
2D/ 3D Quantitative Ultrasound of the Breast 

 

 

By 

Haidy Gerges Nasief 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

 

(Medical Physics) 

 

At the 

UNIVERSITY OF WISCONSIN-MADISON 

2017 

The dissertation is approved by the following members of the Final Oral Committee:  
Timothy J. Hall, Professor, Medical Physics  
James A. Zagzebski, Emeritus Professor, Medical Physics  
Mai A. Elezaby, Assistant Professor, Radiology  
James E. Holden, Emeritus Professor, Medical Physics 
Walter F. Block, Professor, Medical Physics  
Tomy Varghese, Professor, Medical Physics  
Paul Campagnola, Professor, Biomedical Engineering/Medical Physics  
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Haidy G Nasief 2017 

All Rights Reserved



i 
 

Abstract 

Breast cancer is the second leading cause of cancer death of women in the United States, 

so breast cancer screening for early detection is common. The purpose of this dissertation is to 

optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of 

breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D 

QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in 

phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS 

parameter estimates for subcutaneous fat were consistent among different human subjects. This 

validated our in vivo data acquisition methods and supported the use of breast fat as a clinical 

reference tissue for ultrasound BI-RADS® assessments. Although current QUS methods perform 

well for straightforward cases when assumptions of stationarity and diffuse scattering are well-

founded, these conditions often are not present due to the complicated nature of in vivo breast 

tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a 

“modified least squares method (MLSM)” to account for the heterogeneous tissue path between 

the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 

3) detecting and removing the echo sources that depart from diffuse and stationary scattering 

conditions. The results showed that a Bayesian classifier combining three QUS parameters in a 

biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas 

from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS 

provided a unique capability to test QUS for the entire breast volume.  QUS parameter estimates 

using 3D data were consistent with those found in 2D for phantoms and in-vivo data. Extensions 

of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could 

lead to improved screening with this modality.  
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Chapter 1: Introduction 
 

Breast cancer is the second most common cancer and the second leading cause of cancer 

death among women in the United States.1 The common screening tests for breast cancer include 

clinical breast exams, breast self-exams, and mammography. Mammography is considered the 

primary imaging modality for screening asymptomatic women. The American college of radiology 

recommends annual mammograms for women of age 40 and over. Mammography is based on the 

detection of x-rays transmitted through the breast on a radiographic film or a digital detection 

device. However, it suffers from limitation due to its projective nature. The registration of the 

absorption and scattering of the x-rays in a two-dimensional image from the internal structures of 

the breast can reduce the conspicuity of any abnormality that might exist within it.  For women 

with a family history of breast cancer or certain other risk factors, magnetic resonance imaging 

(MRI) is recommended in addition to mammograms.2 

 Another supplemental imaging modality for breast cancer detection is ultrasound. 

Generally, ultrasound is not used as a sole imaging modality, but it is often used to evaluate 

suspicious breast masses imaged on mammography, and is most useful in assessing very dense 

breasts, where x-ray mammography has a low sensitivity. Additionally, ultrasound is used as a tool 

to guide biopsy procedures that utilize minimally invasive techniques. Ultrasound plays an 

important role in breast cancer diagnosis and has become a valuable tool used in conjunction with 

mammography because the equipment is widely available, is cost-effective, and provides unique 

soft tissue information.  

Breast cancer mortality rates have declined due to the possibility of detecting the disease 

at an early stage and because of the improvement in treatment options. Several studies reported 

that ultrasound screening in women with dense breasts and negative mammograms has increased 
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the cancer detection rate from 2.8 to 4.6 cancers per 1,000 women.3-7 Berg et al.8 studied 2662 

women, among which there were 4814 incidence screens (annual ultrasound screening procedures 

for second and third years of study). In that group, the authors observed sensitivity and specificity 

for mammography alone of about 0.52 and 0.91, respectively. When ultrasound was included, the 

sensitivity for both modalities together increased to 0.76, but the specificity decreased to 0.84. 

When MRI was included with mammography plus ultrasound, the sensitivity increased to 1.0, but 

the specificity decreased to 0.65. Clearly, improvements in the specificity of breast ultrasound 

could have a significant impact on image-based breast mass classification.  

 

1.1. Conventional ultrasound 

Conventional ultrasound works in a pulse echo mode, where a short acoustic pulse interacts 

with the tissue within a volume called the “resolution cell.” An echo-signal is generated within 

this volume when there are changes in density and/or compressibility. Following transmission of 

the pulse, the received scattered pressure (echoes) from various depths are converted by the 

ultrasound transducer into an electronic signal called the radiofrequency (RF) echo signal. B-mode 

images are created by sweeping a pulsed beam across a region of interest and displaying the 

amplitudes of echo signals on a 2D matrix (see Figure 1.1). The echo arrival time and the 

ultrasound beam axes are used to position the signals in their proper location.  
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Figure 1.1. Creation of a B-mode image 

 

Subjective image analysis is commonly performed in medical ultrasound. Conventional 

ultrasound can be a qualitative, low-specificity modality because image brightness and other 

features of displayed echo signals depend on the skill of the operator, the scanner configuration, 

and the transmission path that the acoustic pulse traverses on its way to the tissue of interest. Thus, 

it suffers from inter- and intra-observer variability in the evaluation of these images, and this 

reduces the objectivity of the imaging modality.  The subjectivity and the fact that images of the 

same lesion may vary from system to system results in ultrasound having a rather low specificity 

for classifying breast masses. This leads to an increased false positive detection rate, requiring core 

biopsy to provide a definitive diagnosis.  This results in a high rate of biopsy of benign tumors, 

causing unnecessary stress and cost to the patient and the healthcare system.   
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1.2. Breast Imaging Reporting and Database System 

To aid with the communication of image interpretation, the American College of Radiology 

published and trademarked the Breast Imaging Reporting and Database System (BI-RADS®). This 

system defines a common lexicon to describe various features related to the appearance of breast 

masses and their surrounding tissue in the ultrasound image. Per this system, a mass is described 

based on its shape, posterior acoustic features (does the mass shadow or enhance?), and internal 

echo pattern (is the mass hyper-, hypo-, or iso-echoic comparing its brightness to the surrounding 

subcutaneous fat, internal reference point).  For instance, malignant tumors usually have spiculated 

margins, an irregular shape, hypo-echogenicity, shadowing, duct extension, and an alignment that 

is nonparallel to the surrounding tissue layers. On the contrary, benign tumors more often have 

circumscribed margins, an oval shape, gentle bi- or tri-lobulations and parallel orientation.9 The 

BIRADS lexicon descriptors provide a final classification scheme which assigns the lesion to one 

of seven different groups.  Such standardization helps improve patient care by implementing 

common terminology for diagnostic descriptions and thus, leads to proper follow-up tests and 

procedures.10 However, some cases are still ambiguous to the US BI-RADS lexicon, and this limits 

its effectiveness in describing a mass. For instance, the two tumors presented in Figure 1.2 (a 

fibroadenoma and a carcinoma) are both described by the same BI-RADS descriptors (hypo-echoic 

and shadowing).  
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Figure 1.2.  Clinical images of a fibroadenoma and a carcinoma 

 

Most US BI-RADS descriptors are subjective and qualitative; thus, inter-observer 

variability for some descriptors still are present.11-13 Several studies have evaluated inter-observer 

variability when interpreting sonographic features of solid breast masses. Arger et al.14 found that 

the interpretations of four different readers were comparable when standardized descriptors of 

breast masses were applied. Similarly, Rahbar et al.15 found that ultrasound features can be 

effective when differentiating benign from malignant masses. However, the authors stressed that 

interpreter variability needs to be dealt with. Abdullah et al.16 presented an evaluation of the 

assessments of 267 breast masses made by five radiologists who used the BIRADS terminology 

and showed that observers achieved only fair agreement in describing the margins of the lesion 

and low agreement in describing small masses, which limits the early detection and diagnostic 

power. Distinguishing benign from malignant breast masses by way of imaging tests continues to 

be an important medical challenge. Thus, increasing the specificity of pulse-echo ultrasound will 

increase its diagnostic power and can reduce the rate of biopsies with negative results. This could 

ultimately reduce the emotional distress of patients and the amount of resources and time devoted 

to the detection and diagnosis of breast cancer. 17-18  

 



6 
 

1.3. Quantitative ultrasound  

To overcome the low specificity of B-mode imaging, various methods of quantitative 

ultrasound (QUS) are being devised. QUS methods enable accurate, clinically-based estimates of 

acoustic properties of tissues by accounting for instrumentation and wave propagation 

dependencies that affect pulse-echo data.  The quantification is based on the premise that the 

development of a disease often affects the regional cellular microenvironment. Therefore, tissue 

microstructure (glands, collagen bundles in connective tissue, etc.) suffers modifications in its 

mechanical properties. The goal of QUS is to estimate acoustic properties of tissue by providing 

system- and observer-independent parameters. This would reduce the subjectivity of the 

sonographic analysis and, therefore, increase its objectivity, and hopefully its specificity.19-20 

QUS techniques and methods can be grouped into three general modalities: 1) backscatter-

based QUS, 2) flow-based QUS (Doppler-shift based techniques used to study blood flow and 

vascularity in tumors), and 3) elasticity-based QUS (quantify the elastic and viscous properties of 

the tissue). The backscatter-based QUS extracts the information about the structural and physical 

properties of the tissue microstructure from the statistical analysis of the scattering process either 

in the time domain (deriving envelope statistics or carrying out image texture analysis) or in the 

frequency domain (using spectral analysis of the RF signals). It relies on models describing the 

interaction of the acoustic pulse with the underlying tissue to solve the inverse problem of 

estimating a tissue property by comparing a quantity measured in the ultrasound signals with a 

model for the physical interaction. 

In QUS, the estimation of parameters starts with the selection of a region of interest (ROI) 

over which the parameter of interest will be analyzed. Within the ROI, a parameter estimation 

region (PER), defining an area used to estimate a parameter of interest, is selected. The PER 
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contains a set of segments of adjacent RF signals, which represent samples of the resolution cell 

volume. An ROI may contain one or many parameter estimation regions depending on the task to 

be performed. For example, estimating attenuation requires estimating the power loss as a function 

of depth among a sequence of power spectral density estimation regions (PSER) in a single PER 

for attenuation as shown in Figure 1.3. To create a parametric image, the PER is moved across the 

ROI to estimate the parameter in various spatial locations. Thus, a 2D array of local values of the 

parameter of interest is obtained and then color-encoded to create a final parametric image.   

 

Figure 1.3. A region of interest (ROI) for parameter estimation was chosen within a B-mode 

image. That ROI was further partitioned into power spectrum estimation regions (PSER), and, 

depending on the parameter being estimated, data from one or more of those PSERs was used in 

a parameter estimation region (PER). For example, backscatter coefficient estimation was 

performed on each PSER, but estimating attenuation required estimating the power loss as a 

function of depth among a sequence of PSERs in a single PER. The dots signify the center of 

each PSER. 

 

Researchers have demonstrated that QUS parameters have potential to provide important 

diagnostic information.21,22 The most commonly estimated acoustic properties are the attenuation 

coefficient, which quantifies the spatial rate at which an ultrasound beam loses energy while 

traversing a tissue, and the backscatter coefficient (BSC), which is a material property that 
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quantifies the fraction of the ultrasound energy that is reflected back to the transducer. The 

attenuation coefficient is often reported in terms of the specific attenuation, ATT, which is the 

slope of the attenuation coefficient vs. frequency at a particular frequency. The BSC is 

parametrized in terms of the frequency-average BSC, ABSC, which quantifies echogenicity on an 

absolute scale, and the effective scatterer diameter, ESD, which is obtained by fitting a scattering 

model to the BSC vs. frequency and describes the spatial correlation function of echo signal 

sources.  

Previous studies that investigated QUS breast imaging techniques produced promising 

results. For example, D’Astous and Foster23 found that the attenuation coefficient and its 

frequency-dependence were different among infiltrating ductal cancer (IDC), breast parenchyma, 

and fat (3-8 MHz). They also found differences among these tissues in the magnitude and 

frequency-dependence of the backscatter coefficient (BSC). Further, they demonstrated that a 2-

parameter analysis (attenuation and BSC) was sufficient to separate the 3 distinct tissue types they 

studied.  More recently, Nam, et al.18 demonstrated that estimates of the product of the acoustic 

attenuation coefficient and the lesion size (along the acoustic beam direction) correlated well with 

the assessment of the ultrasound BI-RADS® descriptor ‘posterior acoustic features’. Although 

nearly all tumors in their study were classified as ‘hypoechoic’ (relative to nearby fat; internal 

clinical reference point), most cancers had lower average BSC estimates than fibroadenomas. 

Tadayyon et al. and Sannachi et al.24,25 also demonstrated the potential of using QUS for evaluation 

of locally advanced breast cancers. Using a set of QUS parameters, they were able to differentiate 

between histologic Grade 1 versus Grades II and III tumors with 86% accuracy, and their QUS 

parameters could provide early measures of tumor response to neoadjuvant chemotherapy, in as 

little as one week after treatment began. Attenuation, which has been studied in the breast, 15, 18, 23-
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26 was also used to differentiate fatty from normal liver27, 28 and to detect changes in bone. 29-30 

Spectral analysis of echo signals has also been used to differentiate between benign and malignant 

masses in the eye31 and between normal and cancerous lymph nodes.32-33 It also has been used to 

estimate cancer probability to guide biopsies in the prostate.34  The ESD, derived from 

backscattered echo signals has been used to monitor changes in glomerular and arteriole sizes in 

kidneys.35-36  More recently, Oelze et al.,37  showed that the ESD can be used to differentiate rat 

mammary fibroadenomas from 4T1 mouse carcinomas. Other investigators have implemented 

different approaches to breast QUS that do not provide system-independent results. For example, 

Garra et al.38 digitized the video output of an ultrasound scanner and analyzed the statistics of the 

B-mode image texture of breast scans. Although their patient population was small, they used low 

frequency (5 and 7.5 MHz) transducers, and they had comparatively poor-quality data, they could 

correctly identify 78% of the fibroadenomas, 73% of the cysts, and 91% of the fibrocystic nodules 

while maintaining high sensitivity for cancer. Using similar data acquisition, image texture 

parameters and an artificial neural network, Chen et al.39 obtained a diagnostic accuracy of 95%, 

demonstrating that measures of texture statistics have merit for differentiating among breast 

diseases. Texture statistics vary because of variations in frequency-dependent scattering (BSC, 

ESD, and ESD heterogeneity index, as well as system-dependent functions). Thus, the success of 

these techniques may carry over to system-independent breast QUS techniques.  

The purpose of this dissertation is to optimize QUS methods, to improve the specificity 

and objectivity of breast ultrasound. QUS derives estimates of acoustical properties of tissue, such 

as the attenuation coefficient and the backscatter coefficient, by computing echo signal power 

spectra and applying algorithms that account for transducer and system dependencies of the echo 

data. However, inhomogeneous tissue paths to the region of interest and the presence of echo 
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sources within this region that depart from diffuse and stationary scattering conditions assumed in 

the power spectra determinations can bias these estimates. We believe that recently described 

signal processing approaches, including techniques that evaluate for any coherent scattering in an 

echo signal wave train, can better characterize this complex tissue. 

Until now our QUS applications in human breast have been applied to 2D data obtained 

using conventional, handheld array transducers. Thus, only data from select acquisition planes are 

acquired and processed. New 3D ultrasound breast imaging technology being introduced for B-

mode imaging, can help overcome this limitation.  Application of 3D acquisitions in QUS would 

provide a unique capability to acquire and process data from the entire breast volume. Our 

hypothesis is that extending current QUS technology from 2D to 3D acquisitions will improve 

performance and further improve the specificity of breast ultrasound.  

To address these issues, we were guided by the following specific aims: 

1. Optimize 2D QUS methods as they apply to breast diagnosis.  In QUS parameter 

estimation, the region of interest is assumed to be homogeneous and of adequate size (>5 

mm in diameter), the echo signals within a parameter estimation region are assumed to 

be from a stationary random process, and scattering is assumed to be incoherent. These 

assumptions frequently are not met in the human tissue. Our plan was to overcome these 

QUS parameter estimation limitations with the following sub-aims: 

a. Test for sources of coherence within power spectrum estimation regions, and 

examine potential for anisotropy in acoustic parameters. We tested for the presence 

of echo signal coherence in in vivo breast tumors. We also developed methods to 

test for isotropic scattering properties which, if present, would justify the use of 

spatial compounding for reduced parameter estimate variance.  
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b. Evaluate a new, “modified least squares” algorithm for computing attenuation 

compensation over complex overlying tissue paths between the transducer and the 

region of interest within a breast mass. An existing least squares technique yields 

an “effective attenuation coefficient” along the acoustic path, and a backscatter 

coefficient within the ROI, but assumes that attenuation is proportional to 

frequency. The modified method developed here accounts for the more common 

condition in which the attenuation follows a power law frequency dependence.  

2. Implement 3-D QUS in the breast.  A group of subjects were scanned with an “automated 

breast volume scanner” (Siemens Acuson ABVS), acquiring raw (RF) echo data in 3D. 

QUS algorithms that showed promise in distinguishing fibroadenomas from carcinomas 

in 2D were adapted and tested using phantoms to analyze 3D data sets provided by this 

system. The purpose here was to explore a systematic extension of current methods from 

2D data acquisition and analysis to 3D in an attempt to introduce unique image planes 

and to better characterize tumor heterogeneity.   

3. Compare 2D vs 3D QUS in the breast. We compared QUS parameter estimates obtained 

from human subjects scanned using the 18L6 transducer with those obtained from the 

ABVS scanner for subcutaneous fat and for any lesion that might present.   

This dissertation is organized as follows: Chapter 1 introduced the rationale behind the use 

of quantitative ultrasound. Chapter 2 presents a description of QUS methods utilized to estimate 

the specific attenuation, the backscatter coefficient, an effective scatterer diameter, and an effective 

scatterer diameter heterogeneity index. It also contains a description of data acquisition for the 

later chapters. Chapter 3 presents the acoustic properties of subcutaneous breast fat (internal 

clinical reference point) for in vivo human subjects. Chapter 4 presents a description of the 
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“modified least squares method” for compensation of attenuation over an inhomogeneous tissue 

path. Chapter 5 presents results of tests for the presence of echo signal coherence in in vivo breast 

tumors and for isotropic scattering properties which, if present, would justify the use of spatial 

compounding. Chapter 6 presents a Bayesian classifier to distinguish breast masses. Chapter 7 

presents a systematic extension of current methods from 2D data acquisition and analysis to 3D 

allowing for presentation in unique image planes.  We also compare QUS parameter estimates 

obtained from 2D data with those obtained from the 3D data for in vivo subcutaneous breast fat, 

and for any lesion that might present. Finally, Chapter 8 discusses contributions and future work.  

Appendix A includes summary of reproducibility of the QUS estimates and Appendix B includes 

additional examples for in vivo breast fat and masses. 
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Chapter 2: 2D Quantitative Ultrasound (QUS) Methods 
  

This research focuses on the backscatter-based QUS, which relies on models describing 

the interaction between an acoustic pulse emitted by a transducer and the underlying tissue. The 

short acoustic pulse emitted from the surface of the ultrasound probe transverses the tissue, and a 

part of its energy is absorbed as thermal energy.1 This process affects the amplitude and the 

frequency content of the acoustic pulse. The pulse interacts instantaneously with structures within 

a volume of the tissue, referred to as the resolution cell, which is defined laterally and elevationally 

by the size and the shape of the transducer’s aperture and axially by the number of cycles and the 

wavelength of the pulse.2-4 An echo is generated within the resolution cell if there is a local change 

in the acoustic impedance, which may be manifested by microscopic heterogeneities (scatterers)5 

or by large interfaces. Such heterogeneities will elastically re-irradiate a scattered wave with a 

frequency content depending on the incident pulse and the tissue microstructures.  The most 

commonly estimated acoustic properties are the specific attenuation coefficient (ATT), which 

quantifies the spatial rate at which an ultrasound beam loses energy while traversing a particular 

tissue, the backscatter coefficient (BSC), which is a material property that quantifies 

“echogenicity” on an absolute scale, and an effective scatter diameter (ESD), which is a method 

to quantify the frequency-dependence of the BSC and describe the spatial correlation function for 

the echo signal sources.   

Our laboratory has joined efforts with other laboratories and demonstrated the possibility 

of estimating system-independent specific attenuation coefficients and backscatter coefficients in 

tissue mimicking phantoms and rodent models of breast tumors.6-8 Once the echo signal data were 

acquired, offline analysis was performed using MATLAB (Mathworks, Natick, MA) to estimate 

the QUS parameters of interest. Echo signal power spectra were calculated as a function of depth 
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for data segments within the region of interest. Power spectra are typically computed by averaging 

periodograms within windowed regions of the RF echo signal whose axial extent were about 3-

5mm. To calculate power spectra, 4 mm x 4 mm power spectrum estimation regions (PSER), 

overlapping by 75% both axially and laterally, were defined.  For each RF line within the PSER, 

the Fourier transform was computed using a multi-taper technique with a time-half bandwidth 

product (NW) of 4.8- 9 The results for beam lines within the PSER were then averaged.   

 

2.1.  The Reference Phantom Method (RPM) 

The RPM developed by Yao et al.10 is widely used to obtain estimates of the attenuation 

coefficient and the backscatter coefficient from data obtained with array-based ultrasound imaging 

systems. In this method, a well-characterized reference phantom with independently-measured 

sound speed, attenuation coefficients, and backscatter coefficients throughout the frequency range 

of interest is scanned immediately after scanning the subject. Faran’s scattering theory, introduced 

in 1951, was applied to predict the backscatter coefficients in the phantom (with glass sphere 

scattering sources) used in this study.11 Faran’s scattering theory for spheres was tested by various 

researches who showed that the measured backscatter coefficients agreed with predicted 

values.12;13;14;15;16;17;18 To predict the scattering cross section of the phantom, the first twenty-five 

terms of the Faran model were used. The inputs to the model include the sphere diameter 

distribution, the number of spheres per unit volume, the Poisson’s ratio of the spheres, the speed 

of sound of both the spheres and the surrounding background material, and the mass density of the 

spheres and the background material. The reference phantom is used to account for system-

dependent factors, including diffraction. The RPM method was tested in multiple research studies 

and demonstrated good agreement between theory and experiments as well as agreement among 
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different imaging systems.6-8 The RPM requires a stationary random process and an adequate size 

for the PER (> 5mm x 5mm, when scanning with the 18L6 linear array transducer, and 10 MHz 

center frequency) to get reliable parameter estimates. It is most applicable for diffuse or incoherent 

scattering conditions. This means that the number of scatterers within each resolution cell is large, 

and their positions are random. RPM utilizes the ratio of the echo signal power spectra from the 

tissue to the power spectra from the same depth in the reference phantom as shown in Figure 2.1  

 

Figure 2.1. Example of the RPM application where a region of interest (ROI) for parameter 

estimation was chosen within a B-mode image. That ROI was further partitioned into power 

spectrum estimation regions (PSER) and the ratio of the echo signal power spectra from the 

tissue to the power spectra from the same depth in the reference phantom was used. (Note that 

we need to be least one (elevation) aperture away to avoid complex nearfield beam patterns).   

 

The power spectrum of the backscattered RF echo signals using the first-order Born 

approximation (assuming scattering from soft tissue is weak enough to ignore multiple scattering), 

and provided that the distance from the transducer to the region of interest (ROI) is greater than 

the transducer aperture can be written as, 10 

                                    (2-1) 
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where, f denotes frequency and z represents the depth of the PER. S(f,z) is the power spectrum of 

the backscattered echo signal, B(f) is the backscatter coefficient (BSC; assumed to be 

homogeneous) vs. frequency within the PER. G(f,z) represents the combined effects from 

transmitting and receiving with a transducer and depends on such factors as the transducer design,  

pulsing characteristics and receiver gain. D(f, z) accounts for diffraction effects. A(f, z) represents 

the total attenuation over the path from the transducer surface to the depth of interest.  

Thus, for uniform samples, the ratio of the echo signal power spectrum from a sample to 

that from a reference medium can be described as: 

                            (2-2) 

where, the subscripts sam and ref denote the sample and reference medium respectively. The total 

attenuation A(f,z) in Eq. (2-1) is modeled as exp (-4 α(f) z), where α(f) is the attenuation coefficient 

in the medium.   

Assuming that the speed of sound is approximately the same in the sample and the 

reference, and that for array systems, the speed of sound used in the system beam-former 

(electronic focusing system) is the same as that of the sample and reference medium. The above 

equation can be simplified to  

                                                                                                                                              (2-3) 

where RS(f, z) represents the ratio of the power spectra from the sample and reference, αeff, sam is 

the effective attenuation in the sample (the average of the sample attenuation coefficient αsam(f ,z) 

considering all intervening tissues) down to a depth z, such that: 
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2.2.  Specific Attenuation estimation (ATT) 

The reduction in the amplitude of the ultrasound wave as it propagates through the tissue 

is referred to as attenuation. This reduction is a function of frequency and propagation distance 

and thus, it can provide useful diagnostic information and can lead to a better interpretation of B-

mode images.  Attenuation estimation is performed using the backscattered echo signals that arise 

from scatterers within the ROI. Attenuation measurements have been done by many researchers 

either in the frequency domain or in the time domain.  Although time-domain techniques are easier 

to implement and faster than frequency-domain techniques, their use results in difficulties in 

compensating for local variations (i.e., diffraction effects) in the ultrasound field along the beam 

propagation path. Thus, more frequency-domain techniques have been investigated and developed.  

