Distribution and relative abundance of fishes in Wisconsin: VIII. Summary report. No. 175 1992

Fago, Don
Madison, Wisconsin: Wisconsin Department of Natural Resources, 1992
https://digital.library.wisc.edu/1711.dl/GNJG6IZPE3R458G
http://rightsstatements.org/vocab/InC/1.0/

For information on re-use see:
http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Distribution and Relative Abundance of Fishes in Wisconsin

VIII. Summary Report

Technical Bulletin No. 175 • Department of Natural Resources • Madison, Wisconsin • 1992

Cover map shows location of stations sampled.
This report is dedicated to the nongame fish, whose interrelationship in the aquatic ecosystem is generally not well documented or appreciated.

PREFACE

Little attention has been given to nongame fish species, which compose over 75\% of the 140 fish species with reproducing populations in the inland waters of Wisconsin. Yet many of these species play a major role in the maintenance of sport fish populations so vital to recreational and economic interests in the state. In essentially disregarding these species, we overlook their right to exist and their role in maintaining community stability through species diversity. This viewpoint is faulty because the nongame fish not only make up the majority of fish species in Wisconsin, but they are also more abundant than sport fish species in both total number and total biomass.

Further attention by either research or management personnel to nongame fish species must be preceded by an inventory of what we have and where we have it. In 1974, the Bureau of Research of the Wisconsin Department of Natural Resources (DNR), with inputs from field fisheries management personnel, began a statewide research study assessing the distribution and relative abundance of fish species, emphasizing but not limited to nongame species. This assessment was begun using a basin approach to delineate location of sampling stations on the over 14,500 lakes (over 410,000 ha) and 12,500 streams (over $70,400 \mathrm{~km}$) within the state. The 3 major basins (Mississippi River, Lake Michigan, and Lake Superior) were further divided into 27 minor inland basins. Great Lakes waters (Green Bay, Lake Michigan, and Lake Superior) were not included in the study.

The last report on the distribution of fish species throughout the state was made by C. W. Greene (1935) for the 1900-31 period. He covered about 1,400 sampling stations. Since then, other collectors, notably Dr. George Becker (1959, 1964a, 1964b, 1966, 1983), Professor Marlin Johnson (Johnson and Becker 1970), and students at the University of Wisconsin at Madison (including McNaught 1963) and Stevens Point, have added appreciably to knowledge of regional and statewide distribution of Wisconsin fishes.

The need to update our knowledge of statewide fish distribution is most clearly evident from the dearth of information available on nongame species in most watersheds for preparing environmental impact assessments and reports and DNR master plans. In addition, both federal and state laws now require the establishment of endangered and threatened species lists. Furthermore, the DNR has been directed to "conduct research on the endangered and threatened species of this state and ... implement programs directed at conserving, protecting, restoring and propagating selected state-endangered and threatened species to the maximum extent practicable" [Sec. 29.415(7) as created by Chap. 275, Laws of 1971 and last amended by Chap. 370, Laws of 1977].

The research study initiated in 1974 had 2 objectives. The first and primary one was to survey current fish distribution. Field collecting for this survey was begun in 1974 and was essentially terminated in 1980 due to reduced funding, with only limited sampling from 1981-86. Of the 27 inland river basins in the state, sampling has now been completed in 15 basins and 1 sub-basin and has been nearly completed in 1 additional basin. Only scattered samples were taken in the other 11 basins. These samples enabled us to inventory about 50% of the inland geographic area of the state.

The second objective of the research study was to synthesize historical information on statewide fish distribution. Other fishery biologists and managers have made numerous collections over the years, and their published and unpublished records, when available to us, were included in the study. Most of these records we added were from completed basins. Therefore data from as early as 1900 are available for some basins, permitting comparisons between historical and current records.

The results of the work completed on fish distribution have been published in a series of separate bulletins dealing with one or more of the minor basins. Reports on the following basins are available: Greater Rock River basin (Fago 1982); Black, Trempealeau, and Buffalo river basins (Fago 1983); Red Cedar River basin (Fago 1984a); Root, Milwaukee, Des Plaines, and Fox river basins (Fago 1984c); Grant \& Platte, Coon \& Bad Axe, and La Crosse river basins (Fago 1985a); Sheboygan, Manitowoc, and Twin river basins (Fago 1985b); and St. Croix River basin (Fago 1986). The data presented in these reports refer primarily to the current collections made during this research study.

This series of reports, however, constitutes only an overview of a voluminous mass of data (over 17,500 collections) now permanently stored in computer files. These files, which can be accessed through use of DNR's official water body identification codes, provide fish data on specific waters or on waters in close proximity to those of immediate concern. Such information has already, in over 500 cases, proven to be very useful to field managers and investigators in several DNR bureaus, other state and federal agencies, environmental consulting firms, and universities. These persons have used the data for various purposes: e.g., to make assessments on past as well as potential changes in the aquatic environment, indicate water quality through fish species composition, and determine ranges in Wisconsin for particular fish species.

Sufficient data were collected during the research study to recommend revisions of Wisconsin's endangered and threatened fish species lists in 1979 and 1982. The first revision removed 5 species from the endangered list, added 7 new species to the endangered list, created a list of 8 threatened species, and changed the status of 2 species from endangered to threatened [Wis. Admin. Code NR 27.03(2)(e) and (3)(e), Sep 1979]. The second revision removed 3 species from the threatened list, changed the status of 1 species from endangered to threatened, and changed the status of 2 species from threatened to endangered [Wis. Admin. Code NR 27.03(2)(e) and (3)(e), Nov 1982].

The bulk of the preserved fish collections are curated at the Milwaukee Public Museum, further enhancing the value and significance of this study. There they are used by scientists and educators interested in taxonomy, systematics, and natural history. They also are serving as a baseline collection from which changes in fish community structure and environmental loads of pollutants and toxicants can be determined.

This report, the final one in the series, brings together all the data that the Fish Distribution Study staff collected and identified or gathered from other collectors from 1900-86 and put into a computer data base. It also sets out a plan for sampling the fish distribution in that part of the state that has not yet been sampled.

Distribution and Relative Abundance of Fishes in Wisconsin

VIII. Summary Report

By Don Fago

Technical Bulletin No. 175

Department of Natural Resources
Box 7921, Madison, Wisconsin 53707
1992

ABSTRACT

A statewide study of the inland waters of Wisconsin was initiated in 1974 by the Bureau of Research, Wisconsin Department of Natural Resources (DNR) to establish a comprehensive data base on the distribution and relative abundance of all fish species. Records composing this data base came mainly from a survey between 1974 and 1986 of current statewide fish distribution. Numerous historical records (from 1900-72) were also included in the data base.

Surveys to determine current distribution were primarily conducted in eastern, southern, west central, and northwestern Wisconsin. Sampling of basins in these areas during 1974-86 was accomplished at 5,396 stations by Fish Distribution Study personnel, at 4,174 stations by other DNR personnel, and at 271 stations by non-DNR personnel. These stations covered approximately 50% of the state. During this period, 143 species were collected. Of these 143 species, 140 are believed to have reproducing populations in the inland waters of Wisconsin. According to the Department's lists of endangered, threatened, and "watch" species, the fishes collected during the fish distribution survey between 1974 and 1986 included all 8 of the state's endangered species, all 6 of the threatened species, and 16 of the 21 species on the Department's watch list. These status designations were based on official listings of endangered and threatened species (per a 1982 Wisconsin Administrative Code) and an unofficial list (from 1985) of watch species for which a population problem was suspected but not known.

Data from the 1974-86 period for Wisconsin were compared to those from the 1900-72 period. The early period records consisted of 2,179 non-DNR collections and 1,456 DNR collections. Two species that had not been previously reported from the state were collected in the later period. Three species have apparently been extirpated from the state.

This report includes numerous tables, distribution maps of the species, and discussion on many aspects of fish distribution in Wisconsin. It also sets out a sampling plan for completing the state survey. The data base generated to date has been shown to be of great value for the preparation of environmental impact assessments, development of master plans for the aquatic resource, and preparation of research proposals on nongame species, fish communities, and ecosystems. Use and value of this data base would undoubtedly increase if the sampling of the state were to be completed. It is, therefore, recommended that completion of this study be considered in the near future. Other recommendations are to update the data base with information from historical fish surveys, to continue the systematic recording of fish collected during routine DNR surveys, and to protect the habitat of endangered and threatened fish species.
Key Words: fish, distribution, relative abundance, Wisconsin, nongame, data base, map plotting, endangered, threatened, rivers, lakes, sampling plan, sampling gear, electrofishing.

CONTENTS

5 FOREWORD

5 INTRODUCTION

6 STUDY AREA
6 METHODS
Data Sources and Time Periods, 6 1900-72 Period, 6 1974-86 Period, 7
Collection Methods and Gear (1974-86), 8
Sampling Effort (1974-86), 8
Fish Identification, Enumeration, and Status Listing, 8
Data Handling, 11

19 RESULTS AND DISCUSSION

Species Found, 19
Stream vs. Lake Habitat, 19
Common and Rare Species, 19
Differences Between Time Periods, 26
Species Richness, 28
Endangered Species, 28
Threatened Species, 31
Watch Species, 31

39 RECOMMENDATIONS

Continuing Use of Fish Distribution Data, 39
Use in Future Research Studies, 39
Protection of Endangered and Threatened Species and Their Habitat, 40
Updating Present Records, 40
Completion of This Survey, 40

41 APPENDIXES

A. Sampling Effort for Completed and Projected Surveys of the State, 41
B. Listings of Species and Collectors, 56
C. Sampling Forms and Examples of Computer Print-outs, 63
D. Locations of Sampling Stations, 70
E. Photos of Sampling Gear Used and Uncommon Species Collected, 73
F. Frequency of Species Occurrence by Water Type, 78
G. Distribution Maps for All Species, 87

376 LITERATURE CITED

377 INDEXES

A. Index to Sampling Effort (Appendix A), 377
B. Index to Distribution Maps (Appendix G), 378

Note: Also enclosed are clear base map overlays for use with the distribution maps for all species, which begin on page 88.

FOREWORD

This report is based on data collected through 1986. It does not reflect changes made in Wisconsin's endangered, threatened, and "watch" species lists between the time the manuscript was completed in 1988 and its publication date.

During that period, Wisconsin's endangered fish species list was expanded to include the skipjack herring. The threatened species list was enlarged to include the following 5 species: river redhorse, greater redhorse, pugnose shiner, redfin shiner, and paddlefish. The watch list was renamed to "special concern" and now includes additional species including the following exotic fish species recently found in the Great Lakes: white perch (Morone americana) -in Lake Michigan and Green Bay-and ruffe (Gymnocephalus cernua) - in Lake Superior. The dispersal of these species should be closely monitored.

INTRODUCTION

In the mid-1970s, a research study was initiated by the Wisconsin Department of Natural Resources (DNR) to systematically sample the distribution and relative abundance of fishes throughout the inland waters of Wisconsin. The study focused primarily on a survey of current fish distribution but also synthesized historical distribution records where these were available and were mainly from completed basins.

In order to organize and permit retrieval of the massive amount of data to be collected, a water mileage system was devised to identify the location of sampling stations. This system involved dividing the state into major and minor water basins and establishing a unique series of mileages (codes) for each stream and non-landlocked lake. These codes, along with standard location information (name of water body, water body identification code, basin number, county, town, range, section, and quarter section), were stored in a computer file that has become known as the Master Stream and Lake File. A second computer file, the Master Fish File, was then created to store the biological and environmental data taken at each sampling station.

To date, over 17,500 collections have been added to this data base. These collections represent an inventory of about 50% of the state. Results have been published in a series of 7 separate reports on various minor basins.

Because reduced funding terminated the research study before the entire state could be surveyed and because it was unknown if or when the survey might be resumed, a decision was made to present findings to date in a summary report for the fish distribution study. This report is that document.

For consistency with the previous reports on fish distribution, presentation of data in this summary report follows the same general approach as that used in the earlier reports. Focus in the report continues to be on results of the current surveys. One major difference, however, is that the distribution maps are less detailed because of the increase in the amount of data being shown. In addition a large, new appendix section prescribes sampling effort for completion of the fish distribution survey in those portions of the state that have not yet been inventoried. Smaller differences also exist between this report and the earlier ones. These differences include new approaches to reporting
the findings and corrections of a few errors in the earlier publications. Furthermore, additional records have been added to the data base after publication of these earlier reports. Readers are therefore urged to consult this report as the final authority on the Fish Distribution Study.

Users of this summary report are also cautioned from the outset to remember that only half of the state's geographic area was surveyed. Findings and conclusions thus apply only to the area that was inventoried and do not reflect what might be true for the state as a whole.

The considerable mass of summary tables, figures, and maps that supplement the findings given in the text have been organized into a sequence of appendixes on related topics. Appendix A documents the sampling effort used by Fish Distribution Study staff in their completed surveys and recommends sampling effort for completing the statewide survey. Appendix B lists fish species found and who collected them. Appendix C illustrates sampling forms and examples of print-outs that can be run from the computerized data base. Appendix D shows locations of sampling stations. Appendix E illustrates types of sampling gear used and the uncommon fish species collected. Appendix F lists frequency of species occurrence by water type. Appendix G shows historic and current distribution maps for all species. To assist readers in locating certain material within the 2 longest of these appendixes, indexes to them are given at the back of the report.

Together, the text and appendixes can be put to a variety of uses. The tables and maps in this report can give readers an idea of the present distribution of fish in the 15 basins and 1 sub-basin in which sampling has been completed. This same information can also suggest distribution changes that may have occurred between the current survey period (1974-86) and earlier records (1990-72). The examples of computer print-outs can give those who want to access this data base (Master Fish File) an idea of possible applications to their own work. A common application is compiling a species list for a particular sub-basin. Finally, the pictures of the endangered, threatened, and watch species can give readers a better awareness of these rare fish, which face serious problems jeopardizing their existence.

STUDY AREA

The geographic area of Wisconsin excluding the Great Lakes and Green Bay is approximately $149,000 \mathrm{~km}^{2}$ (Henrich and Daniel 1983). Within this area, the Master Stream and Lake File (Fago 1984b) lists over 12,500 streams with a total length of over $70,400 \mathrm{~km}$ and over 14,500 lakes with a total surface area of over $410,000 \mathrm{ha}$. Lakes in this report refer to naturally occurring lakes as well as impoundments (bodies of water with dams at their outlets) unless otherwise specified.

Regarding which basins were selected and in which order, no specific criteria determined selection. However, sampling tended to occur mainly in southern Wisconsin because habitat there was believed likely to change the most. Of the 27 river basins in the state, sampling in 15 basins ($10,20,30,40,50,200,210,220$ [includes subbasins 221, 222, 223], 230, 250, 260, 270, 280, 290, and 310) has been completed (Fig. 1). In addition, sampling has also been completed in the Red Cedar River basin, a sub-basin of basin 300 (the Chippewa River basin). The total area of the completed basins and sub-basins plus the
sampled portions of partially completed basins represents about 50% of the geographic area of the state (Table 1). The completed basins and sub-basins contain 4,274 streams of which 85% are 5 miles or less in length (Append. Table A.1) and 4,258 lakes of which 84% are 50 acres or less in size (Append. Table A.2). In the uncompleted basins of the state (excluding the Red Cedar River sub-basin and that portion of basin 240 below the Prairie du Sac dam), there are 7,489 streams of which 86% are 5 miles or less in length (Append. Table A.3) and 10,259 lakes of which 87% are 50 acres or less in size (Append. Table A.4). The uncompleted basins thus contain a greater proportion of smaller streams and lakes than are found in the completed basins.

For additional information about the area surveyed, see the published reports for the basins involved (Fago 1982, 1983, 1984a, 1984c, 1985a, 1985b, 1986). This information consists of average annual precipitation, average gradient and discharge, substrate composition, major land uses, and population size.

METHODS

Data Sources and Time Periods

All collections are divided into 2 time periods: 1900-72 and 1974-86. The earlier records were separated from current ones in order to provide the basis for assessment of change over time in distribution of fish species within a basin. The later records also include data collected in 1973 from 45 stations in basin 20. These data resulted from a small survey done the year before the Fish Distribution Study began. Because these are the only records for 1973, because they were collected by Fish Distribution Study personnel, and because the locations sampled were not resurveyed, the 1973 data are lumped into the 1974-86 period.

If a location was sampled more than once within one of the 2 time periods, only 1 collection is used in the counts of number of stations sampled and number of stations at which a species was taken. Generally the more recent record within a time period is used.

As used in this report, a collection is defined as a sampling for which a date, collector, location, and species identification were known. The best available information on these topics was used. For example, some sampling dates consisted only of a year, some sample locations were unknown or unclear, and some fish were identified only to genus.

1900-72 Period

Collections from this period were made at 3,635 stations by a number of collectors on 1,169 streams and 523 lakes (Table 2, Append. Fig. D.1). Collections between 1900 and

1950 were made primarily by the following collectors: A. Cahn, E. P. Creaser, W. E. Dickman, N. Enting, C. W. Greene, J. L. Griffith, C. Hubbs, S. N. Jones, H. V. Ogden, P. Okkelberg, R. R. Pope, H. R. Rich, Schultz, L. C. Stuart, C. Tarzwell, C. L. Turner, and G. Wagner. With the exception of A. Cahn (1927) and Greene (1935), names were taken from original field notes. Most specimens from these collections were verified by Dr. Carl Hubbs or Dr. C. W. Greene and cited by Greene (1935). The collections made for the Upper Mississippi River Conservation Committee (Smith and Lopinot 1967) were also an important source of information. During the 1950s and 1960s, the 2 most notable non-DNR collectors were Dr. George Becker and Prof. Marlin Johnson. For the Madison area lakes, the work of McNaught (1963) was most useful.

The distribution of sampling within the 1900-72 period is given in Table 3 by decade for each basin. According to this summary, 68% of the stations were sampled between 1960 and 1972. Appendix Table B. 1 provides another indicator of sampling distribution. In that table, the percent of all collections during 1900-72 made prior to 1950 is given for each species. The average for all species was 28%.

The amount of historical records entered into the computerized data base varied depending on the basin. For basins in which only scattered sampling was done in 197486, no special effort was made to obtain older records. However, for basins in which a current survey was completed, an effort was made to obtain historical records. Because time available for data entry was limited, not all early records were entered into the data base.

1974-86 Period

Collections from this period were made at 9,841 sampling stations on 2,678 streams and 900 lakes (Table 2, Append. Fig. D.2). Fish Distribution Study personnel collected 5,396 (55%) samples, other DNR personnel collected 4,174 (42%) samples, and non-DNR personnel collected 271 (3%) samples (Table 4, Append. Fig. D.3). Collectors for each fish species collected during 1974-86 are identified in Appendix Table B.2.

Several calculations were made to highlight differences between the 2 time periods. First, total occurrences were used to compare differences in sampling effort. This was defined as the sum of the number of stations at which species were collected. Second, percent occurrence was used to show differences in the magnitude of increased knowledge of the distribution for each species. It was defined as the percent change from the early to later periods in the number of stations at which each species was taken.

Figure 1. Major and minor river basins in Wisconsin showing those basins in which sampling has been completed. (Sampling has also been completed in one sub-basin of basin 300.)

Collection Methods and Gear (1974-86)

During the current survey of fish distribution by Fish Distribution Study personnel, the primary collection method used was electrofishing (Append. Fig. E.1). Fish management personnel used similar methods and gear, but they made greater use of AC electrofishing gear. Eight types of electrofishing gear were used: DC stream shocker (at 32% of the stations), gasoline- or battery-powered pulse DC backpack shocker (14\%), DC longline shocker (11\%), DC boom shocker (5\%), AC stream shocker (5\%), AC batterypowered backpack shocker (2%), DC minishocker (1%), and AC boom shocker ($<1 \%$). Selection of electrofishing gear type was dependent on the size of the body of water.

All generators (except the DC longline shocker) produced alternating current, which was converted, if desired, to DC. With the boom shocker, a choice of several pulse rates and frequencies was possible. The DC boom shocker occasionally used AC when the DC unit was inoperative. The DC minishocker was similar to the boom shocker except that it used the generator from the stream shocker in a smaller boat than the boom shocker. It also had only 1 boom and required 1 person seated in a chair in the bow of the boat dipping fish. The AC battery-powered backpack used a 12 -volt, deep cycle battery and output alternating current at several voltages. For more information concerning the boom and stream shocking equipment, see Novotny and Priegel (1971, 1974).

In addition to electrofishing gear, small mesh seines were used by Fish Distribution Study personnel at 30% of the stations, primarily in lakes and large rivers. The seines were $1.2-\mathrm{m}$ and $9.1-\mathrm{m}$ bag seines with $4.8-\mathrm{mm}$ delta mesh. At a few stations, seines were used in combination with electrofishing gear.

Sampling Effort (1974-86)

Sampling effort for the current survey of fish distribution was based on several criteria we established. First, for each basin surveyed, the number of lakes present was divided into 12 surface area categories from $0-50$ acres to $>5,001$ acres. Similarly the number of streams present was divided into 10 length categories from $0-5$ miles to >201 miles. For each size category, a percentage of water bodies to sample was determined. These size groups and percentages are given in Appendix Tables A.1-A.2. Secondly the number of lake stations per 100 acres to sample in each size category was determined, as was the number of stream stations per mile. These station numbers are also given in Appendix Tables A.1-A. 2.

Once these decisions were made regarding sampling frequency, sampling locations were determined. Location establishment was based mainly on habitat diversity and secondarily on the distance between stations and on accessibility. The length of a sampling station averaged 80 m for all electrofishing gear except for the boom shocker and
minishocker. Boom shocker and minishocker stations averaged 2.7 km . Areas seined averaged $316 \mathrm{~m}^{2}$.

Collections in completed basins were made on 31% of the streams and 8% of the lakes (Append. Tables A.1-A.2, respectively). While these percentages are relatively low, the streams that were sampled composed 73% of the total length of all streams. The sampled lakes composed 59% of the total surface area for all lakes in the basin. This was due to the fact that most streams and lakes not sampled were small. The average area of all lakes in the completed basins was 41 ha.

Collections between 1974 and 1979 composed 86% of the total for the 1974-86 time period, with 12% between 1980 and 1983. This shows that most sampling occurred in the initial 6 years of the study.

Fish Identification, Enumeration, and Status Listing

The following procedures were used in this study for fish identification and enumeration. During 1974-86, in order to reduce the volume of specimens taken back to the laboratory, larger fish were identified to species in the field and were usually returned to the water. Generally all others were preserved in 10% Formalin for later identification in the laboratory. Identification was made based on the unpublished keys of Dr. George Becker. ${ }^{1}$ Questionable specimens were tentatively identified and sent to Dr. Becker at the University of Wisconsin-Stevens Point for verification. A subsample of the stonerollers collected at each station by the Bureau of Research was keyed to species; the remainder was recorded as stonerollers (Campostoma spp.). Fish Distribution Study personnel identified all fish collected by the Bureau of Research and some by the Bureau of Fisheries Management for the 1974-86 period. Identification of all other fish collected during this period was based on the collectors' identification. For the 1900-72 period, all species records were based upon the collectors' identification.

Because of the difficulty of correctly identifying certain species and because of variation in the taxonomic expertise of all collectors, collections were coded into 2 categories. One category was for collectors whose identification we accepted and the other was for those whose identification we were uncertain about. DNR collections not identified by Fish Distribution Study personnel were put into the uncertain category. Category determination was made once and was applied to all species taken by a given collector and not individually for each species. The category designation for all non-DNR collectors is shown at the end of Appendix Table B.1.

The common and scientific names of fish species cited in this report (Table 5) follow names established by the American Fisheries Society's Committee on Names of Fishes (Robins et al. 1980) except for rainbow trout (Kendall 1989). All hybrids and specimens not keyed to species are not included in this report.

[^0]Table 1. Geographic area of inland basins in Wisconsin and geographic area of basins not completely sampled by Fish Distribution Study personnel, with percent of total area in parenthesis.*

		Area (km ${ }^{2}$)		
Basin No. and Name	Total	Not Sampled		
2	Mississippi River (floodplain)	unknown	unknown	
10	Root River	679	0	
20	Milwaukee River	2,340	0	
30	Sheboygan River	1,769	0	
40	Manitowoc River	1,427	0	
50	Twin River	951	0	
60	Kewaunee River	355	$355(100)$	
70	Door Peninsula drainage	377	$377(100)$	
$80^{* *}$	Fox River	16,395	13,116	
90	Suamico River	799	$799(100)$	
100	Pensaukee River	376	$376(100)$	
110	Oconto River	1,997	$1,997(100)$	
120	Peshtigo River	2,849	$2,849(100)$	
130	Menominee River	10,541	$10,541(100)$	
200	Des Plaines River	332	0	
210	Fox River	2,440	0	
$220^{\text {a }}$	Greater Rock River	14,452	0	
230	Grant \& Platte rivers	2,525	0	
240	Wisconsin River	31,080		
250	Coon \& Bad Axe rivers	1,582	04,291	
260	La Crosse River	1,264	0	
270	Black River	6,188	0	
280	Trempealeau River	1,888	0	
290	Buffalo River	1,665	0	
300	Chippewa River	25,301	11,417	
310	St. Croix River	8,057	0	
400	Lake Superior drainage	149,046	0	
Total		17,928	(71)	

*Excludes the 3 basins that are part of Wisconsin's major basins but lie outside of its geographic area:
1 Lake Michigan (proper), 3 Lake Superior (proper), and 5 Green Bay (proper).
${ }^{* *}$ Includes sub-basins 81 and 82 .
${ }^{\text {a }}$ Includes sub-basins 221, 222, and 223.

At each station, the number of specimens for each species was counted up to 98 and recorded on Form 8100-46 (Append. Fig. C.1). However, at many stations there were more than 98 specimens taken for certain species. For these species, the number of specimens was recorded as 99 . Therefore the numbers of specimens recorded in the tables in Appendix F are, for some species, substantially lower than the number actually captured. Furthermore there were as many as 495 stations (lake and stream stations combined) for a given species at which the number taken was unknown, further underestimating the total number of specimens. For these reasons, the numbers of specimens listed in Appendix F are rounded to 2 significant figures for each species.

Evaluation of each species' statewide population status followed designations of rare species by the DNR's Bureau of Endangered Resources. These designations consist of official lists of endangered and threatened species and an unofficial list of watch species. Endangered and threatened species are defined by law (Sec. 29.415(2) as amended
by Chaps. 110 and 355, Laws of 1979) and watch species are defined by the Bureau of Endangered Resources. These 3 definitions are as follows:
(1) Endangered: Any species whose continued existence as a viable component of the state's wild animals . . . is determined by the department to be in jeopardy on the basis of scientific evidence.
(2) Threatened: Any species of wild animals . . . which appears likely, within the foreseeable future, on the basis of scientific evidence to become endangered.
(3) Watch: Any species for which a population problem is suspected but not known. These species will be under special observation to identify conditions that could cause further decline or any factors that could help to insure their survival in the state.

In order to assist readers in recognizing these uncommon species, photos or drawings of them are included in Appendix E , along with the habitat preference of each species.

Table 2. Number of streams and lakes sampled ${ }^{*}$ and the number of stations sampled** in each basin for the 2 time periods. Numbers of Fish Distribution Study personnel collections are shown in parenthesis. Totals are broken down by completed and
uncompleted basins.

Basin	Streams					Lakes					
	1900-72		1974-86			1900-72		1974-86			
	No. Streams	No. Stations	No. Streams	No. Stations		No. Lakes	No. Stations	No. Lakes		No. Stations	
$2^{\text {a }}$	15	54	27 (23)	195	(132)	8	14	18	(10)	56	(46)
10	12	31	29 (27)	78	(55)	1	1	8	(0)	8	(0)
20	15	66	64 (56)	285	(126)	16	16	48	(24)	65	(31)
30	15	27	54 (53)	207	(107)	16	16	21	(5)	21	(5)
40	8	17	31 (30)	119	(73)	9	9	8	(3)	8	(3)
50	6	12	23 (23)	49	(40)	4	4	1	(0)	1	(0)
$60^{\text {a }}$	2	7	0 (0)	0	(0)	0	0	0	(0)	0	(0)
$70^{\text {a }}$	9	13	2 (0)	2	(0)	4	4	1	(0)	1	(0)
$81^{\text {a }}$	49	86	37 (18)	101	(22)	17	59	10	(0)	39	(1)
$82^{\text {a }}$	92	189	238 (112)	636	(275)	39	69	29	(8)	45	(15)
$90^{\text {a }}$	6	8	7 (7)	18	(9)	0	0	0	(0)	0	(0)
$100^{\text {a }}$	1	1	4 (3)	29	(5)	0	0	0	(0)	0	(0)
$110^{\text {a }}$	11	15	24 (8)	67	(10)	8	8	25	(0)	26	(0)
$120^{\text {a }}$ 130^{a}	19	30 233	79 (3)	298	(4)	10	10	18	(0)	22	(0)
$130^{\text {a }}$ 200	98 4	233	78 (0)	294	(0)	25	29	34	(0)	35	(0)
200	4 27	7 75	17 65	48	(30)	5	5	12	(9)	12	(9)
221	57	158	171 (156)	173 521	(131)	35	51	51	(48)	174	(134)
222	28	58	66 (64)	174	(163)	25 5	50	73	(46)	337	(246)
223	35	60	116 (111)	230	(204)	3	3	3	(4) (2)	7	(5) (7)
230	49	96	99 (98)	194	(177)	0	0	0	(0)	0	(0)
$240^{\text {a }}$	184	405	329 (165)	993	(290)	69	93	87	(4)	94	(4)
250	26	86	69 (39)	226	(64)	1	1	0	(0)	0	(0)
260	21	78	63 (42)	177	(72)	2	2	2	(1)	9	(8)
270	72	261	147 (127)	414	(303)	13	13	11	(2)	16	(3)
280	30	120	122 (109)	382	(229)	0	0	3	(0)	16 3	(0)
290	24	99	91 (69)	218	(102)	2	2	4	(0)	4	(0)
$300^{\text {a }}$	88	207	292 (227)	747	(430)	48	58	154	(52)	352	(222)
310	117	315	192 (171)	622	(437)	144	145	221	(154)	578	(467)
$400^{\text {a }}$	49	86	142 (130)	242	(193)	14	13	52	(34)	59	(36)
Total	1,169	2,900	2,678 (1,944)	7,739	$(4,077)$	523	680	900	(406)	1,980	$(1,242)$
Basins not completed	623	1,334	1,259 (696)	3,622	$(1,370)$	242	357	428	(109)	729	(324)
Basins completed	546	1,566	1,419 (1,248)	4,117	$(2,707)$	281	323	472	(297)	1,251	(918)
${ }^{*}$ Includes all sampling or collections in each basin. Therefore, numbers are different than those in Appendix Tables A.1-A. 4 which summarize only sampling by Fish Distribution Study personnel.											

