukee River watershed by stream reach is shown in tabular summary in Table VIII-18. Review of the data indicate that the majority of the conversion of lands from rural to urban uses has occurred in the Milwaukee River South subwatershed and that much of this conversion occurred before the completion of the initial plan. As a result, a relatively small amount of new urban development has occurred in these areas, and much of the development occurs in the form of urban re-development. It should be noted that a majority of the documented spills of toxic substances and the majority of the permitted industrial discharges have also occurred in streams in the Milwaukee River South subwatershed. Data on nonpoint source pollution, public and private sewage treatment plants discharging to surface waters, and additional potential impacts to surface water quality are included in Table VIII-18.

<u>Lakes</u>

Lake water quality data available for use in preparing the initial regional water quality management plan were obtained from the Wisconsin Department of Natural Resources quarterly lake monitoring program for selected lakes and Wisconsin Department of Natural Resources and Southeastern Wisconsin Regional Planning Commission lake use reports. Post-1976 data on phosphorus and chlorophyll concentrations and water clarity for major lakes in the Milwaukee River watershed, where available, are presented in Table VIII-19.

¹⁵For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

Table VIII-17

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS
OF THE MILWAUKEE RIVER WATERSHED 1964, 1974-1975, AND 1990-1992

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July and August 1990 and 1991
Main Stem Stations			
M1-1 M1-2 M1-3 M1-5 M1-6 M1-9 M1-10 M1-11 M1-11b	Fair Fair Good Good Good Fair Fair N/A Fair	Fair Fair Fair Good Fair Fair Good N/A Fair	N/A N/A N/A N/A N/A Fair Fair ^b Good Good Fair
Tributary Stations			
M1-4 M1-7 M1-8	Fair Fair Fair	Fair Fair Fair	N/A N/A N/A
Watershed Average	Fair	Fair	Fair

^a See Map VIII-6 for sampling station locations.

Source: SEWRPC.

 $^{^{\}rm b}$ Recent data collected from the Milwaukee River at Brown Deer Road (Ml-10a) were used for comparison purposes with previous data collected from the Milwaukee River at CTH H (Ml-10), located approximately 3.6 miles upstream from the Brown Deer Road station.

Table VIII-18

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE MILWAUKEE RIVER WATERSHED: 1990

	Extent of Conv	version of Lands					Remaining Po	otential Surfa	ace Water Pollution Sources		
SUBWATERSHED Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstement Efforts ^c
CEDAR CREEK											
Cedar Creek Upstream Little Cedar Creek Inflow	Significant	Insignificant	• •	x	x			3			1,2,3
Little Cedar Creek	Insignificant	Insignificant			x	••					1,2,3
Cedar Creek Down- stream Little Cedar Creek Inflow to CTH M	Insignificant	Insignificant	, 	x	x	1	1	1		Seneca Food Company private sewage treatment plant rec- ommended for abandonment	1,2,3,4
Cedar Creek Downtream CTH M to STH 60	Insignificant	Insignificant			х		1				2,3
Cedar Creek Downstream STH 60	Significantd	Insignificantd		x	x	1		5			1,2,3
North Branch Cedar Creek	Insignificant	Insignificant			x		 ,	1			1,2,3
Friedens Creek	Significant	Insignificant			х						1,2,3
Lehner Creek	Insignificant	Insignificant			х				••	·	1,2,3
MILWAUKEE RIVER-EAST/WE	ST										
Milwaukee River Downstream North Washington County Line to CTH H	Significant ^e	Moderate		x	х	1		3			1,2,3,4
Hilwaukee River Downstream CTH H to Woodford Drive	Significant ^e	Insignificant			x			1			1,2,3
Milwaukee River Downstream Woodford Drive to STH 33	Significantd	Insignificantd	1985 - oil	х	x	1		7			1,2,3
Milwaukee River Downstream STH 33	Insignificant	Insignificant		x	х	1		1			1,2,3
Kewaskum Creek	Insignificant	Insignificant			х						1,2,3
Silver Creek	Moderate ^e	Insignificant		x	x			1	••		1,2,3
Quass Creek	Significant*	Significant			x			1	••	<u> </u>	1,2,3

3/2

Table VIII-18 (cont'd)

			1	,							
	Extent of Conv	ersion of Lands to Urban ^b					Remaining P	otential Surf	ace Water Pollution Sources		
SUBWATERSHED Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^C
East Branch Milwaukee River Down- stream North Washing- ton County Line	Insignificant	Insignificant			x		••				1,2,3
MILMAUKEE RIVER- NORTH					***************************************						
North Branch Milwaukee River	Insignificant	Insignificant			x						1,2,3
Stony Creek	Insignificant	Insignificant			х						1,2,3
Wallace Creek	Significant	Insignificant			x						1,2,3
MILHAUKEE RIVER-SOUTH	-										
Milwaukee River Upstream STH 33	Insignificant	Insignificant		х	х	1		1			1,2,3
Milwaukee River Downstream STE 33 to STE 57	Significant	Insignficant	1989-petroleum	x	. x	1		6			1,2,3
Milwaukee River Downstream STE 57 to CTH C	Significantd	Insignificantd	1989-dye lubricant mixture	x	x	1		2			1,2,3
Milwaukee River Downstream CTH C to Mequon Road	Hoderate ^d	Significantd		x	x			5		Village of Thiensville public sewage treatment plant abandoned in 1987	1,2,3
Milwaukee River Downstream Mequon Road to Brown Deer Road	Moderate ^d	Significant ^d	1986-unknown 1989-drain oil	x	I	••		5			1,2,3
Milwaukee River Downstream Brown Deer Road to Port Washington Road	Insignificantd	Insignificant ^d	1978-gasoline 1980-oil 1985-oil 1987-petroleum 1989-oil 1990-copolymer #55 1990-petroleum products	x	x			12	Leaking Underground Storage Tank permitted to discharge remediation wastewater to Milwaukee River		1,2,3

Table VIII-18 (cont'd)

		Extent of Conv from Rural t	ersion of Lands o Urban ^b		Remaining Potential Surface Water Pollution Sources										
	SUBWATERSHED Stream Reach ^a	Historical 1976-1990	E xpe cted 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^c			
Do	Clwaukee River Nomatream Port Wash- ngton Road to North renue	Insignificant ^d	Insignificant ^d	1978-fuel oil 1983-fuel oil 1985-oil 1986-unknown 1986-chemicals 1987-red foamy stain	x				13	Leaking underground storage tank permitted to discharge remediation wastewater to Milwaukee River		1,2,3			
st	llwaukee River Down- ream North Avenue Walnut Street	Insignificant ^d	Insignificantd	1984-fuel oil 1986-oil/foam 1988-sewage 1988-unknown 1990-heavy material	х				2			1,2,3			
st	llwaukee River Down- ream Walnut Street b Wells Street	Insignificant ^d	Insignificant ^d	1982-gasoline 1983-gasoline 1986-oil 1987-waste oil 1987-red substance 1988-old oil or fuel 1988-unknown 1989-sodium hydroxide	x				3			1,2,3			
st	ilwaukee River Down- rream Wells Street b Water Street	Insignificantd	Insignificant ^d	1980-cil 1983-unknown 1985-cil, waste 1986-unknown 1988-discharge from drain pipe	x				6			1,2,3			
	ilwaukee River Down- tream Water Street	Insignificant ^d	Insignificant ^d	1982-fuel 1983-detergent 1987-sewage	х							1,2,3			

	Extent of Conv from Rural t	ersion of Lands o Urban ^b					Remaining Po	otential Surf	ace Water Pollution Sources		
SUBWATERSHED Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^c
Lincoln Creek	Insignificant	Insignificant ^d	1979-oil (2) 1980-oil 1981-oil 1983-petroleum 1985-oil 1987-sheen 1987-oil (2) 1988-sheen 1988-gas/oil 1988-gas/oil 1989-petroleum products 1990-petroleum sheen (2) 1990-weathered oil 1990-black gritty silt	x	-			31	Leaking underground storage tank permitted to discharge remediation wastewater to Lincoln Creek Leachate seepage from U.S. Army Reserve Center/ Havenwoods Park landfill (abandoned) Village of Whitefish Bay landfill (abandoned) City of Milwaukee landfill (abandoned)		1,2,3
Indian Creek	Insignificantd	Insignificant ^d		x	x	••			·		1,2,3
Brown Deer Creek	Insignificantd	Insignificantd	1988-petroleum 1989-oil	x	x			3			1,2,3
Pigeon Creek	Inisgnificant	Insignificant	1986-paint thinner 1989-clay	x	x	•-					1,2,3

Footnotes follow.

Table VIII-18 (cont'd)

a Includes the tributary drainage area of each stream reach.

b Extent of urban land conversions were determined as a percentage of the watershed as follows:

major > 20% moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

C Letter codes refer to the following ongoing pollution abatement efforts:

1. Construction Erosion Control Ordinances in place

2. Urban Nonpoint Source Controls Implemented

3. Rural Nonpoint Source Controls Implemented

4. Sewage Treatment Plant Upgrading Underway

d Considerable urban development existing pre-1976.

e The amount of post-1976 urban development has increased in comparison to pre-1976 urban development.

Table VIII-19 WATER QUALITY OF THE MAJOR LAKES IN THE MILWAUKEE RIVER WATERSHED

			Total Phosphorus (mg/l)					Chl	orophyll- <u>a</u> (μg/1)		Secchi Disk (feet)				
SUBWATERSHED Lake Name	Area (acres)	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average	Date of Data	Sourceb	Maximum	Minisus	Average	Date of Data	Sourceb
CEDAR CREEK Big Cedar Lake Little Cedar Lake Mud Lake (Ozaukee County)	932 246 245	0.15 0.34 0.08	0.01 0.01 0.01	0.01(187) 0.11(33) 0.04(20)	1985-89 1973-86 1973-75	LTT STORET LSF	46 17.0	2 5.0 	24.0(64) 9.4(5)	1985-89 1985-86 	LTT STORET	17.1 23.0 5.5	4.3 11.75 2.0	9.8(148) 15.8(7) 3.2(7)	1985-89 1991-92 1973-75	LTT SELF-HELP LSF
MILWAUKEE RIVER-EAST/WEST Barton Pond Lucas Lake Silver Lake (Washington) Smith Lake	67 78 118 86	0.02 0.04 0.02	0.01 <0.01 0.02	0.01(10) 0.01(14) 0.02(2)	1985-86 1985-86 1985-86	STORET STORET STORET	10.0 5.0	4.0 2.0	5.7(7) 3.0(3) 5.0(1)	 1980-86 1985 1985	STORET STORET STORET	9.5 6.25	5.9 21.5	8.1(7) 11.5(30) 4.3(1)	 1980-86 1988-91 1985	STORET SELF-HELP STORET
MILWAUKEE RIVER-NORTH Green Lake (Washington) Spring Lake (Ozaukee) Lake Twelve Wallace Lake	71 66 53 52	0.05 0.02 0.02 0.05	0.01 0.01 0.01 0.01	0.03(15) 0.01(13) 0.01(7) 0.03(12)	1985-86 1985-89 1985-86 1985-86	STORET STORET STORET STORET	16.0 5.0 8.0 23.0	5.0 3.0 5.0 5.0	7.9(7) 4.5(6) 7.0(3) 10.2(6)	1980-86 1980-86 1985-86 1980-86	STORET STORET STORET STORET	16.5 9.0 6.9 9.5	3.5 6.25 4.6 6.5	8.95(113) 7.6(5) 5.9(3) 7.78(9)	1989-92 1987 1985-86 1991-92	SELF-HELP SELF-HELP STORET SELF-HELP
MILWAUKEE RIVER-SOUTH Lac du Cours	57			0.05(1)	1979	LSF			25.0(1)	1979	LSF			1.5(1)	1979	LSF

a Number in parenthesis refers to the number of samples taken.

b The following sources were cited:

LSF.......Wisconsin Department of Natural Resources, Lake Survey Forms
LTT.......Long Term Trends Lake Monitoring Program Data: 1985-1987
SELF-HELP....Wisconsin Self-Help Lake Monitoring Program Data: 1986-1988
STORET......U.S. Environmental Protection Agency Water Information Storage and Retrieval System

Source: SEWRPC.

<u>Toxic</u> and <u>Hazardous Substances</u>: Since the preparation of the initial plan, there has only been one reported toxic spill on the major lakes in the Milwaukee River watershed. In 1986 a spill of an unknown substance was reported on Lac du Cours.

<u>Water Quality Assessments</u>: Data from Table VIII-19 were used in the calculation of trophic state indices for each of the major lakes where data were available. Trophic states, indicating degrees of nutrient enrichment in the lakes, were assigned using the Wisconsin Trophic State Index¹⁶ for each major lake in the Milwaukee River watershed where data were available, as indicated in Table VIII-20. The available trophic state index values using the Carlson Trophic State Index are also provided for current and historic conditions, as shown in Table VIII-21. These data are presented using the Carlson Trophic State Index in order to present the newer data on a comparable basis to the historic data which used that Index.

The data available, as shown in Table VIII-20, indicate that all of the lakes may be classified in the mesotrophic to eutrophic range. Mesotrophic indicates lakes with moderate levels of nutrient enrichment whereas eutrophic lakes are nutrient-rich lakes. Big Cedar, Little Cedar, Green, Lucas, and Smith Lakes are all drainage lakes classified in the mesotrophic range. Lake Twelve and Wallace Lake are spring lakes classified as mesotrophic. Spring lake in Ozaukee County is a mesotrophic lake and Silver Lake in Washington County is a slightly mesotrophic lake, both of which are drained lakes. Mud Lake and Lac du Cours¹⁷ are both eutrophic seepage lakes. No current data are available to make assessments of trophic status for Barton Pond, a drainage lake in Washington County. No conclusions regarding changes in water quality conditions can be drawn based upon the limited data available, although in the case of Little Cedar Lake the Carlson index values demonstrate some indication that their water quality has improved marginally during this period.

Fish kills, primarily related to seasonal fluctuations in water temperature and levels, dissolved oxygen or human activity, periodically occur in lakes in the Milwaukee River watershed. Since the initial plan, recorded fish kills in a major lake in the Milwaukee River watershed occurred in Silver Lake (Washington County) in 1984. However, these occurrences do not appear to be chronic. Thus, despite the obvious concern that those episodes create among lake users, they do not appear to warrant special planning considerations at this time.

Compliance with Water Use Objectives

As indicated in Chapter II, the majority of the stream reaches in the Milwaukee River watershed, as of 1993, are generally recommended for warm water sport fish and full recreational uses. Lehner Creek and portions of Quaas and Stony Creeks

¹⁶The Wisconsin State Index is set forth in "Trophic State Index Equations and Regional Predictive Equations for Wisconsin Lakes," R.A. Lillie et al, Research Management Findings, No. 35, May 1993.

¹⁷Since the publication of the previous edition of this water quality management plan--SEWRPC Planning Report No. 30, the surface area of this lake has been revised to 56 acres; hence, it is included as a major lake in this edition.

Table VIII-20

TROPHIC STATE INDEX VALUES FOR MAJOR LAKES WITHIN THE MILWAUKEE RIVER WATERSHED^a

	Wiscons	sin Trophic State	Index Va	ılues ^b
Lake Name	Total-P	Chlorophyll- <u>a</u>	Secchi	Mean
Barton Pond				
Big Cedar Lake	47.5	48.4	43.9	46.6
Little Cedar Lake	64.7	51.6	35.0	50.4
Green Lake	54.6	50.3	43.2	49.4
Lac du Cours	58.6	58.9	71.4	63.0
Lucas Lake	46.1	47.8	47.1	47.0
Mud Lake	56.8		59.0	57.9
Silver Lake (Washington County)	46.1	43.0	42.0	43.7
Smith Lake	51.5	46.8	56.2	51.5
Spring Lake (Ozaukee County)	46.1	46.0	47.9	46.7
Lake Twelve	46.1	49.4	51.6	49.0
Wallace Lake	54.6	52.2	47.7	51.5

 $^{^{\}rm a}$ Wisconsin Trophic State Index Values were calculated using water chemistry data shown in Table VIII-19.

below 44 = oligotrophic

44 - 53 = mesotrophic

54 - 75 = eutrophic

above 75 = hypertrophic

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Wisconsin Trophic State Index ranges:

Table VIII-21

COMPARISON OF TROPHIC STATE INDEX VALUES FOR MAJOR LAKES
IN THE MILWAUKEE RIVER WATERSHED^a

	Carlson Tr	ophic State Ind	ex Values ^b
Lake Name	Satellite Information 1979-1981	Water Chemistry pre-1981	Water Chemistry 1981-1991
Barton Pond			
Big Cedar Lake	46		59
Little Cedar Lake	48	71	59
Green Lake	47		50
Lac du Cours	56	64	
Lucas Lake	47		43
Mud Lake		. 56	
Silver Lake (Washington County)	44		50
Smith Lake			49
Spring Lake (Ozaukee County)	47		43
Lake Twelve	49		45
Wallace Lake	47		59

^a Carlson Trophic State Index values were calulated from available data from spring measurements for phosphorus and from summer measurements for chlorophyll-<u>a</u> and water clarity. Water chemistry values were determined from <u>Wisconsin Lakes-A Trophic Assessment Using Landsat Digital Data</u>, 1993.

b Carlson Trophic State Index Ranges:

below 40 = oligotrophic

40-50 = mesotrophic

50-60 = eutrophic

above 60 = hypertrophic

Source: Wisconsin Department of Natural Resources, U.S. Environmental Protection Agency, and SEWRPC.

are recommended for coldwater fish because of their potential to support trout populations, and are recommended for full recreational uses. Stream reaches recommended for warmwater sportfish and limited recreational uses include the Milwaukee River downstream of North Avenue, and portions of Lincoln and Indian Creeks. Kewaskum Creek, Silver Creek, Pigeon Creek, and portions of Quaas and Wallace Creeks have limitations for sport fish habitat and are recommended for warmwater forage fish and full recreational use. Brown Deer Creek and Lincoln Creek upstream of Silver Spring Drive and from Hampton Avenue to 32nd Street are recommended for limited forage fish and limited recreational uses, while Indian Creek upstream of IH-43 and Lincoln Creek from Silver Spring to Hampton and from 32nd Street to Teutonia Avenue are both recommended for limited aquatic life and limited recreational uses. The remaining streams are recommended for warmwater sport fish and full recreational uses. In addition, as noted in Chapter II, the East Branch of the Milwaukee River from the Fond du Lac-Washington County line downstream to STH 28 has been designated as an "Exceptional Resource Water."

Based upon the available data for sampling stations in the watershed, the main stem of the Milwaukee River and many of its tributaries did not fully meet water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. As part of the Milwaukee River priority watershed planning program, the DNR staff conducted field inspections and limited sampling in order to assess the water quality and biological conditions on all of the streams in the Milwaukee River watershed. investigations indicated that the majority of the streams in the watershed did not fully meet the recommended water use objectives. Based upon a review of the data summarized in Figures VIII-1 through 9 and in Table VIII-14 and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of fecal coliform and phosphorus standards occur in the majority of the stream reaches in the watershed. However, the recommended water use objectives may potentially be met in Lehner Creek and in portions of Quaas and Stony Creeks, based upon the observed uses in those streams. In addition, it is expected that portions of the upper reaches of the East and West Branches of the Milwaukee River and some of their tributaries likely do meets the standards associated with the recommended water use objectives.

The waters of lakes in the Milwaukee River watershed are recommended for the maintenance of a warm water sport fishery and full recreational use. Mud Lake is recommended for limited aquatic life and limited recreational use. All of the lakes for which complete water quality data were available between 1965 and 1975 violated the standards for all parameters—total phosphorus of 0.02 mg/l, dissolved oxygen and fecal coliform—recommended by the Commission. Modeling data developed in the initial plan indicates that none of the lakes fully met the phosphorus standard.

As shown in Table VIII-19, recent monitoring data are available for Big Cedar Lake, Little Cedar Lake, Lucas Lake, Silver Lake (Washington County), Smith Lake, Green Lake (Washington County), Spring Lake (Ozaukee County), Lake Twelve, Wallace Lake, and Lac du Cours to assess the current compliance with water quality standards for the major lakes in the Milwaukee River watershed. Based upon those data as summarized in the Carlson Trophic State Index values set forth in Table VIII-6, it may be expected that Big Cedar Lake, Little Cedar Lake, Green Lake, Mud Lake, Silver Lake, and Wallace Lake would have total

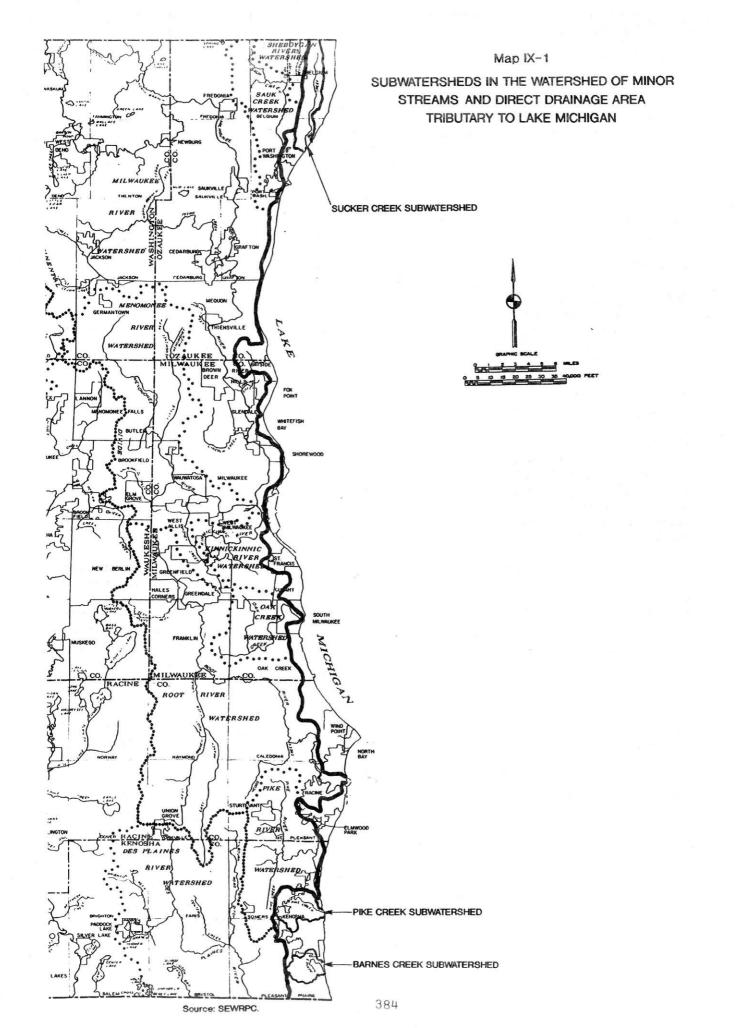
phosphorus levels exceeding the 0.02~mg/l standard, which is represented by a TSI value in excess of approximately 47.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon local nonpoint source pollution abatement planning and land use decisions, the only significant water quality management issue which remains to be addressed is the level of control which is needed and which is achievable for urban nonpoint source pollution abatement. It is recommended that this issue be examined further following a period of implementation of the ongoing nonpoint source pollution priority watershed program, taking into account subsequent monitoring data and levels of funding available and anticipated.

A future amendment to the regional plan for the Milwaukee River watershed may potentially be developed under the facility plan update initiated by the Milwaukee Metropolitan Sewerage District in 1995. That plan update is anticipated to constitute an amendment to the regional plan once it is adopted by all of the agencies involved.

Chapter IX


WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975 -- the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the minor streams and direct drainage area tributary to Lake Michigan through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the watershed of minor streams and direct drainage area tributary to Lake Michigan as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.

The watersheds of numerous small creeks and streams in the extreme eastern portion of the Region, as well as the watersheds of the Milwaukee, Menomonee, Kinnickinnic, Root, and Pike Rivers, and Oak and Sauk Creeks, drain directly to Lake Michigan. For convenience, the group of small watersheds which are directly tributary or tributary through small streams to Lake Michigan is considered as a single unit in this plan update--the watershed of minor streams and direct drainage area tributary to Lake Michigan. The Milwaukee, Menomonee, Kinnickinnic, Root, and Pike River watersheds, and Oak and Sauk Creek watersheds are covered in separate chapters of this plan.

The watershed of minor streams and direct drainage area tributary to Lake Michigan encompasses the watersheds of Sucker Creek in the northern portion of the Region and Pike Creek and Barnes Creek in the south, as well as the direct drainage riparian lands to Lake Michigan in Kenosha, Milwaukee, Ozaukee and Racine Counties. The portion of this composite watershed contained within the Region--about 93-square miles--is only a small part of a much larger Lake Michigan watershed. Rivers and streams within this watershed are part of the St. Lawrence River drainage system which lies east of the subcontinental divide. The boundaries of the watershed of minor streams and direct drainage area tributary to Lake Michigan, together with the locations of the main surface water courses draining to Lake Michigan, are shown on Map IX-1.

Within the Southeastern Wisconsin Region, the watershed of minor streams and direct drainage area tributary to Lake Michigan contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the watershed of minor streams and direct drainage area tributary to Lake Michigan since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban uses has the potential to impact on water quality as a result of increased point source and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table IX-1 summarizes the existing land uses in the watershed of minor streams and direct drainage area tributary to Lake Michigan in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed contains numerous urbanized areas, 48 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 29 percent of the total area of the watershed in agricultural and related rural uses, about 4 percent in woodlands, about 4 percent in water and wetlands, and about 11 percent in other open lands. The remaining 52 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map IX-2.

Within the watershed of minor streams and direct drainage area tributary to Lake Michigan, major concentrations of urban development exist in all four Lake Michigan shoreline counties. Since 1975, only limited development has been occurring in the direct drainage area, primarily within the City of Mequon in Ozaukee County, the Towns of Caledonia and Mount Pleasant in Racine County, and the Village of Pleasant Prairie in Kenosha County.

Within the Barnes Creek subwatershed, urban-related land uses are located in the northern portion of the subwatershed, in and adjacent to the City of Kenosha. Small concentrations of residential land uses are also located in the southeastern portion of the subwatershed, along STH 174 and CTH Q.

The Pike Creek subwatershed, which lies almost entirely within the City of Kenosha, is highly urbanized, with only some remaining open space and scattered urban development located in the northwest portion of the subwatershed, north of STH 142, in the Town of Somers. One major industrial center, located just west of the downtown area between CTH K and STH 158, lies within the subwatershed.

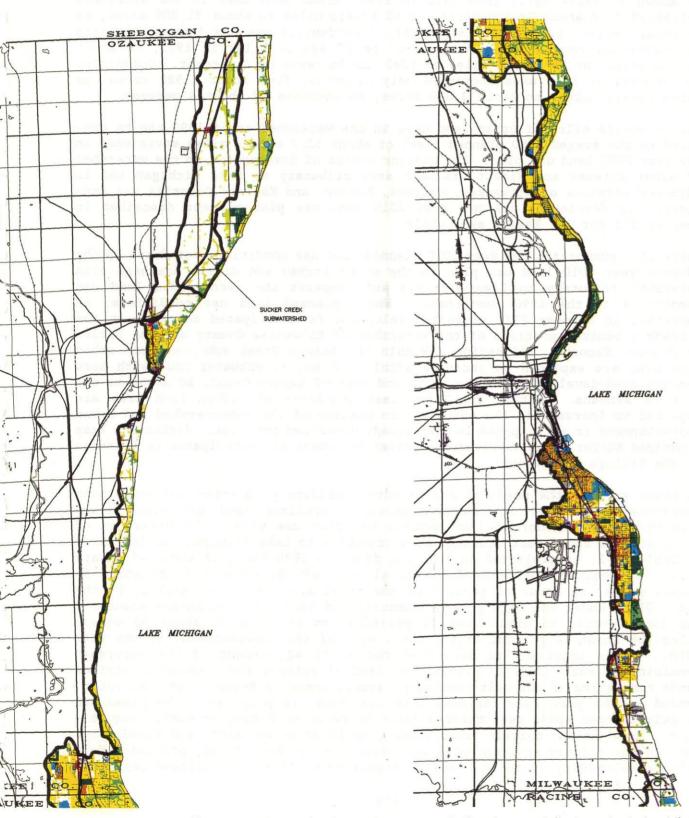
Table IX-1

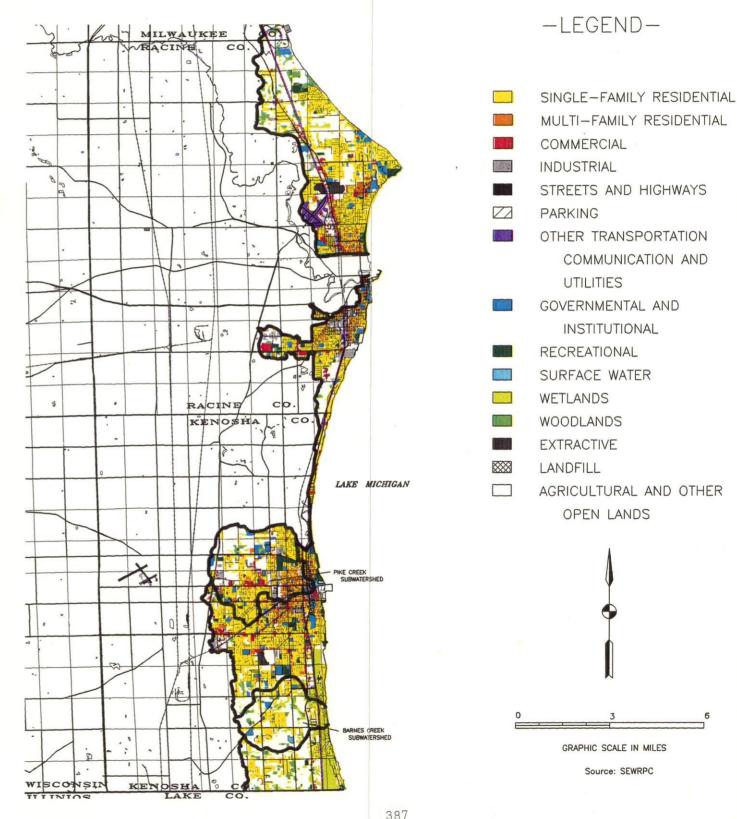
LAND USE IN THE WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA
TRIBUTARY TO LAKE MICHIGAN: 1975 and 1990a

	1	975	1	990	Change :	1975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	14,948	25.0	16,107	26.9	1,159	7.8
Commercial	700	1.2	827	1.4	127	18.1
Industrial .	1,275	2.1	1,225	2.0	- 50	3.9
Transportation,		ł			i	
Communication,						
and Utilities ^b	8,756	14.6	9,509	15.9	753	8.6
Governmental and						
Institutional	1,629	2.7	1,666	2.8	37	2,3
Recreational	1,553	2.6	1,869	3.1	316	20.3
Subtotal	28,861	48.2	31,203	52.1	2,342	8.1
Rural						
Agricultural						
and Related	19,879	33.3	17,110	28.6	-2,769	-13.9
Lakes, Rivers,						-
Streams and				1.		
Wetlands	2,402	4.0	2,352	3.9	- 50	- 2.1
Woodlands	2,301	3.9	2,350	3.9	49	2.1
Open Lands ^c , Landfills,		ł	ł	1		
Dumps, and Extractive	6,349	10.6	6,876	11.5	527	8.3
Subtotal	30,931	51.8	28,688	47.98	-2,243	- 7.3
Total	59,792	100.0	59,891	100.0	99d	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.


b Includes all off-street parking.


c Includes both rural and urban open lands.

 $^{^{\}rm d}$ The change in total area of the watershed is the net effect of Lake Michigan shoreline erosion and accretion and of landfill activities.

MAP IX-2 LAND USES FOR THE WATERSHED OF MINOR STREAMS AND

DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1990

The watershed of minor streams and direct area tributary to Lake Michigan is about 93 square miles in areal extent, or about 4 percent of the total Region. In 1990, about 49 square miles, or about 52 percent of the watershed, was in urban land uses.

Within the Sucker Creek subwatershed, only limited urban development has occurred in the Village of Belgium and in and around the unincorporated place of Lake Church, as the subwatershed is primarily an agricultural area. Scattered urban-related land uses are additionally located along the CTH LL corridor in the Towns of Belgium and Port Washington.

As shown in Table IX-1, from 1975 to 1990, urban land uses in the watershed increased from about 28,900 acres, or 45 square miles to about 31,200 acres, or 49 square miles, or by about 8 percent. Residential use has increased within the watershed from about 15,000 acres, or 23 square miles in 1975, to about 16,100 acres, or 25 square miles in 1990, an increase of 8 percent. Commercial and industrial land uses increased only slightly, from about 1,980 acres, or three square miles, to about 2,050 acres, an increase of about 4 percent.

The 49 square miles of urban land uses in the watershed as of 1990 can be compared to the staged 1990 planned level of about 52.7 square miles envisioned in the year 2000 land use plan. The current status of development in the watershed of minor streams and direct drainage area tributary to Lake Michigan and in adjacent portions of Milwaukee, Ozaukee, Racine, and Kenosha Counties was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table IX-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the minor stream and direct drainage area watershed tributary to Lake Michigan and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban redevelopment is anticipated to occur in the already urbanized portions of the watershed of Milwaukee County and the Cities of Mequon, Kenosha, and Racine. Within the Barnes Creek subwatershed, urban land uses are expected to increase within the entire subwatershed, with more concentrated development to the north and west of Barnes Creek, adjacent to the City of Kenosha. Within the Pike Creek subwatershed, urban land uses are expected to increase in the northwestern portion of the subwatershed and urban redevelopment is anticipated in the already urbanized portions. Within the less urbanized Sucker Creek subwatershed, urban land uses are anticipated to increase in the Village of Belgium.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the watershed of minor streams and direct drainage area tributary to Lake Michigan, as indicated in Table IX-2, is projected to increase from the 1990 total of about 49 square miles, or about 52 percent of the total area of the watershed, to about 54 square miles, or about 58 percent of the total area of the watershed, by the year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 56 square miles, or about 60 percent of the total area of the subwatershed, by the year 2010. It is important to note that the 40 to 42 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features and, as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space uses through joint State-local zoning or public acquisition. In addition, certain other lands classified as wetlands, and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban

EXISTING AND PLANNED LAND USE IN THE WATERSHED OF MINOR STREAMS AND
DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: ACTUAL 1990 AND PLANNED 2010^a

Ī				Yea		mediate Growt	:h -	Year 2010 High Growth - Decentralized Land Use				
		Existing 1990		20	10	Change 1990-2010		20:	10	Change	1990-2010	
	Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	
389	Urban Residential Commercial Industrial Transportation, Communication, and Utilitiesb Governmental and Institutional Recreational	16,107 827 1,225 9,509 1,666 1,869	26.9 1.4 2.0 15.9 2.8 3.1	18,137 815 1,410 10,123 1,755 2,338	30.3 1.4 2.4 16.9 2.9 3.9	2,031 - 12 185 614 89 469	12.6 - 1.5 15.1 6.5 5.3 25.1	19,108 841 1,527 10,495 1,786 2,403	31.9 1.4 2.6 17.5 3.0 4.0	3,001 14 302 986 120 534	18.6 1.7 24.7 10.4 7.2 28.6	
A PARTIE DE LA COMPANION DE LA	Subtotal Rural Agricultural and Related Lakes, Rivers, Streams, and Wetlands Woodlands Open Lands ^C , Landfills, Dumps, and Extractive Subtotal	31,203 17,110 2,352 2,350 6,876	28.6 3.9 3.9 11.5	34,578 16,196 2,249 2,292 4,576	27.0 3.8 3.8 7.6	3,375 - 914 - 103 - 58 -2,300	- 5.3 - 4.4 - 2.5 -33.4	36,160 14,985 2,249 2,282 4,215	25.0 3.8 3.8 7.0	-2,125 - 103 - 68 -2,661	-12.4 - 4.4 - 2.9 -38.7	
	Total	59,891	100.0	59,891	100.0	0		59,891	100.0	0		

Table IX-2

Source: SEWRPC.

a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

C Includes both rural and urban open lands.

land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 45 square miles in 1990 to about 40 square miles in the year 2010 under the intermediate growth-centralized land use plan and to about 37 square miles under the high growth-decentralized land use plan, decreases of about 12 and 17 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the watershed of minor streams and direct drainage area tributary to Lake Michigan--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary sewer service areas located within the watershed of minor streams and direct drainage area tributary to Lake Michigan.

With regard to the point source plan element related to the watershed of minor streams and direct drainage area to Lake Michigan, the most significant recommendations in the initial plan and the most significant implementation actions are related to the Milwaukee Metropolitan Sewerage District's water pollution abatement program. This program includes: rehabilitation of the sanitary sewer system; construction of relief sewers; improvement and expansion of the Jones Island and South Shore sewage treatment plants; provision of large subterranean conveyance and storage-deep tunnel facilities to contain separate and combined sewer peak flows in excess of the capacity of the sewerage system; development of a solids management program; and provision of trunk sewers to serve the various communities comprising the District service area. As of 1993, the District's pollution abatement program was nearing completion, with the deep tunnel system expected to be online during 1994.

It should be noted that, during 1995, the Milwaukee Metropolitan Sewerage District initiated work on an update of its Section 201 sewerage facility plan¹ for the entire Milwaukee metropolitan service area. The update will have a plan year 2010, the same as the update of the regional plan. It is recommended that the facility plan re-examine certain system level decisions that were made in the past including trunk sewer needs, and the cost-effectiveness of retaining the one remaining small sewage treatment plant in the Milwaukee metropolitan area--the City of South Milwaukee plant. The resultant sewerage facilities plan update is intended, then, upon its adoption by all of the agencies concerned to constitute an amendment to the regional water quality management plan herein

¹ Milwaukee Metropolitan Sewerage District, MMSD Wastewater System Plan, June 1980.

presented. Such an amendment could impact on the facilities within the water-shed of minor streams and direct drainage area tributary to the Lake Michigan watershed.

Public and Private Wastewater Treatment Systems and Sewer Service Areas Existing Conditions and Status of Plan Implementation: In 1975, there were eight public sewage treatment plants located in the watershed of minor streams and direct drainage area tributary to Lake Michigan, as shown on Map IX-3. Milwaukee Metropolitan Sewerage District (MMSD) Jones Island and South Shore plants, the Cities of Port Washington, South Milwaukee, Racine, and Kenosha sewage treatment plants, and the North Park Sanitary District sewage treatment plants discharged directly or indirectly through harbors to the coastal waters of Lake Michigan. The Pleasant Park Utility Company plant discharged to Lake Michigan via a drainage ditch. Of these eight plants, the plants operated by the North Park Sanitary District and Pleasant Park Utility Company were abandoned after 1975, as recommended in the initial plan. The status of implementation in regard to the abandonment, upgrading and expansion, and construction of the public and private sewage treatment plants in the watershed of minor streams and direct drainage area tributary to Lake Michigan, as recommended in the initial regional water quality management plan, is summarized in Table IX-3.

As can be seen by review of Table IX-3, full implementation of the initial plan would provide for the upgrading, as needed, of three plants--the Milwaukee Metropolitan Sewerage District Jones Island and South Shore Plants, and the City of South Milwaukee plant. The initial plan also included recommendations for the expansion of the City of Kenosha, City of Racine, and City of Port Washington sewage treatment plants, as well as the abandonment of the North Park Sanitary District and Pleasant Park Utility Company plants. Implementation of these recommendations has been largely completed with the exception of the upgrading of the City of South Milwaukee plant. No action has yet been taken with regard to this plant. Selected characteristics of the public sewage treatment plants currently existing in the watershed are given in Table IX-4.

In addition to the publicly-owned sewage treatment facilities, five private sewage treatment plants were in existence in 1975 in the watershed of minor streams and direct drainage area tributary to Lake Michigan. These five plants served the following land uses: the Chalet-on-the-Lake Restaurant, the Port Country Club, the Siennadale Motherhouse, the Sisters of Notre Dame Academy (currently Concordia College), and the Wisconsin Electric Power Company Oak Creek Plant.

As indicated in Table IX-3, all five of the private sewage treatment plants in the watershed were recommended to be abandoned in the initial plan. As of 1990, four of the five plants had been abandoned. As of 1994, the Concordia College sewage treatment plant was continuing operations.

The initial regional water quality management plan included a set of specific options to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the watershed of minor streams and direct drainage area tributary to Lake Michigan. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the

Table IX-3

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1990

	N. 1 C PCC1	Plan	71
Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
City of Kenosha	Lake Michigan	Expand	Partially competed ^a
Milwaukee Metropolitan Sewerage District-Jones Island Plant	Lake Michigan via Milwaukee outer harbor	Upgrade	Construction underway
Milwaukee Metropolitan Sewerage District- South Shore Plant	Lake Michigan	Upgrade	Construction underway
City of Port Washington	Lake Michigan	Expand	Construction underway
City of Racine	Lake Michigan	Expand	Partially completed, construction underway for additional plant improvements, including equalization basin ^b
City of South Milwaukee	Lake Michigan	Upgrade	No action
North Park Sanitary District	Lake Michigan	Abandon plant	Plant abandoned (1988)
Pleasant Park Utility Company	Lake Michigan via drainage ditch	Abandon plant	Plant abandoned (1990)
Private Sewage Treatment Plants			
Chalet-on-the-Lake Restaurant	Lake Michigan	Abandon plant	Plant abandoned (1981)
Port Country Club ^C	Soil absorption	Abandon plant	Plant abandoned (1980)
Siennadale Motherhouse	Bartlett Creek	Abandon plant	Plant abandoned (1990)
Concordia University ^d	Lake Michigan	Abandon plant	No action
Wisconsin Electric Power Company-Oak Creek Plant	Lake Michigan	Abandon plant	Plant abandoned (1986)

aPlant expansion was completed in 1994.

Source: SEWRPC.

b Plant expansion was completed in 1991.

^C Most recently known as the Squires Country Club.

d Formerly Sisters of Notre Dame Academy.

Table IX-4

SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE

TREATMENT PLANTS IN THE WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1990

Name of Public Sewage Treatment Plant	1990 Estimated Total Area Served (square mile)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Major Sewage Treatment Unit Processes ^a	Name of Receiving Water to which Effluent is Disposed	WPDES Permit Expiration Date
City of Kenosha	20.0	88,800	1941, 1967, 1984	Clarification, phosphorus removal, activated sludge, clarification, chlorination, dechlorination	Lake Michigan	6/30/98
Milwaukee Metropolitan Sewrage District- Jones Island Plant			1925, 1935, 1969, 1970, 1990	Phosphorus removal, activated sludge, clarification, chlorination, dechlorination	Lake Michigan via Milwaukee outer harbor	3/31/99
Milwaukee Metropolitan Sewerage District- South Shore Plant	255.4	1,036,000	1969, 1974, 1990	Clarification, activated sludge, clarification, phosphorus removal, chlorination, dechlorination	Lake Michigan	3/31/99
City of Port Washington	2.5	9,300	1956, 1972, 1990	Activated sludge, contact stabilization, clarification, phosphorus removal, ultraviolet disinfection	Lake Michigan	6/30/97
City of Racine	32.25	124,400	1938, 1967, 1977, 1989	Equalized basin, clarification, phosphorus removal, activated sludge, chlorination	Lake Michigan	6/30/96
City of South Milwaukee	4.8	21,000	1937, 1952, 1962, 1972, 1985	Activated sludge, clarification, phosphorus removal, chlorination	Lake Michigan	6/30/97

Table IX-4 (continued)

		Hydraul	ic Loading (ngd)		BOD5 Loadi	ng (pounds p	per day)	Susp	ended Solids	Loading (pe	ounds per day)
	Exis	ting			Exis	ting			Exis	ting		
Name of Public Sewage Treatment Plant	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Flow Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Flow Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Flow Exceeded the Design Capacity
City of Kenosha	23.02	35.09	28.6 ^c	1	16,907	20,474	29,700	0	24,647	34,445	34,300	1
Milwaukee Metropolitan Sewerage District- Jones Island Plant	123.00	139.30	200.0	0	268,757	307,551	323,600	o	273,760	388,564	332,000	2
Milwaukee Metropolitan Sewerage District- South Shore Plant	101.00	158.00	150.0	1	118,66	141,987	265,000	0	152,089	196,434	265,000	o
City of Port Washington	1.42	1.72	3.1	0	1,803	2,231	4,315	0	2,237	2,737	5,386	0
City of Racine	28.80	43.90	30.0d	3	23,212	26,374	61,300	0	32,887	41,275	50,000	0
City of South Milwaukee	3.45	5.10	6.0	0 *	3,995	5,642	11,000	0	5,850	9,836		0

a In addition, plants typically include headworks and miscellaneous processes such as pumping, flow-metering and sampling, screening, and grit removal, as well as sludge handling and disposal facilities.

b Loadings data were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data.

C In 1994, the City of Kenosha completed a sewerage system upgrading and expansion project, including 30.0-million gallon equalization and wastewater storage facilities for its sewerage system, resulting in a hydraulic design capacity of 28.6 mgd on an average annual basis and 68 mgd on a wet weather average basis.

d In 1994, the City of Racine was preparing facility planning for sewerage system upgrading and expansion.

Source: Wisconsin Department of Natural Resources and SEWRPC.

municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social effects that may be experienced due to sludge disposal. At the present time, such reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were nine sewer service areas identified within, or partially within, the watershed of minor streams and direct drainage area tributary to Lake Michigan: Belgium, Lake Church, Port Washington, Mequon, Milwaukee Metropolitan Sewerage District (MMSD), South Milwaukee, Racine, Kenosha, and Pleasant Park. Currently, all of these areas, with the exception of the Milwaukee Metropolitan Sewerage District2 and the Lake Church sewer service areas, have undergone refinements as recommended. The boundaries of the sewer service areas as refined through 1993 are shown on Map IX-3. Table IX-5 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer service area in the, as refined through 1993, totals about 49 square miles, or about 53 percent of the total watershed area, as shown in Table IX-5.

<u>Current Plan Recommendations</u>: The current point source plan element recommendations provide for the continued operation with expansion and upgrading, as necessary, of the City of Kenosha, City of Port Washington, City of Racine, City of South Milwaukee, and MMSD Jones Island and South Shore sewage treatment plants. Estimated approximate dates for beginning facility planning for the expansion and upgrading of existing sewage treatment plants are indicated in Table IX-6. This recommendation regarding plant facility upgrading and expansion as needed, also applies to the treatment plant solids management element for the six public sewage treatment plants recommended to be retained.

With regard to the two treatment plants operated by the Cities of Racine and Kenosha, further consideration should be given to evaluating a potential change in the recommendations set forth in the initial plan. That potential change is proposed based upon the findings of 1992 sanitary sewerage and water supply system plans which were completed for the greater Racine and greater Kenosha areas. The findings and recommendations of the planning work for the former are contained in a report prepared by Alvord, Burdick & Howson, entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area.

²As of September 1994, the sewer service areas for the City of Oak Creek portion of the MMSD sewer service area was refined as set forth in SEWRPC Community Assistance Planning Report No. 213, <u>Sanitary Sewer Service Area Plan for the City of Oak Creek</u>, Milwaukee County, Wisconsin.

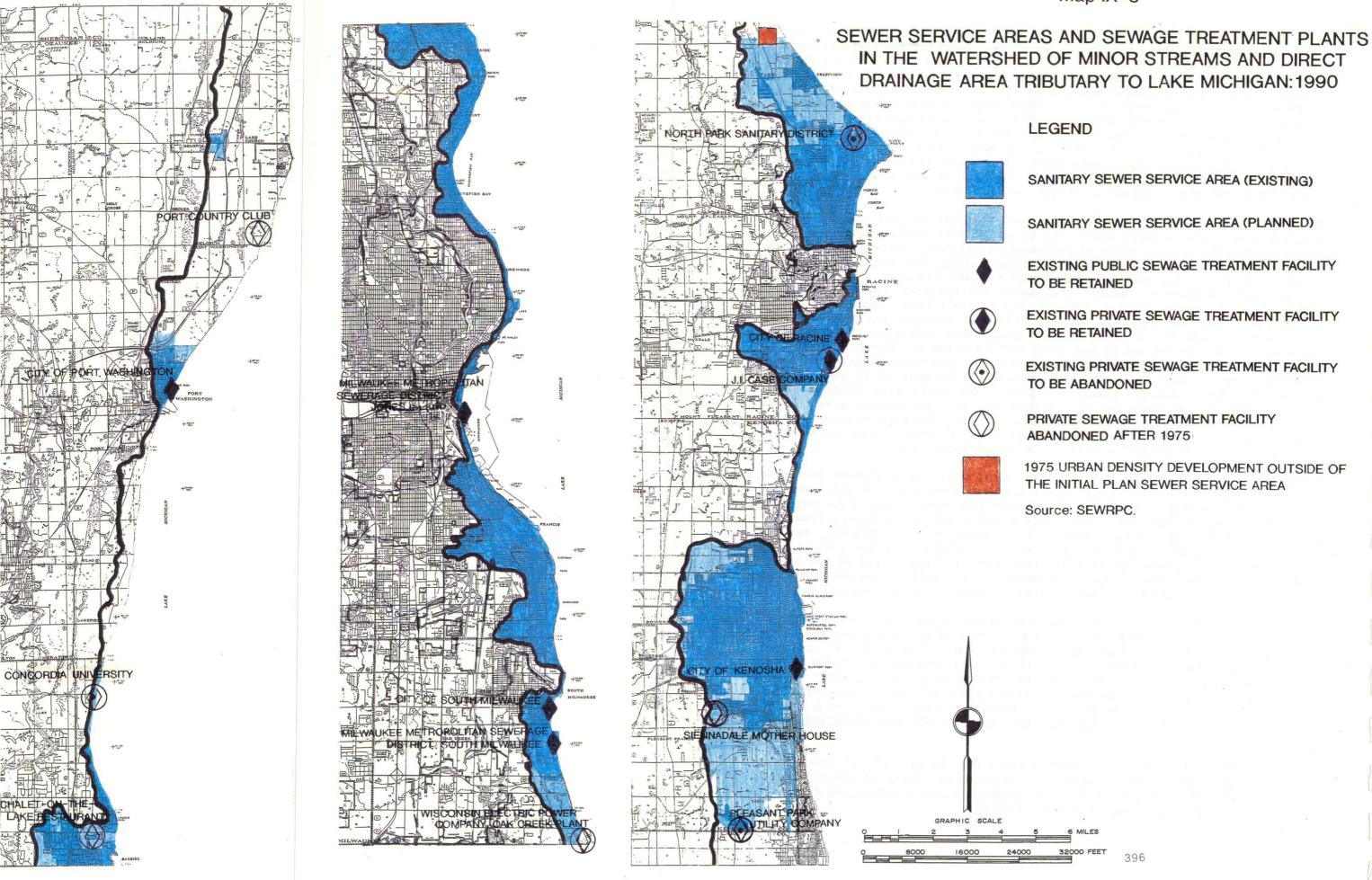


Table IX-5

PLANNED SANITARY SEWER SERVICE AREAS IN
THE MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1993

	T			
Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
	Refine	d Sanitary Sewer Se	rvice Areas	
Belgium	1.3	Belgium	June 15, 1987	SEWRPC CAPR No.97, 2nd Edition, Sanitary Sewer Service Area for the Village of Belgium, Ozaukee County, Wisconsin
Kenosha Pleasant Park Somers	22.7	Kenosha	December 2, 1985	SEWRPC CAPR No. 106, Sanitary Sewer Service Areas for the City of Kenosha and Environs, Kenosha County, Wisconsin
Mequon Thiensville	4.0	Mequon Thiensville	January 15, 1992	SEWRPC CAPR No. 188, Sanitary Sewer Service Area for the City of Mequon and the Village of Thiensville, Ozaukee County, Wisconsin
Port Washington	1.8	Port Washington	December 1, 1983	SEWRPC CAPR No. 95, Sanitary Sewer Service Area for the City of Port Washington, Ozaukee County, Wisconsin
Racine Caddy Vista	19.2	Racine Caddy Vista	December 1, 1986	SEWRPC CAPR No. 147, Sanitary Sewer Service Area for the City of Racine and Environs, Racine County, Wisconsin
Subtotal	49.0			
	Unrefined Sanita	ry Sewer Service Are	as	
Milwaukee Metropolitan Sewerage District (portion) ^a	16.9			
Lake Church	1.1			
South Milwaukee	1.4			
Subtotal	19.4			
Total	68.4			

Note: CAPR - Community Assistance Planning Report

^a As of September 1994, the City of Oak Creek sanitary sewer service area portion of the Milwaukee Metropolitan Sewerage District was refined as set forth in SEWRPC Community Assistance Planning Report No. 213, <u>Sanitary Sewer Service Area Plan for the City of Oak Creek, Milwaukee County, Wisconsin</u>. This refined Oak Creek sanitary sewer service area encompasses 3.0 miles within the minor streams and direct drainage area tributary to Lake Michigan.

while the findings and recommendations of the planning work for the latter are contained in a report prepared by Ruekert & Mielke, Inc., entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area. Those reports, which were prepared for study areas including all of the eastern portion Racine County extending from Lake Michigan to a distance of about two miles west of IH 94 and all of Kenosha County extending from Lake Michigan to a distance of one mile west of IH 94 include portions of the watershed of minor streams and direct drainage area tributary to Lake Michigan. The reports identified the sanitary sewer and water supply needs of those planning areas, and evaluated alternative means of meeting those needs; recommended coordinated design year 2010 sewerage and water supply system plans for the areas; identified intergovernmental, administrative, legal, and fiscal issues inherent in the implementation of the system plans; and recommended institutional structures for implementation of those plans. The recommended sewerage system and planned service areas developed in this subregional system plan are shown on Maps IV-4A and XIII-4A. As of December 1994, the needed intergovernmental agreement and approvals of the system plan or the attendant changes to the regional water quality management plan had not been achieved. Thus, the inclusion of these plan recommendations in the updated plan are pending intergovernmental agreement on the recommendations.

The current point source pollution abatement plan element, including the planned sewer service areas, and including the components noted above to be held in abeyance pending approval of the Cities of Racine and Kenosha, is summarized on Map IX-4. Table IX-6 presents selected design data for the six public sewage treatment plants which are recommended to be maintained in the watershed of minor streams and direct drainage area tributary to Lake Michigan. It is important to note that three plants recorded monthly average hydraulic loadings which equaled or exceeded the average design capacities of the plants, as shown on Table IX-4. It should be noted that the City of Kenosha completed a sewerage system upgrading and expansion in 1994, and that facility planning was underway for sewerage system upgrading and expansion for the City of Racine in 1994, and the Milwaukee Metropolitan Sewerage District facility planning was initiated in 1995.

Table IX-6 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the six public sewage treatment plants in the watershed of minor streams and direct drainage area tributary to Lake Michigan.

The current planned sanitary sewer service areas in the watershed of minor streams and direct drainage area tributary to Lake Michigan are shown on Map IX-4. The existing and planned year 2010 population data for each sewer service area is presented in Chapter XVIII on a regional basis. All or portions of the following sewer service areas are located in the watershed of minor streams and direct drainage area tributary to Lake Michigan: Kenosha, Racine, South Milwaukee, Milwaukee Metropolitan Sewerage District, and Port Washington. Together, the planned service areas within the watershed total about 68 square miles, or about 73 percent of the watershed of minor streams and direct drainage area tributary to Lake Michigan.

As noted above, most of the sewer service areas in the watershed have been refined as part of the ongoing regional water quality management plan updating process. Additional refinements are envisioned to be needed for the Lake Church and remaining portion of the Milwaukee Metropolitan Sewerage District sewer

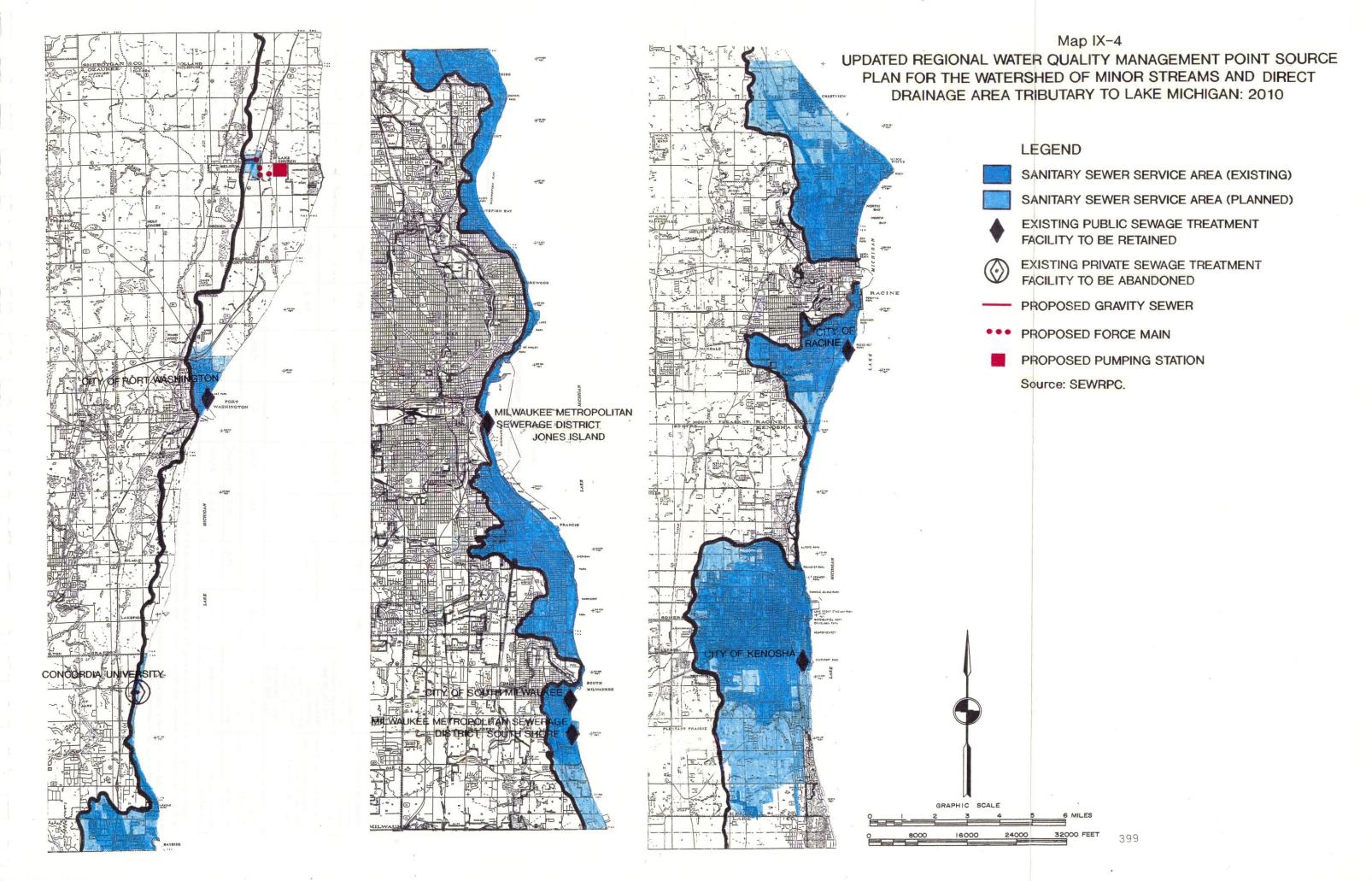


Table 1X-6

SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS
IN THE WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1990 AND 2010

				Existing 199	0			F	lanned Year 20	010		
							Intermediate Growth Centralized Land Use Plan			High Growth Decentralized Land Use Plan		
Name of Public Sewage Treatment Plant	Sewer Service Area	Design Capacity Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Total Area Served (square mile)	Resident Population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ²	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
City of Kenosha ^b	Kenosha	28.6 ^b	23.02	20.0	83,800	53.2	100,900	25.0	2010	118,400	27.3	2010
Milwaukee Metropolitan Sewerage District- Jones Island Plant	Milwaukee Metropolitan Sewerage District, Franklin, Mequon, Thiensville,	200	123.20	250.6	1,036,000	335.7	1,060,000	125.0	1995 ^c	1,134,000	128.0	1995°
Milwaukee Metropolitan Sewerage District- South Shore Plant	Germantown, Butler, Brookfield East, New Berlin, Muskego, Caddy Vista, Menomonee Falls, Oak Creek	120	100.01					105.0	1995°		110.0	1995 ^c
City of Port Washington	Port Washington	3.1	1.42	2.5	9,300	5.7	9,900	1.5	2010	19,000	2.6	2000
City of Racine	Racine	30.0 ^d	28.8	32.3	124,400	60.4	133,400	30.0	d	167,800	34.2	d
City of South Milwaukee	South Milwaukee	6.0	3.45	4.8	21,000	4.8	19,800	3.3	2005	20,300	3.4	2005

a Approximate year in which facility planning for a plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average and monthly design flows compared to average expected annual and maximum monthly flows and the age of facilities based upon data of last major construction.

Source: SEWRPC

b In 1994, the City of Kenosha completed an upgrading and expansion, including 30.0 million gallon equalization and wastewater storage facilities for its sewerage system, resulting in a hydraulic design capacity of 28.6 mgd on an average annual basis and 68 mgd on a wet weather average basis.

^c Facility planning for Milwaukee Metropolitan Sewerage District sewage treatment plants was underway in 1995.

d Local facility plan was underway in 1994 for sewerage system upgrading and expansion.

service area. It is recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plants, there was one private sewage treatment plant in operation within the watershed of minor streams and direct drainage area tributary to Lake Michigan in 1990. This facility serves Concordia College. This private plant is recommended to be abandoned during the planning period with connection to the Milwaukee Metropolitan Sewerage District system through the City of Mequon sewerage system. It is recommended that at such time as the Concordia College sewage treatment plant requires a major upgrading and/or expansion, that an evaluation be conducted of the cost effectiveness of the alternative of abandoning the plant with connection to the Mequon public sewerage system.

Sewer Flow Relief Devices

Existing Conditions and Status of Plan Implementation: As shown in Table IX-7, 63 points of sanitary sewer system flow relief--including two combined sewer overflows -- were reported to exist during 1993 in the watershed of minor streams and direct drainage area tributary to Lake Michigan. These flow relief points are located in nine sewerage systems and include, in addition to the two combined sewer overflows, selected bypasses which physically remain in the sewerage system but are expected to function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. These flow relief points, except for the combined sewer overflows, have only been in operation infrequently, with the average discharge occurrence frequency over this five-year period being less than once per year per flow relief location. This equates to an average of about six isolated overflow occurrences per year considering all reported bypassing. With the completion of the Inline Storage System, bypassing of sewage from the combined sewer overflows is expected to occur an average of about one to two times per year. The Milwaukee Harbor estuary study3 documented that this level of reduction in combined sewer overflow discharges would be adequate to meet water quality standards within the Milwaukee outer harbor, assuming the other water quality improvement measures recommended are carried out. Bypassing from the other sanitary sewer flow relief devices is expected to be further eliminated over time as sewerage system upgrading is completed.4

<u>Current Plan Recommendations</u>: It is recommended that the Cities of Cudahy, Milwaukee, and Racine; the Villages of Bayside, North Bay, and Whitefish Bay; the Milwaukee Metropolitan Sewerage District, the Crestview Sanitary District,

³See SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, Volume One, <u>Inventory Findings</u>, Volume Two, <u>Alternative and Recommended Plans</u>, December 1987.

⁴In 1994, the City of Racine was planning a sewer rehabilitation program, including upgrading of lift stations and construction of relief sewers. This project should result in the elimination of many of the bypasses in that system.

Table IX-7

KNOWN SEWAGE FLOW RELIEF DEVICES IN THE WATERSHED

OF THE MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIAGAN: 1988-1993

		Sewage 1	Flow Relie	f Devices i	n the Sewer	System		
Sewerage System	Sewage Treatment Plant Flow Relief Device	Combined Sewer Overflow	Cross-	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
Village of Bayside			5	1			6	Used only in case of extreme wet weather
Village of Whitefish Bay			19			1	20	Used only in case of extreme wet weather
City of Milwaukee			1				1	Used only in case of extreme wet weather
Milwaukee Metropolitan Sewerage District		2	2				4	Used only in case of extreme wet weather
City of Cudahy			19				19	Used only in case of extreme wet weather
North Park Sanitary District				2			2	Used only in case of equipment failure
Crestview Sanitary District					1		1	Used only in case of extreme wet weather
Village of North Bay					2		2	Used only in case of extreme wet weather
City of Racine			5	1	2		8	Used only in case of equipment failure or extreme wet weather
TOTAL		2	51	4	5	1	63	

Source: SEWRPC.

and the North Park Sanitary District continue to monitor the sewerage system operations to ensure that the use of the existing sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading within the watershed be conducted with the assumption that there will be no planned bypasses of untreated sewage and that the use of all flow relief devices will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewer

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan as updated, recommended the construction of three intercommunity trunk sewers in the watershed of minor streams and direct drainage area tributary to Lake Michigan, as shown in Table IX-8. One trunk sewer would connect anticipated urban development in the unincorporated Village of Lake Church to the Village of Belgium sewerage system. This trunk sewer has not yet been constructed. The second trunk sewer would connect the North Park Sanitary District service area and other portions of the Town of Caledonia to the City of Racine sewerage system. The construction of this trunk sewer was completed in 1988, and the North Park Sanitary District facility was subsequently abandoned as recommended in the initial plan. A further intercommunity trunk sewer would connect the Pleasant Park Utility Company service area and portions of the Village of Pleasant Prairie to the City of Kenosha sewerage system. construction of this trunk sewer was completed in 1990 and the Pleasant Park Utility Company sewage treatment plant abandoned as recommended in the initial

<u>Current Plan Recommendations</u>: The current regional water quality management plan includes recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the watershed of minor streams and direct drainage area tributary to Lake Michigan. Two of the three intercommunity trunk sewers recommended to be constructed in the watershed under the initial plan have been completed. The remaining trunk sewer to connect the unincorporated Village of Lake Church to the Village of Belgium sewerage system is recommended to be constructed at such time as the provision of sanitary sewer service to Lake Church is considered further and implemented.

<u>Point Sources of Wastewater Other Than Public</u> and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: As of 1990, there were 47 point sources of wastewater discharging cooling water and other types of wastewater to the watershed of minor streams and direct drainage area tributary to Lake Michigan through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table IX-9 summarizes selected characteristics of these other point sources and Map IX-5 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 65 known permitted point sources of wastewater other than public and private sewage treatment plants discharging to surface waters in the watershed of minor streams and direct

Table IX-8

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1990

Intercommunity Trunk Sewer	Status of Implementation
Lake Church-Belgium	Not completed
Caledonia-Crestview and North Park-Racine	Completed (1988)
Pleasant Prairie-Kenosha	Completed (1990)

Source: SEWRPC.

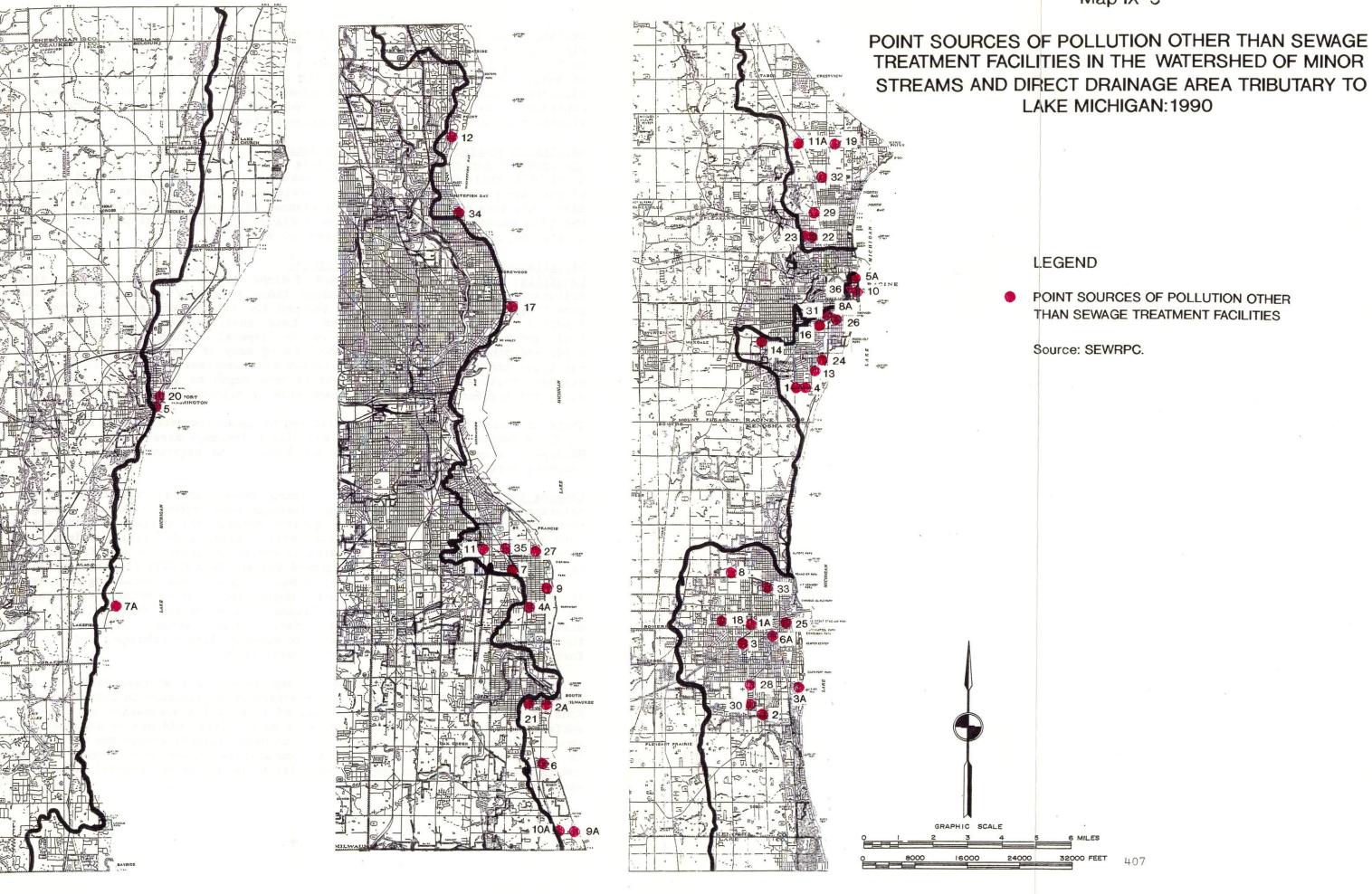
Table IX-9

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION
IN THE WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN: 1990^a

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
Ametek Lamb Electric Division	Racine	1	General	0044938-3	9-30-95	3564/3621	Blowers, fans, mtrs., generators	Lake Michigan via storm sewer	
Anderson Park Pool	Kenosha	2	General	0046523-2	9-30-95		Municipal pool	Barnes Creek via storm sewer	
Arneson Foundry, Inc.	Kenosha	3	General	0044938-3	9-30-95	3321/3325	Gray & ductile iron, steel foundry	Lake Michigan via storm sewer	
Benjamin Air Rifle Company	Racine	4	General	0044938-3	9-30-95	3484	Small arms	Lake Michigan via storm sewer	
Best Western Harborside Inn	Ozaukee	5	General	0046523-2	9-30-95	7011	Hotels and motels	Lake Michigan via harbor	
Boliden-Allis Inc.: Res. & Test Ctr.	Milwaukee	6	General	0044938-3	9-30-95	8732	Commercial nonphysical research	Lake Michigan	
Bostrom Seating, Inc.	Milwaukee	7	General	0044938-3	9-30-95	2531	Public bldg, and related furniture	Lake Michigan via storm sewer	
Bradford High School Pool	Kenosha	8	General	0046523-2	9-30-95	8211	Secondary school	Pike Creek	
City of Cudshy Water Utility	Milwaukee	9	General	0046540-1	9-30-95	4941	Water supply	Lake Michigan	
City of Racine: Gaslight Point Prit.	Racine	10	General	0046558-1	9-30-95		N/A	Lake Michigan	ļ
EZ Paintr. Corp.	Milwaukee	11	General	SPEC PERM	9-30-95	3991	Brooms and brushes	Lake Michigan	
Fox Point Municipal Pool	Milwaukee	12	General	0046523-2	9-30-95		Municipal pool	Lake Michigan via storm sewer	
Gleason Ready Mix	Racine	13	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	J
In-Sink-Erator, -Emerson, Inc.	Racine	14	General	0044938-3	9-30-95	3639	Household appliances	Lake Michigan via storm sewer	
Jacobsen DivTextron Industries	Racine	16	General	0044938-3	9-30-95	3524	Lawn & garden equipment	Lake Michigan via storm sewer	
Milw. Water Works-Linwood Purif. Plt.	Milwaukee	17	General	0046540-1	9-30-95	4941	Water supply	Lake Michigan	
North Shore Cement & Burial Vault Inc	Kenosha	18	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
West Point Raquet & Fitness Club	Recine	19	General	0046523-2	9-30-95	7997	Membership sports & rec. club	Lake Michigan via unnamed trib.	
Port Washington Water Utility	Ozaukee	20	General	0046540-1	9-30-95	4941	Water supply	Lake Michigan	
Quality Concrete Steps & Porches	Milwaukee	21	General	0046507-2	9-30-95	3272	Concrete products	Groundwater discharge	
Racine School Dist .: Horlick H.S.	Racine	22	General	0046523-1	9-30-95	8211	Secondary school	Lake Michigan via storm sewer	
Racine School Dist.: Wachwitz Elem.	Racine	23	General	0046523-1	9-30-95	8211	Elementary school	Lake Michigan via storm sewer	
Rainfair, IncMemorial Drive	Racine	24	General	0044938-3	9-30-95	2385	Waterproof outerwear	Lake Michigan via storm sewer	
Reuther High School (pool)	Kenosha	25	General	0046523-2	9-30-95	8211	Secondary school	Pike Creek via storm sewer	
S.C. Johnson & Son- R & D Center	Racine	26	General	0044938-3	9-30-95	2842/2879	Polishes, sanitation, ag. chems.	Lake Michigan via storm sewer	
St. Francis High School (poel)	Milwaukee	27	General	0046523-2	9-30-95	8211	Secondary school	Lake Michigan via storm sewer	
Snap-on Tools Corp.	Kenosha	28	General	0044938-3	9-30-95	3425/3429	Saw blades, saws & hardware	Lake Michigan via storm sewer	
Suggitek, Inc.	Racine	29	General	0044938-3	9-30-95	3069	Fabricated rubber products	Lake Michigan via storm sewer	
Tremper High School (pool)	Kenosha	30	General	0046523-2	9-30-95	8211	Secondary school	Lake Michigan via storm sewer	
Twin Disc, Inc21st St. Factory	Racine	31	General	0044938-3	9-30-95	3566/3568	Speed changers, drivers, etc.	Lake Michigan via storm sewer	
Vulcan Materials Co Racine Plant	Racine	32	General	0046515-2	9-30-95	3281/3274	Cut stone; stone products; lime	Lake Michigan via storm sewer	
Washington Park Pool- Kenosha	Kenosha	33	General	0046523-2	9-30-95	••	Municipal pool	Pike Creek	
Whitefish Bay High School (pool)	Milwaukee	34	General	0046523-2	9-30-95	8211	Secondary school	Lake Michigan via storm sewer	
Wire & Metal Specialties Co.	Milwaukee	35	General	0044983-3		3443	Fabricated plate work	Lake Michigan via storm sewer	
YWCA of Racine	Racine	36	General	0046523-2	1	7991	Physical fitness facility	Lake Michigan via storm sewer	

Table IX-9 (cont'd)

Facility Name	County	Map ID No.b	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
Chrysler Corp -Engineering Division Everbrite, Inc. J.I. Case Company (24th & Mead) Kenosha City Harbor Conf. Disp. Fac. Ladish Company, IncCudah Lakeshore Towers of Racine Outokumpu American Brass, Inc. Solvay Animal Health, Inc. Twin Disc, Inc. Wisconsin Elec. Power CoOak Creek	Kenosha Milwaukee Racine Kenosha Milwaukee Racine Kenosha Ozaukee Racine Milwaukee	1A 2A 3A 4A 5A 6A 7A 8A 9A 10A	Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific	0000833 0045764 0000311 0045390 0000728 0048470 0000299 0033294 0038199 0000914	06-03-92 06-30-88 06-30-93 06-30-93 06-30-90 09-30-87 08-31-90 08-31-94 06-30-90	3714 3646 3523 4432 3462 3351 8731 3566 4911	Motor vehicles, parts & accessor. Comercial lighting fixtures Farm machinery & equipment Freight transportation on L. Mich. Iron & steel forgings Copper rolling and drawing Commercial physical research Speed changers, drivers, etc. Electric services	Pike Creek via storm sewer Lake Michigan via storm sewer Lake Michigan via storm sewer Lake Michigan via storm sewer Lake Michigan via storm sewer Lake Michigan via storm sewer Lake Michigan via storm sewer Lake Michigan via storm sewer Lake Michigan	5 None 3, 5, 1, 2 None Hone None 5, 3, 1 3 Hone 6, 8
Wisconsin Nat. Gas CoOak Creek Young Radiator Company	Milwaukee Racine	11A 12A	Specific Specific	0054372 0039748	03-31-90 12-31-86	4923 3714	Gas transmission & distribution Motor vehicle parts	Lake Michigan via storm sewer Lake Michigan via ditch	None 6, 2, 7, 4


^{*} Table IX-9 includes 47 known, permitted point sources of wastewater discharging to the surface or groundwater of the watershed of the minor streams and direct drainage area tributary to Lake Michigan.

- 1. Chemical conversion/addition
- 2. Cooagulation flocculation
- 3. Gravity sedimentation
- 4. Gravity thickening
 5. Oil and grease removal
- 6. pH control
- 7. Secondary clarification
- 8. Tube/Plate settlers

Source: Wisconsin Department of Natural Resources and SEWRPC.

b See Map IX-5, "Point Sources of Pollution Other than Sewage Treatment Plants in the Watershed of the Minor Streams and Direct Tributary Area to Lake Michigan: 1990."

^C The number code refers to the following treatment systems:

drainage area tributary to Lake Michigan. These point sources of wastewater discharge primarily industrial cooling, process, rinse, and wash water directly, or following treatment, to surface waters or groundwater system of the watershed of minor streams and direct drainage area tributary to Lake Michigan, or directly to Lake Michigan. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside the Proposed Sanitary Sewer Service Area

As of 1975, there was one enclave of unsewered urban development located outside of the then proposed year 2000 sewer service area, as shown on Map IX-3. As of 1990, this area has been added to the planned 2010 sewer service area as part of the plan amendment process. No new enclaves of urban development have been created beyond these planned sewer service areas.

Miscellaneous Potential Pollution Sources

Landfills: Landfills in the watershed of minor streams and direct drainage area tributary to Lake Michigan, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soils and aquifers, and can be subsequently transported to surface waters.

There is currently one active landfill and 46 known abandoned landfills located in the watershed of minor streams and direct drainage area tributary to Lake Michigan. None of these landfills are known to be negatively impacting surrounding surface waters.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the watershed of minor streams and direct drainage area tributary to Lake Michigan have the potential to affect water quality through the release of substances into the surrounding soils and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate clean up of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing clean up efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground waters. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1993, there were 231 known leaking underground storage tanks in the watershed of minor streams and direct drainage area tributary to Lake Michigan. None of these involved the discharging of remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground waters. As of 1993, there were no such permitted sites discharging to surface or ground waters in the watershed of minor streams and direct drainage area tributary to Lake Michigan.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the watershed of minor streams and direct drainage area tributary to Lake Michigan, the initial plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to erosion control, streambank erosion control, and onsite sewage disposal system management. The plan recommended that additional nonpoint source controls be provided in certain areas. Within the Barnes Creek subwatershed, the plan recommends a reduction of about 50 percent in the urban areas. No nonpoint source control practices were recommended in the portion of Milwaukee County where the deep tunnel combined sewer overflow abatement plan has been implemented and where a relatively high level of nonpoint source control will be achieved by the conveyance of most of the stormwater to the Milwaukee Metropolitan Sewerage District sewerage system.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the watershed of minor streams and direct drainage area tributary to Lake Michigan through local and State regulation and programs. In the area of construction site erosion control, significant progress has been made. As of January 1993, the Cities of Kenosha, Oak Creek, Cudahy, Milwaukee, and Mequon, and the Village of Pleasant Prairie had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities. The ordinance adopted by the City of Cudahy applies only to subdivisions, and the ordinance adopted by the City of Mequon includes stormwater management requirements. In addition, the City of Port Washington had adopted a construction site erosion control ordinance that predates the model ordinance which applies to commercial developments and subdivisions; and the Village of River Hills has an ordinance which was developed independently from the model. As of 1994, an ordinance is being drafted for the Town of Grafton.

While new development is largely being served by sanitary sewer, the existing unsewered development and some additional new unsewered development within the watershed is regulated by onsite sewage disposal system programs administered by Kenosha, Racine, and Ozaukee Counties. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of new systems, and for problem resolution of failing systems where they are identified.

Rural nonpoint source control implementation actions, such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others, are utilized primarily for cropland soil erosion control and wildlife habitat purposes, respectively, and will have positive water quality impacts. Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. Tolerable levels are defined as soil loss tolerances or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection, as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Kenosha, Racine, and Ozaukee Counties. Those plans identify priority areas for cropland soil erosion to tolerable levels. Soil Conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While the local programs described above have probably resulted in some reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This program was established in 1978 by the Wisconsin Legislature and provides costsharing funds for the cost of an individual project or land management practice to local governments and private landowners upon completion of the detailed plans. The funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. A portion of the watershed of minor streams and direct drainage area tributary to Lake Michigan is being proposed to be included within the study area for the Milwaukee River South priority watershed project. The area proposed to be added to the Milwaukee River South priority watershed project area includes about 14.4 square miles of the Lake Michigan direct drainage area extending from the northern limits of the Town of Grafton in Ozaukee County to the Milwaukee Harbor estuary. cription of the Milwaukee River South priority watershed project is included in Chapter VIII. Planning for the Milwaukee River South priority watershed pro $ject^5$ and was completed in 1991, and implementation of practices began in October 1991 and will continue for eight years.

Because of the situation of the watershed within the Lake Michigan coastal zone, and because of community concerns relating to the extensive erosion of shore-lands due to storms, ice-cover and high water conditions existing with the Laurentian Great Lakes System, the Commission has prepared coastal erosion control plans for Milwaukee⁶ and Racine⁷ Counties. The plans identify priority actions required to control and reduce the erosion of shorelands as well as providing for longer term protection of the shorelands, and, additionally, recommend shoreland management practices intended to minimize coastal zone erosion and its consequences for economic activities within the watershed of minor streams and direct drainage area tributary to Lake Michigan.

While the local programs described above have likely resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

<u>Current Plan Recommendations</u>: It is recommended that construction site erosion control, onsite sewerage system management, and streambank erosion control, in addition to land management, would provide at least a 25 percent reduction in loadings to the watershed of minor streams and direct drainage area tributary to Lake Michigan. Within the Barnes Creek subwatershed, it is recommended that additional practices providing for levels of control for about a 50 percent reduction in nonpoint source loadings be provided.

The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most cost-effective manner. In this regard, additional portions of the watershed of minor streams and direct drainage area tributary to Lake Michigan should be included in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in order to make State cost-sharing funds and related programs available for nonpoint source pollution control measures. The current priority ranking of

⁵Wisconsin Department of Natural Resources, Publication No. WR-245-91, <u>A Non-point Source Control Plan for the Milwaukee River South Priority Watershed Project</u>, December 1991.

⁶ SEWRPC Community Assistance Planning Report No. 110, A Lake Michigan Coastal Erosion and Related Land Use Management Study for the City of St. Francis, Wisconsin, August 1984; SEWRPC Community Assistance Planning Report No. 155, A Lake Michigan Shoreline Erosion Control Plan for Northern Milwaukee County, Wisconsin, December 1988; SEWRPC Community Assistance Planning Report No. 163, A Lake Michigan Shoreline Erosion Control Plan for Milwaukee County, Wisconsin, October 1989.

⁷ SEWRPC Community Assistance Planning Report No. 86, <u>A Lake Michigan Coastal</u> <u>Erosion Management Study for Racine County, Wisconsin</u>, October 1982.

watersheds for inclusion in that program is documented in a memorandum⁸ prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included portions of the watershed of minor streams and direct drainage area tributary to Lake Michigan--the Pike Creek and Sucker Creek subwatersheds--in the high category, indicating that inclusion in the program will be possible within the near future, when the existing planning projects are completed or as additional funds and staff become available within the Department of Natural Resources. In addition, Barnes Creek subwatershed could be considered for a small scale priority watershed project.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous section, the most direct measure of impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.

As of 1993, no known monitoring has been carried out on a sustained basis in the watershed of minor streams and direct drainage area tributary to Lake Michigan. Off-shore, long-term monitoring has been carried out in Lake Michigan in the vicinity of Milwaukee Harbor by the Milwaukee Metropolitan Sewerage District at fifteen stations in the Milwaukee Outer Harbor, twelve stations along the south shore in the vicinity of the South Shore Wastewater Treatment Plant, and at fourteen stations in the nearshore zone between Wind Point and Fox Point adjacent to Milwaukee County. Physical, chemical, and biological data are typically collected from these 41 stations at bi-weekly--Outer Harbor and South Shore stations--or monthly--nearshore stations--intervals. These data collected through 1984, as well as additional supplementary water quality data collected during runoff events, was used in the preparation of the Milwaukee Harbor estuary study. A description of water quality conditions based upon that data and upon water quality modeling is documented in that study report.

Current Plan Recommendation

Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the Metropolitan Milwaukee Sewerage District at their offshore stations on a continuing long-term basis. That data provide an adequate basis for water quality assessments. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at four stations, with one station each being located on Barnes Creek, Fish Creek, Pike Creek and Sucker Creek. It is recommended that this program be conducted within the next five to seven years and repeated at five to seven year intervals. These recommendations can be coordinated, and are consistent, with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring

⁸See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Non-point Source Management Purposes in Southwestern Wisconsin: 1993."

⁹SEWRPC Planning Report No. 37, op cit.

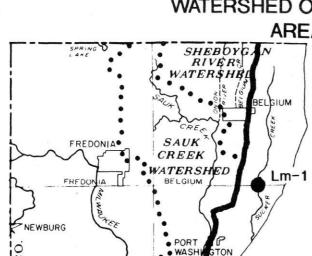
activities and perform basic assessments for each watershed in the Region in an approximate five to seven year rotating cycle.

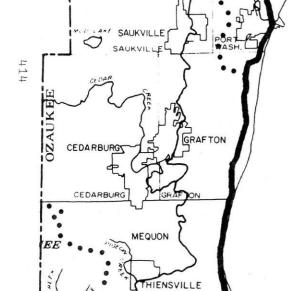
LAKES MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and or consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological conditions monitoring programs to be established.

As noted above, there are no major lakes in the watershed of minor streams and direct drainage area tributary to Lake Michigan. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are considered applicable for management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS

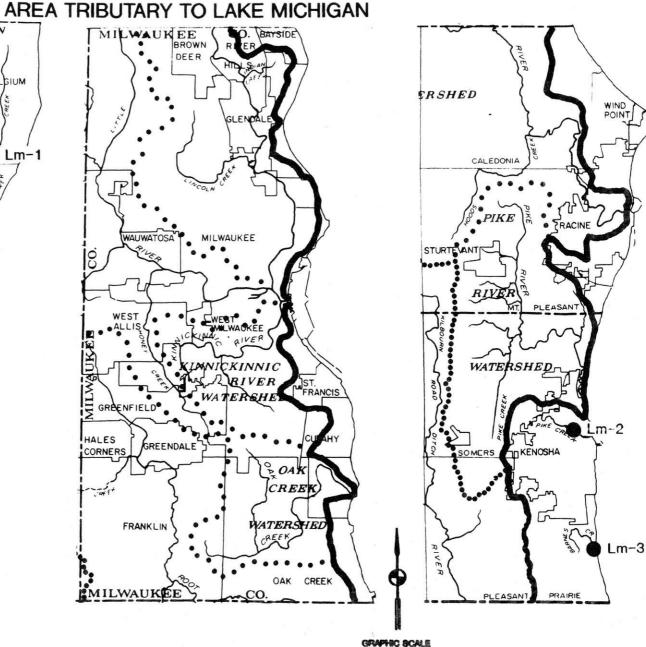

Streams


Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; and the 1976 Commission monitoring program conducted under the regional water quality management planning effort. Available data collected in those programs for the watershed of minor streams and direct drainage area tributary to Lake Michigan included samplings at three Commission stations shown on Map IX-6: one each on Sucker Creek, Pike Creek, and Barnes Creek.

No known post-1976 comparable water quality data were available for the streams in the Lake Michigan direct drainage watershed. Limited biological condition data collected by the Wisconsin Department of Natural Resources were available for use in the assessment of current water quality conditions. In addition, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions. Review of these data can provide insight into the current water quality conditions and the potential for currently achieving the established water use objectives in the watershed of minor streams and direct drainage area tributary to Lake Michigan.

Map IX-6

LOCATION OF WATER QUALITY SAMPLING STATIONS IN THE WATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE



LEGEND

Sampling stations used in preparation of initial plan

SEWRPC

Source: SEWRPC

<u>Toxic and Hazardous Substances</u>: No known stream water or bottom sediment sampling for toxic and hazardous materials had been available for use in preparing the initial regional water quality management plan.

Since completion of the initial plan, few analyses of the chemical composition of the sediments of the streams directly tributary to Lake Michigan have been conducted. Most studies of sediment chemistry that have been carried out have been related to the Milwaukee Harbor Estuary and are reported in Chapters VI, VII, and VIII on the Kinnickinnic, Menomonee, and Milwaukee River watersheds, respectively, and in the Milwaukee Harbor Estuary Study. 10 Sediment quality data for the offshore portions of Milwaukee Harbor are reported by Palmer 11 and Ni, Gin and Christensen. 12 In the latter study, polychlorinated biphenyl (PCB) concentrations exceeded the Lowest Effect Level (LEL) proposed by the Wisconsin Department of Natural Resources 13 as screening criteria for contaminated sediments at one of the 15 sampling sites in the Outer Harbor. Polycyclic Aromatic Hydrocarbon (PAH) LELs were exceeded at 14 of the 15 stations sampled during Palmer reported similar results from her study; the PCB LEL was exceeded at both stations in the Outer Harbor and the total PAH LEL was exceeded at one of the two stations. Sediment quality data for the Port Washington Harbor are reported in SEWRPC Memorandum Report No. 16, Unpolluted Dredge Materials Disposal Plan for the Port Washington Harbor, City of Port Washington, Ozaukee County, Wisconsin, published in May 1987. Concentrations of arsenic, cadmium, chromium, copper, lead and mercury exceeded the LEL for those metals at two of the four stations sampled. Oil and grease concentrations exceeded the LEL guideline at one site. Additional data for the offshore portion of Kenosha Harbor were collected by the Wisconsin Department of Natural Resources during 1991. Concentrations of the metals -- arsenic, cadmium, chromium, copper, lead, and mercury--exceeded the LEL guidelines in this estuary, as did the total PAH concentration.

Since the completion of the initial regional water quality management plan, nine spills of toxic substances into streams within the watershed of minor streams and direct drainage area tributary to Lake Michigan have been documented by the Wisconsin Department of Natural Resources. Of these spills, eight have occurred in Pike Creek and one in Sucker Creek.

<u>Water Quality Assessments</u>: Based upon available data, the water quality and biological characteristics of the watershed of minor streams and direct drainage area tributary to Lake Michigan were assessed, with the results set forth in Table IX-10. Where data were available, fish populations and diversity range

¹⁰ Ibid.

¹¹ Lauran Palmer, <u>Evaluation of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in the Menomonee River, Canals, and Milwaukee Harbor</u>, Final Report, University of Wisconsin-Stevens Point, August 1993.

¹² Fan Ni, Michael F. Gin & Erik R. Christensen, <u>Toxic Organic Contaminants in the Sediments of the Milwaukee Harbor Estuary</u>, Final Report, Milwaukee Metropolitan Sewerage District, March 1992.

Wisconsin Department of Natural Resources, (Draft) Inventory of Statewide Contaminated Sediment Sites and Development of a Prioritization System, June 1994.

Table IX-10

CHARACTERISTICS OF STREAMS IN THE MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN

						Wate	r Qualit	y Problems ^b				
	Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills	DO	NH ₃	Total P	Fecal Coliform	Toxics	Biotic Index Rating	Streambed Sedimentation (substrate)	Physical Modifications to Channel ^c
4 <u>1</u> 6	Barnes Creek	3.0	Fair	No	Yes	No	Yes	Yes	••		Moderate (silt, clay, sand, gravel)	Major
	Pike Creek	3.7	Poor	No	No	No	No	Yes	••		Moderate to high (silt)	Major
	Sucker Creek	8.2	Fair	No	No	No	No	No		••	High (clay, silt, gravel, muck)	Major
	Fish Creek	3.4	•-	No						••		•-
	Unnamed Stream in T4N, R23E, Sections 21 and 22	0.9		No	•-		••					
	Unnamed Stream in T4N, R23E, Sections 17 and 20	1.7		No								

^a Based upon professional judgment of area fish managers.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for stream reaches in the watershed of the minor streams and direct drainage area tributary to Lake Michigan based upon year 2000 land use conditions and current level of pollutant control.

^c Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

from poor to fair: Pike Creek has been rated as poor, and Barnes Creek and Sucker Creek have been rated as fair. Standards were not expected to be fully met for dissolved oxygen concentrations and phosphorus levels in Barnes Creek. In addition, fecal coliform levels were expected to be outside of acceptable limits in both Barnes and Pike Creeks. Ammonia nitrogen levels did not appear to pose problems in any of the three major streams in the watershed. No data were available on water column toxic pollutants.

No recent data on biotic index ratings, which are biological indicators of water quality within a stream system, were available for streams within the watershed. Moderate to high levels of streambed sedimentation were noted in all three Creeks, with the highest level of siltation being recorded in Sucker Creek.

Table IX-11 sets forth the water quality index classifications ¹⁴ used in the initial plan for three sampling stations in the watershed. The use of that index is discussed in Chapter II. The limited data indicate that water quality conditions remained "fair" from 1964 to 1974 and 1975, but no recent data were available to assess the water quality conditions in 1990 and 1991.

A summary of potential pollution sources in the watershed of minor streams and direct drainage area tributary to Lake Michigan by stream reach is shown in tabular summary in Table IX-12. Review of the data indicate the majority of the conversion of lands from rural to urban uses has occurred historically in the Greater Racine and Kenosha urban areas, and more recently in the Fish Creek subwatershed on the border of Milwaukee and Ozaukee Counties. It should also be noted that a majority of the documented spills of toxic substances and the majority of the permitted industrial discharges occur in Pike Creek in the City of Kenosha. Data on nonpoint source pollution are included in Table IX-12.

Compliance with Water Use Objectives

As indicated in Chapter II, the major stream reaches in the watershed of minor streams and direct drainage area tributary to Lake Michigan are recommended for warmwater sport fish and full recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II.

Based upon the available data for sampling stations in the watershed, Barnes, Pike, and Sucker Creeks did not meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. Based upon a review of water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of the dissolved oxygen, fecal coliform, and phosphorus standards continue to occur in Barnes and Pike Creeks and in the two unnamed streams in Racine County. However, the recommended water use objectives may potentially be met in Sucker Creek and in Fish Creek.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

There are three major water quality issues remaining to be resolved in the watershed of minor streams and direct drainage area tributary to Lake Michigan.

¹⁴ For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

Table IX-11

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS OF THE WATERSHED OF THE MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN 1964, 1974-1975, AND 1990-91

Water Quality Sampling Stations	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Lm-1 (Sucker Cr) Lm-2 (Pike Cr) Lm-3 (Barnes Cr)	Fair Fair Fair	Fair Fair Fair	
Watershed Average	Fair	Fair	

^{*} See Map IX-6 for sampling station locations.

Source: SEWRPC.

Table IX-12
SURMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE MINOR STREAMS TRIBUTARY TO LAKE MICHIGAN: 1990

		Extent of Conve	ersion of Lands to Urban ^b		Remaining Potential Surface Water Pollution Sources							
	Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^C
	Barnes Creek	Insignificant ^d	Major ^e		x				1			1
419	Pike Greek	Insignificant ^d	Hoderate	81-unknown 83-unknown 86-unknown 86-unknown 87-paint thinner 88-Cutting fluid 90-wilk-white substance	r		•• ••		4			1
	Sucker Creek	Insignificant	Insignificant	84-diesel fuel		x			0	••		
	Fish Creek	Moderate	Significant		x				0	••		1
	Unnamed stream in TAN R23E, Sections 21 & 22	Significant ^d	Hoderate		x		••		1			••
	Unnamed stream in T4N R23E, Sections 17 & 20	Significant	Moderate		x	x	••		1			o•

^{*} Includes the tributary drainage area of each stream reach.

major > 20% moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Extent of urban land conversions were determined as a percentage of the watershed as follows:

C Letter codes refer to the following ongoing pollution abatement efforts: 1. Construction Erosion Control Ordinances in place

d Considerable urban development existing pre-1976.

^{*} The amount of post-1990 urban development is anticipated to increase significantly in comparison to pre-1990 urban development.

There are three major water quality issues remaining to be resolved in the watershed of minor streams and direct drainage area tributary to Lake Michigan. These issues relate to the implementation of subregional sewerage system plans; the need for more detailed study of the estuary; and the monitoring and planning related to biological invasives.

Subregional Sewerage System Plan Implementation

The first issue relates to implementation of the sewer service area and treatment plant recommendations set forth in subregional system plans¹⁵ for the greater Racine and greater Kenosha areas. The recommendations of those plans include revisions to the planned sewer service areas in the greater Kenosha area and the greater Racine area and call for the City of Kenosha and City of Racine sewage treatment plants to serve additional areas. These recommendations are described in more detail in Chapters IV and XIII.

Lake Michigan Estuary Water Quality Planning

The estuary reaches of the Milwaukee, Menomonee, and Kinnickinnic Rivers have been specifically considered in the initial plan through the Milwaukee Harbor Estuary Study. The estuary reaches of the Pike and Root Rivers and of Oak Creek, Pike Creek, and Sauk Creek have not been specifically addressed in the initial plan or in this update because of the complexity of the estuaries. It is envisioned that supplemental estuary studies will have to be undertaken to fully assess the water quality related problems of these estuaries and to intelligently assign appropriate water use objectives to all the estuaries. Recommendations in this regard have been developed in an earlier prospectus. The studies are supplementations in the studies of the complexity of the estuaries and to intelligently assign appropriate water use objectives to all the estuaries.

Monitoring of Biological Invasives

The confirmed presence of the zebra mussel, Dreissena polymorpha, in the Laurentian Great Lakes, and specifically within that portion of Lake Michigan coastal zone falling within the Southeastern Wisconsin Region, has specific implications for the management of the coastal zone within this watershed and for the management of other water resources in the Region. These animals have been known to interfere with the beneficial uses of water resources throughout the Great Lakes by blocking inlet pipes and encrusting other structures, causing both nuisance and economic damage to these structures. It is recommended that their distribution within the coastal waters of the Region be monitored on a long-term continuous basis by the Wisconsin Department of Natural Resources (DNR), University of Wisconsin-Sea Grant, and other agencies--especially power generation and water supply utilities -- as appropriate. In addition, it is recommended that these agencies also conduct regular reviews of appropriate control measures reported in technical publications and apply such measures when and where necessary. is further recommended that the DNR and University of Wisconsin-Extension continue public awareness campaigns and that the DNR provide the necessary means for cleaning boats being transported from public boating access points in the

¹⁵Alvord Burdick & Howson and Applied Technologies, Inc., <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area; and Ruekert & Mielke, Inc., <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area.</u></u>

¹⁶SEWRPC Planning Report No. 37, op cit.

¹⁷SEWRPC Prospectus, <u>Lake Michigan Estuary and Direct Drainage Area Subwatershed Planning Program</u>, 1978.

coastal zone to access sites on inland lakes. The confirmed presence of zebra mussels in inland lakes suggests the potential for this animal to rapidly spread throughout the Region. It is expected that there may be a similar need over time to monitor the presence and impacts of other exotic species.

A potential future amendment to the regional plan for the watershed of minor streams and direct drainage areas to Lake Michigan may potentially be developed under the facility plan update initiated by the Milwaukee Metropolitan Sewerage District in 1995. That plan update is anticipated to constitute an amendment to the regional plan once it is adopted by all of the agencies involved.

	•
	•

Chapter X

OAK CREEK WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975 -- the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Oak Creek watershed through 1993, where available. Finally, this chapter presents a description of the substantive issues that remain to be addressed in the Oak Creek watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included which is limited in the Oak Creek watershed as there are no major lakes located within the watershed. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.

The Oak Creek watershed is located in the east central portion of the Region and covers an area of approximately 28 square miles. The main stem of Oak Creek rises in Milwaukee County and flows easterly and northerly within the County for approximately 13 miles before emptying into Lake Michigan on the eastern border of the watershed. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Oak Creek and its principal tributaries, are shown on Map X-1. The Oak Creek watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Oak Creek watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint

Map X-1
OAK CREEK WATERSHED

source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table X-1 summarizes the existing land uses in the Oak Creek watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed contains numerous urbanized areas, 49 percent of the watershed was still in rural land and other open space uses in 1990. These rural uses included about 27 percent of the total area of the watershed in agricultural and related rural uses, about 5 percent of the total area of the watershed in woodlands, about 3 percent in surface water and wetlands, and about 14 percent in open lands. The remaining 51 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map X-2.

Major concentrations of urban development exist largely in the northern far western and far eastern portions of the Oak Creek Watershed. Urban development is located in the northern portion of the Oak Creek watershed, along IH 94 and STH 38, near the General Mitchell International Airport. Other urban-related land uses are located throughout the City of South Milwaukee, along STH 32, and in the City of Franklin portion of the watershed west IH 94. Two of the 22 major industrial centers of the Region are located in the northern portion of the watershed: the Oak Creek industrial center, which is located along Rawson Road, between IH 94 and STH 38; and the Cudahy-South Milwaukee industrial center located just north of the City of South Milwaukee.

As shown in Table X-1, from 1975 to 1990, urban land uses in the watershed increased from about 7,700 acres, or 12 square miles, to about 9,000 acres, or 14 square miles, or by about 17 percent. As shown in Table X-1, residential land represents the largest urban land use in the watershed. Residential use has significantly increased within the watershed, from about 3,300 acres, or five square miles, in 1975 to about 3,800 acres, or six square miles, in 1990, a 14 percent increase. Commercial and industrial lands increased from about 600 acres, or one square mile, to 900 acres, or 1.4 square miles, an increase of about 42 percent.

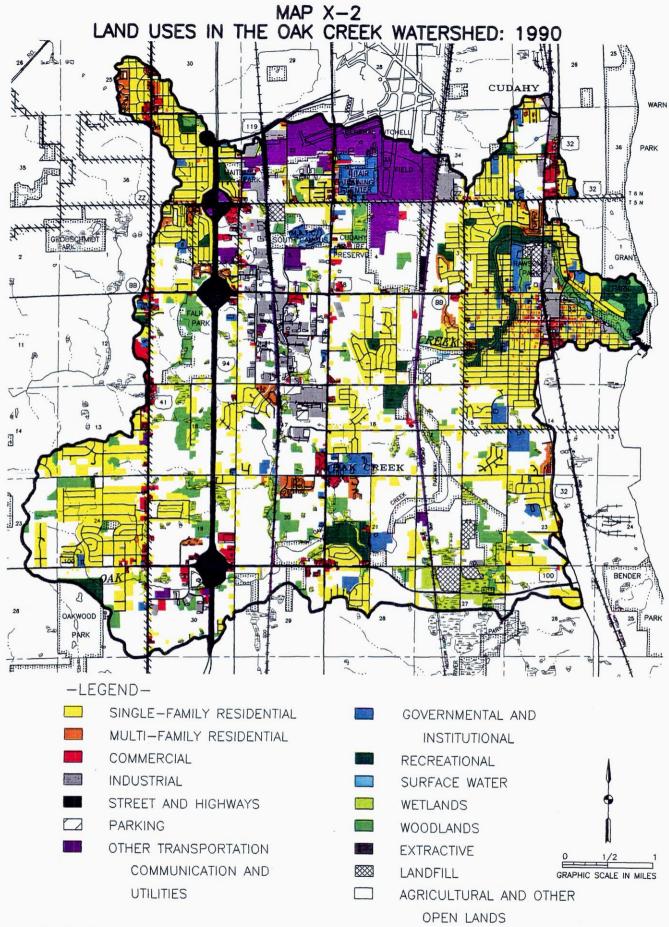
The 14 square miles of urban land use in the watershed as of 1990 approximated the staged 1990 planned level of about 14.2 square miles envisioned in the adopted 2000 land use plan. The current status of development in the Oak Creek watershed and in adjacent portions of Milwaukee County was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table X-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Oak Creek watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban uses are expected to increase and along the IH 94 and STH 38 corridors in the Cities of Oak Creek and Milwaukee; in and around the City of Franklin; and in the already urbanized Cities of Cudahy and South Milwaukee.