The two fundamental approaches to estimate the attenuation in the frequency domain are the 

spectral difference method and the spectral shift method.  In this thesis, we will focus on the 

spectral difference method to track the reduction of the echo signal power spectra along the beam 

propagation path assuming that the scattering properties (i.e., the backscatter coefficient) of the 

sample are unchanged over the PER. The ATT is estimated using the RPM, where a rectangular 

parameter estimation region is identified as mentioned before and the echo signal power spectra 

are calculated as a function of depth for data segments within this region for both the sample and 

the reference. For a homogenous parameter estimation region, assuming linear frequency 

dependence for attenuation, the ratio of the echo signal power spectrum from the sample to the 

power spectrum of echoes from the reference phantom is given by: 10 
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where, the term b f n represents the backscatter coefficient, modeled here as a power law in 

frequency for both media. The maximum frequency band that was at least 10 dB above the noise 

floor was selected.   

Yao et al. 10 showed that the log of the ratio of the echo signal power spectrum from the 

sample to that of the reference, vs. depth, can be fit to a straight line. The slope of this line is 

proportional to the difference in attenuation coefficients between the sample and the reference 

phantom at the frequency analyzed. Since the attenuation and backscatter coefficients of the 

reference are known, then the attenuation and the backscatter coefficients of the sample can be 

determined using RPM equations.   

                               (2-6) 

where, z1 and z2 are depths of PSER1 and PSER2, and z2> z1. 

The specific attenuation coefficient19, ATT, was estimated from the local attenuation coefficient 

αsam (f, z), i.e., the attenuation coefficient of the tissue within a single PER centered at depth z 

within the ROI (Fig. 1.1). Assuming that attenuation and backscatter are constant within the PER, 

αeff, sam = αsam Thus, αsam (f, z) is obtained by quantifying the local rate of change of the power 

spectrum ratio as a function of depth at each frequency.5 ATT is obtained from the slope of a linear 

fit to the local attenuation vs. frequency, i.e., αsam(f) = ATT × f. 13 

 

2.3. Backscatter Coefficient (BSC) estimation 

The BSC is defined as the differential scattering cross section per unit volume for a 

scattering angle of 180°. Similar to attenuation estimations, the BSCs were estimated as a function 
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of frequency using the Reference Phantom Method10 applied to the RF echo signals.  However, 

since the power spectrum is calculated using a gating window of finite length, proper attenuation 

correction is necessary (especially if the medium has a large attenuation coefficient and a long 

gating window is used) before estimating the BSC.  

The reference phantom method developed by Yao et al.10 exhibits high accuracy in 

estimating QUS parameters when the ROI is homogenous. However, this approach can induce bias 

in correcting for the attenuation along the path from the transducer to the PER when the tissue is 

inhomogeneous. Attenuation compensation has been studied by a variety of researchers. A simple 

approach assumed a constant value for the attenuation and used that value to account for losses in 

signal amplitude with depth. A slightly more sophisticated approach was to measure the thickness 

of each tissue layer in the path and use published values for attenuation coefficients in each 

material to account for attenuation, as Wear, et al. did.22 Lu et al. 23 proposed a dual spectrum 

method to measure an effective attenuation coefficient of body wall in liver assuming unchanging 

frequency dependence over the frequency analysis range.  

Nam et al. 24 proposed a least squares method to estimate the effective attenuation between 

the ultrasound transducer and the PSER using power spectrum of RF echo signals from the sample 

and a reference phantom, and fit the ratio to 3-parameter model that quantifies the attenuation and 

backscatter properties of the media. The least squares method enables the determination of 

attenuation when the path is acoustically non-uniform, and has provided accurate measurements 

of the total attenuation and the backscatter coefficient versus frequency.24 However, the least 

squares method assumes a linear relationship between attenuation and frequency, which can reduce 

the accuracy of the method if this assumption is invalid.  Recent experiments7 suggest that the 

attenuation coefficient for breast tissue likely is not linearly proportional to frequency. To take this 
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into consideration, a modification of the Nam method, termed the “Modified Least Squares 

Method” (MLSM), was applied in this study and is discussed in detail in Chapter 4.  

Estimation of the BSC using the RPM technique requires knowledge of the intervening 

tissue effective attenuation αeff, sam.  Applying the MLSM leads to a power law fit to values of 

αo;eff,sam from overlapping bandwidths to describe the frequency dependence of αeff,sam. Once αeff, 

sam is estimated for each PER, the BSC for that PER is estimated as a function of frequency using 

the RPM, by multiplying the BSC of the reference phantom with the ratio of the attenuation-

corrected power spectrum from the sample to that of the reference as follows:  

            
                                                                                                                            (2-7) 

where the variables were defined in Eqns. 2-3 – 2-6. 

For each subject, an average backscatter coefficient (ABSC) was computed by averaging 

the BSC over the frequency bandwidth used for attenuation coefficients providing an objective 

estimate of “echogenicity”. 

 

2.4. Effective Scatter Diameter (ESD) estimation 

An “effective scatter diameter” (ESD) is estimated over regions of interest to characterize 

the frequency dependence of scattering.  Conventional B-mode processing computes the envelope 

of the radiofrequency echo signal to modulate the intensity of the display, ignoring the phase 

information in the echo signal. However, there is important information in both the magnitude and 

the frequency dependence of the signal that can provide insight about the characteristic of a 

tumor.26-27  

The ESD is a parameterization for a model for the spatial correlation function of the 

inhomogeneities in the medium.5 Based on the single-scattering theory, 27 the form factor connects 
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the BSC and the correlation function for the medium.  The BSC function, for a sparse media when 

scattering is weak can be expressed in terms of the spatial correlation function for acoustic 

impedance inhomogeneities as:29 

                                                                          (2-8)     

where, C is independent of frequency and represent a combination of tissue properties and 

experimental parameters. k is the scattering vector (points in the direction of insonification with 

magnitude equal to the wave number). bγ(Δr) is the correlation function of the medium, which is 

assumed to be statistically stationary.  

The acoustic form factor is proportional to the Fourier transform of the correlation function, 

and describes the size, geometry, and organization of the scatterers5. The acoustic form factor F is 

defined as a ratio of the backscatter coefficient for a test material having scatterers of finite size to 

that of similar material containing point scatterers 

                   �(2�) = ��/�
                                                                (2-9) 

where, k is the wave number, σb is the backscatter coefficient of the test material, and σo is the 

backscatter coefficient of a similar material consisting of point scatterers. 

The common form factor models are the fluid sphere, spherical shell, exponential, and 

Gaussian models. This approach works best when 0.6<ka<1.2 (a is the scatterer radius). For 

biological tissue, we assume scattering occurs from a continuously varying impedance distribution. 

Thus, a Gaussian model is often used to study scattering structures of biological tissue.28, 31-32 

The correlation function for a Gaussian model is5: 

                                                                                                       (2-10) 
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where, d is a characteristic dimension of the correlation coefficient and the relationship between 

the effective scatterer radius and d is29: 

                                                                                              (2-11) 

where, d1 is a constant depending on the form factor model.  

Then, the BSC is given by29: 

                                                                                                           (2-12) 

Figure 2.2 show the BSC versus frequency and the acoustic form factor from the estimated 

BSC fitted to a Gaussian form factor model.  

 

Figure 2.2. Example of the BSC and the form factor to predict the ESD 

 

 ESD is determined by comparing the frequency dependence of the estimated form factor 

with that of the form factor model.5 For a Gaussian model, the ESD can be estimated as follows32-

33: 

1/3
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                                            (2-13) 

where, y (ω) =10ln (BSC (ω)/ω4), ω represents angular frequency, c is the speed of sound, and d1 

=3.1 from Eq. (2-11).  

 

2.5.  Effective scatter diameter heterogeneity index (ESDHI) 

estimation 

This newly introduced parameter ESDHI was used to characterize the spatial variability of 

ESD estimates among PERs (heterogeneity of the spatial correlation of acoustic impedance 

inhomogeneities) within the ROI. ESDHI was computed as the standard deviation of the ESD 

within the ROI, ignoring any spatial correlations among estimates from overlapping windows, as 

follows:34 

                                                                           (2-14) 

where, N is number of PERs within the ROI, xi is the ESD value for each PER and µ is the 

mean of the ESD values.    

 

2.6. Data Acquisition for in-vivo human subjects (2D study) 

Radiofrequency echo data were acquired from 120 women scheduled for ultrasound-guided 

biopsies of previously detected breast tumors following a University of Wisconsin Institutional 

Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA) 
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-compliant protocol. These patients typically had screening and diagnostic mammograms and 

had a lesion sufficiently suspicious to warrant biopsy. The only specific exclusion criterion, 

other than age (at least 18 years old to provide informed consent) is that the lesion should be 

less than 20 mm in major dimension (half the width of the typical ultrasound field of view). 

We restricted the analysis to breast masses diagnosed by core biopsy as either fibroadenoma 

or carcinoma, and whose size was larger than 5 mm axially based on ultrasound images. This 

minimum lesion size restriction was imposed to limit the bias and the variance in the 

attenuation estimates.36 

There were two subgroups of subjects. Fifty-one subjects were scanned using a custom 

elasticity imaging mode on a Siemens Antares (Siemens Medical Solutions USA, Inc., 

Malvern, Pennsylvania) equipped with a VFX13-5 linear array transducer (9 MHz center 

frequency). Radiofrequency echo signal data were recorded while the sonographer applied 

small deformations using the transducer, with an inter-frame axial strain of about 1%. Each 

frame consisted of either 256 or 312 acoustic scan lines. Echo signals also were recorded from 

a reference phantom using the same transducer and system settings.  

The reference phantom was made with 6.4g of 3-45µm-diameter glass spheres 

homogeneously distributed in a 1600cc gel background. The background material consisted of 

an emulsion containing 70% safflower oil.36 The acoustic attenuation and sound speed of this 

reference phantom (speed of sound of 1492 m/s at 2.5MHz and an attenuation coefficient from 

2-10 MHz versus frequency slope of 0.54 dB·cm−1 MHz−1) were measured on 2.5-cm thick 

test samples poured at the time of reference phantom fabrication. A narrowband through-

transmission technique37 was used to estimate sound speed and attenuation by transmitting 30-

cycle acoustic pulses of different frequencies (2.5, 5, 7.5, and 10MHz) through the test cylinder 
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immersed in water. Acoustic pulses traversed the sample and reached a corresponding 

receiving transducer whose signal was read by a digital oscilloscope (500MHz, Model LT342, 

LeCroy, Chestnut Ridge, NY). The amplitude change and temporal shift of the detected 

waveforms, compared to waveforms recorded in the absence of the test cylinder, were used to 

determine the attenuation and the speed of sound of the material in the sample, respectively.  

 The same test cylinder was also used in laboratory measurements of backscatter 

coefficients for the phantom. Backscatter coefficients (BSCs) were measured using a 

broadband reference reflector method using single element focused transducers.40 The test 

cylinder and the transducer were immersed in a tank of degassed water at room temperature. 

The transducer was connected to a pulse-receiver (Model 5052UA, Panametrics/Olympus, 

Waltham, MA). The test cylinder was placed at the focal plane of the transducer, and a set of 

RF echoes signals was acquired by automatically moving the sample (under stepper motor 

control; Aerotech Unidex 11 motion system, Aerotech, Inc, Pittsburg, PA) in a plane parallel 

to the surface of the test sample, at steps of 4mm. The RF echo signals were gated to consider 

only echoes from within the sample near the focal distance of the transducer. Echo signals 

from a planar interface (acrylic plate), were also acquired to account for the transmit-receive 

frequency response of the transducer-pulse-receiver system. Assuming a long duration gate 

(15 pulse-echo correlation lengths), the backscatter coefficient is given by the ratio of the 

square modulus of the Fourier transform of the gated RF signal averaged over all the collected 

signals, and divided by a term that accounts for the system’s frequency response, the shape of 

the gating function, and the acoustic field integrated over the test cylinder volume.5  

The second subgroup of subjects included sixty-nine women scanned using a Siemens 

S2000 system (Siemens Medical Solutions USA, Inc., Malvern, PA) with an 18L6 linear array 
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transducer (10 MHz center frequency). Subjects were scanned in a supine position in both 

radial and antiradial direction, and beams were steered from -10 to 10 degrees with an 

increment of 5 degrees as shown in Figure 1.4.  The system was equipped with the Axius 

Direct Ultrasound Research Interface39 that allowed acquisition of beam-formed RF echo 

signals following time-gain compensation but before envelope detection and post- processing.  

For each subject, multiple planes of RF data were collected, with the image plane centered on 

the mass and depicting surrounding subcutaneous fat. The transmit focus was placed below 

the mass, usually at approximately 6 cm.  To minimize any effects of nonlinear propagation, 

the transmit power was well below its maximum setting, resulting in mechanical index (MI) 

values between 0.4-0.8 for these transmit focal depths.  

Similarly, an equivalent reference phantom was scanned with the same transducer and 

system settings for these cases.  The reference phantom material is an emulsion of 70% 

safflower oil immersed in a gelatin-water mixture composed of propylene glycol, deionized 

water, dry gelatin and 7.5 grams of Germall Plus® to preserve it. The phantom also contains 

6.4 g of 3000E glass beads (Potter industries, Malvern, PA) per 1600 cc oil in gelatin emulsion.  

The volume of the phantom is about 1.6 liters and the mass density is 1.04 g/cm3. The tissue 

mimicking reference material was cast into an acrylic box with a 25μm-thick Saran™ film 

scanning window (Dow Chemical, Midland MI, USA) 

The sound speed of the reference phantom is 1492m/s at 2.5MHz; the attenuation coefficient 

vs. frequency, α(f), is represented by α(f) = 0.54f dB/cm, where f is the frequency in MHz, and 

the backscatter coefficient at 5MHz is 1.37E-03cm-1sr-1 and has been used by multiple 

researchers. 39-44 
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Figure 2.3. Diagram illustrate the scanning in supine position and beam steering 

 

Since the scattering sources in the reference phantoms were tiny compared to the acoustic 

wavelength (the spatial correlation function for the scattering sources was effectively a delta 

function), the autocorrelation of the echo signals from the reference phantom provides a 

measure of the spatial resolution in B-mode imaging and QUS measurements. The axial and 

lateral correlation lengths when scanning with the 18L6 transducer at 10MHz for the zero-

degree scan direction was assessed by imaging the reference phantom described.  The width 

of the autocorrelation function at a correlation value of 0.2 for these conditions were 0.13 mm, 

(axial) and four adjacent acoustic scan lines, (lateral). In the axial direction, we define the 

“pulse echo correlation length” as the full width of the two-sided correlation function, i.e., 

twice the one-sided axial correlation length or 0.26mm. The lateral correlation length remained 

the same for the positive and negative 5 degree scans. The axial correlation length for the 

negative five degrees and positive five degrees’ scans (0.28 mm and 0.24 mm, respectively) 

was not significantly different from the zero-degree scan. These results suggest that data from 

small steering angles can be utilized to obtain more independent realizations of the echo signal 

power spectrum, as needed for small tumors.  
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2.7.  Limitations to QUS Methods   

Although current QUS methods perform well for straightforward cases (when the 

assumptions of stationarity and diffuse scattering are valid), QUS is more challenging when 

assumptions are violated due to the complicated nature of in-vivo breast tissue.  Challenges related 

to the limited size of some masses (necessitating a small ROI), an acoustically inhomogeneous 

ROI, and a heterogeneous tissue path between the transducer and the ROI, all complicate the use 

of the RPM in evaluating breast masses.45 Also, choosing a homogeneous ROI is complicated 

since this is totally subjective, may differ from one observer to the next, and some amount of signal 

coherence may be present due to the presence of periodic structures, low scatter density or strong 

isolated reflectors. This can affect the precision of estimation and limit the reproducibility of the 

results. Another challenge is the frequency dependence of attenuation, which is often assumed to 

be linear. However, recent studies suggest that for breast tissue the attenuation coefficient likely is 

not proportional to frequency.7 Thus, attenuation could distort the spectral characteristics of the 

interrogating pulses and echo signals in an unexpected fashion. Also, acoustic properties within 

the tumor are typically assumed to be isotropic, and data from various angles can be averaged to 

reduce the variance of parameter estimates. However, anisotropy in attenuation estimates could 

introduce bias and variance in the QUS parameter estimates. Therefore, the next chapters address 

these challenges in order to optimize our QUS methods.  
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Chapter 3: QUS of Subcutaneous Breast Fat 
 

This chapter is published as: 

Nasief, H. G., Rosado-Mendez, I. M., Zagzebski, J. A., & Hall, T. J. (2015). ACOUSTIC PROPERTIES OF BREAST 

FAT. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in 

Medicine, 34(11), 2007–2016 

 
Interpretation of ultrasound images to diagnose solid breast masses generally includes 

comparing B-mode image features of a mass with those of surrounding fat and parenchymal tissue. 

In the US-BIRADS lexicon,1 internal echo patterns of masses are categorized as anechoic, hypo-

echoic, iso-echoic, hyper-echoic, or complex. Although these descriptors are closely related to the 

backscatter properties of breast masses, the evaluation of these features is qualitative, subjective, 

and coarsely assigned (most breast tumors are described as ‘hypoechoic’ but there is no mention 

of ‘how hypoechoic’).  

Clinicians utilize breast fat as a standard for comparison of the echogenicity and the 

attenuation (shadowing) features of masses. Although it serves as a source for comparison, there 

is little data in the literature demonstrating the range of acoustic properties of in vivo breast fat. 

Foster et al.2 measured attenuation coefficients and backscatter coefficients at 13 MHz for excised 

breast specimens that included fat. Edmonds et al.3 measured attenuation coefficient vs. frequency 

slopes for excised breast tissues, including fat, over the 3-8 MHz range. D’Astous and Foster4 

developed a novel tissue analysis system to measure attenuation and backscatter coefficients for 

excised breast tissue specimens under controlled conditions. In vivo data were obtained by 

Anderson et al. 5 who measured BSCs of fibro-glandular and fatty breast tissue in the 5.25-13 MHz 

frequency range using the Reference Phantom Method. In this study, the acoustic properties of fat 

are estimated to test for consistency in our QUS parameter estimates and examine the use of fat as 

a clinical reference tissue for US-BIRADS descriptors. 
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3.1. Data acquisition 

As mentioned in Chapter 2, 120 human subjects who were scheduled for core biopsy were 

recruited. However, for this data analysis, we excluded (obviously) heterogeneous fat lobules since 

radiologists compare echogenicity of a suspicious mass to that of fat using the average brightness, 

ignoring any specular reflectors or other heterogeneities that might be present. QUS parameter 

estimation techniques can provide reliable estimates for structures larger than about 5 mm 

(axially). In our study, criteria for analysis were image data that depicted large (> 1 cm) and 

homogeneous (no noticeable internal specular reflectors) fat lobules.  This resulted in 24 subjects 

selected for this analysis.  A typical example is shown in Figure 3.1 in which a manually selected 

region of interest (ROI) within a fat lobule is outlined on the B-mode image.   

 

Figure 3.1. Typical breast ultrasound image from this study showing an example of breast fat 

ROI selection (rectangle in the upper right) 

 

Data analysis was performed offline using routines written in MATLAB (the Mathworks, 

Natick, MA). Rectangular parameter estimation regions (PERs) were identified within a uniform 

ROI of a fat lobule selected as outlined above for each patient. Echo signal power spectra were 

calculated as a function of depth for data segments within this region for both the sample and 

reference phantom. To calculate a power spectrum, 4mm x 4mm power spectrum estimation 
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regions (PSER), overlapping by 75% both axially and laterally, were defined.  For each RF line 

within the PSER, the Fourier transform was computed using a multi-taper technique with a time-

half bandwidth product (NW) of 4.16-17 The results for beam lines within the PSER were then 

averaged. For a homogenous PER, the ratio of the echo signal power spectrum from the sample to 

the power spectrum for the reference phantom was estimated using the RPM (see Chapter 2).  

Attenuation was estimated using the RPM. Although the average speed of sound within the 

lobule as well as in any overlying tissues is not known (but estimated to be about 1460 m/s), having 

the transmit focus set distal to the ROI minimizes any bias in attenuation estimates caused by 

sound speed mismatches.18 The maximum frequency band over which the echo signal power 

spectrum was at least 10 dB above the noise floor was selected for each subject. When reporting 

final results, the maximum frequency range common among all data sets was used. The BSC(f) 

and the average BSC (ABSC) for each subject was computed over the (6-12 MHz) frequency range 

used for attenuation estimation. The effective scatter diameter (ESD) was estimated over regions 

of interest within the fat lobules to characterize the frequency dependence of scattering. A 

Gaussian form factor was utilized to model soft tissue backscatter.19 The ESD estimated here does 

not identify a microscopic scattering structure but simply parameterizes the frequency dependence 

of scattering. 

 

3.2. QUS parameters of subcutaneous breast fat 

The attenuation coefficients versus frequency for the selected fat lobule in each patient are 

presented in Figure 3.2, while a summary plot for data over the 6-12 MHz range is presented in 

Figure 3.3. These are computed directly using the RPM.  The results in Figure 3.2 exhibit 

significant variation in overall magnitude from one patient to another. For example, at 8 MHz, 
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breast fat attenuation coefficients ranging from 3.2 dB/cm up to 7.5 dB/cm were obtained. A 

similar range and variability is seen at other frequencies (above about 6 MHz). 

 

 

Figure 3.2. Attenuation coefficient vs. frequency in breast fat for individual subjects 

 

The attenuation coefficient versus frequency data in the 4-6 MHz range exhibits 

unexpected behavior in that some patients’ data suggest a decrease in attenuation with frequency 

over this range. It is likely that there exist non-apparent sources of echo signal coherence, such as 

interfaces or isolated strong scatterers, within the attenuation PERs that would violate assumptions 

used in attenuation estimation, and that these may be more prominent at lower frequencies. Thus, 

the summary plot for the attenuation results (Figure 3.3) excludes the 4-6 MHz frequency range. 

A power law fit for the attenuation for the combined data set (24 subjects) for the 6-12MHz 

frequency range resulted in α(f) = 1.28 dB.cm-1MHz-0.73. A plot of the mean attenuation coefficient 

vs. frequency is shown in Fig. 3.3. 
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Figure 3.3. The mean attenuation coefficient estimates (dots) of breast fat among 24 subjects, 

the standard deviations (dashed line) and the combined power law fit for the attenuation 

coefficient vs. frequency. 

 

As mentioned above, for each patient, attenuation coefficients were computed for several 

PERs within the ROI.  For determining the variability among patients and to facilitate comparison 

with results of previous investigators, we fit the data to a straight line with zero intercept and 

estimated the slope of the attenuation coefficient vs. frequency at 7 MHz for each PER. We then 

computed an average and standard deviation of these values within the ROI from independent 

PERs. Results are presented in Figure 3.4 for each of the 24 subjects. The specific attenuation 

coefficient values at 7MHz among all subjects was 0.73 ± 0.23 dB.cm-1MHz-1. 

 

Figure 3.4. Specific attenuation at 7MHz for each subject. The circles represent the mean for 

each subject and the bars show the corresponding standard deviations 
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The mean BSC vs. frequency of the fat lobule over all patients follows a power law fit of 

(0.6±0.25) x10-4 sr-1cm-1MHz-2.49. The average backscatter coefficient (ABSC) in the 6-12 MHz 

range is 0.0073±0.0023 cm-1sr-1. Individual ABSC’s were plotted on a logarithmic scale to study 

deviations from the average value among subjects, and results are shown in Figure 3.5. The results 

showed that the ABSC range among subjects is about 10 dB. The lack of standardization of US 

imaging would make these brightness variations (from one subject to the next) hardly noticeable 

on a gray scale ultrasound image (given a 70dB dynamic range for the displayed echo used for 

breast imaging and free user control over average image brightness).  

 

Figure 3.5. ABSC estimates for breast fat for each subject, shown relative to the mean value 

among all subjects (solid line). The dashed lines indicate the upper and lower range of values 

 

 Effective scatterer diameters were estimated to characterize the frequency 

dependence of backscatter. The mean ESD among all subjects is 60.2 ± 9.5 µm. Figure 3.6 shows 

ESD estimates for each subject compared to the mean value among estimates.  
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Figure 3.6. Effective scatterer diameter (ESD) estimates for breast fat for each subject. The solid 

line shows the mean value among ESD estimates 

 

3.3. Discussion 

The in vivo results for subcutaneous fat showed noticeable variability in attenuation 

estimates in the 4-6MHz frequency range.  Intra-subject variability of about 6% was observed in 

attenuation estimates among the different ROIs selected within the same fat lobule. Attenuation 

estimate variance among subjects would likely have been smaller if larger ROIs were used and 

those ROIs were tested to demonstrate a lack of echo signal coherence and homogeneity of 

parameter estimates within the ROI. Attenuation is assumed to increase with frequency, but Figure 

3.7 shows attenuation coefficient and B-mode images of two cases that do not follow this 

assumption.  In one case, high attenuation values were estimated in the lower frequency band 

compared to the higher frequency band. In the other case, the attenuation estimates in the lower 

frequency band are very close to zero. In both cases, it is possible that sources of echo signal 

coherence were present in the ROI. Systematic analysis of echo signal data that first tests for the 

presence of echo signal coherence prior to QUS parameter estimates that assume incoherent 

scattering are currently being implemented and will be discussed in Chapter 5.  
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Figure 3.7. Top: attenuation coefficient vs. frequency estimates for two cases (case 1: upper line, 

case 2: lower line) of unexpected behavior of attenuation vs. frequency. Bottom: Associated B-

mode images (case 1 on the left; case 2 on the right) with the ROI (outlined boxes) within which 

the attenuation coefficients were estimated. 