Table 3. Number of stations sampled in each basin by decade for the early period, 1900-72. Percent of total stations sampled is shown in parenthesis for each decade.*

Basin	1900-09	1910-19	1920-29	1930-39	1940-49	1950-59	1960-69	1970-72	Total
2	8	8	14	-	23	5	27	1	86
10	7	-	11	-	-	3	3	8	32
20	10	4	25	-	2	-	27	14	82
30	9	-	2	-	-	2	31	2	46
40	3	-	-	-	-	1	21	1	26
50	1	-	-	-	-	3	10	2	16
60	2	-	-	-	-	-	5	-	7
70	7	-	-	-	-	-	10	${ }^{-}$	17
81	6	-	67	22	-	1	38	11	145
82	6	-	51	4	2	29	138	31	261
90	1	-	4	-	-	-	3		8
100	-	-	1	-	-	-		-	23
110	-	-	14	3	1	-	4	1	23
120	1	-	19	7	-	-	12	1	40
130	7	-	31	5	-	5	104	111	263
200	1	-	1	-	1	-	6	3	12
210	20	-	8	-	1	15	65	19	128
221	35	15	32	-	1	-	48	82	213
222	9	-	6	-	-	-	50	2	67
223	8	-	19	-	-		36	-	63
230	4	-	19	-	-	6	64	3	96
240	33	-	124	6	-	31	272	40	506
250	1	-	8	-	-	26	43	9	87
260	2	-	3	1	1	5	57	11	80
270	4	-	31	2	1	-	186	52	276
280	3	-	4	-	-	6	90	18	121
290	-	-	7	-	-	-	66	31	104
300	19	2	55	11	-	1	75	104	267
310	19	-	52	2	4	21	302	62	462
400	31	-	12	-	-	-	38	19	100
Total	257 (7)	29 (1)	620 (17)	63 (2)	37 (1)	160 (4)	1,831 (50)	638 (18)	3,635

${ }^{*}$ Includes the 55 stations from the early period whose water type is either unknown or a mixture of stream and lake environments; therefore numbers do not agree with those in Table 2.

Data Handling

Data collected at the sampling stations during the current survey of fish distribution were recorded in pencil on Form 8100-46 (Append. Fig. C.1) and included station and species information and ecological data. This form was made of polyethylene paper, which is virtually unaffected by salt and fresh water, and is resistant to tearing, discoloration, and rotting. After all fish were identified in the laboratory and exact location was determined, all information was coded and transferred onto Form 8100-58 (Append. Fig. C.2) for data entry into the Master Fish File. This latter form was also used for transcription and coding of historical records of fish distribution.

The data for each collection were entered into 2 computer files. Sample location data were entered into the Master Stream and Lake File, which used a system of
water mileages to assign a specific location to most streams and lakes in Wisconsin. ${ }^{2}$ Specific stream and fish data for each collection were entered into the Master Fish File. Examples of pages from computer print-outs of these 2 computer files are shown in Appendix Figures C.3-C.5. A detailed explanation of the data storage system as exemplified in these figures is presented in Fago (1988), which is a revision of Fago (1984b).

In order to organize, store, and retrieve data from over 17,500 collections in this computerized data base dating from 1900, Cobol and Mark IV computer programs were developed through a cooperative effort with the DNR's Bureau of Information Management. Some of the programs were used to update the Master Fish File and others were used to help in the analysis of the data. These analyses permitted customized computer print-outs of specific portions of the total data base.

[^1]Table 4. Number of stations sampled in each basin by year for the late period, 1974-86. Numbers of Fish Distribution Study personnel collections are shown in parenthesis.*

$\underline{\text { Basin }}$	1973***		1974	1975		1976		1977		1978		1979	
2	-	-	13	4	-	83	(82)			19		105	(87)
10	-		2	24	(23)	17				7	(7)	25	(25)
20	45	(28)	6	43	(23)	35		33		87	(93)	17	(15)
30		-	24	8	-	61		13		44	(46)	26	(14)
40		-	10	2	-			27		2		56	(49)
50	-	-	4 -	1	-	1	-					5	(6)
60 70	-	-	- -										
70 81	-	-	2	1		-							
81	-	-	12 -	8	(5)	7	-	48		47		4	(2)
82	-	-	111 (1)	37	-	114	-	80		31		277	(262)
90	-	-	- -	19	(9)		.						
100	-	-	- -	28	(5)	1	-						
110	-	-	12	14	(10)	29	-	18		12		5	
120	-	.	116	50	(4)	23	-	30		24		28	
130	-	-	61	145	-	45	-	9	-	44		22	
200	-	-	10	1	-	4	(4)			1	(1)	33	(34)
210	-	-	7	19	-	9	(4)	20		250	(235)	29	
221	-	-	185 (169)	389	(310)	167	(143)	49	(3)	+250	(235)	23	(16)
222	-	-	156 (153)	6	(3)	6	(13)	1	(b)	24		8	
223	-	-	10		(3)	213	(210)	1	-	-	-	8	
230	-	-	1	3	-	8	(1)	-	-	174	(172)	7	
240	-		78 (1)	149	-	163	(4)	211	(43)	196	(19)	294	(214)
250	-	-	67	47	-	43	(4)	10	(43)	9	(19)	294 4	(214)
260	-	-	79	3	-	14	-	8	-	4		-	
270	-	-	13 (1)	32	(1)	42	(1)	262	(238)	57	(52)	23	
280	-	-	4	13	-	45	-	22	(238)	25	(52)	277	(230)
290	-	-	14	40	-	31	-	10	-	12		16	
300	-	-	58 (7)	248	(200)	336	(220)	64	(23)	83	(6)	251	(199)
310	-	-	13	27		129	(94)	294	(194)	172	(143)	277	(236)
400	-		1 -	141	(120)					24	(3)	16	
Total	45	(28)	1,069 (332)	1,506	(713)	1,633	(759)	1,221	(504)	1,239	(783)	1,837	$(1,449)$

One type of analysis used a Cobol program to organize the data by species and to create a species listing that showed all stations for each species. This listing, based on the water mileage system developed for this study, was organized in 2 ways (Fig. 2):
(1) The first method involved listing all stations on a main river until the first tributary was reached then changing direction to list stations on that tributary (Fig. 2a). When a tributary to the tributary was reached, direction changed again to list stations on that new tributary. At the end of each tributary, listing resumed at the previous confluence until the original river was reached again. At that point, listing on the original river resumed until the second tributary was reached then listing changed and the above sequence was repeated within the basin of the second tributary.
(2) The second method involved listing all stations on the original river then returning to the first tributary and listing all stations on it (Fig. 2b). When a tributary to the tributary was reached, listing continued on the original tributary.

The program for both of these methods could be restricted to one or more of the following criteria: particular minor basins, a sub-basin or part of a sub-basin, a 7-digit water body identification code or range of codes, individual collectors, dates, township and range (by entire township or contiguous townships), counties, water types, and selected species. At each station, the stream name along with water type and water body identification code, number of fish taken, collector, gear, effort, date, township description, and county were listed. An example of the Cobol listing for one species is shown in Appendix Figure C.6. At the end of each species listing, the total number of stations, total number of specimens, average number of fish per station, and number of stations for each collector was computed. At the end of the print-out, a summary table was given that listed each species, the number of stations at which it was taken, percent of total stations possible, total number of species occurrences, totals for each collector, and totals for number of species and hybrids (Append. Fig. C.7).

Another type of data analysis used a Mark IV program to organize the data by stations and to create lists for each

Table 4. Continued.

Basin	1980		1981		1982		1983	1984		1985		1986	Total	
2	33	(14)	8	-	2	(1)	- -	2	-	1	-	- -	277	(193)
10	3	(14)	7	-	1	-	1 -	-	-	1	-	- -	86	(55)
20	1	-	13	-	-		1 -	49	-	19	-	4 -	353	(159)
30	47	(47)	2	-	5	(5)	- -	-	-	-	-	- -	230	(112)
40	25	(26)	-		6	(2)	- -	-	-	-	-	- -	128	(77)
50	27	(24)	-		-		11 (10)	-	-	-	-	- -	50	(40)
60	-	-	-	-	-		- -	-	-	-	-	- -	$\overline{-}$	
70	-	-	-	-	-	-	- -		-	-		- -	146	
81	15	(15)		(1)	-	-	- -	-	-	4	-		146	(23)
82	3	-	27	(26)	1	(1)	- -	-	-	-	-		681	(290)
90	-	-	-	-	-	-	- -		-			- -	19	(9)
100	-	-	-	-	-	-	- -		-	-		- -	29	(5)
110	2	-	1	-	-	-	- -	-	-	-	-	- -	93	(10)
120	49	-	-	-	-	-	- -				-	- -	320	(4)
130	3	-	-	-	-	-	- -		-		-	-	329	
200	11	-	-	-	-	-	- -	-	-	-	-	-	60	
210	27	(21)	5	-	1	-	- -	-	-	-	-		367	
221	8	-	18	-	-	-	1 -	1	-	2	-	16 (16)	883	
222	-	-	-	-	-	-	- -					7 (7)	184	
223	1	-	-	-	1	-	- -	-	-				238	
230	-	-	1	-	2	-	- -	-	-	-	-		196	(178)
240	95	(15)	4	-	2	-	- -	2	-	-	-		1,094	(296)
250	59	(63)	-	-	-	-	- -				-		230	(67)
260	54	(56)	-	-	25	(25)	- -				-		187	(81)
270	4	-	1	-		-	- -	-					434	(308)
280		-	-	-	-		- -						386	(230)
290	72	(74)	-	-	28	(29)	- -			-		- -	223	(103)
300	38	(1)	19	-	7	(1)	2 -	-		3	-	- -	1,109	(657)
310	52	(27)	11	-	28	(26)	199 (188)	1		1	-		1,204	(908)
400	106	(106)	1	-	-	-	1	-	-	-	-	- -	$\underline{301}$	(229)
Total	732	(489)	119	(27)	109	(90)	216 (198)	55	(-)	31	(-)	28 (24)	9,840	$(5,396)$

*Includes the 122 stations from the late period whose water type is either unknown or a mixture of stream and lake environments; therefore numbers do not agree with those in Table 2.
${ }^{* *}$ The late period, 1947-86, also includes a single small survey from 1973, the year before the Fish Distribution Study began.
station of all of the information collected (such as the number of specimens of each species and the total number of species, hybrids, and unspecified categories). The program could be restricted to the same criteria cited above for the Cobol program, and the listing could be organized the same 2 ways (Fig. 2). However, only the Mark IV listing could be restricted to gear or to any of the 10 ecological variables recorded for each station. These variables consisted of stream width, stream depth, velocity, water temperature, conductivity, turbidity, pH , bottom type, aquatic vegetation type, and stream bank vegetation type. In addition, the Mark IV program could be organized in still different ways, including: (1) by county and then alphabetically by name of stream or lake, (2) by county and then by basin, or (3) by township, range, and section. Two examples of the Mark IV listing are shown in Appendix Figures C. 4 and C.5. The first figure shows the 3-digit alphanumeric code for each fish species collected at that station. The second gives the common name of the species
instead of the 3-digit code. These print-outs in Appendix C illustrate only the most commonly used or requested summaries. Dozens of other combinations and print-outs are possible.

In addition to the programs used to create specialized print-outs for users, other programs were used to generate distribution maps for each species (Append. G). Programs were written in SAS to plot these maps using computers at the Hill Farms Regional Computing Center and a Zeta 8-pen plotter.

In designing these maps, we first digitized the state outline and basin boundaries using the Wisconsin Tranverse Mercator coordinate system. We then converted the township descriptions of all collections to the same system so they could be mapped. However, since space did not permit all stations to be clearly shown, the computer program was changed to allow only 1 station per section of a township to be plotted for each species.

Table 5. List of family, common, and scientific names of all fish species cited in this report.

Computer No.	Common Name	Scientific Name
	Lampreys	Petromyzontidae
A02	Chestnut lamprey	Ichthyomyzon castaneus
A03	Northern brook lamprey	Ichthyomyzon fossor
A04	Silver lamprey	Ichthyomyzon unicuspis
A05	American brook lamprey	Lampetra appendix
A06	Sea lamprey	Petromyzon marinus
	Sturgeons	Acipenseridae
B01	Lake sturgeon	Acipenser fulvescens
B02	Shovelnose sturgeon	Scaphirhynchus platorynchus
	Paddlefishes	Polyodontidae
C01	Paddlefish	Polyodon spathula
	Gars	Lepisosteidae
D01	Longnose gar	Lepisosteus osseus
D02	Shortnose gar	Lepisosteus platostomus
	Bowfins	Amiidae
E01	Bowfin	Amia calva
	Freshwater eels	Anguillidae
F01	American eel	Anguilla rostrata
	Herrings	Clupeidae
G01	Alewife	Alosa pseudoharengus
G02	Gizzard shad	Dorosoma cepedianum
G03	Skipjack herring	Alosa chrysochloris
	Mooneyes	Hiodontidae
H01	Goldeye	Hiodon alosoides
H02	Mooney	Hiodon tergisus
	Trouts	Salmonidae
104	Cisco or lake herring	Coregonus artedii
I05	Lake whitefish	Coregonus clupeaformis
I12	Pink salmon	Oncorhynchus gorbuscha
I14	Coho salmon	Oncorhynchus kisutch
I15	Kokanee (sockeye) salmon	Oncorhynchus nerka
I16	Chinook salmon	Oncorhynchus tshawytscha
I19	Rainbow trout	Oncorhynchus mykiss*
I21	Brown trout	Salmo trutta
I22	Brook trout	Salvelinus fontinalis
I23	Lake trout	Salvelinus namaycush
	Smelts	Osmeridae
J01	Rainbow smelt	Osmerus mordax
	Mudminnows	Umbridae
K01	Central mudminnow	Umbra limi
	Pikes	Esocidae
L01	Grass pickerel	Esox americanus vermiculatus
L02	Northern pike	Esox lucius
L03	Muskellunge	Esox masquinongy
	Carps and minnows	Cyprinidae
M06	Central stoneroller	Campostoma anomalum
M07	Largescale stoneroller	Campostoma oligolepis

Table 5. Continued.

Computer No.	Common Name	Scientific Name
	Carps and minnows (continued)	Cyprinidae
M08	Goldfish	Carassius auratus
M09	Redside dace	Clinostomus elongatus
M10	Lake chub	Couesius plumbeus
M11	Grass carp	Ctenopharyngodon idella
M12	Common carp	Cyprinus carpio
M14	Brassy minnow	Hybognathus hankinsoni
M15	Mississippi silvery minnow	Hybognathus nuchalis
M16	Speckled chub	Hybopsis aestivalis
M17	Silver chub	Hybopsis storeriana
M18	Gravel chub	Hybopsis $x-p u n c t a t a$
M19	Hornyhead chub	Nocomis biguttatus
M20	Golden shiner	Notemigonus crysoleucas
M21	Pallid shiner	Notropis amnis
M22	Pugnose shiner	Notropis anogenus
M23	Emerald shiner	Notropis atherinoides
M24	River shiner	Notropis blennius
M25	Ghost shiner	Notropis buchanani
M27	Striped shiner	Notropis chrysocephalus
M28	Common shiner	Notropis cornutus
M29	Bigmouth shiner	Pugnose minnow

Table 5. Continued.

Computer No.	Common Name	Scientific Name
	Suckers (continued)	Catostomidae
N14	Smallmouth buffalo	Ictiobus bubalus
N15	Bigmouth buffalo	Ictiobus cyprinellus
N16	Black buffalo	Ictiobus niger
N17	Spotted sucker	Minytrema melanops
N18	Silver redhorse	Moxostoma anisurum
N19	River redhorse	Moxostoma carinatum
N21	Golden redhorse	Moxostoma erythrurum
N22	Shorthead redhorse	Moxostoma macrolepidotum
N23	Greater redhorse	Moxostoma valenciennesi
	Bullhead catfishes	Ictaluridae
005	Black bullhead	Ictalurus melas
006	Yellow bullhead	Ictalurus natalis
007	Brown bullhead	Ictalurus nebulosus
008	Channel catfish	Ictalurus punctatus
009	Slender madtom	Noturus exilis
O10	Stonecat	Noturus flavus
011	Tadpole madtom	Noturus gyrinus
O12	Flathead catfish	Pylodictis olivaris
	Pirate perches	Aphredoderidae
P01	Pirate perch	Aphredoderus sayanus
	Trout-perches	Percopsidae
Q01	Trout-perch	Percopsis omiscomaycus
	Codfishes	Gadidae
R01	Burbot	Lota lota
	Killifishes	Cyprinodontidae
S01	Banded killifish	Fundulus diaphanus
S02	Blackstripe topminnow	Fundulus notatus
S03	Starhead topminnow	Fundulus notti
	Silversides	Atherinidae
T01	Brook silverside	Labidesthes sicculus
	Sticklebacks	Gasterosteidae
U01	Brook stickleback	Culaea inconstans
U02	Ninespine stickleback	Pungitius pungitius
	Temperate basses	Percichthyidae
V01	White bass	Morone chrysops
V02	Yellow bass	Morone mississippiensis
	Sunfishes	Centrarchidae
W04	Rock bass	Ambloplites rupestris
W05	Green sunfish	Lepomis cyanellus
W06	Pumpkinseed	Lepomis gibbosus
W07	Warmouth	Lepomis gulosus
W08	Orangespotted sunfish	Lepomis humilis
W09	Bluegill	Lepomis macrochirus
W10	Longear sunfish	Lepomis megalotis
W11	Smallmouth bass	Micropterus dolomieui
W12	Largemouth bass	Micropterus salmoides

Table 5. Continued.

Computer No.	Common Name	Scientific Name
	Sunfishes (continued)	Centrarchidae
W13	White crappie	Pomoxis annularis
W14	Black crappie	Pomoxis nigromaculatus
	Perches	Percidae
	Crystal darter	Ammocrypta asprella
X03	Western sand darter	Ammocrypta clara
X04	Mud darter	Etheostoma asprigene
X05	Rainbow darter	Etheostoma caeruleum
X07	Bluntnose darter	Etheostoma chlorosomum
X08	Iowa darter	Etheostoma exile
X09	Fantail darter	Etheostoma flabellare
X10	Least darter	Etheostoma microperca
X11	Johnny darter	Etheostoma nigrum
X12	Banded darter	Etheostoma zonale
X14	Yellow perch	Perca flavescens
X15	Logperch	Percina caprodes
X16	Gilt darter	Percina evides
X17	Blackside darter	Percina maculata
X18	Slenderhead darter	Percina phoxocephala
X19	River darter	Percina shumardi
X20	Sauger	Stizostedion canadense
X21	Walleye	Stizostedion vitreum vitreum
X22		Sciaenidae
	Drums	Aplodinotus grunniens
Y01	Freshwater drum	Cottidae
	Sculpins	Cottus bairdi
Z01	Mottled sculpin	Cottus cognatus
Z02	Slimy sculpin	

* Previously classified as Salmo gairdneri.

This unusually dark specimen of a channel catfish was taken from the lower Trempealeau River with a boom shocker.

This shovelnose sturgeon was taken in the Red Cedar River.

This fine walleye was taken with a boom shocker in the lower Buffalo River.

Muskellunge taken from the lower Black River.

Figure 2. Two methods of organizing stations on computer print-outs.

Once this decision was made regarding station mapping, symbols were assigned to reflect the certainty of species identifications. Triangles were used for collections by collectors whose identification we accepted, and circles were used for collections by collectors whose identification we were uncertain about. Two maps were then created for each species, one summarizing distribution records for 1900-72 (labelled early maps) and the other summarizing distribution for 1974-86 (labelled late maps). Since the maps were computer generated, they show only station locations.

Map captions give actual numbers of collections for each species. These numbers are grouped in 2 ways. The first version divides the total into the number of collections represented by triangles and

This large flathead catfish was taken from the lower Buffalo River with a boom shocker.
the number represented by circles. The second version divides the total into the number of collections made by DNR personnel and the number made by others. For each of these 4 categories, the number of collections on each map is the first number shown, and the number of collections that were not mapped is given in parentheses.

To assist interpretation of these computer-generated maps, a separate base map was prepared showing the major streams and lakes in Wisconsin. This map was created by obtaining from the U. S. Geological Survey a Wisconsin base map at a scale of $1: 2,000,000$. This negative—identified as "from National Atlas, 1971"-was printed and a positive obtained. Corrections were then made to some streams and lakes to conform their positions to those on the 7.5 -minute series of U. S. Geological Survey topographic maps. Names of some of the major rivers that were not originally on the map were also added. After all revisions were made, the map was reduced to the size of the computer-generated distribution maps. This base map was then printed as a clear acetate overlay, and 2 copies are bound in at the end of this report with a perforated edge for easy tear-out. This overlay was designed to be used with each map in Appendix G.

RESULTS AND DISCUSSION

Findings are presented followed by a discussion of some of the more interesting species including those on the Wisconsin lists of endangered, threatened, and watch species. Unless otherwise indicated, findings refer only to the 1974-86 period.

Species Found

Over 1.6 million specimens representing 141 species were collected (Table 6). These include all 8 of the endangered, all 6 of the threatened species, and 16 of the 21 watch species. ${ }^{3}$ Of the 141 species, 140 are known to have reproducing populations in the inland waters of Wisconsin. Distribution maps for these 140 species are presented in Appendix G. Distribution maps are also included for 1 nonreproducing species-the American eel. Although known to spawn in the Sargasso Sea, female American eels spend much of their life in Wisconsin. Thus their distribution was mapped, and records about this species are included in some tables in this report.

In addition to the 141 species for which detailed collection records and distribution maps are given, 2 other species were taken during the course of this study. These speciesthe grass carp and kokanee (sockeye) salmon were taken only incidentally. They are believed to not have reproducing populations in Wisconsin and therefore were excluded from all tables and maps in this report. Their presence is only considered in the total (143) number of species collected.

Stream vs. Lake Habitat

Of all stations sampled in the inland waters of Wisconsin, the majority could be classified as to whether they were found in stream or lake habitat. However, 55 stations from the early period and 122 from the later one could not be so classified. Their water type was unknown or was a mixture of stream and lake environments. Of the remainder, 80% were in a stream environment and 20% in a lake environment (81% and 19%, respectively, for the early period) (Table 2). Of the 141 species (includes American eel) collected in the inland waters of Wisconsin, 122 occurred in streams at least 50% of the time (Table 7); 75 of these 122 occurred in streams at least 90% of the time. Of the 19 species collected at least 50% of the time in a lake environment, only 3 were taken 90% or more of the time in a lake. These percentages are based on the total number of stations at which a particular species was taken. An example is the chestnut lamprey that was taken at a total of 136 stations of which $130(96 \%)$ were in a stream environment and 6 (4\%) were in a lake environment.

Common and Rare Species

If one looks only at the 7,739 stations on streams sampled during 1974-86 (Table 2), the 10 most common species (caught at the highest percentage of stream stations) were white sucker (66%), creek chub (54%), Johnny darter (43%), common shiner (35%), blacknose dace (35\%), central mudminnow (35\%), brook stickleback (34\%), brook trout (26%), bluntnose minnow (27%), and fathead minnow (24%) (Append. Table F.1). The 10 most numerous species (most specimens caught) were white sucker $(150,000)$, creek chub $(100,000)$, common shiner $(95,000)$, brook trout $(66,000)$, blacknose dace $(59,000)$, Johnny darter $(53,000)$, bluntnose minnow $(47,000)$, central mudminnow $(38,000)$, brook stickleback $(37,000)$, and mottled sculpin $(36,000)$ (Append. Table F.1). The fathead minnow, the 10 th most common species, was the 13 th most numerous. Of the 28 rarest stream species, i.e., those caught at less than 0.5% of stream stations (Table 8), all but 4 (alewife, coho salmon, speckled chub, and slender madtom) were also represented by the smallest total number of specimens (Append. Table F.1).

If one looks only at the 1,980 stations on lakes (including reservoirs) sampled during 1974-86 (Table 2), the 10 most common species (caught at the highest percentage of lake stations) were bluegill (72%), yellow perch (68%), largemouth bass (62%), pumpkinseed (53%), bluntnose minnow (43%), black crappie (35%), northern pike (32%), white sucker (31%), Johnny darter (29%), and golden shiner (28%) (Append. Table F.2). The 10 most numerous species (most specimens caught) were bluegill (55,000), yellow perch $(42,000)$, bluntnose minnow $(38,000)$, largemouth bass $(20,000)$, pumpkinseed $(17,000)$, black crappie $(15,000)$, white sucker $(11,000)$, walleye $(10,000)$, golden shiner $(8,700)$, and black bullhead (7,900) (Append. Table F.2). The northern pike and Johnny darter, which were among the 10 most common species, were the 11 th and 15 th most numerous. Of the 39 rarest lake species, i.e., those caught at less than 0.5% of lake stations (Table 9), all but 4 (pallid shiner, redfin shiner, smallmouth buffalo, and river darter) were also represented by the smallest total number of specimens (Append. Table F.2).

If one looks at all stations $(9,841)$ sampled during 1974 86 , the 10 most common species (caught at the highest percentage of all stations) were white sucker (58\%), creek chub (43\%), Johnny darter (40\%), common shiner (31\%), central mudminnow (30\%), bluntnose minnow (30\%), blacknose dace (28%), brook stickleback (27%), bluegill (25%), and yellow perch (23%) (Append. Table F.3). The 10 most numerous species (most specimens caught) were white sucker (170,000), common shiner $(100,000)$, creek chub $(100,000)$, bluntnose minnow $(86,000)$, bluegill $(73,000)$,

[^2]© Table 6. Number of stations and percent of total stations at which each species was collected, basins* not collected from in the subsequent or previous period, and percent change in occurrence in the known number of stations at which each species was taken in the inland waters of Wisconsin, 1900-86.