In order to meet the needs of the expected resident population and employment envisioned under both the intermediate growth-centralized and high growth-decentralized land use plan future conditions, the amount of land devoted to urban use within the Oak Creek watershed, as indicated in Table X-2, is projected to increase from the 1990 total of about 14 square miles, or about 51 percent of

Table X-1

LAND USE IN THE OAK CREEK WATERSHED: 1975 and 1990^a


	19	75	19	90	Change 1	975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	3,328	18.7	3,795	21.4	467	14.0
Commercial	190	1.1	279	1.6	89	46.8
Industrial	438	2.4	616	3.5	178	40.6
Transportation, Communication,						
and Utilities	2,842	16.0	3,374	19.0	532	18.7
Governmental and	•		•			
Institutional	405	2.3	453	2.5	48	11.9
Recreational	509	2.9	519	2.9	10	2.0
Subtotal	7,712	43.4	9,036	50.9	1,324	17.2
Rural						
Agricultural						
and Related	6,400	36.1	4,754	26.8	- 1,646	- 25.7
Lakes, Rivers,			1		·	
Streams and						
Wetlands	517	2.9	564	3.2	47	9.1
Woodlands	852	4.8	842	4.7	- 10	- 1.2
Open Lands, c Landfills,						
Dumps, and Extractive	2,271	12.8	2,556	14.4	285	12.5
Subtotal	10,040	56.6	8,716	49.1	- 1,324	- 13.2
Total	17, <i>7</i> 52	100.00	17,752	100.0	0	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.

b Includes all off-street parking.

 $^{^{\}mbox{\scriptsize c}}$ Includes both rural and urban open lands.

The Oak Creek watershed is about 28 square miles in areal extent, or about 1 percent of the total Region. In 1990, about 14 square miles, or 51 percent of the watershed, was in urban land uses.

426

Source: SEWRPC

Source: SEWRPC.

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

^C Includes both rural and urban open lands.

the total area of the watershed, to about 18 square miles, or about 64 percent of the total area of the watershed, by year 2010. It is important to note that the 36 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and, as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space uses through joint State-local zoning or public acquisition. In addition, certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulation. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 14 square miles in 1990 to about 10 square miles in the year 2010 under the intermediate growth-centralized and high growth-decentralized conditions, a decrease of about 10 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Oak Creek watershed--including consideration of points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. This section also includes a status report on the public sanitary sewer service areas within the watershed.

With regard to the point source plan element related to the Oak Creek Watershed, the most significant recommendations in the initial plan and the most significant implementation actions are related to the Milwaukee Metropolitan Sewerage District's water pollution abatement program. This program includes: rehabilitation of the sanitary sewer system; construction of relief sewers; improvement and expansion of the Jones Island and South Shore sewage treatment plants; provision of large subterranean conveyance and storage-deep tunnel facilities to contain separate and combined sewer peak flows in excess of the capacity of the sewerage system; development of a solids management program; and provision of trunk sewers to serve the various communities comprising the District service area. As of 1993, the District's pollution abatement program was nearing completion, with the deep tunnel system expected to be online during 1994.

It should be noted that, during 1995, the Milwaukee Metropolitan Sewerage District initiated work on an update of its Section 201 sewerage facility plant for the entire Milwaukee metropolitan service area. The update will have a plan year 2010, the same as the update of the regional plan. It is recommended that that facility plan re-examine certain system level decisions that were made in the past including trunk sewer needs, and the retention of the one remaining small sewage treatment plant in the Milwaukee metropolitan area--the City of South Milwaukee plant. The resultant sewerage facilities plan update is intended, then, upon its adoption by all of the agencies concerned, to constitute

 $^{^{1}\}mbox{Milwaukee}$ Metropolitan Sewerage District, MMSD Wastewater System Plan; June 1980.

an amendment to the regional water quality management plan update herein presented. Such an amendment could impact on the facilities within the Oak Creek watershed.

<u>Public and Private Wastewater Treatment Systems and Sewer Services Areas</u>

<u>Existing Conditions and Status of Plan Implementation</u>: In 1975, there were no public or private sewage treatment facilities located in the Oak Creek watershed. The sewage treatment plants serving the watershed, including the Milwaukee Metropolitan Sewerage District South Shore plant and the City of South Milwaukee plant, are located in the Lake Michigan direct drainage area and are discussed in Chapter IX</u>. As of 1990, no new sewage treatment plants had been constructed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were two sewer service areas identified within, or partially within, the Oak Creek watershed: South Milwaukee and the Milwaukee Metropolitan Sewerage District. As of 1993, the City of Franklin portion of Milwaukee Metropolitan Sewerage District service area had been refined and the refinement of the City of Oak Creek portion of the service area was underway. 2 The boundaries of the sewer service areas through 1993 are shown on Map X-3. Table X-3 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the service area names and the relationship of the service areas to the service area names following the refinement process. The planned sewer service area in the Oak Creek watershed, as refined through 1993, totals about 2.4 square miles, or about 9 percent of the total watershed area, as shown in Table X-3.

<u>Current Plan Recommendations</u>: No public or private sewage treatment facilities are envisioned for this watershed. The current planned sanitary sewer service areas in the Oak Creek watershed are shown on Map X-3. The existing and planned year 2010 population data for each sewer service area are presented in Chapter XVIII on a regional basis. All or portions of the following sewer service areas are located in the Oak Creek watershed: Franklin, Oak Creek, South Milwaukee, and the Milwaukee Metropolitan Sewerage District. Together, the planned service areas within the watershed total about 28 square miles, or the entire area of the Oak Creek watershed.

As noted above, two of the sewer service areas in the watershed have been refined as part of the on-going regional water quality management plan updating process. Additional refinements are envisioned to be needed for South Milwaukee and the remaining portion of the Milwaukee Metropolitan Sewerage District sewer service areas. These refinements are recommended to be conducted in 1995 and 1996. It is also recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

²As of September 1994, the sewer service area for the City of Oak Creek was identified and refined as set forth in SEWRPC Community Assistance Planning Report No. 213, <u>Sanitary Sewer Service Area Plan for the City of Oak Creek</u>, <u>Milwaukee County</u>, Wisconsin.

Table X-3

PLANNED SANITARY SEWER SERVICE AREAS IN THE OAK CREEK WATERSHED: 1993

Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
	Ref	ined Sanitary Sewer	Service Areas	
Milwaukee Metropolitan Sewerage District (portion)	2.4	Franklin	December 5, 1990	SEWRPC CAPR No. 176, Sanitary Sewer Service Area for the City of Franklin, Milwaukee County, Wisconsin
	Unre	fined Sanitary Sewer	Service Areas	
Milwaukee Metropolitan Sewerage District [®] (portion)	21.9			
South Milwaukee	3.4			
Subtotal	25.3			
Total	27.7			

Note: CAPR - Community Assistance Planning Report

Source: SEWRPC.

^a As of September 1994, the City of Oak Creek sanitary sewer service area portion of the Milwaukee Metropolitan Sewerage District service area was refined as set forth in SEWRPC Community Assistance Planning Report No. 213, <u>Sanitary Sewer Service Area for the City of Oak Creek, Milwaukee County, Wisconsin</u>. This refined Oak Creek sewer service area encompasses 17.3 miles within the Oak Creek watershed.

Map X-3 SANITARY SEWER SERVICE AREAS IN THE OAK CREEK WATERSHED: 1990 AND 2010

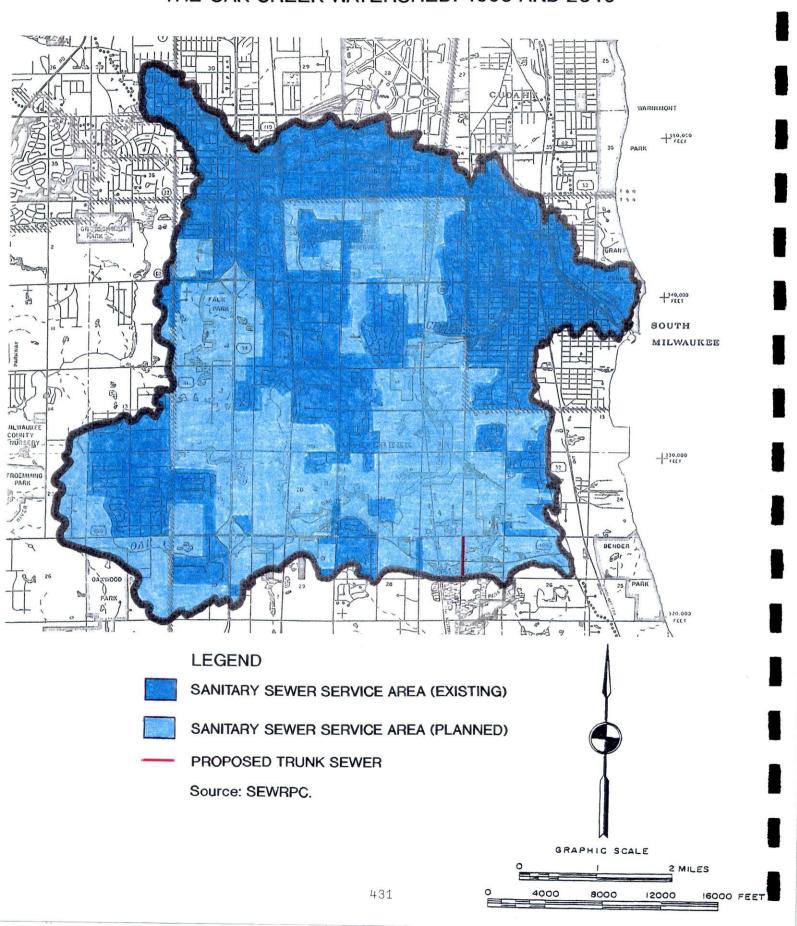


Table X-3a

KNOWN SEWAGE FLOW RELIEF DEVICES IN THE OAK CREEK WATERSHED: 1988-93

		Sewage	Flow Relief	Devices in	the Sewer Sys	stem	
Sewerage Systems	Sewage Treatment Plant Flow Relief Device	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
City of South Milwaukee			2			2	Used only in case of major equipment failure
Total			2			2	

Source: SEWRPC.

Sewer Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were two known separate sewer system flow relief devices located in the Oak Creek watershed, both of which discharged directly to the main stem of the Oak Creek in the City of South Milwaukee. In 1993 these two devices remained, as shown in Table X-3a. However, as a result of a sanitary sewer system rehabilitation program completed by the City of South Milwaukee in 1984, these two pumping station bypasses are now used only in the event of a major equipment failure, as recommended in the adopted regional water quality management plan.

Current Plan Recommendations: It is recommended that the City of South Milwaukee continue to monitor the sewerage system operations to ensure that the use of the existing sewerage system flow relief devices is limited to periods of power or equipment failure. It is recommended that planning for all sewerage system expansion and upgrading within the watershed be conducted with the assumption that there will be no planned bypasses of untreated sewage, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewers

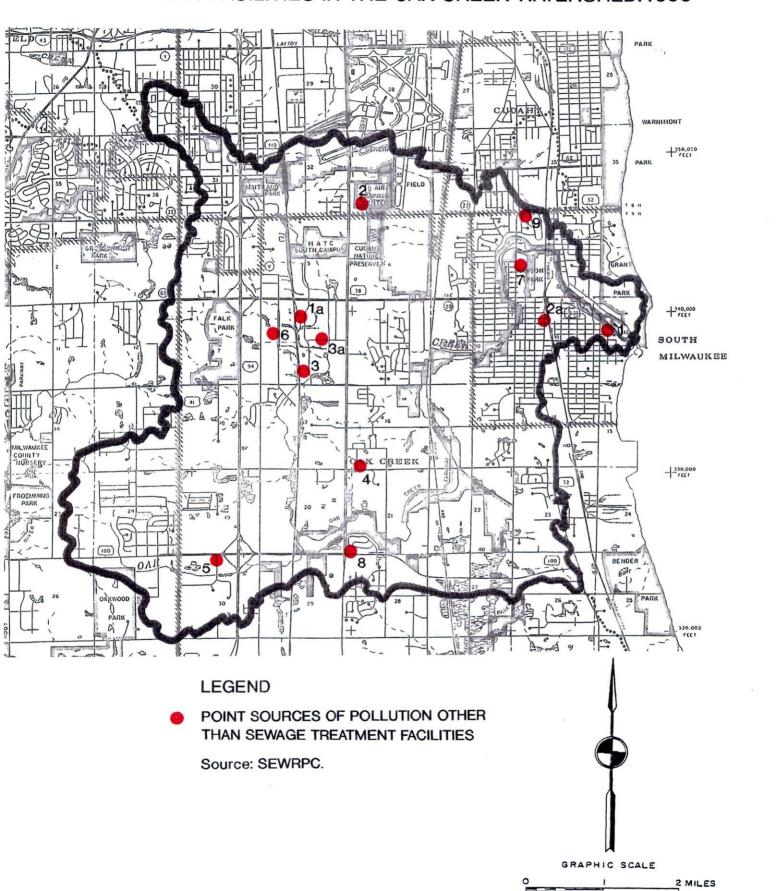
Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan, as updated, recommended the construction of two intercommunity trunk sewers in the Oak Creek watershed, as shown in Table X-4. One trunk sewer would provide additional conveyance capacity for areas west and south of the Mitchell Field Airport to the Milwaukee Metropolitan sewerage system and one trunk sewer would connect development in the City of Oak Creek to the Milwaukee Metropolitan sewerage system. These trunk sewers have both been constructed.

Current Plan Recommendations: The current regional water quality management plan included recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the Oak Creek watershed. As noted above, both trunk sewers recommended in the initial plan have been constructed. However, one other trunk sewer was considered in the initial plan but was estimated not to be needed until after the planning period, based upon the development expected. This trunk sewer--the Oak Creek Southeast trunk sewer--would generally extend from the existing trunk sewer at Ryan Road and Pennsylvania Avenue south to Elm Road and then west to Nicholson Road. The Caddy Vista Sanitary District connection, as well as major areas in the southern portion of the City Oak Creek, are tributary to existing sewers for which the proposed Oak Creek Southeast trunk sewer will provide relief capacity. Surveillance of the current flows in the existing system, as well as projected needs for development currently approved by the City of Oak Creek, indicates that the existing sewer capacity will be reached. City of Oak Creek therefore established, in 1994, a moratorium on new land development activities which have not been previously approved. Thus, the Oak Creek Southeast trunk sewer is now included in the updated plan based upon demonstrated needs.

Point Sources of Wastewater Other Than Public

and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of eight known point sources of pollution identified in the Oak Creek watershed other than public and private sewage treatment plants. These sources discharged industrial cooling, process, rinse, wash, and filter backwash waters through 13 outfalls directly or indirectly to the surface water or groundwater


Table X-4

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE OAK CREEK WATERSHED: 1990

Intercommunity Trunk Sewer	Status of	<u>Implementation</u>
Oak Creek	Completed	(1985)
Mitchell Field-South	Completed	(1986)

Source: SEWRPC.

Map X-4
POINT SOURCES OF POLLUTION OTHER THAN SEWAGE
TREATMENT FACILITIES IN THE OAK CREEK WATERSHED: 1990

8000

16000 FEE

Table X-5

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE OAK CREEK WATERSHED: 1990

Facility Name	County	Map ID No.a	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^b
Oak Creek Watershed									
Appleton Electric Co Foundry Div.	Milwaukee	1	General	0044938-3	9-30-95	3369	Non-ferrous foundries	Oak Creek	l
General Mitchell IAP (440th AF Resv.)	Milwaukee	2	General	SPEC PERM	9-30-95	4581	Airports, flying fields, services	Mitchell Field Drainage Ditch	
Henkel Corporation	Milwaukee	3	General	0044938-3	9-30-95	2843	Surface active agents	North Branch Oak Creek	
Oak Creek Senior H.S. (Pool)	Milwaukee	4	General	0046523-2	9-30-95	8211	Secondary school	Oak Creek via unnamed trib.	
Oak Creek Services-Milw. Truck Stop	Milwaukee	5	General	0046531-1	9-30-90	5541	Gasoline service station	Oak Creek	
Phillip Orth Company	Milwaukee	6	General	0044938-3	9-30-95			North Branch Oak Creek	
South Milwaukee-Senior H.S. Pool	Milwaukee	7	General	0046523-2	9-30-95	8211	Secondary school	Oak Creek via storm sewer	
Vilter Manufacturing, Inc.	Milwaukee	8	General	0044938-3	9-30-95	3443/3585	Fabr. plate work; Ref. & hyg. equip.	Oak Creek	
YMCA of Milwaukee-South Shore Branch	Milwaukee	9	General	0046523-2	9-30-95	7991	Physical fitness facility	Oak Creek via storm sewer	
Applied Plastics Company, Inc.	Milwaukee	1A	Specific	0041700	3-31-90	3081	Unsupported plastics, film & sheet	North Branch Oak Creek via storm	None
Bucyrus Erie Company	Milwaukee	24	Specific	0001058	12-31-89	3599	Industrial machinery	Oak Creek via storm sewer	1
Thiem Corp. National Starch & Chem.	Milwaukee	3A	Specific	0047643		2891	Adhesives and sealants	North Branch Oak Creek via storm sewer	None

^{*} See Map X-4, Point Sources of Pollution in the Oak Creek Watershed: 1990.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b The number code refers to the following treatment system:

^{1.} Gravity sedimentation

system. Of these point source outfalls, six were identified as discharging only cooling water. The remaining seven were identified as discharging other types of wastewater. Four of these outfalls discharged directly to the Oak Creek, seven discharged indirectly to the Oak Creek, and two discharged indirectly to the North Branch of Oak Creek. The initial regional water quality management plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a caseby-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were 12 such known point sources of wastewater discharging to the Oak Creek and its major tributaries directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table X-5 summarizes selected characteristics of these other point sources and Map X-4 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions were made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were eight known point sources of wastewater other than public and private sewage treatment plants discharging to surface or ground waters in the Oak Greek watershed. These point sources of wastewater discharge, primarily industrial cooling, process, rinse, and wash water, directly or following treatment to the groundwater or the surface waters of the Oak Greek watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside the Proposed Sanitary Sewer Service Area

Because the entire Oak Creek watershed is included in the planned public sanitary sewer service area, there were no enclaves of unsewered urban development located outside of the then recommended year 2000, or currently recommended year 2010, sewer service area.

Miscellaneous Potential Pollution Sources

Landfills: Landfills in the Oak Creek watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soils and aquifers, and can potentially be transported to surface waters.

There are currently three active landfills and 23 known abandoned landfills located in the Oak Creek watershed. None of these landfills are known to be negatively impacting surrounding surface or groundwater.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Oak Creek watershed have the potential to affect water quality through the release of substances into the surrounding soils and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program,

designed to facilitate the clean up of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing clean up efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground waters. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1993, there were 60 known leaking underground storage tank sites in the Oak Creek watershed. None of these involved the discharging of remediation wastewaters directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters. As of 1993, there were no permitted sites discharging to surface or ground waters in the Oak Creek watershed.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Oak Creek watershed, the initial plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control, onsite sewage disposal system management, and streambank erosion control. In addition, the plan recommended that additional nonpoint source controls be provided which would reduce nonpoint sources of pollution by about 50 percent in the urban areas.

In 1986, the Commission prepared a comprehensive watershed plan³ for the Oak Creek watershed in cooperation with various Federal, State, and local authorities. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas in the watershed. Such subsequent planning was and will continue to be directed toward reducing nonpoint source pollutant loadings, as well as providing for local drainage needs in the watershed.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to

³See SEWRPC Planning Report No. 36, <u>A Comprehensive Plan for the Oak Creek</u> Watershed, August 1986.

specific lands. Working with the individual county land conservation committees, the local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program was established in 1978 by the Wisconsin Legislature and currently provides funds for individual projects or land management practices to local governments and private landowners upon completion of the detailed plans. The funds are provided through local assistance grants administered by the Wisconsin Department of Natural Resources.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Oak Creek watershed through local regulation and programs. In the area of construction site erosion control, significant progress has been made. As of January 1993, the Cities of Franklin, Greenfield, Milwaukee, Oak Creek, and Cudahy had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities. The ordinance adopted by the City of Cudahy is applicable only to subdivisions.

Rural nonpoint source control implementation actions, such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others, are utilized primarily for cropland soil erosion control and wildlife habitat purposes, respectively, and will have positive water quality impacts. Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. Tolerable levels are defined as soil loss tolerances, or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade, and Consumer Protection as priority counties for soil erosion control. Milwaukee County was not identified as one of these priority counties, and soil erosion control plans have not been prepared for any areas of the Oak Creek watershed. Nevertheless, soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While the local programs described above have probably resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

Current Plan Recommendations

It is recommended that construction site erosion control, onsite sewerage system management, and streambank erosion control, plus land management practices, designed to provide about a 50 percent reduction in nonpoint source pollutant loadings in the urban areas and 25 percent reduction in nonpoint source pollutant

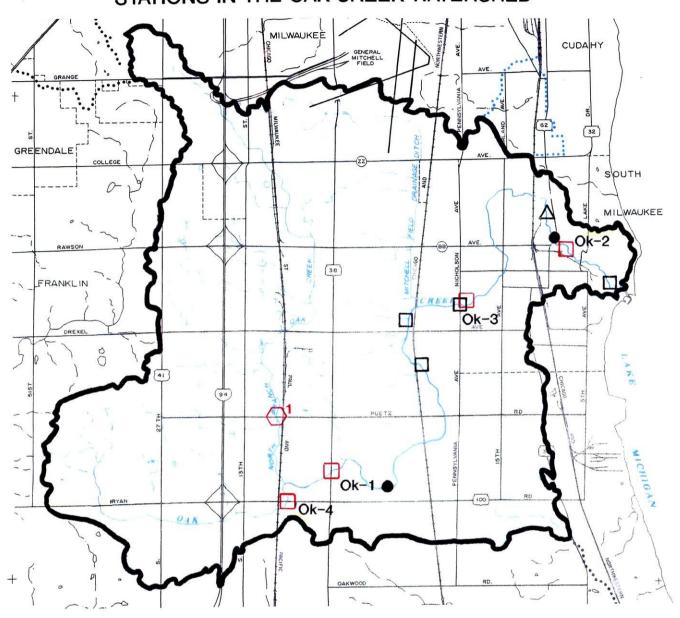
loadings in the rural areas be carried out throughout the watershed. The type of practices recommended to be considered for this level of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most costeffective manner. In this regard, the watershed should be included in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in order to make State cost-sharing programs available for nonpoint source pollution control measures. The current priority ranking of watersheds for inclusion in that program is documented in a memorandum report⁴ prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included the Oak Creek watershed in the high category, indicating that inclusion in the program will be possible within a reasonable time from when the existing planning projects are completed, or additional funds and staff become available within the Department of Natural Resources.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.


As of 1993, long-term monitoring has been carried out in the Oak Creek watershed on a sustained basis by the Milwaukee Metropolitan Sewerage District (MMSD) at seven stations located on the Oak Creek main stem. Data from four of these stations were used to document current long-term water quality conditions in the watershed, as shown on Map X-5. Short-term monitoring was also conducted at one site on the North Branch of Oak Creek in this watershed by the Wisconsin Department of Natural Resources during the period 1988 through 1993, as shown on Map X-5 and described later in this chapter.

Current Plan Recommendation

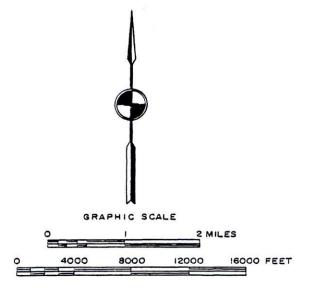
Increased water quality and biological condition monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the Milwaukee Metropolitan Sewerage District at the current stations on Oak Creek on a continuing basis. This program is considered adequate for the assessment of water quality conditions on the main stem of Oak Creek. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at two selected additional stations located on the major tributaries of Oak Creek, with one station each being located on the North Branch of Oak Creek and the Mitchell Field Drainage Ditch. During this one-year period, it is recommended that biological monitoring also be conducted at the sites for which water quality data

⁴See SEWRPC Memorandum entitled, "Assessment and Ranking of Watersheds for Nonpoint Source Management Purposes in Southeastern Wisconsin: 1993."

Map X-5 LOCATIONS OF WATER QUALITY SAMPLING STATIONS IN THE OAK CREEK WATERSHED

LEGEND

0


Sampling stations used in preparation of initial plan

- SEWRPC
- △ USGS
- ☐ MMSD

Post-1976 sampling stations used in preparation of plan update

- MMSD-Long Term
- DNR-Short Term

Source: SEWRPC.

441

is currently being collected. It is recommended that this program be conducted within the next five to seven years and repeated at approximately five- to seven-year intervals. These recommendations can be coordinated, and are consistent, with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five to seven year rotating cycle.

LAKE MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measure such aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological condition monitoring programs to be established.

As noted above, there are no major lakes in the Oak Creek watershed. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are considered applicable for management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS

Streams

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; the 1976 Commission monitoring program conducted under the regional water quality management planning effort; and the U.S. Geological Survey (USGS) and Milwaukee Metropolitan Sewerage District (MMSD) sampling programs. Available data collected in those programs for the Oak Creek watershed included samplings at three Commission stations; at four MMSD stations; and at one USGS station, all on the main stem of the Oak Creek. The sampling station locations are shown on Map X-5.

Long-term post-1976 comparable water quality data have been collected by the Milwaukee Metropolitan Sewerage District at seven stations on the Oak Creek. The DNR has also collected water quality data on a short-term basis at one location in the Oak Creek watershed on the North Branch of Oak Creek at Puetz Road. Data from four of the MMSD stations and from the DNR station were used to characterize water quality conditions in the watershed. These sites are shown on Map X-5. The data obtained from the sampling stations were used in this chapter to assess current water quality conditions as discussed in the next section and, where appropriate, to make a generalized comparison to historic conditions.

In addition to the data obtained since preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide

characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Oak Creek watershed.

Long-term water quality data collected by the Milwaukee Metropolitan Sewerage District at four sampling stations on the main stem of Oak Creek, at Ok-1 at STH 38, Ok-2 at the Oak Creek Parkway east of STH 32, Ok-3 at Nicholson Avenue, and Ok-4 on Ryan Road, are summarized in Figures X-1 through X-4. The short-term data collected by the DNR is summarized in Figure X-5 and in Table X-6. Both the long-term and short-term sampling data have been used to assess current water quality conditions and to evaluate conditions with respect to water quality standards. The water quality standards indicated in Figures X-1 through X-5 and in Table X-6 are those set forth for specific biological and recreational use objectives as described in Chapter II.

Review of those data for stations Ok-1 through Ok-4 indicate no apparent significant changes in water quality conditions from 1985 through 1993. The only possible trend which can be seen is that the variability of most parameters was reduced with the range of values indicated becoming less in more recent years. Data from all four stations indicate frequent violations of the standards established for total phosphorus, and fecal coliform, as set forth in Chapter II. Violations of the standard dissolved oxygen concentrations occurred at stations Ok-1, Ok-3, and Ok-4. Temperature and levels of pH remained variable, but within standards at all stations. The water quality data collected on a short-term basis on the North Branch of Oak Creek indicate violations of the fecal coliform standard at that location. Chronic toxicity standards for certain metals were also exceeded as discussed in the next section.

Toxic and Hazardous Substances: Sampling and analysis for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Oak Creek watershed from 1975 through 1976. The analyses indicated that recommended levels of mercury were exceeded in two of 48 samples, while recommended levels for PCBs were exceeded in one of ten samples. Sample analyses for cadmium, chromium, copper, lead, nickel, zinc, DDT, DDE, DDD, aldrin, heptachlor, lindane, dieldrin, heptachlor epoxide, methoxychlor, and phthalate uncovered no violations of U.S. Environmental Protection Agency (EPA) recommended levels.

Sampling and analysis of the bottom sediments conducted on Oak Creek for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Oak Creek watershed from 1975 through 1976. The analyses resulted in detectable concentrations of cadmium, chromium, copper, lead, mercury, nickel, zinc, and PCBs being recorded from the sediments.

Recent data on toxic and hazardous substances in Oak Creek were collected by the Milwaukee Metropolitan Sewerage District, and are shown in Figures X-1 through X-4. These data indicate that lead and cadmium concentrations at all four stations exceeded the chronic toxicity standards established by the Wisconsin

Figure X-1 WATER QUALITY DATA FOR THE OAK CREEK AT STATION Ok-4: 1976-1993

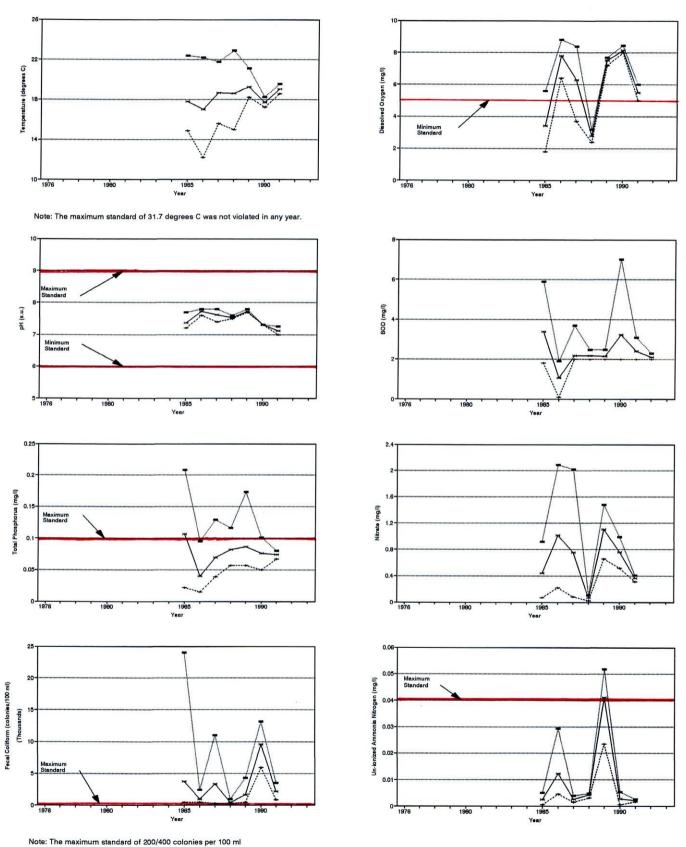
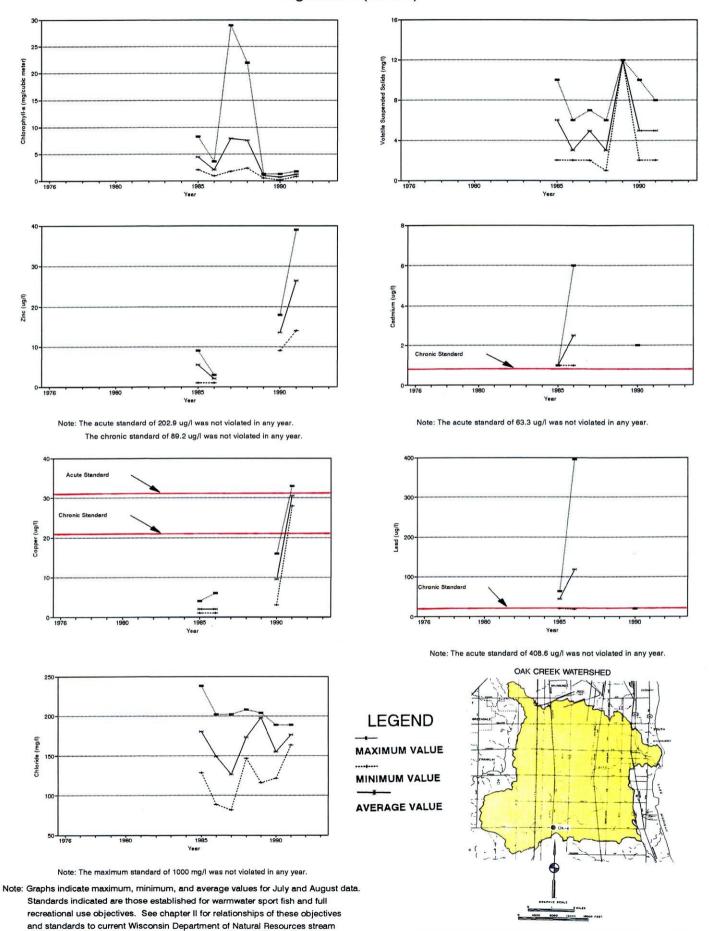
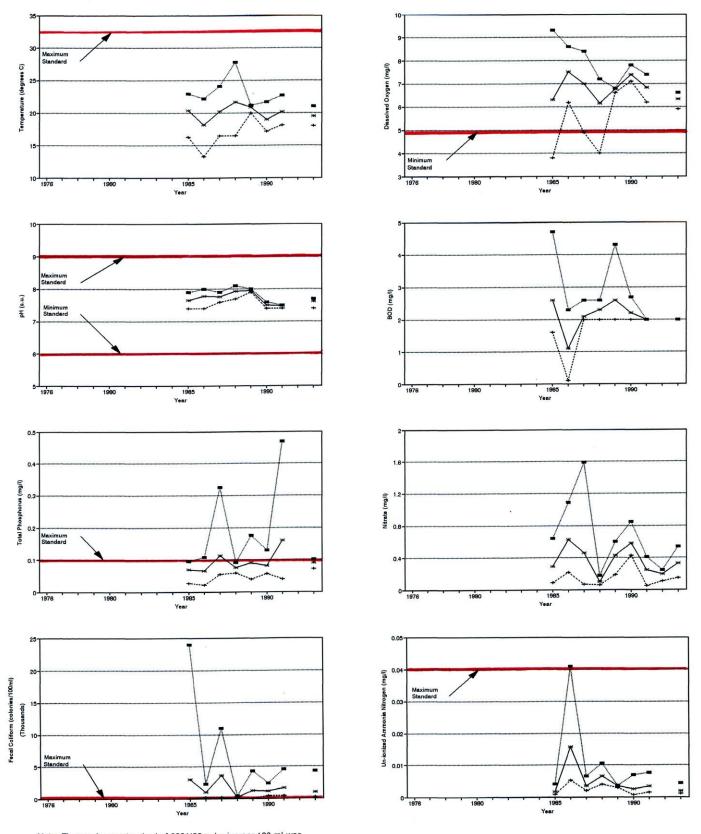



Figure X-1 (cont'd)



445

classifications and water quality criteria.

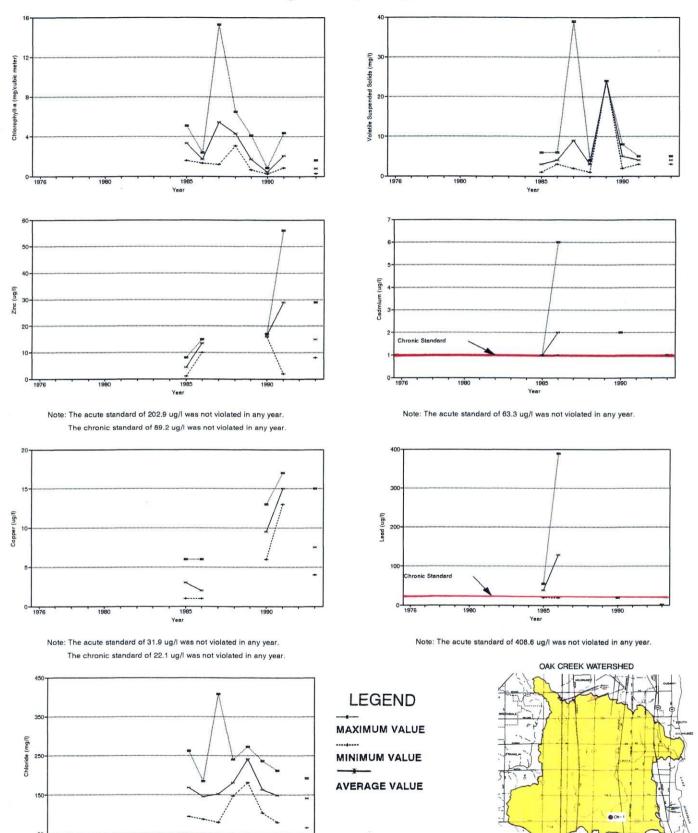
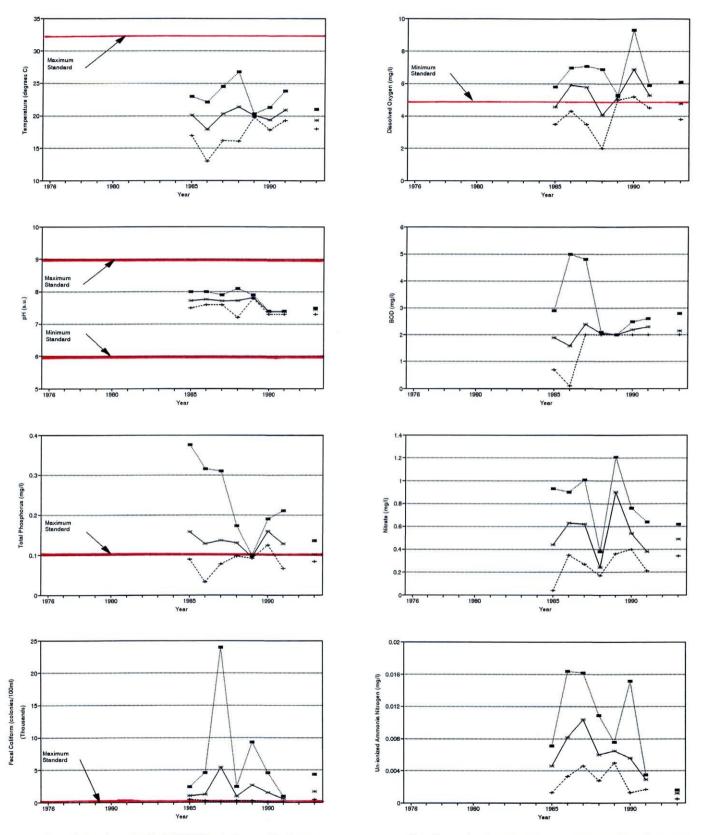

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.

Figure X-2 WATER QUALITY DATA FOR THE OAK CREEK AT STATION Ok-1: 1976-1993

Note: The maximum standard of 200/400 colonies per 100 ml was violated in all years.

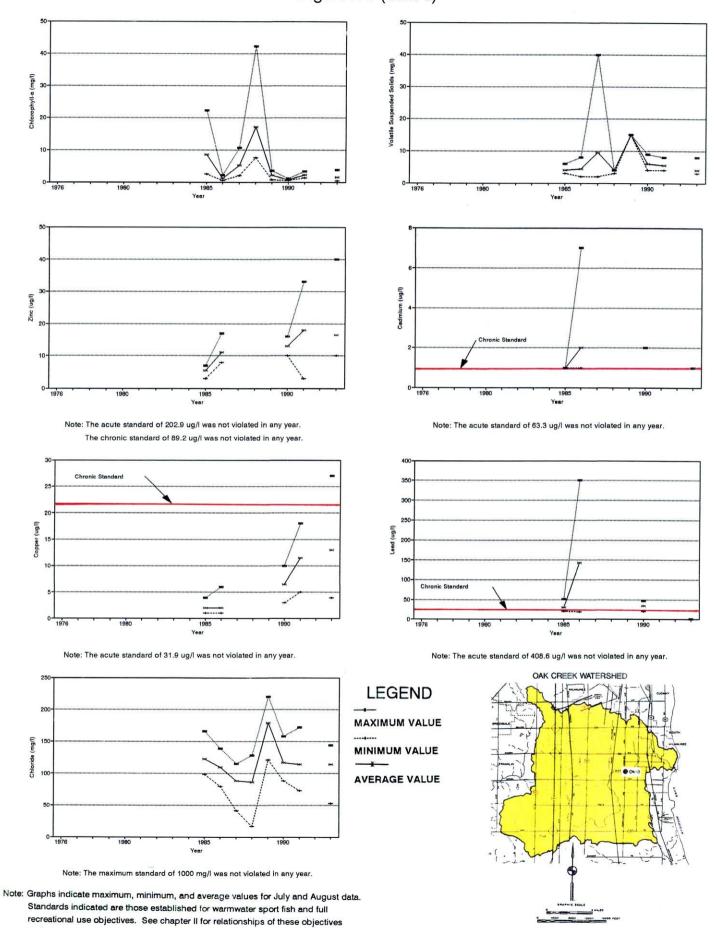
Figure X-2 (cont'd)



Note: The maximum standard of 1000 mg/l was not violated in any year.

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

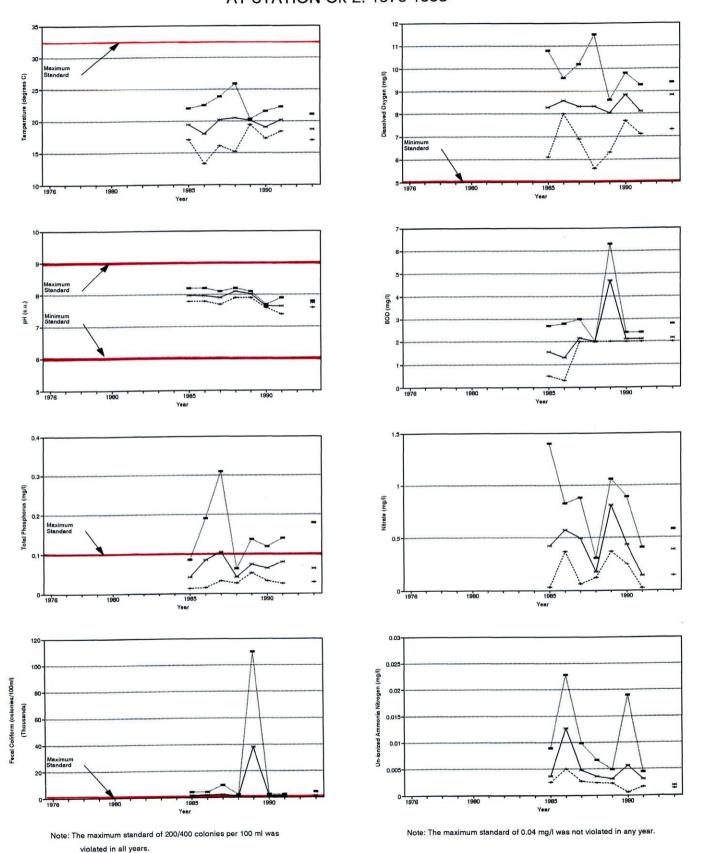
Source: Milwaukee Metropolitan Sewerage District and SEWRPC,


Figure X-3 WATER QUALITY DATA FOR THE OAK CREEK AT STATION Ok-3: 1976-1993

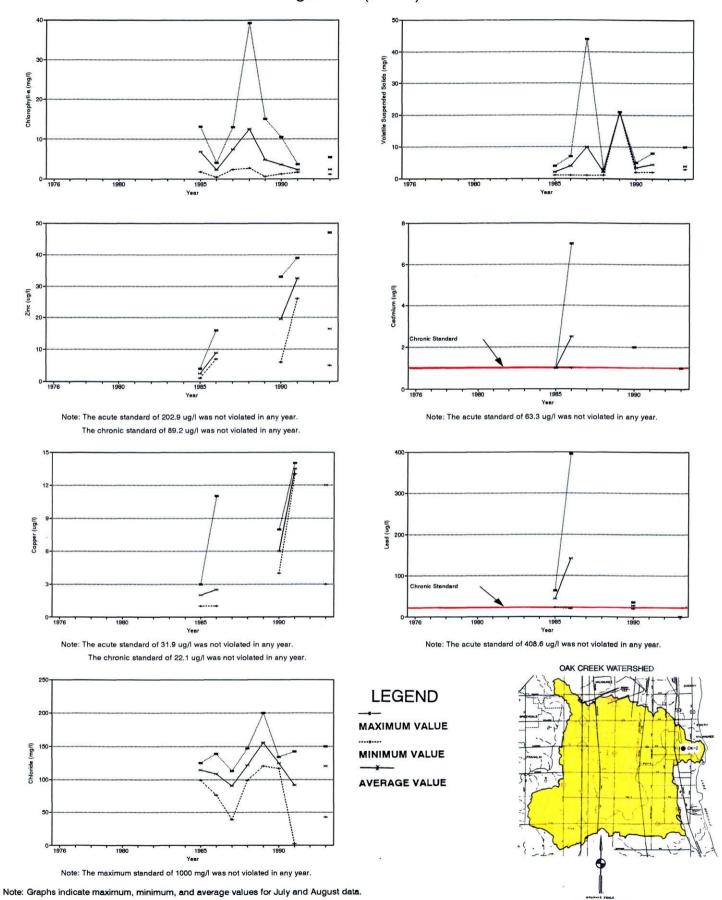
 Note: The maximum standard of 200/400 colonies per 100 ml was violated in all years.

Note: The maximum standard of 0.04 mg/l was not violated in any year.

Figure X-3 (cont'd)


449

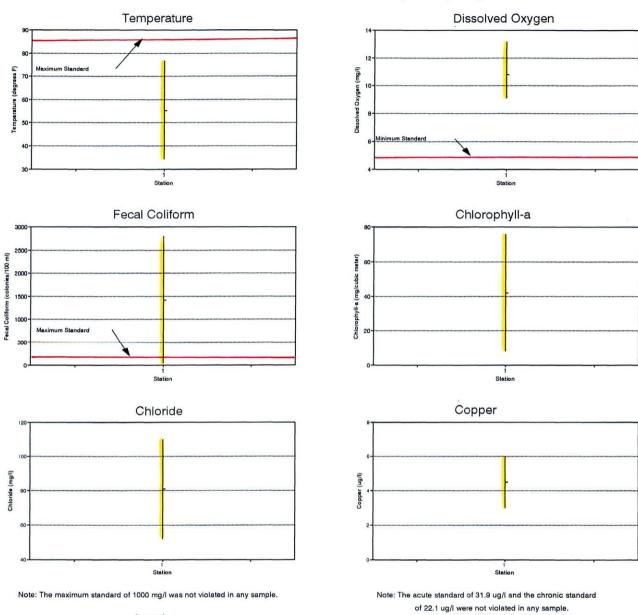
Source: Milwaukee Metropolitan Sewerage District and SEWRP

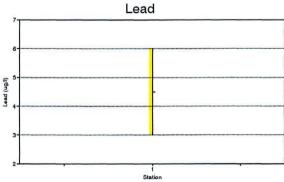

and standards to current Wisconsin Department of Natural Resources stream

classifications and water quality criteria.

Figure X-4 WATER QUALITY DATA FOR THE OAK CREEK AT STATION Ok-2: 1976-1993

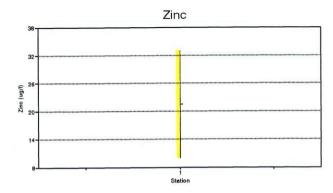
Figure X-4 (cont'd)


Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream


classifications and water quality criteria.

451

Source: Milwaukee Metropolitan Sewerage District and SEWRPC.


Figure X-5
Oak Creek Watershed Short-Term Water Quality Sampling Data: 1990

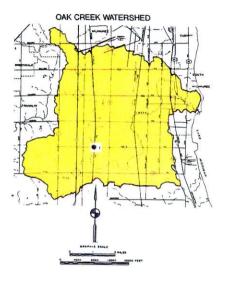

Note: The acute standard of 408.6 ug/l and the chronic standard of 24.4 ug/l were not violated in any sample.

Figure X-5 (cont'd)

Note: The acute standard of 202.9 ug/l and the chronic standard of 89.2 ug/l were not violated in any sample.

Standards indicated are those established for warmwater sport fish and full recreational use objectives.

See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classification and water quality criteria. Refer to Table X-6 for summarized water quality data.

Source: Wisconsin Department of Natural Resources and SEWRPC.

Table X-6

OAK CREEK WATERSHED SHORT-TERM STREAM WATER QUALITY SAMPLING DATA: 1988-1993

Sampling Station Number	Parameter (Units)	Applicable Standards ^a	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
1	Temperature (°F)	Maximum of 89.0	34.3- 76.8	No	September- December 1990	3
	Dissolved Oxygen (mg/1)	Minimum of 5.0	9.1-13.2	No	September- December 1990	3
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	40-2800	Yes	September- December 1990	2
	Chlorophyll-a (mg/cubic meter)		8.0-76.0		September- December 1990	2
	Chloride (mg/l)	Maximum of 1000		No	September- December 1990	2
	Copper (ug/1)	Chronic maximum of 22.1; acute maximum of 31.9	3-6	No	September- December 1990	2
	Lead (ug/1)	Chronic maximum of 24.4; acute maximum of 408.6	3-6	No	September- December 1990	2

^aStandards indicated are those established for warmwater sport fish and full recreational use objectives. See Chapter II for relationships of these objectives and standards to current Wisconsin Department Of Natural Resources stream classifications and water quality criteria.

Source: Wisconsin Department of Natural Resources and SEWRPC.

Department of Natural Resources. However, the limited data which were available for lead indicate improved levels after 1985.

Since the completion of the initial regional water quality management plan, nine spills of toxic substances into streams within the Oak Creek watershed have been documented by the Wisconsin Department of Natural Resources. All of these spills have occurred in the main stem of Oak Creek, one in the City of Oak Creek and eight in the City of South Milwaukee.

<u>Water Quality Assessments</u>: Based upon recent available data, the water quality and biological characteristics of the Oak Creek and its major tributaries were assessed with the results set forth in Table X-7. Fish population and diversity were poor throughout. No recent fish kills have been recorded in the watershed.

Standards were not fully met for fecal coliform counts, and un-ionized ammonia and total phosphorus concentrations along the main stem of the Oak Creek or in Mitchell Field Ditch or the North Branch of Oak Creek. Problems with toxic substances were indicated in all stream reaches where data were available.

In general, the biotic index ratings, which are biological indicators of water quality within a stream system, were poor to fair, except for Oak Creek upstream of STH 100, which a poor to very poor rating. Moderate to high levels of stream bed sedimentation were noted throughout the watershed.

Table X-8 sets forth the water quality index classifications⁵ used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table X-8, recent data were available for four stations on the Oak Creek main stem; one at STH 38, one at the Oak Creek Parkway east of STH 32, one at Pennsylvania/Nicholson Avenue, and one on Ryan Road/STH 100. These stations and additional locations where water quality data were collected by the Milwaukee Metropolitan Sewerage District are shown on Map X-5. The limited data available indicate that water quality conditions at two of the four stations for which data were available in 1964 decreased from "good" to "fair" in 1974-75 and remained "fair" in 1990-91. Data from the two additional stations assessed during 1990-91 also resulted in a classification of the waters of Oak Creek as "fair" as set forth in Table X-8.

A summary of potential pollution sources in the Oak Creek watershed by stream reach is shown in tabular summary in Table X-9. Review of the data indicate that the majority of the conversion of lands from rural to urban uses is anticipated to occur within the portion of the watershed upstream of Pennsylvania Avenue and in the areas tributary to Mitchell Field Ditch and the North Branch of Oak Creek. It should be noted that the majority of the documented spills of toxic substances and the majority of the permitted industrial discharges occur in the Oak Creek main stem downstream of 15th Avenue in the City of South Milwaukee. Data on nonpoint source pollution and additional potential impacts to surface water quality are included in Table X-9.

455

⁵ For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

a Based upon professional judgement of area fish managers.

b The most recent water quality data available as described in Figures X-1 through X-5 were used to evaluate water quality in the Oak Creek system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Oak Creek watershed stream reaches based upon year 2000 land use conditions and current levels of pollutant control.

c Biotic index ratings are based upon the Hilsenhoff Biotic Index (HBI) discussed in Wisconsin Department of Natural Resources Technical Bulletin No. 132, "Using a Biotic Index to Evaluate Water Quality In Streams," Hilsenhoff, 1982.

d Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

Table X-8

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS
OF THE OAK CREEK WATERSHED 1964, 1974-1975, AND 1990-91

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Main Stem Stations			
Ok-1 Ok-2 Ok-3 Ok-4	Good Good 	Fair Fair 	Fair Fair Fair Fair
Watershed Average	Good	Fair	Fair

 $^{^{\}rm a}$ See Map X-5 for sampling station locations.

Table X-9

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE OAK CREEK MATERSHED: 1990

	Extent of Conv from Rural to Ur	ersjon of Lands ben ⁵					Remaining Po	tential Surfa	ce Water Pollution Sources		
Stream Reach ^A	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urben Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^C
Oak Creek upstream STH 100	Significant	Major	••	x	x	••	••	1	••		1
Oak Creek downstream STH 100 to Drexel Avenue	Insignificant	Major ^d	••	X .	x	•	••	2	••		1
Oak Creek downstream Drexel Avenue to Pennsylvania Ave.	Significant	Major	1986-entifreeze	x	••		••	0			1
Oak Creek downstream Pennsylvania Ave. to 15th Avenue	Insignificant ^e	Insignificant ^e		x		••		0	••		
Oak Creek downstreem 15th Avenue	Insignificant [®]	Insignificant ^e	1980-weter glycol 1985-diesel fuel 1986-ferric chloride 1988-sheen on Oak Creek Lagoon 1991-oily sheen 1991-10W-20 oil 1992-foundry sand	x		••		4	-		
Mitchell Field Drainage Ditch	Signifiant	Major	••	x	x	••	••	1			1
North Branch, Oek Creek	Significant	Major	••	••	x	••	••	4			1

A Includes the tributary drainage area of each stream reach.

major > 20% moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

^b Extent of urban land conversions were determined as a percentage of the watershed as follows:

 $^{^{\}rm C}$ Number code refers to the following angoing pollution abetament efforts:

^{1.} Construction Erosion Control Ordinances in place

d The amount of post-1990 urban development is antidicpated to increase significantly in comperison to pre-1990 urban development.

Considerable urban development existing pre-1976.

Compliance with Water Use Objectives

As indicated in Chapter II, all of the stream reaches in the Oak Creek watershed as of 1993 are recommended for warmwater sportfish and full recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II.

Based upon the available data for sampling stations in the watershed, the main stem of the Oak Creek did not meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. Stream water quality data collected by the Milwaukee Metropolitan Sewerage District on the main stem of Oak Creek from 1985 to 1993, as shown in Figures X-1 through X-4, indicated that the main stem of the Oak Creek did not fully meet the recommended water use objectives. Based upon a review of the data summarized in Figure X-5 and Table X-6, and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of the fecal coliform and phosphorus standards may also occur along the tributaries of the Oak Creek, and the recommended water use objectives continue not to be achieved in the majority of the major streams in the watershed.

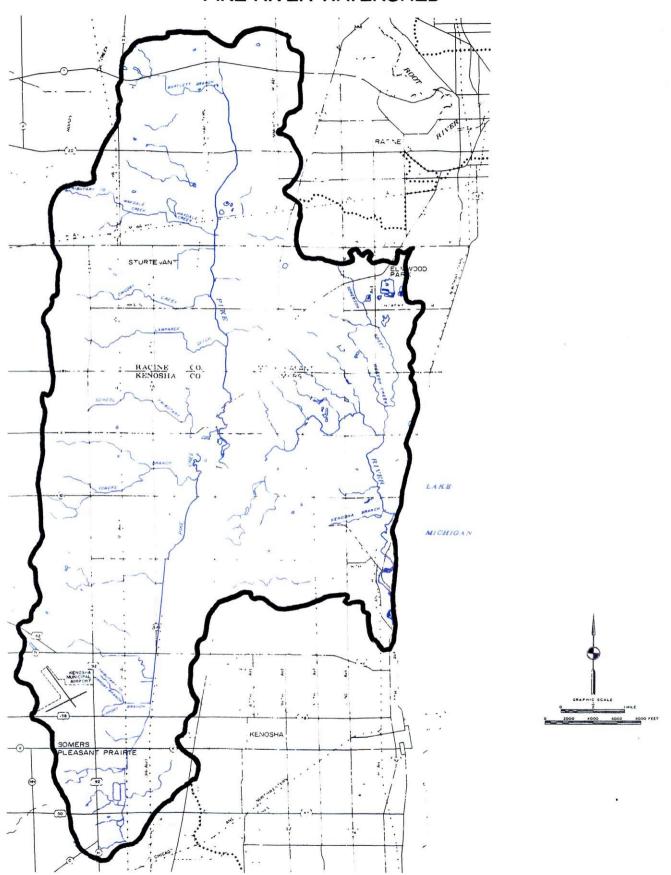
WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon the current status of plan implementation, there are no major water quality issues remaining to be evaluated and addressed specific to the Oak Creek watershed. There remains a need to implement the nonpoint source pollution abatement recommendations set forth herein. A potential future amendment to the regional plan for the Oak Creek watershed may potentially be developed under the facility plan update initiated by the Milwaukee Metropolitan Sewerage District in 1995. That plan update is anticipated to institute an amendment to the regional plan once it is adopted by all of the agencies involved.

Chapter XI

PIKE RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION


This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975 -- the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Pike River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Pike River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element and the water quality monitoring plan elements. In addition, a separate section on lake management is included which is limited for the Pike River watershed as there are no major lakes located within the watershed. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.

The Pike River watershed is located in the southeast portion of the Region and covers an area of approximately 51 square miles. The main stem of the Pike River rises in Racine County and flows approximately 16 miles southerly and easterly to enter Lake Michigan in the City of Kenosha in Kenosha County. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Pike River and its principal tributaries, are shown on Map XI-1. The Pike River watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land uses which have occurred within the Pike River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point source and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater

Map XI-1
PIKE RIVER WATERSHED

runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table XI-1 summarizes the existing land uses in the Pike River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the Pike River watershed contains numerous urbanized areas, 71 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 57 percent of the total area of the watershed in agricultural and related rural uses, about 3 percent in woodlands, about 3 percent in surface water and wetlands, and about 8 percent in open lands. The remaining 29 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map XI-2.

Within the Pike River watershed, major concentrations of urban development exist in both Kenosha and Racine Counties, with the majority of urban development increases since 1975 occurring in Racine County. Urban development has been rapidly taking place in and around the City of Racine; in the Village of Mount Pleasant, along STH 20 and STH 31, and along STH 11; adjacent to and within the Village of Sturtevant; and in the southern portion of the watershed in the City of Kenosha and Village of Pleasant Prairie--the area generally between STH 50 and STH 142. The Pike River watershed contains a major industrial center, located just east of the Village of Sturtevant along STH 11, and a portion of the Regency Mall commercial center, located east of STH 31 in the City of Racine.

As shown in Table XI-1, from 1975 to 1990, urban land uses in the watershed increased from about 8,100 acres, or 13 square miles, to about 9,500 acres, or 15 square miles, or by about 17 percent. As shown in Table XI-1, residential land represents the largest urban land use in the watershed. Residential use increased within the watershed, from about 3,800 acres, or about six square miles in 1975, to about 4,400 acres, or about seven square miles in 1990, a 15 percent increase. Commercial lands increased significantly, from 120 acres, or about 0.2 square mile, to 252 acres, or about 0.4 square mile, an increase of 110 percent.

The 15 square miles of urban land uses in the watershed as of 1990 approximated the staged 1990 planned level of about 14.7 square miles envisioned in the adopted year 2000 land use plan. The current status of development in the Pike River watershed and in adjacent portions of Racine and Kenosha Counties was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table XI-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Pike River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban land uses are expected to increase in Racine County in the vicinity of STH 11 and STH 20 in the Town of Mount Pleasant, and along STH 31 in the Town of Mount Pleasant and the City of Racine; and in Kenosha County in the vicinity of STH 142 and STH 50 in the City of Kenosha and Village of Pleasant Prairie.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future

Table XI-1

LAND USE IN THE PIKE RIVER WATERSHED: 1975 and 1990a

	19	75	19	990	Change 1	975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	3,795	11.5	4,373	13.3	578	15.2
Commercial	120	0.4	252	0.7	132	110.0
Industrial	447	1.4	438	1.3	- 9	- 2.0
Transportation,						
Communication,			l			
and Utilities ^b	2,416	7.3	3,053	9.3	637	26.4
Governmental and]			1	
Institutional	698	2.1	712	2.2	14	2.0
Recreational	634	1.9	654	2.0	20	3.2
Subtotal	8,110	24.6	9,482	28.8	1,372	16.9
P 1						
Rural Agricultural			5			
and Related	21,169	64.3	18.764	57.0	- 2,405	- 11.4
Lakes, Rivers,	21,103	1				
Streams and						
Wetlands	878	2.7	944	2.9	66	7.5
Woodlands	945	2.9	919	2.8	- 26	- 2.8
Open Lands ^c , Landfills,	1,807	5.5	2,800	8.5	993	55.0
Dumps, and Extractive						
Subtotal	24,799	75.4	23,427	71.2	- 1,372	- 5.5
Total	32,909	100.0	32,909	100.0	0	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

c Includes both rural and urban open lands.

MAP XI-2 LAND USES IN THE PIKE RIVER WATERSHED: 1990 -LEGEND-SINGLE-FAMILY RESIDENTIAL MULTI-FAMILY RESIDENTIAL COMMERCIAL **INDUSTRIAL** STREET AND HIGHWAYS PARKING OTHER TRANSPORTATION COMMUNICATION AND UTILITIES GOVERNMENTAL AND INSTITUTIONAL RECREATIONAL SURFACE WATER **WETLANDS** WOODLANDS EXTRACTIVE LANDFILL AGRICULTURAL AND OTHER OPEN LANDS

The Pike River watershed is about 51 square miles in areal extent, or about 2 percent of the total Regic In 1990, about 15 square miles, or about 29 percent of the watershed, was in urban land uses.

GRAPHIC SCALE IN MILES

Table XI-2

				Yea	r 2010 Intern Centralize		th -		Year 2010 Hi Decentraliza		
		Existing 1990		20	10	Change 1	1990-2010	20	010	Change 1990-2010	
	Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
	Urban										
	Residential	4,373	13.3	5,912	18.0	1,539	35.2	6,759	20.5	2,386	54.6
	Commercial	252	0.7	283	0.9	31	12.3	316	0.9	64	25.4
	Industrial	438	1.3	757	2.3	319	72.8	942	2.9	504	115.1
	Transportation,										
	Communication, and Utilities ^b	2 052	9.3	2 501	10.9	528	17.3	3,939	12.0	886	29.0
	Governmental and	3,053	9.3	3,581	10.9	328	17.3	3,939	12.0	***	29.0
	Institutional	712	2.2	754	2.3	42	5.9	783	2.4	71	10.0
	Recreational	654	2.0	842	2.5	188	28.7	893	2.7	239	36.5
94	Necreational			072		100	2017				
5	Subtotal	9,482	28.8	12,129	36.9	2,647	27.9	13,632	41.4	4,150	43.8
	Rural										
	Agricultural										
- 1	and Related	18,764	57.0	17,843	54.2	- 921	- 4.9	16,558	50.3	-2,206	- 11.8
	Lakes, Rivers,	,		. ,				_ ,		 	
	Streams, and Wetlands	944	2.9	894	2.7	- 50	- 5.3	894	2.7	- 50	- 5.3
	Woodlands	919	2.8	905	2.7	- 14	- 1.5	882	2.7	- 37	- 4.0
	Open Lands, ^c Landfills,										
	Dumps, and Extractive	2,800	8.5	1,140	3.5	-1,660	- 59.3	943	2.9	-1,857	- 66.3
	Subtotal	23,427	71.2	20,780	63.1	-2,647	- 11.3	19,277	58.6	-4,150	- 17.7
	Total	32,909	100.0	32,909	100.0	0		32,909	100.0	0	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.

b Includes all off-street parking.

c Includes both rural and urban open lands.

conditions, the amount of land devoted to urban use within the Pike River watershed, as indicated in Table XI-2, is projected to increase from the 1990 total of about 15 square miles, or about 29 percent of the total area of the watershed, to about 19 square miles, or about 37 percent of the total area of the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 21 square miles, or about 41 percent of the total watershed by year 2010. It is important to note that the 59 to 63 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and, as recommended in the year 2010 regional land use plan, is proposed to be largely in open space uses, preserved through joint State-local zoning or public acquisition. In addition, certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 36 square miles in 1990 to about 32 square miles in the year 2010 under the intermediate growthcentralized land use plan and to about 30 square miles under the high growthdecentralized land use plan, decreases of about 11 and 18 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Pike River watershed--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. This section also includes a status report on the public sanitary service areas located in the watershed.

<u>Public and Private Wastewater Treatment Systems and Sewer Service Areas</u>
<u>Existing Conditions and Status of Plan Implementation</u>: In 1975, there were two public sewage treatment facilities located in the Pike River watershed, as shown on Map XI-3. The Village of Sturtevant and Town of Somers sewage treatment plants discharged indirectly to the main stem of the Pike River via small tributaries. Both of these plants were abandoned after 1975, as recommended in the initial plan. The status of implementation with regard to the initial plan recommendations for public and private sewage treatment plants in the Pike River watershed is summarized in Table XI-3.

In addition to the publicly-owned sewage treatment facilities, two private sewage treatment plants were in existence in 1975 in the Pike River watershed. These plants served the American Motors Corporation-Transportation Division in the Town of Somers and St. Bonaventure Seminary in the Town of Mount Pleasant. As indicated in Table XI-3, both of the private sewage treatment plants in the watershed were recommended to be abandoned. As of 1990, both of these plants had been abandoned.

Map XI-3 SEWER SERVICE AREAS AND SEWAGE TREATMENT PLANTS IN THE PIKE RIVER WATERSHED: 1990 AND 2010

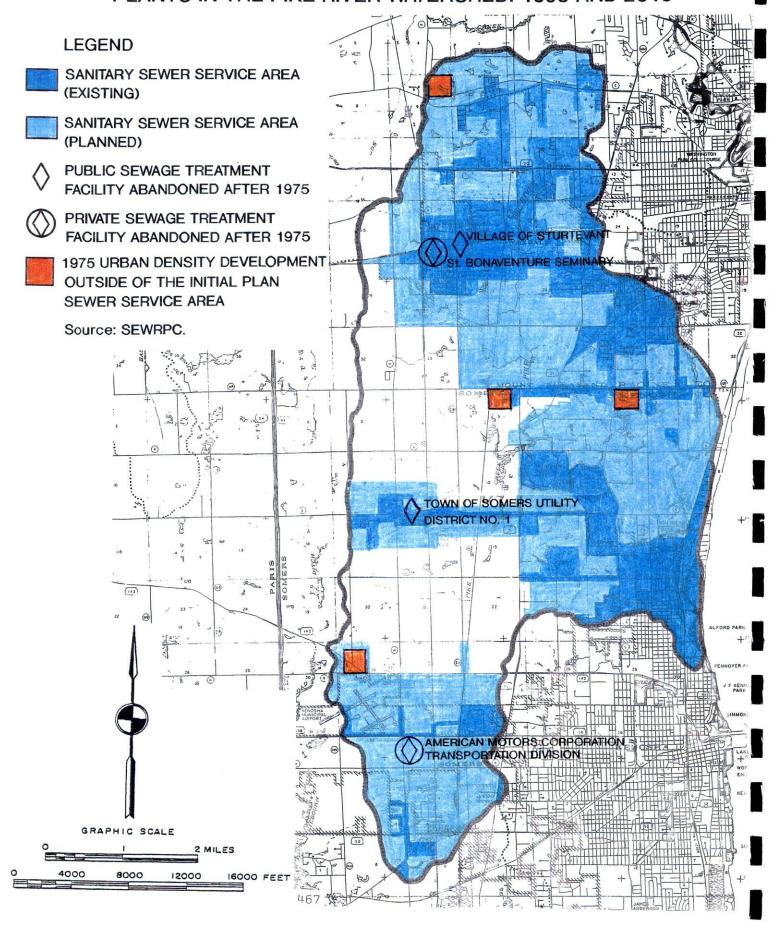


Table XI-3

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE PIKE RIVER WATERSHED: 1990

Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Town of Somers Utility District No. 1	Tributary of Pike Creek	Abandon Plant	Plant Abandoned (1986)
Village of Sturtevant	Tributary of Pike River	Abandon Plant	Plant Abandoned (1980)
Private Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
American Motors Corporation Transportation Division	Tributary of Pike Creek	Abandon Plant	Plant Abandoned (1977)
St. Bonaventure Seminary	Tributary of Pike River	Abandon Plant	Plant Abandoned (1979)

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were four sewer service areas identified within, or partially within, the Pike River watershed: Racine, Somers, Pleasant Prairie North, and Kenosha. Currently, all of these areas have undergone refinements as recommended. The boundaries of the sewer service areas through 1993 are shown on Map XI-3. Table XI-4 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer service area in the Pike River watershed, as refined through 1993, totals about 36 square miles, or about 71 percent of the total watershed area, as shown in Table XI-4.

<u>Current Plan Recommendations</u>: The current point source pollution abatement plan element, including the planned sanitary sewer service areas in the Pike River watershed are shown on Map XI-3. The existing and planned year 2010 population data for each sewer service area are presented in Chapter XVIII on a regional basis. All or portions of the Bristol/Pleasant Prairie, Kenosha, and Racine sewer service areas are located in the Pike River watershed. Together, the planned service areas total about 36 square miles, or about 71 percent of the Pike River watershed.

As noted above, each of these service areas in the watershed has been refined as part of the ongoing regional water quality management plan updating process. However, additional changes to the planned sewer service areas, as well as to the trunk sewer system in the Pike River watershed have been recommended in two subregional sewerage system plans. 1 The recommendations of these two system plans are described in Chapter IV for the greater Kenosha area and in Chapter XIII for the greater Racine Area. Formally amending the regional water quality management plan is being held in abeyance until such time as intergovernmental agreements on the system plans is achieved by the local units involved, including the City of Racine for the greater Racine area plan recommendations and the City of Kenosha for the greater Kenosha area. No specific additional refinements are envisioned to be needed for the currently planned sewer service areas at this time. It is recommended that the sanitary sewer service areas and attendant planned population levels be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were eight known separate sewer flow relief devices located in the Pike River watershed: five crossovers to storm sewers discharging to the Pike River from the City of Kenosha; two bypasses to the Pike River, one from the Village of Sturtevant and one from the Town of Mount Pleasant; and one bypass to Pike Creek from the Town

¹Alvord, Burdick & Howson and Applied Technologies, Inc., <u>A Coordinated Sanitary Sewerage and Water Supply System Plan for the Greater Racine Area</u>, September 1992; and Ruekert & Mielke, Inc., <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area</u>, October 1991.

Table XI-4

PLANNED SANITARY SEWER SERVICE AREAS IN THE PIKE RIVER WATERSHED: 1993

		,		
Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
Bristol IH 94 Pleasant Prairie North	0.9	Bristol/Pleasant Prairie	December 2, 1985	SEWRPC CAPR No. 106, Sanitary Sewer Service Area for the City of Kenosha and Environs, Kenosha County, Wisconsin
Kenosha Pleasant Park Somers	16.7	Kenosha	December 2, 1985	SEWRPC CAPR No. 106, Sanitary Sewer Service Area for the City of Kenosha and Environs, Kenosha County, Wisconsin
Racine Caddy Vista	18.4	Racine Caddy Vista	December 1, 1986	SEWRPC CAPR No. 147, Sanitary Sewer Service Area for the City of Racine and Environs, Racine County, Wisconsin
Total	36.0			

Note: CAPR - Community Assistance Planning Report

of Somers. These flow relief devices have all been eliminated, as recommended in the initial regional water quality management plan. As shown in Table XI-5, two points of sanitary sewer system flow relief were reported during 1988 through 1993 in the Pike River watershed. One incident of bypassing was reported at the County Line Road lift station in the Town of Mount Pleasant Sewer Utility District No. 1 sewerage system due to a mechanical failure which was subsequently repaired. One incident of bypassing was reported at the Hulda Street lift station in the Village of Sturtevant due to excessive rainfall.

<u>Current Plan Recommendations</u>: It is recommended that the Village of Sturtevant and the Town of Mount Pleasant Sewer Utility District No. 1 continue to monitor their sewerage system operations to ensure that the use of the existing sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading within the watershed be conducted with the assumption that there will be no planned bypasses of untreated sewage and that the use of all flow relief devices will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewer

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan, as updated, recommended the construction of two intercommunity trunk sewers in the Pike River watershed, as shown in Table XI-6. One trunk sewer would connect urban development in the Village of Sturtevant and in portions of the Town of Mount Pleasant to the City of Racine sewerage system, enabling the abandonment of the Village of Sturtevant sewage treatment plant, while the other would connect urban development in the Town of Somers to the City of Kenosha sewerage system, enabling the abandonment of the Town of Somers Utility District No. 1 sewage treatment plant. The trunk sewer connecting the Village of Sturtevant and portions of the Town of Mount Pleasant has been constructed. An interim connection of the Town of Somers Utility District No. 1 to the Kenosha sewerage system was also completed and the permanent Somers-Kenosha trunk sewer was partially completed by extension to CTH E.

<u>Current Plan Recommendations</u>: As noted earlier, there are now pending recommendations for additional trunk sewers to serve the service areas in the watershed as were recommended in separate subregional system plans for the greater Kenosha area and the greater Racine area. Amendment of the regional water quality management plan is being held in abeyance until such time as local agreement on the system plans is reached. Details regarding the trunk sewers recommended in those plans are shown in Chapter IV for the greater Kenosha area and Chapter XIII for the greater Racine area.

<u>Point Sources of Wastewater Other Than Public</u>

and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975, there were a total of four known point sources of pollution identified in the Pike River watershed other than public and private sewage treatment plants. All six of these outfalls were identified as discharging only cooling water to the surface water system. The initial regional water quality management plan includes a recommendation that these industrial sources of wastewater be monitored and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

Table XI-5

KNOWN SEWAGE FLOW RELIEF DEVICES IN THE PIKE RIVER WATERSHED: 1988-1993

		Sewage 1	Flow Relief	Devices in	the Sewer S	ystem	
Sewerage System	Sewage Treatment Plant Flow Relief Device	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
Town of Mount Pleasant Utility District No. 1			1			1	Used only in case of equipment failure
Village of Sturtevant	-		1			1	Used only in case of equipment failure or extreme wet weather conditions
Total			2			2	

Table XI-6

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE PIKE RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Implementation				
Sturtevant-Mt. Pleasant	Completed (1980)				
Somers-Kenosha	Interim Connection Completed (1986) Portion of permanent trunk sewer completed to CTH E (1993)				

As of 1990, there were ten such known point sources of wastewater discharging to the Pike River and its major tributaries and the groundwater system. Table XI-7 summarizes selected characteristics of these other point sources and Map XI-4 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 14 known point sources of wastewater other than public and private sewage treatment plants discharging to surface waters in the Pike River watershed. These point sources of wastewater discharge, primarily industrial cooling, process, rinse, and wash water directly or following treatment to the groundwater or the surface waters. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside the Proposed Sanitary Sewer Service Area

As of 1975, there were four enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area. As of 1990, all of these areas had been added to the planned 2010 sewer service area as part of the plan amendment process. No new enclaves of urban development have been created beyond the planned sewer service areas, as shown on Map XI-3.

Miscellaneous Potential Pollution Sources

Landfills: Landfills in the Pike River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources. In some cases, toxic and hazardous substances have begun to leach into surrounding soils and aquifers and can potentially be transmitted to the surface waters.

There are currently two active and nine known abandoned landfills located in the Pike River watershed. None of the active or abandoned landfills are known to be negatively impacting surrounding surface waters.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Pike River watershed have the potential to affect water quality through the release of substances into the surrounding soils and ground water. Sites with leaking underground storage tanks are eligible for remediation under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate the clean up of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing clean up efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground waters. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1993, there were 32 known leaking underground storage tank sites in the Pike River watershed. None of these involved the discharging of remediation wastewater directly to surface water or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the

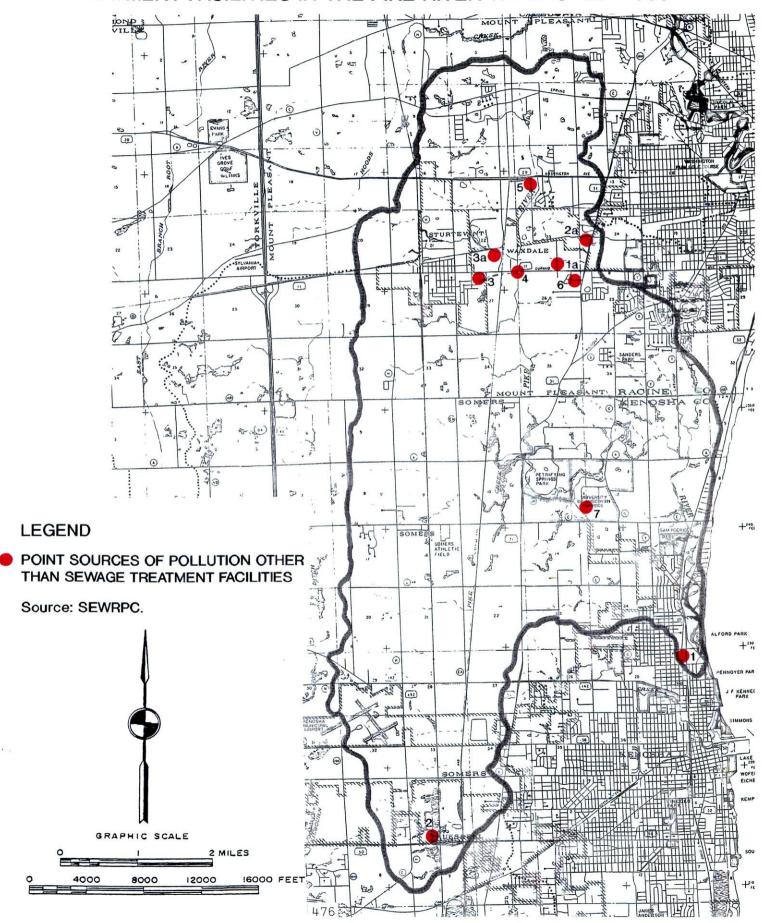
Table XI-7

CHARACTERISTICS OF OTHER KHOWN POINT SOURCES OF WATER POLLUTION IN THE PIKE RIVER WATERSHED: 1990a

Facility Name	County	Map ID No.	Permit Type	Permit No.	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
Pike River Watershed Eaton Corporation - Elec. Drives Div. Ken-Crete Products Co., Inc. Metal-lab, Inc. Racine Fluid Power Racine School Dist: J.I. Case H.S. Spencer Residence UW Parkside Pool J. I. Case Company-Transmission Plant	Kenosha Kenosha Kenosha Kenosha Kenosha Kenosha Recine	1 2 3 4 5 6 7 1 8	General General General General General General General Specific	0044938-3 0046507-2 0044938-3 0044938-3 1046523-1 HEAT PUMP 0046523-2 0039691	9-30-95 9-30-95 9-30-95 9-30-95 9-30-95 9-30-95 9-30-95 8-31-94	3566 3271/3273 3398 3561 3494 8811 8221 3523	Speed changers, drives & gears Concrete block, brick & ready-mix Metal heat treating Pumps & equip., valves & pipe fit. Secondary school Private residence College or university Farm machinery & equipment	Pike River via storm sewer Absorption pit Pike River via unnamed tributary Pike River Pike River via drainage ditch Pike River via storm sewer Pike River via drainage ditch Lake Hichigan via storm sewer	 None
Land Reclamation Company S. C. Johnson & Son, Inc Waxdale	Racine Racine	2A 3A	Specific Specific	0045420 0027758	12-31-94 12-31-93	4953 2842	Refuse systems Polishes and sanitation goods	Pike River via drainage ditch ' Pike River via unnamed tributary	1, 2 Hone

^{*} Table XI-7 includes 10 known, permitted point sources of wastewater discharging to the Pike River and its tributaries, or to the groundwater system in the Pike River watershed. As of 1993, there were 14 point sources of pollution.

- 1. Gravity sedimentation
- 2. Holding pond


Source: Wisconsin Department of Natural Resources and SEWRPC.

On b See Map XI-4, Point sources of pollution other than sewage treatment facilities in the Pike River Watershed: 1990 and 2010.

^c The number code refers to the following treatment systems:

Map XI-4

POINT SOURCES OF POLLUTION OTHER THAN SEWAGE TREATMENT FACILITIES IN THE PIKE RIVER WATERSHED: 1990

cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters. As of 1993, there were no known such sites in the Pike River watershed.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Pike River watershed, the initial plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to construction site erosion control, onsite sewage disposal system management, and streambank erosion control.

In 1983, the Commission prepared a comprehensive plan² for the Pike River watershed. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas and for rural nonpoint source management planning in the watershed.

Implementation of the recommended nonpoint source control practices has been achieved on a very limited basis in the Pike River watershed through a variety of local and State regulations and programs. These programs include the regulation of onsite sewage disposal systems under programs currently administered by Kenosha and Racine Counties in the unincorporated areas and by the local units of government in incorporated areas served by onsite systems. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of newer systems, and for problem resolution of failing systems where they are identified. In addition, significant progress has also been made in the area of construction site erosion control. As of January 1993, the City of Kenosha and Village of Pleasant Prairie had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and the League of Wisconsin Municipalities.

With regard to rural nonpoint source control, programs such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others are being utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have

²SEWRPC Planning Report No. 35, <u>A Comprehensive Plan for the Pike River Water-shed</u>, June 1983.

positive water quality impacts. Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. Tolerable levels are defined as soil loss tolerances or Tvalues, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade, and Consumer Protection as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Kenosha and Racine Counties. Thus, these plans have been prepared for all rural areas of the Pike River watershed. Those plans identify priority areas for cropland soil erosion control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While these local programs described above have resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. planning program was established in 1978 by the Wisconsin State Legislature and provides cost-sharing funds for an individual project, or land management practice, to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. date, the Pike River watershed has not been selected for inclusion in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program.

Current Plan Recommendations

It is recommended that construction site erosion control, onsite sewage system management, and streambank erosion controls plus land management be carried out throughout the Pike River watershed. The types of practices recommended to be considered for this level of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most

cost-effective manner. In this regard, the watershed should be included in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in order to make State cost-sharing funds and related programs available for nonpoint source pollution control measures. In addition, detailed stormwater management plans in urban areas and farmland management practices in rural areas should be conducted to define the practices to be installed in the most cost-effective manner. The current priority ranking of watersheds for inclusion in that program is documented in a memorandum³ prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included the Pike River watershed in the high category, indicating that inclusion in the program will be possible when existing planning projects are completed and funds and staff become available within the Department of Natural Resources.

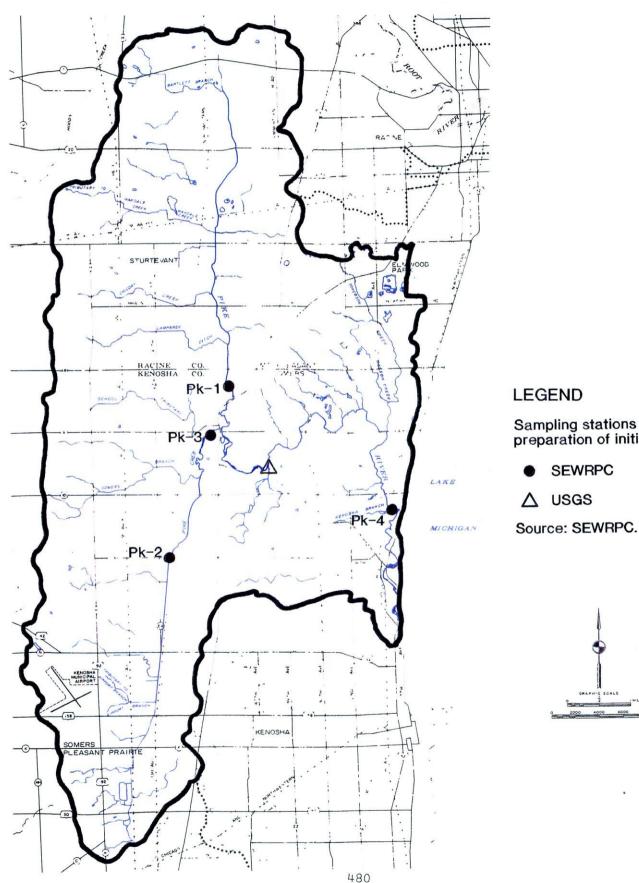
WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous section, the most direct measure of impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.

As of 1993, no known monitoring has been carried out in the Pike River watershed on a sustained basis. However, the Wisconsin Department of Natural Resources conducted extensive stream habitat and fish community surveys in the watershed in June of 1990 and again in June of 1993.

Current Plan Recommendation


Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at four stations located on the main stem of the Pike River--at stations Pk-1, Pk-2, Pk-4, and at a location upstream of Pk-1 on the Pike River in Racine County, as shown on Map XI-5. It is recommended that this program be conducted within the next five to seven years and repeated at approximately five to seven year intervals. These recommendations can be coordinated, and are consistent, with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five to seven year rotating cycle.

LAKES MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of

³See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Non-point Source Management Purposes in Southwestern Wisconsin: 1993."

Map XI-5 LOCATIONS OF WATER QUALITY SAMPLING STATIONS IN THE PIKE RIVER WATERSHED

Sampling stations used in preparation of initial plan

watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological condition monitoring programs to be established.

As noted above, there are no major lakes in the Pike River watershed. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are considered applicable for management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS

Streams

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; the 1976 Commission monitoring program conducted under the regional water quality management planning effort; and the Wisconsin Department of Natural Resources (DNR) sampling programs in 1973 and 1976. Available data collected in those programs for the Pike River watershed included samplings at four Commission stations—two on the Pike Creek Tributary of the Pike River and two on the main stem of the Pike River—and at one USGS station on the Pike River main stem. The sampling station locations are shown on Map XI-5.

No post-1976 comparable water quality data were available for streams in the Pike River watershed. However, the Wisconsin Department of Natural Resources has conducted biological condition monitoring in the watershed, including stream habitat and biological community surveys conducted in June 1990 and June 1993 which were available for use in the assessment of current water quality conditions. In addition, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Pike River watershed.

Based upon review of the available current data, it is not possible to determine current conditions, or if any significant changes have occurred in the water quality conditions since the preparation of the initial plan.

Toxic and Hazardous Substances: Sampling and analysis for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Pike River watershed from 1973 through 1977. In the in-stream water quality samples for which toxic and hazardous substances were tested, levels of heptachlor epoxide, DDT, lindane and dieldrin, and persistent pesticides were exceeded in two of nine, one of nine, one of eight, and three of eight samples, respectively. Sample analyses for cadmium, chromium, copper, lead, mercury, nickel, zinc, PCBs, and DDE, DDD, aldrin,

heptachlor, and phthalate uncovered no violations of U.S. Environmental Protection Agency recommended levels.

Since the completion of the initial plan, no known water column or sediment sampling for toxic and hazardous substances in streams within the Pike River watershed has been conducted.

The Wisconsin Department of Natural Resources has documented 12 spills of toxic substances into streams within the Pike River watershed since the completion of the initial regional water quality management plan. All of these spills have occurred in the Pike River main stem, upstream of Pike Creek in Racine County.

<u>Water Quality Assessments</u>: Based upon the available data, the water quality and biological characteristics of the Pike River and its major tributaries were assessed with the results set forth in Table XI-8. Fish sampling and habitat evaluations were conducted by the Wisconsin Department of Natural Resources in the Pike River watershed during June of 1990. Results indicated that fish population and diversity are poor, except for Pike Creek where the population and diversity are fair. One fish kill incident has been documented in the Pike River watershed. This incident occurred in the main stem of the Pike River and its cause has not fully been determined.

Standards were not fully met for dissolved oxygen concentrations in the main stem of the Pike River both upstream and downstream of the Pike Creek confluence. Downstream of the Pike Creek confluence, and in Pike Creek, standards were not fully met for fecal coliform levels.

In general, the biotic index ratings, which are biological indicators of water quality within a stream system, were very poor to fair, except for Pike Creek which had a poor rating. High levels of streambed sedimentation were noted throughout the watershed.

Table XI-9 sets forth the water quality index classifications⁴ used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. The limited data available indicate that water quality conditions have generally improved from "poor" in 1964 to "fair" in 1974-75, but no recent data were available to assess water quality conditions in 1990 and 1991.

A summary of potential pollution sources in the Pike River watershed by stream reach is shown in tabular summary in Table XI-10. Review of the data indicate the majority of the conversion of lands from rural to urban uses has occurred in the area tributary to the Pike River main stem downstream of the Pike Creek confluence. It should be noted that the majority of the documented spills of toxic substances and the majority of the permitted industrial discharges occur in the Pike River main stem in Racine County, in and around an area of industrial land uses. Data on nonpoint source pollution and additional potential impacts to surface water quality are included in Table XI-10.

⁴ For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

Table XI-8

CHARACTERISTICS OF STREAMS IN THE PIKE RIVER WATERSHED

	Fish		Recorded	Water Quality Problems ^b					Biotic	Streambed	Physical Modifications
SUBWATERSHED Stream Reach	Stream Length (miles)	Population and Diversity ^a	Fish Kills	DO	NH ₃	Total P	Fecal Coliform	Toxics	Index Rating ^C	Sedimentation (substrate)	to Channel ^d
a. Pike River upstream Pike Creek	14.2	Poor	Yes ^e	Yes	No	No	Yes		Very poor- fair	High (cobble, gravel, sand, clay)	Major
b. Pike River downstream Pike Creek	13.8	Poor	No	Yes	No	No	Yes		Very poor- fair	High (cobble, gravel, sand, clay)	Moderate
c. Pike Creek	<u>10.5</u> 38.5	Fair	No	No	No	No	Yes		Poor	High (gravel, sand, clay)	Major

Based upon 1990 Wisconsin Department of Natural Resources fishery survey.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Pike River watershed stream reaches based upon year 2000 land use conditions and current level of pollution control.

^c Biotic index ratings are based upon the Index of Biotic Integrity (IBI) discussed in U.S. Department of Agriculture, Forest Service, General Technical Report NC-149, "Using the Index of Biotic Integrity (IBI) To Measure Environmental Quality in Warmwater Streams of Wisconsin," Lyons, April 1992. Data provided in Wisconsin Department of Natural Resources Report A Resource Assessment for the Pike River Watershed, July 1994.

d Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

^e Potentially related to a chemical discharge. Source unknown.

Table XI-9

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS
OF THE PIKE RIVER WATERSHED 1964, 1974-1975, AND 1990-1991

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Main Stem Stations			
Pk-1 Pk-4	Poor Fair	Fair Fair	
Tributary Stations			
Pk-2 Pk-3	Poor Poor	Fair Fair	
Watershed Average	Poor	Fair	

^a See Map IX-5 for sampling station locations.

Table XI-10
SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE PIKE RIVER WATERSHED: 1990

		Conversion of ural to Urban ^b					Remaining	Potential Sur	face Water Pollution Sources		
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts
Pike River upstream Pike Creek	Insignificant	Major ^c	83-chlorine 86-soap suds 89-diesel fuel 90-emulsified wax 90-76 polymers- emulsion 90-hydraulic fluid 91-isopropyl alcohol 91-light oil 92-polymer wastewaters 92-glycol ether 92-diesel fuel	х	x	1		6		Village of Sturtevant public sewage treatment plant abendoned in 1980. St. Bonaventure Seminary private sewage treatment plant abandoned in 1979.	
Pike River downstream Pike Creek	Significant	Moderate		••	х		••	3			X ^d
Pike Creek	Insignificant	Significant	·-	х	х			1	••	Town of Somers Utility District No. 1 public sewage treatment plant abandoned in 1986. American Motors Corporation-Transportation Division private sewage treatment plant abandoned in 1977.	

a Includes the tributary drainage area of each stream reach.

^b Extent of urban land conversions were determined as a percentage of the watershed as follows:

major > 20% moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

^o The amount of post-1990 urban development is anticipated to increase significantly in comparison to pre-1990 urban development.

^d Construction Erosion Control Ordinances in place

Source: Wisconsin Department of Natural Resources and SEWRPC.

Compliance with Water Use Objectives

As indicated in Chapter II, the main stem of the Pike River and Pike Creek downstream of STH 142 are recommended for warmwater sport fish and full recreational uses. The portion of the Pike Creek upstream of STH 142 has limitations for sport fish habitat and is recommended for warmwater forage fish and limited recreational use. The Bartlett Branch tributary to the Pike River is recommended for limited forage fish and limited recreational use due to its depth and channel characteristics. These water use objectives and the associated water quality standards are discussed in Chapter II.

Based upon the available data for sampling stations in the watershed, the streams in the Pike River watershed did not meet water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. Based upon review of the water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of dissolved oxygen and fecal coliform standards continue to occur in most of the major streams in the watershed and the water use objectives are being partially met.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon the current status of plan implementation, there are no major water quality issues remaining to be evaluated and addressed specific to the Pike River watershed. There remains a need to implement the nonpoint source pollution abatement recommendations set forth herein.

	-
	The state of the s
	•
	•
	•
	•
	-
	•
	1
	_
	•
	-
	•
	1
	•
	•
	1
	_
	8
	_
	•
	1
	•

Chapter XII

ROCK RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975--the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Rock River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Rock River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement plan element and sludge management elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.

The Rock River watershed is located in the westerly portion of the Region. The portion of the watershed contained within the Region--about 612 square miles--is only a small part of a much larger watershed. The main stem of the Rock River arises and flows outside of the Region. Seventeen tributaries of the Rock River originate in the Region. Rivers and streams in the watershed are part of the Mississippi River drainage system as the watershed lies west of the subcontinental divide. The boundaries of the basin and the principal tributaries of the Rock River are shown on Map XII-1.

Within the Southeastern Wisconsin Region, the Rock River watershed contains 38 major lakes having a surface area of 50 acres or more. These lakes are distributed within seven subwatersheds: the Ashippun River, Bark River, Oconomowoc River, Rubicon River, Scuppernong River, Turtle Creek, and Whitewater Creek subwatersheds. The major lakes in the Ashippun River subwatershed are Ashippun Lake and Druid Lake. The major lakes in the Bark River subwatershed are Bark Lake, Crooked Lake, Lake Five, Golden Lake, Hunters Lake, Lower Nashotah Lake, Lower Nemahbin Lake, Nagawicka Lake, Pretty Lake, School Section Lake, Upper Nashotah Lake, Upper Nemahbin Lake, and Waterville Pond. The major lakes in the Oconomowoc River subwatershed are Beaver Lake, Fowler Lake, Friess Lake, Lake Keesus, Lac La Belle, Lower Genesee Lake, Middle Genesee Lake, Moose Lake, North Lake, Oconomowoc Lake, Okauchee Lake, Pine Lake, and Silver Lake. lake in the Rubicon River subwatershed is Pike Lake and, in the Scuppernong River subwatershed, La Grange Lake. The major lakes in the Turtle Creek subwatershed are Comus Lake, Delavan Lake, and Turtle Lake. The major lakes in the Whitewater Creek subwatershed are Cravath Lake, Lake Lorraine, Rice Lake, Tripp Lake, and Whitewater Lake. Physical characteristics of the major lakes of the Rock River watershed are set forth in Table XII-1. The data indicate that major

Map XII-1
SUBWATERSHEDS IN THE ROCK RIVER WATERSHED

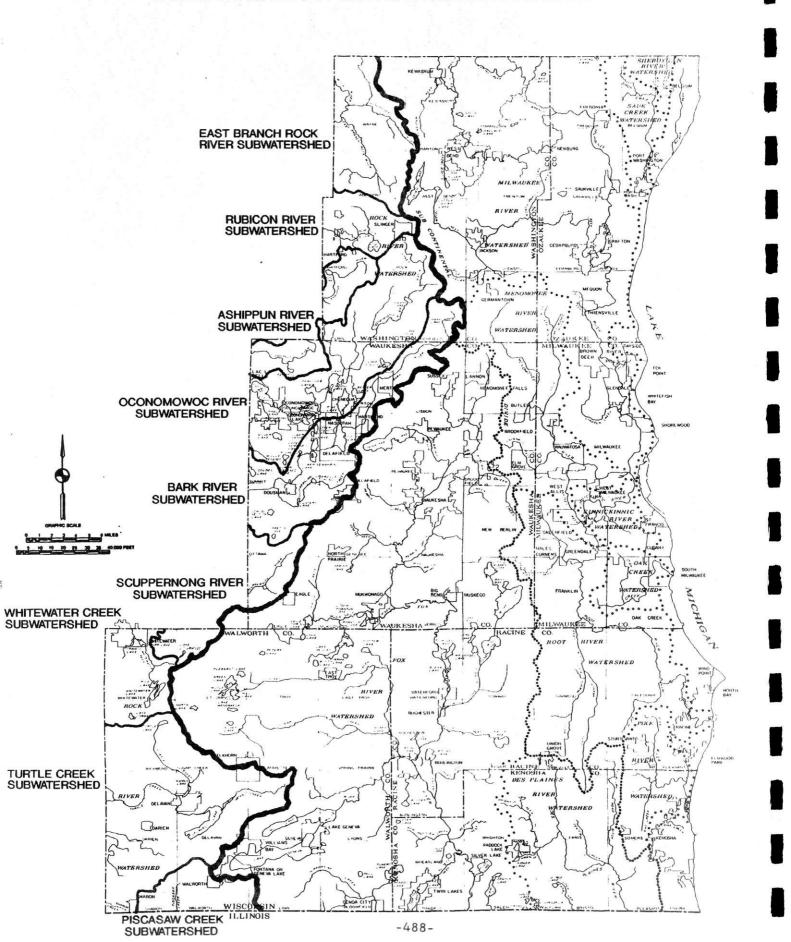
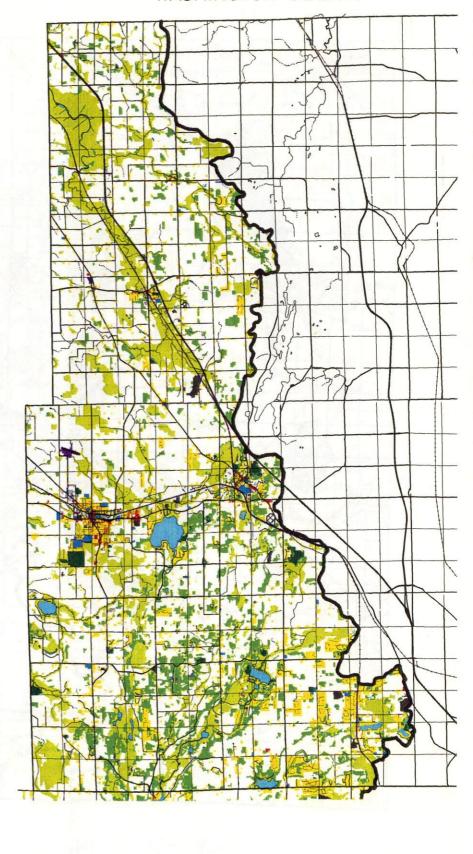


Table XII-1

PHYSICAL CHARACTERISTICS OF MAJOR LAKES IN THE ROCK RIVER WATERSHED

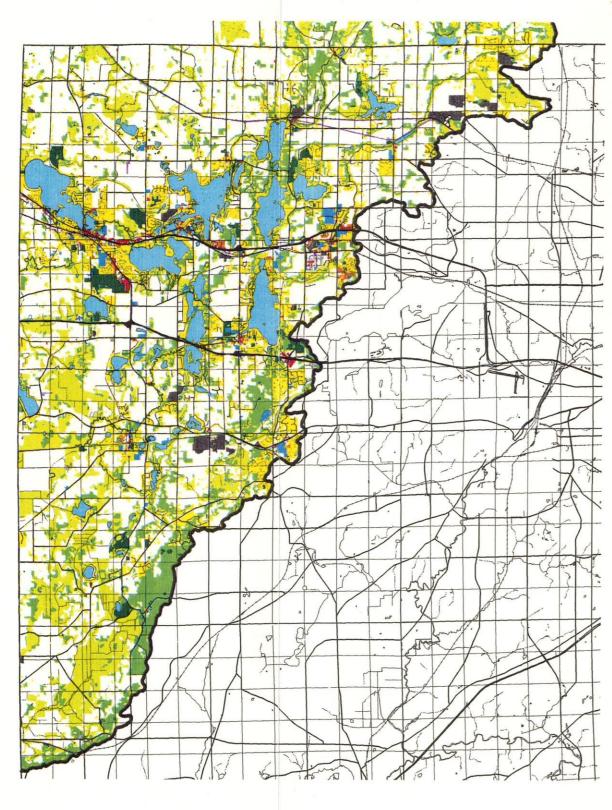
WATERSHED Lake Name	Surface Area (acres)	Direct Tributary Drainage Area (acres)	Shoreline (miles)	Maximum Depth (feet)	Mean Depth (feet)	Volume (acre-feet)
ROCK RIVER Ashippun Lake Bark Lake Beaver Lake Comus Lake Cravath Lake Crooked Lake Delavan Lake Druid Lake Lake Five	84 65 316 117 65 58 2,072 124 102	347 3,315 1,119 1,107 546 794 12,357 481 823	1.5 1.8 3.6 5.1 2.5 2.3 10.1 2.5 1.9	35.0 34 46 6 10 16 56 45	17.1 12.9 16 5.2 2.7 7 25 15	1,436 838 5,056 608 176 406 51,800 3,150 1,112
Fowler Lake Friess Lake Lower Genesee Lake Middle Genesee Lake Golden Lake Hunters Lake Lake Keesus Lac La Belle Lake Lorraine Moose Lake	78 119 66 102 250ª 65 237 1,117 55 133 81	1,478 843 273 529 476 1,222 2,321 6,447 586 1,415 553	1.7 2.3 1.4 1.8 3.4 1.87 5.0 8.7 1.8 3.2 2.3	50 48 44 38 44 36 42 38 4.0 7.5 61	12.9 26.1 18.3 14.4 13.8 20.0 16.7 11.6 2.0 3.0 28.7	1,006 3,105 1,208 1,469 3,450 1,300 3,958 12,957 110 399 2,325

Table XII-1 (cont'd)

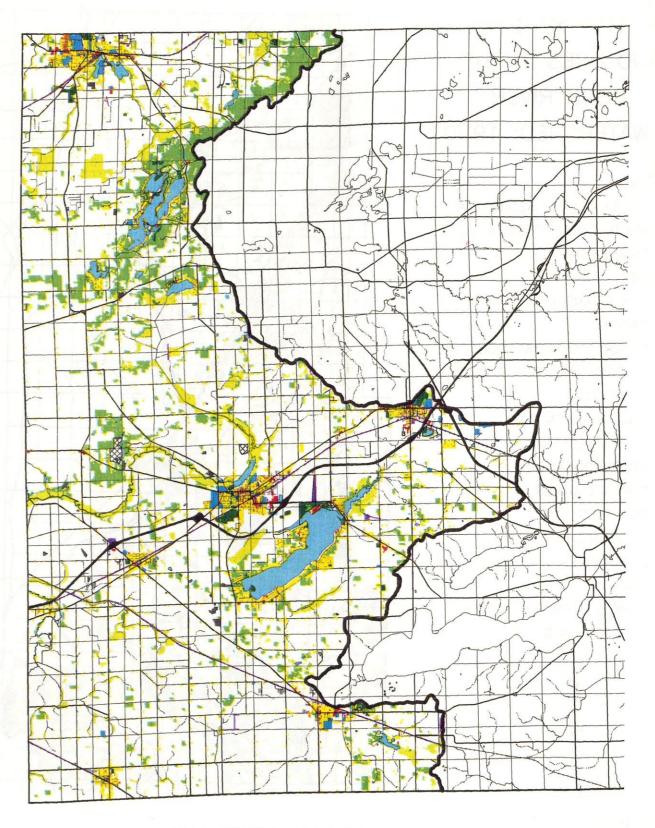

WATERSHED Lake Name	Surface Area (acres)	Direct Tributary Drainage Area (acres)	Shoreline (miles)	Maximum Depth (feet)	Mean Depth (feet)	Volume (acre-feet)
ROCK RIVER (con't) Nagawicka Lake Lower Nashotah Lake Upper Nashotah Lake Lower Nemahbin Lake Upper Nemahbin Lake North Lake (Wauk. Co.) Oconomowoc Lake Okauchee Lake Pike Lake	957	5,352	8.6	90	48	45,936
	90	185	2.3	43	20	1,800
	133	1,257	2.3	53	21	2,820
	271	595	3.3	36	10.1	2,737
	283	1,208	2.9	60	29.6	8,377
	437	1,648	5.3	70	40	17,480
	767	1,934	7.0	60	32	24,697
	1,187	4,757	15.0	90	27.5	32,642
	522	2,455	3.8	45	13.3	6,942
Pine Lake Pretty Lake Rice Lake School Section Lake Silver Lake (Wauk.Co.) Tripp Lake Turtle Lake Waterville Pond Whitewater Lake	703	1,528	7.3	85	38.4	26,995
	64	106	1.25	31	9.2	589
	137	348	3.0	10	4	548
	125	135	1.9	8.0	2.5	312
	222	1,161	2.7	44	31.5	6,993
	115	554	2.9	8	3.3	380
	140	748	2.3	35	14.4	2,016
	68	1,357	1.87	12.0	4.0	274
	640	3,735	9.8	38.0	7.8	5,003
TOTAL	12,167	66,095	148.29			282,410

 $^{^{\}mathrm{a}}$ Includes 52 acres in Jefferson County.

WASHINGTON COUNTY


MAP XII-2 LAND USES IN THE ROCK RIVER WATERSHED: 1990

-LEGEND-SINGLE-FAMILY RESIDENTIAL MULTI-FAMILY RESIDENTIAL COMMERCIAL **INDUSTRIAL** STREET AND HIGHWAYS PARKING OTHER TRANSPORTATION COMMUNICATION AND UTILITIES GOVERNMENTAL AND INSTITUTIONAL RECREATIONAL SURFACE WATER WETLANDS WOODLANDS EXTRACTIVE $\otimes \otimes$ LANDFILL AGRICULTURAL AND OTHER OPEN LANDS



The Rock River watershed is about 612 square miles in areal extent, or about 23 percent of the total Region. In 1990, about 78 square miles, or about 13 percent of the watershed, is in urban land uses.