 

Attenuation and backscatter coefficient estimates in this study were compared with 

previously published work. D’Astous and Foster4 reported a mean attenuation coefficient vs 

frequency of 0.16 ± 0.03 dB·cm-1MHz-1.7, and a backscatter coefficient of (0.92 ± 0.65) x 10-4               

sr-1cm-1MHz-1.9 for ex vivo breast fat. Thus, their specific attenuation for fat at 7 MHz would be 

about 0.62 ± 0.12 dB·cm-1MHz-1 (compared to 0.73 ± 0.23 dB·cm-1MHz-1 for in vivo estimates in 

our study). Figure 3.8 shows our individual in vivo results for the attenuation coefficient versus 

frequency slope compared with the excised breast tissue estimates reported by D’Astous and 

Foster.  Our values appear, on average, to be slightly higher than those of D’Astous and Foster, 

although the standard deviations among estimates certainly overlap.  
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Figure 3.8. Specific attenuation at 7MHz reported in Fig 3.4 for breast fat (data points), 

compared to mean values for the same parameters for ex vivo breast fat reported by D’Astous 

and Foster 

 

In other reports, Foster et al. 2 measured attenuation and backscatter coefficients for excised 

breast specimens at 13MHz; Edmonds et al.3 measured attenuation coefficient vs. frequency slopes 

for fat over the 3-8MHz range; Anderson et al.5 measured the backscatter coefficient of 

subcutaneous fat from 5.25 to 13 MHz; and Raju et al. 19 measured attenuation and backscatter 

coefficients of subcutaneous fat in vivo at the wrist and elbow in the range 14 to 34MHz. Table 

4.1 shows the average values measured for the 24 subjects in the current study along with values 

reported by these researchers.  
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Table 3. 1. Average values of the attenuation coefficient modeled as a linear function of 

frequency (Att), the backscatter coefficient (BSC) modeled as a power law and the average 

backscatter coefficient (ABSC) of breast fat versus literature values 

Data  

Frequency 

(MHz) 

ATT 

(dB.cm-1MHz-1) 

BSC 

( ) 

ABSC* 

(cm-1sr-1) 

 mean Stdev. b (x10-4) n mean Stdev. 

D’Astous and Foster9 3-7 0.62 0.12 0.92±0.65 1.9 0.004 0.003 

Anderson et al. 10 5.25-13 - - 0.259 3.4 0.003 0.003 

Edmonds et al. 8 3-8 2.00 0.65 - - - - 

Raju et al. 38 14-34 1.84  - - 0.073 0.072 

Foster et al. 7 13 1.1 0.3 1.4±0.6 - 0.014 0.006 

Current study results 6-12 0.73 0.23 0.6±0.25 2.5 0.0073 0.002 

* ABSC shown corresponds to the frequency range stated in the table. 

For visual comparisons between our in vivo data and the data from these previous studies, values 

are plotted on a logarithmic scale, and are shown in Figure 3.9. The plots suggest very consistent 

results among current and previously published data over the frequency ranges tested. 

 

Figure 3.9. Attenuation coefficient vs. frequency for breast fat comparing in vivo breast 

measurements to previously reported results 

n
bf
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Focusing on the data from breast tissues, Figure 3.10 shows the ex vivo results from 

D’Astous and Foster as well as from Foster et al. compared to our in vivo results. The regions 

shown are defined by the mean plus and the mean minus one standard deviation of the reported 

results.  

 

Figure 3.10. Attenuation coefficient vs. frequency for breast fat, comparing ex vivo results of 

D’Astous and Foster, Foster et al., and the in vivo results reported in this study 

 

The measured BSC versus frequency for breast fat in this study exhibited close agreement 

among all 24 subjects both in magnitude and frequency dependence. A graphic comparison on a 

log-log plot of these results with those of D'Astous and Foster and those of Anderson et al. using 

7.5 and 10 MHz transducers is presented in Figure 3.11. The upper and lower curves shown are 

defined by the mean plus and the mean minus one standard deviation of the reported results.  
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Figure 3.11. BSC vs. frequency for breast fat as reported by D’Astous and Foster, Anderson et 

al., and our estimates reported here 

 

3.4. Conclusion  

The results reported here show consistency in acoustic properties of breast fat among 

twenty-four subjects and with previously published data. These results demonstrate our QUS 

methods provide consistent parameter estimates among subjects, and those estimates are in 

agreement with previously reported values from other groups.  The range of average backscatter 

coefficient in the 6-12 MHz frequency range for breast fat in each subject is within 5 dB of the 

mean ABSC value across subjects. This finding quantitatively supports the use of fat as a reference 

tissue for US-BIRADS. The consistency in the characteristics of breast fat encourages future use 

of quantitative measures, for example to specify the degree to which a mass is “hypo-echoic”.  

Similarly, reporting the specific attenuation, or some equivalent measure, may reduce the 

subjectivity in describing ‘posterior acoustic features’ which depend on both the attenuation in the 

mass and its dimension along the acoustic beam path. This could in turn improve BIRADS 

descriptors of ultrasound breast data. 
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Chapter 4: Modified least squares method 
 

A portion of this chapter is published as: 

Nasief, H. G., Rosado-Mendez, I. M., Zagzebski, J. A., & Hall, T. J. (2015). ACOUSTIC PROPERTIES OF BREAST 

FAT. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in 

Medicine, 34(11), 2007–2016 

 

In-vivo breast tissue is very complicated and heterogeneous; thus, a proper correction for 

attenuation over the inhomogeneous tissue path between the ultrasound transducer and a ROI 

within a breast mass is necessary to obtain reliable QUS estimates – especially when quantifying 

the frequency-dependence of scattering with the Effective Scatterer Diameter. Many algorithms 

have been developed over the years to compensate for the attenuation over the intervening tissue 

path, as mentioned in Chapter 2.1-5 The most recent and perhaps most sophisticated approach for 

attenuation compensation was developed in our group by Nam et al.5 They proposed a least squares 

method to estimate an effective attenuation coefficient between the ultrasound transducer and a 

ROI. The method uses the power spectrum of the RF echo signals from the ROI and the spectrum 

from a reference phantom. They fit the ratio of the two spectra to a 3-parameter tissue model that 

quantifies the attenuation and backscatter properties of the media. The least squares method 

enables the determination of attenuation when the path is acoustically non-uniform, providing an 

accurate estimate of the total attenuation to a PER and the backscatter coefficient versus frequency 

of the sample within the PER. In developing this method, the relation between attenuation and 

frequency was assumed to be linear. However, this relationship does not hold over a broad 

frequency range in most human tissue.6 To take this into consideration, a modification of the Nam 

method, a “Modified Least Squares Method” (MLSM), is applied in this study. The MLSM is 

discussed in detail in this chapter.  
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The MLSM addresses the departure from linearity assumed in the LSM by dividing the 

echo signal frequency range into small, 2 MHz, overlapping sub-bands (where the linear frequency 

dependence of attenuation is a reasonable approximation). Thus, the assumption of a linear 

dependence of attenuation on frequency over the entire echo signal bandwidth is not necessary. 

This method was tested using a theoretical assessment, on uniform phantoms, on phantoms with 

layers having different attenuation and layers having different backscatter levels, on stacked 

phantoms with an attenuation frequency dependence different from f 1, and a phantom simulating 

subcutaneous fat and breast parenchyma. The method was also applied to derive in-vivo breast and 

kidney BSC data. 

 

4.1. The modified least squares method (MLSM) 

This MLSM represents a modification to the Nam et al. least squares method5 to estimate 

an “effective attenuation coefficient” over the path between the ultrasound transducer and the 

center of the PER, as mentioned above. The previous least squares method for estimating 

attenuation and backscatter coefficients begins by employing the first order Born approximation 

(assuming scattering from soft tissue is weak enough to ignore multiple scattering and the distance 

from the transducer to the PER is greater than the transducer aperture). Thus, the power spectra 

can be described using equations applied in the reference phantom technique7 (see Chapter 2).  

In the Nam method, ultrasound attenuation is approximated as a linear function of 

frequency: 

   α(�) = α
� + α�                                                         (4-1) 

where α0 is the attenuation coefficient versus frequency slope and, α1 is a positive constant 

representing the intercept (set to zero in the Nam method).    
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Thus, the cumulative attenuation A (f, z) from the transducer to depth z and back to the 

transducer is approximated by  

                                                                   (4-2) 

where α0,eff is an effective “specific attenuation coefficient” for the propagation path. 

Similarly, the backscatter coefficient B(f) within the ROI is modeled as a power law, 

                              B (f) = b f n                                                                                                                                 (4-3) 

where b is a constant and n represents the frequency dependence. 

The method starts by computing the ratio of the echo signal power spectrum from the 

sample to the power spectrum of echoes from the reference phantom, given by Yao et al. as 

follows: 7 

                                                                                                           (4-4) 

 

where subscripts sam and ref denote the sample and reference phantom respectively.  

 Computing the natural log of the ratio of the power spectra in Eq. 4-4, yields 

 

                                                                                                                            (4-5) 

To simplify, we apply the following substitutions  

�(�, �) = ln ����(�,�)
����(�,�) , � = ln ����

����
,   � =  �!"# − �%&�', ( =  (),&��,!"# − (
,%&�'            (4-6) 

Thus,                                                                                                          

                                                                                                                                       (4-7)     

Three equations in three unknowns are obtained by differentiating the right side of Eq. (4-

8) below with respect to each of the three variables and setting the derivatives to 0. These equations 

are then fit to a three parameter least squares linear model (based on power law models for tissue 
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attenuation and backscatter) to solve for the unknowns, b, n and α that are consistent with the 

power spectrum data within the frequency band of interest (4-9 MHz). Thus,  

                                                                                                                                 (4-8)                                

where, are the estimated parameters and K is the number of frequency components to be 

used for the least squares fitting.  

Nam et al. apply Eq. 4-8 to the entire echo signal frequency spectrum. However, in the 

MLSM method used here, we divide the echo signal frequency band into subbands 2MHz wide 

with 50% overlap. A schematic of the steps the MLSM takes beyond the Nam et al. method is 

shown in Figure 4.1. By using relatively narrow frequency ranges for analysis, the approximation 

that attenuation is linearly dependent on frequency over that narrow frequency range is reasonably 

accurate. Starting at the lower band, i.e., where the echo signal power spectrum first exceeds the 

noise floor by 10 dB, values for and are determined.  The resulting value for the attenuation 

coefficient over the first subband then serves as a starting point, α1 in Eq. 4-1, for a subsequent fit 

to the data over the next subband, as shown in Figure 4.2. The process continues over the interval 

for which the echo signal power spectrum exceeds the noise floor by 10 dB.   

For each 2MHz frequency interval, the b and n estimates for backscatter coefficients are 

discarded. New values are estimated in each interval simply to obtain attenuation estimates that 

are robust to variations in echogeneicity. The estimation results from each subband are then 

combined into a single power law attenuation model to smooth the piecewise linear function and 

obtain an estimate of the effective attenuation coefficient vs. frequency. This power law fit is used 

to describe the frequency dependence of αeff, s from 4–9 MHz. This modification to the Least 

Squares Method may lead to more reliable, system-independent QUS parameter estimates in the 

breast (and other tissues).  
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Figure 4.1. Schematic of the modified least squares method (MLSM) describing the extra steps 

beyond the least squares method 
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Figure 4.2. The modified least squares method (MLSM) for attenuation estimation, where the 

solid curved line is the underlying attenuation coefficient vs. frequency to be estimated. In a) the 

first frequency subband is chosen, b) a linear fit is applied to the first subband, c) the process is 

repeated for multiple subbands overlapping by 50% where the resulting value for the attenuation 

coefficient in the previous subband serves as the starting point for the next subband, d) a power 

law attenuation fit among the piecewise linear fits from each subband is obtained. fl and fh stands 

for lower and higher frequency limits respectively 

 

4.2. Theoretical assessment of the MLSM method  

To evaluate the method for a higher frequency dependence of attenuation, we performed a 

theoretical assessment using data from a modeled sample and reference. We set the attenuation 

properties of the sample to be 0.3 f 1.6, and its backscatter coefficient to be 5E-6 f 2.25. We set the 

reference phantom attenuation to be 0.5 f 1.1, and its backscatter coefficient to be 3E-6 f 3.25. We 
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assumed that the power spectra of the sample and the reference follow a Gaussian distribution 

(over the 3-12 MHz range), and that the speed of sound is the same in the sample and the reference 

(1540 m/s). We computed the ratio of the power spectra of the sample to that of the reference using 

the values assigned for each of them.  We then plugged the values of the power spectral ratios and 

the reference information into the LSM and the MLSM methods and estimated the attenuation 

(assuming a 2-cm depth). The LSM is used with constraints on the allowable values for 0 eff. We 

applied a broad constraint range (0.2-2 dB.cm-1MHz-1). 

 

4.2.1.  Results for the theoretical assessment  

The results in Figure 4.3 show that for a higher frequency dependence of attenuation, the 

MLSM method was successful in estimating the attenuation coefficient (0.31 f 1.58 vs. the expected 

value of 0.3 f 1.6). The MLSM was also successful in estimating the backscatter coefficient (5.23 

E-6 f 2.55vs. the expected value of 5E-6 f 2.25). The LSM method on the other hand, was not very 

successful in estimating the attenuation coefficients.  

 

Figure 4.3. Theoretical assessment of the MLSM versus the LSM for a higher frequency 

dependence of attenuation in the sample and the corresponding power law and linear fits 

resulting from the MLSM and the LSM respectively.  
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4.3. Phantom data acquisition  

Phantoms used in this study were scanned using a S2000 scanner (Siemens Medical 

Solutions USA, Inc, Malvern, PA) equipped with an 18L6 linear array transducer, with a nominal 

excitation frequency of 10MHz. The transmit focus was set below 5 cm and the power was set to 

39%.  Five separate frames of RF echo data, each consisting of 368 acoustic beamlines, were 

acquired with an elevational translation or rotation of the transducer between each frame to obtain 

statistically independent echoes. The system was equipped with the Axius Direct Ultrasound 

Research Interface 8 that allows acquisition of beam-formed RF echo signals following time-gain-

compensation but before envelope detection and post processing. Data were available for each 

acoustic scan line, covering the entire B-mode image plane. Data analysis was performed off-line 

using routines written in MATLAB to estimate the effective attenuation over the intervening tissue 

path, to correct for attenuation before estimating the BSC and ESD parameters described in the 

previous chapter. For theoretical predictions of BSCs in the phantoms, the Faran scattering theory 

(see Chapter 2) was used, and the predictions computed were compared with the experimentally-

estimated BSCs. 

4.3.1.  Evaluation of the MLSM on uniform phantom   

The MLSM was tested using two tissue mimicking phantoms with uniform attenuation and 

backscatter coefficients. Phantom 1 was used as the reference, and Phantom 2 was used as the 

sample.  Both phantoms were made with 1-45 micrometer diameter glass bead scatterers.10 The 

tops of Phantom 1 and Phantom 2 are covered with a 25µm thick SaranTM film (Dow Chemical, 

Midland MI, USA) and a plastic-coated aluminum foil (made by Gammex Inc., Middleton, WI, 

USA), respectively. The acoustic properties of the phantoms were measured using single-element 
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transducers and a narrow-band substitution method on test cylinders manufactured at the same 

time as the phantom components (as with reference phantoms; see Chapter 2). The sound speed of 

the phantoms was 1492 m/s at 2.5MHz. The measured attenuation coefficients for the reference 

phantom (phantom 1) and for the sample (phantom 2) were 0.55 dB·cm-1MHz-1 and                              

0.54 dB·cm-1MHz-1, respectively. Backscatter coefficients were measured using a broadband 

reference reflector method and single-element focused transducers (see Chapter 2).  

RF echo data were analyzed to estimate the effective attenuation coefficient (αeff, sam) using 

both the LSM and the MLSM methods. The results were compared with those estimated from the 

RPM. The expected value for the local attenuation coefficient estimated from laboratory 

measurements (αL,sam =0.54 dB·cm-1MHz-1) was used as basis of comparison, since for a uniform 

phantom, the effective attenuation coefficient (αeff, sam) equals the local attenuation coefficient (αL, 

ref) throughout. We estimated the effective attenuation coefficient over the frequency band of 

interest using the linear fit for the LSM method, α0 f, and the power law fit for the MLSM method, 

α0 f 
n. The effective attenuation coefficient divided by frequency at 6MHz +(),&�� �⁄ - ./ was then 

estimated. Since the RPM yields an estimate for the “local” attenuation coefficient, its results were 

converted to effective attenuation coefficients by summing overlying local attenuation increments 

to the analysis window and then dividing by the depth of the window. 

4.3.1.1 Results for the uniform phantom   

Figure 4.4 shows +(),&�� �⁄ - ./ versus depth resulting from the RPM, LSM and the 

MLSM. The “expected” values are those obtained from the laboratory measurements. The results 

show that +(),&�� �⁄ - ./ estimated using the MLSM is in good agreement with the expected value 

(0.54 dB·cm-1MHz-1) and the values obtained from the LSM and the RPM.   
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Figure 4.4.  Effective attenuation coefficient at 6 MHz divided by the frequency for the uniform 

phantom  

 

4.3.2. Evaluation of the MLSM in heterogeneous phantoms   

To further test the method, two tissue mimicking phantoms with layers having different 

attenuation and backscatter coefficients were used to determine the sensitivity of the method to 

variations in backscatter and attenuation along the ultrasound beam paths. The first phantom, 

shown in Figure 4.5a, was designed to have three layers with equivalent backscatter properties, 

but with the middle layer having a higher attenuation coefficient (0.73 dB·cm-1MHz-1) than the 

other two layers (0.48 dB·cm-1MHz-1). The second three-layered phantom, shown in Figure 4.5b, 

was designed to have a uniform attenuation coefficient (0.52 dB·cm-1MHz-1) in all layers but the 

middle layer has 6dB higher backscatter.  The reference phantom data were acquired from the top 

layer of the constant backscatter phantom after rotating it 90 degrees to gain access to this uniform 

volume.  
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Figure 4.5. A schematic of the three layered phantoms: a) shows the phantom with constant 

backscatter and layered attenuation b) shows the phantom with constant attenuation and layered 

backscatter levels 

 

Both phantoms consist of water based gel with condensed milk (to control attenuation)10 

and include 5-43µm glass spheres, with a median size of 24µm to provide scattering. The surface 

of each layer is bonded to the next, and the media have nearly identical mass densities and speeds 

of sound. Thus, the reflection losses at the interfaces are negligible. The phantoms are 9cm (lateral) 

x 9cm (elevational) x 7cm (axial) rectangular parallelepipeds and are stored in plastic containers 

filled with oil.  The through-transmission estimates for the speed of sound, attenuation coefficients, 

and planar reflector-method backscatter coefficients (see Chapter 2) of the phantom layers were 

measured using 2.5cm-thick, 7.5cm-diameter test cylinders manufactured during construction of 

the phantoms. Attenuation coefficients were fit to linear functions of frequency, and the slopes of 

the attenuation coefficient vs. frequency (dB·cm-1MHz-1) were obtained over 3.5-10MHz. The 

characteristics of both phantoms are shown in Table 4.1.   
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Table 4.1. Properties of the constant attenuation and constant backscatter three-layer phantoms 

Phantom 
Scatterer 

diameter  

Number 

density  

 Background 

material 
Speed of sound  Attenuation 

  in um  in g/l   in m/s at 3.5 MHz  in (dB/cm MHz) 

Constant Backscatter Phantom 

top  5 to 43 4 26% milk, 74%gel 1553 0.48 

middle 5 to 43 4 50% milk, 50%gel 1564 0.73 

bottom 5 to 43 4 26% milk, 74%gel 1555 0.47 

Constant Attenuation Phantom 

top 5 to 43 2 3:1 gel to milk 1552 0.52 

middle 5 to 43 8 3:1 gel to milk 1553 0.54 

bottom 5 to 43 2 3:1 gel to milk 1552 0.52 
 

4.3.2.1.  Results for heterogeneous phantoms   

The +(),&�� �⁄ - ./ in the first 4 cm of the variable attenuation coefficient phantom is the 

same as the local attenuation coefficient, after which there is a gradual increase (i.e. at the boundary 

between top and middle layer) in the measured and expected effective attenuation coefficient 

values due to the presence of a higher attenuation coefficient in the middle layer. This contributes 

to the total attenuation to any PER placed within this layer. This is followed by a decrease in the 

effective attenuation coefficient values after the bottom layer is reached as shown in Figure 4.6. 

The mean percent error of the MLSM (1.1%) was smaller than that of the LSM (1.8%) and the 

RPM (2.0%) for the phantom with constant backscatter and variable attenuation coefficient. 
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Figure 4.6. Effective attenuation coefficient at 6 MHz divided by the frequency for the layered 

attenuation phantom. 

 

For the phantom with constant attenuation and a layered backscatter coefficient, errors 

were observed from the LSM and the RPM along the beam path. The bias presented in the LSM 

estimates (since the attenuation coefficient in the phantom material is not exactly proportional to  

f 1, α=α0 f 
1.16) was compensated for, by using the MLSM, resulting in smaller errors (estimates 

closer to the expected value). The homogeneity of backscatter assumed in the RPM is violated at 

the interfaces. Thus, a higher decrease in the attenuation estimates was noticed in the RPM beyond 

4 cm due to large errors in local attenuation estimations occurring at the layer boundaries. A 

summary of the result is shown in Figure 4.7.  
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Figure 4.7. Effective attenuation coefficient at 6 MHz divided by the frequency for the constant 

attenuation phantom 

 

BSCs were also estimated for the three-layer phantom with constant attenuation. Results 

for the middle and bottom layers are shown in Figure 4.8.  The frequency dependencies of the 

measured backscatter coefficients obtained with the MLSM are in good agreement with results 

from the LSM, and both are in good agreement with the values predicted with Faran’s theory and 

the lab values.   

 

Figure 4.8. BSC estimates for the variable BSC phantom from Faran’s theory, LSM, Lab 

measurements and MLSM 
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4.3.3. Evaluation of the MLSM on a complex phantom (ACR) 

The method was further tested on a phantom that mimics breast tissue. The phantom was 

manufactured for the American College of Radiology (ACR).11 It has masses of various sizes and 

shapes embedded in a simulated breast parenchyma, with a proximal layer of tissue-mimicking fat 

forming an irregular boundary, as shown in Figure 4.9. The simulated glandular parenchyma, and 

most lesions, contain solid particles of graphite (catalog no. 9039; Superior Graphite, Chicago, Ill) 

and glass beads (45–53 µm in diameter; Potters Industries, Parsippany, NJ) dispersed in the gelatin. 

The fatty portions of the phantom contain oil droplets.  

 

Figure 4.9. schematic of the ACR phantom 

  

The phantom was scanned with a Siemens S2000 machine equipped with an 18L6 

transducer at the same setting used for in vivo breast imaging to mimic the scanning condition for 

later experiments. The transmit focus was set to 4 cm and the transmit power was at 39%. There 

is no laboratory-measured BSC for the tissue mimicking fat, and it can’t be predicted because of 

the presence of the oil droplets (with unknown size) in the base materials. Thus, we only compared 

attenuation estimates versus depth with lab values obtained using a narrow band substitution 
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technique on test samples manufactured at the time of the phantom (see Chapter 2). The laboratory-

measured attenuation coefficients for the subcutaneous fat and the glandular parenchyma are 

shown in Table 4.2. The reference phantom was made with 6.4g of 3-45µm-diameter glass spheres 

homogeneously distributed in a 1600cc gel background. The background material consisted of an 

emulsion containing 70% safflower oil. The acoustic attenuation and sound speed of this reference 

phantom (speed of sound of 1492 m/s at 2.5MHz and an attenuation coefficient from 2-10 MHz 

versus frequency slope of 0.54 dB·cm−1MHz−1) were measured by single-element transducers on 

2.5-cm thick test cylinders of the phantom materials that were poured at the time of its fabrication. 

A narrowband through-transmission technique was employed (see Chapter 2).  

 

Table 4.2. Lab attenuation values for the ACR phantom 

 Subcutaneous fat Glandular Parenchyma 
Power law attenuation fit 0.97 f^0.87 0.28 f^1.33 

Linear attenuation fit 0.738 f 0.713 f 
Speed of Sound (m/s) 1454 1567 

 

4.3.3.1.  Results for the ACR phantom   

The effective attenuation was estimated with the MLSM over a region spanning the 

subcutaneous fat and the glandular parenchyma as shown in Figure 4.10. 
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Figure 4.10. B-mode image of the ACR phantom 

 

The effective attenuation estimated from the MLSM was compared with the lab value and 

with those obtained from the LSM.  The results showed better agreement (over those obtained by 

the LSM) between the MLSM and the expected value. Data are plotted in Figure 4.11.  