Map No.	Species	1900-72				1974-86				Percent Change in Occurrence**
		No. Stn.	Percent Total	No. Basins	Basins not Found in 1974-86	No. Stn.	Percent Total	No. Basins	Basins not Found in 1900-72	
1	Chestnut lamprey	39	1	6	$82^{\text {a }}(1)^{\text {b }}$	136	1	8	81,250,270 (3)	250
2	Northern brook lamprey	40	1	8	260,280 (2)	81	1	12	81,120,210,222,290,310 (6)	100
3	Silver lamprey	29	1	8	20,210,400 ${ }^{\text {a }}$ (3)	58	1	13	$\begin{aligned} & 130,230,250,260,270, \\ & 280,290,300(8) \end{aligned}$	100
4	American brook lamprey	46	1	9	$400^{\text {a }}$ (1)	445	5	18	$\begin{aligned} & 40,50,110,120,130,210,223, \\ & 280,290,310(10) \end{aligned}$	870
5	Sea lamprey	14	$\mathrm{t}^{\text {c }}$	2	$60^{\text {a }}$ (1)	4	t	3	50,110 (2)	-71
6	Lake sturgeon (W) ${ }^{\text {d }}$	31	1	8	$400^{\text {a }}$ (1)	34	t	8	110 (1)	10
7	Shovelnose sturgeon	38	1	3	-	42	t	3	-	11
8	Paddlefish (W)	9	t	3	-	14	t	3	-	56
9	Longnose gar	84	2	12	290,400 ${ }^{\text {a }}$ (2)	151	2	13	223, 230,270 (3)	80
10	Shortnose gar	49	1	7	221,260,310 (3)	85	1	7	230,270,280 (3)	73
11	Bowfin	102	3	13	$40,290,400^{\text {a }}$ (3)	222	2	16	100,130,230,250,270,280 (6)	120
12	American eel (W)	23	1	6	20,260 (2)	38	t	9	81,222,240,270,280 (5)	65
13	Alewife	5	t	4	$70^{\text {a }}$ (1)	19	t	6	40,50,81 (3)	280
14	Gizzard shad	84	2	10	$250,300^{\text {a }}$ (2)	162	2	12	10,50,81,82 (4)	93
15	Skipjack herring	3	t	2	310 (1)	2	t	1	-	-33
16	Goldeye (E)	11	t	2	310 (1)	16	t	4	230,240,300 (3)	45
17	Mooneye	65	2	8	250 (1)	141	1	10	230,270,280 (3)	120
18	Cisco or lake herring (W)	38	1	10	$2^{\text {a }, 811^{\text {a }}, 130^{\text {a }} \text { (3) }}$	31	t	7	-	-18
19	Lake whitefish	6	t	3	$81^{\mathrm{a}}, 82^{\text {a }}$ (2)	3	t	3	40,400 (2)	-50
20	Pink salmon	-	-	-	-	4	t	4	40,110,120,400 (4)	-
21	Coho salmon	5	t	2	240 ${ }^{\text {a }} 310$ (2)	35	t	7	10,20,30,50,81,120,400 (7)	600
22	Chinook salmon	-	-	-	-	26	t	10	$\begin{aligned} & 10,20,30,40,50,81,100 \\ & 110,120,400(10) \end{aligned}$	-
23	Rainbow trout	96	3	18	-	259	3	25	50,81,100,222,223,290,300 (7)	170
24	Brown trout	454	12	22	-	1,560	16	25	40,81,120 (3)	240
25	Brook trout	680	19	19	$70^{\text {a }}, 230$ (2)	2,110	21	22	20,40,50,222,223 (5)	210
26	Lake trout	7	t	5	$130^{\text {a }}, 240^{\mathrm{a}}, 300^{\mathrm{a}}, 310,400^{\text {a }}$ (5)	1	t	1	210 (1)	-86
27	Rainbow smelt	13	t	1	-	10	t	5	10,50,300,310 (4)	-23
28	Central mudminnow	695	19	28	$60^{\mathrm{a}}, 70^{\mathrm{a}}$ (2)	2,909	30	28	100,230 (2)	320
29	Grass pickerel	87	2	12	$20,70^{\mathrm{a}}, 81^{\mathrm{a}}, 400^{\text {a }}$ (4)	130	1	10	30,230 (2)	49
30	Northern pike	696	19	27	$70^{\text {a }}$ (1)	2,053	21	28	100,230 (2)	190

Map No.	Species	1900-72				1974-86				Percent Change in Occurrence ${ }^{* *}$
		No. Stn.	Percent Total	No. Basins	Basins not Found in 1974-86	No. Stn.	Percent Total	No. Basins	Basins not Found in 1900-72	
31	Muskellunge	53	1	9	-	165	2	13	2,110,120,210 (4)	210
32	Central stoneroller	303	8	17	50,270 (2)	900	9	19	30,200,290,310 (4)	200
33	Largescale stoneroller	158	4	18	$10,60^{\text {a }}, 70^{\text {a }}, 81^{\mathrm{a}}, 222,280$ (6)	385	4	15	200,230,400 (3)	140
34	Goldfish	3	t	2	-	57	1	9	20,30,40,50,210,222,223 (7)	1,800
35	Redside dace (W)	69	2	13	10,20,40,60 ${ }^{\text {a }}$, 310 (5)	174	2	8	-	150
36	Lake chub	18	1	4	$70^{\text {a }}$ (1)	40	t	3	-	120
37	Common carp	461	13	26	$60^{\mathrm{a}}, 70^{\text {a }}$ (2)	1,291	13	27	100,110,130 (3)	180
38	Brassy minnow	233	6	21	10,40,260 (3)	836	9	22	100,110,120,280 (4)	260
39	Mississippi silvery minnow	112	3	11	210,222,250,290 (4)	77	1	7	-	-31
40	Speckled chub (T)	40	1	3	250 (1)	29	t	4	270,310 (2)	-28
41	Silver chub	53	1	8	280, 310 (2)	78	1	8	222,223 (2)	47
42	Gravel chub (E)	2	t	2	-	41	t	3	223 (1)	2,000
43	Hornyhead chub	551	15	28	10,60²,290 (3)	1,392	14	26	2 (1)	150
44	Golden shiner	451	12	27	$70^{\text {a }}$ (1)	1,245	13	28	100,223 (2)	180
45	Pallid shiner (E)	32	1	6	222,240ㄹ, $270,280,310$ (5)	26	t	1	-	-19
46	Pugnose shiner (W)	21	1	7	$2^{\mathrm{a}}, 70^{\mathrm{a}}$ (2)	58	1	8	20,300,400 (3)	180
47	Emerald shiner	325	9	24	$60^{\mathrm{a}}, 70^{\mathrm{a}}, 90^{\mathrm{a}}, 200,222$ (5)	571	6	22	40,110,260 (3)	76
48	River shiner	124	3	14	40,50,222,290,310 (5)	221	2	12	20,221,223 (3)	78
49	Ghost shiner	8	t	1	$2^{\text {a }}$ (1)	-	-	-	-	-100
50	Striped shiner (E)	25	1	4	-	15	t	4	-	-40
51	Common shiner	1,274	35	30	$60^{\text {a }, 290 ~(2) ~}$	3,019	31	28	-	140
52	Bigmouth shiner	365	10	18	$400^{\text {a }}$ (1)	728	8	18	200 (1)	99
53	Pugnose minnow (W)	59	2	9	290 (1)	127	1	10	81,310 (2)	120
54	Blackchin shiner	82	2	17	250 (1)	290	3	17	90 (1)	250
55	Blacknose shiner	230	6	21	10,90 ${ }^{\text {a }}$,222 (3)	658	7	22	40,50,100,250 (4)	190
56	Spottail shiner	226	6	23	10,60 ${ }^{\text {a }} 120^{\text {a }}$ (3)	370	4	20	-	64
57	Ozark minnow (T)	15	t	4	-	50	1	4	-	230
58	Rosyface shiner	189	5	23	$30,60^{\mathrm{a}}, 70^{\mathrm{a}}, 81^{\mathrm{a}}, 130^{\mathrm{a}}(5)$	341	3	18	-	80
59	Spotfin shiner	469	13	22	$70^{\mathrm{a}}, 400^{\mathrm{a}}$ (2)	1,120	11	23	30,110,200 (3)	140
60	Sand shiner	252	7	22	290 (1)	598	6	25	10,30,50,200 (4)	140
61	Weed shiner (W)	95	3	15	$81^{\text {a }}, 200,210,221,230$ (5)	81	1	12	20,260 (2)	-15

Table 6. Continued.

Map No.	Species	1900-72				1974-86				Percent Change in Occurrence**
		No. Stn.	Percent Total	No. Basins	Basins not Found in 1974-86	No. Stn.	Percent Total	No. Basins	Basins not Found in 1900-72	
62	Redfin shiner (W)	71	2	15	$\begin{aligned} & 10,50,81^{\mathrm{a}}, 200,210, \\ & 260,270,280(8) \end{aligned}$	27	t	7	-	-62
63	Mimic shiner	150	4	19	$\begin{aligned} & 70^{\mathrm{a}}, 81^{\mathrm{a}}, 110^{\mathrm{a}}, 130^{\mathrm{a}}, 222, \\ & 223(6) \end{aligned}$	377	4	16	30,40,230 (3)	150
64	Suckermouth minnow	127	3	12	$300^{\text {a }}$ (1)	177	2	12	82 (1)	39
65	Northern redbelly dace	225	6	20	$60^{\mathrm{a}}, 70^{\mathrm{a}}, 230$ (3)	877	9	22	50,100,210,222,310 (5)	290
66	Southern redbelly dace	217	6	21	$2^{\text {a }}, 60^{\mathrm{a}}, 70^{\mathrm{a}}, 260,290,400^{\text {a }}$ (6)	600	6	18	90,100,270 (3)	180
67	Finescale dace	63	2	7	$81^{\text {a }}$,221 (2)	258	3	9	30,120,270,310 (4)	310
68	Bluntnose minnow	1,063	29	30	$60^{\text {a }}$ (1)	2,955	30	29	-	180
69	Fathead minnow	470	13	28	$60^{\text {a }}$ (1)	2,076	21	29	100,110 (2)	340
70	Bullhead minnow	134	4	11	221,223 (2)	302	3	15	20,82,210,260,300,310 (6)	130
71	Blacknose dace	938	26	29	$60^{\mathrm{a}}, 70^{\text {a }}$ (2)	2,714	28	27	-	190
72	Longnose dace	520	14	22	$70^{\mathrm{a}}, 81^{\mathrm{a}}$ (2)	1,312	13	21	10 (1)	150
73	Creek chub	1,610	44	30	$60^{\text {a }}$ (1)	4,263	43	29	-	160
74	Pearl dace	271	7	20	$60^{\mathrm{a}}, 70^{\mathrm{a}}$ (2)	972	10	19	100 (1)	260
75	Red shiner (W)	2	t	1	230 (1)	-	-	-	-	-100
76	River carpsucker	63	2	5	-	76	1	8	20,230,270 (3)	21
77	Quillback	124	3	15	290 (1)	338	4	15	230 (1)	170
78	Highfin carpsucker	26	1	5	290 (1)	85	1	8	230,250,270,310 (4)	230
79	Longnose sucker	20	1	3	50,120 ${ }^{\text {a }}$ (2)	26	t	2	130 (1)	30
80	White sucker	2,162	59	30	$60^{\text {a }}$ (1)	5,740	58	29	-	170
81	Blue sucker (T)	37	1	5	260 (1)	54	1	5	270 (1)	46
82	Creek chubsucker	2	t	1	200 (1)	-	-	-	-	-100
83	Lake chubsucker (W)	50	1	8	$2^{\text {a }}$ (1)	98	1	9	10,20 (2)	96
84	Northern hog sucker	389	11	23	10,20,50,90 ${ }^{\text {a }}$ (4)	838	9	21	30,100 (2)	120
85	Smallmouth buffalo	49	1	7	221,290,310 (3)	82	1	4	-	67
86	Bigmouth buffalo	38	1	7	310 (1)	133	1	10	222,250,270,290 (4)	250
87	Black buffalo (T)	15	t	2	-	11	t	3	223 (1)	-27
88	Spotted sucker	61	2	11	260 (1)	151	2	11	250 (1)	150
89	Silver redhorse	114	3	15	250 (1)	410	4	20	40,50,81,130,210,260(6)	260
90	River redhorse (W)	2	t	2	-	76	1	10	$\begin{aligned} & 20,82,210,221,222,240, \\ & 270,300 \text { (8) } \end{aligned}$	3,700
91	Golden redhorse	173	5	20	10,260,290,400 ${ }^{\text {a }}$ (4)	578	6	19	30,81,250 (3)	230
92	Shorthead redhorse	283	8	19	-	835	8	23	30,100,130,210 (4)	200

${ }_{\text {Map }}^{\text {Nap }}$	Species	1900.72				1974.86				
		$\underset{\text { Star }}{\substack{\text { No. } \\ \text { Sta }}}$	${ }_{\substack{\text { Percent } \\ \text { Total }}}^{\text {col }}$	$\underset{\substack{\text { No. } \\ \text { Basins }}}{ }$	$\begin{aligned} & \text { R} \text { Rasinn no no } \\ & \text { in } \end{aligned}$	Stin		${ }_{\text {Nos }}^{\text {Nosins }}$	$\begin{aligned} & \text { Basins not } \\ & \text { Found } \\ & \text { in 1900-72 } \end{aligned}$	
${ }^{93}$	Greater redhorse (W)	17	t	8	${ }^{2,8,88^{19}, 120^{\circ}(3)}$	106	1	10	40,50,100,110,221 (5)	${ }_{520}$
${ }_{95}^{94}$	Slack bullead	${ }^{113}$	${ }_{7}^{11}$	${ }^{26}$		${ }_{1}^{1,564}$	${ }^{16}$	29	90,100,223 (3)	280
${ }_{95}^{5}$	Yelow bullhead	243	7	${ }^{23}$	$7{ }^{\text {cos }}$ (1)	793	8	27	50,90,10, 250,290 (5)	${ }_{230}$
${ }_{96}$	Brown bullhead	151	4	${ }^{25}$	700,90, 230,26,4000 (5)	388	4	21		160
${ }_{97}$	Chamnel catfish	176	5	20	70,200,250,400 ${ }^{(4)}$	317	3	19	${ }_{20,40,50(3)}$	80
98	Slender mattom (E)		t	3	$210(1)$	${ }_{28}$		2		${ }_{300}^{80}$
${ }^{99}$	Stoneat	141	4	19		${ }_{4} 23$	4	22	260,28,290 (3)	200
100 101	(Tadpole madiom	178 58	${ }_{5}$	${ }_{11}^{23}$	10,70, $120.222(4)$	$\begin{array}{r}350 \\ 53 \\ \hline\end{array}$	${ }_{1}$	${ }^{22}$		97
102	Priste perch (W)	${ }_{23}^{53}$	1	11 5			1	${ }_{6}^{11}$	223,270 (2) 270 2802000 (3)	0
103	Troutperch	67	${ }_{2}$	11	${ }_{10,70,900,80(4)}$	${ }_{112}^{25}$	1	${ }_{10}$	${ }^{270,280,29(3)}$	67
104	Burbot	139	4	11		649	7	17	90,100,110,120,260, 2906)	370
105	Banded kilifish	69	2	13	50,60,70, $1300.222,240^{\circ}(6)$	204	2	,		200
106	Blackstripe topmimow	51	1	7	223 (1)	106	1	7	20 (1)	110
107	Starnead topminow (E)	${ }^{7}$	t	1	${ }^{240^{\circ}(1)}$	9	t		270 (1)	${ }_{30}$
108 109		${ }_{719}^{158}$	${ }_{20}^{4}$	14 28			${ }_{27}$	${ }_{27}^{14}$	$230,66(2)$ 100200 (2)	130 280 280
110	Ninespine stickleback		2	${ }^{8}$	20,300:400 ${ }^{\text {a }}$	2,998	$\stackrel{2}{4}$	${ }_{2}^{27}$	10,200 (2) $10,30(2)$	280 -71
111	White bass	179	5	15	10,250 (2)	280	3	16	50,230,270 (3)	${ }_{56}$
112	Yelow bass	51	1	7	40,240,250 (3)	${ }^{73}$		6	200,210(2)	5
113	Rock bass	519	14	28	70:200 (2)	1,394	14	27	100 (1)	170
1114	${ }^{\text {Green sunfsh }}$	${ }^{304}$	8	24		1,240	13	27	90,120,260 (3)	310
115 116	${ }_{\text {Prupkinsed }}$	${ }_{69}^{692}$	19	${ }^{28}$	${ }^{70}{ }^{\text {a }}$ (1)	1,982	${ }^{20}$	${ }^{28}$	$100(1)$	190
${ }_{117}^{116}$	Warmouth Orangepotte sunfish	${ }_{75}^{60}$	${ }_{2}^{2}$	13 10	230,290 (2)	${ }^{123}$	1	17	20,82,110,120,22,400 (6)	110
118	Bluegill	${ }_{843}$	${ }_{23}$	${ }_{27}$	${ }_{70}{ }^{28,291)}$	${ }_{\text {2,492 }}^{120}$	${ }_{25}^{15}$	${ }_{26}$	20,20,300 (3)	${ }^{81}$
119	Longear sunfsh (T)	26	1	-	${ }^{2,10,7,70,81,200,221(6)}$	27	t	7	100,120 (2)	0
120	Smalmouth bass	466	13	27	$70^{\circ}, 200(2)$	1,044	11	26	50 (1)	120
121	Largemouth bass	${ }^{738}$	20	28		${ }_{2,142}^{1,2}$	${ }_{22}$	28	100 (1)	${ }_{190}^{190}$
122	White crapie	130	4	16	223,25, 260,290 (4)	238	2	16	30,20,222,230 (4)	
${ }_{124}^{123}$	Black crapie	${ }_{561}$	${ }^{15}$	25		${ }^{1,276}$	${ }^{13}$	26		${ }^{130}$
${ }^{124}$	${ }^{\text {Crystala dater (E) }}$	-	t	3	${ }^{2400^{\circ}(1)}$	19		4	280,310(2)	${ }_{220}$
125	Wester sand dater (W)	57	2	8	221 (1)	81	1	7		42

Table 6. Continued.

Map No.	Species	1900-72				1974-86				Percent Change in Occurrence**
		No. Stn.	Percent Total	No. Basins	Basins not Found in 1974-86	No. Stn.	Percent Total	No. Basins	Basins not Found in 1900-72	
126	Mud darter (W)	41	1	9	222,300 ${ }^{\text {a }}$,310 (3)	80	1	7	270 (1)	95
127	Rainbow darter	120	3	10	$82^{\text {a }}$,223 (2)	274	3	11	2,230,250 (3)	130
128	Bluntnose darter (E)	2	t	1	-		2	t	1 -	0
129	Iowa darter	235	6	25	$70^{\text {a }}, 90^{\text {a }}, 223$ (3)	654	7	24	30,40 (2)	180
130	Fantail darter	467	13	21	$70^{\text {a }}$ (1)	1,188	12	23	40,90,130 (3)	150
131	Least darter (W)	67	2	15	$10,30,81^{\mathrm{a}}, 120^{\mathrm{a}}, 130^{\mathrm{a}}, 240^{\mathrm{a}}$ (6)	89	1	10	270 (1)	33
132	Johnny darter	1,495	41	29	$70^{\text {a }}$ (1)	3,944	40	28	-	160
133	Banded darter	140	4	12	130 ${ }^{\text {a }}$,250 (2)	305	3	16	90,100,110,260,280,290 (6)	120
134	Yellow perch	900	25	25	$70^{\text {a }}$ (1)	2,273	23	28	100,222,230,250 (4)	150
135	Logperch	327	9	21	$70^{\text {a }}$ (1)	865	9	23	40,110,260 (3)	160
136	Gilt darter (T)	5	t	2	-	44	t	4	2,300 (2)	780
137	Blackside darter	324	9	25	$60^{\text {a }}, 70^{\text {a }}(2)$	865	9	25	30,110 (2)	170
138	Slenderhead darter	55	2	11	$81^{\text {a }}$ (1)	108	1	10	-	96
139	River darter	54	1	7	-	81	1	8	270 (1)	50
140	Sauger	88	2	9	$82^{\text {a }}$ (1)	163	2	11	230,270,290 (3)	85
141	Walleye	359	10	22	-	904	9	25	40,120,230 (3)	150
142	Freshwater drum	154	4	12	250 (1)	246	3	12	270 (1)	60
143	Mottled sculpin	537	15	20	$60^{\text {a }}, 70^{\text {a }}, 230$ (3)	1,792	18	20	40,100,250 (3)	230
144	Slimy sculpin	57	2	8	$60^{\mathrm{a}}, 110^{\mathrm{a}}(2)$	155	2	8	50,260 (2)	170
No. species		142				141				
Total no. occurrences (sum of the number of stations for all species collected)		31,969				86,975				

${ }^{*}$ Total basins possible $=30$ since basins 80 and 220 are subdivided into their sub-basins.
${ }^{* *}$ Percent change in the number of stations over the earlier period; rounded to 2 significant figures.
${ }^{\text {a }}$ Basins not completely sampled by Fish Distribution Study personnel.
${ }^{\mathrm{b}}$ Total number of basins listed for a species.
${ }^{c} \mathrm{t}=$ less than 0.5%.
${ }^{\mathrm{d}} \mathrm{E}=$ Endangered.
T = Threatened.
$\mathrm{W}=$ Watch .

Table 7. Percent occurrence of fish species in lakes and streams, 1974-86.

Species	Percent Occurrence		Species	Percent Occurrence	
	In Lakes	In Streams		In Lakes	In Streams
Northern brook lamprey	0	100	Northern redbelly dace	6	94
American brook lamprey	t^{*}	100	Quillback	6	94
Sea lamprey	0	100	Golden redhorse	6	94
Skipjack herring	0	100	Greater redhorse	6	94
Pink salmon	0	100	Burbot	6	94
Coho salmon	0	100	Paddlefish	7	93
Chinook salmon	0	100	Striped shiner	7	93
Lake chub	0	100	River carpsucker	7	93
Gravel chub	0	100	Highfin carpsucker	7	93
Southern redbelly dace	0	100	Smallmouth buffalo	7	93
Longnose dace	t	100	Mooneye	8	92
Blue sucker	0	100	River shiner	8	92
Slender madtom	0	100	Silver redhorse	8	92
Stonecat	t	100	Flathead catfish	8	92
Pirate perch	0	100	Mud darter	8	92
Ninespine stickleback	0	100	Sauger	8	92
Crystal darter	0	100	Common shiner	9	91
Bluntnose darter	0	100	Finescale dace	9	91
Gilt darter	0	100	Shorthead redhorse	9	91
Brown trout	1	99	Rainbow darter	9	91
Central stoneroller	1	99	Rainbow trout	10	90
Redside dace	1	99	Silver chub	10	90
Bigmouth shiner	1	99	Fathead minnow	11	89
Suckermouth minnow	1	99	Bullhead minnow	11	89
Blacknose dace	1	99	White sucker	11	89
Northern hog sucker	1	99	River darter	12	88
Western sand darter	1	99	Spotfin shiner	13	87
Fantail darter	1	99	Gizzard shad	14	86
Banded darter	1	99	Blackstripe topminnow	15	85
Blackside darter	1	99	Johnny darter	15	85
Slimy sculpin	1	99	Shortnose gar	16	84
Creek chub	2	98	Channel catfish	17	83
Brook stickleback	2	98	Black buffalo	18	82
Brook trout	3	97	Spotted sucker	19	81
Largescale stoneroller	3	97	Trout-perch	19	81
Mississippi silver minnow	3	97	Orangespotted sunfish	20	80
Speckled chub	3	97	Common carp	21	79
Hornyhead chub	3	97	Emerald shiner	21	79
Pearl dace	3	97	Bigmouth buffalo	21	79
Slenderhead darter	3	97	Tadpole madtom	22	78
Mottled sculpin	3	97	Goldfish	23	77
Chestnut lamprey	4	96	Freshwater drum	23	77
Brassy minnow	4	96	Redfin shiner	24	76
Ozark minnow	4	96	Black bullhead	24	76
Rosyface shiner	4	96	Green sunfish	24	76
Longnose sucker	4	96	Pallid shiner	26	74
River redhorse	4	96	Weed shiner	28	72
Silver lamprey	5	95	Logperch	28	72
Sand shiner	5	95	Pugnose minnow	29	71
Shovelnose sturgeon	6	94	Bluntnose minnow	29	71
American eel	6	94	Smallmouth bass	29	71
Alewife	6	94	Rainbow smelt	30	70
Goldeye	6	94	Northern pike	32	68
Central mudminnow	6	94	White bass	32	68

Table 7. Continued.

Species	Percent Occurrence	
	In Lakes	In Streams
Yellow bullhead	33	67
Rock bass	34	66
Longnose gar	37	63
Longear sunfish	37	63
White crappie	37	63
Grass pickerel	41	59
Bowfin	42	58
Walleye	42	58
Blacknose shiner	43	57
Spottail shiner	44	56
Golden shiner	45	55
Least darter	47	53
Lake sturgeon	48	52
Mimic shiner	48	52
Starhead topminnow	50	50
Lake chubsucker	51	49
Brook silverside	52	48
Pumpkinseed	54	46
Black crappie	56	44
Iowa darter	57	43
Largemouth bass	58	42
Bluegill	59	41
Yellow perch	60	40
Yellow bass	65	35
Muskellunge	67	33
Blackchin shiner	67	33
Brown bullhead	68	32
Warmouth	71	29
Pugnose shiner	86	14
Banded killifish	86	14
Cisco or lake herring	100	0
Lake whitefish	100	0
Lake trout	100	0

${ }^{*} \mathrm{t}=$ less than 0.5%.

The sauger held by Ken Kahler (on left) and smallmouth bass held by Eric Polzin (on right) were taken in the lower Trempealeau River.
brook trout $(68,000)$, blacknose dace $(60,000)$, Johnny darter $(59,000)$, yellow perch $(52,000)$ and central mudminnow (39,000) (Append. Table F.3). The brook stickleback, the 8 th most common species, was the 11th most numerous. Of the 31 rarest species, i.e., those caught at less than 0.5% of all the stations (Table 10), all but 5 (alewife, cisco or lake herring, lake chub, speckled chub, and gilt darter) were also represented by the smallest total number of specimens (Append. Table F.3).

Differences Between Time Periods

Only 2 species of fish (pink salmon and chinook salmon) collected during the 1974-86 period were not previously reported. However, both were introduced species.

Three species collected in the early period have not been reported since then. The red shiner and creek chubsucker are apparently no longer present in Wisconsin, since we have completed the sampling in the basins in which they had been previously found. The red shiner was only collected at 2 stations (very close to the Ilinois border) less than $1 / 2$ mile apart in 1969. It is, therefore, doubtful if a reproducing population ever existed in Wisconsin. Like the red shiner, previous records of the creek chubsucker came from only 2 stations; these stations were on 2 streams in the Des Plaines River basin. This species was last collected in 1928. A third species, the ghost shiner (last collected in 1949) has only been found in the Mississippi River, and since we have not completed the sampling of this basin, there is a slight chance it may still be present there.

If one looks at the total number of occurrences (sum of the number of stations at which species were captured) in the 1900-72 period as compared to the 1974-86 period, total occurrences increased from 31,969 to 86,975 (Table 6). Fish Distribution Study personnel accounted for 78% of the total occurrences in the later period. They also collected 138 out of the 141 total species found. (For a list of species taken by all non-DNR collectors, see Appendix Table B.2.)

One of the most important results of this study was the documentation of changes in the known distribution of species within the inland waters of Wisconsin in 1974-86 as compared to the previous period (Table 6). Such changes are not meant to imply that species have expanded, decreased, or remained unchanged in their range in Wisconsin. Instead changes simply indicate that we now know that species are present at more, less, or the same number of locations, respectively, as they were in the early period. In addition, changes allow a measurement to be made, in the case of increases, of the improvement in our knowledge of the distribution of the species in the inland waters of Wisconsin.

Distribution changes were measured by differences in several parameters: numbers of stations or locations, basins, and water bodies. In terms of stations, percentages were calculated to show the percent change in the number of stations at which each species was taken. Decreases were documented for 17 species, increases for 123 species, no changes for 2 species, and undetermined change for 2 other species (Table 6). The decreases ranged from 100%
for 3 species to 15% for one (weed shiner). The increases ranged from 4% for the longear sunfish to $3,700 \%$ for the river redhorse (average $=221 \%$). However, conclusions from these changes should be made with caution since approximately 50% of the state (Fig. 1) has not been completely sampled. Thus the final increases may be greater, and the decreases may not be as high. With this in mind, the decreases for 5 species (cisco or lake herring, lake whitefish, lake trout, rainbow smelt, and ninespine stickleback) are probably due to not completing the sampling of basins in which they were previously found. For 1 species (red shiner), its decline should not be inferred since a reproducing population has not been documented. Distribution for 11 other species also decreased; reasons for these decreases are unknown.

A second parameter used to indicate distribution changes is the number of basins in which a species is found for the first time, the number of basins in which it is now absent, and the change in the total number of basins (Table 6). In the following discussion, the sub-basins $221,222,223,81$, and 82 are counted as basins, thus bringing the maximum number possible for a species to 30 . One hundred and sixteen species were found for the first time in one or more basins. These 116 were reported from an average of 3 new basins per species, with ranges of 1-10 basins per species. One hundred and nineteen species were no longer found in one or more basins. Distribution of these 119 species decreased an average of 2 basins per species, with ranges of 1-8 basins per species.

The basins in which these 119 species were no longer found included both uncompleted and/or completed basins. Of the 119 species, 43 were no longer found just in uncompleted basins, and 42 were no longer found in a combination of both completed and uncompleted basins. Since sampling of 13 basins was not completed by the close of the recent survey, there is a good chance that the species found in these uncompleted basins in the 1900-72 period may still be found in them. The remaining 34 of the 119 species were no longer found only in 1 or more completed basins. For these species, their distribution may possibly have influenced the observed reduction in the number of basins in which the species were absent in 1974-86.

Both increases and decreases in the number of basins in which a species was found were observed. Sixty-five species had increases in the number of basins, and 51 species had decreases in the number of basins in which they were collected. For 26 species, no change was observed in the number of basins in which the species was caught. However, 5 species (paddlefish, longnose gar, striped shiner, Ozark minnow, and bluntnose darter) were only caught in the exact same basins. For individual species, changes can be seen by comparing the 1900-72 and 1974-86 species maps in Appendix G.

A third parameter used to measure distribution change between 1900-72 and 1974-86 was differences in the number of water bodies in which species were found. Although these differences were not computed for all species, they were calculated for those species on the Department's endangered, threatened, and watch lists. These differences will be discussed later in this report.

Table 8. List of species collected at less than 0.5 percent of the stream stations, 1974-86.

Sea lamprey	Pugnose shiner
Lake sturgeon	Striped shiner
Shovelnose sturgeon	Redfin shiner
Paddlefish	Longnose sucker
American eel	Black buffalo
Alewife	Slender madtom
Goldeye	Pirate perch
Pink salmon	Banded killifish
Coho salmon	Starhead topminnow
Chinook salmon	Ninespine stickleback
Rainbow smelt	Yellow bass
Speckled chub	Longear sunfish
Pallid shiner	Crystal darter
	Bluntnose darter

Table 9. List of species collected at less than 0.5 percent of the lake stations, 1974-86.

Chestnut lamprey	Ozark minnow
Silver lamprey	Redfin shiner
American brook lamprey	Suckermouth minnow
Shovelnose sturgeon	Longnose dace
Paddlefish	River carpsucker
American eel	Highfin carpsucker
Alewife	Longnose sucker
Skipjack herring	Smallmouth buffalo
Goldeye	Black buffalo
Lake whitefish	River redhorse
Lake trout	Greater redhorse
Rainbow smelt	Stonecat
Central stoneroller	Flathead catfish
Redside dace	Starhead topminnow
Mississippi silvery minnow	Western sand darter
Speckled chub	Mud darter
Silver chub	Banded darter
Pallid shiner	Slenderhead darter
Striped shiner	River darter
	Slimy sculpin

Table 10. List of species collected at less than 0.5 percent of the total stations, 1974-86.