MAP XII-2 continued

WAUKESHA COUNTY

WALWORTH COUNTY

The Wisconsin Department of Natural Resources has prepared two basin plans which have included consideration of the portion of the Rock River in Southeastern Wisconsin as part of plans for the entire Lower Rock River Basin¹ and the Upper Rock River Basin.² The study area for these two planning efforts extends to the entire Rock River basin. The preparation of these two plans was coordinated with the preparation of this plan update and it is intended that this plan update refine and update the information regarding the portion of the watershed in Southeastern Wisconsin set forth in these earlier documents.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendation, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land uses which have occurred within the Rock River watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data is presented for the watershed in order to permit consideration of the relationship of the changes in land use to other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, is also expected to increase with urbanization.

Table XII-2 summarizes the existing land uses in the watershed in 1990 and indicates the changes in such land uses since 1975. Although the watershed contains a number of urbanized areas, 87 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 60 percent of the total watershed area in agricultural and related rural uses, about 8 percent in woodlands, about 15 percent in surface water and wetlands, and about 4 percent in other open lands. The remaining 13 percent of the total watershed was devoted to urban uses. Existing land uses for 1990 in the Rock River watershed are shown in graphic summary on Map XII-2.

Within the Rock River watershed, urban development has occurred in portions of all three counties, with the majority of new development taking place in Waukesha County concentrated in the Village of Oconomowoc south and east of Lac La Belle. Other urban-related land use is generally located around the larger lakes in the northwest portion of the Waukesha County, including Lac La Belle, Oconomowoc, Okauchee, Nagawicka, Beaver, Upper and Lower Nemahbin Lakes, and Upper and Lower Nashotah Lakes. In the portion of Walworth County contained within the watershed, urban-related development is located in and around the Cities of Delavan, Elkhorn, and Whitewater, as well as additional urban develop-

¹Wisconsin Department of Natural Resources, Publication No. WR 280-91, <u>Lower Rock River Basin</u>, <u>Water Quality Management Plan</u>, November 1991.

²Wisconsin Department of Natural Resources, Publication No. WR 190-88, <u>Upper Rock River Basin</u>, <u>Areawide Water Quality Management Plan</u>, May 1989.

ment around Delavan Lake. In Washington County, urban development has occurred primarily in and around the City of Hartford and the Village of Slinger and in the Town of Richfield.

As shown in Table XII-2, from 1975 to 1990, urban land uses in the watershed increased from about 40,100 acres, or about 63 square miles to about 50,000 acres, or about 78 square miles, or by about 25 percent. As shown in Table XII-2, residential land represents the largest urban land use in the watershed. Residential use has significantly increased within the watershed, from about 19,100 acres, or about 30 square miles in 1975 to about 26,500 acres, or about 41 square miles in 1990, a 39 percent increase, with commercial and industrial lands increasing from about 1,300 acres, or about 2.1 square miles to about 1,800 acres, or about 2.8 square miles, an increase of 38 percent.

The 78 square miles of urban land uses in the watershed as of 1990 approximate the planned level of about 80 square miles for the year 1990 stage of the year 2000 planned conditions set forth in the adopted regional water quality management plan. The current status of development in the Rock River watershed and in adjacent portions of Washington, Waukesha, and Walworth Counties was considered in developing the new year 2010 land use plan element described in Chapter III for the Region.

Table XII-3 summarizes the year 2010 planned land use conditions recommended in the adopted year 2010 land use plan in the Rock River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban uses are expected to increase within and around the Cities of Delavan, Whitewater and Elkhorn, in the Village of Darien in Walworth County, within and around the City of Hartford and Village of Slinger in Washington County. The adopted year 2010 land use plan also proposes the addition of a major industrial center to be located within or near the City of Hartford. Additional urban uses within the watershed are expected to increase within and around the Cities of Delafield and Oconomowoc and the Village of Hartland. Commercial, industrial, and residential urban development is also anticipated to increase along the IH-94 corridor in Waukesha County.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Rock River watershed, as indicated in Table XII-3, is projected to increase from the 1990 total of about 78 square miles, or about 13 percent of the total area of the watershed, to about 85 square miles, or about 14 percent of the total area of the watershed by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 104.6 square miles, or about 17 percent of the total watershed by year 2010. It is important to note that the 83 to 86 percent of the watershed remaining in rural use is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features and is proposed to be preserved largely in open space uses through joint State-local zoning or public acquisition. In addition, certain other lands classified as wetlands and floodplains outside of the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. demand for urban land will have to be satisfied primarily through the conversion of a large portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 534 square miles in 1990 to about 527 square miles in

Table XII-3

EXISTING AND PLANNED LAND USE IN THE ROCK RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

			Yea		mediate Growt	h -	Year 2010 High Growth - Decentralized Land Use				
	Existin	ıg 1990	201	10	Change 1990-2010		2010		Change 1990-2010		
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	
Urban											
Residential	26,481	6.0	28,311	7.2	1,830	6.9	36,401	9.3	9,920	37.5	
Commercial	824	0.2	822	0.2	- 2	- 0.2	998	0.3	174	21.1	
Industrial	1,002	0.3	1,692	0.4	690	68.9	2,594	0.7	1,592	158.9	
Transportation,											
Communication,											
and Utilitiesb	16,691	4.3	17,973	4.6	1,282	7.7	20,892	5.3	4,201	25.2	
Governmental and			·		·					_	
Institutional	1,793	0.5	1,868	0.5	75	4.2	2,088	0.5	295	16.5	
Recreational	3,173	0.8	3,582	0.9	409	12.9	3,965	1.0	792	25.0	
Subtotal	49,964	12.8	54,248	13.9	4,284	8.6	66,938	17.1	16,974	34.0	
Rural									ļ	İ	
Agricultural							201 (00	57.4	- 9,355	- 4.0	
and Related	234,053	59.8	236,022	60.3	1,969	0.8	224,698	37.4	- 9,333		
Lakes, Rivers,									1		
Streams, and						١	50.00	15.0	- 58	- 0.1	
Wetlands	58,919	15.1	58,861	15.0	- 58	- 0.1	58,861		1	- 3.0	
Woodlands	32,957	8.4	32,068	8.2	- 889	- 2.7	31,976	8.2	- 981	- 3.0	
Open Lands, C						l			1		
Landfills, Dumps,									6 500	- 42.4	
and Extractive	15,514	4.0	10,208	2.6	- 5,306	- 34.2	8,934	2.3	- 6,580	- 42.4	
Subtotal	341,443	87.2	337,159	86.1	- 4,284	- 1.3	324,469	82.9	- 16,974	- 5.0	
Total	391,407	100.0	391,407	100.0	0		391,407	100.0	0		

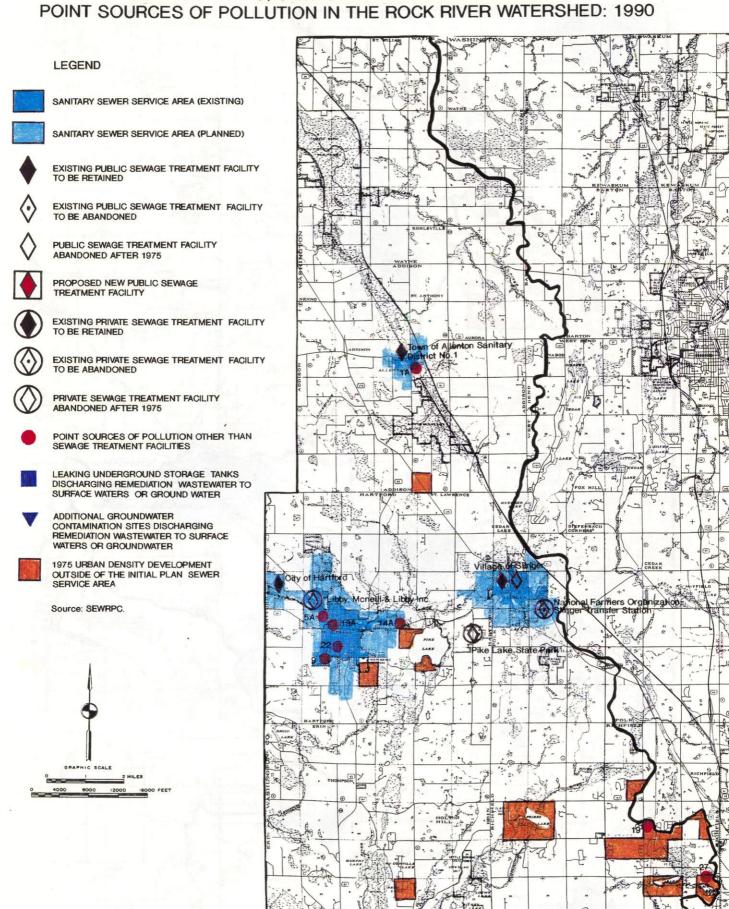
As approximated by whole U.S. Public Land Survey one-quarter sections.

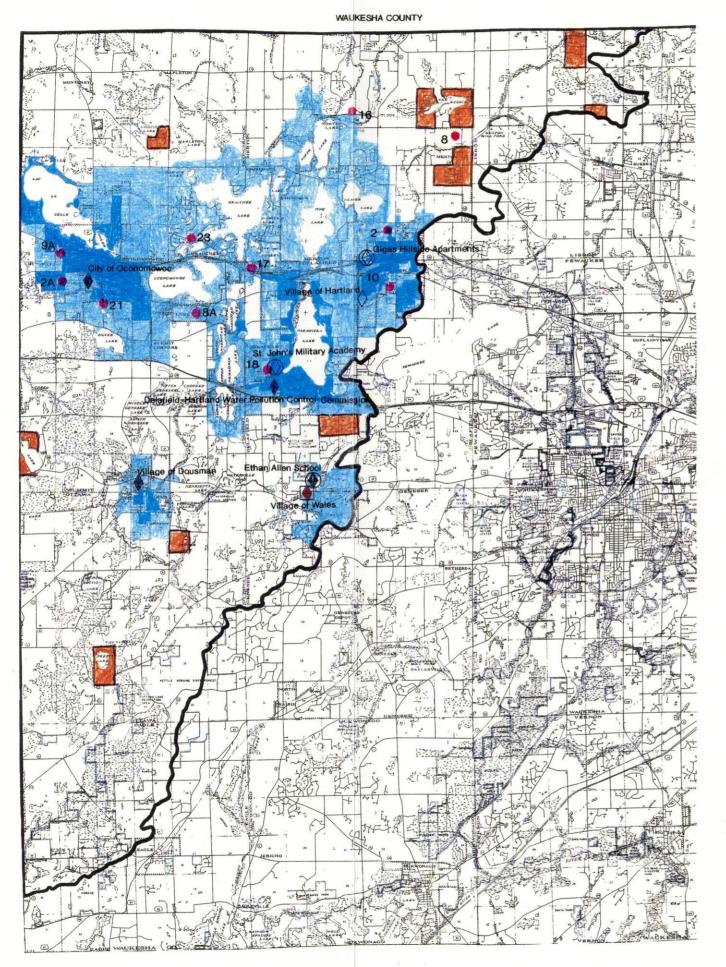
b Includes all off-street parking.

c Includes both rural and urban open lands.

the year 2010 under the intermediate growth-centralized land use plan and to about 507 square miles under the high growth-decentralized land use plan, decreases of about 1 to 5 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS


This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Rock River watershed--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary sewer service areas located in the watershed.


Public and Private Wastewater Treatment Systems and Sewer Services Areas Existing Conditions and Status of Plan Implementation: In 1975, there were twelve public sewage treatment facilities located in the Rock River watershed, as shown on Map XII-3. The City of Delavan plant discharged directly to Turtle Creek; the Village of Sharon plant discharged to Little Turtle Creek; the Village of Darien plant discharged to a tributary of Darien Creek; the City of Elkhorn plant discharged to a tributary of Jackson Creek; the two plants serving the Villages of Dousman and Hartland discharged to the Bark River; the City of Whitewater plant discharged to Whitewater Creek; the City of Hartford plant discharged to the Rubicon River while the Village of Slinger plant discharged indirectly to the Rubicon River; the Allenton Sanitary District plant discharged to the East Branch of the Rock River; the City of Oconomowoc plant discharged to the Oconomowoc River; and the Village of Walworth plant discharged to a tributary of Piscasaw Creek. Of these 12 plants, the plants operated by the Cities of Delavan and Elkhorn and the Villages of Hartland and Walworth were abandoned after 1975, as recommended in the initial plan. The status of implementation in regard to the abandonment, upgrading and expansion, and construction of the public and private sewage treatment plants in the Rock River watershed, as recommended in the initial regional water quality management plan, is shown in Table XII-4.

As can be seen by review of Table XII-4, full implementation of the initial plan would provide for the upgrading and expansion, as needed, of four plants: the Village of Sharon, Village of Darien, Village of Dousman, and Allenton Sanitary District No. 1 sewage treatment plants. Implementation of these recommendations has been largely completed. The initial plan also included recommendations for the upgrading of the City of Hartford plant and the construction of seven new plants, six of which have been constructed. Facility planning to

³Based upon a September 1994 amendment, the Village of Darien sewage treatment plant is recommended to be abandoned and the Village's sewerage system is recommended to be connected to the WalCoMet sewerage system for sewage treatment purposes.

SEWER SERVICE AREAS, SEWAGE TREATMENT PLANTS AND OTHER POINT SOURCES OF POLLUTION IN THE ROCK RIVER WATERSHED: 1990

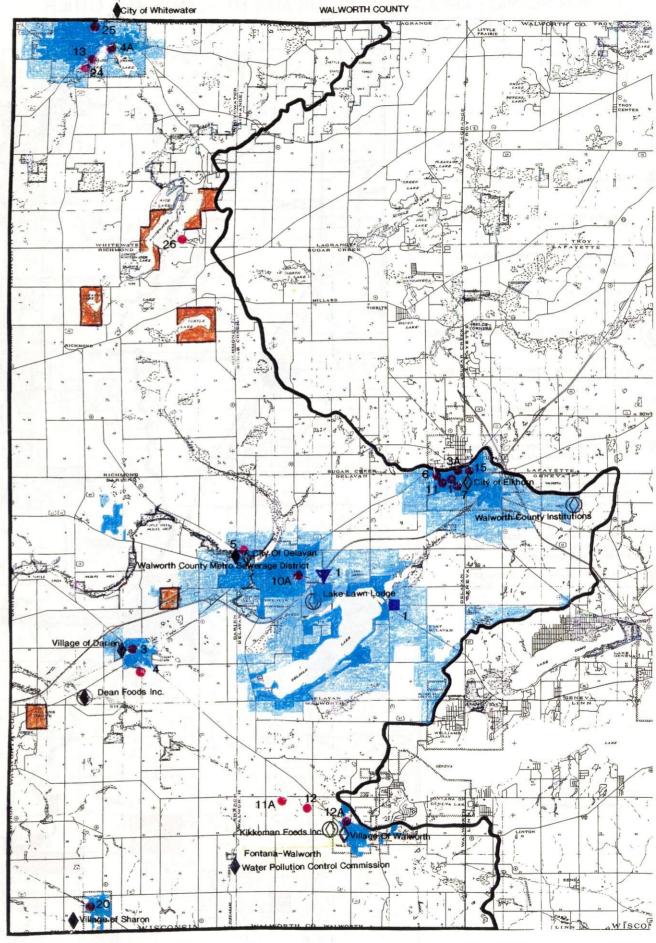


Table XII-4

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN
FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE ROCK RIVER WATERSHED: 1990

		r	T The state of the
Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Allenton Sanitary District No. 1	Rock River - East Branch	Upgrade and expand	Completed (1987)
Village of Darien	Tributary of Darien Creek	Upgrade and expand ^a	Local facility plan completed (1988)
Delafield-Hartland Water Pollution Control Commission	Bark River	Construct new plant	Plant in operation (1980)
Village of Dousman Fontana-Walworth Water Pollution Control	Bark River Tributary of Piscasaw Creek	Upgrade and expand Construct new plant	Completed (1983) Plant in operation (1986)
Commission City of Hartford	Rubicon River	Unamed a	Postate a s
City of Oconomowoc Village of Sharon Village of Slinger	Oconomowoc River Little Turtle Creek Rubicon River	Upgrade Construct new plant Upgrade and expand Construct new plant	Facility plan underway Plant in operation (1976) Completed (1984)
Village of Wales Walworth County	Soil Absorption Turtle Creek	Construct new plant Construct new plant Construct new plant	Plant in operation (1981) No action Plant in operation (1981)
Metropolitan Sewerage District City of Whitewater	Whitewater Creek	Construct new plant	Plant in apparation (1992)
		·	Plant in operation (1982)
City of Delavan	Turtle Creek	Abandon plant-connection to new WalCoMet plant	Plant abandoned (1981)
City of Elkhorn Village of Hartland	Tributary of Jackson Creek Bark River	Abandon plant-connection to new WalCoMet plant Abandon plant-connection	Plant abandoned
village of haltland	Bark River	to Delafield-Hartland	Plant abandoned (1980)
Village of Walworth	Tributary of Piscasaw Creek	Abandon plant-connection to new Fontana-Walworth plant	Plant abandoned (1986)
Private Sewage Treatment Plan	nts		
Ethan Allen School	Soil Absorption	Maintain and upgrade	Plant maintained
Libby, McNeill, & Libby, Inc. (Washington County)	Soil Absorption	Maintain and upgrade as needed	Not in operation
Dean Foods, Inc. ^d Walworth County	Soil Absorption	Maintain and upgrade as needed	Plant maintained
Correctional Center	Soil Absorption	Maintain and upgrade as needed	Not in operation
Gigas Hillside Apartments Kikkoman Foods, Inc. Lake Lawn Lodge National Farmers Organization-Slinger	Soil Absorption Soil Absorption Delavan Lake Soil Absorption	Abandon plant Abandon plant Abandon plant Abandon plant	Plant abandoned (1980) Plant abandoned Plant abandoned (1982) No action
Transfer Station Pike Lake State Park St. John's Military Academy	Soil Absorption Bark River and Soil Absorption	Abandon plant ^b Abandon plant	Plant abandoned (1990) Plant abandoned (1980)
Walworth County Institutions ^C	Jackson Creek	Abandon plant	Plant abandoned (1981)

^a Based upon a September 1994 amendment, the Village of Darien sewage treatment plant is recommended to be abandoned and connected to the WalCoMet sewerage system.

b The Pike Lake State Park sewage treatment plant was recommended to be abandoned in the initial plan. A 1988 amendment to the regional water quality management plan recommended that the plant be abandoned and the park connected to the City of Hartford sewerage system.

^C Formerly Lakeland Nursing Home.

 $^{^{\}rm d}$ Formerly Libby, McNeill, & Libby, Inc. (Walworth County)

upgrade the City of Hartford plant has been completed. No action has been taken with regard to the construction of the plant for the Village of Wales. The plants in the watershed have not fully provided facilities to specifically reduce the phosphorus concentrations in plant effluent to the levels identified in the initial plan as being needed to fully meet the water use objectives. The steps needed to achieve the recommended level of phosphorus control have been partially implemented by the completion of a study by the Wisconsin Department of Natural Resources to refine the procedure for establishing site specific phosphorus limitations on all public sewage treatment plants, and in 1993 by the adoption of rules to allow for placement of such limitations. Thus, as specific sewage treatment plant permits are issued, the use of the identified procedure should result in findings requiring reduced phosphorus loadings. Selected characteristics of the public sewage treatment plants currently existing in the watershed are given in Table XII-5 and their locations are shown on Map XII-3.

In addition to the publicly owned sewage treatment facilities, 11 private wastewater treatment plants were in existence in 1975 in the Rock River watershed. These plants served the following land uses: Kikkoman Foods, Inc., Lakeland Nursing Home (currently Walworth County Institutions), Lake Lawn Lodge, Libby, McNeill and Libby, Inc., and Walworth County Correction Center in Walworth County; Libby, McNeill and Libby, Inc. (currently Dean Foods, Inc.), National Farmers Organization-Slinger Transfer Station, Pike Lake State Park in Washington County; and Ethan Allen School, Gigas Hillside Apartments, and St. John's Military Academy in Waukesha County.

As indicated in Table XII-4, seven of the eleven private sewage treatment plants in the watershed were recommended to be abandoned in the initial plan as amended. As of 1990, six of these plants have been abandoned. No action has been taken with regard to the abandonment of the National Farmers Organization-Slinger Transfer Station facility. The remaining four private plants were recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES) permitting process. With the exception of Walworth County Correctional Center and the Libby, McNeill & Libby Hartford plant, which have ceased operation, the plants are continuing to operate in this manner.

The initial regional water quality management plan included a set of specific to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the Rock River watershed. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Wisconsin Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social effects that may be experienced due to sludge disposal. At the present time, such

Table XII-5
SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE
TREATMENT PLANTS IN THE ROCK WATERSHED

Name of Public Sewage Treatment Plants	1990 Estimated Total Area Served (square mile)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Sewage Treatment Unit Processes ^a	Name of Receiving Water to which Effluent is Disposed	WPDES Permit Expiration Date
Allenton Sanitary District No. 1	0.2	800	1961, 1987	Activated sludge, clarification, chlorination, dechlorination	Rock River-East Branch	3/31/94
Village of Darien	0.6	1,200	1969	Activated sludge-contact stabilization, clarification, seepage lagoon-holding pond	Soil absorption and tributary of Darien Creek	3/31/94
Delafield-Hartland Water Pollution Control Commission	4.1	10,200	1980	Rotating biological contact process, clarification, sand filtration, chlorination, nitrification, post aeration	Bark River	3/31/97
Village of Dousman	0.5	1,300	1961, 1972, 1983	Oxidation ditch, clarification, micro screen filtration, chlorination	Bark River	3/31/2000
Fontana-Walworth Water Pollution Control Commission	2.5	3,500	1986	Oxidation ditch, clarification, chlorination, dechlorination, holding pond	Piscasaw Creek	6/30/96
City of Hartford	2.1	8,200	1973	Activated sludge, clarification, phosphorus removal, polishing pond, micro screen filtration, chlorination	Rubicon River	9/30/98
City of Oconomowoc	5.5	11,500	1936, 1976	Clarification, activated sludge, clarification, sand filtration, aeration basins, chlorination	Oconomowoc River	6/30/97
Village of Sharon	0.5	1,300	1959, 1984	Activated sludge contact stabilization, clarification	Little Turtle Creek	3/31/99
Village of Slinger	1.2	2,300	1950, 1981	Oxidation ditch, clarification, chlorination	Rubicon River	9/30/98
Walworth County Metropolitan Sewerage District	6.8	19,100	1981	Clarification, trickling filter, clarification, nitrification aeration basin, activated sludge, clarification, post aeration, sand filter, chlorination	Turtle Creek	6/30/97
City of Whitewater	2.3	12,600	1937, 1956, 1968, 1982	Rotating biological contactor, clarification, polishing lagoons, sand filter, chlorination	Whitewater Creek	12/30/98

Table XII-5 (continued)

		Нус	draulic Loa	ading ^b (mg/d)			BOD5 Load	ing ^b (pounds/day)	Su	spended Sol	ids Loadir	ng ^b (pounds/day)
	Exi	sting			E	Existing			F	Existing		
Name of Public Sewage Treatment Plants	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in which the Monthly Average Flow Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in which the Monthly Average Flow Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in which the Monthly Average Flow Exceeded the Design Capacity
Allenton Sanitary District No. 1	0.15	0.18	0.36		295	354	390		240	296		
Village of Darien	0.11	0.14	0.15		167	275	255	1	151	374		
Delafield-Hartland Water Pollution Control Commission	1.39	1.50	2.20		2,252	2,466	3,740		2,456	2,779	4,590	
Village of Dousman	0.22	0.26	0.35		317	352	584		228	283	730	
Fontana-Walworth Water Pollution Control Commission	1.02	1.27	1.71		1,104	1,305	2,620		1,594	1,906		
City of Hartford	1.46	1.87	2.00		2,449	3,050	10,000		1,891	3,109		
City of Oconomowoc	2.33	2.74	4.00		3,930	5,164	8,340		2,517	2,929	6,672	
Village of Sharon	0.16	0.32	0.26	2	244	547	360	2	246	555		
Village of Slinger	0.33	0.45	0.76		419	698	1,268		660	1,311	1,585	
Walworth County Metropolitan Sewerage District	2.92	3.68	3.60	1	3,107	3,776	6,260		3,283	3,826	6,515	
City of Whitewater	1.43	1.66	3.65		5,644	7,132	11,500		2,845	3,886	10,800	

^a In addition, plants typically include headworks and miscellaneous processes such as pumping, flow-metering and sampling, screening, and grit removal, as well as sludge handling and disposal facilities.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Loadings were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data.

reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were 24 sewer service areas identified in, or partially in, the Rock River watershed--Allenton, Hartford, Slinger, Oconomowoc-Lac La Belle, Oconomowoc Lake, Okauchee Lake, North Lake, Pine Lake, Beaver Lake, Hartland, Delafield-Nashotah, Nashotah-Nemahbin Lakes, Silver Lake, Dousman, Wales, Williams Bay, Whitewater, Elkhorn, Delavan, Delavan Lake, Darien, Fontana, Walworth, Sharon and Walworth County Currently, many of these areas have undergone refinements as North Lake, Okauchee Lake, Beaver Lake, Pine Lake, Oconomowoc Lake, Wales, Fontana, Walworth, and Sharon sewer service areas have currently not been refined. The boundaries of the sewer service areas as refined through 1993 are shown on Map XII-3. Table XII-6 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer service area in the Rock River watershed, as refined through 1993, totals about 90 square miles, or about 15 percent of the total watershed area, as shown in Table XII-6.

Current Plan Recommendations: The current point source plan element recommendations provide for the continued operation with expansion and upgrading, as necessary, of the Allenton Sanitary District No. 1, Village of Dousman, City of Hartford, and Village of Sharon sewage treatment plants, as well as the construction of a plant for the Village of Wales. This same recommendation applies to the plants constructed since the initial plan in accordance with the plan recommendations, including the Delafield-Hartland Water Pollution Control Commission, Fontana-Walworth Water Pollution Control Commission, City of Oconomowoc, Village of Slinger, Walworth County Metropolitan Sewerage District, and the City of Whitewater sewage treatment plants. Estimated approximate dates for beginning facility planning for the expansion and upgrading of existing sewage treatment plants are indicated in Table XII-7. This recommendation regarding plant facility upgrading and expansion as needed, also applies to the treatment plant solids management element for the 11 public sewage treatment plants recommended to be retained.

The current point source pollution abatement plan element, including the planned sewer service areas, is summarized on Map XII-4. Table XII-7 presents selected design data for the 11 public sewage treatment plants which are recommended to be maintained in the Rock River watershed and for one new sewage treatment plant. It is important to note that two of these plants recorded monthly average flows during 1990 which equaled or exceeded the average design capacities of the plants, as shown in Table XII-5. The WalCoMet sewage treatment plant is, as of 1994, under construction to expand its capacity.

Table XII-7 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the 11 public sewage treatment plants in the Rock River watershed. Under the intermediate growth-centralized land use plan, two plants are anticipated to have loading rates equal to or higher than the average annual design

Table XII-6

PLANNED SANITARY SEWER SERVICE AREAS IN THE ROCK RIVER WATERSHED: 1993

Name of Initially Defined Sanitary Sewer Service Area	Planned Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
		Refined Sanitary Sev	ver Services Areas	
Allenton	0.8	Allenton	March 11, 1985	SEWRPC CAPR No. 103, Sanitary Sewer Service Area for the Allenton Area, Washington County, Wisconsin
Darien	1.2	Darien	September 23, 1992	SEWRPC CAPR No. 123, 2nd Edition, Sanitary Sewer Service Area for the Village of Darien, Walworth County, Wisconsin
Delafield-Nashotah Nashotah-Nemahbin Lakes	13.8	Delafield- Nashotah	January 18, 1993	SEWRPC CAPR No. 127, Sanitary Sewer Service Area for the City of Delafield and the Village of Nashotah and Environs, Waukesha County, Wisconsin
Delavan Delavan Lake Elkhorn Walworth County Institutions Lake Como Williams Bay	27.8	Delavan-Delavan Lake Elkhorn Lake Como Williams Bay Geneva National- Interlaken	December 4, 1991	SEWRPC CAPR No. 56, 2nd Edition, Sanitary Sewer Service Area for the Walworth County Metropolitan Sewerage District, Walworth County, Wisconsin
Dousman	2.4	Dousman	December 5, 1990	SEWRPC CAPR No. 192, <u>Sanitary</u> Sewer Service Area for the Village of Dousman, Waukesha County, Wisconsin
Hartford	10.5 ^a	Hartford	June 21, 1984	SEWRPC CAPR No. 92, Sanitary Sewer Service Area for the City of Hartford, Washington County, Wisconsin
Hartland	4.5	Hartland	June 17, 1985	SEWRPC CAPR No. 93, <u>Sanitary</u> <u>Sewer Service Area for the</u> <u>Village of Hartland, Waukesha</u> <u>County, Wisconsin</u>
Oconomowoc-Lac La Belle Silver Lake	16.7	Oconomowoc	March 6, 1989	SEWRPC CAPR No. 172, Sanitary Sewer Service Area for the City of Oconomowoc and Environs, Waukesha County, Wisconsin

Table XII-6 (continued)

Name of Initially Defined Sanitary Sewer Service Area	Planned Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
Pewaukee	0.4	Pewaukee	June 17, 1985	SEWRPC CAPR No. 113, Sanitary Sewer Service Area for the Town of Pewaukee Sanitary District No. 3, Lake Pewaukee Sanitary District, and Village of Pewaukee, Waukesha County, Wisconsin
Slinger	3.6	Slinger	December 2, 1985	SEWRPC CAPR No. 128, 2nd Edition, Sanitary Sewer Service Area for the Village of Slinger, Washington County, Wisconsin
Whitewater	8.3 ^b	Whitewater	September 14, 1987	SEWRPC CAPR No. 94, Sanitary Sewer Service Area for the City of Whitewater, Walworth County, Wisconsin
Subtotal	90.0			
Unre	fined Sanitary	Sewer Service Areas		
Beaver Lake Fontana North Lake Oconomowoc Lake Okauchee Lake Pine Lake Sharon Wales Walworth	2.5 0.2 1.2 1.5 4.8 1.2 1.2 1.5 1.5	 	 	
Total	105.6			

^a Includes 1.3 square miles in Dodge County.

Note: CAPR - Community Assistance Planning Report

 $^{^{\}mbox{\scriptsize b}}$ Indludes 2.2 square miles in Jefferson County.

Table XII-7 SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS IN THE ROCK RIVER WATERSHED: 1990 AND 2010

				Existing 1	990			1	Planned Year 20	10			
								te Growth Cen Use Plan	tralized		High Growth Decentralized Land Use Plan		
Name of Public Sewage Treatment Plant	Sewer Service Area	Design Capacity- Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Total Area Served (square mile)	Resident Population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	
Allenton Sanitary Dis- trict No. 1	Allenton	0.36	0.15	0.2	800	0.8	1,200	0.20	>2010	2,400	0.36	2000	
Delafield-Hartland Water Pollution Control Commission	Delafield, Nashotah, Hartland	2.20	1.39	4.1	10,200	19.1	18,200	2.40	1998	28,500	3.70	1997	
Village of Dousman	Dousman	0.35	0.22	0.5	1,300	2.4	3,100	0.44	1997	5,600	0.76	1995	
Fontans-Walworth Water Pollution Control Commission	Fontana, Walworth	1.71	1.02	2.5	3,500	6.3	4,600	1.16	2000	7,400	1.51	1997	
City of Hartford	Hartford	2.00	1.46	2.1	8,200	10.5	12,400	2.00	1995	24,000	3.44	1995	
City of Oconomowoc	Oconomowoc, Oconomowoc Lake, Okauchee Lake, Beaver Lake, North Lake, Pine Lake	4.00	2.33	5.5	11,500	27.9	23,600	3.84	2010	42,000	6.14	2000	
Village of Sharon	Sharon	0.26	0.16	0.5	1,300	1.2	1,800	0.23	1997	2,900	0.37	1996	
Village of Slinger	Slinger (Proposed Plant	0.76	0.33	1.2	2,300	3.6	2,700	0.38	2000	4,400	0.60	2000	
Village of Wales	Wales					2.8	3,600	0.45		7,900	0.98		
Walworth County Metropolitan Sewerage District	Delavan, Delavan Lake, Elkhorn, Lake Como, Geneva National, Williams Bay	5.60°	2.92	6.8	19,100	43.8 ^d	24,200 ^d	3.53 ^d	2010	46,400 ^d	6.33 ^d	2003	
City of Whitewater	Whitewater	3.65	1.43	2.3	12,600°	8.3	13,100°	1.50	2000	21,600°	2.56	2000	

a Approximate year in which facility planning for a plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average and monthly design flows compared to average expected annual and maximum monthly flows and the age of facilities based upon data of last major construction.

Alterantive of constructing a new plant and the alternatives of connection to an existing sewerage system and continued use of onsite sewage disposal systems are recommended to be evaluated in

further subregional system planning.

c As of 1994, WalCoMet sewage treatment plant was undergoing expansion and upgrading which will provide a capacity of 5.60 mgd.

d Including Village of Darien sewer service area.

^{*} Includes portion of Whitewater sewer service area in Jefferson County.

Map XII-4 UPDATED REGIONAL WATER QUALITY MANAGEMENT PLAN FOR THE ROCK RIVER WATERSHED: 2010

LEGEND

SANITARY SEWER SERVICE AREA (EXISTING)

SANITARY SEWER SERVICE AREA (PLANNED)

EXISTING PUBLIC SEWAGE TREATMENT FACILITY TO BE RETAINED

PROPOSED NEW PUBLIC SEWAGE TREATMENT FACILITY

EXISTING PRIVATE SEWAGE TREATMENT

FACILITY TO BE RETAINED

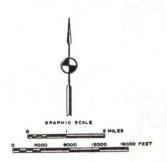
EXISTING PRIVATE SEWAGE TREATMENT FACILITY TO BE ABANDONED

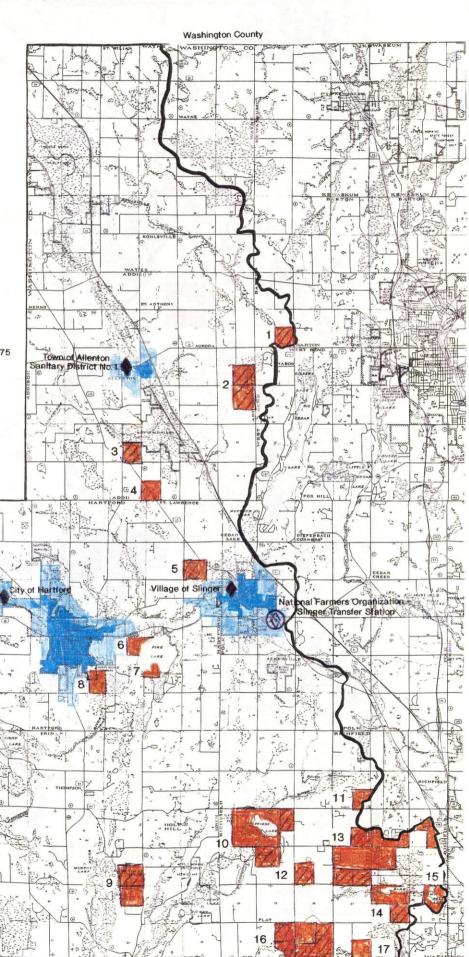
PACILITY 10

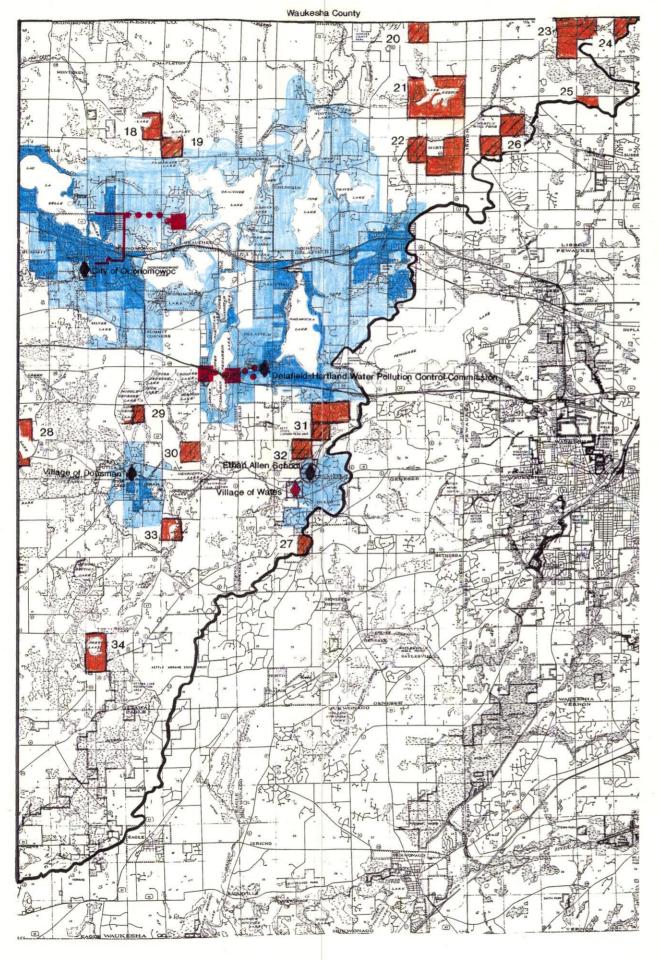
1975 URBAN DENSITY DEVELOPMENT OUTSIDE OF THE INITIAL PLAN SEWER SERVICE AREA

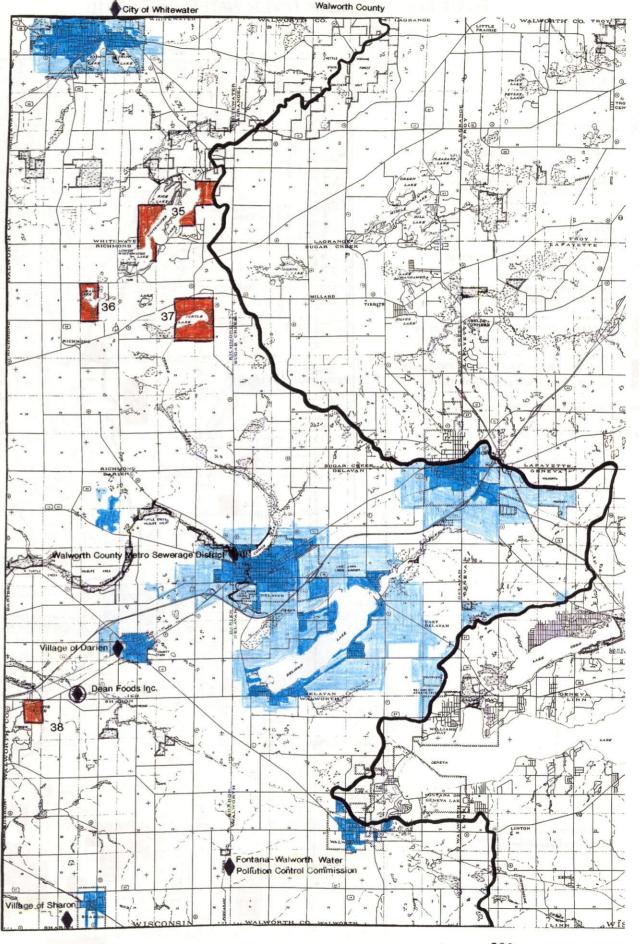
ADDITIONAL URBAN DENSITY DEVELOPMENT SINCE 1975

OUTSIDE OF PLANNED SEWER SERVIVE AREA: 2010


PROPOSED TRUNK SEWER


•••


PROPOSED FORCE MAIN


300

PROPOSED PUMPING STATION

capacity. Under the high growth-decentralized land use plan, seven of the existing plants are anticipated to have loading rates equal to or higher than the average annual design capacity. Thus, there is expected to be significant additional sewage treatment plant expansion and associated costs under the higher growth decentralized future scenario than would be expected under the intermediate growth-centralized land use plan.

Based upon review and analysis of the data in Tables XII-5 and XII-7, including estimates of future condition loadings on an annual average and maximum monthly basis, and based upon the age of the current facilities, estimates of the timing of needed facility planning were made. It appears that facility planning should be initiated during the next three years by the Delafield-Hartland Water Pollution Control Commission, the Village of Dousman, the City of Hartford, and the Village of Sharon to consider the need for expansion and upgrading of their sewage treatment plants. The remaining six sewage treatment plants are expected to begin facility planning to consider the need for plant expansion after the year 1997, assuming that development occurs in accordance with the recommended year 2010 land use plan as described for the intermediate growth-centralized land use future condition. Should development occur as envisioned under the high growth-decentralized land use future scenario, facility planning for nearly all of the public sewage treatment plants in the Rock River watershed should be initiated within the next three years, except for the Allenton Sanitary District No. 1, the City of Oconomowoc, the Village of Slinger, the City of Whitewater plants, and the Walworth County Metropolitan Sewerage District. review of plant operations and State required compliance maintenance reports for all plants will provide the basis for determining the timing for initiating facility planning programs to explore plant expansion alternatives.

The current planned sanitary sewer service areas in the Rock River watershed are shown on Map XII-4. The existing and planned year 2010 population data for each sewer service area is presented in Chapter XVIII on a regional basis. All or portions of the following sewer service areas are located in the Rock River watershed: Allenton, Beaver Lake, Darien, Delafield-Nashotah, Delavan-Delavan Lake, Elkhorn, Williams Bay, Dousman, Geneva National-Interlaken, Fontana, Hartford, Hartland, Oconomowoc, Oconomowoc Lake, Okauchee Lake, North Lake, Pewaukee, Pine Lake, Sharon, Slinger, Wales, Walworth, and Whitewater. Together, the planned service areas within the watershed total about 106 square miles, or about 17 percent of the Rock River watershed.

As noted above, most of the sewer service areas in the watershed have been refined as part of the ongoing regional water quality management plan updating process. Additional refinements are envisioned to be needed for the North Lake, Okauchee Lake, Beaver Lake, Pine Lake, Oconomowoc Lake, Wales, Fontana, Walworth, and Sharon sewer service areas identified in the initial plan. It is recommended that these refinements be conducted through the year 2010, with the currently sewered areas being refined during 1995 and 1996, and the unsewered areas being refined at such time as sewer service is envisioned to be provided. It is recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plants, there were three private sewage treatment plants in operation within the Rock River watershed in 1990. These facilities generally serve isolated enclaves of urban land uses which are located beyond the current limits of the planned sanitary public sewer service areas. In 1990, of the three plants in operation, one plant was recommended for abandonment—the National Farmers Organization—Slinger Transfer Station. Due to the relatively close proximity of this plant to the Village of Slinger sewer service area, abandonment of the plant and connection to the public sanitary sewer system is recommended. For the remaining two private sewage treatment plants serving the Ethan Allen School and the Dean Foods, Inc. plant (formerly Libby, McNeill, and Libby, Inc.), the need for upgrading and level of treatment should be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System permitting process.

Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were 16 known sanitary sewer system flow relief devices located in the Rock River watershed: two bypasses draining to Turtle Creek; one bypass to Little Turtle Creek from the Village of Sharon; one bypass to Piscasaw Creek from the Village of Walworth; one bypass to Jackson Creek from the City of Elkhorn; five bypasses to Whitewater Creek from the City of Whitewater; two bypasses to the Bark River, one from the Village of Hartland and one from the Village of Dousman; and three bypasses from the City of Oconomowoc, one to the Oconomowoc River, one to Lac La Belle, and one to Fowler Lake. During the period of 1988 through 1993, the only flow relief devices which existed in the sanitary sewer systems were selected bypasses and portable pumping station sites which physically remained in the sewerage system but which function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. As shown in Table XII-8, seven reported points of sanitary sewer system flow relief were reported during 1988 through 1993 in the Rock River watershed. These flow relief points are located in four sewerage systems. However, these flow relief points have only been in operation infrequently, with the average discharge occurrence frequency over this five-year period being about once per four years per flow relief location. This equates to an average of about two isolated overflow occurrences per year considering all reported bypassing.

Current Plan Recommendations: It is recommended that the Cities of Hartford and Whitewater, the Village of Dousman, and the Walworth County Metropolitan Sewerage District continue to monitor the sewerage system operations to ensure that the use of the existing sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading be conducted with the assumption that there will be no planned bypasses of untreated sewage and that the use of all flow relief devices will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewers

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan as updated, recommended the construction of 13 intercommunity trunk sewers in the Rock River watershed, as shown in Table XII-9. One trunk sewer would permit the relocation of the Slinger wastewater treatment plant; two would extend the service from the City of Oconomowoc sewerage system along the Lac La Belle shoreline to the Town of Oconomowoc and

Table XII-8

KNOWN SEWAGE FLOW RELIEF DEVICES IN
THE ROCK RIVER WATERSHED: 1988-1993

		Sewage I	Flow Relief	Devices in	the Sewer Sy	ystem	
Sewerage System	Sewage Treatment Plant Flow Relief Device	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
Village of Dousman			<u></u>		1	1	No reported by- passing occurred in 1988 through 1993
City of Hartford	1					1	Used only in case of equipment failure or extreme wet weather conditions
Walworth County Metropolitan Sewerage District	1		1	2		4	Used only in case of equipment failure or extreme wet weather conditions
City of Whitewater				1		1	Used only in case of extreme wet weather
Total	2		1	3	1	7	

Table XII-9

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE ROCK RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Implementation
Slinger	Completed (1981)
Lac La Belle-Oconomowoc East	Completed (1989)
Lac La Belle-Oconomowoc West	Completed (1988)
North Lake-Oconomowoc	Facility Planning Completed
	for Initial Port of Sewer
	(1989)
Silver Lake-Oconomowoc (Oconomowoc-South)	Completed (1990)
Hartland-Delafield	Completed (1980)
Nashotah-Delafield	Completed (1980)
Summit-Delafield	No Action
Whitewater	Completed (1982)
Walworth County Institutions	Completed (1981)
Elkhorn	Completed (1981)
Delavan Lake	Completed (1981)
Walworth	Completed (1986)

Village of Lac La Belle; one would extend the service from Oconomowoc to connect the urban development along the shorelines of Oconomowoc, Okauchee, North, Pine and Beaver Lakes; one would extend the service from Oconomowoc to the south of the City of Oconomowoc including the Silver Lake shorelands; one would extend service from the Delafield-Hartland sewerage system to portions of the City of Delafield and Village of Hartland and permit the abandonment of the Village of Hartland plant; one would connect the portions of the City of Delafield and Village of Nashotah; one would extend service from the Delafield-Hartland sewerage system to the shorelands of Nashotah and Nemahbin Lakes; one would permit the relocation of the Whitewater treatment plant; three would connect the Walworth County Institutions, City of Elkhorn and Delavan Sanitary District to the Walworth County Metropolitan sewage treatment plant, thus permitting the abandonment of the City of Elkhorn and City of Delavan sewage treatment plants; and one would connect the Walworth sewer service area to the Fontana-Walworth Water Pollution Control Commission, thus permitting the abandonment of the Walworth and Fontana sewage treatment plants. The only recommended trunk sewers that remain to be constructed as of 1990 are those connecting the shorelands of Nashotah and Nemahbin Lakes to the Delafield-Hartland sewerage system, and urban development along the shorelines of Oconomowoc, Okauchee, North, Pine, and Beaver Lakes to the City of Oconomowoc sewerage system. It should also be noted that portions of the trunk sewers connecting urban development in the Como Lake South area and the Village of Williams Bay to the Walworth County Metropolitan sewerage system and a portion of the trunk sewer connecting the Village of Fontana on Geneva Lake to the Fontana-Walworth Water Pollution Control Commission sewerage system are located in the Rock River watershed.

<u>Current Plan Recommendations</u>: The current regional water quality management plan includes recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the Rock River watershed. Two intercommunity trunk sewers in the Rock River watershed are currently recommended to be constructed. These trunk sewers include connections from the shorelands of Nashotah and Nemahbin Lakes to the Delafield-Hartland plant and from urban development along the shorelines of Oconomowoc, Okauchee, North, Pine, and Beaver Lakes to the City of Oconomowoc plant, as shown on Map XII-4.

<u>Point Sources of Wastewater Other Than Public</u> and Private Sewage Treatment Plants

Current Conditions and Status of Plan Implementation: In 1975, there were a total of 24 known point sources of pollution identified in the Rock River watershed other than public and private sewage treatment plants. These other point sources discharged industrial cooling, process, rinse, wash waters, and filter backwash waters through 26 outfalls directly or indirectly to the surface water or groundwater systems. Of these, 12 were identified as discharging only cooling water. The remaining 12 were discharging other types of wastewater. The initial regional water quality management plan includes a recommendation that these industrial sources of wastewater be monitored and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were 39 such point sources of wastewater discharging to the Rock River and its major tributaries or the groundwater system directly through industrial waste outfalls or indirectly through drainage ditches and storm sewers. Table XII-10 summarizes selected characteristics of these other point sources and Map XII-3 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources

Table XII-10

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE ROCK RIVER WATERSHED: 1990*

		Мар				Standard Industrial			Treatment
Facility Name	County	No.p	Permit Type	Permit Number	Expiration Date	Classification Code	Industrial Activity	Receiving Water	Systes
A.K. Rubber Products Company	Walworth	1	General	0044938-3	9-30-95	3069	Pabricated rubber products	Jackson Creek via unnamed tributary	
Arrowhead High School	Vaukesha	2	General	0046523-2	9-30-95	8211	Secondary school	Bark River	
Darien Water Treatment Plant: Well #1	Walworth	3	General	0046540-1	9-30-95	4941	Water supply	Warner Creek via Darien Creek	
Darien Water Treatment Plant: Well #2	Walworth	4	General	0046540-1	9-30-95	4941	Water supply	Warner Creek via Darien Creek	
Delavan PWD: Well #5 Iron Filter	Walworth	5	General	0046540-1	9-30-95	4941	Water supply	Wetland discharge to Turtle Creek	
Elkhorn City Swimming Pool	Walworth	6	General	0046523-2	9-30-95		Municipal pool	Jackson Creek vis unnamed tributary	
Elkhorn Water Treatment Plant	Walworth	7	General	SPEC PERM		4941	Water supply	Jackson Creek via unnamed tributary	
Essential Industries, Inc.	Waukesha	8	General	0044938-3	9-30-95	2841	Soap and other detergents	Bark River	•••
Hartford Union High School	Washington	9	General	0046523-2	9-30-95	8211	Secondary school	Groundwater discharge	
Hasslinger Crushing Company	Waukesha	10	General	0046515-1	9-30-95	1429	Crushed and broken stone	Groundwater discharge	
J.W. Reichel & Sons, Inc.	Walworth	11	General	0044938-2	9-30-95	3363/3364	Aluminum & nonferrous die castings	Jackson Creek via unnamed tributary	
Kikkoman Foods, Inc.	Walworth	12	General	0044938-3	9-30-95	2035	Pickles, sauces, and salad dressing	Groundwater discharge	
Lycon. Inc Whitewater	Walworth	13	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Maxi-One, Inc.	Walworth	14	General	0046566-2	9-30-95		H/A	Delavan Lake via storm sewer	
Mesa Industries, Inc.	Walworth	15	General	0044938-3	9-30-95		N/A	Jackson Creek via unnamed tributary	
North Lake Sand & Gravel	Waukesha	16	General	0046515-2	9-30-95	3281	Cut stone and stone products	Oconomowoc River	
Okauchee Redi-Mix	Waukesha	17	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
St. Johns Military Academy	Waukesha	18	General	0046523-1	9-30-95	8211	Secondary school	Bark River	
Schmitz Ready Mix - Richfield	Washington	19	General	0046507-2	9-30-95	3273	Ready-mixed concrete	Groundwater discharge	
Sharon Foundry	Walworth	20	General	0044938-3 €	9-30-95	3321	Gray and ductile iron foundry	Little Turtle Creek via unnamed	
				0046531-1				tributary	
Town & Country YMCA	Waukesha	21	General	0046523-2	9-30-95	7991	Physical fitness facility	Oconomowoc River via unnamed tributary	
Veterans Memorial Pool	Washington	22	General	0046523-2	9-30-95		Municipal pool	Rubicon River via storm sewer	
Vogt, Inc.	Waukesha	23	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Whitewater Limestone, Inc.	Walworth	24	General	0046515-2	9-30-95	3281	Cut stone & stone products	Cravath Lake	
Whitewater Water Utility Well #6 & #8	Walworth	25	General	0046540-1	9-30-95	4941	Water supply	Whitewater Creek	
Witte Residence	Walworth	26	General	HEAT PUMP		8811	Private household	Whitewater Lake	
YMCA Camp Minikani	Washington	27	General	0046523-2	9-30-95	7032	Sporting & recreational camps	Amy Belle Lake	
Allcast, Inc.	Washington	14.	Specific	0041378	12-31-90	3363	Aluminum die casting	East Branch Rock River	None
Carnation Company Instant Products	Vaukesha	2A	Specific	0002500	9-30-92	2023	Dry, condensed, evap. products	Oconomowoc River via storm sewer	None
Elkhorn Water Treatment Plant	Walworth	3A	Specific	0048500	9-30-95	4941	Water supply	Jackson Creek vis unnamed tributary	None
Hawthorn Melody Farms Dairy of WI	Walworth	44	Specific	0002461	3-31-95	2024	Ice cresm & frozen desserts	Whitewater Creek	None
International Stamping Co., Inc.	Washington	5A	Specific	0002691	6-30-92	3714	Motor vehicle parts & accessories	Rubicon River	9
Pabet Farms, Inc.	Vaukeeha	84	Specific	0053627	12-31-93	2026	Fluid milk	Groundwater discharge	3, 2, 5
Silgan Containers, Inc.	Vaukesha	94	Specific	0047058	9-30-92	3411	Metal cans	Oconomowoc River	None
Sta-Rite Industries, Inc.	Walworth	104	Specific	0055816	7-31-95	3648	Lighting equipment	Swan Creek via storm sewer	None
Tankeraft Corporation	Walworth	114	Specific	0057614	9-30-95	3443	Fabricated plate work	Piscasaw Creek via unnamed tributary	None
U.S.G. Interiors, Inc.	Walworth	12A	Specific	0050601	12-31-89	3081	Unsupported plastics film & sheet	Groundwater discharge	1, 2, 3
W. B. Place Company	Washington	13A	Specific	0057258	6-30-92	3111	Leather tanning and finishing	Groundwater discharge	7, 4
Zunker Contractors	Washington	144	Specific	0047805	9-30-95		N/A	Rubicon River	Mone

Footnotes follow.

Table XII-10 (continued)

a Table XII-10 includes 39 known, permitted sources of wastewater discharging to the Rock River and its tributaries, or to groundwater systems in the Rock River watershed. As of 1993, there were 69 known, permitted point sources of water pollution.

b See Map XII-3, Sewer Service Areas and Point Sources of Pollution in the Fox River Watershed: 1990.

C The number code refers to the following treatment systems:

- 1. ACT sludge extended air
- 2. Absorption pond
- 3. Holding pond
- 4. Land spreading 5. Ridge & furrow
- 6. Screening
- 7. Solids Treatment/Removal
- 8. Spray Irrigation
- 9. Stabilization lagoon

d Permitted as Leaking Underground Storage Tank (LUST) remediation site discharging to surface or groundwater as of 1990. As of 1993, there were five additional LUST remediation sites discharging to surface or groundwaters in the Book River watershed. See Table XII-11, "Miscellaneous Potential Pollution Sources in the Book River Watershed: 1990" for map identification number.

Source: Wisconsin Department of Matural Resources and SEWRPC.

change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993 there were 69 known point sources of wastewater other than public and private sewage treatment plants discharging to surface waters in the Rock River watershed. These point sources of wastewater discharge, primarily industrial cooling process, rinse, and wash water, discharge directly or following treatment to the groundwater or the surface waters of the Rock River watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside the Proposed Sanitary Sewer Service Area

As of 1975, there were 25 enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area. As of 1990, one of these areas had been added to the planned 2010 sewer service area as part of the plan amendment process. Due to increased unsewered urban growth within the watershed since 1975, 14 new enclaves of urban development have been created beyond the planned sewer service areas and eight of the urban development enclaves identified in the initial plan have been expanded, as shown on Map XII-4. The corresponding urban enclave population and the distance to the nearest planned year 2010 sewer service area are listed in Table XII-11. As shown in Table XII-11, approximately one-half of these areas--16 of the 38 areas--are covered by soils, and have lot sizes, which indicate a high probability of meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. The remaining areas have soils and lot sizes having a high probability of not meeting these criteria and alternative wastewater disposal methods should be considered. Many of these latter areas are located adjacent to lakes where alternative forms of wastewater management should be investigated during the planning period including the urban enclaves around Lake Keesus, Golden Lake, Lower Genesee Lake, Hunters Lake, Pretty Lake, Whitewater Lake, Lake Lorraine, and Turtle Lake. Generally, for all of the enclaves located in areas where soils and lot sizes are not considered to meet current criteria, it is recommended that an inspection and maintenance plan be instituted and that further site-specific planning be conducted to determine the best wastewater management practice at such time as significant problems become evident.

Miscellaneous Potential Pollution Sources

Landfills: Landfills in the Rock River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources, and, in the case of many of the abandoned landfills, the types and extent of these substances are sometimes unknown. In some instances, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and potentially can be subsequently transported to surface waters.

There are four active landfills and 78 known abandoned landfills located in the Rock River watershed. None of the landfills in the Rock River watershed, through 1993, have been reported as negatively impacting surrounding surface waters.

Table XII-11

EXISTING URBAN DEVELOPMENT OUTSIDE OF THE PLANNED PUBLIC SANITARY SEWER SERVICE AREA IN THE ROCK RIVER WATERSHED: 2010

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
	Washington County		
1°	Town of Barton-Section 7	104	3.0
2	Town of Addison-Sections 13, 24	250	2.0
3c	Town of Addison-Section 28	153	1.5
4	Town of Addison-St. Lawrence	174	2.0
5 ^c	Town of Hartford-Section 12	136	
6	Pike Lake	194	
7	Pike Lake - South	151	0.7
8°	City of Hartford	33	- ÷
9	Town of Erin-Sections 22, 27	269	5.0
10°	Friess Lake	723	4.5
11 ^c	Town of Richfield-Section 10	228	4.25
12	Town of Richfield-Section 21	113	5.75
13	Town of Richfield-Sections 13, 14, 15, 22, 23	2274	5.25
14 ^c	Bark Lake	497	7.0
15°	Amy Bell Lake	125	7.25
16 [¢]	Town of Richfield-Sections 32, 33	980	7.25
17°	Town of Richfield-Section 34	160	8.0
	Waukesha County		
18 ^c	Ashippun Lake	196	0.5
19	Town of Oconomowoc- Section 23	131	
20	Town of Merton-Section 2	169	2.0

Table XII-11 (continued)

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
21 ^c	Lake Keesus	708	1.5
22	Village of Merton	1076	0.75
23	Town of Lisbon-Sections 3,4	722	5.5
24	Town of Lisbon-Section 2	234	6.75
25	Town of Lisbon-Section 15	134	6.0
26 ^c	Town of Lisbon-Sections 17, 19	327	2.65
27	Town of Genesee-Section 8	258	0.2
28 ^c	Golden Lake	121	2.5
29 ^c	Lower Genesee Lake	107	0.5
30	Town of Summit-Section 35	139	0.5
31°	Town of Delafield-Section 28	744	
32°	Town of Delafield-Section 32	313	
33c	Hunters Lake	59	
34°	Pretty Lake	270	2.75
	Walworth County		
35 ^c	Whitewater Lake	404	3.5
36°	Lorraine Lake	210	5.5
37 ^c	Turtle Lake	208	5.0
38	Allens Grove	55	2.0
	Total	13,149	

a See Map XII-4

b Urban development is defined in this context as concentrations of urban land uses within any given U.S. Public Land Survey quarter section that has at least 32 housing units, or an average of one housing unit per five gross acres, and is not served by public sanitary sewers.

^c Based upon consideration of soils, lot sizes, and density, area which should, during the planning period, conduct further site specific planning to determine the best means of providing for wastewater management.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Rock River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the WPDES to discharge remediation wastewater to surface or ground water. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1990, there was one known permitted leaking underground storage tank site that was discharging remediation waters to surface water, as indicated in Table XII-12 and shown on Map XII-3. As of 1993, there were five additional leaking underground storage tanks in the Rock River watershed whose remediation wastewaters were permitted to discharge to surface or ground waters, as shown in Table XII-12.

As of 1993, there were 183 additional leaking underground storage tanks in the Rock River watershed identified by the Department of Natural Resources that were not discharging remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks have the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters. As of 1990, there was one permitted site discharging to surface water in the Rock River watershed, as indicated in Table XII-12 and shown on Map XII-3. This site was the Delavan Municipal Well No. 4, which was designated as a high priority site for the U.S. Environmental Protection Superfund program in 1984 which provides for the identification and cleanup of hazardous waste sites. Contamination of soil and groundwater by Volatile Organic Compounds (VOCs) were detected at the well in 1982, resulting from a discharge of cleaning solvents by Sta-Rite, Inc. Remediation efforts are currently underway at this site.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the adopted regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Rock River watershed, the initial plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control, streambank erosion control, and onsite sewage disposal system management. In addition, the plan recommended

Table XII-12

MISCELLANEOUS POTENTIAL POLLUTION SOURCES IN THE ROCK RIVER WATERSHED: 1990

Map Identifica- tion No.ª	Landfills Indicated to be Potential Pollution Sources	Civil Division Location	Surface Water Potentially Impacted
	None		
	Leaking Underground Storage Tank Sites ^b , ^c		
1	Maxi-One, Inc.	Town of Delavan	Delavan Lake
	Additional Groundwater Contamination Sites ^b		
1	Delavan Municipal Well No. 4 ^d	City of Delavan	Turtle Creek

^aRefers to Map XII-3, "Sewer Service Areas and Point Sources of Pollution in the Rock River Watershed: 1990."

cAs of 1993, there were five additional leaking underground storage tank sites in the Rock River watershed whose remediation discharges were permitted under the WPDES: Dairyland Fuels in the City of Delafield, Waukesha County, which is permitted to discharge to the Bark River; The Holiday Company in the Village of Williams Bay, Walworth County, which is permitted to discharge to Swan Creek via a storm sewer; the Holiday Company in the City of Oconomowoc, Waukesha County, which is permitted to discharge to Fowler Lake via a storm sewer; Silver Lake Service Station in the City of Oconomowoc, Waukesha County, which is permitted to discharge to Fowler Lake via a storm sewer; and Theresa State Bank in the Town of Wayne, Washington County, is permitted to discharge to Theresa Marsh.

Source: Wisconsin Department of Natural Resources and SEWRPC.

^bIncludes those sites which are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or groundwaters.

dSuperfund site.

that additional rural nonpoint source controls be provided in the Bark Lake drainage area, which would reduce nonpoint sources of pollution by about 75 percent.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Rock River watershed through a variety of local and State regulations and programs. These programs include the regulation of onsite sewage disposal systems under programs currently administered by Walworth, Washington, and Waukesha Counties. These programs provide for the system installation requirements set forth in Chapter ILHR 83 of the Wisconsin Administrative Code for ongoing maintenance of newer systems, and for problem resolution of failing systems where they are identified. Significant progress has also been made in the area of construction site erosion control. January 1993. Walworth and Waukesha Counties had erosion control ordinances based on the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities, while Washington County had an ordinance that pre-dated the model ordinance. Cities of Delafield, Elkhorn, Oconomowoc and Whitewater, and Towns of Delafield and Delavan had adopted construction erosion control ordinances which are based upon the model ordinance developed by the League of Wisconsin Municipalities. The Village of Hartland and the Towns of Oconomowoc and Lisbon had ordinances which were not based on the model, while the City of Hartford was in the process of drafting an ordinance based on the model ordinance. In addition. Waukesha County and Walworth County have adopted erosion control ordinances applicable in the unincorporated areas to certain developments.

With regard to rural nonpoint sources of pollution, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations and sets forth criteria whereby the Wisconsin Department of Natural Resources may issue permits for animal feeding operations. This program is administered by the Wisconsin Department of Natural Resources, which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program and other programs such as the Conservation Reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and the wetland restoration program administered by the Wisconsin Department of Natural Resources and others, are being utilized in the Rock River watershed primarily for cropland soil erosion control and wildlife habitat purposes, respectively, and will have positive water quality impacts.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. levels are defined as soil loss tolerances, or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection, as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Waukesha and Washington Counties. an agricultural soil erosion control plan for Walworth County was prepared by a Those plans identify priority areas for cropland soil erosion consultant. control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable

levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This program was established in 1978 by the Wisconsin Legislature and provides costsharing funds for the cost of an individual project or land management practice to local governments and private landowners upon completion of the detailed plans. The funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. As of 1993, two priority watershed projects shave been conducted in the Rock River watershed-the Turtle Creek Priority Watershed Project4 and the Oconomowoc River Priority Watershed Project.⁵

The Turtle Creek Priority Watershed Plan: The Turtle Creek watershed was selected for inclusion in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in 1982, and the watershed plan was completed in 1984. The project implementation phase was carried out from 1984 until April 1992 and included the following recommended components:

- Provision of streambank erosion control practices for selected sites.
- Provision of wind erosion controls on lands in the Comus Lake subwater-shed.
- Preparation of detailed conservation plans to develop management practices on about 21,000 acres of cropland which are estimated to have soil losses of greater than six tons per acre per year. The target soil loss for these lands was established at five tons per acre per year which was estimated to result in a reduction in total sediment losses from cropland by about 53 percent.
- Installation of facilities and management practices for 75 barnyards representing a reduction of about 80 percent of the phosphorus loading from barnyards in the study subwatershed.

⁴ Wisconsin Department of Natural Resources Publication, <u>Turtle Creek Priority</u> <u>Watershed Plan</u>, March 1984.

⁵ Wisconsin Department of Natural Resources Publication No. WR-194-86, <u>A Non-point Source Control Plan for the Oconomowoc River Priority Watershed Project</u>, March 1986.

- Installation of facilities and management practices for selected livestock operations to change manure spreading practices.
- In urban and urbanizing areas, the implementation of construction erosion controls; the institution of public information and education programs on nonpoint source pollution abatement; and the institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers.

A final report and evaluation of the Turtle Creek priority watershed project are currently being prepared by the Wisconsin Department of Natural Resources.

The Oconomowoc River Priority Watershed Program: The Oconomowoc watershed was selected for inclusion in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in 1983, and the plan was completed in 1986. The project implementation phase began in 1986 and is currently scheduled for completion in December 1994. The program established pollutant reduction goals of between 30 and 50 percent for sediment loadings and between 28 and 76 percent for phosphorus loadings. Generally, the higher phosphorus load reductions were proposed for the more urban, lower portions of the watershed--below Okauchee Lake--while the higher sediment load reductions were proposed for the upper, more rural portions of the watershed--upstream of Oconomowoc Lake. The recommendations varied with each subwatershed and generally included the following:

- Provision of fencing and other streambank erosion control practices for selected reaches of eroding streambank.
- Formation of detailed conservation plans to develop the best management practices for cropland areas identified as having excessive erosion.
- Installation of facilities and management practices for selected barnyards identified to be contributing significant phosphorus loadings.
- Installation of facilities and management practices for selected livestock operations to change manure spreading practices.
- In urban and urbanizing areas, the implementation of construction erosion controls; the institution of public information and education programs on nonpoint source pollution abatement; and the institution of sound urban "housekeeping practices" such as pet litter regulation, proper yard waste management, and proper use of pesticides and fertilizers.

Current Plan Recommendations

It is recommended that construction site erosion control, onsite sewerage system management, and streambank erosion control in addition to land management, to provide about a 25 percent reduction in nonpoint source pollutant loadings are recommended to be carried out throughout the watershed. Additional practices providing for about a 75 percent reduction in rural nonpoint source pollutant loadings are recommended to be provided in the Bark Lake drainage area. In addition, it is recommended that the need for further nonpoint source pollution abatement efforts in the Turtle Creek and Oconomowoc River watersheds be reviewed and reevaluated following preparation of a project final report and evaluation for the priority watershed projects prepared for those subwatersheds.

The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most cost-effective manner. In this regard, additional portions of the watershed should be included in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in order to make State cost-sharing programs available for nonpoint source pollution control measures. In addition, it is recommended that stormwater management plans be carried out in urban areas and farmland management plans be carried out in rural areas to define the practices to be installed. The current priority ranking of watersheds for inclusion in that program is documented in a memorandum⁶ prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included portions of the Rock River watershed--including the Bark River, East Branch Rock River and Rubicon River--in the high rating category, indicating that their inclusion in the program will be possible in the near future, when the existing planning projects are completed, or additional funds and staff become available with the Department of Natural Resources and its sister agencies. The inclusion of the remaining portions of the watershed -- including Whitewater Creek, which was ranked as having a medium rating, and the Ashippun and Scuppernong Rivers, which were ranked as low--will probably be delayed until late in the planning period or beyond unless the process of selection is changed and/or funding levels are increased.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program. As of 1993, long-term monitoring has been carried out in the Rock River watershed on a sustained basis only by the U.S. Geological Survey at one station located at Rockton, Illinois, on the Rock River main stem about 4.0 miles downstream of the Wisconsin-Illinois State line, and by the Wisconsin Department of Natural Resources at one station on the Rock River at Afton, about 4.0 miles downstream of Janesville, in Rock County, as shown on Map XII-5. Only limited significant short-term monitoring data has been carried out on the stream system in the watershed since the completion of the initial plan. This data was primarily used to evaluate lake phosphorus water quality conditions and pollutant loadings at Delavan Lake and in the Oconomowoc River lake chain.

Currently, water quality monitoring is being carried out on several lakes as part of the WDNR Self-help Monitoring Program, including Ashippun, Delavan, Druid, Lake Five, Friess, Golden, Green, Hunters, Keesus, Lac La Belle, Lower Genesee, Nagawicka, Lower Nashotah, Lower Nemahbin, Upper Nemahbin, North, Oconomowoc, Pike, Pretty, Rice, School Section, Silver (Waukesha County) Silver (Washington County), Turtle, and Whitewater. In addition, limited additional

⁶See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Non-point Source Management Purposes in Southeastern Wisconsin: 1993."

water quality monitoring has been carried out on some of the major lakes in the watershed by the U.S. Geological Survey, the Department of Natural Resources, local lake management agencies, and the Commission.

Current Plan Recommendation

Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the Wisconsin Department of Natural Resources and the U.S. Geological Survey at stations Rk-14 and Rk-15 on a continuing long-term basis. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at these two stations and at 12 selected additional stations, with one station each located on Jackson Creek, Turtle Creek, Whitewater Creek, Scuppernong River, Scuppernong Creek, Bark River, Ashippun River, Oconomowoc River, Coney River, Rubicon River. East Branch of Rock River, and Kohlsville River. It is recommended that this program be conducted within the next five to seven years and repeated at five-to seven-year intervals. These recommendations can be coordinated with and are consistent with the Department of Natural Resources' current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each basin in the Region in an approximately five- to seven-year rotating cycle.

The lake monitoring program for each lake should consist, at a minimum, of one intensive monitoring effort to establish baseline conditions and of the longterm participation in the DNR Self-help Monitoring Program that can be conducted by citizen-volunteer residents on the lakes. As noted earlier, several lakes already participate in this program. For each lake, it is recommended that the monitoring program be expanded to establish current conditions during a two-year or more period of intensive monitoring followed by a continual long-term monitoring program designed to detect changes in water quality conditions. In this regard, the monitoring program should be tailored to provide data needed for preparation or updating of comprehensive lake management plans for the major lakes in the watershed. Such programs are being undertaken by the U.S. Geological Survey on Druid, Keesus, Okauchee, Oconomowoc, Fowler, Silver (Waukesha County), Upper Nemahbin, and Delavan Lake; and the Department of Natural Resources under the Long-Term Trends Program on Friess, Lac La Belle, Nagawicka, Pike, and Whitewater Lakes. The water quality sampling program should be carried out at spring turnover (April) and during June, July, and August, during two subsequent years, with samples collected weekly.

LAKES MANAGEMENT PLAN ELEMENT

Existing Condition and Status of Plan Implementation

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of the major lakes in the Rock River watershed and for consideration of other lake management measures. Institutional recommendations were also made for the formation of new special purpose units of government where none exist to carry out the plan implementation measures. For each major lake in the Rock River watershed, the initial plan recommended that a comprehensive lake management plan be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. As noted in the previous sections, the preparation of such a comprehensive plan requires that supporting water quality monitoring programs be established.

The status of lake management, protection, and rehabilitation efforts on and around the major lakes in the Rock River watershed is discussed for each major lake in the following paragraphs:

Ashippun Lake: The Ashippun Lake Protection and Rehabilitation District conducts regular water clarity monitoring under the DNR Self-help Monitoring Program. A comprehensive lake management plan has been prepared for this lake.

<u>Bark Lake:</u> No data were available from which to assess the present conditions in Bark Lake. The Bark Lake Sanitary District which was formed of the properties around the lake is currently inactive. It is recommended that the Bark Lake Association enroll in the DNR Self-help Monitoring Program.

Beaver Lake: The lake is within the Oconomowoc River priority watershed project area. No plan data have been recorded to assess water quality conditions for this lake as of 1993. It is recommended that Beaver Lake be enrolled in the DNR Self-help Monitoring Program. The urban development around this lake is recommended to be provided with public sanitary sewer service, which would be connected to the Oconomowoc sewerage system. The implementation of this recommendation may not occur until late in the planning period.

Comus Lake: The southern portions of the lakeshore are provided with a public sanitary sewer system, and sewer extensions are planned for most of the remaining lake shore. Lake Comus is in the Turtle Creek priority project area. It is recommended that the Comus Lake Protection and Rehabilitation District enroll in the DNR Self-help Monitoring Program.

<u>Cravath Lake:</u> The northwestern lakeshore lies within the current public sanitary sewer service area of the City of Whitewater, and extensions are planned to encompass the entire lakeshore. It is recommended that Cravath Lake enroll in the DNR Self-help Monitoring Program.

<u>Crooked Lake:</u> The lake was formerly enrolled in the DNR Self-help Monitoring Program but does not appear on the most recent list of participants. Re-enrollment is recommended.

<u>Delavan Lake</u>: A comprehensive program of lake management was carried out on the lake during the early 1990s by the Delavan Lake Sanitary District in cooperation with State and Federal agencies, and extensive water quality data have been collected. Lake rehabilitation measures including drawdown and alum treatment, wetland creation at the lake inlet area, lake inflow control routing structures, and fishery stocking has been carried out. The urban development around this lake has been provided with a public sanitary sewer system as recommended in the initial plan. Delavan Lake is within the Turtle Creek priority watershed project area. An aquatic plant management plan has been completed for the lake, and the Delavan Lake Sanitary District maintains an on-going water clarity monitoring program under the DNR Self-help Monitoring Program.

⁷ SEWRPC Community Assistance Planning Report No. 48, <u>A Water Quality Management Plan for Ashippun Lake</u>, <u>Waukesha County</u>, <u>Wisconsin</u>, January 1982.

⁸Aron & Associates, <u>Delavan Lake Aquatic Plant Management Plan</u>, 1993.

<u>Druid Lake:</u> The Druid Lake Property Owners Association is enrolled in the DNR Self-help Monitoring Program and maintains an on-going water clarity monitoring program. The Druid Lake Protection and Rehabilitation District has also conducted water quality investigations with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program.

<u>Lake Five:</u> Water clarity monitoring is conducted by the Lake Five Advancement Association under the DNR Self-help Monitoring Program.

Fowler Lake: An aquatic plant management plan has been prepared for the lake, and a lake management plan has been prepared. The lake lies within the City of Oconomowoc public sanitary sewer service area and is in the Oconomowoc River priority watershed project area. Further water quality investigations are being conducted with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program. Enrollment of the Fowler Lake Management District in the DNR Self-help Monitoring Program is recommended. The District operates an aquatic plant management program including harvesting and limited spraying.

<u>Friess Lake:</u> The lake lies within the Oconomowoc River priority watershed, and is a WDNR Long-term Trends Monitoring lake. The Friess Lake Association participated in the DNR Self-help Monitoring Program. Friess Lake has an approved aquatic plant management plan, and has been the subject of a comprehensive lake management plan prepared by the Commission. During 1995, this plan is being updated, with partial funding under the Chapter NR 119 Lake Planning Grant Program.

<u>Golden Lake</u>: The Golden Lake Association is enrolled in the DNR Self-help Monitoring Program. The Association is investigating possible actions necessary to control purple loosestrife, <u>Lythrum</u> sp., in the vicinity of the lake.

<u>Hunters Lake</u>: Data with which to re-assess the water quality conditions in Hunters Lake were not available as of 1993. As of 1994, however, Hunters Lake Association participates in the DNR Self-help Monitoring Program and is in the planning stage of developing a public access site and lake protection plan.

<u>Lake Keesus:</u> Water quality and use data for Lake Keesus had been developed under water quality investigations conducted with financial assistance from the Chapter NR 119 Lake Management Planning Grant Program, a UW-Stevens Point lake resident questionnaire survey, and on-going water clarity monitoring conducted by the Lake Keesus Advancement Association and Lake Keesus Management District under the DNR Self-help Monitoring Program. Lake Keesus is within the Oconomowoc River priority watershed project area. An aquatic plant management plan has been prepared for the lake. 11

⁹SEWRPC Community Assistance Planning Report No. 187, <u>A Management Plan for</u> Fowler Lake, Waukesha County, Wisconsin, March 1994.

¹⁰ SEWRPC Community Assistance Planning Report No. 98, <u>A Water Quality Management Plan for Friess Lake</u>, <u>Washington County</u>, <u>Wisconsin</u>, August 1983.

¹¹Aron & Associates, <u>Lake Keesus Plant Management Plan</u>, October 1994.

Lac La Belle: A water quality management plan has been prepared for Lac La Belle. 12 There is also an approved aquatic plant management plan for this lake, which is being used to experimentally assess the effects of aquascaping to manipulate the growth of more desirable aquatic plant species. Large-leaf pondweed, Potamogeton amplifolius, was planted in the lake during 1991 by the Lac La Belle Management District. The District has also received a Chapter NR 119 lake management planning grant to partially fund conducting recreational use surveys, water quality data analyses, and public information campaigns. 13 Ongoing water clarity monitoring is done by the District through the DNR Self-help Monitoring Program, and the Department's Long-term Trends Monitoring Program. Lac La Belle lies within the Oconomowoc River priority watershed project area and the City of Oconomowoc public sanitary sewer service area. Most of the urban development around the lake is provided with public sewers, except for portions of the Town of Oconomowoc on the eastern and northeastern shoreline.

<u>La Grange Lake:</u> There are no records of water quality data or other plan implementation activities on this lake as of 1993.

<u>Lake Lorraine:</u> There are no records of water quality data or other plan implementation action as of 1993. It is recommended that the Lorraine Lake Property Owners Association enroll in the DNR Self-help Monitoring Program.

Genesee Lakes: The three Genesee lakes--Upper, Middle, and Lower--are located in the Town of Summit, Waukesha County. Lower and Middle Genesee Lakes are participants in the DNR Self-help Monitoring Program. A lake management district was created around Middle Genesee Lake during 1994. The District plans to develop a comprehensive lake management plan for that Lake which could ultimately be extended to the entire lake chain.

Nashotah Lakes: Lower Nashotah Lake is actively enrolled in the DNR Self-help Monitoring Program. Upper Nashotah Lake was formerly enrolled in the program but does not appear on the most recent list of participants. Re-enrollment is recommended. The urban development around these lakes is recommended to be provided with a public sanitary sewer system which would be connected to the Delafield-Hartland Water Pollution Control Commission sewerage system.

<u>Upper and Lower Nemahbin Lakes:</u> The Nemahbin Lakes have active lake organizations that are enrolled in the DNR Self-help Monitoring Program. Additional nonpoint source contaminant investigations have been proposed by the Upper Nemahbin Lake District. This project has been funded through the Chapter NR 119 Lake Management Planning Grant Program. 14 The urban development around these lakes is recommended to be provided with a public sanitary sewerage system which would be connected to the Delafield-Hartland Water Pollution Control Commission sewerage system.

¹² SEWRPC Community Assistance Planning Report No. 47, A Water Quality Management Plan for Lac La Belle, Waukesha County, Wisconsin, December 1980.

¹³Aron & Associates, <u>Lac La Belle Planning Grant Developed for the Lac La Belle Management District</u>, 1993

¹⁴SEWRPC Memorandum Report No. 101, <u>Upper Nemahbin Lake Watershed Inventory Findings</u>, <u>Waukesha County</u>, <u>Wisconsin</u>, December 1994.

Moose Lake: The Moose Lake Association currently participates in the DNR Selfhelp Monitoring Program. Aquatic plant problems continue to occur within the littoral zone of Moose Lake. The urban development around this lake is recommended to be provided with a public sanitary sewer system which would be connected to the Oconomowoc sewerage system.

Nagawicka Lake: Nagawicka Lake has been included as a DNR Long-term Trends Monitoring lake, and on-going water quality monitoring is conducted by the Nagawicka Lake Improvement Association under the DNR Self-help Monitoring Program. The developed portions of the lakeshore are provided with a public sanitary sewer system as recommended in the initial plan. Nagawicka Lake has an approved aquatic plant management plan. 15

North Lake (Waukesha County): An approved aquatic plant management plan has been prepared for the Lake, as has a water quality management plan. 16 The North Lake Management District undertakes regular water clarity measurements under the DNR Self-help Monitoring Program. North Lake is located within the Oconomowoc River priority watershed project area. The District has also undertaken paleolimnological investigations with financial assistance provided by a Chapter NR 119 lake management planning grant. Following the removal of the upstream Funk's Dam in 1991, additional engineering studies are being designed to address the potential impacts on North Lake. The urban development around this lake is recommended to be provided with a public sanitary sewer system which would be connected to the Oconomowoc sewerage system. Implementation of this recommendation may not occur until late in the planning period.

Oconomowoc Lake: On-going water quality monitoring is conducted under the DNR Self-help Monitoring Program. The eastern embayment, Upper Oconomowoc Lake, has been the subject of an aquatic plant management plan. A water quality management plan has been prepared for the lake. The Village of Oconomowoc, in cooperation with the Oconomowoc-Waukesha Lake Association, has conducted water quality studies on the lake with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program. Oconomowoc Lake is located within the Oconomowoc River priority watershed project area. The urban development around this lake is recommended to be provided with a public sanitary sewer system which would be connected to the Oconomowoc sewerage system.

¹⁵Aron & Associates, <u>Nagawicka Lake Plant Management Plan</u>, August 1993.

¹⁶ SEWRPC Community Assistance Planning Report No. 54, <u>A Water Quality Management Plan for North Lake</u>, <u>Waukesha County</u>, <u>Wisconsin</u>, July 1982.

¹⁷Aquatic Environmental Consulting, Inc., <u>North Lake Project: Paleolimnology</u>, <u>Geochronology</u>, <u>Sediment Size Fractionation</u>, <u>and Suspended Sediment Load</u>, sine datum.

¹⁸R.A. Smith & Associates, Inc., (Draft Report) Former Funk's Dam Impoundment Study, January 1995.

¹⁹ SEWRPC Community Assistance Planning Report No. 181, <u>A Water Quality Management Plan for Oconomowoc Lake</u>, <u>Waukesha County</u>, <u>Wisconsin</u>, March 1990.

Okauchee Lake: A water quality management plan was developed for this lake in 1981.²⁰ An approved aquatic plant management plan has also been prepared for this Lake.²¹ Okauchee Lake is also located within the Oconomowoc River priority watershed project area. The lake has developed an approved aquatic plant management plant with funding provided under the Chapter NR 119 Lake Management Planning Grant Program. Water clarity monitoring by the lake organizations established on this lake and conducted under the DNR Self-help Monitoring Program is recommended. The urban development around this lake is recommended to be provided with a public sanitary sewer system which would be connected to the Oconomowoc sewerage system.

<u>Pike Lake</u>: Pike Lake is monitored by the Wisconsin Department of Natural Resources under the Long-term Trends Monitoring Program and by the Pike Lake Protection District under the DNR Self-help Monitoring Program. Most of the urban development around the lake has been provided with a public sanitary sewer system which is connected to the City of Hartford sewerage system.

<u>Pine Lake:</u> As the lake has not been retained in any State monitoring programs, enrollment of the lake in the DNR Self-help Monitoring Program is recommended. Pine Lake is located within the Oconomowoc River priority watershed project area. The urban development around this lake is recommended to be provided with a public sanitary sewer system which would be connected to the Oconomowoc sewerage system. Implementation of this recommendation may not occur until late in the planning period.

<u>Pretty Lake:</u> The Pretty Lake Management District is continuing to monitor water clarity in the Lake through the DNR Self-help Monitoring Program. The district has received Chapter NR 119 planning grant funding to partially fund conducting more intensive water quality monitoring of the lake. The district is presently exploring the possibility of purchasing specific properties for lake protection purposes using NR 50-51 Stewardship or NR 191 Lake Protection Grant Program cost-shared funding.

<u>Rice Lake:</u> The lake is regularly monitored for water clarity by the Whitewater-Rice Lakes Management District, which is also undertaking more extensive lake management-related water quality investigations with partial funding provided under the Chapter NR 119 Lake Management Planning Grant Program.²² The District also undertakes aquatic plant harvesting and management operations and has an approved aquatic plant management plan.

<u>School Section Lake:</u> The School Section Lake Management District is a participant in the DNR Self-help Monitoring Program. The District has recently received an Inland Waterways Commission grant to undertake limited dredging

²⁰ SEWRPC Community Assistance Planning Report No. 53, <u>A Water Quality Management Plan for Okauchee Lake, Waukesha County, Wisconsin</u>, August 1981.

²¹Aron & Associates, <u>Okauchee Lake Plant Management Plan</u>, June 1993.

²²USGS Water Resources Investigations Report, (draft) <u>Hydrology and Water</u> <u>Quality of Whitewater and Rice Lakes in Southeastern Wisconsin, 1990-91</u>, June 1993.

within the lake basin to improve boat access. An approved aquatic plant management plan has been completed for this lake. 23

<u>Silver Lake (Waukesha County):</u> The Silver Lake Association is a participant in the DNR Self-help Monitoring Program. Through the Town of Summit, the Association has received a Chapter NR 119 Lake Management Planning Grant to undertake watershed-based lake quality-related investigations which have resulted in the publication of a lake protection plan for Silver Lake.²⁴ The lake is located within the Oconomowoc River priority watershed project area, and has limited areas which are provided with a public sewer system along the northern lakeshore. The remaining urban development around this lake is recommended to be provided with a public sanitary sewer system which would be connected to the Oconomowoc sewerage system.

<u>Tripp Lake:</u> The northern lakeshore is provided with a public sanitary sewer system, and extensions are planned along most of the remainder of the lake shoreline. Enrollment of this lake in the DNR Self-help Monitoring Program is recommended.

<u>Turtle Lake:</u> The lake is situated in the Turtle Creek priority watershed project area. Enrollment of the Turtle Lake Improvement Association in the DNR Self-help Monitoring Program is recommended.

<u>Waterville Pond:</u> Data with which to assess the water quality condition and other plan implementation actions for this waterbody were not available as of 1993. Enrollment in the DNR Self-help Monitoring Program is recommended for Waterville Pond.

Whitewater Lake: Whitewater Lake is situated upstream of Rice Lake (see above). The Whitewater-Rice Lakes Management District also has an approved aquatic plant management plan, and the Wisconsin Department of Natural Resources has recently completed a sensitive areas investigation of the lake. Whitewater Lake is both a DNR Self-help Monitoring Program lake and a Long-term Trends Monitoring Lake. The District has recently conducted even more intensive monitoring of the lake using cost-shared funding provided under the Chapter NR 119 Lake Management Planning Grant Program.²⁵

Current Plan Recommendations

Management measures recommended and in-lake measures which are considered potentially applicable and should be considered in more detail are shown in Table XII-13 for the 38 major lakes in the Rock River watershed. The initial plan recommendations relating to the preparation of comprehensive lake management plans and the conduct of supporting water quality, biological conditions,

²³Aron & Associates, <u>School Section Lake Plant Management Plan</u>, October 1994.

²⁴ SEWRPC Memorandum Report No. 82, <u>A Lake Protection Plan for Silver Lake</u>, <u>Waukesha County</u>, <u>Wisconsin</u>, July 1993.

²⁵USGS Water Resources Investigations Report, (Draft) <u>Hydrology and Water</u> <u>Quality of Whitewater and Rice Lakes in Southeastern Wisconsin, 1990-91</u>, June 1993.

Table XII-13

MANAGEMENT MEASURES TO BE CONSIDERED IN LOCAL MANAGEMENT PLANS FOR THE MAJOR LAKES IN THE ROCK RIVER WATERSHED: 1993^a

						Watershed	-based Mea	sures				In-lake	Management	Measures		
SUBWATERSHED Lake Name	Area (acre)	Water Quality Monitoring	Prepare Comprehensive Management Plan	Public Sanitary Sewer Service	Onsite Sewage System Mgmt	Rural NPS Mgmt	Urban NPS Mgmt	Construction Site NPS Management	Live- stock Mgmt	Macro- phyte Harvest	Aeration	Nutrient Inactiva- tion	Dredge	Sediment Cover	Water Level Mgmt	Fish Management
ASHIPPUN RIVER Ashippun Lake Druid Lake	84 124	0	+ 0	- -	+ +	+ +	+ +	-	- +	+ +	-	- +	+ -	- +	•	+ +
BARK RIVER Bark Lake Crooked Lake Golden Lake Hunters Lake Lower Nashotah Lake Lower Nemshbin Lake Nagawicka Lake Pretty Lake School Section Lake Upper Nashotah Lake Upper Nashotah Lake Waterville Pond	65 58 250 65 90 271 957 64 125 133 283 68	+ + 0 + 0 0 0 0	+ + + + + + 0 0		* * * * * * * * * * * * * * * * * * *	· · · · ·	*	- - - + + 0 - - +	+ + + + +	+ + + + + 0 0 + 0	-	+ + - + + + + - +	+ + - - + 0	* * * * * * *		+ + + + + + + +
OCONOMOWOC RIVER Beaver Lake Lake Five Fowler Lake Friess Lake Keesus Lake Lac La Belle Lower Genesee Lake Middle Genesee Lake Moose Lake North Lake (Wauk) Oconomowoc Lake Okauchee Lake Pine Lake Silver Lake (Wauk.)	316 102 78 119 237 1117 66 102 81 437 767 1187 703 222	+ 0 0 0 0 0 0 + + 0 0	+ + 0 0 0 0 + + 0 0	+ - 0 - - 0 - + + + + +	* - - * - * + + * * * * * * * * * * * *	0 + - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 + 0 0 0 0 0 0 0 0 0 0 0 0	+ - 0 - - 0 - + + + 0 0		+ + 0 - 0 0 + + 0 0		* * * * - - - * - *		· · · · · ·		+ + + + + + + + + + +
RUBICON RIVER Pike Lake	522	0	+	•	+	•	+	0	•	-	-	-		-	-	+
SCUPPERNONG RIVER La Grange Lake	55	+	+		<u> </u>	+	+		•	-	-		<u> </u>			+

Table XII-13 (continued)

						Watershed	-based Mea	sures				In-lake	Management	: Messures		
SUBWATERSHED Lake Name	Area (acre)	Water Quality Monitoring	Prepare Comprehensive Management Plan	Public Sanitary Sewer Service	Onsite Sewage System Mgmt	Rural MPS Mgmt	Urban NPS Mgmt	Construction Site NPS Management	Live- stock Mgmt	Macro- phyte Harvest	Aeration	Nutrient Inactiva- tion	Dredge	Sediment Cover	Water Level Hgmt	Fish Management
TURTLE CREEK Comma Lake Delavan Lake Turtle Lake	117 2072 140	+ 0 +	+ 0 +	0 0 -	- - +	0 + 0	0 +	- -	+ + +	+ 0 +	-	- 0 +	÷ 0	+ +	:	:
WHITEWATER CREEK Cravath Lake Lake Lorraine Rice Lake Tripp Lake Whitewater Lake	65 133 137 115 640	+ + 0 +	+ + 0 + 0	0 - - 0	- + + +	* * * *	÷ ÷	0 - - 0	- + +	+ + 0 +	- - - -	* * * *	+ + + +	: : :	÷ - - -	÷ • •

- 0 = completed or on-going management measures
- + management measures proposed or recommended for further consideration
- - management measures not specifically recommended for future consideration

Source: SEWRPC.

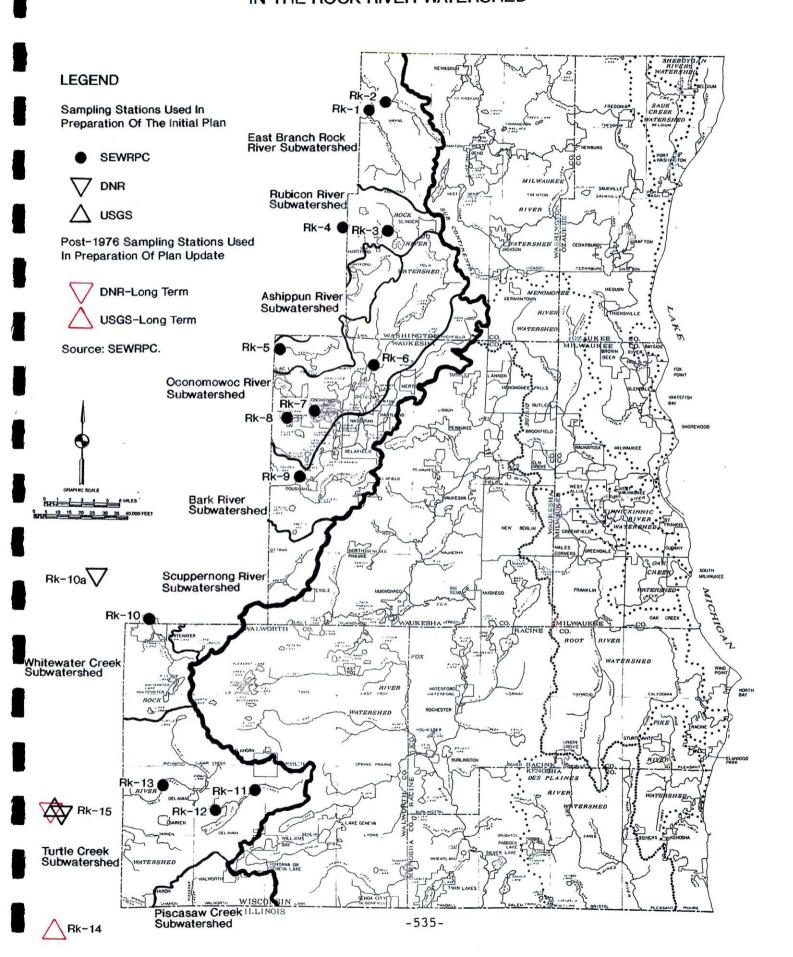
A Management Measures recommended for further consideration in local management plans are summarized from those adopted in SEWRPC Planning Report No. 30, modified, as necessary, as the result of subsequent implementation actions, monitoring programs, and planning studies referenced in the previous section of the text.

and water budget monitoring programs are reaffirmed in the updated plan recommendations for the Rock River watershed. The management recommendations for the lakes are based upon review of the lake planning set forth in the initial plan and the current status of implementation of recommendations, as well as any subsequent local planning.

It is recognized that the preparation of comprehensive lake management plans may need to be conducted in a staged manner in order to best utilize available resources. In this regard, the water quality monitoring, aquatic plant management, and lake watershed protection measure planning and implementation are considered to be logical components of the comprehensive plans which can be conducted under separate planning programs, if designed to be integrated into a comprehensive lake management plan.

In addition to the recommendations noted for the major lakes in the Rock River watershed, it is recommended that water quality planning and supporting monitoring be conducted for those lakes and similar water bodies in the watershed which are less than 50 acres in size, where such activities are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the watershed can be considered for lake management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS


Streams

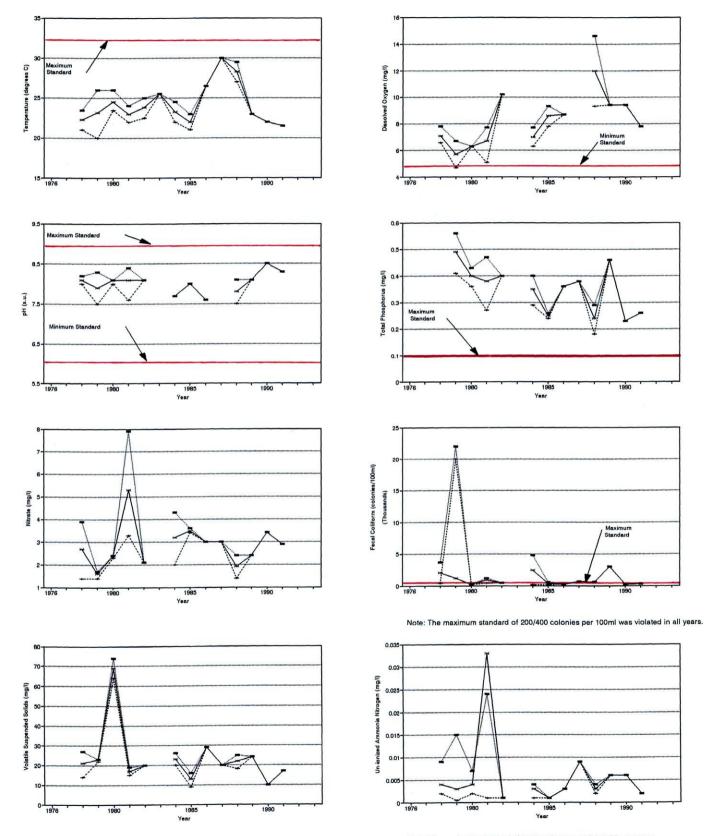
Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study, the 1965 through 1975 Commission stream water quality monitoring effort, the 1976 Commission monitoring program conducted under the regional water quality management plan, and the Wisconsin Department of Natural Resources and U.S. Geological Survey sampling programs. Available data collected in those programs for the Rock River watershed included samplings at 13 Commission stations in the Region; at two Department of Natural Resources stations on the Rock River-one in Jefferson County and one in Rock County; and one U.S. Geological Survey station on the Rock River in Rock County. The sampling station locations are shown on Map XII-5.

No long-term post-1976 water quality data were available for stations within the Region; however, for comparative purposes, available water quality data collected at a DNR station on the main stem of the Rock River at Afton in Rock County, Rk-15, about 4.0 miles downstream of the City of Janesville, and at a U.S. Geological Survey sampling station on the Rock River at Rockton, Illinois, Rk-14, about 4.0 miles south of the Wisconsin-Illinois State line were used in the preparation of the plan update. Water quality data collected by the U.S. Geological Survey and biological condition data collected by the Department of Natural Resources were also available for use in the assessment of current water quality conditions. In addition to the data obtained since the preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions. Review of these data can provide insight into the current

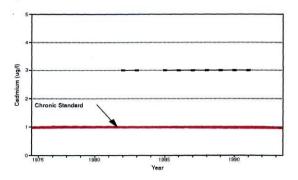
Map XII-5

LOCATIONS OF WATER QUALITY SAMPLING STATIONS IN THE ROCK RIVER WATERSHED

water quality conditions and the current potential for achieving the established water use objectives in the Rock River watershed. The long-term water quality data obtained at the U.S. Geological Survey sampling station Rk-14 at Rockton, Illinois, and at the Department of Natural Resources sampling station Rk-15 at Afton, in Rock County, for the period 1976 through 1991, are summarized in Figure XII-1 and Figure XII-2. The sampling data have been used, to the extent the data permits, to present a measure of current water quality conditions to evaluate water quality trends and the occurrence of changes over time, and to evaluate current conditions with respect to water quality standards. Because of the large tributary area above these two stations from subwatersheds located outside the Southeastern Wisconsin Region, the data are not considered to necessarily represent conditions for the portion of the watershed within the Region. However, the data are presented for information purposes. The water quality standards indicated in Figure XII-1 and Figure XII-2 are those set forth for specific biological and recreational use objectives as described in Chapter II.


Review of the data for station Rk-14 indicates that, with the exception of dissolved oxygen and phosphorus levels, there were no apparent significant changes in water quality conditions from 1976 to 1991. Sampling data of dissolved oxygen and total phosphorus showed improvements in overall concentrations. The sampling data indicate that the standards for temperature and dissolved oxygen are generally met. Fecal coliform and phosphorus standards are frequently not met. Chronic toxicity standards for selected metals were exceeded some of the time, as discussed in the following section.

Review of the available data for station Rk-15 indicates no apparent significant changes in water quality conditions from 1976 to 1991, with the exception of chloride levels which appear to be increasing. However, the levels of chloride are still within acceptable limits as defined by the standards associated with the water use objectives for the Rock River set forth in Chapter II. The increase in chlorides may be the result of new urban development which has occurred in the watershed and the impacts of increased winter road maintenance salt-spreading operations associated with urban development. The sampling data indicate that the standards for temperature, dissolved oxygen, and ammonia nitrogen are generally met, while fecal coliform and phosphorus standards are frequently not met.


Toxic and Hazardous Substances: Sampling and analysis for pesticides, polychlorinated biphenyls (PCB's), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Rock River watershed between 1973 and 1978. In the in-stream water quality samples for which toxic and hazardous substances were tested, recommended levels of mercury were exceeded in approximately four of 78 samples, and for the persistent pesticides of heptachlor, heptachlor epoxide, lindane, metholychlor, and phthalate recommended levels were exceeded in one of 77, one of 76, one of 76, and three of 62 samples collected, respectively. Sample analyses for cadmium, chromium, copper, lead, nickel, zinc, PCB's, DDT, DDE, DDD, aldrin, and dieldrin showed no violations of U.S. Environmental Protection Agency recommended levels.

No analyses were conducted for toxic and hazardous substances in the bottom sediments of the Rock River watershed. Recent data on toxic and hazardous substances were collected by the U.S. Geological Survey at station Rk-14, as shown in Figure XII-1. These data indicatestation Rk-14. Lead levels have not violated the standard since 1987. Prior to 1987, the exceedances of the lead

Figure XII-1 WATER QUALITY DATA FOR THE ROCK RIVER AT STATION Rk-14: 1976-1993

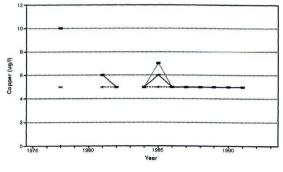
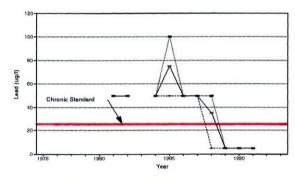
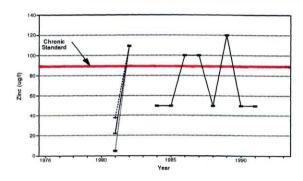


Figure XII-1 (cont'd)

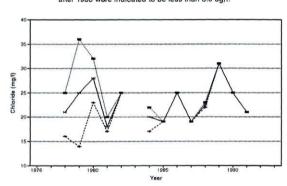
Note: The acute standard of 63.3 ug/l was not violated in any year.


Values graphed at 3.0 ug/l were indicated to be less than 3.0 ug/l.

Note: The acute standard of 31.9 ug/l was not violated in any year.


The chronic standard of 22.1 ug/l was not violated in any year.

Values graphed at 5.0 ug/l were indicated to be less than 5.0 ug/l.



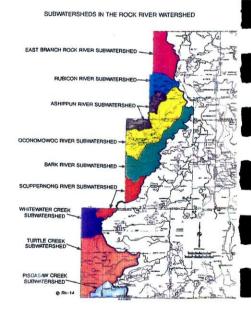
Note: The acute standard of 408.6 was not violated in any year.

Values graphed at 50 ug/l prior to 1988 were indicated to
be less than 50 ug/l and values graphed at 5.0 ug/l
after 1988 were indicated to be less than 5.0 ug/l.

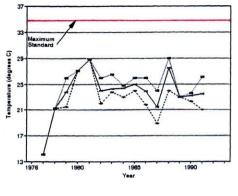
Note: The acute standard of 202.9 ug/l was not violated in any year.

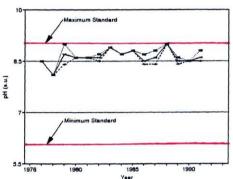
Note: The maximum standard of 1000 mg/l was not violated in any year.

LEGEND

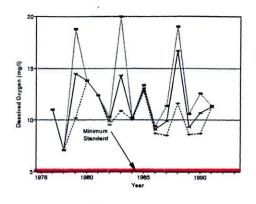

MAXIMUM VALUE

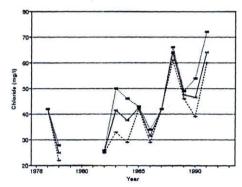
MINIMUM VALUE

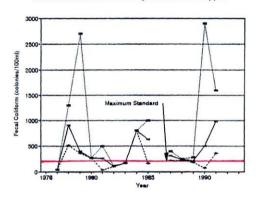

AVERAGE VALUE


Note: Graphs indicate maximum, minimum and average values for July and August data. Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

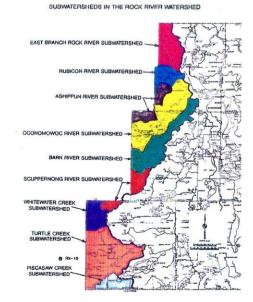
Source: U.S. Geological Survey and SEWRPC.


Figure XII-2 WATER QUALITY DATA FOR THE ROCK RIVER AT STATION Rk-15: 1976-1993





Note: The maximum standard of 1000 mg/l was not violated in any year.



LEGEND

MAXIMUM VALUE

MINIMUM VALUE

AVERAGE VALUE

Note: Graphs indicate maximum, minimum, and average values for July and August data.

Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

-539-

Source: Wisconsin Department of Natural Resources and SEWRPC.

standard was reported. No recent data were available on toxic and hazardous substances for station Rk-15.

Since the completion of the initial water quality management plan, seven spills of toxic substances into streams within the Rock River watershed have been documented by the Wisconsin Department of Natural Resources. Of these spills, three have occurred in the Bark River, two in the Ashippun River, and one each in the East Branch of the Rock River and the Rubicon River. The majority of the spills were of oil or diesel fuel.

<u>Water Quality Assessments</u>: Based upon recent available data, the water quality and biological characteristics of the Rock River and its major tributaries were assessed, with the results set forth in Table XII-14. Where data were available, fish populations and diversity range from poor in the Kohlsville River to generally good elsewhere, except for Whitewater Creek, Jackson Creek, Swan Creek, and Turtle Creek upstream of Comus Lake, where the populations and diversities are fair. Bluff Creek upstream of CTH P supports a Class I trout fishery; and the remaining portion of Bluff Creek and portions of Allenton Creek, Steel Brook Creek, and the Scuppernong River support Class II trout fisheries. Class III trout fisheries are supported by portions of the Scuppernong River and Steel Brook Creek.

Fish kills were documented in four streams in the Rock River watershed--Scuppernong River, Steel Brook Creek, Darien Creek, and the East Branch of the Rock River. The specific cause of each documented fish kill is shown in Table XII-14.

Standards were not fully met for dissolved oxygen concentrations in the Rubicon River, the East Branch of the Rock River, Kohlsville River, Whitewater Creek, the Oconomowoc River downstream of US 16, and along portions of the Bark and Ashippun Rivers. Ammonia nitrogen levels were within acceptable limits in those streams of the watershed for which data were available, except for portions of the Rubicon River downstream of Pike Lake and in the Oconomowoc River downstream of US 16 to Fowler Lake. For all streams where data were available, phosphorus levels did not appear to pose problems in any of the stream reaches, while fecal coliform levels appeared to generally exceed the standard.

No comprehensive data were available on toxic pollutants, with the exception of some evidence of nonpoint source toxic pollutants occurring in the Ashippun River downstream of the Waukesha County Line, in two tributaries of the Oconomowoc River, and in portions of the Rubicon River. Additional data collected by the U.S. Geological Survey at station Rk-14 on the Rock River at Rockton, Illinois, indicate that the standards for chronic toxicity, as defined in Chapter II, for zinc, and cadmium were consistently violated.

The biotic index ratings, which are biological indicators of water quality within a stream system, ranged from good to excellent within the Oconomowoc River subwatershed, except for the Oconomowoc River upstream of Friess Lake, which had a good to fair rating. In the rest of the watershed, no data were available to determine biotic index ratings. Low to moderate levels of streambed sedimentation were observed throughout the watershed, with moderate to high and high levels of streambed sedimentation occurring in Turtle Creek.

Table XII-14

CHARACTERISTICS OF STREAMS IN SUBWATERSHEDS WITHIN THE ROCK RIVER WATERSHED

					wate	r quality	y Problems ^c				
SUBWATERSHED Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation Substrate	Physical Modifications to Channel ^e
ASHIPPUN RIVER a. Ashippun River upstream Druid Lake	4.3		No								••
b. Ashippun River downstream Druid Lake to Washington	5.2		No								
County Line c. Ashippun River downstream Waukesha County Line to	7.2		No	Yes	No			Yes			Moderate
Ashippun Lake inflow d. Ashippun River downstream Ashippun Lake inflow	4.2		No								Moderate
TOTAL	20.9			 		ļ					
BARK RIVER a. Bark River upstream Nagawicka Lake	19.3	Good	No	No		No	No			Moderate (sand, gravel, silt)	Moderate
b. Bark River downstream Nagawicka Lake	12.3	Good	No	Yes	No	No	No			Unkown deposi- tion (sand, gravel,rubble)	Moderate
c. Scuppernong Creek	<u>12.5</u> 44.1	Good	No	No	No	No	No			Low to Moderate (sand, gravel, silt)	Major
				}	 -	 				31117	
OCONOMOMOC RIVER a. Coney River b. Oconomowoc River u/s Friess Lake	6.2 2.8		 No	No No	No No	-:		Yes 	 Good to Fair		Major
c. Oconomowoc River d/s Friess Lake to North Lake	15.2		No	No	No				Good		Moderate
d. Oconomowoc River d/s North Lake to Okauchee Lake	1.8		No	No	No			••	Good	••	••
e. Oconomowoc R. d/s Okauchee Lake to Oconomowoc Lake	0.4		No	No	No						•-
f. Oconomowoc River d/s US 16 to Fowler Lake	1.7			Yes	Yes			••			••
g. Oconomowoc R. d/s Lac La Belle to Waukesha Co. Line	5.0			Yes	No					••	
h. Little Oconomowoc River i. Mason Creek TOTAL	5.7 <u>6.5</u> 45.3	••	••	No 	No 			Yes	Excellent Very good to good		••
PISCASAW CREEK a. Piscasaw Creek	2.5		No								Moderate

Table XII-14 (continued)

					Wate	r Qualit	y Problems ^c				
SUBWATERSHED Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation Substrate	Physical Modifications to Channel ^e
ROCK RIVER EAST BRANCH a. East Branch Rock River downstream CTH D	4.4		No	Yes	No						
b. Limestone Creek c. East Branch Rock River upstream CTH D	5.8 14.3	Good 	No Yes	Yes Yes	 No		Yes 			 Moderate	Low
d. Allenton Creek e. Kohlsville River f. Wayne Creek	3.4 10.2 <u>6.5</u>	Good ^g Poor Good	No No No	No Yes	No 		 	 		Moderate Low (gravel)	Moderate Moderate
TOTAL	44.6										
RUBICON RIVER a. Rubicon River upstream Pike Lake	2.8		No	Yes	No	No	No			Moderate	Major
b. Rubicon River d/s Pike Lake	5.0		No	Yes	Yes	No	No	Yes		Moderate	Moderate
TOTAL	12.6										
SCUPPERNONG RIVER a. Scuppernong River	14.9	Good ^h	Yes	No	No					Low to moderate (sand, gravel, silt)	Moderate (upper)
b. Steel Brook Creek TOTAL	<u>7.1</u> 22.0	Good ⁱ	Yes ^j								
TURTLE CREEK											
a. Jackson Creek b. Swan Creek c. Turtle Creek upstream Comus Lake	5.7 4.2 10.2	Fair Fair Fair	No No No	No No No	No No No	No No No	Yes No No	 		Moderate Low High	 Moderate
d. Turtle Creek downstream Comus Lake to STH 11	3.3	Fair-good	No	No	No	No	No			Moderate to high	
e. Turtle Creek downstream STH 11 to Walworth County Border	7.1	Fair-good	No	No	No	No	No			Moderate to high	
f. Little Turtle Creek + Ladd	8.6	Fair	No	No	No	No	Yes				Moderate [.]
g. Darien Creek	8.8		Yes ^k	No	No	No	Yes			Unknown Deposition	
h. Sharon Creek	2.1		No								
TOTAL	50.0										

Table XII-14 (continued)

					Wate	r Qualit	y Problems ^c				
SUBWATERSHED Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills ^b	DO	NH3	Total P	Fecal Coliform	Toxics	Biotic Index Rating ^d	Streambed Sedimentation Substrate	Physical Modifications to Channel [®]
WHITEWATER CREEK a. Whitewater Creek b. Bluff Creek c. Galloway Creek	10.2 1.9 <u>1.4</u>	Fair Good ¹ 	No No No	Yes 	No 	 	 	 			
TOTAL	13.5										

^aBased upon available dates and professional judgement of area fish managers.

^CEstimated violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for Rock River watershed stream reaches based upon year 2000 land use conditions, and if data developed in the initial plan were used to evaluate current water quality for Rock River watershed stream reaches based upon year 2000 land use conditions, and if appropriate, were applied using less than a 95 percent compliance level of the dissolved oxygen and un-ionzed ammonia nitrogen standards and less than a 90 percent compliance level for the fecal coliform and phosphorus standards as an indication of water quality problems.

dExcept where otherwise indicated, biotic index ratings are based upon the Index of Biotic Integrity (IBI) discussed in U.S. Department of Agriculture, Forest Service, General Technical Report NC-149, "Using the Index of Biotic Integrity (IBI) To Measure Environmental Quality in Warmwater Streams of Wisconsin," Lyons, April 1992.

^ePhysical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

[£]Biotic index ratings are based upon the Hilsenhoff Biotic Index (HBI) discussed in Wisconsin Department of Natural Resources Technical Bulletin No. 132, "Using a Biotic Index to Evaluate Water Quality in Streams," Hilsenhoff, 1982.

⁸Allenton Creek is a Class II trout stream.

hScuppernong River from above CTH N downstream to Scuppernong Springs Pond is a Class II trout stream. Scuppernong River downstream of Scuppernong Springs Pond is a Class III trout stream.

¹Steel Brook Creek is a Class II trout stream upstream of Bluff Road and a Class III trout stream downstream of Bluff Road.

^jSpill potentially related to a fertilizer spill.

^kDue to point source discharge from canning plant.

¹Bluff Creek is a Class I trout stream upstream of CTH P and a Class II trout stream downstream of CTH P.

Source: Wisconsin Department of Natural Resources and SEWRPC.

^bUnless otherwise noted, fish kills are assumed to be the result of natural fluctuations in water conditions.

Table XII-15 sets forth the water quality index classifications²⁶ used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table XII-14, recent data were available only for stations Rk-14 and Rk-15. These stations are shown on Map XII-5. The limited data available indicate that at station Rk-14, water quality conditions have improved from "fair" to "good" from 1978-79 to 1990-91 and at station Rk-15, water quality conditions have maintained a "fair" rating from 1977-78 to 1990-91. As noted earlier, these stations may not be representative of water quality conditions in the subwatersheds located within Southeastern Wisconsin since relatively large subwatersheds from outside the Region are tributary to the station locations. However, the data and the quality indices are presented for information purposes.

A summary of potential pollution sources in the Rock River watershed by stream reach is shown in tabular summary in Table XII-16. Review of the data indicate a majority of the conversion of lands from rural to urban uses has occurred in the Oconomowoc and Bark River subwatersheds, primarily in the northwest portion of Waukesha County. It should also be noted that the majority of the permitted industrial discharges occur in streams in the Turtle Creek subwatershed. Data on nonpoint source pollution, public and private sewage treatment plants discharging to surface waters, and additional potential impacts to surface water quality are included in Table XII-16.

Lakes

Lake water quality data available for use in preparing the initial regional water quality management plan were obtained from the Wisconsin Department of Natural Resources' quarterly lake monitoring program for selected lakes; U.S. Environmental Protection Agency (EPA) National Eutrophication Survey and Southeastern Wisconsin Regional Planning Commission and Wisconsin Department of Natural Resources lake use reports. Post-1975 data on phosphorus and chlorophyll-a concentrations and water clarity for major lakes in the Rock River watershed, where available are presented in Table XII-17.

Toxic and Hazardous Substances: A number of lakes in this watershed were subject to substance spills. These included an hydraulic fluid spill into Fowler Lake in 1982, two diesel oil spills into Lower Nemahbin Lake in 1982 and 1990; two oil and one diesel fuel spills into Okauchee Lake in 1983 and 1991, respectively; a spill of an unknown substance into North Lake in 1984; and a gasoline and hydraulic oil spill in Pretty Lake in 1982 and 1986, respectively-but these appear to be isolated incidences that do not warrant special planning consideration at this time.

Fish kills, primarily related to seasonal fluctuations in water temperature and levels of dissolved oxygen, as well as spawning activity periodically occur in lakes in the Rock River watershed. Since the initial plan, recorded fish kills in major lakes in the Rock River watershed occurred in Okauchee Lake in 1981 and 1985, Delavan Lake in 1990, and Pine Lake in 1984. However, these occurrences do not appear to be chronic. Thus, despite the obvious concern that these

²⁶For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin: 1964-1975</u>, June 1978.

Table XII-15

WATER QUALITY INDEX CLASSIFICATIONS* FOR THE SAMPLING STATIONS
OF THE ROCK RIVER WATERSHED 1964, 1974-1975, AND 1990-91

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Rk-1 Rk-2 Rk-3 Rk-4	Excellent Excellent Excellent Fair	Fair Fair Fair Fair	
Rk-5 Rk-6 Rk-7 Rk-8 Rk-9	Good Excellent Good Fair Good	Fair Fair Excellent Fair Fair	
Rk-10 Rk-11 Rk-12 Rk-13	Fair Poor Good Fair	Fair Poor Fair Fair	
Watershed Average Sampling Stations Outside of Region Rk-14 Rk-15	Good 	Fair Fair ^b Fair ^c	Good Fair

^{*}See Map XII-5 for sampling station locations.

Source: SEWRPC.

bWater quality index calculated from July and August 1978-1979.

^cWater quality index calculated from July and August 1977-1978.

Table XII-16

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE ROCK RIVER WATERSHED: 1990

	Extent of Conve	ersion of Lands o Urban ^b				R	emaining Pot	ential Surfac	e Water Pollution Sources		
SUBWATERSHED Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstement Efforts ^c
ASHIPPUN RIVER Ashippun River upstream Druid Lake	Insignificant	Insignificant	1987-blue chemical		x						1
Ashippun River downstream Druid Lake	Moderate	Insignificant			x						1
Ashippun River downstream Waukesha County Line to Ashippun Lake inflow	Insignificant	Insignificant	1986-diesel fuel		x						1
Ashippun River downstream Ashippun Lake inflow	Insignificant	Insignificant			х						1
BARK RIVER Bark River upstream Nagawicka Lake	Moderate	Significant	1984-oil 1984-waste oil	x	x			1		Village of Hartland public sewage treatment plant abandoned in 1980.	1
Bark River downstream Nagawicka Lake	Significant	Insignificant	1986-drums	x	х	2		1		St John's private sewage treatment plant abandoned in 1980.	1
Scuppernong Creek	Moderated	Significant		x	x						1
OCONOMOWOC RIVER Coney River	Insignificant	Insignificant			x						2,3
Oconomowoc River Upstream Friess Lake	Moderated	Insignificant			x		••				2,3
Oconomowoc River Downstream Friess Lake to North Lake	Significant	Insignificant			x			1			2,3
Oconomowoc River Downstream North Lake to Okauchee Lake	Insignificant	Significant		X	x						1,2,3

Table V-16 (continued)

	Extent of Conve	ersion of Lands Urbanb			***	R	emaining Por	ential Surfac	e Water Pollution Sources	-	
SUBWATERSHED Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstement Efforts ^C
Oconomowoc River Downstream Okauchee Lake to Oconomowoc Lake	Significant ^e	Insignificant ^e		x	x						1,2,3
Oconomowoc River Downstream US 16 to Fowler Lake	Insignificant	Significant		x	x						1,2,3
Oconomowoc River Downstream Lac La Belle to Waukesha County Line	Significant	Significant		х	х	1		3			1,2,3
Little Oconomowoc River	Significantd	Insignificant		x	x						1,2,3
Mason Creek	Significantd	Insignificant		x	x						1,2,3
PISCASAW CREEK Piscasaw Creek	Insignificant	Insignificant			x	1		1		Village of Walworth public sewage treatment plant replaced in 1986	1
ROCK RIVER EAST BRANCH East Branch Rock River Downstream CTH D	Insignificant	Insignificant			x						1
Limestone Creek	Insignificant	Insignificant			x						1
East Branch Rock River Upstream CTH D	Insignificant	Insignificant	1991-diesel fuel	x	x	1		1			1
Allenton Creek	Insignificant	Insignificant		<u></u>	x						1
Kohlsville River	Insignificant	Insignificant			x						1
Wayne Creek	Insignificant	Insignificant			x						1
RUBICON RIVER Rubicon River Upstream Pike Lake	Moderate	Significant		x	х	1					1
Rubicon River Downstream Pike Lake	Insignificant	Significant	1991-hydraulic oil	x	x	1		3			1,4
SCUPPERNONG RIVER Scuppernong River	Insignificant	Insignificant			x						1
Steel Brook Creek	Insignificant	Insignificant			x				••		1

Table V-16 (continued)

	Extent of Conve					R	emaining Pot	ential Surfac	e Water Pollution Sources		
SUBWATERSHED Stream Reach [®]	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^C
TURTLE CREEK Jackson Creek	Insignificant	Insignificant			x			6		City of Elkhorn public sewage treatment plant abandoned in 1981 Walworth County Institutions private sewage treatment plant abandoned in 1981	1,2,3
Swan Creek	Significant	Significant		x	x			1	••		1,2,3
Turtle Creek Upstream Comus Lake	Insignificant	Insignificant			x						1,2,3
Turtle Creek Downstream Comus Lake to STH 11	Insignificant	Insignificant		x	x	1		1	Delavan Municipal Well No. 4	City of Delavan public sewage treatment plant abandoned in 1981	1,2,3
Turtle Creek Downstream STH 11	Insignificant	Insignificant			x						1,2,3
Little Turtle Creek and Ladd Creek	Insignificant	Insignificant			x						1
Darien Creek	Insignificant	Insignificant		x	x	1		3			1,4
Sharon Creek	Insignificant	Insignificant			x	1		1	••		1
WHITEWATER CREEK Whitewater Creek	Insignificant	Insignificant		x	x	1		2			1
Bluff Creek	Insignificant	Insignificant			x						1
Galloway Creek	Insignificant	Insignificant		x	x						1

Source: Wisconsin Department of Natural Resources and SEWRPC.

a Includes the tributary drainage area of each stream reach.
 b Extent of urban land conversions were determined as a percentage of the watershed as follows:

major > 20% 10 - 20% moderate

significant 5 - 10%

insignificant 0 - 5%

Letter codes refer to the following ongoing pollution abatement efforts:

1. Construction Erosion Control Ordinances in place; 2 - Urban Nonpoint Source Controls Implemented; 4 - Sewage Treatment Plant Upgrading or Abandonment Underway d Considerable urban development existing pre-1976.

The amount of post-1976 urban development has increased significantly in comparison to pre-1976 urban development.

episodes create among lake users, they do not appear to warrant special planning considerations at this time.

<u>Water Quality Assessments</u>: Data from Table XII-17 were used in the calculation of trophic state indices for each of the major lakes where data were available. Trophic states, indicating degrees of nutrient enrichment in the lakes, were assigned using the Wisconsin Trophic State Index²⁷ for each major lake in the Rock River watershed where data were available, as indicated in Table XII-18. The available trophic state index values using the Carlson Trophic State Index are also provided for current and historic conditions, as shown in Table XII-19. These data are presented using the Carlson Trophic State Index in order to present the newer data on a comparable basis to the historic data which used that Index.

The data available, as shown in Table XII-18, indicate that all of the lakes may be classified in the mesotrophic to eutrophic range. Mesotrophic lakes have moderate levels of nutrient enrichment, whereas, eutrophic lakes are nutrient-rich lakes. Crooked, Lower Nashotah, Lower Nemahbin, Nagawicka, Upper Nemahbin, Fowler, Keesus, Lac La Belle, North, Oconomowoc, and Okauchee Lakes are all drainage lakes in the mesotrophic range. Golden, Pretty, Beaver, Lower Genesee, Middle Genesee, Moose, Pine, and Silver Lakes and Lake Five are mesotrophic seepage lakes; and Ashippun, Bark, School Section, Upper Nashotah, Pike, and Turtle Lakes are mesotrophic drained lakes.

Druid, Friess, Comus, Delavan, Cravath, Rice, and Tripp Lakes are all drainage lakes classified in the eutrophic range. Whitewater Lake is classified as an eutrophic drained lake. No current data are available to make assessments of trophic status for Hunters Lake, La Grange Lake, or Lake Lorraine, all seepage lakes, or for Waterville Pond, a drainage lake.

No conclusions regarding changes in water quality conditions between 1976 and 1991 can be drawn based on the limited data available. However, based upon the data set forth in Table XII-19, water quality does not appear to have changed significantly despite considerable urbanization in this watershed. Slight improvements in water quality in fact may have occurred in Druid Lake, Golden Lake, Upper Nashotah Lake, and Lake Keesus.

In addition, periodic fish kills primarily related to seasonal fluctuations in water temperature and levels of dissolved oxygen, as well as spawning activity, have occurred on Pine Lake in 1984, Okauchee Lake in 1985, and Whitewater Lake in 1986. A fish kill related to an herbicide application occurred on Okauchee Lake in 1981. A fish kill related to lake management activities on Delavan Lake occurred in August 1990. These occurrences do not appear to be chronic. Thus, despite the obvious concern that these episodes create among lake users, they do not appear to warrant special planning considerations at this time.

Compliance with Water Use Objectives

As indicated in Chapter II, the majority of the stream reaches in the Rock River watershed as of 1993, are generally recommended for warmwater sport fish and full recreational uses. These water use objectives and associated water quality

²⁷The Wisconsin State Index is set forth in "Trophic State Index Equations and Regional Predictive Equations for Wisconsin Lakes," R.A. Lillie et al, Research Management Findings, No. 35, May 1993.

Table XII-17
WATER QUALITY OF THE MAJOR LAKES IN THE ROCK RIVER WATERSHED

			Total	Phosphorus	(mg/l)			Chl	orophyll- <u>a</u> ((μg/l)			s	ecchi Disk (f	eet)	
SUBMATERSHED Lake Name	Area (acre)	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ⁸	Date of Data	Source
ASHIPPUN RIVER																
Ashippun Lake	84	0.13	0.01	0.03(140)	1973-79	LSF,ERA	28.26	5.28	16.77(2)	1976	LSF	14.25 10.25	3.25 8.75	6.97(30) 9.5(6)	1989-92 1992	SELF-HELP SELF-HELP
Druid Lake	124	0.44	0.02	0.13(24)	1973-75	LSF	<u> </u>	••	<u> </u>	 	<u> </u>	10.23	0.75	9.3(6)	1992	SELFTHELP
BARK RIVER										l						
Bark Lake	65	0.16	0.03	0.07(3)	1979	LSF	8.0	5.4	6.7(2)	1980	LSF			9.5(1)	1980	LSF
Crooked Lake	58								••			12.0	4.0	7.6(20)	1988-89	SELF-HELP
Golden Lake	250	0.10	<0.01	0.03(26)	1973-75	LSF		••	3.0(1)	1980	LSF	14	9.5	11.7(13)	1989,92	SELF-HELP
Hunter's Lake	65		••									==	,	**	1007.00	SELF-HELP
Lower Nashotah Lake	90	0.12	<0.01	0.04(9)	1980	AquaTech	5.8	2.8	4.6(7)	1980-81 1980	AquaTech	22 12	4.75 8.2	11.8(8) 8.2(21)	1987-89 1988-89	SELF-HELP
Lower Nemahbin Lake	271 957	0.85	<0.01 0.01	0.09(26) 0.04(75)	1973-75 1986-87	LSF	17.0	2.0	6.0(1) 8.6(22)	1980	LSF	19.7	4.9	10.1(49)	1986-87	LIT
Nagawicka Lake Pretty Lake	1 64	0.20	<0.01	0.04(73)	1974-80	LSF	5.2	1.6	3.4(2)	1979-80	LSF	23.0	6.0	11.71(7)	1989	SELF-HELP
School Section Lake	125	0.03	0.01	0.02(10)	1974-80	LSF	٠.٤	1.0	7.0(1)	1980	STORET	8.0	4.5	5.37(33)	1987-91	SELF-HELP
Upper Nashotah Lake	133	0.31	<0.01	0.03(25)	1973-75	LSF				1,700		11.0	4.25	8.75(3)	1988-89	SELF-HELP
Upper Nemahbin Lake	283	0.49	<0.01	0.07(35)	1973-79	LSF			4.0(1)	1980	STORET	14.0	3.75	8.73(23)	1986-88	SELF-HELP
Waterville Pond	68													••		
OCONOHOMOC RIVER Beaver Lake	316	0.06	0.01	0.03(26)	1973-75	LSF				1		12.5	5.0	9.2(10)	1973-75	LSF
Lake Five	102	0.00	0.01	0.03(20)	19/3-/3	Lar				1		13.75	5.25	8.18(15)	1991-92	SELF-HELP
Fowler Lake	78	0.23	0.003	0.03(89)	1984-91	usgs	6.0	<0.10	1.85(31)	1984-90	USGS	24.9	5.9	12.2(18)	1987-90	USGS
Friess Lake	119	0.40	0.015	0.105(69)	1986-87	LTT	69.0	2.0	22.0(22)	1986-87	LTT	16.1	1.8	6.5(70)	1986-87	LTT
Lake Keesus	237	0.49	0.01	0.045(8)	1991-92	usgs	9.0	3.0	6.0(8)	1991-92	USGS	10.5	6.6	8.4(8)	1991-92	USGS
Lac La Belle	1117	0.40	0.01	0.015(43)	1986-89	LTT	12.0	2.0	6.0(40)	1986-89	LTT	16.4	4.5	7.7(127)	1986-89	LTT
Lower Genesee Lake	66	0.05	0.02	0.035(2)	1974	LSF			3.0(1)	1980	STORET	20.25	6.5	12.2(4)	1987	STORET
Middle Genesee Lake	102	0.03	0.02	0.025(2)	1974	LSF			3.0(1)	1980	STORET			7.2(1)	1980	STORET
Moose Lake	81	0.04	0.01	0.018(4)	1979	LSF						9.0	7.0	8.0(2)	1979	DNR
North Lake (Waukesha)	437	0.26	0.01	0.06(55)	1973-75	LSF	14.0	6.0	10.0(2)	1980	STORET	21.5	4.0	11.48(119)	1986-92	SELF-HELP
Oconomowoc Lake	767	0.12	<0.001	0.02(82)	1986-92	USGS	6.0	1.0	2.67(33)	1986-90	USGS	22.25	5.0	10.64(181)	1986-92	SELF-HELP
Okauchee Lake	1187	0.23	<0.005	0.02(123)	1986-91	USGS	15.0	3.0	5.68(77)	1986-90	USGS	14.11	3.94	6.92(91)	1986-90	USGS
Pine Lake	703	0.36	0.017	0.076(39)	1978-81	STORET	13.0	3.0	5.0(32)	1978-81	STORET	18.0	5.91	10.21(45)	1979-81 1991	STORET SELF-HELP
Silver Lake (Wauk.)	222	0.12	<0.01	0.02(36)	1973-92	LSF			4.0(1)	1980	STORET	<u> </u>		10.54(6)	1991	SELF-MELP
RUBICON RIVER										1						
Pike Lake	52 2	0.83	0.01	0.052(96)	1985-87	LTT	22	4.8	11.3(26)	1985-87	LTT	33	2.6	7.5(67)	1985-87	LTT
SCUPPERHONG RIVER																
La Grange Lake	55													••		

Table XII-17 (continued)

			Total Phosphorus (mg/l)					Chl	orophyll- <u>a</u> ((pg/l)			Se	ecchi Disk (f	eet)	
SUBMATERSHED Lake Name	Area (acre)	Maximum	Minimum	Average ^a	Date of Data	Sourceb	Maximum	Minimum	Average ^a	Date of Data	Source ^b	Maximum	Minimum	Average*	Date of Data	Sourceb
TURTLE CREEK Comus Lake Delavan Lake Turtle Lake	117 2072 140	0.24 3.30 0.19	0.04 0.007 <0.01	0.10(11) 0.16(641) 0.06(5)	1977-79 1983-89 1974-78	LSF USGS LSF	300 	 0.2	95(1) 24.33(91) 6(1)	1977 1987-90 1980	LSF USGS STORET	2.7 27.5 	0.5 0.5 	1.7(6) 7.73(114) 33.47(1)	1977-79 1986-92 1980	LSF SELF-HELP STORET
MHITEWATER CREEK Cravath Lake Lake Lorraine Rice Lake Tripp Lake Whitewater Lake	65 133 137 115 640	0.61 0.05 0.15 0.15	0.24 0.04 0.15 0.018	0.45(3) 0.045(2) 0.15(3) 0.039(51)	1966-73 1974 1966-73 1986-87	UM, LSF LSF UM, LSF LTT	170.0 67.0	57.0 12	113.5(2) 29.3(16)	 1980-81 1986-87	STORET	10.5 6.6	1.0 1.5	1.05() 3.82(28) 3.21() 3.2(63)	1973 1988-92 1973 1986-87	UMM SELF-HELP UMM LTT

A Number in parentheses refers to number of samples taken.

AquaTech.....Water Quality Monitoring Reports by AquaTech Inc. DNR......Department of Natural Resources LSF..........MI Department of Natural Resources, Lake Survey Forms
LTI.......Long Term Trends Lake Monitoring Program Data: 1985-1987 SELF-HELP.....Wisconsin Self-Help Lake Monitoring Program Data: 1986-1988 STORET.....U.S. EPA Water Information Storage and Retrieval System USGS......U.S. Geological Survey, Water Resources Data - Wisconsin (annual)
UMW......UW-Whitewater, W.L. Gross et al., "The Ecology of Tripp and Cravath Lakes with Recommendations for Management", 1974

Source: SEWRPC.

^b The following sources were cited:

standards are discussed in Chapter II. The Scuppernong River, Steel Brook Creek, Bluff Creek, Mason Creek, Allenton Creek, and portions of the Kohlsville River, Scuppernong Creek, and Whitewater Creek are recommended for coldwater fish and full recreational uses because of their potential to support trout populations. Bluff Creek upstream of CTH P has been designated as a Class I trout stream, and the remaining portion of Bluff Creek and portions of Allenton Creek, Steel Brook Creek, and Scuppernong River are designated as Class II trout streams. Class III trout stream designations have been given to portions of the Scuppernong River and Steel Brook Creek. Wayne, Little Turtle, Spring Brook, Galloway, Ladd Creek, Darien Creek, Sharon Creek, a portion of Limestone Creek, and the Rubicon River, in addition to the Little Oconomowoc River and the Oconomowoc River downstream of Friess Lake, have limitations for sport fish habitat and are recommended for warmwater forage fish and full recreational uses. The remaining streams are recommended for warmwater sport fish and full recreational uses. In addition, as noted in Chapter II, Bluff Creek in Walworth county is designated as an "Outstanding Resource Water" and the Oconomowoc River from North Lake to Okauchee Lake, in Waukesha County, is designated as an "Exceptional Resource Water".

Based upon the available data for sampling stations in the watershed, the majority of the Rock River tributaries in the Region did not fully meet water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. Based upon a review of the water quality data available and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that some water quality improvements have been made in most of the stream reaches. However, it is likely that, in general, fecal coliform and phosphorus standards are not met in most stream reaches and the dissolved oxygen standards are not met in a limited number of stream reaches. However, the recommended water use objectives are likely to be met in the Scuppernong and Kohlsville Rivers, and in Allenton, Steel Brook, Mason, and Bluff Creeks, based upon the observed uses in those streams. water use objectives may potentially also be met in portions of the Bark River, Turtle Creek, and Oconomowoc River systems downstream of major lakes since the only major point sources have been removed and since the lakes serve to remove pollutants by sedimentation.

There are currently three stream for which the water use objectives set forth herein are higher than the objectives set forth in Chapter NR 104 of the Wisconsin Administrative Code. Chapter NR 104 classifies the Rubicon River upstream of the confluence with a tributary in U. S. Public Land Survey Section 13, Township 10 North, Range 18 East, Town of Hartford, as capable of supporting only a limited aquatic life community and downstream of the tributary as supporting a limited forage fish community. The objectives set forth herein recommend a warmwater forage fish community upstream of Hilldale Road, about 0.4 mile downstream of the aforementioned tributary confluence, and a warmwater sport fish community downstream of Hilldale Road. Darien Creek and Sharon Creek in Walworth County are classified as capable of supporting a limited forage fish community and limited aquatic life community, respectively. The objectives set forth herein recommend a warmwater forage fish objective for both streams. All

three streams are recommended for upgrading in the Upper Rock River Basin Plan. 28 It is recommended that further stream appraisals for the Rubicon River, Darien Creek, and Sharon Creek be conducted by the DNR staff as part of the next one-year monitoring period envisioned to be carried out in the Rock River watershed.

The waters of the lakes in the Rock River watershed are all recommended for the maintenance of a warmwater sport fishery and full recreational use. The twenty-one lakes for which complete water quality data were available between 1965 and 1975--Ashippun, Beaver, Delavan, Druid, Fowler, Friess, Golden, Keesus, La Belle, Upper and Lower Nashotah, Upper and Lower Nemahbin, Nagawicka, North, Oconomowoc, Okauchee, Pike, Pine, Silver-Waukesha, and Whitewater Lakes--vio-lated the 0.02 mg/l standard for total phosphorus, and Nagawicka Lake violated the 5 mg/l dissolved oxygen standard, recommended by the Commission, on at least one occasion between 1965 and 1975. Modeling data developed in the initial plan indicated that most of the other lakes also failed to meet the phosphorus standard.

As shown in Table XII-17, recent monitoring data are available for Lower Nashotah, Nagawicka, Pretty, School Section, Upper Nemahbin, Fowler, Friess, Keesus, Lac La Belle, Oconomowoc, Okauchee, Pine, Silver, Delavan, and Whitewater Lakes to assess the current compliance with water quality standards for the major lakes in the Rock River watershed. All of these lakes exceeded the total phosphorus standard on at least one occasion and Delavan Lake had phosphorus concentrations constantly in excess of the recommended standard. Based upon these data and review of the previous modeling data and the status of plan implementation, it may be expected that the majority of the lakes in the watershed would, at some times, have total phosphorus levels exceeding the 0.02 mg/l standard, which is represented by a TSI value in excess of approximately 47.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon the current status of plan implementation, current land use planning and local nonpoint source pollution and abatement and sewerage system planning, there are three major issues which remain to be addressed in the Rock River watershed. One issue relates to the need for system level sewerage system planning in the northwestern Waukesha County area and one relates to the nonpoint source pollution control which should be carried out in the Turtle Creek and Oconomowoc River watersheds. In addition, it is also recommended that the Wisconsin Department of Natural Resources conduct a water quality and biological conditions survey on the upstream reaches of the Rubicon River to reassess the water use objectives currently set forth in the Wisconsin Administrative Code.

Northwestern Waukesha County Sewerage System Evaluation

The Regional Planning Commission has, at the request of and in cooperation with local units of government in northwestern Waukesha County, prepared a <u>Prospectus for the Preparation of A Sanitary Sewerage System Plan for the Northwestern Waukesha County Area</u>. The prospectus documents the need for conducting a system level sewerage system planning program for the northwestern Waukesha County

²⁸Wisconsin Department of Natural Resources, <u>Upper Rock River Basin Areawide</u> Water Quality <u>Management Plan</u>, <u>Publication No. WR-190-88</u>, May 1989.

Table XII-18

TROPHIC STATE INDEX VALUES FOR MAJOR LAKES WITHIN THE ROCK RIVER WATERSHED^a

	Wisconsin Trophic State Index Values ^b				
Lake Name	Total-P	Chlorophyll- <u>a</u>	Secchi	Mean	
Ashippun Lake	54.6	55.9	47.8	52.8	
Bark Lake	61.2	49.0	44.8	51.7	
Beaver Lake	54.6		43.9	49.3	
Comus Lake	64.0	68.9	69.4	67.4	
Cravath Lake	75.7		76.4	76.0	
Crooked Lake			47.8	47.8	
Delavan lake	67.7	58.7	40.2	55.5	
Druid Lake	66.0	50.4	46.0	54.0	
Lake Five			45.3	45.3	
Fowler Lake	54.6	41.4	42.4	46.1	
Friess Lake	61.7	57.9	50.1	56.6	
Lower Genesee Lake	55.8	43.0	41.1	46.6	
Middle Genesee Lake	53.2	43.0	48.8	48.3	
Golden Lake	54.6	43.0	40.3	46.0	
Hunters Lake					
Lake Keesus	64.0	48.2	47.4	53.2	
Lac La Belle	49.3+	48.2+	47.9	48.5	
La Grange Lake					
Lake Lorraine					
Moose Lake	50.6		47.3	49.0	
Nagawicka Lake	54.0	50.9	43.9	49.6	
Lower Nashotah Lake	56.8	46.2	41.5	48.2	
Upper Nashotah Lake	54.6		45.8	50.2	
Lower Nemahbin Lake	63.2	48.2	46.8	52.7	
Upper Nemahbin Lake	61.2	45.2	45.9	50.7	

Table XII-18 (continued)

	Wisconsin Trophic State Index Values ^b			
Lake Name	Total-P	Chlorophyll- <u>a</u>	Secchi	Mean
North Lake (Waukesha)	60.0	52.0	40.4	50.8
Oconomowoc Lake	50.7	41.9	43.3	45.3
Okauchee Lake	51.3	47.5	49.6	49.5
Pike Lake	57.2	52.9	48.7	52.9
Pine Lake	61.8	46.8	43.7	50.8
Pretty Lake	51.5	43.9	41.6	45.7
Rice Lake	57.8	70.2	61.2	63.1
School Section Lake	51.5	49.4	51.9	50.9
Silver Lake (Waukesha)	52.9	44.1	44.1	47.0
Tripp Lake	67.1		60.4	63.8
Turtle Lake	60.0	48.2	26.7	45.0
Waterville Pond				
Whitewater Lake	56.4	60.1	59.6	58.7

^aWisconsin Trophic State Index values were calculated using water chemistry data shown in Table XII-17.

below 44 = oligotrophic 44 - 53 = mesotrophic 54 - 75 = eutrophic above 75 = hypertrophic

Source: Wisconsin Department of Natural Resources and SEWRPC.

^b Wisconsin Trophic State Index ranges:

Table XII-19

COMPARISON OF TROPHIC STATE INDEX VALUES FOR MAJOR LAKES
IN THE ROCK RIVER WATERSHED^a

	Carlson '	Trophic State Ind	ex Values ^b
	Satellite	Water	Water
Subwatershed	Information	Chemistry	Chemistry
Lake Name	1979 - 1981	pre - 1981	1981 - 1991
		P20 2702	2702 2772
ASHIPPUN RIVER			
Ashippun Lake	49	51	49
Druid Lake	52	72	47
BARK RIVER			
Bark Lake	50	53	an sa
Crooked Lake	48		51
Golden Lake	46	56	42
Hunters Lake	50		
Nagawicka Lake	48	65	60
Lower Nashotah Lake	44	48	51
Upper Nashotah Lake	44	56	45
Lower Nemahbin Lake	47	55	54
Upper Nemahbin Lake	47	53	45
Pretty Lake	47	46	42
School Section Lake	50	58	53
Waterville Pond	50		
OCONOMOWOC RIVER			
Beaver Lake	44	56	
Lake Five	48		47
Fowler Lake	47		43
Friess Lake	49	54	59
Lower Genesee Lake	45	48	41
Middle Genesee Lake	45	46	
Lake Keesus	47	70	50
Lac La Belle	51	49	54
Moose Lake	44	60	
North Lake (Wauk. Co.)	49	58	54
Oconomowoc Lake	46		44
Okauchee Lake	47		58
Pine Lake	46	53	
Silver Lake (Wauk. Co.)	47	50	43
SCUPPERNONG RIVER			
La Grange Lake			
RUBICON RIVER			
Pike Lake	54	60	52
	. 54	60	52

Table XII-19 (continued)

	Carlson '	Frophic State Ind	ex Values ^b
Subwatershed Lake Name	Satellite Information 1979 - 1981	Water Chemistry pre - 1981	Water Chemistry 1981 - 1991
TURTLE CREEK Comus Lake Delavan Lake Turtle Lake	 55 48	71 66	 64
WHITEWATER CREEK Cravath Lake Lake Lorraine Rice Lake Tripp Lake Whitewater Lake	56 48 55 52	89 67 71 69	 60 61

^a Carlson TSI values were calculated from available data from spring measurements for phosphorus and from summer measurements for chlorophyll-<u>a</u> and water clarity. Water chemistry values were calculated from data shown in Table XII-17. Satellite information values were determined from <u>Wisconsin Lakes - A Trophic Assessment Using Landsat Digital Data</u>, 1983.

below 40 = oligotrophic 40 - 50 = mesotrophic 50 - 60 = eutrophic above 60 = hypertrophic

Source: Wisconsin Department of Natural Resources, U.S. Environmental Protection Agency, and SEWRPC.

^b Carlson Trophic State Index ranges:

area. In addition, the prospectus sets forth the planning program required to prepare a coordinated sanitary sewerage system plan for the area concerned. The plan is intended to address the intergovernmental, administrative, legal, and fiscal problems inherent in the development of the planned sewerage system, or systems, as well as to identify the configuration, capacity, and level of treatment to be provided by the planned sewerage system, or systems.

Reassessment of the Future Needs for Nonpoint Source Controls in the Oconomowoc and Turtle Creek Watershed Areas

Nonpoint source priority watershed program implementation periods have now been completed for the Turtle Creek and Oconomowoc River watersheds. The Wisconsin Department of Natural Resources is currently preparing project finalization and evaluation reports. Following completion of those reports and following the conduct of water quality and biological condition monitoring in the Rock River watershed under the Wisconsin Department of Natural Resources ongoing monitoring program, it is recommended that the need for further nonpoint source controls be assessed based upon the current level of plan implementation and water quality and biological conditions data.

Stream Reclassification Evaluation

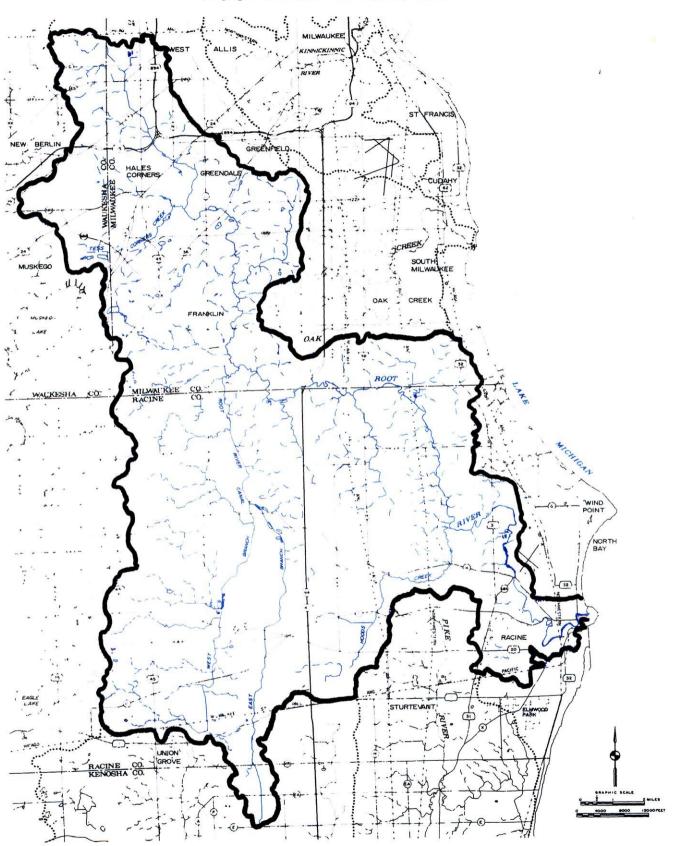
Sharon Creek, Darien Creek, and portions of the upper Rubicon River are currently included under the limited forage fish or limited aquatic life classifications in Chapter NR 104 of the Wisconsin Administrative Code. However, it is recommended that the objectives for these streams be upgraded to provide for warmwater sport fish and warmwater forage fish classifications. It is recommended that the Wisconsin Department of Natural Resources include further stream appraisals for the upper Rubicon River and Darien Creek as part of the monitoring program during the next period when the Department is conducting monitoring efforts in the Rock River watershed as is envisioned within the next five to seven years.

Chapter XIII

ROOT RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975 -- the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Root River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Root River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included which is limited for the Root River watershed as there are no major lakes within the watershed. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.


The Root River watershed is located in the east-central portion of the Region and covers an area of approximately 196 square miles. The main stem of the Root River rises in Milwaukee County within the City of Milwaukee urbanized area and flows approximately 44 miles southerly and then easterly to discharge into Lake Michigan in the City of Racine in Racine County. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Root River and its principal tributaries, are shown on Map XIII-1. The Root River watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Root River watershed since 1975, the base year of the initial regional water quality management plan, as well as planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater gener-

Map XIII-1

ROOT RIVER WATERSHED

addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table XIII-1 summarizes the existing land uses in the Root River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed contains numerous urbanized areas, 72 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 56 percent of the total area of the watershed in agricultural and related rural uses, about 4 percent in woodlands, about 6 percent in surface water and wetlands, and about 6 percent in other open lands. The remaining 28 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map XIII-2.

Within the Root River watershed, major concentrations of urban development exist in portions of three counties, with the majority of development located in Milwaukee and Racine Counties. Urban development has been taking place rapidly in and around the Cities of Franklin, Greenfield, Milwaukee, Muskego, New Berlin, Oak Creek, Racine, Milwaukee, and West Allis; the Villages of Union Grove, Greendale and Hales Corners; and in the Towns of Caledonia and Mount Pleasant adjacent to the City of Racine. The watershed contains a major industrial center, Racine East, in the City of Racine, and two major commercial centers, the Central Business District located in the City of Racine, and a portion of the Regency Mall Commercial Center, located east of STH 31 in the City of Racine.

In the portion of the watershed contained in Waukesha County, urban-related land uses are located primarily in and around the northern and eastern portions of the City of Muskego and in the City of New Berlin. In the portion of the watershed contained in Racine County, urban-related land uses are located primarily in and around the Village of Union Grove, as well as in the portion of the City of Racine contained within the watershed and the areas directly adjacent to the City of Racine in the Towns of Caledonia and Mount Pleasant. In the portion of the watershed contained in Milwaukee County, urban-related land uses are located in and around the Villages of Greendale and Hales Corners, and the Cities of Greenfield, Milwaukee, and West Allis, and scattered development has occurred in the City of Franklin. Rapid urban development has also occurred along the STH 100 corridor in the Cities of West Allis and Greenfield, and in the Village of Hales Corners.

As shown in Table XIII-1, from 1975 to 1990, urban land uses in the watershed increased from about 31,500 acres, or 49 square miles, to about 35,400 acres, or 55 square miles, or by about 12 percent. As shown in Table XIII-1, residential land represents the largest urban land use in the watershed. Residential use has increased within the watershed, from about 17,100 acres, or 27 square miles, in 1975, to about 19,300 acres, or 30 square miles, in 1990, a 13 percent increase. Commercial and industrial lands increased from about 1,200 acres, or two square miles, to about 1,700 acres, or three square miles, an increase of 36 percent.

The 55.2 square miles of urban land uses in the watershed as of 1990 approximated the staged 1990 planned level of about 55.7 square miles envisioned in the

Table XIII-1

LAND USE IN THE ROOT RIVER WATERSHED: 1975 and 1990^a

	19	75	19	990	Change	1975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	17,073	13.6	19,303	15.4	2,230	13.16
Commercial	735	0.6	935	0.7	200	29.2
Industrial	490	0.4	730	0.6	240	49.0
Transportation,					1	Ì
Communication,		į	l	l		
and Utilities ^b	9,294	7.4	10,190	8.1	896	9.6
Governmental and		j				
Institutional	1,422	1.1	1,443	1.2	21	1.5
Recreational	2,537	2.0	2,760	2.2	223	8.9
Subtotal	31,551	25.1	35,361	28.2	3,810	12.1
Rural						
Agricultural				İ		į
and Related	75,781	60.4	70,253	55.9	- 5,528	7.36
Lakes, Rivers,	1 ,3,,,,,	1 00.7	10,233	33.9	- 3,326	/.30
Streams and					ļ	
Wetlands	6,930	5.5	7,509	6.0	579	8.4
Woodlands	5,143	4.1	5,157	4.1	14	0.3
Open Lands ^c , Landfills,	, , , , ,		","	11.2	1	0.5
Dumps, and Extractive	6,168	4.9	7,318	5.8	1,150	18.6
	, , , , , , , , , , , , , , , , , , , ,	t	+	 	 	
Subtotal	94,022	74.9	90,237	71.8	- 3,785	- 4.0
Total	125,573	100.0	125,598	100.0	25 ^d	

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

c Includes both rural and urban open lands.

 $^{^{}m d}$ The change in total area of the watershed from 1975 to 1990 is the net effect of Lake Michigan shoreline erosion and accretion and of landfill activities.

MAP XIII-2 LAND USES IN ROOT RIVER WATERSHED: 1990 3. NORTA 8. -LEGEND-GOVERNMENTAL AND INSTITUTIONAL SINGLE-FAMILY RESIDENTIAL RECREATIONAL MULTI-FAMILY RESIDENTIAL SURFACE WATER COMMERCIAL WETLANDS INDUSTRIAL WOODLANDS

GRAPHIC SCALE IN MILES

EXTRACTIVE

LANDFILL

STREETS AND HIGHWAYS

OTHER TRANSPORTATION, COMMUNICATION AND UTILITIES

PARKING

adopted year 2000 land use plan. The current status of development in the Root River watershed and in adjacent portions of Racine, Kenosha, Milwaukee, and Waukesha Counties was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table XIII-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Root River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban uses are expected to increase in Racine County in and around the southern portion of the Town of Caledonia and the Town of Mt. Pleasant in the northern portion of the City of Racine. Additional development is anticipated in the IH 94 corridor area north of STH 11.

In Milwaukee County, the adopted year 2010 land use plan anticipates increased urbanization in the City of Greenfield, and the northern and eastern portions of the City of Franklin and the southern portion of the City of Oak Creek. Additional urban development is also expected for Waukesha County in the eastern portions of the City of New Berlin.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Root River watershed, as indicated in Table XIII-2, is projected to increase from the 1990 total of about 55 square miles, or about 28 percent, of the total area of the watershed, to about 63 square miles, or about 32 percent of the total area of the watershed. by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 66 square miles, or about 34 percent, of the total watershed by year 2010. It is important to note that the 66 to 68 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and, as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space uses through joint Statelocal zoning or public acquisition. In addition, certain other lands classified as wetlands, and floodplains outside of the primary environmental corridors are. in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 141 square miles in 1990 to about 133 square miles in the year 2010 under the intermediate growth-centralized land use plan and to about 130 square miles under the high growth-decentralized land use plan, decreases of about 6 and 8 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the Root River watershed--including consideration of public and private sewage treatment

Table XIII-2

EXISTING AND PLANNED LAND USE IN THE ROOT RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

	_		Yea	r 2010 Inter Centralize	nediate Grow d Land Use	th -	Year 2010 High Growth - Decentralized Land Use				
	Exi	isting 1990	2010		Change 1990-2010		20	10	Change 1990-2010		
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	
Urban											
Residential	19,303	15.4	22,478	17.9	3,175	16.4	23,397	18.6	4,094	21.2	
Commercial	935	0.7	971	0.8	36	3.9	1,088	0.9	153	16.4	
Industrial	730	0.6	970	0.8	240	32.9	1,394	1.1	664	91.0	
Transportation,											
Communication,											
and Utilities ^b	10,190	8.1	11,398	9.1	1,208	11.9	11,955	9.5	1,765	17.3	
Governmental and											
Institutional	1,443	1.2	1,562	1.2	119	8.2	1,582	1.3	139	9.6	
Recreational	2,760	2.2	2,990	2.3	230	8.3	3,010	2.4	250	9.1	
Subtotal	35,361	28.2	40,369	30.1	5,008	14.1	42,426	33.8	7,065	20.0	
Rural											
Agricultural											
and Related	70,253	55.9	68,707	54.7	- 1,546	- 2.2	66,505	52.9	- 3,748	- 5.3	
Lakes, Rivers,											
Streams, and Wetlands	7,509	6.0	7,135	5.7	- 374	- 5.0	7,135	5.7	- 374	- 5.0	
Woodlands	5,157	4.1	4,986	4.0	- 171	- 3.3	4,924	3.9	- 233	- 4.5	
Open Lands ^c , Landfills,						20.0		2.7	2 710	- 67.9	
Dumps, and Extractive	7,318	5.8	4,401	3.5	- 2,917	- 39.9	4,608	3.7	- 2,710	- 0/.9	
Subtotal	90,237	71.8	85,229	67.9	- 5,008	- 5.5	83,172	66.2	- 7,065	- 7.8	
Total	125,598	100.0	125,598	100.0	0		125,598	100.0	0		

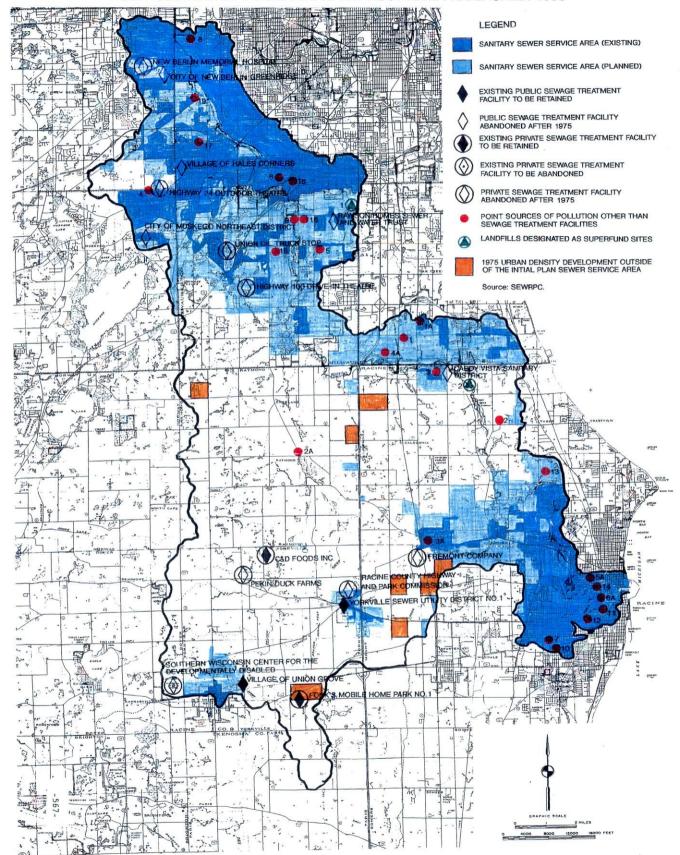
^a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

c Includes both rural and urban open lands.

plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary service areas located in the watershed.

It should be noted that, during 1995, the Milwaukee Metropolitan Sewerage District initiated work on an update of its Section 201 sewerage facility plan¹ for the entire Milwaukee metropolitan area. The update will have a plan year 2010, the same as the update of the regional plan. It is recommended that that facility plan re-examine certain system level decisions that were made in the past including trunk sewer needs, and the retention of the one remaining small sewage treatment plan in the Milwaukee metropolitan area--the City of South Milwaukee plant. The resultant sewage facilities plan update is intended, then, upon its adoption by all of the agencies concerned, to constitute an amendment to the regional water quality management plan update herein presented. Such an amendment could impact on the facilities within the Root River watershed.


Public and Private Wastewater Treatment Systems and Sewer Service Areas Existing Conditions and Status of Plan Implementation: In 1975, there were five public sewage treatment facilities located in the Root River watershed, as shown on Map XIII-3. The Caddy Vista Sanitary District treatment plant which served the Town of Caledonia discharged effluent to the main stem of the Root River: the Village of Union Grove treatment plant discharged to the West Branch Root River Canal; the Village of Hales Corners and Rawson Homes Sewer and Water Trust treatment plants discharged to tributaries of Whitnall Park Creek; and the City of Muskego-Northeast District treatment plant discharged directly to Tess Corners Creek. Of these five plants, the City of Muskego-Northeast District, the Village of Hales Corners, the Caddy Vista Sanitary District, and Rawson Homes Sewer and Water Trust plants were abandoned after 1975, as recommended in the initial plan. The status of implementation in regard to the abandonment, upgrading and expansion, and construction of the public and private sewage treatment plants in the Root River watershed, as recommended in the initial regional water quality management plan, is summarized in Table XIII-3.

As can be seen by review of Table XIII-3, full implementation of the initial plan would provide for the construction of a new and subsequent expansion for the Village of Union Grove sewage treatment plant, and the upgrading and expansion of the Racine County Highway and Park Commission private sewage treatment plant which was converted to the Town of Yorkville Sewer Utility District No. 1 public sewage treatment plant. Implementation of these recommendations has been largely completed. The Village of Union Grove and the Town of Yorkville Sewer Utility District No. 1 public sewage treatment plants have not fully provided facilities to specifically reduce the phosphorus concentrations in plant effluents to the levels identified in the initial plan as being needed to fully meet the water use objectives. The steps needed to achieve the recommended level of phosphorus

¹Milwaukee Metropolitan Sewerage District, <u>MMSD Wastewater System Plan</u>, June 1980.

Map XIII-3

SEWER SERVICE ARES, SEWAGE TREATMENT PLANTS AND OTHER
POINT SOURCES OF POLLUTION IN THE ROOT RIVER WATERSHED: 1990

Table XIII-3

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE ROOT RIVER WATERSHED: 1990

		/	
Public Sewage Treatment Plants	Disposal of Effluent	Plan Recommendation	Implementation Status
Village of Union Grove	West Branch of Root River Canal	Construct new plant, expand	Plant in operation, plant expansion under construction in 1994
Town of Yorkville Sewer Utility District No. 1	Hoods Creek	Upgrade and expand ^a	Completed
Caddy Vista Sanitary District	Root River	Abandon plant	Plant abandoned (1982)
Village of Hales Corners	Whitnall Park Creek tributary	Abandon plant	Plant abandoned (1981)
City of Muskego-Northeast District	Tess Corners Creek	Abandon plant	Plant abandoned (1985)
Rawson Homes Sewer and Water Trust	East Branch Root River	Abandon plant	Plant abandoned (1977)
Private Sewage Treatment Plants			
C&D Foods Inc., and York Duck Farms	Tributary of West Branch Root River Canal	Maintain and upgrade as needed	Plant maintained
Fonk's Mobile Home Park No. 1	East Branch Root River Canal	Maintain and upgrade as needed	Plant maintained
Pekin Duck Farm, Inc.	Soil Absorption	Maintain and upgrade as needed	Plant abandoned (1989)
Racine County Highway and Park Commission	Hoods Creek	Maintain and expand as a public plant to serve Town of Yorkville Sanitary District No. 1	Facility upgraded and expanded as a public plant
The Fremont Company ^b Highway 100 Drive-In Theater	Hoods Creek Soil Absorption	Abandon plant Abandon plant	Plant abandoned (1985) Plant abandoned
Highway 24 Outdoor Theater New Berlin Memorial Hospital	Soil Absorption Tributary of Root River	Abandon plant Abandon plant	Plant abandoned (1984) Plant abandoned
Southern Wisconsin Center for the Developmentally Disabled ^C	West Branch Root River Canal	Abandon plant	Facility planning underway to enable abandonment
Union Oil Truck Stop	Tributary of Root River	Abandon plant	Plant abandoned (1980)

a The initial regional water quality management plan recommended the conversion and expansion of the Racine County Highway and Park Commission private sewage treatment facility to a public sewage treatment facility that would serve the entire Yorkville sewer service area. A proposed revision to the initial regional water quality management plan, documented in A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area, recommends the abandonment of the Town of Yorkville treatment plant, and for the Yorkville sewer service area to be served by the City of Racine sewage treatment plant.

b Formerly Frank's Pure Food Company.

^c Formerly Southern Colony Training School and Treatment Facility.

control have been partially implemented by the completion of a study by the Wisconsin Department of Natural Resources to refine the procedure for establishing site specific phosphorus limitations on all public sewage treatment plants, and in 1993, by the adoption of rules to allow for placement of such limitations. Thus, as sewage treatment plant permits are issued, the use of the identified procedure should result in findings requiring reduced phosphorus loadings. Selected characteristics of the two public sewage treatment plants currently existing in the watershed are given in Table XIII-4.

In addition to the publicly-owned sewage treatment facilities, 10 private sewage treatment facilities were in existence in 1975 in the Root River watershed. These plants served the following land uses: C & D Foods Inc., Fonk's Mobile Home Park No. 1, Pekin Duck Farm Inc., Racine County Highway and Park Commission, The Frank Pure Food Company (currently the Fremont Company), Highway 100 Drive-In Theater, Highway 24 Outdoor Theater, New Berlin Memorial Hospital, Southern Wisconsin Center for the Developmentally Disabled, and Union Oil Truck Stop.

As indicated in Table XIII-3, six of the 10 private sewage treatment plants in the watershed were recommended to be abandoned in the initial plan. As of 1990, five of these plants had been abandoned. The connection of the Southern Wisconsin Center private sewage treatment plant to the Village of Union Grove sewerage system, enabling the abandonment of the private plant, was under construction in 1994. The Racine County Highway and Park Commission private plant was recommended to be expanded as a public plant in the initial plan. As of 1990, this facility had been upgraded and expanded as the Town of Yorkville Sewer Utility District No. 1 public sewage treatment plant. The remaining private plants were recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES).

The initial regional water quality management plan included a set of specific to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the Root River watershed. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social effects that may be experienced due to sludge disposal. At the present time, such reports have been prepared and submitted to the Department, or are under preparation, for both of the public and private sewage treatment plants currently within the watershed.

Table XIII-4

SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE
TREATMENT PLANTS IN THE ROOT RIVER WATERSHED

Name of Public Sewage Treatment Plant	1990 Estimated Total Area Served (square mile)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Sewage Treatment Unit Processes ^a	Name of Receiving Water to which Effluent is Disposed	WPDES Permit Expiration Date
Village of Union Grove ^b	1.1	3,700	1937, 1962, 1979	Activated sludge contact stabilization, rotating biological contactors, phoshorus removal, sand filtration, chlorination	West Branch Root River Canal	3-31-96
Town of Yorkville Sewer Utility District No. 1	0.3	100	1965, 1972, 1983	Activated sludge extended air, clarification, chlorination	Tributary of Hoods Creek	6-30-93

		Hydra	ulic Load	ling ^C		BOD ₅ Loading ^C (pounds/day)				Suspended Solids Loading ^c (pounds/day)			
	Existing				Existing		Existing		Existing				
Name of Public Sewage Treatment Plant	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in Which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Annual	Number of Months in 1990 in which the Monthly Average Loadings Exceeded the Design Capacity	
Village of Union Grove	0.67	0.99	0.88	2	593	824	1,205	0	652	914	2,000	0	
Town of Yorkville Sewer Utility District No. 1	0.04	0.06	0.15	0	86	123	720	0	60	100	344	0	

^aIn addition, plants typically include headworks and miscellaneous processes such as pumping, flow metering and sampling, screening and grit removal, as well as sludge handling and disposal facilities.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Expansion of the Village of Union Grove public sewage treatment plant was under construction in 1994.

c Loadings data were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were eight sewer service areas identified within, or partially within, the Root River watershed: Milwaukee Metropolitan Sewerage District, Muskego, New Berlin, Caddy Vista, Union Grove, Center for the Developmentally Disabled, Racine, and Yorkville. As of 1993, all of these areas, with the exception of the Milwaukee Metropolitan Sewerage District service area and a portion of the Yorkville sanitary sewer service area, had undergone refinements as recommended. In addition, the Franklin sewer service area, which was initially included as part of the Milwaukee Metropolitan Sewerage District service areas, was identified and refined since the completion of the initial plan. The boundaries of the sewer service areas through 1993 are shown on Map XIII-3. Table XIII-5 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer service areas in the Root River watershed, as refined through 1993, total about 64 square miles, or about 33 percent of the total watershed area, as shown in Table XIII-5.

<u>Current Plan Recommendations</u>: The current point source plan element recommendations provide for the continued operation with expansion and upgrading, as necessary, of the Village of Union Grove sewage treatment plant. In addition, the plan recommendations continue to provide for the continued operation of the York-ville Sewer Utility District No. 1 sewage treatment plan. The recommendation regarding plant facility upgrading and expansion, as needed, also applies to the treatment plant solids management element for these two sewage treatment plants.

With regard to the treatment plant operated by the Town of Yorkville Sewer Utility District No. 1, further consideration should be given to evaluating a potential change in the recommendations set forth in the initial plan. potential change is based upon the findings of a 1992 sanitary sewerage and water supply system plan which was completed for the greater Racine area. The findings and recommendations of the planning work are contained in a report prepared by Alvord, Burdick & Howson, entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area. That report, which was prepared for a study area including all of the eastern portion Racine County extending from Lake Michigan to a distance of about two miles west of IH 94, includes major portions of the Root River watershed. The report identified the sanitary sewer and water supply needs of that planning area, and evaluated alternative means of meeting those needs; recommended a coordinated set of design year 2010 sewerage and water supply system plans for the area; identified the intergovernmental, administrative, legal, and fiscal issues inherent in the implementation of the system plans; and recommended an institutional structure for implementation of those plans. The recommended sewerage system and planned service area developed in

²In September 1994, the sewer service area for the City of Oak Creek, which was initially included as part of the Milwaukee Metropolitan Sewerage District service area, was identified and refined as set forth in SEWRPC Community Assistance Planning Report No. 213, <u>A Sanitary Sewer Service Area for the City of Oak Creek</u>, Milwaukee County, Wisconsin.

Table XIII-5

PLANNED SANITARY SEWER SERVICE AREAS IN THE ROOT RIVER WATERSHED: 1993

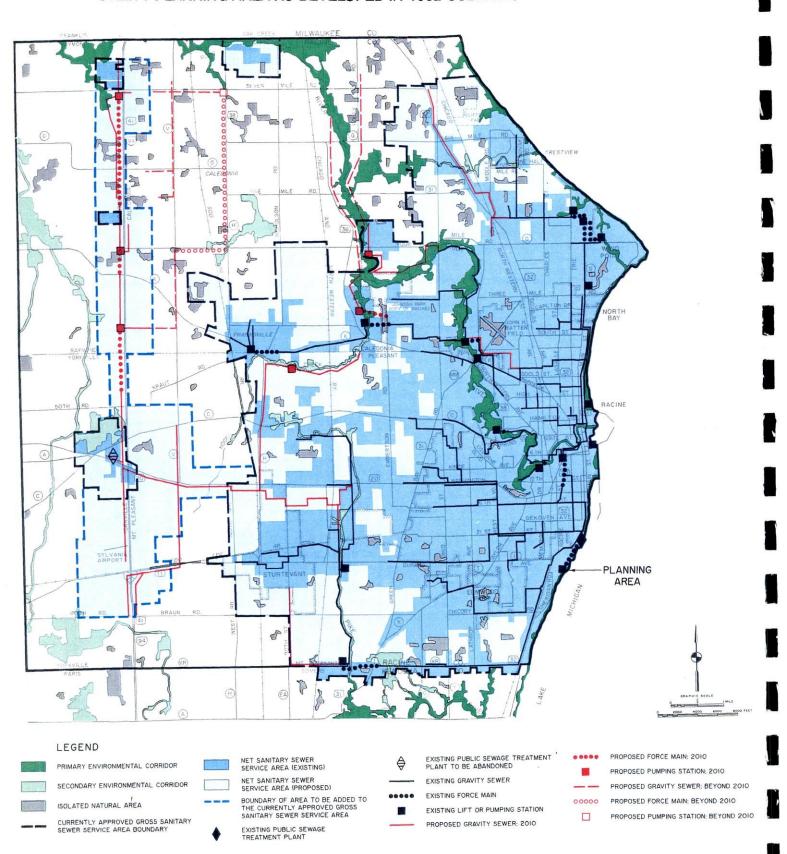
Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sanitary Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document		
	Refine	d Sanitary Sewer	Service Areas			
Milwaukee Metropolitan Sewerage District (portion)	24.3	Franklin	December 5, 1990	SEWRPC CAPR No. 176, Sanitary Sewer Service Area for the City of Franklin, Milwaukee County		
Muskego	3.7	Muskego	March 3, 1986	SEWRPC CAPR No. 64, 2nd Edition, Sanitary Sewer Service Area for the City of Muskego, Waukesha County, Wisconsin		
New Berlin	10.0	New Berlin	December 7, 1987	SEWRPC CAPR No. 157, Sanitary Sewer Service Area for the City of New Berlin, Waukesha County, Wisconsin		
Racine Caddy Vista	23.6	Racine Caddy Vista	December 1, 1986	SEWRPC CAPR No. 147, Sanitary Sewer Service Area for the City of Racine and Environs, Racine County, Wisconsin		
Union Grove Center for the Developmentally Disabled	2.3	Union Grove Southern Wisconsin Center	September 12, 1990	SEWRPC CAPR No. 180, Sanitary Sewer Service Area for the Village of Union Grove and Environs, Racine County, Wisconsin		
Yorkville	0.4	Yorkville	December 5, 1990	Amendment to the Regional Water Quality Management Plan-2000, Towns of Yorkville and Mt. Pleasant		
Subtotal	64.3					
	Unrefin	ed Sanitary Sewer	Service Areas			
Milwaukee Metropolitan Sewerage District (portion) ^a	25.9					
Yorkville (portion)	0.7					
Subtotal	26.6					
Total	90.9					

Note: CAPR - Community Assistance Planning Report

^a As of September 1994, the City of Oak Creek sanitary sewer service area portion of the Milwaukee Metropolitan Sewerage District was refined as set forth in SEWRPC Community Assistance Planning Report No. 213, <u>Sanitary Sewer Service Area Plan for the City of Oak Creek, Milwaukee County, Wisconsin</u>. This refined Oak Creek sanitary sewer service area encompasses 8.1 square miles within the Root River watershed.

this subregional system plan are shown on Map XIII-4A. As of December 1994, the intergovernmental actions and approvals needed to proceed with the attendant changes to the regional water quality management plan had not been put in place. Thus, the inclusion of these plan recommendations in the updated plan is pending intergovernmental agreement on the recommendations.

On the basis of the recommendations contained in this subregional sewerage system plan, the following revisions to the initially adopted plan are proposed, pending approval of the system plan by the local units of government involved:


- 1. The sewer service areas as set forth in the adopted plan are to be revised to conform with those set forth under the recommended Racine area sewerage system plan as shown in Map XIII-4.
- 2. The Racine Water and Wastewater Utility sewage treatment plant is to be designated as the sole public sewage treatment plant to serve the area considered, as shown on Map XIII-4; and the public sewage treatment plant operated by the Town of Yorkville Sewer Utility District No. 1 is recommended to be abandoned during the planning period.
- 3. The intercommunity trunk sewers needed to provide service, as shown on Map XIII-4, are recommended to be added to the regional plan recommendations.

The current point source pollution abatement plan element, including the planned sewer service areas, is summarized on Map XIII-4. Table XIII-6 presents selected design data for the public sewage treatment plants recommended to be maintained in the Root River watershed. It is important to note that in 1990 the Village of Union Grove plant has recorded monthly average flows which exceeded the average design capacity of the plant. However, the Village has, during 1993 and 1994, carried out sewerage system improvements to reduce infiltration and inflow and to increase the system capacity.

Table XIII-6 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the two public treatment plants in the Root River watershed. During 1994, the Yorkville Utility District No. 1 was conducting facility planning to determine its future sewage system needs and alternatives. In addition, the Village of Union Grove was constructing sewerage system improvements, including improvements to reduce infiltration and inflow and sewage treatment plant modifications.

The current planned sanitary sewer service areas in the Root River watershed are shown on Map XIII-4. The existing and planned year 2010 population data for each sewer service area are presented in Chapter XVIII on a regional basis. All or portions of the Muskego, New Berlin, Milwaukee Metropolitan Sewerage District, Franklin, Racine, Caddy Vista, Union Grove, Southern Wisconsin Center, and York-ville sewer service areas are located in the Root River watershed. Together, the planned service areas within the watershed total about 91 square miles, or about 46 percent of the Root River watershed.

RECOMMENDED SEWERAGE SYSTEM FACILITIES FOR THE GREATER RACINE UTILITY PLANNING AREA AS DEVELOPED IN 1992 SUBREGIONAL SYSTEM PLAN

Map XIII-4
UPDATED REGIONAL WATER QUALITY MANAGEMENT POINT SOURCE PLAN FOR THE ROOT RIVER WATERSHED: 2010

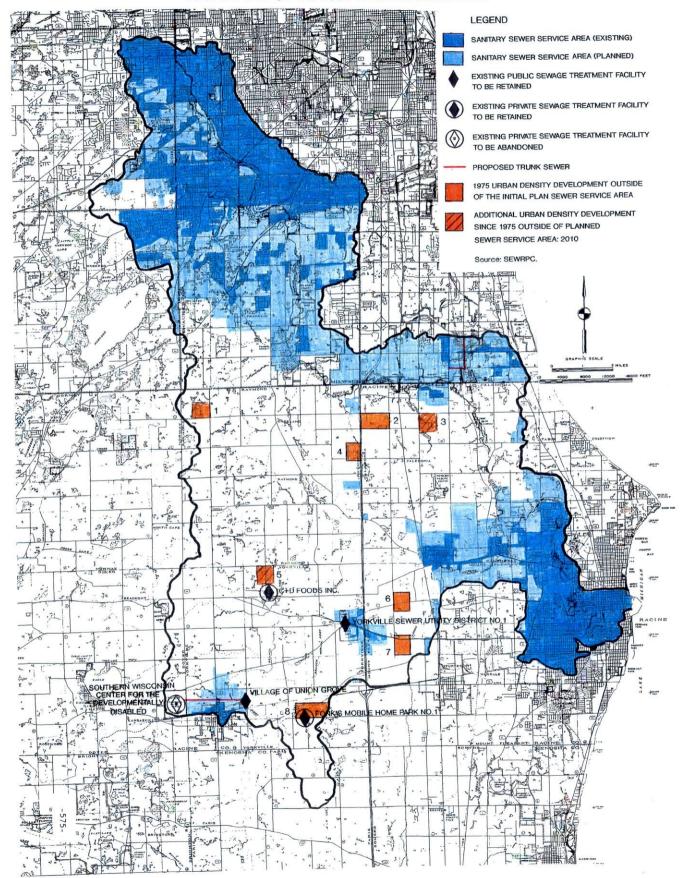


Table XIII-6

SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS
IN THE ROOT RIVER WATERSHED: 1990 AND 2010

				Existing 199	0	Planned Year 2010						
								ate Growth C Land Use Pla		High Growth Decentralized Land Use Plan		
Name of Public Sewage Treatment Plant	Sewer Service Area	Design Capacity- Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Total Area Served (square miles)	Resident Population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Design Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	Resident Population Served	Design Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
Village of Union Grove	Union Grove Southern Wisconsin Center	0.88	0.67	1.1	3,700	3.9	5,900	0.94	2000 ^b	8,100	1.22	1998 ^b
Town of Yorkville Utility District No. 1	Yorkville	0.15	0.05	0.4	100	1.1	100	0.33	1995 ^c	200	0.67	1995 ^c

^aApproximate year in which facility planning for a plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average design flows compared to average annual and maximum monthly flows, and age of facilities based upon date of last major construction.

bDuring 1993, the Village of Union Grove completed facility planning for sewerage system improvements including sewer system improvements to reduce infiltration and inflow and sewage treatment plant improvements.

cAs of 1994, the Yorkville Utility District No. 1 had initiated facility planning to evaluate its future sewerage system needs and alternatives.

As noted above, most of the service areas in the watershed have been refined as part of the ongoing regional water quality management plan updating process. Additional refinements are envisioned to be needed for the Milwaukee Metropolitan Sewerage District sewer service area and for the unrefined portion of Yorkville. It is recommended that these refinements be conducted in 1995 and 1996. It is recommended that the sanitary sewer service areas and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension design. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plants, there were three private sewage treatment plants in operation within the Root River watershed in 1990. These facilities generally serve isolated enclaves of urban land uses which are located beyond the current limits of the planned sanitary public sewer service areas. In 1990, of the three plants in operation, the plant serving the Center for the Developmentally Disabled was recommended for abandonment with connection to the Village of Union Grove sewerage system. In 1994, the connection of this facility to the Union Grove sewerage system was under construction. For the two remaining private sewage treatment plants serving Fonk's Mobile Home Park No. 1 and C & D Foods Inc., the need for upgrading and level of treatment should be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System permitting process.

Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there were eight known combined sewer outfalls and 53 known sanitary sewer system flow relief devices located in the Root River watershed: of the latter, 20 were sanitary sewerage system bypasses; 11 were portable pumping stations; and 22 were crossovers. Of the total of 61 flow relief devices and combined sewer outfalls, 56 discharged directly to the main stem of the Root River; two discharged directly to the East Branch Root River Canal; two discharged directly to Hoods Creek; and one discharged directly to the West Branch Root River Canal. During the period of 1988 through 1993, the majority of the bypasses were eliminated as the plants were upgraded or abandoned, as recommended in the initial regional water quality management plan. As shown in Table XIII-7, 22 points of sanitary sewer system flow relief were reported during 1988 through 1993 in the Root River watershed. These flow relief points are located in five sewerage systems. However, these flow relief points have only been in operation infrequently, with the average discharge occurrence frequency over this five-year period being about once per three years per flow relief location. This equates to an average of about seven isolated overflow occurrences per year considering all reported bypassing.

<u>Current Plan Recommendations</u>: It is recommended that the Cities of Milwaukee, Muskego, and Racine, and the Villages of Hales Corners and Union Grove continue to monitor their sewerage system operations to ensure that the use of the existing sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is recommended that planning for all sewerage system expansion and upgrading within the watershed be conducted with the assumption that there will be no planned bypasses of

Table XIII-7

KNOWN SEWAGE FLOW RELIEF DEVICES
IN THE ROOT RIVER WATERSHED: 1988-1993

		Ser	wage Flow Re in the Sew		s [·]		
Sewerage System	Sewage Treatment Plant Flow Relief Device	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments
City of Milwaukee		3ª				3	Used only in case of extreme wet weather
City of Muskego			1	2		3	Used only in case of equipment failure or extreme wet weather
Village of Hales Corners			2		1	3	Used only in case of extreme wet weather
City of Racine		3	2	5		10	Used in case of equipment failure or extreme wet weather
Village of Union Grove	1			1		2	Used in case of equipment failure or extreme wet weather
Town of Caledonia Sewer Utility District No. 1			1			1	Used only in case of extreme wet weather
TOTAL	1	6	6	8	1	22	

^a Crossovers are quipped with electric pumps to allow for bypassing.

untreated sewage and that the use of all flow relief devices will ultimately be eliminated, with the only bypasses remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure. In 1994, the City of Racine conducted sewer system facility planning which resulted in recommendations for sewer rehabilitation, relief sewer construction, and pumping station upgrading. This project should result in the elimination of the use of flow relief devices in that system.

Intercommunity Trunk Sewers

Existing Conditions and Status of Plan Implementation: The initial regional water quality management program, as updated, recommended the construction of eight intercommunity trunk sewers within or partially within the Root River watershed, as shown in Table XIII-8. The New Berlin and Hales Corners trunk sewer would permit the abandonment of the Hales Corners sewage treatment plant, as well as the Regal Manors plant located in the Fox River watershed. Franklin-Muskego trunk sewer would permit the abandonment of the City of Muskego Northeast District sewage treatment plant and the Big Muskego sewage treatment plant located in the Fox River watershed. Similarly, the Caddy Vista Sanitary District trunk sewer would permit the abandonment of the Caddy Vista sewage treatment plant. The Center for the Developmentally Disabled trunk sewer would convey wastewater from the Center to the Village of Union Grove sewerage system permitting the abandonment of the private sewage treatment plant serving the Center. The Union Grove trunk sewer would convey wastewater from the Village and the Center for the Developmentally Disabled to the Village's current plant site. The Root River and Franklin-Northeast trunk sewers would provide needed relief sewer capacity to serve existing and planned urban development, reducing bypassing and basement backup of sewage and providing capacity for areas served by onsite sewage disposal systems. These trunk sewers have all been completed, with the exception of the Center for the Developmentally Disabled-Union Grove trunk sewer.

Current Plan Recommendations: The current regional water quality management plan includes recommendations for those trunk sewers necessary to extend centralized sanitary sewer service to the Root River watershed as shown on Map XIII-4. As of 1990, all of the trunk sewers recommended to be constructed in the watershed under the initial plan had been constructed, with the exception of the trunk sewer providing the connection of the Center for the Developmentally Disabled plant to the Union Grove facility. Construction of this trunk sewer was underway in 1994. As previously discussed in Chapter X, and as shown on Map XIII-4, a new trunk sewer--the Oak Creek Southeast trunk sewer--is included as part of this plan update. Upon local approval of a plan amendment document, based upon the aforementioned 1992 sanitary sewer and water supply system plan for the greater Racine area, new trunk sewers would be added to the plan to convey wastewater from existing and proposed sewer service areas in the vicinity of IH-94 to the City of Racine sewerage system, enabling the abandonment of the Town of Yorkville plant, as shown on Map XIII-4A.

<u>Point Sources of Wastewater Other Than Public</u> and Private Sewage Treatment Plants

<u>Existing Conditions and Status of Plan Implementation</u>: In 1975, there were a total of 13 known point sources of pollution identified in the Root River watershed other than public and private sewage treatment plants. These sources dis-

Table XIII-8

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE ROOT RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Implementation
Root River	Completed (1984)
Hales Corners	Completed (1981)
New Berlin	Completed (1984)
Franklin-Muskego	Completed (1984)
Franklin-Northeast	Completed (1984)
Caddy Vista Sanitary District	Completed (1982)
Center for the Developmentally Disabled- Union Grove	Construction underway
Union Grove	Completed (1979)

charged industrial cooling, process, rinse, wash waters, and filter backwash waters through 20 outfalls directly or indirectly to the surface water or groundwater system. Of these 20 outfalls, 13 were identified as discharging only cooling water. The remaining seven were other types of wastewater discharges. Four of these discharged directly to the Root River main stem, 11 to the Root River indirectly via storm sewers, drainage ditches, or unnamed tributaries, three discharge to the River via tributaries, and two utilized soil absorption systems. The initial regional water quality plan includes a recommendation that these industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were 25 such known point sources of wastewater discharging to the Root River and its major tributaries or the groundwater system in the watershed. Table XIII-9 summarizes selected characteristics of these other point sources and Map XIII-3 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions were made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were 49 known point sources of wastewater other than public and private sewage treatment plants discharging to surface waters or groundwater in the Root River watershed. These point sources of wastewater discharge, primarily industrial cooling, process, rinse, and wash water, discharge directly, or following treatment, to the groundwater or the surface waters of the Root River watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside the Proposed Sanitary Sewer Service Area

As of 1975, there were seven enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service areas. As of 1990, one of these urban areas had been added to the planned 2010 sewer service area as part of the plan amendment process. Due to increased urban growth within the watershed since 1975, two new enclaves of urban development have been created beyond the planned sewer service areas, as shown on Map XIII-4. The corresponding urban enclave population and the distance to the nearest planned year 2010 sewer service area are listed in Table XIII-10. One of these urban enclaves is served by a private sewage treatment plant. The remaining seven of these areas are covered by soils or have lot sizes which indicate a high probability of not meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. Thus, it is recommended that these areas consider an intensive inspection and maintenance program for the onsite systems and that further site-specific planning be conducted to determine the best wastewater management practice at such time as significant problems become evident.

Miscellaneous Potential Pollution Sources

<u>Landfills</u>: Landfills in the Root River watershed, including those currently abandoned, have the potential to affect surface water quality through the release

Table XIII-9

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE ROOT RIVER WATERSHED: 1990a

	_	Map ID	Permit	Permit	Expiration	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^C
Facility Name	County	No.b	Туре	No.	Date	Code	Industrial Activity	Receiving water	3,300
Root River Watershed	1		1						
Air Products & Chemicals, Inc.	Milwaukee	1	General	0046531-1		2813	Industrial gases	Root River via unnamed tributary	
Best Block Company - Racine Plant	Racine	2	General	0046507-2	9-30-95	3271	Concrete block and brick	Groundwater discharge	
Caddy Vista Water Treatment Plant	Racine	3	General	0046540-1	9-30-95	4941	Water supply	Root River	,- -
Carri-Crete Corp.	Waukesha	4	General	0046507-2	9-30-95	3273	Ready-mix concrete	Groundwater discharge	
Franklin High School (Pool)	Milwaukee	5	General	0046523-2	9-30-95	8211	Secondary school	East Branch Root River	
Greendale High School (Pool)	Milwaukee	6	General	0046523-2	9-30-95	8211	Secondary school	Dale Creek	
Moxness Prod. DivVers. Tech., Inc.	Racine	7	General	0044938-3	9-30-95	3069	Fabricated rubber products	Root River via storm sewer	
Nathan Hale High School (Pool)	Milwaukee	8	General	0046523-2	9-30-95	8211	Secondary school	Root River via storm sewer	
Payne & Dolan-Franklin Aggregates	Milwaukee	9	General	0046515-2	9-30-95	1429	Crushed & broken stone	Root River via unnamed tributary	
Printing Developments, Inc.	Racine	10	General	0044938-3	9-30-95	2796/3861	Plate making serv.; photo equip.	Root River via storm sewer	
Racine Heat Treating Company	Racine	11	General	0044938-3	9-30-95	3398	Metal heat treating	Root River	
Racine School District: Park H.S.	Racine	12	General	0046523-1	9-30-95	8211	Secondary school	Root River	
Racine Stamping Corp.	Racine	13	General	0044938-3	9-30-95	3469	Metal stampings	Root River via storm sewer	
Rainfair, Inc Albert Street	Racine	14	General	0044938-3	9-30-95	2385	Waterproof outerwear	Root River via storm sewer	
Tuckaway Country Club	Milwaukee	15	General	0046523-2	9-30-95	7997	Membership sports & rec. club	Root River via unnamed tributary	
Vulcan Materials Co., Rawson Plant	Milwaukee	16	General	0046515-2	9-30-95	3281	Cut stone & stone products	Root River via unnamed tributary	
Whitnall High School (Pool)	Milwaukee	17	General	0046523-2	9-30-95	8211	Secondary school	Root River via unnamed tributary	
Wikk Industries. Inc.	Milwaukee	18	General	0044938-3	9-30-95	3429	Hardware	Dale Creek	
YMCA of Milw SW Family Branch	Milwaukee	19	General	0046523-2	9-30-95	7991	Physical fitness facility	Root River	
Accutec (A Federal Hoffman Fac.)	Milwaukee	1.6	Specific	0046493	12-31-92	3499	Fabricated metal products	Root River via unnamed tributary	2
Fohrs Meat Service. Inc.	Racine	2A	Specific	0053287	9-30-93	2011	Meat packing plant	Groundwater discharge	3
Harry Hansen Meat Service, Inc.	Racine	3A	Specific	0053295	9-30-93	2011	Meat packing plant	Groundwater discharge	3
PPG Industries Inc.	Milwaukee	44	Specific	0029149	12-31-82	2851	Paints & allied products	Root River via storm sewer	5
Racine Steel Castings	Racine	5A	Specific	0042170	9-30-91	3325	Steel foundry	Root River via storm sewer	None
Western Publishing Inc Main Plant	Racine	6A	Specific	0026107	1-31-95	2731	Book publishing	Root River	None

a Table XIII-9 includes 25 known, permitted point sources of wastewater discharging to the Root River and its tributaries, or to the groundwater system in the Root River watershed. As of 1993, there were 49 known, permitted point sources of water pollution

- Aerated lagoon
- 4. Multimedia filters
- 5. Oil and grease removal
- 7. Spray Irrigation

- 2. Holding pond
 3. Land spreading
- 6. Secondary clarification
- 8. Stabilization lagoon

Source: Wisconsin Department of Natural Resources and SEWRPC.

b See Map XIII-3, Sewer Service Areas, Sewage Treatment Plants, and Other Point Sources of Pollution in the Root River Watershed: 1975 and 1990.

^c The number code refers to the following treatment systems:

Table XIII-10

EXISTING URBAN DEVELOPMENT OUTSIDE OF THE PLANNED PUBLIC SANITARY SEWER SERVICE AREA IN THE ROOT RIVER WATERSHED: 2010

Number ^a	Major Urban Concentration ^b	1990 Estimated Resident Population	Distance from Year 2010 Sewer Service Area (miles)
1	Town of Raymond-Section 6°	125	2.5
2	Town of Caledonia-T4N, R22E, Section 7°	207	1.0
3	Town of Caledonia-T4N, R22E, Section 9°	116	0.3
4	Town of Raymond, Section 13°	102	2.0
5	Town of Yorkville-Section 4°	117	2.6
6	Town of Mt. Pleasant-T3N, R22E, Sec. 8°	62	0.5
7	Town of Mt. Pleasant-T3N, R22E, Section 17 ^c	86	0.2
8	Town of Yorkville-Sections 26 and 27°,d	457	0.6
	Total	815	6.0

a See Map XIII-4

any given U.S. Public Land Survey quarter section that has at least 32 housing units, or

an average of one housing unit per five gross acres, and is not served by public sanitary sewers.

b Urban development is defined in this context as concentrations of urban land uses within

 $^{^{\}rm c}$ Based upon consideration of soils, lot sizes, and density, further site specific planning should be conducted during the planning period to determine the best means of providing for wastewater management.

^d Served by a private sewage treatment plant.

of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources. In some cases, toxic and hazardous substances have begun to leach into surrounding soils and aquifers, and can potentially be transmitted to the surface waters.

There are currently two active landfills and 42 known abandoned landfills located in the Root River watershed. Two of the abandoned landfills, the Fadrowski Drum Disposal Site in the City of Franklin and the Hunt's Disposal-Caledonia Landfill in the Town of Caledonia, were designated as high priority sites for the U.S. Environmental Protection Agency Superfund program which provides for the identification, evaluation, and clean up of hazardous waste sites. The location of these landfills is shown on Map XIII-3 and in Table XIII-11.

In 1986, the Fadrowski Drum Disposal Site was designated as a high priority site for the Superfund Program. The landfill was in operation between 1970 and 1982 and received various industrial wastes, including hazardous waste. Lubricant sludges and several hundred drums of waste materials were reportedly buried on the site. Analyses conducted between 1988 and 1991 to determine the impacts of the landfill on surface water found low levels of cyanide and volatile organic compounds (VOCs) in a tributary stream to the Root River along the western boundary of the site. Elevated levels of mercury, benzene, chromium, and barium were also found in groundwater down gradient of the site. Remedial actions are currently underway at this landfill site. These remedial actions include: excavation, removal and treatment of containerized waste and contaminated soils; construction of a landfill cover; limitations on land and groundwater use; and monitoring of groundwater and surface water.

The Hunt's Disposal Landfill was designated as a Superfund site in 1987. During its operation from 1959 to 1974, municipal and industrial wastes were accepted at the site, including newspaper ink solvents and arsenic acid sludges. Samples collected from residential wells and surface water near the site, including the Root River main stem, indicated contamination of surface and ground waters with volatile organic compounds (VOCs) and semi-volatile organic compounds including acetone, 1,2-dichloroethene, carbon disulphide, methylene chloride, pentachlorophenol, toluene and vinyl chloride, and 4-methylphenol, benzoic acid, and naphthalene; heavy metals including chromium, copper, lead, manganese and nickel; and several polyaromatic hydrocarbons (PAHs). Remediation actions are currently underway at this landfill site. The actions under design include: excavation and consolidation of contaminated soil; construction of a multi-layer landfill cap and slurry wall barrier; groundwater extraction; and residential well monitoring. The preliminary remediation plans recommend treatment of the extracted groundwater followed by discharge to a drainageway leading to the Root River main stem at a location just to the west of the site.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Root River watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) program, designed to facilitate the clean up of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing clean up

Table XIII-11

MISCELLANEOUS POTENTIAL POLLUTION SOURCES IN THE ROOT RIVER WATERSHED: 1990

Map ID Number ^a	Landfills Indicated To Be Potential Pollution Sources	Civil Division Location	Surface Water Potentially Impacted
1 2	Fadrowski Drum Disposal Site ^b Hunt's Disposal Landfill Site ^b	City of Franklin, Milwaukee County Town of Caledonia, Racine County	Root River
	Leaking Underground Storage Tank Sites ^{c,d}		Receiving Water
	none		
	Additional Groundwater Contamination Sites ^c		Receiving Water
	none		

^a Refers to Map XIII-3, Sewer Service Areas, Sewage Treatment Plants and Other Point Sources of Pollution in the Root River Watershed: 1990.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Superfund site.

^c Includes those sites which are permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters.

d As of 1993, there were three leaking underground storage tank sites in the Root River watershed whose remediation discharges were permitted under the Wisconsin Pollutant Discharge Elimination System: Bob's Mobil Inc. in the Village of Union Grove, Racine County which is permitted to discharge to the Root River via a storm sewer; Speedy Lube Gas Station (currently the Pahle Small Animal Clinic) in the City of West Allis, Milwaukee County which is permitted to discharge to the Root River; and Phillips 66 Gas Station in the City of New Berlin, Waukesha County which is permitted to discharge to the Root River.

efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or groundwater. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1993, there were three known, permitted leaking underground storage tank sites that were discharging remediation waters to surface waters in the Root River watershed, as indicated in Table XIII-11.

As of 1993, there were 180 leaking underground storage tanks in the Root River watershed identified by the DNR that were not discharging remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters. As of 1993, there were no known such sites in the Root River watershed.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning septic systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Root River watershed, the initial plan recommended nonpoint source pollution control practices for urban lands designed to reduce the pollutant loadings from nonpoint sources by about 50 percent, in addition to urban construction erosion control, onsite sewerage disposal system management, and streambank erosion controls. For rural lands, the plan generally recommended nonpoint source control practices designed to reduce pollutant loadings by about 25 percent. Within the rural areas of the Root River Canal drainage area, the plan recommends additional measures to provide a reduction in nonpoint source pollutants of about 50 percent, in addition to streambank erosion control.

In 1966, the Commission prepared a comprehensive watershed plan for the Root River watershed³ in cooperation with various Federal, State, and local authorities. This comprehensive plan established the necessary framework for the conduct of subsequent detailed stormwater management planning for the urban and urbanizing areas in the watershed. Such subsequent planning was and will

³See SEWRPC Planning Report No. 9, <u>A Comprehensive Plan for the Root River Watershed</u>, September 1966.

continue to be directed toward reducing nonpoint source pollutant loadings as well as providing for local drainage needs in the watershed.

Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Root River watershed through local regulation and programs. In the area of construction site erosion control, significant progress has been made. As of January 1993, the Cities of Franklin, Greenfield, Milwaukee, Muskego, New Berlin, Oak Creek, and West Allis had adopted construction erosion control ordinances which are based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities. There are also ongoing programs of onsite sewage disposal system regulation administered by Kenosha, Racine, and Waukesha Counties.

With regard to rural nonpoint source control, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations. This program is administered by the Wisconsin Department of Natural Resources, which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program and other programs, such as the Conservation reserve Program administered by the U.S. Department of Agriculture, Soil Conservation Service, and the wetland restoration programs administered by the Wisconsin Department of Natural Resources and others are utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have positive water quality impacts.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. levels are defined as soil loss tolerances or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conserva-Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade and Consumer Protection, as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Kenosha, Racine, and Waukesha Counties. Thus, these plans have been prepared for all rural areas of the Root River watershed. Those plans identify priority areas for cropland soil erosion control within these counties and the watershed, and, additionally, recommend farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to

specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning and grant funding program was established in 1978 by the Wisconsin Legislature and provides cost-sharing funds for an individual project, or land management practice, to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. The Root River watershed was designated a "priority watershed" in 1979. Planning for the Root River Priority Watershed Project was completed in 1980, and implementation of practices occurred from 1980 through 1989.

The Root River priority watershed program established nonpoint source pollutant reduction goals for the entire watershed by subwatershed. A pollutant reduction goal of 50 percent was established for urban areas of the watershed. In order to meet this goal, the plan recommended onsite sewage disposal system management, construction erosion controls, and the implementation of various land management practices including increased street sweeping, streambank and roadside drainageway erosion controls, industrial and commercial site housekeeping practices, installation of oil and chemical disposal stations, and public education and information programs. For rural areas, pollutant reduction goals of 25 percent were established for the watershed. Additional reduction goals of 50 percent were established for the drainage areas tributary to the East Branch, West Branch, and main stem of the Root River Canal. In order to achieve this level of control, the plan recommends the following measures:

Nonpoint Source Measure	Amount
Crop rotation	750 acres
Contour Strip Cropping	490 acres
Conservation Tillage	11,900 acres
Diversions	50,000 feet of diversion
Terraces	1,224,200 feet of terraces
Grass Waterways	182 acres
Grade Stabilization Structures	111 structures
Stream Fending for Livestock Exclusion	3,350 feet
Stream Bank Shaping and Seeding	26,370 feet
Stream Bank Riprap	13,650 feet
Stream Cattle Crossings	10 crossings
Critical Area Planting	18 acres
Vegetative Buffer Strips	170 acres
Livestock Waste Runoff Management	44 systems
Livestock Waste Storage	23 systems

With the exception of the stabilization of critical areas, participation in the Priority Watershed Program was generally under 50 percent for the practices recommended being installed. Very limited implementation of the urban practices was achieved. The urban measures that were implemented included streambank protection projects, one retention pond, limited street sweeping programs, and

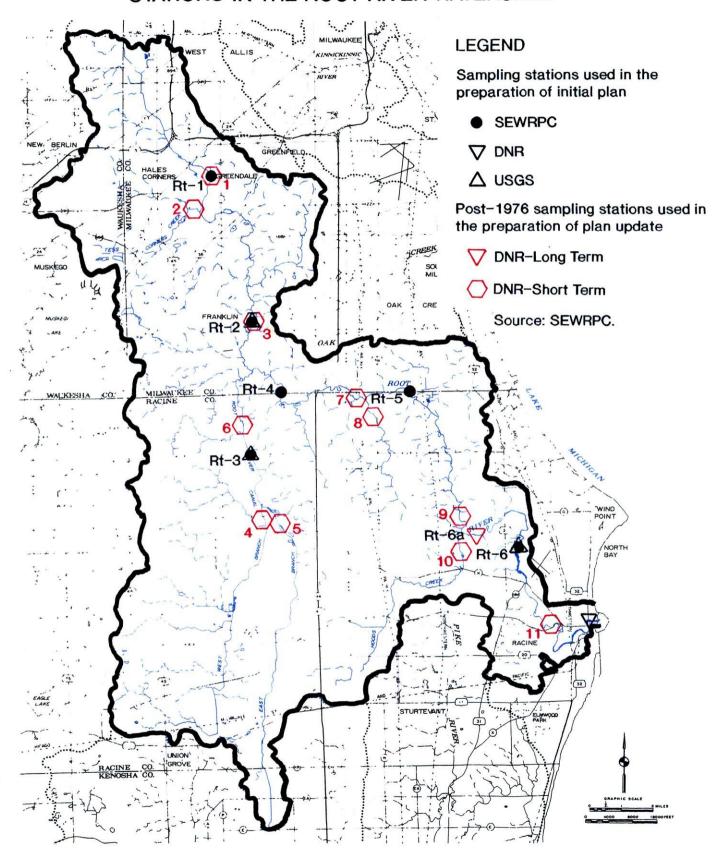
oil disposal stations. The DNR final report on the project suggests that the Root River water quality and biological condition have not improved significantly between 1981 and 1990.

Current Plan Recommendations

Given the limited implementation of the nonpoint source priority watershed plan recommendations, it is recommended that construction site erosion control, onsite sewerage system management, and streambank erosion control, in addition to land management which, when coupled with the urban practices implemented during the priority watershed project, will provide about a 50 percent reduction in nonpoint source pollutant loadings in the urban area of the Root River watershed. Review of the characteristics of the Root River watershed indicates that it would meet the criteria for the "high" priority watershed ranking as documented in a memorandum4 prepared by the Regional Planning Commission for use by the Wisconsin Department of Natural Resources in prioritizing the watershed for selection under the priority watershed program. Thus, it is recommended that the Wisconsin Department of Natural Resources consider reopening the commitment--or "sign-up" period for urban practices on the Root River watershed for a two-year period followed by a five-year implementation period. It is also recommended that the need for further nonpoint source reductions in the rural areas of the watershed be reviewed and reevaluated given the levels of nonpoint source control achieved during the priority watershed plan preparation. It is further recommended that these levels of reduction in the urban areas be refined in subsequent detailed stormwater management planning. The reevaluation of the levels of nonpoint source pollution control needed should be based upon additional monitoring which would be conducted as described in the next section. Such refinement would include further consideration of toxics reduction requirements.

The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

WATER QUALITY MONITORING PLAN ELEMENT


Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program.

As of 1993, long-term monitoring has been carried out in the Root River watershed on a sustained basis by the Wisconsin Department of Natural Resources at one station along the main stem of the Root River at Johnson Park, as shown on Map XIII-5. Short-term monitoring has also been conducted at 11 sites by the DNR during 1981 and 1982, as shown on Map XIII-5 and described later in this chapter.

⁴See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Nonpoint Source Management Purposes in Southeastern Wisconsin: 1993."

Map XIII-5 LOCATIONS OF WATER QUALITY SAMPLING STATIONS IN THE ROOT RIVER WATERSHED

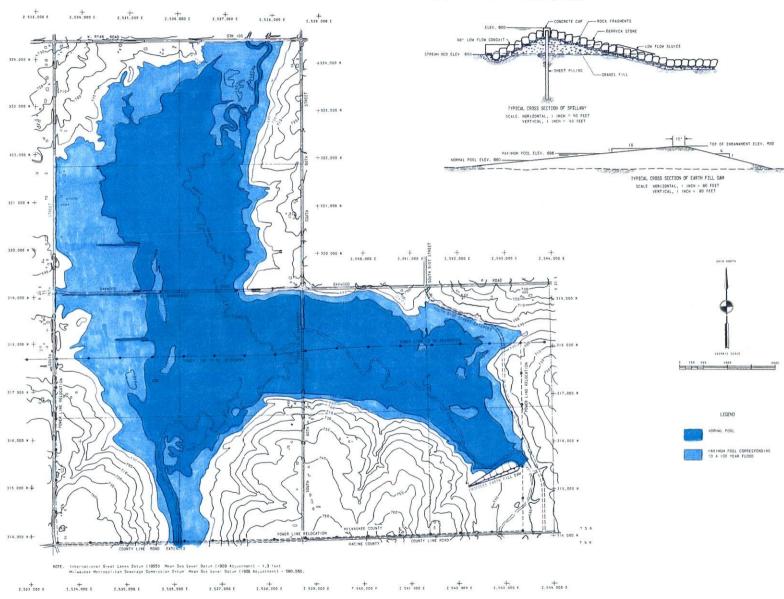
Current Plan Recommendation

Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that water quality data collection be continued by the Wisconsin Department of Natural Resources at Station Rt-6a on a continuing long-term basis. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at this station and at eight selected additional stations. with four stations located on the main stem of the Root River and one station each located on the Root River Canal, Tess Corners Creek, Hoods Creek, and the West Branch Root River Canal. It is recommended that this program be conducted within the next five to seven years and repeated at approximately five- to sevenyear intervals. These recommendations can be coordinated, and are consistent, with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five to seven year rotating cycle.

LAKES MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological conditions monitoring programs to be established.

As noted above, there are no major lakes in the Root River watershed. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are considered applicable for management purposes.


Oakwood Lake Considerations

The Commission's adopted comprehensive plan for the Root River watershed recommended the development of a permanent multipurpose reservoir near the confluence of the Root River and the North Branch of the Root River in the City of Franklin. Lowlands lying in this area form a natural reservoir during flood periods, the outflow of which is regulated by a narrow cross section of the Root River channel and floodplain near W. County Line Road. The recommended reservoir, which has been named Oakwood Lake, is shown on Map XIII-6. This lake would artificially increase the flood regulation effect of the natural reservoir and would provide a water body for recreation, conservation, and low-flow augmentation purposes.

As proposed in the adopted Root River watershed plan, the normal water surface area of the lake would be about 660 acres. It was proposed that about 400 acres

Map XIII-6

GENERAL PLAN OF OAKWOOD LAKE AS PROPOSED IN THE COMPREHENSIVE PLAN FOR THE ROOT RIVER WATERSHED

Source: SEWRPC.

of land underlying the lake be excavated to provide for such recreational pursuits as boating and fishing. The remaining 260 acres of lake area were envisioned to provide shallow water for fish and wildlife habitat. The normal water surface of the lake would be held between elevations of 679 feet and 680 feet above National Geodetic Vertical Datum by means of a low rock dam. Water stored between these elevations would be available for release for streamflow augmentation at a rate varying from three to five cubic feet per second (cfs), depending upon lake level. A flow of three cfs would result in a stream 24 feet wide and 6 inches deep flowing at a velocity of 0.25 foot per second. In the recreation portion of the proposed lake, a mean bottom elevation of 675 feet would be established to provide a mean water depth of four to five feet. As proposed in the plan, the lake would have a normal shoreline of about five miles. The plan envisioned that a portion of the shoreline would be developed for recreational use, with the remainder left in a natural state.

At the present time, there is no interest being expressed by Milwaukee County, the Wisconsin Department of Natural Resources, or other agencies to carry out this long-standing recommendation. This proposal has been reconsidered a number of times since the initial recommendations were made. The last such reconsideration was made as part of the stormwater drainage and flood control plan for the Milwaukee Metropolitan Sewerage District completed in 1990. At that time, it was again found that the construction of the reservoir would result in no major flood damage-abatement benefits. It was noted, however, that the reservoir would provide recreational and water quality benefits and it was recommended that the development of Oakwood Lake continue to be pursued by State and local officials. Given this action, Oakwood Lake is recommended to remain a component of the regional water quality management plan.