 

Figure 4.11. Effective attenuation coefficient at 6 MHz divided by the frequency for the ACR 

phantom 
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4.3.4. Evaluation of the MLSM on stacked test-cylinder phantoms  

To further test attenuation estimates in layered media, we placed 3 test cylinders on top of 

each other in a water bath with their axes aligned. Each test cylinder contains material with a 

different frequency dependent attenuation that differs from f1.  A summary of the attenuation 

coefficient (from through-transmission measurements; see Chapter 2) for these materials is shown 

in Table 4.3. The stacked test cylinders were scanned with a Siemens S2000 equipped with a 6C1 

curvilinear array transducer at the same setting used for in vivo kidney imaging to mimic those 

scanning conditions for comparison with later experiments. The focus was set to 2.0 cm and the 

transmit power was set to 63%. The effective attenuation was estimated with the MLSM for ROIs 

in each layer individually, and results were compared to the lab-measured attenuation values. The 

BSC was estimated after correcting for attenuation with the MLSM-measured attenuation values. 

Backscatter coefficient estimates obtained were compared to lab-measured BSC (measured using 

a broadband reference reflector method, see Chapter 2), and BSC estimated after correcting for 

attenuation with the LSM, and a “layer compensation method” (where a constant attenuation value 

is used to compensate for attenuation in each layer of material (tissue type) over the intervening 

tissue path).  

 

Table 4.3. Lab Attenuation of the stacked test cylinders 

  Layer 1 Layer 2 Layer 3 

Attenuation coefficient 
0.313 f 1.26 0.502 f 1.17 0.288 f 1.28 

 

4.3.4.1.  Results for stacked cylinders   

The effective attenuation estimated from the MLSM was compared with the lab value (over 

a 3-5 MHz range).  The results for the MLSM and the expected value are shown in Figure 4.12.  
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Figure 4.12. Effective attenuation coefficients at 6 MHz divided by the frequency for the 

stackable cylinders 

 

Figure 4.13 shows the estimated BSC in each layer after correcting for attenuation with the 

MLSM, Nam’s LSM, and the layer compensation method, and the lab backscatter measurements.  

The results show that the BSC estimated after correcting for attenuation with the MLSM is in good 

agreement in frequency dependence with the other methods.  
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Figure 4.13. BSC estimated after correcting for attenuation with values from the MLSM 

versus other methods and lab values 
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4.4. In vivo Data acquisition  

After testing the method on phantoms, we evaluated the MLSM on in vivo data from the 

breast and kidneys. Human subjects were scanned with a Siemens S2000 machine equipped with 

an 18L6 linear array transducer for in vivo breast data and a 6C1 curvilinear array transducer for 

the kidney data. A reference phantom was scanned at the same system settings to allow use of the 

Reference Phantom Method for estimating acoustic parameters. Offline analysis was done with 

routines written in MATLAB (Mathworks, Natick, MA).  A rectangular parameter estimation 

region was identified. Echo signal power spectra were calculated as a function of depth for data 

segments within this region for both the sample and the reference phantom. The analysis 

bandwidth was selected such that the power spectral values were at least 10 dB above the noise 

floor. To calculate the echo signal power spectrum, a 4 mm x 4 mm power spectrum estimation 

region, overlapped by 75% both axially and laterally, and a multi-taper technique with a time-half 

bandwidth product (NW) of 4 was utilized (see Chapter 2).  

 

4.4.1. Evaluation of the MLSM on in vivo breast data 

In this preliminary study, 120 women scheduled for ultrasound-guided biopsy of 

previously detected breast tumors were recruited following a University of Wisconsin Institutional 

Review Board-approved, Health Insurance Portability and Accountability Act-compliant protocol 

(these are the same subjects and analysis methods used in Chapter 3). Subjects were scanned in 

the supine position in both radial (image plane aligned with breast ducts) and anti-radial (image 

plane perpendicular to ducts) planes.  

To evaluate the MLSM on in vivo breast data, we selected 9 human subjects with 

homogeneous fat lobules and corrected for attenuation right below the fat lobule. A typical 
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example is shown in Figure 4.14.  The attenuation-corrected power spectrum represents the power 

spectrum obtained after correcting for different attenuation values that can exist in the intervening 

tissue. It is obtained by multiplying the power spectrum by the exponential function of the 

attenuation, exp (4 α(f) z). The accuracy of the MLSM was evaluated by comparing the attenuation-

corrected power spectrum obtained using values estimated from this method versus the fat values 

(1.28 f 0.73) from our previous study.12 

 

Figure 4.14. Example of in-vivo breast data scanned with a Siemens S2000 and an 18L6 

transducer (subject 10 in table 7.2) 

 

4.4.1.1.  Results for in-vivo breast data   

 Figure 4.15 shows the attenuation-corrected power spectra for the sample and the 

reference in a ROI within the fat lobule for a human subject with an infiltrating ductal carcinoma 

(IDC1 in Chapter 6). Attenuation compensation for the sample was done using the attenuation 

values of the subcutaneous breast fat12 (light blue dots), and the attenuation values estimated using 

the MLSM (light blue line). The attenuation compensation for the reference was obtained by using 
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the lab-measured attenuation values.  The results show that the attenuation-corrected power 

spectrum resulting from using the previously published fat values were in good agreement with 

those obtained after correcting for attenuation with values estimated using the MLSM. 

 

Figure 4.15. Examples of the attenuation corrected power spectra with fat values versus MLSM 

values for a ROI in the subcutaneous fat in a human subject with an infiltrating ductal 

carcinoma (IDC1 in Chapter 6). 

 

4.4.2. Evaluation of the MLSM on in vivo kidney data 

To evaluate the method on echo signals acquired when scanning kidneys, we asked a 

nephrologist to scan a subject before a scheduled kidney transplant and provide us with the 

pathology-measured diameter of the glomeruli (Bowman’s caspule; consistent with prior 

research12,13). With the patient lying on his/her side, scanning was performed with a Siemens 

S2000 equipped with a 6C1 curved array transducer.  RF echo data was also obtained from a 

reference phantom. The reference phantom was made with 7.2g of 3000E beads distributed in a 

1800cc agarose gel background. The sound speed, attenuation coefficient, and backscatter 
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coefficient of this reference phantom were established in the usual way (speed of sound of 1542 

m/s at 2.5MHz and an attenuation coefficient from 2.5-10 MHz versus frequency slope of 0.51 

dB·cm−1MHz−1; see Chapter 2). Figure 4.16 shows a B-mode image of a kidney.  

 

Figure 4.16. B-mode image of the scanned kidney 

 

To evaluate the accuracy of the method, a blind estimation of the effective scatter diameter 

(ESD) was carried out after correcting for attenuation with the MLSM method. The ROI was 

chosen such that the acoustic beams were perpendicular to the kidney surface (i.e. parallel to the 

dominant nephron orientation) as previously reported for glomerular size estimation.12,13  

 

4.4.2.1.  Results for in vivo kidney data   

The results in Figure 4.17 show an effective scatter diameter map and the distribution of 

the scatter sizes of the glomeruli estimated.  The results show that the mean ESD was 406 ± 6 µm 

in good agreement with the pathology-measured glomerular size of 395-420 µm.  
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Figure 4.17. ESD map and the distribution of the scatter size of the glomeruli for in-vivo kidney 

patient 

 

4.5. Discussion  

It is important to account for ultrasound beam attenuation in the inhomogeneous tissue path 

between the transducer and a PER when determining backscatter coefficients in any tissue.  The 

MLSM enables attenuation estimation for cases where the path is acoustically non-uniform. The 

method is effective even when the relationship between the attenuation and frequency is not linear. 

In this study, the MLSM was utilized to provide an estimate of the effective attenuation coefficient, 

defined as the total attenuation to the PER divided by the total path length. Theoretical assessment 

was performed and showed that the MLSM correctly estimated the attenuation values when the 

frequency dependence of attenuation in the sample was higher than f 1. Comparisons were made 

with results obtained from a reference phantom method and least squares method for uniform and 
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heterogeneous phantoms. The method was also evaluated on complex phantoms, including 

phantoms with a frequency dependence of attenuation that differs from f 1. Finally, we applied the 

technique to in vivo breast and kidney data.  

As expected, attenuation coefficients measured using the RPM are in good agreement with 

actual values when the test sample is homogeneous with constant backscatter throughout the 

sample.  However, the RPM estimates of attenuation and backscatter were erroneous when there 

was backscatter contrast along the beam path.  The piece-wise linear frequency dependence 

approach with the MLSM solves the problem that causes the LSM to lose accuracy when the 

assumption of attenuation being proportional to frequency is not met (i.e. LSM assumes the 

attenuation coefficient is proportional to frequency. Errors result in its use when the frequency 

dependence of attenuation in the path between the transducer and region of interest differs from 

f1).  

The MLSM applied to in vivo breast data showed a good agreement between the 

attenuation corrected power spectra versus those obtained from correction using the average values 

for fat. Also, applying the MLSM on in vivo kidney data resulted in good agreement in the ESD 

estimated and the pathology lab measurement of the glomeruli sizes. This shows promise for the 

case of estimating backscatter coefficients without prior knowledge of the attenuation along the 

beam path.   

 

4.6. Conclusion 

The MLSM method described here provided accurate estimates of the total attenuation 

along the beam path. The MLSM showed high accuracy for uniform phantoms, complex 

phantoms, phantoms with higher frequency dependence, and in vivo data. The MLSM provided 
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the closest estimates to the expected value compared to other methods. These promising initial 

results encourage further development and testing for in vivo use.  
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Chapter 5: Detecting coherence and examining anisotropy 
 

A Portion of chapter is published as: 

Nasief, H.; Rosado-Mendez, I.; Zagzebski, J.; and Hall, T.; A Quantitative Ultrasound-Based Multi-Parameter 

Classifier for Breast Masses, IEEE, under review 

 

QUS provides quantitative parameters that relate to visual features in a B-mode image. In 

addition, it offers observer- and system- independent parameters that can enhance the overall 

diagnostic accuracy. The estimation of QUS parameters generally assumes that echo signals arise 

from diffuse (incoherent) scattering conditions, and thus, the signals may be classified as 

stationary. However, these assumptions are not always met in the human breast. Although we 

constrain our QUS analysis to homogeneous ROI’s, some amount of signal coherence, not reliably 

detected by human interpreters, may be present due to, for example, periodic structures, a low 

scatterer number density or strong isolated reflectors. This can affect the precision of QUS 

parameter estimations and limit the reproducibility of the results.   

Tissues are usually composed of both spatially structured and random distributions of 

heterogeneities in density and compressibility. Thus, the backscattered echo signals contain 

different levels of coherent and incoherent scattering. Several techniques have been proposed to 

quantify properties of the structured component. For instance, Insana et al.1 proposed the intensity 

spectrum method, Varghese and Donohue,2 proposed a spectral correlation method, Wear et al.3 

proposed autoregressive spectrum analysis and cepstrum estimation, and Pereira et al.4 proposed 

a singular spectrum analysis. Most of these techniques focused on estimating parameters from 

situations in which the coherent component is caused by a quasi-periodic array of scatterers with 

resolved spacing.5 Other researchers have investigated the ratio of the energy in the echo signal 

coming from the coherent component to the energy coming from the diffuse component.1,6,7,8    
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Different scattering scenarios can be present in in vivo data. In the case of diffuse 

scattering, the echo amplitudes are stationary. If for example, a quasi-periodic lattice of scatterers 

is present in addition to the randomly distributed scatterers, the mean scatterer spacing among the 

organized scatterers is less than the size of the resolution cell. Consequently, all the resolution cells 

within the parameter estimation region will have approximately the same underlying statistics 

(invariant with position). Therefore, the echo signal will still be stationary.  

In the case of a quasi-periodic lattice of scatterers with mean scatterer spacing larger than 

the resolution cell, the periodically spaced scatterers are sampled by the mean scatterer spacing. 

Thus, the autocovariance function of the echo amplitude depends on the absolute position of the 

scatterers. Various studies have demonstrated that properties of the structured field of scatterers, 

such as the mean scatterer spacing, can be used to discriminate among different pathological 

processes. 2-3,9  

In the case where the acoustic pulse “meets” a structure with significantly larger scattering 

cross section than that of the diffuse component, such as a microcalcification in the breast or a 

tissue interface acting as a specular reflector, the autocovariance function of the echo amplitude 

depends on the absolute position of the resolution cell, thereby making the signal non-stationary.  

Recent work in our group resulted in an algorithm that automatically decides whether at 

each location of the parameter estimation region there is a significant source of coherent scattering, 

and if so, what the nature of this source is, i.e., which of the cases in Fig. 5.1 best describes the 

scattering scenarios.10-11 When a signal is stationary, the statistics of the echo signal are the same 

among the different samples within the region of interest. When a signal is non-stationary, the 

statistics will vary with the location of the PER. Thus, the identification and grouping process 
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identifies the presence of coherent scattering and characterizes its nature.10-11 In this chapter, we 

will test for the presence of coherence and estimate QUS parameters that can describe the 

underlying scattering condition in breast tissue.  

 

Figure 5.1. Different scattering scenarios that can be present in in-vivo breast tissue (Figure 
from Rosadomendez, 2014) 12 

 

Another QUS challenge arises from the fact that the QUS parameters estimated within a 

ROI inside the tumor boundaries are typically assumed to be isotropic, enabling data from various 

angles to be averaged to improve the precision of the estimates and reduce the variability. 

However, if anisotropy is present, averaging data from multiple angles of interrogation (spatial 

compounding) can increase bias and variance in parameter estimates. Therefore, examining 

parameter estimates as a function of angle of incidence is another critical step to estimate the 
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characteristics of tissue.  In this chapter, we also introduce and describe methods that can be used 

to test for anisotropy in parameter estimates. 

 

5.1. Coherence-related QUS parameters estimation 

In this section, we outline methods to estimate potential QUS parameters (the maximum 

collapsed average of the generalized spectrum, the signal to noise ratio (SNR) of the echo signal 

envelope, and the Nakagami shape parameter, m) that can be used to quantify coherent scattering 

from either stationary or nonstationary processes. A description of each of these QUS parameters 

is shown below. 

 

5.1.1. Maximum collapsed average (maxCA) of the generalized spectrum   

To quantify coherence within selected ROIs due to a non-stationary process, the 

generalized spectrum was utilized. Researchers have used the generalized spectrum and the shape 

of the “collapsed average” to determine the presence of such coherent sources.13-15 To derive the 

generalized spectrum, the Fourier transform of the RF echo signal and its conjugate is 

computed.11,12 These are plotted on the bi-frequency plane, as shown in Figure 5.2. The values 

assigned to points in this plane are related to the degree of correlation between frequency 

components fi and fj. 9,14,16-17 The elements off the main diagonal of the bi-frequency plane shown 

in Figure 5.2. depend on various factors, including the relative power of the coherent component 

to that of the incoherent component, and the pulse spectrum and how it is modified while it 

propagates through tissue.  

 In the case of a stationary process, there is no correlation among different frequency 

components, and this is represented by a zero value in the off-diagonal region of the generalized 
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spectrum (i.e. the expected value of the diffuse scatterer component does not contribute 

significantly to the off-diagonal values of the generalized spectrum). The covariance matrix of 

wide-sense stationary signals is diagonalized under Fourier transformation, and elements of its 

main diagonal correspond to the discrete power spectral density. Thus, the diagonal of the 

generalized spectrum in the bi-frequency plane (f1=f2), has a real and positive value and is 

equivalent to the power spectral density, which is the average power of the stationary random 

process expressed as a function of frequency.  However, when the signals are non-stationary, 

different frequency components become correlated, and the off-diagonal values of the generalized 

spectrum are different from zero. The detection of nonzero values in the off-diagonal elements is 

used to indicate the presence of non-stationary trends in the backscattered echo signal.17 

 

Figure 5.2. Diagram illustrating the amount of correlation between two different frequency 
components for two cases: (a) a stationary signal and (b) a non-stationary signal (Figure from 

Rosadomendez, 2014) 12 

 A nonparametric approach, the “collapsed average” of the generalized spectrum, is used 

to test for coherence. The collapsed average representation is obtained by averaging the complex 

values of the generalized spectrum along diagonals, i.e., points with equal ∆f = f1-f2, where f1 and 
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f2 are frequency values in the real and imaginary planes of the spectrum.18-22 In the case of diffuse 

scattering, the frequency components of the contribution of these scatterers to the total echo signal 

are uncorrelated.8 Thus, the off-diagonal values of the generalized spectrum are close to zero and 

the values of the collapsed average at ∆f ≠ 0 are also close to zero. 8,20 When the echo signal arises 

from a non-stationary process, different frequency components of the signal spectrum become 

correlated and the off-diagonal values differ significantly from zero.2,8,18,23 In the collapsed 

average, the peak at ∆f =0MHz corresponds to the main diagonal of the generalized spectrum as 

shown in Figure 5.3. The presence of peaks in the collapsed average at frequencies (∆f) other than 

0 MHz indicates the presence of non-stationary coherence. The maximum in the collapsed average 

of the generalized spectrum within a search region (defined by the available bandwidth) is then 

determined and examined as a potential QUS parameter to classify different tumor types (will be 

discussed later in Chapter 6).  

 

Figure 5.3. The generalized spectrum and the collapsed average (Figure from Rosado-Mendez12) 
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5.1.2. Signal amplitude Signal to Nosie ratio (SNR) 

 

To quantify coherence due to a stationary process, the signal to noise ratio (SNR) of the 

echo signal envelope was utilized as a model-free parameter to classify different scattering 

conditions. The signal displayed in the conventional B-mode image is the echo amplitude V(t) 

(after logarithmic compression). The demodulated signal yd(t), i.e., the signal from which the 

carrier sinusoid has been removed, can be expressed in terms of its amplitude V(t) and phase ξ(t):24 

                                                 (5-1) 

Assuming that the number of scatterers within the resolution cell is asymptotically large, 

and that there is a uniform distribution of phase, under the assumption of the Central Limit 

Theorem, the real and imaginary parts of the demodulated signal yd(t) are zero-mean Gaussian 

distributed random variables with the same variance. As a consequence, the probability density 

function of the amplitude V(t) of yd(t) becomes a Rayleigh distributed random variable:6,24 

                                                          (5-2) 

where the variance σ2 is related to the mean of the squared scattering cross sections of the 

scatterers within the resolution cell.  

The mean 01 and variance �12 of the Rayleigh distributed amplitude V are:17 

                                                                         (5-3) 
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Thus, the echo envelope amplitude signal-to-noise ratio (SNR) has a fixed value of: 17,24 

                                                  (5-4) 

Based on the SNR, stationary echo signals can be divided into three cases. Diffuse 

scattering (e.g., echo signals from the reference phantom) are consistent with Rayleigh statistics, 

with the ratio of the mean echo envelope amplitude to its standard deviation equivalent to 1.91.  

Low scatterer number density conditions are “Pre-Rayleigh” with a SNR < 1.9. Unresolved 

periodicity is “post Raleigh” with a SNR > 1.9.17 Thus, the echo signal envelope SNR value for 

each tumor in the human subject population was determined. The differentiation in SNR values 

between various scattering conditions suggested testing it as a potential QUS parameter to classify 

different tumor types (as discussed in Chapter 6).   

 

5.1.3 Nakagami shape parameter (Nakagmi m) 

 

The homodyned-K distribution is the most general model for stationary backscattered echo 

signals. The parameters associated with it provide a direct quantification of structural properties 

of the array of scatterers. However, it lacks a closed-form expression for its mathematical 

representation which complicates the estimation of its parameters.25,26 Methods for estimating its 

parameters have been improving in terms of the accuracy and precision since it was introduced by 

Dutt and Greenleaf in 1994.7 For instance, Hruska and Oelze27 proposed a method that relies on 

the closed-form expression of fractional moments of the homodyned-K distribution. In this 

method, theoretical expressions for the SNR, skewness, and kurtosis of fractional powers of the 

echo amplitudes are obtained for a range of values of the homodyned-K distribution parameters. 
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Then, the SNR, skewness and kurtosis are measured from echo data from the material (tissue) of 

interest.  The measured and theoretical values of these parameters are compared. An important 

limitation of this method occurs when trying to estimate a k value, estimate of the ratio of coherent 

to incoherent backscatter signal energy, close to zero (if trying to identify a PER with diffuse 

scattering) as it results in a bias in the estimates.27 Another complication that was found in this 

method was the difficulty in computing the theoretical values of the SNR, skewness, and kurtosis.   

An alternative to the general homodyned-K distribution is the Nakagami distribution, 

which has been proposed as a good approximation to the homodyned-K.25,28-30 Its advantages over 

the homodyned-K distribution are that the Nakagami distribution probability density function has 

a closed-form expression, thus making it mathematically tractable, and its parameter estimation is 

relatively easy. Thus, the Nakagami model was utilized here to analyze stationary features. The 

probability density function proposed by Nakagami et al.31 has the following form: 

                                 (5-5) 

where the amplitude is A, m is called the “shape parameter”, and Ω is a “scaling parameter”. 

Various papers have demonstrated the effectiveness of the Nakagami parameter ‘m’ to 

distinguish zones with Post-Rayleigh and Pre-Rayleigh statistics from those with Rayleigh 

statistics.25-26,30 Shankar et al.26 demonstrated that the parameter m can distinguish zones with 

different scatterer concentrations as long as the Rayleigh limit has not been reached. Most of the 

applications of the Nakagami distribution in ultrasound estimate the Nakagami parameter ‘m’ as 

the squared SNR ratio of the echo signal intensity.25-26,30,32 However, the simplicity of the 

Nakagami probability density function makes it possible to define the maximum likelihood 
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estimator (MLE) for the shape parameter ‘m’. The joint probability density function for a vector 

V composed of a set of K independent and identically distributed samples of the amplitude V is: 

                          (5-6) 

The MLE estimators are obtained by finding the values of m and Ω that maximize 

p(V|m,Ω).  After taking the logarithm of p(V|m, Ω) and the derivative with respect to Ω we get:  

                                                                          (5−7) 

where the overbar indicates the sample average and the hat ^ indicates an estimate. 

Repeating the same with m and substituting for Ω, the MLE estimator can be obtained by 

minimizing the difference between 

                                                                 (5-8) 

where ψ(x) is the digamma function of x.33   

The function on the left side of Eq. 5-8 increases monotonically with ‘m’. Thus, a simple 

binary search algorithm can be used to obtain the value of ‘m’.  Researchers demonstrated that the 

MLE estimator of ‘m’ provided the minimum squared error of the m value when compared to other 

estimators, such as the one based on the squared SNR of the echo signal intensity. The value of 

‘m’ is mainly defined by scattering statistics: m = 1 for Rayleigh statistics, m < 1 for pre-Rayleigh 

statistics, and m > 1 for post-Rayleigh conditions.32 Thus, the MLE estimator of the Nakagami 

parameter ‘m’ is used here to determine the value of ‘m’ for each tumor.  Like the SNR, the 

Nakagami shape parameter ‘m’ can be a potential QUS parameter to classify different tumor types, 

and this is examined in Chapter 6. 
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5.2. In vivo Data Acquisition  

In this preliminary study, 43 subjects with biopsy proven breast masses were included in 

the analysis. Data acquisition of the in vivo subjects is described in detail in Chapter 2.  The masses 

included 27 fibroadenomas, 10 invasive (or infiltrating) ductal carcinomas, 2 invasive lobular 

carcinomas, 1 adenocarcinoma, 1 intracystic papillary carcinoma, and 2 ductal carcinomas in situ. 

Once the echo signal data were acquired, the envelope of the RF data was utilized to estimate the 

QUS parameters of interest. Offline analysis was performed using MATLAB (Mathworks, Natick, 

MA). The full ROI was used as our PER for estimating the QUS parameters associated with 

coherence to get a single estimate.  

 

5.2.1. Results for coherence related QUS parameters   

All subjects in this study had masses that were categorized as US-BIRADS 4 except 

subjects 23, 24, 33, and 40, whose masses were categorized as US-BIRADS 3, 5, 1, and 5, 

respectively.  Pathology identification of the tumor type was based on core biopsy specimens.  A 

summary of the results obtained from the 43 subjects for each of the parameters is shown in Table 

5.1 below.  

  



95 
 

Table 5.1. Nakagami m, maxCA and SNR Values for each subject included in the study, FA: 

fibroadenoma, ACA: adenocarcinoma, IDC: infiltrating ductal carcinoma, ILC: invasive lobular 

carcinoma, IPC: intracystic papillary carcinoma, and DCIS: ductal carcinoma in situ 

 

Summary plots of the individual QUS parameter estimates obtained from each subject are 

shown in Figure 5.4. Data are presented in these plots ordered from the smallest to largest ROI 

size to illustrate any potential trend in parameter estimates with ROI size. Parameter values for 

breast fat 35 are included in the plots (data point on the right of the plot) for comparison.  

