
Improving Text Representations with Language Models: Contrastive
Learning, Personalization, and Data Augmentataion

by

Ruixue Lian

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Date of final oral examination: 08/01/2023

The dissertation is approved by the following members of the Final Oral Committee:
William A. Sethares, Professor, Department of Electrical and Computer Engineering
Junjie Hu, Assistant Professor, Department of Biostatistics and Medical Informatics
Dhavan Shah, Professor, School of Journalism and Mass Communication
Yu-Hen Hu, Professor, Department of Electrical and Computer Engineering

© Copyright by Ruixue Lian 2023
All Rights Reserved

i

acknowledgments

My deepest gratitude first and foremost goes to my advisor Dr. William
Sethares. He gave me patience, trust, and support to grow, especially
giving me the freedom to explore the area and formulate the problems -
things that not a lot of Ph.D. students are lucky enough to get from their
advisors. I would also like to express my gratitude to my co-advisor, Dr.
Junjie Hu. Although we have only been working together for a short period
of time, he always asked the right questions that pointed me in the right
direction. More importantly, he also asked the tough questions that pushed
me forward in the NLP area. I would like to sincerely thank Dr. Dhavan
Shah for the many fascinating collaborations and his constant support.
I am thankful to Lew Friedland, Mike Wagner, Sijia Yang, Xiaoya Jiang,
Yiming Wang, Yini Zhang, Jiyoun Suk, and other professors and students
from SMAD and CCCR groups, who have inspired and encouraged me
from a host of perspectives different from the engineers and computer
scientists.

Bill has introduced me to various real-world problems, and we collab-
orate with different people across the departments of the university by
applying ML/NLP methods. One that impressed me greatly was related
to the image denoising of ancient papers, especially LeoCode 1, in which
we worked on the papers of Leonardo da Vinci. It was amazing to work
with Bill and his Ph.D. advisor Dr. Richard Johnson. We proposed the
image denoising method and introduced our techniques to museum con-
servators and art historians. Although not part of this thesis, this is one of
my favorite works.

I would also like to express my appreciation to Robert Nowark, Kang-
wook Lee, Varun Jog, Po-Ling Loh, John Gubner, and other professors who
have taught me fundamental knowledge, especially on machine learning

1https://leocode.org/

ii

theory. I want to thank Dr. Irena Knezevic, who has greatly influenced
my attitude and efforts toward my work and life. I would like to thank
Zhongkai Sun, Elisa Ou, Liang Shang, Rheeya Uppaal, Yuye Jiang, Siyang
Chen, Nathan Kalmoe, Leyue Zhang, Ying Xue and other friends for their
consistent help in life and for having fun together. Last, I would like to
thank my parents for their unresolved love and support.

My Ph.D. journey is going along with the exponential surging of lan-
guage models, starting from BERT to ChatGPT. I am very excited to work
with these cutting-edge models, not only by proposing novel methodolo-
gies but also applying them to real-world problems. These things are not
likely to happen without them.

iii

contents

Contents iii

Abstract vi

List of Tables vii

List of Figures ix

1 Introduction and Background 1
1.1 Introduction 1
1.2 Text Data Augmentation 2
1.3 Contrastive Learning 7
1.4 Personalization 9
1.5 Outline of this Document 9

2 Learning Label Hierarchy with Supervised Contrastive Learn-
ing 10
2.1 Overview 10
2.2 Abstract 10
2.3 Introduction 11
2.4 Background 13
2.5 Method 14
2.6 Experimental Settings 19
2.7 Results and Analysis 21
2.8 Related Work 27
2.9 Conclusion and Limitations 28
2.10 Appendix 29

3 PersonalTM: Transformer Memory for Personalized Search 33
3.1 Overview 33

iv

3.2 Abstract 33
3.3 Introduction 34
3.4 Proposed Methods 36
3.5 Experiments 41
3.6 Ablation Study 46
3.7 Case Study 46
3.8 Conclusions and Limitations 49

4 Incremental User Embedding Modeling for Personalized Text
Classification 50
4.1 Overview 50
4.2 Abstract 50
4.3 Introduction 51
4.4 Proposed Methods 52
4.5 Experiments 55
4.6 Conclusions and Future Work 59

5 Predicting Health-Related Quality of Life Change from Patient
Language in Thyroid Cancer Studies using Natural Language
Processing 61
5.1 Overview 61
5.2 Abstract 61
5.3 Introduction 62
5.4 Related Work 64
5.5 Dataset Description 65
5.6 Proposed Methods 65
5.7 Experiments and Results 70
5.8 Conclusions 75

6 Pratical Tasks in Social Media Analysis 76
6.1 Overview 76

v

6.2 Ideological Differences about COVID-19 Vaccine Favorability and
Hesitancy 76

6.3 Public Discourse Before and After #MeToo across Four Plat-
forms 78

7 Future Work 80
7.1 Apply LA-SCL to Real-World Social Media Analysis 80
7.2 Whether Contrastive Learning can Improve Reinforcement Learn-

ing for Human Feedback (RLHF) 80
7.3 Investigate Whether the Discriminative Representations could

Improve Generative Language Model Performance 81
7.4 Apply LLMs to Social Media Analysis 81

References 82

vi

abstract

Text representation learning is a fundamental task in NLP. It aims to cap-
ture the semantic, syntactic, and contextual information present in textual
data and transform it into a numerical representation that machine learn-
ing models can effectively utilize. Effective text representations are crucial
for various downstream tasks such as text classification, information re-
trieval, machine translation, and question answering, etc.

This thesis presents various methodologies to improve sentence-level
text representations with language models. Given the fact that subcate-
gories under the same branches are similar and closer to each other, we
propose variations of label-aware supervised contrastive loss (LA-SCL) to
incorporate and learn the label hierarchy information. Two studies were
conducted to improve text representations with personalized features,
which can be tailored to specific users by incorporating individual infor-
mation such as user demographics, or contextual factors. A novel model
architecture called personalized transformer memory (PersonalTM) was
proposed to effectively involve personalized features given a transformer-
based encoder-decoder model on information retrieval tasks. An incre-
mental learning algorithm was proposed to continuously keep the model
up-to-date by incorporating streaming personalized data. A study was
conducted to perform data augmentation by utilizing GPT-2 to generate
text data, specifically focusing on producing utterances that are similar to
original data in both semantics and sentiment.

Several practical tasks in Social Media Analysis are also conducted in
this thesis: several language models were employed to assess the favorabil-
ity and hesitancy towards COVID-19 on tweets, analyzing their ideological
perspectives. Machine learning models were applied to analyze the dy-
namics of sexual violence and gender justice discourses across four social
media platforms.

vii

list of tables

2.1 Dataset statistics . 19
2.2 Classification accuracy (%) in terms of the leaf, mid-layer, and

root nodes with models trained on SCL, LI, LIUC, LIC, and
LISC on 20NewsGroups and DBPedia datasets. 21

2.3 Averaged inter- and intra-cluster L2 distances with SCL, LI,
and LISC. They measure the compactness and separation of
clusters, respectively. 25

2.4 (%). LP by using label embeddings as an initialized classifier
on 20NewsGroups. 29

2.5 Results with different label templates on 20NewsGroups. . . . 30
2.6 Results on 1-shot and 100-shot in supplement to section 2.7 . . 32

3.1 Results of baseline methods and PersonalTM. Note all baselines
and treatments are finetuned with the same training dataset. 43

3.2 Comparison with other personalization methods. precision
numbers are averaged reported values in [50]. 44

3.3 Results with prefix adaptor. 45
3.4 Evaluation on Zero-shot cases. 45
3.5 Ablation study with / without similarity measurement module,

which effectively selects useful information. 47
3.6 Examples where our proposed methods succeed or fail. #1

shows that all of the methods fail easily while there exist similar
documents. #2 shows when hierarchical loss improves perfor-
mance. #3 and #4 show when user identifier and contextual
personalized information improve performance, respectively.
The number string (e.g., 36165) indicates document id. 47

4.1 A constructed example from Reddit dataset 52
4.2 Batch learning method performance. 58

viii

4.3 Incremental embedding modeling performance. Histories are
encoded without and with their associated subreddits in 2nd
and 3rd column, respectively. 59

5.1 Linguistic features of patient interview transcripts 67
5.2 Performance of fine-tuning BERT on the original dataset . . . 73
5.3 Performance with training set augmentated by GPT-2 74
5.4 Performance with training set augmented by pairing utterances 74

6.1 BERT performance on the testset 77
6.2 Supervised machine learning results for three discourses . . . 79

ix

list of figures

1.1 A simple framework for contrastive learning 8

2.1 (a) Label hierarchy of the 20NewsGroups dataset. The root
node contains 7 classes. Each branch has multiple fine-grained
sub-categories. (b) t-SNE visualization of hierarchical label
embeddings encoded by BERT-base. 15

2.2 NodeAcc of DT with k-shot learning (a) 20NewsGroups (b)
DBPedia . 23

2.3 t-SNE visualization on 20NewsGroups with (a) bert-base, (b)
SCL, (c) LISC. Label representations are marked by appropri-
ately colored “×”. 25

2.4 Measure the sensitivity to different hierarchies in (a) nodeAcc
with different bottom-up label hierarchies ranging from 1-5.
(b) nodeAcc on labels grouped by different hierarchies. 26

2.5 The highest level parent node performance with different label
hierarchies. 31

3.1 The training workflow of PersonalTM model architecture, inte-
grating personalized features. 38

3.2 An overview of our proposed encoder-decoder architecture. A
similarity measurement is used to select relevant contextual
personalized information. f([p;q]) and f(h) are fed into higher
and lower decoder layers. Prefix-adaptor is applied and their
parameters are marked in yellow and pink. 38

3.3 P@1 at different document id positions with and without hier-
archical loss, respectively. The overall performance improves
with hierarchical loss, especially at the first several positions
by adding higher penalties to them. 43

4.1 Architecture of the proposed model 53

x

5.1 Data analysis workflow . 66
5.2 Distribution of HRQOL trajectories after preprocessing 71
5.3 ROC curves of PCS, MCS, and Avg_Thyca by fine-tuning BERT 73

1

1 introduction and background

1.1 Introduction
Text representation learning is a fundamental task in Natural Language
Processing (NLP) that aims to capture the rich semantic and contextual
information encoded in textual data. It involves transforming raw text into
numerical representations that machine learning models can easily process.
Effective text representations are crucial for various NLP tasks, such as
text classification, information retrieval, machine translation, question
answering, etc.

Traditionally, the learning of text representations relied on handcrafted
features and linguistic knowledge. These approaches involved engineer-
ing features like Word2Vec [25], bag-of-words [156], n-grams [28], and
syntactic structures, in order to capture relevant information. However,
these methods often suffered from limitations in capturing the complex
and nuanced nature of language, and the many contextual dependencies
that characterize human language.

In recent years, the advent of language models, particularly transformer-
based [124] models like BERT [33] and GPT [11], revolutionized text rep-
resentation learning. Language models are trained on large-scale corpora
and can learn powerful contextual representations of words, sentences, or
entire documents. By leveraging self-supervised learning techniques (e.g.,
masked language modeling (MLM), contrastive learning), these models
capture rich linguistic patterns and semantic relationships, enabling them
to generate high-quality and contextually-aware text representations.

However, it is essential to understand the limitations of language mod-
els in text representation learning. While they excel at capturing context
and semantics, language models often struggle with interpretability and
generalization to out-of-domain or low-resource scenarios. In this thesis,

2

we explore the advances in text representation learning facilitated by such
language models. We delve into the capabilities of language models in
capturing contextual information and their impact on downstream NLP
tasks.

1.2 Text Data Augmentation
Data augmentation is a commonly used technique when the size of a
training set is smaller than desired, a frequent issue due to the costs of
obtaining labeled data. It aims to increase the diversity of training exam-
ples without collecting additional data and to increase the generalization
capabilities of a model [39, 75, 5]. On the other hand, self-supervised
learning attracts many researchers in the last several years for its good
performance on representation learning by leveraging the large amounts
of unlabeled data [84, 87]. This chapter first introduces several existing
text data augmentation methods. Then we introduce several widely used
self-supervised learning techniques in NLP, with a focus on contrastive
learning.