Sea lamprey	Speckled chub
Lake sturgeon	Gravel chub
Shovelnose sturgeon	Pallid shiner
Paddlefish	Striped shiner
American eel	Redfin shiner
Alewife	Longnose sucker
Skipjack herring	Black buffalo
Goldeye	Slender madtom
Cisco or lake herring	Pirate perch
Lake whitefish	Starhead topminnow
Pink salmon	Ninespine stickleback
Coho salmon	Longear sunfish
Chinook salmon	Crystal darter
Lake trout	Bluntnose darter
Rainbow smelt	Gilt darter
Lake chub	

Many of the increases in number of stations and number of basins at which species were taken were due primarily, but perhaps not entirely, to more efficient gear and increased sampling effort. Since the early period, there has been a shift away from AC electrofishing and seining gear toward DC electrofishing gear, which is more effective for capturing many species (Table 11). Unfortunately, many collectors (18% of collections) in the early period did not record the gear used at each station. However, it is believed that most collectors probably used the same type of seine or net at these locations as they used at their other stations. If seines were in fact used at these locations, this would make the shift from seining in the early period to DC electrofishing gear in the later period even more pronounced. A further breakdown of the 1900-72 period into the 1900-59 and 1960-72 periods clearly shows the reliance on seines in the earliest period and a change to electrofishing (primarily AC) in the 1960-72 period (Table 12).

In addition to use of more effective gear, distribution increases may also be due in part to increased sampling effort in 1974-86. The increase in sampling effort can be seen in the fact that there were 1,509 more streams and 377 more lakes with at least 1 station sampled during the 1974-86 period compared to the 1900-72 period (Table 2). The total number of stations sampled in the 1974-86 period also increased (171%) compared to the total number of stations sampled in 1900-72 (Table 12).

Within the 1900-72 period, only 33% of the stations were sampled during 1900-59 which composed 82% of the years covered by the early period. This clearly shows the heavier sampling effort during the 1960-72 portion of the early period. Thus, if distribution in 1974-86 were compared to that in 1900-59, the changes would be much greater. These intra-period differences are also reflected in Appendix B.1, which cites for each species the percent of data collected during the 1900-50 portion of the 1900-72 period.

Species Richness

Six percent of the stations in completed basins sampled by Fish Distribution Study personnel had 20 or more species, and 1% of the stations had more than 25 species (Table 13). The average number of species per station was 9 . It should be noted that the effort used at the stations has not been standardized. Furthermore, on some of the larger rivers, different sampling gear was used to sample the same section of the river, but the collections using each gear type were counted as if they were from separate stations. An example is a boom shocker and small mesh seine that were used on the same section of a river; results were recorded as separate stations.

When comparing the species caught per station, readers should keep in mind the total number of species caught in the basin. For completed basins, the total numbers of
species caught (in parentheses) are as follows: 10(45), $20(75), 30(70), 40(59), 50(62), 200(43), 210(85), 221(93)$, 222(73), 223(62), 230(74), 250(70), 260(64), 270(97), 280(83), 290(60), Red Cedar River basin(98), and 310(97). These numbers depend upon many factors including: size of basin, diversity of the aquatic habitat (such as size and number of rivers and lakes), climate, amount of pollution in the basin, and accessibility of upstream migration for fish from adjacent basins. For species that have only a few records in a particular basin, one should also consider the source of the data.

Endangered Species

All 8 endangered species (goldeye, gravel chub, pallid shiner, striped shiner, slender madtom, starhead topminnow, crystal darter, and bluntnose darter) were captured in both time periods. ${ }^{4}$ However, there were changes in not only the total number of stations for most species but also in the number of basins and the number of stations within a basin at which they were captured (Table 6 and Appendix G, which contains 2 maps [1900-72 and 1974-86] for each species). Our knowledge of the current distribution and status of these species can be better understood by looking at the number of water bodies from which they were collected, at the number of different locations on each water body, at the number of specimens taken at each location (Table 14), and at the species' distribution map for the later period (Append. G). Illustrations and habitat preferences of the 8 endangered species are given in Appendix Figure E.2.

For the goldeye, it had previously not been taken from 3 basins in which we collected it in 1974-86. However, the only basin (only completed basins are counted) in which we did not collect it was the St. Croix River basin (Table 6 and Append. G Map 16(E)). Its current distribution of 16 stations in 8 water bodies in 4 basins is shown in Table 17 and can be seen on Appendix G Map 16(L). Based on stations that had a known number of specimens, an average of 2.2 goldeyes/station were taken.

The gravel chub had previously been taken from only 1 station in each of the Rock and Sugar river basins. Its current known distribution is limited to 41 stations in these 2 basins and the Pecatonica River basin in which it was collected for the first time (Append. G Map 42(L)). It should be noted that 35 of those stations occurred in 10- and 13 -mile stretches of 2 streams. An average of 6.2 gravel chubs/station were collected from 4 streams.

The pallid shiner had previously been taken at 32 stations in 6 basins (Append. G Map 45(E)). Its current distribution is restricted to only 9 water bodies in the Mississippi River basin and is shown in Appendix G Map $45(\mathrm{~L})$. An average of 9.6 pallid shiners/station were taken.

The striped shiner was collected in the same 4 basins as in the early period, but there was a decrease of 40% in the number of stations at which it was present (Append. G

[^3]Table 11. Gear type used in each basin in 1900-72 and 1974-86, reported as the percent of stations sampled (all collectors) for each time period, with the average percent for all basins.*

Basin	Electrofishing				Seine ${ }^{* *}$		Electrofishing \& Seine		Unknown		Miscellaneous ${ }^{\text {a }}$	
	DC		AC									
	1900-72	1974-86	1900-72	1974-86	1900-72	1974-86	1900-72	1974-86	1900-72	1974-86	1900-72	1974-86
2	-	22	-	3	35	62	2	8	62	3	1	1
10	16	78	-	3	63	19	-	-	22	-	-	-
20	1	64	11	1	54	33	1	$\mathrm{t}^{\text {b }}$	33	1	-	-
30	20	50	17	t	50	49	2	-	11	-	-	t
40	27	55	35	-	27	43	-	2	12	-	-	1
50	25	98	19	-	50	2	6	-	-	-	-	-
60	-	-	-	-	86	-	-	-	-	-	14	-
70	-	-	-	-	94	100	-	-	6	-	-	-
81	3	34	-	3	86	61	-	-	8	-	3	3
82	2	88	t	2	42	9	1	t	50	t	5	t
90	-	84	-	5	25	11	-	-	75	-	-	-
100	-	93	-	3	-	3	-	-	100	-	-	-
110	4	78	4	2	61	16	-	-	30	1	-	2
120	-	89	2	5	80	5	2	-	13	1	3	t
130	44	88	8	4	26	6	1	t	21	-	t	1
200	-	45	17	2	58	50	-	3	17	-	8	-
210	6	42	4	2	62	55	2	t	24	1	2	-
221	10	52	1	t	64	45	1	t	22	t	2	2
222	9	87	-	-	82	12	6	-	3	-	-	1
223	2	92	-	-	76	8	-	-	22	-	-	-
230	17	98	11	-	39	2	-	-	33	-	-	-
240	6	84	2	3	64	12	3	t	25	t	1	1
250	59	85	11	-	29	1	1	-	-	14	-	-
260	39	84	46	8	11	7	-	-	4	-	-	-
270	12	88	70	1	14	10	t	t	4	t	-	t
280	32	91	58	t	7	8	-	1	3	-	-	-
290	52	99	33	t	13	-	-	1	2	-	-	-
300	21	54	29	14	39	30	2	1	9	1	1	t
310	1	12	69	36	24	49	1	2	5	t	1	1
400	4	57	-	20	51	20	30	1	11	2	4	-
Avg. \% ${ }^{\text {c }}$	14	64	22	8	43	26	2	1	18	1	1	1

*The total number of stations from which these percentages were calculated excludes 148 stations for which more than 1 type of gear was used. All figures were rounded to the nearest percent.
${ }^{* *}$ Includes any kind of nets.
${ }^{\text {a }}$ Includes stations at which fish were found dead or taken by gear such as hook and line, dip net, minnow traps, etc.
${ }^{\mathrm{b}} \mathrm{t}=$ less than 0.5%.
${ }^{\mathrm{c}}$ Based on the number of stations used for each basin.

Table 12. Comparison of gear type within 4 time periods between 1900 and 1986, reported as the number and percent (in parenthesis) of stations sampled for each time period.

Years	Total Stations	Electrofishing		Seine	Electrofishing \& Seine	Unknown	Misc.
		DC	AC				
1900-59	1,215	43 (4)	39 (3)	770(63)	15(1)	333(27)	15(1)
1960-72	2,568	470(18)	805(31)	859(33)	65(3)	339(13)	30(1)
1900-72 ${ }^{*}$	3,635	499(14)	818(22)	1,557(43)	76(2)	643(18)	42(1)
1974-86	9,841	6,294(64)	782 (8)	2,551(26)	71(1)	88 (1)	55(1)

[^4]Table 13. Quantities of species taken per station by Fish Distribution Study personnel in each completed basin in 1974-86, reported as the percent of number of stations in each category for each basin, with an average percent for all basins and the average number of species per station for each basin.

No. Species/ Station	Basin																		$\underset{\%}{\text { Avg. }}$
	10	20	30	40	50	200	210	221	222	223	230	250	260	270	280	290	$300^{* *}$	310	
0	-	2	3	2	2	2	2	2	t	1	2	-	-	1	2	4	1	2	1.7
1	4	4	3	2	5	4	4	5	8	-	1	1	7	3	5	8	2	3	3.6
2	9	2	3	9	-	4	3	6	7	2	1	4	9	3	11	13	3	5	5.0
3	11	4	7	6	10	7	2	5	4	3	1	3	5	3	9	7	5	7	5.0
4	5	8	7	8	2	2	5	6	3	3	3	3	9	4	11	10	5	9	6.4
5	13	6	4	12	10	5	9	7	7	3	3	6	14	4	12	14	8	11	8.2
6	9	7	8	8	5	7	7	9	5	5	2	9	11	5	9	7	6	8	7.2
7	7	9	3	5	-	11	6	8	9	6	2	6	7	9	7	4	9	9	7.6
8	2	7	5	9	2	9	8	8	6	7	4	9	12	4	6	11	8	9	7.5
9	11	7	10	4	2	18	6	6	7	11	7	7	9	6	5	4	8	7	7.1
10	4	5	8	5	12	2	6	6	8	8	8	7	2	8	5	4	7	6	6.3
11	2	4	4	5	2	2	7	6	3	12	9	12	5	4	3	4	6	6	5.8
12	5	5	5	5	2	5	6	4	3	9	10	4	2	4	3	-	5	5	4.8
13	5	2	10	1	10	5	6	3	6	6	8	10	1	4	1	4	4	3	4.2
14	4	3	8	6	2	5	6	3	2	2	9	6	1	4	4	2	4	2	3.7
15	2	4	3	1	5	5	5	2	4	3	7	-	1	4	2	2	4	2	3.0
16	4	3	3	4	5	-	2	2	3	3	6	4	-	4	2	1	3	2	2.6
17	4	4	1	-	5	-	2	2	2	2	6	3	-	2	$\mathrm{t}^{\text {a }}$	-	2	1	1.7
18		2	1	2	2	2	2	2	2	t	4	1	1	4	1	-	1	1	1.7
19	-	3	1	2	2	-	-	1	4	2	1	1	1	2	1	-	2	1	1.3
20	-	4	1	-	5	2	1	2	1	3	2	-	-	3	-	-	1	t	1.3
21	-	3	2	-	-	-	1	1	1	1	1	1	1	2	-	2	1	t	0.9
22	-	1	-	1	-	-	1	1	1	3	1	-	-	3	t	-	1	1	1.0
23	-	-	-	1	-	-	1	1	.	1	-	-	-	2	-	-	1	1	0.6
24	-	-	-	-	-	-	t	t	1	1	1	-	-	2	-	-	1	t	0.4
25	-	1	-	-	-	-	-	-	1	1	1	-	-	3	-	-	1	t	0.5
26	-	-	-	-	-	2	-	2	-	-	-	-	-	t	-	-	1	t	0.2
27	-	-	-	-	-	-	1	t	1	-	-	-	-	1	t	-	t	t	0.2
28	-	-	-	-	2	-	-	-	1	-	-	-	-	1	-	-	-	-	0.1
29	-	1	-	-	-	-	1	-	-	-	-	-	-	-	-	1	-	-	0.1
30	-	-	-	-	-	-	-	t	-	-	-	-	-	1	-	-	t	-	0.1
31	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	$\mathrm{T}^{\text {b }}$
32	-	-	-	-	-	-	t	-	-	-	-	-	-	-	-	-	-	-	T
33	-	-	-	-	-	-	-	t	-	-	-	-	-	-	-	-	-	-	T
34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T
40	-	-	-	-	-	-	t	-	-	-	-	-	-	-	-	-	-	-	T
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43	-	-	-		-	-	-	-	-	-	1	-	$\underline{-}$	-	-	-	-	-	T
Avg. no. species	7	10	9	8	10	9	10	9	9	11	12	10	7	12	7	6	10	8	9

* The number of species at a station. All figures were rounded to the nearest percent.
** Includes the Red Cedar River sub-basin only.
${ }^{a} \mathrm{t}=$ less than 0.5%.
${ }^{\mathrm{b}} \mathrm{T}=$ less than 0.05%.

Maps $50(\mathrm{E})$ and $50(\mathrm{~L})$). An average of 6.1 striped shiners/station were now taken at 15 stations in 9 water bodies.

The slender madtom was collected at only 3 of the 7 stations in 2 basins in which it was found in the early period. It was not collected in the Fox River basin (basin 210), the only other basin in which it had been previously reported. The fish is known to occur at 28 stations in 16 water bodies with an average of 9.9 fish/station (Append. G Maps 98(E) and $98(\mathrm{~L})$). This is an increase of 300% in the number of stations where it was found.

The starhead topminnow had not previously been reported from the Black River basin (Append. G Maps 107(E) and 107(L)). The rest of its distribution has remained about the same as the early period. An average of 6.1 starhead topminnows were taken from 9 stations in 7 water bodies.

The crystal darter was collected in 2 basins (Trempealeau and St. Croix river basins) not previously reported but not from the Wisconsin River basin (Append. G Maps 124(E) and $124(\mathrm{~L})$). The one station in the Wisconsin River at which it had been taken in 1962 was sampled in the later period, but no specimens were taken. An average of 6.2 crystal darters/station were taken from 19 stations in only 5 rivers.

The bluntnose darter, the rarest of the endangered species, had been reported in 1949 from a total of 2 stations somewhere in Pools 8 and 9 in the Mississippi River. In the later period 1 specimen was caught at each of 2 stations in Pool 11 (Append. G Maps 128(E) and 128(L)).

Threatened Species

All 6 threatened species (speckled chub, Ozark minnow, blue sucker, black buffalo, longear sunfish, and gilt darter) were also captured in both time periods. ${ }^{5}$ Like the endangered species, the changes in the known distribution were substantial for most threatened species (Table 6), and our knowledge of their current distribution and status can be better understood by looking at the number of water bodies from which they were collected, at the number of different locations on each water body, at the number of specimens taken at each location (Table 15), and at the species' distribution map for the later period (Append. G). Illustrations and habitat preferences of the 6 threatened species are given in Appendix Figure E.3.

The speckled chub was taken at 28% fewer stations and not at all in the Coon \& Bad Axe river basin (Append. G Maps $40(\mathrm{E})$ and $40(\mathrm{~L})$). An average of 15.3 speckled chubs/station were taken at 29 stations in 8 water bodies.

The Ozark minnow was taken at 50 stations (230% increase over the early period) from 28 water bodies in the same 4 basins as previously reported (Append. G Maps 57(E) and 57(L)). An average of 12.1 Ozark minnows/station were taken.

The blue sucker was taken at 54 stations (46% increase over the early period) from 9 water bodies in 5 basins (Append. G Maps 81(E) and 81(L)). It was taken for the first time in the Black River basin but was not taken in the La Crosse River basin. An average of 9.1 blue suckers/station were taken.

The black buffalo was taken at 11 stations (27% decrease over the early period) from 5 water bodies in 3 basins (Append. G Maps 87(E) and 87(L)). It was taken for the first time in the Pecatonica River basin. An average of only 1.5 black buffalos/station were taken.

The longear sunfish was only caught at 27 stations (1 more than in the early period). However, it was caught for the first time in the Pensaukee and Peshtigo river basins but not taken again in 3 completed basins (Root, Des Plaines, and Rock river basins) in which it was taken in the early period (Append. G Maps 119(E) and 119(L)). An average of 10.1 longear sunfish/station from 17 water bodies were taken.

The gilt daiter was taken at 44 stations (780% increase) from 9 rivers in 4 basins. It was taken for the first time in the Mississippi and Chippewa river basins (Append. G Maps 136(E) and 136(L)). The St. Croix and Black rivers seem to be the only strongholds for this species in the state. An average of 9.0 gilt darters/station were taken.

Watch Species

Of the 21 watch fish species, 4 occur primarily in the Great Lakes and are therefore excluded from the geographical area covered by this summary report. ${ }^{6}$ One species-the red shiner-was found only in 1900-72. Five others-the paddlefish, pugnose shiner, redfin shiner, river redhorse, and greater redhorse-are currently being proposed for addition to the Department's official list of threatened species. These 5 species along with 2 other watch species-the mud darter and pirate perch-will be discussed. The remaining 9 watch species-the lake sturgeon, cisco or lake herring, American eel, redside dace, pugnose minnow, weed shiner, lake chubsucker, western sand darter, and least darter-should be looked at closely in the future to determine if they too should be added to the threatened list. For the watch species being discussed, the changes in the known distribution were substantial for most (Table 6), and our knowledge of their current distribution and status can be better understood by looking at the number of water bodies from which they were collected, at the number of different locations on each water body, at the number of specimens taken at each location (Table 16), and at the species' distribution map for the later period (Append. G). Illustrations and habitat preferences of 14 of the watch species are given in Appendix Figure E.4.

[^5]The paddlefish was reported from 14 stations from 4 water bodies in 3 basins with an average of 9.9 fish/station (Append. G Maps 8(E) and 8(L)). The only stronghold for the paddlefish was at the Prairie du Sac dam on the Wisconsin River where 94% of the fish were taken.

The pugnose shiner was taken at 58 stations (180% increase) from 42 water bodies in 8 basins (basins 20,300, and 400 for the first time) with an average of 5.8 fish/station (Append. G Maps $46(\mathrm{E})$ and $46(\mathrm{~L})$).

The redfin shiner was taken from only 7 basins; this represents a decrease of 7 completed basins from the early period (Append. G Maps 62(E) and 62(L)). The number of stations has dropped 62% (now only 28 stations). If 6 of the 28 stations are excluded, the average number of redfin shiners/station is only 4.

The river redhorse had previously been taken from only 2 stations in 2 basins. It was taken in the later period at 76 stations ($3,700 \%$ increase) from 14 water bodies in 10 basins (for the first time in 8 basins) with an average of 6.6 fish/station (Append. G Maps 90(E) and 90(L)).

The greater redhorse was taken at 106 stations (520% increase) from 37 water bodies in 10 basins with an average of 4.1 fish/station (Append. G Maps 93(E) and 93(L)).

The pirate perch was taken at 25 stations (9% increase) from 18 water bodies in 6 basins with an average of 3.4 fish/station (Append. G Maps 102(E) and 102(L)).

The mud darter was taken at 80 stations (95% increase) from 36 water bodies in 7 basins with an average of 5.4 fish/station (Append. G Maps 126(E) and 126(L)). It was taken for the first time in the Black River basin but not from 2 completed basins (Sugar and St. Croix river basins) in which it was previously captured.

Table 14. Specific records for endangered species collected in the inland waters of Wisconsin during 1974-86.*

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Goldeye	2	Mississippi R.	4	19	
		Raft Channel	1	1	
		Running Slough	2	2	
		Big L. \& Sloughs	1	4	
	230	Grant R.	1	1	
	240	Wisconsin R.	4	4	
		Kickapoo R.	2	3	
	300	Chippewa R.	1	1	
		Total	16	35	2.2
Gravel chub	221	Rock R.	2	17	
		Turtle Cr. ${ }^{\text {a }}$	20	125	
	222	Sugar R. ${ }^{\text {b }}$	15	106	
	223	Pecatonica R.	$\underline{4}$	6	
		Total	41	254	6.2
Pallid shiner	2	Mississippi R.	9	21	
		McCartney L.	1	6	
		Cassville Slough	3	68	
		State Line Slough	3	52	
		Ferry L.	1	29	
		Catfish Slough	2	38	
		Glen L.	2	23	
		Ambrough Slough	3	10	
		L. Winneshiek	$\underline{2}$	2	
		Total	26	249	9.6
Striped shiner	20	Milwaukee R.	6	63	
		Pigeon Cr.	1	16	

Table 14. Continued.

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Striped shiner (continued)	20	Cedar Cr.	2	2	
		Stony Cr.	1	1	
		Mink Cr.	1	1	
		E. Br. Milwaukee R.	1	5	
	30	Otter Cr.	1	2	
	210	Wind L.	1	1	
	221	Rubicon R.	1	1	
		Total	15	92	6.1
Slender madtom	221	Rock R.	2	2	
		Little Turtle Cr.	1	2	
		Darien Cr.	1	1	
		Bark R.	7	112	
		Oconomowoc R.	4	85	
		Mason Cr.	1	12	
	223	Pecatonica R.	1	3	
		Dodge Br.	1	1	
		Unnamed Cr.	1	1	
		Otter Cr.	1	5	
		Wood Br.	2	9	
		Bonner Br.	2	22	
		Cottage Inn Br.	1	16	
		Mineral Point Br.	1	4	
		Pedler Cr.	1	1	
		Livingston Br .	1	1	
		Total	28	277	9.9
Starhead topminnow	210	FoxR.	1	1	
		Mukwonago R.	2	20	
		Lower Phantom L.	2	24	
		Upper Phantom L.	1	4	
		L. Beulah	1	3	
	222	Unnamed Ditch	1	2	
	270	Black R.	1	1	
		Total	9	55	
Crystal darter	2	Mississippi R.	2	4	
	280	Trempealeau R.	1	1	
	300	Chippewa R.	9	98	
		Red Cedar R.	5	13	
	310	St. Croix R.	$\underline{2}$	2	
		Total	19	118	6.2
Bluntnose darter	2	Mississippi R.	$\underline{2}$	$\underline{2}$	
		Total	2	2	1.0

*Endangered status is based on those species designated by the Department as endangered at the time this final report was written [Wis. Admin. Code NR 27.03(2)(e), Nov. 1982].
**Does not include stations at which the number of specimens was not recorded.
${ }^{\text {a }}$ All stations were in a 10 -mile stretch of the creek.
${ }^{\mathrm{b}}$ All stations were in a 13 -mile stretch of the river.

Table 15. Specific records for threatened species collected in the inland waters of Wisconsin during 1974-86.*

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Speckled chub	2	Mississippi R .	6	98	
		Cassville Slough	1	1	
		L. Winneshiek	1	1	
		Unnamed Slough	1	2	
	240	Wisconsin R.	14	309	
		Kickapoo R.	3	29	
	270	Black R.	1	1	
	310	St. Croix R.	$\underline{2}$	3	
		Total	29	444	15.3
Ozark minnow	221	Turtle Cr.	3	7	
		Unnamed Cr.	1	4	
		Spring Brook	1	12	
		Little Turtle Cr.	4	148	
		Darien Cr.	3	12	
		Ladd Cr.	1	87	
		W. Br. Ladd Cr.	1	1	
		Unnamed Cr.	1	2	
	223	E. Br. Richland Cr.	2	15	
	230	Apple R.	1	58	
		Unnamed Cr.	1	1	
		Unnamed Cr.	1	1	
		Pats Cr.	3	10	
		Platte R.	7	59	
		Little Platte R.	3	45	
		McAdam Br.	1	21	
		Blockhouse Cr.	2	17	
		Rountree Br.	1	2	
		Unnamed Cr.	1	4	
		Willow Br.	1	11	
		Austin Br.	1	2	
		Unnamed Cr.	1	6	
		Leggett Cr.	1	6	
		Unnamed Cr.	1	6	
	300	Red Cedar Cr.	1	4	
		Vermillion R.	2	44	
		Brill R.	2	12	
		Long L.	$\underline{2}$	6	
		Total	50	603	12.1
Blue sucker	2	Mississippi R.	4	5	
		Winneshiek Slough	1	1	
		Battle Slough	1	1	
	240	Wisconsin R.	20	279	
		Kickapoo R.	2	2	

Table 15. Continued.

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Blue sucker (continued)	270	Black R.	1	1	
	300	Chippewa R.	18	182	
		Red Cedar R.	6	21	
	310	St. Croix R.	1	1	
		Total	54	493	9.1
Black buffalo	2	Mississippi R.	1	1	
	223	Pecatonica R.	2	3	
	240	Wisconsin R.	3	3	
		Kickapoo R.	3	4	
		L. Wisconsin	2	6	
		Total	11	17	1.5
Longear sunfish	20	Milwaukee R.	5	23	
		E. Br. Milwaukee R.	2	11	
		Mauthe L.	1	1	
		W. Br. Milwaukee R.	2	11	
	82	Unnamed Cr.	1	3	
	90	Little Suamico R.	1	2	
	100	Pensaukee R.	1	6	
	120	Leigh Fl.	1	1	
	210	Fox R.	2	2	
		White R.	1	3	
		Mukwonago R.	2	86	
	300	Bass L.	1	14	
		L. Winter	1	2	
		Beverly L.	1	99	
		Lac Courte Oreilles	3	5	
		Grindstone L.	1	3	
		Whitefish L.	1	2	
		Total	27	274	10.1
Gilt darter	2	Mississippi R.	1	1	
	270	Black R.	6	79	
	300	Chippewa R.	2	16	
	310	St. Croix R.	27	281	
		Apple R.	1	1	
		Wood R.	1	1	
		Yellow R.	2	14	
		Namekagon R.	3	3	
		Moose R.	1	2	
		Total	44	398	9.0

*Threatened status is based on those species designated by the Department as threatened at the time this final report was written [Wis. Admin. Code NR 27.03(3)(e), Nov. 1982].
${ }^{* *}$ Does not include stations at which the number of specimens was not recorded.

Table 16. Specific records for selected watch species collected in the inland waters of Wisconsin during 1974-86.*

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station*
Paddlefish	2	L. Pepin	1	1	
	240	Wisconsin R.	6	130	
		Unnamed Ditch	1	2	
	300	Chippewa R.	6	6	
		Total	14	139	9.9
Pugnose shiner	20	Forest L.	1	4	
		Big Cedar L.	1	1	
		Lucas L.	1	3	
		Silver L.	1	5	
		Crooked L.	1	14	
		Mauthe L.	1	3	
		Tittle L.	1	1	
	81	Fox R.	1	1	
	82	Willow Cr.	1	2	
		Mynyard L.	1	2	
		S. Br. Little Wolf R.	2	7	
	210	Elizabeth L.	1	1	
		L. Mary	1	1	
		Benedict L.	1	27	
		Cross L.	1	53	
		Silver L.	1	1	
		Waubeesee L.	1	2	
		L. Kec-Nong-Ga-Mong	1	1	
		Mukwonago R.	1	1	
		Upper Phantom L.	1	5	
		L. Beulah	1	1	
		Lulu L.	1	4	
	221	L. Ripley	4	4	
		Lower Nemahbin L.	2	14	
		Rock L.	1	2	
		Oconomowoc L.	2	2	
		Okauchee L.	1	1	
		Pike L.	3	11	
	300	Bear L.	1	1	
		Kekegama L.	1	12	
		Long L.	6	75	
		Red Cedar L.	1	3	
		Manitowish L.	1	1	
	310	Upper Clam L.	1	1	
		Yellow R.	2	3	
		Falk L.	1	1	
		Burlingame L.	1	9	
		Twentysix L.	1	2	
		Yellow L.	2	3	
		Big Sand L.	2	27	
		McKenzie Cr.	1	3	
	400	L. Delta	1	$\underline{21}$	
		Total	58	336	5.8

Table 16. Continued.

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Redfin shiner	20	Cedar Cr.	3	16	
		Cedarburg Pond	1	12	
		N. Br. Milwaukee R.	1	1	
		Wallace Cr.	1	1	
	82	Willow Cr.	1	13	
		Pine R.	1	5	
		Austin Cr.	1	1	
	90	Tibbet Cr.	1	71	
	221	Rock R.	1	1	
		Bass Cr.	2	27	
		Crawfish R.	2	3	
		Mud Cr.	1	6	
		Danville Millpond	1	4	
	222	Sugar R.	1	5	
		Sylvester Cr.	1	1	
		Sugar R.-E. Channel	1	1	
		Decatur L.	1	1	
		Ross Crossing Cr.	1	1	
	240	Hemlock Cr.	1	6	
	300	Tainter L.	1	1	
		Yellow R.	1	5	
		Barron Fl. \#1	1	60	
		Barron Fl. \#3	1	11	
		Total	27	253	9.4
River redhorse	20	E. Br. Milwaukee R.	1	2	
	82	Wolf R.	2	3	
	2	Mississippi R.	4	4	
		Moseman Slough	1	3	
	210	Fox R .	6	106	
		White R.	1	2	
	221	Rock R.	4	16	
	222	Sugar R.	2	2	
	240	Wisconsin R.	1	1	
	270	Black R.	11	22	
	300	Chippewa R.	8	21	
	310	St. Croix R.	33	313	
		Apple R.	1	3	
		Yellow R.	1	1	
		Total	76	499	6.6
Greater redhorse	20	Milwaukee R.	14	40	
		Pigeon R.	1	10	
		Cedar Cr.	1	9	
		N. Br. Milwaukee R.	3	7	
		E. Br. Milwaukee R.	1	1	
		W. Br. Milwaukee R.	1	2	
	40	Manitowoc R.	5	88	
		Branch R.	4	5	
		S. Br. Manitowoc R.	1	1	

Table 16. Continued.