The median SNR estimate of the biopsy confirmed fibroadenomas (1.17 ± 0.64; median ± 

inner-quartile range) was similar to the value in carcinomas (1.2 ± 0.31), and is close to the median 

value found for breast fat (1.4 ± 0.25). The median Nakagmi m estimate among fibroadenomas 

(0.56 ±0.29) was not different from the values in carcinomas (0.56 ±0.15), and both were close to 

the median value found in breast fat (0.68 ± 0.15).   The median maxCA estimate among 

fibroadenomas (0.09 ± 0.09) was comparable to the value in carcinomas (0.11 ± 0.09), and both 

are not significantly different from the median value found in breast fat (0.05 ± 0.03). 
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a) maxCA estimates for each subject ordered from smallest to largest ROI size 

 

b) Nakagami m estimates for each subject ordered from smallest to largest ROI size 

 

c) SNR estimates for each subject ordered from smallest to largest ROI size 

Figure 5.4. Plots of the individual QUS parameter estimates for each subject ordered from 

smallest to largest ROI size.  The same ROI was used for all parameter estimates for an 

individual subject (e.g., FA1 is the fibroadenoma with the smallest ROI). Fibroadenomas (FA) 

are shown separately from cancers. Cancers are grouped together by type: Invasive ductal 

carcinoma (IDC); Invasive lobular carcinoma (ILC); intracystic papillary carcinoma(IPC), and 

ductal carcinoma in situ (DCIS). The solid horizontal lines show the median value of that 

parameter (separately for fibroadenomas and carcinomas), and the dashed lines show the inner 

quartile range of values. 
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Maps were also generated for each of these parameters to show a color encoding 

representation of them. An example for one of the subjects (FA20 in Chapter 6) is shown in Figure 

5.5. The color encoding maps show that the results from the three parameters agree with each 

other. For instance, the same area (outlined in the figure) that was color encoded as having diffuse 

scatterring based on the maxCA (dark blue, color close to 0 value) had a SNR value close to 1.91 

(green color) and a Nakagami m value close to 1 (green color)  

 

Figure 5.5.  Maps for the maxCA, SNR and Nakagami m for one of the subjects (FA20 in 

Chapter 6) 

 

5.3 Potential of avoiding coherence  

The results in the previous section show that there is a large overlap between the coherence 

parameter values detected for fibroadenomas and carcinomas. These results demonstrate that none 

of these parameters, individually, can separate benign from malignant masses. However, these 

parameters are still useful to detect the presence of coherence as shown in Figure 5.4. Once an area 

of coherence is identified, we can eliminate the source of coherence and re-estimate the parameter 

value. Thus, tumors that were excluded due to their obvious B-mode image heterogeneity could 

be included after eliminating regions containing echo signal coherence.  
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To illustrate the idea, we scanned an ATS 539 phantom (ATS Laboratories, Inc, 

Bridgeport, CT). The phantom has 17, 0.1 mm monofilament line targets with 1 cm spacing 

between them. These targets were scanned to mimic the presence of strong isolated scatterers. The 

reference phantom used for this experiment is the same one used for second subgroup of in vivo 

data acquisitions (see Chapter 2). The phantom contains 6.4 g of 3000E glass beads. The sound 

speed of the phantom is 1492m/s at 2.5MHz; the attenuation coefficient vs. frequency, α(f), is 

represented by α(f) = 0.54f dB/cm, where f is the frequency in MHz. The tissue mimicking 

reference material was cast into an acrylic box with a 25μm-thick Saran™ film scanning window 

(see Chapter 2).  

We estimated the attenuation coefficient with the RPM in a) a ROI in the uniform 

background of the phantom, b) in a ROI including the monofilament line targets and c) in a ROI 

after avoiding monofilament line targets.  To avoid the coherent structure, we started with the same 

ROI (1.8 cm x 1.5 cm) that included the coherent source (Figure 5.6b, B-mode image with the ROI 

outlined). Then, we manually selected a second smaller ROI (3mm x 3mm) that is centered around 

the coherent structure (Figure 5.6c, B-mode image with the ROI outlined). Once the PER of the 

smaller ROI was determined, and before eliminating power spectra from this location, the positions 

of the smaller ROI were examined to make sure it matches a PER in the larger ROI. If not, the 

process was repeated, by manually shifting the location of the smaller ROI, until a match is present. 

Then, we removed the power spectra generated from this small ROI before estimating the 

attenuation coefficient. Figure 5.6 a, b, and c show the different ROIs and the corresponding lateral 

mean of the specific attenuation coefficients at 6 MHz versus depth. In the case of the ROI with 

the coherent source (Figure 5.6b), applying the RPM to the backscattered echo data resulted in 

large errors in local attenuation estimations at the location of the coherent source. The homogeneity 
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of backscatter assumed in the RPM is violated at this location, and the effects are shown in Figure 

5.6b. The high backscatter at this location results in the decrease and increase shown in the local 

attenuation coefficient versus depth values relative to the actual attenuation coefficients.  

 

 
 

Figure 5.6. ROIs chosen in the ATS phantom and the corresponding lateral mean of the specific 

attenuation coefficients at 6 MHz versus depth. 
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The results in Figure 5.7 show the lateral mean of the specific attenuation coefficients at 6 

MHz versus depth generated from the 3 different ROIs and the corresponding attenuation maps. 

To generate the map for the ROI where we avoided coherence, we performed interpolation to get 

the attenuation values in the area where power spectral estimates were eliminated due to the 

presence of coherence. The results show that eliminating potential sources of coherence is feasible. 

Further testing and application of this method on phantoms and in-vivo data is a proposed subject 

for future study.   

 

Figure 5.7. Lateral mean of the attenuation coefficient divided by the frequency at 6 MHz versus 

depth for ROI’s in an ATS 539 phantom. Plot and attenuation coefficient/freq imge on the left 

were generated from the ROI  in the back ground, the middle for an ROI that included the 

monofilament line target, and the right for the same ROI after eliminating the signals from  the 

monofilament line target and the corresponding attenuation maps 
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5.4. Examining anisotropy  

As mentioned earlier, QUS assumes that the material properties within an ROI are 

isotropic. Thus, for an individual patient it is valid to average data obtained at different beam 

steering angles prior to estimating QUS parameters to reduce statistical variations. In this section, 

we introduce two different approaches to detect anisotropy. The first approach focuses on detecting 

anisotropy in attenuation estimates. The second approach quantifies the difference in backscattered 

power between the integrated echo signal power spectra of the sample being investigated and the 

reference phantom. Subjects included in this study are from the second subgroup (see data 

acquisition section in Chapter 2). The analysis was restricted to subjects with either a fibroadenoma 

or a carcinoma. A brief description of each of the methods utilized to detect anisotropy is shown 

below.  

 

5.4.1. Trend approach  

To test for isotopy in attenuation, we estimated the local attenuation coefficient using the 

RPM (see Chapter 2) for different beam steering angles (-10 to 10 degrees with an increment of 5 

degrees) and for two different orientations (Anti-Radial: perpendicular to breast ducts, and Radial: 

aligned with ducts). Attenuation estimates were characterized as anisotropic if a trend was 

subjectively noticed in the estimates as we go from the positive to the negative scan angles in either 

the radial or the anti-radial scan planes.  The bandwidth (consistent among all human subjects, i.e. 

4-9 MHz) was selected such that the power spectral values were at least 10 dB above the noise 

floor. We started by plotting the attenuation coefficient versus frequency for each beam steering 

angle, then subjectively looked for a visual trend in the data to determine if there was a basis for 

pursuing this investigation objectively.  
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5.4.1.1. Result for the Trend approach  

Figure 5.8 shows the presence of a trend in attenuation estimates from positive to negative 

scan angles. The attenuation estimates from the zero-degree echo signal data is in the middle 

followed by a decrease as we steer the beam over the negative angles and an increase over the 

positive beam steering angles (as illustrated by arrows in Figure 5.7, right schematic).   

 

Figure 5.8. Example of the attenuation coefficient versus frequency at different beam steering 

angles for one human subject 

 

5.4.2. T-test approach  

Although the previous method provided a simple means for examining anisotropy, it was 

not always easy to judge whether a trend exists or not. Some of the attenuation estimates were 

noisy for some of the subjects, and that might be related to the presence of artifacts that were 

ignored in visual interpretation, but the power spectrum analysis was sensitive to, and therefore 

violate the assumptions used in the RPM.  Thus, a more rigorous approach was examined. This 

approach applied the Student t-test assuming a normal distribution and 95% confidence (alpha 

=0.05) to examine the combination of attenuation estimates (4-9 MHz) obtained from various 
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beam steering angles. The null hypothesis was that the attenuation coefficient estimates at any two 

steering angles come from populations with equal means.  Thus, if estimates are equivalent (via t-

test) at all steering angles, then the parameter estimates can be judged to be isotropic, and data 

from multiple angles can be averaged (“spatial compounding”) to obtain a lower attenuation 

estimate variance. In order to examine the null hypothesis, the t-test was applied for each pair of 

the beam steering angles. For example, attenuation estimates from the central and -5 degree views 

undergo the t-test and a p-value is obtained for this pair. Then, the process is repeated for values 

from central versus -10 degrees, and so on, until all angle pairs are examined. This provides a 

systematic test at which angle pair the null hypothesis was rejected.   

 

5.4.2.1. Result for T-test approach  

The results in Figure 5.8 show an example of anisotropic attenuation estimates, where the 

t-test shows a significant difference (>0.05) at one of the possible combinations of beam steering 

angles.  Although the serial t-test suggests all attenuation estimates versus beam steering angle 

comes from equal mean (p < 0.05) for a particular subject, the presence of an angle that violates 

the null hypothesis (i.e. N5 versus N10 with a p-value=0.064>0.05, highlighted in Figure 5.8) leads 

to judging that subject as anisotropic. Clearly this approach is suboptimal. 
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Figure 5.9. Example of the t-test result for one human subject shows the angles that have been 

examined and the p-values obtained from the t-test when examining attenuation estimates 

obtained at these angles. The p-value for each pair examined is shown underneath the pair 

name. N5: represents attenuation estimates obtained from the negative 5-degree view; N10: 

represents attenuation estimates obtained from the negative 10-degree view; P5: represents 

attenuation estimates obtained from the positive 5-degree view; P10: represent attenuation 

estimates obtained from the positive 10-degree view; and 0: represent attenuation estimates 

obtained from the central degree view 

 

5.4.3. Power law fit to attenuation approach  

The previous two methods can lead to a false conclusion of anisotropy if the attenuation 

coefficient estimates at any beam steering angle is noisy. To overcome this, we computed a power-

law fit of attenuation versus frequency for each beam steering angle.  The analysis bandwidth (4-

9 MHz) was selected and an example of the power law fit to the attenuation values for one angle 

is shown in Figure 5.10.  
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Figure 5.10. An example of a power law fit to the attenuation coefficient versus frequency at one 

beam steering angle 

 

 The specific attenuation value at 6 MHz using the power law fit among various steering 

angles was then determined and normalized (by division) with respect to the central view angle to 

determine angular dependence and test for anisotropy as illustrated in Figure 5.11. 

 

Figure 5.11.  illustration of anisotropy examination method 

 

5.4.3.1. Result for the Power law fit to attenuation approach 

Figure 5.12 shows the attenuation estimated at different beam steering angles and the 

corresponding B-mode image, in both radial and antiradial directions for an intracystic papillary 

carcinoma (IPC in Chapter 6).  
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Figure 5.12. Example of the attenuation coefficient estimated at different angles, in both radial 

and anti-radial directions, for an intracystic papillary carcinoma (IPC in Chapter 6) 

 

Figure 5.13 shows the attenuation coefficient versus frequency estimated for different 

beam steering angles and the power law fit (α=α0 f n) for each beam steering angle. The figure also 

shows the numerical value at 6 MHz, the normalized value to the central degree view, and a plot 

showing the normalized data to the zero-degree view for the power law fit at 6 MHz, in both radial 

and anti-radial direction.  
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Figure 5.13. Attenuation coefficient versus frequency shown in Figure 5.12 with the 

corresponding power law fit (applied in the same way as Figure 5.10), the numerical value at 6 

MHz and the normalized value to the central degree view, and a plot of the normalized data to 

the zero-degree view for the power law fit at 6 MHz, in both radial and anti-radial direction for 

all beam steering angles for the intracyctic papillary carcinoma (IPC in Chapter 6). 

 

If the attenuation within a tumor was isotropic the normalized power law fit value would 

be the same at different beam steering angles and in both the radial and anti-radial directions. If a 

tumor exhibits anisotropy in one direction and is isotropic in the other direction, it was judged as 

anisotropic. An example of a fibroadeonoma that shows anisotropy (FA22 in Chapter 6, was 

isotropic in one direction but anisotropic in the other direction and thus was judged as anisotropic) 

using the power law fit of the attenuation approach is shown in Figure 5.14.  The results from this 

approach show that anisotropy was detected in a larger fraction of fibroadenomas (69%) than in 

carcinomas (50%). 
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Figure 5.14. Normalized data to the zero-degree view for the power law fit at 6 MHZ for 

a fibroadenoma (FA22 in Chapter 6) 

 

5.4.4. Backscatter power difference (BSPD) approach 

Another technique termed “the backscatter power difference approach” was developed in 

our lab for studying ex vivo cervix data,  and it shows promise for detecting anisotropy in the power 

spectra of backscattered echo signals.37 This approach quantifies the difference in backscattered 

power between the integrated echo signal power spectrum of the sample being investigated and 

the spectrum from the reference phantom.37 Power spectra for both the sample and the reference 

are computed at the same depth z for different steered acoustic beams. The ratio of these power 

spectra at each steered angle θ, is calculated and integrated over a bandwidth above the noise floor 

(4-9 MHz), such that37  

BSPD(Ɵ) = Backscattered Power Difference at Ɵ° = �
EF G 10 JKL�


MNO��P�(�,Ɵ°)
MQ��(�,Ɵ°)RS  df      (5-11) 



109 
 

This value is then normalized over the maximum BSPD value (for all steering angles) by 

subtraction: 

�TUVW(θ) = BSPDmax	 $ 	BSPD�θ�                                                                       (5-12) 

The nBSPD measures the loss in backscattered power as the acoustic beam is steered away from 

the angle with the highest BSPD. Thus, it should be system-independent due to the normalization 

to the echo signal power from a reference phantom.37 Then the mean BSPD (mBSPD) is calculated. 

 

5.4.4.1. Results for the Backscatter power loss (BSPD) approach  

 If the tumor is isotropic, nBSPD estimates will be the same over all beam steering angles, 

illustrated by the nearly flat line of BSPD estimates shown in Figure 5.15.  Thus, if the mBSPD 

value is close to zero, it is considered isotropic.  

 

Figure 5.15. nBSPD for one isotropic and one anisotropic tumor 

 

The results from the BSPD approach agreed with those from the power law fit of attenuation 

approach and detected anisotropy in the same tumors, which suggests that our QUS methods are 
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sensitive to detecting anisotropy. A summary of the results obtained from the two methods is 

shown in Table 5.1. 

 

Table 5.1. A summary of the results obtained from the BSPD and the power law fit method for 

detecting anisotropy. For each subject, a decision on isotropy is   obtained from the power law 

fit method (isotropic: yes, or no) and the mean BSPD (mBSPD) obtained from the BSPD method 

 

 

subject ID

Radial Antiradial Isotropic Radial Antiradial Isotropic 

mBSPD mBSPD isotropic isotropic 

0.08 0.09 yes yes yes yes 8

1.36 3.18 no no no no 11

0.04 0.07 yes yes yes yes 12

1.13 1.21 no no no no 13

2.28 5.43 no no no no 14

2.18 0.07 no no yes no 15

0.03 0.05 yes yes yes yes 19

2.01 1.09 no no no no 20

0.07 0.08 yes yes yes yes 24

0.03 0.02 no yes no no 25

2.58 1.51 no no no no 22

0.02 6.2 no yes no no 21

0.16 0.26 no no no no 23

Radial Antiradial Isotropic Radial Antiradial Isotropic subject ID

mBSPD mBSPD isotropic isotropic 

0.51 1.63 no no no no 9

0.06 0.03 yes yes yes yes 10

0.08 0.01 yes yes yes yes 16

3.16 2.23 no no no no 17

0.06 0.08 yes yes yes yes 18

0.06 1.86 no yes no no 26

2.21 1.97 no no no no 29

0.02 0.07 yes yes yes yes 34

BSPD approach Power Law fit approach

Carcinoma

Fibroadenoma 
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5.5. Discussion  

The heterogeneous nature of the breast often leads to conditions where our QUS 

assumptions are not met.  Thus, optimizing our QUS methods by overcoming challenges 

associated with tissue heterogeneity is critical. This could in turn lead to the inclusion of data sets 

from more tumors than those included in previous chapters. The results reported here showed that 

QUS parameters, such as the maximum collapsed average, the signal to noise ratio (SNR) of the 

echo signal envelope, and the Nakagami shape parameter did not differ significantly between 

fibroadenomas and carcinomas. However, these parameters agreed with each other and were useful 

in detecting the presence of coherence within the region of interest. Once the location of coherent 

scattering is detected, the power spectra from these locations can be eliminated to provide a better 

estimate of QUS parameters as illustrated in Section 5.3. This simple approach, as well as 

development of more sophisticated approaches, needs to be examined and tested using in vivo 

breast data in the future. This can also allow less dependence on selection of the ROI (if the area 

of coherence is detected and avoided) and thus, increase the reproducibility of the parameter 

estimates.  

The results presented here also showed that more fibroadenomas (69%) exhibited 

anisotropy in attenuation (or simply backscattered power) than carcinomas (50%). Testing for 

anisotropy is important to determine whether we can spatially compound data from various angles 

to reduce the variance of the estimates. Although we limited this study to subjects that lacked 

obvious echo signal coherence within the tumor, as we beam steer the data, we need to note that 

when a subject is scanned at different beam steering angle, some structures (fat, parenchyma, etc.) 

might be imaged that were not present in the other beam steering angles and can affect the 

anisotropy detection.  
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5.6. Conclusion  

Detecting coherence and deriving QUS parameters associated with it can lead to a more 

through estimate of the acoustic properties of breast tissue. Eliminating sources of coherence in 

the analyzed backscattered signal is feasible. This may increase the reproducibility of the 

parameter estimates. Both fibroadenomas and carcinomas appeared to exhibit anisotropy in 

attenuation, which was detected in both the anti-radial and radial directions. Attenuation 

anisotropy was detected more in fibroadenomas than in carcinomas. Since, in vivo breast tumors 

showed attenuation anisotropy, averaging attenuation estimates obtained at multiple beam-steering 

angles is not recommended.  
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Chapter 6: Bayesian classifier for differentiating breast masses 

This chapter is published as: 

Nasief, H.; Rosado-Mendez, I.; Zagzebski, J.; and Hall, T.; A Quantitative Ultrasound-Based Multi-Parameter 

Classifier for Breast Masses, IEEE, under review 

 

Distinguishing benign from malignant breast masses by way of imaging tests continues to 

be an important medical challenge. Non-invasive classification of tumor types can reduce the 

number of unnecessary biopsies. Researchers, including D‘Astous and Foster,1 demonstrated that 

a 2-parameter analysis (attenuation and BSC) was sufficient to separate infiltrating ductal cancer 

(IDC), breast parenchyma, and fat. Mortensen et al.2 achieved 0.93 accuracy when using sound 

speed, attenuation, and backscatter parameters to build an artificial neural network to differentiate 

malignant from benign masses in 18 ex-vivo breast tissue samples. More recently, Nam et al.3 

demonstrated that estimates of the product of the acoustic attenuation coefficient and the lesion 

size (along the acoustic beam direction) correlated well with the assessment of the ultrasound BI-

RADS descriptor ‘posterior acoustic features’. Tadayyon et al. and Sannachi et al.4;5 also 

demonstrated the potential of using multiple QUS parameters to differentiate between histologic 

Grade I versus Grades II and III tumors, finding a 0.86 accuracy in their studies.  Other 

investigators have implemented different approaches to breast QUS that do not provide system-

independent results. For example, Garra et al.6 digitized the video output of an ultrasound scanner 

and analyzed the statistics of the B-mode image texture of breast scans. They correctly identified 

78% of the fibroadenomas, 73% of the cysts, and 91% of the fibrocystic nodules while maintaining 

high sensitivity for cancer. Using similar data acquisition, image texture parameters and an 

artificial neural network, Chen et al.7 obtained a diagnostic accuracy of 95% in identifying 

malignant lesions.  
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Algorithms and analysis tools utilizing a Bayesian classifier have been developed that 

combine parameter estimates to differentiate cancer types and predict their re-occurrence based on 

mammography data,8–11 but none have been reported using quantitative ultrasound (although other 

network classifiers have been reported, as described above). For example, Nahr et al.12 developed 

a kernel-based naïve Bayes (KBNB) classifier that exhibited good performance for early diagnosis 

of breast cancer. Features including the shape and size of the suspicious mass were used by the 

classifier to identify malignant breast masses. This approach assumed that the presence of a 

particular feature of a class is unrelated to the presence of any other feature. Zyout et al.13 

integrated a Bayesian classifier with a pattern synthesizing scheme to detect clustered 

microcalcifications in mammograms. They achieved a sensitivity and specificity of 91.3% and 

98.6%, respectively for diagnosing cancer. Burnside et al.14 built a Bayesian network that included 

BI-RADS descriptors for microcalcifications seen in mammograms. The classifier was reported to 

perform as well as a subspecialty-trained mammographer in estimating the probability of 

malignancy. One of the challenges with using Bayesian classifiers is that the computational 

complexity of these networks increases as the number of parameters involved increases. However, 

a Bayesian classifier is a good choice for combining a relatively small set of QUS parameters. 

As mentioned earlier, quantitative ultrasound (QUS) methods enable accurate, clinically-

based estimates of acoustic properties of tissues by accounting for instrumentation and wave 

propagation dependencies that affect pulse-echo data.15;16 In Chapter 2, we provided a description 

of QUS parameters that are most commonly estimated, including the attenuation coefficient, which 

quantifies the spatial rate at which an ultrasound beam loses energy while traversing a particular 

tissue, and the backscatter coefficient (BSC), which quantifies the fraction of the ultrasound energy 

that is reflected back to the transducer. The attenuation coefficient is often reported in terms of the 
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specific attenuation coefficient, ATT, which is the attenuation coefficient at a particular frequency 

divided by that frequency. The BSC is parametrized in terms of the frequency-average BSC, 

ABSC, which quantifies echogenicity. A reference phantom method (RPM) was used to estimate 

the ATT and ABSC (the ABSC was estimated with the RPM, after correcting for the attenuation 

estimated using the MLSM; see Chapter 4). The effective scatterer diameter, ESD, which is 

obtained by fitting a form factor model to the measured form factor vs. frequency, and an effective 

scatterer diameter heterogeneity index (ESDHI) over regions of interest within each mass were 

also determined.  In Chapter 5, we provided a description and results for QUS parameters that are 

related to the presence of coherence by computing the echo signal envelope signal to noise ratio 

(SNR), the Nakagami shape parameter, m, and the maximum collapsed average (maxCA) of the 

generalized spectrum. In this chapter, we examine the effect of combining these QUS parameters 

to differentiate breast carcinomas from fibroadenomas using a Bayesian classifier. A brief 

description of each parameter is provided. Initial test results are reported and limitations of the 

study are considered. 

 

6.1. QUS Parameter Estimation  

Once the echo signal data were acquired (see Chapter 2), offline analysis was performed 

using MATLAB (Mathworks, Natick, MA) to estimate QUS parameters. Power spectra were 

estimated within a selected region of interest (ROI) using a multitaper method17 with a time-half 

bandwidth product of 4, and 4×4 mm2 power spectrum estimation regions overlapping by 90% 

both axially and laterally.18;19 For tumors smaller than 6 mm in the axial direction, a 3×3 mm2 

power spectrum estimation region was used, and beams steered ±5 degrees were included to 

improve the statistics of power spectral estimation.20;21 Only the bandwidth +10dB above the noise 
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floor (4-9MHz) was used in the estimation of the attenuation and the backscatter coefficients. The 

ROI size was (by subjective B-mode image assessment) the largest homogeneous region within 

the tumor boundary outlined by the sonographer at the time of the scan. Pathology identification 

of tumor type was based on core biopsy specimens. Attenuation and backscatter coefficients within 

the tumor were estimated using the reference phantom method (RPM).22 This method has been 

tested in multiple studies demonstrating system-independent estimates in excellent agreement with 

theory and independent measurements.17;20;21;23 The RPM utilizes the ratio of the echo signal power 

spectra from the tissue to the power spectra from the same depth in the reference phantom (see 

Chapter 2).  

The lesion’s QUS parameters were estimated as follows:  

1) Specific attenuation coefficient, ATT: this parameter was estimated from the local 

attenuation coefficient αL,s(f, z), i.e., the attenuation coefficient of the tissue within a single 

parameter estimation region (PER) centered at depth z within the ROI (see Chapter 2). Assuming 

that αs and BSCs are constant within the PER, αL,s(f, z) is obtained by quantifying the local rate of 

change of the power spectrum ratio as a function of depth at each frequency.24 ATT is obtained 

from the slope of a linear fit to the local attenuation vs. frequency, i.e., αL,s(f) = ATT × f.25 

2) Backscatter coefficient BSC: The estimation of BSC using the RPM requires knowledge 

of the intervening tissue effective attenuation. The modified least-squares approach26 (see Chapter 

4) was used to estimate the effective attenuation from 4–9 MHz. Once the effective attenuation 

was estimated for each PER, the BSC for that PER was estimated as a function of frequency using 

the reference phantom technique, by inserting the effective attenuation coefficient into the RPM 

equation (see Chapter 2). For each subject, ABSC was computed by averaging the BSC over the 
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4-9MHz frequency range used for attenuation coefficients providing an objective estimate of 

“echogenicity”.24  

3)The effective scatterer diameter (ESD): this parameter was estimated by obtaining the 

acoustic form factor from the estimated BSC and fitting a Gaussian form factor model by means 

of square error minimization27;28 (see Chapter 2). 