Unlearnable Augmentation

Some popular data augmentation approaches in NLP aim to generate
label-invariant text by replacing words with their synonyms. It obtains
a ‘new’ expression while keeping the semantics of the text as similar to
the original data as possible. This method relies on the construction of
external dictionaries such as WordNet [95], which sorts the synonyms of
words according to their similarity [153]. Another approach is to rely on
rules to transform text without changing sentence semantics. For example,
[111] conducts replacements from expanded to abbreviated form and
inversely between a group of words and the corresponding abbreviation.
Similarly, dependency trees are used in [26] to generate new sentences.

3

For instance, "Sally embraced Peter excitedly" could be replaced by "Peter
was embraced excitedly by Sally".

Other research creates variety by adding a small amount of noise to the
original data without significantly affecting the semantics. Alternatively,
the utterances can be augmented by randomly swaping, deleting, inserting,
or substituting with strings that are not semantically close to the original
data. These methods make the altered text deviate from the original data.
They not only expand the amount of training data but can also improve
model robustness.

Easy data augmentation (EDA) is a widely used augmentation tech-
nique for boosting performance on text classification tasks [133]. It per-
forms synonym replacement, random swap, random insertion, and ran-
dom deletion on the word level. These techniques can be extended to the
sentence level as well. For instance, [90] divides tweets into two halves
and then randomly samples and combines the first and second halves of
tweets from the same classes. In this way, although the generated data may
be ungrammatical and/or nonsensical, they can still preserve emotional
semantics.

Instead of modifying discrete words, the aforementioned methods can
be applied at the embedding level [129, 94]. For instance, the original
words can be replaced with the words closest to them in the vector space
by using pretrained word vectors (such as Glove, Word2Vec, and FastText,
etc.) Specifically, each word vector may be replaced with one of its k-
nearest neighbor vectors or be replaced by a vector which has close cosine
similarity.

These methods are easy to implement but limit the scope of replace-
ment. It may also cause the ambiguity or even completely change the
sentence semantics if too many replacements occur. Furthermore, these
methods are not trainable.

4

Augmentation via Machine Translation

Some methods attempt data augmentation by using non-pretrained sequence-
to-sequence models using the idea of back translation [140, 155]. For exam-
ple, it is possible to translate the original document into another language,
and then translate back, thus obtaining a new text in the original language
(which hopefully preserves a significant amount of the meaning). Thus
machine translation methods do not directly replace individual words
but rather rewrite the complete sentence in an automated way. For in-
stance, Google’s cloud translation API [26] is a popular tool that performs
language translation. This method often returns correct grammar and
unchanged semantics but the fixed machine translation models may have
poor controllability and limited diversity.

Mixup Augmentation

Mixup augmentation, which interpolates embedding vectors to generate
new samples, is a promising method proposed recently [150]. The main
idea of Mixup is simple: given two labeled points (xi,yi) and (xj,yj),
where y can be one-hot representation of the label. When using mixup,
the labels are no longer represented as one-hot vectors, but rather as
continuous probability distributions. New training samples (x ′,y ′) can
be created by linear interpolating these two points as shown in (1.1) and
(1.2), where λ ∈ [0, 1].

x′ = λxi + (1 − λ)xj (1.1)

y′ = λyi + (1 − λ)yj (1.2)

Such linear interpolation of the pixels of random image pairs (and their
labels) has shown superior performance in enhancing the performance of
image classification models [70, 52, 123, 70, 145, 126, 38]. Some research
has extended mixup data augmentation to the field of NLP. [49] proposed

5

wordMixup and senMixup: one performs interpolation on each dimension
of each of the words in a sentence and another on a pair of sentence
embeddings. MixText [17] creates a large amount of augmented training
samples by interpolating text in a hidden space. Mixup-Transformer [119]
integrates mixup interpolation into transformer-based language model
such as BERT.

These methods perform interpolation in a linear manner, which sig-
nificantly limits the space of the synthetic samples and consequently its
regularization effect. To deal with this limitation, [49] proposed Nonlinear
Mixup, which utilizes nonlinear interpolation policies for both the input
and label pairs. But unlike wordMixup, where all the words share the
same scalar mixing policy λ, non-linear mixup deploys a separate mixing
policy for each of the dimensions of each of the words in a given sentence.
In addition, [144] proposed SSMix, a novel mixup method where the
operation is performed on input text rather than on hidden vectors. It
synthesizes a sentence by replacing words in span-level and keeps most
discriminative tokens in the mixed text using saliency scores, which mea-
sure how each portion of the data (tokens) affects the final prediction. In
their experiments, they compute the gradient of classification loss L with
respect to the input embedding e, and use its magnitude as the saliency.
They applied the L2 norm to obtain the magnitude of a gradient vector,
which becomes a saliency measure for each token.

These mixup data augmentation methods have often shown superior
model performance in low resource settings. This interpolation-based aug-
mentation strategy is domain independent and requires little additional
computational cost. It also improves model robustness and is capable of
online learning. However, the semantics or syntax may be distorted after
mixing. There is also limited diversity for each of the mixup methods.

6

Augmentation by Language Models

Pretrained language models, especially the large scale transformer-based
models have been widely used in recent years [65]. The training of most
pretrained language models (PLMs) is based on self-supervised learning,
which utilizes auxiliary tasks to mine information from massive unsu-
pervised data sets, and to learn valuable representations for downstream
tasks. For instance, BERT pretraining relies on masked language modeling
(MLM) and often achieves superior performance. In the MLM objective,
some input tokens are randomly masked by the special token [MASK],
and the model attempts to reconstruct the corrupted tokens given their
left and right context. This paradigm can also be used for generating a
variety of new sequences by filling these masks as proposed by [89]. This
method alleviates the problem of ambiguity since MLM considers the
entire context. Moreover, to generate sentences that are more compatible
with a given set of labels, [137] proposed conditional BERT, which alters
BERT segmentation embeddings (The vanilla BERT combines word em-
beddings, position embeddings, and segmentation embeddings to form
the representations) to label embeddings. These methods do not rely
on task-specific knowledge and are applicable to any supervised natural
language tasks.

Another approach is to exploit a generative pretrained transformer
model such as GPT-2, which is a powerful language model pretrained
on massive text. It has been widely used to produce coherent sentences
and paragraphs. [2] and [72] use GPT-2 to generate sentences by first
fine-tuning the model on the original data. Then the generated sentences
are filtered by a classifier to encourage the data quality. Similarly, [108]
propose label-conditioning GPT-2 to generate augmented data.

7

1.3 Contrastive Learning
The discrete nature of natural language makes data augmentation chal-
lenging to generate effective label-preserving transformations for text
sequences that can improve model generalization. On the other hand, self-
supervised pretraining of transformer-based language model has become
the primary method for learning textual representations from large-scale
unlabelled corpora. However, pretraining such as MLM at the token
level does not explicitly learn semantics at the sequence level. To address
these issues, the contrastive self-supervised learning (CSSL) has shown
promising results in learning sequence representations in an unsuper-
vised way [61]. The learned sequence representations can be then used
on down-stream tasks such as classification or clustering. Multiple previ-
ous work [69] has effectively demonstrated that this learning mechanism
significantly closes the performance gap between supervised learning and
unsupervised learning.

The goal of contrastive learning is to learn an embedding space in
which similar samples are close to each other and dissimilar ones are far
apart. Fig.1.1 shows a simple framework for contrastive learning [20]. The
idea of CSSL is to first create augments x̃i and x̃j of the original sample x.
These augments have the same label as the original data. Two augments
are considered to be a positive pair if they are created from the same
original example and a negative pair otherwise. f(.) is called the encoder
and g(.) is called the projector. The object is to distinguish augmented
instances that originate from the same sentence from augmented instances
that originate from different sentences. CSSL focuses on learning common
features between positive pairs and distinguishing the dissimilarity of
negative pairs. The objective function of CSSL is shown in Eq. (1.3). Since
the first step of contrastive learning is to create augments of the original
samples, any of the aforementioned data augmentation methods can be
applied.

8

Figure 1.1: A simple framework for contrastive learning

li,j = −log exp(sim(zi, zj)/τ)∑2N
k=1 1[k̸=i]exp(sim(zi, zk)/τ)

(1.3)

Several papers have used contrastive learning in NLP [112]. For in-
stance, [37] proposed CERT, which pretrains BERT using contrastive self-
supervised learning at the sentence level. In their experiments, back-
translation on original sentences is used to construct positive pairs. CLEAR
[139] combines a word-level MLM objective with a sentence-level CL ob-
jective to pretrain the language model. They use augmentations including
word and span deletion, reording, and substitution. Similarly, DeCLUTR
[44] constructs positive augments combining text segments that overlap
or are adjacent to the original text segment. Qu et al. [107] proposed
CoDA, which synthesizes diverse and informative augmented examples
by integrating multiple transformations such as back-translation, c-BERT
word replacement, cutoff, mixup, and adversarial training. They further
stack different label-preserving transformation in a sequential manner.
Moreover, they leverage a contrastive learning objective and add a penalty

9

between augmented samples xi and other training instances xj(j ̸= i)

to better utilize the augmented examples. COCO-LM [93] employs an
auxiliary language model ELECTRA, to mask-and-predict tokens in origi-
nal text sequences. [40] proposed simCSE, a simple contrastive learning
framework, which presents an unsupervised approach that predicts the
input sentence itself using dropout to create augmented sentences.

1.4 Personalization
Improving text representations with personalized features aims to enhance
the quality and relevance of generated or represented text by incorporating
individualized information such as user demographics, preferences, or
contextual factors. Text representations can be tailored to specific users,
creating more personalized and engaging content. The personalized infor-
mation can enhance content recommendations, adapt the language style,
extract user-specific information, and even consider emotional factors,
with the goal of providing a more tailored and satisfying user experience.

1.5 Outline of this Document
The following chapters introduce the innovation of methodologies and
applications. Chapter 2 introduces our work of learning label hierarchy
with supervised contrastive learning. Chapter 3 and 4 introduce our work
on personalization. Chapter 5 presents our work on two augmentation
methods. Chapter 6 details some practical work in collaboration with
SMAD/CCCR by applying ML/NLP methods to real-world problems.
Chapter 7 talks about future directions.

10

2 learning label hierarchy with supervised
contrastive learning

2.1 Overview
This chapter proposes modifications of supervised contrastive loss func-
tions to include information about label hierarchies. The label information
is also used as class centers; thus, additional terms can be added to the
contrastive loss which include differences between instances and centers.
These help to improve the representations further. The material in this
chapter has been submitted to EMNLP 2023 [83].

2.2 Abstract
Supervised contrastive learning (SCL) frameworks traditionally treat each
class as independent and thus consider all classes as equally important. It
neglects the scenario when a semantic or sentiment label hierarchy exists,
which is common in the real world. This paper introduces a family of
Label-Aware SCL methods (LA-SCL) that leverage hierarchical and seman-
tic relationships between class labels. Specifically, our LA-SCL methods
automatically adjust the distance between instances based on the prox-
imity of their label similarities. It reduces the distance between instances
when they have similar high-level semantics or are under the same branch
of one category. Another variation further improves intra-cluster com-
pactness and inter-class separation by introducing each instance closer to
its corresponding center, which is represented by label features. These
modifications allow the algorithm to learn more discriminative feature
representations with clearer decision boundaries. Moreover, the learned
label embedding matrix can be directly used as a nearest neighbor clas-
sifier and applied to linear mapping. Experiments on two datasets show

11

that the proposed LA-SCL work well on multi-class text classification,
outperforming the baseline supervised approaches on full datasets and
few-shot cases.

2.3 Introduction
Self-supervised contrastive learning (SSCL) aims to learn generalized and
discriminative feature representations with unlabeled data, which can be
exploited using data augmentation techniques—two augments of the same
data point are almost surely in the same class; these form the positive pairs.
Different samples, with high likelihood, come from different classes, and
hence form the negative pairs [20, 60]. The loss function of the algorithm
is designed to draw positive pairs closer and to drive negative pairs apart.

Instance-wise contrastive learning creates an embedding space where
instances are well-separated on a uniform sphere [128]. However, it does
not consider semantic structures within the data since any two selected
instances may be treated as a negative pair. This can be mitigated by su-
pervised contrastive learning (SCL) that constructs positive pairs from the
same class and negative pairs from different classes, thereby incorporating
semantic information contained in the labels of the data. This narrows the
gap between supervised and self-supervised learning [48].

These methods consider each class to be independent and consider
all classes to be of equal importance, thus treating the problem as a flat
multi-class classification problem without awareness of any relationships
among the labels. However, in the real world, it is natural that class labels
may relate to each other in complex ways, in particular, they may exist in
a hierarchical structure [92, 31, 97, 125, 51].