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Greater redhorse (continued)	50	E. Twin R.	4	25	
		W. Twin R.	6	52	
		Neshota R.	1	4	
	82	L. Poygan	1	1	
		Unnamed Ditch	1	3	
	100	Pensaukee R.	5	22	
	110	Little R.	1	1	
	221	Rock R.	1	1	
		Turtle Cr.	2	9	
		Bark R.	1	1	
	240	Wisconsin R.	1	3	
		Wyona L.	1	2	
	300	Chippewa R.	2	2	
		Red Cedar R.	3	7	
		Brill R.	1	3	
		Island L.	1	1	
		Swift Cr.	1	1	
		Whitefish L.	1	1	
	310	St. Croix R.	26	68	
		Yellow R.	4	22	
		Loon Cr.	1	2	
		Chases Brook	1	1	
		Namekagon R.	4	27	
		Dogtown Cr.	1	1	
		McKenzie Cr.	1	1	
		Trego L.	1	1	
		Spring Cr.	1	8	
		Moose R.	1	1	
		Total	106	434	4.1
Pirate perch	200	Des Plaines R.	1	1	
		Jerome Cr.	3	29	
		Unnamed Ditch	1	1	
		Kilbourn Road Ditch	4	7	
		Salem Br.	1	1	
	240	Wisconsin R.	1	3	
		Bush Cr.	1	1	
		Millville Cr.	1	3	
		Morrey Cr.	1	1	
		Blue Mounds Cr.	1	1	
		Dunlap Cr.	1	1	
		Swamp Cr.	1	1	
		Rocky Run	2	3	
	250	Unnamed Cr.	1	5	
		Mormon Cr.	1	1	
	270	Black R.	2	20	
	280	Trempealeau R.	1	- ${ }^{\text {a }}$	
	290	Waumandee Cr.	$\underline{1}$	2	
		Total	25	81	3.4
Mud darter	2	Mississippi R.	26	98	
		Sand Cut	1	2	
		Cassville Slough	3	27	
		State Line Slough	1	2	
		Garnet L.	1	3	
		Ambrough Slough	2	3	
		L. Winneshiek	2	3	

Table 16. Continued.

Species	Basin	Water Body	No. Stations	No. Fish	Avg. No. Fish/Station ${ }^{* *}$
Mud darter (continued)	2	Thief Slough	1	1	
		Unnamed Slough	1	7	
		Fountain City Bay	1	17	
		Indian Point Slough	2	6	
		Probst L.	1	4	
		Moseman Slough	1	1	
	230	Platte R.	1	2	
		Sandy Cr.	1	14	
	240	Millville Cr.	1	1	
		Mill Cr.	1	1	
		Blue Mounds Cr.	1	3	
	250	Du Charme Cr.	1	1	
		Unnamed Cr.	1	1	
		Copper Cr.	1	6	
		Buck Cr.	1	4	
		Sugar Cr.	1	7	
		Rush Cr.	1	37	
		Bad Axe R.	1	3	
		Unnamed Cr.	1	6	
		Unnamed Cr.	1	33	
		Mormon Cr.	1	25	
		Pammel Cr.	1	4	
	270	Black R.	6	29	
		Fleming Cr.	1	1	
		Sand Cr.	1	6	
	280	Trempealeau R.	6	11	
	290	Waumandee Cr.	1	44	
		Buffalo R.	5	11	
		Deer Cr.	1	6	
		Total	80	430	5.4

*Watch status is based on those species considered by the Department as watch at the time this final report was written (Bur. Endanger. Resour., pers. comm., 1985).
**Does not include stations at which the number of specimens was not recorded.
${ }^{\text {a }}$ Unknown number taken. This station is not used in the average number of fish per station.

RECOMIMENDATIONS

Continuing Use of Fish Distribution Data

Regardless of whether or not the survey of the state is completed, the computerized data base created by this research study exists as a resource for use by any interested person. Information can be obtained by users electronically through direct access to the computerized files. Users can also contact the Bureau of Research and request specialized print-outs of portions of the data base. Information obtained by both methods has assisted past users in activities such as preparing environmental impact assessments, forming master plans, and planning or conducting future research studies.

Use in Future Research Studies

This series of reports on fish distribution does not deal generally with the ecological data collected since 1974. These data include specific site information such as water temperature, turbidity, bottom type, aquatic vegetation type, etc. Accessing and analyzing these ecological data could provide useful baseline information for future fisheries or limnological research projects. Study data on fish distribution provide a similar baseline for other investigations.

Protection of Endangered and Threatened Species and Their Habitat

The aquatic environment of the inland waters in Wisconsin in which the endangered and threatened fish species are found should be protected. Any manipulations of this habitat should consider the presence of these valuable species.

Updating Present Records

DNR research and fisheries management personnel should in the course of routine surveys preserve at least 1 specimen of each endangered, threatened, and watch species they observe (except paddlefish, lake sturgeon, and American eel) and notify the Bureau of Research. This notification should include collection date; names of the species caught, collector, and water body; and water body identification code and location (township description). Such collections will permit continuing reassessment of the endangered and threatened species lists as required by law and of the watch list as well.

Completion of This Survey

Completion of a statewide survey has not been achieved due to funding reduction; only 50% of the inland geographic area of the state has been covered (Fig. 1). When additional funds become available for investigations of endangered, threatened, and/or nongame species, completion of the survey should be considered.

In order to guide completion of the survey, a detailed sampling plan has been prepared (Append. A). This plan is based on the premise that the level of sampling effort used to date in completed basins should also be used in the uncompleted basins. Given this premise, the uncompleted basins contain about 1,934 streams (26% of the total in these basins) to sample with about 4,071 stations (Append. Table A.3). There are also about 654 lakes (6% of total) to be sampled with about 3,606 stations (Append. Table A.4). These tables itemize the streams and lakes by length or acreage groups and for each group cite the total number of water bodies, percent to be sampled, number of water bodies that should be sampled, number of water bodies already completed, number of water bodies remaining to be sampled, number of stations per mile or per 100 acres,
number of stations that should be sampled, number of stations on these water bodies already sampled, and number of stations remaining to be sampled. Furthermore the same type of information on streams (Append. Tables A.5A.16) and on lakes (Append. Tables A.17-A.30) is presented for each uncompleted basin.

An example illustrates how these tables are to be read. Appendix Table A. 3 summarizes recommended effort for sampling streams in the uncompleted basins of the state: basins 2, 60-130, 240 (above mile 92), 300 (excluding the Red Cedar River sub-basin), and 400. In these basins, there are 606 streams that are $6-10$ miles long. We recommend that these streams be sampled at the same rate (91%) as those streams of the same length in the completed basins. Thus 551 of the 6 - to 10 -mile streams should be sampled, of which sampling has been completed on 79 streams, leaving 472 streams yet to sample. In terms of stations on these streams, we recommend that the number of stations per mile be the same (0.2) as that for stations on streams of the same length in the completed basins. To determine the total number of stations that should be sampled, this rate of $0.2 /$ mile was multiplied by the length of each of the 472 streams yet to sample. The results were rounded and added, arriving at a total of 715 stations. Of these, 32 stations were already sampled (i.e., sampling of some stations on a stream had been completed but other stations on the same stream had not been). The difference is 683 stations to be sampled on streams in the 6 - to 10 -mile length group. These same types of calculations were done for other length groups of streams (Append. Tables A.3, A.5-A.18) and surface area groups of lakes (Append. Tables A.4, A.19-A.30).

Using the knowledge from how many streams and lake stations were sampled per week in the completed basins, we estimate it will take about 7 years for a 3 -person crew to sample the streams and 5 years for the same-sized crew to sample the lakes. Whether sampling intensity greater than, less than, or equal to this is used will have to be decided when and if the research study is resumed.

In addition to completion of the statewide field survey, nonfield updating of the data base is another activity that could be funded. This updating would involve a systematic effort to obtain fish survey reports after 1950 on all uncompleted basins and after 1980 from all other basins. Data in these reports would then be entered into the computerized file. At best this activity would be a long-term one involving both ongoing updating as well as the initial effort to do this work.

Appendix A．Sampling Effort for Completed and Projected Surveys of the State

Appendix Table A．1．Sampling effort used by Fish Distribution Study personnel in sampling streams in all basins already completed（10－50，200－223，230，250－290，300＊，and 310）．

Parameters	Length Groups（miles）										Total
	0－5	6－10	11－15	16－20	21－30	31－50	51－100	101－150	151－200	＞201	
Streams											
Total	3，639	379	99	62	41	28	20	4	2	0	4，274
\％sampled	20	91	100	98	100	97	100	100	100	－	31
No．sampled	730	345	99	61	41	29	20	4	2	－	1，331
Stations											
No．sampled	796	585	240	207	202	227	314	119	205	－	2，895
No．per mile＊＊	－${ }^{\text {a }}$	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.6	－	

＊Includes streams in Red Cedar River sub－basin only．
${ }^{* *}$ Based on average number of stations per stream length．
${ }^{\text {a }}$ Needed at least one station per stream．

Appendix Table A．2．Sampling effort used by Fish Distribution Study personnel in sampling lakes in all basins already completed（10－50，200－223，230，250－290，300＊，and 310）．

Parameters	Surface Area Groups（acres）												
Lakes													
Total no．	4ssit	284	198	69	そ\％	15	38	18	8	6	9	4	42\％8
\％sampled	1	21	\％ı	68	4\％	80	89	88	\＄\％	100	\＃\＃	75	»
No．sampled	41	66	79	48	2\％\％	13	丹』	16	\＃	6	\＃	3	3413．
Stations													
No．sampled	12\％	198	2\％\％	144	丹\％\％	52	2\％月！	129	\＃4	44	1\％\％	45	
No．per 100 acres ${ }^{* *}$	\％	3	3	3	§紬	0.89	082	0.69	0．6\％	0.33	Mg	0.21	

[^6]Appendix Table A.3. Streams by length groups, previous sampling, and sampling effort recommended for all basins not completed (2, 60-130, 240, 300, 400). ${ }^{*}$ Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	6,469	606	158	84	83	53	27	4	2	3	7,489
$\%$ to be sampled	20	91	100	98	100	97	100	100	100	100	30
No. that should be sampled ${ }^{* *}$	1,294	551	158	84	83	53	27	4	2	3	2,259
No. completed	$219^{\text {a }}$	79	16	5	2	3	1	0	0	0	$325{ }^{\text {a }}$
No. to be sampled	1,077	472	142	79	81	50	26	4	2	3	1,936
Stations											
No. per mile	-b	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.6	0.6	
No. that should be sampled	1,077	715	362	279	399	388	333	150	224	469	4,396
No. already sampled ${ }^{\text {c }}$	2	32	20	24	20	44	49	1	26	107	325
No. to be sampled	1,075	683	342	255	379	344	284	149	198	362	4,071

* Excludes streams in the Red Cedar River basin and Wisconsin River basin below mile 92 because sampling of them has been completed.
${ }^{* *}$ Based on data from individual basins (Tables A.5-A.17) not the percentages to be sampled listed in this table.
${ }^{\text {a }}$ Total includes 2 more streams sampled in basin 2 than needed.
${ }^{\mathrm{b}}$ Each stream must have at least 1 station.
${ }^{\text {c }}$ Includes only stations on streams not completed.

Appendix Table A.4. Lakes by area groups, previous sampling, and sampling effort recommended for all basins not completed (2, 60-130, 240, 300, 400*). Sampling frequency follows that used by the Fish Distribution Study for completed basins.
(

* Excludes lakes in the Red Cedar River sub-basin and Wisconsin River basin below mile 92 because sampling of them has been completed.

Also excludes Lake Winnebago (137,000 acres).
${ }^{* *}$ Based on data from individual basins (Tables A.18-A.30) not percentages to be sampled listed in this table.
${ }^{\text {a }}$ For lakes less than 300 acres and greater than 1,500 acres, the number of stations given is the number per lake.
${ }^{\mathrm{b}}$ Includes only stations on lakes not completed.
${ }^{\text {c }}$ Total includes 6 more stations sampled in basin 2 than needed.

Appendix Table A.5. Streams by length groups, previous sampling, and sampling effort recommended for the Mississippi River basin (2). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	69	7	1	0	1	1	0	0	0	1	80
$\%$ to be sampled	20	91	100	-	100	97	-	-	-	100	
No. that should be sampled	14	6	1	-	1	1	-	-	-	1	24
No. completed	16^{a}	2	0	-	0	0	-	-	-	0	$18^{\text {a }}$
No. to be sampled	0	4	1	-	1	1	-	-	-	1	8
Stations											
No. per mile	*	0.2	0.2	-	0.2	0.2	-	-	-	0.6	
No. that should be sampled	0	6	3	-	5	9	-	-	-	139	162
No. already sampled**	0	0	0	-	0	0	-	-	-	83	83
No. to be sampled	0	6	3	-	5	9	-	-	-	56	79

* Each stream must have at least 1 station.
${ }^{* *}$ Includes only stations on streams not completed.
${ }^{\text {a }}$ Total includes 2 more streams sampled than needed.

Appendix Table A.6. Streams by length groups, previous sampling, and sampling effort recommended for the Kewaunee River basin (60). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	11	3	1	0	1	0	0	0	0	0	16
\% to be sampled	20	91	100	-	100	-	-	-	-	-	
No. that should be sampled	2	3	1	-	1	-	-	-	-	-	7
No. completed	0	0	0	-	0	-	-	-	-	-	0
No. to be sampled	2	3	1	-	1	-	-	-	-	-	7
Stations											
No. per mile	-*	0.2	0.2	-	0.2	-	-	-	-	-	
No. that should be sampled	2	5	3	-	6	-	-	-	-	-	16
No. already sampled**	0	0	0	-	0	-	-	-	-	-	0
No. to be sampled	2	5	3	-	6	-	-	-	-	-	16

[^7]Appendix Table A.7. Streams by length groups, previous sampling, and sampling effort recommended for the Door Peninsula drainage basin (70). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	41	9	2	1	0	0	1	0	0	0	54
\% to be sampled	20	91	100	98	-	-	100	-	-	-	
No. that should be sampled	8	8	2	1	-	-	1	-	-	-	20
No. completed	0	0	0	0	-	-	0	-	-	-	0
No. to be sampled	8	8	2	1	-	-	1	-	-	-	20
Stations											
No. per mile	-*	0.2	0.2	0.2	-	-	0.2	-	-	-	
No. that should be sampled	8	13	6	3	-	-	14	-	-	-	44
No. already sampled**	0	0	0	0	-	-	0	-	-	-	0
No. to be sampled	8	13	6	3	-	-	14	-	-	-	44

* Each stream must have at least 1 station.
${ }^{* *}$ Includes only stations on streams not completed.

Appendix Table A.8. Streams by length groups, previous sampling, and sampling effort recommended for the Fox River basin (81). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	340	36	17	5	4	5	0	0	1	0	408
\% to be sampled	20	91	100	98	100	97	-	-	100	-	
No. that should be sampled	68	33	17	5	4	5	-	-	1	-	133
No. completed	6	1	1	0	0	0	-	-	0	-	8
No. to be sampled	62	32	16	5	4	5	-	-	1	-	125
Stations											
No. per mile	-*	0.2	0.2	0.2	0.2	0.2	-	-	0.6	-	
No. that should be sampled	62	48	42	19	19	39	-	-	118	-	347
No. already sampled**	0	1	4	0	0	4	-	-	2	-	11
No. to be sampled	62	47	38	19	19	35	-	-	116	-	336

* Each stream must have at least 1 station.
** Includes only stations on streams not completed.

Appendix Table A.9. Streams by length groups, previous sampling, and sampling effort recommended for the Wolf River basin (82). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	775	58	18	8	11	7	4	0	0	1	882
$\%$ to be sampled	20	91	100	98	100	97	100	-	-	100	
No. that should be sampled	155	53	18	8	11	7	4	-	-	1	257
No. completed	65	24	5	2	1	3	1	-	-	0	101
No. to be sampled	90	29	13	6	10	4	3	-	-	1	156
Stations											
No. per mile	-*	0.2	0.2	0.2	0.2	0.2	0.2	-	-	0.6	
No. that should be sampled	90	44	34	21	49	31	38	-	-	133	440
No. already sampled**	0	2	0	5	6	0	16	-	-	24	53
No. to be sampled	90	42	34	16	43	31	22	-	-	109	387

* Each stream must have at least 1 station.
** Includes only stations on streams not completed.

Appendix Table A.10. Streams by length groups, previous sampling, and sampling effort recommended for the Suamico River basin (90). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	11	6	0	1	1	1	0	0	0	0	20
\% to be sampled	20	91	-	98	100	97	-	-	-	-	
No. that should be sampled	2	5	-	1	1	1	-	-	-	-	10
No. completed	1	2	-	0	0	0	-	-	-	-	3
No. to be sampled	1	3	-	1	1	1	-	-	-	-	7
Stations											
No. per mile	-*	0.2	-	0.2	0.2	0.2	-	-	-	-	
No. that should be sampled	1	5	-	3	4	8	-	-	-	-	21
No. already sampled**	0	1	-	0	2	1	-	-	-	-	4
No. to be sampled	1	4	-	3	2	7	-	-	-	-	17

* Each stream must have at least 1 station.
** Includes only stations on streams not completed.

Appendix Table A.11. Streams by length groups, previous sampling, and sampling effort recommended for the Pensaukee River basin (100). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	34	1	0	1	0	1	0	0	0	0	37
$\%$ to be sampled	20	91	-	98	-	97	-	-	-	-	
No. that should be sampled	7	1	-	1	-	1	-	-	-	-	10
No. completed	2	0	-	0	-	0	-	-	-	-	2
No. to be sampled	5	1	-	1	-	1	-	-	-	-	8
Stations											
No. per mile	-*	0.2	-	0.2	-	0.2	-	-	-	-	
No. that should be sampled	5	1	-	4	-	9	-	-	-	-	19
No. already sampled**	2	0	-	0	-	3	-	-	-	-	5
No. to be sampled	3	1	-	4	-	6	-	-	-	-	14

* Each stream must have at least 1 station.
${ }^{* *}$ Includes only stations on streams not completed.

Appendix Table A.12. Streams by length groups, previous sampling, and sampling effort recommended for the Oconto River basin (110). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	288	15	4	1	4	0	3	0	0	0	315
$\%$ to be sampled	20	91	100	98	100	-	100	-	-	-	
No. that should be sampled	58	14	4	1	4	-	3	-	-	-	84
No. completed	5	2	1	0	0	-	0	-	-	-	8
No. to be sampled	53	12	3	1	4	-	3	-	-	-	76
Stations											
No. per mile	-*	0.2	0.2	0.2	0.2	-	0.2	-	-	-	
No. that should be sampled	53	17	8	3	21	-	36	-	-	-	138
No. already sampled**	0	0	0	0	0	-	0	-	-	-	0
No. to be sampled	53	17	8	3	21	-	36	-	-	-	138

* Each stream must have at least 1 station.
** Includes only stations on streams not completed.

Appendix Table A.13. Streams by length groups, previous sampling, and sampling effort recommended for the Peshtigo River basin (120). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	313	27	5	5	3	1	0	1	0	0	355
$\%$ to be sampled	20	91	100	98	100	97	-	100	-	-	
No. that should be sampled	63	25	5	5	3	1	-	1	-	-	103
No. completed	0	2	0	0	0	0	-	0	-	-	2
No. to be sampled	63	23	5	5	3	1	-	1	-	-	101
Stations											
No. per mile	-*	0.2	0.2	0.2	0.2	0.2	-	0.3	-	-	
No. that should be sampled	63	35	13	18	13	7	-	41	-	-	190
No. already sampled**	0	0	1	0	0	0	-	0	-	-	1
No. to be sampled	63	35	12	18	13	7	-	41	-	-	189

${ }^{*}$ Each stream must have at least 1 station.
** Includes only stations on streams not completed.

Appendix Table A.14. Streams by length groups, previous sampling, and sampling effort recommended for the Menominee River basin (130). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	482	29	9	5	2	4	2	1	0	0	534
\% to be sampled	20	91	100	98	100	97	100	100	-	-	
No. that should be sampled	96	26	9	5	2	4	2	1	-	-	145
No. completed	0	0	0	0	0	0	0	0	-	-	0
No. to be sampled	96	26	9	5	2	4	2	1	-	-	145
Stations											
No. per mile	-	0.2	0.2	0.2	0.2	0.2	0.2	0.3			
No. that should be sampled	96	40	21	17	11	28	27	36	-	-	276
No. already sampled**	0	0	0	0	0	0	0	0	-	-	0
No. tn be sampled	96	40	21	17	11	28	27	36	-	-	276

${ }^{*}$ Each stream must have at least 1 station.
** Includes only stations on streams not completed.

Appendix Table A.15. Streams by length groups, previous sampling, and sampling effort recommended for the Wisconsin River basin (240).* Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	1,720	196	37	25	25	8	7	1	0	1	2,020
$\%$ to be sampled	20	91	100	98	100	97	100	100	-	100	
No. that should be sampled	344	178	37	25	25	8	7	1	-	1	626
No. completed	0	0	0	0	0	0	0	0	-	0	0
No. to be sampled	344	178	37	25	25	8	7	1	-	1	626
Stations											
No. per mile	-**	0.2	0.2	0.2	0.2	0.2	0.2	0.3	-	0.6	
No. that should be sampled	344	271	92	87	122	65	90	36	-	197	1,304
No. already sampled ${ }^{\text {a }}$	0	2	0	2	0	0	0	1	-	0	5
No. to be sampled	344	269	92	85	122	65	90	35	-	197	1,299

${ }^{*}$ Excludes streams below mile 92 in the Wisconsin River basin because sampling of them is completed.
** Each stream must have at least 1 station.
${ }^{\text {a }}$ Includes only stations on streams not completed.

Appendix Table A.16. Streams by length groups, previous sampling, and sampling effort recommended for the Chippewa River basin (300).* Sampling frequency follows that used by the Fish Distribution Study for completed basins.

Parameters	Length Groups (miles)										Total
	0-5	6-10	11-15	16-20	21-30	31-50	51-100	101-150	151-200	>201	
Streams											
Total no.	1,617	146	48	24	22	16	7	1	1	0	1,882
\% to be sampled	20	91	100	98	100	97	100	100	100	-	
No. that should be sampled	323	133	48	24	22	16	7	1	1	-	575
No. completed	80	19	6	1	0	0	0	0	0	-	106
No. to be sampled	243	114	42	23	22	16	7	1	1	-	469
Stations											
No. per mile	**	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.6	-	
No. that should be sampled	243	171	107	83	109	122	88	37	106	-	1,066
No. already sampled ${ }^{\text {a }}$	0	10	4	8	12	15	18	0	24	-	91
No. to be sampled	243	161	103	75	97	107	70	37	82	-	975

[^8]Appendix Table A．17．Streams by length groups，previous sampling，and sampling effort recommended for the Lake Superior drainage basin（400）．Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Length Groups（miles）										Total
	0－5	6－10	11－15	16－20	21－30	31－50	51－100	101－150	151－200	＞201	
Streams											
Total no．	768	73	16	8	9	9	3	0	0	0	886
$\%$ to be sampled	20	91	100	98	100	97	100	－	－	－	
No．that should be sampled	154	66	16	8	9	9	3	－	－	－	265
No．completed	44	27	3	2	1	0	0	－	－	－	77
No．to be sampled	110	39	13	6	8	9	3	－	－	－	188
Stations											
No．per mile	＊＊	0.2	0.2	0.2	0.2	0.2	0.2	－	－	－	
No．that should be sampled	110	59	33	21	40	70	40	－	－	－	373
No．already sampled＊＊	0	16	11	9	0	21	15	－	－	－	72
No．to be sampled	110	43	22	12	40	49	25	－	－	－	301

＊Each stream must have at least 1 station．
＊＊Includes only stations on streams not completed．

Appendix Table A．18．Lakes by area groups，previous sampling，and sampling effort recommended for the Mississippi River basin（2）．Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
		0^{0}						10^{500}					
Lakes													
Total no．	\％	11	¢	1	3	0	1	0	\＃	1	®	3	98
$\%$ to be sampled	\＃	21	3川．	68	64	80	893	－	＂	100	\＃	100	
No．that should be sampled	\＄	2	2．	1	2	0	a	－	\}	1	Kis	3	13．
No．completed	\＃	0	\＃	0	®	0	丹＂	－		0	\％	1	\＃1
No．to be sampled	\}	2	„	1	2\％	0	§	－		1	\＃	2	12
Stations													
No．per 100 acres＊	\％	3	3．	3	\＃	1	§	－	\＃	20		25	
No．that should													
be sampled	\％	6	¢	3	\＄	0	9\％	－	为	20	右	50	H05
No．already sampled＊＊	\％	3	3٪	0	2\％	0	\％	－	\％	0		$6^{\text {a }}$	\％
No．to be sampled	\＃	3	3过	3	¢	0	§	－	\＃	20	\＄	50	42

＊For lakes less than 300 acres and greater than 1,500 acres，the number of stations given is the number per lake．
＊＊Includes only stations on lakes not completed．
${ }^{\text {a }}$ Total includes 6 more stations sampled than needed．

Appendix Table A.19. Lakes by area groups, previous sampling, and sampling effort recommended for the Kewaunee River basin (60). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

${ }^{*}$ For lakes less than 300 acres, the number of stations given is the number per lake.
${ }^{* *}$ Includes only stations on lakes not completed.

Appendix Table A.20. Lakes by area groups, previous sampling, and sampling effort recommended for the Door Peninsula drainage basin (70). Sampling frequency follows that used by the Fish Distribution Study for completed basins.
Parameters

* For lakes less than 300 acres, the number of stations given is the number per lake.
${ }^{* *}$ Includes only stations on lakes not completed.

Appendix Table A．21．Lakes by area groups，previous sampling，and sampling effort recommended for the Fox River basin（81）．＊ Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
	(
Lakes													
Total no．	202\％	24	§\％	7	2\％	2	\％	2	\＃	1	\％	4	34
\％to be sampled	》	21		68	\％4\＃	80	\＆s．	88	R	100	！\＃\＃	100	
No．that should													
be sampled	§\％	5	\＃\＃	5	\％	2	\％	2	Yik	1	2	4	30
No．completed	＠	0	\＃	0	〇，	0	介	0	\％	0	》	0	\％
No．to be sampled	\＃	5	\＃\＃	5	§	2	\％	2	\＃	1	\％	4	3\％
Stations													
No．per 100 acres＊＊	》．	3	\＃	3	\}	1	\＄	1	佼	20	20\％	25	N
No．that should													
be sampled	§	18	\％	15	丹\％	8	24	28	N	20	40	100	\＃\％
No．already sampled ${ }^{\text {a }}$	〇．	0	\＃	0	＠	0	\％	0	\％	0	〇1	1	\％
No．to be sampled	9	18	Ø边	15	§3	8	24	28	\＄	20	40	99	270

＊Does not include Lake Winnebago（137，000 acres）．
${ }^{* *}$ For lakes less than 300 acres and greater than 1，500 acres，the number of stations given is the number per lake．
${ }^{\text {a }}$ Includes only stations on lakes not completed．

Appendix Table A．22．Lakes by area groups，previous sampling，and sampling effort recommended for the Wolf River basin（82）． Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
Lakes													
Total no．	uヶb\％	66	2\％	13	4	2	3	6	\}	1	\＃	2	wie\％
\％to be sampled	»	21	\＃3	68		80	\＄9	88	\％\％！	100	H13	100	
No．that should be sampled	11	14	8	9	3．	2	3	5	\ı	1	M	2	60
No．completed	§	1	介	0	\＃	0	®	0	－	0	ө	0	¢
No．to be sampled	§	13	§	9	»	2	3	5	\＃	1	\}	2	な
Stations													
No．per $100 \mathrm{acres}^{*}$	§	3	§\＄	3	\＃	1	I	1	\＃\＃\％	20	20\％	25	
No．that should be sampled	18	39	24	27	9	10	41	60	丩／2	20	20	50	315
No．already sampled＊＊	》	0	®	0	》	0	\％	0	＠	0	§	6	\％
No．to be sampled	18	39	24．	27	9．	10	\＃\＃	60	\＃\＃．	20	川界	44	30\％

＊For lakes less than 300 acres and greater than 1,500 acres，the number of stations given is the number per lake．
＊＊Includes only stations on lakes not completed．

Appendix Table A.23. Lakes by area groups, previous sampling, and sampling effort recommended for the Suamico River basin (90). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

${ }^{*}$ For lakes less than 300 acres, the number of stations given is the number per lake.
** Includes only stations on lakes not completed.

Appendix Table A.24. Lakes by area groups, previous sampling, and sampling effort recommended for the Pensaukee River basin (100). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

[^9]Appendix Table A.25. Lakes by area groups, previous sampling, and sampling effort recommended for the Oconto River basin (110). Sampling frequency follows that used by the Fish Distribution Study for completed basins.

*For lakes less than 300 acres, the number of stations given is the number per lake.
** Includes only stations on lakes not completed.

Appendix Table A.26. Lakes by area groups, previous sampling, and sampling effort recommended for the Peshtigo River basin (120). Sampling frequency follows that used by the Fish Distribution Study for completed basins.
c
*For lakes less than 300 acres and greater than 1,500 acres, the number of stations given is the number per lake.
** Includes only stations on lakes not completed.