WATER QUALITY AND BIOLOGICAL CONDITIONS

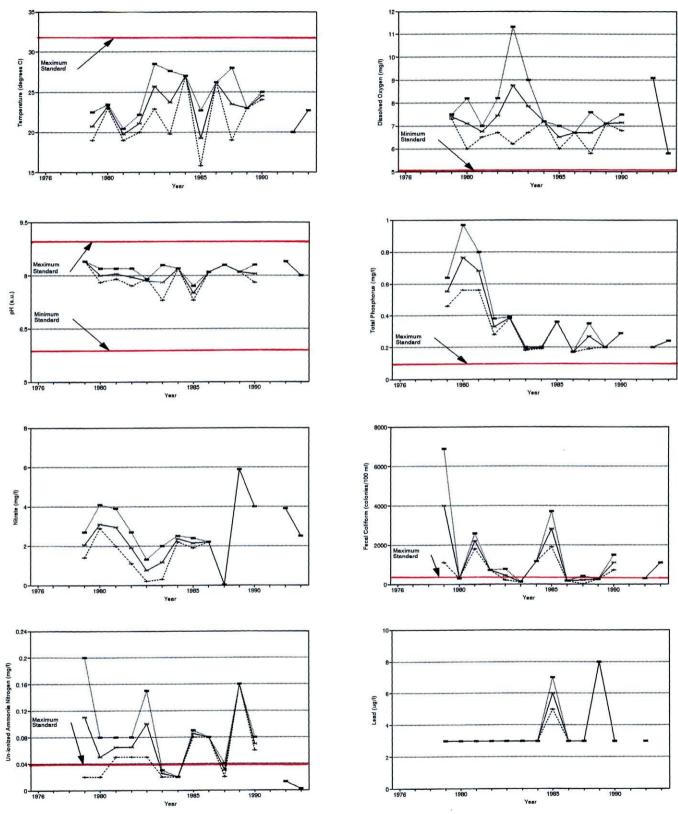
Streams

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; the 1976 Commission monitoring program conducted under the regional water quality management planning effort; and the U. S. Geological Survey and Wisconsin Department of Natural Resources sampling programs. Available data collected in those programs for the Root River watershed included samplings at six Commission stations, five of which were located on the main stem of the Root River and one on the West Branch of the Root River Canal downstream of its confluence with the East Branch Root River Canal; at one Department of Natural Resources station; and at three U. S. Geological Survey stations. The sampling station locations are shown on Map XIII-5.

Long-term post-1976 comparable water quality data have been collected at the current DNR sampling station Rt-6a on the Root River at Johnson Park in Racine

⁵SEWRPC Community Assistance Planning Report No. 152, <u>A Stormwater Drainage and Flood Control System Plan for the Milwaukee Metropolitan Sewerage District</u>, December 1990.

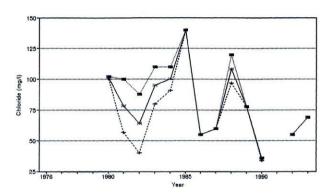
County. The DNR has also collected water quality data on a short-term basis at 11 locations in the Root River watershed. Data collected at these sites in 1981 and 1982 were used, along with the long-term data previously noted, to characterize water quality conditions. These sites are shown on Map XIII-5. Biological condition data collected by the DNR in 1981 and 1990 were also available for use in the assessment of current water quality conditions. In addition to the data obtained since preparation of the initial plan, the assessment of current conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Root River watershed.


The long-term water quality data obtained at the Department of Natural Resources sampling station Rt-6a on the Root River at Johnson Park, for the period 1976 through 1993, are summarized in Figure XIII-1. The short-term data collected by the DNR in 1981 and 1982 are summarized in Figures XIII-1 through XIII-3 and in Table XIII-12. The water quality standards indicated in Figures XIII-1 through XIII-3 and in Table XIII-12 are those set forth for specific biological and recreational use objectives as described in Chapter II.

Review of those data for station Rt-6a indicate that the only change perceived from 1979 to 1993 is an improvement following 1981, as evidenced by lower total phosphorus levels and less variability in dissolved oxygen levels. improvement may be attributed, in part, to the abandonment of several sewage treatment plants including the plants serving City of Muskego-Northeast District. Village of Hales Corners, the Rawson Homes Sewer and Water Trust, and Caddy Vista Sanitary District. Several private sewage treatment plants were also abandoned including those serving the Highway 100 Drive-In Theater, Union Oil Truck Stop, Highway 24 Outdoor Theater, and New Berlin Memorial Hospital. It should be noted that levels of total phosphorus, un-ionized ammonia and fecal coliform bacteria still exceed the standards associated with warmwater sport fish and full recreational water use objectives, as set forth in Chapter II. Temperature, dissolved oxygen, pH, and chloride levels remained variable with no apparent trends, but appear to meet the standards. The remaining water quality data collected on a short-term basis throughout the watershed illustrate that the phosphorus and fecal coliform standards are exceeded throughout the watershed.

Biological condition monitoring conducted by the DNR in 1981 and 1990 as part of the Root River priority watershed project, indicated slight decreases in water quality in Hoods Creek, the East Branch Root river Canal, and portions of the Root River main stem. Slight water quality improvements were noted in Husher Creek and in the Root river Canal. Monitoring conducted on the remaining stream reaches in the watershed indicated no change in conditions.

<u>Toxic and Hazardous Substances</u>: Sampling and analysis for pesticides, polychlorinated biphenyls (PCBs), and heavy metals were conducted by the Wisconsin Department of Natural Resources in the Root River watershed in 1973. The


Figure XIII-1 WATER QUALITY DATA FOR THE ROOT RIVER AT STATION Rt-6a: 1976-1993

Note: The acute standard of 408.6 ug/l was not violated in any year.

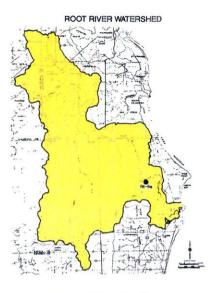
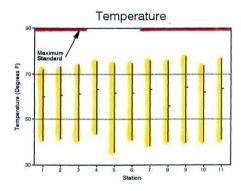
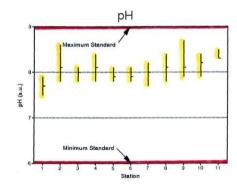

The chronic standard of 24.4 ug/l was not violated in any year.

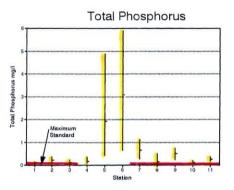
Figure XIII-1 (cont'd)

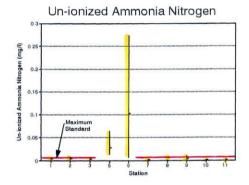
Note: The maximum standard of 1000 mg/l was not violated in any year.

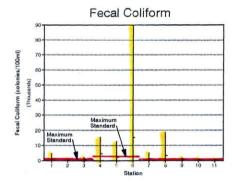

LEGEND
MAXIMUM VALUE
MINIMUM VALUE
X
AVERAGE VALUE

Source: Wisconsin Department of Natural Resources and SEWRPC.

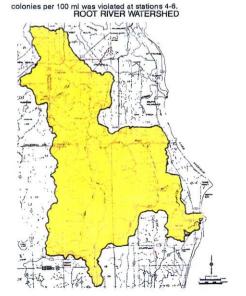

Note: Graphs indicate maximum, minimum, and average values for July and August data. Standards indicated are those established for warmwater sport fish and full recreational use objectives. See chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.


Figure XIII-2 Root River Watershed Short-Term Water Quality Sampling Data: 1981

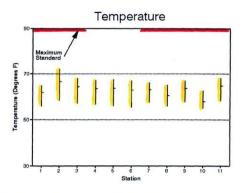

Dissolved Oxygen

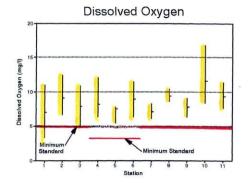

Note: No standard has been established for surface waters classified as limited forage fish communities.

Note: No standard has been established for surface waters recommended for limited recreational uses.

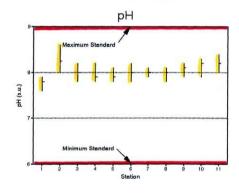


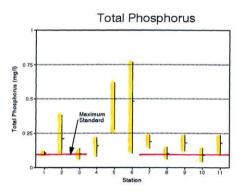
Note: No standard has been established for surface waters classified as limited forage fish communities.

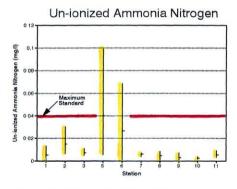


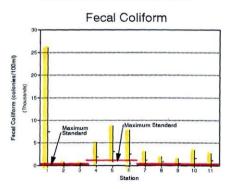

Note: The maximum standard of 200/400 colonies per 100 ml was violated at stations 1-3 and 7-11 and the maximum standard of 1000/2000 colonies per 100 ml was violated at stations 4-6

Standards indicated are those established for warmwater sport fish or warmwater forage fish and full recreational use objectives, with the exception of stations 4-6. Standards indicated for stations 4-6 are those established for limited forage fish and limited recreational use objectives. See Chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table XIII-12 for summarized water quality data.




Figure XIII-3 Root River Watershed Short-Term Water Quality Sampling Data: 1982




Note: No standard has been established for surface waters classified as limited forage fish communities.

Note: No standard has been established for surface waters recommended for limited recreational uses.

Note: No standard has been established for surface waters classified as limited forage fish communities.

Note: The maximum standard of 200/400 colonies per 100 ml was violated at stations 1-3 and 7-11 and the maximum standard of 1000/2000 colonies per 100 ml was violated at stations 4-6.

ROOT RIVER WATERSHED

Standards indicated are those established for warmwater sport fish or warmwater forage fish and full recreational use objectives, with the exception of stations 4-6. Standards indicated for stations 4-6 are those established for limited forage fish and limited recreational use objectives. See Chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria. Refer to Table XII-12 for summarized water quality data.

Table XIII-12

ROOT RIVER WATERSHED SHORT-TERM STREAM WATER QUALITY SAMPLING DATA: 1981-1982

Sampling Station Number ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
1	Temperature (°F)	Maximum of 89.0	40.6 - 72.1 55.9 - 64.9	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 5.0	2.9 - 16.8 3.3 - 11.0	Yes Yes	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.5 - 7.9 7.6 - 7.9	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.04 - 0.16 0.09 - 0.12	Yes Yes	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.002006 .001013	No No	July - August 1981 May 1982	4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	170 - 4600 580 - 26,000	Yes Yes	July - November 1981 May 1982	12 4
2	Temperature (°F)	Maximum of 89.0	41.1 - 73.4 58.6 - 72.0	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 5.0	4.9 - 16.4 6.6 - 12.4	Yes No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.8 - 8.6 8.0 - 8.6	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.38 - 0.06 0.38 - 0.1	Yes No	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.002008 .006031	No No	July - November 1981 May 1982	5 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	10 - 630 20 - 750	Yes Yes	July - November 1981 May 1982	12 4
3	Temperature (oF)	Maximum of 89.0	40.6 - 74.3 14.0 - 20.0	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 5.0	5.4 - 15.9 4.8 - 10.9	No Yes	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.8 - 8.1 7.8 - 8.2	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/1)	Maximum of 0.1	0.03 - 0.24 0.06 - 0.14	Yes Yes	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.002005 .005011	No No	July - August 1981 May 1982	4 3
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	30 - 2200 20 - 560	Yes Yes	July - November 1981 May 1982	11 4
4	Temperature (°F)	Maximum of 89.0	35.6 - 74.8 55.6 - 67.1	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 5.0	2.8 - 13.4 6.3 - 11.5	Yes No	July - November 1981 May 1982	11 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.8 - 8.1 7.8 - 8.2	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.62 - 5.9 0.1 - 0.77	Yes Yes	July - November 1981 May 1982	11 4

Table XIII-12 (continued)

				Violation		Total
Sampling Station Number ^a	Parameter (Units)	Applicable Standards ^b	Range	of Accepted Standard	Sampling Dates	Number of Samples
4	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.006273 .001069	Yes Yes	July - November 1981 May 1982	7 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	450 - 90,000 200 - 7800	Yes Yes	July - November 1981 May 1982	12 4
5	Temperature (°F)		43.6 - 75.7 56.7 - 67.3		July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 3.0	6.2 - 17.3 6.3 - 12.1	No No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.8 - 8.4 7.8 - 8.2	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)		0.06 - 0.37 0.08 - 0.22		July - November 1981 May 1982	12 4
	Fecal Coliform (colonies per 100 m1)	Maximum of 1000/2000	70 - 15,600 380 - 5100		July - November 1981 May 1982	12 4
6	Temperature (°F)		41.0 - 74.8 56.1 - 67.5	 	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 3.0	1.1 - 13.1 5.4 - 7.8	Yes No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.8 - 8.1 7.8 - 8.1	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.43 - 4.9 0.28 - 0.62	Yes Yes	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)		.013065 .005099	 	July - November 1981 May 1982	6 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	390 - 13,000 740 - 8800	Yes Yes	July - November 1981 May 1982	12 4
7	Temperature (°F)	Maximum of 89.0	38.3 - 76.1 57.6 - 66.2	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/1)	Minimum of 5.0	4.9 - 15.2 6.1 - 8.3	Yes No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.7 - 8.2 7.9 - 8.1	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.27 - 1.14 0.14 - 0.24	Yes Yes	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/1)	Maximum of 0.04	.00050036 .0035007	No No	July - November 1981 May 1982	5 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	120 - 5200 30 - 3000	Yes Yes	July - November 1981 May 1982	12 4
8	Temperature (°F)	Maximum of 89.0	40.1 - 76.1 56.1 - 65.3	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 5.0	6.6 - 16.0 8.6 - 10.4	No No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.8 - 8.4 7.8 - 8.1	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.05 - 0.53 0.06 - 0.15	Yes Yes	July - November 1981 May 1982	12 4

Table XIII-12 (continued)

Sampling Station Number ^a	Parameter (Units)	Applicable Standards ^b	Range	Violation of Accepted Standard	Sampling Dates	Total Number of Samples
8	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.00050018 .00080086	No No	July - November 1981 May 1982	5 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	270 - 19,000 200 - 1900	Yes Yes	July - November 1981 May 1982	12 4
9	Temperature (°F)	Maximum of 89.0	39.6 - 77.9 57.7 - 67.1	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/1)	Minimum of 5.0	4.3 - 18.0 6.3 - 9.1	Yes No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.9 - 8.7 7.9 - 8.2	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.23 - 0.76 0.12 - 0.24	Yes Yes	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.00170108 .0090073	No No	July - November 1981 May 1982	5 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	140 - 1700 20 - 1500	Yes Yes	July - November 1981 May 1982	12 4
10	Temperature (°F)	Maximum of 89.0	40.1 - 73.9 55.0 - 62.8	No No	July - November 1981 May 1982	12 4
	Dissolved Oxygen (mg/l)	Minimum of 5.0	4.2 - 15.7 8.3 - 16.8	Yes No	July - November 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	7.9 - 8.4 7.9 - 8.3	No No	July - November 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.06 - 0.22 0.04 - 0.14	Yes Yes	July - November 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.00140027 .00120037	No No	July - August 1981 May 1982	4 4
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	90 - 1300 90 - 3400	Yes Yes	July - August 1981 May 1982	12 4
11	Temperature (°F)	Maximum of 89.0	41.0 - 77.0 58.3 - 68.2	No No	July - August 1981 May 1982	12 4
	Dissolved Oxygen (mg/1)	Minimum of 5.0	7.9 - 15.3 7.6 - 11.4	No No	July - August 1981 May 1982	12 4
	pH (s.u.)	Maximum of 9.0 Minimum of 6.0	8.0 - 8.5 8.0 - 8.4	No No	July - August 1981 May 1982	12 4
	Total Phosphorus (mg/l)	Maximum of 0.1	0.17 - 0.39 0.1 - 0.24	Yes Yes	July - August 1981 May 1982	12 4
	Un-ionized Ammonia Nitrogen (mg/l)	Maximum of 0.04	.00080031	No	August, November 1981	2
	Fecal Coliform (colonies per 100 ml)	Maximum of 200/400	20 - 790 220 - 2700	No Yes Yes	May 1982 July - November 1981 May 1982	12 4

^a See Map XIII-5 for sampling station locations.

bStandards indicated for stations 1-3 and stations 7-11 are those established for warmwater sport fish and full recreational use objectives. Standards indicated for station 4 are those established for limited forage fish and full recreational use, while standards for stations 5 and 6 are those established for limited aquatic life and limited recreational use. See Chapter II for relationships of these objectives and standards to current Wisconsin Department of Natural Resources stream classifications and water quality criteria.

analyses indicated that recommended level of heptachlor epoxide was exceeded in one of 11 samples. Sample analyses for cadmium, chromium, copper, lead, nickel, zinc, DDT, DDE, DDD, aldrin, heptachlor, lindane, dieldrin, methoxychlor, and phthalate uncovered no violations of U.S. Environmental Protection Agency (EPA) recommended levels.

Recent data for lead levels in the Root River watershed are shown in Figure XIII-1 and indicate that levels of lead did not exceed the chronic or acute toxicity levels. No current sampling results were available for additional metals in the Root River watershed. No sampling of bottom sediments was conducted on the Root River.

Since the completion of the initial regional water quality management plan, 47 spills of toxic substances into streams within the Root River watershed have been documented by the Wisconsin Department of Natural Resources. Of these spills, 46 have occurred in the main stem of the Root River, 32 in the City of Racine, eight in the Town of Caledonia, three in the City of Franklin, and one each in the City of West Allis, the City of Greenfield, and the Town of Mt. Pleasant. One toxic substance spill occurred in a tributary stream, in the West Branch of the Root River Canal in the Village of Union Grove. The majority of the substances that were spilled into surface waters were oil and related petroleum products.

<u>Water Quality Assessments</u>: Based upon recent available data, the water quality and biological characteristics of the Root River and its major tributaries were assessed, with the results set forth in Table XIII-13. Fish populations and diversity were poor throughout the watershed. One fish kill has been documented in the Root River watershed since the completion of the initial plan. This fish kill occurred in Hoods Creek due to an unknown cause.

Standards for fecal coliform were estimated to be exceeded in the majority of the streams in the Root River watershed. Total phosphorus concentrations exceeded the standards in the Root River upstream of County Line Road, downstream of Nicholson Road, and in Tess Corners Creek. Dissolved oxygen levels were estimated to be below the standards in the Root River Canals and portions of the Upper Root River main stem but were expected to meet standards in Tess Corners Creek and in the lower Root River main stem.

In general, the biotic index ratings, which are biological indicators of water quality within a stream system, were fair to poor throughout, with the exception of the East Branch Root River Canal which was very poor.

Table XIII-14 sets forth the water quality index classifications⁶ used in the initial plan for 1964, 1974-75, and for 1989-1990 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table XIII-14, recent comparative water quality data were available from one station on the Root River main stem at Johnson Park, Rt-6a. This

⁶ For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975. June 1978.

Table XIII-13

CHARACTERISTICS OF STREAMS REACHES IN THE ROOT RIVER WATERSHED

	Stream	Fish Population	Recorded		Wate	er Qualit	y Problems ¹)	Biotic		Physical Modifications
Stream Reach	Length (miles)	and Diversity ^a	Fish Kills	DO	NH ₃	Total P	Fecal Coliform	Toxics	Index Rating ^C	Streambed Sedimentation	to Channel ^d
Root River upstream Grange Avenue	4.8	Poor	No	Yes	Ио	Yes	Yes		Fairly poor		
Grange Avenue to Ryan Road .	9.8	Poor	No	No	No	Yes	Yes		Fair		
Root River downstream Ryan Road to County Line Road	3.4	Poor	No	Yes	No	Yes	Yes		Fairly poor		
Root River downstream County Line Road to Nicholson Road	5.7	Poor	No	Yes	No	No	No		Fairly poor		
Root River downstream Nicholson Road to STH 38	12.5	Poor	No	No	Yes	Yes	Yes		Fairly poor		
Root River downstream STH 38 West Branch Root River Canal	6.0 13.5	Poor Poor	No No	No Yes	No No	Yes 	Yes Yes		Fairly poor Fairly poor		
Root River Canal	4.9	Poor	No	Yes	No		Yes		Fairly poor		
East Branch Root River Canal . Tess Corners/Whitnall Park	11.6	Poor	No	Yes	No		Yes		Very poor		
Creek	9.9 3.4	Poor Poor	No No	No Yes	No No	Yes No	Yes No		Fair Fair		
Husher Creek	8.6 8.6	Poor	Yes ^e	Yes	No	No No	Yes		Fairly poor		
TOTAL	94.8										

a Based upon professional judgment of area fish managers.

b The most recent water quality data available as described in Figure XIII-1 were used to evaluate water quality in the Root River system. Reported violations of the water quality standards set forth in Chapter II were indicated as water quality problems. In cases where no updated water quality data were available, simulation modeling analyses data developed in the initial plan were used to estimate current water quality for Root River stream reaches based upon year 2000 land use conditions and current level of pollution control

c Biotic Index ratings are based upon the Hilsenhoff Biotic Index (HBI) discussed in Wisconsin Department of Natural Resources Technical Bulletin No. 132, "Using a Biotic Index to Evaluate Water Quality in Streams," Hilsenhoff, 1982. Biotic index ratings are from sampling conducted in 1990. Sampling was also conducted in the watershed in 1987.

d Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified.

e Unknown cause.

Table XIII-14

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS OF THE ROOT RIVER WATERSHED 1964, 1974-1975, AND 1990

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July and August of 1989-1990
Main Stem Stations			
Rt-1 Rt-2 Rt-4 Rt-5 Rt-6	Fair Poor Fair Fair Fair	Poor Poor Fair Poor Fair	 Good
Tributary Station Rt-3	Poor	Poor	
Watershed Average	Fair	Fair	

^a See Map XIII-5 for sampling station locations.

Source: SEWRPC.

station and additional locations where water quality data were collected by the Wisconsin Department of Natural Resources are shown on Map XIII-5. The data obtained for the DNR sampling station Rt-6a were used for comparative purposes in conjunction with earlier data from Station Rt-6 located on the Root River at Nicholson Road. The limited data available indicate that water quality conditions improved from "fair" in 1964 and 1974 through 1975 to "good" in 1989 and 1990 at station Rt-6.

A summary of potential pollution sources in the Root River watershed by stream reach is shown in tabular summary in Table XIII-15. Review of the data indicate the majority of the conversion of lands from rural to urban uses has occurred in the area tributary to the Root River main stem in Milwaukee County. It should be noted that the majority of the documented spills of toxic substances and the majority of the permitted industrial discharges have occurred in the Root River main stem in and around the City of Racine. Data on nonpoint source pollution, public and private sewage treatment plants discharging to surface waters, and additional potential impacts to surface water quality are included in Table XIII-15.

Compliance with Water Use Objectives

As indicated in Chapter II, the majority of the stream reaches in the Root River watershed as of 1993, are generally recommended for warmwater sport fish or warmwater forage fish and full recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II. Tess Corners Creek and Hoods Creek have limitations for sport fish habitat and are recommended for warmwater forage fish and full recreational uses. The Root River Canal, the East Branch Root River Canal downstream of STH 20, and the West Branch of the Root River Canal downstream of CTH C have further limitations for warmwater sport or forage fish and recreational utilities and are therefore recommended for limited forage fish and limited recreational uses. The West Branch of the Root River Canal upstream of CTH C and the East Branch Root River Canal upstream of STH 20 are recommended for limited aquatic life and limited recreational uses.

Based upon the available data for sampling stations in the watershed, the main stem of the Root River and the Root River Canal did not meet the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. Based upon a review of the data summarized in Figures XIII-1 through XIII-3 and in Table XIII-12, and upon review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is likely that violations of the fecal coliform and phosphorus standards occur along the majority of the main stem of the Root River and the recommended water use objectives continue to be only partially met in the majority of the major streams in the watershed.

There are currently two stream reaches for which the water use objectives set forth herein are higher than the objectives set forth in Chapter NR 104 of the Wisconsin Administrative Code. These include Tess Corners Creek and Hoods Creek. Chapter NR 104 classifies both streams as capable of supporting limited forage fish communities, while the objectives set forth herein recommend warmwater forage fish objectives for both streams. It is recommended that stream appraisals to further assess the potential for higher use objectives be conducted for

Table XIII-15

SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE ROOT RIVER WATERSHED: 1990

		version of Lands 1 to Urban ^b	•				Remaining		face Water Pollution Sources		
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstance Efforts ^C
Root River u/s Grange Avenue	Moderated	Insignificant ^a	1987-cloudy substance	x	X			2		New Berlin Memorial Hospital private sewage treatment plant abandoned in 1984	1, 2
Root River d/s Grange Avenue to Ryan Road	Moderate	Major	1986-cleaning fluid 1990-antifreeze 1990-fuel oil 1991-gasoline	x	· x			5	Fadrowski Drum Disposal site [®]	Rawson Homes Sewer and Water Trust public sewage treatment plant abandoned in 1977 Union Oil Truck Stop private sewage treatment plant abandoned	1, 2
Root River d/s Ryan Road to County Line Road	Insignificant	Significant			x			0			1, 2
Root River d/s County Line Road to Nicholson Rd	Insignificant	Moderate	1982-heavy oil 1992-Baby Fresh lotion	x	x			3			1, 2
Root River d/s Nicholson Road to STH 38	Insignificant	Significant	1984-waste oil 1986-diesel fuel 1987-petroleum 1987-waste oil 1987-waste oil 1987-unknown 1990-gasoline	x	x			3	Hunt's Disposal landfill site*	Caddy Vista Sanitary District public sewage treatment plant abandoned in 1982	2
Root River d/s STH 38	Insignificant	Insignificant	1983-diesel fuel 1983-diesel fuel 1983-oil 1983-machine oil 1983-oil 1983-oil 1983-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil 1984-oil	x	x			7			2

Table XIII-15 (continued)

		version of Lands 1 to Urban ^b					Remaining	Potential Surf	ace Water Pollution Sources		
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abstement Efforts ^C
Root River d/s STE 38 (continued()			1986-diesel fuel 1986-bydraulic fluid 1986-diesel oil 1986-acid 1986-cooking grease 1986-hydraulic oil 1987-light oil 1988-acid 1988-petroleum 1988-brown slime substance 1988-oil 1990-petroleum product 1990-pertroleum product 1990-white oily substance on water								
West Branch Root River Canal	Insignificant	Insignificant	1984-fuel oil	х	х	1	2	0			2, 3
Root River Canal	Insignificant	Insignificant			x			1			2
East Branch Root River Canal	Insignificant	Insignificant			х		1	1			2
Tess Corners/ Whitnall Park Creek	Moderate	Significant		x	x			1		Village of Hales Corners public sewage treatment plan abandoned in 1981 City of Muskago-North- east District public sewage tretment plant abandoned in 1985	1, 2
Husher Creek	Insignificant	Insignificant			x			0			2
Hoods Creek	Insignificant	Significant		x	x	1		0		The Fremont Company private sewage treatment plant abandoned in 1985	2

Table XIII-15 (continued)

*Includes the tributary drainage area of each stream reach.

bExtent of urban land conversions were determined as a percentage of the watershed as follows:

major > 20% moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

CNumber codes refer to the following ongoing pollution abatement efforts:

- 1. Construction Erosion Control Ordinances in place
- 2. Rural Nonpoint Source Controls Implemented
- 3. Abandonment of Private Sewage Treatment Plant Underway

dConsiderable urban development existing pre-1976.

*Superfund site

both streams as part of the next one-year monitoring period envisioned to be carried out in the Root River watershed.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon the current status of plan implementation, current land use planning, local nonpoint source pollution abatement and sewerage system planning, there are three major issues which remain to be addressed in the Root River watershed. The first issue relates to the implementation of the findings and recommendations of the sanitary sewerage and water supply system plan for the greater Racine area. The second issue relates to the degree of nonpoint source pollution abatement still required in the watershed. The third issue relates to potential changes to the plan based upon recommendations set forth in the ongoing Milwaukee Metropolitan Sewerage District facility plan updating. In addition, it is also recommended that the Wisconsin Department of Natural Resources conduct a water quality and biological conditions survey on Hoods Creek and Tess Corners and to re-assess the water use objectives currently set forth in the Wisconsin Administrative Code.

Sanitary Sewerage and Water Supply System Plan Implementation

The only major issue remaining to be resolved with regard to point sources of pollution deals with the implementation of the findings and recommendations set forth in the system level plan documented in the report prepared by Alvord, Burdick & Howson and Applied Technologies, Inc. entitle, A Coordinated Sanitary Sewerage and Water Supply System Plan, Greater Racine Area, Wisconsin, September 1992. The recommendations of that plan include revisions to the planned sewer service areas in the greater Racine area and provisions to abandon the existing sewage treatment plant operated by the Town of Yorkville Utility District No. 1, with the area served by that plant being connected to the City of Racine system for treatment plant purposes. As of December 1994, the intergovernmental agreements needed to proceed with an amendment of the regional water quality management plan to incorporate the findings of the 1992 system plan had not been forthcoming. An amendment to the plan continues to be needed in this regard.

Reassessment of the Future Levels of Nonpoint Source Controls in the Entire Root River Watershed

The nonpoint source priority watershed program implementation period has now been completed for the Root River watershed. Following completion of detailed water quality and biological condition monitoring in the Root River watershed under the DNR ongoing monitoring program, it is recommended that the need for further non-point source controls be assessed based upon the current level of plan implementation and water quality and biological conditions data.

Milwaukee Metropolitan Sewerage District Facility Plan Update

A future amendment to the regional plan for the Root River watershed may potentially be developed under the facility plan update initiated by the Milwaukee Metropolitan Sewerage District in 1995. That plan update is anticipated to constitute an amendment to the regional plan once it is adopted by all of the agencies involved.

Stream Reclassification Evaluation

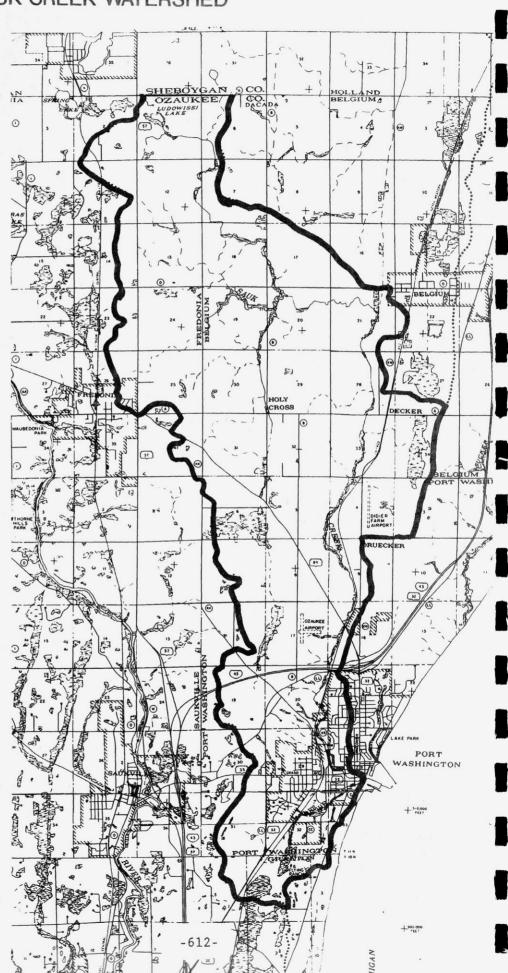
Hoods Creek and Tess Corners Creek are currently included under the limited forage fish classifications in Chapter NR 104 of the Wisconsin Administrative Code. However, it is recommended that the objectives for these streams be upgraded to provide for forage fish classification. It is recommended that the Wisconsin Department of Natural Resources include further stream appraisals for Hoods Creek and Tess Corners Creek as part of the monitoring program during the next period when the Department is conducting monitoring efforts in the Root River watershed as is envisioned within the next five to seven years.

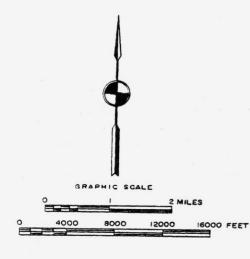
Chapter XIV

SAUK CREEK WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975—the base year of the initial plan—through 1990—the base year of the plan update.


In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Sauk Creek watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Sauk Creek watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included which is limited to the Sauk Creek watershed as there are no major lakes located on the watershed. Designated management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.


The Sauk Creek watershed is located in the northeast portion of the Region and all but 0.9 square mile of the approximately 34 square mile area of the watershed lies within the Region. The main stem of the Sauk Creek rises in Ozaukee County, and flows southeasterly for approximately 18.8 miles and discharges into Lake Michigan in the City of Port Washington in Ozaukee County. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the basin, together with the locations of the main channels of the Sauk Creek and its principal tributaries, are shown on Map XIV-1. The Sauk Creek watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Sauk Creek watershed since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit

Map XIV-1 SAUK CREEK WATERSHED

consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban lake uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharged to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants in stormwater, such as metals and chlorides, can also be expected to increase with urbanization.

Table XIV-1 summarizes the existing land uses in the Sauk Creek watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. The watershed contains a limited amount of urbanized areas, 90 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 81 percent of the total area of the watershed in agricultural and related rural uses, about 2 percent in woodlands, about 5 percent in surface water and wetlands, and about 2 percent in other open lands. The remaining 10 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map XIV-2.

Within the Sauk Creek watershed, urban development has occurred in the Village of Fredonia and in and around the City of Port Washington.

As shown in Table XIV-1, from 1975 to 1990, urban land uses in the watershed increased from 1,934 acres, or about 3.0 square miles, to 2,195 acres, or about 3.4 square miles, or by about 14 percent. As shown in Table XIV-1, residential land use has increased within the watershed, from 665 acres or about 1.0 square miles in 1975 to 798 acres, or about 1.3 square miles in 1990, a 20 percent increase. Commercial and industrial lands increased from 113 acres to 140 acres, or about 0.2 square miles, an increase of about 24 percent.

The 2,195 acres, or about 3.4 square miles of urban land uses in the watershed as of 1990 can be compared to the staged 1990 planned level of about 2,365 acres envisioned in the adopted year 2000 land use plan. The current status of development in the Sauk Creek watershed and in adjacent portions of Ozaukee County was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table XIV-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Sauk Creek watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban uses are expected to increase in and adjacent to the City of Port Washington, north and east of the Village of Fredonia, and south and west of the Village of Belgium.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Sauk Creek watershed, as indicated in Table XIV-2, is projected to increase from the 1990 total of about 3.4 square miles, or about 10 percent of the total area of the watershed, to about 3.8 square miles, or about 11 percent of the total area of

Table XIV-1

LAND USE IN THE SAUK CREEK MATERSHED: 1975 and 1990

	19	75	19	990	Change '	1975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	665	3.0	798	3.6	133	20.0
Commercial	31	0.1	46	0.2	15	48.4
Industrial	82	0.4	94	0.4	12	14.6
Transportation,						
Communication						
and Utilities ^D	1,016	4.6	1,096	4.9	80	7.9
Governmental and						
Institutional	97	0.4	129	0.6	32	33.0
Recreational	43	0.2	32	0.1	- 11	- 25.6
Subtotal	1,934	8.7	2,195	9.8	261	13.5
Rural						
Agricultural						
and Related	18,252	82.4	18,004	81.3	- 248	- 1.4
Lakes, Rivers,	.0,252	02.4	10,004	01.5	240	1.7
Streams and	,					
Wet lands	1,088	4.9	1,061	4.8	- 27	- 8.4
Woodlands ^c	393	1.8	409	1.9	16	4.1
Open Lands, Landfills,						
Dumps, and Extractive	477	2.2	475	2.2	- 2	- 0.4
Subtotal	20,210	91.3	19,949	90.2	- 261	- 1.3
Total	22,144	100.0	22,144	100.0	0	

a As approximated by whole U.S. Public Land Survey one-quarter sections.

Source: SEWRPC.

^b Includes all off-street parking.

^c Includes both rural and urban lands.

MAP XIV-2

LAND USES IN THE SAUK CREEK

WATERSHED: 1990

-LEGEND-

SINGLE-FAMILY RESIDENTIAL

MULTI-FAMILY RESIDENTIAL

COMMERCIAL

INDUSTRIAL

STREET AND HIGHWAYS

PARKING

OTHER TRANSPORTATION

COMMUNICATION AND

UTILITIES

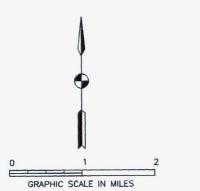
GOVERNMENTAL AND

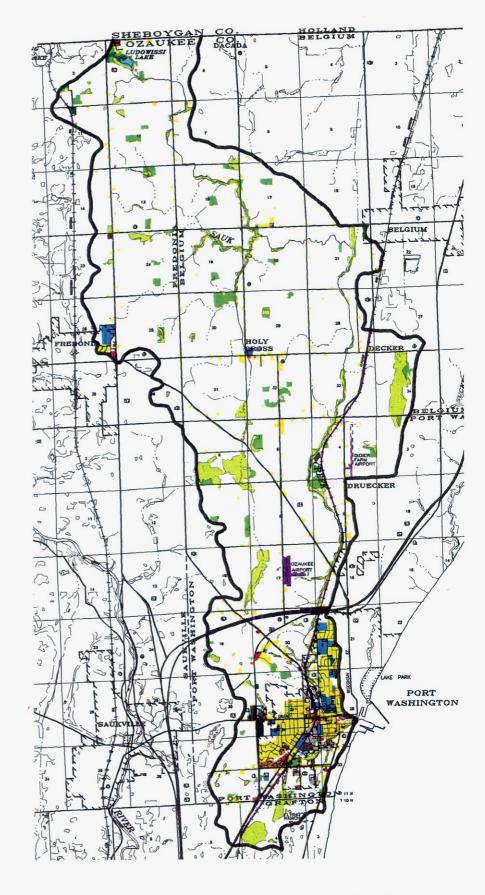
INSTITUTIONAL

RECREATIONAL

SURFACE WATER

WETLANDS


WOODLANDS


EXTRACTIVE

LANDFILL

AGRICULTURAL AND OTHER

OPEN LANDS

The Sauk Creek watershed is about 35 square miles in areal extent, or about 1 percent of the total Region. In 1990, about 3 square miles, or about 10 percent of the watershed, was in urban land uses.

-615-

Source: SEWRPC.

-616-

^a As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

^c Includes both urban and rural open lands.

the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the land devoted to urban uses is projected to increase to about 5.3 square miles, or about 15 percent of the total watershed by year 2010. It is important to note that the 85 to 89 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and as recommended in the year 2010 regional land use plan, and is proposed to be preserved, largely in open space uses through joint State-local zoning or public acquisition. addition, certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of the remaining agricultural and other open lands of the watershed from rural to urban uses. land uses may be expected to decline collectively from about 31.2 square miles in 1990 to about 30.7 square miles in the year 2010 under the intermediate growth-centralized land use plan and to about 29.3 square miles under the high growth-decentralized land use plan, decreases of about 2 and 6 percent between 1990 and 2010 for the two year 2010 plans considered.

POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the current initial regional water quality management plan, as well as current plan recommendations for the abatement of water pollution from point sources of pollution in the Sauk Creek watershed--including consideration of private sewage treatment plants, points of public sewage collection system overflows, and industrial wastewater treatment systems and discharges. This section also includes a status report on the public sanitary service areas located in the watershed.

Public and Private Wastewater Treatment Systems and Sewer Service Areas Existing Conditions and Status of Plan Implementation: In 1975, there were no public sewage treatment facilities located in the Sauk Creek watershed. One private sewage treatment plant serving the Cedar Valley Cheese Factory in the Town of Fredonia was in operation in 1975, as shown on Map XIV-3. The status of implementation in regard to the private sewage treatment plant in the Sauk Creek watershed, as recommended in the initial regional water quality management plan, is shown in Table XIV-3. As indicated in Table XIV-3, the private plant serving the Cedar Valley Cheese Factory was recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES).

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. There were two sewer service areas identified within, or partially within, the Sauk Creek watershed, Port Washington, and Fredonia. Currently, these areas have undergone refinements as recommended. The boundaries of the sewer service areas, as currently refined, are shown on Map XIV-3. Table XIV-4 lists the plan amendment prepared for each refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The table also identifies the original service area names and the relationship of these service areas to the service areas names following the refinement process. The planned sewer

Map XIV-3 SEWER SERVICE AREAS, SEWAGE TREATMENT PLANTS AND OTHER POINT SOURCES OF POLLUTION IN THE SAUK CREEK WATERSHED: 1990 AND 2010 しばう IIA 0 CEDAR VALL FARM GRAPHIC SCALE 4000 16000 FEET **LEGEND** PORT WASHINGTON SANITARY SEWER SERVICE AREA (EXISTING) 1a SANITARY SEWER SERVICE AREA (PLANNED) + 510,000 **EXISTING PRIVATE SEWAGE TREATMENT** FACILITY TO BE RETAINED POINT SOURCES OF POLLUTION OTHER

-618-

THAN SEWAGE TREATMENT FACILITIES

Source: SEWRPC.

Table XIV-3

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEWAGE TREATMENT PLANTS IN THE SAUK CREEK WATERSHED: 1990

Public Sewage	Disposal of Effluent	Plan	Implementation
Treatment Plants		Recommendation	Status
Private Sewage	Disposal of Effluent	Plan	Implementation
Treatment Plants		Recommendation	Status
Cedar Valley Cheese Factory	Soil absorption	Maintain and upgrade as needed	Plant maintained

Source: SEWRPC.

Table XIV-4

PLANNED SANITARY SEWER SERVICE AREAS IN THE SAUK CREEK WATERSHED: 1993

Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sanitary Sewer Service Area (sq. miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
Port Washington	3.9	Port Washington	December 1, 1983	SEWRPC CAPR. No. 95, Sanitary Sewer Service Area for the City of Port Washington, Ozaukee County, Wisconsin
Fredonia Waubeka	0.1	Fredonia Waubeka	September 13, 1984	SEWRPC CAPR. No 96, Sanitary Sewer Service Area for the Village of Fredonia, Ozaukee County, Wisconsin
Total	4.0			

Note: CAPR - Community Assistance Planning Report

Source: SEWRPC.

service area for the Sauk Creek watershed, as refined through 1993, totals about four miles, or about 11 percent of the total watershed area, as shown in Table XIV-4.

<u>Current Plan Recommendations</u>: The current point source plan element recommendations provide for the continued operation and maintenance of the private sewage treatment plant serving the Cedar Valley Cheese Factory.

The current planned sanitary sewer service areas in the Sauk Creek watershed are shown on Map XIV-3. The existing and planned year 2010 population data for each sewer service area is presented in Chapter XVIII on a regional basis. In the Sauk Creek watershed, these sewer service areas include Fredonia and Port Washington. Together, these sewer service areas total about four miles, or about 11 percent of the Sauk Creek watershed.

As noted above, each of these service areas in the watershed has been refined as part of the ongoing regional water quality management plan updating process. Thus, no specific additional refinements are envisioned to be needed. It is recommended that the sanitary sewer service areas and attendant planned population levels be utilized in subsequent sewerage system facility planning and sanitary sewer extension designs. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

There is currently one private sewage treatment plant in operation within the Sauk Creek watershed. This facility serves the Cedar Valley Cheese facility which is located beyond the current limits of the planned public sanitary sewer service area. It is recommended that this plant be maintained and upgraded as needed as part of the Wisconsin Pollution Discharge Elimination System permitting process.

Sewer Flow Relief Devices

Current Conditions and Status of Plan Implementation: In 1975, there were two known separate sewer flow relief devices located in the Sauk Creek watershed, both draining to Sauk Creek from the City of Port Washington. During the period of 1988 through 1993, the only flow relief devices which existed in the sanitary sewer systems were selected bypasses which physically remained in the sewerage system but which function only under conditions of power or equipment failure or excessive infiltration and inflow during extreme wet weather conditions. As shown in Table XIV-5, two points of sanitary sewer system flow relief were reported during 1988 through 1993 in the Sauk Creek watershed. Both of these flow relief points are located in the City of Port Washington. These flow relief points have been in operation infrequently, with the average discharge occurrence frequency over this five-year period, being about once per five years per flow relief location. This equates to an average of about one isolated overflow occurrence every two to three years considering all reported bypassing.

<u>Current Plan Recommendations</u>: It is recommended that the City of Port Washington continue to monitor the sewerage system operations to ensure that the use the existing sewerage system flow relief devices is limited to periods of power or equipment failure, or in cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design. It is

Table XIV-5

KNOWN SEWAGE FLOW RELIEF DEVICES
IN THE SAUK CREEK WATERSHED: 1988-1993

		S	Sewage Flow Relief Devices in the Sewer System								
Sewerage System	Sewage Treatment Plant Flow Relief Device	Crossovers	Pumping Station Bypasses	Other Bypasses	Portable Pumping Systems	Total	Comments				
City of Port Washington			<u></u> ·	2		2	Used only in case of extreme wet weather				

Source: SEWRPC.

recommended that planning for all sewerage system expansion and upgrading be conducted with the assumption that there will be no planned bypasses of untreated sewage and that the use of all flow relief devices will ultimately be eliminated, with the only by passes remaining designed to protect the public and treatment facilities from unforeseen equipment or power failure.

Intercommunity Trunk Sewer

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan contained no intercommunity trunk sewers recommended for construction within the Sauk Creek watershed.

<u>Current Plan Recommendations</u>: No new intercommunity trunk sewers are recommended for construction in the Sauk Creek watershed under the current plan.

Point Sources of Wastewater Other Than Public

and Private Sewage Treatment Plants

Current Conditions and Status of Plan Implementation: In 1975, there was a total of two known point sources of pollution identified in the Sauk Creek watershed other than public and private sewage treatment plants. These sources discharged industrial cooling and process waters to the surface water system. Of these, one was identified as discharging only cooling water and the other discharged a process wastewater. The initial regional water quality plan includes a recommendation that these industrial sources of wastewater be monitored and discharges limited to levels which must be determined on a case-bycase basis under the Wisconsin Pollutant Discharge Elimination System permit process.

As of 1990, there were seven such point sources of wastewater discharging to Sauk Creek or the groundwater system of the Sauk Creek watershed. Table XIV-6 summarizes selected characteristics of these other point sources and Map XIV-3 shows their locations. Due to the dynamic nature of permitted point sources, it is recognized that the number of wastewater sources change as industries and other facilities change location or processes and as decisions are made with regard to the connection of such sources to public sanitary sewer systems.

<u>Current Plan Recommendations</u>: As of 1993, there were seven known, permitted point sources of wastewater other than public and private sewage treatment plants discharging to surface or groundwaters in the Sauk Creek watershed. These point sources of wastewater discharge, primarily industrial cooling process, rinse, and wash water, discharge directly or following treatment to the groundwater or the surface waters of the Sauk Creek watershed. It is recommended that these sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside

the Proposed Sanitary Sewer Service Area

As of 1975, there were no enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service area. As of 1990, no new enclaves of urban development have been created beyond the planned sewer service areas, as shown on Map XIV-3.

Table XIV-6

CHARACTERISTICS OF OTHER KNOWN POINT SOURCES OF WATER POLLUTION IN THE SAUK CREEK WATERSHED: 1990®

Facility Name	County	Map 1D# ^b	Permit Type	Permit #	Expiration Date	Standard Industrial Classification Code	Industrial Activity	Receiving Water	Treatment System ^c
Sauk Creek Watershed									
Kickhaefer Mfg. Co. Modern Equipment Co. Port Washington Park and Rec. Dept. Schmitz Ready Mix - Port Washington Simplicity Manufacturing Swietlik Residence	Ozaukee Ozaukee Ozaukee Ozaukee Ozaukee Ozaukee	1 2 3 4 5 6	General General General General General General	0044938-3 0044938-3 0046523-2 0046507-2 SPEC PERM HEAT PUMP	09/30/95 09/03/95 09/03/95 09/03/95 	3469/3496 3559 9199 3273 3524 8811	Metal stampings, misc. wire prod. Special industry machinery General government Ready-mix concrete Lawn & garden equipment Private household	Sauk Creek Sauk Creek via storm sewer Sauk Creek Groundwater discharge Sauk Creek Sauk Creek Sauk Creek via storm sewer	
WI Electric Power Co Port Wash.	Ozaukee	1A	Specific	0000922	12-31-93	4911	Electric services	Lake Michigan via Sauk Creek	3, 2, 5, 6

^aTable XIV-6 includes seven known, permitted point sources of wastewater discharging to Sauk Creek or to the groundwater system in the Sauk Creek watershed. As of 1993, there were seven known, permitted point sources of water pollution.

 $^{\mathrm{c}}$ The number code refers to the following treatment systems:

Aerated lagoon

- pH control
- 2. Coagulation flocculation
- 6. Secondary clarification
- 3. Gravity sedimentation 7. Spray irrigation
- 4. Holding pond
- 6. Secondary clarification
- 7. Spray Irrigation

^bSee Map XIV-3, Sewer Service Areas, Sewage Treatment Plants and Point Sources of Pollution in the Sauk Creek Watershed: 1990 and 2010.

Miscellaneous Potential Pollution Sources

<u>Landfills</u>: Landfills in the Sauk Creek watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources. In some cases, toxic and hazardous substances have begun to leach into surrounding soil and aquifers, and can potentially be transmitted to the surface waters.

There are currently six known abandoned landfills located in the Sauk Creek watershed. There is no indication that any of these landfills are negatively impacting surrounding surface waters.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Sauk Creek watershed have the potential to affect water quality through the release of substances into the surrounding soil and groundwater. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) program, designed to facilitate the cleanup of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing cleanup efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground water. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1990, there were no known, permitted leaking underground storage tank sites that were discharging remediation waters to surface waters or ground water in the Sauk Creek Watershed. As of 1993, there were 19 leaking underground storage tank sites in the Sauk Creek watershed. None of these sites involved discharging remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation waste water to surface or ground waters. As of 1990, there were no permitted sites discharging to surface or ground waters in the Sauk Creek watershed.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the adopted regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning onsite sewage disposal systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Sauk Creek watershed, the plan generally recommended nonpoint source pollution control practices for both urban and rural lands designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control, streambank erosion control, and onsite sewage system disposal management. Implementation of the recommended nonpoint source control practices has been achieved on a very limited basis in the Sauk Creek watershed through a variety of State and local regulations and programs. These programs include the regulation of onsite sewage disposal systems under the program currently administered by Ozaukee County. This program provides for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of newer systems, and for problem resolution of failing systems where they are identified. In addition, significant progress has also been made in the area of construction site erosion control. As of January 1993, the Village of Fredonia had adopted a construction erosion control ordinance which is based upon the model ordinance developed cooperatively by the Wisconsin Department of Natural Resources and League of Wisconsin Municipalities, while the City of Port Washington had an existing ordinance that pre-dated the model.

With regard to rural nonpoint source control, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations. This program is administered by the Wisconsin Department of Natural Resources, which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program and other programs, such as the Conservation Reserve Program administered by the U. S. Department of Agriculture, Soil Conservation Service, and the wetland restoration programs administered by the Wisconsin Department of Natural Resources and others are utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have positive water quality impacts.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. levels are defined as soil loss tolerances to T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U. S Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade, and Consumer Protection as priority counties for soil erosion control. The Commission has prepared agricultural soil erosion control plans for Ozaukee County. Thus, such a plan has been prepared for all areas of the Sauk Creek watershed. That plan identifies priority areas for cropland soil erosion control within Ozaukee County, and, additionally, recommends farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While these local programs described above have likely resulted in some modest reduction in the pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program was established in 1978 by the Wisconsin Legislature and provides cost-sharing funds for an individual project, or land management practice, to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources. To date, the Sauk Creek watershed has not been selected for inclusion in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program.

<u>Current Plan Recommendations</u>

Nonpoint source pollution control practices designed to provide about a 25 percent reduction in nonpoint source pollutant loadings, plus construction site erosion control, onsite sewage system management, and streambank erosion control are recommended to be carried out throughout the Sauk Creek watershed. The types of practice recommended to be considered for this level of nonpoint source control are summarized in Appendix A.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most cost-effective manner. In this regard, the watershed should be included in the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program in order to make State cost-sharing funds and related programs available for nonpoint source pollution control measures. The current priority ranking of watersheds for inclusion in that program is documented in a memorandum prepared by the Regional Planning Commission using Wisconsin Department of Natural Resources procedures and is summarized in Chapter XVIII. That ranking included the Sauk Creek watershed in the high category, indicating that inclusion in the program will be possible when existing planning projects are completed and staff becomes available within the Department of Natural Resources.

¹See SEWRPC Memorandum entitled "Assessment and Ranking of Watershed for Nonpoint Source Management Purposes in Southeastern Wisconsin: 1993."

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous section, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program. As of 1993, no water quality monitoring has been conducted in the Sauk Creek watershed.

Current Plan Recommendations

Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at Stations Sk-1 and Sk-2, the locations of which are shown on Map XIV-4. It is recommended that this program be conducted within the next five to seven years and repeated at approximately five to seven year intervals. These recommendations can be coordinated with, and are consistent with, the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each basin in the Region in an approximate five to seven year rotating cycle.

LAKE MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality and biological condition monitoring programs to be established.

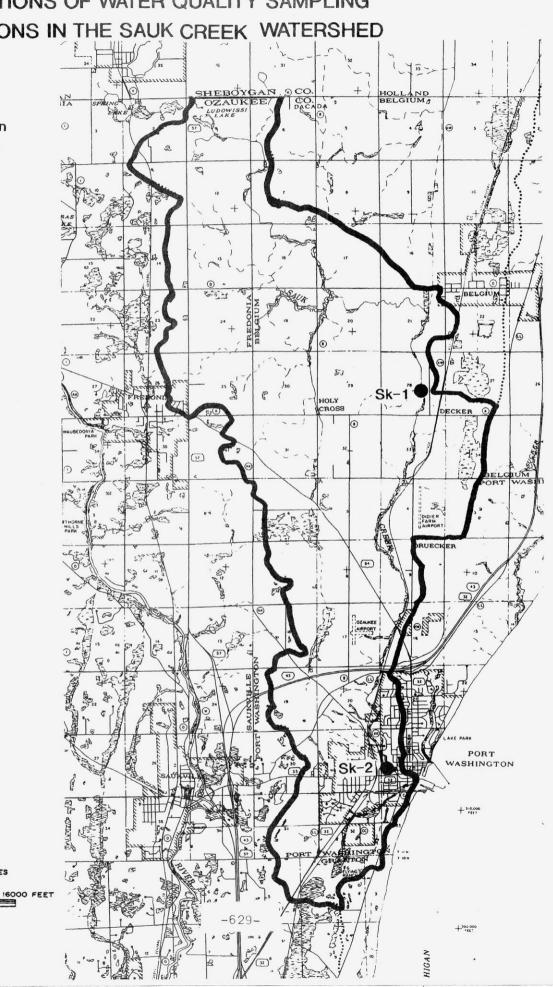
As noted above, there are no major lakes in the Sauk Creek watershed. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the region are considered applicable for management purposes.

WATER QUALITY AND BIOLOGICAL CONDITIONS

<u>Streams</u>

Streamwater quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark streamwater quality study, the 1965 through 1975 Commission streamwater quality monitoring effort, and the 1976 Commission monitoring program conducted under the regional water quality management planning effort. Available data collected in those programs for the Sauk Creek watershed included

Map XIV-4


LOCATIONS OF WATER QUALITY SAMPLING

STATIONS IN THE SAUK CREEK WATERSHED

LEGEND

Sampling stations used in preparation of initial plan

SEWRPC

samplings at two Commission stations on the Sauk Creek main stem. The sampling station locations are shown on Map XIV-4.

No known post-1976 water quality data were available from the Sauk Creek watershed. The assessment of current conditions relied upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions. Review of this data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Sauk Creek watershed.

Toxic and Hazardous Substances: No known stream water or bottom sediment sampling for toxic and hazardous materials in the form of heavy metals, polychlorinated biphenyls (PCB's), or pesticides have been conducted within the Sauk Creek watershed.

Since the completion of the initial regional water quality management plan, five spills of toxic substances into streams within the Sauk Creek watershed have been documented by the Wisconsin Department of Natural Resources. All of these spills have occurred in the main stem of Sauk Creek in the City of Port Washington. The majority of the substances that were spilled into the creek were oil.

Water Quality Assessments: Based upon the available data, the water quality and biological characteristics of Sauk Creek were assessed with the results set forth in Table XIV-7. Fish population and diversity is fair. Problems with levels of fecal coliform are estimated to exceed standards in Sauk Creek. Dissolved oxygen, phosphorus, and un-ionzed ammonia nitrogen levels are estimated to meet the standards. No recent data were available on toxic pollutants or on the biotic index ratings, which are biological indicators of water quality within a stream system. High levels of streambed sedimentation were noted throughout the watershed.

Table XIV-8 sets forth water quality index classifications 2 used in the initial plan for 1964, 1974-75, and for 1990-91 conditions for selected sampling stations in the watershed. The use of the index is discussed in Chapter II. As indicated in Table XIV-8, no recent comparative data were available.

A summary of potential pollution sources in the Sauk Creek watershed by stream reach is shown in Table XIV-9. Review of the data indicate that a limited number of spills of toxic substances have occurred in the watershed, and six industrial discharges have been permitted to discharge to Sauk Creek. It should be noted that all of the spills and discharges have discharged to the portion of Sauk Creek located within the City of Port Washington. Data on nonpoint source pollution is also included in Table XIV-8.

²For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin: 1964-1975</u>, June 1978.

Table XIV-7

CHARACTERISTICS OF STREAMS WITHIN THE SAUK CREEK WATERSHED

					Water Quality Problems ^b						
Stream Reach	Stream Length (miles)	Fish Population and Diversity ^a	Recorded Fish Kills	DO	NH ₃	Total P	Fecal Coliform	Toxics	Biotic Index Rating	Streambed Sedimentation	Physical Modifications to Channel ^c
Sauk Creek	18.8	Fair	No	No	No	No	Yes			High (clay, gravel, silt)	Moderate

^aBased upon professional judgment of area fish managers.

Source: Wisconsin Department of Natural Resources, and SEWRPC.

^bSimulation modeling analyses data developed in the initial plan were used to estimate current water quality for Sauk Creek based upon year 2000 land use conditions and current level of pollution control.

^cPhysical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

Table XIV-8

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATIONS OF THE SAUK CREEK WATERSHED 1964, 1974-1975, AND 1990-91

Water Quality Sampling Stations ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Main Stem Stations Sk-1 Sk-2	Poor Good	Poor Fair	
Watershed Average	Fair	Fair	

^{*}See Map XIV-4 for sampling station locations.

Table XIV-9
SUMMARY OF POTENTIAL SURFACE WATER POLLUTION SOURCES IN THE SAUK CREEK WATERSHED: 1990

	of La	f Conversion ands from al to Urban ^b		Remaining Potential Surface Water Pollution Sources							
Stream Reach ^a	Historical 1976-1990	Expected 1990-2010	Documented Toxic Spills 1976-1990	Urban Nonpoint Source Pollution	Rural Nonpoint Source Pollution	Public Sewage Treatment Plants	Private Sewage Treatment Plants	Number of Permitted Industrial Discharges	Other Known Potential Impacts to Surface Water Quality	Comments	Ongoing Pollution Abatement Efforts ^c
Sauk Creek	Insignificant	Insignificant	1988 - oil 1989 - hydraulic oil brown foam hydraulic oil hydraulic oil	x	x			6			x°

^{*}Includes the tributary drainage area of each stream reach.

^bExtent of urban land conversions were determined as a percentage of the watershed as follows:

major > 20% moderate 10 - 20% significant 5 - 10% insignificant 0 - 5%

^cConstruction Erosion Control Ordinances in place

Source: Wisconsin Department of Natural Resources and SEWRPC.

Compliance with Water Use Objectives

As indicated in Chapter II, Sauk Creek is recommended for warmwater sport fish and full recreational use. These water use objectives and the associated water quality standards are discussed in Chapter II. Based upon the available data for sampling stations in the watershed, the main stem of Sauk Creek did not fully meet water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. No current water quality sampling data are available to assess the current compliance with the water quality standards for the Sauk Creek watershed. Simulation modeling developed in the initial plan indicates that it is likely that the standards associated with the recommended water use objectives are largely being met with the exception of the fecal coliform levels. Thus, the water use objective is being partially met.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

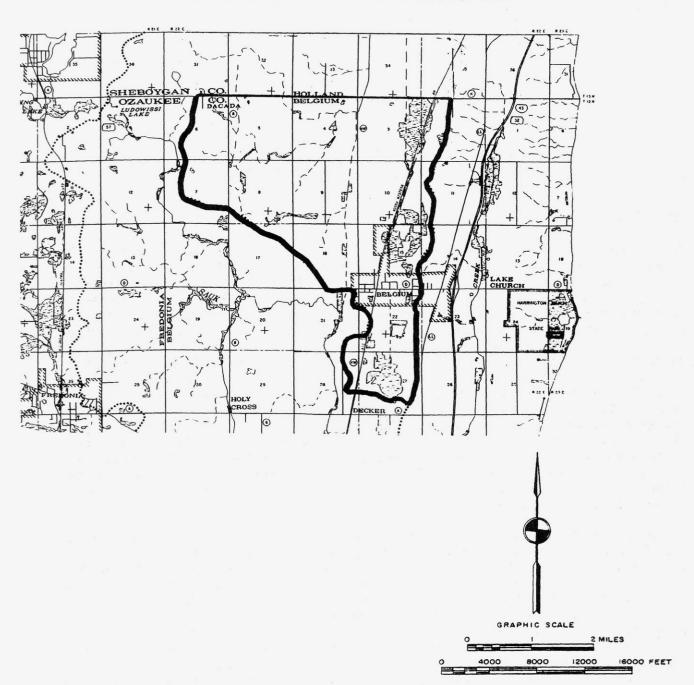
Based upon the current status of pollution abatement planning and land use decisions, there are no major water quality issues remaining to be addressed specific to the Sauk Creek watershed.

Chapter XV

SHEBOYGAN RIVER WATERSHED--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

This chapter presents a description of the recommendations contained in the initial regional water quality management plan and amendments thereto and progress made toward plan implementation from 1975--the base year of the initial plan--through 1990--the base year of the plan update. In addition, this chapter presents information on water quality and biological conditions in the surface water system of the Sheboygan River watershed through 1993, where available. Finally, this chapter presents a description of the substantive water quality management issues that remain to be addressed in the Sheboygan River watershed as part of the continuing water quality planning process. The status of the initial plan and the current plan recommendations are presented in separate sections for the land use plan element, the point source pollution abatement and sludge management plan elements, the nonpoint source pollution abatement plan element, and the water quality monitoring plan elements. In addition, a separate section on lake management is included which is limited for the Sheboygan River watershed as there are no major lakes located in the watershed. management agency responsibilities for plan implementation are presented in Chapter XVII on a regional basis.


The Sheboygan River watershed is located in the northern portion of the Region. That part of the watershed contained within the Region--about 10.8 square miles-is only a small part of a much larger watershed. Both the East Branch and West Branch of Belgium Creek rise and are tributary to the southern portion of the watershed in Ozaukee County, and flow northward into Sheboygan County, where the Onion River discharges into the Sheboygan River. Rivers and streams in the watershed are part of the Lake Michigan drainage system as the watershed lies east of the subcontinental divide. The boundaries of the Sheboygan River basin, together with the location of Belgium Creek, are shown on Map XV-1. The Sheboygan River watershed contains no lakes with a surface area of 50 acres or more.

LAND USE PLAN ELEMENT

The land use plan element of the initial plan, the status of the initial plan recommendations, as well as the new year 2010 plan, were described in Chapter III of this report on a regional basis. This section, more specifically, describes the changes in land use which have occurred within the Sheboygan River watershed

Map XV-1

SHEBOYGAN RIVER WATERSHED

since 1975, the base year of the initial regional water quality management plan, as well as the planned changes in land use in the watershed to the year 2010. The data are presented for the watershed in order to permit consideration of the relationship of the changes in land use to the other plan elements and to water quality conditions within the watershed. The conversion of land from rural to urban land uses has the potential to impact on water quality as a result of increased point and nonpoint source loadings to surface waters. The amount of wastewater generated by industrial and municipal point sources of pollution discharging to surface waters will also increase as areas are converted into urban uses. In addition, the amount of stormwater runoff is expected to increase due to an increase in impervious surfaces. The amounts of certain nonpoint source pollutants, such as metals and chlorides, can also be expected to increase with urbanization.

Table XV-1 summarizes the existing land uses in the Sheboygan River watershed in 1990 and indicates the changes in such land uses since 1975--the base year of the initial regional water quality management plan. Although the watershed contains a limited amount of urbanized areas, 93 percent of the watershed was still in rural and other open space land uses in 1990. These rural uses included about 82 percent of the total area of the watershed in agricultural and related rural uses, about 1 percent in woodlands, about 9 percent in surface water and wetlands, and about 1 percent in other open lands. The remaining 7 percent of the total watershed was devoted to urban uses. Existing land uses within the watershed are shown on Map XV-2.

Within the Sheboygan River watershed, limited urban development has occurred within the Village of Belgium. As shown in Table XV-1, from 1975 to 1990, urban land uses in the watershed increased from about 432 acres to about 459 acres, or by about 7 percent. As shown in Table XV-1, residential land use within the watershed remained relatively constant, from 132 acres in 1975 to 139 acres in 1990, about a 5 percent increase. Commercial and industrial lands increased from 25 acres to 30 acres, an increase of about 17 percent.

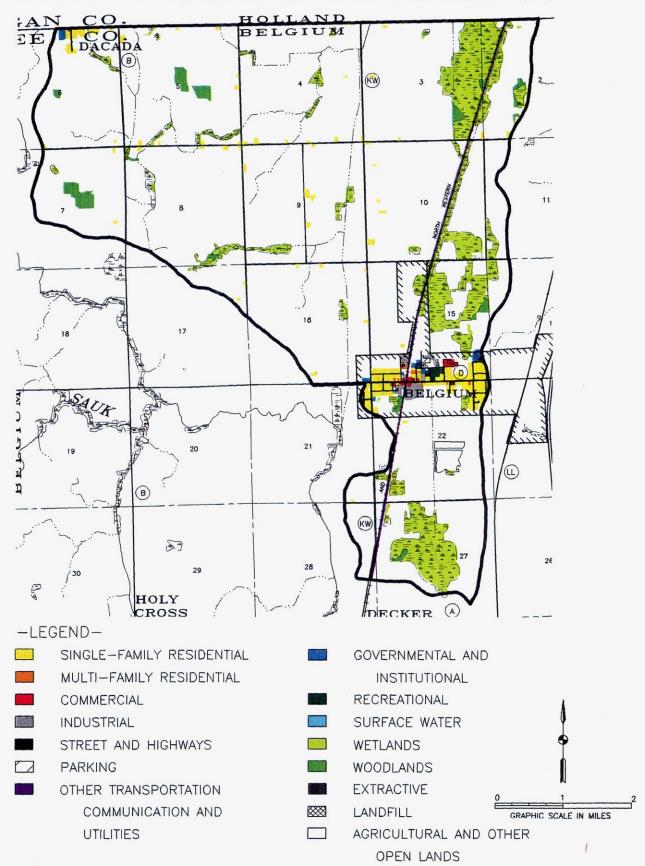
The 459 acres of urban land uses in the watershed as of 1990 exceeded the staged 1990 planned level of about 431 acres envisioned in the adopted year 2000 land use plan. The current status of development in the Sheboygan River watershed and in adjacent portions of Ozaukee County was considered in developing the new year 2010 land use plan element described in Chapter III for the Region as a whole.

Table XV-2 summarizes the year 2010 planned land use conditions set forth in the adopted year 2010 land use plan in the Sheboygan River watershed and compares the recommended land use conditions to the 1990 conditions. Under planned land use conditions, as described in Chapter III, urban land uses are expected to increase in Ozaukee County within and around the Village of Belgium.

In order to meet the needs of the expected resident population and employment envisioned under the intermediate growth-centralized land use plan future conditions, the amount of land devoted to urban use within the Sheboygan River watershed, as indicated in Table XV-2, is projected to increase from the 1990 total of about 459 acres, or about 7 percent of the total area of the watershed, to about 599 acres, or about 9 percent of the total area of the watershed, by year 2010. Under the high growth-decentralized land use plan future scenario, the

Table XV-1

LAND USE IN THE SHEBOYGAN RIVER WATERSHED: 1975 and 1990^a


	19	75	19	790	Change 1	1975-1990
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent
Urban						
Residential	132	1.9	139	2.0	7	5.3
Commercial	4	0.1	5	0.1	1	25.0
Industrial	21	0.3	25	0.4	4	19.0
Transportation,						
Communication,	25.7	_ ,				
and Utilities ^D	253	3.6	266	3.8	13	5.1
Governmental and Institutional	16	0.2	18	0.2	2	12.5
Recreational	6	0.1	ا ''	0.1	ا أ	0.0
Recreationat		<u> </u>		 		
Subtotal	432	6.2	459	6.6	27	6.3
Rural		·				
Agricultural						
and Related	5,721	82.5	5,724	82.5	3	0.1
Lakes, Rivers,	•				_	
Streams and						
Wetlands	666	9.6	629	9.1	- 37	- 5.6
Woodlands	79	1.1	75	1.1	- 4	- 5.1
Open Lands,						
Landfills,						
Dumps, and Extractive ^c	41	0.6	52	0.7	11	26.8
EXII do li Ve	41	0.6	74	J	11	20.0
Subtotal	6,507	93.8	6,480	93.4	- 27	- 0.4
Total	6,939	100.0	6,939	100.0	0	

 $^{^{\}mathbf{a}}$ As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

^c Includes both rural and urban open lands.

MAP XV-2
LAND USES IN THE SHEBOYGAN RIVER WATERSHED: 1990

The Sheboygan River watershed is about 11 square miles in areal extent, or less than 1 percent of the total Region.

In 1990, about 0.7 square miles, or about 7 percent of the watershed, was in urban land uses.

-639-

Table XV-2

EXISTING AND PLANNED LAND USE IN THE SHEBOYGAN RIVER WATERSHED: ACTUAL 1990 AND PLANNED 2010^a

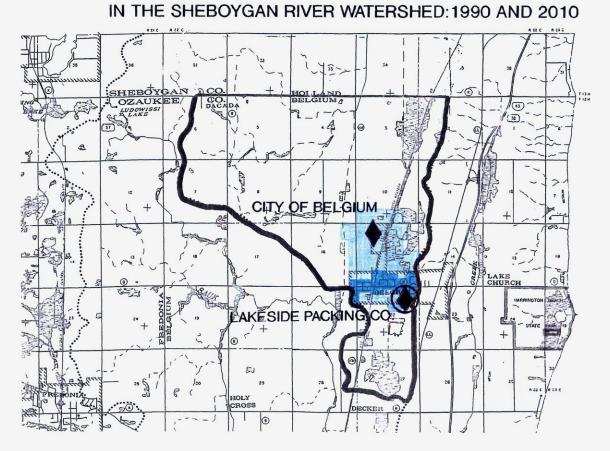
					rmediate Growth - ed Land Use				igh Growth - ed Land Use	
	Existing	1990	2	010	Change 1	985-2010	2010		Change 1990-2010	
Land Use Category	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
Jrban										20.7
Residential	139	2.0	228	3.3	89	64.0	277	4.0	138	99.3 0.0
Commercial	5	0.1	5	0.1	0	0.0	5	0.1	0 34	136.0
Industrial	25	0.4	38	0.6	13	52.0	59	0.8	34	130.0
Transportation,									Í	
Communication			700		34	12.8	321	4.6	55	20.7
and Utilities ^b	266	3.8	300	4.3	34	12.0	321	7.0	1	
Governmental and	1	0.2	19	0.3	1 1	5.6	21	0.3	3	16.7
Institutional	18	0.1	1 9	0.3	3	50.0	1 11	0.2	5	83.3
Recreational		0.1	ļ	 0.1	 		 		 	
Subtotal	459	6.6	599	8.7	140	30.5	694	10.0	235	51.2
Rural								•		
Agricultural				1		l		l		
and Related	5,724	82.5	5,601	80.7	- 123	- 2.1	5,518	79.5	- 206	- 3.6
Lakes, Rivers,		1 .		1 .			/77	9.1	,	0.6
Streams, and Wetlands	629	9.1	633	9.1	4	0.6	633 76	1.1	4	1.3
Woodlands	75	1.1	76	1.1	1	1.3	/°	'''	· '	1
Open Lands, Landfills, Dumps, and Extractive ^c		0.7	30	0.4	- 22	- 42.3	18	0.3	- 34	- 65.4
Dumps, and Extractive	52	0.7	30	J.4		1 72.3	 	<u> </u>	 	
Subtotal	6,480	93.4	6,340	91.3	- 140	- 2.2	6,245	90.0	- 235	- 3.6
Total	6,939	100.0	6,939	100.0	0		6,939	100.0	0	

As approximated by whole U.S. Public Land Survey one-quarter sections.

b Includes all off-street parking.

^c Includes both rural and urban open lands.

land devoted to urban uses is projected to increase to about 694 acres, or about 10 percent of the total watershed by year 2010. It is important to note that the 90 to 91 percent of the watershed remaining in rural uses is partly comprised of primary environmental corridor lands consisting of the best remaining natural resource features, and, as recommended in the year 2010 regional land use plan, is proposed to be preserved largely in open space use through joint zoning or public acquisition. In addition, certain other lands classified as wetlands and floodplains outside the primary environmental corridors are, in some cases, precluded from being developed by State and Federal regulations. Thus, the demand for urban land will have to be satisfied primarily through the conversion of a portion of the remaining agricultural and other open lands of the watershed from rural to urban uses. Rural land uses may be expected to decline collectively from about 10.1 square miles in 1990 to about 9.9 square miles in the year 2010 under the intermediate growth-centralized land use plan and to about 9.7 square miles under the high growth-decentralized land use plan, decreases of about 2 and 4 percent between 1990 and 2010 for the two-year 2010 plans considered.


POINT SOURCE POLLUTANT CONTROL PLAN ELEMENTS

This section describes the recommendations and status of implementation of the initial regional water quality management plan, as well as the current plan recommendations updated by incorporating all amendments and implementation actions for the abatement of water pollution from point sources of pollution in the portion of the Sheboygan River watershed within the Southeastern Wisconsin Region--including consideration of public and private sewage treatment plants, points of public sewage collection system overflows, intercommunity trunk sewers, and industrial wastewater treatment systems and discharges. Because of the interrelationship of the treatment plant solids or sludge management plan element with the public and private sewage treatment plant plan component, this section also covers the solids management plan element as described in the initial plan. This section also includes a status report on the public sanitary sewer service area located in the watershed.

<u>Public and Private Wastewater Treatment Systems and Sewer Service Areas</u>
<u>Existing Conditions and Status of Plan Implementation</u>: In 1975, there was one public sewage treatment facility located in the Sheboygan River watershed, as shown on Map XV-3. The Village of Belgium sewage treatment plant discharged directly to the East Branch of Belgium Creek. The status of implementation with regard to the upgrading, expansion, and relocation of the public and private sewage treatment plants in the Sheboygan River watershed, as recommended in the initial regional water quality management plan, is summarized in Table XV-3.

As can be seen by review of Table XV-3, full implementation of the initial plan would provide for the expansion and relocation of the public sewage treatment plant operated by the Village of Belgium. Implementation of this recommendation has been completed. The Village of Belgium plant has not fully provided facilities to specifically reduce the phosphorus concentrations in plant effluents to the levels identified in the initial plan as being needed to fully meet the water use objectives. The steps needed to achieve the recommended level of phosphorus control have been partially implemented by the completion of a study by the Wisconsin Department of Natural Resources to refine the procedure for establishing site specific phosphorus limitations on all public sewage

Map XV-3
SEWER SERVICE AREAS AND SEWAGE TREATMENT PLANTS

LEGEND

SANITARY SEWER SERVICE AREA (EXISTING)

SANITARY SEWER SERVICE AREA (PLANNED)

EXISTING PUBLIC SEWAGE TREATMENT FACILITY TO BE RETAINED

EXISTING PRIVATE SEWAGE TREATMENT FACILITY TO BE RETAINED

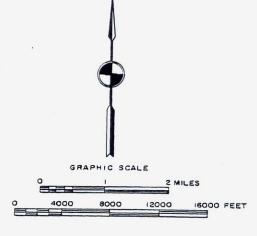


Table XV-3

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL MATER QUALITY MANAGEMENT PLAN FOR PUBLIC AND PRIVATE SEVAGE TREATMENT PLANTS IN THE SHEBOYGAN RIVER WATERSHED: 1990

Public Sewage	Disposal of	Plan	Implementation
Treatment Plants	Effluent	Recommendation	Status
Village of Belgium	East Branch of Belgium Creek	Expand	Completedplant relocated (1984)
Private Sewage	Disposal of	Plan	Implementation
Treatment Plants	Effluent	Recommendation	Status
Lakeside Packing Co.ª	Soil absorption and East Branch of Belgium Creek	Maintain and upgrade as needed	Plant maintained

^a Formerly Krier Preserving Company

treatment plants, and in 1993, by the adoption of rules to allow for placement of such limitations. Thus, as specific sewage treatment plant permits are issued, the use of the identified procedure should result in findings requiring reduced phosphorus loadings. Selected characteristics of the public sewage treatment plant currently existing in the watershed are given in Table XV-4.

In addition to the publicly-owned sewage treatment facilities, one private sewage treatment plant was in existence in 1975 in the Sheboygan River watershed. This plant served the Krier Preserving Company (currently the Lakeside Packing Company). As indicated in Table XV-3, this plant was recommended to be maintained and upgraded to provide effluent quality which would be determined on a case-by-case basis as part of the Wisconsin Pollutant Discharge Elimination System (WPDES).

The initial regional water quality management plan included a set of specific options to be considered in facilities planning for management of solids generated at the public and private sewage treatment plants in the Sheboygan River watershed. These options included methods for processing, transportation, and utilization or disposal of treatment plant solids. As facility plans are prepared, they are reviewed for conformance with the plan recommendations. Since sludge management planning is generally carried out as part of the sewage treatment plant facility planning, implementation of this element of the regional plan generally parallels the municipal and private treatment plant implementation described above. One of the principal recommendations under this plan element concerns the preparation of a plant-specific sludge management plan. Since 1977, the Department of Natural Resources has included, as a part of the discharge permitting process, the requirement that the designated management agencies develop and submit a sludge management report. In addition, the permit requires that, upon approval and implementation of the sludge management plan, records be maintained of sludge application sites and quantities, and that the sites be monitored for adverse environmental, health, or social effects that may be experienced due to sludge disposal. At the present time, such reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the watershed.

The initial regional water quality management plan recommended that all of the sanitary sewer service areas identified in the plan be refined and detailed in cooperation with the local units of government concerned. Belgium is the only sewer service area identified in the portion of the Sheboygan River watershed within the Region. This area was refined as recommended in the initial plan. The boundaries of the sewer service area, through 1993, are shown on Map XV-3. Table XV-5 lists the plan amendment prepared for the refinement and the date the Commission adopted the document as an amendment to the regional water quality management plan. The planned sewer service area in the Sheboygan River watershed, as refined through 1993, totals about 0.8 square miles, or about 7 percent of the total watershed area, as shown in Table XV-5.

<u>Current Plan Recommendations</u>: The current point source plan element recommendations provide for the continued operation with expansion and upgrading, as necessary, for the Village of Belgium sewage treatment plant and for the continued operation and maintenance of the private plant serving the Lakeside Packing Corporation facility. Estimated approximate dates for beginning facility

Table XV-4

SELECTED CHARACTERISTICS OF EXISTING PUBLIC SEWAGE
TREATMENT PLANTS IN THE SHEBOYGAN RIVER WATERSHED: 1990

Name of Public Sewage Treatment Plant	1990 Estimated Total Area Served (square mile)	1990 Estimated Total Population Served	Date of Construction and Major Modification	Major Sewage Treatment Unit Processes ^a	Name of Receiving Water to which Effluent is Disposed	WPDES Permit Expiration Date
Village of Belgium	0.5	900	1949, 1970, 1984	Aerated lagoon, sand filtration, chlorination, post aeration	East Branch of Belgium Creek	3/31/90

	Hydraulic Loading ^b (mgd)			ing ^b	BOD ₅ Loading ^b (pounds per day)				Suspended Solids Loading ^b (pounds per day)			
	Existing		Existing				Existing					
Name of Public Sewage Treatment Plant	Average Annual	Maximum Monthly Average	Design Average Flow	Number of Months in 1990 in which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Flow	Number of Months in 1990 in which the Monthly Average Loadings Exceeded the Design Capacity	Average Annual	Maximum Monthly Average	Design Average Flow	Number of Months in 1990 in which the Monthly Average Loadings Exceeded the Design Capacity
Village of Belgium	0.13	0.19	0.19	0	109	176	300	0	108	160	300	0

a In addition, plants typically include headworks and miscellaneous processes such as pumping, flow metering and sampling, screening and grit removal, as well as sludge handling and disposal facilities.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Loadings data were obtained from the 1990 Wisconsin Department of Natural Resources summary report of discharge monitoring data.

Table XV-5

PLANNED SANITARY SEWER SERVICE AREAS IN THE SHEBOYGAN RIVER WATERSHED: 1993

Name of Initially Defined Sanitary Sewer Service Area(s)	Planned Sanitary Sewer Service Area (square miles)	Name of Refined and Detailed Sanitary Sewer Service Area(s)	Date of SEWRPC Adoption of Plan Amendment	Plan Amendment Document
Belgium	0.8	Belgium	September 15, 1993	SEWRPC CAPR No. 97, 3rd Edition, Sanitary Sewer Service Area for the Village of Belgium, Ozaukee County, Wisconsin

Note: CAPR - Community Assistance Planning Report

planning for public sewage treatment plant expansion and upgrading are indicated in Table XV-6. This recommendation regarding plant facility upgrading and expansion, as needed, also applies to the treatment plant solids management element.

The current point source pollution abatement plan element, including the planned sewer service areas, is summarized on Map XV-3. Table XV-6 presents selected design data for the Village of Belgium public treatment plant recommended to be maintained in the Sheboygan River watershed. It is important to note that the plant has not currently recorded monthly average flow which has equalled or exceeded the average design capacity of the plant, as shown in Table XV-4.

Table XV-6 shows expected increases in sewered populations and attendant increases in sewage hydraulic loading rates for two different year 2010 growth scenarios for the public sewage treatment plant in the Sheboygan River watershed. Under the intermediate scenario, the plant is not anticipated to have a loading rate equal to or higher than the average annual design capacity. It appears that facility planning should be between the years 2000 and 2005 for the Village of Belgium sewage treatment plant, as indicated in Table XV-6. Under the high growth scenario, a plant expansion would be required late in the planning period.

The current planned sanitary sewer service area in the Sheboygan River watershed is shown on Map XV-3. The existing and planned year 2010 population data for each sewer service area are presented in Chapter XVIII on a regional basis. A portion of the Belgium sewer service area is located in the Sheboygan River watershed. The planned service area within the portion of the watershed within the Region totals about 0.7 square mile, or about 6 percent of the Sheboygan River watershed.

As noted above, the Belgium sewer service area has been refined as part of the ongoing regional water quality management plan updating process. No additional refinements are envisioned to be needed. It is recommended that the sanitary sewer service area and attendant planned population levels set forth herein be utilized in subsequent sewerage system facility planning and sanitary sewer extension design. Particular attention should be given to the preservation and protection of the primary environmental corridor lands designated in the individual sanitary sewer service area plans and in the adopted 2010 regional land use plan.

In addition to the public plant, there was one private sewage treatment plant in operation within the Sheboygan River watershed in 1990. The facility serves the Lakeside Packing Company facility, located near the current limits of the planned sanitary public sewer service area of the Village of Belgium. Because of the special character and the associated treatment needs of the wastewater generated at the facility, it is recommended that the private plant continue to be operated. The need for upgrading and level of treatment should be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System permitting process.

Sewer System Flow Relief Devices

Existing Conditions and Status of Plan Implementation: In 1975, there was one known separate sewer flow relief devices in the Sheboygan River watershed; a bypass located at the Village of Belgium wastewater treatment facility

Table XV-6

SELECTED DESIGN DATA FOR PUBLIC SEWAGE TREATMENT PLANTS
IN THE SHEBOYGAN RIVER WATERSHED: 1990 AND 2010

			Е	xisting 19	90				Planned Year 2	:010		
								ermediate Gra alized Land U		High G	rowth Decent Land Use Pla	
Name of Public Sewage Treatment Plant	Sewer Service Area	Design Capacity- Average Annual Hydraulic (mgd)	Average Hydraulic Loading (mgd)	Total Area Served (square mile)	Resident Population Served	Planned Sewer Service Area (square mile)	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a	Resident Population Served	Average Hydraulic Loading (mgd)	Approximate Facility Planning Year ^a
Village of Belgium	Belgium Lake Church	0.19	0.13	0.5	900	3.2	1,500	0.21	2004	3,900	0.51	2000

a Approximate year in which facility planning for plant expansion would be initiated in order to allow for expansion during the subsequent three years prior to plant capacity being exceeded. Date is based upon review of average design flows compared to average annual and maximum monthly flows and age of facilities based upon date of last major construction.

Source: SEWRPC

404

discharging to the East Branch of Belgium Creek. This bypass has been eliminated as the plant was upgraded, as recommended in the initial regional water quality management plan. As of 1993, there were no known points of sanitary sewer flow relief in the Sheboygan River watershed.

<u>Current Plan Recommendations</u>: As noted above, there are currently no known points of sewage flow relief in the sanitary sewerage systems in the Sheboygan River watershed.

Intercommunity Trunk Sewer

Existing Conditions and Status of Plan Implementation: The initial regional water quality management plan as updated, recommended the construction of one intercommunity trunk sewer in the Sheboygan River watershed. This trunk sewer would connect the Lake Church sewer service area to the Village of Belgium sewerage system. As of 1993, the implementation of the public sewer system in the Lake Church area has not yet been implemented and the trunk sewer connection has not been made.

<u>Current Plan Recommendations</u>: The current regional water quality management plan includes a recommendation to extend public sanitary sewer services to the Lake Church area. Thus, the plan continues to recommend the construction of the trunk sewer to connect that area to the Village of Belgium sewerage systems. This trunk sewer is discussed in Chapter IX and is shown on Map IX-4, since it is located within the drainage area tributary to Lake Michigan immediately east of the Sheboygan River watershed.

Point Sources of Wastewater Other Than Public

and Private Sewage Treatment Plants

Existing Conditions and Status of Plan Implementation: In 1975 and in 1990, there were no known point sources of pollution identified in the Sheboygan River watershed other than public and private sewage treatment plants. The initial regional plan recommends that such industrial sources of wastewater be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permit process.

<u>Current Plan Recommendations</u>: As of 1993, there were five known, permitted point sources of wastewater other than public and private sewage treatment plants discharging to surface or groundwater systems in the portion of the Sheboygan River watershed contained within the Region. These point sources of wastewater discharge industrial cooling process, rinse, and wash water directly, or following treatment, to the groundwater or the surface waters of the Sheboygan River watershed. It is recommended that such sources of wastewater continue to be regulated and controlled on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System.

Existing Unsewered Urban Development Outside

the Proposed Sanitary Sewer Service Area

As of 1975, there were no enclaves of unsewered urban development located outside of the then proposed year 2000 sewer service areas. As of 1990, no new enclaves of unsewered urban development have been created beyond the proposed 2010 sewer service area.

Miscellaneous Potential Pollution Sources

<u>Landfills</u>: Landfills in the Sheboygan River watershed, including those currently abandoned, have the potential to affect water quality through the release of leachates from the landfill to ground and surface waters. These landfills potentially contain some toxic and hazardous substances due to the disposal of such wastes from households and other sources. In some cases, toxic and hazardous substances have begun to leach into surrounding soils and aquifers, and can potentially be transmitted to the surface waters.

There are currently no active landfills and one known, abandoned landfill located in the portion of the Sheboygan River watershed located within the Region. There is no indication that this landfill is negatively impacting surrounding surface waters.

Leaking Underground Storage Tanks: Leaking underground storage tanks in the Sheboygan River watershed have the potential to affect water quality through the release of substances into the surrounding soils and ground water. Sites with leaking underground storage tanks are eligible for remediation activities under the U.S. Environmental Protection Agency Leaking Underground Storage Tank (LUST) Program, designed to facilitate the clean up of such sites, primarily those sites containing petroleum storage tanks. In selected cases, sites undergoing clean up efforts are permitted under the Wisconsin Pollutant Discharge Elimination System (WPDES) to discharge remediation wastewater to surface or ground waters. Discharges from these sites are required to meet specified water quality discharge standards set forth by the Wisconsin Department of Natural Resources.

As of 1993, there were four known leaking underground storage tanks in the portion of the Sheboygan River watershed contained within the Region. None of these involved the discharging of remediation wastewater directly to surface or ground waters. While there is no specific evidence to document the impact of these individual point sources on water quality within the watershed, it can be reasonably assumed that the cumulative effect of multiple leaking underground storage tanks has the potential to result in detrimental effects on water quality over time.

Additional Groundwater Contamination Sites: Additional groundwater contamination sites which are undergoing remediation may also be permitted under the Wisconsin Pollutant Discharge Elimination System to discharge remediation wastewater to surface or ground waters. As of 1993, there were no such permitted sites discharging to surface or ground waters in the Sheboygan River watershed.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element of the initial regional water quality management plan includes recommendations relating to diffuse sources of water pollution. Nonpoint sources of water pollution include runoff from urban and rural land uses, runoff from construction sites, wastes from livestock operations, malfunctioning on site sewage disposal systems, and pollutant contributions from the atmosphere.

Existing Conditions and Status of Plan Implementation

For the Sheboygan River watershed, the initial plan generally recommended urban and rural nonpoint source pollution control practices designed to reduce the pollutant loadings from nonpoint sources by about 25 percent, in addition to urban construction erosion control, onsite systems management, and streambank erosion. Implementation of the recommended nonpoint source control practices has been achieved on a limited basis in the Sheboygan River watershed through a variety of local and State regulations and programs. These programs include the regulation of onsite sewage disposal systems under programs currently administered by Ozaukee County in the unincorporated areas. These programs provide for the system installation requirements as set forth in Chapter ILHR 83 of the Wisconsin Administrative Code, for ongoing maintenance of newer systems, and for problem resolution of failing systems where they are identified.

With regard to rural nonpoint source controls, Chapter NR 243 of the Wisconsin Administrative Code sets forth design standards and accepted animal waste management practices for large animal feeding operations. This program is administered by the Wisconsin Department of Natural Resources, which works with the County Land Conservation Departments to resolve identified significant animal waste problems. This program has been used in a few selected cases in the Sheboygan River watershed. Other programs, such as the Conservation Reserve Program administered by the U. S. Department of Agriculture, Soil Conservation Service, and wetland restoration programs administered by the Wisconsin Department of Natural Resources and others, are utilized primarily for cropland soil erosion control and wildlife habitat purposes and will have positive water quality impacts.

Chapter ATCP 50 of the Wisconsin Administrative Code requires that soil erosion on all croplands be reduced to tolerable levels by the year 2000. levels are defined as soil loss tolerances or T-values, which are the maximum annual average rates of soil loss for each soil type that can be sustained economically and indefinitely without impairing the productivity of the soil. These values have been determined for each soil type by the U.S. Soil Conservation Service. Chapter 92 of the Wisconsin State Statutes requires that soil erosion control plans be prepared and maintained for counties identified by the Wisconsin Department of Agriculture, Trade, and Consumer Protection as priority counties for soil erosion control. The Commission has prepared an agricultural soil erosion control plan for Ozaukee County, and thus for all areas of the Sheboygan River watershed contained within Southeastern Wisconsin. identifies priority areas for cropland soil erosion control within the County and the watershed, and, additionally, recommends farm management practices intended to reduce cropland soil erosion to tolerable levels. Soil conservation and management are closely related to the issues of stormwater management, flood control, control of nonpoint source pollutants, changing land use, and deterioration of the natural resource base. Therefore, it is important that soil conservation be considered within the framework of a comprehensive watershed planning program which will enable the formulation of coordinated, long-range solutions.

While the local programs described above have probably resulted in some modest reduction in pollutant loadings from nonpoint sources, this element of the plan remains largely unimplemented.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans are to identify the nonpoint source pollution control practices that should be applied to specific lands. Working with the individual county land conservation committees and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed-by-watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program provides cost-sharing funds for an individual project, or land management practice, to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the Wisconsin Department of Natural Resources.

Onion River Priority Watershed Project: The Onion River priority watershed project was designated a "priority watershed" in 1981. Planning for the Onion River priority watershed project was completed in 1981, and implementation of practices occurred from 1981 through 1989. The planning was conducted for the entire 101.5-square-mile Onion River watershed, which is tributary to the Sheboygan River. About 91 square miles, or about 90 percent of the watershed is located in Sheboygan County. The Onion River priority watershed program established pollutant reduction goals which provided for a reduction of about 40 percent, as well as reduction in bacterial counts and improved fish population and habitat. These reductions were considered to be consistent with the initial water quality management plan.

To achieve these pollutant reduction goals, the Onion River priority watershed project included recommendations and funding eligibility for barnyard runoff and manure storage systems, streambank protection programs, and the construction of grassed waterways and other cropland management practices. Participation in the priority watershed program as measured by the actual installation of practice compared to the practice recommended was generally about 25 percent or less. The Department of Natural Resources final report³ on the project suggests that the Onion River water quality and biological conditions has improved between 1981 and 1990 although the level of such improvement remains to be relatively low.

Current Plan Recommendations

Given the partial implementation of the nonpoint source priority watershed plan recommendations, it is recommended that the need for further nonpoint source

¹ Wisconsin Department of Natural Resources Publication, <u>The Onion River Priority Watershed Plan</u>, May 1981.

²Wisconsin Department of Natural Resources Publication No. WR-277-91, <u>An Evaluation of Water Quality in the Onion River Priority Watershed and the Effects of Best Management Practice Implementation: Final Report</u>, January 1991.

³Wisconsin Department of Natural Resources Publication No. WR-268-91. <u>Onion River Priority Watershed Project: Final Report: Nonpoint Source Water Pollution Abatement Program</u>, May 1992.

reductions in the Sheboygan River watershed be reviewed and reevaluated. It is also recommended that construction site erosion control onsite sewage system management and streambank erosion control be carried out in the watershed. The reevaluation of the levels of nonpoint source pollution control needed should be based upon additional monitoring which would be conducted as described in the next section.

WATER QUALITY MONITORING PLAN ELEMENT

Existing Conditions and Status of Implementation

While substantial progress has been made in the regional water quality management plan elements described in the previous sections, the most direct measure of the impact of plan implementation on water quality conditions can only be achieved by a well-planned areawide water quality and biological condition monitoring program. As of 1993, no long-term monitoring has been carried out in the Sheboygan River watershed within the Region on a sustained basis.

Current Plan Recommendation

Increased water quality and biological conditions monitoring will be needed in the watershed to document current conditions and to demonstrate water quality condition changes over time. It is recommended that an intensive water quality and detailed biological condition monitoring program be conducted by the Wisconsin Department of Natural Resources over a one-year period at one station on the West Branch of Belgium Creek and at one station on the East Branch of Belgium Creek, both near the Ozaukee County-Sheboygan County line. It is recommended that this program be conducted within the next five to seven years and be repeated at approximately five to seven year intervals. These recommendations can be coordinated, and are consistent, with the Wisconsin Department of Natural Resources current surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five to seven year rotating cycle.

LAKE MANAGEMENT PLAN ELEMENT

The initial regional water quality management plan included recommendations for reducing nonpoint sources of pollution in the tributary areas of lakes and for consideration of other lake management measures, including in-lake measures such as aeration, nutrient inactivation, and fishery management programs. For major lakes, the initial plan recommended that comprehensive lake management plans be prepared to consider in more detail the applicability and preliminary design of watershed and in-lake management measures. The preparation of such a comprehensive plan requires supporting water quality monitoring programs to be established.

As noted above, there are no major lakes in the Sheboygan River watershed. However, there are smaller water bodies such as park-oriented ponds and small lakes in the watershed. It is recommended that water quality planning and supporting monitoring be conducted for smaller, lake-like water bodies in the watershed which are less than 50 acres in size which are deemed to be important for water quality protection. In such cases, the management techniques similar to those recommended to be applicable for consideration on the major lakes in the Region are considered applicable for management purposes.

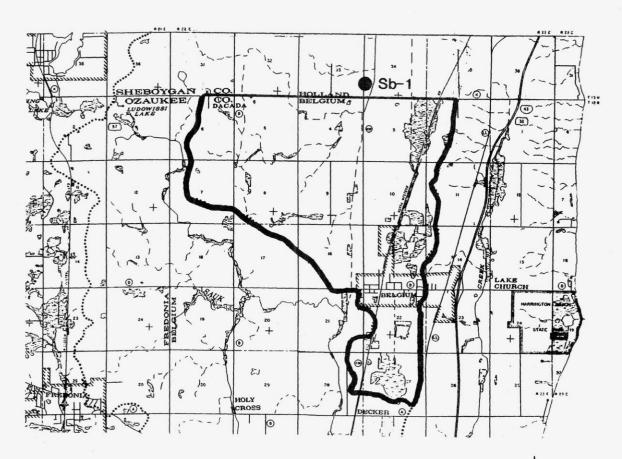
WATER QUALITY AND BIOLOGICAL CONDITIONS

Streams

Stream water quality data available for use in preparing the initial regional water quality management plan were collected during the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream water quality monitoring effort; and the 1976 Commission monitoring program conducted under the regional water quality management planning effort. Available data collected in those programs for the Sheboygan River watershed included samplings at one Commission station on the West Branch of Belgium Creek. The sampling station location is shown on Map XV-4.

No post-1976 known water quality data have been collected in the watershed. The assessment of current conditions relied upon the uniform areawide characterization of surface water conditions developed under the initial planning effort by simulation modeling. The modeling results developed under the initial plan included simulation of water quality conditions under various levels of point source and nonpoint source pollution control and under both the then current 1975 land use conditions and under planned year 2000 land use conditions, as discussed in Chapter II. Review of these data can provide insight into the current water quality conditions and the current potential for achieving the established water use objectives in the Sheboygan River watershed.

<u>Toxic and Hazardous Substances</u>: No known stream or bottom sediment sampling for toxic and hazardous materials had been available for use in preparing the initial regional water quality management plan or in preparing the current plan.


<u>Water Quality Assessments</u>: Based upon the available data, the water quality and biological characteristics of the Onion River subwatershed was assessed with the results set forth in Table XV-7. Fish population and diversity was classified as being poor in the West Branch of Belgium Creek. Standards are estimated to be exceeded for fecal coliform levels in the West Branch of Belgium Creek. Dissolved oxygen, ammonia nitrogen, and total phosphorus levels are estimated to meet the standards.

No recent data were available on biotic index ratings, which are biological indicators of water quality within a stream system. High levels of streambed sedimentation were noted in the West Branch of Belgium Creek.

Table XV-8 sets forth the water quality index classification⁴ used in the initial plan for 1964, 1974-75, and for 1990-1991 conditions for the sampling station in the watershed. The use of the index is discussed in Chapter II. The limited data indicate that water quality conditions remained "fair" from 1964 through 1974 and 1975. As indicated in Table XV-8, no recent data were available to assess the water quality conditions on a similar basis in 1990 or 1991 within the watershed. However, the aforementioned project evaluating report of the Onion River nonpoint source priority watershed program indicates that there was a very small improvement in water quality conditions between 1980 and 1990. The

⁴For a detailed description of the water quality index, see SEWRPC Technical Report No. 17, <u>Water Quality of Lakes and Streams in Southeastern Wisconsin:</u> 1964-1975, June 1978.

Map XV-4 LOCATIONS OF WATER QUALITY SAMPLING STATIONS IN THE SHEBOYGAN RIVER WATERSHED

LEGEND

Sampling stations used in preparation of initial plan

SEWRPC

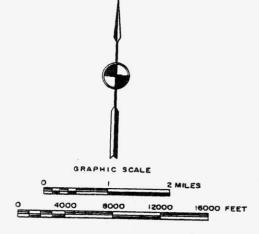


Table XV-7

CHARACTERISTICS OF STREAMS REACHES IN THE SHEBOYGAN RIVER WATERSHED

	Stream	Fish Population	Recorded		Wat	er Quali	ty Problems	o .	Biotic		Physical Modifications
Stream Reach	Length (miles)	and Diversity ^a	Fish Kills	DO	NH ₃	Total P	Fecal Coliform	Toxics	Index Rating	Streambed Sedimentation	to Channel c
West Branch Belgium Creek Upstream Sheboygan County Line	3.0	Poor	No	No	No	No	Yes	• •		High (muck)	Major
East Branch Belgium Creek	4.2		No								Major

a Based upon stream appraisal documentation set forth in the May 1981 Onion River Priority Watershed Plan and professional judgement of area fish managers.

Source: Wisconsin Department of Natural Resources and SEWRPC.

b Simulation modeling analyses data developed in the initial plan were used to evaluate current water quality for the Sheboygan River watershed based upon year 2000 land use conditions and current level of pollutant control.

^c Physical modifications to the channel were defined as: major if 50 percent or more of the stream reach was modified by structural measures or was deepened and straightened; moderate if 25 to 50 percent of the stream reach was modified; and low if up to 25 percent of the reach was modified.

Table XV-8

WATER QUALITY INDEX CLASSIFICATIONS FOR THE SAMPLING STATION IN THE SHEBOYGAN RIVER WATERSHED 1964, 1974-1975, AND 1990-91

Water Quality Sampling Station ^a	July, August, September, and October of 1964	August of the Years 1974-1975	July, August, 1990 and 1991
Sb-1	Fair	Fair	
Watershed Average	Fair	Fair	

 $^{^{\}rm a}$ See Map XV-4 for sampling station locations.

conclusion was based upon a comparison of biotic indices taken in the headwaters of the Onion River, which are upstream of the confluence with the Belgium Creek.

A summary of potential pollution sources in the portion of the Sheboygan River watershed contained within the Region is shown in tabular summary in Table XV-9. Review of the data indicate that an insignificant amount of land within the watershed has been converted from rural to urban uses. Data on nonpoint source pollution, public and private sewage treatment plans discharging to surface waters are included in Table XV-9.

Compliance with Water Use Objectives

As indicated in Chapter II, both the East and West Branches of Belgium Creek are recommended for warmwater sport fish and full recreational uses. These water use objectives and the associated water quality standards are discussed in Chapter II.

Based upon the available data for the sampling station in the watershed, the West Branch of Belgium Creek partially meets the water quality standards associated with the recommended water use objectives during and prior to 1975, the base year of the initial plan. As part of the Onion Creek priority watershed planning program, the DNR staff conducted field inspections and limited sampling in order to assess the water quality and biological conditions in 1981 and 1990 of the streams in the Onion River watershed. Review of the data collected in those investigations and a review of the water quality sampling and water quality simulation data developed in the initial plan and the status of plan implementation, it is estimated that violations of fecal coliform standards occur throughout the watershed, and thus, the water use objectives are being partially met.

It should be noted that the water use objectives set forth herein for both the East and West Branches of Belgium Creek are higher than the objectives set forth in Chapter NR 104 of the Wisconsin Administrative Code. Chapter NR 104 classifies the East and West Branches of Belgium Creek as capable of supporting only a limited aquatic life community, while the objectives set for herein recommend a warmwater sport fish objective. It is recommended that a stream appraisal to further assess the potential for a higher use objective be conducted for the East and West Branches of Belgium Creek as part of the next one-year monitoring period envisioned to be carried out in the Sheboygan River watershed by the Wisconsin Department of Natural Resources.

WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Based upon the current status of plan implementation, current land use planning and local nonpoint source pollution abatement and sewerage system planning, there are two major issues which remain to be addressed in the Sheboygan River watershed. One issue related to the degree of nonpoint source pollution abatement still required in the watershed. In addition, it is also recommended that the Wisconsin Department of Natural Resources conduct a water quality and biological conditions survey on the East and West Branches of Belgium Creek to re-assess the water use objectives currently set forth in the Wisconsin Administrative Code.

Table XV-9

IMPLEMENTATION STATUS OF THE INITIAL REGIONAL WATER QUALITY MANAGEMENT PLAN FOR INTERCOMMUNITY TRUNK SEWERS IN THE SHEBOYGAN RIVER WATERSHED: 1990

Intercommunity Trunk Sewer	Status of Implementation
Lake Church - Belgium	No action

Reassessment of the Future Levels of Nonpoint Source Controls In the Onion River Watershed

The nonpoint source priority watershed program implementation period has now been completed for the Onion River watershed. Following completion of detailed water quality and biological condition monitoring in the Onion River watershed under the Wisconsin Department of Natural Resources ongoing monitoring program, it is recommended that the need for further nonpoint source controls be assessed based upon the current level of plan implementation and water quality and biological conditions data.

Stream Reclassification Evaluation

The East Branch of Belgium Creek is currently included under the limited classifications in Chapter NR 104 of the Wisconsin Administrative Code. However, it is recommended that the objective for this stream be upgraded to provide for water sport fish classifications. It is recommended that the Wisconsin Department of Natural Resources include further stream appraisals for Belgium Creek as part of the monitoring program during the next period when the Department is conducting monitoring efforts in the Sheboygan River watershed as is envisioned within the next five to seven years.

Chapter XVI

STATUS OF GROUNDWATER MANAGEMENT PLAN ELEMENT

INTRODUCTION AND BACKGROUND

Groundwater resources constitute an extremely valuable element of the natural resource base of Southeastern Wisconsin. The groundwater reservoir not only sustains lake levels and provides the base flow of the streams in the Region, but comprises a major source of water supply for domestic, municipal, industrial, and agricultural water users. Like surface water, groundwater is susceptible to depletion in quantity and to deterioration in quality. An important consideration in regional water quality planning, therefore, is the protection of the quantity and quality of this valuable resource.

A groundwater management plan element of the regional water quality management plan is currently under preparation in a cooperative program being carried out by the University of Wisconsin-Extension, Wisconsin Geologic and Natural History Survey, and the Regional Planning Commission. This chapter describes the groundwater resources in Southeastern Wisconsin; presents the purpose and objectives, as well as scope of the groundwater management plan being prepared; and sets forth the current status and the timetable for completion of the plan element.