Within a data hierarchy, different sub-categories under the same branch
tend to be more similar than those from different branches, since they
will tend to have similar high-level semantics, sentiment, and structure.

12

For example, “Animal, Corgi” is more similar to “Animal, Beagle” than
either is to “Fruits, Apple” and this similarity should be reflected in the
embedding representations. Thus the hierarchical structure of the labels
and the shared semantics of the class labels suggest that learning methods
may be enhanced if the learning mechanism can be made aware of the
relationships among the labels. This chapter explores several ways of
exploiting these hierarchical relationships between labels; representation
learning of SCL with label hierarchical information is still under-explored.

Zeng et al. [146] augment the classification loss by the Cophenetic
Correlation Coefficient (CPCC) [117] as a standalone regularizer to maxi-
mize the correlation between the label tree structure and class-conditioned
representations. Inspired by this work, we propose to augment the SCL
method to include hierarchical label information. Since this incorporates
information about the relationships among the labels, we call this label-
aware SCL, abbreviated LA-SCL. In our methods, the hierarchical label
names or brief descriptions of the labels are encoded into embedding
vectors, which are used as learnable label representations. The similarity
between the label representations is calculated to form the learnable label
similarity matrix, which is used to scale the temperature in the contrastive
loss function in LA-SCL. The goal is to encourage samples under the same
branches to cluster more closely while driving apart samples with labels
that are more distant in the hierarchy.

In addition, we also propose to use label representations as the center
of the sentence embeddings in LA-SCL. This is inspired by the approach
of Li et al. [78] that proposes a ProtoNCE loss, a generalized version of
the InfoNCE loss [100]. This learns a representation space by encour-
aging each instance to become closer to an assigned prototype such as
the clustering centroid. In this way, the underlying semantic structure of
the data can be encoded. Other related work considers semi-supervised
learning and pseudo-labeling [36, 148, 143], which provide other ways to

13

address this issue. Rather than encouraging instances to move closer to
the centroid of the clusters, we introduce learnable label representations
into the ProtoNCE loss. Since the dimension of these label representations
is the same as the linear classifier, we show that it can be applied directly
to the downstream classification without further training.

The contributions of this chapter may be summarized as follows:

• LA-SCL augments the SCL to include information about the label
hierarchy.

• It improves intra-cluster compactness and inter-cluster separation by
reducing the closeness between the instance and its corresponding
center, a label representation in our case.

• It learns more discriminative feature representations and contributes
to the performance gain on downstream multi-class classification.

• The learned label embedding matrix can be used as a nearest neigh-
bor classifier and directly applied to linearly map.

2.4 Background
Problem Setup For a supervised multi-class classification task, a labeled
dataset D = {(xi,yi)}

N
i=1 consists of N examples from a joint distribution

PXY, where X is the input space of all text sentences, Y = {1, ...,C} is the
label space, and C is the number of classes. The goal of representation
learning is to use D to learn a feature encoder fθ : X → Z that encodes a
text sentence to a semantic sentence embedding in a feature space Z. This
allows us to measure the pairwise similarity between two text sentences
xi, xj by a similarity function sim(xi, xj), which first projects xi and xj

to Z, i.e., zi = fθ(xi), and compute a distance between two sentence
embeddings in Z. Moreover, learning meaningful embeddings facilitates

14

the learning of a classifier gϕ : Z → Y that maps learned embeddings to
their corresponding labels.

Supervised Contrastive Learning (SCL) A major thread of representa-
tion learning approaches focuses on supervised contrastive learning [69]
that encourage embedding proximity among examples in the same class
(as implemented in the exp term in the numerator of Eq. (2.1)) while
simultaneously pushing away embeddings from different classes (as im-
plemented in the sum of exp terms in the denominator of Eq. (2.1)). Specif-
ically, for a given example (xi,yi), we denote P(yi) = {xj|yj = yi, (xj,yj) ∈
D} as the set of sentences in D having the same label as xi. Thus, the SCL
loss is computed on D as:

ℓSCL(xi,yi) = Exj∼P(yi) log
exp(sim(xi,xj)

τ
)∑

k/∈P(yi)

exp(sim(xi,xk)
τ

)

Lτ(D; θ) = E(xi,yi)∼D ℓτ(xi,yi), (2.1)

where |P(yi)| denotes the size of P(yi), and τ indicates a specific loss
function used to compute the empirical expected loss over a dataset D.
The fixed hyper-parameter τ is the temperature that adjusts the embedding
similarity of sentence pairs from any two classes.

2.5 Method
This section describes our proposed label-aware supervised contrastive
learning objectives for representation learning.

Overview: Our method begins by computing initial label representa-
tions from a label hierarchy by a pre-trained language model. These label

15

representations are used to learn a label similarity matrix that captures
the label hierarchy information in Section 2.5. In the embedding space,
we hypothesize that sentences from the same class or semantically sim-
ilar classes are closer to each other when compared to sentences from
semantically different classes. Subsequently, our method utilizes the label
representations and similarity to instantiate three variants of label-aware
supervised contrastive learning objectives in Section 2.5.

Label Hierarchy Representations

(a) (b)

Figure 2.1: (a) Label hierarchy of the 20NewsGroups dataset. The root
node contains 7 classes. Each branch has multiple fine-grained sub-
categories. (b) t-SNE visualization of hierarchical label embeddings en-
coded by BERT-base.

A label hierarchy in a labeled dataset refers to a hierarchical tree struc-
ture that defines an up-down, coarse-to-fine-grained structure with the
corresponding labels being assigned to their corresponding branches. We
define a label hierarchical tree as T, with V being the set of intermediate
and leaf nodes. Each leaf node vc is a class label c ∈ Y, and is associated
with a set of examples in the class c, i.e., P(c), where P(c) ∩ P(c ′) = 0,

16

∀c ̸= c ′. Each parent node is the high-level category of its children nodes.
The leaf nodes can have different depths in T, which refers to the distance
between each leaf node vc and the root node v0.

Figure 2.1a shows a tree-structured label hierarchy in the 20News-
Groups dataset [10], which has 20 classes in 7 high-level categories. Let
Li be the i-th layer of T. Sentences can be first categorized into the 7 major
classes: “Computer, Recreation, Science, Sociology, Talk, Alternative, Misc”
at the L1 level. Moving forward to the subsequent levels, each category can
be further split into various fine-grained groups. For example, samples in
“Computer” can be splited into four fine-grained groups: “Graphics, OS,
System, Windows.”

We exploit the hierarchical relationships among the classes and the
importance of the labels by leveraging the textual description of the labels.
To achieve this, for a given leaf node of class c ∈ Y, we collect its ancestor
nodes all the way to its highest level at L1, and combine their labels into a
text sequence. For instance, for a leaf node of “Hardware” at L5, we collect
the descriptions of its ancestor labels as “Computer, System, IBM, PC,
Hardware”, as shown in T in Figure 2.1a. We then use a template to fill in
this combined label sequence to construct a sentence uc, which is further
fed into a pre-trained language encoder fθ to obtain a label representation
denoted as uc = fθ(uc) for the label c ∈ Y. As we reuse the language
encoder fθ for embedding text sentences in D, the label representations
are also changing during training. To stabilize the label representations,
we propose to reuse the label representations for several iterations, thus
updating the labels less frequently than the parameters of the model.

With the label representations for all classes U = [u1, . . . ,uC], a pair-
wise similarity measurement is applied to compute a label similarity matrix
W ∈ RC×C, where each entry is the similarity score between a label c and
another label c ′, i.e., wcc ′ = sim(uc,uc ′). Note that the label embedding
matrix U ∈ Rd×C can be used as a nearest-neighbor classifier, where it can

17

be directly applied to linearly map an input sentence embedding xi ∈ Rd

into the label space Y. Therefore, we can use U as a linear head for the
downstream classification without further training.

Figure 2.1b shows the t-SNE [91] visualization of 20 label embeddings
on the 20NewsGroup data set extracted by a BERT-base model. Differ-
ent high-level and lower-level classes are presented by different markers
and colors. We find that labels from the same coarse-grained classes are
clustered closer to each other. Since clustering properties exist, these la-
bel representations will be utilized as additional information to scale the
importance of different classes as introduced in the next section.

Label as Class Centers

The label embeddings are also used as class centers to augment the loss
in Eq. (2.1) by adding another loss term ℓic performing instance-center-
wise contrastive as shown in Eq. (2.2). This loss term regards the label
sequence uc constructed for the label c as the center of the sentences from
this class. Thus, for each input instance xi, we can construct a positive pair
between the instance and its center as (xi,uyi

), and similarly construct
negative pairs by comparing the instance xi with the other label sequences,
(xi,uyk

), ∀yk ̸= yi. Note that this objective is to pull each sentence closer
to its center and further apart from the other centers.

ℓic(xi,yi) = log
exp(sim(xi,uyi

)

τ
)∑

k/∈P(i) exp(sim(xi,uyk
)

τ
)
. (2.2)

Label Scaling

To introduce the similarity between classes, the key idea is to use the label
similarity matrix W to scale the temperature τ of the updating process
by weighting different sample updates according to a measure of their
distance or proximity to the labels. Specifically, the negative example pairs

18

in SCL are weighted by their label similarity, performing scaled instance-
instance-wise contrastive. The final loss over a dataset D is the same form
as Eq. (2.1) with the individual loss ℓτ replaced as follows:

ℓsii(xi,yi) = Ej∼P(yi) log
exp(sim(xi,xj)

τ
)∑

k/∈P(yi)

exp(sim(xi,xk)
τ·sik

)
, (2.3)

where we denote sik = wyi,yk
as the label similarity between yi and yk

extracted from the matrix W for notation simplicity.
Eq. (2.3) scales the similarity between negative pairs by applying

their label similarity. Consider two samples xi and xk from different
classes yi and yk. The similarity sik tends to be greater if yi and yk

have the same parent category. Thus, it applies a higher penalty to the
negative pairs when they are from different coarse-grained categories, so
the learning update tends to push them further apart. Similarly, if applies
a lower penalty to the negative pairs when they are from the same coarse-
grained categories but in different fine-grained classes. In this way, the
label hierarchical information is introduced to assign different penalties,
reflecting the similarities and dissimilarities between classes.

Similarly, the temperature in ℓic can be scaled by the label similarity
sik, and thus we can construct a scaled instance-center-wise contrastive
loss term ℓsic in Eq. (2.4).

ℓsic(xi,yi) = log
exp(sim(xi,ui)

τ
)∑

k/∈P(i) exp(sim(xi,uk)
τ·sik

)
. (2.4)

Label-Aware SCL Variants

Based on the aforementioned methods, we propose the following four
label-aware SCL (LA-SCL) family variants, depending on how the label
information is incorporated.

19

Label-aware Instance-to-Instance (LI) We call the first variant the instance-
to-instance that weights the negative example pairs in SCL by their label
similarity as shown in Eq. (2.3).

Label-aware Instance-to-Unweighted-Center (LIUC) The second vari-
ant, which we call the instance-to-unweighted-center denoted ℓLIUC, which is
the combination of the vanilla SCL loss ℓSCL and the unweighted ℓic.

ℓLIUC = ℓSCL + ℓic (2.5)

Label-aware Instance-to-Center (LIC) We call the third variation the
instance-to-center and is denoted as follows:

ℓLIC = ℓsii + ℓic (2.6)

Label-aware Instance-to-Scaled-Center (LISC) We call the fourth vari-
ation the instance-to-scaled-center denoted ℓLISC as follows:

ℓLIC = ℓsii + ℓsic (2.7)

2.6 Experimental Settings

Dataset train/val/test train/val/test classes
(original) (LP) (L1/Ln)

20News 10,183/1,131/7,532 2,263/2,263/7,532 7/20
DBPedia 238,533/2,409/60,794 12,048/12,048/60,794 9/70

Table 2.1: Dataset statistics

Datasests 20NewsGroups [10] and DBPedia [3] are used. We leverage
the label structures and textual labels originally provided. For DBPedia,

20

we only take the first two levels of the label. The statistics is shown in
Table 2.1. We randomly pick up samples from the original training set to
construct LP data.

Sentence Template for Labels For 20NewsGroups and DBPedia, we use
the following sentence templates to fill in labels.

• 20NewsGroups: “It contains {labeli} news.”

• DBPedia: “It contains {labeli[L2]} under {labeli[L1]} category.”