Appendix Table A．27．Lakes by area groups，previous sampling，and sampling effort recommended for the Menominee River basin（130）．Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
	NSN 												
Lakes													
Total no．	70⿺𠃊	31	\＃\＃	6	\＃	2	S	1	\＃	0	\＃	0	\＄50\％
\％to be sampled	\＃	21	\＃1／	68		80	\＆\％	88		－		－	
No．that should be sampled	\＃\＃	7	为	4	1	2	n	1		－		－	31
No．completed	＠	0	为	0		0	\％	0		－		－	9
No．to be sampled	\＃	7	\＄	4	\＄	2	\％	1		－		－	3ı
Stations													
No．per 100 acres＊	\＃	3	\％	3	\＄	1	\＄	1		－		－	
No．that should be sampled	2\％	21	in	12	3	8	3年	13		－		－	485
No．already sampled＊＊	丹	0	\＃	0	\＃	0	\％	0		－		－	я
No．to be sampled	\％	21	12	12	\＄	8	盛	13	\＄	－	．	－	12\％

＊For lakes less than 300 acres，the number of stations given is the number per lake．
${ }^{* *}$ Includes only stations on lakes not completed．

Appendix Table A．28．Lakes by area groups，previous sampling，and sampling effort recommended for the Wisconsin River basin（240）．${ }^{*}$ Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
						Ki		No					
Lakes													
Total no．	2i29	164	\＃थ．	63		19	4	13	§	4	4	6	3，20\％
$\%$ to be sampled	\＄	21	\％\＃	68	6\＃	80	89\％	88	¢	100	1ヵ\％	100	
No．that should be sampled	27	34	38	43	19	15	ね\％	11	b．	4	4	6	24
No．completed	介	0	\＃	0	\＃	0	»	0	®＂	0	\＃	0	\％
No．to be sampled	サ	34	38\％	43	İs	15	乡\＃	11	§	4	4	6	24
Stations													
No．per 100 acres＊＊	\＄	3	3	3	ı	1	§	1	川\＃	20	2\％	25	
No．that should be sampled	81	102	114	129	W\％	60	259	132	102．	80	80\％	150	1265
No．already sampled ${ }^{\text {a }}$	\％	0	K1	0	』	0	》	0	Ø．	0	0．	0	\％
No．to be sampled	\＃1	102	\＃\＃\＃	129	\＃\％	60	\％9\％	132	10\％．	80	8\％	150	1s64

[^10]Appendix Table A．29．Lakes by area groups，previous sampling，and sampling effort recommended for the Chippewa River basin（300）．＊Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
				Yif									
Lakes												4	2601
Total no．	42\％	147	M\％	45	24	14	4\％	13	2\％	0	क		
\％to be sampled	\＄	21	31	68	4t	80	8\％\％	88	\％\％	－	\％川！	100	
No．that should													19\％
be sampled	24	31	3\％	31	4．	11	乌\％	11	2	－	¢	4	
No．completed	\＄	0	\＃	0	\＃＂	0	\％	0	it	－	\＃	0	\＆
No．to be sampled	\＃\＃	31	3\％	31	年去	11	\＄\％	11	\％	－	4	4	13\％
Stations													
No．per 100 acres＊＊	N．	3	3	3	I	1	．	1	M\％	－	2\＃	25	
No．that should													1055
be sampled	§\％	93	96	93	5\％	44	224．	132	\％\＃	－		100	
No．already sampled ${ }^{\text {a }}$	』	0	\＃	0	Ө	0	3	0	¢	－	＜	1	¢
No．to be sampled	63\％	93	9\％	93	S¢\％	44	2\＃\＃	132	\％	－	\＃\＃j	99	4．4．9

＊Excludes lakes in the Red Cedar River basin because sampling of them has been completed．
＊＊For lakes less than 300 acres and greater than 1，500 acres，the number of stations given is the number per lake．
${ }^{\text {a }}$ Includes only stations on lakes not completed．

Appendix Table A．30．Lakes by area groups，previous sampling，and recommended sampling effort recommended for the Lake Superior drainage basin（400）．Sampling frequency follows that used by the Fish Distribution Study for completed basins．

Parameters	Surface Area Groups（acres）												
	riens $\mathbf{b}^{\boldsymbol{0}}$												
Lakes													
Total no．	แ12	58	2\％	15	9	5	亿	2	\％	0	ı	0	1324\％
$\%$ to be sampled	\＃	21	31	68	64	80	89	88	行	－	100\％	－	
No．that should													
be sampled	10	12	\＆	10	\％	4	¢	2	\％	－	1／	－	89
No．completed	§	7	8	0	Q	0	¢	0	的	－	9	－	22
No．to be sampled	§	5	®	10	\％	4	¢	2		－	\＃	－	37
Stations													
No．per 100 acres＊	3	3	3	3	\＃	1	is	1	\％	－	20%	－	
No．that should													
be sampled	9	15	0	30	24	16	42	26	Non	－	2\％	－	182
No．already sampled＊＊	0	0	9	5	3	4	\＃	1		－	¢	－	14．
No．to be sampled	9	15	9	25	21	12	H1	25	\＆	－	24	－	168

[^11]＊＊Includes only stations on lakes not completed．

Appendix B. Listings of Species and Collectors

Appendix Table B.1. Non-DNR collections used in this report for the 1900-72 period. This list includes: (1) the alphanumeric code and common name of each fish species collected; (2) in brackets, the percent of stations or records-from both DNR and nonDNR collectors-reported for the 1900-50 portion of the 1900-72 period; (3) codes identifying sources of non-DNR collections (according to a key given at the end of this table); and (4) in parenthesis, the number of stations for each collector category.

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
A02	Chestnut lamprey [18] $1(4), 18(3)$	I22	Brook trout [13] $1(83), 3(91), 6(2), 11(5), 22(23)$
A03	Northern brook lamprey [3] $1(1), 2(1), 3(20), 22(6)$	I23	Lake trout [100] $1(7)$
A04	Silver lamprey [41] 1(7), 3(2), 11(1), 18(6), 20(1), 22(11)	J01	Rainbow smelt [0] $11(1), 22(12)$
A05	American brook lamprey [15] $1(7), 3(20), 6(4)$	K01	$\begin{aligned} & \text { Central mudminnow [27] } \\ & 1(181), 2(1), 3(161), 5(6), 6(49), 7(3), 11(6) \text {, } \\ & 18(3), 22(13) \end{aligned}$
A06	Sea lamprey [0] $3(1), 22(13)$	L01	Grass pickerel [36] $1(29), 2(1), 3(13), 4(1), 5(5), 6(14), 11(1), 18(2)$
B01	Lake sturgeon [26] $1(4), 2(1), 11(1), 18(4), 22(1), 26(2)$	L02	$\begin{aligned} & \text { Northern pike }[20] \\ & 1(123), 2(1), 3(127), 4(1), 5(1), 6(33), 11(6) \text {, } \\ & 18(19), 22(12) \end{aligned}$
B02	Shovelnose sturgeon [24] $1(5), 3(2), 18(5)$	L03	Muskellunge [17]
C01	Paddlefish [89]		1(8), 2(1), 3(4), 6(1), 11(2), 22(3)
D01	$1(4), 18(4)$	M06	Central stoneroller [28] 1(81), 3(121), 5(2), 6(1), 18(3)
	1(16), 3(19), 6(4), 18(15), 22(1)	M07	Largescale stoneroller [73]
D02	Shortnose gar [41] $1(9), 2(1), 3(6), 11(2), 18(16), 20(1)$	M09	$1(115), 3(41), 6(1)$ Redside dace [48]
E01	$\begin{aligned} & \text { Bowfin }[23] \\ & 1(12), 3(5), 6(5), 11(1), 18(16), 22(1) \end{aligned}$	M10	$1(33), 3(7), 6(4), 11(1)$ Lake chub [11]
F01	American eel [52] $1(5), 18(8), 20(1), 26(1)$	12	$1(2), 3(1), 6(2), 11(1), 22(12)$
G01	Alewife [20] $1(1), 3(2), 7(1)$		$\begin{aligned} & 1(81), 3(100), 4(1), 5(6), 6(32), 7(2), 11(5), \\ & 18(20), 22(2) \end{aligned}$
G02	$\begin{aligned} & \text { Gizzard shad }[30] \\ & 1(15), 3(20), 6(11), 11(9), 18(21), 20(2) \end{aligned}$	M14	Brassy minnow [20] $1(42), 2(2), 3(103), 5(2), 6(45), 18(4), 22(3)$
G03	Skipjack herring [100] $1(3)$	M15	Mississippi silvery minnow [48] $1(44), 3(31), 6(15), 11(9), 18(10)$
H01	$\begin{aligned} & \text { Goldeye [55] } \\ & 1(2), 18(7), 20(2) \end{aligned}$	M16	Speckled chub [35] $1(8), 3(18), 6(5), 11(1), 18(6)$
H02	Mooneye [28] $1(8), 3(3), 6(1), 11(2), 18(15), 20(2)$	M17	Silver chub [49] $1(17), 3(12), 11(1), 18(9), 20(2)$
I04	Cisco or lake herring [82] $1(29), 18(1), 22(1), 26(2)$	M18	$\begin{aligned} & \text { Gravel chub [50] } \\ & 1(1), 3(1) \end{aligned}$
I05	Lake whitefish [100] $1(6)$	M19	Hornyhead chub [29] $1(161), 2(1), 3(210), 4(1), 5(11), 6(68), 11(6),$
I19	Rainbow trout [18] $1(17), 3(16), 6(1), 11(3), 22(18)$	M20	22(10) Golden shiner [31]
I21	Brown trout [3] $1(15), 3(70), 6(12), 11(1), 22(18)$		$\begin{aligned} & 1(131), 2(2), 3(119), 4(1), 5(3), 6(41), 7(4), \\ & 11(1), 18(9), 22(15) \end{aligned}$

Appendix Table B.1. Continued.

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
M21	Pallid shiner [81] $1(18), 3(3), 8(10)$	M42	Northern redbelly dace [25] $1(57), 3(114), 5(2), 6(7), 11(3), 22(3)$
M22	Pugnose shiner [67] $1(13), 3(3), 6(1), 11(2), 18(1)$	M43	Southern redbelly dace [36] $1(77), 3(48), 5(5), 6(70), 11(3), 18(1)$
M23	$\begin{aligned} & \text { Emerald shiner [24] } \\ & 1(69), 2(3), 3(107), 4(1), 5(2), 6(58), 11(18) \text {, } \\ & 18(17), 20(1), 22(4) \end{aligned}$	M44	Finescale dace [27] $1(17), 3(4), 6(2), 22(2)$
M24	$\begin{aligned} & \text { River shiner [44] } \\ & 1(43), 3(37), 6(8), 11(6), 18(16), 22(1) \end{aligned}$	M45	Bluntnose minnow [37] 1(387), 2(3), 3(326), 5(16), 6(157), 11(8), $18(9), 22(3)$
M25	$\begin{aligned} & \text { Ghost shiner [100] } \\ & 18(8) \end{aligned}$	M46	Fathead minnow [30] 1(134), 3(150), 4(1), 5(8), 6(93), 7(3), 11(2),
M27	Striped shiner [44] $1(11), 3(8), 6(6)$	M47	18(6), 22(8) Bullhead minnow [31]
M28	$\begin{aligned} & \text { Common shiner [30] } \\ & 1(381), 2(5), 3(365), 4(1), 5(25), 6(142), \\ & 11(18), 18(3), 22(16) \end{aligned}$	M48	$1(32), 2(1), 3(45), 6(29), 11(12), 18(14)$ Blacknose dace [27] $1(250), 3(190), 5(9), 6(81), 11(11), 22(12)$
M29	Bigmouth shiner [25] $1(81), 3(113), 5(19), 6(76), 11(3), 18(10), 26(1)$	M49	Longnose dace [21] $1(110), 3(102), 6(43), 11(7), 22(12)$
M30	Pugnose minnow [34] $1(10), 2(1), 3(16), 5(1), 6(16), 18(11)$	M50	Creek chub [26]
M31	$\begin{aligned} & \text { Blackchin shiner [51] } \\ & 1(41), 2(1), 3(24), 4(1), 5(2), 6(5) \end{aligned}$		1(414), 3(316), 5(22), 6(168), 7(6), 11(15), $18(2), 22(18)$
M32	$\begin{aligned} & \text { Blacknose shiner [51] } \\ & 1(117), 3(88), 4(1), 5(2), 6(7), 22(8) \end{aligned}$	M51	$\begin{aligned} & \text { Pearl dace [39] } \\ & 1(107), 3(109), 5(1), 6(5), 11(1), 22(3) \end{aligned}$
M33	Spottail shiner [34] $1(68), 3(68), 6(21), 11(8), 18(13), 20(2), 22(13)$	M52	$\begin{aligned} & \text { Red shiner [0] } \\ & 3(2) \end{aligned}$
M34	$\begin{aligned} & \text { Ozark minnow } \\ & 1(7), 3(4), 6(2), 11(2) \end{aligned}$	N05	$\begin{aligned} & \text { River carpsucker [25] } \\ & 1(6), 3(19), 6(3), 18(13) \end{aligned}$
M35	$\begin{aligned} & \text { Rosyface shiner [40] } \\ & 1(73), 3(74), 5(2), 6(20), 11(4), 18(2) \end{aligned}$	N06	Quillback [19] $1(15), 3(33), 6(19), 11(1), 18(14), 20(1)$
M36	Spotfin shiner [34] $1(150), 3(158), 5(3), 6(88), 11(13), 18(11), 20(1)$	N07	Highfin carpsucker [31] $1(5), 3(6), 6(3), 18(4)$
M37	$\begin{aligned} & \text { Sand shiner }[32] \\ & 1(71), 3(102), 5(1), 6(44), 11(1), 18(9), 20(1) \text {, } \\ & 22(8) \end{aligned}$	N08 N09	Longnose sucker [30] $1(6), 6(1), 11(1), 22(12)$ White sucker [26]
M38	Weed shiner [74] $1(60), 3(17), 6(5), 11(3), 18(9), 22(1)$		$\begin{aligned} & 1(542), 2(3), 3(409), 4(1), 5(27), 6(169), 7(3) \\ & 11(19), 18(12), 20(1), 22(29) \end{aligned}$
M39	Redfin shiner [62] 1(44), 3(12), 6(12)	N10	Blue sucker [16] $1(1), 3(2), 18(6)$
M40	Mimic shiner [72] $1(98), 2(5), 3(27), 6(4), 18(9), 20(1), 22(3)$	N11	Creek chubsucker [100] 1(2)
M41	Suckermouth minnow [34] 1(39), 3(41), 6(29), 11(3), 18(4)	N12	Lake chubsucker [22] $1(11), 3(4), 4(1), 5(2), 6(8)$

Appendix Table B.1. Continued.

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
N13	Northern hog sucker [31] 1(116), 3(103), 5(5), 6(28), 11(3), 18(3)	S02	Blackstripe topminnow [29] $1(15), 3(18), 5(2), 6(15)$
N14	Smallmouth buffalo [25] 1(2), 3(7), 6(1), 11(9), 18(14), 20(1)	S03	Starhead topminnow [29] $1(2), 4(1), 6(4)$
N15	Bigmouth buffalo [45] $1(7), 3(8), 6(1), 18(14)$	T01	Brook silverside [66] $1(43), 3(55), 5(1), 6(28), 11(3), 18(12)$
N16	Black buffalo [73]	U01	Brook stickleback [30] $1(214), 2(1), 3(130), 5(12), 6(91), 11(6), 18(2), 22(14)$
	1(3), 18(11)	U02	Ninespine stickleback [43]
N17	Spotted sucker [34]		1(3), 2(1), 22(3)
N18	1(12), 3(10), 6(6), 11(1), 18(18), 20(1)	V01	White bass [26] 1(35), 3(52), 6(15), 11(5), 18(22), 20(2)
N18	1(30), 3(29), 6(5), 11(2), 18(13), 20(1), 22(4)	V02	Yellow bass [16] $1(3), 3(31), 6(3), 18(9)$
N19	River redhorse [50] $1(1), 20(1)$	W04	Rock bass [33] 1(160), 2(5), 3(99), 4(1), 5(5), 6(26), 11(3),
N21	$\begin{aligned} & \text { Golden redhorse [32] } \\ & 1(48), 3(59), 5(1), 6(12), 11(2), 18(12) \end{aligned}$		$18(14), 20(1), 22(11)$
N22	Shorthead redhorse [25] $1(61), 3(81), 6(14), 11(5), 18(19), 20(1), 22(6)$	W05 W06	Green sunfish [17] $1(46), 3(82), 4(1), 5(10), 6(52), 7(5), 11(3), 18(7)$
N23	$\begin{aligned} & \text { Greater redhorse [71] } \\ & 1(10), 3(1), 18(1) \end{aligned}$		$\begin{aligned} & 1(144), 2(1), 3(190), 4(1), 5(4), 6(48), 7(2), \\ & 11(3), 18(14), 22(9) \end{aligned}$
005	Black bullhead [23] $1(83), 3(128), 5(4), 6(43), 7(1), 11(4), 18(13) \text {, }$	W07	Warmouth [17] $1(4), 3(5), 4(1), 5(1), 6(9), 18(7)$
	20(1), 22(10)	W08	Orangespotted sunfish [27] $1(10), 3(38), 4(1), 5(2), 6(12), 18(11)$
O06	$\begin{aligned} & 1(55), 2(1), 3(66), 4(1), 5(3), 6(28), 11(2), \\ & 18(15), 22(3) \end{aligned}$	W09	$\begin{aligned} & \text { Bluegill [20] } \\ & 1(151), 2(1), 3(207), 4(1), 5(6), 6(80), 7(3) \text {, } \\ & 11(10), 18(23), 22(14) \end{aligned}$
007	Brown bullhead [28] 1(33), 3(18), 6(1), 7(1), 11(1), 18(9), 22(3)	W10	$\begin{aligned} & \text { Longear sunfish [69] } \\ & 1(18), 3(3), 4(1), 6(2), 11(1) \end{aligned}$
008	$\begin{aligned} & \text { Channel catfish [23] } \\ & 1(28), 3(32), 6(7), 11(1), 18(18), 20(1), 22(1) \end{aligned}$	W11	$\begin{aligned} & \text { Smallmouth bass }[26] \\ & 1(111), 2(3), 3(114), 5(2), 6(34), 11(14), 18(13) \text {, } \end{aligned}$
009	Slender madtom [71]		20(1), 22(5)
010	$1(5), 2(1), 6(1)$ Stonecat [18] $1(21), 3(49), 5(7), 6(10), 7(1), 11(2), 18(5), 22(9)$	W12	$\begin{aligned} & \text { Largemouth bass [29] } \\ & 1(204), 2(4), 3(155), 4(1), 5(3), 6(52), 7(1), \\ & 11(8), 18(19), 22(14) \end{aligned}$
011	Tadpole madtom [37] $1(57), 3(68), 6(30), 11(1), 18(9), 22(4)$	W13	White crappie [37] $1(38), 3(32), 6(13), 11(1), 18(18)$
012	Flathead catfish [34] $1(8), 3(1), 18(15), 20(1)$	W14	Black crappie [22] 1(112), 2(1), 3(137), 4(1), 5(2), 6(51), 11(9), 18(20), 20(1), 22(6)
P01	Pirate perch [43] $1(5), 2(1), 3(5), 6(3), 11(3), 18(5)$	X03	$\begin{aligned} & \text { Crystal darter [30] } \\ & 1(1), 18(1) \end{aligned}$
Q01	$\begin{aligned} & \text { Trout-perch [42] } \\ & 1(21), 2(5), 3(8), 6(5), 18(7), 20(2), 22(11) \end{aligned}$	X04	Western sand darter [30] $1(9), 3(27), 6(5), 11(4), 18(9), 20(1)$
R01	$\begin{aligned} & \text { Burbot [27] } \\ & 1(33), 3(14), 6(1), 18(2), 22(9) \end{aligned}$	X05	Mud darter [68] $1(20), 3(4), 6(6), 11(2), 18(8)$
S01	$\begin{aligned} & \text { Banded killifish [48] } \\ & 1(32), 3(21), 4(1), 5(1), 6(12), 20(1) \end{aligned}$	X07	Rainbow darter [38] $1(45), 3(41), 4(1), 5(6), 6(13), 11(2)$

Appendix Table B.1. Continued.

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
X08	Bluntnose darter [100] 18(2)	X17	Gilt darter [80] $1(4)$
X09	$\begin{aligned} & \text { Iowa darter [52] } \\ & 1(119), 2(3), 3(65), 6(16), 11(3), 18(3), 22(4) \end{aligned}$	X18	$\begin{aligned} & \text { Blackside darter [42] } \\ & 1(131), 3(111), 4(1), 5(1), 6(27), 7(1), 11(2), 18(4) \end{aligned}$
X10	Fantail darter [36] $1(164), 2(1), 3(94), 4(1), 5(6), 6(99), 11(9), 18(2)$	X19	$\begin{aligned} & \text { Slenderhead darter [40] } \\ & 1(17), 3(28), 6(1), 11(2), 18(5) \end{aligned}$
X11	Least darter [60] $1(40), 3(10), 5(3), 6(14)$	X20	$\begin{aligned} & \text { River darter }[48] \\ & 1(16), 3(20), 6(3), 18(11), 20(1), 22(1) \end{aligned}$
X12	Johnny darter [35] 1(514), 2(5), 3(356), 4(1), 5(24), 6(174), 7(1), 11(26), 18(15), 20(1), 22(15)	X21	$\begin{aligned} & \text { Sauger [24] } \\ & 1(10), 3(9), 6(4), 11(5), 18(23), 20(2) \end{aligned}$
X14	$\begin{aligned} & \text { Banded darter [25] } \\ & 1(35), 3(67), 5(9), 6(25), 11(3) \end{aligned}$	X22	Walleye [16] $1(46), 2(2), 3(60), 5(1), 6(17), 11(2), 18(20), 22(9)$
X15	```Yellow perch [32] 1(274), 2(6), 3(213), 4(1), 6(43), 11(5), 18(17), 20(1), 22(23)```	Y01 Z01	Freshwater drum [27] $1(32), 3(33), 6(6), 11(1), 18(20), 20(1)$ Mottled sculpin [30]
X16	$\begin{aligned} & \text { Logperch [37] } \\ & 1(108), 2(2), 3(96), 4(1), 5(3), 6(22), 11(6), \\ & 18(15), 20(1), 22(14) \end{aligned}$	Z02	1(163), 2(5), 3(171), 6(43), 11(5), 22(17) Slimy sculpin [0] 1(8), 3(1), 6(14), 11(1), 22(5)

Key to Collectors' Code

1. Early Wisconsin fish collections (1900-44).*
2. University of Wisconsin-Madison students (1946-82).**
3. University of Wisconsin-Stevens Point, Dr. George Becker, Dr. Daniel Coble, and students (1952-78).*
4. University of Wisconsin-Milwaukee, Dr. Carroll Norden and students (1972).*
5. University of Wisconsin-Whitewater, Dr. George Seeburger and students (1968-71).**
6. University of Wisconsin-Waukesha, Prof. Marlin Johnson and students (1964-72).*
7. University of Wisconsin-Parkside students (1971).**
8. University of Wisconsin-Eau Claire, Dr. David Crowe (1974).**
9. Beloit College, Dr. John Lutz and students (1976-77).**
10. University of Wisconsin-La Crosse, Prof. John Held and students (1975-80).**
11. Milwaukee Public Museum, Milwaukee (1969-75).*
12. ENCAP, Inc., Dr. Greenfield, DeKalb University, DeKalb, IL (1980).**
13. Dairyland Power Cooperative, La Crosse (1974-81).**
14. Northern States Power Company, Minneapolis (1974).**
15. N.U.S. Corporation, Pittsburg, PA (1974).**
16. Bio Test, Inc., Chicago, IL (1974).**
17. Dames and Moore, Park Ridge, IL (1974).**
18. Upper Mississippi River Conservation Committee, La Crosse (1947-66).**
19. Commercial fishermen-fish identified by Fish Distribution Study or by Dr. George Becker (1976-84).*
20. University of Minnesota, St. Paul, Dr. James Underhill and students (1967).*
21. Iowa Cooperative Fish Research Unit, Ames, IA (1980).**
22. U.S. Fish and Wildlife Service, Minneapolis (1958-80).**
23. Miscellaneous collectors (1981).**
24. U.S. Army Corps of Engineers, Omaha, NE (1980-81).**
25. Commercial fishermen (1974-84).**
26. Unknown collector-e.g., sport fishermen (1964-85).**
[^12]Appendix Table B.2. Non-DNR collections used in this report for the 1974-86 period. The list includes: (1) the alphanumeric code and common name of each fish species collected; (2) codes identifying sources of non-DNR collections (according to a key given at the end of Appendix Table B.1.) and (3) in parentheses, the number of stations for each collector category.

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
A02	Chestnut lamprey $13(2)$	L02	Northern pike 2(6), 3(20), 10(5), 11(1), 12(7), 13(11), 16(7), 17(6), 22(1), 23(2), 24(3), 25(5), 26(1)
A03	Northern brook lamprey $2(1), 3(1)$	L03	Muskellunge $3(2), 13(1), 25(1)$
A04	Silver lamprey $3(1), 10(5), 13(4), 24(1)$	M06	Central stoneroller $3(8), 9(4), 23(1)$
A05	American brook lamprey $2(1), 3(2), 15(2)$	M07	Largescale stoneroller $3(12)$
B01	Lake sturgeon $13(1), 19(2), 25(9), 26(3)$	M09	Redside dace $3(1)$
B02	Shovelnose sturgeon $10(2), 13(6), 25(8)$	M10	Lake chub $3(1)$
C01	Paddlefish $25(1)$	M12	$\begin{aligned} & \text { Common carp } \\ & 2(7), 3(13), 8(1), 9(1), 10(7), 12(8), 13(14), 15(3), \end{aligned}$
D01	Longnose gar $2(3), 10(2), 13(7), 16(1), 17(1), 24(1)$	M14	$16(8), 17(10), 19(2), 24(5), 25(17), 26(1)$ Brassy minnow
D02	Shortnose gar $3(2), 10(3), 13(5), 16(3), 24(4), 25(1)$		$2(1), 3(9)$
E01	Bowfin $2(3), 10(4), 12(3), 13(7), 16(2), 24(1), 25(12)$		$10(1), 13(1), 15(2)$
F01	American eel $10(2), 13(2), 19(1), 24(1), 25(9), 26(7)$	8	$10(5), 13(7), 24(1)$ Gravel chub
G01	Alewife 25(1)	19	$9(1)$ Hornyhead chub
G02	Gizzard shad $3(3), 10(7), 13(14), 16(2), 24(4), 25(1)$		$2(4), 3(19), 9(1), 11(5)$ Golden shiner
G03	Skipjack herring $19(1), 25(1)$		$\begin{aligned} & 3(22), 8(1), 10(4), 11(1), 12(10), 13(8), 16(9), \\ & 17(2), 24(3) \end{aligned}$
H01	Goldeye $10(5), 16(1), 24(1)$	M21	Pallid shiner $13(1)$
H02	Mooneye $3(1), 10(8), 13(11), 15(1), 16(2), 24(2), 25(1)$	M22	Pugnose shiner 3(1)
I04	Cisco or lake herring $2(1), 25(2)$	M23	Emerald shiner $3(10), 10(6), 13(12), 15(3), 24(2)$
I14	Coho salmon 25(1)	M24	River shiner $10(2), 13(12), 15(2), 24(1)$
I19	Rainbow trout $3(5), 25(1), 26(2)$	M28	Common shiner $2(1), 3(57), 9(2), 10(1), 11(5), 12(5), 23(1), 24(1)$
I21	Brown trout $2(2), 3(6), 13(2), 22(1), 25(1), 26(1)$	M29	Bigmouth shiner $3(16), 9(3), 12(1)$
I22	Brook trout $3(3), 15(1), 22(4), 23(1), 25(1), 26(1)$	M30	Pugnose minnow $10(3), 13(10)$
K01	$\begin{aligned} & \text { Central mudminnow } \\ & 2(3), 3(14), 10(1), 11(6), 12(9), 15(2), 16(4), 22(4) \end{aligned}$	M31	Blackchin shiner $3(2), 11(1), 12(3)$
L01	Grass pickerel $11(2)$	M32	Blacknose shiner $3(8), 16(1)$

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
M33	Spottail shiner $3(2), 10(6), 13(13), 24(1)$	N10	Blue sucker $10(1), 13(3), 14(1), 21(2), 25(1)$
M35	Rosyface shiner $3(13), 9(1)$	N12	Lake chubsucker $1(2), 12(1)$
M36	$\begin{aligned} & \text { Spotfin shiner } \\ & 2(1), 3(7), 9(3), 10(4), 12(6), 13(13), 15(1) \text {, } \\ & 16(3), 24(1) \end{aligned}$	N13	Northern hog sucker $3(12), 9(1), 24(1)$
M37	Sand shiner $\begin{aligned} & 2(1), 3(5), 9(3), 10(2), 11(3), 12(6), 13(10), \\ & 15(3), 24(1) \end{aligned}$	N14 N15	Smallmouth buffalo $10(2), 13(10), 16(1), 19(1), 24(2)$ Bigmouth buffalo
M38	Weed shiner $10(2), 13(4)$	N16	Black buffalo
M39	Redfin shiner $3(1)$	N17	9(1), 26(1) Spotted sucker
M40	Mimic shiner $2(1), 3(3), 11(1), 15(1), 24(1)$	N18	$10(4), 13(11), 15(1), 16(1), 24(4)$ Silver redhorse
M41	Suckermouth minnow $3(2), 13(1)$		$\begin{aligned} & 3(9), 10(6), 13(14), 15(4), 17(1), 19(1), 24(3), \\ & 25(1) \end{aligned}$
M42	Northern redbelly dace $3(8), 22(2)$	N19	River redhorse $3(2), 14(1), 24(1)$
M43	Southern redbelly dace 3(1), 9(1), 11(2)	N21	Golden redhorse $3(6), 10(3), 13(10), 15(1), 24(3)$
M44	Finescale dace $3(2)$	N22	Shorthead redhorse $\begin{aligned} & 3(11), 10(7), 13(19), 15(3), 16(2), 17(2), 24(3), \\ & 25(2) \end{aligned}$
M45 M46	Bluntnose minnow $2(1), 3(44), 9(3), 10(1), 11(7), 12(5), 13(4), 16(4)$	N23	Greater redhorse $1(1), 14(1)$
	$2(5), 3(17), 11(5), 12(9), 13(1), 15(1), 22(1)$	005	Black bullhead
M47	Bullhead minnow $10(6), 11(1), 13(10), 24(1)$		$\begin{aligned} & 2(8), 3(25), 8(1), 10(1), 11(4), 12(11), 13(5), \\ & 15(1), 16(7), 17(4), 24(2), 25(1), 26(2) \end{aligned}$
M48	Blacknose dace 3(9), 9(1), 11(8), 16(1), 22(1)	006	Yellow bullhead $\begin{aligned} & 2(3), 3(18), 10(2), 11(3), 12(5), 13(6), 16(3), \\ & 25(2), 26(1) \end{aligned}$
M49	Longnose dace $3(4)$	007	Brown bullhead $2(6), 3(1), 11(1), 17(1), 25(1)$
M50	$\begin{aligned} & \text { Creek chub } \\ & 2(2), 3(21), 9(2), 11(12), 12(2), 13(1), 15(2) \\ & 16(1) \end{aligned}$	008	Channel catfish $\begin{aligned} & 2(2), 10(7), 13(10), 15(1), 16(1), 17(2), 19(1), \\ & 24(2), 25(6), 26(1) \end{aligned}$
M51	Pearl dace $3(1), 22(1)$	010	Stonecat
N05	River carpsucker 10(4), 13(9), 24(1)	011	$9(1), 10(1), 11(3), 13(1)$ Tadpole madtom
N06	Quillback $3(2), 10(4), 13(10), 15(3), 19(1), 24(3), 25(1)$	012	$3(7), 10(4), 11(2), 12(8), 13(9), 15(1), 16(2), 23(1)$ Flathead catfish
N07	Highfin carpsucker $10(1), 13(4)$	P01	$10(6), 13(7), 16(1), 19(1), 24(1)$ Pirate perch
N09	White sucker $\begin{aligned} & 2(8), 3(53), 9(2), 10(5), 11(13), 12(4), 13(6), \\ & 15(4), 16(3), 17(3), 22(1), 23(1), 24(2), 25(1) \end{aligned}$	Q01	$6(4)$ Trout-perch $3(6), 10(2), 13(9), 24(1)$

Appendix Table B.2. Continued.