4) A heterogeneity index of the ESD (ESDHI): this parameter was computed as the 

standard deviation of the ESD within the ROI, ignoring any spatial correlations among estimates. 

This latter parameter represents the spatial variability among the ESD estimates.  

The estimation of ATT, BSC, and ESD is based on the assumption that echo signals arise 

from diffuse (incoherent) scattering conditions and that the underlying random process may be 

classified as stationary. However, these assumptions are not always met in the human breast. 

Although we constrain our QUS analysis to homogeneous ROI’s, some amount of signal 

coherence, not reliably detected by human interpreters, may be present (see Chapter 5). This can 

affect the precision of QUS parameter estimations and limit the reproducibility of the results. This 

led to introducing QUS parameters that relate to coherence factors, listed as follows.  

5) The maximum collapsed average (maxCA) of the generalized spectrum within a search 

region (defined by the available bandwidth): this is a nonparametric approach used to test for 

coherence due to a non-stationary process.29;30 In the case of stationary signals, there is no 

correlation among different frequency components represented by points off the diagonal of the 

generalized spectrum. However, when the signals are non-stationary, different frequency 

components become correlated, and the off-diagonal values of the generalized spectrum are 

significantly different from zero. In the collapsed average, the peak at Δf =0MHz corresponds to 

the main diagonal of the generalized spectrum as shown in Figure 6.1. The presence of peaks in 
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the collapsed average indicates the presence of a periodic component, and their corresponding 

frequency (Δf) is inversely proportional to the separation of the periodic scatterers.31;32 The 

maximum in the collapsed average of the generalized spectrum, away from the main diagonal, 

within the search region is determined. If that maximum value is larger than 95% of the values 

from equivalently-acquired reference phantom data, then non-stationary coherent scattering from 

resolved periodicity is declared 33 (see Chapter 5).  

 
Figure 6.1. The generalized spectrum and the collapsed average (Figure from Rosado-Mendez34) 

 
 6) The signal to noise ratio (SNR) of the echo signal envelope: this represents a model-

free parameter to quantify coherence due to a stationary process.34 Based on the envelope SNR, 

stationary echo signals can be divided into three cases. Diffuse scattering with fully developed 

speckle (such as the case of echo signals from the reference phantom) is described with Rayleigh 

statistics, with the ratio of the mean echo envelope amplitude to its standard deviation equivalent 

to 1.91. Low scatterer number density conditions are described as “pre-Rayleigh” with a SNR<1.9, 

and periodically-spaced scattering sources with sub-resolution spacing are described as “post-

Raleigh” with a SNR>1.9 (see Chapter 5). 

7) The Nakagami shape parameter m: this represents a model-based parameter to analyze 

stationary features.35 The Nakagami distribution probability density function has a closed-form 
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expression, thus making it mathematically tractable, and its parameter estimation is relatively easy. 

Also, the simplicity of the Nakagami probability density function makes it possible to define the 

maximum likelihood estimator (MLE) for the shape parameter m, whose value is mainly defined 

by scattering statistics: m = 1 for Rayleigh statistics, m < 1 for pre-Rayleigh statistics, and m > 1 

for post-Rayleigh (see Chapter 5). 

 

6.2. Bayesian Classifier  

Previous studies1;25;36 suggest that no single acoustic parameter successfully differentiates 

benign from malignant breast masses. The challenge, then, is to test the classification performance 

of some combination of QUS parameters. The estimated specific attenuation coefficient (ATT), 

average backscatter coefficient (ABSC), effective scatterer diameter (ESD), ESD heterogeniety 

index (ESDHI), maximum collapsed average (maxCA), envelope signal to noise ratio (SNR), and 

Nakagami shape parameter (Nakagmi m) values for each breast mass were used to build Bayesian 

classifiers. To simplify the task, we grouped lesions in two classes: fibroadenomas (benign lesions) 

and carcinomas (including all types of malignant breast masses in our pool). A multivariate normal 

Bayesian classification uses a d dimensional feature vector x = [x1, x2, ..., xd], where the features 

or components x1, x2, ..., xd are the set of d = 2 or 3 QUS parameters defining the classifier. When 

the components of x are continuous random variables, the probability density function of x is p(x) 

and the class-conditional probability for class wi is p(x|wi). The classification is done by applying 

Bayes’ rule to compute the likelihood of class membership given some characteristic of that class 

such that,37 

[(\|^) = _ ^-\`'_(aO)
_(b)                                                                           (6.1) 
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where p(wi) is a prior probability. Given multiple classes, each class wi (here, i = 1 

corresponds to fibroadenomas, and i = 2 to carcinomas), has its own mean vector mi and covariance 

matrix ci, such that the class-conditional probabilities are 37 

p(x|wd) = 2πfg 2⁄ |cd|f� 2⁄ exp −1 2 (x − md⁄ )hcd
f�(x − md)              (6.2) 

The strategy to move from probabilities to discriminants is to maximize ln (p(wi |x)) which, 

from Eq. 4, is equivalent to maximizing ln(p(x|wi)) + ln(p(wi)), or 

max [ln [(\`) −1 2 J�|j`| − 1 2⁄ (^ − k`⁄ )lj`
f�(^ − k`)]               (6.3) 

The expression (^ − k`)lj`
f�(^ − k`) can be thought of as ‖(x − md‖2cd

f�  which looks 

like a squared distance multiplied by the inverse covariance matrix ci, which acts as a metric 

(stretching factor) on the space. Thus, the classification using multivariate normal distributions is 

simply a minimum (Mahalonobis) distance classifier. The results of the classification are 

assignments to the class with the highest probability (i.e. minimum distance to the centroid of the 

trained class).37-39 

 

6.3. First data set to classify breast masses  

A detailed description of the data acquisition for these human subjects is provided in 

Chapter 2.  This study started with human subjects from the second subgroup recruited. This 

resulted in data from 35 human subjects and analyzed four QUS parameters (ATT, BSC, ESD, 

ESDHI). The data was divided into a training set, consisting of parameter estimates from 18 

subjects, and a testing set, consisting of ultrasound parameters from 17 subjects.  A 2-fold cross 

validation technique was used to assess how accurately the model might perform.  Cross validation 

was done such that the 18 subjects for the training set were chosen randomly from the 35 patients, 

and testing was done on the rest. The whole process was repeated 10 times and the average 
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performance was recorded. To determine the best parameters to classify benign from malignant 

masses, multiple classifiers combining either 2 or 3 parameters (ATT, BSC, ESD and ESDHI) 

were examined. The schematic of the workflow of the Bayesian classifier is shown in Figure 6.2.  

The process started with acquiring B-mode images and RF echo data from the ultrasound machine, 

followed by offline analysis to estimate the QUS parameters of interest. Then, combinations of 

either 2 or 3 parameter pairs were used to define the centroid of each classification class 

(fibroadenoma or carcinoma). The new test set was classified based on the minimum distance to 

the centroid of each class.  

 

Figure 6.2. Schematic of the Bayesian Classifier 

 

To simplify the classification process, facilitate data entry, and the plotting of the results, 

a graphical user interface (GUI) shown in Figure 6.3 was built using MATLAB. In this GUI, a 

user enters the values of the estimated QUS parameters and then hits the “plot” and “plot 3D” 

buttons to see the new data set plotted on the graphs corresponding to either 2 or 3 parameter 
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combinations. The classification result appears as either fibroadenoma or carcinoma in the 

category window.  

 

Figure 6.3. GUI For Bayesian Classifier 

 

6.3.1. Results for the thirty-five subjects  

For the 35 human subjects shown in Table 6.1, attenuation within pathology-confirmed 

fibroadenoma ranged from 0.36-1.94 dB·cm−1MHz−1, with a median value ± interquartile range of 

1.01 ± 0.53 dB·cm−1MHz−1. Attenuation in carcinomas was somewhat higher than the mean 

attenuation of fibroadenomas, with a median value ± interquartile range of 1.3 ± 0.51 

dB·cm−1MHz−1. Among fibroadenomas, the median ESD was 102 ± 30 µm, which is higher than 

the median of 80.2 ± 20 µm for carcinomas. The median ESDHI estimate among fibroadenomas 

(13.6 ± 3.4 µm) was slightly higher than the value among carcinomas (11.1 ± 5.8 µm) 
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Table 6.1. QUS parameter values for the 35 human subjects  

 

 

The results also showed that the ESD versus the attenuation coefficient can be used to 

differentiate between carcinoma and fibroadenomas in most cases, such that patients with a mass 

that has high attenuation and low ESD likely have a carcinoma and those with the opposite 

characteristic have a fibroadenoma. Our preliminary data showed that a classifier incorporating 

ultrasound ATT, ESD, and ESDHI suggesting that a Bayesian classifier might differentiate benign 

from malignant tumors. The Bayesian classifier shows a high classification rate, with performance 

of the 2 and 3 parameter combinations shown in Figure 6.4. The best performance with a parameter 

pair (ATT, ESD) was about 80% correct classification which increased to about 100% with three 
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parameters (ATT, ESD, ESDHI) as shown in Figure 6.4. However, more verification studies are 

needed, to include a larger data set and more tumor types.  

 

 
Figure 6.4. Performance of the Bayesian classifier 
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6.4. Additional data set to classify breast masses  

We expanded the number of human subjects available to train and test the Bayesian 

classifier by including subjects that were scanned under an elasticity imaging modality (first 

subgroup, see Chapter 2). This resulted in an additional 7 fibroadenomas and 1 carcinoma.  Thus, 

a total of 43 subjects including 27 fibroadenomas, 10 invasive (or infiltrating) ductal carcinomas, 

2 invasive lobular carcinomas, 1 adenocarcinoma, 1 intracystic papillary carcinoma, and 2 ductal 

carcinomas in situ were used for the analysis (these are the same subjects used for the data analysis 

in Chapter 5).  We not only increased the number of human subjects, but we also expanded our 

testing to include the QUS parameters related to coherence (see Chapter 5). This resulted in seven 

QUS parameters to be tested. However, given the limited number of subjects, combinations of 

either 2 or 3 parameter pairs were tested each time.  

To make sure that all data sets were used for training and testing, instead of using the 2-

fold cross validation technique, we applied MATLAB functions and a leave one out cross 

validation method. The MATLAB built-in functions were utilized to 1) specify the cross validation 

type and partition to be “leave one out” (the entire data set was used for training except one tumor 

that was left out for testing, and that process was repeated for each tumor, and that entire process 

was repeated 10 times, i.e., 10 random seeds; nboots=10); 2) estimate the prior probabilities from 

the relative frequencies of the classes and obtain the posterior probabilities of each feature 

assuming a mutivariate normal (Gaussian) distribution fit to the model features; 3) classify breast 

masses using the ‘Mahalonobis’ distance approach; and 4) create an empirical ROC curve, provide 

the area under the computed ROC curve (AUC), and estimate the 95% confidence intervals to 

judge the overall performance of each classifier.  
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The creation of this classifier started by partitioning the data using the MATLAB function 

“cvpartition” in which we specified the cross-validation type and partition to be “leave one out”. 

Data were arranged such that each row of the training set corresponded to a specific class (either 

fibroadenoma or carcinoma) and columns corresponded to features (estimated QUS parameter). 

Once the training set was specified, the naïve Bayes classifier was created using the MATLAB 

function “NaïveBayes.fit” assuming a multivariate normal (Gaussian) distribution fit to the model 

features. The prior probabilities were estimated from the relative frequencies of the classes using 

the MATLAB function “FreqDist”. The MATLAB function “posterior” was used to obtain the 

posterior probabilities of each feature. Two MATLAB functions, “predict” and “classify”, were 

used to classify the test data into one of the classes of the Bayesian classifier. The ‘mahalanobis’ 

distance option was selected in the classify function. The MATLAB function “confusionmat” was 

used to obtain the confusion matrix determined by known and predicted groups. Cross validation 

was performed using the MATLAB function “crossval” that used the partitions created by the 

“cvpartition” function. This function computed the squared errors between the fit and the 

corresponding response test set and returned the overall mean across all test sets for the predictions. 

Overall performance of each classifier was judged based on the empirical ROC curve created using 

the MATLAB function “perfcurve”. That function returned the X and Y coordinates of an ROC 

curve for a vector of classifier predictions, the thresholds on classifier scores for the computed 

values of X and Y, and the area under the computed ROC curve along with 95% confidence 

intervals for that performance. 
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6.4.1. Results for the forty-three human subjects 

A summary of the QUS parameter estimates obtained from the 43 subjects for each of the 

parameters is shown in Tables 6.2 (fibrodenomas) and 6.3 (carcinomas). Subjects are ordered from 

the smallest to largest ROI size. All subjects in this study were categorized as US-BIRADS 4 

except subjects 23, 24, 33, and 40 which were categorized as US-BIRADS 3, 5, 1, and 5, 

respectively. 

Table 6.2. QUS parameter values of fibroadenomas included in this study presented the order 

they are displayed in the figures. The sequential order in which they were recruited into the 

study are shown in the “subject order” column.  
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Table 6.3. QUS parameter values of malignant masses included in this study presented the order 

they are displayed in the figures. The sequential order in which they were recruited into the 

study are shown in the “subject order” column. ACA = adenocarcinoma; DC = ductal 

carcinoma; DCIS = ductal carcinoma in situ; LC = lobular carcinoma; LCIS = lobular 

carcinoma in situ; IPC = intracystic papillary carcinoma. Subject 38 was reported as DCIS 

involving intraductal papilloma and involving ducts adjacent to papilloma; Subject 42 was 

reported as infiltrating ductal carcinoma Nottingham Grade 2, LCIS classical type, metastatic 

breast ductal carcinoma. 

 

 

Summary plots of the QUS parameter estimates obtained from each subject for ATT, ESD, 

ESDHI and ABSC are shown in Fig. 6.5. Summary plots of the QUS parameter estimates obtained 

from each subject for maxCA, Nakagami m, and SNR are shown in Chapter 5. Similar to the 

arrangements in Tables 6.2 and 6.3, results are presented in these plots ordered from the smallest 

to largest ROI size to illustrate any potential trend in parameter estimates with ROI size. Parameter 

values for breast fat (described in Chapter 4; data point on the far right of each plot)10 are included 

in the plots for comparison.  
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Figure 6.5. Plots of the individual QUS parameter estimates for each subject ordered from smallest to 

largest ROI size. The same ROI was used for all parameter estimates for an individual subject (e.g., 

FA1 is the fibroadenoma with the smallest ROI). Fibroadenoma (FA) are shown separately from 

cancers. Cancers are grouped together by type: Invasive ductal carcinoma (IDC); Invasive lobular 

carcinoma (ILC). The solid horizontal lines show the median value of that parameter (separately for 

fibroadenoma and carcinoma), and the dashed lines show the inner quartile range of values 
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The median ATT estimate among pathology-confirmed fibroadenomas (1.01 ± 0.52 

dB·cm−1MHz−1; median ± innerquartile range) was slightly lower than the median ATT among 

carcinomas (1.38 ± 1.16 dB·cm−1MHz−1), but both are higher than the median value for breast fat 

(0.82 ± 0.40 dB·cm−1MHz−1). The ATT for breast parenchyma and structural tissue reported by 

D‘Astos and Foster (0.87 ± 0.29 dB·cm−1MHz−1.5) was smaller than the median values in 

fibroadenomas and carcinomas, but larger than that of breast fat.1 The median ABSC estimate 

among fibroadenomas (0.92×10−2  ± 1.85 ×10−2 cm−1sr−1 ) was slightly lower than the median 

ABSC estimate among carcinomas, (1.55×10−2  ± 3.5 ×10−2 cm−1sr−1), and both were higher than 

the median value for breast fat (0.78×10−2  ± 0.72 ×10−2 cm−1sr−1). This seemed counter-intuitive 

because most lesions appeared hypoechoic with respect to surrounding fat. Furthermore, the 

backscatter coefficient for breast parenchyma and structural tissue reported by D’Astos and Foster1 

was 0.53×10−2 ± 0.26×10−2 cm−1sr−1. A possible explanation is that this higher average backscatter 

coefficient might be due to the presence of coherent structures within the ROI. This is addressed 

in Figure 6.6, which shows a scatter plot of the logarithm of ABSC versus maxCA for 

fibroadenomas (blue points), carcinomas (orange points), and breast fat (black point). The positive 

correlation (R2=0.49) among these two variables supports this explanation. 

 

Figure 6.6. log-average backscatter coefficient versus maxCA for fibroadenomas, carcinomas 

and fat 
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The median ESD estimate among fibroadenomas (107.2 ± 33.3 µm) was slightly higher 

than the median ESD among carcinomas (79.6 ± 21.1 µm), and both are larger than the median 

value found in breast fat (61.6 ± 14.0 µm). The median ESDHI estimate among fibroadenomas 

(12.1 ± 3.8 µm) was similar to the value among carcinomas (11.2 ± 6.0 µm), and both were larger 

than the median value found in breast fat (4.15 ± 0.33 µm). The median maxCA estimate among 

fibroadenomas (0.09 ± 0.09) was comparable to the value in carcinomas (0.11 ± 0.09), and both 

are not significantly different from the median value found in breast fat (0.05 ± 0.03). The median 

envelope SNR estimate among fibroadenomas (1.17 ± 0.64) was similar to the value in carcinomas 

(1.2 ± 0.31), and is close to the median value found for breast fat (1.4± 0.25). The median 

Nakagami m estimate among fibroadenomas (0.56 ± 0.29) was not different from the values in 

carcinomas (0.56 ± 0.15), and both were close to the median value found in breast fat (0.68 ± 0.15).  

The relationship between the ESD and the Nakagami parameter m was also examined to make sure 

there is no trend in the data (i.e. the ESD estimates represents the tissue of interest and is not related 

to coherence) as suggested by Figure 6.7.  

 

Figure 6.7. Relationship between Nakagami m and ESD for fibroadenoma, carcinoma and fat 
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Table 6.4 lists ROC AUC values and the corresponding 95% confidence intervals for 

various two-parameter and three-parameter combinations used for Bayesian classifiers. The best 

two parameter classification performance (largest AUC values) was obtained with ESD and 

ESDHI (AUC=0.94), and the best three-parameter classification performance was obtained with 

ATT, ESD, and ESDHI (AUC=1.0), followed by ABSC, ESD, and ESDHI (AUC=0.99) as shown 

in Figure 6.8.  

 

Table 6.4. Area under the receiver operating characteristic curves for various 2-parameter and 

3-parameter combinations of QUS parameters forming a naïve Bayesian classifier to 

differentiate fibroadenomas from carcinomas. The 95% confidence intervals were computed 

separately for the case when fibroadenoma was true-positive 
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Figure 6.8. ROC curves illustrating the performance of various classifiers based on 

combinations of QUS parameters; AUC=1 for ATT, ESD, ESDHI 

 

The differentiation between fibroadenomas and carcinomas with ATT, ESD, and ESDHI 

can be observed in Figure 6.9, which shows each fibroadenoma (red) and each carcinoma (blue) 

in a 3D space defined these parameters. 

 

Figure 6.9. Plots of best 3 parameters combination 
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6.5. Additional data set acquired during 3D data acquisition 

For this subgroup, human subjects recruited (n=15) did not necessarily have suspicious 

breast mass. The protocol used in the study was UW HSC IRB-approved and HIPAA-compliant. 

Subjects who were at least 18 years old (to provide informed consent) were recruited. 2D and 3D 

RF echo signal data were acquired from these subjects, the motivation for scanning these subjects 

was to test the 3D QUS parameter estimation and compare it with 2D estimates. Here we are only 

reporting the 2D estimates, the 3D estimates are reported in Chapter 7. 2D acquisition was 

performed in the same manner mentioned in Chapter 2 (for the second subgroup) with a Siemens 

S2000 machine equipped with an 18L6 transducer. The reference phantom data was the same 

phantom described in Chapter 2 for the second subgroup. A summary of the properties of the 

phantom is provided in Table 6.5. 

 

Table 6.5. Properties of the reference phantom  

Speed of sound (m/s) 1492 

Attenuation coefficient (dB·cm−1MHz−1) 0.54 

Scattering sources  3000E glass beads 

 

 This group included an additional 5 fibroadenomas. However, some of these subjects had 

a previous biopsy or had somewhat heterogeneous tumors or had a biopsy clip within the 

tumor. For a subject with a clip, the power spectra from the clip location was removed (see 

Chapter 5) to avoid echo signal coherence, in order to avoid the QUS parameter estimate bias 

that can result from the presence of the clip. Since this data set did not well-conform to our 

selection criteria, we started by training the classifier with a random selection of an equal 
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number of fibroadenomas and carcinomas (to eliminate the effect of prior probability on the 

performance of the classifier). The idea of this experiment was to assess the ability of the 

classifier to correctly classify these tumors if only unbiased, high quality data (i.e. follow our 

QUS assumptions) was used for training. This resulted in 32 human subjects (the data was 

selected such that all carcinomas were included (n=16) and an equal number of fibroadenomas 

were randomly selected) used for training the classifier. 

 To obtain the AUC of the ROC curve and its confidence interval for the classifier built with 

each combination of QUS parameters, a ‘Leave-one-out’ training strategy was implemented 

using standard MATLAB functions. For this purpose, the ensuing steps were followed: 1) 

Construction of measurements matrix: A ‘measurement’ matrix was composed of 32 rows 

(number of subjects) containing the measurement vector. A measurement vector refers to the 

set of two (i.e., ESD and ESDHI) or three (i.e., ESD, ESDHI and ATT) QUS parameters for 

one subject used in the classification. 2) Creation of data partitions for ‘Leave-one-out’ cross 

validation: The measurement matrix was used as an input to the cvpartition function with the 

‘Leave Out’ option. These steps created partition objects with 32 training sets and 32 

corresponding test measurements. Each training set/test pair was obtained by using one 

measurement vector as the test subject and the remaining 31 vectors as the training set. This 

was repeated 32 times by drawing a different measurement vector, without replacement. 3) 

Creation of classifiers: 32 Naïve Bayesian classifiers were created with the function 

NaiveBayes.fit, using each of the 32 training sets. 4) Test of the classifiers: Each of the 32 

classifiers was applied to the corresponding test measurement vector using the predict 

function. This resulted in 32 scores (class to which each of the 32 measurement vectors was 

assigned by the classifier, either fibroadenoma or carcinoma). 5) Construction of the ROC 



140 
 

curve: The 32 scores were used to obtain the ROC curve using the perfcurve function in 

MATLAB. This function also provided an estimate of the area under the ROC curve (AUC) 

and its confidence interval using a bootstrap approach by setting the ‘Nboot’ option to a value 

nboot. This creates nboot ROC curves, each one achieved by sampling with replacement the 

scores 32 times. This led to nboot AUC estimates of the AUC, from which the mean and 

confidence intervals were obtained. Here, we used nboot=10. 

Once the classifier was trained the rest of the human subject data (n=15) were used to test 

the classifier’s ability to classify unknown data. It is important to keep in mind that if there 

were enough subjects, once a classifier was built any new data set would be entered in the GUI 

and classified as either a fibroadenoma or a carcinoma, but would not be used to retrain the 

classifier. Thus, the QUS parameter estimates from each of these subjects were entered into 

the GUI, and a classification category was obtained. 

An additional experiment was performed to determine the effect of such biased pool of data 

on the AUC of the ROC curve.  Here we used the entire data (48 human subjects) to train and 

test the classifier performance and determine the area under the ROC curve for the best 

performing 2 and 3 parameters sets to see whether any performance reduction would occur 

when these additional 5 data sets were included.  

 

6.5.1. Results for the forty-eight human subjects 

The results for QUS parameter estimates for the additional five subjects (scanned with 18L6 

transducer to obtain 2D data at the same time the 3D data were acquired) are summarized in 

Table 6.6.  
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Table 6.6. QUS parameter values of fibroadenomas included in the ABVS study  

 

For the forty-eight human subjects, the median ATT estimate among pathology-confirmed 

fibroadenomas (1.03 ± 0.49 dB·cm−1MHz−1; median ± innerquartile range) was slightly lower than 

the median ATT among carcinomas (1.38 ± 1.16 dB·cm−1MHz−1). The median ABSC estimate 

among fibroadenomas (0.93×10−2 ± 1.84×10−2 cm−1sr−1) was slightly lower than the median ABSC 

estimate among carcinomas, (1.55×10−2 ± 3.5×10−2 cm−1sr−1). The median ESD estimate among 

fibroadenomas (108.3 ± 37.9µm) was slightly higher than the median ESD among carcinomas 

(79.6 ± 21.1µm). The median ESDHI estimate among fibroadenomas (13 ± 4.5µm) was similar to 

the value among carcinomas (11.2 ± 6.0µm). The median maxCA estimate among fibroadenomas 

(0.078 ± 0.081) was comparable to the value in carcinomas (0.11 ± 0.09). The median SNR 

estimate among fibroadenomas (1.2 ± 0.55) was similar to the value in carcinomas (1.2 ± 0.31). 