Implementation Details We use bert-base-uncased provided in hugging-
face’s packages [136] as our backbone models. The averaged word embed-
dings of the last layer are used as feature representations. For training, we
used learning rate 1e-5 with linear scheduler and weight decay 0.1. The
model is trained with 20 epochs and validated every 256 steps. The best
checkpoints were selected with a patience of 5 according to evaluation met-
rics. For LP, we use a learning rate of 5e-3 with a weight decay of 0.01. The
classifier was trained with 10 epochs and validated after each epoch. The
batch size and max sequence length are 32 and 128, respectively, across all
the experiments. The temperature τ is 0.3. During training, we re-encode
the label embeddings every 500 steps.

Evaluation Metrics We report the following evaluation metrics: (1)
classification accuracy on the leaf node called nodeAcc (2) classification
accuracy on the parent node of the leaf, which is called midAcc, (3) clas-
sification accuracy on the root node, which is the highest level of each
branch and is called rootAcc.

21

2.7 Results and Analysis

Main Results

Dataset Objective direct test linear probe

nodeAcc midAcc rootAcc nodeAcc midAcc rootAcc

20NewsGroups

SCL 54.44 61.74 69.41 65.64 72.54 78.98
LI 61.01 67.19 73.09 67.59 74.04 79.82

LIUC 61.09 69.62 79.17 66.42 73.66 79.67
LIC 69.40 75.64 81.05 68.32 75.21 80.87

LISC 69.45 75.90 81.08 68.47 75.33 81.07

DBPedia

SCL 2.42 – 38.26 96.00 – 96.79
LI 2.84 – 31.25 96.14 – 96.80

LIUC 91.34 – 94.65 96.00 – 96.79
LIC 94.85 – 96.30 96.52 – 97.25

LISC 95.52 – 97.06 96.71 – 97.35

Table 2.2: Classification accuracy (%) in terms of the leaf, mid-layer, and
root nodes with models trained on SCL, LI, LIUC, LIC, and LISC on
20NewsGroups and DBPedia datasets.

LA-SCL beats SCL without further training. Table 2.2 shows the
performance on downstream multi-class classification tasks with differ-
ent objectives. The experimental results are reported with linear probes
(LP) and with direct testing (DT). For LP, we applied a randomly initial-
ized linear layer as a classifier, and it was trained on a small number of
labeled samples with the encoder frozen. DT refers to applying the label-
representative parameters as the classifier without any further training, as
in Section 2.5. Specifically, the test sentence embeddings are multiplied
by the parameters representing the label embedding matrix to obtain the
probability scores. For SCL, we first used the trained model to extract
the label embedding matrix and then applied it to DT. For DBPedia, since
there are two layers for each of its labels, there is no midAcc.

From Table 2.2, all four LA-SCL objectives outperform SCL on DT in
terms of the accuracy of the leaf node, mid-layer, and root level metrics.
Compared to SCL, LI improves the accuracy by effectively penalizing the

22

importance between classes on 20NewsGroups and to a lesser extent on
the DBPedia, which is slightly better than chance. This suggests the perfor-
mance gains are more beneficial on finer-grained hierarchies. Moreover,
compared to SCL, the additional contrastive loss between instance and
their respective centers introduced by LIUC also induces performance
gains, especially on DBPedia. Samples within each cluster move closer
and gather around the cluster centers.

Furthermore, LIC contributes to a significant improvement by gener-
ating better label-representative parameters. Besides grouping similar
groups together by introducing a weight matrix to the instance-wise con-
trastive learning loss, LIC drives instances closer to their centers. In con-
trast, LISC, by weighing only the class centers, provides only a marginal
improvement because it only introduces small adjustments to the feature
space (when compared to LIC).

In most cases, LP can enhance the performance compared to DT, while
maintaining a comparable performance across different objectives. The
performance gain introduced by LIC and LISC is substantial enough to
narrow the performance gap between DT and LP. In particular, DT per-
forms better than LP on 20NewsGroups, indicating the creation of better
feature representations.

Few-Shot Cases

LISC/LIC work well on few-shot cases. We also conduct experiments
with a k-shot setup, with k=1 and k=100. To be specific, we take 1 and 100
sentences from each class to use as a training set. The validation and test
sets remain the same. NodeAcc with results on direct testing experiments
are shown in Figure 2.2, and the accuracies are summarized in Table 2.6 in
Appendix 2.10.

We can observe similar improvements under few-shot cases by apply-
ing LA-SCL. Notably, LIC, LIUC, and LISC, which incorporate additional

23

(a) (b)

Figure 2.2: NodeAcc of DT with k-shot learning (a) 20NewsGroups (b)
DBPedia

contrastive terms between instances and centers, work surprisingly well
with 100-shot, especially on the DBPedia dataset, as shown in Figure 2.4b.
It significantly improves performance compared to SCL and LI 100-shot
achieves comparable performance to the full setup with a huge reduction
of the training set size from 0.23M to 7,000. The computational cost is also
decreased accordingly.

Incorporating a label similarity matrix to introduce weights between
classes has a limited impact on DBPedia, as observed from the marginal
improvement achieved by LISC compared to LIC and LIUC. SCL and LI
also exhibit a similar pattern. Compared to their performance on 20News-
Groups, in terms of the improvement introduced by LI compared to SCL,
and the improvement introduced by LISC, LIC compared to LIUC, a fine-
grained hierarchy that captures the intricate relationships between classes
would likely be more beneficial.

Visualization

LISC improves intra-cluster compactness and inter-class separation. Fig-
ure 2.3 shows the scatter plot of sentence and label embeddings, marked by

24

dots and Xs respectively, and colored by class. We keep the distribution the
same as the original training set. Figures 2.3a to 2.3c show the embeddings
from bert-base, SCL, and LISC, respectively. In Figure 2.3a, sentences from
different classes are mixed and it is hard to find clear decision boundaries.
Compared to the sentence embeddings, the label embeddings are grouped
in a smaller space around the top left corners of Figure 2.3a.

In Figure 2.3b, after training with SCL, each cluster is treated individu-
ally and independently with each other by being pushed apart from one
another. Although the feature space becomes more discriminative, classes
with similar semantics are not grouped together and are often quite distant
from each other. Additionally, the model captures semantic information
associated with the labels, enabling it to understand the meaning and
context behind each label. However, some labels are positioned close to
one another, making it challenging to distinguish instances based solely
on their embeddings. For example, observe the overlap between the label
embedding representing “talk, religious, misc” and the embedding repre-
senting “talk, politics, misc.” This proximity poses difficulty in accurately
differentiating between the two labels solely based on their embeddings.

Although SCL successfully captures semantic information and sep-
arates clusters, it encounters limitations when dealing with classes that
share common themes or contexts. It can lead to clusters with similar
themes being positioned far apart from each other and label embeddings
that overlap one another. These issues can be mitigated by the proposed
LISC. As shown in Figure 2.3c, by applying LISC, the clusters belonging
to the same high-level classes are brought closer to each other while being
separated from clusters of different classes. To illustrate this, consider
samples under the high-level class “recreation” depicted in green. Initially,
in Figure 2.3b, these sub-categories are widely dispersed. But in Figure
2.3c, the four sub-categories of “recreation” have become grouped close to
each other. This shows that penalizing the weights between classes with

25

the label similarity matrix effectively guides the model to bring related
sub-categories together. As a result, it facilitates clearer decision bound-
aries and improves the representation and organization in the embedding
space.

(a) (b) (c)

Figure 2.3: t-SNE visualization on 20NewsGroups with (a) bert-base, (b)
SCL, (c) LISC. Label representations are marked by appropriately colored
“×”.

Method IntraCluster InterCluster
SCL 14.88 16.17
LI 14.72 16.69

LISC 13.91 18.04

Table 2.3: Averaged inter- and intra-cluster L2 distances with SCL, LI,
and LISC. They measure the compactness and separation of clusters,
respectively.

Table 2.3 calculates the intra- and inter-cluster distances to measure the
average compactness of the clusters and to measure how far apart the clus-
ter are. We use averaged instance-pairwise and averaged center-pairwise
L2 distances to be the intra-cluster and inter-class distances, respectively.
Smaller intra-cluster distance implies that data points within a cluster are
closer to each other. Meanwhile, the clusters are well-separated with a
larger inter-cluster distance. Together, these indicate a tighter clustering

26

with clearer boundaries between clusters. Both LI and LISC reduce the
intra-cluster distance and increase the inter-cluster distance.

Sensitivity to Different Label Hierarchies

(a) (b)

Figure 2.4: Measure the sensitivity to different hierarchies in (a) nodeAcc
with different bottom-up label hierarchies ranging from 1-5. (b) nodeAcc
on labels grouped by different hierarchies.

Deeper hierarchical structures work better. This section assesses how
each leaf node label performs under different hierarchical structures. By
manipulating the layers of the labels, we can simulate different levels of
granularity. To achieve this, we construct different label hierarchies with
bottom-up levels ranging from 1-5 on 20NewsGroups. We append an
integer at the end of label strings to distinguish them if duplicates exist.
The performance is always measured on the leaf nodes.

We observe that the overall performance changes in response to dif-
ferent levels of label granularity, as shown in Figure 2.4a. The model can
better distinguish between closely related classes and make more pre-
cise predictions by providing more detailed and specific labels. Figure 2.4
grouped the performance based on the hierarchy of leaf nodes with depths
ranging from 2-5.

27

2.8 Related Work
Learning Label Hierarchy Hierarchical classification is a task involving
assigning samples to specific labels (most commonly fine-grained levels)
arranged in a structured hierarchy, which is typically represented as a tree
or directed acyclic graph, where each node corresponds to a label [106].
Recent work in the NLP field has suggested integrating the label structure
into text features by encoding them with a label encoder. For instance,
Chen et al. [14] embeds the word and label hierarchies jointly in the hyper-
bolic space. Zhou et al. [160] proposed a hierarchy-aware global model
to extract the label structural information. Zhang et al. [154] designed a
label-based attention module to extract information hierarchically from
the labels on different levels. Wang et al. [131] proposed a network to
embed label hierarchy to text encoder with contrastive learning. Chen et al.
[16] proposes a matching network to match labels and text at different
abstraction levels. These works propose various network structures aimed
at extracting the label hierarchies or merging them with sentence features.
Our LA-SCL, in contrast, exploits a small number of known labels and
their hierarchical structure in order to improve the learning process.

Ge [42] proposed hierarchical triplet loss, which is useful for finding
hard negatives by hierarchically merging sibling branches. A recent work
[152] introduces hierarchy preserving loss, applying a hierarchical penalty
to contrastive loss with the preservation of hierarchical relationship be-
tween labels on images. It used images under the same branch as positive
pairs. This approach differs from our LI in constructing penalties from
the hierarchical structure and applying it to contrastive loss.

Contrastive Learning Self-supervised contrastive learning is a repre-
sentation learning approach that maximizes agreement between aug-
mented views of the same instance and pushes different instances far
apart. Works on text data [113] constructing various augmentations on

28

text level [139, 141, 133, 44], embedding level [133, 49, 119, 123], and
via language models [93, 49, 24], etc. SCL effectively learns meaningful
representations and improves classification performance by combining
supervised and contrastive learning advantages. It was initially intro-
duced in SimCLR [20]. Other following works introduce novel insights
to improve the representation learning such as MoCo [55], BYOL [47],
and SwAV [13]. SCL has also been applied to NLP tasks such as sentence
classification [23], relation extraction [76, 19] and text similarity [147, 40],
where it has shown promising results in learning effective representations
for text [116, 69, 18].

2.9 Conclusion and Limitations
In this chapter, we have proposed the LA-SCL family to include infor-
mation about the label hierarchy. These introduce additional weights
in the SCL loss between negative example pairs by their label similarity
matrix constructed from the label features. They bring instances with
similar semantics or belonging to the same high-level categories closer
to each other. We also propose to use label representations as the center
of the corresponding sentence embeddings. This learns a representation
space by encouraging each instance to become closer to its centers and
thus the underlying hierarchical semantic structures can be encoded. The
learned labeled embedding matrix can be directly applied as the nearest
classifier. More discriminative feature representations are learned and
introduce performance gain on multi-class classification with full and
few-shot setups.

Our proposed methods have some limitations, particularly when deal-
ing with highly fine-grained label structures where most of the branches
exhibit significant similarities. In this case, it is challenging to distinguish
between label embedding similarities. Assigning weights to different

29

classes may not be effective since the similarity scores wcc ′ are almost iden-
tical. This hinders the ability to accurately differentiate between classes
and further impacts the performance. Another limitation comes from
the common underlying issue of data. Bias can be learned by the model.
To mitigate this, debias techniques can be employed to ensure fair and
unbiased representation.