Fish Code	Fish Names and Sources	Fish Code	Fish Names and Sources
R01	$\begin{aligned} & \text { Burbot } \\ & 2(1), 3(4), 13(5), 15(2), 25(1), 26(1) \end{aligned}$	X03	Crystal darter $3(1), 10(1), 13(1), 14(1)$
S01	Banded killifish $1(1)$	X04	Western sand darter $10(1), 13(4), 24(1)$
S02	Blackstripe topminnow $2(6), 16(2)$	X05	Mud darter $10(7), 13(7)$
T01	Brook silverside $9(1), 10(2), 11(2), 13(12), 16(1), 24(1)$	X07	Rainbow darter $3(3), 9(2), 15(1)$
U01	Brook stickleback $2(3), 3(11), 9(1), 11(3), 12(6), 15(2), 16(2),$	X09	Iowa darter $3(3), 12(7)$
V01	22(4), 23(1) White bass	X10	Fantail darter $2(1), 3(6), 11(4)$
	$\begin{aligned} & 2(5), 3(8), 10(7), 13(16), 17(3), 19(1), 24(4), \\ & 25(1), 26(1) \end{aligned}$	X11	Least darter 3(1)
V02	Yellow bass $2(2), 13(1), 16(5)$	X12	Johnny darter $2(2), 3(42), 9(3), 10(5), 11(7), 12(5), 13(6),$
W04	$\begin{aligned} & \text { Rock bass } \\ & 2(3), 3(13), 10(7), 11(3), 13(17), 16(3), 24(3) \text {, } \\ & 25(1), 26(1) \end{aligned}$	X14	15(2), 16(3), 24(2) Banded darter 2(1), 3(1), 9(2)
W05	$\begin{aligned} & \text { Green sunfish } \\ & 2(6), 3(5), 8(1), 9(1), 10(2), 11(4), 12(11) \text {, } \\ & 13(6), 16(9), 17(1), 24(2), 25(1) \end{aligned}$	X15	Yellow perch $\begin{aligned} & 2(4), 3(22), 10(6), 11(6), 12(1), 13(17), 17(1), \\ & 23(2), 24(5), 25(2) \end{aligned}$
W06	Pumpkinseed 2(5), 3(17), 10(3), 11(5), 12(8), 13(11), 16(5), 22(1), 23(1), 24(5), 25(1)	X16 X17	$\begin{aligned} & \text { Logperch } \\ & 3(14), 10(6), 11(2), 13(13), 23(1), 24(3) \\ & \text { Gilt darter } \end{aligned}$
W07	$\begin{aligned} & \text { Warmouth } \\ & 3(1), 11(1), 12(2) \end{aligned}$	X18	$3(5), 10(1)$ Blackside darter
W08	Orangespotted sunfish $10(1), 11(2), 13(3), 24(1)$	X20	$3(9), 11(2), 12(3), 15(1)$ River darter
W09	Bluegill 2(4), 3(9), 8(1), 9(1), 10(7), 11(4), 12(10), $13(15), 15(1), 16(8), 17(4), 23(2), 24(5), 25(2)$	X21	$10(3), 13(6), 24(1)$ Sauger $10(6), 13(13), 16(2), 24(3), 25(2)$
W11	Smallmouth bass $\begin{aligned} & 3(6), 9(4), 10(7), 11(1), 13(8), 15(1), 16(2), \\ & 23(1), 24(3), 25(2), 26(1) \end{aligned}$	X22	$\begin{aligned} & \text { Walleye } \\ & 2(3), 3(16), 10(7), 13(16), 15(1), 17(5), 19(1) \text {, } \\ & 24(3), 25(6), 26(1) \end{aligned}$
W12	Largemouth bass 2(5), 3(7), 8(1), 10(5), 11(3), 12(2), 13(13), 16(4), 22(1), 23(2), 24(4), 25(3), 26(1)	Y01	Freshwater drum $2(3), 3(3), 10(7), 13(17), 16(3), 19(1), 24(3), 25(13)$
W13	White crappie $3(1), 10(3), 11(2), 12(4), 13(10), 16(2), 17(6),$ $24(3), 25(2), 26(1)$	Z01 Z02	Mottled sculpin $2(2), 3(3), 11(3), 22(1)$ Slimy sculpin $2(1), 23(1)$
W14	Black crappie 2(2), 3(22), 10(7), 11(4), 12(11), 13(12), 16(8), 17(3), 23(1), 24(4), 25(3)		

Appendix Figure C.1. Example of the data form (8100-46) for recording fish and stream information in the field. (Front and back are shown.)

Appendix Figure C.2. Example of the data form (8100-58) for coding fish and stream information collected in the field for computer entry. (Front and back are shown.)

Appendix Figure C.3. Example of a page from the Master Stream and Lake File showing water mileages of stream tributaries. (Listing method A-Figure 2-is used here.)

Appendix Figure C.4. Example of a page from the Master Fish File showing the 3-digit alphanumeric code for the fish species collected at each station. (Listing method A-Figure 2-is used here.)

Appendix Figure C.5. Example of a page from the Master Fish File showing the common name for the fish species collected at each station.
(Listing method A-Figure 2-is used here.)

NUMBER OF STATIONS WITH FISH = 31 NUMBER OF STATIONS WITH 1-98 FISH = 20 NUMBER OF STATIONS WITH 99 OR MORE FISH $=0$ TOTAL NUMBER OF FISH = 221 AVERAGE NUMBER OF FISH $=11.1$ (ESTIMATE)

$S D-61=12$	$S D-66=$	0	$S D-72=$	0	$S D-75=$	0	$S D-76=$	0	$S D-77=$	0	$S D-78=$	0	$S D-80=$	0	
$S D-83=$	0	$S D-86=$	0	$S D-88=$	0	$S D-89=$	0	$S D-94=$	0	$S D-98=$	0	$S D-99=$	0	$S D-36=$	0

TOTAL NUMBER OF SPECIES OCCURRENCES 31

Appendix Figure C.6. Example of the species listing portion of a computer print-out showing detailed records (i.e., station location, stream name, number of fish taken, collector, gear, effort, and data) for one species. (Listing method B-Figure 2-is used here.)

Appendix Figure C.7. Example of the summary table portion of the species listing computer print-out shown in Appendix Figure C.6. This summary shows each species, the number of stations at which each was taken, percent of total stations possible, total number of species occurrences, totals for each collector, and totals for number of species and hybrids.

Appendix D. Locations of Sampling Stations

Appendix Figure D.1. Location of 3,635 stations in Wisconsin sampled during 1900-72. Due to lack of space, 673 stations are not shown.

Appendix Figure D.2. Location of 9,841 stations in Wisconsin sampled during 1974-86 by all collectors. Due to lack of space, 2,970 stations are not shown.

Appendix Figure D.3. Location of 5,396 stations in Wisconsin sampled during 1974-86 by Fish Distribution Study personnel. Due to lack of space, 1,109 stations are not shown.

Appendix E. Photos of Sampling Gear Used and Uncommon Species Collected

A. DC stream shocker in use in the La Crosse River by Kurt Osterby, David Siegler, and Keith Otis.

B. DC backpack shocker in use in Story Creek by Dale Becker and David Siegler. This early version of a DC backpack shocker, powered by a gasoline generator, was replaced by later versions that were battery-powered.

C. DC backpack shocker powered by a 12-volt, deep-cycle battery. Pictured are Rick Tolleson and David Siegler.

D. An early model, used in the mid-1970s, of a DC boom shocker. It is shown ready for operation in the Pecatonica River by Dale Becker and George VanDahm.

E. DC minishocker consisting of a 16 -ft flatbottom aluminum boat, a 5-hp 240-volt DC generator, and a pulser control box. It is shown being used in the Apple River with Rick Tollefson dipping and David Siegler steering.

F. Small mesh seine, with a 4- by 4-ft bag at the right, in use in the Mississippi River by Tom Meyer, Keith Otis, and Paul Johnson.

Appendix Figure E.1. Example of gear used during the recent (1974-86) survey of fish distribution. Other gear used but not shown were DC longline shockers and AC stream shockers. Members of the sampling crew are identified from left to right.

A. Goldeye taken from the Chippewa River.

They prefer large rivers.

B. Gravel chubs inhabit riffles of medium-to-large rivers.

C. Pallid shiners inhabit sluggish sections of large rivers.

D. Striped shiners appear to be restricted to 5 smallto medium-sized rivers in the Milwaukee River basin.

E. Slender madtom prefer riffle sections of streams.

F. Starhead topminnows prefer well-vegetated backwaters and sloughs of medium-to-large rivers and lakes.

G. Crystal darters prefer the riffle sections of large rivers.

H. Bluntnose darters inhabit sluggish stretches of large rivers.

Appendix Figure E.2. Illustrations and habitat preferences of endangered fish species that were collected in the recent period (1974-86).

A. Specked chubs prefer sandy substrate in large rivers.

B. Ozark minnows inhabit moderately fast streams with gravel bottoms.

D. Gilt darters inhabit riffles of large rivers.
C. Longear sunfish prefer medium-to-large rivers and lakes.

E. Blue sucker (held by the author) taken from the St. Croix River. They prefer fast-moving sections of large rivers.
F. Black buffalo taken from Lake Wisconsin. They prefer the deep, swift channels of large rivers.

Appendix Figure E.3. Illustrations and habitat preferences of threatened fish species that were collected in the recent period (1974-86).

A. Lake sturgeon taken from Lake Wisconsin. They prefer large rivers and lakes.

B. Paddlefish (held by Fred Hagstrom) taken from a small tributary to the Wisconsin River where it was presumably trying to spawn. They prefer large rivers.

C. American eel prefer medium-to-large rivers. Only females are found in freshwater; they spawn in the Sargasso Sea.

D. Redside dace prefer clear pools in small- to mediumsized streams.

E. Pugnose shiners prefer clear, weedy lakes.

F. Pugnose minnows inhabit large low-gradient rivers.

Appendix Figure E.4. Illustrations and habitat preferences of selected watch fish species that were collected in the recent period (1974-86).

G. Weed shiners inhabit sluggish areas of medium-to-large rivers and lakes.

H. Redfin shiners inhabit slow pool areas of medium-tolarge rivers and lakes.

I. Lake chubsuckers prefer lakes and sloughs of large rivers.

L. Pirate perch prefer small streams of the backwaters or sloughs of medium-to-large rivers.

M. Mud darters prefer slow-moving, weedy areas adjacent to medium-to-large rivers.

N. Least darters inhabit quiet, weedy areas of small streams.

J. River redhorse taken from the Rock River. They inhabit the fast-moving sections of large rivers.
K. Greater redhorse taken from Turtle Creek. They inhabit the fast-moving sections of large rivers.

Appendix Figure E.4. Continued.

Appendix F. Frequency of Species Occurrence by Water Type

Appendix Table F.1. Number of specimens of each species collected in streams, the percent of total stream stations at which each species was caught, and the number of stations at which $<99,>98$, or unknown numbers of each species were taken, 1974-86.

Species	No. Specimens*	Percent of Total Stream Stations	No. Stations**		
			<99	>98	Unknown
White sucker	150,000	66	4,203	641	238
Creek chub	100,000	54	3,321	360	487
Common shiner	95,000	35	2,046	528	168
Brook trout	66,000	26	1,731	303	15
Blacknose dace	59,000	35	2,050	213	425
Johnny darter	53,000	43	2,902	137	318
Bluntnose minnow	47,000	27	1,753	214	89
Central mudminnow	38,000	35	2,470	122	140
Brook stickleback	37,000	34	2,237	124	256
Mottled sculpin	36,000	22	1,511	118	102
Brown trout	32,000	20	1,419	108	8
Hornyhead chub	32,000	17	1,180	118	46
Fathead minnow	29,000	24	1,642	109	93
Fantail darter	28,000	15	838	134	203
Spotfin shiner	27,000	12	727	146	68
Longnose dace	21,000	17	990	70	244
Common carp	19,000	13	844	89	45
Southern redbelly dace	19,000	8	446	102	50
Pearl dace	17,000	12	866	55	16
Black bullhead	17,000	15	1,080	67	21
Bluegill	17,000	13	910	75	23
Bigmouth shiner	16,000	10	594	67	55
Northern redbelly dace	15,000	11	741	58	23
Sand shiner	13,000	7	457	65	37
Shorthead redhorse	13,000	10	676	40	24
Northern hog sucker	12,000	11	718	31	76
Brassy minnow	11,000	10	750	34	9
Emerald shiner	11,000	5	345	62	18
Yellow perch	11,000	12	851	21	23
Rock bass	9,300	12	878	12	17
Blackside darter	8,900	11	797	17	37
Green sunfish	8,400	12	900	11	19
Golden redhorse	7,300	7	523	14	7
Smallmouth bass	7,100	9	707	10	2
Bullhead minnow	6,900	3	210	38	9
Pumpkinseed	6,700	12	881	7	12
Rainbow darter	6,600	3	190	33	26
Largemouth bass	6,500	11	844	13	16
Rosyface shiner	6,400	4	308	16	3
Golden shiner	6,300	9	635	13	16
Northern pike	6,100	18	1,330	7	35
Logperch	6,000	8	562	14	39
River shiner	5,700	3	160	30	6
Central stoneroller	5,000	12	754	4	224
Black crappie	4,700	7	515	14	10
Blacknose shiner	4,600	5	356	12	5
Burbot	4,200	8	559	5	3
Silver redhorse	3,900	5	352	8	6

Appendix Table F.1. Continued.

Species	No. Specimens*	Percent of Total Stream Stations	No. Stations**		
			<99	>98	Unknown
Banded darter	3,900	4	287	8	6
Rainbow trout	3,800	3	212	18	1
Quillback	3,700	4	294	8	5
Mimic shiner	3,500	3	173	19	4
American brook lamprey	3,400	6	434	1	9
Gizzard shad	3,200	2	111	16	4
Walleye	3,200	7	497	4	7
Yellow bullhead	3,100	7	498	4	16
Stonecat	3,000	5	403	4	14
Largescale stoneroller	2,700	5	368	2	4
Slimy sculpin	2,600	2	89	7	58
Spottail shiner	2,500	2	179	7	30
Redside dace	2,200	2	128	6	39
Suckermouth minnow	2,100	2	163	5	6
Finescale dace	2,100	3	215	4	15
Tadpole madtom	2,000	3	266	2	1
Brook silverside	2,000	2	159	7	1
Iowa darter	2,000	4	273	4	5
White bass	1,900	2	167	7	2
Mississippi silvery minnow	1,800	1	65	10	0
Freshwater drum	1,500	2	156	3	5
Spotted sucker	1,300	2	110	3	2
Channel catfish	1,200	3	243	1	4
Blackstripe topminnow	1,200	1	82	4	1
Trout-perch	1,100	1	87	2	0
Sauger	1,000	2	137	2	2
Alewife	960	t	7	9	1
Mooneye	880	2	123	0	0
Orangespotted sunfish	840	1	93	2	3
Brown bullhead	830	2	116	3	5
Blackchin shiner	820	1	94	2	1
White crappie	810	2	131	1	3
Pugnose minnow	700	1	81	1	1
Slenderhead darter	700	1	103	0	2
Western sand darter	690	1	77	2	1
Lake chub	630	1	37	2	0
Ozark minnow	600	1	47	1	0
Weed shiner	590	1	51	2	3
Highfin carpsucker	590	1	76	0	2
Bowfin	580	2	108	2	4
Blue sucker	490	1	54	0	0
River redhorse	490	1	72	1	0
Bigmouth buffalo	480	1	94	1	2
Smallmouth buffalo	450	1	74	0	0
Speckled chub	440	$\mathrm{t}^{* *}$	25	2	1
Longnose gar	430	1	88	0	2
Greater redhorse	430	1	99	0	1
River carpsucker	420	1	67	0	1

Species	No. Specimens ${ }^{*}$	Percent of Total Stream Stations	No. Stations**		
			<99	>98	Unknown
Goldfish	400	1	32	2	0
Gilt darter	400	1	41	1	2
Mud darter	390	1	69	0	0
Chestnut lamprey	360	2	130	0	1
River darter	360	1	64	1	4
Coho salmon	350	t	34	1	0
Least darter	340	1	46	1	0
Slender madtom	280	t	28	0	0
Northern brook lamprey	270	1	75	0	5
Silver chub	250	1	64	0	2
Gravel chub	250	1	41	0	0
Lake chubsucker	240	1	48	0	0
Flathead catfish	230	1	49	0	0
Shortnose gar	220	1	68	0	1
Grass pickerel	220	1	75	0	2
Longnose sucker	190	t	25	0	0
Pallid shiner	180	t	17	0	0
Warmouth	180	1	37	0	0
Redfin shiner	160	t	19	0	0
Yellow bass	160	t	24	0	0
Chinook salmon	150	t	25	0	0
Rainbow smelt	150	t	5	1	1
Longear sunfish	150	t	17	0	0
Paddlefish	140	t	10	1	2
Muskellunge	130	1	52	0	1
Crystal darter	120	t	19	0	0
Shovelnose sturgeon	110	t	32	0	0
Banded killifish	100	t	27	0	1
Pirate perch	80	t	23	0	1
Striped shiner	75	t	13	0	0
Silver lamprey	71	1	51	0	1
American eel	51	t	29	0	0
Lake sturgeon	44	t	16	0	1
Goldeye	31	t	15	0	0
Starhead topminnow	23	t	4	0	0
Pugnose shiner	17	t	8	0	0
Bloater	14	t	1	0	0
Black buffalo	11	t	9	0	2
Sea lamprey	8	t	4	0	0
Pink salmon	6	t	4	0	0
Ninespine stickleback	2	t	1	0	0
Bluntnose darter	2	t	2	0	0
Total	1,244,365		60,625	4,686	4,113

* Rounded to 2 significant figures for each species.
** $<99=98$ or fewer specimens taken/station.
$>98=99$ or more specimens taken/station (99 used in count of total).
Unknown = counts of specimens were not made.
${ }^{* * *} \mathrm{t}=$ less than 0.5%.

Appendix Table F.2. Number of specimens of each species collected in lakes, the percent of total lake stations at which each species was caught, and the number of stations at which <99, >98, or unknown numbers of each species were taken, 1974-86.

Species	No. Specimens*	Percent of Total Lake Stations	No. Stations**		
			<99	>98	Unknown
Bluegill	55,000	72	1,078	326	20
Yellow perch	42,000	68	1,083	228	26
Bluntnose minnow	38,000	43	596	248	16
Largemouth bass	20,000	62	1,151	53	16
Pumpkinseed	17,000	53	964	62	14
Black crappie	15,000	35	612	72	15
White sucker	11,000	31	502	54	55
Walleye	10,000	18	289	67	5
Golden shiner	8,700	28	440	50	59
Black bullhead	7,900	19	293	49	28
Northern pike	7,700	32	600	24	16
Blacknose shiner	6,700	14	240	35	7
Mimic shiner	6,000	9	145	33	1
Brook silverside	5,400	10	140	31	12
Johnny darter	5,300	29	548	12	11
Rock bass	5,100	24	453	8	10
Common carp	4,800	13	201	29	23
Yellow bullhead	4,800	13	214	26	19
Common shiner	4,200	13	211	19	31
Blackchin shiner	4,200	10	174	17	2
Brown bullhead	4,100	13	215	18	27
Iowa darter	3,700	19	357	7	6
Spotfin shiner	3,600	7	124	19	1
Fathead minnow	3,600	11	189	17	12
Green sunfish	2,600	15	278	7	7
Spottail shiner	2,200	14	138	7	6
Smallmouth bass	2,200	15	288	3	3
Logperch	2,200	12	217	2	15
Banded killifish	1,800	9	174	2	0
Muskellunge	1,400	6	101	4	5
Central mudminnow	1,300	8	129	6	25
Brook trout	1,200	3	53	4	0
Emerald shiner	1,200	6	107	5	3
Creek chub	1,200	4	74	4	7
Brook stickleback	1,000	4	62	2	3
Shorthead redhorse	920	4	70	2	3
White crappie	900	4	75	4	1
White bass	860	4	82	1	0
Northern redbelly dace	820	3	43	4	2
Brassy minnow	780	2	30	5	2
Cisco	770	2	23	7	1
Gizzard shad	580	1	16	4	1
Sand shiner	580	2	28	3	1
Freshwater drum	520	3	46	2	2
Golden redhorse	490	2	28	3	1
Warmouth	480	4	82	0	2
Yellow bass	460	2	43	1	0

Species	No. Specimens*	Percent of Total Lake Stations	No. Stations**		
			<99	>98	Unknown
Bullhead minnow	420	2	29	0	2
Bigmouth buffalo	420	1	23	3	0
Rosyface shiner	416	1	10	3	0
Bowfin	410	4	69	0	12
Hornyhead chub	360	2	43	1	1
Pearl dace	360	2	29	1	1
Least darter	360	2	41	1	0
Pugnose shiner	320	3	50	0	0
Finescale dace	320	1	21	0	1
River shiner	310	1	16	1	1
Channel catfish	310	3	49	1	1
Orangespotted sunfish	310	1	24	0	0
Silver redhorse	300	2	31	1	0
Weed shiner	280	1	20	1	1
Lake chubsucker	270	2	46	0	3
Tadpole madtom	270	4	75	0	1
Pugnose minnow	240	2	34	0	0
Spotted sucker	240	1	26	1	0
Trout-perch	220	1	16	1	4
Rainbow trout	210	1	23	1	2
Blacknose dace	210	1	19	0	1
Brown trout	170	1	20	1	1
Burbot	170	2	36	0	2
Longnose gar	150	3	48	0	5
Goldfish	150	1	11	1	1
Mottled sculpin	150	3	51	0	5
Grass pickerel	140	3	52	0	1
Longear sunfish	130	1	9	1	0
Sauger	120	1	12	0	0
Lake sturgeon	110	1	14	0	2
Smallmouth buffalo	110	$t^{* * *}$	5	1	0
Quillback	91	1	20	0	1
Redfin shiner	89	t	6	0	0
Bigmouth shiner	86	1	10	0	10
Blackstripe topminnow	80	1	14	0	1
Pallid shiner	60	t	6	0	0
Rainbow darter	58	1	23	0	1
River darter	57	t	9	0	0
Mooneye	40	1	10	0	1
Northern hog sucker	32	1	11	0	0
Starhead topminnow	31	t	4	0	0
Shortnose gar	30	1	13	0	0

Species	No. Specimens*	Percent of Total Lake Stations	No. Stations**		
			<99	>98	Unknown
Lake whitefish	29	t	2	0	0
Largescale stoneroller	27	1	10	0	0
Blackside darter	25	1	10	0	2
Silver chub	20	t	7	0	0
American brook lamprey	18	t	1	0	0
Suckermouth minnow	17	t	2	0	0
Mud darter	16	t	6	0	0
Fantail darter	16	1	11	0	1
Highfin carpsucker	15	t	6	0	0
River redhorse	14	t	3	0	0
Central stoneroller	13	t	5	0	0
Rainbow smelt	12	t	2	0	1
Chestnut lamprey	9	t	5	0	1
River carpsucker	8	t	5	0	0
Greater redhorse	7	t	6	0	0
Ozark minnow	6	t	2	0	2
Black buffalo	6	t	2	0	0
Slenderhead darter	5	t	3	0	0
Goldeye	4	t	1	0	0
Flathead catfish	4	t	4	0	0
Banded darter	4	t	4	0	0
Silver lamprey	3	t	3	0	0
Lake trout	3	t	1	0	1
Redside dace	3	t	1	0	0
Mississippi silvery minnow	3	t	2	0	0
Slimy sculpin	3	t	1	0	0
Shovelnose sturgeon	2	t	2	0	0
Skipjack herring	2	t	2	0	0
Longnose dace	2	t	2	0	0
Paddlefish	1	t	1	0	0
American eel	1	t	1	0	1
Speckled chub	1	t	1	0	0
Striped shiner	1	t	1	0	1
Longnose sucker	1	t	1	0	0
Stonecat	1	t	1	0	1
Western sand darter	1	t	1	0	0
Alewife	- -	t	0	0	1
Total	329,173		14,202	1,606	596

${ }^{*}$ Rounded to 2 significant figures for each species.
${ }^{* *}<99=98$ or fewer specimens taken/station. $>98=99$ or more specimens taken/station (99 used in count of total).
Unknown = counts of specimens were not made.
${ }^{* * *} \mathrm{t}=$ less than 0.5%.

Appendix Table F.3. Number of specimens of each species collected in all water types and the number of stations at which <99, >98, or unknown numbers of each species were taken, 1974-86.*

Species	No. Specimens**	No. Stations ${ }^{\text {a }}$		
		<99	>98	Unknown
White sucker	170,000	4,744	700	296
Common shiner	100,000	2,272	548	199
Creek chub	100,000	3,402	366	495
Bluntnose minnow	86,000	2,381	465	109
Bluegill	73,000	2,039	409	44
Brook trout	68,000	1,785	310	15
Blacknose dace	60,000	2,075	213	426
Johnny darter	59,000	3,465	149	330
Yellow perch	52,000	1,971	252	50
Central mudminnow	39,000	2,614	130	165
Brook stickleback	38,000	2,312	126	260
Mottled sculpin	36,000	1,567	118	107
Hornyhead chub	33,000	1,226	119	47
Brown trout	32,000	1,442	109	9
Fathead minnow	32,000	1,844	126	106
Spotfin shiner	31,000	931	170	19
Fantail darter	28,000	849	135	204
Common carp	27,000	1,074	144	73
Largemouth bass	27,000	2,044	66	32
Black bullhead	25,000	1,396	118	50
Pumpkinseed	24,000	1,887	69	26
Longnose dace	21,000	997	70	245
Black crappie	21,000	1,162	88	26
Southern redbelly dace	19,000	446	103	51
Pearl dace	17,000	899	56	17
Bigmouth shiner	16,000	606	67	55
Northern redbelly dace	16,000	790	62	25
Golden shiner	15,000	1,106	63	76
Rock bass	15,000	1,347	20	27
Northern pike	14,000	1,970	32	51
Sand shiner	14,000	491	69	38
Shorthead redhorse	14,000	766	42	27
Walleye	14,000	820	72	12
Emerald shiner	13,000	481	69	21
Brassy minnow	12,000	785	40	11
Northern hog sucker	12,000	731	31	76
Blacknose shiner	11,000	599	47	12
Green sunfish	11,000	1,196	18	26
Mimic shiner	9,600	319	53	5
Smallmouth bass	9,400	1,016	13	15
Blackside darter	9,000	809	17	39
Logperch	8,300	795	16	54
Yellow bullhead	8,100	728	30	35
Golden redhorse	7,800	553	17	8
Brook silverside	7,700	310	40	14
Bullhead minnow	7,600	252	39	11
Rosyface shiner	6,800	319	19	3
Rainbow darter	6,600	214	33	27
River shiner	6,100	183	31	7

Appendix Table F.3. Continued.