GROUNDWATER RESOURCES DESCRIPTION

Three major aquifers exist within the seven-county Region. From land's surface downward, they are: 1) the sand and gravel deposits in the glacial drift; 2) the shallow dolomite strata in the underlying bedrock; and 3) the deeper sandstone, dolomite, siltstone, and shale strata. Because of their relative proximity to the land's surface, and because of the hydraulic interconnection, the first two aquifers are commonly referred to collectively as the "shallow aquifer," while the latter is referred to as the "deep aquifer." Wells tapping these aquifers are referred to as shallow or deep wells, respectively. Except in the western portions of Walworth and Waukesha Counties, the shallow and deep aquifers are separated by the Maquoketa shale, which forms a relatively impermeable barrier between the two aquifers. The spatial distribution of the unconsolidated surficial material and the thickness and orientation of the bedrock strata are depicted on Map XVI-1 and Figure XVI-1; lithologic descriptions of the surficial deposits and the bedrock are provided in Table XVI-1.

Some water is recharged to the deep sandstone aquifer underlying the Region by vertical movement through wells open to both the shallow and deep aquifers and by slight vertical movement downward through the Maquoketa shale. The principal source of recharge to the deep aquifer, however, is precipitation percolating

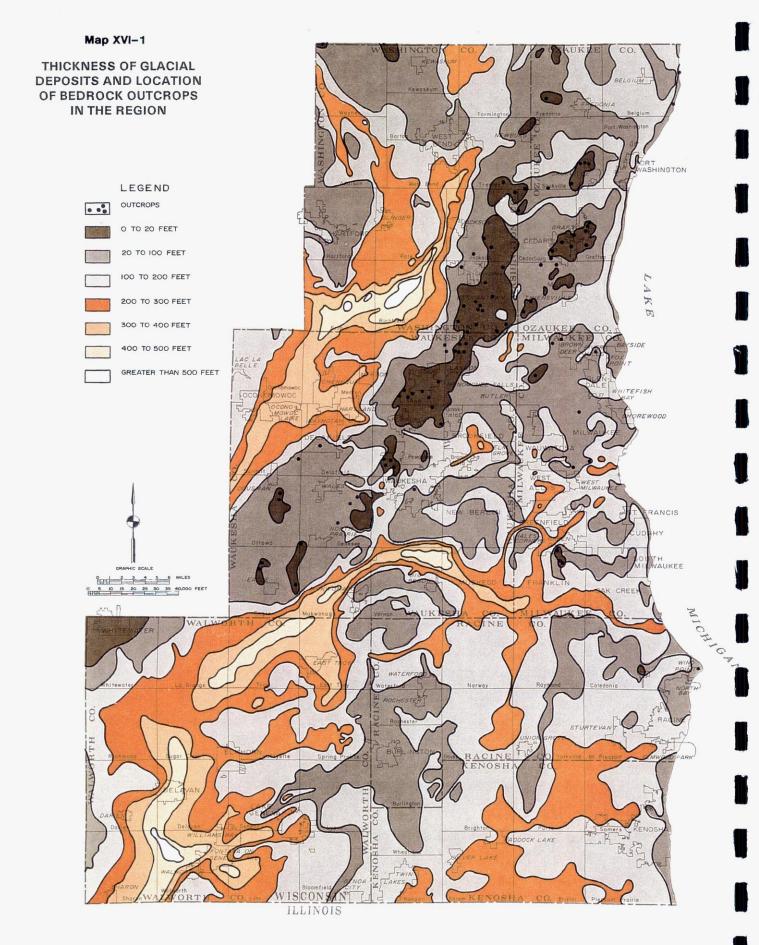


Figure XVI-1 MAP AND CROSS-SECTION OF BEDROCK GEOLOGY IN THE REGION

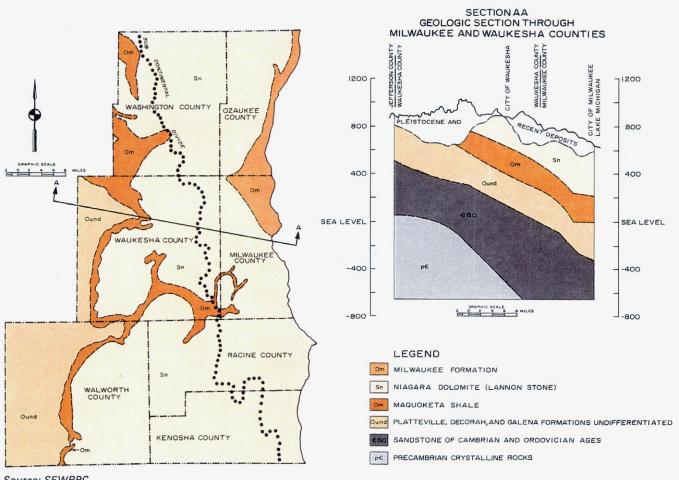


Table XVI-I
STRATIGRAPHIC COLUMN OF BEDROCK AND GLACIAL DEPOSITS IN THE REGION

System	Series	Formation	Lithologic Description
Quaternary		Recent deposits	Soils, muck, peat, alluvium, beach sand and gravel. Zero to five feet thick
		Pleistocene deposits	Till and outwash sand and gravel. Zero to 430 feet thick.
		Kenwood	Shale, black, carbonaceous. Fossiliferous. No outcrops. Found in City of Milwaukee intake tunnelLake Michigan. Approximately 55 feet thick.
Devonian	Middle Erian	Milwaukee	Shale, shaly limestone; lower one-third dolomite. Fossiliferous. Approximately 130 feet thick.
		Thiensville	Dolomite, thick- to thin-bedded. Some fossils. Small amounts of bitumen. Approximately 65 feet thick.
		Lake Church	Dolomite, thick- to thin-bedded. Fossiliferous. Pyritic in places. Approximately 27 feet thick.
Silurian	Cayugan	Waubakee	Dolomite, thin-bedded, hard and brittle. Fossils scarce. Approximately 30 feet thick.
	Niagaran	Racine	Dolomite, fine to coarsely crystaline. Thick- to thin-bedded. Barren to fossiliferous. Approximately 100 feet thick.
		Manistique	Dolomitelower part thin-bedded. Fossils. Upperfairly thin-bedded, cherty. Many corals. Approximately 150 feet thick.
		Burnt Bluff	Dolomite, thick-bedded or thin-bedded. Lower part, a few fossils. Upper part, semilithographic. No fossils. Approximately 110 feet thick.
	Alexandrian	Mayville	Dolomite, thick-bedded, compact to coarsely crystalline. Brecciated in places, cherty, many reef structures. Approximately 175 feet thick.
Ordovician	Cincinnatian	Meda	Red-brown colitic iron ore and noncolitic ore. Missing in Racine, Milwaukee, Ozaukee, Door, and Dodge Counties. In lenses up to approximately 55 feet thick.
		Maquoketa	Shale, dolomitic, and beds of dolomite. Fossili- ferous. Ninety to 225 feet thick.
	Champlainian	Salena	Dolomite, thick- to thin-bedded, fine to coarsely crystalline. Cherty. Shaly and sandy in places; some fossils. Approximately 227 feet thick.

Source: SEWRPC.

downward through glacial deposits into the deep aquifer which is exposed beneath the glacial deposits within the Region only in the western one-half of Walworth County and the western one-quarter of Waukesha County. The deep aquifer recharge area within Southeastern Wisconsin is a long narrow zone oriented in a generally north-south direction. It is bounded on the east by the Maquoketa shale and on the west by a groundwater divide, the separation between eastward and westward groundwater movements, located along the western edge of Waukesha and Walworth Counties. Groundwater in the deep aquifer beneath the Region moves in a generally easterly direction from the primary western recharge areas toward Lake Michigan. Thus, most of the water withdrawn from the deep sandstone aquifer by communities and industries in the seven-county Region originally entered the aquifer via the Waukesha and Walworth county recharge areas.

Pumping from the confined sandstone aquifer has altered the potentiometric surface of that aquifer over the past century. Prior to intensive pumpage from the aquifer, the movement of groundwater in the aquifer was generally from west to east, with the potentiometric surface being located just below the ground surface and in some instances actually above the ground surface as evidenced by reports of flowing or artesian wells. Since 1880, the original potentiometric surface of the sandstone aquifer has been markedly altered, primarily as a result of pumpage in the major urban areas in the Region, as well a heavy groundwater use south of the Region in Northeastern Illinois. Drawdowns of up to 350 feet have occurred in the Milwaukee-Waukesha area, while drawdowns in excess of 275 feet have occurred at the Wisconsin-Illinois line.

Whereas the primary source of recharge for the deep sandstone aquifer is located partly outside of Southeastern Wisconsin, the shallow aquifer, composed of the glacial draft and interconnected dolomitic bedrock, is recharged locally by downward percolation of precipitation and surface water. In contrast to the deep aquifer, the direction of water movement in the shallow aquifer is much more variable and complex. Movement occurs from local recharge areas toward multiple points of discharge, such as streams, lakes, marshes, and wells. Compared to the deep aquifer, the shallow aquifer is more susceptible to pollution by wastewater because it is nearer, both in terms of distance and time, to potential pollution sources, thus minimizing the potential for dilution, filtration, and other natural processes that tend to reduce the potential detrimental effects of pollutants.

The current quality of groundwater in both the shallow and deep aquifers throughout the Region is generally good, although localized water quality problems affect some areas. Groundwater throughout the Region may be characterized as hard, containing high concentrations of calcium, magnesium, sulfates, and other dissolved solids; therefore, softening is required for almost all water uses. Localized water quality problems include hardness, expressed as calcium carbonate, in excess of 500 mg/l in the deep sandstone aquifer along much of the

¹The potentiometric surface represents the static head of water in an aquifer as defined by the levels to which water will rise in wells penetrating the aquifer.

eastern edge of the Region. Some wells in the Village of River Hills in Milwaukee County, for example, have measured hardnesses exceeding 1,500 mg/l and total dissolved solids concentrations in excess of 6,000 mg/l.

Groundwater quality conditions can be impacted by sources of pollution, such as landfills, agricultural fertilizer or manure storage and application sites, pesticide application sites, chemical spills, leaking surface or underground storage tanks, and nonpoint sources of pollution, including onsite sewage disposal systems. In addition, concerns exist in isolated cases in Southeastern Wisconsin with regard to naturally occurring substances. Within Southeastern Wisconsin, isolated groundwater problems have been encountered relating to several types of groundwater quality problems an issues.

The first groundwater quality concern relates to radium concentrations. Certain formations within the Cambrian sandstones in Southeastern Wisconsin are known to produce relatively high concentrations of naturally occurring radium. This naturally occurring radium has been found to exceed the State standard for radium in a number of municipal wells using the sandstone aquifer as a source. Evaluations are being undertaken to consider alternative means of reducing the radium level in these wells. In addition, the U. S. Environmental Protection Agency and the Wisconsin Department of Natural Resources are continuing to evaluate the standard for radium in order to assess the suitability of the current standards.

Another groundwater quality problem found in Southeastern Wisconsin is the presence at certain locations of volatile organic materials. These volatile organic materials enter the groundwater system primarily through commercial, industrial, and municipal waste disposal systems or spills. Most of these organic materials are industrial solvents or household products, such as spot and stain removers, paints and thinners, drain cleaners, and air fresheners. Other sources of volatile organics are leaking underground storage tanks for gasoline and other petroleum products. The Wisconsin Department of Natural Resources has tested all municipal water supplies in the State and a large number of private wells for volatile organic materials. An isolated number of municipal wells in Southeastern Wisconsin have been found to contain detectable levels of volatile organic materials. The areas where these materials have been encountered are relatively limited; in most cases remedial actions have been carried out or are underway to resolve the problems. In addition, the increased awareness and monitoring activity is expected to resolve these isolated problems over time.

Isolated cases of bacterial and nitrogen contamination have also been identified in Southeastern Wisconsin. Such cases have occurred most often in areas where the limestone formations are near the surfaces, including portions of northeastern Waukesha County. These problems can often be traced to nonpoint pollution sources and septic system discharges. Public awareness of these problems is increasing and improved monitoring is underway. The continued installation of public centralized sewerage systems will help to resolve many of these isolated problems over time.

REGIONAL GROUNDWATER MANAGEMENT PLANNING PROGRAM

Purpose and Objectives

The purpose of the groundwater management plan element is to complete a comprehensive groundwater resource data inventory and analysis, including a series of groundwater resource maps of the Region and a technical report describing the findings of the inventory and analysis; to complete a groundwater pollution source inventory and supporting mapping; and to develop groundwater protection and management recommendations for the Region.

The primary objectives relating to the Southeastern Wisconsin Region are:

- 1. To interpret soil survey information and determine and map the pollutant attenuation capacity of soils.
- 2. To map the geology of the Region, concentrating on the Pleistocene geology and depth to bedrock and to compile bedrock geology data from existing information.
- 3. To revise and refine existing water-table maps and identify groundwater divides and regional groundwater flow directions.
- 4. To evaluate hydrogeology of the soils, unconsolidated materials, and the underlying bedrock, and evaluate the susceptibility of groundwater to contamination.
- 5. To identify and evaluate the potential contamination sources of ground-water.
- 6. To develop groundwater management protection recommendations for the Region based upon the inventories and analyses.

The planning program is intended to form the basis for a groundwater management element of the regional water quality management plan. In addition, the planning program will provide, on a regional basis, valuable hydrogeologic information for use in parallel and subsequent groundwater planning programs, such as well head protection planning.

Scope of Work

The project elements include inventory and analyses of existing data; field and laboratory work; mapping; and report preparation. The initial inventory work will include:

- 1. Review of existing information on the Region's groundwater and other related resources.
- 2. Gathering data on soils, geology, groundwater, precipitation, streamflow, and water levels.
- 3. Inventory of existing well logs and observation stations for measuring precipitation, streamflow, and groundwater levels.

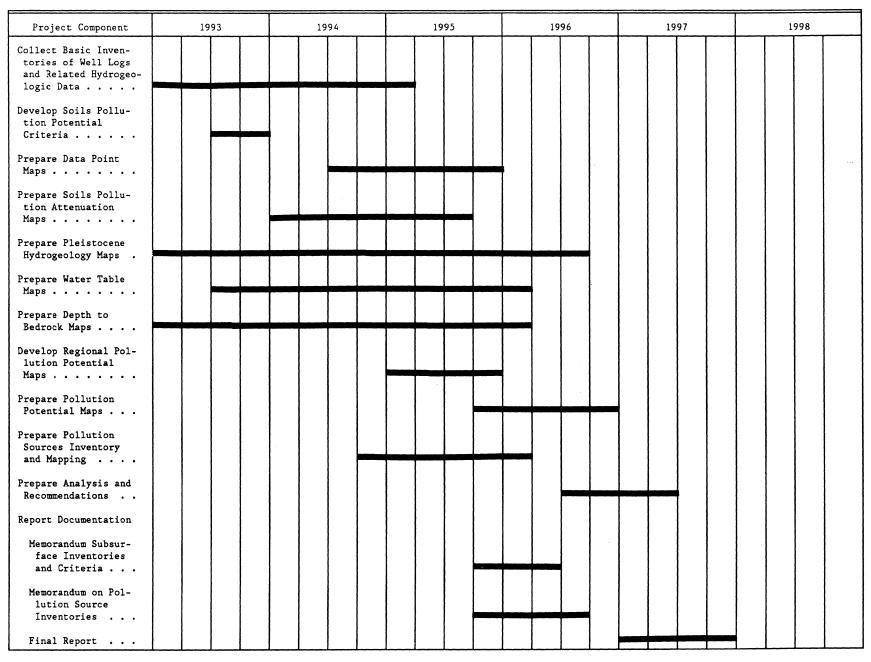
4. Inventory of major potential contamination sources, such as solid and liquid waste disposal sites.

The mapping and field and laboratory work is envisioned to include the following work elements:

- 1. The preparation of maps illustrating the soil pollutant attenuation potential. Maps will be prepared at a scale of one inch equals 8,000 feet for the following parts of the Region: Washington and Ozaukee Counties, Waukesha and Milwaukee Counties, Racine and Kenosha Counties, and Walworth County. In addition, a regional map at a scale of one inch equals 8,000 feet will be prepared.
- 2. The preparation of Pleistocene hydrogeologic maps at a scale of one inch equals 8,000 feet, with cross sections, for Washington and Ozaukee Counties, Racine and Kenosha Counties, Milwaukee County, Walworth County, and Waukesha County. In addition, a regional Pleistocene hydro-stratigraphic map at a scale of one inch equals 8,000 feet will be prepared.
- 3. The preparation of depth to bedrock maps at a scale of one inch equals 8,000 feet will be prepared for Ozaukee and Washington Counties, Kenosha and Racine Counties, Waukesha and Milwaukee Counties, and Walworth County.
- 4. The bedrock geology in the Region will be evaluated to the extent necessary for the evaluation of hydrogeology and of the groundwater susceptibility to contamination. Bedrock hydrogeologic units will be defined. Adequate data will be collected and mapping developed to refine the limits of the Maquoketa shale where it covers the suspected recharge area of the deep sandstone aquifer in the Region. This mapping update will be limited to the boundary of the Maquoketa shale with the sandstone aquifer recharge area.
- 5. The preparation of refined and updated water-table maps at a scale of one inch equals 8,000 feet for the shallow aquifer for Ozaukee and Washington Counties, Kenosha and Racine Counties, Waukesha and Milwaukee Counties, and Walworth County. These maps will be constructed using well constructor's reports and other available information. The water-table maps will show hydrogeologic boundaries and general direction of groundwater flow, in addition to contour lines of the water-table surface.
- 6. The preparation of a regional groundwater pollution vulnerability map will be prepared at a scale of one inch equals 8,000 feet and will be prepared based upon the relative vulnerability of aquifers to contamination from surface and near-surface contamination sources and activities, utilizing all of the inventory information gathered for the project. Mapping system and criteria will be described.
- 7. The preparation of a map at a scale of one inch equals 8,000 feet showing public supply wells, other high-capacity wells, potential

flowing wells, observation wells, precipitation stations, and surface water gaging stations, known waste disposal sites, known and potential groundwater pollution sources, and other relevant potential groundwater pollution sources.

8. The preparation of a map at a scale of one inch equals 8,000 feet showing land uses.


A final report will be prepared summarizing the findings of the inventories and analyses conducted characterizing the groundwater resources of the Region and susceptibility of those resources to contamination; describing the existing and potential sources of pollution; and describing recommended means of protecting the groundwater resources which can be determined by the inventories and analyses conducted.

Current Status and Schedule for Completion

The ongoing water quality management planning program is being conducted over a multi-year period 1993 through 1997. The current status and schedule for completion of the program is summarized in Figure XVI-2. As can be seen by review of Figure XVI-2, as of March 1995, work has been completed on collecting and collating the basic subsurface inventory data needed, including well logs and related subsurface data. The mapping of soils pollution attenuation maps for all seven counties has been completed in draft form with final maps expected to be completed by mid-1995. Mapping of depth to bedrock, water table, and pleistocene geology, pollution sources and inventory are currently under preparation and are expected to be completed by mid-1996. Regional pollution potential criteria and the final mapping of the pollution potential for the Region are expected to be completed by the end of 1996. Recommendations and final report preparation is to be completed in 1997.

Figure XVI-2

SCHEDULE FOR COMPLETION OF GROUNDWATER MANAGEMENT PLANNING PROGRAM

Source: SEWRPC.

Chapter XVII

DESIGNATED MANAGEMENT AGENCIES--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION

Section 208 of the Federal Clean Water Act as amended sets forth a detailed planning process to be adopted by States pursuant to the goal of the Act--the attainment of surface waters, wherever attainable, to "fishable and swimmable" conditions. Importantly, this planning process includes the designation of areawide planning agencies and plan implementation management agencies. Within the seven-county Southeastern Wisconsin Region, the Southeastern Wisconsin Regional Planning Commission has been designated as the areawide water quality management planning agency by the Governor of Wisconsin under Section 208(a)(5). The Wisconsin Department of Natural Resources is the agency responsible for regulatory oversight of water quality management within the Region and throughout the State. The current regional water quality management plan has been described in Chapters IV through XVI on a watershed basis and is summarized in Chapter XVIII.

Implementation of the areawide water quality management plan, in terms of the process set forth in Section 208(b)(2)(D) of the Federal Clean Water Act as amended and Chapter NR 121 of the Wisconsin Administrative Code, requires that management agencies be designated and responsibilities defined for the major components of the plan. Accordingly, this chapter presents recommendations for such management agency designations and sets forth the various actions that must be undertaken in order for the plan to be carried out as it has now been described in its current form. As was done in the initial plan, the plan implementation recommendations regarding management agency designations, are to the maximum extent possible related to the existing governmental institutional structure and programs, and to existing enabling legislation.

As noted in Chapter III of this report, the most fundamental and basic element of the areawide water quality management plan is the land use element. The various recommended means of implementing the regional land use plan have been discussed in detail in Chapter XII of SEWRPC Planning Report No. 40, A Regional Land Use Plan and a Regional Transportation Plan for Southeastern Wisconsin: 2010, Volume Two, Alternatives and Recommended Plans. These various methods of land use plan implementation are not to be repeated here, but rather are hereby directly incorporated by reference into the plan implementation component for the regional water quality management plan. The local governmental management agencies designated for each of the other plan elements of the recommended regional water quality management plan--point source pollution abatement, nonpoint source pollution abatement, and water quality monitoring and lakes management plan elements--are set forth in this Chapter.

POINT SOURCE POLLUTION ABATEMENT AND SLUDGE MANAGEMENT PLAN ELEMENT IMPLEMENTATION

The local governmental management agencies for the point source pollution abatement and sludge management elements of the recommended areawide water quality management plan are identified in Table XVII-1. As previously noted, sludge management planning is generally carried out as part of the detailed sewage treatment plant planning, design, and construction and, since 1977, has been a requirement of the Wisconsin Pollutant Discharge Elimination System permitting process. Consequently, recommendations regarding the management of sewage sludges are included herein as an integral component of the point source pollution abatement plan element. The designated point source management agencies are comprised of all of the units and agencies of government that currently provide centralized sanitary sewer service in the Region, and which operate or would operate a sewage treatment facility under the plan, together with proposed new agencies where such are deemed necessary to carry out the plan recommendations.

In Kenosha County, a total of 16 management agencies have been designated, all except one of which are existing agencies. Eleven of the 15 existing management units are special purpose units of government. One new agency is proposed to be formed, that being a new utility or sanitary district to provide for public sanitary sewer service to the urban development around Powers, Benedict, and Tombeau Lakes, which is currently unsewered, but is recommended to be provided with a public sanitary sewer system. Of the 15 existing management agencies, 11 are special purpose units of government. A subregional sewer and water supply system plan prepared for the Greater Kenosha Area recommended the creation of an areawide sewer and water authority as the best approach to implementing the recommended sewerage and water supply system plans. Such an authority would own and operate all of the major, that is, areawide sewerage and water supply facilities in the planning area. It is envisioned that the regional water quality management plan will be amended to reflect the findings of this subregional plan at such time as there is general agreement on the recommendations of the plan. This would add a new management agency, an areawide sewer and water authority. As of December 1994, the intergovernmental agreements needed to proceed with an amendment of the regional water quality management plan to incorporate the findings of the 1991 system plan had not been forthcoming. An amendment to the plan continues to be needed in this regard.

In Milwaukee County, a total of 20 agencies have been designated. All 20 of these agencies, which consist of the 19 local units of government in the County and the Milwaukee Metropolitan Sewerage District, already provide centralized sanitary sewer service.

In Ozaukee County, a total of 10 agencies have been designated. Nine of the agencies currently exist. One of the existing management agencies is a special purpose unit of government. One new agency is proposed to be formed, that being a sanitary or utility district in the Town of Belgium to provide centralized sanitary sewer service to the Lake Church and Harrington Beach area of the Town.

¹Ruekert & Mielke, Inc., <u>A Coordinated Sanitary Sewer and Water Supply System</u>
<u>Plan for the Greater Kenosha Area</u>, October 1991.

Table XVII-1

LOCAL GOVERNMENTAL MANAGEMENT AGENCY DESIGNATIONS AND SELECTED RESPONSIBILITIES FOR THE POINT SOURCE POLLUTION ABATEMENT ELEMENT OF THE RECOMMENDED REGIONAL WATER QUALITY MANAGEMENT PLAN FOR SOUTHEASTERN WISCONSIN

1	1	Construct,	·	Construct			Eliminate
	Refine	Maintain,		and	Construct		Discharges
	and	and	Abandon	Maintain	and		from All
	Detail	Operate	Sewage	Inter-	Maintain	Abate	Points of
	Sewer	Sewage	Treat-	community	Local	Combined	Sewage
Point Source	Service	Treatment	ment	Trunk	Sewer	Sewer	Flow
Management Agency	Area	Plant	Plant	Sewer	System	Overflow	Relief
KENOSHA COUNTY							
City of Kenosha		x			х		
Village of Paddock Lake		x			x		
Village of Silver Lake		x			x		
Village of Twin Lakes		x			x		х
Village of Pleasant Prairie	1		1				
Sewer Utility District No. 1					х		
Sewer Utility District D		x			Х		
Sewer Utility District F					X		
Sanitary District No. 73-1		х			х		
Town of Bristol]		l				
Utility District No. 1		х			Х		
Utility District No. 3					Х		
Utility District No. 4					х		
Town of Salem]				
Sewer Utility District No. 1			х	х	х		
Sewer Utility District No. 2		х		х	Х		
Town of Somers							
Sanitary District No. 1					Х		~
Utility District No. 1					х		
Towns of Randall and Wheatland			ł				
New DistrictPowers, Benedict,			ĺ				
Tombeau Lakes District	х	х	l	Х	Х		
MILWAUKEE COUNTY	<u> </u>						
Milwaukee Metropolitan							
· 1	x	х		х		х	х
Sewerage District					x		x
City of Franklin					X		
City of Glendale			1		X		
City of Greenfield					x		
City of Milwaukee					X		x
City of Oak Creek					X		
City of St. Francis					x		
City of South Milwaukee	x	x			X		х
City of Wauwatosa					X		x
City of West Allis					X		x
Village of Bayside					x		X
Village of Brown Deer					x		Х
Village of Fox Point					х		
Village of Greendale					X		
Village of Hales Corners					х		х
Village of River Hills					Х		Х
Village of Shorewood					Х		Х
Village of West Milwaukee					Х		
Village of Whitefish Bay					X		Х
OZAUKEE COUNTY			T				
City of Cedarburg		x			х		х
City of Mequon					X		x
City of Port Washington		x	}		x		x
Village of Belgium		x			X		
Village of Fredonia		x			x		х
Village of Grafton		x			x		X
Village of Saukville		x			x		x
Village of Thiensville					x		
Town of Belgium			j				
New DistrictLake Church	x			х	х		
Town of Fredonia	1		l				
Waubeka Area Sanitary District				Х	X		
1	1	L	L	L			L

	ļ .	Construct,		Construct			Eliminate
	Refine	Maintain,		and	Construct		Discharges
	and	and	Abandon	Maintain	and		from All
	Detail	Operate	Sewage	Inter-	Maintain	Abate	Points of
B	Sewer	Sewage	Treat-	community	Local	Combined	Sewage
Point Source	Service	Treatment	ment	Trunk	Sewer	Sewer	Flow
Management Agency	Area	Plant	Plant	Sewer	System	Overflow	Relief
RACINE COUNTY							
Wisconsin Department of	1						
Health and Social Services			Х	X	х		
Western Racine County							
Sewerage District		X		X			
City of Burlington		Х			Х		
City of Racine		х			Х		Х
Village of Elmwood Park					х		
Village of North Bay					Х		Х
Village of Rochester					X		
Village of Sturtevant					Х		Х
Village of Union Grove		Х		Х	X		х
Village of Waterford					Х		Х
Town of Burlington	j ,						
Bohner Lake Sanitary District				Х	X		
Browns Lake Sanitary District Town of Caledonia					Х		
	1]	.,,		ا ,. ا
Sewer Utility District No. 1					X		Х
Caddy Vista Sanitary District			,		X		 v
Crestview Sanitary District North Park Sanitary District ^a					X X		X
North Park Sanitary District					, ,		Х
Eagle Lake Sewer Utility District .		x			х		
Town of Mt. Pleasant		^			^		
Sewer Utility District No. 1					х		х
Town of Norway					^		^
Sanitary District No. 1	l x	х		Ì	х		х
Town of Rochester	^	^			^		^
Sewer Utility District No. 1					х		
Town of Waterford					^		
Sanitary District No. 1					х		
Town of Yorkville					Α		
Sanitary District No. 1	l x	х			х		
		<u> </u>			^		
WALWORTH COUNTY	1						
Walworth County					X		
Walworth County Metropolitan							
Sewerage District		х		Х			Х
Fontana-Walworth Water Pollution	1	.,,					
Control Commission		X					Х
City of Delavan		==			X		
City of Elkhorn	1				X		
City of Whitewater		X		Х	X		
City of Whitewater		Х	 v	 v	X		Х
Village of Fact Troy		 v	Х	Х	X		
Village of Fortage	x	X		 X	X		
Village of Fontana	X	X			X		
	x	X			X		
Village of Sharon	X				X		
Village of Williams Bay	X				X		
Town of Bloomfield					х		
Pell Lake Sanitary District	1 x 1			x	v		
Town of Delavan	1 ^ !			^	Х		
Delavan Lake Sanitary Districtb					х		
Geneva National Sanitary District .					x		
Town of East Troy	, ,				^		
Sanitary District No. 2					х		
New DistrictArmy Lake					X		
Town of Geneva	, ,						
New DistrictComo Lake				х	х		
Town of Linn	, ,						
Sanitary District	x			х	х		
Town of Lyons				_	-		TO SHOW THE
Sanitary District No. 2		Х			х		
Town of Troy	, !						
New DistrictBooth Lake					X		
Town of Walworth							
Utility District No. 1					Х		
<u> </u>				L			

							
	1	Construct,		Construct			Eliminate
	Refine	Maintain,		and	Construct		Discharges
i	and	and	Abandon	Maintain	and	1	from All
	Detail	Operate	Sewage	Inter-	Maintain	Abate	Points of
	Sewer	Sewage	Treat-	community	Local	Combined	Sewage
Point Source	Service	Treatment	ment	Trunk	Sewer	Sewer	Flow
Management Agency	Area	Plant	Plant	Sewer	System	Overflow	Relief
WASHINGTON COUNTY							
City of Hartford		x			x		x
City of West Bend		x			x) x
Village of Germantown					x		l x
Village of Jackson		х			X		x
Village of Kewaskum		х			x		x
Village of Newburg		х			X		x
Village of Slinger		х			х		
Town of Addison						1	
Allenton Sanitary District		х			х		
Town of Hartford							
Pike Lake Sanitary District					x		
Town of Trenton	I					1	•
Wallace Lake Sanitary District ^C					Х		
Town of West Bend							
Silver Lake District					X		
WAUKESHA COUNTY							
Waukesha County				х	х		
Delafield-Hartland Water							
Pollution Control Commission		х		х			
City of Brookfield		х			Х		х
City of Delafield					Х		
City of Muskego					X		х
City of New Berlin					X		
City of Oconomowoc		Х		х	X		
City of Waukesha		Х			Х		х
Village of Butler					Х		
Village of Chenequa	X			Х	Х		
Village of Dousman		Х			Х		Х
Village of Elm Grove					Х		Х
Village of Hartland					X		
Village of Lac La Belle Village of Lannon					X		
				Х	X		
Village of Menomonee Falls Village of Mukwonago		 X		 X	X		Х
Village of Nashotah					X		
Village of North Prairie	X	X			X X		
Village of Oconomowoc Lake	x			x	x		
Village of Pewaukee					X X		x
Village of Sussex		x			X		X
Village of Wales	X	x			x		
Town of Brookfield					x		
Town of Eagle				I	•		
Eagle Spring Lake Rehabilitation							
and Protection District				х	х		
Town of Lisbon Sanitary							
District No. 1					х		
Town of Merton					l		
New District-North Lake	Х			х	х	[
New District-Beaver Lake	Х			х	х		
New District-Moose Lake					х		
Town of Oconomowoc						I	
Blackhawk Drive Sanitary District .		[{		Х		
Mary Lane Sanitary District					X		
New District-Okauchee Lake ^d	Х			х	х		
Town of Pewaukee		ļ				1	
Sanitary District No. 3					X		
Pewaukee Lake Sanitary District ^e Town of Summit				~-	х		~~
New District-Nashotah-Nemahbin Lakes		ł		, I		İ	
New District-Nashotan-Nemanbin Lakes New District-Silver Lake			<u> </u>	X	X X	~-	
Men Discrice-Direct Dake		1			^		

 $^{^{\}mathbf{a}}\mathbf{The}$ North Park Sanitary District also serves the Village of Wind Point.

bThe Delavan Lake Sanitary District also serves part of the Town of Walworth.

CThe Wallace Lake Sanitary District also serves part of the Town of Barton.

dThis new District would also serve part of the Town of Merton.

eThe Pewaukee Lake Sanitary District also serves part of the Town of Delafield.

Of the nine existing management agencies, eight currently provide centralized sanitary sewer service. One agency, the Waubeka Area Sanitary District in the Town of Fredonia, has been created and is anticipated to construct a local sewer system and trunk sewer in the Waubeka area of the Town of Fredonia, with treatment to be provided at the Village of Fredonia sewage treatment plant, at a future date.

In Racine County, a total of 22 management agencies have been designated, all of which currently exist. Thirteen of these management units are special purpose units of government. One agency, the Bohners Lake Sanitary District in the Town of Burlington, has been created and is anticipated to construct a local sewer system and trunk sewer to serve the Bohners Lake area, with treatment to be provided by the City of Burlington sewage treatment plant. A subregional sewer and water supply system plan prepared for the Greater Racine Area2 recommended the creation of an areawide sewer and water authority as the best approach to implementing the recommended sewerage and water supply system plans. Such an authority would own and operate all of the major, that is, areawide sewerage and water supply facilities in the planning area. It is envisioned that the regional water quality management plan will be amended to reflect the findings of this subregional plan at such time as there is general agreement on the recommendations of the plan. This would add a new management agency, that being an areawide sewer and water authority. As of December 1994, the intergovernmental agreements needed to proceed with an amendment of the regional water quality management plan to incorporate the findings of the 1992 system plan had not been forthcoming. An amendment to the plan continues to be needed in this regard.

In Walworth County, a total of 24 management agencies have been designated, 21 of which currently exist. Three new agencies are proposed to be formed, one being a sanitary or utility district in the Town of Geneva to provide centralized sanitary sewer service to the Como Lake area of the Town and to construct a trunk sewer to the Walworth County Metropolitan Sewerage District sewerage system; one being a sanitary or utility district in the Town of East Troy to provide centralized sanitary sewer service to the Army Lake area; and one being a sanitary or utility district in the Town of Troy to provide centralized sewer service to portions of the Booth Lake area. Nine of the 21 agencies are special purpose units of government, one of which--Pell Lake Sanitary District--is not yet providing centralized sanitary sewer service.

In Washington County, a total of 11 agencies have been designated, all of which currently exist. Four of these management units are special purpose units of government.

In Waukesha County, a total of 36 management agencies have been designated. Of this total, 30 agencies currently exist. Seven of the 30 management agencies are special purpose units of government. Six new agencies are proposed to be created, consisting of sanitary or utility districts in the North Lake, Moose Lake, and Beaver Lake portions of the Town of Merton, the Okauchee Lake portion of the Town of Oconomowoc, and the Nashotah-Nemahbin and Silver Lake Portions of

²Alvord, Burdick, and Howson, and Applied Technologies, Inc., <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area</u>, September 1992.

the Town of Summit. Of the 30 existing management agencies in Waukesha County, 25 currently provide centralized sanitary sewer service. Four existing agencies which do not yet provide such service, but which are recommended to provide service in the plan consist of the Village of Chenequa, the Village of North Prairie, the Village of Wales, and Waukesha County. Waukesha County is recommended to provide service to Mukwonago County Park. One agency, the Village of Lannon, is anticipated to construct a local sewer system and trunk sewer in the Village of Lannon, with treatment to be provided by the Village of Sussex sewage treatment plant, at a future date.

For the Region as a whole, then, a total of 139 management agencies have been designated for point source pollution abatement and sludge management purposes. Of this total, all but 11 agencies currently exist. Forty-six of the existing management agencies are special purpose units of government. Eleven new agencies are proposed to be created, consisting of sanitary or utility districts created to provide centralized sewerage service to urban development in various towns throughout the Region. Of the 128 existing management agencies, 120 already provide centralized sanitary sewer service.

In addition to the foregoing local government management designations for point source pollution abatement and sludge management purposes, the Wisconsin Department of Natural Resources is designated as the management agency with primary responsibility for ensuring full implementation of the entire point source pollution abatement and sludge management plan element. It is envisioned that the primary mechanism to be used by the Wisconsin Department of Natural Resources to ensure plan implementation would be the waste discharge permit process established under the Wisconsin Pollutant Discharge Elimination System (WPDES). Certain other important tasks, however, would be attendant to the role of the Wisconsin Department of Natural Resources in implementation of the plan. development of detailed sewerage facilities plans will require effluent limitation (waste load allocation) studies by the Department to refine and detail the allowable effluent limits for specific sewage treatment plants so that recommended water use objectives and supporting standards in the plan are met. consin Department of Natural Resources may need to review its administrative rules and procedures with regard to the application of the recommended phosphorus standard to lakes and streams of the Region, and to attainment of that standard through the regulation of the design of facilities to abate point sources of pollution.

The major responsibilities of the designated management agencies in carrying out the areawide water quality management plan are also identified in Table XVII-1. As shown in the table, these management agency responsibilities include the refinement and detailing of sanitary sewer service areas; the construction, maintenance, and operation of sewage treatment plants; the abandonment of sewage treatment plants; the construction and maintenance of intercommunity trunk sewers; the construction and maintenance of local sewer collection systems; the abatement of combined sewer overflows; and the elimination of discharges from the remaining overflows of sanitary sewage.

Under the recommended water quality management plan for the Region, eight of the 27 existing private sewage treatment facilities are proposed to be abandoned over the plan design period. It is recommended that the Wisconsin Department of Natural Resources, in administering the Wisconsin Pollutant Discharge Elimination

System, schedule the abandonment of these eight identified private sewage treatment facilities recommended to be abandoned, with the precise scheduling to be determined by the Department as public centralized sanitary sewerage systems are constructed and extended.

It is recognized that the Department may receive during the plan implementation period requests to approve additional private sewage treatment facilities to serve new enclaves of isolated land use development. It is recommended that the Wisconsin Department of Natural Resources, with the assistance of the Southeastern Wisconsin Regional Planning Commission, evaluate each such proposal as it arises. Such evaluation should be made in light of the objectives sought to be achieved in both the adopted regional land use plan and the recommended areawide water quality management plan.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT IMPLEMENTATION

The local governmental management agencies designated to implement the nonpoint source pollution abatement element of the recommended areawide water quality management plan are identified in Table XVII-2. In urban areas, these designated agencies are comprised of all of the incorporated units of government in the Region, together with selected unincorporated towns that have large urban populations and selected utility, sanitary, and lake protection and rehabilitation districts within unincorporated towns. In rural areas, these designated agencies are comprised of each of the seven-county Land Conservation Committees in the Region, together with selected utility, sanitary, and lake protection and rehabilitation districts within unincorporated towns. New agencies are proposed in some instances, particularly in lake areas, where such action is deemed necessary to carry out the plan recommendations.

In Kenosha County, a total of 23 nonpoint source management agencies have been designated. Of this total, 19 are existing agencies, 11 of which are special purpose units of government. The four new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to Benedict Lake and Benet/Shangrila Lake in the Towns of Randall and Bristol, respectively; Dyer Lake in the Town of Wheatland; and the unnamed quarry lake in the Town of Pleasant Prairie.

In Milwaukee County, a total of 20 nonpoint source management agencies have been designated, all of which currently exist.

In Ozaukee County, a total of 12 nonpoint source management agencies have been designated, nine of which currently exist. The three new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to Lac du Cours in the City of Mequon, Mud Lake in the town of Saukville, and Spring Lake in the Town of Fredonia.

In Racine County, a total of 23 nonpoint source management agencies have been designated. Of the 23 agencies, 20 are existing agencies and three would be new agencies. The three new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to Bueno Lake in the Town of Waterford, and Echo Lake and

Table XVII-2

LOCAL GOVERNMENTAL MANAGEMENT AGENCY DESIGNATIONS AND SELECTED RESPONSIBILITIES

FOR THE NONPOINT SOURCE POLLUTION ABATEMENT ELEMENT OF THE RECOMMENDED REGIONAL WATER QUALITY MANAGEMENT PLAN FOR SOUTHEASTERN WISCONSIN

			y				
Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
KENOSHA COUNTY							
Kenosha County	x	x	x	x	x	v	x
City of Kenosha		x	X X			X X	^
Village of Paddock Lake		x	x x	==		X	
Village of Pleasant Prairie			, x			X	
New DistrictUnnamed Quarry Lake					x	X X	
Village of Silver Lake		x	x		^	X	
Village of Twin Lakes		x	Ŷ			X	
Town of Brighton		^	^			Λ.	
Department of Natural Resources (East Lake Flowage)	x				X	_	
Town of Bristol	^				Α.	0	
Utility District No. 1			x			х	
George Lake Protection and Rehabilitation			^			^	1
District			l x		x	x	}
New DistrictBenet/Shangrila Lake		x	x		x	X	
Town of Randall		^	^		^	Λ	
Powers Lake Management District ^a	x		x		x	х	
Twin Lakes Protection and Rehabilitation	^		^		Y	X	
District			x			v	
New DistrictBenedict Lake	x		Ŷ		 X	X X	
Town of Salem	^		^		Λ	Λ	
Sewer Utility District No. 1			x			х	
Sewer Utility District No. 2			x			X	
Paddock Lake Inland Lake Protection and			^			Λ	
Rehabilitation District			x]		х	
Hooker Lake Management District			Ŷ			X] [
Voltz Lake Management District			x			X	
Camp and Center Lake Rehabilitation District		I	x		X	X X	
Town of Somers			Ŷ		Λ	X	
Town of Wheatland			^			^	
Lilly Lake Protection and Rehabilitation							1
District			x			x	
New DistrictDyer Lake	x	x		x	X	X	
Hew Distilice-Dyel Lake	^	^	1		A.	A	

Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
MILWAUKEE COUNTY Milwaukee County City of Cudahy City of Franklin City of Glendale City of Greenfield City of Milwaukee City of Oak Creek City of South Milwaukee City of South Milwaukee City of Francis City of Wauwatosa City of West Allis Village of Bayside Village of Brown Deer Village of Fox Point Village of Greendale Village of River Hills Village of Shorewood Village of Shorewood Village of West Milwaukee	x x	x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x	 		X X X X X X X X X X X X X X X X	X
Village of Whitefish Bay		х	X			X	
OZAUKEE COUNTY Ozaukee County	x x 	x x x x	 X X o	x 	 0	x x x x	
Village of Belgium		X X X X X	X X X X X	 	 	X X X X X	
Town of Saukville New DistrictMud Lake				х	0	x	
New DistrictSpring Lake	х	o	0		0	х	

Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
RACINE COUNTY							
Racine County	x	x	x	x	x	X	х
City of Burlington		X	X			X	
City of Racine		X	X			X	
Village of Elmwood Park		X	X			X	
Village of North Bay		x	х			х	
Village of Rochester		X	x			X	
Village of Sturtevant		х	х			X	
Village of Union Grove		Х	X			X	
Village of Waterford		Х	X			X	
Village of Wind Point		Х	X			X	
Town of Burlington							
Browns Lake Sanitary District			Х		X	X	
Bohner Lake Sanitary District	X		X			X	
New DistrictLong Lake	X		X		X	X	
New DistrictEcho Lake		X	X	X		X	
Town of Caledonia			X			X	
Town of Dover							
Eagle Lake Sewer Utility District			X		X	X	
Town of Mt. Pleasant			Х			X	
Town of Norway							
Sanitary District No. 1			X		X	X	
Wind Lake Management District		Х	X			X	
Town of Rochester							
Sewer Utility District No. 1			X			X	
Town of Waterford			,				
Sanitary District No. 1			X		X	X	
New DistrictBuena Lake		X	X	Х	X	X	
Town of Yorkville							
Sanitary District No. 1			X			X	

Table XVII-2 (continued)

Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
WALWORTH COUNTY (continued)							
Town of Spring Prairie							
Honey Lake Protection and Rehabilitation		[
District			X		X	X	
Town of Sugar Creek		1				.,	
New DistrictNorth Lake	X		l X	Х	X	X	
New DistrictSilver Lake	X		X		X	X	
New DistrictWandawega Lake	X		X		X	X	
Town of Troy	1			١		v	
New DistrictBooth Lake	X		l X	X	X	X	
New DistrictLulu Lake			0	X	0	0	
New DistrictPeters Lake			l X	X	X	l X	
Town of Whitewater		1					
Whitewater-Rice Lakes District	X		l X		X	X	
New DistrictCravath Lake		0	l X		Į X	X	

Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
THE STATE OF THE S							
WASHINGTON COUNTY	v			v	x	x	x
Washington County	X	X	X X	X	, ,		
City of Hartford		X X	X			x]
City of West Bend				1	0	x	
New DistrictBarton Pond		0	0		-	x x	i
Village of Germantown	X	X	X X			x	
Village of Jackson		X	X			x x	
Village of Kewaskum		X	X X			X X	
Village of Newburg		X X	X			X X	
Village of Slinger		X	X			^	
Town of Addison				l		x	
Allenton Sanitary District			Х			, A	
Town of Barton				l x	_	x	ĺ
New DistrictSmith Lake	Х		٥	, x	0	^	
Town of Erin	1						
Druid Lake Inland Protection and					v	x	
Rehabilitation District					Х	^	<u></u>
Town of Farmington			.,		x	x	
New DistrictGreen Lake	X		Х			X X	
New DistrictLake Twelve	Х	0	٥		0	^	1
Town of Hartford	İ		X		x	x	
New DistrictPike Lake			1 *		. ^	^	
Town of Richfield	v		x	x	x	l x	
Richfield Sanitary District	X X		X	^_	x	Ŷ	l
New DistrictBark Lake	l x		X		x	Ŷ	
New DistrictFreiss Lake	X		X		x	Ŷ	-
New DistrictLake Five	^		^	l	^	_ ^	
Town of Trenton		1	x		x	l x	
Wallace Lake Sanitary District			^		^	^	
Town of West Bend	l x		x		x	x	
Big Cedar Lake District	,	1	^		^	1 ^	l
Little Cedar Lake Protection and	l x	l	x		x	x	
Rehabilitation District			X		x	x	
Silver Lake Rehabilitation District	x	1 -	l .			X X	
New DistrictLucas Lake	1 ×	0	٥	I	O	^	

-+89

		 					
Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
						 	
WAUKESHA COUNTY							
Waukesha County	Х	X	X	Х	X	X	Х
City of Brookfield		X	X			X	
City of Delafield		X	X			X	
City of Muskego		X	Х			х	
Big Muskego Lake-Bass Bay Protection and	1	,	v				
Rehabilitation District		X	Х			Х	
Little Muskego Lake Protection and]		,,				
Rehabilitation District		X	X			X 	
City of New Berlin		X	X			X X	
City of Oconomowoc		X X	X X			X X	
Fowler Lake Management District		X	X			X X	
City of Waukesha		l x	X			χ	
Village of Big Bend		l x	x			x x	
Village of Butler	x	l x̂	x			x x	
Village of Chenequa		l x	X			x	
Village of Eagle		x x	X			x x	
Village of Elm Grove		x	x			Ŷ	
Village of Hartland		l x	x			x	
Village of Lac La Belle		x x	x			x	
1	1	x x	x X			x	
Village of Lannon		l x	x			Ŷ	
Village of Menomonee Falls		x	x			Ŷ	
Village of Merton		x x	x			x	
Village of Mukwonago		l x	x x			x x	
Village of North Prairie		X	X			x	
Village of Oconomowoc Lake) x	x			Ŷ	
Village of Pewaukee	==	x x	X			Ŷ	
Village of Sussex		l x	x X			Ŷ	
Village of Sussex	==	l x̂	x			Ŷ	
Town of Brookfield			x			x	
Town of Delafield			x x			Ŷ	
Town of Eagle	1	1	^	J		^	
Eagle Spring Lake Protection and Rehabilitation	1	1		}		1	
District	x		x		х	x	
Town of Genesee	1		x		^ 	x	
Town of Lisbon			x			x	
TOWN OF MISDON	1		^		-	_	
			l	1			
	<u> 1</u>		<u> </u>	L		<u> </u>	l <u> </u>

Urban Nonpoint Source Management Agency	Undertake Septic Tank System Management Program	Undertake Construction Erosion Control Program	Develop and Implement Detailed Plan for Application of Urban Land Practices	Undertake Livestock Waste Control Project	Develop and Implement Detailed Plan for Application of Rural Land Conservation Practices	Conduct Educational and Informational Programs	Provide Technical Assistance
WAUKESHA COUNTY (continued)							
Town of Merton							
North Lake Management District	Х		Х		Х	Х	
New DistrictBeaver Lake	+	+	Х		X	X	
New DistrictMoose Lake	Х	X	Х		X	Х	
Lake Keesus Management District	Х		Х		X	Х	
Town of Mukwonago							
Phantom Lakes Protection and Rehabilitation							
District	Х		X		Х	X	
New DistrictSpring Lake			X		Х	X	
Town of Oconomowoc							
Lac La Belle Management District			Х		X	X	
New DistrictOconomowoc Lake	+	+	Х		X	X	
Okauchee Lake Protection and Rehabilitation							
District	Х		Х		X	Х	
Ashippun Lake Protection and Rehabilitation							
District	X		Х		X	X	
Town of Ottawa							
Pretty Lake Protection and Rehabilitation							
District	X		Х		Х	X	
	,,		,,		. (.,	
Rehabilitation District	X		Х		X	Х	
			.,			••	
Pewaukee Lake Sanitary District			Х			Х	
Middle Genesee Lake Management District			X			х	
Upper Nemahbin Lake Management District			X			X	
New District Crooked Lake	x		*		+	X	
New DistrictUpper Nashotah Lake	X	x	X	x	X	X	
New DistrictWaterville Pond	x	^	X	^	X	X	
Town of Vernon			X		Δ	X	
Town of Waukesha			X			x	
TOUT OF MERICESTIC			^			^	

^a This District also serves a portion of Walworth County.

Source: SEWRPC.

b This new District would also serve a portion of the Town of Rochester.

^c The Delavan Lake Sanitary District also serves part of the town of Walworth.

Long Lake, in the Town of Burlington. The existing agencies designated in Racine County include eight special purpose units of government.

In Walworth County, a total of 39 nonpoint source management agencies have been designated. Of these 39 agencies, 27 are existing agencies and 12 would be new agencies. The 12 new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Lake Lorraine and Turtle Lake in the Town of Richmond; North Lake, Silver Lake and Wandawega Lake in the Town of Sugar Creek; Booth Lake, Lulu Lake, and Peters Lake in the Town of Troy; Army Lake in the Town of East Troy; LaGrange Lake in the Town of LaGrange; Cravath Lake in the Town of Whitewater; and Tripp Lake in the City of Whitewater. Of the 27 existing agencies, 15 are special purpose units of government.

In Washington County, a total of 24 nonpoint source management agencies have been designated. Of these 24 agencies, 15 are existing agencies and nine would be new agencies. The nine new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Smith Lake in the Town of Barton; Green Lake and Lake Twelve in the Town of Farmington; Pike Lake in the Town of Hartford; Bark Lake, Friess Lake, and Lake Five in the Town of Richfield; Lucas Lake in the town of West Bend; and Barton Pond in the City of West Bend. Of the 15 existing agencies, seven are special purpose units of government.

In Waukesha County, a total of 53 nonpoint source management agencies have been designated. Of this total, 46 are existing agencies and seven would be new agencies. The seven new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Beaver Lake and Moose Lake in the Town of Merton; Spring Lake in the Town of Mukwonago; Oconomowoc Lake in the Town of Oconomowoc; and Crooked Lake, Upper Nashotah Lake, and the Waterville Pond in the Town of Summit. Of the 46 existing management agencies in Waukesha County, 15 are special purpose units of government.

For the Region as a whole, then, a total of 194 management agencies have been designated for nonpoint source pollution abatement purposes. Of this total, all but 38 agencies currently exist. The 38 new agencies would be sanitary, utility and/or lake protection and rehabilitation districts created to provide an institutional framework for the development and implementation of detailed local plans for the application of urban and rural nonpoint source pollution abatement practices. Of the 194 designated nonpoint source pollution abatement management agencies, 104 have been previously designated for point source pollution abatement purposes.

The major responsibilities of the designated management agencies in carrying out the areawide water quality management plan are also identified in Table XVII-2. As shown in the table, these management agency responsibilities include the refinement and detailing of local nonpoint source pollution control practices; educational programs to encourage reductions in urban and rural nonpoint source loading to surface waters; and the minimization of all nonpoint source pollutants, especially those arising from onsite wastewater treatment practices, construction activities, and livestock operations. Not all agencies will be assigned all of these responsibilities.

LAKES MANAGEMENT PLAN ELEMENT IMPLEMENTATION

The local governmental management agencies designated to implement the lakes management element of the recommended areawide water quality management plan are identified in Table XVII-3. These designated agencies are comprised of all lake protection and rehabilitation districts created under Chapter 33 of the Wisconsin Statutes in the Region, together with selected utility and/or sanitary districts within unincorporated towns, and qualified lake associations, incorporated under Chapter 181 of the Wisconsin Statutes, as described in Chapters NR 119 and NR 191 of the Wisconsin Administrative Code. New agencies are proposed in some instances where such action is deemed necessary to carry out the plan recommendations.

In Kenosha County, a total of 13 governmental lake management agencies have been designated; two of which--Camp and Center Lake rehabilitation District and Twin Lakes Protection and Rehabilitation District--serve both Camp and Center Lakes and Elizabeth and Mary Lakes, respectively. A further three nongovernmental agencies also exist. Of the 13 governmental agencies, nine lake management agencies are existing agencies. The four new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Benedict Lake in the Town of Randall; Benet/Shangrila Lake in the Town of Bristol; Dyer Lake in the Town of Wheatland; and the unnamed quarry lake in the Town of Pleasant Prairie. Of the nine existing agencies, the Wisconsin Department of Natural Resources is the designated management agency for East Lake Flowage which is totally contained within the boundaries of the Bong Recreational Area.

In Milwaukee County, there are no major lakes. Consequently, no lake management agencies have been designated.

In Ozaukee County, three lake management agencies have been designated. All three would be new agencies that would be created to encompass urban and rural development tributary to: Lac du Cours in the City of Mequon; Spring Lake in the Town of Fredonia; and Mud Lake in the Town of Saukville.

In Racine County, a total of six governmental lake management agencies have been designated. A further four nongovernmental agencies also exist; one of which-Tri-Lakes Conservancy, Inc.--serves KeeNongGoMong, Waubeesee, and Wind Lakes. Of the six governmental agencies, three are existing agencies and three would be

³ Section 208 of the Federal Clean Water Act requires that local governmental units and agencies be identified as designated management agencies for areawide water quality management plan implementation. Cities, villages, towns, sanitary districts and public inland lake protection and rehabilitation districts are the principal local governmental management units having responsibility for plan implementation in the Region. In addition, however, Chapters NR 119 and 191 of the Wisconsin Administrative Code recognize certain nongovernmental agencies, qualified lake associations, as able to undertake lake management planning and protection activities. Although such agencies cannot be designated management agencies pursuant to Section 208, these agencies are shown in Table XVII-3 for completeness.

Table XVII-3

County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Conduct Public Educational and Information Programs	Prepare Comprehensive Plan
KENOSHA COUNTY							
Des Plaines River							
New DistrictBenet/Shangrila ^C .	o	+	+	+	+	+	+
East Lake Flowage Wisconsin						•	
Department of Natural Resources	+		0	0		0	+
George Lake	ĺ		ļ			1	
George Lake Protection and	_			_			
Rehabilitation District	O	0	+	X	+	0	0
Hooker Lake	0			x		+	o
Hooker Lake Management District Paddock Lake	"		7	^	*	T	U
Paddock Lake Inland Lake Protec-	l					}	
tion and Rehabilitation						Ì	
District	lo	x	x	x	x	+	0
Unnamed Quarry LakeNew							
District	x		x	X		X	X
Fox River						İ	
Benedict LakeNew District	0	+	+	+	+	+	+
Camp Lake							
Camp & Center Lake Rehabilita-					_		0
tion District	0	+	+	X	X	+	U
Center Lake Camp & Center Lake Rehabilita-						Ì	
tion District	١٠٥		1 +	x	x	+	O
Cross Lake	"	· '		_	^	•	J
Cross Lake Improvement				ļ			
Association	o	+	+	+	+	+	О
Dyer LakeNew District	+	+	+	+	+	+	+
Elizabeth Lake							
Twin Lakes Protection and			(j			
Rehabilitation District	0	X	+	X	X	+	X
Lilly Lake	l			<u> </u>		ļ	
Lilly Lake Rehabilitation		_		_			
District	0	X	+	X	+	+	0
Marie Lake							
Twin Lakes Protection and Rehabilitation District	0	x	1 +	x	1 .		x
Powers Lake	"	1 ^	1	1 ^	•	•	•
Powers Lake Management District	0	1 +	٠ .	0	x	+	x
Silver Lake		1			_		_
Silver Lake Protection	}				1		
Association	+	+	x	x	+	+	+
Silver Lake Sportsmans Club	x	x	+	x	x	+	x
Voltz Lake		1	1				
Voltz Lake Management District	0	+	+	+	+	+	0

Conduct

County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Public Educational and Information Programs	Prepare Comprehensive Plan
OZAUKEE COUNTY							
Milwaukee River							
Lac du CoursNew District	+		+	+	X	+	+
Mud LakeNew District	+			+	X	+	+
Spring LakeNew District	+		+	+	X	+	+
RACINE COUNTY							
Fox River							
Bohner Lake Sanitary District	o	O	+	+	+	+	0
Bohner Lake Improvement						1	
Association	O	+	+	x	X	+	+
Browns Lake					+		
Browns Lake Sanitary District	0	x	X	X	+	+	0
Eagle Lake							
Eagle Lake Property Owners		Ī					
Improvement Association	0	0	X	X	+	+	0
Echo LakeNew District	+		+	+	+	+	+
Kee Nong Go Mong Lake							
Tri-Lakes Conservancy, Inc	0	+	+	X	+	+	0
Long Lake							
New DistrictLong Lake	+	+	+	+	, +	+	+
Waterford Impoundment							
Buena LakeNew District	+		+	+	+	† +	+
Tichigan Lake		į					+
Tichigan Advancement Association	0		+	X	+	+	+
Waubeesee Lake							, , , , ,
Tri-Lakes Conservancy, Inc	0	+	+	X	+	+	0
Wind Lake			_	_	_	l	
Wind Lake Management District	0	<u>+</u>	X	X	X	+	X
Tri-Lakes Conservancy, Inc	X	X	X	X	+	0	X

County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Conduct Public Educational and Information Programs	Prepare Comprehensive Plan
WALWORTH COUNTY							
Fox River		1		ļ			
Army LakeNew District	+		+	+	+	+	+
Booth Lake		1					
New DistrictBooth Lake		+	+	+	+	+	÷
Booth Lake Property Owners	_	_			ł		
Association	0	0	+	+	+	+	+
Lake Beulah	×				_	_	_
Beulah Lake Sanitary District .	X	+	X	X	X	+	X
Beulah Lake Protection and Improvement Association	0	x	+	x		+	
Lake Como	"	^	*	^	7	T	T
Como Lake District	0	0	+		+	+	
Lake Geneva		"	·	·	·	·	•
Geneva Lake Environmental							
Agency	o	+	X	x	x	+	x
Geneva Lake Conservancy, Inc	X	x	X	x	+	О	x
Geneva Lake Association	x	x	X	x	x	+	X
Lauderdale Lake							
Lauderdale Lake Management							
District	0	+	+	X	+	+	0
Lulu LakeNew District	+	+	+	X	. +	0	0
North Lake	}						
New DistrictNorth Lake	+	+	+	+	+	+	+
Pell Lake	١.						
Pell Lake Sanitary District Pell Lake Property Owners	+		+	+	+	+	+
Association	+	x	+	+	+	+	+
Peters LakeNew District	1	1	+		Ĭ	+	
Pleasant Lake	•	•	•	,	•	·	·
Pleasant Lake Protection and	}	1					
Rehabilitation District	o	+	x	+	+	+	+
Pleasant Lake Association	x	x	x	x	x	+	x
Potters Lake		1					
Potters Lake Protection and							
Rehabilitation District	0	+	+	+	+	+	0
Silver Lake		1					
New DistrictSilver Lake	+		+	+	+	+	+
Wandawega Lake						_	_
New DistrictWandawega Lake .	+	+	+	+	+	+	+
Rock River Comus Lake							
Comus Lake Protection and	}						
Rehabilitation District	+	+	+	+	x	+	+
Cravath LakeNew District	i ;	+	+	+	+	+	;
Delavan Lake		İ	·	·	·	•	·
Delavan Lake Sanitary District	x	x	X	x	x	+	X
Town of Delavan	O	X	X	X	X	0	+

County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Conduct Public Educational and Information Programs	Prepare Comprehensive Plan
WASHINGTON COUNTYcontinued							
Milwaukee Rivercontinued							
Wallace Lake Sanitary District .	0	+	+	X	X	+	+
Rock River							
Bark Lake							
New DistrictBark Lake							
Richfield Sanitary District	+	+	+	+	+	+	+
Druid Lake]		ł	ł	}	1	
Druid Lake Inland Protection and	ł						
Rehabilitation District	0	+	+	X	X	+	0
Friess Lake	l						
New DistrictFriess Lake							
Friess Lake Action Group	0	+	+	+	X	+	X
Lake Five							
New DistrictLake Five							
Lake Five Advancement		l	l	ļ			1
Association	0	+	+	+	+	+	+
Pike Lake		1			[
New DistrictPike Lake	0	+	+	X	+	+	+
Pike Lake Advancement		1	1				
Association, Inc						+	

	T	T	I	r	 		
County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Conduct Public Educational and Information Programs	Prepare Comprehensive Plan
WAUKESHA COUNTY							
Rock River							
Ashippun Lake							
Ashippun Lake Protection and		· ·					
Rehabilitation District	0	+	+	x	+	+	- 0
Beaver Lake	1		·	_	·	•	
New DistrictBeaver Lake	+	+	+	+	+	+	+
Beaver Lake Environmental				·			
Protection Association	+	+.	+	x	+	+	+
Beaver Lake Yacht Club	x	x	x	X	x	+	x
Crooked LakeNew District	+	+	+	+	+	+	+
Fowler Lake							
Fowler Lake Management District	0	x	+	X	X	+	X
Golden Lake							
Golden Lake Association	0	+	+	x	+	. +	+
Hunters Lake							
Hunters Lake Association	+	+	+	+	+	+	+
Lac La Belle							
Lac La Belle Management							
District	0	0	X	X	X	0	X ·
Lake Keesus	l .						
Lake Keesus Management District	0	X	+	+	X	+	+
Lake Keesus Advancement							
Association	X	X	X	X	X	+	X
Lower Genesee Lake						,	
Genesee Lakes Association	0	+	+	+	+	+	+
Lower Nashotah Lake							
Lower Nashotah Lake Association	+	+	+	+	+	+	+
Lower Nemahbin Lake							
Lower Nemahbin Lake Association	0	+	+	+	+	+	+
Middle Genesee Lake					_		
Middle Genesee Lake District .	+	+	<u>+</u>	+	X	+	+
Genesee Lakes Association	0	X	X	X	+	+	X
Moose Lake	_		_			_	_
New DistrictMoose Lake	+	+	+	+	0	+	+
Moose Lake Advancement		_	_			_	
Association	X +	X	X +	+ X	+ *	+	+
	+	+	+	X	X	+	+
Nagawicka Lake							
Nagawicka Lake Improvements	o	-	x	x	+	,	
Association	U	X	A.	*	*	+	+
Nagawicka-Kettle Lake Preserva-	x		•	₩	•		x
tion Society	*	X	x	x	X	+	*
	o		+	+	+	+	x
North Lake Management District North Lake Voluntary	١	1	+	*	*	+	*
Association	x	x	x	x	X	+	r
MOOULIALIUM	i 🐣				•	*	

County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Conduct Public Educational and Information Programs	Prepare Comprehensive Plan
WAUKESHA COUNTYcontinued							
Rock Rivercontinued		Ì		1			
Oconomowoc Lake New District	0	0	+	+	0	+	0
Okauchee Lake			ł	1			
Okauchee Lake Management							
District	0	x	x	X	X	+	X
Pine Lake		1	i				
Pine Lake Association	+	+	+	x	X	+	+
Pretty Lake				ļ			
Pretty Lake Protection and		İ					
Rehabilitation District	0	+	X	+	+	+	0
School Section Lake			j				
School Section Lake Management		1					
District	0	X	+	+	+	+	0
Silver Lake							
Silver Lake Environmental							
Association	0	X	+	+	X	+	0
Upper Nashotah LakeNew District	+	+	+	+	+	+	+
Upper Nemahbin Lake				1			
Upper Nemahbin Lake Management			İ				
District	0	+	+	X	+	+	0
Waterville Pond							
New DistrictWaterville Pond .	+	+	+	+	+	+	+
Fox River							
Big Muskego Lake							
Big Muskego-Bass Bay Protection	_		_	_			
and Rehabilitation District	0	+	X	X	X	0	0
Eagle Spring Lake				İ			
Eagle Spring Lake Protection and	_		_				
Rehabilitation District	0	. 0	X	+	+	+	0
Lake Denoon					İ		
Lake Denoon Advancement		1			1		+
Association	0	+	+	+	†	+	†
Little Muskego Lake		1	l				
Little Muskego Lake Protection					.		
and Rehabilitation District	0 X	\ \times	+ X	X	X X	+ 0	×
Little Muskego Lake Association	^	^	^	^	^	U	^
Lower Phantom Lake	İ						
Phantom Lakes Management District	+	x	+	x	1	o	
Pewaukee Lake	, T	1 ^	1	^	•		T
	o	1	x	1	1 .	o	x
Pewaukee Lake Sanitary District Pewaukee Lake Improvement	1	1	^	•	1		•
	x	x		x	x	+	x
Association Pewaukee Lake Sportsmans Club .	Î	X	, x	, x	x		x
Spring Lake	1 ^	^	1	_	1	'	_
New DistrictSpring Lake	o	1	1 +		+	+	+
Hen profitor-soliting make]	1	1	}	· .	

•	
J	7
:	2
σ	7
i	

County/Watershed Lake Management Agency ^a	Monitor Water Quality	Conduct Aquatic Plant Management Program	Conduct Fishing Management Program	Undertake Public Access and Recreation Program	Undertake Watershed Management ^b Program	Conduct Public Educational and Information Programs	Prepare Comprehensive Plan
WAUKESHA COUNTYcontinued Fox Rivercontinued Upper Phantom Lake Phantom Lakes Management District	o	x	+	x	+	0	+

KEY:

- 0 Ongoing water quality monitoring, management activities, or information programming.
- + Water quality monitoring recommended; development of detailed plan element recommended.
- X No action necessary at this time; detailed plan element completed--update and refine as necessary.
- -- = Not applicable at this time; no action necessary.
- ^a Section 208 of the Federal Clean Water Act requires that local governmental units and agencies be identified as designated management agencies for areawide water quality management plan implementation. Cities, villages, towns, sanitary districts, utility districts, and public inland lake protection and rehabilitation districts are the principal local governmental management units having responsibility for plan implementation in the Region. In addition, however, Chapters NR 119 and 191 of the Wisconsin Administrative Code recognize certain nongovernmental agencies, qualified lake associations, as able to undertake lake management planning and protection activities. Although such agencies cannot be designated management agencies pursuant to Section 208, these agencies are shown in this Table for completeness.
- b The designated management agency should participate in the priority watershed or priority lakes projects affecting the lake-Table XII-2; in addition, the designated management agency may undertake additional activities aimed at reducing and controlling nonpoint source pollution in the lake watershed outside of participation in formal State programs.
- ^c Creation of a new management agency is recommended; this agency may be a sanitary, utility, or lake protection and rehabilitation district, or appropriate non-governmental organization. Management actions may also be undertaken by the responsible local governmental agencies.

Source: SEWRPC.

new agencies. The three new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to Echo Lake and Long Lake, both in the Town of Burlington, and Buena Lake in the Town of Waterford.

In Walworth County, a total of 22 governmental lake management agencies have been designated; one of which--Whitewater-Rice Lake Management District--serves both Whitewater and Rice Lakes. A further eight nongovernmental agencies also exist. Of these 22 governmental agencies, 10 are existing agencies and 12 would be new agencies. The 12 new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Tripp Lake in the City of Whitewater; Lake Lorraine and Turtle Lake in the Town of Richmond; North Lake, Silver Lake, and Wandawega Lake in the Town of Sugar Creek; Cravath Lake in the Town of Whitewater; Army Lake in the Town of East Troy; LaGrange Lake in the Town of LaGrange; and Booth Lake, Lulu Lake, and Peters Lake in the Town of Troy. Of the existing governmental agencies, one--the Geneva Lake Environmental Agency--is a Section 66.30 intergovernmental agency created by the communities riparian to Lake Geneva to coordinate water quality management activities, and one -- the Town of Delavan -- is a local municipality which has constituted the Town of Delavan Lake Committee to coordinate and oversee lake protection and rehabilitation activities at Delavan Lake.

In Washington County, a total of 16 governmental lake management agencies have been designated. A further eight nongovernmental agencies also exist. Of these 16 agencies, seven are existing agencies and nine would be new agencies. The nine new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Barton Pond in the City of West Bend; Smith Lake in the Town of Barton; Green Lake and Lake Twelve in the Town of Farmington; Pike Lake in the Town of Hartford; Lucas Lake in the Town of West Bend; and Bark Lake, Friess Lake, and Lake Five in the Town of Richfield.

In Waukesha County, a total of 22 lake management agencies have been designated; one of which--Phantom Lakes Management District--serves both Upper and Lower Phantom Lakes. A further 19 nongovernmental agencies also exist. Of these 22 governmental agencies, 15 are existing agencies and seven would be new agencies. The seven new agencies would be sanitary, utility, or lake protection and rehabilitation districts that would be created to encompass urban and rural development tributary to: Beaver Lake in the Town of Merton; Waterville Pond, Upper Nashotah Lake, and Crooked Lake in the Town of Summit; Spring Lake in the Town of Mukwonago; Moose Lake in the Town Merton; and Oconomowoc Lake in the Town of Oconomowoc.

For the Region as a whole, then, a total of 124 management agencies have been designated for lake management purposes. Of this total, 82 agencies are sanitary, utility, or lake protection and rehabilitation districts, and similar agencies, including the Town of Delavan Lake Committee and the Geneva Lake Environmental Agency, created to encompass urban and rural development tributary to major lakes in the Southeastern Wisconsin Region. A further 42 agencies are nongovernmental agencies which may be qualified lake associations as defined in Chapters NR 119 and NR 191 of the Wisconsin Administrative Code. Of the 82 governmental agencies, all but 38 agencies currently exist. The 38 new agencies would be sanitary, utility, or lake protection and rehabilitation districts

created to provide an institutional framework for the development and implementation of detailed local plans for the application of lake management practices. Of the 124 designated governmental lake management agencies, 81 have been previously designated for point and nonpoint source pollution abatement purposes.

The major responsibilities of the designated management agencies in carrying out the areawide water quality management plan are also identified in Table XVII-3. As shown in the Table, these management agency responsibilities include the carrying out of water quality monitoring; educational programs to encourage reductions in urban and rural impacts on lake waters; and the development of specific and comprehensive lake management plans and plan elements. Not all agencies will be assigned all of these responsibilities.

In addition to these designated management agencies, general purpose governmental units riparian to lakes within the Southeastern Wisconsin Region retain responsibilities for lakes management within their jurisdictional boundaries. In particular, the seven counties and all cities and villages within the Region have specific responsibilities regarding establishment and administration of shoreland and floodplain zoning and stormwater management as set forth in the preceding sections of this chapter. These local units of government, together with Towns within the Region, also have specific powers relative to the establishment of lake protection and rehabilitation districts in terms of Chapter 33, Stats., and, where such new districts have been identified in Table XVII-3, these local governmental management agencies should give due consideration to the establishment of public inland lake protection and rehabilitation districts in the urban and rural areas tributary to the major lakes where such action is deemed necessary to carry out the plan recommendations. Local authorities and the designated management agencies set forth in Table XVII-3 insofar as their jurisdictions encompass urban and rural lands tributary to the numerous "minor" lakes and ponds in the Region having surface areas of less than 50 acres should recognize the aesthetic, recreational, and ecological value of these water bodies and likewise undertake management actions as may be necessary to prevent water quality degradation of these systems, including formation and technical support of lake organizations formed for the protection and rehabilitation of these lakes and ponds, preparation and implementation of management plans, and inclusion of such water bodies in watershed protection projects.

WATER QUALITY AND BIOLOGICAL CONDITION MONITORING PLAN ELEMENT IMPLEMENTATION

The recommended areawide water quality management plan calls for a comprehensive long-term water quality monitoring program within the Region that can serve both the needs of the Commission as an areawide water quality management planning agency and the needs of the Wisconsin Department of Natural Resources as a regulatory agency. The Wisconsin Department of Natural Resources is designated as the lead agency to carry out that mandatory program. The Department currently has in place a program to conduct intensive monitoring on a watershed-by-watershed basis on a rotating five-to-ten-year cycle.⁴ It is recognized that the regional water quality will also conclude cooperative monitoring programs

⁴See Wisconsin Department of Natural Resources Publication No. Wr-299-92, <u>Surface Water Monitoring Strategy</u>, 1992.

being carried out by other units of government and agencies, including the U.S. Geological Survey, the U.S. Environmental Protection Agency, the Milwaukee Metropolitan Sewerage District, local public sewage treatment plant operators, and local inland lake management organizations.

It is recommended that the Wisconsin Department of Natural Resources and each sanitary, utility, and/or lake protection and rehabilitation district formed in the Region for each of the 101 major lakes conduct such lake water quality surveys as may be necessary to prepare detailed, local lake use and management plans. In addition, long-term water quality sampling efforts should be undertaken on lakes to monitor the effects of plan implementation actions and of continuing lake management efforts.

SUMMARY

This chapter has presented the recommended means for implementing the areawide water quality management plan for the seven-county Southeastern Wisconsin Region. The chapter includes the designation of management agencies and assignment of plan implementation responsibilities for point source pollution abatement and sludge management, nonpoint source pollution abatement, and water quality moni-A summary of local governmental management agencies designated to toring. implement the recommended plan is set forth in Tables XVII-1 through XVII-3. A total of 228 management agencies have been designated for plan implementation purposes. Of this total, all but 44 currently exist. The 44 new agencies would be sanitary, utility, and/or lake protection and rehabilitation districts required to carry out a variety of plan implementation responsibilities in direct drainage areas to lakes or, in a few instances, to isolated enclaves of urban development within unincorporated towns. A total of 139 management agencies have been designated for point source pollution abatement purposes, 194 management agencies for nonpoint source pollution abatement purposes, and 124 management agencies for lake management purposes.

	•
	3

Chapter XVIII

SUMMARY AND RECOMMENDATIONS--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

INTRODUCTION AND BACKGROUND

Water resources constitute one of the most important elements of the natural resource base of Southeastern Wisconsin. A meaningful comprehensive regional planning effort must, therefore, recognize the central role of water resources as an important element of regional planning. This is particularly true in the highly urbanized seven-county Southeastern Wisconsin Region, a Region richly endowed with water resources. Properly husbanded, these water resources can constitute a valuable natural resource for the Region. Misused and mismanaged, however, these resources can become the focus of serious and costly developmental and environmental problems, and can be a severe constraint on the sound social, economic, and physical development of the Region. Water pollution is one manifestation of the misuse of water resources, and the public has become increasingly aware of, and concerned over, pollution which has seriously interfered with desired water uses.

In 1979, the Commission completed and adopted a regional water quality management plan¹ designed in part to meet the Congressional mandate that the waters of the United States be made to the extent practicable "fishable and swimmable." The plan provides recommendations for the control of water pollution from such point sources as sewage treatment plants, separate and combined sewer overflows, and industrial waste outfalls; and from such nonpoint sources as urban and rural stormwater runoff. The plan was subsequently endorsed by the Wisconsin Natural Resources Board and approved by the U. S. Environmental Protection Agency.

Since adoption of the plan in 1979, the Commission has carried on a continuing regional water quality management planning program. That program is intended, to the extent that available fiscal resources permit, to meet the planning requirements set forth in Chapter NR 121 of the Wisconsin Administrative Code. Those rules envision periodic amendment, revision, and updating of the original plan as may be found necessary and desirable. The systems level regional water quality management plan has been refined, detailed, and, as necessary, amended since 1979, as a result of various types of subregional planning and plan implementation efforts, including: sewer service area plans; detailed sewerage

SEWRPC Planning Report No. 30, A Regional Water Quality Management Plan for Southeastern Wisconsin: 2000, Volume One, Inventory Findings, September 1978; Volume Two, Alternative Plans, February 1979; and Volume Three, Recommended Plan, June 1979.

facilities plans; detailed nonpoint source pollution abatement plans; comprehensive lake management plans; and certain special studies. Many of these plan refinement and detailing efforts have led to formal amendments of that original plan by the Regional Planning Commission and the Wisconsin Department of Natural Resources. Those plan amendments, which were adopted only after public hearings and designated management agency approval, are documented in Chapter I.

In addition to these subregional planning efforts which are intended to refine and detail and, as necessary, amend the regional water quality management plan, the Commission carries on an important related regional land use planning program, which results from time-to-time in an updated and revised regional land use plan. The original regional water quality management plan directly incorporated the second generation design year 2000 regional land use plan that had been adopted by the Commission in 1978. Under the continuing regional planning program, the Commission prepared and adopted, in 1991, a third generation design year 2010 regional land use plan.² That plan also stands as an amendment to the systems level regional water quality management plan, and is being incorporated into detailed sanitary sewer area plans as those plans are prepared initially and revised from time-to-time.

This report is intended to provide a restatement of the areawide water quality management plan for Southeastern Wisconsin as updated over time through the amendment and revision process. The report documents the extent to which the plan, as amended, has been implemented since its adoption, by identifying -- to the extent that available data permit -- progress toward meeting the water use objectives and supporting water quality standards set forth in the plan. The report also identifies those issues which need to be addressed in the continuing planning process which may lead to further amendments, revisions, and updates of the plan. The updated regional water quality management plan for Southeastern Wisconsin consists of five major elements: a land use plan element, a point source pollution abatement plan element, a nonpoint source pollution abatement plan element, a water quality monitoring plan element, and a lake management plan element. Chapters IV through XV provide, for each of the twelve major watersheds in the Southeastern Wisconsin Region, a description of the various elements of the initial plan and the extent to which these elements have been implemented; to the extent available data permit, a description of current water quality conditions; a description of the plan elements as amended and updated based upon the status of implementation and the results of the ongoing continuing planning program; and a description of substantive water quality management issues that remain to be addressed. This chapter presents a summary of the findings of the inventory of existing water quality conditions, and a restatement of the design year 2010 plan, reflecting the amendments and extensions adopted since the completion of the original plan in 1979.

WATER QUALITY INVENTORY AND ANALYSIS

Water quality data available for use in preparing the initial regional water quality management plan were collected in the 1964 through 1965 Commission benchmark stream water quality study; the 1965 through 1975 Commission stream

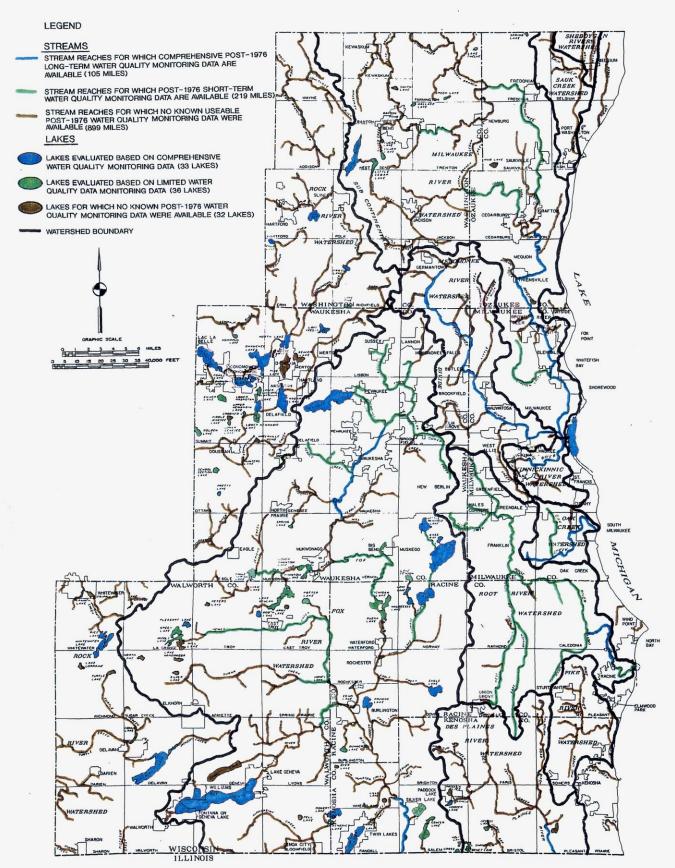
²SEWRPC Planning Report No. 40, <u>A Regional Land Use Plan for Southeastern Wisconsin: 2010</u>, January 1992.

water quality monitoring effort; the 1976 Commission sampling program; and the 1973 and 1976 Wisconsin Department of Natural Resources sampling programs. In addition, the results of the hydrologic-hydraulic water quality simulation modeling developed under the initial planning effort were also used to characterize existing conditions by considering model simulation which approximate current land use and levels of pollutant control.

Water quality data available for use in the plan review consisted of water quality, sediment quality, and biological condition data collected since the completion of the initial regional plan under monitoring programs operated by the Commission and by other agencies and local units of government, including the Wisconsin Department of Natural Resources, the Milwaukee Metropolitan Sewerage District, the U.S. Geological Survey, the U.S. Environmental Protection Agency, and local inland lake management organizations. In many cases, these data were collected for local or subregional planning and engineering purposes and thus do not represent a uniform data base comparable to that which was available for use in the initial regional plan preparation effort.

In addition to the aforereferenced data sources, the assessment of surface water quality conditions relied in part upon the uniform areawide characterization of surface water conditions developed under the initial planning effort and expanded upon under the Milwaukee Harbor estuary study. Simulation modeling conducted under various levels of point source and nonpoint source pollution control, and under both the then current land use conditions and under planned year 2000 land use conditions, during these earlier planning programs, in many cases, was considered to remain valid. While the resulting data cannot be used to precisely quantify current water quality conditions, a review of these data together with knowledge of the current status of the pollution control recommendations contained in the original plan, provides insight into the current water quality conditions and the potential for achieving the adopted water use objectives and supporting water quality standards under current conditions.

Streams


To the extent possible, water quality data collected during the period 1976 through 1993 were utilized by the Commission to evaluate stream water quality conditions and trends in those conditions within the Region. The data concerned are presented by watershed in Chapters IV through XV, and as already noted, include water quality, sediment quality, and biological condition data. Water quality monitoring data were used to compare the instream water quality conditions to the instream water quality standards set forth in the adopted plan, as described in Chapter II. This comparison was then used to assess the extent to which the water use objectives were being achieved. The biological monitoring data were used to calculate biotic index values which were numerically grouped to indicate a relative measure of stream water quality as described in Chapter II. Sediment sampling data were used to compare to sediment quality criteria and standards to assess the level of contamination and relative quality of sediments.

As indicated on Map XVIII-1, comprehensive long-term water quality monitoring data collected following the preparation of the initial plan were available for

³SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, December 1987.

Map XVIII-1

AVAILABILITY OF STREAM AND LAKE WATER QUALITY MONITORING DATA IN SOUTHEASTERN WISCONSIN: 1976-1993

approximately 105 miles of stream, or about 9 percent, of the 1,223 stream miles within the Southeastern Wisconsin Region addressed in the planning effort. Short-term water quality monitoring data were available for an additional approximately 219 miles of stream, or about 18 percent of the total, as shown on These latter data, while not adequate for use in definitively Map XVIII-1. assessing trends in water quality, were used to supplement long-term monitoring data and provide information on existing conditions. No water quality data suitable for evaluating trends or existing conditions were available for the remaining approximately 899 stream miles, or about 73 percent of the total stream miles. It should be noted that while post-1976 data were available for only a relatively small percentage of the stream mileage within the Region, the streams for which data did exist included the main stem reaches of the major rivers which traverse the most highly urbanized areas of the Region and thus are the most susceptible to water pollution from urban sources, and for which a knowledge of current conditions and trends within the Region is most important.

Recent biological condition data collected for streams within the Region were also available for use in characterizing water quality conditions, as indicated on Map XVIII-2. These data were collected for about 425 stream miles in the Region, or about 35 percent of the total stream miles within the Region addressed in the planning effort. These data provide a basis for the assessment of conditions in a manner different than that provided by water quality data. Thus, the data are not directly comparable with the earlier data to indicate trends. However, the biological monitoring data do serve as a measure of current conditions and can be used in the future to indicate trends as additional similar data are collected. The availability of water quality, biological conditions, and sediment condition data is summarized in Table XVIII-1. In total, some types of water quality and/or biological monitoring data were available for approximately 521 stream miles, or about 43 percent of the total stream miles concerned.

Sediment sampling data collected since the completion of the initial plan were also available for use in characterizing water quality conditions within the Region, as indicated on Map XVIII-3. Data were collected in the Milwaukee harbor estuary and in those stream reaches immediately upstream of the inner harbor; in Cedar Creek in the City of Cedarburg; and at 47 additional sampling sites within the Region. The majority of the data were collected for specific studies relating to harbor maintenance, dam removal evaluations, and special sediment contamination studies. These data were generally not adequate for use in definitively assessing trends in water quality, but were used as a measure of the current level of contaminants present in the sediments of the stream systems.

Instream Water Quality Conditions and Trends: An analysis of relative changes in surface water quality conditions based on long-term monitoring data over the period of 1976 through 1993 is summarized on Map XVIII-4. As already noted, adequate monitoring data to assess long-term trends in water quality were available for only about 105 miles, or about 9 percent of the stream miles within the Region addressed in the planning effort. The available data indicate that water quality conditions have improved for selected stream reaches in the Region, specifically portions of the Milwaukee, Menomonee, Fox, and Root River main stems, totaling 60 stream miles, or about 57 percent of those streams for which long-term, post-1976 water quality sampling data were available. The data also indicate that water quality conditions have deteriorated in short reaches of Oak Creek and the Kinnickinnic River, totaling about four miles, or about 4 percent

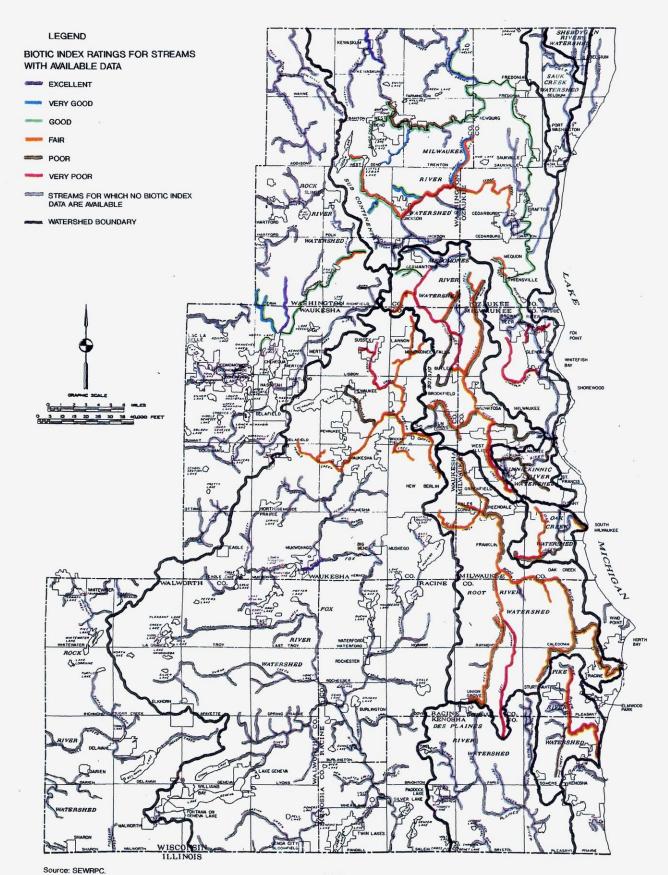


Table XVIII-1

AVAILABLE POST-1976 DATA FOR STREAMS IN SOUTHEASTERN WISCONSIN

			Water Q	uality Data					Compliance
WATERSHED Subwatershed Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^e	Sediment Condition Data	Water Quality Trends ^b	with Water Us Objective ^c
DES PLAINES RIVER WATERSHED Brighton Creek and Salem Branch	17.5	Warmwater Sport Fish Community and Full Recreational Use			x			••	P
Dutch Gap Canal	5.8	Warmwater Sport Fish Community and Full Recreational Use			х		••		Р
Kilbourn Road Ditch	14.8	Warmwater Sport Fish Community and Full Recreational Use					••		
Des Plaines River u/s STH 50	8.8	Warmwater Sport Fish Community and Full Recreational Use			×		••	 3.4 miles = NC	P
Des Plaines River d/s STH 50	13.5	Warmwater Sport Fish Community and Full Recreational Use	3.4 miles		×			3.4 miles = NC	
Pleasant Prairie Tributary	0.8	Warmwater Forage Fish Community and Limited Recreational Use							
Jerome Creek	1.4	Warmwater Sport Fish Community and Full Recreational Use							••
Center Creek	5.8	Warmwater Sport Fish Community and Full Recreational Use			x				
FOX RIVER WATERSHED									
Upper Fox River Subwatershed Fox River u/s Mill Road	5.2	Warmwater Sport Fish Community and Full Recreational Use			×	f			Р
Fox River d/s Mill Road to Sussex Creek inflow	4.7	Warmwater Sport Fish Community and Full Recreational Use		1.3 miles	×	f			P
Sussex Creek	7.7	Warmwater Forage Fish Community and Full Recreational Use		×	×	vp			Р
Fox River d/s Sussex Creek to Watertown Road	6.8	Warmwater Sport Fish Community and Full Recreational Use		×	х	f	×		Р
Fox River d/s Watertown Road to Prairie Avenue (Waukesha)	4.4	Warmwater Sport Fish Community and Full Recreational Use	3.1 miles	1.3 miles	×	f	×	3.1 miles = I	Р
Fox River d/s Prairie Avenue to Pebble Creek inflow	2.7	Warmwater Sport Fish Community and Full Recreational Use	x		×	f	х	I	Р
Deer Creek	7.0	Warmwater Sport Fish Community and Full Recreational Use	••	×	×	f	×		N
Pebble Creek and Brandy Brook	6.8	Coldwater Community and Full Recreational Use		х	×	f		••	Р
Poplar Creek	7.0	Warmwater Sport Fish Community and Full Recreational Use			x	f	×	••	N
Pewaukee River	7.5	Warmwater Sport Fish Community and Full Recreational Use		×	×	p			P

			Water Qu	ality Data					
WATERSHED Subwatershed Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Us Objective ^c
	 								
Middle Fox River Subwatershed Fox River d/s Pebble Creek inflow	13.3	Warmwater Sport Fish Community and Full Recreational Use	7.0 miles		х			7.0 miles = I	P
Fox River d/s I-43 to Waterford Impoundment	13.7	Warmwater Sport Fish Community and Full Recreational Use	•-	×	х		×	••	Р
Fox River d/s Waterford Impoundment to Echo Lake inflow	10.6	Warmwater Sport Fish Community and Full Recreational Use	••		х			••	P
Fox River d/s Echo Lake inflow to Spring Brook Creek inflow	1.3	Warmwater Sport Fish Community and Full Recreational Use			х		••	••	F
Muskego Canal	2.4	Warmwater Sport Fish Community and Full Recreational Use		X	х			••	Р
Wind Lake Drainage Canal	12.8	Warmwater Sport Fish Community and Full Recreational Use		4.7 miles	x			••	F
Genesee Creek u/s Spring Creek	4.5	Coldwater Community and Full Recreational Use			х				F
Genesee Creek d/s Spring Creek Spring Creek	3.7	Warmwater Sport Fish Community and Full Recreational Use Warmwater Sport Fish Community			×		ļ <u></u> -		F
Eagle Creek	5.5	and Full Recreational Use Warmwater Sport Fish Community					ļ		Р
Pebble Brook, Mill Brook, and Mill Creek	13.7	and Full Recreational Use			x				P
Lower Fox River Subwatershed Fox River d/s Spring Brook Creek inflow	4.5	and Full Recreational Use Warmwater Sport Fish Community			x				P
to CTH JB Spring Brook Creek	3.9	and Full Recreational Use Warmwater Sport Fish Community			×			7.5 miles = NC	P
tributary stream	1.4	and Full Recreational Use Warmwater Sport Fish Community and Full Recreational Use			×	••	 		Р
Fox River d/s CTH JB to State Line	11.8	Warmwater Sport Fish Community and Full Recreational Use	7.5 miles		x	••	 		P
tributary stream	2.3	Warmwater Sport Fish Community and Full Recreational Use	••		х			••	P
Hoosier, Palmer, and Peterson Creeks	21.8	Warmwater Sport Fish Community and Full Recreational Use						••	
Bassett Creek	5.1	Warmwater Sport Fish Community and Full Recreational Use	•-	•-	х				F
New Munster Creek	4.7	Warmwater Sport Fish Community and Full Recreational Use			х		•-		F
Mukwonago River Subwatershed Mukwonago River u/s Eagle Spring Lake	6.3	Warmwater Sport Fish Community and Full Recreational Use			х	••			F
Mukwonago River d/s Eagle Spring Lake to Phantom Lakes	9.7	Warmwater Sport Fish Community and Full Recreational Use	••	3.0 miles	х				F
Mukwonago River d/s Phantom Lakes	2.3	Warmwater Sport Fish Community and Full Recreational Use			х	e			F
Jericho Creek	6.9	Warmwater Sport Fish Community and Full Recreational Use			х	••			F

			Water Qu	uality Data					
MATERSHED <u>Subwatershed</u> Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Use Objective ^c
Honey/Sugar Creeks Subwatershed									
Honey Creek	26.1	Warmwater Sport Fish Community and Full Recreational Use		24.0 miles	x	••			Р
Spring Creek	4.2	Warmwater Sport Fish Community and Full Recreational Use			×	••			P
tributary streams	4.5	Warmwater Sport Fish Community and Full Recreational Use			×		 		Р
Sugar Creek	23.4	Warmwater Sport Fish Community and Full Recreational Use		3.2 miles	×	••			Р
Spring Brook Creek	5.5	Coldwater Community and Full Recreational Use			×	. -	 		P
tributary streams	5.2	Warmwater Sport Fish Community and Full Recreational Use			x				Р
	†	and total recognitional sec	<u> </u>						
<u>White River/Nippersink Creek Subwatershed</u> White River	22.5	Warmwater Sport Fish Community and Full Recreational Use		3.5 miles	×				Р
Como Creek	3.6	Warmwater Sport Fish Community and Full Recreational Use			x				Р
Ore Creek	11.5	Warmwater Sport Fish Community and Full Recreational Use			×		 		P
Lake Ivanhoe Outlet	8.4	Warmwater Sport Fish Community and Full Recreational Use			×				P
Nippersink Creek	21.6	Warmwater Sport Fish Community and Full Recreational Use			×				Р
Potawatomi, Van Slyke, and Southwick Creeks	3.1	Coldwater Community and Full Recreational Use			x	•-		••	••
KINNICKINNIC RIVER WATERSHED									
Kinnickinnic River u/s 27th Street	3.9	Limited Aquatic Life and Limited Recreational Use	1.6 miles		×	p		1.6 miles = NC	P
Kinnickinnic River 27th Street to 5th Street	2.2	Limited Aquatic Life and Limited Recreational Use	х		×	**	T	1.0 miles = D 1.2 miles = NC	Р
Kinnickinnic River 5th Street to 1st Street	1.3	Warmwater Sport Fish Community and Limited Recreational Use	×		×	p	×	0.3 miles = D 1.0 miles = NC	P
Kinnickinnic River d/s 1st Street	1.4	Warmwater Sport Fish Community and Limited Recreational Use	×		x	p	×	NC NC	Р
Lyons Creek	1.4	Limited Aquatic Life and Limited Recreational Use			×			· · · · · · · · · · · · · · · · · · ·	P
Wilson Park Creek	3.7	Limited Aquatic Life and Limited Recreational Use			×	Р			Р
tributary stream	1.4	Limited Recreational Use Limited Aquatic Life and Limited Recreational Use			х		 		Р

			Water Q	uality Data					
WATERSHED	Stream					Dielesiaal	Sediment	 	Compliance
Subwatershed	Length	Recommended Water Use	Long-Term	Short-Term	1 1	Biological Condition Data ^a	Condition Data	Water Quality Trends ^b	with Water Use
Stream Reach	(miles)	Objective	Monitoring	Monitoring	Modeling	Condition Data	Data	i renas	Objective ^c
MENOMONEE RIVER WATERSHED	1	1	1		1				1
North Branch of Menomonee River u/s STH 145	10.0	Warmwater Sport Fish Community			×				N
l	1	and Limited Recreational Use							
Menomonee River West Branch	2.1	Warmwater Forage Fish Community			x	g		••	P
	1	and Limited Recreational Use							
northern tributary	2.1	Warmwater Forage Fish Community			х	g			P
	1	and Limited Recreational Use							
Menomonee River d/s STH 145 to CTH Q	3.8	Warmwater Sport Fish Community	X		x	f	x	I	P
		and Limited Recreational Use							
Menomonee River d/s CTH Q to Lilly Road	3.8	Warmwater Sport Fish Community	X		X	f		I	P
	1	and Limited Recreational Use							
Menomonee River d/s Lilly Road to Good Hope Rd	2.4	Warmwater Sport Fish Community	x		X	f		I	P
	1	and Limited Recreational Use							
Dretzka Park tributary	4.7	Warmwater Sport Fish Community			X			••	N
	1	and Limited Recreational Use							
Menomonee River d/s Good Hope Road to Silver	2.7	Warmwater Sport Fish Community	X		х	f		1	P
Spring Drive	1	and Limited Recreational Use			ļļ				
Menomonee River d/s Silver Spring Drive to	2.1	Warmwater Sport Fish Community) x	••	x	Р	×	I	P
Hampton Avenue	1.	and Limited Recreational Use			ļ				ļ
Menomonee River d/s Hampton Avenue to	1.3	Warmwater Sport Fish Community	×		×	р		NC	Р
Capitol Drive	1 77	and Limited Recreational Use							
Menomonee River d/s Capitol Drive to North Avenue	2.7	Warmwater Sport Fish Community and Limited Recreational Use	×		х	p	x	NC	P
Menomonee River d/s North Avenue to	2.4	Warmwater Sport Fish Community	×		×	p	×	NC	Р
70th Street		and Limited Recreational Use	^	-	1 . ^ 1	P	^	NC	1
Menomonee River d/s 70th Street to USH 41	1.5	Warmwater Sport Fish Community	×		- x - 1	VD		NC	P
	1	and Limited Recreational Use	1 ^		1 ^ I	••			l '
Menomonee River d/s USH 41 to Falk Corp dam	2.4	Warmwater Forage Fish Community	×		×	Vp		NC	P
•	1	and Limited Recreational Use	. "		, n	.,			· .
Menomonee River d/s Falk Corp dam to	0.5	Warmwater Sport Fish Community	x		x	vp		NC	P
25th Street	1	and Limited Recreational Use	. "		· 1	.,			'
Menomonee River d/s 25th Street to	1.7	Warmwater Sport Fish Community	x		×		×	NC	N
Milwaukee River	1	and Limited Recreational Use					"		
S. Menomonee and Burnham Canals	1.5	Warmwater Sport Fish Community	••		x		×		P
		and Limited Recreational Use	1						
Honey Creek u/s Wisconsin Avenue	7.5	Limited Aquatic Life and		•	×	f to vp			P
	ł	Limited Recreational Use			1	•	1		1
Honey Creek d/s Wisconsin Avenue	0.9	Warmwater Forage Fish Community			×	f to vp			P
	ŀ	and Limited Recreational Use	Į i						ĺ
Underwood Creek u/s Watertown Plank Road	6.3	Warmwater Forage Fish Community			x	f to p			P
	1	and Limited Recreational Use	1			•			I
South Branch Underwood Creek	1.1	Warmwater Forage Fish Community			x	f to p			P
	1	and Limited Recreational Use				·			
Underwood Creek d/s Watertown Plank Road	1.5	Limited Aquatic Life and			X	f to p			P
	1	Limited Recreational Use				·			
Little Menomonee Creek	2.3	Warmwater Forage Fish Community			х	g to f	x		P
	1	and Limited Recreational Use							
Little Menomonee River	9.7	Warmwater Sport Fish Community			x	f to p	x	••	N
	l	and Limited Recreational Use	l		1		l		1

			Water Qu	uality Data					1
MATERSHED <u>Subwatershed</u> Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Us Objective ^c
MENOMONEE RIVER WATERSHED (cont'd)									
Butler Ditch	2.4	Limited Forage Fish Community and Limited Recreational Use			×	р			P
Dousman Ditch	2.5	Limited Forage Fish Community and Limited Recreational Use		••	×		••		Р
Lilly Creek	3.4	Warmwater Forage Fish Community and Limited Recreational Use			х	р	х		Р
Nor-X-Way Channel u/s Donges Bay Road	2.1	Limited Forage Fish Community and Limited Recreational Use			х	f to p			Р
Nor-X-Way Channel d/s Donges Bay Road to Warren Street	1.9	Warmwater Forage Fish Community and Limited Recreational Use			x	f to p			Р
Nor-X-Way Channel d/s Warren Street to Brown Deer Road	0.5	Limited Forage Fish Community and Limited Recreational Use		••	х	f to p	••		Р
Willow Creek	3.2	Warmwater Forage Fish Community and Full Recreational Use			х	f			Р
MILWAUKEE RIVER WATERSHED Cedar Creek Subwatershed									
Cedar Creek u/s Little Cedar Creek inflow	8.0	Warmwater Sport Fish Community and Full Recreational Use			×	g to f			P
Little Cedar Creek	7.2	Warmwater Sport Fish Community and Full Recreational Use							
Cedar Creek d/s Little Cedar Creek inflow to CTH M	9.8	Warmwater Sport Fish Community and Full Recreational Use			×	6.2 miles = f to vp			Р
Cedar Creek d/s CTH M to STH 60	9.5	Warmwater Sport Fish Community and Full Recreational Use		x	×	f			Р
Cedar Creek d/s STH 60	6.7	Warmwater Sport Fish Community and Full Recreational Use		0.7 miles	×		х		P
North Branch Cedar Creek	7.3	Warmwater Sport Fish Community and Full Recreational Use				vg to f			••
Friedens Creek	3.2	Warmwater Sport Fish Community and Full Recreational Use	••		••	vg to g			
Lehner Creek	1.8	Coldwater Community and Full Recreational Use		••		vg to g			
Milwaukee River East and West Branches Subwatershed									
Milwaukee River d/s north Washington County Line to CTH H	5.4	Warmwater Sport Fish Community and Full Recreational Use			×	e			F
Milwaukee River d/s CTH H to Woodford Drive	4.9	Warmwater Sport Fish Community and Full Recreational Use	· · · · ·		×		••		F
Milwaukee River d/s Woodford Drive to STH 33	13.6	Warmwater Sport Fish Community and Full Recreational Use		4.8 miles	×	10.8 miles ≈ g to p			Р
Milwaukee River d/s STH 33	9.9	Warmwater Sport Fish Community and Full Recreational Use			×	g			P
Kewaskum Creek	6.4	Warmwater Forage Fish Community and Full Recreational Use			×		••	••	P
Silver Creek	4.0	Warmwater Forage Fish Community and Full Recreational Use	••		×	g			Р