2.10 Appendix

LP with Label Embeddings

In the experiments of Section 5, we randomly initialized the parameters of
the classifier. An alternative is to use the pretrained label-representative
parameters as the linear head, and then to further train on the labeled
dataset used in the linear probe. Results on 20NewsGroups are shown
in Table 2.4. Comparing their performance to Table 2.2. Further tuning
the label embedding matrix on labeled samples with cross-entropy loss
impairs the performance with LI and LIUC. It achieves comparable or
slightly better performance in terms of LISC and LIC.

Objective nodeAcc midAcc rootAcc
LI 67.26 73.74 78.78

LIUC 64.42 68.08 78.45
LIC 68.99 72.90 80.75

LISC 69.15 76.00 81.40

Table 2.4: (%). LP by using label embeddings as an initialized classifier
on 20NewsGroups.

30

Templates Objective directly test
nodeAcc midAcc rootAcc

1

LI 61.35 64.63 76.62
LIUC 67.66 75.31 79.93
LIC 63.39 71.92 80.35

LISC 67.34 75.66 79.43

2

LI 66.62 73.43 78.98
LIUC 67.49 74.79 79.65
LIC 65.45 73.88 80.02

LISC 68.35 75.11 79.61

3

LI 65.43 72.29 78.52
LIUC 67.69 74.88 80.24
LIC 64.70 73.25 80.20

LISC 67.90 75.00 79.49

Table 2.5: Results with different label templates on 20NewsGroups.

Sensitivity on Different Label Templates

We explore the sensitivity of different label templates on 20NewsGroups
as an example. Other than the template used in section 2.6, we also use
the following templates

1. This sentence delivers {labeli} news under the category of {labeli[L1]}

2. Description of {labeli} by generating a sentence from ChatGPT, the
prompt given to ChatGPT is “Please generate a sentence to describe
{labeli} news.”

3. {labeli}: description of {labeli}

In 2nd template, we use ChatGPT to generate a sentence description
for each label. For instance, the description of “recreation,sport,hockey” is
“In the latest recreation and sport news, hockey enthusiasts are buzzing

31

Figure 2.5: The highest level parent node performance with different label
hierarchies.

with excitement as teams gear up for an intense season filled with thrilling
matches and adrenaline-pumping action on the ice.”

Individual Label Performance over Different Label
Hierarchies

This appendix assesses how each parent node label performs with different
hierarchical contexts. As shown in Figure 2.5, we measure the performance
on 6 parent nodes with models trained with different top-down numbers
of label hierarchies. Labels such as “misc” and “recreation” exhibit consis-
tently high performance across all hierarchies. Among them, “misc” only
has two levels with one branch and is easy to classify.

On the other hand, there may be labels that show a notable improve-
ment in performance as the hierarchy becomes more granular such as
“alternative”, “computer”, and “talk”. Among them, “alternative” only
has two levels with one branch. “computer” and “talk” categories benefit
from a more fine-grained hierarchy as the performance increase when the
hierarchical level goes deeper. These labels benefit from the additional
layers in the hierarchy, as the increased specificity enables the model to
capture their unique characteristics better.

32

For “science”, it has four leaf nodes corresponding to four sub-categories,
all on the second layer in the tree. That is the reason why the performance
jumps across layer 1 to 2 and remains stable afterward.

Comprehensive Few-Shot Cases Results

Dataset Objective directly test linear probe
nodeAcc midAcc rootAcc nodeAcc midAcc rootAcc

1-shot

20NewsGroups

SCL 16.89 22.81 42.06 58.68 66.60 74.97
LI 32.71 41.20 56.03 58.47 65.75 74.50

LIUC 33.43 41.66 57.32 58.30 65.53 74 .44
LIC 33.82 42.11 57.47 57.79 65.52 74.08

LISC 33.30 40.96 56.47 57.78 65.44 74.16

DBPedia

SCL 0.52 – 22.95 95.50 – 95.56
LI 1.45 – 20.9 94.62 – 93.69

LIUC 1.42 – 21.33 94.66 – 95.66
LIC 3.55 – 21.11 94.25 – 95.35

LISC 3.58 – 20.26 94.25 – 95.35

100-shot

20 newsgroups

SCL 49.47 58.26 65.59 62.97 69.95 76.86
LI 50.70 58.22 67.07 63.06 70.42 77.50

LIUC 54.73 63.09 75.05 64.23 71.38 78.09
LIC 63.52 70.83 78.21 63.21 70.17 76.95

LISC 63.54 70.88 78.48 64.49 72.34 78.61

DBpedia

SCL 0.06 – 25.45 96.03 – 96.69
LI 1.00 – 23.72 96.18 – 96.83

LIUC 84.45 – 88.10 95.55 – 96.69
LIC 93.13 – 94.48 95.80 – 96.61

LISC 93.19 – 94.63 95.78 – 96.61

Table 2.6: Results on 1-shot and 100-shot in supplement to section 2.7

This section includes the full results in supplement to section 2.7 shown
in Table 2.6.

33

3 personaltm: transformer memory for
personalized search

3.1 Overview
This chapter introduces methods to perform personalized information re-
trieval and search by using a large transformer-based generative language
model T5. This work first appeared in our paper [115]. We propose a novel
model architecture to effectively fuse personalized features with queries,
and thus improve the quality and relevance of retrieved documents. We
further improve the performance by proposing a hierarchical loss function
and applying prefix tuning for lightweight training.

3.2 Abstract
The Transformer Memory as a Differentiable Search Index (DSI) [122]
has been proposed as a new information retrieval paradigm, which aims
to address the limitations of dual-encoder retrieval framework based on
the similarity score. The DSI framework outperforms strong baselines by
directly generating relevant document identifiers from queries without
relying on an explicit index. The memorization power of the DSI frame-
work makes it suitable for personalized retrieval tasks. Therefore, we
propose a Personal Transformer Memory (PersonalTM) architecture for
personalized text retrieval. PersonalTM incorporates user-specific profiles
and contextual user click behaviors, and introduces hierarchical loss in the
decoding process to align with the hierarchical assignment of document
identifiers. Additionally, PersonalTM employs an adapter architecture to
improve the scalability for index updates and reduce computation costs
in comparison to the vanilla DSI. Experiments show that PersonalTM
outperforms the DSI baseline, BM25, fine-tuned dual-encoder, and other

34

personalized models in terms of precision at top 1st and 10th positions
and Mean Reciprocal Rank (MRR). Specifically, PersonalTM improves
p@1 by 58%, 49%, and 12% compared to BM25, Dual-encoder, and DSI,
respectively.

3.3 Introduction
In recent years, Information Retrieval (IR) has undergone substantial
progress owning to the resurgence of deep neural networks, with transformer-
based Language Models (LMs) playing a particularly significant role.
These models possess the capability of learning natural language repre-
sentations from vast amounts of data, contributing to the advancement
of IR [124, 33, 11, 110, 99, 43, 68]. Since the Dual Encoder (DE) approach
[158, 30] is unable to learn the deep interaction between queries and docu-
ments, several sequence-to-sequence frameworks have been proposed for
IR, which enable the improved generation of documents directly relevant
to the queries [120, 29, 122, 66, 163, 7, 58, 130, 73]. For instance, We-
bGPT proposes a method to answer long-form questions in a text-based
web-browsing environment by fine-tuning GPT-3 [98, 11], DSI utilizes a
transformer-based encoder-decoder network to generate a ranked list of
relevant document id [122]. The goal of DSI is to implicitly learn the rela-
tionship between the query document id, and between the document and
the document id, by encoding all information into the model parameters.
This framework simplifies the system architecture by utilizing a single LM,
and leverages the memorization ability of the transformer.

Meanwhile, personalized retrieval is becoming increasingly important,
aiming to refine queries and tailor retrieval results to specific preferences
of individual users [85, 149, 32, 165, 86, 162]. Numerous studies have
been made of personalized retrieval, demonstrating improvement in the
precision by incorporating user profiles and contextual history [77, 82].

35

For example, P-Click [6] reranks the documents based on a user’s clicks
for a given query, and SLTB [35] outputs personalized ranking list by uti-
lizing diverse clicked-based or topic-based features. RNN-based networks
are used in [41, 161] to extract short- and long-term user profiles from
personalized historical information and apply it to DE.

In this chapter, we enhance performance for personalized retrieval
by incorporating user identification, contextual history, and user click
behaviors into the transformer memory framework. Our method involves
a novel decoding architecture and applying hierarchical loss aligned with
the document id generation. Furthermore, we propose a flexible adaptor
strategy to facilitate retraining in the event of an index update. The main
contributions are:

• Compared with other personalized retrieval works, we utilize an
end-to-end LM to generate relevant document id given the query
directly.

• We leverage user identifiers and user-specific contextual data as
personalized features into the DSI architecture. Different features are
fed to different decoder cross-attention layers to effectively integrate
the contextual features without increasing trainable parameters.

• We apply a hierarchical loss function at the decoding stage to fur-
ther boost the performance aligned with the semantic hierarchical
document id assignment.

• We adopt the prefix adapter to learn the interaction between query
and contextual data. Model parameters and training time are re-
duced by 10x and 2x compared to fine-tuning, making it suitable for
practical deployment.

36

3.4 Proposed Methods
This chapter proposes a novel approach for personalized retrieval using
a personal end-to-end transformer memory (PersonalTM). This section
describes a model architecture that integrates the two personalized fea-
tures into the PersonalTM, with a hierarchical loss at the decoding stage to
enhance performance. Additionally, we implement relevant information
selection to optimize the utilization of contextual features and incorporate
a prefix-adaptor for more agile training.

PersonalTM model architecture integrating personalized
features

Given a query, we utilize a transformer-based encoder-decoder network
(such as T5) as the base structure to generate relevant document ids with
two types of additional personalized information: 1) user profiles such
as user identifiers; 2) personal context such as user browsing histories in
cookies. The model is trained to learn the relationships between the query
and document id, document and document id, as well as the query and
the personalized information.

As shown in Figure 3.1, let q be the query, p be static user identifier, d be
target document, and h be personal context feature. We concatenate p to q

into one sequence [p;q] so that p is attended to q by self-attention layers
in the encoder, so the model can learn the connection between this specific
user and his preferred d. p is a synthetic user identifier constructed for
each user by randomly selecting and concatenating k tokens from a BERT
tokenizer dictionary [96]. We use k = 4. h is user-clicked documents.

Instead of concatenating h to q, we design a decoding structure so
that they interact in the embedding space as shown in Figure 3.2 for the
following reasons: 1) it is not effective to concatenate h with q due to input
length limitations; 2) when there is more than one h, the concatenation

37

leads to information loss after truncation. To better use h since relevant
contextual information would be more useful, we propose two similarity
measurement modules, which are introduced in Section 3.4.

Let f be the encoder, we extract f([p;q]) and f(h) as shown in Figure 3.2,
and input them to the higher and lower decoder layers via cross-attention,
separately. Each feature representation is a vector with dimension n×l×d,
where n is the batch size, l is the max length of input sequence, d is the
feature dimension. Specifically, f(h) is input to the first decoder layer and
f([p;q]) is input to the remaining decoding layers. This allows h to be
integrated without adding additional layers or increasing the number of
trainable parameters of the model. Because information about the past
vanishes in left-to-right language models [127], the information injected
in the upper layers would have larger weights than that in the lower levels,
reflecting the different importance of [p;q] and h.

Multiple works have shown the effectiveness of the fusion of different
types of features at decoder layers via cross-attention [15, 21, 27, 22]. We
also experiment with another decoding structure that involves a fusion
layer to merge f([p;q]) and f(h), and feed this fused information to each
decoder cross-attention layer. Specifically, we extract f([p;q]) and f(h),
and concatenate these embeddings by [f([p;q]);f(h)]. An MLP layer con-
sisting of two linear layers is used to project [f([p;q]);f(h)] to the original
dimension aligning the decoder input. This way, query and personalized
information are fused, and are input into every decoder cross-attention
layer.

Transformer-based LMs have achieved state-of-the-art performance
on many tasks. Still, their overall capacity or trainable parameters are
prohibitively large for retraining, particularly for IR’s frequent index up-
dates. Previous work has proposed alternative lightweight model tuning
approaches such as prefix tuning [79, 56, 54, 142]. In addition to the adap-
tor’s superior performance on few-shot cases and its lower computation

38

Figure 3.1: The training workflow of PersonalTM model architecture,
integrating personalized features.