Species	No. Specimens* ${ }^{* *}$	No. Stations ${ }^{\text {a }}$		
		<99	>98	Unknown
Iowa darter	5,700	632	11	11
Central stoneroller	5,000	761	4	135
Blackchin shiner	5,000	268	19	3
Spottail shiner	5,000	341	15	14
Brown bullhead	5,000	334	22	32
Burbot	4,400	598	5	46
Silver redhorse	4,200	394	9	7
Rainbow trout	4,000	237	19	3
Gizzard shad	3,900	137	20	5
Quillback	3,900	324	8	6
Banded darter	3,900	291	8	6
American brook lamprey	3,500	436	1	8
Freshwater drum	3,300	223	16	7
Stonecat	3,000	405	4	14
White bass	2,900	270	8	2
Largescale stoneroller	2,800	379	2	4
Slimy sculpin	2,600	90	7	58
Finescale dace	2,400	238	4	16
Redside dace	2,200	129	6	39
Tadpole madtom	2,200	346	2	2
Suckermouth minnow	2,100	166	5	6
White crappie	2,100	227	7	4
Banded killifish	1,900	201	2	1
Mississippi silvery minnow	1,800	67	10	0
Spotted sucker	1,700	143	5	3
Channel catfish	1,600	310	2	5
Muskellunge	1,500	155		6
Trout-perch	1,400	105	3	4
Blackstripe topminnow	1,300	100	4	2
Orangespotted sunfish	1,300	131	2	3
Bowfin	1,200	193	4	25
Sauger	1,200	159	2	2
Alewife	1,000	8	9	2
Bigmouth buffalo	1,000	126	5	2
Pugnose minnow	980	125	1	1
Mooney	950	140	0	1
Weed shiner	900	74	3	4
Cisco or lake herring	770	23	7	1
Least darter	710	87	2	0
Slenderhead darter	710	106	0	2
Western sand darter	690	78	2	1
Lake chub	680	38	2	0
Warmouth	660	121	0	2
Yellow bass	630	72	1	0
Highfin carpsucker	610	83	0	2
Longnose gar	600	143	0	8
Ozark minnow	600	49	1	0
Goldfish	560	53	3	1
Smallmouth buffalo	560	81	1	0
Lake chubsucker	520	95	0	3

Species	No. Specimens**	No. Stations ${ }^{\text {a }}$		
		<99	>98	Unknown
River redhorse	500	75	1	0
Blue sucker	490	54	0	0
Speckled chub	440	26	2	1
River carpsucker	440	75	0	1
Greater redhorse	430	105	0	1
Mud darter	430	80	0	0
River darter	420	76	1	4
Gilt darter	400	41	1	2
Chestnut lamprey	370	134	0	2
Grass pickerel	360	127	0	3
Shortnose gar	350	83	1	1
Coho salmon	350	34	1	0
Pugnose shiner	340	58	0	0
Shovelnose sturgeon	320	35	2	5
Slender madtom	280	28	0	0
Northern brook lamprey	270	76	0	5
Silver chub	270	76	0	2
Longear sunfish	270	26	1	0
Gravel chub	250	41	0	0
Pallid shiner	250	26	0	0
Redfin shiner	250	27	0	0
Flathead catfish	230	53	0	0
Chinook salmon	200	26	0	0
Longnose sucker	190	26	0	0
Rainbow smelt	160	7	1	2
Lake sturgeon	150	31	0	3
Paddlefish	140	11	1	2
Crystal darter	120	19	0	0
Striped shiner	92	15	0	0
Pirate perch	80	24	0	1
Silver lamprey	78	57	0	1
Starhead topminnow	55	9	0	0
American eel	52	30	0	8
Goldeye	35	16	0	0
Lake whitefish	30	3	0	0
Black buffalo	17	11	0	0
Sea Lamprey	8	4	0	0
Pink salmon	6	4	0	0
Lake trout	3	1	0	0
Ninespine stickleback	3	2	0	0
Skipjack herring	2	2	0	0
Bluntnose darter	2	2	0	0
Total	1,600,000	75,958	6,388	4,629

[^13]
Appendix G. Distribution Maps for All Species

How to Use the Maps. Readers interested in seeing the distribution of certain fish may look for the distribution maps of those fish in the following appendix. Maps are identified by a number and by the common name of the fish species covered. For most species, 2 maps are presented, one for the early period (1900-72) and one for the late period (1974-86). In the map numbering, these periods are identified as early (E) and late (L).

Map Sequence and Numbers. Sequence of the maps follows the phylogenetic order of the fish species. This sequence parallels that used in the master table of fish records, Table 6, which also lists the map numbers in ascending order. Readers unfamiliar with the location of species within phylogenetic order may use Index B to find the fish they are interested in. Found on the last inside page of this report, Index B lists the common names of mapped species in alphabetical order. After each common name in the index, the appropriate map numbers are given for the 2 time periods.

Water Body Locations. Once the desired maps are located, one of the clear base maps at the back of the report can be removed and placed on top of the distribution maps. This base map places and names major water bodies in the state. It serves as a reference tool for identifying the approximate location of the records shown on the maps.
Map Symbols and Captions. The 2 symbols used throughout the maps are a triangle-for collections by collectors whose identification we acceptedand a circle-for collections by collectors we were uncertain about.

Captions for each map summarize the actual number of collections for each species. For the 2 map symbols, the first number given in the map caption is the number of collections shown on the map for that period. The number in parentheses is the number of collections that could not be shown on the map because of space limitations.

Map captions also divide the total number of collections for each species into the number of collections made by DNR personnel and the number made by others. As for the map symbols, these numbers give first the number shown on the map and in parentheses the number not mapped.

Further explanation on certainty of species identification, names of nonDNR collectors, and the computer plotting of records is given in the "Fish Identification, Enumeration, and Status Listing" and "Data Handling" sections of this report.

Map Interpretation. Readers are reminded that the maps show distribution only in that part of the state that has been sampled. Since sampling has been completed in only about half of the state, empty portions of the distribution maps may mean that area has not yet been surveyed. Figure 1 of this report identifies where sampling has been completed. Further explanation of what the maps mean is given in the "Differences Between Time Periods" section of this report.

Map caption examples:

Map 1(E)	
Chestnut lamprey	
\triangle Accepted	$6(0)$
O Uncertain	$31(2)$
DNR	$30(2)$
Other	$7(0)-$

Map 1(L)	
Chestnut lamprey	
\triangle Accepted	$111(9)$
O Uncertain	$12(4)$
DNR	$122(12)$
Other	$1(1)$

Map 2(L)

Map 4(L)

Map $5(E)$

Map 7(E)

Map 7(L)

Map 10(L)

Map 11(E)

Map 11(L)

Map 12(E)

Map 14(L)

Map 18(L)

Map 20(L)

Map 22(L)

Map 23(E)

Map 24(E)

Map 25(E)

Map 26(L)

Map 27(E)

Map 27(L)

Map 28(E)

Map 30(L)

Map 34(E)

Map 37(E)

Map 39(E)

Map 41(E)

Map 42(E)

Map 45(E)

Map 45(L)

Map 46(E)

Map 47(E)

Map 50(E)

Map $51(\mathrm{~L})$

Map $52(\mathbf{E})$

Map $53(\mathbf{E})$

Map 55(E)

Map 57(E)

Map 59(E)

Map 63(E)

Map 65(E)

Map 65(L)

Map 67(E)

Map 68(L)

Map 70(E)

Map 71(E)

Map 73(E)

Map 73(L)

Map 74(E)

Map 75(E)

Map 77(E)

Map 77(L)

Map 78(L)

Map $80(E)$

Map 82(E)

Map 22(L)

Map 83(L)

Map $84(\mathbf{E})$

Map 85(L)

Map 86(E)

Map 86(L)

Map 89(E)

Map 89(L)

Map 91(E)

Map 93(E)

Map 94(E)

Map 95(E)

Map 95(L)

Map 97(L)

Map 99(E)

Map 99(L)

Map 103(E)

Map 105(E)

Map 106(L)

Map 108(L)

Map 110(E)

Map 111(E)

Map 113(E)

Map 114(E)

Map 116(E)

Map 117(E)

Map 118(E)

Map 118(L)

Map 119(E)

Map 120(E)

Map 121(E)

Map 122(E)

Map 124(E)

Map 126(E)

Map 126(L)

Map 127(E)

Map 127(L)

Map 128(E)

Map 128(L)

Map 130(E)

Map 130(L)

Map 132(E)

Map 134(E)

Map 135(L)

Map 136(E)

Map 137(E)

Map 139(E)

Map 140(L)

Map 141(E)

Map 142(E)

Map 142(L)

Map 143(E)

Map 144(E)

Map 144(L)

LITERATURE CITED

Becker, G. C.
1959. Distribution of central Wiscon\sin fishes. Trans. Wis. Acad. Sci., Arts and Lett. 48:65-102.

1964a.The fishes of Lakes Poygan and Winnebago. Trans. Wis. Acad. Sci., Arts and Lett. 53:29-52.

1964a.The fishes of Pewaukee Lake. Trans. Wis. Acad. Sci., Arts and Lett. 53:19-27.
1966. Fishes of southwestern Wisconsin. Trans. Wis. Acad. Sci., Arts and Lett. 55:87-117.
1983. Fishes of Wisconsin. Univ. Wis. Press, Madison. 1053 pp.
Cahn, A. R.
1927. An ecological study of southern Wisconsin fishes. The brook silverside (Labidesthes sicculus) and cisco (Leucichthys artedi) in their relations to the region. Ill. Biol. Monogr. 11(1):1-151.

Fago, D.
1982. Distribution and relative abundance of fishes in Wisconsin: I. Greater Rock River basin. Wis. Dep. Nat. Resour. Tech. Bull. No. 136. 120 pp.
1983. Distribution and relative abundance of fishes in Wisconsin: II. Black, Trempealeau, and Buffalo river basins. Wis. Dep. Nat. Resour. Tech. Bull. No. 140. 120 pp .
1984a. Distribution and relative abundance of fishes in Wisconsin: III. Red Cedar River basin. Wis. Dep. Nat. Resour. Tech. Bull. No. 143. 69 pp .

1984b.Retrieval and analysis system used in Wisconsin's statewide fish distribution survey. Wis. Dep. Nat. Resour. Res. Rep. No. 126. 35 pp.
1984c. Distribution and relative abundance of fishes in Wisconsin: IV. Root, Milwaukee, Des Plaines, and Fox river basins. Wis. Dep. Nat. Resour. Tech. Bull. No. 147. 128 pp .

1985a. Distribution and relative abundance of fishes in Wisconsin: V. Grant \& Platte, Coon \& Bad Axe, and La Crosse river basins. Wis. Dep. Nat. Resour. Tech. Bull. No. 152. 112 pp.
1985b. Distribution and relative abundance of fishes in Wisconsin: VI. Sheboygan, Manitowoc, and Twin river basins. Wis. Dep. Nat. Resour. Tech. Bull. No. 155. 100 pp .
1986. Distribution and relative abundance of fishes in Wisconsin: VII. St. Croix River basin. Wis. Dep. Nat. Resour. Tech. Bull. No. 159. 112 pp.
1988. Retrieval and analysis system used in Wisconsin's statewide fish distribution survey, 2nd ed. Wis. Dep. Nat. Resour. Res. Rep. No. 148. 53 pp .

Greene, C. W.
1935. The distribution of Wisconsin fishes. Wis. Conserv. Comm., Madison. 235 pp.
Henrich, E. W. and D. N. Daniel
[1983.] Drainage area data for Wisconsin streams. U. S. Geol. Surv., Madison. Open-File Rep. No. 83-933. 322 pp.

Johnson, M. and G. Becker
1970. Annotated list of the fishes of Wisconsin. Trans. Wis. Acad. Sci., Arts and Lett. 58:265-300.

Kendall, R. L.
1988. Taxonomic changes in North American trout names. North Am. J. Fish. Manage. 8(4):389.
McNaught, D. C.
1963. The fishes of Lake Mendota. Trans. Wis. Acad. Sci., Arts and Lett. 52:37-55.

Novotny, D. W. and G. R. Priegel
1971. A guideline for portable direct current electrofishing systems. Wis. Dep. Nat. Resour. Tech. Bull. No. 51. 22 pp.
1974. Electrofishing boats: improved designs and operational guidelines to increase the effectiveness of boom shockers. Wis. Dep. Nat. Resour. Tech. Bull. No. 73. 48 pp.
Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, and W. B. Scott
1980. A list of common and scientific names of fishes from the United States and Canada. 4th ed. Am. Fish. Soc. Spec. Publ. No. 12. 174 pp .
Smith P. W. and A. C. Lopinot
1967. The 1966 survey of fishes from mouths of Mississippi River tributaries. pp. 226-33 in Upper Mississippi River Conservation Committee. Proc. 23rd Annu. Meet. Upper Miss. R. Conserv. Comm. [var. pp.]

INDEXES

Index A. Index to sampling effort (Appendix A).

Basin		Table No.	
		Streams	Lakes
All basins completed		A. 1	A. 2
All basins to be sampled		A. 3	A. 4
Individual basins to be sampled			
2	Mississippi River	A. 5	A. 18
60	Kewaunee River	A. 6	A. 19
	Door Peninsula drainage	A. 7	A. 20
81	Fox River	A. 8	A. 21
82	Wolf River	A. 9	A. 22
90	Suamico River	A. 10	A. 23
100	Pensaukee River	A. 11	A. 24
110	Oconto River	A. 12	A. 25
120	Peshtigo River	A. 13	A. 26
130	Menominee River	A. 14	A. 27
240	Wisconsin River	A. 15	A. 28
300	Chippewa River	A. 16	A. 29
400	Lake Superior drainage	A. 17	A. 30

Index B. Index to distribution maps (Appendix G).

Species	Map No.		Species	Map No.		Species	Map No.	
	1900-72	1974-86		1900-72	1974-86		1900-72	1974-86
Alewife	13(E)	13(L)	Darter (continued)			Sculpin		
Bass			Mud	126(E)	126(L)	Mottled	143(E)	143(L)
Largemouth	121(E)	121(L)	Rainbow	127(E)	127(L)	Slimy	144(E)	144(L)
Rock	113(E)	113(L)	River	139(E)	139(L)	Shad, gizzard	14(E)	14(L)
Smallmouth	120(E)	120(L)	Slenderhead	138(E)	138(L)	Shiner		
White	111(E)	111(L)	Western sand	125(E)	125(L)	Bigmouth	52(E)	52(L)
Yellow	112(E)	112(L)	Drum, freshwater	142(E)	142(L)	Blackchin	54(E)	54(L)
Bluegill	118(E)	118(L)	Eel, American	12(E)	12(L)	Blacknose	55(E)	55(L)
Bowfin	11(E)	11(L)	Gar			Common	51(E)	51(L)
Buffalo			Longnose	9(E)	9(L)	Emerald	47(E)	47(L)
Bigmouth	86(E)	86(L)	Shortnose	10(E)	10(L)	Ghost	49(E)	$\stackrel{-}{\text { - }}$
Black	87(E)	87(L)	Goldeye	16(E)	16(L)	Golden	44(E)	44(L)
Smallmouth	85(E)	85(L)	Goldfish	$34(\mathrm{E})$	34(L)	Pallid	45(E)	45(L)
Bullhead			Herring, skipjack	15(E)	15(L)	Pugnose	46(E)	46(L)
Black	94(E)	94(L)	Killifish, banded	105(E)	105(L)	Red	75(E)	-
Brown	$96(\mathrm{E})$	96(L)	Lamprey			Redfin	62(E)	62(L)
Yellow	95(E)	95(L)	Lamprey ${ }_{\text {American brook }}$	4(E)	4(L)	River	48(E)	48(L)
Burbot	104(E)	104(L)	Chestnut	1(E)	1(L)	Rosyface	58(E)	58(L)
Carp, common	37(E)	37(L)	Northern brook	2(E)	2(L)	Sand	60 (E)	60(L)
Carpsucker			Sea	5(E)	5(L)	Spotfin	$59(\mathrm{E})$	59(L)
Highfin	78(E)	78(L)	Silver	3(E)	3(L)	Spottail	56(E)	56(L)
River	76(E)	76(L)	Logperch	135(E)	135(L)	Striped	50(E)	50(L)
Catfish			Madtom			Weed	61(E)	61(L)
Channel	97(E)	97(L)	Slender	98(E)	98(L)	Silverside, brook	108(E)	108(L)
Flathead	101(E)	101(L)	Tadpole	100(E)	100(L)	Smelt, rainbow	27(E)	27(L)
Chub			Minnow			Stickleback		
Creek	73(E)	73(L)	Bluntnose	68(E)	68(L)	Brook	109(E)	109(L)
Gravel	42(E)	42(L)	Bullhead	70(E)	70(L)	Ninespine	110(E)	110(L)
Hornyhead	43(E)	43(L)	Brassy	38(E)	38(L)	Stonecat	99(E)	99(L)
Lake	36(E)	36(L)	Fathead	69(E)	69(L)	Stoneroller		
Silver	41(E)	41(L)	Mississippi silvery	39(E)	39(L)	Central	32(E)	32(L)
Speckled	40(E)	40(L)	Ozark	57(E)	57(L)	Largescale	33(E)	33(L)
Chubsucker			Pugnose	53(E)	$53(\mathrm{~L})$	Sturgeon		
Creek	82(E)	-*	Suckermouth	64(E)	64(L)	Lake	6(E)	6(L)
Lake	83(E)	83(L)	Mooney	17(E)	17(L)	Shovelnose	7(E)	7(L)
Cisco (lake herring)	18(E)	18(L)	Mudminnow, central	28(E)	28(L)	Sucker		
Crappie			Muskellunge	31(E)	31(L)	Blue	81(E)	81(L)
Black	123(E)	123(L)	Paddlefish	8(E)	8(L)	Longnose	79(E)	79(L)
White	122(E)	122(L)				Northern hog	84(E)	84(L)
Dace			Perch, yellow	134(E)	134(L)	Spotted	88(E)	88(L)
Blacknose	71(E)	71(L)	Pickerel, grass	29(E)	29(L)	White	80(E)	80(L)
Finescale	67(E)	67(L)	Pike, northern	30(E)	30(L)	Sunfish		
Longnose	72(E)	72(L)	Pirate perch	102(E)	102(L)	Green	114(E)	114(L)
Northern redbelly	$65(\mathrm{E})$	65(L)	Pumpkinseed	115(E)	115(L)	Longear	119(E)	119(L)
Pearl	74(E)	74(L)	Quillback	77(E)	77(L)	Orangespotted	117(E)	117(L)
Redside	$35(\mathrm{E})$	35(L)		7(E)	77)	Topminnow		
Southern redbelly	66(E)	66(L)	Redhorse			Blackstripe	106(E)	106(L)
Darter			Golden	91(E)	91(L)	Starhead	107(E)	107(L)
Banded	133(E)	133(L)	Greater	$93(\mathrm{E})$	$90(\mathrm{~L})$	Trout		
Blackside	137(E)	137(L)	Rhiver	$92(\mathrm{E})$	92(L)	Brook	25(E)	25(L)
Bluntnose	128(E)	128(L)	Silver	$89(\mathrm{E})$	89(L)	Brown	24(E)	24(L)
Crystal	124(E)	124(L)		8(E)	89(L)	Lake	26(E)	26(L)
Fantail	130(E)	130(L)	Salmon			Rainbow	23(E)	23(L)
Gilt	136(E)	136(L)	Chinook			Trout-perch	103(E)	103(L)
Iowa	$129(\mathrm{E})$	129(L)			20(L)	Walleye	141(E)	141(L)
Johnny	132(E)	132(L)	Pink		20(L)	Warmouth	116(E)	116(L)
Least	131(E)	131(L)	Sauger	140(E)	140(L)	Whitefish, lake	19(E)	19(L)

*- = No map prepared since species not collected during this period.

```
Approximate
Metric-English Equivalents
1 ha =2.47 acres
1m=3.28ft
1 cm = 0.39 inches
1 km = 0.62 miles
1 m
```


Acknowledgments

The study of the distribution of fish in the inland waters of Wisconsin represents the efforts and cooperation of a number of people.

One requiring special thanks is David Siegler for his work throughout the study, particularly in coding the raw data for entry into the computer. Another is Dale Becker for his work as principal fish taxonomist and as a member of the sampling crew until July 1978. Another member of the crew was Keith Otis who was our principal taxonomist from July 1978 until he left in September 1980. Three other individuals-Fred Hagstrom, Ken Kahler, and Jim Kreitlow-are recognized for their work in the field as crew leaders and in the laboratory. Thanks are given to Tom Beard and Don Stafford for their help in making collections from 514 stations. Summer employees who helped with the strenuous field work were Charles Anderson, Ken Britt, Roger Cohn, John Colson, Henry Harned, Kurt Johnson, Paul Johnson, Al Kaas, Douglas Leschisin, Dan Lynch, Dennis McCulley, Tom Meyer, Mike Meyers, John Nichols, Mike Olson, Kurt Osterby, Eric Polzin, Tom Rosin, Don Samuelson, Peter Segerson, Paul Sims, Rick Tollefson, George VanDahm, James Van Duerzen, and Kurt Welke.

I am particularly indebted to Dr. George Becker who shared not only his skills in fish taxonomy with members of this study but also data from fish collections that he and his students had made.

Credit is given to District Fisheries Management personnel who assisted by sending us fish from their stream and lake surveys and copies of their reports.

This manuscript was critically reviewed by Tom Pellett and Lyle Christenson. Thanks are given to Dave Dreikosen, Susan Herzog, and Kurt Welke who helped in the making and proofing of the tables and figures in this report.

Permission to reproduce copies of the fish paintings and line drawings that appear in Appendix E was kindly granted by the 2 sources of these illustrations: (1) for the redside dace: the Fisheries Research Board of Canada, publisher of Freshwater Fishes of Canada by W. B. Scott and E. V. Crossman and (2) for all other fish artwork: University of Illinois Press, publisher of Fishes of Illinois by Philip Smith.

Photographs were taken by the author except for the photograph of the blue sucker which was taken by Ken Kahler and shovelnose sturgeon which was taken by Leon Johnson.

Funding for this project was provided in part by the Sport Fish Restoration Program and by the Federal Endangered Species Act of 1973 under Wisconsin Project E-1.

About the Author

Don Fago is a fisheries biologist with the Bureau of Research. He has been in charge of the statewide Fish Distribution Study since its inception in 1974 (DNR, 3911 Fish Hatchery Road, Fitchburg, Wisconsin 53711).

Production Credits

Betty Les, Managing Editor
Susan Nehls, Technical Editor
Susan Nehls, Copy Editor
Michelle Jesko, Layout and Production
Richard Burton, Figure Preparation
Southern District and Central Office Word Processing

TECHNICAL BULLETINS (1984-1992)

No. 149 Food habits of adult yellow perch and smallmouth bass in Nebish Lake, Wisconsin. (1984) Steven L. Serns and Michael Hoff

No. 150 Aquatic organisms in acidic environments: a literature review. (1984) Joseph M. Eilers, Gregory J. Lien, and Richard G. Berg
No. 151 Ruffed grouse habitat relationships in aspen and oak forests of central Wisconsin. (1984) John F. Kubisiak
No. 152 Distribution and relative abundance of fishes in Wisconsin. V. Grant \& Platte, Coon \& Bad Axe, and LaCrosse river basins. (1985) Don Fago

No. 153 Phosphorus reduction via metalimnetic injection in Bullhead Lake, Wisconsin. (1985) Richard P. Narf
No. 154 Sexual maturity and fecundity of brown trout in central and northern streams. (1985) Ed. L. Avery
No. 155 Distribution and relative abundance of fishes in Wisconsin. VI. Sheboygan, Manitowoc, and Twin river basins. (1985) Don Fago
No. 156 Aquatic community interactions of submerged macrophytes. (1985) Sandy Engel
No. 157 An evaluation of beach nourishment on the Lake Superior shore. (1985) John W. Mason, Melvin H. Albers, and Edmund M. Brick

No. 158 Distribution and movement of Canada geese in response to management changes in east central Wisconsin, 1975-1981. (1986) Scott R. Craven, Gerald A. Bartelt, Donald H. Rusch, and Robert E. Trost

No. 159 Distribution and relative abundance of fishes in Wisconsin. VII. St. Croix River basin. (1986) Don Fago

No. 160 Population dynamics of stocked adult muskellunge (Esox masquinongy) in Lac Court Oreilles, Wisconsin, 1961-1977. (1986) John Lyons and Terry Margenau
No. 161 Fish species assemblages in southwestern Wisconsin streams with implications for smallmouth bass management. (1988) John Lyons, Anne M. Forbes, and Michael D. Staggs
No. 162 A compendium of 45 trout stream habitat development evaluations in Wisconsin during 1953-1985. (1988) Robert L. Hunt

No. 163 Mercury levels in walleyes from Wisconsin lakes of different water and sediment chemistry characteristics. (1989) Richard C. Lathrop Katherine C. Noonan, Paula M. Guenther, Therese L. Brasino, and Paul W. Rasmussen
No. 164 Water quality and restoration of the lower Oconto River, Oconto County, Wisconsin. (1989) Richard A. Rost

No. 165 Population dynamics of smallmouth bass (Micropterus dolomieui) in the Galena (Fever) River and one of its tributaries. (1989) Anne M. Forbes
No. 166 Bibliography of fishery investigations on large salmonid river systems with special emphasis on the Bois Brule River, Douglas County, Wisconsin. (1989) Robert B. DuBois
No. 167 Wisconsin recreation survey-1986. (1989) Linda J. Penaloza

No. 168 A postglacial vegetational history of Sauk County and Caledonia Township, Columbia County, South Central Wisconsin. (1990) Kenneth I. Lange

No. 169 A review of fisheries habitat improvement projects in warmwater streams, with recommendations for Wisconsin. (1990) John Lyons and Cheryl Courtney
No. 170 Ecosystem responses to growth and control of submerged macrophytes: a literature review. (1990) Sandy Engel
No. 171 The sport fishery for, and selected population characteristics of, smallmouth bass in Pallette Lake, Wisconsin, 1956-1984. (1990) Michael H. Hoff and Steven L. Serns

No. 172 Restoration of canvasback migrational staging habitat in Wisconsin: a research plan with implications for shallow lake management. (1991) Rich Kahl
No. 173 Evaluation of a catch and release fishery for brown trout regulated by an unprotected slot length. (1991) Robert L. Hunt

No. 174 Boating pressure on Wisconsin's lakes and rivers: results of the 1989-1990 Wisconsin recreational boating study, phase 1. (1991) Linda J. Penaloza

No. 175 Distribution and relative abundance of fishes in Wisconsin. VIII. Summary report. (1992) Don Fago

Copies of the above publications and a complete list of all technical bulletins in the series are available from the Bureau of Research, Department of Natural Resources, Box 7921, Madison, WI 53707.

PUBL-RS-175-92

[^0]: ${ }^{1}$ These keys were later updated and published by Becker (1983) in his comprehensive work, Fishes of Wisconsin. However, this updating had no effect on the identifications made using the unpublished keys.

[^1]: ${ }^{2}$ Limits on time and funding prevented all of the state's water bodies from being incorporated into this system; as a result, small water bodies were excluded.

[^2]: ${ }^{3}$ Lists of the state's endangered and threatened species were based on a 1982 Wisconsin Administrative Code; the list of watch species was based on one being used by the Bureau of Endangered Resources in 1985. See the Foreword of this report for an explanation of subsequent changes in all 3 lists.

[^3]: ${ }^{4}$ The list of species designated as endangered in Wisconsin was based on a 1982 Wisconsin Administrative Code. See the Foreword of this report for an explanation of subsequent changes in this official list.

[^4]: * Numbers are not the same as in Tables 3, 4, and 11 because the 148 stations at which more than one gear type was used are included in this summary table.

[^5]: ${ }^{5}$ The list of species designated as threatened in Wisconsin was based on a 1982 Wisconsin Administrative Code. See the Foreword of this report for an explanation of subsequent changes in this official list.
 ${ }^{6}$ The list of species considered watch in Wisconsin was based on one being used by the Bureau of Endangered Resources in 1985. See the Foreword of this report for an explanation of subsequent changes in this unofficial list.

[^6]: ＊Includes only the Red Cedar River sub－basin．
 ${ }^{* *}$ For lakes less than 300 acres，the number of stations given is the number per lake．

[^7]: * Each stream must have at least 1 station.
 ${ }^{* *}$ Includes only stations on streams not completed.

[^8]: * Excludes streams in the Red Cedar River basin because sampling of them is completed.
 ** Each stream must have at least 1 station.
 ${ }^{\text {a }}$ Includes only stations on streams not completed.

[^9]: *For lakes less than 300 acres, the number of stations given is the number per lake.
 ${ }^{* *}$ Includes only stations on lakes not completed.

[^10]: ＊Excludes lakes below mile 92 on the Wisconsin River because sampling of them has been completed．
 ＊＊For lakes less than 300 acres and greater than 1,500 acres，the number of stations given is the number per lake．
 ${ }^{2}$ Includes only stations on lakes not completed．

[^11]: ${ }^{*}$ For lakes less than 300 acres and greater than 1，500 acres，the number of stations given is the number per lake．

[^12]: * Collector's fish identification is accepted.
 ${ }^{* *}$ Collector's fish identification is uncertain.

[^13]: * Numbers in this table are not the sums of corresponding figures in Tables 6 and 7 because this table includes data from the 122 stations for which water type was unknown or a mixture of lake and stream environments.
 ** Rounded to 2 significant figures for each species.
 ${ }^{\text {a }}<99=98$ or fewer specimens taken/station.
 $>98=99$ or more specimens taken/station (99 used in count of total).
 Unknown = counts of specimens were not made.