			Water Q	uality Data					
WATERSHED Subwatershed Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Use Objective ^c
will be piece for and that Bounds									
Milwaukee River East and West Branches Subwatershed (cont'd)				1	1		1		
Quaas Creek u/s CTH G	2.7	Coldwater Community and				vg to f		••	
10000 01001 0100	i	Full Recreational Use							
Quaas Creek d/s CTH G	2.2	Warmwater Forage Fish Community				vg to f			
		and full Recreational Use			 		 		
East Branch Milwaukee River d/s north	5.0	Warmwater Sport Fish Community and Full Recreational Use				•			
Washington County Line	- 	and rutt Recreational osc			 				
Milwaukee River North Branch Subwatershed			l		1 1				
North Branch Milwaukee River	8.5	Warmwater Sport Fish Community			×	e to g			P
		and Full Recreational Use			 		 		
Stony Creek u/s STH 144	8.6	Coldwater Community and Full Recreational Use				••	1	1	
Stony Creek d/s STH 144	1.4	Warmwater Sport Fish Community		 	 				
Stony Creek d/s 31h 144	1	and Full Recreational Use	1		l L		L	<u> </u>	<u> </u>
Wallace Creek u/s CTH A	1.2	Warmwater Forage Fish Community							••
		and Full Recreational Use			 		+		
Wallace Creek u/s CTH A	7.4	Warmwater Sport Fish Community and Full Recreational Use				••	.1	1	
		and rutt kecreational use			 		 		†
Milwaukee River South Branch Subwatershed				1	1 1		l		
Milwaukee River u/s STH 33	11.1	Warmwater Sport Fish Community		×	×	g	×		P
	1	and Full Recreational Use					1		P
Milwaukee River d/s STH 33 to STH 57	6.0	Warmwater Sport Fish Community and Full Recreational Use		x	×	g	×		1
Mole Creek	7.7	Warmwater Sport Fish Community		 	 x 		×		Р
Mote Creek	1	and Full Recreational Use		1				1	
Milwaukee River d/s STH 57 to CTH C	4.5	Warmwater Sport Fish Community	1.2 miles		×	g	x	1.2 miles = I	P
	1	and Full Recreational Use			 			 	P
Milwaukee River d/s CTH C to Mequon Road	7.5	Warmwater Sport Fish Community and Full Recreational Use	×		×	9	×	'	1
Lakefield tributary	5.9	Warmwater Sport Fish Community		 	 		 		
Lakerreta (Tributary	1 2.7	and Full Recreational Use						L	
Milwaukee River d/s Mequon Road to	3.8	Warmwater Sport Fish Community	х		x	g		I	Р
Brown Deer Road		and Full Recreational Use		<u> </u>	 		 		
Beaver Creek tributary	2.3	Warmwater Sport Fish Community and Full Recreational Use					1		
Milwaukee River d/s Brown Deer Road to	8.1	Warmwater Sport Fish Community	×	 	x	••	×	1	P
Port Washington Road		and Full Recreational Use	, "						
South Branch Creek	2.3	Warmwater Sport Fish Community				••			
		and Full Recreational Use			 		+ x	1	P
Milwaukee River d/s Port Washington Road	3.8	Warmwater Sport Fish Community and Full Recreational Use	×		×	••	^	1	1
to North Avenue Milwaukee River d/s North Avenue to	0.9	Warmwater Sport Fish Community		 	1 × 1	••	×	1	P
Walnut Street	1 ""	and Limited Recreational Use		l					
Milwaukee River d/s Walnut Street to	0.8	Warmwater Sport Fish Community	×		×	••	х	NC	Р
Wells Street		and Limited Recreational Use			 		+x	NC NC	P
Milwaukee River d/s Wells Street to Water Street	0.6	Warmwater Sport Fish Community and Limited Recreational Use	х		×	••	^	NC.	1

			Water Q	ality Data					
MATERSHED Subwatershed Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data [®]	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Use Objective ^c
Milwaukee River South Branch Subwatershed (cont'd)									
Milwaukee River d/s Water Street	0.8	Warmwater Sport Fish Community and Limited Recreational Use	×		x		×	NC	P
Lincoln Creek u/s Silver Spring Drive	2.7	Limited Forage Fish Community and Limited Recreational Use		x	х	VP			N
Lincoln Creek d/s Silver Spring Drive to Hampton Avenue	1.3	Limited Aquatic Life and Limited Recreational Use		×	X	vp			P
Lincoln Creek d/s Hampton Avenue to 32nd Street	2.5	Limited Forage Fish Community and Limited Recreational Use	••	×	×	Vp	•-		N
Lincoln Creek d/s 32nd Street to Teutonia Avenue	0.6	Limited Aquatic Life and Limited Recreational Use		×	х	vp	**		Р
Lincoln Creek d/s Teutonia Avenue	1.3	Warmwater Sport Fish Community and Limited Recreational Use		×	х	vp			N
Indian Creek u/s I-43	0.6	Limited Aquatic Life and Limited Recreational Use		••	×	∨p	×		F
Indian Creek d/s 1-43 Brown Deer Creek	1.3	Warmwater Sport Fish Community and Limited Recreational Use Limited Forage Fish Community			×	vp			N
Pigeon Creek	2.4	and Limited Recreational Use Warmwater Forage Fish Community				Vp			N
rigeon creek		and full Recreational Use		••	×	g to f			-
MATERSHED OF MINOR STREAMS AND DIRECT DRAINAGE AREA TRIBUTARY TO LAKE MICHIGAN									
Fish Creek	3.4	Warmwater Sport Fish Community and Full Recreational Use							
unnamed stream in T4N R23E sections 21 and 22	0.9	Warmwater Sport Fish Community and Full Recreational Use				••	••	• •	
unnamed stream in T4N R23E sections 17 and 20	1.7	Warmwater Sport Fish Community and Full Recreational Use							
Barnes Creek Subwatershed Barnes Creek	3.0	Warmwater Sport Fish Community and Full Recreational Use			х				P
<u>Pike Creek Subwatershed</u> Pike Creek (Kenosha)	3.7	Warmwater Sport Fish Community and Full Recreational Use			х				Р
<u>Sucker Creek Subwatershed</u> Sucker Creek	18.8	Warmwater Sport Fish Community and Full Recreational Use			x				F

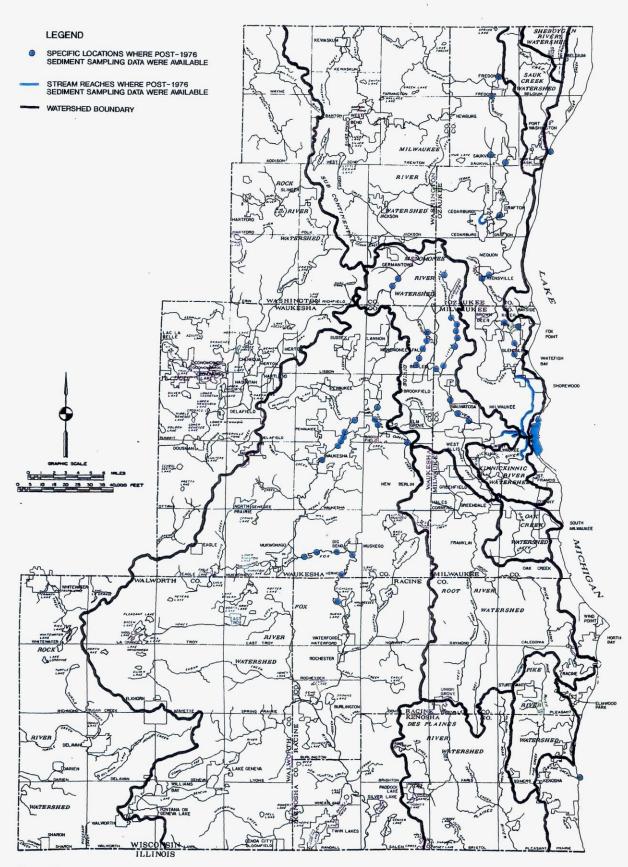
			Water Q	uality Data					Compliance
MATERSHED <u>Subwatershed</u>	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	with Water Us Objective
Stream Reach	(miles)	Objective	Monitoring	Mornitoring	Flodet mg				
OAK CREEK WATERSHED	į								
Oak Creek u/s STH 100	2.8	Warmwater Sport Fish Community and Full Recreational Use	×		×	p to vp	••	NC	P
Oak Creek d/s STH 100 to Drexel Avenue	4.5	Warmwater Sport Fish Community and Full Recreational Use	×		х	р	••	NC	Р
Oak Creek d/s Drexel Avenue to Pennsylvania Avenue	0.9	Warmwater Sport Fish Community and Full Recreational Use	×		X .		••	NC	Р
Oak Creek d/s Pennsylvania Avenue to 15th Avenue	1.9	Warmwater Sport Fish Community and Full Recreational Use	х		х		••	NC	Р
Oak Creek d/s 15th Avenue	2.8	Warmwater Sport Fish Community and Full Recreational Use	×		х	ftop	••	D	P
Mitchell Field Ditch	2.3	Warmwater Sport Fish Community and Full Recreational Use	••		x				P
North Branch Oak Creek	5.7	Warmwater Sport Fish Community and Full Recreational Use	••	×	×	f		••	
PIKE RIVER WATERSHED			1		1				
Pike River u/s STH 20 to Bartlett Branch	1.0	Warmwater Forage Fish Community and Full Recreational Use			×	f to vp			Р
Bartlett Branch	1.5	Limited Forage Fish Community and Limited Recreational Use			х			•-	F
Pike River d/s STH 20 to Pike Creek	11.7	Warmwater Sport Fish Community and Full Recreational Use	••		×	5.3 miles = f to vp		••	P
Pike River d/s Pike Creek	13.8	Warmwater Sport Fish Community and Full Recreational Use			х	9.6 miles = f to vp		• •	Р
Pike Creek d/s STH 142	9.8	Warmwater Sport Fish Community and Full Recreational Use		•-	×	4.8 miles = p			P
Pike Creek u/s STH 142	0.7	Warmwater Forage Fish Community and Limited Recreational Use			×	Р			F
ROCK RIVER WATERSHED									
Ashippun River Subwatershed				1					
Ashippun River u/s Druid Lake	4.3	Warmwater Sport Fish Community and Full Recreational Use					••	••	
Ashippun River d/s Druid Lake to Washington County Line	5.2	Warmwater Sport Fish Community and Full Recreational Use				••			
Ashippun River d/s Waukesha County Line to Ashippun Lake inflow	7.2	Warmwater Sport Fish Community and Full Recreational Use			x				P
Ashippun River d/s Ashippun Lake inflow	4.2	Warmwater Sport Fish Community and Full Recreational Use							

			Water Q	uality Data					
MATERSHED <u>Subwatershed</u> Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Use Objective ^c
Bark River Subwatershed Bark River u/s Nagawicka Lake	19.3	Warmwater Sport Fish Community and Full Recreational Use			x				F
Bark River d/s Nagawicka Lake	12.3	Warmwater Sport Fish Community and Full Recreational Use			×				P
Scuppernong Creek u/s Waterville Pond	4.9	Coldwater Community and Full Recreational Use			×	••		•-	F
Scuppernong Creek d/s Waterville Pond	7.6	Warmwater Sport Fish Community and Full Recreational Use			х				F
<u>Oconomowoc River Subwatershed</u> Coney River	6.2	Warmwater Sport Fish Community and Full Recreational Use							
Oconomowoc River u/s Friess Lake	2.8	Warmwater Sport Fish Community and Full Recreational Use				g to f			
Oconomowoc River d/s Friess Lake to North Lake	15.2	Warmwater Forage Fish Community and Full Recreational Use				10.3 miles = g			
Oconomowoc River d/s North Lake to Okauchee Lake	1.8	Warmwater Forage Fish Community and Full Recreational Use		••		g			
Oconomowoc River d/s Okauchee Lake to Oconomowoc Lake	0.4	Warmwater Forage Fish Community and Full Recreational Use		••					
Oconomowoc River d/s USH 16 to Fowler Lake	1.7	Warmwater Forage Fish Community and Full Recreational Use		-		••			
Oconomowoc River d/s Lac La Belle to Waukesha County Line	5.0	Warmwater Forage Fish Community and Full Recreational Use							••
Little Oconomowoc River	5.7	Warmwater Forage Fish Community and Full Recreational Use				е			••
Mason Creek	6.5	Coldwater Community and Full Recreational Use				vg to g			
<u>Piscasaw Creek Subwatershed</u> Piscasaw Creek	2.5	Warmwater Forage Fish Community and Full Recreational Use						•-	
Rock River East Branch Subwatershed East Branch Rock River d/s CTH D	4.4	Warmwater Sport Fish Community and Full Recreational Use						••	
Limestone Creek u/s CTH W	4.0	Warmwater Forage Fish Community and Full Recreational Use							
tributary stream	0.9	Warmwater Forage Fish Community and Full Recreational Use						••	
Limestone Creek d/s CTH W	0.9	Warmwater Sport Fish Community and Full Recreational Use							
East Branch Rock River u/s CTH D	14.3	Warmwater Sport Fish Community and Full Recreational Use							
Allenton Creek	3.4	Coldwater Community and Full Recreational Use							

			Water Qu	ality Data					
WATERSHED <u>Subwatershed</u> Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Use Objective ^c
Rock River East Branch Subwatershed (cont'd) Kohlsville River	7.9	Coldwater Community and Full Recreational Use							
West Branch Kohlsville River	2.3	Warmwater Sport Fish Community and Full Recreational Use				• •			
Wayne Creek	6.5	Warmwater Forage Fish Community and Full Recreational Use	••						
Rubicon River Subwatershed Rubicon River u/s Hilldale Road	1.4	Warmwater Forage Fish Community and Full Recreational Use			x				p
Rubicon River d/s Hilldale Road to Pike Lake	1.4	Warmwater Sport Fish Community and Full Recreational Use			х				ρ
Rubicon River d/s Pike Lake	9.8	Warmwater Sport Fish Community and Full Recreational Use			х			••	р
Scuppernong River Subwatershed Scuppernong River	14.9	Coldwater Community and Full Recreational Use							
Steel Brook Creek	7.1	Coldwater Community and Full Recreational Use						••	
<u>Turtle Creek Subwatershed</u> Jackson Creek	5.7	Warmwater Sport Fish Community and Full Recreational Use			x				Р
Swan Creek	4.2	Warmwater Sport Fish Community and Full Recreational Use			х				F
Turtle Creek u/s Comus Lake	10.2	Warmwater Sport Fish Community and Full Recreational Use			x				F
Turtle Creek d/s Comus Lake to STH 11	3.3	Warmwater Sport Fish Community and Full Recreational Use			x				F
Turtle Creek d/s STH 11 to Walworth County Line	7.1	Warmwater Sport Fish Community and Full Recreational Use			х				F
Little Turtle Creek	7.5	Warmwater Forage Fish Community and Full Recreational Use			х				Р
Ladd Creek	1.1	Warmwater Forage Fish Community and Full Recreational Use			х	••		••	Р
Darien Creek	8.8	Warmwater Forage Fish Community and Full Recreational Use			×			••	P
Sharon Creek	2.1	Warmwater Forage Fish Community and Full Recreational Use					•-		

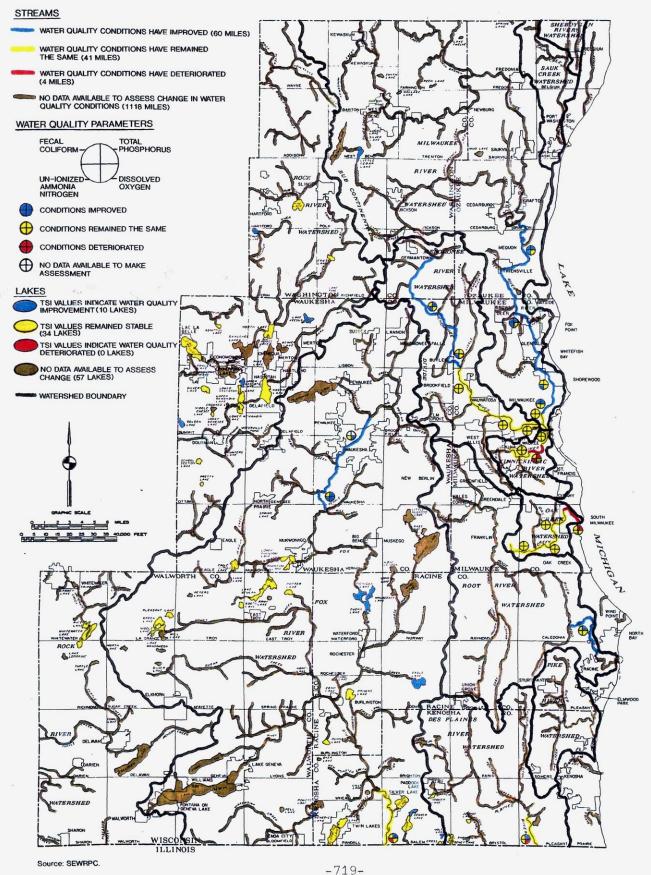
			Water Qu	uality Data					
MATERSHED Subwatershed Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data ^a	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Us Objective ^c
Whitewater Creek Subwatershed Whitewater Creek u/s Bluff Creek inflow to Rice Lake	1.6	Coldwater Community and Full Recreational Use			×		••		Р
western tributary stream	2.5	Warmwater Sport Fish Community and Full Recreational Use			х		••		Р
Whitewater Creek d/s Bluff Creek inflow	3.2	Warmwater Sport Fish Community and Full Recreational Use			×				Р
Spring Brook	2.9	Warmwater Forage Fish Community and Full Recreational Use			×		••		Р
Bluff Creek	1.9	Coldwater Community and Full Recreational Use					••	••	
Galloway Creek	1.4	Warmwater Forage Fish Community and Full Recreational Use			••				
ROOT RIVER WATERSHED									
Root River u/s Grange Avenue	4.8	Warmwater Sport Fish Community and Full Recreational Use		x	×	f to p			Р
Root River d/s Grange Avenue to Ryan Road	9.8	Warmwater Sport Fish Community and Full Recreational Use		x	x	f to p	••		Р
Root River d/s Ryan Road to County Line Road	3.4	Warmwater Sport Fish Community and Full Recreational Use		x	x	f	••		Р
Root River d/s County Line Road to Nicholson Road	5.7	Warmwater Sport Fish Community and Full Recreational Use		3.8 miles	×	3.8 miles = f to p			Р
Root River d/s Nicholson Road to STH 38	12.5	Warmwater Sport Fish Community and Full Recreational Use	7.5 miles	5.0 miles	х	f to p		7.5 miles = 1	Р
Root River d/s STH 38	6.0	Warmwater Sport Fish Community and Full Recreational Use		х	х	f to p			P
West Branch Root River Canal u/s CTH C	3.6	Limited Aquatic Life and Limited Recreational Use		3.0 miles	х	f to p			P
West Branch Root River Canal d/s CTH C	9.9	Limited Forage Fish Community and Limited Recreational Use	••	6.1 miles	х	7.9 miles = f to p			Р
Root River Canal	4.9	Limited Forage Fish Community and Limited Recreational Use	••	х	х	f	••		Р
East Branch Root River Canal u/s STH 20	6.6	Limited Aquatic Life and Limited Recreational Use		х	×	٧p	••	•-	Р
East Branch Root River Canal d/s STH 20	5.0	Limited Forage Fish Community and Limited Recreational Use	••	×	x	٧p	••		Р
Tess Corners/Whitnall Park Creek	9.9	Warmwater Forage Fish Community and Full Recreational Use		x	х	f		••	Р
Husher Creek	3.4	Warmwater Sport Fish Community and Full Recreational Use		X	х	f	•-	••	Р
Hoods Creek	8.6	Warmwater Forage Fish Community and Full Recreational Use		x	×	f to p	••		Р

Table XVIII-1 (cont'd)


			Water Q	uality Data					
WATERSHED <u>Subwatershed</u> Stream Reach	Stream Length (miles)	Recommended Water Use Objective	Long-Term Monitoring	Short-Term Monitoring	Modeling	Biological Condition Data [®]	Sediment Condition Data	Water Quality Trends ^b	Compliance with Water Use Objective ^c
SAUK CREEK MATERSHED Sauk Creek	18.8	Warmwater Sport Fish Community and Full Recreational Use			x				P
SHEBOYGAN RIVER WATERSHED Belgium Creek - West Branch	3.0	Warmwater Sport Fish Community and Full Recreational Use			×	••			Р
Belgium Creek - East Branch	4.2	Warmwater Sport Fish Community and Full Recreational Use							
TOTAL	1223.2		105.4	219.4	980.3		••		••

```
Note: u/s = upstream
       d/s = downstream
        x = data available
       -- = adequate data not available
a Letter codes are as follows:
       e = excellecnt
     e to g = excellent to good
    vg to g = very good to good
    vg to f = very good to fair
     g = good
    g to f = good to fair
    g to p = good to poor
       f = fair
    f to p = fair to poor
    f to vp = fair to very poor
      p = poor
    p to vp = poor to very poor
      vp = very poor
b I = improvement in water quality conditions based on long-term water quality monitoring data
  D = decline in water quality conditions based on long-term water quality monitoring data
  NC = no change in water quality conditions based on long-term water quality monitoring data
c f = fully meeting recommended water use objectives
```

Source: Wisconsin Department of Natural Resources and SEWRPC.


P = partially meeting recommended water use objectives N = not meeting recommended water use objectives

AVAILABILITY OF SEDIMENT SAMPLING DATA IN SOUTHEASTERN WISCONSIN: 1976-1993

Map XVIII-4 SUMMARY OF TRENDS IN SURFACE WATER QUALITY CONDITIONS IN SOUTHEASTERN WISCONSIN: 1976-1993

LEGEND

of the stream miles for which long-term data were available. For the remaining 41 miles of stream, or 39 percent of the stream miles, for which data were available, the data indicate that no significant changes in water quality conditions have occurred. These stream reaches include portions of the Des Plaines, Fox, Kinnickinnic, Menomonee, and Milwaukee Rivers and a portion of Oak Creek.

As indicated on Map XVIII-4, water quality improvement was noted in the Fox River watershed along the Fox River from the confluence with the Pewaukee River upstream of the City of Waukesha to the confluence with Pebble Brook in the Vernon Marsh Wildlife Area in Waukesha County. The improvement, which was evidenced by improvements in dissolved oxygen, phosphorus, and un-ionized ammonia nitrogen levels, may be attributed to improvements in the City of Waukesha and City of Brookfield sewage treatment plants; the abandonment of the Village of Pewaukee and City of New Berlin Regal Manors sewage treatment plants; as well as to reductions in pollutant loadings from industrial point sources. Although an improvement was noted, levels of fecal coliform and total phosphorus continue to generally exceed the standards for this reach of the Fox River. Dissolved oxygen and un-ionized ammonia nitrogen levels generally met the water quality standards Chronic toxicity standards for heavy metals, as set forth in in this reach. Chapter II of this document, were also generally met.

In the Menomonee River watershed, water quality improvement was noted in the Menomonee River upstream of the confluence with the Little Menomonee River, as shown on Map XVIII-4. This improvement is indicated by reduced levels of phosphorus and un-ionized ammonia nitrogen concentrations and may be attributed to the abandonment of the Village of Germantown and the Village of Menomonee Falls Pilgrim Road and Lilly Road sewage treatment plants, a reduction in the bypassing of raw sanitary sewage through flow relief devices; and reductions in pollutant loading from industry sources. Levels of fecal coliform continue to exceed the water quality standards associated with the water use objectives for the Menomonee River. Dissolved oxygen levels and un-ionized ammonia nitrogen levels occasionally violated water quality standards. Lead and cadmium concentrations repeatedly exceeded the chronic toxicity standards prior to 1986, while levels of copper and zinc occasionally exceeded the standard during the period of record. The levels of lead and cadmium exceeded the standards only occasionally after 1986.

In the Milwaukee River watershed, the water quality data indicate an improvement on the Milwaukee River main stem from the confluence with Cedar Creek in Ozaukee County downstream to Walnut Street in Milwaukee County, as shown on Map XVIII-4. The improvement is indicated by reduced levels of phosphorus, un-ionized ammonia nitrogen, and fecal coliform levels. In addition, reduced levels of biochemical oxygen demand, volatile suspended solids, and chlorophyll-a concentrations at some monitoring stations were demonstrated by the data. These improvements may be attributed to the improvements of the City of West Bend, the Village of Saukville, the Village of Grafton, and the City of Cedarburg sewage treatment plants; to the abandonment of the Village of Thiensville treatment plant; and to reductions in the frequency of sanitary sewer flow bypassing and in pollutant loadings from industrial point sources. In addition, limited implementation of nonpoint source pollution abatement programs within the watershed may have contributed to the improvements. The levels of phosphorus and fecal coliform generally exceeded the standards throughout the watershed. Levels of dissolved oxygen and un-ionized ammonia levels generally met but occasionally exceeded

water quality standards in those stream reaches in the downstream, highly urbanized areas of the watershed. Concentrations of cadmium and lead frequently exceeded the chronic toxicity standards prior to 1986. Since 1986, the levels of these metals have only occasionally exceeded the standards, and lead levels generally met the standards after 1986. An increase in the concentrations of chloride in the Milwaukee River was also noted. This increase may be the result of new urban development which has occurred in the watershed in Ozaukee and northern Milwaukee Counties and the associated increased use of salt in winter road maintenance. Chloride levels were still within acceptable limits as defined in Chapter II.

Within the Root River watershed, the water quality monitoring data indicate an improvement in the Root River main stem from the confluence with Hoods Creek in the Town of Caledonia to the Horlick dam in the City of Racine, as shown on Map XVIII-4. This improvement is indicated by a reduced level of phosphorus concentrations and reduced levels of un-ionized ammonia and fecal coliform. This improvement may be attributed to the abandonment of the four public and six private sewage treatment plants all located upstream of the reach for which long-term sampling data were available. Levels of phosphorus and fecal coliform continue to exceed the standards in the watershed. Dissolved oxygen levels and un-ionized ammonia levels generally meet the standard.

As indicated on Map XVIII-4, only four miles, or about 4 percent of the total of 105 miles of stream for which data were available indicated a decline in water quality conditions. This decline was noted in the Oak Creek downstream of Rawson Avenue and in the Kinnickinnic River from W. Cleveland Avenue to S. Chase Avenue, and may be attributed to possible changes in pollutant loadings attendant to increased urban nonpoint source loadings associated with development or redevelopment activities. The decline in water quality conditions was indicated by increases in total phosphorus levels in both streams. In Oak Creek, concentrations of total phosphorus and fecal coliform frequently violated water quality standards. Levels of dissolved oxygen did not violate the water quality stan-Levels of lead and cadmium frequently violated the chronic toxicity standards prior to 1986. After 1986 lead levels generally met the standards. In the Kinnickinnic River, fecal coliform concentrations exceeded the water quality standards. Exceedances of the chronic toxicity standards for cadmium and lead also occurred in the Kinnickinnic River main stem, with occasional exceedances of the chronic toxicity standards for copper and zinc.

The remaining approximately 41 miles, or about 39 percent, of stream reaches analyzed did not indicate any significant change in water quality conditions from 1976 through 1993. As shown on Map XVIII-4, these stream reaches include most of the main stem of Oak Creek; portions of the Kinnickinnic River; all of the Menomonee River main stem downstream of the confluence with the Little Menomonee River; and the lower reaches of the Des Plaines, Fox, and Milwaukee Rivers. For these stream reaches, phosphorus and fecal coliform levels generally exceeded the water quality standards. Dissolved oxygen levels generally met the standards with only infrequent periods where the standard was not achieved. Levels of toxic metals were noted to exceed the standard chronic toxicity standard during the analysis period, with the metals levels generally improving over time-particularly the lead levels which generally met the standards after 1986.

In the Des Plaines River downstream of Jerome Creek, levels of total phosphorus and fecal coliform frequently violated water quality standards. Levels of dissolved oxygen, cadmium, and lead only occasionally violated water quality standards.

Data collected on the Fox River downstream of Bassett Creek in Kenosha County exhibited an increase in un-ionized ammonia nitrogen levels and a slight improvement in dissolved oxygen levels. Violations of the fecal coliform and total phosphorus standards frequently occurred, while no violations of levels of unionized ammonia nitrogen or dissolved oxygen were noted. Violations of the chronic toxicity standards for lead, copper, cadmium, and zinc were also observed in this stream reach. It is of interest to note that chloride levels have increased in the Fox River in Kenosha County. This increase may be the result of new urban development which has occurred in the watershed and the impacts of increased winter road maintenance activities associated with urban development. Chloride levels were still within the acceptable limits as defined in Chapter II.

In the Kinnickinnic River portion of the inner harbor, levels of dissolved oxygen and fecal coliform frequently did not meet the water quality standards. In the Kinnickinnic River upstream of Cleveland Avenue, violations of the water quality standards for fecal coliform levels frequently occurred.

In the Menomonee River downstream of the Little Menomonee River inflow, concentrations of dissolved oxygen and fecal coliform frequently did not meet the water quality standards. Levels of lead and cadmium frequently violated the chronic toxicity standards prior to 1986. After 1986, lead levels generally met the standards. Occasional exceedances of chronic toxicity standards for copper and zinc also occurred in the lower reaches of the Menomonee River.

In the Milwaukee River downstream of Walnut Street, water quality standards were frequently exceeded for fecal coliform levels and occasionally for dissolved oxygen levels. Cadmium and lead levels frequently violated chronic toxicity standards before 1986. After 1986, lead levels generally met the standards.

In Oak Creek upstream of Rawson Avenue, fecal coliform levels frequently violated standards. Levels of dissolved oxygen and total phosphorus occasionally did not meet water quality standards. Lead and cadmium levels frequently violated chronic toxicity standards, with lower levels of lead noted after 1986.

It should be noted that the water quality data analyzed was collected prior to the completion of the Milwaukee Metropolitan Sewerage District inline deep tunnel storage system which went on line in 1994. Operation of that system over a period of time is expected to result in significant improvements in water quality conditions in the Kinnickinnic and the lower reaches of the Menomonee River and Milwaukee River. Such improvements will only be able to be quantified after a period of implementation coupled with water quality monitoring. The monitoring program currently being carried out by the Milwaukee Metropolitan Sewerage District should be adequate to demonstrate such changes in water quality.

<u>Biological Conditions</u>: As already noted, biological condition data were also collected for selected streams within the Region, as indicated on Map VIII-2. These data were collected for about 400 stream miles in the Region, or about 33 percent of the total stream miles considered under the planning effort. Most of

these data were collected after 1988 as part of the nonpoint source priority watershed projects undertaken within the Region. For the majority of the streams, data obtained from benthic macroinvertebrate sampling were used to calculate biotic index ratings based upon the Hilsenhoff Biotic Index (HBI)⁴. Fish community sampling was also used to calculate biotic index ratings based upon the Index of Biotic Integrity (IBI)⁵, as indicated in Chapter II.

As indicated on Map XVIII-2, of the approximately 425 stream miles for which biotic index values were calculated, approximately 135 miles, or about 32 percent of the stream miles for which data were available, received a rating of good or higher. The majority of these streams were located in the Ozaukee County portion of the Milwaukee River watershed, in the upper tributary reaches of the Menomonee River watershed, and in the Oconomowoc River subwatershed. Water quality ratings of very poor were calculated for about 69 stream miles, or about 16 percent of the stream miles for which data were available, including Lincoln Creek, Indian Creek, Brown Deer Creek, Sussex Creek, Honey Creek, the East Branch Root River Canal, the Pike River mainstem, and portions of Cedar Creek and Oak Creek. Biotic index ratings of fair to poor were calculated for about 221 stream miles, or about 52 percent of the stream miles for which data were available, including portions of the Fox River and its major tributaries; most of the Root River and its major tributaries; the Kinnickinnic River and its major tributaries; most of Oak Creek and its major tributaries; Pike Creek, the Little Menomonee River, Butler Ditch, Lilly Creek, Underwood Creek, the Nor-X-Way Channel, Willow Creek, and a portion of Cedar Creek.

<u>Sediment Conditions:</u> Sediment data were collected for selected stream reaches in the Fox, Kinnickinnic, Milwaukee and Menomonee River watersheds, as well as in the Milwaukee, Port Washington, and Kenosha Harbors, as shown on Map XVIII-3. Specific concentrations of substances found to be present are set forth by watershed in Chapters IV through XV.

In the Fox River watershed, data collected in the Fox River in the City of Waukesha indicated levels of Polychlorinated Biphenyls (PCBs) which exceeded the lowest effect level (LEL) guidelines set forth in the draft screening criteria proposed by the Wisconsin Department of Natural Resources⁶ as described in Chapter II. Sediment concentrations of copper, lead, mercury, and zinc exceeded the LEL guidelines in both the Waterford and Barstow impoundments. Severe effect level (SEL) guidelines were exceeded in the Waterford Impoundment for concentrations of chromium, copper, lead and nickel.

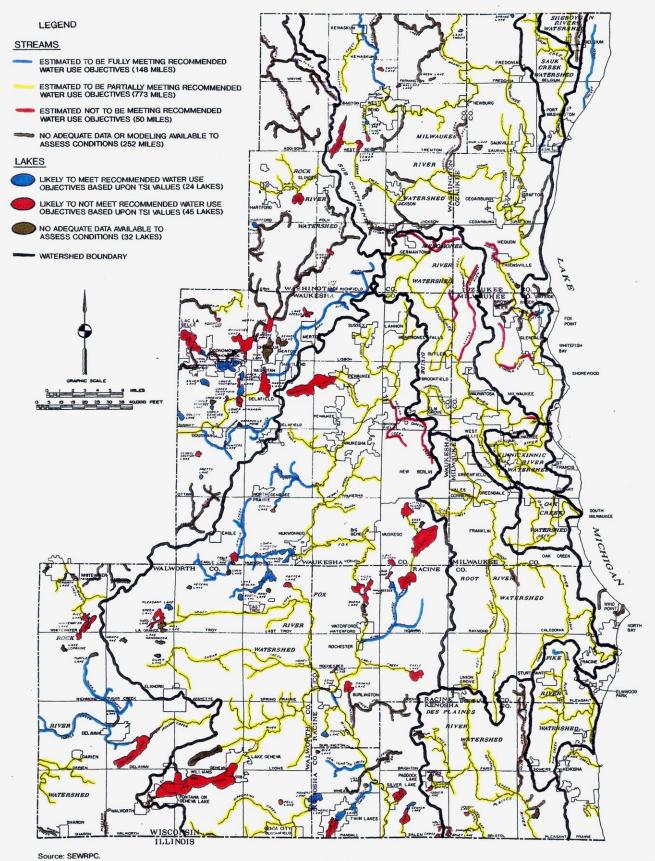
⁴William L. Hilsenhoff, "Using a Biotic Index to Evaluate Water Quality in Streams," Wisconsin Department of Natural Resources Technical Bulletin No. 132, 1982.

⁵John Lyons, "Using the Index of Biotic Integrity (IBI) to Measure Environmental Quality in Warmwater Streams of Wisconsin," U. S. Department of Agriculture, Forest Service, General Technical Report NC-149, April 1992.

⁶Wisconsin Department of Natural Resources, (Draft) <u>Inventory of Statewide</u> <u>Contaminated Sediment Sites and Development of a Prioritization System</u>, June 1994.

In the Kinnickinnic River upstream to Chase Avenue, levels of Polycyclic Aromatic Hydrocarbons (PAHs) exceeded the LEL concentrations at the majority of sampling sites.

In the Menomonee River watershed, the available data indicated levels of PAHs which exceeded the LEL guidelines in the Lower Menomonee River and in the Menomonee River Canals. At those sampling sites in the Menomonee River main stem, in the Little Menomonee River, and in Lilly Creek, concentrations of heavy metals, PAHs, and other toxic substances exceeded the LEL guidelines for the majority of sites. In the Menomonee River portion of the Milwaukee Harbor estuary, sediment concentrations of ammonia, lead, zinc, and cadmium exceeded the proposed SEL guidelines at most of the sites sampled.


In the Milwaukee River watershed, sediment data collected from sampling stations located on the Milwaukee River and on certain major tributaries indicated PAH and heavy metal concentrations which generally exceeded LEL guidelines. Levels of PAHs and PCBs also exceeded LEL guidelines in sediments sampled in the Milwaukee River downstream of Lincoln Creek, including those sediments sampled as part of the North Avenue Dam feasibility study. Sediments sampled in Cedar Creek in the City of Cedarburg immediately upstream of each of four dams also indicated high levels of contamination of the sediments by PCBs. Data collected from above these dams indicated PCB levels which were higher than the SEL guidelines for three of the four dams.

In the three harbors for which sediment samples were collected, levels of heavy metals exceeded the LEL guidelines for both the City of Port Washington and City of Kenosha harbors, and PAH levels exceeded LEL concentrations at the majority of the offshore stations in the Milwaukee Harbor estuary.

Water Use Objectives: The recommended water use objectives for streams in the Region are described in Chapter II and set forth by watershed in Chapters IV through XV. Based upon a review and analysis of available water quality monitoring data; in-stream field inventories and appraisals; the results of simulation modeling; and information on the current uses of certain streams, an assessment of the ability of current stream conditions to meet the recommended water use objectives was conducted, with the findings summarized in Table XVIII-1 and on Map XVIII-5. Streams for which the available water quality data indicated that all of the critical water quality standards were achieved, or for which field observation indicated the stream actually supported the intended water uses, were noted as "fully meeting" the water use objectives. Streams where water quality conditions indicated one or more, but not all of the critical water quality standards were being achieved, were noted to be "partially meeting" the water use Those streams for which field observation indicated the stream actually supported the intended water use objectives some of the time were also noted as partially meeting the objectives. Streams where actual or estimated water quality conditions indicated that none of the critical water quality standards were met, or where field inspection indicated the intended uses were generally not being met, were noted to be "not meeting" the water use objectives.

As shown in Table XVIII-1 and on Map XVIII-5, of the 1,223 stream miles assessed under this planning effort, 148 miles, or 12 percent, are estimated to fully meet the recommended water use objectives. The majority of the streams--773 miles, or 63 percent--are estimated to be partially meeting the recommended water use

ESTIMATED CURRENT LEVEL OF ACHIEVEMENT FOR SURFACE WATER USE OBJECTIVES IN SOUTHEASTERN WISCONSIN: 1993

objectives. About 50 stream miles, or 4 percent, are estimated not to be meeting the water use objectives. For 252 stream miles, or 21 percent of the total stream miles, no data were available to assess the potential level of achievement of the water use objectives.

Lakes

Available lake water quality data collected since the completion of the initial water quality management plan were utilized by the Commission to evaluate to the extent possible changes in lake water quality for the 101 major lakes within the Region. As indicated in Table XVIII-2 and on Map XVIII-1, water quality monitoring data collected since the completion of the initial plan were available for 69 of the major lakes in the Region. It is important to note that comprehensive water quality monitoring data collected as part of the Wisconsin Department of Natural Resources Long-Term Trends Lake Monitoring Program, U.S. Geological Survey monitoring programs, and other comprehensive monitoring programs, were available for 33 of these 69 lakes. Data on the other 36 lakes consisted primarily of Secchi disc data collected under the Wisconsin Department of Natural Resources Self-Help Monitoring Program.

Water Quality: Current available lake water chemistry data were compared with available lake monitoring data collected prior to 1981 to assess any potential changes in lake water quality over time, using the procedure set forth in Chapter II. Results are set forth in graphic summary in Map XVIII-4. Based upon the Trophic State Index (TSI) values, as described in Chapter II, 10 of the 44 lakes for which comparative data were available exhibited an improvement in lake water quality since the completion of the initial plan. These apparent improvements may be attributed, in part, to the construction of public sanitary sewerage systems at a number of the lakes, as well as to the recent implementation of programs of improved onsite sewage disposal system inspection and maintenance for areas served by private onsite sewage treatment systems. In addition, increased riparian awareness regarding water quality impacts and the subsequent implementation of better housekeeping practices by landowners may also have had positive impacts on lake water quality.

It should be noted that for those lakes with comparative water chemistry data available, none of the lakes exhibited a decline in water quality based upon Trophic State Index values. For the remaining 34 lakes where comparative water chemistry data were available, water quality conditions appeared to be unchanged from 1976 to 1993, even though a number of these lakes in the Region have experienced increased developmental pressures during this period.

<u>Water Use Objectives:</u> Based upon available Trophic State Index values, an assessment of the compliance of current lake water quality conditions to the recommended water use objectives was conducted, with results set forth in Table XVIII-2 and on Map XVIII-5. The data used in this assessment included data collected for 69 lakes since the preparation of the initial plan. Those lakes with a Trophic State Index value in excess of approximately 47, indicated to be eutrophic or very eutrophic, were assumed to be exceeding the total phosphorus standard associated with full recreational uses. As indicated in Map XVIII-5, 45, or about 65 percent, of the 69 lakes for which trophic state index data were available have an estimated water quality which indicates that the recommended water use objectives are unlikely to be fully met. The data indicate that the water use objectives are fully met for 24 lakes. It should be noted that those

Table XVIII-2

AVAILABLE POST-1976 DATA FOR LAKES IN SOUTHEASTERN WISCONSIN

			Wa	ater Quality Da	ta			
WATERSHED <u>Subwatershed</u> Lake	Lake Area (acres)	Recommended Water Use Objective	Pre-1981 Monitoring	Post-1987 Comprehensive Monitoring	Post-1981 Limited Monitoring	Trophic State Index ^a	Water Quality Trends	Compliance with Water Use Objective
DES PLAINES RIVER WATERSHED								
Benet/Shangrila Lake	188	Warmwater Sport Fish Community and Full Recreational Use	+		+	67	NC	N
East Lake Flowage	123	Warmwater Sport Fish Community and Full Recreational Use	+					
George Lake	59	Warmwater Sport Fish Community and Full Recreational Use	+		+	64	NC	N
Hooker Lake	87	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	54	NC	N
Paddock Lake	112	Warmwater Sport Fish Community and Full Recreational Use	+					
Unnamed Quarry Lake	100	Warmwater Sport Fish Community and Full Recreational Use						
FOX RIVER WATERSHED								
Upper Fox River Subwatershed								
Pewaukee Lake	2493	Warmwater Sport Fish Community and Full Recreational Use		+ .	+	59		N
Middle Fox River Subwatershed Big Muskego Lake	2177	Warmwater Sport Fish Community and Full Recreational Use		+	+	70		И
Denoon Lake	162	Warmwater Sport Fish Community and Full Recreational Use		+	+	49		N
Eagle Lake	520	Warmwater Sport Fish Community and Full Recreational Use	+		+	52	I	N
Kee Nong Go Mong Lake	88	Warmwater Forage Fish Community and Full Recreational Use		+		55		N
Little Muskego Lake	506	Warmwater Sport Fish Community and Full Recreational Use		+	+	62		N
Long Lake (Racine County)	102	Warmwater Sport Fish Community and Full Recreational Use	+					
Spring Lake (Waukesha County)	105	Warmwater Sport Fish Community and Full Recreational Use			+	51		N
Waterford Impoundment		and rull Recleational Use						
Buena Lake	241	Warmwater Sport Fish Community and Full Recreational Use	+					
Tichigan Lake	892	Warmwater Sport Fish Community and Full Recreational Use	+		+	54	I	N
Waubeesee Lake	129	Warmwater Sport Fish Community and Full Recreational Use		+	+	46		F
Wind Lake	936	Warmwater Sport Fish Community and Full Recreational Use		+	+	69		N

WATERSHED			Water Quality Data					
	Lake			Post-1987	Post-1981	Trophic	Water	Compliance with
Subwatershed	Area		Pre-1981	Comprehensive	Limited	State	Quality	Water Use
Lake	(acres)	Recommended Water Use Objective	Monitoring	Monitoring	Monitoring	Index ^a	Trends	Objective
Lower Fox River Subwatershed								
Bohner Lake	135	Warmwater Sport Fish Community and Full Recreational Use	+		+	45	NC	F
Browns Lake	396	Warmwater Sport Fish Community and Full Recreational Use	+	+		51	NC	N
Camp Lake	461	Warmwater Sport Fish Community and Full Recreational Use	+		+	54	NC	N
Center Lake	129	Warmwater Sport Fish Community and Full Recreational Use	+		+	35	I	F
Cross Lake	87	Warmwater Sport Fish Community and Full Recreational Use	+		+	52	NC	N
Dyer Lake	56	Warmwater Sport Fish Community and Full Recreational Use	+					
Lilly Lake	88	Warmwater Sport Fish Community and Full Recreational Use	+					
Silver Lake (Kenosha County)	464	Warmwater Sport Fish Community and Full Recreational Use	+		+	50	NC	n
Voltz Lake	52	Warmwater Sport Fish Community and Full Recreational Use	+		+	57	I	N
Mukwonago River Subwatershed								
Army Lake	78	Warmwater Sport Fish Community and Full Recreational Use						
Beulah Lake	834	Warmwater Sport Fish Community and Full Recreational Use	+		+	46	NC	F
Booth Lake	113	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	45	NC	F
Eagle Spring Lake	311	Warmwater Sport Fish Community and Full Recreational Use	. +	+	+	49	NC	N
Lower Phantom Lake	433	Warmwater Sport Fish Community and Full Recreational Use	` +		+	43	NC	F
Lulu Lake	84	Warmwater Sport Fish Community and Full Recreational Use						
Peters Lake	64	Warmwater Sport Fish Community and Full Recreational Use						
Upper Phantom Lake	107	Warmwater Sport Fish Community and Full Recreational Use	+		+	44	NC	F

			Wa	ater Quality Dat	ta			
WATERSHED Subwatershed Lake	Lake Area (acres)	Recommended Water Use Objective	Pre-1981 Monitoring	Post-1987 Comprehensive Monitoring	Post-1981 Limited Monitoring	Trophic State Index ^a	Water Quality Trends	Compliance with Water Use Objective
Honey/Sugar Creeks Subwatershed Lauderdale Lakes								
Green Lake	311	Warmwater Sport Fish Community and Full Recreational Use	+		+	49	NC	N
Middle Lake	259	Warmwater Sport Fish Community and Full Recreational Use	+		+	51	NС	N
Mill Lake	271	Warmwater Sport Fish Community and Full Recreational Use	+					
North Lake (Walworth County)	191	Warmwater Sport Fish Community and Full Recreational Use						
Pleasant Lake	155	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	45	NC	F
Potters Lake	162	Warmwater Sport Fish Community	+		+	78	NC	N
Silver Lake (Walworth County)	85	and Full Recreational Use Warmwater Sport Fish Community						
Wandawega Lake	119	and Full Recreational Use Warmwater Sport Fish Community and Full Recreational Use	+					
White River/Nippersink Creek Subwatershed								
Benedict Lake	78	Warmwater Sport Fish Community and Full Recreational Use	+		+	44	I	F
Como Lake	946	Warmwater Sport Fish Community and Full Recreational Use	+					
Echo Lake	71	Warmwater Forage Fish Community and Full Recreational Use						
Elizabeth Lake	865	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	52	NC	N
Geneva Lake	5262	Coldwater Community and Full Recreational Use		+	+	48		N
Mary Lake	315	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	47	NC	F
Pell Lake	86	Warmwater Sport Fish Community and Full Recreational Use		+		60		N
Powers Lake	459	Warmwater Sport Fish Community and Full Recreational Use		+	+	45		F
MILWAUKEE RIVER WATERSHED Cedar Creek Subwatershed								
Big Cedar Lake	932	Warmwater Sport Fish Community and Full Recreational Use		+	+	59		N
Little Cedar Lake	246	Warmwater Sport Fish Community	+		+	59	I	N
Mud Lake (Ozaukee County)	245	and Full Recreational Use Warmwater Sport Fish Community and Full Recreational Use	+	b				

			Wa	ater Quality Day	a			
WATERSHED Subwatershed Lake	Lake Area (acres)	Recommended Water Use Objective	Pre-1981 Monitoring	Post-1987 Comprehensive Monitoring	Post-1981 Limited Monitoring	Trophic State Index ^a	Water Quality Trends	Compliance with Water Use Objective
Milwaukee River East-West Branch								
Subwatershed Barton Pond	67	Warmwater Sport Fish Community and Full Recreational Use						
Lucas Lake	78	Warmwater Sport Fish Community			+	43		F
Silver Lake (Washington Co.)	118	and Full Recreational Use Warmwater Sport Fish Community and Full Recreational Use			+	50		N
Smith Lake	86	Warmwater Sport Fish Community and Full Recreational Use			+	49		N
Milwaukee River North Branch Subwatershed								
Green Lake (Washington County)	71	Warmwater Sport Fish Community and Full Recreational Use			+	50		N
Spring Lake (Ozaukee County)	66	Warmwater Sport Fish Community and Full Recreational Use			+	43		F
Lake Twelve	53	Warmwater Sport Fish Community			+	45		F
Wallace Lake	52	and Full Recreational Use Warmwater Sport Fish Community and Full Recreational Use			+	59		N
Milwaukee River South Branch								
Subwatershed Lac du Cours	57	Warmwater Sport Fish Community and Full Recreational Use	+					
ROCK RIVER WATERSHED								
Ashippun River Subwatershed Ashippun Lake	84	Warmwater Sport Fish Community and Full Recreational Use	+		+	49	NC	N
Druid Lake	124	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	47	I	F
Bark River Subwatershed								
Bark Lake	65	Warmwater Sport Fish Community and Full Recreational Use	+					
Crooked Lake	58	Warmwater Sport Fish Community and Full Recreational Use			+	51		N
Golden Lake	250	Warmwater Sport Fish Community and Full Recreational Use	+		+	42	I	F
Hunters Lake	65	Warmwater Sport Fish Community and Full Recreational Use						
Lower Nashotah Lake	90	Warmwater Sport Fish Community and Full Recreational Use	+		+	51	NC	N
Lower Nemahbin Lake	271	Warmwater Sport Fish Community and Full Recreational Use	+		+	54	NC	N
Nagawicka Lake	957	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	60	NC	N

			W:	ater Quality Dat	ca			
WATERSHED Subwatershed Lake	Lake Area (acres)	Recommended Water Use Objective	Pre-1981 Monitoring	Post-1987 Comprehensive Monitoring	Post-1981 Limited Monitoring	Trophic State Index ^a	Water Quality Trends	Compliance with Water Use Objective
Bark River Subwatershed (cont'd)								
Pretty Lake	64	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	42	NC	F
School Section Lake	125	Warmwater Sport Fish Community and Full Recreational Use	+		+	53	NC	N
Upper Nashotah Lake	133	Warmwater Sport Fish Community and Full Recreational Use	+		+	45	I	F
Upper Nemahbin Lake	283	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	45	NC	F
Waterville Pond	68	Warmwater Sport Fish Community and Full Recreational Use						<u></u> '
Oconomowoc River Subwatershed								
Beaver Lake	316	Warmwater Sport Fish Community and Full Recreational Use	+					
Lake Five	102	Warmwater Sport Fish Community and Full Recreational Use			+	47		F
Fowler Lake	99	Warmwater Sport Fish Community and Full Recreational Use		+ .:	+	43		F
Friess Lake	119	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	59	NC	N
Lake Keesus	237	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	50	I	N
Lac La Belle	1117	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	54	NC	N
Lower Genesee	66	Warmwater Sport Fish Community and Full Recreational Use	+		+	41	NC	F
Middle Genesee	102	Warmwater Sport Fish Community and Full Recreational Use	+					
Moose Lake	81	Warmwater Sport Fish Community and Full Recreational Use	+					
North Lake	437	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	54	NC	N
Oconomowoc Lake	767	Warmwater Sport Fish Community and Full Recreational Use		+	+	44		F
Okauchee Lake	1187	Warmwater Sport Fish Community and Full Recreational Use		+		58		N
Pine Lake	703	Warmwater Sport Fish Community and Full Recreational Use	+					
Silver Lake (Waukesha County)	222	Warmwater Sport Fish Community and Full Recreational Use	+		+	43	NC	F
Rubicon River Subwatershed								
Pike Lake	522	Warmwater Sport Fish Community and Full Recreational Use	+	+	+	52	NC	N
Scuppernong River Subwatershed LaGrange Lake	55	Warmwater Sport Fish Community and Full Recreational Use						

Recommended Water Use Objective

Warmwater Sport Fish Community and Full Recreational Use

Warmwater Sport Fish Community

Warmwater Sport Fish Community

Warmwater Sport Fish Community

Warmwater Sport Fish Community

and Full Recreational Use

and Full Recreational Use

and Full Recreational Use

and Full Recreational Use Warmwater Forage Fish Community

and Full Recreational Use Warmwater Sport Fish Community

and Full Recreational Use

Warmwater Sport Fish Community and Full Recreational Use

Pre-1981

Monitoring

Water Quality Data

Post-1987

Comprehensive

Monitoring

Trophic

State

Indexa

64

--

60

__

61

Post-1981

Limited

Monitoring

Water

Quality

Trends

NC

NC

Compliance with

Water Use

Objective

N

N

N

bFisheries survey conducted during priority watershed appraisal process.

Note: + = data available

WATERSHED

Lake

Subwatershed

Turtle Creek Subwatershed

Whitewater Lake

Whitewater Creek Subwatershed

- -- = no data available
- I improvement in water quality conditions based on long-term water quality monitoring data
- D = decline in water quality conditions based on long-term water quality monitoring data
- NC = no change in water quality conditions based on long-term water quality monitoring data
- F = likely to meet recommended water use objectives based on a TSI < or equal to 47

Lake

Area

(acres)

117

2072

140

65

133

137

115

640

N = not likely to meet recommended water use objectives based on a TSI < or equal to 47

Source: Wisconsin Department of Natural Resources and SEWRPC.

lakes for which the data indicate the objectives are not fully met do in most cases provide for sport fishing and for positive recreation uses which are considered limited to various extents due to algae and aquatic plant problems.

LAND USE PLAN ELEMENT

The most fundamental and basic element of the regional water quality management plan is the land use element. The type, intensity, and distribution of urban and rural land uses within the Region will determine to a large degree the character, magnitude, and distribution of point and nonpoint sources of pollution; the location and size of wastewater treatment facilities and attendant collection and conveyance facilities; the kind and level of wastewater treatment required; the need for, and practicality of, various land management practices for nonpoint source pollution abatement; and ultimately, the quality of the surface waters of the Region.

The land use plan element of the initial regional water quality management plan consisted of the recommended regional land use plan for the design year 2000, adopted by the Regional Planning Commission on December 19, 1977. The year 2000 land use plan emphasized a compact, centralized regional settlement pattern. The plan recommended that intensive urban development be encouraged to occur only in those areas of the Region covered by soils suitable for such development, that are not subject to special hazards, such as flooding or shoreline erosion, and that can be readily served by such essential urban services as sanitary sewer, public water supply, and mass transit; that all remaining primary environmental corridors be preserved in essentially natural, open uses; and that all remaining prime agricultural lands be retained in essentially agricultural uses. Between 1970 and 1985, major commercial, industrial, and recreational land use development proceeded in substantial conformance with the year 2000 regional land use plan recommendations. Residential development, however, occurred at a rate somewhat higher than envisioned under the plan; and approximately 30 percent of all housing units were developed at lower densities than recommended in the plan. Between 1970 and 1985, significant progress was made in the protection of primary environmental corridor lands, through the increase in both public land use regulation and in public ownership of the corridor lands. With regard to prime agricultural lands, substantial progress was made toward the preservation of these lands through the application of exclusive agricultural zoning. The land use plan recognized the loss of certain agricultural lands to accommodate continued urban growth and development within the Region. However, approximately 80 percent of the prime agricultural land lost to urban development was located in outlying rural areas generally recommended to remain in agriculture and related uses under the year 2000 land use plan.

The land use plan element of the current regional water quality management plan consists of the recommended regional land use plan⁸ for the design year 2010 adopted by the Commission on September 23, 1992. This plan, as shown on Map

⁷SEWRPC Planning Report No. 25, <u>A Regional Land Use Plan and a Regional Transportation Plan for Southeastern Wisconsin: 2000</u>, May 1978.

⁸SEWRPC Planning Report No. 40, <u>A Regional Land Use Plan for Southeastern Wisconsin-2010</u>, January 1992.

XVIII-6, seeks to centralize land use development to the greatest degree practicable; to encourage new urban development to occur at densities consistent with the provision of public centralized sanitary sewer, water supply, and mass transit facilities and services; to encourage new urban development to occur only in areas covered by soils well suited to urban use and not subject to special hazards, such as flooding; and to encourage new urban development and redevelopment to occur in areas in which essential urban facilities and services are available--particularly the existing urban centers of the Region--or into which such facilities and services can be readily and economically extended.

The new design year 2010 regional land use plan incorporated the use of an alternative futures approach in order to deal with uncertainties as to whether or not historic trends will continue. Under this approach, the development and evaluation of alternative land use plans was based not upon a single most probable forecast of future socio-economic conditions, but rather upon a number of alternative futures chosen to represent a range of conditions which may occur over the plan design period. Consideration of these alternative future conditions is particularly important in local plan implementation activities associated with the regional water quality management plan. To this end, design year 2010 data under the recommended plan and under the high growth future scenario are provided herein in order to present a reasonable range of conditions for use in local plan facility planning.

Under the alternative futures approach, the resident population of the Region may be expected to increase from 1,765,000 persons in 1980 to about 1,911,000 persons by 2010 under the intermediate-growth scenario, and to about 2,316,000 persons under the high-growth scenario. These population levels represent a range of from 8 to 32 percent in population increase over the planning period. The number of households in the Region may be expected to increase from 676,000 households in 1990 to 774,000 households by 2010 under the intermediate-growth scenario; and to about 856,000 households under the high-growth scenario. These household levels represent a range of from 24 to 42 percent increases over the planning period. Similarly, total regional employment may be expected to increase from 884,000 jobs in 1980 to about 1,095,000 jobs by 2010 under the intermediate-growth scenario; and to about 1,252,000 jobs under the high-growth scenario. These employment levels represent an increase of about 24 and 42 percent, respectively, over the planning period.

Urban Development and Density

In order to accommodate the anticipated increases in population, household and employment levels, the land use plan element envisions converting about 69 square miles of land from rural to urban use over the period 1990 through 2010, increasing the total stock of urban land to 691 square miles, or to about 26 percent of the total area of the Region.

The land use plan envisions that most new urban development would occur in planned neighborhood development units at medium density, with a typical single-family lot size of one-quarter acre and a typical multi-family development averaging about 10 dwelling units per net acre. Urban development would be provided with basic urban services and facilities, including, importantly, public sanitary sewer and water supply services. The plan envisions that by the year 2010 about 85 percent of all urban land and about 91 percent of the total

RECOMMENDED LAND USE PLAN FOR THE SOUTHEASTERN WISCONSIN REGION: 2010

population of the Region would be served with public sanitary sewer and water supply services.

The year 2010 land use plan seeks to discourage scattered, "leap frog" urban development--urban sprawl--in outlying areas of the Region, both through encouragement of higher density development in those areas of the Region that can be most readily served by essential urban services, and through the maintenance of rural development densities in the rural, outlying areas, that is, average lot sizes of at least five acres per dwelling unit.

Under the recommended plan, the population density within the developed area of the Region would decline from a 1985 level of about 3,600 persons per square mile to a year 2010 level of about 2,800 persons per square mile, continuing the trend toward declining densities evident in the Region since 1920. The rate of decline would be significantly reduced, however, by implementation of plan proposals to develop the majority of new urban land within the Region at medium, rather than low, densities and to provide such development with public sanitary sewer and water supply services.

Major Regional Commercial and Industrial Centers

As described in Chapter III, the recommended land use plan proposes retaining all 14 existing major commercial centers through the year 2010 and also proposes the expansion of certain of these centers. In addition to the proposed expansion of the centers, the plan recommends the development of five new major commercial centers in the Region.

The recommended regional land use plan proposes to retain all 22 of the existing major industrial centers and further proposes to add three new major industrial centers by the year 2010.

Park and Outdoor Recreation Areas

Under the recommended year 2010 land use plan, about 4,100 acres of land for intensive, public recreational land use would be added to the existing 26,000 acres currently designated as recreational lands. The additional recreational areas called for under the plan are based in part on neighborhood development standards, which seek to provide adequate neighborhood park land in developing areas. The year 2010 regional land use plan proposes a system of 31 major parks of regional size and significance to serve the needs of the Region through the year 2010. Such parks have an area of at least 250 acres and provide opportunities for a variety of resource-oriented outdoor recreational activities.

Environmentally Sensitive Lands

Environmental corridors are defined as linear areas in the landscape containing concentrations of natural resource and natural resource-related amenities. These corridors generally lie along the major stream valleys, around major lakes, and in the Kettle Moraine area of southeastern Wisconsin. Almost all of the remaining high-value wetlands, woodlands, wildlife habitat areas, major bodies of surface water, and delineated floodlands and shorelands are contained within these corridors. In addition, significant groundwater recharge and discharge areas, many of the most important recreational and scenic areas, and the best remaining potential park sites are located within the environmental corridors. Such environmental corridors are, in effect, a composite of the most important

individual elements of the natural resource base in Southeastern Wisconsin and have immeasurable environmental, ecological, and recreational value.

As described in Chapter III, the environmentally sensitive areas in Southeastern Wisconsin have been categorized into primary environmental corridors, secondary environmental corridors, and isolated natural areas. The primary environmental corridors encompass about 467 square miles, or about 17 percent of the Region. It is recommended that lands identified as primary environmental corridors not be developed for intensive urban use. Accordingly, the plan further recommends that sanitary sewers not be extended into such corridors for the purpose of accommodating urban development in the corridors. It was, however, recognized in the plan that it would be necessary in some cases to construct sanitary sewers across and through primary environmental corridors, and that certain land uses requiring sanitary sewer service could be properly located in the corridors, including park and outdoor recreation facilities and certain institutional uses. In some cases very low density single-family residential development on five-acre lots, compatible with the preservation of the corridors in essentially natural open uses, may also be permitted to occupy corridor lands and it may be desirable to extend sewers into the corridors to serve such uses. Basically, however, the plan element seeks to ensure that the primary environmental corridor lands are not destroyed through conversion to intensive urban uses.

Secondary environmental corridors are also identified in the year 2010 regional land use plan. The secondary environmental corridors, while not as significant as the primary environmental corridors in terms of the overall resource values, should be considered for preservation as the process of urban development proceeds because such corridors often provide economical drainageways, as well as needed "green space," through developing residential neighborhoods. Isolated natural areas are also identified in the year 2010 regional land use plan. Isolated natural areas generally consist of those natural resource base elements that have "inherent natural" value such as wetlands, woodlands, wildlife habitat areas, and surface water areas, but that are separated physically from the primary and secondary environmental corridors by intensive urban and agricultural land uses.

The updated regional water quality management plan recommends that county and local governments take appropriate actions to preserve and protect the resources found in secondary environmental corridors and isolated natural resource areas, as well as in the primary environmental corridors. In so doing, the resources concerned may be incorporated into drainageways, parks and parkways, and commonly held open space areas, depending upon the exercise of local planning judgements as local plans are prepared and development projects reviewed.

The regional plan recognizes, however, that the potential exists for at least some portions of the secondary environmental corridors and isolated natural resource areas to be converted to urban land uses and provided with sanitary sewer service. As the county and local governments concerned appropriately exercise their local planning authority attendant to secondary environmental corridors and isolated natural resource areas, it will be important to recognize that Federal, State, and even local regulations—and particularly State regulations set forth in Chapter NR 103 of the Wisconsin Administrative Code—may effectively preclude development of such areas with or without public sanitary sewer service. Of particular significance in this respect are those Federal and

State natural resource protection regulations dealing with wetlands, floodlands, shorelands, stormwater management, and erosion control. All or portions of secondary environmental corridors and isolated natural resource areas may also be found unsuitable for development to be served by sanitary sewer extensions because of physical or environmental constraints within the meaning of Section NR 121.05(1)(g)2c of the Wisconsin Administrative Code. Accordingly, it is important that the local units of government concerned, and landowners and developers determine the need for Federal, State, and local permits prior to undertaking any disturbances of lands classified as secondary environmental corridors and isolated natural resource areas.

As sanitary sewer service area plans are developed for the individual sewer service areas in the Region, as recommended in the updated plan, the primary environmental corridors, secondary environmental corridors, and isolated natural areas must be further delineated, quantified, and mapped in order to assist the designated management agencies in the protection of the primary environmental corridors and in considering protection of the secondary corridors and other environmentally sensitive lands.

Prime Agricultural Lands

The recommended land use plan recognizes that general agricultural lands are subject to conversion to urban lands. However, the plan seeks to minimize the development of new urban uses on lands which have been designated as prime agricultural lands. Those areas totaled just over 1,047 square miles, or 39 percent of the Region. The recommended year 2010 land use plan proposes to convert to urban use only those prime agricultural lands which were already committed to urban development due to proximity to existing and expanding concentrations of urban uses and the prior commitment of heavy capital investment in utility extensions.

The preservation of prime agricultural lands has important implications for water quality management planning. Prime agricultural land preservation will assist in the implementation of sound soil and water conservation practices and nonpoint source water pollution abatement measures.

POINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

Point sources of water pollution include sewage treatment plant outfalls, industrial wastewater outfalls, and combined sanitary and stormwater drainage and separate sanitary sewerage system flow relief devices. Because pollutants associated with urban stormwater runoff have discharge characteristics related to the tributary land uses and associated land management practices, urban storm sewer system discharges were considered nonpoint, or diffuse, sources of water pollution and are addressed under the plan element relating to the abatement of pollution from such sources.

This section describes the recommended point source pollution abatement plan element. This element includes recommendations concerning the location and extent of sanitary sewer service areas; the location and capacity of sewage treatment facilities; the location, configuration, and size of trunk sewers; the abatement of pollution from separate and combined sewer overflows; the abatement of pollution from miscellaneous point source discharges; and the management of

sewage treatment plant solids. The point source plan element represents an update and refinement of the point source pollution abatement recommendations set forth in the initial plan, as modified by completed implementation actions, and all of the amendments made to the original plan. These amendments are based upon the findings of local and subregional facilities planning studies; changes in future resident population and employment levels; and attendant land use development patterns set forth in the new design year 2010 regional land use plan upon which the regional water quality management plan is based.

It should be noted that, during 1995, the Milwaukee Metropolitan Sewerage District initiated work on the preparation of a new sewerage facility plan⁹ for the entire Milwaukee metropolitan service area. The new plan will have a design year 2010, updating the current facility plan. The resultant sewerage facilities plan is intended, upon its adoption by all of the agencies concerned, to constitute an amendment to the regional water quality management plan as herein presented.

Sewer Service Areas

The initial regional water quality management plan adopted in 1979 originally identified 85 sanitary sewer service areas. The initial regional water quality management plan recommended the refinement of the 85 sewer service areas identified in that plan within the Region. Subsequent to adoption of the original plan, the Commission has conducted a continuing effort to refine and detail the planned sewer service areas of the Region through local-level planning efforts resulting in amendments to the regional water quality management plan. As a result of this ongoing refinement and detailing process, by 1994, a total of 70 of the 85 initially identified sanitary sewer service areas had been refined and detailed. Because the refinement and detailing process sometimes involves the redefinition and combination of previously defined areas, these 70 originally defined areas have been combined into a total of 57 currently defined In addition, the refinement and detailing process has resulted in the creation of new sanitary sewer service areas which were not envisioned in the initial plan. As of 1994, 13 such areas have been delineated by amendments to the regional water quality management plan. These 13 new areas are: the City of Franklin and City of Oak Creek portions of the Milwaukee Metropolitan Sewerage District in Milwaukee County; Powers Lake in Kenosha County; Bohner Lake in Racine County; Alpine Valley, Army Lake, the Country Estates Sanitary District, Griedanus Landfill and Pell Lake, all located in Walworth County; the Eagle Spring Lake Sanitary District, the Village of Lannon portion of the Lannon-Menomonee Falls areas, and the Mukwonago County Park area in Waukesha County; and Rainbow Springs, lying in both Waukesha and Walworth Counties. planned sanitary sewer service areas are shown on Map XVIII-7 and listed in Table XVIII-3.

As of 1994, refinements to the planned sewer service areas had been prepared cooperatively by the Commission and the local units of government involved for 70 of the current 85 sewer service areas. The 85 service areas include the 57 redefined areas, the 15 original areas which are unrefined, and the 13 newly identified areas.

⁹Milwaukee Metropolitan Sewerage District, <u>MMSD Wastewater System Plan</u>, June 1980.

RECOMMENDED SANITARY SEWER SERVICE AREAS IN THE REGION: 2010

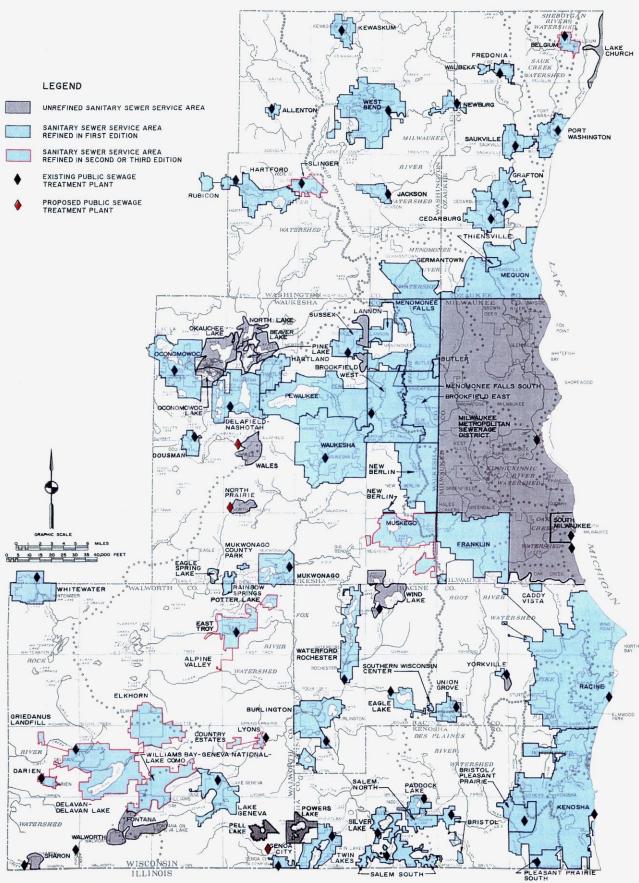


Table XVIII-3
PLANNED SANITARY SEWER SERVICE AREAS IN THE REGION

			Sewer	Service Area Po	opulation ^a
County	Name of Sanitary Sewer Service Area(s)	Area of Planned Sewer Service Area (square miles)	$Existing^{b}$	Pla: Intermediate Growth Centralized Plan	High Growth Decentralized Plan
Kenosha	Bristol ^C	2.3	1,200	2,500	2,700
	Bristol/Pleasant Prairie	6.7	1,600	5,500	6,500
	Salem South ^d Salem North ^e	10.7	4,700	9,300	10,200
	Kenosha	53.2	85,800	100,900	118,400
	Paddock Lake	2.1	2,250	4,000	4,300
	Pleasant Prairie South	3.4	300	2,200	3,100
	Powers Lake	2.7	1,430	f	1,750
	Silver Lake	1.9	1,600	2,900	3,200
	Twin Lakes	7.8	4,000	7,000	7,400
Milwaukee	Franklin	26.7	17,600	27,900	32,100
	Oak Creek	28.4	19,400	33,700	51,800
	Milwaukee Metropolitan Sewerage District	174.6	897,000	851,000	844,000
	South Milwaukee	4.8	20,500	19,840	20,280
Ozaukee	Belgium	2.1	950	1,000	2,700
	Lake Church	1.1	g	500	1,200
	Cedarburg	7.4	9,600	12,400	27,800
	Grafton	6.9	9,400	11,500	24,100
	Fredonia	1.6	1,600	1,800	4,900
	Waubeka	0.7	300	500	1,600
	Mequon Thiensville	28.2	16,600	24,500	50,500
	Port Washington	5.7	8,900	9,900	19,000
	Saukville	4.3	3,500	4,300	8,600
Racine	Bohner Lake	1.5	g	f	1,700
	Burlingtonh	10.3	10,550	13,500	17,100
	Eagle Lake	2.2	1,100	1,200	1,800
	Racine	60.4	122,100	133,400	167,800
	Caddy Vista	0.8	900	900	1,000
	Union Grove Southern Wisconsin Center	3.9	3,800	5,900	8,100
	Waterford/Rochesteri	9.3	3,400	8,700	10,600
	Wind Lake	5.3	3,200	4,800	5,300
	Yorkville	1.1	100	100	200
Walworth	Alpine Valley	0.1			
	Darien	1.2	1,100	1,500	2,500

Table XVIII-3 (continued)

			Sewer	Service Area Po	opulation ^a
					nned Year 2010
Country	Name of Sanitary Sewer Service Area(s)	Area of Planned Sewer Service Area (square miles)	Existing ^b	Intermediate Growth Centralized Plan	High Growth Decentralized Plan
County		42.6			
Walworth (continued)	Delavan-Delavan Lake Elkhorn Williams Bay-Geneva National- Lake Como	42.6	8,500 5,200 1,800j	11,800 7,600 3,300	21,900 14,400 7,600
	East Troy Potter Lake Army Lake	8.1	3,700	5,500	9,200
	Fontana	4.5	1,700	2,300	3,600
	Genoa City	1.6	1,200	1,800	3,000
	Lake Geneva	8.3	5,600	9,200	16,800
	Lyons Country Estates Sanitary District	1.5	600	1,500	2,400
	Pell Lake	2.2	2,000	f	2,800
	Sharon	1.2	1,300	1,800	2,900
	Walworth	1.8	1,700	2,300	3,800
	Whitewater	8.3	11,500	10,600	19,200
Washington	Allenton	0.8	900	1,200	2,400
	Germantown	8.0	7,480	18,270	35,280
	Hartford ^k	10.5	7,700	12,400	24,000
	Jackson	2.7	1,800	3,500	7,800
	Kewaskum	3.8	2,400	2,900	7,100
	Newburg	2.2	900	1,100	2,000
	Slinger	3.6	1,600	2,700	4,400
	West Bend ¹	21.2	22,900	32,500	53,800
Waukesha	Beaver Lake	2.5	8	f	2,100
	Brookfield East	15.4	16,100	16,600	19,400
	Brookfield West	20.6	18,800	27,400	33,500
	Butler	0.8	2,000	1,900	2,000
	Delafield-Nashotah ^m	13.8	3,700	8,000	14,400
	Denoon Lake	1.4	800	1,100	1,500
	Dousman	2.4	1,800	3,100	5,600
	Eagle Spring Lake	0.9	8	f	1,200
	Hartland	5.3	6,500	10,200	14,100
	Menomonee Falls Lannon	24.7	29,100	35,800	51,600
	Mukwonago	7.8	4,300	7,500	18,000
	Mukwonago County Park	0.3			
	Muskego	15.7	12,800	17,400	26,900
	New Berlin	19.2	23,400	36,500	59,100
	North Lake	1.2	8	700	1,400
	North Prairie	1.9	1,100	f	3,640
	Oconomowoc ⁿ	16.7	10,600	17,300	28,300

Table XVIII-3 (continued)

			Sewer	Sewer Service Area Population ^a				
				Pla	nned Year 2010			
County	Name of Sanitary Sewer Service Area(s)	Area of Planned Sewer Service Area (square miles)	Existing ^b	Intermediate Growth Centralized Plan	High Growth Decentralized Plan			
Waukesha (continued)	Oconomowoc Lake	1.5	8	500	900			
	Okauchee Lake	4.8		5,100	8,700			
	Pewaukee ⁰	26.5	10,300	23,300	41,100			
	Pine Lake	1.2	8	f	600			
	Rainbow Springs	1.4						
	Sussex	7.4	4,000	16,800	29,500			
	Wales	2.8	2,200	3,600	7,900			
	Waukesha	30.6	53,500	74,300	105,900			
	Total	840.6	1,545,960	1,742,510	2,183,950			

^a The population levels for each sewer service area under the planned year 2010 growth scenarios include sewered population within the sewer service area in 1985, unsewered population within the sewer service area in 1985 which is envisioned to be provided with public sanitary sewer service by the year 2010, and incremental new population which is envisioned to occur wiathin the sewer service area between 1985 and 2010. Sewer service area populations indicate yuear-round, residential population. It should be noted that seasonal population may contribute to larger overall populations for some of the sewer service areas associated with the lake-oriented communities in the Region.

b 1985 population.

^C Includes George Lake.

d Includes Camp Lake, Center Lake, Cross Lake, Rock Lake, and Wilmot.

e Includes Hooker Lake and Montgomery Lake.

 $^{^{}m f}$ Planned year 2010 population levels assuming the provision of public sanitary sewer service were only developed under the high growth plan.

g Area currently not served by public sewer and having a significant seasonal population to be considered in addition to its resident population.

hIncludes Browns Lake.

i Includes Tichigan Lake.

j Includes only Williams Bay.

k Includes Pike Lake.

¹ Includes Silver Lake.

m Includes Nashotah and Nemahbin Lakes.

 $^{^{\}rm n}$ Includes Village of Lac La Belle and Silver Lake.

O Includes Pewaukee Lake, Town of Pewaukee, and Village of Pewaukee.

In 1990, centralized sanitary sewer service in the Region was provided to a combined area of about 414 square miles, or 15 percent of the total area of the Region, and within this combined service area to approximately 1,560,000 persons, or about 86 percent of the total resident population of the Region. The planned year 2010 sewer service areas have a combined area of about 841 square miles, or about 31 percent of the total area of the Region. The designated sewer service areas represent general delineations designed to accommodate urban growth within the Region until the year 2010. The precise placement of future urban development in both time and space within the framework provided by sewer service areas delineated in the water quality management plan is properly the responsibility Accordingly, a certain amount of flexibility is of local public officials. intentionally provided within the boundaries of the designated sewer service areas to facilitate local planning and plan implementation. This flexibility derives from the need to provide for local preferences concerning such matters as population density, as well as to permit latitude in the placement within both time and space of envisioned urban development and redevelopment. designated service areas are intended to accommodate, through local refinement, a broad range of housing types and styles, population densities, and commercial and industrial land use intensities, as well as, to the extent possible, the dictates of the urban land market, while meeting the agreed-upon areawide land use development and water quality management objectives.

The preparation of local sanitary sewer service area plans and sewerage facilities plans is intended to provide the means to adjust the recommended sewer service areas to meet local needs and objectives within the framework of the regional plans. It is recommended that the sewer service areas designated herein be utilized, along with subsequent additional duly prepared and adopted local refinements thereof, as the basis for the extension of public sanitary sewer service within the Region. Changes in those boundaries and the creation of new sewer service areas should be accommodated in the continuing planning process as it involves areawide systems planning and local facilities planning.

While the regional water quality management plan recommends the provision of centralized sanitary sewer service to much of the urban land use pattern identified in the newly adopted regional land use plan, some urban areas identified on that plan are not included within the recommended year 2010 sewer service areas. In most cases, these areas are relatively small, consisting of isolated enclaves of residential and commercial land uses located either along the shorelines of inland lakes or at rural highway intersections. Such areas were not included in a recommended sewer service area for a number of reasons, including the small size and isolated nature of some of this development; the presence of a significant number of seasonal homes; location in or adjacent to the Kettle Moraine State Forest and other environmentally sensitive areas where additional urban development should not be encouraged; or location on soils generally suited for the use of onsite soil absorption sewage disposal systems. It is recommended that detailed local studies be conducted of all such isolated enclaves of urban development as a step toward improved management of onsite sewage disposal facilities. Such detailed local studies may uncover serious existing or potential public health hazards, or ground and surface water pollution problems, and could result in recommendations for the provision of additional public centralized sanitary sewer service within the Region.

Public Sewage Treatment Facilities

The regional water quality management plan, as amended, envisions the maintenance and improvement of 48 existing public sewage treatment plants; the abandonment of 21 public sewage treatment facilities; and the construction of nine new public sewage treatment facilities within the Region. As of 1993, nine of the 21 public sewage treatment plants recommended for abandonment had been abandoned and their service areas connected to other sewerage systems for treatment purposes. In addition, facility planning for the abandonment of the Village of Darien sewage treatment plant was completed in 1994. Of the nine new public sewage treatment plants recommended, six had been constructed by 1993. The three plants proposed to serve the Village of North Prairie, the Village of Wales, and the Pell Lake and Powers-Benedict-Tombeau Lakes area had not yet been constructed.

Under the updated plan, sewage treatment would be provided at the 49 public facilities listed in Table XVIII-4 and shown on Map XVIII-8. These 49 plants include a new sewage treatment plant to be constructed in Walworth County to serve the Pell Lake sewer service area and the Powers-Benedict-Tombeau Lakes sewer service area. Two additional plants to serve the Villages of Wales and North Prairie are recommended to be constructed. However, the recommendations concerning these two plants may be affected by a comprehensive study of the best means for providing sewer service in Northwestern Waukesha County initiated by the Commission in cooperation with the County and local units of government concerned in 1995. Alternatives to be considered in that study include the connection of the Wales and North Prairie areas to an existing public sewerage system for treatment purposes, and continued reliance on onsite sewage disposal systems, as well as the construction of new sewage treatment facilities.

For each of the treatment plants recommended in the areawide water quality management plan, it is recommended that the levels of treatment set forth in the initial plan continue to be used, with final limits to be determined by site specific analyses and studies to be conducted during detailed sewerage system facility planning and as the issuance of new permits for the plants are considered under the Wisconsin Pollutant Discharge Elimination System. The findings of such studies would properly serve to refine the regional water quality management plan. Such studies should consider the water use objectives for the recovery stream; the existing water quality condition of the receiving stream; the potential water quality improvement associated with abatement of nonpoint source pollution; the presence of in-place pollutants; the slope, configuration, and biological characteristics of the receiving stream channel; the specific chemical composition of the wastewaters and receiving waters; and other localized factors which are typically beyond the scope of systems level planning.

Three plants--the Village of Pleasant Prairie Sanitary District No. 73-1, the Village of Pleasant Prairie Sewer Utility District "D", and the Town of Yorkville Sewer Utility District No. 1 treatment plants--have been proposed for abandonment in subregional system plans which have been prepared by the Commission in cooperation with the County and local units of government concerned for the

Table XVIII-4

RECOMMENDED PUBLIC SEWAGE TREATMENT PLANTS--REGIONAL WATER QUALITY MANAGEMENT PLAN: 2010

			E:	xisting 1990			Planned 1	'ear 2010		
						Intermedia	te Growth	High G	rowth	1
Sewage Treatment Plant (by watershed)	Sewer Service Areas	Planned Sewer Service Area (square miles)	Existing Design Capacity- Average Annual Hydraulic (mgd)	Population Served	Average Annual Hydraulic Loading (mgd)	Centralized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Decentalized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Receiving Water to Which Effluent is Disposed
Des Plaines River watershed Town of Bristol Utility District No. 1	Bristol	2.3	0.48	1,200	0.34	2,500	0.49	2,700	0.52	Bristol Creek tributary of Des Plaines River
Village of Paddock Lake	Paddock Lake	2.1	0.49	2,300	0.47	4,000	0.63	4,300	0.67	Brighton Creek
Village of Pleasant Prairie Sanitary	Pleasant Prairie	3.4	0.40	600	0.21	2,200	0.41	3,100	0.52	Tributary of Des
District No. 73-1 ⁶ Village of Pleasant Prairie Sewer Utility District "D" ⁸	South Bristol/Pleasant Prairie	6.7	0.50	1,700	0.50	5,500	0.98	6,500	1.10	Tributary of Des Plaines River
Fox River Watershed City of Brookfield	Brookfield West, Pewaukee, Menomonee	47.7	10.0	33,800	6.74	52,100	12.50 ^b	78,000	15.50	Fox River
City of Burlington	Falls Burlington, Bohner Lake	11.8	3.5°	10,400	2.15	13,500	2.54	18,800	3.20	Fox River
Eagle Lake Sewer Utility District	Eagle Lake	2.2	0.4	1,200	0.19	1,200	0.19	1,800	0.27	Eagle Creek
Village of East Troy	East Troy, Potter Lake, Army Lake, Alpine Valley	8.2	0.7	3,600	0.27	5,500	0.51	9,200	0.97	Honey Creek
City of Lake Geneva	Lake Geneva	8.3	1.74	6,400	1.24	9,200	1.59	16,800	2.54	White River
Village of Genoa City	Genoa City	1.6	0.22	1,200	0.10	1,800	0.18	3,000	3.2	Nippersink Creek
Town of Lyons Sanitary District No. 2	Lyons, Country	1.5	0.1	1,000	0.08	1,500	0.14	2,400	0.26	White River
Village of Mukwonago	Estates Mukwonago, Eagle Spring Lake, Mukwonago County Park, Rainbow Springs	10.4	1.5	4,400	0.51	7,500	1.0	19,200	2.46	Fox River
Town of Norway Sanitary District No. 1	Wind Lake, Denoon Lake	6.7	0.75	4,900	0.67	5,900	0.80	6,800	0.91	Wind Lake Drainage Canal
Town of Salem Sewer Utility District No. 2	Salem South, Salem North	10.7	1.57	4,900	0.78	9,300	1.33	10,200	1.44	Fox River

Table XVIII-4 (cont'd)

	T	<u> </u>		4000		T		×		
			E	kisting 1990		Intermedia	Planned			
Sewage Treatment Plant (by watershed)	Sewer Service Areas	Planned Sewer Service Area (square miles)	Existing Design Capacity- Average Annual Hydraulic (mgd)	Population Served	Average Annual Hydraulic Loading (mgd)	Centralized Land Use Plan	Average Annual Hydraulic Loading (mgd)	High G Decentalized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Receiving Water to Which Effluent is Disposed
Fox River Watershed (continued) Village of Silver Lake	Silver Lake	1.9	0.36	1,800	0.22	2,900	0.36	3,200	0.40	Fox River
Village of Sussex	Sussex, Lannon, Menomonee Falls	13.7	3.2 ^d	4,400	0.98	19,800	2.91	33,100	4.57	Sussex Creek
Village of Twin Lakes	Twin Lakes	7.8	0.5	4,000	0.37	7,000	0.70	7,400	0.80	Bassett Creek
City of Waukesha	Waukesha	30.6	14.0°	57,000	8.74	74,300	14.0	105,900	15.0	Fox River
Western Racine County Sewerage District	Waterford, Rochester	9.3	1.0	6,400	0.71	8,700	1.0	10,600	1.24	Fox River
Proposed plant-Village of North Prairie	North Prairie	1.9	••			8		3,600	0.45	Groundwater system
Proposed plant-Powers Lake	Pell Lake, Powers Lake	4.9				9		7,000	0.87	North Branch Nippersink Creek
Milwaukee River watershed City of Cedarburg	Cedarburg	7.4	2.75	10,100	1.58	12,400	1.87	27,800	3.80	Cedar Creek
Village of Fredonia	Fredonia, Waubeka	2.3	0.60	1,600	0.18	2,300	0.24	6,500	0.71	Milwaukee River
Village of Grafton	Grafton	6.9	2.2	9,300	1.35	11,500	1.60	24,100	3.16	Milwaukee River
Village of Jackson	Jackson	2.7	0.87	2,500	0.47	3,500	0.59	7,800	1.13	Cedar Creek
Village of Kewaskum	Kewaskum	3.8	0.50	2,500	0.36	2,900	0.42	7,100	0.94	Milwaukee River
Village of Newburg	Newburg	2.2	0.08	1,000	0.07	1,100	0.08	2,000	0.09	Milwaukee River
Village of Saukville	Saukville	4.3	1.0	3,700	0.56	4,300	0.63	8,600	1.17	Milwaukee River
City of West Bend	West Bend	21.2	9.0	23,900	3.45	32,500	4.53	53,800	7.18	Milwaukee River

Table XVIII-4 (cont'd)

	T		E	xisting 1990		 	Planned	Year 2010		
						Intermedia		High G	rowth	
Sewage Treatment Plant (by watershed)	Sewer Service Areas	Planned Sewer Service Area (square miles)	Existing Design Capacity- Average Annual Hydraulic (mgd)	Population Served	Average Annual Hydraulic Loading (mgd)	Centralized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Decentalized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Receiving Water to Which Effluent is Disposed
Watershed of Minor Streams and Direct Drainage Area Tributary to Lake Michigan City of Kenosha	Kenosha	53.2	28.6 ^h	88,000	23.0	100,900	25.0	118,400	27.3	Lake Michigan
Mi.waukee Metropolitan Sewerage District- Jones Island Plant Milwaukee Metropolitan Sewerage District- South Shore Plant	Milwaukee Metropolitan Sewerage District, Mequon, Thiensville, Germantown, Butler, Brookfield-East, New Berlin, Muskego, Caddy Vista, Franklin, Oak Creek, Menomonee Falls	335.6	200.0	1,036,000	123.2 100.0	1,060,000	125.0 105.0	1,134,000	128.0 110.0	Lake Michigan via Milwaukee Outer Harbor Lake Michigan
City of Port Washington	Port Washington	5.7	3.1	9,300	1.4	9,900	1.5	19,000	2.6	Lake Michigan
City of Port Washington City of Racine	Racine	60.4	30.0	124,400	28.8	133,400	30.0	167,800	34.2	Lake Michigan
City of South Milwaukee	South Milwaukee	4.8	6.0	21,000	3.5	19,800	3.3	20,300	3.4	Lake Michigan
Rock River watershed Allenton Sanitary District No. 1 Delafield-Hartland Water Pollution	Allenton Delafield, Nashotah,	0.8 19.1	0.36	800 10,200	0.15	1,200 18,200	0.20	2,400 28,500	0.36	Rock River - East Branch Bark River
Control Commission Village of Dousman	Hartland Dousman	2.4	0.35	1,300	0.22	3,100	0.44	5,600	0.76	Bark River
Fontana-Walworth Water Pollution	Fontana, Walworth	6.3	1.71	3,500	1.02	4,600	1.16	7,400	1.51	Tributary of Piscasaw
Control Commission City of Hartford	Hartford	10.5	2.0	8,200	1.46	12,400	2.00	24,000	3.44	Creek Rubicon River
City of Oconomowoc	Осопотонос	27.9	4.0	11,500	2.33	23,600 ⁱ	3.84 ⁱ	42,000 ⁱ	6.14	Oconomowoc River
Village of Sharon	Sharon	1.2	0.26	1,300	0.16	1,800	0.23	2,900	0.37	Little Turtle Creek
Village of Slinger	Slinger	3.6	0.76	2,300	0.33	2,700	0.38	4,400	0.60	Rubicon River
Walworth County Metropolitan Sewerage District	Delavan, Delavan Lake, Elkhorn, Lake Como, Geneva National, Williams Bay, Darien	43.8	5.6 ^j	19,100	2.92	24,200	3.53	46,400	6.33	Turtle Creek
City of Whitewater	Whitewater	8.3	3.65	12,600	1.43	13,100	1.50	21,600	2.56	Whitewater Creek
Proposed plant-Village of Wales	Wales	1.5				3,600	0.45	7,900	1.0	Groundwater system

				Existing 1990			Planned Year 2010			
						Intermedia	te Growth	High G	rowth	
Sewage Treatment Plant (by watershed)	Sewer Service Areas	Planned Sewer Service Area (square miles)	Existing Design Capacity- Average Annual Hydraulic (mgd)	Population Served	Average Annual Hydraulic Loading (mgd)	Centralized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Decentalized Land Use Plan	Average Annual Hydraulic Loading (mgd)	Receiving Water to Which Effluent is Disposed
Root River watershed Village of Union Grove Town of Yorkville Sewer Utility District No. 1 ^k	Union Grove	3.9 1.1	0.88	3,700 100	0.67	5,900 100	0.94	8,100 200	1.22	West Branch of Root River Canal Hoods Creek
<u>Sheboygan River watershed</u> Village of Belgium	Belgium	3.2	0.19	900	0.13	1,500	0.21	3,900	0.51	Belgium Creek

a Recommendations contained in a subregional system plan documented in the report prepared by Ruekert & Mielke, Inc., entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area, October 1991, provide for the abandonment of these plants. As of January 1995, the findings of this subregional study have not been incorporated into the regional plan by amendment.

b Based upon design year 2014 capacity proposed in a May 1993 facility plan.

^c Based upon new plant which was placed into service in 1992.

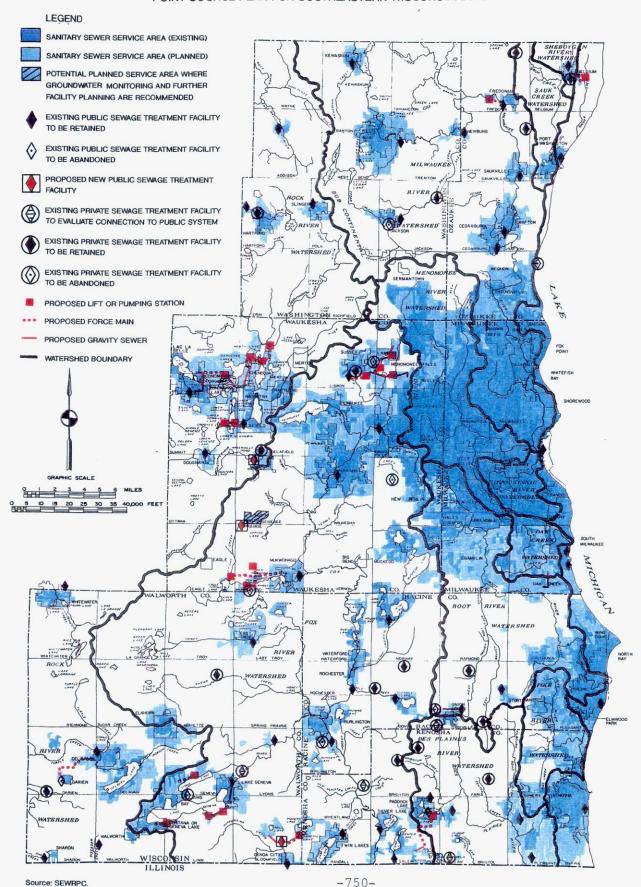
^d Based upon plant expansion ongoing in 1994.

^{**}Based upon plant expansion ongoing in 1994. A design flow of 18.5 mgd also developed based upon average wet weather period.

**Alternative of constructing a new plant and the alternatives of connection to an existing sewerage system and continued use of onsite sewage disposal systems are recommended to be evaluated in further subregional system.

⁹ Planned year 2010 population levels assuming the provision of public sanitary sewer service only developed under the high-growth plan.

h Based upon a 1994 plant expansion.


i Includes Beaver Lake, North Lake, Oconomowoc Lake, Okauchee Lake, and Pine Lake sewer service areas.

Based upon a plant expansion ongoing in 1994.

k Recommendations contained in a subregional system plan documented in the report prepared by Alvord, Burdick & Howson and Applied Technologies, Inc., entitled, A Coordinated Sanitary Sewerage and Water Supply System Plan, Greater Racine Area, September 1992, provide for abandonment of this plant. As of January 1995, the findings of this subregional study have not yet been incorporated into the regional plan by amendment.

Includes Lake Church sewer service area.

Map XVIII-8 UPDATED REGIONAL WATER QUALITY MANAGEMENT POINT SOURCE PLAN FOR SOUTHEASTERN WISCONSIN: 2010

greater Kenosha and greater Racine urban areas. 10 Inclusion of these plan recommendations by amendment to the updated areawide water quality management plan is pending intergovernmental agreement on the recommendations of these subregional system plans.

It is noted that there remains in service one relatively small public sewage treatment plant—the City of South Milwaukee plant—which is located immediately adjacent to and surrounded by the Milwaukee Metropolitan Sewerage District service area. It is recommended that facility planning reexamine the cost effectiveness of retaining this plant, or of abandoning the plant and connecting its tributary source area to the Milwaukee metropolitan system, at such time as upgrading or replacement needs require significant capital investment in the plant. The resultant sewerage facilities plan update would then, upon its adoption by all of the agencies concerned, form the basis of any needed amendment to the regional water quality management plan herein presented.

Private Sewage Treatment Plants

The regional water quality management plan, as amended, recommended the maintenance of 25 existing private sewage treatment plants; the abandonment of 43 private sewage treatment facilities; and the construction of one new private sewage treatment facility. These private sewage treatment plants serve isolated enclaves of urban land uses within the Region, including public and private recreational facilities, institutional facilities, commercial service facilities, isolated residential areas such as mobile home parks, and industries. 1993, 35 of the 43 private sewage treatment plants recommended to be abandoned were abandoned and the new facility proposed to serve the Bong Recreation Area facilities had been constructed. In addition, there were seven private sewage treatment plants which were no longer in operation due to industries or institutions ceasing operation, or were reclassified as industrial process treatment facilities. In 1993 there were a total of 27 private sewage treatment facilities within the Region. Under the amended plan, eight of the 27 existing private sewage treatment facilities would be abandoned and the land uses served connected to public sanitary sewerage systems as set forth in Table XVIII-5 and shown on Map XVIII-8.

In addition, there were in 1993 four private sewage treatment plants which generate wastewater with the same characteristics as typically treated by public sewage treatment plants and which were located in relatively close proximity to an established public sanitary sewer service area, or are located within or in close proximity to an area where public sanitary sewer service may be expected to be provided in the future. These plants serve the Fonk Mobile Home Park No. 2 in the Town of Dover, Racine County; the Grand Geneva Resort and Spa in the Town of Lyons, Walworth County; the Rainbow Lake Manor Mobile Home Park in the

¹⁰ Ruekert & Mielke, Inc., <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area</u>, 1992, recommends abandonment of the two Village of Pleasant Prairie treatment plants, which service areas would subsequently be connected to the Kenosha Water Utility sewerage system for treatment purposes; Alvord, Burdick & Howson, <u>A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Racine Area</u>, 1992, recommends abandonment of the Town of Yorkville treatment plant, which service area would be connected to the Racine Water and Wastewater Utility sewerage system for treatment purposes.

Table XVIII-5

PRIVATE SEWAGE TREATMENT PLANTS RECOMMENDED TO BE ABANDONED UPON FULL IMPLEMENTATION OF THE RECOMMENDED REGIONAL WATER QUALITY MANAGEMENT PLAN: 2010

		r	T	,
Private Sewage Treatment	Time of	Civil Division	Current	Public Sewage Treatment
Plant to be Abandoned	Type of		Effluent	Facility to Provide Service
(by watershed)	Wastewater	Location	Discharge	Following Abandonment
Fox River watershed				
Lake Geneva Interlaken Resort Village ^a	Sanitary	Town of Geneva	Soil Absorption	Walworth County Metropolitan Sewerage District
Willow Springs Mobile Home Park	Sanitary	Town of Lisbon	Soil Absorption	City of Brookfield
Rainbow Springs Resort	Sanitary	Town of Mukwonago	Tributary to Mukwonago River	Village of Mukwonago
New Berlin-West High School	Sanitary	City of New Berlin	Tributary to Poplar Creek	City of Brookfield
Packaging Corporation of America	Process and Sanitary	Town of Burlington	Tributary to Fox River	City of Burlington
	·			
Milwaukee River watershed				
Seneca Food Company ^o	Process	Town of Jackson	Soil Absorption and Cedar Creek	Village of Jackson
Watershed of Minor Streams and Direct Drainage Area				
<u>Tributary to Lake Michigan</u> Concordia University	Sanitary	City of Mequon	Lake Michigan	Milwaukee Metropolitan Sewerage District
Rock River watershed National Farmers Organization-Slinger Transfer Station	Process	Town of Polk	Soil Absorption	Village of Slinger
Root River watershed Southern Wisconsin Center for the Developmentally Disabled	Sanitary	Town of Dover	West Branch Root River Canal	Village of Union Grove

^a The Lake Geneva Interlaken Resort Village sewage treatment plant was abandoned in 1993 with the resort connected to the Walworth County Metropolitan Sewerage District.

^b Seneca Food Company private plant is currently used as a supplementary facility to the Village of Jackson sewage treatment plant.

Town of Bristol, and the Wheatland Mobile Home Park in the Town of Wheatland, both in Kenosha County. It is recommended that detailed facility planning be undertaken for these four plants at such time as upgrading or replacement needs require significant capital investment to determine the most cost-effective means of providing sewage treatment. Such facility planning would consider alternatives to maintaining the existing private plant, as well as abandonment with connection to a public sanitary sewerage system. These four plants and the 15 private sewage treatment facilities proposed to be retained under the updated areawide water quality management plan are listed in Table XVIII-6.

It is further recommended that the need for upgrading and the level of treatment required for the private treatment plants that are to remain in service be formulated on a case-by-case basis during plan implementation as part of the Wisconsin Pollutant Discharge Elimination System (WPDES) permitting process.

It is important to recognize that additional private sewage treatment facilities may be needed during the plan implementation period to serve new enclaves of isolated land use development. Generally such new facilities may be expected to lie beyond the planned year 2010 sewer service areas set forth on Map XVIII-8. Each proposal for a new private sewage treatment facility must accordingly be individually evaluated in light of the current areawide plan and the objectives which that plan is intended to achieve.

It must also be recognized in this respect, that certain types of urban land uses are properly and logically located in the more rural reaches of the Region and at times may require the provision of a sewage treatment facility, as opposed to septic tank systems. The types of urban land uses that must of necessity often be located in rural areas, where public centralized sanitary sewer service is not available, include highway-oriented commercial service facilities, such as motels, restaurants, and certain types of truck service stations and terminals; certain transportation facilities, such as airports; park and outdoor recreational facilities, both public and private; certain institutional facilities; and industrial facilities directly related to the agricultural land use base. It is not possible within the context of an areawide system planning effort to identify the need for, or to locate all such potential land uses in the rural areas. Accordingly, each proposal for such land uses must be evaluated as it arises. Those additional private sewage treatment facilities found to be essential to accommodate such isolated urban enclaves must provide a type and level of treatment that will achieve the recommended water use objectives. Such facilities should not, however, be used to accommodate new urban residential development or new urban commercial or industrial development that can more rationally and efficiently be accommodated within the recommended year 2010 sanitary sewer service areas--areas where substantial public capital investment has in many cases already been made to accommodate future development.

Sewage Treatment Plant Sludge Management

Specific sludge management measures are set forth in the detailed plans for each individual sewage treatment facility required to be prepared pursuant to the Wisconsin Pollutant Discharge Elimination System (WPDES) permitting process. The permitting process requires designated management agencies to develop and submit to the Wisconsin Department of Natural Resources a sludge management plan, which, upon approval by the Department, requires the designated management agency to maintain records of sludge application sites and quantities and to monitor such

Table XVIII-6

PRIVATE SEWAGE TREATMENT PLANTS RECOMMENDED TO BE RETAINED OR REQUIRING FURTHER EVALUATION UPON FULL IMPLEMENTATION OF THE RECOMMENDED REGIONAL WATER QUALITY MANAGEMENT PLAN: 2010

		Y	
Private Sewage Treatment Plant to be Retained (by watershed)	Type of Wastewater	Civil Division Location	Current Effluent Discharge
Des Plaines River watershed Brightondale County Park Fonk's Mobile Home Park No. 2 ^a Kenosha Beef International Company Rainbow Lake Manor Mobile Home Park ^a	Sanitary Sanitary Cooling, Process, and Sanitary Sanitary	Town of Brighton Town of Dover Town of Paris Town of Bristol	Soil Absorption Tributary to the Des Plaines River Soil Absorption Soil Absorption
Fox River watershed Bong Recreational Area Grand Geneva Resort and Spa ⁸ Downy Duck Company East Troy Rest Area (IH 43) Midwest Neurological Rehabilitation Center Friday Canning Corporation- Mammoth Springs Division Wheatland Estates Mobile Home Park ^b	Sanitary Sanitary Process Sanitary Sanitary Process Sanitary	Town of Brighton Town of Lyons Town of Dover Town of LaFayette Town of Dover Town of Lisbon Town of Wheatland	Peterson Creek White River Soil Absorption Tributary to Sugar Creek Tributary to Wind Lake Canal Soil Absorption Minor Tributary to the Fox River
Milwaukee River watershed Level Valley Dairy S&R Cheese Corporation	Process and Cooling Process	Town of Jackson Town of Saukville	Cedar Creek Soil Absorption
Rock River watershed Ethan Allen School Libby, McNeill, & Libby, Inc. (Walworth County)	Sanitary Process	Town of Delafield Town of Darien	Soil Absorption Soil Absorption
Root River watershed C&D Foods Inc. Fonk's Mobile Home Park No. 1	Process Sanitary	Town of Yorkville Town of Yorkville	West Branch Root River Canal East Branch Root River Canal
<u>Sauk Creek watershed</u> Cedar Valley Cheese Factory	Process and Cooling	Town of Fredonia	Soil Absorption
<u>Sheboygan River watershed</u> Lakeside Packing Co.	Process	Town of Belgium	Soil Absorption and East Branch Belgium Creek

^a Private sewage treatment plant to carry out facility planning to consider connection to a public sanitary sewer service area at such time as a major plant upgrading or modification is required.

^b Private sewage treatment plant to be evaluated in the context of further subregional facility planning considering the best means of providing sanitary sewer service to the Town of Wheatland area.

sites for adverse environmental, health, or social effects. At present, such reports have been prepared and submitted to the Department, or are under preparation, for all of the public and private sewage treatment plants currently within the Region. It is recommended that this plant-specific permitting process be maintained and that the sewage treatment plant sludge management facilities for the facilities noted in Tables XVIII-4 and XVIII-6 be expanded and upgraded as needed under the established permitting process.

Abatement of Pollution from Sewer System Flow Relief Devices

In 1975, there were 493 sanitary sewerage system flow relief devices in the Region which discharged sanitary sewage from separate sanitary sewer systems to surface water bodies. The initial regional water quality management plan recommended that each unit or agency of government responsible for the construction, operation, and maintenance of separate sanitary sewerage systems within the Region conduct detailed studies of local sewerage systems to identify all points of sewage flow relief and to ultimately eliminate all flow relief points through sewerage facility construction and infiltration and inflow reduction programs.

During the period since 1975, infiltration and inflow sewer system evaluations have been carried out for most of the sanitary sewer systems in the Region and, in many cases, flow reduction programs have been undertaken. However, as of 1990, releases of raw sanitary sewage from sanitary sewer system flow relief devices continued to occur throughout the Region. While the sewerage system upgrading which has occurred since the preparation of the initial regional water quality management plan has reduced the occurrences and the extent of discharges of untreated wastewater from flow relief devices in the Region; as of 1993 there still remained in existence within the Region about 330 sanitary sewer flow relief devices. These included 36 bypasses, 42 relief pumping stations, 52 portable pumping stations, and 200 sanitary to storm sewer crossovers.

During 1994, the Milwaukee Metropolitan Sewerage District completed work on the construction of the inline storage system, a major component of its water pollution abatement program as documented in the District facility plan. Given the conveyance capacity now available in the inline storage deep tunnel system, bypassing from other sanitary sewer flow relief devices may be expected to be further reduced as additional sewerage system improvement upgrading is accomplished by the Milwaukee Metropolitan Sewerage District and other local units of government operating sewer systems. Currently, there are plans underway to further reduce the number of flow relief devices on the Milwaukee Metropolitan area sanitary sewer system. 12

¹¹Milwaukee Metropolitan Sewerage District, <u>MMSD Wastewater System Plan</u>, June 1980.