The median Nakagami m estimate among fibroadenomas (0.59 ± 0.32) was not different from the 

values in carcinomas (0.56 ± 0.15).  A comparison of these results with previous results estimated 

for the fibroadenomas in the 43 human subjects pool is shown in Table 6.7. 

 

 

 

 

 

1 1.31 119.2 10.1 0.006 1.5 1.03 0.01

2 1.61 84 16 0.01 1.3 1 0.1

3 0.78 168 10 0.12 1.4 0.9 0.03

4 0.95 86.2 17 0.03 1.1 1.05 0.05

5 1.09 163 19 0.0003 1.69 0.85 0.012

SNR Nakagami m maxCAATT        

(dB/cm MHz)

ESD          

(µm)

ESDHI 

(µm)

ABSC 

(1/cm sr)
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Table 6.7. Comparison of the median and interquartile ranges estimated for fibroadenomas in 

the 43-human subject pool versus the 48-human subject pool 

 

The results show that when unbiased pool of data is used for training the classifier, the rest 

of the subjects were classified correctly. When the biased pool of data was included in the classifier 

training, the best two parameter classification performance (largest AUC values), was obtained 

with the ESD and the ESDHI (AUC=0.92 with confidence interval of [0.87, 0.97]), and the best 

three-parameter classification performance was obtained with ATT, ESD, and ESDHI (AUC=0.98 

with confidence interval of [0.94, 1]).  This reduction in the AUC is due to the fact that with the 

leave-one-out method, each time you train the classifier, a new centroid is identified based on the 

data in the training set. This can affect the classification of the tumors when using the minimum 

distance to the centroid method.  However, when the classifier is trained with an unbiased, high 

quality pool of data, and the remainder of the data set was tested using the GUI, all tumors were 

classified correctly (since the biased data set did not contribute to the calculation of the centroid 

of each class). 

 

6.6. Discussion  

A multi-parameter Bayesian classifier appears to be an effective approach for combining 

QUS parameters to increase the specificity of breast ultrasound and to identify those lesions that 

median ± IQR Results from the 43 human subjects Results from the 48 human subjects 

ATT 1.01 ± 0.52 dB·cm
−1

MHz
−1

1.03 ± 0.49 dB·cm
−1

MHz
−1

ABSC 0.92×10
−2 

 ± 1.85 ×10
−2 

cm
−1

sr
−1

0.93×10
−2 

± 1.84×10
−2 

cm
−1

sr
−1

ESD 107.2 ± 33.3 µm 108.3 ± 37.9µm

ESDHI 12.1 ± 3.8 µm 13 ± 4.5µm

maxCA 0.09 ± 0.09 0.078 ± 0.081

Nakagami m 0.56 ± 0.29 0.59 ± 0.32

SNR 1.17 ± 0.64 1.2 ± 0.55

Fibroadenoma
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are least likely to be carcinomas. We also expect these acoustic parameters to vary with treatment 

(such as chemotherapy), potentially making the approach useful for monitoring treatment.12 The 

results reported here demonstrate the need to further test this approach to noninvasive breast tissue 

classification. In this study, the limited number of samples in our preliminary results enables these 

classifiers to be only marginally trained and tested. Thus, a larger data set is needed to allow testing 

performance when additional parameters are added to the classifier. For example, parameters 

related to the linear and nonlinear elastic properties of breast tissue have shown promise for tissue 

classification.40;41 To robustly test a 5-parameter classifier to select among two categories (benign 

and carcinoma), and assuming that 10 subjects are needed in each category per parameter, at least 

50 subjects per category (at least 100 subjects in total) would be needed. Classifier performance 

reported here is biased (optimistically) because the data entering into the study were preselected 

as either fibroadenomas (the only benign disease included) or carcinomas (all cancer types 

combined into a single class). That reduction in task complexity greatly simplifies the performance 

requirements compared to the clinical task of breast mass characterization. Further, the tumors 

selected for inclusion had reasonably large regions that were (subjectively) homogeneous. This 

likely reduced variability in parameter estimates and improved classifier performance. 

Classification into these categories (“carcinoma” and “fibroadenoma”) is insufficient for clinical 

practice. A more useful classification would include all cancer types, all benign breast masses, and 

various types of normal tissue. 

 

6.7. Conclusions 

 A Bayesian classifier based on three system-independent QUS parameters (ATT, ESD, 

and ESDHI) was effective for differentiating between fibroadenomas and cancerous masses in the 
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breast. Performance of the classifier incorporating these features resulted in an area under the ROC 

curve of 1.0. A larger study is needed to increase the diversity of benign diseases included and 

more rigorously test performance.  
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Chapter 7: Implementing 3D QUS in the breast and 

comparing 3D with 2D QUS results 

Portion of this chapter is published as: 

Wang, Y.; Nasief, H.; Kohn, S.; Milkowski, A.; Clary, T; Barnes, S; Barbone, P.; and Hall, T.; Three-dimensional 

ultrasound elasticity imaging on an automated breast volume scanning system, Ultrasonic imaging, accepted for 

publication, May 2017.  

 

Breast tissue classification is very important in diagnosing cancer. As mentioned earlier, 

QUS parameters such as the specific attenuation coefficient (ATT), the backscatter coefficient 

(BSC), and the effective scatter diameter (ESD) can give important insight into the characteristics 

of focal breast masses. In the previous chapter, we described a Bayesian classifier that showed 

promising preliminary results as a non-invasive tool to differentiate between fibroadenomas and 

carcinomas using combinations of QUS parameters. In this chapter, we explore extension of QUS 

to data acquired using 3D imagers. Given the performance of the Bayesian classifier for 2D data 

sets, we anticipated that the extension of QUS to data acquired using an automated breast volume 

scanning (ABVS) system might also provide a powerful tool for detecting and classifying breast 

masses. The ABVS scanner was chosen because it can scan the whole breast, and may represent a 

practical way of automated ultrasound screening, under consideration in many centers for dense 

breast.  

Presented here is a systematic extension of current 2D data acquisition and analysis 

methods to 3D in an attempt to provide better spatial sampling of breast tumors and display unique 

image planes to better characterize tumors (C-scan image plane, constant depth plane). C-scan 

images allow visualization of the tumor relative to breast ductal structures and thus, they could 

provide more insight into the structural modification by a breast tumor. For instance, a benign 

tumor tends to lie within ductal structures.  Also, the shape of a mass in the C-scan view may offer 
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insight regarding its nature, since carcinomas, unlike most fibroadenomas, tend to have irregular 

boundaries that can be hard to detect using 2D scans.  

Our preliminary 2D results for human classification showed that values for the effective 

scatterer diameter along with the specific attenuation can be used to differentiate between 

carcinoma and fibroadenoma in most cases, such that patients with high attenuation and low 

effective scatterer diameter are likely to have a carcinoma and those with the opposite 

characteristic are more likely to have a fibroadenoma (see Chapter 6).  Given the promising 

preliminary results in 2D, we focused our initial 3D C-scan image formation on ATT and ESD. 

QUS algorithms were adapted and tested using phantoms, in vivo subcutaneous fat, and in vivo 

breast masses to analyze 3D data sets provided by this system. The analysis was done off line on 

each slice to estimate QUS parameters in the same manner described in Chapter 2. Parametric 2D 

images were then stacked together to generate a volume and C-scan images were displayed from 

this volume. Using 3D data, we also estimated the acoustic properties of subcutaneous breast fat 

under different levels of deformation (increased surface stress) to explore whether there may be 

variation in acoustic properties as a function of accumulated strain. Finally, we varied the thickness 

of the reconstructed slices to reduce statistical variations beyond the reductions achieved using 2D 

processing of single scan plane acquisition.  

 

7.1. The automated breast volume scanning (ABVS) system  

The system consists of two parts, a Siemens S2000 ultrasound system and an automated 

breast volume scanner (ABVS) attachment (see Figure 7.1).  The ABVS is composed of a support 

tower, an arm, and a transducer pod assembly containing a 154mm long, 768-element 1D array 

ultrasound transducer (14L5BV). The transducer excitation frequency was set to 11MHz, the 
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maximum field of view was 154 mm x 168 mm, the maximum display depth was 60 mm. 

Elevational transducer motion was controlled by a motor inside the pod assembly that sweeps the 

transducer in the elevational direction within the pod.  

The commercial system uses an open-mesh screen that couples the transducer to the breast. 

In this study, that screen assembly was replaced with a compliant, fluid-filled coupling bag. A 

motor in the tower was added to lift or lower counterweights which offset the weight of the arm 

and transducer pod assembly, thus allowing the arm to move vertically, up or down. Both 

directions were tested in this study. However, the downward movement was utilized for most of 

the subjects. The S2000 was programmed to control the motion of the counterweights and 

transducer pod.  

 

Figure 7.1. The ABVS system showing a Siemens S2000 ultrasound system and an automated 

breast volume scanner (ABVS) attachment. 

 

Data were acquired using the AXIUS Direct ultrasound research interface1 to obtain RF 

data sampled at 40 MHz for each scan line in the 3D volume. Image and RF echo signal data were 

acquired throughout planes each separated by 0.3 mm for phantoms and 0.2 mm for human 
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subjects. For each slice, the specific attenuation coefficients were measured (using a 6mmx6mm 

PER) with the Reference Phantom Method (see Chapter 2).  Secondly, the backscatter coefficients 

were estimated (using a 4mmx4mm PER) with the Reference Phantom Method after compensating 

for attenuation using a modified least squares method (see Chapter 4).  ESDs were estimated from 

the BSC using a Gaussian form factor model (see Chapter 2). Measured values from independent 

2D parametric images were stacked together to generate a volume, then C-scan images (constant 

depth, see Figure 7.2) of ESDs and ATT were generated.  

 

Figure 7.2. Illustration of data acquisition and c-scan formation. Data was acquired by 

translating the transducer over the surface of the phantom, and the C-scan image was generated 

by selecting data at a constant depth (cut at the green lines) 

 

7.2. The simple elastography (SE) phantom  

RF echo signals were acquired from a phantom composed of agar gel (a 5-cm cube with a 

1 cm diameter sphere at its center with ATT contrast, see Figure 7.3). The speed of sound and 

attenuation coefficient of the phantom were measured (in test cylinders) using a narrow band 

substitution technique (see Chapter 2). The speed of sound in the sphere was 1533 m/sec at 2.5 

MHz, and the attenuation coefficient versus frequency slope was 0.48 dB·cm−1MHz−1. The speed 
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of sound in the background was 1518 m/sec at 2.5 MHz and the attenuation coefficient was 0.09 

dB·cm−1MHz−1
. 

The reference phantom used here, termed the black curved phantom, had the same 

composition as the phantom described in Chapter 2 for in-vivo data (second subgroup). However, 

this reference phantom was immersed in oil and had a dome shape to better conform to the fluid-

filled bag. This phantom has tiny glass bead scattering sources (3000E beads; nominally 5-20 µm 

diameter). The acoustic properties of the reference phantom were determined as described in 

Chapter 2. The sound speed of the phantom is 1517m/s at 2.5MHz; the attenuation coefficient vs. 

frequency, α(f), is represented by α(f) = 0.51f dB/cm, where f is the frequency in MHz. Both the 

sample and the reference were scanned using a fluid-filled bag to couple the transducer to the 

surface of the phantom being imaged. During the data acquisition, 250 frames of RF data were 

acquired. The elevational separation between slices was 0.3 mm.  Data from 53 slices covering the 

sphere and the surrounding background material (15.9 mm) were analyzed.  

 

  

Figure 7.3. The simple elastography phantom and a B-mode image of the phantom showing the 

sphere in the middle of the phantom 
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7.2.1. Results for the SE phantom 

The results showed that there was a bias of about 20% in ATT (0.6 dB·cm−1MHz−1 vs. the 

expected value of 0.48 dB·cm−1MHz−1). Higher apparent attenuation values were found at the 

edges of the inclusion, as shown in Figure 7.4. This might be due to refraction or to backscatter 

artifacts that sometimes plague the RPM method in estimating attenuation. Figure 7.4 shows a B-

mode image from the acquisition view and the location where C-scan image was generated. Also 

shown are a B-mode C-scan with the sphere outlined in yellow, and the B-mode C-scan with 

attenuation overlay.  

 

Figure 7.4.  Shown from the left to right are the acquisition view with the location where the c-

scan was generated outlined, the B-mode C-scan with attenuation overlay with the sphere 

outlined, and the B-mode C-scan with the sphere outlined. 

 

7.3. Data Acquisition for the ACR phantom  

This phantom was manufactured in our lab for the American College of Radiology (ACR)5, 

and has masses of various sizes and shapes embedded in a simulated breast parenchyma, with a 

proximal layer of tissue-mimicking fat forming an irregular boundary.  A schematic of this 
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phantom is shown in Figure 7.5 (this is the same phantom used in Chapter 4). For this study, we 

were interested in a hypoechoic, highly attenuating mass (spanning 1.2 cm). The lab attenuation 

coefficient of this mass was 1.42 dB·cm−1MHz−1. The phantom was scanned with the Siemens 

S2000 ABVS system. The same reference phantom described in the previous section was used for 

this study.  

During the data acquisition, 200 frames of RF data were acquired. However, data from 45 

slices covering the tumor and surrounding tissue mimicking material, extending over a 13.5 mm 

elevational dimension, were analyzed. For each slice, ATT was estimated. Both an “acquired 

plane” view and a C-scan of the B-mode and the B-mode with ATT overlay were constructed.  

 

Figure 7.5. The schematic of the ACR phantom 

 

7.3.1. Results for the ACR phantom 

The results showed that ATT C-scans of the hypoechoic, highly attenuating mass exhibited 

a 20% overestimation in the average attenuation values (1.7 dB·cm−1MHz−1 vs. an expected value 

of 1.42 dB·cm−1MHz−1).  
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Figure 7.6. Image of the ACR phantom obtained with the ABVS scanner. Left 

conventional B-mode image through a speculated mass; center B-mode C-scan; right B-

mode C-scan with ATT overlay (the colorbar shows values from 0-2 dB/cm MHz). 

 

7.4. Thick slice formation 

To reduce statistical variations beyond the reductions achieved using 2D processing of 

single scan plane acquisition, we varied the thickness of the reconstructed slices of the SE 

phantom. To do so, the ATT estimated from an increasing number of slices (2, 3, 5, 7, 9, and 11 

slices) were averaged to generate a map of this parameter. The ROI selected (4cm x 3 cm) for the 

analysis included the 1 cm sphere as shown in Figure 7.2.  

 

7.4.1. Results for thick slice formation  

The maps generated using different slice thicknesses are shown in Figure 7.7. The maps 

generated using 1 and 5 slice thickness overlaid on B-mode images are shown in Figure 7.8.   
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Figure 7.7.  Varying the slice thickness of attenuation maps of the SE phantom.   

 

 

Figure 7.8.  ATT maps estimated and ATT map overlaid on the B-mode image of one slice versus 

5 slices thick for the SE phantom 

 



160 
 

7.5. Data Acquisition for in-vivo 3D QUS  

Studies in phantoms showed that we could successfully extend QUS methods from 2D to 

3D. Thus, the next step was implementing these adapted methods on RF echo data from in 

vivo scans of human subjects. To do so, we recruited 15 human subjects (5 of these subjects 

had fibroadenomas) from a pool of subjects scheduled for core biopsy. The protocol used in 

the study was UW HSC IRB-approved and HIPAA-compliant. The subjects were scanned with 

the Siemens S2000 equipped with ABVS-14L5BV transducer in the supine position. Both the 

breast and contact surface of the compliant, fluid-filled standoff were coated with a thin layer 

of low-viscosity ultrasound coupling gel. As mentioned earlier, the ABVS system was 

programmed to move vertically and apply pressure on the breast. Initially, the scanning pod 

was placed just barely in contact with the breast, and the breast thickness (to the chest wall) 

was measured. The scanning pod was then lowered until the bag was well-coupled to the breast 

(at least 20% strain, this was estimated by comparing the thickness from the skin to the chest 

wall with the bag barely in contact, with the distance when the breast was compressed.  

A test sweep of the transducer was performed to determine if there was good coupling 

between the breast and the bag (no trapped air) and the scan volume was centered over the 

breast mass. Subjects were asked to hold their breath between volume sweeps (each volume 

scan took about 16 seconds to complete), but some subjects breathed normally during the 

acquisition which lead to some motion artifacts. About 21-35 volumes of RF echo data were 

acquired for each human subject. The black curved phantom used is described in section 7.2. 

The phantom had the same composition as the phantom used for the second subgroup of the 

in vivo subjects described in Chapter 2.  
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The analysis was done off line on each slice to estimate QUS parameters of interest for in 

vivo subcutaneous fat (n= 8) and for breast tumors (n=5) and create a C-scan image. Data from 

volumes at different compression levels for subcutaneous fat were analyzed and results were 

compared.  

 

7.5.1. 3D QUS of in vivo subcutaneous breast fat (n= 8) 

As discussed in Chapter 3, interpretation of ultrasound images to diagnose solid breast 

masses generally includes subjectively assessing B-mode image features of the mass and those 

of the surrounding tissue (i.e. fat, the internal clinical reference point). The echogenicity (how 

bright is it?) and ultrasound attenuation (does it cast a shadow?) of a mass are qualitatively 

described using the US BIRADS lexicon2, where subcutaneous fat serves as the standard for 

comparison (see Figure 7.9, IDC10 in Chapter 6).  

 

Figure 7.9. B-mode image of a mass (IDC10 in Chapter 6) and the surrounding subcutaneous fat 
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Quantitative ultrasound (QUS) provides acoustic parameters to objectively assess these 

features; in addition, it can describe tissue microstructure. In Chapter 3, we measured the 

specific attenuation, the backscatter coefficient, and the effective scatterer diameter for breast 

fat in two-dimensional (2D) clinical imaging conditions. The results showed that QUS 

properties of breast fat were consistent among different human subjects. Those findings 

support the use of fat as a standard for echogenicity comparison with tumors. This study 

extended the QUS breast fat analysis to include data acquired from the 3D, “whole-breast” 

ultrasound scanning system to assess whether 3D QUS parameter estimates are consistent with 

2D estimates.  

RF echo data from 20 slices, each separated by 0.2 mm, covering the same fat lobules were 

analyzed in the same manner as 2D (see Chapters 2 and 6). For each slice:  

• Attenuation coefficients were estimated using the reference phantom method (see 

Chapter 2). 

• Backscatter coefficients were estimated using the reference phantom method after 

correcting for attenuation in the intervening tissue path with the modified least squares method 

(see Chapter 2 and 4). 

• ESDs were estimated from the BSC using a Gaussian form factor model. 

 Then, the estimates from the 20 slices were averaged to obtain a single estimate. ESD 

images were then stacked together to generate a volume and an ESD C-scan image at a depth 

was generated from this volume.  
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7.5.1.1. Results for 3D QUS of subcutaneous breast fat 

Among the 8 fat lobules, the specific attenuation (mean ± SD) at 7 MHz was 0.71 ± 0.21 

dB·cm−1MHz−1. The average backscatter coefficient was 0.006 ± 0.003 cm-1sr-1. The mean 

effective scatterer diameter for fat was 76.5 ± 10.6 μm. A summary of these QUS estimates for 

the 8 subjects are shown later (to compare results with 2D). Figure 7.10 show the thick slice (20 

image planes, 4 mm) formation of the ESD of subcutaneous breast fat for one subject.  

 

Figure 7.10. Thick Slice formation of ESD (4mm) 

 

7.5.2. 3D QUS of in vivo fibroadenomas (n= 5) 

As mentioned before, 3D study had 5 subjects who had fibroadenomas (the same subjects 

as the first 5 subcutaneous fat lobules in the previous section). The analysis in this section was 

done for these tumors, QUS parameter estimates from 50 slices (10 mm) were averaged 

together to generate an estimate and create C-scan image.  The analysis was done in the same 

manner described in the previous section for subcutaneous breast fat. ESD C-scans, and thick 
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slices were generated for these masses. The ROI size was (by subjective B-mode image 

assessment) the largest homogeneous region within the tumor boundary outlined by the 

sonographer at the time of the scan.  

 

7.5.2.1. Results for 3D QUS of fibroadenomas 

Table 7.1 show a summary of the QUS parameters estimated from the five subjects having 

fibroadenomas.  

 

Table 7.1. QUS parameters of 5 breast masses scanned with the ABVS system  

 

Figure 7.11 shows an example of the attenuation coefficient versus frequency and the 

ESD map generated for a fibroadenoma (subject 5, in Table 7.1) scanned with the ABVS 

system.   

 

Figure 7.11.  An example of attenuation and ESD estimated for one human subject with a 

fibroadenoma (outlined in yellow) scanned with the ABVS system 
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Figure 7.12 show an ESD C-scan of a fibroadenoma (subject 5, in Table 7.1) scanned with 

the ABVS system.   

 

Figure 7.12. ESD C-scan of one human subject (subject 5, in Table 7.1) scanned with the ABVS 

system. Left, B-mode; center, ESD; right, overlay of B-mode and ESD images. 

 

Another interesting subject had a biopsy clip in the middle of the mass. Figure 7.13 shows 

the ATT and ESD estimated for one slice in that fibroadenoma (subject 4 in Table 7.1). The 

results show that the QUS estimates are biased due to the presence of the clip, which acts as a 

coherence source and violates our QUS assumptions.   
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Figure 7.13. ATT and ESD estimates for one slice of a tumor with a clip (subject 4 in Table 7.1) 

 

Figure 7.14 shows a thick slice formation for the ESD for this subject’s tumor. The results 

show that with 7 slices (1.4 mm thick), the presence of the clip in the ESD estimates is more 

apparent than with one slice.  
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Figure 7.14.  Thick slice formation for the for the ESD estimates in subject 4. 

 

For this subject, we created the ATT C-scan at a depth above the clip. For ESD C-scans, we 

estimated the value above the clip and at the clip to determine the effect of the presence of 

coherence. We also estimated the ESD after eliminating the clip (using the same method 

applied in Chapter 5) and compared the C-scan at the clip with and without avoiding coherence 

(see Figure 7.15).  
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Figure 7.15. a) B-mode C-scan, ATT C-scan and B-mode C-scan with ATT overlay above the 

clip, b) the top row: shows B-mode C-scan, ESD C-scan and B-mode C-scan with ESD overlay 

above the clip, the middle row shows the B-mode C-scan, ESD C-scan and B-mode C-scan with 

ESD overlay taken at the clip, and the bottom row the B-mode C-scan, ESD C-scan and B-mode 

C-scan with ESD overlay taken after avoiding it 

 

7.6. 2D verus 3D QUS of the breast  

In this section, QUS parameters estimated using 2D and 3D data were compared for 

subcutaneous fat (including a comparison with previously reported data from the literature) 

and for breast tumors. 
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7.6.1. Results for 2D versus 3D QUS of subcuateneous breast fat 

The results in Figure 7.16 show an example of QUS parameters estimated (in subcutaneous 

fat for one human subject. Results are presented using data acquired with the 18L6 transducer 

(2D) and with the ABVS-14L5BV transducer (3D). The results show that the parameter 

estimates are consistent for 2D and 3D data for subcutaneous breast fat. A summary of the 

results is shown in Table 7.2. Although the linear fit to the attenuation coefficient estimates in 

this slice in 3D does not describe the data very well, we applied it to facilitate comparison with 

previously reported data. Also, overall the linear fit works well for most of our in vivo data 

sets.   

 

Figure 7.16.  a) ATT, ESD, and BSC versus frequency estimated in 2D for subcutaneous breast 

fat, b) 3D QUS parameters estimated for subcutaneous breast fat (in subject 5 Table 7.1), for 

each subplot the top figures show that attenuation coefficient versus frequency and the bottom 

figures show the ESD maps and the BSC versus frequency  

 

The results in Figure 7.18 show the BSC estimated for one fat lobule using data acquired 

with the 18L6 transducer. In 2D, the backscatter coefficient estimates from 5 frames of data 
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were averaged together. The ROI selected in the fat lobule was 1 cm x 1 cm. Also shown are 

the BSCs from data acquired with the ABVS-14L5BV transducer. Here BSC estimates from 

20 slices were averaged together and the ROI selected in the fat lobule was 1 cm x 1 cm. The 

results show that the parameter estimates are consistent for 2D and 3D data for subcutaneous 

breast fat and are in agreement with the previously published data.  