Figure 3.2: An overview of our proposed encoder-decoder architecture. A
similarity measurement is used to select relevant contextual personalized
information. f([p;q]) and f(h) are fed into higher and lower decoder layers.
Prefix-adaptor is applied and their parameters are marked in yellow and
pink.

and storage requirements, we demonstrate that it is a promising method
for personalization. By injecting additional continuous learnable parame-
ters into each transformer layer, we achieve the updated model using the
prefix adaptor. The training speed is thus doubled since only the newly
injected parameters are updated and the original LM is frozen during
training. The keys and values of the attention head in each self-attention
and cross-attention layer are prepended with randomly initialized param-
eters. As shown in Figure 3.2, the newly injected prefix parameters are

39

marked yellow and pink.

Hierarchical loss

Through semantic clustering, we assign each document a unique document
id, similar to [122]. For instance, any country music lyrics and country lyrics
tabs chords for country music fan should have closer or even the same high-
level clusters because they have similar meanings. However, decoding
the document id by digit has the problem of accumulated errors. To
leverage the semantic hierarchy of the document id and penalize more
severe semantic retrieval errors, we apply an additional hierarchical loss
based on the document id hierarchy at the decoding steps. Therefore,
prediction error on the first several digits in the document id (top-level
clusters) will have a higher impact than lower digits (lower-level clusters)
because a such error will end up with documents having different topics
with the query.

The overall loss function we use is shown in Eq. (3.2), where the first
term l0 refers to cross-entropy loss as shown in Eq. (3.1)

l0 = cross-entropy(logits, labels) (3.1)

l = l0 +wi · l0;
∑
i

wi = 1,w1 > w2 > . . . ⩾ wn−1 ⩾ wn (3.2)

The second term in Eq. (3.2) refers to the hierarchical loss. Specifically,
we multiply each digit of the original loss with a scalar wi, by which
different penalties are applied to different positions in the document id,
modulating their importance accordingly. We apply higher weights to
higher-level positions as shown in Eq. (3.2).

40

Relevance denoise for personal context

Intuitively, only relevant personal context is useful because it implicitly
increases the weights on tokens that imply user’s preference. In contrast,
irrelevant context introduces noise and thus can lead the model to incor-
rect predictions. For instance, given an incoming query python running
environment. Among this user’s browsed history, some of them (e.g. python
programming) are relevant, while some (e.g. what do pythons eat or country
music) are irrelevant to this query. Our experiment has demonstrated
that relying purely on a model to do denoise is inefficient. Therefore, we
adopt the following two mechanisms to retain as much useful personalized
information for the predictions.

The first mechanism is feature selection for h on the sequence level
among this user’s browsing cookies, as shown in Figure 3.1. We apply
a lightweight algorithm to select relevant personal context among user-
browsed history. The algorithm selects the relevant documents according
to the ratio of how many tokens in the document overlapped in the in-
coming query. The user-clicked documents in the session with this ratio
greater than a certain value are considered personal context kept. We use
the clicked documents in the latest session as the default context.

The second mechanism is similarity measurement between f([p;q])
and f(h) in the latent space, as shown in Figure 3.2. A cosine similarity
score s is calculated between f([p;q]) and f(h). If s is greater than a certain
threshold, h is kept and integrated into the decoding stage. Otherwise, h
is omitted.

41

Algorithm 1 Relevant personal context selection
1: for row in testset do
2: u_history = history[row[“user_id"]], query = row[“query"]
3: for history in u_history do
4: ratio = Similarity(history, query)
5: relevant_history = list()
6: if ratio >= threshold then
7: relevant_history.append((ratio, history))
8: end if
9: end for

10: return relevant_history[argmax(ratio)] if relevant_history is not
None else return u_history[t-1]

11: end for

3.5 Experiments

Datasets

We use AOL4PS [50] dataset in our experiments. It contains query, the
corresponding clicked documents, and timestamps indicating the timeline
of each user’s search history. This dataset has a range of 12 weeks. We
select relevant personal context from the first 9 weeks, which is considered
historical data. The samples in the last 3 weeks are divided into training
and test sets, which are 218,559 and 53,357, respectively. The number of
distinct queries is 382,222 in the total dataset. Among them, 19,957 queries
in the test set do not appear in the training set, and they are considered
zero-shot.

Experimental Setup

The pretrained T5 (t5-base) is our backbone model [136]. We use AdamW
as an optimizer with a learning rate of {2e-5, 5e-5} for the training, and
adopt batch size = 128 in all settings. In our experiments with prefix adap-
tor, we use a prefix length of 5. The hidden states dimension of the MLP

42

layer is 512, and the dropout is 0.1 in all settings. To construct the hierarchi-
cal document ids, k-means (k = 10) clustering provided by fast-kmeans 1

is applied recursively over all document embeddings generated from the
pre-trained BERT (bert-base-uncased) model. All documents are clustered
into 10 clusters. The algorithm is applied recursively if the cluster size
exceeds 100. Clusters with sizes smaller than 100 documents are assigned
an arbitrary unique number from 0-99 as the cluster id. The next level’s
cluster id is appended to the current level. The average document id length
is 6. The ratio and s for feature selection are 0.6 and 0.8, respectively. For
the weights in Function (3.2), w1 is 3/6, w2 is 2/6, w3 is 1/6.

Experimental Results and Analysis

Experiment results between PersonalTM and several baseline methods
are presented in Table 3.1. We use p@k and Mean Reciprocal Rank (MRR)
as our evaluation metrics, where p@k measures the accuracy of the top
k documents for the incoming query, MRR calculates the mean of the
inverse of the ranks at which the first relevant document is retrieved for the
incoming query. Both of them are in %. Consistent with the observations
in [122], DSI significantly outperforms BM25 and finetuned DE (encoder
in Finetuned DE is the same as the encoder of finetuned DSI). With our
proposed hierarchical loss function, p@1 increases by 0.66% compared
to the one with cross-entropy loss only (3 - 4 in Table 3.1). It is because
hierarchical loss grants higher penalties for the error of higher-level digits,
it improves the precision. To further investigate how the hierarchical loss
contributes to the performance, we find that hierarchical loss improves
the precision at every document id digit, especially at the first three digits,
with an average p@1 increment of 4.83%.

With an optimized hierarchical loss function in the decoding stage, the
p@1 increases by 0.66% compared to the single cross-entropy loss between

1https://pypi.org/project/fast-pytorch-kmeans/

43

Method p@1 p@10 MRR
1 BM25 21.61 32.87 25.46
2 Finetuned DE 30.58 42.13 34.25
3 DSI 67.42 75.84 70.58
4 DSI + HieLoss 68.08 77.33 71.52
5 DSI + UserIdentifier 69.16 77.60 72.19
6 DSI + HieLoss + UserIdentifier 70.06 78.47 73.04
7 PersonalTM (h in latest session) 71.20 80.10 74.25
8 PersonalTM (h relevant to q) 79.60 87.47 82.51

Table 3.1: Results of baseline methods and PersonalTM. Note all baselines
and treatments are finetuned with the same training dataset.

predictions and labels (#3 vs #4 in Table 3.1). To further investigate how the
hierarchical loss contributes to the performance gain, we plot the curves
of p@1 at different document id clusters with and without hierarchical
loss in Figure 3.3. This precision curve demonstrates hierarchical loss
improves the performance at every document id cluster, especially on
the first three digits, increasing 4.83% at p@1 on average. This occurs
because the hierarchical loss imposes higher penalties for errors in these
higher-level positions.

Figure 3.3: P@1 at different document id positions with and without
hierarchical loss, respectively. The overall performance improves with
hierarchical loss, especially at the first several positions by adding higher
penalties to them.

44

By comparing lines 3 (no user identifier p) and 5 (with user identifier
p) in Table 3.1, p@1 is improved by 1.74%. This indicates p can effectively
help the model remember user’s preference, particularly for predictions
of unseen queries from existing users.

Comparison of lines 6 and 7 in Table 3.1 demonstrates the strength of
the proposed model structure involving personal context h. By only using
h from the latest session, p@1 can be improved by 1.14%. By comparing
line 8 with lines 6 and 7, we can conclude that after applying the similarity
selection to denoise personalized context, p@1 is significantly improved
by 9.54% and 8.40% respectively. We also compare the performance with
other personalization methods proposed in previous work in Table 3.2.
PersonalTM has a comparable or better performance compared to other
personalization methods.

Method p@1 Method p@1 Method p@1
P-Click [6] 59.56 GRADP [161] 77.06 SLTB [35] 71.09
HRNN [41] 76.53 PersonalTM 79.60

Table 3.2: Comparison with other personalization methods. precision
numbers are averaged reported values in [50].

The results of the prefix adaptor are shown in Table 3.3. By comparing
lines 1 - 2, the model parameters and training time of the adaptor are
reduced by 10x and 2x compared to fine-tuning, respectively. It signifi-
cantly reduces cost and improves agility for index updates while achieving
comparable performance.

The performance of relevant personal context similarity measurements
is shown in lines 3.1 and 4.1 in Table 3.3. Comparing 3.1 and 3.2 as well as
4.1 and 4.2, we find that our proposed PersonalTM beats the naive method
that simply uses the latest clicked document by 1.09% and 1.62% for p@1,
respectively. This occurs because our model structure explicitly learns
the mapping between the query and the personal context. Besides, the

45

Method Imple p@1 p@10 MRR para
1 w/o h finetune 70.06 78.47 73.04 222.9
2 w/o h prefix 69.90 78.25 72.87 29.5

Using latest clicked document
3.1 [p;q;h] prefix 68.92 77.83 72.10 29.5
3.2 PersonalTM prefix 70.01 78.53 73.01 29.5

Relevant personal context similarity measurement
4.1 [p;q;h] prefix 75.26 85.37 79.28 29.5
4.2 PersonalTM prefix 76.89 86.06 80.20 29.5
4.3 PersonalTM (f) prefix 79.05 86.98 82.10 29.7

Table 3.3: Results with prefix adaptor.

proposed PersonalTM forces the decoder to digest this information without
dilution by the long forwarding network. The result of fusion performance
is shown in line 4.3 of Table 3.3. It improves p@1 by 2.16% compared to
PersonalTM without fusion. Note fusion increases the computation time
by an additional 30%, especially during the decoding process. Therefore,
there is trade-offs between the computation cost, model size or storage
space, and performance.

Method p@1 p@10 MRR
a BM25 (with relevant history) 20.97 31.03 24.53
b DualEncoder (T5) 6.66 17.81 9.90
c DSI 8.14 16.76 10.71
d DSI + HieLoss 11.45 23.39 15.14
e DSI + HieLoss + UserIdentifier 15.17 28.20 19.21
f PersonalTM (prefix adaptor) 37.19 56.94 43.76

Table 3.4: Evaluation on Zero-shot cases.

Furthermore, we evaluate the model performance on the zero-shot set,
whose queries are never seen in the past. The results are shown in Table

46

3.4. We found that DSI’s zero-shot performance is not ideal, which aligns
with the observation in [122]. But by comparing line f with the rest, we
achieve significant improvement by using PersonalTM and the relevant
personal context.

3.6 Ablation Study
In our proposed PersonalTM, there is a similarity measurement module,
which measures the semantic similarity between the incoming query and
contextual personalized information at the feature representation level. By
using this module, only personalized features that are semantically similar
to the incoming query are retained and further utilized. We investigate
the performance of this measurement conducting the same experiments
with the module removed. All other settings remain the same. Results
and comparison are shown in Table 3.5.

By comparing #1.1 and #1.2, #2.1 and #2.2 in Table 3.5, the precision
values are improved with the similarity measurement with both the latest
session and relevant contextual personalized features. In #1.1, by using
the latest session contextual personalized information and without the
similarity measurement, the performance is even worse than the experi-
ment using query information only. It is because most of the latest session
information is not pertaining to the incoming queries, and thus much
noise is introduced by these irrelevant features. Therefore, the similarity
measurement module effectively selects useful information and filters out
irrelevant ones.