¹²During 1994, the City of Milwaukee developed preliminary plans to specifically eliminate 52 of the 106 crossovers in the City's sanitary sewer system. In most cases, the crossovers were connected to other locations in the Milwaukee sewer system where adequate capacity was available. These plans were being refined and reviewed with the Milwaukee Metropolitan Sewerage District staff at the end of 1994.

Substantial progress has been made with regard to the elimination of the discharge to surface water courses of raw sanitary sewage from sanitary sewage flow relief devices. It is nevertheless recommended that all future planning for sewerage system expansion and improvement be conducted on the assumption that there will be no planned bypasses of raw sewage and that all flow relief devices in the systems will ultimately be eliminated, with the exception of bypasses at pumping stations and sewage treatment plants required to protect the public health and the treatment facilities in cases of unforeseen equipment or power failure. In the interim, it is recommended that the designated management agencies set forth in Chapter XVII continue to monitor sewerage system operations to ensure that the uses of the existing sewerage system flow relief devices are limited to periods of power or equipment failure, or to cases where infiltration and inflow due to wet weather conditions exceed the flows expected in the system design.

This recommendation is meant to preclude all bypassing which relies on the provisions of Section 110.05(2) of the Wisconsin Administrative Code relating to category 2 bypasses and overflows. These provisions presently permit bypassing and overflows resulting from a precipitation event having a recurrence interval of once in five years or less. The code presently presents such bypasses, as well as bypasses resulting from equipment damage and temporary power failure, and bypasses which are necessary to prevent the loss of life or severe property damage, without regard to the impact of extensions to the sewerage systems concerned.

In 1975, there were a total of 126 combined sewer overflow outfalls located within the Region. The initial plan recommended the eventual elimination of these combined sewer overflow outfalls through sewerage system construction and upgrading. Since the completion of the initial plan, those overflows which had existed in the Cities of Kenosha and Racine have since been eliminated through partial sewer separation programs. While overflows located in the Milwaukee metropolitan sewerage system continue to bypass raw sanitary sewage and storm water to surface waters during high flow events, the frequency of bypassing has been significantly reduced as a result of the completion of the inline storage deep tunnel system. Prior to the completion of the system, such bypassing occurred on an average of 52 times per year, discharging an estimated 3.0 to 4.0 billion gallons of mixed raw sewage and stormwater to surface waters. With the completion of the inline storage deep tunnel system, bypassing of raw sanitary sewage and storm water from the combined sewer overflows is expected to occur an average of about two times per year with the average duration of an overflow event being about 12 hours. The Milwaukee Harbor estuary study¹³ documented that this level of reduction in combined sewer overflow discharges would be adequate to meet water quality standards in the estuary portion of the Milwaukee River, assuming other water quality improvement measures recommended were carried out.

Intercommunity Trunk Sewers

The regional water quality management plan, as amended, recommended the construction of 62 intercommunity trunk sewers in order to extend centralized sanitary sewer service throughout the proposed sewer service areas and to enable the

¹³SEWRPC Planning Report No. 37, op. cit.

abandonment of selected public and private sewage treatment plants. As of 1993, 49 of these intercommunity trunk sewers have been constructed. One trunk sewer, the Darien-Delavan trunk sewer, which will provide for the abandonment of the Village of Darien sewage treatment plant, was added to the plan in a 1994 plan amendment. Two trunk sewers were added to the plan also in a 1994 amendment to connect the Powers-Benedict-Tombeau Lakes area to a new sewage treatment plant located between these two lake areas. One additional trunk sewer--the Oak Creek Southeast trunk sewer--was recommended in the originally adopted plan but was estimated to not be needed until after the planning period. This trunk sewer has been included in this plan update based upon demonstrated need.

Thus the current plan recommends the construction of 16 intercommunity trunk sewers and force mains. The general alignment of these trunk sewers are shown on Map XVIII-8 and the trunk sewers are listed in Table XVIII-7.

The trunk sewer recommendations summarized in Table XVIII-7 concern only those trunk sewers which are of an intercommunity nature. Also of importance to the attainment of the basic plan recommendation to provide centralized sanitary sewer service to the recommended future sewer service areas are local trunk sewer extensions, which generally involve only a single community and are not, therefore, of areawide significance. It should be understood that these locally proposed trunk sewers, while not shown on the recommended plan map, represent an important adjunct to the recommended regional water quality management plan and, as such, are required for full plan implementation.

Other Point Source Discharges

In 1975, there were 277 known point sources of wastewater, other than public and private sewage treatment plants, discharging wastewater to groundwater or surface waters in the Region. The initial areawide water quality management plan recommended that these "other" point sources be monitored, and discharges limited to levels which must be determined on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System permitting process.

As of 1993, there were 662 known point sources of wastewater, other than public and private sewage treatment plants, discharging wastewater to the ground water or to surface waters in the Region. These "other" point sources of wastewater discharge consist primarily of industrial cooling, process, rinse, and wash waters which were discharged directly, sometimes following treatment, to the surface waters or groundwaters of the Region, or to storm sewers tributary to the surface or groundwater system. The locations of these point sources, including the level of treatment applied and the receiving water for discharge, are provided by watershed in Chapters IV through XV. It is recommended that wastewater discharge from these "other" sources continue to be controlled and regulated on a case-by-case basis under the Wisconsin Pollutant Discharge Elimination System (WPDES) permitting process.

Existing Unsewered Urban Development Outside

the Proposed Sanitary Sewer Service Area

In 1975 there were 106 enclaves of unsewered urban development located outside of the then planned year 2000 sewer service areas. Since 1975, 16 of these areas have been incorporated into the planned year 2010 sanitary sewer service areas and 72 new areas have been created beyond the planned sewer service areas.

Table XVIII-7

INTERCOMMUNITY TRUNK SEWERS RECOMMENDED TO BE CONSTRUCTED UPON FULL IMPLEMENTATION OF THE RECOMMENDED REGIONAL WATER QUALITY MANAGEMENT PLAN: 2010

Intercommunity Trunk Sewer	Watershed Location					
Salem ^a	Des Plaines River and Fox River watersheds					
Lannon-Sussex Eagle Spring-Mukwonago Lake Geneva South Como Lake North Fontana-Linn Pell Lake Powers Lake	Fox River watershed Fox River watershed Fox River watershed Fox River watershed Fox River watershed Fox River watershed Fox River watershed Fox River watershed					
Northridge Waubeka-Fredonia	Milwaukee River watershed Milwaukee River watershed					
Lake Church-Belgium	Watershed of Minor Streams and Direct Drainage Area Tributary to Lake Michigan					
Oak Creek Southeast ^b	Oak Creek and Root River watersheds					
Darien-Delavan	Rock River watershed					
North Lake-Oconomowoc Rock River watershed Summit-Delafield Rock River watershed						
Center for the Developmentally Disabled-Union Grove	Root River watershed					

^a Trunk sewer was completed in 1993.

 $^{^{\}rm b}$ Trunk sewer included in initial plan as needed beyond the year 2000 and included in the plan update based upon demonstrated needs.

As of 1990, there were 162 enclaves of unsewered urban development located outside of the planned year 2010 sewer service areas. The location of these service areas and the corresponding urban enclave population and the distance to the nearest planned year 2010 sewer service area are provided in Chapters IV through XV. Four of these areas are served by private sewage treatment plants. Approximately one-half of the areas not served by private sewage treatment plants are covered by soils and have lot sizes which indicate a high probability of meeting the criteria of Chapter ILHR 83 of the Wisconsin Administrative Code covering conventional onsite sewage disposal systems. The remaining areas have soils and lot sizes having a high probability of not meeting these criteria, and consideration should be given to alternative methods of wastewater disposal. Many of these latter areas are located adjacent to inland lakes where alternative forms of wastewater management should be investigated during the planning period. Generally, for all of the remaining enclaves located in areas where soils are not considered to meet current criteria for onsite sewage disposal systems, it is recommended that an inspection and maintenance program be instituted and that further site-specific planning to determine the best wastewater management practices be conducted at such times as significant problems are anticipated.

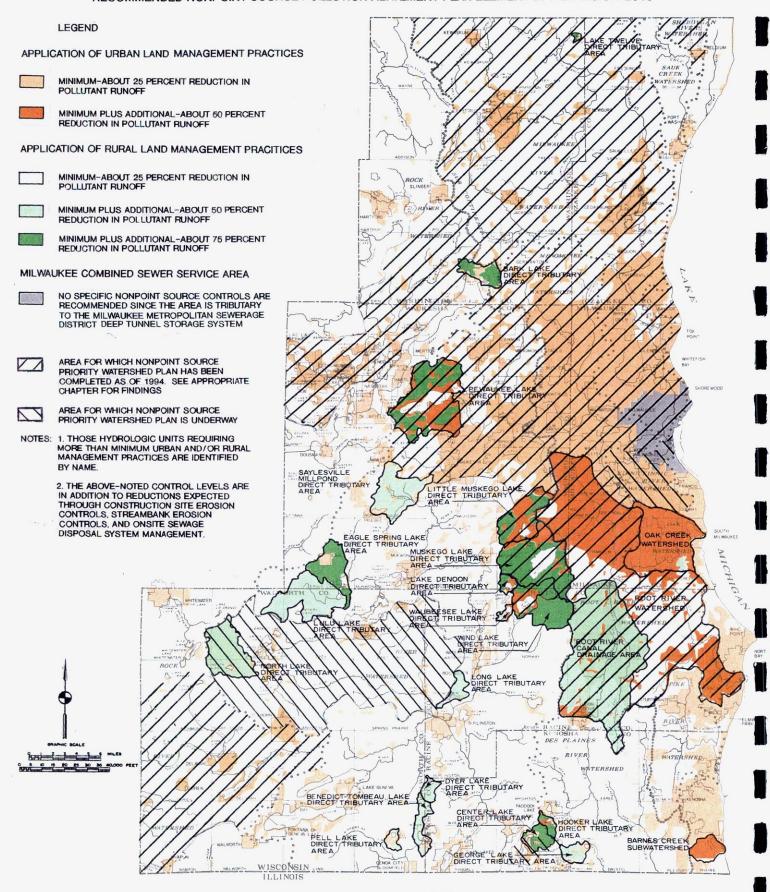
Miscellaneous Point Source-Related Recommendations

Miscellaneous point sources of pollution including landfills and underground storage tanks are discussed and located on maps in Chapters IV through XV by watershed. As of 1990, there were 28 landfills in the Region that may potentially be impacting surface or ground waters. Seven of these landfills were designated as high priority sites for the U.S. Environmental Protection Agency Superfund program which provides for the identification, evaluation, and clean up of hazardous waste sites. Three of these landfills were identified for State clean-up actions. In addition, as of 1990, there were 14 leaking underground storage tanks and three other sites of groundwater contamination undergoing remediation in the Region which were discharging remediation wastewater to surface or ground waters under the Wisconsin Pollutant Discharge Elimination System (WPDES) permitting process. It is recommended that these miscellaneous point sources of wastewater, including operating and abandoned landfills, underground storage tanks, and other groundwater contamination sites continue to be monitored and appropriate remediation be carried out under the programs and regulations currently in place for that purpose.

NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT

The nonpoint source pollution abatement plan element includes recommendations relating to the control of diffuse sources of water pollution including urban sources--such as runoff from residential, commercial, industrial, transportation, and recreational land uses, construction activities, and private onsite sewage disposal systems--and from rural sources--such as runoff from cropland, pasture, and woodland, and livestock wastes and from streambank erosion sites. These nonpoint sources of pollutants discharge to surface waters by direct land drainage, by drainage through natural channels, by drainage through engineered storm water drainage systems, and by deep percolation into the ground and return flow to the surface waters. The water quality analyses developed in the initial plan demonstrated that a reduction in the transport of pollutants from nonpoint sources is essential, in combination with the point source pollutant abatement measures, to the achievement of the recommended water use objectives and

supporting water quality standards set forth in this regional water quality management plan update.


For planning purposes, measures for nonpoint source water pollution control were grouped into categories. The first category was defined as basic practices, which were recommended to be generally applied throughout the Region and included construction site erosion control, onsite sewage disposal system management, and streambank erosion controls. The effectiveness of such practices in reducing nonpoint source pollutant loadings varied by subwatershed and by pollutant. For conventional pollutants, these practices generally are expected to provide for a 5 to 30 percent reduction in nonpoint source pollutant loadings. Additional practices were then considered in incremental steps which would provide 25 and 50 percent reductions in nonpoint source pollutants from urban lands and 25, 50, and 75 percent reductions in nonpoint source pollutants from rural lands. The types of practices recommended to be considered for these various levels of nonpoint source control are summarized in Appendix A.

In the initial plan, water quality simulation modeling was conducted to determine the level of nonpoint source pollution control needed to meet the water quality standards associated with recommended water use objectives for each subwatershed area considered. The resulting recommendations of that analysis are shown on Map XVIII-9. For nearly all of the Southeastern Wisconsin Region, land management practices designed to achieve about a 25 percent reduction in nonpoint source pollutants, in addition to construction site erosion control, onsite sewage disposal system management, and streambank erosion controls were recommended to be implemented throughout the entire urban and rural areas. For these areas, the level of control expected to be achieved when considering the effectiveness of the basic practices, plus the land management practices designed to achieve the 25 percent reduction, varied, depending upon the specific subwatershed considered, ranging for specific subwatersheds from a 30 to 55 percent reduction overall.

The one exception to this recommendation was that no specific additional nonpoint source controls were recommended for the 21-square-mile area tributary to the Milwaukee Metropolitan Sewerage District inline storage deep tunnel system where stormwater runoff from storms with up to a recurrence interval of about one or two times per year is to be conveyed to the tunnel system and be stored and then treated at the District treatment plants, thus providing a high level of nonpoint source pollution control. In the area tributary to the combined sewer system, the discharge of stormwater to the surface water system will be reduced from an average of 50 times per year to 1.4 times per year. Accordingly, a level of control of nonpoint source pollutants exceeding 90 percent is expected. This is particularly important in that the area served by the combined sewer system represents the most highly urbanized area of the Region. This area contains concentrations of industrial, commercial, institutional, and transportation land uses which are expected to generate high nonpoint source loadings and where controls of nonpoint source pollutants using land management practices would be difficult and costly. The control of nonpoint sources in the combined sewer service area as provided by the inline storage deep tunnel system exceeds that which could practically be provided by any other practicable means.

Additional urban nonpoint source controls designed to provide about a 50 percent reduction in pollutant runoff were also recommended to be applied to a total of

RECOMMENDED NONPOINT SOURCE POLLUTION ABATEMENT PLAN ELEMENT IN THE REGION: 2010

109 square miles of urban area. These areas lie largely in the Oak Creek and Root River watersheds, in the Barnes Creek subwatershed portion of the drainage area directly tributary to Lake Michigan, and in the direct drainage areas tributary to Pewaukee Lake, Big and Little Muskego Lakes, Lake Denoon, Waubeesee Lake, Wind Lake, and Hooker Lake. Additional rural nonpoint source pollution abatement measures designed to achieve an approximate 50 percent reduction in pollutant runoff were recommended in the plan to be applied to about 118 square miles of rural land. These lands lie largely in the Oak Creek watershed, in Root River Canal drainage area, and in the direct drainage areas tributary to GeorgeLake, Benedict/Tombeau Lakes, Waubeesee Lake, Long Lake, Dyer Lake, Pell Lake, North Lake (Walworth County), and Lulu Lake. In addition, additional rural nonpoint source pollution abatement measures designed to achieve an approximate 75 percent reduction in pollutant runoff were recommended to be applied to about 58 square miles of rural lands in the direct drainage areas tributary to Lake Twelve, Bark Lake, Pewaukee Lake, Big and Little Muskego Lakes, Eagle Spring Lake, Lake Denoon, Center Lake, Wind Lake, and Hooker Lake.

The initial regional plan also recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans. Such plans were to identify nonpoint source pollution control practices that should be applied to specific areas within the designated watersheds. Working with the individual county land conservation committees, local units of government, and the Commission, the Wisconsin Department of Natural Resources is carrying out the recommended detailed planning for nonpoint source water pollution abatement on a watershed by watershed basis. This detailed planning and subsequent plan implementation program is known as the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program. This planning program was established in 1978 by the Wisconsin State Legislature and provides cost-sharing funds for an individual project, or land management practice, to local governments and private landowners upon completion of the detailed plans. These funds are provided through nonpoint source local assistance grants administered by the DNR. Planning under the priority watershed program has been carried out, or is underway, for the Root River, Onion River, Turtle Creek, Oconomowoc River, Milwaukee River and Cedar Creek, Menomonee River, Upper Fox River, Kinnickinnic River, Honey and Sugar Creeks, Muskego-Wind Lakes, and Camp and Center Lakes watersheds and subwatersheds, as recommended in the initial areawide water quality management plan. The status of these projects are summarized in Table XVIII-8.

In those watersheds where nonpoint source pollution abatement priority watershed projects have been completed, the recommendations developed under the priority watershed projects now serve as the basis for nonpoint source project eligibility under the DNR priority watershed programs and must be taken into account along with the regional water quality management plan findings and recommendations in preparing subsequent detailed stormwater management plans, and for land management plans.

The nonpoint source priority watershed project implementation periods have now been completed for the Onion River, Oconomowoc River, Root River, and Turtle Creek watersheds. For each of these watersheds, it is recommended that the need for further nonpoint source controls be reevaluated based upon the level of plan implementation and additional water quality and biological monitoring data. This reevaluation should include adequate water quality and biological assessment and

Table XVIII-8

STATUS OF NONPOINT SOURCE POLLUTION ABATEMENT PRIORITY WATERSHED PROJECTS: 1994

Watershed	Counties	Date Selected	Date Plan Completed	Project Sign-Up End Date	Project Implementation End Date
Root River	Racine Milwaukee Waukesha Kenosha	1979	1980	December 1984	December 1989
Onion River	Ozaukee Sheboygan	1980	1981	June 1984	June 1989
Turtle Creek	Walworth Rock	1982	1984	April 1987	April 1992
Oconomowoc River	Washington Waukesha Jefferson Dodge	1983	1986	April 1989	December 1994
East and West Branches of the Milwaukee River	Washington Ozaukee Sheboygan Dodge	1984	1989	December 1993 ^a	June 1997
North Branch of the Milwaukee River	Washington Ozaukee Sheboygan Fond du Lac	1984	1989	December 1993 ^a	July 1997
Menomonee River	Washington Waukesha Milwaukee Ozaukee	1984	1991	October 1994 ⁸	October 1999
Milwaukee River South	Ozaukee Milwaukee	1984	1991	October 1994 ^a	October 1999
Cedar Creek	Ozaukee Washington	1984	1992	March 1995 ^a	March 2000
Upper Fox	Waukesha	1990	1994	May 1994	May 1994
Muskego-Wind Lakes	Waukesha Racine	1991	1993	May 1994	May 1997
Kinnickinnic	Milwaukee	1990	1994	October 1994 ^a	October 1997
Honey Sugar Creek	Walworth	1994			
Camp-Center Lakes	Kenosha	1994			

^a Urban nonpoint source management practices can be signed up during the entire project implementation period.

analyses to determine the current degree of achievement of the recommended water use objective for the stream reaches concerned. In some cases, this evaluation may indicate that the water use objective should be changed. For example, in the Root River watershed, the recommended point source pollution abatement measures have now been largely carried out, including the abandonment of seven public and seven private sewage treatment plants and the upgrading of the Village of Union Grove sewage treatment plant. Given that the nonpoint source priority watershed project implementation period has been completed and that the surface waters still do not fully meet the standards for the recommended water use objective, the achievability of the objective should be reevaluated along with the need for further nonpoint source controls.

For the Upper Fox River, Menomonee River, and Milwaukee River watersheds, the levels of control developed for the urban areas in the priority watershed plan are significantly higher than those developed in the initial regional water quality management plan. In this regard, it should be noted that the priority watershed plans included consideration of water quality implications of metals toxicity in stormwater. Such metal toxicity was not specifically considered in the development of the initial regional plan recommendations since metals toxicity standards were not available at the time of its preparation. However, levels of urban control developed under the priority watershed plans for these three areas are costly and full implementation will be difficult to achieve. Thus, it is recommended that the level of control for urban areas be refined based upon subsequent detailed stormwater management planning and based upon additional monitoring and quantitative analyses which are recommended to be conducted during the plan implementation period. These data and consideration of estimated costs and available funds for the urban practices are recommended to be evaluated to refine the recommended final level of control. Such refinement would include further consideration of toxics reduction requirements.

It is further recommended that local agencies charged with responsibility for nonpoint source pollution control prepare refined and detailed local-level nonpoint source pollution control plans to identify the nonpoint source pollution control practices that should be applied to specific lands in the most costeffective manner. In this regard, those areas of the Region not yet included under the Wisconsin Nonpoint Source Priority Watershed Pollution Abatement Program should be enrolled in the program in order to make State cost-sharing funds and related programs available for nonpoint source pollution control measures. In addition, detailed stormwater management plans in urban areas and farmland management plans in rural areas should be conducted to determine the practices to be installed in the most cost-effective manner. priority ranking of watersheds for inclusion in that program is documented in a memorandum 14 prepared by the Regional Planning Commission using DNR procedures. That ranking is summarized on Map XVIII-10 and Table XVIII-9, and includes the Bark River, Middle Fox River, Lower Fox River, Oak Creek, Pike River, Pike Creek, Sauk Creek-Sucker Creek, East Branch Rock River, and Rubicon River in the high category, indicating that inclusion in the program will be possible in the future when the existing planning projects are completed, or additional funds and staff become available with the Department of Natural Resources. The Commission is

¹⁴See SEWRPC Memorandum entitled "Assessment and Ranking of Watersheds for Nonpoint Source Management Purposes in Southeastern Wisconsin: 1993."

Map XVIII-10
TOTAL NONPOINT SOURCE RATING ANALYSIS FOR
CANDIDATE WATERSHEDS WITHIN SOUTHEASTERN WISCONSIN

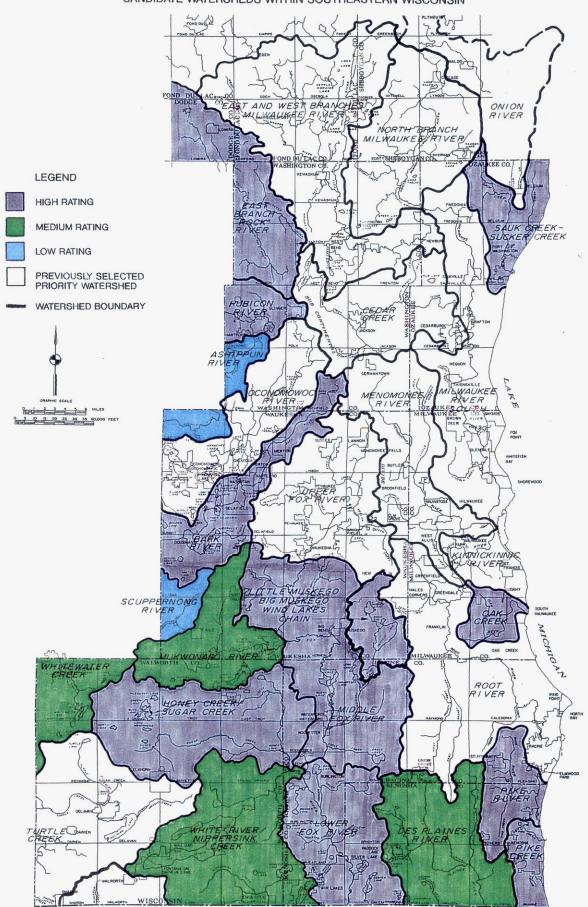


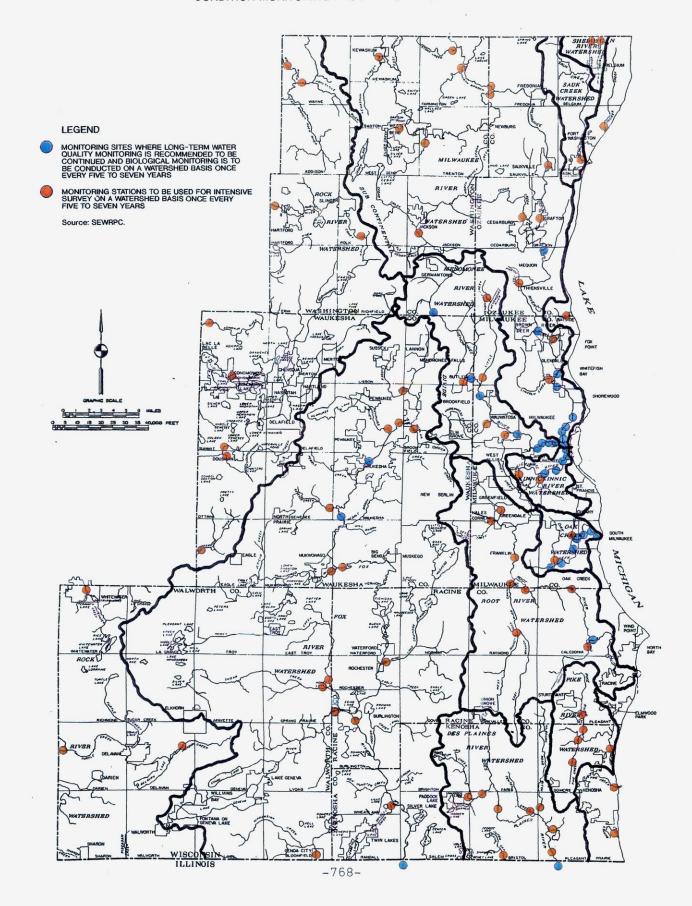
Table XVIII-9

SUMMARY OF CANDIDATE PRIORITY WATERSHED RATINGS
FOR SOUTHEASTERN WISCONSIN

High Rating	Medium Rating	Low Rating
Bark River	Des Plaines River	Ashippun River
East Branch Rock River	Mukwonago River White River/	Scuppernong River
Honey/Sugar Creeks ^a	Nippersink Creek	
Lower Fox River	Whitewater Creek	
Middle Fox River		
Oak Creek		
Pike Creek		
Pike River		
Rubicon River		
Sauk/Sucker Creeks		

^a Since preparation of this priority watershed rating in 1993, the Honey/Sugar Creek watershed was selected in 1994 for inclusion in the Wisconsin Department of Natural Resources Nonpoint Source Pollution Abatement Priority Watershed Program.

currently preparing a comprehensive watershed plan for the portion of the Des Plaines River watershed located in Southeastern Wisconsin. 15 That planning program will provide much of the information and data needed for the preparation of a nonpoint source priority watershed project. Because a comprehensive water resources planning program will be completed for the Des Plaines River watershed during 1995, the implementation of the nonpoint source pollution abatement in that watershed should be given special consideration since the comprehensive framework for the nonpoint source planning will be in place along with much of the inventory and analyses data needed to conduct priority watershed planning in a timely way. Thus, it is recommended that further consideration be given to including the Des Plaines River watershed under the State nonpoint source pollution abatement priority watershed program.


WATER QUALITY MONITORING PLAN ELEMENT

The updated regional water quality management plan recommends that steps be taken to ensure the establishment of a sound program for continuing water quality monitoring within the Region to determine the extent to which the recommended water use objectives and supporting water quality standards are being met over time. In particular, the plan recommends that the water quality data collection programs be continued at selected stations established by the Department of Natural Resources, the U.S. Geological Survey, and the Milwaukee Metropolitan Sewerage District as set forth in Chapters IV through XV and shown on Map XVIII-11, on a continuing long-term basis. In addition, it is recommended that an intensive water quality and biological condition monitoring program be conducted over a one-year period at selected additional locations as shown on Map XVIII-11, and that biological monitoring be conducted at selected continuing water quality monitoring stations during the same one-year period. The proper combination of water quality and biological monitoring should be determined during the development of monitoring programs for individual watersheds by the Department of Natural Resources in cooperation with the Regional Planning The data to be collected should be suitable for developing the necessary analyses, including modeling of future conditions, to reassess the levels of point and nonpoint source controls needed to achieve the recommended water use objectives, and to reexamine the practicality of achieving those objectives. It is recommended that this program be conducted within the next seven years and repeated at approximately five- to ten-year intervals. recommendations are consistent with the Wisconsin Department of Natural Resources current conceptual surface water monitoring strategy developed to conduct monitoring activities and perform basic assessments for each watershed in the Region in an approximate five- to ten-year rotating cycle.

In addition, it is recommended that a lake water quality monitoring program be established on all lakes within the Region, consisting of, at a minimum, the enrollment of a citizen volunteer in the DNR Self-Help Monitoring Program. In addition, it is recommended that an intensive monitoring effort designed to establish baseline water quality conditions be undertaken on all major lakes within the Region, and on such smaller waterbodies as may be appropriate. For each lake, it is recommended that the monitoring program be such that current conditions be established during a two-year or more intensive monitoring program

¹⁵Des Plaines River Watershed Planning Program Prospectus, September 1991.

Map XVIII-11 RECOMMENED WATER QUALITY AND BIOLOGICAL CONDITION MONITORING PROGRAM SITE LOCATIONS

followed by continual long-term monitoring designed to detect changes in water quality conditions. In this regard, the monitoring program should be designed to provide data needed to prepare or update comprehensive lake management plans for the major lakes in each watershed and such smaller lakes as may be appropriate. The water quality sampling program should be carried out at spring turnover--usually in April--and during June, July, and August, during two subsequent years, with samples collected weekly.

LAKE MANAGEMENT PLAN ELEMENT

Lake management measures recommended to be considered in more detail are set forth in Table XVIII-10 for the 101 major lakes in the Southeastern Wisconsin Region. It is recognized that the preparation of comprehensive lake management plans may need to be conducted in a staged manner in order to best utilize available resources. In this regard, water quality monitoring, aquatic plant management, and watershed protection measures planning and implementation are considered to be logical components, among others, of the comprehensive plans which can be conducted under separate planning programs, if designed to be integrated into a comprehensive lake management plan. In addition, it is recommended that water quality planning and supporting monitoring be conducted for those lakes and similar waterbodies of both greater and lesser than 50 acres in size, where such activities are deemed to be important for water quality protection. In cases where such planning and monitoring is conducted on waterbodies of less than 50 acres in size, management techniques similar to those recommended to be applicable for consideration on the major lakes can be considered for lake management purposes. Currently, such activities are underway on about half of the 101 major lakes in the Region, as shown in Table XVIII-10.

MILWAUKEE HARBOR ESTUARY PLAN RECOMMENDATIONS

The water quality management recommendations developed in the Milwaukee Harbor estuary study 16 are incorporated into the regional water quality management plan update. In addition to those recommendations set forth above for the tributary area to the Milwaukee Harbor estuary, the plan recommends the continued operation of the existing flushing tunnels which discharge to the upstream end of the Milwaukee and Kinnickinnic River watersheds, and the installation and operation of an instream aeration system in the Menomonee River estuary. In addition, the updated plan incorporates the recommendations to implement measures to prevent contamination of surface water by stormwater runoff from scrap metal, salt, and other material storage sites located within the estuary direct drainage area and the development and continued operation of a water quality, sediment quality, and biological conditions monitoring program to document the extent to which desired water use objectives are being met over time.

STATUS OF GROUNDWATER MANAGEMENT PLAN ELEMENT

A groundwater management plan element of the regional water quality management plan is currently under preparation under a cooperative program being carried out

¹⁶SEWRPC Planning Report No. 37, <u>A Water Resources Management Plan for the Milwaukee Harbor Estuary</u>, Vol. One, <u>Inventory Findings</u>, Vol. Two, <u>Alternative and Recommended Plans</u>, December 1987.

Table XVIII-10

SUMMARY OF LAKE MANAGEMENT PLAN ELEMENT RECOMMENDATIONS

COUNTY WATERSHED Lake	Area acres	TSIa	Form of Lake Organi- zation	Provide Public Sanitary Sewerage	Manage Onsite Sewage Disposal	Monitor Water Quality	Manage Aquatic Plants	Manage Fish/ In-lake Habitat	Manage Access and Recreation	Manage Watershed NPS	Public Infor- mation	Comprehen- sive Plan
KENOSHA COUNTY DES PLAINES RIVER Benet/Shangrila East Lake Flowage George Lake Hooker Lake Paddock Lake Unnamed Quarry Lake FOX RIVER Benedict Lake Camp Lake Center Lake Cross Lake Dyer Lake Elizabeth Lake Lilly Lake Marie Lake Powers Lake Silver Lake	186 123 59 87 112 100 78 461 129 87 56 865 88 315 459	67 64 54 44 35 52 52 47 45 50	d Stateb Districtc Districtcd Districtc Districtc Assned Districtc Districtc Districtc Assne c_d Districtc Districtc Districtc Assne	0 0 0 0 x x	- x - - - x - x	0 x 0 0 x x 0 0 0 x	x - 0 x x - x x x x	x x x x x x x x x x	x x c c c x x c c x	x x x x x - x o o x x x x x	x x x x x x x x x x	x 0 0 0 x x 0 0 0 x
Voltz Lake OZAUKEE COUNTY MILWAUKEE RIVER Lac du Cours Mud Lake Spring Lake	52 56 245 66	 43	District ^c d d d	o - -	- - - x	x x x	- - -	x x - x	x x x	0 0	x x x	x x x
RACINE COUNTY FOX RIVER Bohner Lake Browns Lake Buena Lake Eagle Lake Echo Lake KeeNongGoMong Lake Long Lake Tichigan Lake Waubeesee Lake	135 396 241 520 71 88 102 892 129 936	45 51 52 55 54 46 69	Assn ^e District ^c d Assn ^e d Assn ^e d Assn ^e d Assn ^e District ^c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x - - - x - -	0 0 x 0 x 0 x	0 x - 0 - x x - x	x x x x x x x x	0 0 x 0 x 0 x 0	x x x x x x x	x x x x x x x x	0 X 0 X 0 X 0

COUNTY WATERSHED	4		Form of Lake	Provide Public Sanitary	Manage Onsite	Monitor Water	Manage Aquatic	Manage Fish/ In-lake	Manage Access and	Manage Watershed	Public Infor-	Comprehen- sive
Lake	Area acres	TSIa	Organi- zation	Sewerage	Sewage Disposal	Quality	Plants	Habitat	Recreation	NPS	mation	Plan
WALWORTH COUNTY												
FOX RIVER			و									
Army Lake	78		d	x	x	x	-	x	x	x	х	x
Booth Lake	113	45	Assne	x	x	0	-	x	×	x	x	x
Lake Beulah	834	46	District	-	x	0	۰	x	٥	x	x	x
Lake Como	946		District ^c	0	-	0	0	x	x	x	x	x
Lake Geneva	5,262	48	Agencyf	0	-	0	-	x	٥	×	0	0
Lauderdale Lakes ^g	841	50	District ^c	-	x	0	×	x	. 0	x	х	0
Lulu Lake	84		d	-	-	x	x	x	٥	×	х	0
North Lake	191			-	x	x	x	x	x	x	x	x
Pell Lake	86	60	Assn ^e d	0	-	×	-	x	x	x	х	x
Peters Lake	64			-	-	x	x	x	x	x	х	x x
Pleasant Lake	155	45	District ^C	-	x	0	x	х	0	x	x x	×
Potters Lake	162	78	District ^c d	0	-	0	x	x	x	x 	x x	x
Silver Lake	85		d	-	x	x	-	x	x x	X 	x x	x
Wandawega Lake	119			-	x	х	×	x	×	х	, ×	*
ROCK RIVER												
Comus Lake	117		District ^c	0	-	x	x	x	x	٥	×	x
Cravath Lake	65		d	0	-	x	x	x	x	x	x	x
Delavan Lake	2,072	64	District ^c	0	-	0	٥	x	0	0	٥	, o
La Grange Lake	55			-	x	x	-	x	x	x	x	x
Lake Lorraine	133		Assne	-	x	x	x	x	x	x	x	×
Rice Lake	137	60	District ^C d	-	x	0	٥	x	x	x	0	
Tripp Lake	115			0	x	x	x	x	x	x	x	x x
Turtle Lake	140		Assne	-	x	x	x	x	x	0	x o	x x
Whitewater Lake	640	61	District ^C	-	x	0	٥	x	0	х		x
WASHINGTON COUNTY												
MILWAUKEE RIVER			d								l	
Barton Pond	67		District ^C	0	-	x	-	×	x	0	x x	x x
Big Cedar Lake	932	59 50	District ^c Assn ^e	-	x 	0	0	x x	0	0	x x	x x
Green Lake Lake Twelve	71 53	50 45	Assn ^e Assn ^e	-	x x	o X	-	x x	×	0	x	×
Lake IweIve Little Cedar Lake	246	59	District ^C	-	x x	0	_	×	Ô	١	x	x
Little Cedar Lake Lucas Lake	78	43	District d	-	x x	x	x	x	×	0	x	x
Silver Lake	118	43 50	District ^C	-	_ x	× 0	0	x	, ,	0	x	x
Smith Lake	86	30 49	d	-	x	x	x	x	×	Ö	×	x
Wallace Lake	52	59	District ^C	0	- x	0	x	×	0	0	x	x
ROCK RIVER			5				1					
Bark Lake	65		District ^C	-	х	x	x	x	x	×	x	x 0
Druid Lake	124	47	District ^C Assn ^e	-	x	0	x	x	0	x	×	0
Friess Lake	119	59		-	x	0	-	X 	×	x	x	×
Lake Five Pike Lake	102 522	47 52	Assn ^e Assn ^e	-	x x	0	x -	x x	×	x x	x x	×
	277	3/ 1	ASSD	-	. Y			. X		1 X		

Table XVIII-10 (cont'd.)

COUNTY WATERSHED Lake	Area acres	TSI ^a	Form of Lake Organi- zation	Provide Public Sanitary Sewerage	Manage Onsite Sewage Disposal	Monitor Water Quality	Manage Aquatic Plants	Manage Fish/ In-lake Habitat	Manage Access and Recreation	Manage Watershed NPS	Public Infor- mation	Comprehen- sive Plan
WAUKESHA COUNTY												
FOX RIVER							1					
Big Muskego Lake	2,177	70	District ^C	0	_	0	-	0	0	0	0	0
Eagle Spring Lake	311	49	District ^C	x	x	0	٥	x	x	x	x	o
Lake Denoon	162	49	Assn ^e	0	_	0	x	x	x	x	x	x
Little Muskego Lake	506	62	District ^c	0	-	0	0	x	0	0	0	0
Lower Phantom Lake	433	43	District ^c	x	x	x	0	x	0	x	0	x
Pewaukee Lake	2,493	59	District ^c	0	-	О	0	x	x	0	0	0
Spring Lake	105	51	d	-	-	o	-	х	x	x	x	x
Upper Phantom Lake	107	44	District ^c	x	x	0	0	х	0	x	٥	x
ROCK RIVER												
Ashippun Lake	84	49	District ^C	-	x	0	×	x	0	x	x	0
Beaver Lake	316		Assne	x	x	x	x	x	0	0	×	x
Crooked Lake	58	51	d	-	x	х	x	x	x	x	x	x
Fowler Lake	78	43	District ^C	0	-	0	0	x	0	0	x	-
Golden Lake	250	42	Assn ^e	-	x	0	x	x	0	x	×	x
Hunters Lake	65		Assn ^e	-	x	x	x	x	x	x	x	x
Lac La Belle	1,117	54	District ^C	0	-	0	0	x	0	0	0	0
Lake Reesus	237	50	District ^C	-	x	0	0	x	0	0	×	0
Lower Genesee Lake	66	41	Assn ^e	-	x	0	x	x	x	x	x	x
Lower Nashotah Lake	90	51	Assn ^e	x	x	x	x	x	x	x	×	x
Lower Nemahbin Lake	271	54	Assn ^e	x	x	0	x	x	x	x	×	x
Middle Genesee Lake	102		District ^C	-	x	0	×	x	0	x	x	×
Moose Lake	81		Assn ^e	×	x	x	x	x	×	٥	x	x
Nagawicka Lake	957	60	Assn ^e	0	-	0	٥	x	x	x	×	x
North Lake	437	54	District ^C	x	x	0	٥	x	x	0	х	0
Oconomowoc Lake	767	44	d	x	x	0	0	x	x	0	х	0
Okauchee Lake	1,187	58	District ^c	x	x	0	0	x	0	0	x	0
Pine Lake	703		Assnd	x	x	x	x	x	0	0	x	×
Pretty Lake	64	42	Districtc	-	x	0	x	×	x	x	x	٥
School Section Lake	125	53	District ^C	-	x	0	0	x	x	x	х	0
Silver Lake	222	43	Assn ^e	x	x	0	×	x	×	0	x	0
Upper Nashotah Lake	133	45		x	x	x	x	×	x	x	x	x
Upper Nemahbin Lake	283	45	Districtc	×	x	0	x	x	0	x	x	0
Waterville Pond	68		d	-	x	x	x	x	x	x	х	x
i	1	i	l	1	S .	l	1	ı	t	I		

a Carlson Trophic State Index (TSI) classification based on water chemistry data collected between 1981 and 1994.

Footnotes continue.

b The East Lake Flowage is totally contained within the Bong State Recreational Area administered by the Wisconsin Department of Natural Resources.

C An inland lake protection and rehabilitation district, sanitary district or utility district is known to exist. These organizations may be eligible for State financial assistance in the preparation and implementation of lake management plans under Chapters NR 119 and NR 191 of the Wisconsin Administrative Code.

Table XVIII-10 (cont'd.)

- d No known lake organization exists. It is recommended that some type of local lake management organization be formed around each of the major lakes in the Region. These organizations may be eligible for State financial assistance in the preparation and implementation of lake management plans under Chapters NR 119 and NR 191 of the Wisconsin Administrative Code. Management actions may also be taken by the responsible local unit of government. Recognized lake management organizations include: cities, villages, towns, public inland lake protection and rehabilitation districts, and qualified lake associations, as well as sanitary districts and tribes under certain grant programs.
- e A lake association, property owner's association, or similar organization is known to exist. Qualified lake associations, which are incorporated under Chapter 181 of the Wisconsin Statutes--and which meet other specified criteria--may be eligible for State financial assistance in the preparation and implementation of lake management plans under Chapters NR 119 and NR 191 of the Wisconsin Administrative Code.
- f A Section 66.30, Stats., intergovernmental agreement exists between riparian municipalities and has created the Geneva Lake Environmental Agency to oversee planning and research into the water quality of Geneva Lake.
- 8 Lauderdale Lake incorporates Green Lake, Middle Lake, and Mill Lake.

KEY:

- o = Ongoing water quality monitoring, planning program or management activity.
- x Water quality monitoring recommended; development and implementation of detailed plan element recommended.
- = No action necessary at this time; detailed plan element completed -- implement, update and refine as necessary.

 $\overset{
ightharpoonup}{\wp}$ Source: Wisconsin Department of Natural Resources and SEWRPC.

by the Regional Planning Commission and the University of Wisconsin-Extension, Wisconsin Geologic and Natural History Survey.

The purpose of the groundwater management plan element is to complete a comprehensive groundwater resource data inventory and analysis, including a series of groundwater resource maps of the Region; to complete a groundwater pollution source inventory and supporting mapping; to development groundwater protection and management recommendations for the Region; and to document the inventory, analysis, and recommendations in a separate report expected to be completed in 1997. The planning program is intended to form the basis for a groundwater management element of the regional water quality management plan. In addition, the planning program will provide, on a regional basis, valuable hydrogeologic information for use in parallel and subsequent groundwater planning programs, such as well head protection planning.

A more detailed description and status of the work to be conducted and a schedule for its completed is set forth in Chapter XVI.

DESIGNATED MANAGEMENT AGENCIES

While the recommended plan described above is designed to achieve the water use objectives and the supporting water quality standards, the plan is not complete in a practical sense until the steps required to implement the plan—that is, to convert the plan into action policies and programs—are specified. In addition, Federal and State regulations require that specific designations be made of the water quality management agencies required to implement the plan and that the plan implementation responsibilities of such agencies be identified. Accordingly, the plan includes recommendations for management agency designations and sets forth the various actions that must be taken by these agencies in order for the recommended plan to be fully carried out by the plan design year 2010. The plan also includes a series of proposed implementation schedules, with particular regard to the point source pollution abatement element of the recommended plan, including proposed dates for sewage treatment plant upgrading and expansion.

In total, it is proposed that 228 management agencies be designated for plan implementation purposes as set forth in Chapter XVII. All but 44 of these agencies currently exist. The 44 new agencies would be sanitary, utility, and/or lake protection and rehabilitation districts required to carry out a variety of plan implementation responsibilities in direct drainage areas to lakes or, in a few instances, to isolated enclaves of urban development within unincorporated towns. A total of 139 management agencies are proposed to be designated for point source pollution abatement purposes, while 194 management agencies are proposed to be designated for nonpoint source pollution abatement purposes, and 124 management agencies for lake management purposes. These designated management agencies are set forth in Table XVIII-11.

The plan implementation program includes the establishment of a continuing areawide water quality management planning effort. As the designated Section 208 water quality management planning agency, the Commission would bear primary responsibility for the conduct of that effort under a program conducted cooperatively with the Wisconsin Department of Natural Resources. The plan recommends that, since such areawide water quality management planning must be carried on throughout the entire State of Wisconsin, funding for such continuing efforts be

Table XVIII-11

SUMMARY OF LOCAL GOVERNMENTAL MANAGEMENT AGENCY DESIGNATIONS FOR IMPLEMENTATION OF THE RECOMMENDED AREAWIDE WATER QUALITY MANAGEMENT PLAN FOR THE REGION

	Plan Implementation Responsibilities			
Designated Management Agency	Point Source Pollution Abatement	Urban Nonpoint Source Pollution Abatement	Rural Nonpoint Source Pollution Abatement	Lake Management
KENOSHA COUNTY				
Kenosha County		x	х	
City of Kenosha	х	х		
Village of Paddock Lake	х	X		
Paddock Lake Inland Lake Protection and Rehabilitation		l x		
District		Î		X
Sewer Utility District No. 1	x			
Sewer Utility District D	X			
Sewer Utility District F	Х			
Sanitary District No. 73-1	Х			
New DistrictUnnamed Quarry Lake	 X	x	Х	Х
Village of Silver Lake	X	l x		
Twin Lakes Protection and Rehabilitation District		x		x
Town of Brighton		1	1	
Wisconsin Department of Natural Resources				
(East Lake Flowage)			х	х
Town of Bristol	v			
Utility District No. 1	X X	X		
Utility District No. 4	x			
George Lake Protection and Rehabilitation District .		x	x	l x
New DistrictBennett/Shangrila Lakes		х	х	x
Town of Randall			•	
The Powers Lake Management District		X	Х	Х
New DistrictPowers-Benedict-Tombeau Lakes	X	 x	 X	
Town of Salem		1 ^	^	X
Sewer Utility District No. 1	x	x	x	
Sewer Utility District No. 2	x	х	x	
Camp and Center Lakes Rehabilitation District		X		Х
Hooker Lake Management District		X		X
Voltz Lake Management District		X X		Х
Sanitary District No. 1	x			
Utility District No. 1	X			
Town of Wheatland				
Lilly Lake Protection and Rehabilitation District		X	X	х
New DistrictDyer Lake			Х	Х
MILWAUKEE COUNTY				
Milwaukee County		x	x	
Milwaukee Metropolitan Sewerage District	x			
City of Cudahy	X	X		
City of Franklin	X	X		
City of Glendale	X X	X X		
City of Milwaukee	x	x		
City of Oak Creek	x	x		
City of St. Francis	x	x		
City of South Milwaukee	X	X		
City of Wauwatosa	X X	X		
City of West Allis	X X	X X		
Village of Brown Deer	x	x		
Village of Fox Point	X	x		
Village of Greendale	X	x		
Village of Hales Corners	X	X		
Village of River Hills	X X	X		
Village of Shorewood	X X	X X		
Village of Whitefish Bay	x	X		
775	L	<u> </u>		

	Plan	Implementation	Responsibili	lties
Designated Management Agency	Point Source Pollution Abatement	Urban Nonpoint Source Pollution Abatement	Rural Nonpoint Source Pollution Abatement	Lake Management
OZAUKEE COUNTY				
Ozaukee County		x	x	
City of Cedarburg	х	x		
City of Mequon	х	х		
New DistrictLac du Cours		X	Х	X
City of Port Washington	X X	X X		
Village of Belgium	Ŷ	x		
New DistrictSpring Lake		x	x	х
Village of Grafton	х	x		
Village of Saukville	Х	Х		
Village of Thiensville	Х	Х		
Town of Belgium				
New DistrictLake Church	х			
Waubeka Area Sanitary District	x			
Town of Saukville				
New DistrictMud Lake			х	Х
RACINE COUNTY				
Wisconsin Department of Health and Social Services	х			
Racine County		X	х	X
Western Racine County Sewerage District	Х			
City of Burlington	X	X		
City of Racine	X	X		
Village of Elmwood Park	X X	X X		
Village of Rochester	x	x		
Village of Sturtevant	x	x		
Village of Union Grove	Х	X		
Village of Waterford	х	X		
Village of Wind Point		X		
Town of Burlington				X
Browns Lake Sanitary District	X X	X X	X X	X X
New DistrictLong Lake		X	x	x
New DistrictEcho Lake		x	x	
Town of Caledonia		X		
Sewer Utility District No. 1	Х			
Caddy Vista Sanitary District	Х			
Crestview Sanitary District	X			
North Park Sanitary District	X			,
Town of Dover Eagle Lake Sewer Utility District	х	х	х	X
Town of Mt. Pleasant	A	X		
Sewer Utility District No. 1	x			
Town of Norway				
Sanitary District No. 1	Х	X	х	
Wind Lake Management District		Х		х
Town of Rochester	v	v		
Sewer Utility District No. 1	Х	Х		
Sanitary District No. 1	х	х	х	
New DistrictBuena Lake		X	x	х
Town of Yorkville				
Sanitary District No. 1	Х	Х		

	Plan	Plan Implementation Responsibilities			
Designated Management Agency	Point Source Pollution Abatement	Urban Nonpoint Source Pollution Abatement	Rural Nonpoint Source Pollution Abatement	Lake Management	
TIAT I COMMIT COLINITY					
WALWORTH COUNTY Walworth County	x	x	l x		
Walworth County Metropolitan Sewerage District	x				
Fontana-Walworth Water Pollution Control Commission	Х				
Geneva Lake Environmental Agency		х	x	х	
City of Delavan	Х	x			
City of Elkhorn	X	X			
City of Lake Geneva	X	X			
City of Whitewater	X 	X			
New DistrictTripp Lake	X	X X	X 	X	
Village of East Troy	l x	Î			
Village of Fontana	x	x			
Village of Genoa City	x	x			
Village of Sharon	x	x			
Village of Walworth	Х	Х			
Village of Williams Bay	Х	X			
Town of Bloomfield					
Pell Lake Sanitary District	X	Х	Х	Х	
Delavan Lake Sanitary District	x	х	v	v	
Geneva National Sanitary District	Ŷ	^	X	X 	
Town of East Troy	^				
Sanitary District No. 1		х	x		
Sanitary District No. 2	х	Х	X		
Beulah Lake Sanitary District		Х	х	х	
Pattens Lake Protection and Rehabilitation District .		Х	Х	Х	
New DistrictArmy Lake	Х	Х	Х	X	
Town of Geneva New DistrictComo Lake	.,	.,,			
Town of La Grange	Х	Х	X	Х.	
Lauderdale Lakes Management District		х	х	х	
Pleasant Lake Protection and Rehabilitation District		x	x	x	
New DistrictLaGrange Lake		X	X	x	
Town of Linn					
Sanitary District	Х	X	X		
Town of Lyons					
Sanitary District No. 2	Х				
Town of Richmond New DistrictLake Loraine	_	х	Х		
New DistrictTurtle Lake		X	X	X X	
Town of Spring Prairie	_	^	^	_ ^	
Honey Lake Protection and Rehabilitation District		x	х	x	
Town of Sugar Creek					
New DistrictNorth Lake		x	х	х	
New DistrictSilver Lake		Х	х	х	
New DistrictWandawega Lake		х	Х	х	
Town of Troy	ν,	**			
New DistrictBooth Lake	X 	X X	X	X	
New DistrictPeters Lake		X	X X	X X	
Town of Walworth		<i>A</i> .	^	^	
Utility District No. 1	х				
Town of Whitewater	_	·			
Whitewater-Rice Lakes Management District		x	x	x	
New DistrictCravath Lake		Х	х	x	

	Plan	Implementation	Responsibil	lties
Designated Management Agency	Point Source Pollution Abatement	Urban Nonpoint Source Pollution Abatement	Rural Nonpoint Source Pollution Abatement	Lake Management
LIA GUITNOMONI, GOLINOMI				
WASHINGTON COUNTY Washington County		x	x	
City of Hartford	x	x		
City of West Bend	Х	X		
New DistrictBarton Pond		x	x	х
Village of Germantown	. х	X		
Village of Jackson	X	X		
Village of Kewaskum	X	X		
Village of Newburg	X X	X X		
Village of Slinger	^	^		
Allenton Sanitary District No. 1	l x	l x		
Town of Barton				
New DistrictSmith Lake		х	х	x
Town of Erin				
Druid Lake Protection and Rehabilitation District		х	х	х
Town of Farmington				
New DistrictGreen Lake		X	X	X
New DistrictLake Twelve		Х	х	X
Pike Lake Sanitary District	x			
New DistrictPike Lake		x	x	x
Town of Richfield				
Richfield Sanitary District		x	х	
New DistrictBark Lake		X	х	x
New DistrictFreiss Lake		X	х	х
New DistrictLake Five		Х	х	Х
Town of Trenton		.,	.,	
Wallace Lake Sanitary District	X	x	X	Х
Big Cedar Lake Sanitary District		x	x	
Big Cedar Lake District		x	x	x
Little Cedar Lake District		Х	х	х
Silver Lake District	х	х	X	Х
New DistrictLucas Lake		Х	X	Х
WAUKESHA COUNTY				
Waukesha County	х	х	x	
Delafield-Hartland Water Pollution Control Commission .	X			
City of Brookfield	X	х		
City of Delafield	x	X		
City of Muskego	Х	х		
Big Muskego Lake-Bass Bay Protection and				
Rehabilitation District		Х	х	Х
Little Muskego Lake Protection and Rehabilitation District		x		x
City of New Berlin	x	X		
City of Oconomowoc	x	x		
Fowler Lake Management District		X		х
City of Waukesha	х	X		
Village of Big Bend		х		
Village of Butler	X	X		
Village of Chenequa	X	X		
Village of Dousman	Х	X		-~
Village of Eagle	 X	X X		
Village of Hartland	X	x		
		-		L

Table XVIII-11 (cont'd)

	Plan	Implementation	Responsibili	ties
Designated Management Agency	Point Source Pollution Abatement	Urban Nonpoint Source Pollution Abatement	Rural Nonpoint Source Pollution Abatement	Lake Management
WAUKESHA COUNTY (continued)				
Village of Lac La Belle	x	х		
Village of Lannon	х	X		
Village of Menomonee Falls	х	X		
Village of Merton		X		
Village of Mukwonago	X	Х		
Village of Nashotah	х	Х		
Village of North Prairie	Х	X		~~
Village of Oconomowoc Lake	Х	X		
Village of Pewaukee	х	Х		
Village of Sussex	Х	X		
Village of Wales	Х	X		
Town of Brookfield	Х	X		
Town of Delafield		X		
Town of Eagle				
Eagle Spring Lake Rehabilitation & Protection				
District	Х	X	X	X
Town of Genesee		X		
Town of Lisbon		X		
Sanitary District No. 1	Х			
Town of Merton				
North Lake Management District		X	Х	Х
New DistrictNorth Lake	X			
New District-Beaver Lake	X	X	X	Х
New DistrictMoose Lake	X	X	X	X
Lake Keesus Management District		Х	х	Х
Phantom Lakes Protection and Rehabilitation District		х	х	v
New DistrictSpring Lake		X	x	X X
Town of Oconomowoc		^	^	Α
Mary Lane Sanitary District	х			
Blackhawk Drive Sanitary District	x			
Lac La Belle Management District		X	x	X
New DistrictOconomowoc Lake		x	x	x
Okauchee Lake Management District		X	x	x
New DistrictOkauchee Lake	х			
Ashippun Lake Protection and Rehabilitation District		x	х	x
Town of Ottawa	į į		-	
Pretty Lake Protection and Rehabilitation District .		Х	Х	X
School Section Lake Protection and Rehabilitation				
District		x	X	x
Town of Pewaukee		X		Х
Sanitary District No. 3	х			
Pewaukee Lake Sanitary District	х	X		X
Town of Summit		X		
Middle Genesee Lake Management District		X	X	х
Upper Nemahbin Lake Management District		X		Х
New DistrictUpper Nashotah Lake		X	Х	X
New DistrictCrooked Lake		X	X	X
New DistrictNashotah-Nemahbin Lakes	Х			
New DistrictSilver Lake	х			
Town of Vernon		X		
Town of Waukesha		X		

Source: SEWRPC.

provided directly by the State of Wisconsin through the Department of Natural Resources.

MAJOR WATER QUALITY MANAGEMENT ISSUES REMAINING TO BE ADDRESSED

Several major issues relating to water quality management policies and programs were raised and highlighted during the conduct of the areawide water quality management plan updating program for Southeastern Wisconsin. relateto the need for further subregional sewer service area sewerage system plans; the evaluation of water use objectives in specific stream reaches; and the evaluation of specific water quality trends. These issues could not be specifically addressed in the updating process since the data collection and analyses required could only be accomplished under a subsequent subregional planning effort; because of the need for the collection of extensive water quality and biological monitoring data; and because local intergovernmental agreements on the issue had not yet been achieved to allow for incorporation of an amendment into the regional plan to address the issues. It is recommended that these issues be addressed on a case-by-case basis under the continuing water quality management planning program for Southeastern Wisconsin. Amendments to the plan relating to these issues would then be developed, as appropriate, following the public hearing process. These issues are summarized below.

Sewer Service Areas and Sewerage System Evaluations

In the greater Kenosha area, the implementation of the findings and recommendations set forth in the system level plan documented in the report prepared by Ruekert & Mielke, Inc., entitled A Coordinated Sanitary Sewer and Water Supply System Plan for the Greater Kenosha Area, October 1991, remains to be resolved. The recommendations of that plan include revisions to the planned sewer service areas in the greater Kenosha area and provisions to abandon the two existing sewage treatment plants operated by the Village of Pleasant Prairie, with the areas served by these plants being connected to the City of Kenosha sewerage system for treatment purposes, as described in Chapter IV. As of December 1994, the intergovernmental agreements needed to proceed with an amendment of the regional water quality management plan to incorporate the findings of the 1991 system plan had not been forthcoming. An amendment to the plan continues to be needed in this regard.

In the greater Racine area, the implementation of the findings and recommendations set forth in the system level plan documented in the report prepared by Alvord, Burdick, and Howson, entitled A Coordinated Sanitary Sewerage and Water Supply System Plan, Greater Racine Area, September 1992, remains to be resolved. The recommendations of that plan include revisions to the planned sewer service areas in the greater Racine area and provisions to abandon the existing sewage treatment plant operated by the Town of Yorkville Utility District No. 1, with the area served by this plant being connected to the City of Racine sewerage system for treatment purposes, as described in Chapter XII. As of December 1994, the intergovernmental agreements needed to proceed with an amendment of the regional water quality management plan to incorporate the findings of the 1992 system plan had not been forthcoming. An amendment to the plan continues to be needed in this regard.

In the Fox River watershed, based upon local facility planning, land use decisions, and identified onsite sewerage system problems, there is a need to

conduct subsequent subregional sewerage system evaluations for five specific areas: the Village of North Prairie and environs in Waukesha County; 17 the Benedict, Tombeau, and Powers Lakes area in Kenosha County; 18 the Pell Lake area in Walworth County; 19 the Village of Big Bend and Town of Vernon areas in Waukesha County; and the Town of Wheatland-Silver Lake area in Kenosha County. 20 Subregional studies potentially leading to formal amendments to the regional water quality management plan are recommended to be conducted as budgeting and local support becomes available. The subregional planning program for the Powers-Benedict-Tombeau Lakes area and the Pell Lake area has been completed and an amendment 21 has been incorporated into the plan to reflect the findings of that planning program, following public information meetings and a public hearing on the matter. The results of that amendment are reflected in the plan update as summarized in this chapter. In addition, an amendment to the regional water quality management plan for the Bohner Lake area was completed in June 1994.22 That amendment serves to add the urban development around Bohner Lake to the planned sewer service area of the City of Burlington based upon local facility planning studies.

In the Rock River watershed, the Regional Planning Commission has, at the request of and in cooperation with local units of government in northwestern Waukesha County, prepared a <u>Prospectus for the Preparation of A Sanitary Sewerage System Plan for the Northwestern Waukesha County Area</u>. The prospectus documents the need for conducting a system level sewerage system planning program for the northwestern Waukesha County area. In addition, the prospectus sets forth the planning program required to prepare a coordinated sanitary sewerage system plan for the area concerned. The plan is intended to address the intergovernmental, administrative, legal, and fiscal problems inherent in the development of the planned sewerage system, or systems, as well as to identify the configuration, capacity, and level of treatment to be provided by the planned sewerage system, or systems. Work is expected to be initiated on this subregional system during the first half of 1995.

Evaluation of Water Use Objectives

Based upon the inventory and analyses conducted, there are a number of stream reaches within the Region where it is recommended that the Wisconsin Department of Natural Resources consider changing the current adopted State stream classifi-

¹⁷Ruekert & Mielke, Inc., <u>Village of North Prairie Wastewater Facility Plan</u>, Phase One, July 1986; Phase Two, December 1989.

¹⁸Crispell-Snyder, Inc., <u>Powers, Benedict, and Tombeau Lakes Facility Plan</u>, May 1992.

¹⁹Baxter & Woodman, Inc., <u>Pell Lake Sanitary Facilities Planning Report</u>, June 1993.

²⁰Ruekert & Mielke, Inc., <u>Town of Wheatland Facility Plan</u>, September 1992.

²¹SEWRPC Amendment, <u>Pell Lake Area and Powers-Benedict-Tombeau Lakes Area</u>, <u>Kenosha and Walworth Counties</u>, <u>December 1994</u>.

²²Crispell-Snyder, Inc., <u>Bohner Lake Facilities Plan</u>, May 1992.

cations. In some cases, the recommendation for upgrading has been to either a warmwater sport fish community or warmwater forage fish community. In these cases, detailed field inventories of the physical characteristics of the stream channel are required to make the distinction. The stream reaches for which it is recommended that a reevaluation of the current adopted stream classifications be reconsidered are listed in Table XVIII-12.

Evaluation of Specific Water Quality Trends

Increases in levels of chloride over the period of 1976 to 1993 were noted in selected stream reaches within the Region, including the lower reaches of the Fox River and the free-flowing portion of the Milwaukee River. These apparent increases in chloride levels may potentially be a result of increased urban development within the Region. The construction of additional streets and highways associated with increased urban development has the potential to contribute a greater amount of runoff from winter road maintenance to surface waters. While none of the chloride levels observed at the long-term monitoring stations violated the standard as set forth in Chapter II, it is recommended that chloride levels continue to be monitored on a long-term continual basis to assess the extent of further increases.

SUMMARY AND CONCLUSION

The areawide water quality management plan provides another important element of the evolving comprehensive plan for the physical development of the seven-county Southeastern Wisconsin Region, and thereby provides a sound basis for the social and economic development of the Region. Together with the adopted regional land use and regional park and open space plans, the areawide water quality management plan provides the Region and its public officials and citizens with a sound coordinated guide to land use development and pollution abatement.

Of the 1,223 stream miles assessed under this planning effort, 148 miles, or 12 percent, are estimated to currently be fully meeting the recommended water use objectives. The majority of the streams studied--773 miles, or 63 percent--are estimated to be partially meeting the recommended water use objectives. About 50 stream miles, or 4 percent, are estimated to be not meeting the water use objectives. For 252 stream miles, or 21 percent of the total stream miles, no data were available to assess the potential level of achievement of the water use objectives. For those streams which are not estimated to be meeting the recommended water use objectives, it was generally found that the phosphorus and fecal coliform levels exceeded the water quality standards. In some limited reaches, it was found that dissolved oxygen, un-ionized ammonia nitrogen, and metals levels also did not meet the standards some of the time. Chloride levels were generally found to meet the standards but were noted to be increasing over time in the lower reaches of some of the major streams.

Adequate water quality and biological condition data to evaluate long-term trends in water quality conditions were available for about 105 miles, or 9 percent of the stream miles in the Region. The available data indicate that water quality conditions have improved for selected stream reaches in the Region, totaling 60 stream miles, or about 57 percent of those streams for which data were available. The data also indicate that water quality conditions have deteriorated in short reaches, totaling about four miles, or 4 percent of the stream miles for which data were available. For 41 miles of stream, or 39 percent of the stream miles

Table XVIII-12

STREAM REACHES FOR WHICH REVISIONS TO THE WISCONSIN DEPARTMENT OF NATURAL RESOURCES WATER USE OBJECTIVES ARE RECOMMENDED TO BE CONSIDERED

	I			7
Watershed	Stream Reach	Wisconsin Department of Natural Resources Water Use Objective	SEWRPC-Recommended Water Use Objective	Rationale for Change Recommended by SEWRPC
Des Plaines River	Salem Branch	Limited Forage Fish Community	Warmwater Sport Fish or Warmwater Forage Fish Community	Town of Salem Utility District No. 1 sewage treatment plant abandoned
	Pleasant Prairie tributary	Limited Forage Fish Community	Warmwater Forage Fish Community	Upgrading or abandonment of the Village of Pleasant Prairie Sewer Utility District 'D' sewage treatment plant is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
Fox River	Eagle Creek d/s CTH J	Limited Forage Fish Community	Warmwater Sport Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
	Eagle Creek u/s CTH J	Limited Aquatic Life	Warmwater Sport Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
	Deer Creek	Limited Aquatic Life	Warmwater Sport Fish Community	Stream appraisals and surveys support the assignment of a higher water use objective
	Poplar Creek d/s C&NW Railroad	Limited Forage Fish Community	Warmwater Sport Fish Community	Stream appraisals and surveys support the assignment of a higher water use objective
	Poplar Creek u/s C&NW Railroad	Limited Aquatic Life	Warmwater Sport Fish Community	Stream appraisals and surveys support the assignment of a higher water use objective
Rock River	Sharon Creek	Limited Forage Fish Community	Warmwater Forage Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
	Darien Creek	Limited Forage Fish Community	Warmwater Forage Fish Community	Abandonment of the Village of Darien sewage treatment plant is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
	Rubicon River d/s tributary confluence in NE % Section 13	Limited Forage Fish Community	Rubicon River d/s Hilldale Road: Warmwater Sport Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
	Rubicon River u/s tributary confluence in NE % Section 13	Limited Aquatic Life	Rubicon River u/s Hilldale Road: Warmwater Forage Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective

Table XVIII-12 (cont'd)

Watershed	Stream Reach	Wisconsin Department of Natural Resources Water Use Objective	SEWRPC-Recommended Water Use Objective	Rationale for Change Recommended by SEWRPC
Root River	Hoods Creek	Limited Forage Fish Community	Warmwater Forage Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
	Tess Corners Creek	Limited Forage Fish Community	Warmwater Forage Fish Community	Implementation of the planned water pollution abatement measures is expected to result in a water quality sufficient to permit the assignment of a higher water use objective
Sheboygan River	East Branch Belgium Creek	Limited Aquatic Life	Warmwater Sport Fish Community	Upgrading of the Village of Belgium sewage treatment plant is expected to result in a water quality sufficient to permit the assignment of a higher water use objective

Source: Wisconsin Department of Natural Resources and SEWRPC.

for which data were available, the data indicate that no significant changes in water quality conditions have occurred. For 1,118 miles of stream, or 91 percent of the stream miles in the Region, the available data were not adequate to characterize the long-term trends in water quality conditions. It should benoted that adequate long-term data were available for only a relatively small percentage of the stream mileage within the Region. The streams for which data did exist included the main stem reaches of the major rivers which traverse the most highly urbanized areas of the Region and thus are the most susceptible to water pollution from urban sources, and for which a knowledge of current conditions and trends within the Region is most important.

Current available lake water quality data were compared with available lake monitoring data collected prior to 1981 to determine any potential changes in lake water quality over time. Comparative data were available for 44 of the 101 major lakes in the Region. The data indicate that 10 of the 44 major lakes for which comparative data were available exhibited an improvement in lake water quality since the initial plan. For 34 lakes where comparative water chemistry data are available, water quality conditions appeared to be unchanged. Comparative water quality data was not available for the remaining 57 major lakes in the Region.

Available current water quality indicate that about 24, or about 35 percent, of the 69 lakes for which data were available have an estimated water quality which indicates that the recommended water use objectives are likely to be met. The available data indicate that 45 lakes, or 65 percent of the lakes for which data were available, do not fully meet the recommended water use objectives. No data were available for 32 of the major lakes in the Region.

The water quality management analyses conducted by the Commission under the plan update have indicated the recommendations for control at the major point sources of pollution in the Region developed in the initial plan have been largely implemented. However, only limited implementation has been achieved with regard to the nonpoint source pollution recommendations included in the initial plan. Significant additional effort will have to be mounted to abate pollution from nonpoint sources in both rural and urban areas. Such pollution control efforts are likely to be more difficult to bring about than point source pollution control measures, and will require an enlightened public for implementation. In addition, in order to assess water quality conditions in the Region and to measure the degree of improvement in those conditions, and in order to provide a sound basis to refine the recommendations contained herein in the future, it will be necessary to carry out a long-term water quality and biological monitoring program throughout the Region.

The updated water quality management plan includes definitive recommendations for land use development; for the establishment of sewer service areas; for the configuration and sizing of major trunk sewers; for the number and location of sewage treatment plants; for the abatement of pollution from sanitary sewer flow relief devices; and for reduction levels in nonpoint source pollutants from both urban and rural land. Within the context of the overall regional program, the updated recommended regional water quality management plan should meet all applicable Federal and State planning requirements and thereby should be able to continue to serve as the official regional water quality management plan of the Region. As such, the plan should serve as a sound basis for the approval of

waste discharge permits and State and Federal grants-in-aid. It is recognized that the plan recommendations will need to be further refined and detailed through preparation at the local governmental level of specific facilities and practices plans. In this respect, the plan should serve as a sound point of departure for the necessary local studies. Most importantly, implementation of the plan will contribute toward enhancing the overall quality of the environment in the Region and thereby contribute toward making the Region a safer, more healthful, and more attractive area in which to live and work.

APPENDICES

		•
		•
		1
		-
		3
		•
		•
		•
		-
		•

Appendix A

NONPOINT SOURCE POLLUTION CONTROL, STREAM CHANNEL REHABILITATION AND LAKE REHABILITATION MEASURES--REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE AND STATUS REPORT

NONPOINT SOURCE POLLUTION CONTROL MEASURES

Nonpoint, or diffuse, sources of water pollution include urban sources such as runoff from residential, commercial, industrial, transportation, and recreational land uses; construction activities; and onsite sewage disposal systems and rural sources such as runoff from cropland, pasture, and woodland, atmospheric contributions, and livestock wastes. These sources of pollutants discharge to surface waters by direct overland drainage, by drainage through natural channels, by drainage through engineered stormwater drainage systems, and by deep percolation into the ground and subsequent return flow to the surface waters.

A summary of the methods and estimated effectiveness of nonpoint source water pollution control measures is set forth in Table A-1. These measures have been grouped for planning purposes into two categories: basic practices and additional. Application of the basic practices will have a variable effectiveness in terms of control level of pollution control depending upon the subwatershed area characteristics and the pollutant considered. The additional category of nonpoint source control measures has been subdivided into four subcategories based upon the relative effectiveness and costs of the measures. subcategory of practices can be expected to generally result in an about 25 percent reduction in pollutant runoff. The second and third subcategory of practices, when applied in combination with the minimum and additional practices, can be expected to generally result in up to a to and 75 percent reduction in pollutant runoff, respectively. The fourth subcategory would consist of all of the preceding practices, plus those additional practices that would be required to achieve a reduction in ultimate runoff of more than 75 percent.

Table A-1 sets forth the diffuse source control measures applicable to general land uses and diffuse source activities, along with the estimated maximum level of pollution reduction which may be expected upon implementation of the applicable measures. The Table also includes information pertaining to the costs of developing the alternatives set forth in this chapter. These various individual nonpoint source control practices are summarized by group in Table A-2.

Costs are presented in more detail in the following SEWRPC Technical Reports: No. 18, State of the Art of Water Pollution Control in Southeastern Wisconsin, Volume three: Urban Storm Water Runoff, July 1977; No. 18, State of the Art of Water Pollution Control in Southeastern Wisconsin, Volume four: Rural Storm Water Runoff, December 1976; and No. 31, Costs of Urban Nonpoint Source Water Pollution Control Measures, June 1991.

Table A-1

GENERALIZED SUMMARY OF METHODS AND EFFECTIVENESS OF DIFFUSE SOURCE WATER POLLUTION CONTROL MEASURES

			Approximate Percent	
Applicable Land Use	Control Measures ^a	Summary Description	Reduction of Released Pollutants	Assumptions for Costing Purposes
Urban	Litter and pet waste control ordinance	Prevent the accumulation of litter and pet waste on streets and residential, commercial, industrial, and recreational areas	2-5	Ordinance administration and enforcement costs are expected to be funded by violation penalties and related revenues
	Improved timing and efficiency of street sweeping, leaf collection and disposal, and catch basin cleaning	Improve the scheduling of these public works ac- tivities, modify work habits of personnel, and select equipment to maximize the effectiveness of these existing pollution control measures	2-5	No significant increase in current expenditures is expected
	Management of onsite sewage treatment systems	Regulate septic system installation, monitoring, location, and performance; replace failing systems with new septic systems or alternative treatment facilities; develop alternatives to septic systems; eliminate direct connections to drain tiles or ditches; dispose of septage at sewage treatment facility	10-30	Replace one-half of estimated existing failing septic systems with properly located and installed systems and replace one-half with alternative systems, such as mound systems or holding tanks; all existing and proposed onsite sewage treatment systems are assumed to be properly maintained; assume system life of 25 years. The estimated cost of a septic tank system is \$5,000-\$6,000 and the cost of an alternative system is \$10,000. The annual maintenance cost of a disposal system is \$250. An in-ground pressure system is estimated to cost \$6,000-\$10,000 with an annual operation and maintenance cost of \$250. A holding tank would cost \$5,500-\$6,500 with an annual operation and maintenance cost of \$1,800.
	Increased street sweeping	On the average, sweep all streets in urban areas an equivalent of once or twice a week with vacuum street sweepers; require parking restrictions to permit access to curb areas; sweep all streets at least eight months per year; sweep commercial and industrial areas with greater frequency than residential areas	30-50	Estimate curb miles based on land use, estimated street acreage, and Commission transportation planning standards; assume one street sweeper can sweep 2,000 curb miles per year; assume sweeper life of 10 years; assume residential areas swept once weekly, commercial and industrial areas swept twice weekly. The cost of a vacuum street sweeper is approximately \$120,000. The cost of the operation and maintenance of a sweeper is about \$25 per curb/mile swept.

	icable	Control Measures ^a	Summary Description	Approximate Percent Reduction of Released Pollutants ^b	Assumptions for Costing Purposes
Urban (con	tinued)	Increased leaf and clippings collection and disposal	Increase the frequency and efficiency of leaf collection procedures in fall; use vacuum cleaners to collect leaves; implement ordinances for leaves, clippings, and other organic debris to be mulched, composted, or bagged for pickup	2-5	Assume one equivalent mature tree per residence plus five trees per acre in recreational areas; 75 pounds of leaves per tree; 20 percent of leaves in urban areas not currently disposed of properly. The cost of the collection of leaves in a vacuum sweeper and disposal is estimated at \$180-\$200 per ton of leaves
		Increased catch basin cleaning	Increase frequency and efficiency of catch basin cleaning; clean at least twice per year using vacuum cleaners; catch basin installation in new urban development not recommended as a cost-effective practice for water quality improvement	2-5	Determine curb miles for street sweeping; vary percent of urban area served by catch basins by watershed from Commission inventory data; assume density of 10 catch basins per curb mile; clean each basin twice annually by vacuum cleaner. The cost of cleaning a catch basin is approximately \$10.
		Reduced use of deicing salt	Reduce use of deicing salt on streets; salt only intersections and problem areas; prevent excessive use of sand and other abrasives	Negligible for pollutants addressed in this plan but helpful for reducing chlorides and associated damage to vegetation	Increased costs, such as for slower transportation movement, are expected to be offset by benefits such as reduced automobile corrosion and damage to vegetation
		Improved street maintenance and refuse collection and disposal	Increase street maintenance and repairs; increase provision of trash receptacles in public areas; improve trash collection schedule; increase cleanup of parks and commercial centers	2-5	Increase current expenditures by approximately 15 percent
		Parking lot stormwater temporary storage and treatment measures	Construct gravel-filled trenches, sediment basins, or similar measures to store temporarily the runoff from parking lots, rooftops, and other large impervious areas; if treatment is necessary, use a physical-chemical treatment measure such as screens, dissolved air flotation, or a swirl concentrator	5-10	Design gravel-filled trenches for 24-hour, five year recurrence interval storm; apply to off-street parking acreages. For treatment-assume four-hour detention time. The capital cost of stormwater detention and treatment facilities is estimated at \$40,000-\$80,000 per acre of parking lot area, with an annual operation and maintenance cost of about \$200 per acre
		Onsite storage residential	Remove connections to sewer systems; construction onsite stormwater storage measures for subdivisions	5-10	Remove roof drains and other connections from sewer system wherever needed; use lawn aeration if applicable; apply dutch drain storage facilities to 15 percent of residences. The capital cost would approximate \$500 per house, with an annual maintenance cost of about \$25

Table A-1 (continued)

Applicable Land Use Urban (continued)	Control Measures ^a Stormwater infiltrationurban	Summary Description Construct gravel-filled trenches for areas of less than 10 acres or basins to collect and store temporarily stormwater runoff to reduce volume, provide groundwater recharge and augment low stream flows	Approximate Percent Reduction of Released Pollutants ^b 45-90	Assumptions for Costing Purposes Design gravel-filled trenches or basins to store the first 0.5 inch of runoff; provide at least a 25-foot grass buffer strip to reduce sediment loadings. The capital cost of a stormwater infiltration is estimated at \$12,000 for a six-foot deep, 10-foot wide trench, and at \$70,000 for a one-acre basin, with an annual maintenance cost of about \$10-\$350 for the trench, and of about \$2,500 for the basin
	Stormwater storage urban	Store stormwater runoff from urban land in surface storage basins or, where necessary, subsurface storage basins 10-35 Design all storage for a 1.5 inch of event, which corre approximately to a recurrence interval with a storage vent defined as a period precipitation with antecedent and subdry period of from hours; apply subsustorage tanks to indeveloped existing areas where suitablend for surface sunavailable; design storage basins for new urban land, exurban land not storage tanks to indeveloped existing areas where suitablend where adequate space is available storage tanks to indeveloped existing areas where suitablend where adequate space is available storage for a 1.5 inch of event, which corresponds to a recurrence interval with an annual operation of the event, which corresponds to a recurrence interval with a storage tanks to indeveloped existing areas where suitablend for surface sunavailable; design storage basins for new urban land, exurban land not storage for a 2.5 inch of event, which corresponds to a province interval with an annual operation of the event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event, which corresponds to a province interval with a storage for a 1.5 inch of event with a storage for a 1.5 inch of event with a storage for a 1.5 inch of event with a storage for a 1.5 inch of event with a storage for a 1.5 inch		Design all storage facilities for a 1.5 inch of runoff event, which corresponds approximately to a five-year recurrence interval event with a storm event being defined as a period of precipitation with a minimum antecedent and subsequent dry period of from 12 to 24 hours; apply subsurface storage tanks to intensively developed existing urban areas where suitable open land for surface storage is unavailable; design surface storage basins for proposed new urban land, existing urban land not storm sewered, and existing urban land where adequate open space is available at the storm sewer discharge site. The capital cost for stormwater storage would range from \$35,000 to \$110,000 per acre of basin, with an annual operation and maintenance cost of about \$40-\$60 per acre
	Stormwater treatment	Provide physical-chemical treatment which includes screens, microstrainers, dissolved air flotation, swirl concentrator, or high-rate filtration, and/or disinfection, which may include chlorination, high-rate disinfection, or ozonation to stormwater following storage	10-50	To be applied only in combination with stormwater storage facilities above; general cost estimates for microstrainer treatment and ozonation were used; same costs were applied to existing urban land and proposed new urban development. Stormwater treatment has an estimated capital cost of from \$900-\$7,000 per acre of tributary drainage area, with an average annual operation and maintenance cost of about \$35-\$100 per acre

Table A-1 (continued)

	T			
Applicable Land Use	Control Measures ^a	Summary Description	Approximate Percent Reduction of Released Pollutantsb	Assumptions for Costing Purposes
Rural	Conservation practices	Includes such practices as strip cropping, contour plowing, crop rotation, pasture management, critical area protection, grading and terracing, grassed waterways, diversions, wood for management, fertilization and pesticide management, and chisel tillage	Up to 50	Costs for Natural Resources Conservation Service (NRCS)- recommended practices are applied to agricultural and related rural land; the distribution and extent of the various practices were determined from an examination of 56 existing farm plan designs within the Region. The capital cost of conservation practices ranges from \$3,000-\$5,000 per acre of rural land, with an average annual operation and maintenance cost of from \$5- \$10 per rural acre
	Animal waste control system	Construct stream bank fencing and crossovers to prevent access of all livestock to waterways; construct a runoff control system or a manure storage facility, as needed, for major livestock operations; prevent improper applications of manure on frozen ground, near surface drainageways, and on steep slopes; incorporate manure into soil	50-75	Cost estimated per animal unit; animal waste storage (liquid and slurry tank for costing purposes) facilities are recommended for all major animal operations within 500 feet of surface water and located in areas identified as having relatively high potential for severe pollution problems. Runoff control systems recommended for all other major animal operations. It is recognized that dry manure stacking facilities are significantly less expensive than liquid and slurry storage tanks and may be adequate waste storage systems in many instances. The estimated capital cost and average operation and maintenance cost of a runoff control system is \$100 per animal unit and \$25 per animal unit, respectively. The capital cost of a liquid and slurry storage facility is about \$1,000 per animal unit, with an annual operation and maintenance cost of about \$75 per unit. An animal unit is the weight equivalent of a 1,000-pound cow

Table A-1 (continued)

A 11			Approximate Percent	
Applicable Land Use	Control Measures ^a	Summary Description	Reduction of Released Pollutants ^b	Assumptions for Costing Purposes
Rural (continued)	Base-of-slope detention storage	Store runoff from agricultural land to allow solids to settle out and reduce peak runoff rates. Berms could be constructed parallel to streams	50-75	Construct a low earthen berm at the base of agricultural fields, along the edge of a floodplain, wetland, or other sensitive area; design for 24-hour, 10-year recurrence interval storm; berm height about four feet. Apply where needed in addition to basic conservation practices; repair berm every 10 years and remove sediment and spread on land. The estimated capital cost of base-of-slope detention storage would be about \$500 per tributary acre, with an annual operation and maintenance cost of \$25 per acre.
	Bench terraces	Construct bench terraces, thereby reducing the need for many other conservation practices on sloping agricultural land	75-90	Apply to all appropriate agricultural lands for a maximum level of pollution control. Utilization of this practice would exclude installation of many basic conservation practices and base-of-slope detention storage. The capital cost of bench terraces is estimated at \$1,500 per acre, with an annual operation and maintenance cost of \$100 per acre
Urban and Rural	Public education programs	Conduct regional- and county- level public education programs to inform the public and provide technical information on the need for proper land management practices on private land, the recommendations of management programs, and the effects of implemented measures; develop local awareness programs for citizens and public works officials; develop local contact and education efforts	Intermediate	For first 10 years includes cost of one person, materials, and support for each 25,000 population. Thereafter, the same cost can be applied to for every 50,000 population. The cost of one person, materials, and support is estimated at \$55,000 per year
	Construction erosion control practices	Construct temporary sediment basins; install straw bale dikes; use fiber mats, mulching and seeding; install slope drains to stabilize steep slopes; construct temporary diversion swales or berms upslope from the project	20-40	Assume acreage under construction is the average annual incremental increase in urban acreage; apply costs for a typical erosion control program for a construction site. The estimated capital cost and operation and maintenance cost for construction erosion control is \$250-\$5,500 and \$250-\$1,500 per acre under construction, respectively.

Table A-1 (continued)

Applicable Land Use	Control Measures ^a	Summary Description	Approximate Percent Reduction of Released Pollutants ^b	Assumptions for Costing Purposes
Urban and Rural (continued)	Materials storage and runoff control facilities	Enclose industrial storage sites with diversions; divert runoff to acceptable outlet or storage facility; enclose salt piles and other large storage sites in crib and dome structures	5-10	Assume 40 percent of industrial areas are used for storage and to be enclosed by diversions; assume existing salt storage piles enclosed by cribs and dome structures. The estimated capital cost of industrial runoff control is \$2,500 per acre of industrial land. Material storage control costs are estimated at \$75 per ton of material
	Stream protection measures	Provide vegetative buffer zones along streams to filter direct pollutant runoff to the streams; construct stream bank protection measures, such as rock riprap, brush mats, tree revetment, jacks, and jetted willow poles where needed	5-10	Apply a 50-foot-wide vegetative buffer zone on each side of 15 percent of the stream length; apply stream bank protection measures to 5 percent of the stream length. Vegetative buffer zones are estimated to cost \$21,200 per mile of stream, and streambank protection measures cost about \$37,000 per stream mile
	Pesticide and fertilizer application restrictions	Match application rate to need; eliminate excessive applications and applications near or into surface water drainageways	0-3	Cost included in public education program
	Critical area protection	Emphasize control of areas bordering lakes and streams; correct obvious erosion and other pollution source problems	Intermediate	Intermediate

a Not all control measures are required for each subwatershed. The characteristics of the watershed, the estimated required level of pollution reduction needed to meet the applicable water quality standards, and other factors will influence the selection and estimation of costs of specific practices for any one subwatershed. Although the control measures costed represent the recommended practices developed at the regional level on the basis of the best available information, the local implementation process should provide more detailed data and identify more efficient and effective sets of practices to apply to local conditions.

b The approximate effectiveness refers to the estimated amount of pollution produced by the contributing category (urban or rural) that could be expected to be reduced by the implementation of the practice. The effectiveness rates would vary greatly depending on the characteristics of the watershed and individual diffuse sources. It should be further noted that practices can have only a "sequential" effect, since the percent pollution reduction of a second practice can only be applied against the residual pollutant load which is not controlled by the first practice. For example, two practices of 50 percent effectiveness would achieve a theoretical total effectiveness of only 75 percent control of the initial load. Further, the general levels of effectiveness reported in the table are not necessarily the same for all pollutants associated with each source. Some pollutants are transported by dissolving in water and others by attaching to solids in the water; the methods summarized here reflect typical pollutant removal levels.

C For highly urbanized areas which require retrofitting of facilities into developed areas, the costs can range from \$400,000 to \$1,000,000 per acre of storage.

Source: SEWRPC.

Table A-2

ALTERNATIVE GROUPS OF DIFFUSE SOURCE WATER POLLUTION CONTROL MEASURES
PROPOSED FOR STREAMS AND LAKE WATER QUALITY MANAGEMENT

	T		
Pollution Control Category	Level of Pollution ^b Control	Practices to Control Diffuse Source Pollution from Urban Areas ^C	Practices to Control Diffuse Source Pollution from Rural Areas ^b
Basic Practices	Variable	Construction erosion control; onsite sewage disposal system management; streambank erosion control	Streambank erosion control
	25 percent	Public education programs; litter and pet waste control; restricted use of fertilizers and pesticides; construction erosion control; critical areas protection; improved timing and efficiency of street sweeping, leaf collection, and catch basin cleaning; material storage facilities and runoff control	Public education programs; fertilizer and pesticide management; critical area protection; crop residue management; chisel tillage; pasture management; contour plowing; livestock waste control
Additional Diffuse Source Control Practices ^a	50 percent	Above, plus: Increased street sweeping; improved street maintenance and refuse collection and disposal; increased catch basin cleaning; stream protection; increased leaf and vegetation debris collection and disposal; stormwater storage; stormwater infiltration	Above, plus: Crop rotation; contour strip-cropping; grass waterways; diversions; wind erosion controls; terraces; stream protection
	75 percent	Above, plus: An additional increase in street sweeping, stormwater storage and infiltration; additional parking lot stormwater runoff storage and treatment	Above, plus: Base-of-slope detention storage
	More than 75 percent	Above, plus: Urban stormwater treatment with physical-chemical and/or disinfection treatment measures	Bench terraces ^c

^a In addition to diffuse source control measures, lake rehabilitation techniques may be required to satisfy lake water quality standards - see Table A-4.

Source: SEWRPC.

b Groups of practices are presented here for general analysis purposes only. Not all practices are applicable to, or recommended for, all lake and stream tributary watersheds. For costing purposes, construction erosion control practices, public education programs, and material storage facilities and runoff controls are considered urban control measures and stream protection is considered a rural control measure.

^C The provision of bench terraces would exclude most basic conversation practices and base-of-slope detention storage facilities.

Of the sets of practices recommended for various levels of diffuse source pollution control presented in Table A-2, not all practices are needed, applicable, or cost-effective for all watersheds, due to variations in pollutant loadings and land use and natural conditions among the watersheds. Therefore, it is recommended that the practices indicated as needed for nonpoint source pollutant control be refined by local level nonpoint source control practices planning, which would be analogous to sewerage facilities planning for point source pollution abatement. A locally prepared plan for nonpoint abatement measures should be better able to blend knowledge of current problems and practices with a quickly evolving technology to achieve a suitable, site specific approach to pollution abatement.

STREAM CHANNEL REHABILITATION MEASURES

The ability of streams in southeastern Wisconsin to satisfy desired water use objectives is contingent on the tributary pollution loads to the stream and the instream characteristics. In recognizing the need to harmonize these two management aspects within a comprehensive water quality plan, the Commission proposes stream bank protection measures as a best management practice, in addition to land management measures. Stream bank protection measures—primarily designed to prevent erosion and preserve stream side vegetation—are most applicable to natural stream channels. However, portions of streams which flow through the highly urbanized areas of the Region—such as the Menomonee and Kinnickinnic River watersheds—have undergone major channel modifications. These channelized stream reaches require specialized management techniques to provide a suitable habitat for fish and other aquatic life which serve as important indicators of the chemical and biological condition of a stream.

Channel modifications—more commonly called channelization—may include one or more of the following major changes to the natural stream channel, all designed to increase the capacity of the channel: straightening, widening, and deepening; placement of a concrete invert and concrete sidewalls; and construction of culverts to carry the stream under roads and railroads as needed. In some instances, a completely new length of channel may be constructed so as to bypass a natural channel reach, as has been done for a portion of Underwood Creek in the City of Wauwatosa. The function of channel modifications or enclosures are to yield a lower, hydraulically more efficient waterway through which a given flood discharge can be conveyed at a much lower flood stage relative to that which would exist under natural or prechannelization conditions. However, modified channels are detrimental to the support of fish and aquatic life for the following reasons:

- 1. They eliminate habitat areas needed by fish, aquatic insects, and benthic organisms. These habitat areas provide food, shelter, and spawning substrate necessary for the support of fish and other aquatic animals.
- 2. They eliminate plant substrate. Besides providing food, shelter, and spawning substrate for aquatic animals, aquatic plants provide oxygen to the water, remove nutrients, and trap sediments and other pollutants. Plants also provide shade, thereby lowering the temperature of the stream.

3. Some structures and dams provide barriers to the migration of fish and other aquatic animals, often necessary for feeding, spawning, and colonization purposes.

In addition, the aesthetic qualities of modified channels are generally poor, thereby reducing recreational use potential. Temporary storage of pollutants within the stream channel is also minimized, thereby increasing the first flush pollutant load effects on downstream receiving waters. These factors indicate that habitat improvement techniques, in addition to water pollution control measures, may need to be implemented to satisfy fish and aquatic life objectives within these channelized stream reaches.

The basic approach to improving the biological potential of a modified stream channel is to: 1) provide protective areas where a suitable sediment substrate may at least temporarily accumulate; 2) increase vegetative growth; and 3) eliminate barriers to aquatic animal migration. Table A-3 presents a description of selected measures which could be used to increase the biological potential of existing and future modified channels. In addition to providing suitable habitat for aquatic life, stream channel rehabilitation enhances the aesthetic qualities of the stream and—through temporary sediment storage, aeration, increased shading, and biological nutrient uptake—improves the water quality of the stream. It is recognized that most of these rehabilitation measures by their nature decrease the hydraulic efficiency of the stream channel. However, in many cases the hydraulic efficiency could be maintained at a level which would not preclude achievement of flood control design. A site-specific study would be required to determine the potential of each stream reach to provide biological habitat and at the same time be acceptable for flood control purposes.

LAKE REHABILITATION MEASURES

The reduction of nutrient inputs to lakes in southeastern Wisconsin, while preventing further water quality deterioration, may not necessarily result in the elimination of existing water quality problems. The indicated water quality improvements expected from a reduced nutrient input will be inhibited or prevented by conditions which include, for example, in eutrophic lakes, the presence of continued mixing or an anaerobic hypolimnion (the lower layer of a stratified lake), which may release significant amounts of phosphorus from the sediments to the overlying water column. Similarly, rooted aquatic plants may continue to grow prolifically in nutrient-rich bottom sediments, regardless of the nutrient content of the overlying water. If this occurs, or if other characteristics of a lake result in a restricted water use potential, the application of lake rehabilitation techniques should be considered.

Lake rehabilitation techniques that are applicable to southeastern Wisconsin include dredging, sediment covering or consolidation, nutrient inactivation, hypolimnetic aeration, and total aeration. Other techniques, perhaps more properly classified as lake management practices, would include macrophyte harvesting or chemical control, algae chemical control, and fish management. The applicability of experimental techniques, such as biological control, selective discharge, algal harvesting, dilution/flushing, and inflow treatment, requires additional study. Many of these techniques require federal and/or state permits to be issued prior to implementation. A brief description of lake rehabilitation techniques is set forth in Table A-4.

Table A-3

SELECTED BIOLOGICAL LIFE HABITAT REHABILITATION MEASURES
FOR EXISTING AND PLANNED CHANNEL MODIFICATIONS

D-1-1	dilitation Massure	December 2 2 2 2 2 2
	ilitation Measure	Description and Application
Existing Modified Channels	Riffle and Pool Development	Use various methods below to create riffle-pool sequences. Riffles are sections of streams containing rocks, gravel, or other coarse substrate in which the current is swift enough to remove silt and sand. Riffles should occur at intervals equal to five to seven channel widths. A water depth of six inches is desirable. Riffles help aerate the stream and provide ideal biological habitat. Pools are deeper, slower sections of streams and provide valuable food and resting and refuge areas for fish. Pools ideally should be designed so that the sediments are not completely flushed out during storm events
	Installation of Low Gabion, Rock, or Concrete Check Dams	Low dams provide a pooling effect and accumulate sediment for biological habitat. Dams should be low enough to provide for fish migration
	Installation of Gabion or Rock Wing Deflectors	Wing deflectors provide a riffle-pool effect and accumulate sediment. They provide cover for fish and other aquatic life
	Use of Scattered Rocks	Installation of rocks create a riffle effect and provide cover for fish and other aquatic life. They also temporarily trap some sediment
	Vegetation Improvement	Plant erosion-resistant native grasses, shrubs, and trees as close as practical to the stream channel to provide cover, food supply, and shade. Provide buffer strip along channel
	Removal of Barriers to Migrating Species	Remove dams, drop structures, chutes, and steep grades which cannot be crossed by migrating fish and other aquatic life. Construct alternative grade control structures
Planned Modified Channels	Channel Section and Grade Design	The low flow channel cross-section should approach a natural stream condition. The bottom width of the channel and the channel grade can be varied to create a riffle-pool sequence
	Avoidance of Straight Channels	Constructed channels should be aligned as much as possible with the natural stream curvature
	Vegetation and Wetland Preservation	Preserve native vegetation and wetlands as much as possible to provide shade trees and shrubs and maintain the water quality, environmental, and aesthetic benefits of wetlands
	Installation of Channel Bank Reservoirs	Various storage measures may be incorporated into the channel bank design to temporarily store runoff, reduce size requirements for downstream channels, and accumulate sediment, thereby providing suitable biological habitat
	Avoidance of Barriers to Migrating Species	Do not construct steep drop structures which cannot be crossed by fish or other aquatic life
	Use of Construction Erosion Controls	Construction erosion controls are essential for channel modification projects. Stabilize the exposed surface, control runoff, and prevent sediment delivery to the stream

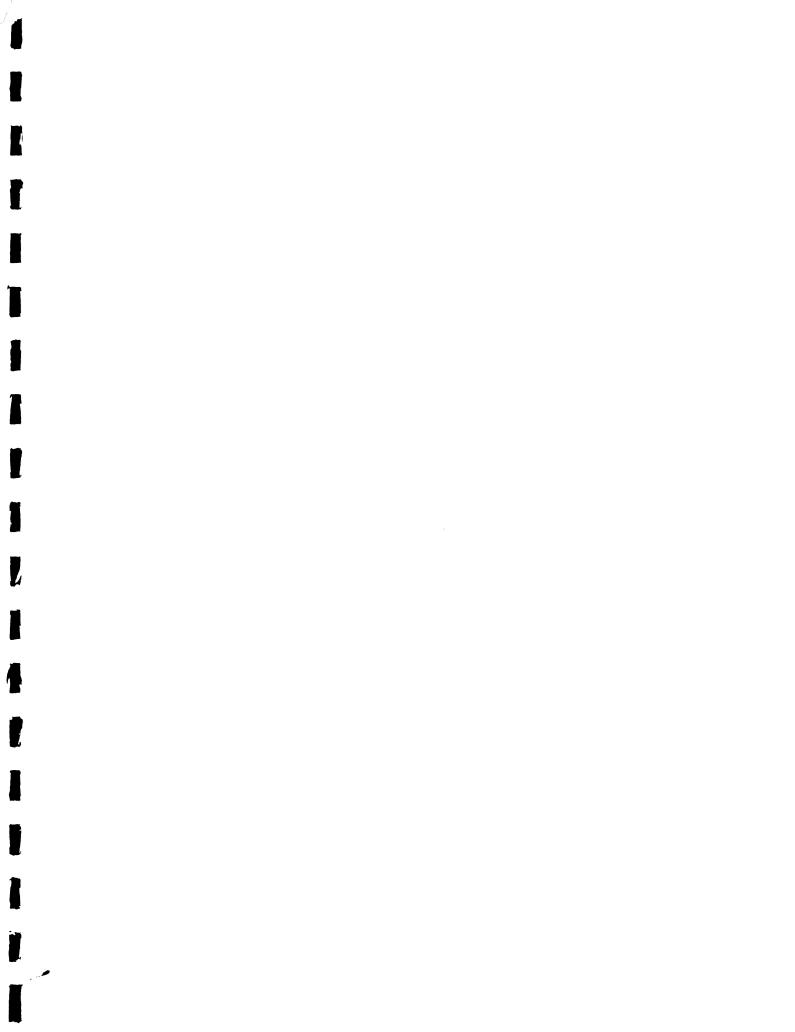
Source: SEWRPC.

Table A-4

DESCRIPTION OF LAKE REHABILITATION TECHNIQUES APPLICABLE TO SOUTHEASTERN WISCONSIN

Technique	Description and Effectiveness	Disadvantages
Dredging	Dredging is effective in deepening lakes. A hydraulic dredge is often used. Benefits are an increased depth, possible induced lake stratification, and reduced mixing of the sediments and water layers; removal of a suitable bottom substrata for macrophytes; improved navigation; and, if nutrient-poor sediments can be exposed, reduced nutrient release from sediments	Possible adverse environmental effects, a increased turbidity during operation, nutrient release from disturbed sediments, and high costs
Sediment Covering	Covering lake sediments may prevent release of nutrients and organic material from the sediments, prevent continued resuspension of the sediments, inhibit macrophyte growth by elimination of suitable bottom stabilization of sediments, and minimization of water loss via infiltration. Several cover materials have been proposed, including sand, clay, plastic, rubber, fly ash, and gels	Unknown ecological and environmental impacts, possible return of macrophytes if an organic layer is deposited above the covering, possible algal problems if macrophytes are eliminated, and questionable long-term effectiveness
Sediment Consolidation	This technique involves lake drawdown and sediment drying. The dewatering reduces the volume of sediments which are highly organic, and increases the lake depth. The effects are irreversible; the sediments will not expand upon lake refilling	Sediment chemical changes may occur, increasing nutrient release to the water
Nutrient Inactivation	This technique has worked effectively for stratified lakes. The treatment may convert nutrients into a form unavailable for plant uptake, remove nutrients from the water column, and prevent release of nutrients from the sediments. The most commonly used material is alum (an aluminum compound), although iron compounds, calcium compounds, ion exchange resins, fly ash, and clay have also been used. Application may be on ice surfaces or under ice cover, or through water surface broadcast or subsurface manifold injection. This technique is effective in reducing algal problems	Limited applicability
Hypolimnetic (bottom) Aeration	The intent of this technique is to increase the dissolved oxygen content in the hypolimnion of stratified lakes without destroying the stratification. Typically, bottom water is lifted to the surface via a vertical tube and oxygenated water is returned to the hypolimnion. The decomposition of organic matter is increased and nutrient release is decreased. Available habitat for desirable fish species may be increased	The ecological effects of seration need to be more thoroughly addressed. The practice is too expensive to be feasible in lakes larger than one or two hundred acres in size

Table A-4 (continued)


Technique	Description and Effectiveness	Disadvantages
Total Aeration/Circulation	The prevention of fish winterkill and the destratification of lakes to provide oxygen to bottom layers are the primary intents of this technique. The general approach has been to circulate and thereby destratify lakes by pumping or injecting compressed air to the bottom water. The effect of destratification during winter is the maintenance of an open water area, which increases photosynthesis and oxygen diffusion from the air	Destratification could eliminate cold water areas during summer required for some fish species
Macrophyte (weed) Harvesting	Harvesting macrophytes with mechanical harvesters increases the recreational use potential of lakes subject to with excessive plant growth	The macrophytes must be harvested every year and disposal may be a problem. Some nutrients are removed from the lake but the amounts are usually minimal in terms of the total nutrient content of the lake
Chemical Control	Excessive macrophyte growths, algal blooms, and undesirable fish populations may be controlled by chemical treatment. It is most applicable in highly eutrophic lakes where nutrient loads cannot be sufficiently reduced and where severe water use restrictions occur	Because of the potential adverse effects of adding poisonous chemicals to lakes, this technique requires cautious use in only the most extreme circumstances
Inflow Treatment	It is possible to treat inflowing surface runoff by many of the same procedures recommended for treatment of urban runoff	Required high levels of sophisticated equipment and technical expertise and high costs have prevented the adequate demonstration of this technique
Dilution/Flushing	This technique involves the replacement of nutrient-rich lake water with nutrient- poor water from a stream or the groundwater. The method may be effective in reducing algal blooms	Long-term effects are questionable. Dilution/Flushing is probably not applicable to most lakes in the Region, which are characteristically shallow and contain nutrient-rich sediments
Selective Discharge	Selective discharge involves the release of nutrient-rich, anaerobic water from the hypolimnion of a eutrophic lake. Nutrient levels are reduced and dissolved oxygen in the hypolimnion is increased	Further research on the overall effectiveness of this technique is needed, and it appears that the water quality of downstream reaches would be adversely affected
Biological Controls	This technique is a highly desirable approach and is inexpensive. Techniques are generally categorized into predatory-prey relationships; species manipulation; and pathological reactions. Control organisms being evaluated include the white amur (grass carp), walleye, northern pike, snails, crayfish, waterfowl, insects, aquatic mammals, plant viruses, and fish parasites	This technique is still in the experimental stage and possible adverse environmental impacts could be substantial; grass carp are prohibited from being imported into Wisconsin

Source: Wisconsin Department of Natural Resources and SEWRPC.

The applicability of specific lake rehabilitation techniques is highly dependent on the characteristics of an individual lake. As most techniques available have a relatively high cost, and as the state-of-the-art of lake management, for the most part, is still in its early stages of development, a cautious approach to implementing lake rehabilitation techniques is desirable. Application of any lake rehabilitation technique, therefore, should be contingent upon the completion of detailed, local, lake-specific management plans, which would be analogous to sewerage facilities planning for point source pollution abatement, and upon the actual experiences with the proposed technique in similar waterbodies in the Region, if possible. For these reasons, it is recommended that lake rehabilitation techniques be applied first to lakes in which: 1) nutrient inputs to the lake have been reduced to below the critical level on the basis of watershed point and nonpoint source pollution control measures; 2) there is the greatest probability of success based upon the results of in-lake studies to be conducted prior to implementing a lake rehabilitation program; and 3) the possibility of adverse environmental impacts is minimal. Proper technical support and monitoring programs, together with additional research and development, should maximize the chance of successful lake management and minimize adverse environmental impacts, and provide a range of management experiences that can be transferred to other situations as appropriate.

1			
1			
1			
1			
1			
•			
•			

		1
		1
		I
		Į
		I
		1
		ı
		1
		•
		5
		-
		7
		1
		ı

		\
		.
		_
		#
		_
		_
		1
		_
		_
	·.	_
	•	1
		-
		3
		_
		=
		•
		7
		1
		-
		.
		1
		3
		•
		-
		-
		_
		*
		•
		•
		#