 

Figure 7.17. BSC estimated using data obtained with the 18L6 versus ABVS transducers and 

previously published data for our previous in-vivo study3, D’Astous and Foster6, and Anderson 

et al.7 

 

QUS parameters for subcutaneous breast fat, obtained with the 2D and 3D configurations, 

were in very good agreement. The specific attenuation coefficient (mean ± SD) at 7 MHz was 0.73 

± 0.23 dB·cm−1MHz−1 (2D) versus 0.71 ± 0.21 dB·cm−1MHz−1 (3D). These results also are 

consistent with previously reported values.3,6,7 The average backscatter coefficient was 0.007 ± 

0.002 sr-1cm-1 (2D) versus 0.006 ± 0.003 sr-1cm-1 (3D) somewhat higher than previously reported 

values.3,6,7  The mean effective scatterer diameter for fat was 60.2 ± 9.5 μm (2D) versus 76.5 ± 

10.6 μm (3D), the former being consistent with previously reported values.3,6,7 Table 7.2 

summarizes QUS parameters estimated in fat lobules for 2D scans of fat lobules with those for 3D 

scans in this study. Also shown are our previously published 2D fat data3 (see Chapter 3).  
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Table 7.2. 2D versus 3D QUS of Subcutaneous fat  
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7.6.2. Results for 2D verus 3D QUS for an in-vivo breast mass 

Figure 7.18 shows the ATT and ESD estimates of a breast mass outlined in yellow. The 

values reported are for a ROI within the fibroadenoma (subject 1 in Table 7.3) using data obtained 

from the ABVS system and those obtained from scanning with the 18L6 transducer.  

 

Figure 7.18.  ATT and ESD for a fibroadenoma (subject 1 in Table 7.1) estimated using a) 2D 

versus b) 3D data. For each subplot the top figures show that attenuation coefficient versus 

frequency and the bottom figures show the ESD maps. 

 

Table 7.3 shows a summary of the results for the QUS parameters estimated for the 5 

human subjects with fibroadenomas.  The results show that the parameters estimated using 3D 

data agree with the 2D results. The recruitment ID’s of these subjects are provided in Appendix B.  
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Table 7.3. QUS parameters estimated for 5 fibroadenomas in 2D and 3D  

 

 

7.7. The acoustic properties of subcutaneous breast fat under 

different compression scenarios 

Another aspect that we examined was whether QUS parameter estimates depend on the 

applied pressure when scanning. Sonographers usually apply relatively high deformation when 

scanning the breast to flatten tissue planes, (tending to) align Coopers ligaments, and improve 

acoustic transmission into the breast. If this applied pressure modifies the echogenicity of fat 

(i.e. the BSC of fat changes with increasing strain), it could lead to biased descriptions of the 

mass using the BIRAD Lexicon2. Therefore, we estimated acoustic properties of subcutaneous 

breast fat lobules, for five subjects at five different amounts of deformation. Deformation was 

quantified by percent strain applied, measured using a motion tracking algorithm developed in 

our group. The starting point was about 0.5% strain, and strains up to 11.8% were tracked. 5  
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7.7.1. Results for 3D subcutaneous breast fat under different levels of 

compression 

Figure 7.19 shows the ATT and the BSC estimates for subcutaneous fat in one human 

subject (subject 5 in Table 7.1) at 5 different deformations (2.4%, 5.3%, 9.3%, 10.4% and 

11.8% strain). The results show that the BSC in breast fat increases with increasing 

deformation.  Thus, the degree of preload on the breast may be an important factor to account 

for in QUS parameter estimation. 

 

Figure 7.19.  a) attenuation coefficient versus frequency and b) BSC estimates for subcutaneous 

fat (for subject 5 in Table 7.1) under different compression scenarios. L1 refers to the first 

compression level (2.4%), L2 is the second compression level (5.3%), etc.). 

 

To summarize the results, Figure 7.20 shows the mean and standard deviation for the BSC 

of the breast fat lobules among 5 subjects at 3 different compression levels.  The results show 

that the backscatter coefficient increases with increasing strain level. (Note that these are still 

small strain levels compared to the typical pre-compression of clinical breast ultrasound.) 
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Figure 7.20. Mean and standard deviation for the BSC of subcutaneous fat at 3 different 

compression levels. 

 

Figure 7.21. shows a graphic comparison on a log-log plot of these results with those 

estimated in our previous study, those of D'Astous and Foster (ex vivo data), and those of Anderson 

et al. (in vivo data) using 7.5 and 10 MHz transducers. The upper and lower curves shown are 

defined by the mean plus and the mean minus one standard deviation of the reported results. The 

results show that estimates for subcutaneous fat under different compression levels in 3D agree 

with previously published 2D data. 

 

Figure 7.21. BSC results for 3D scans of subcutaneous fat under different compression levels. 

Also shown are our previously published 2D results, results from D’Astous and Foster6, and 

Anderson et al. results.7 
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We also examined the estimated ESD and ESDHI for different strain levels for the same 

subject. The results suggest that the ESD increases slightly with increasing applied strain while 

the ESDHI decreases with increasing strain. This is shown in Figure 7.22.  

 

Figure 7.22. a) ESD and b) ESDHI versus percent average accumulated strain. 

 

7.8. Discussion  

Volume ultrasound RF echo signal data, instead of data from only a single plane, can be 

obtained by 3D ultrasound scanning systems. After acquisition, data can be analyzed and 

displayed in different ways, such as displaying the data in planes that are not accessible with 

typical 2D scanning methods (C-scan planes). Viewing data in different ways might help 

physicians discover pathology which is otherwise difficult to detect. 3D ultrasound data also 

enables the visualization of complex tissue structures that might not be seen in typical 2D 

scanning planes. 

Until now the amount of compression applied by the sonographer when scanning a subject 

has not been considered as a possible source of variability in QUS data or even with 

conventional subjective image analysis. In our study, the BSC of fat increased with increasing 
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strain. Thus, preload on the breast may be an important factor to account for in QUS parameter 

estimation. The range of the BSCs, including those obtained at different compression levels 

was comparable to the range of values reported by D’Astous and Foster6 data for ex vivo breast 

fat. Nevertheless, it is feasible that the amount of compression imparted by the transducer 

might influence BIRADS-based descriptions of a mass.  

Data acquired in 3D using the ABVS system were in good agreement with those acquired 

with the 2D handheld transducer system. The ABVS can scan a region large enough to view 

the entire breast in a single sweep in many women. Moreover, controlling the applied strain 

can increase the reproducibility of the QUS parameter estimates.  

 

7.9. Conclusions 

3D QUS parameter estimates, such as attenuation coefficients and effective scatter 

diameters, agree well with values obtained with 2D systems, so the 3D approach is very 

promising. Shapes of masses in the C-scan view may offer insight regarding the nature of a 

mass. Varying the thickness of the reconstructed slices, can reduce statistical variations beyond 

the reductions achieved using 2D processing. Since the echogenicity of subcutaneous breast 

fat increases with increasing strain, controlling the deformation when QUS data are acquired 

will be an important consideration in future studies. 
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Chapter 8: Contributions and future work 

The general goal of this dissertation was to improve the specificity of breast ultrasound 

imaging. Promising results were reported here from two parallel paths. The first path optimized 

2D breast QUS, and the second path introduced 3D QUS. Seven QUS parameters were 

estimated for each human subject. However, there was a substantial overlap in the parameters 

estimates for benign and malignant masses.  

We built a Bayesian classifier that showed promising results for combining QUS parameters 

to differentiate fibroadenomas from carcinomas. Being able to differentiate that a mass is a 

fibroadenoma could in turn reduce the number of unnecessary biopsies of suspicious masses. 

Classification into these categories (“carcinoma” and “fibroadenoma”) is an important step, 

but may be insufficient for clinical practice. A more useful classification would include all 

cancer types, all benign breast masses, and various types of normal tissue. Suggested future 

study in this area includes introducing more parameters and more tumor types. For training a 

classifier, an accepted rule of thumb offered by statisticians is that 10 cases of any single mass 

type are needed per QUS parameter introduced into the classifier. Thus, to robustly test a 5-

parameter classifier to select among two categories (benign and carcinoma), and assuming that 

10 subjects are needed in each category per parameter, at least 50 subjects per category (at 

least 100 subjects in total) would be needed. Broadening the number of tissue types (benign 

tumors and normal tissues) in the ‘non-cancer’ class will require a significantly increased pool 

of data and thus, will require testing of different classifiers that can tolerate a larger pool of 

data. 

We developed and tested a modified least squares method to compensate for attenuation 

along the inhomogeneous path above the ROI. Correct compensation for attenuation losses 
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would lead to more reliable, system-independent estimations of QUS parameters. Future work 

in this area can include estimating attenuation vs. frequency in media with known values of 

attenuation frequency dependence (besides f1) and applying this method in other applications 

(kidney, cervix, liver, etc.).  

We developed and examined different methods to detect the presence of anisotropy in QUS 

parameter estimates since most human subjects showed presence of anisotropy. Thus, it is 

important to detect isotropy as it would allow spatial compounding techniques. A future study 

will include testing more data sets and developing more sophisticated approaches to test 

anisotropy, then compound average data from subjects that showed isotropy.  We also tested 

for coherence in echo signals in phantoms and in vivo in the breast and suggested a method to 

eliminate sources of coherence before estimating QUS parameters. A suggested future study 

in this area includes further testing this simple approach as well as development and testing of 

more sophisticated automatic (rather than the manual approach described here) approaches 

using in-vivo breast data.  

We built the first 3D QUS images from an ABVS system that enables complete coverage 

of suspicious masses, developed 3D parametric images for QUS parameters, and displayed 

them in unique image planes, such as C-scan image planes that include the plane of breast 

ductal structures). Using 3D data, we estimated the acoustic properties of subcutaneous breast 

fat under different compression levels and found that the echogenicity of subcutaneous fat 

increases with compression. We also varied the thickness of the reconstructed slices to reduce 

statistical variations. A future study in this area will include a larger number of human subjects 

that have large tumors and a broad distribution of tissue types, but it will be important to 

control for the applied deformation during data acquisition. The future study will also examine 
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the effect of compression on tumor and fat for the same subject and among different subjects. 

It will also include introducing more parameters to the classifier such as size aspect ratio, 

shape, margin, etc.  
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Appendix A: Reproducibility of the QUS estimates 

The purpose of this appendix is to show the reproducibility of the estimated QUS 

parameters using our QUS methods. Data reported in this section includes results from phantom 

studies, rat tumor and breast tumors.  

 

A.1. Reproducibility of QUS estimates in a rodent-mimicking 

phantom and a rat tumor 

The first step in our analysis was to verify the ability to reproduce the estimates obtained 

from our established QUS methods.  Figure A.1 show a schematic of a rodent phantom.1-4 This 

phantom consists of three macroscopically uniform sections: two lesion-mimicking, 1.6cm 

diameter spherical inclusions protruding from a background. The phantom is immersed in a 

solution of water, propylene glycol and Liquid Germall Plus (a preservative) and enclosed in an 

acrylic box.  All three sections are composed of mixtures of water, agar, propylene glycol, and 

Liquid Germall Plus as well as of different concentrations of graphite powder and different size 

distributions of glass-bead scatterers. Figure A.2 shows the parametric images of the attenuation 

coefficient (color encoded representation of the values) for sphere A and B of the rodent phantom 

and the corresponding. The ATT estimated for sphere A (1.02 dB·cm−1MHz−1) and sphere B (1.52 

dB·cm−1MHz−1). These agrees with the expected values, 1dB·cm−1MHz−1 and 1.58 dB·cm−1MHz−1 

for sphere A and B, respectively).  
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Figure A.1. Schematic of the custom made, rodent-lesion mimicking phantom 

 

 

Figure A.2. Attenuation maps and attenuation estimates versus frequency for sphere A and B of 

the rodent phantom. The ATT estimated for each sphere is shown in the Figure (white text) and 

the expected value is shown for each sphere in black 

 

We also estimated the backscatter coefficient of Sphere A, using the background material 

of the same phantom as our reference phantom material.  The glass bead scatterer size distribution 

in the background of the phantom is 45-53 µm.  The acoustic properties of this phantom were 

estimated using single-element transducers and a narrow-band substitution method5 on test 

samples manufactured at the same time as the reference phantom (see Chapter 2). The sound speed 
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was 1544 m/s at 2.5MHz. Measured attenuation coefficients at frequencies from 2-10MHz were 

fit to a linear function of frequency, yielding, 0.51 dB·cm−1MHz−1. To examine the effect of 

different paths above the ROI we scanned the background of the rodent phantom with the 

transducer in direct contact with the background surface and through a saline path. Figure A.3 

show the B-mode images and the ROI selected for sphere A and for the reference phantoms.  

 

Figure A.3. ROI for sphere A and the background of the rodent phantom with the transducer in 

contact and through a saline path 

  

Figure A.4 shows the power spectra for the sample and the reference and the attenuation-

corrected power spectra for the reference phantom data.  Figure A.5 shows the results for the 

backscatter coefficient estimated for the sphere when using the back ground of the phantom (with 

the transducer in contact and through the saline path) as a reference and the expected BSC from 

Faran’s theory for sphere A.  
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Figure A.4. Power spectra of the sample and the reference and the attenuation corrected power 

spectra for the reference with the transducer in contact and through a saline path 

 

Figure A.5. BSC of sphere A using the background of the rodent phantom as the reference 

phantom material (with transducer in contact and backed off with a saline path) 

 

We also scanned a rat tumor (R3114) from a joint study.2-3 The rat tumor was scanned with 

a Siemens S2000 equipped with a 9L4 transducer. The transmit focus was set at 2.25 cm. The 

analysis was done offline in the same manner described in Chapter 2. The reference phantom used 

for the study was the same “BRP phantom” used for the second subgroup of the in vivo data (see 



186 
 

Chapter 2). Figure A.6 show the B-mode image of the rat tumor and the backscatter estimated for 

the rat tumor.  

 

Figure A.6. a) B-mode of the rat tumor phantom, and b) the backscatter coefficient versus 

frequency estimated for the rat tumor. 

 

A.2. Reproducibility of results on breast masses  

To further examine our ability to reproduce the attenuation coefficient estimated in in vivo 

breast masses, we asked two graduate students (who were experienced in QUS data analysis, had 

published papers reporting research involving estimating QUS parameters in the breast) to estimate 

the attenuation coefficient in the tumor. Each user, independently performed the analysis and 

obtained parameter estimates (the same data were analyzed by each “user” using the same 

MATLAB script). Users were free to choose what they consider the largest homogeneous ROI 

within the tumor boundaries and provide the estimated ATT to “user 1” to compare the results. 

The location of the ROI might have varied among the users (user 2 and 3 didn’t keep the 

information about the exact location of their ROIs). Figure A.7 shows examples summarizing the 

attenuation estimates from the 3 users, the ROI shown were selected by “user 1” and used in this 

dissertation. The tumors included were fibroadenomas (FA4, FA3, and FA24 in Chapter 6), 
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adenocarcinoma (ACA in Chapter 6), and invasive ductal carcinomas (IDC 3, and IDC10 in 

Chapter 6). 

 

Figure A.7. Example showing the reproducibility of data among different users for different 

human subjects (ACA: adenocarcinoma, IDC: ductal carcinoma, FA: fibroadenoma). Numbers 

represented in the tables show the ATT estimated from each user in dB·cm−1MHz−1. 
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Appendix B: Additional examples for in vivo breast fat and 

masses 

This appendix shows summary figures that contain examples of the QUS parameters 

estimated for in vivo breast fat and breast tumor.  It also reports additional results for anisotropy 

using the power law fit to attenuation and the backscattered power difference method (see Chapter 

5). The derivation of the method used to calculate the uncertainty in the estimates obtained from 

the power law fit is summarized in this appendix. The graphical user interface built using 43 human 

subjects and leave one out method to differentiate fibroadenoma and carcinoma is also shown and 

additional examples for 3D QUS in the breast. 

 

B.1.  QUS parameter estimates after optimization of the QUS 

methods  

In this section, examples of the QUS parameters estimated for subcutaneous fat and for a 

breast tumor are shown below. For these data, correction for attenuation for the inhomogeneous 

tissue path above the ROI was done using the MLSM (see Chapter 4). Figure B.1 shows the ATT 

and BSC estimated for a ROI within the subcutaneous breast fat for one human subject (scanned 

with 18L6 transducer and Siemens S2000, subject 16 Table 7.2 for the published 2D fat data) at 

the central degree view.  
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Figure B.1. QUS of subcutaneous breast fat a) ESD map, b) power spectra for the sample and 

the reference, c) attenuation coefficient versus frequency, and d) BSC versus frequency 

 

Figure B.2 shows the ATT, BSC, ESD map estimated for a ROI within the tumor boundary 

for a fibroadenoma (FA23 in Chapter 6), and experimental form factor versus the best-fit model 

form factor for the central degree view.   
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Figure B.2. QUS parameter estimation for central degree view for a fibroadenoma (FA23) a) 

the B-mode image, b) the power spectra of the sample and the reference, c) ESD map, d) 

attenuation versus frequency, e) form factor from mean BSC, f) BSC versus frequency 

 

Figure B.3 shows an example of the creation of large ESD parametric images that go 

beyond the mass boundary (a fibroadenoma, FA21 in Chapter 6), and the QUS parameter estimated 

for that mass. Note that QUS parameters are estimated using a ROI within the tumor boundary 

(outlined in yellow).    
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Figure B.3. QUS parameters estimated and creation of large parametric images of ESD of a 

fibroadenoma (FA21) 

 

Figure B.4 shows large ESD parametric images for four human subjects (2 fibroadenomas; 

FA15 and FA25 in Chapter 6, and 2 carcinomas; ACA and IDC 8 in Chapter 6).  

 

Figure B.4. Large parametric images of ESD of two carcinomas (ACA and IDC 8) and 2 

fibroadenoma (FA 15 and FA25) 
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B.2. Detecting anisotropy  

Figure B.5 shows an example of the beam steered data of an infiltrating ductal carcinoma 

(IDC3 in Chapter 6) captured from the Siemens S2000 machine in research mode, Figure B.6 

shows an example of the beam steered data captured from the Siemens S2000 machine in clinical 

mode, of a ductal carcinoma in situ (DCIS1 in Chapter 6) and Figure B.7 shows an example of 

beam steered data generated using off-line analysis on raw RF echo signal data.   

 

Figure B.5. Beam steered B-mode images from -10 to 10 degrees captured from the S2000 in 

research mode for an infiltrating ductal carcinoma 
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Figure B.6. Beam steered B-mode images from -10 to 10 degrees with an increment of 5 degrees 

for a ductal carcinoma in situ (DCIS1) captured from the S2000 in clinical mode for a 

fibroadenoma 

 

Figure B.7. example of beam steered B-mode images (steered from -20 to 20 degrees) generated 

offline from the RF data acquired from the S2000 in research mode for a fibroadenoma (FA20 in 

Chapter 6) 
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Figure B.8 shows a summary of QUS parameter estimated for one human subject 

(adenocarcinoma, ACA in Chapter 6) for -5 to +5 beam steering angles, the associated B-mode 

image, and the power spectra at each beam steering angle.  

 

Figure B.8. QUS parameter estimated for different beam steering angles for an adenocarcinoma 

(ACA in Chapter 6), a) BSC versus frequency, b) table showing ESD and ESDHI estimates for -5 

to +5 degrees, c) table showing BSC estimates for -5 to +5 degrees, d) Power spectra for -5, 0, 

and +5 degrees, and e) B-mode images for -5, 0, and +5 beam steering angles  

 

B.2.1. Power law method  

To better judge anisotropy, we limited our study to large tumors that didn’t show evidence 

of coherence (by visual evaluation) over different beam steering angles.  The section below shows 
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how the power law fit to attenuation approach was implemented to judge anisotropy. Figure B.9 

shows the attenuation coefficient versus frequency for an intracystic papillary carcinoma (IPC in 

Chapter 6). 

 

Figure B.9. shows an example of attenuation coefficient versus frequency for different beam 

steering angles for an intracystic papillary carcinoma (IPC) 

 

The power law fit of the attenuation coefficient is modeled as ( (�) = () �o.  We started 

by computing the power law fit to the attenuation estimates as shown in Figure B.10 (P5 is positive 

5 degrees, N5 is negative 5 degrees, central is zero degrees, P10 is positive 10 degrees, and N10 

is negative 10 degrees’ view). This gives us an estimate of () and � for each beam steering angle, 

such that 

 ( p (�) ≈  ()r�os                                                                                                             (1) 

where ( p (�) denotes the estimated attenuation coefficient and  ()r and �s are the parameters of the 

power law fit.  
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Figure B.10. shows an example of power law fits to attenuation for different beam steering 

angles for the intracystic papillary carcinoma (IPC)shown in Figure B.10 

 

Then, we calculated the value at 6MHz from the power law fit and normalize it to the value 

at the central degree view by division. In order to determine the standard errors, we applied the 

delta method. The question was what is the uncertainty in ( p (�) given the uncertainty in ()r and 

�s? 

The general form of the delta method state that if z= f(x,y) then, 

 ��2 = tu�
ubv

2
�b2 + tu�

uwv
2

�w2 + 2(u�
ub

u�
uw) �b,w2                                                            (2) 

To simplify the analysis, we assumed that the covariance between x, y is small and can be 

neglected.   Thus, taking the derivative of equation 1 with respect to ()r and �s yields:    

ux y
uxzr = �os              and           

ux y
uos = ()r�os ln (�)                                                      (3) 

The uncertainty in ( p is evaluated at a specific frequency within the power law fit range (i.e. 6 

MHz) is  

�x p
2 =  �os'2�xzr

2 +   ()r�os  ln (�)'2�os
2                                                                (4) 

To obtain the uncertainty we need the value for �xzr
2  and �os

2 . To obtain these values we used the 

excel LINEST function of the log of the attenuation coefficient and frequency 
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(EXP (INDEX (LINEST (LN (attenuation coefficient), LN (frequency), , ),1,2))     (5) 

Table B.1. shows an example of the values obtained for the power law fit parameters  ()r 

(alpha o) and �s (n), and �xzr
2  (sigma alphao) and �os

2 (sigma n) for the tumor shown above.  

 

Table B.1. Example for the sigma n and sigma alpha 0 obtained for different beam steering 

angles 

 

 

Table B.2 shows an example of attenuation coefficient value calculated from the power 

law fit at 6 MHz and the normalized value to the central degree view (normalization is done by 

division). 

 

Table B.2. ATT values at 6 MHz and the normalized values to the central degree view for the 

IPC shown above  

  

Beam steering angle 6MHz Value Normalized Data in Radial Direction

-10 2.55 1.25

-5 2.90 1.42

0 2.04 1.00

5 1.70 0.83

10 2.05 1.00

alphao n sigma n sigma alphao

-10 0.35 1.11 0.02 0.05

-5 0.83 0.70 0.02 0.03

0 0.08 1.82 0.04 0.08

5 0.09 1.65 0.05 0.01

10 0.09 1.72 0.01 0.02
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Figure B.11 shows an example of normalized attenuation values versus beam steering 

angles and uncertainty in the estimates for one human subject at the radial direction.  

 

Figure B.11.  The resultant normalized ATT to the central degree view (shown in Table B.2) 

with the standard error values for the IPC 

 

B.2.2. BSPD method for detecting anisotropy in the power spectra of 

backscattered echo signals 

Table B.3 show an example of the BSPD method used to detect anisotropy in the 

backscatter echo signals of the intracystic papillary carcinoma (IPC). The data from different beam 

steering angles were normalized to the maximum value and the normalization in this method was 

done by subtraction.   
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Table B.3. The BSPD method to detect anisotropy in the power spectra of backscattered echo 

signals 

 

Figure B.12 show examples of the normalized BSPD value for different beam steering 

angles for the intracystic papillary carcinoma (IPC).    

 

Figure B.12. Examples for the BSPD method in detecting anisotropy 

 

 B.3. Bayesian classifier GUI for 43 human subjects 

Figure B.13 shows the GUI built for the Bayesian classifier for the 43 human subjects 

utilizing the leave one out method for training and four QUS parameters (ATT, ESD, ESDHI).  

Estimates for the new test subject are plugged into the GUI and the data point is plot in the 

corresponding 2D and 3D graphs. A category is displayed as either fibroadenoma or carcinoma, 

an example of each is shown in Figure B.14 and Figure B.15.  

Beam steering angle 0 -5 -10 5 10

BSPD -2.94 -1.2 -1.9 -4.38 -4.9

nBSPD 1.74 0 0.7 3.18 3.7

<0 >0

0.7 6.88

aBSPD -6.18

mBSPD 1.864
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Figure B.13. Example of the GUI built for the Bayesian classifier  

 

 

Figure B.14. Example of the GUI built for the Bayesian classifier differentiating a fibroadenoma 

(FA3 in Table 6.2, see Chapter 6)  
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Figure B.15. Example of the GUI built for the Bayesian classifier differentiating a carcinoma 

(IDC 2 in Table 6.3, see Chapter 6) 

 

B.4. 3D data  

Figure B.16 shows an example of the ESD estimates for data acquired from the ABVS 

system and the ESD C-scan of the tumor (ABVS1401, subject 1 in Table 7.2). The ESD for this 

mass was 167 ± 9 µm.  

 

Figure B.16. QUS parameters estimated using the ABVS system and the ESD C-scan for a 

fibroadenoma (ABVS 1401, subject 1, Table 7.2) 
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Table B.4 shows the subject number used in Chapter 7 for the ABVS data for the 

subcutaneous fat and the breast masses and the corresponding subject naming used during 

recruitment. The first 5 subjects in the subcutaneous fat are the same subjects with masses, the 

other 3 subjects used for subcutaneous fat analysis didn’t have breast mass  

 

Table B.4. Subject ID used in chapter 7 and the subject ID from recruitment for subcutaneous fat 

and breast masses  

 

 

 