3.7 Case Study
In this section, we demonstrate examples where our proposed methods
succeed or fail as shown in Table 3.6. We are mainly focused on DSI,

47

Method p@1 p@10 MRR
Latest session contextual personalized features
1.1 PersonalTM (w/o similarity measurement) 69.24 77.92 72.33
1.2 PersonalTM 70.01 78.53 73.01
Relevant contextual personalized features
2.1 PersonalTM (w/o similarity measurement) 75.92 85.77 79.71
2.2 PersonalTM 76.89 86.06 80.20

Table 3.5: Ablation study with / without similarity measurement module,
which effectively selects useful information.

1 Query boatsforsale
Clicked doc 36165 (new and used boats for sale boats for sale co UK)
Wrong predictions 395100 (boats com new and used boats for sale everything boats)

2 Query optician programs in seattle
Clicked doc 81189 (home seattle central college)
Wrong predictions 81255 (home port of seattle)

3 Query lyrics country music
Clicked doc 11112 (www any country music lyrics com)
Wrong predictions 355800 (country lyrics tabs chords for country music fans)

4 Query ivillage horoscopes
Clicked doc 10769 (www I village co uk)
Wrong predictions 300600 (astrology com horoscopes tarot psychic readings)

Table 3.6: Examples where our proposed methods succeed or fail. #1
shows that all of the methods fail easily while there exist similar docu-
ments. #2 shows when hierarchical loss improves performance. #3 and
#4 show when user identifier and contextual personalized information
improve performance, respectively. The number string (e.g., 36165) indi-
cates document id.

DSI with hierarchical loss, DSI with user identifier, and PersonalTM for
comparisons.

In #1 of Table 3.6, given the query "boatsforsale", the relevant clicked
document is "new and used boats for sale boats for sale co UK". While all of
the above-mentioned four methods fail by making a prediction of "boats
com new and used boats for sale everything boats". By comparing these two

48

documents, we found that they are quite similar both in semantics and
sentence structure. It is hard to make the correct predictions while there
exist quite similar documents.

In #2, given the query "optician programs in Seattle", the clicked relevant
document is "home Seattle central college" with corresponding document
id 81189, while DSI makes a wrong prediction of "home port of Seattle"
with document id 81255. By comparing these two document ids, we
noticed that they have the same id at the first two positions although
their semantics are different, thus causing confusion. This can be fixed by
introducing hierarchical loss since it applies higher penalties to the first
several positions of the document ids. In other words, it helps the model
be on the right track at the very beginning of the decoding procedure.

In #3, we present an example of how the user identifier improves the
performance by introducing additional useful information. Given the
query "lyrics country music", different people are interested in different
topics according to their interests. For instance, some people are interested
in "www any country music lyrics com", while others are interested in "country
lyrics tabs chords for country music fans". Making the prediction based on
popularity without additional user information may not satisfy all users.
User attributes such as user identifier is a good candidate to mitigate this
issue. It is especially helpful in zero-shot cases, in which the query has not
been seen during training.

Other than that, personalized contextual information is also helpful.
For instance, in #4, given the query "village horoscopes", the model always
makes the prediction of "astrology com horoscopes tarot psychic readings" be-
cause this document has overlapped tokens with the query. However, this
document is not what the user expected. By looking into users’ historically
clicked documents in session, we can find relevant contextual information
such as "village co UK". This relevant personalized contextual feature is
helpful by making links between query and relevant documents, and thus

49

makes the predictions more accurate and improves the performance.

3.8 Conclusions and Limitations
In this work, we propose a transformer memory framework for personal-
ized retrieval, integrating two essential types of personalized information
into the model. We propose a novel decoder architecture that effectively
leverages personalized context without increasing trainable parameters,
and apply a hierarchical loss function to optimize the performance. Our
framework also incorporates the prefix adaptor mechanism to facilitate the
learning of the interaction between the query and contextual personalized
features. In the future, we will further enhance the design by incorporat-
ing incremental learning and enabling dynamic updates to overcome the
limitations of frequent index updates and zero-shot retrieval.

There are also some limitations to these methods. For instance, if there
is a new incoming document, we have to re-assign a unique id to it by
re-applying the hierarchical clustering method. And the models have
to be re-trained with the new incoming documents again. In order to
mitigate this, future work such as incremental learning could be used to
update the models dynamically. Besides, we will utilize more contextual
personalized features such as browsing histories from short- and long-
term sessions. Furthermore, we found that zero-shot performance is not
ideal due to the model’s memorization capacity and index size limitations.
In order to mitigate this, other further work are needed to improve model
generalization ability.

50

4 incremental user embedding modeling for
personalized text classification

4.1 Overview
This chapter introduces a method to consistently update user profiles given
a stream of user personalized data. This work first appeared in [82]. We
propose to fuse past and incoming user data with additional self-attention
layers and propose a training method to incrementally update the model
with the incoming data.

4.2 Abstract
Individual user profiles and interaction histories play a significant role
in providing customized experiences in real-world applications such as
chatbots, social media, retail, and education. Adaptive user represen-
tation learning by utilizing user personalized information has become
increasingly challenging due to ever-growing history data. In this work,
we propose an incremental user embedding modeling approach, in which
embeddings of user’s recent interaction histories are dynamically inte-
grated into accumulated history vectors via a transformer encoder. This
modeling paradigm allows us to create generalized user representations
in a consecutive manner and also alleviate the challenges of data manage-
ment. We demonstrate the effectiveness of this approach by applying it to
a personalized multi-class classification task based on the Reddit dataset,
and achieve 9% and 30% relative improvement on prediction accuracy
over a baseline system for two experimental settings through appropriate
comment history encoding and task modeling.

51

4.3 Introduction
Given that archived user records such as user-specific demographic at-
tributes and daily utterances can reveal users’ personalization, interests
and attitudes towards different topics, it allows us to infer user prefer-
ences and hence provide personalized user experiences based on the
records collected by social media platforms or conversational agent sys-
tems. These context signals always reflect consistent personalities, which
can provide meaningful information and thus can be leveraged to build
coherent models to facilitate a variety of application needs better [77, 157].
Thus, it becomes imperative to develop adaptive user representations by
incorporating personalized features from different modalities for down-
stream tasks such as user preference prediction [53, 12], personalized
dialogue generation [138, 151, 104], and personalized recommendations
[45, 67, 159].

Most previous work which proposes to generate personalized repre-
sentations assumes the availability of a users’ entire history. For instance,
Wu et al. built a personalized response generation system consists of a
mechanism of splitting memories to capture personalization: one for user
profile and the other for user-generated information such as comment
histories [138]. Grbovic et al. proposed a method capturing long-term
and short-term user interests to build customized embeddings, which can
be applied to real-time personalized recommendation [45]. However, it is
impracticable to access the entire historical data in some applications due
to various constraints. To address this issue, Bui et al. proposed a way
to utilize existing personalization techniques in the Federated Learning
setting [12].

On the other hand, user embedding modeling in batch mode always
train models from scratch by aggregating all available data. It is not only
time-consuming but may also result in outdated models [88]. Besides, it
cannot capture the gradually-changing user interests and hence cannot

52

reflect the recency of user data. To alleviate these issues, incremental
learning has been proposed to update models in an iterative manner, which
allows the model to learn new information as soon as it is available and
thus leads to up-to-date models. It is not only capable of lifelong learning
with restricted resources, but also captures the adaptive representation,
and reduces the cost of data storage and maintenance [8, 64, 134].

Based on those findings, we propose an incremental user embedding
modeling method to generate adaptive user representation by leverag-
ing personalized information. We demonstrate the effectiveness of this
approach on a multi-class text classification task on the Reddit dataset
following [12] as this dataset could mimic real-world scenarios such as
data collected by chatbots. One example sample is shown in Table 4.1.
The objective of this text classification task is to predict which class (i.e.,
subreddit) a given comment was posted by utilizing user profiles and com-
ment histories, where user profiles refer to static user-specific key-value
pairs.

Incoming comment: Watch funny anime.
Subreddit: Anime
Author: HaraJiang, Time: 2019-07-01 00:28:49
Comment histories:
Victory Royale is really interesting.
Warframe is available for free, it is a good game.
I see a water dragon.

Table 4.1: A constructed example from Reddit dataset

4.4 Proposed Methods
This study focuses on building adaptive user representations in an incre-
mental manner. In this section, we first introduce several batch learning

53

methods to investigate model performance by utilizing personal infor-
mation. Then we propose an incremental embedding learning method,
which can continuously integrate newly available data into existing trained
models and is effective in capturing the evolving change of user interests.

Figure 4.1: Architecture of the proposed model

Batch Learning Methods

We fine-tune a BERT model [34] for multi-class classification by adding
a linear classifier layer on top of it. As shown in Fig. 1, the input is a
concatenation of different types of feature representations, and the output
is the predicted subreddit indicating where the given comment was posted.
The model is trained and evaluated using three different input feature
representations.

1. [q]: incoming comment embedding q only.

2. [q,Up]: concatenation of incoming comment embedding q and static
user profile representation Up.

3. [q,Up,Uh]: concatenation of incoming comment embedding q, user
profile representation Up, and user history representation Uh.

We also explore two ways to represent user history representation Uh.

1. Mean-pooling: use mean-pooling of all history embeddings as Uh.

54

2. Self-attention: add an upper-layer transformer over all history em-
beddings and then use the mean-pooling of transformer output as
Uh.

Incremental User Embedding Learning

The core idea of incremental embedding learning method is to dynami-
cally integrate recent comment history embeddings into the accumulated
history vectors via an upper-layer transformer encoder. As shown in algo-
rithm 1, history embedding tensor A and accumulated history embedding
tensor B are initialized first. Both A and B are in the shape of n× T × d,
where n is the number of users, T is the time-span of interaction history,
and d is the dimension of sequence embedding. t0 is a timestamp chosen
as history, and samples prior to t0 are used for initialization. We then
construct the dataset in the following form: (i, t,y), where t is a times-
tamp such that t ∈ [t0, T] and y is the ground truth label of an incoming
comment at t. This dataset was fed into the model in chronological order
since B is updated gradually.

For an incoming comment at t, the objective is to predict its associ-
ated subreddit by leveraging the accumulated history embedding in B.
Meanwhile, B is updated by integrating multiple latest comment history
embeddings into it. Specifically, we get recent n0 history embeddings and
the accumulated history embedding from A and B, respectively. Those
vectors are input into the upper-layer transformer encoder and get at-
tended with each other. U_profile represents the personalized user profile
incrementally constructed from comment histories. It is actually the mean-
pooling of the transformer encoder output, and is used to update B. By
using this momentum update, the impact of long-term history interactions
is gradually decayed. Here, α is the momentum parameter, α ∈ [0, 1].

With the proposed incremental user embedding learning method, ac-
cumulated user embeddings can be continuously updated with recent

55

activities. It can adaptively capture the evolving change of user interests.

Algorithm 2 Incremental user embedding learning
1: Initialization:
2: Let i be user id, i ∈ [0,n]
3: Let j be history index, j ∈ [0, T]
4: A[i][j] = encoder(history[i][j])
5: B[i][j] = mean(A[i][: j])
6: for batch in dataset do
7: q = encoder(history[i][t])
8: history = A[i][t− n0 : t− 1]
9: past_activity = B[i][t− n0 − 1]

10: U_profile = mean(transformer([history, past_activity]))
11: B[i][t− 1] = α * U_profile + (1 − α) * B[i][t− 1]
12: loss, logits = classifier([q, B[i][t− 1]])
13: end for

4.5 Experiments

Datasets

In this section, we describe how three datasets were built from the Reddit
comment dataset1 [4]. The dataset used to pre-train BERT model is re-
ferred to as “pre-training set". The other two datasets used to investigate
batch learning methods and incremental embedding learning are called
“subset1" and “subset2", respectively.

The “pre-training set" consists of comments from the top 256 subreddits
in 2019/07 by following the procedure described in [12] . Each comment
corresponds to one subreddit indicating where it was posted. There are
around 5M comments distributed in 256 classes in total, and this dataset
is imbalanced.

1https://files.pushshift.io/reddit/comments/

56

The "subset1" was randomly selected from the “pre-training set" by
balancing the subreddit distribution. User profiles (e.g. Username and
created time associated with each comment) are also kept. In addition,
we pick up 5 comment histories that are most recent to each incoming
comment and we list them in the reverse chronological order. There are
around 126K incoming comments in total. We split them into training,
validation, and test sets by 50%, 25%, and 25%.

The “subset2" was built by picking up 40 histories for each incoming
comment. Besides, history’s associated subreddits are also kept, while
two user-related attributes are thrown away. The other settings remain the
same as subset1. After customizing the sequential dataset as mentioned in
section 2.2, the subset2 distribution looks similar to the original imbalanced
one.

Experimental Setup

All three datasets were preprocessed by standard text normalization steps,
such as removing urls, trimming extra spaces, and filtering non-ASCII
words and characters. A BERT model with shared weights is used as
encoder, and its output of the first token ([CLS] token) is used as sequence
embedding.

To conduct personalized prediction on subset1, the BERT model is fine-
tuned together with other hyperparameters. User profiles are represented
as key-value pairs, which are concatenated into the input sequence before
encoding.

In incremental embedding modeling on subset2, we first use masked
language model (MLM) to pre-train BERT with and without history’s
associated subreddit, respectively. To include subreddits of history data as
input, we first expand tokenizer vocabulary. Then we prepend subreddits
in textual format in front of history sequences. After pretraining, we
extract history embeddings from frozen BERT with different strategies

57

depending on whether we prepend their associated subreddits or not. We
weight the cross-entropy loss by the inverse frequency of each category to
deal with the imbalanced dataset.

We use the bert-base-uncased model provided in huggingface’s trans-
former package [136]. For the upper-layer transformer, we use 4 layers of
transformer encoder, and each layer with 8 attention heads. AdamW is
used as our optimizer with an initial learning rate of 2e-5 and we use a
linear decay learning rate scheduler across all model training. BERT max
sequence length is 128 in all settings. The dropout probability is always
0.1. For pre-training, we use batch size of 16 and 5 epochs. For all other
experiments, we use batch size of {64, 512, 1024}. The maximum number
of iteration is set as 15 with an early stop if no improvement over accuracy
on validation set. α is 0.1 for incremental update. It takes no more than 40
mins to perform incremental modeling with 8 NVIDIA V100 GPUs.

Experimental Results and Analysis

Table 4.2 summarizes the classification accuracy of batch learning methods
described in section 2.1. We observed that: (1) the network incorporates
user profile or comment histories can boost the model performance. The
classification accuracy is improved by 7% relatively by incorporating user
profiles, and 41% relatively with the mean-pooling of history embeddings
as additional feature; (2) the attention between posting histories con-
tributes 62% relative improvement to accuracy. It shows that self-attention
between histories would enhance personalized features and reinforce
users’ preference and interests. Although the model with self-attention
over all history embedding performs better compared to using history
embedding mean-pooling, it is still a trade-off between these two meth-
ods in terms of data storage capacity and computational resources since
model with self-attention has more complicated structure, leading to more
hyperparameters.

58

Model Feature Acc(%) Rel.Imp.(%)
BERT [q] 17.95 0
BERT [q,Up] 19.23 7

Mean-pooling [q,Up,Uh] 25.37 41
Self-attention [q,Up,Uh] 29.02 62

Table 4.2: Batch learning method performance.

The results of the mean-pooling method are regarded as the lower
bound. Similarly, the results with upper-layer transformer encoder are
regarded as an upper bound since attention behaviors over entire histories
enhance personalized semantic features. The goal of incremental embed-
ding modeling is to asymptotically approximate the upper bound method
and get their performance as close as possible. Moreover, the incremental
modeling would capture the recency of user data and reflect the evolv-
ing change of user interests over time while these cannot be achieved by
self-attention method. We do not include static Up in incremental update
since it does not play a significant role as results shown in Table 4.2.

Table 4.3 shows the incremental modeling results. It cannot be directly
compared with Table 4.2 since it is performed on sequential dataset instead.
Histories are encoded without and with considering their associated sub-
reddits in the 2nd and 3rd column respectively. From 2nd column, our
incremental method lies in between the lower and upper bounds as we
expected. It improves the lower bound mean-pooling method by 9% rela-
tively, and is 14% relatively below the upper bound self-attention approach
in terms of accuracy.

In the 3rd column of Table 4.3, history’s associated subreddits are con-
sidered as part of history attributes and are prepended in the texual format
in front of histories before encoding. In this way, both the prior information
and the semantics of history subreddits are incorporated into the sequence
embedding. From the results, the accuracy of proposed incremental mod-

59

eling is 30% relatively higher than the mean-pooling method, and is only
2% behind the upper bound. It significantly closes the gap between the
incremental modeling and the self-attention method compared to 2nd
column. This is because the attention behaviors introduced by the upper-
layer transformer reinforce the personalised features, especially the prior
information, which provides the most direct information in classification.

By comparing the incremental modeling performances with two ways
of history encoding, around 59% relative improvement in accuracy can be
achieved. To further investigate the performance gain introduced by prior,
we predict the incoming comment by the majority count of its history’s
subreddits as a direct comparison. The incremental modeling can improve
the majority count by 38% in accuracy. These analyses indicate that the
incremental modeling effectively utilizes semantics from both utterances
and history prior.

Model Acc (%) Acc (%)
w/o subreddit w subreddit

Majority count - 36.06
Mean-pooling 28.79 38.27
Self-attention 36.72 50.80
Incremental 31.44 49.94

Table 4.3: Incremental embedding modeling performance. Histories are
encoded without and with their associated subreddits in 2nd and 3rd
column, respectively.

4.6 Conclusions and Future Work
In this work, we proposed a method to generate personalized adaptive
user representations by utilizing user profiles and user interaction histories
in a consecutive manner. Specifically, we proposed an incremental user
embedding modeling paradigm, which can dynamically integrate most

60

recent user activities into the accumulated history embedding vectors. We
show that a better performance can be achieved on downstream predic-
tions with proper history encoding. Besides, we show that this approach
not only captures the recency of user data and reflects the evolving change
of user interests, but also keeps the model up-to-date and improves data
storage efficiency.

Since the old accumulated history vectors do not update in a timely
manner with the updates of the model, we have to introduce other methods
such as regularization to improve the performance in the future. Addition-
ally, we would like to extend the proposed incremental modeling to other
applications such as personalized intent classification and personalized
recommendation.

61

5 predicting health-related quality of life
change from patient language in thyroid cancer
studies using natural language processing

5.1 Overview
This chapter introduces two data augmentation methods given limited clin-
ical patient utterances to improve the prediction of health-related scores.
The first method leverages GPT-2 [109] to generate synthetic patient ut-
terances with either positive or negative sentiments. The second method
rearranges and permutates the text in two consecutive transcripts. This
work first appeared in [81]. This work is in collaboration with MD. David
Schneider.

5.2 Abstract
Background: Patient-reported outcomes (PRO) allow clinicians to mea-
sure health-related quality of life (HRQOL) and understand patients’
treatment priorities, but obtaining PRO requires surveys which are not
part of routine care. We aimed to develop a preliminary natural language
processing (NLP) pipeline to extract HRQOL trajectory based on deep
learning models using patient language. Materials and methods: Our data
consisted of transcribed interviews of 100 patients undergoing surgical
intervention for low-risk thyroid cancer, paired with HRQOL assessments
completed during the same visits. Our outcome measure was HRQOL
trajectory measured by the SF-12 physical and mental component scores
(PCS and MCS), and average THYCA-QoL score. We constructed an NLP
pipeline based on BERT, a modern deep language model that captures
context semantics, to predict HRQOL trajectory as measured by the above

62

endpoints. We compared this to baseline models using logistic regression
and support vector machines trained on bag-of-words representations of
transcripts obtained using Linguistic Inquiry and Word Count (LIWC).
Finally, given the modest dataset size, we implemented two data aug-
mentation methods to improve performance: first by generating synthetic
samples via GPT-2, and second by changing the representation of avail-
able data via sequence-by-sequence pairing, which is a novel approach.
Results: A BERT-based deep learning model, with GPT-2 synthetic sample
augmentation, demonstrated an area under the curve (AUC) of 76.3% in
the classification of HRQOL accuracy as measured by PCS, compared to
the baseline logistic regression and bag-of-words model, which had an
AUC of 59.9%. The sequence-by-sequence pairing method for augmenta-
tion had an AUC of 71.2% when used with the BERT model. Conclusions:
NLP methods show promise in extracting PRO from unstructured narra-
tive data, and in the future may aid in assessing and forecasting patient’s
HRQOL in response to medical treatments. Our experiments with opti-
mization methods suggest larger amounts of novel data would further
improve performance of the classification model.

5.3 Introduction
Patient-reported outcomes (PRO) allow clinicians, researchers, and care-
givers to assess patient well-being and health directly from a patient with-
out relying on interpretation by a clinician. Health related quality of life
(HRQOL) is an outcome measured by PRO instruments such as filling
out an additional questionnaire. However, although PRO is important
in making patient-centered treatment decisions, it is still an imperfect
measure of HRQOL: while surveys capture HRQOL at a given moment,
they do not reflect the entirety or trajectory of patient experience and do
not allow patients to indicate domains with the greatest impact on their

63

lives. To overcome this, patient’s spoken language or conversation, which
provide rich information in a more natural way, have been increasingly
used. Narrative data is available from patient communications and patient
portals associated with the electronic health record (EHR). Since written
and spoken language provide a window into a person’s psychosocial well-
being, they have the potential to capture information about the function
and quality of life, and other subtleties not included in traditional sur-
veys. Given narrative data, deep language models can be used to extract
meaningful semantics. These models can be used to measure a patient’s
psychosocial well-being from readily available sources of narrative data,
such as patient interviews.

Thyroid cancer ranks among the most common malignancies in the
United States. While PRO are themselves subject to the limitations above,
nonetheless, they are the best available numeric representation of HRQOL,
which is essential in thyroid cancer. Extraction of HRQOL outcomes after
surgery can help personalize treatment since most patients are expected to
experience a decrease in HRQOL just after diagnosis or surgery, but longer-
term trajectories are often of greater clinical interest [103]. Patients at risk
for long-term decrement in HRQOL may need active referral to resources
such as counseling and support groups. If we are able to identify these
patients preoperatively, the patient may choose less invasive treatment
options. On the other hand, no tools exist to extract HRQOL from patient
language thus far. For these reasons, we use thyroid cancer as a model in
demonstrating a role for NLP techniques in extracting HRQOL information
as measured by common PRO instruments. Given a unique, novel dataset
from a randomized controlled trial, we adapted deep learning models to
predict HRQOL directly from patient language.

64

5.4 Related Work
Dictionary-based bag-of-words text analysis tools such as the Linguistic
Inquiry and Word Count (LIWC) program classify words by several dif-
ferent categories according to psychological, categorical, and language
constructs [105]. Though LIWC is limited by the accuracy and comprehen-
siveness of the dictionary they are based upon, it has been used in many
studies evaluating indicators of psychosocial well-being [46] and has also
served as a comparison point for deep learning methods [121, 63, 9].

In contrast, deep learning models such as BERT attempt to model the
underlying structure of language and construct sequence representations
using a word’s surrounding context. In the social sciences, BERT has been
successfully used for the tasks of opinion and sentiment analysis. Previous
work using NLP for similar applications in the medical field largely draws
from data available in the EHR [101, 102]. These methods prove capable
of more accurate predictions from the complexity of human language.

While many approaches train models using the written documentation
of doctors and other clinicians [71, 114], which are likely to include simi-
larity in structure and industry-specific language, we analyze speech from
transcripts of patients, who have little to no medical background and are
likely to speak in a more freeform manner than would be typically used
by medical professionals. The goal of this study is to assess and further
improve language model performance on prediction of HRQOL trajectory
from patient language. The task described herein hence differs from tradi-
tional NLP analysis of medical text. Furthermore, few previous studies
examine the trajectories of clinical outcomes such as HRQOL, rather than
values at a single point in time. We implemented and evaluated a method
for classifying narrative data into positive and negative HRQOL trajectory,
which we defined as the sign of the difference between HRQOL at two
different time points. Such tools to analyze patient language may extend to
data sources from outside the medical encounter, including mobile device

65

applications and social media.

5.5 Dataset Description
The dataset used in this study is a rare example of sets of prospectively
collected and transcribed patient interviews paired with numeric scores
on several validated Likert-like PRO measures for HRQOL. It is from a
prospective randomized trial assessing surgical interventions for low-risk
thyroid cancer. Each patient was evaluated at up to five set time-points:
preoperative (6 weeks to 24 hours before operation), and 2 weeks, 6 weeks,
6 months, and 1 year postoperative. At each visit, the patient participated
in a semi-structured interview and also completed each of the following
validated HRQOL assessment surveys, including both general and disease-
specific assessments of HRQOL including the 12-item short form survey
(SF-12), and the THYCA-QoL.

5.6 Proposed Methods
Figure 5.1 gives an overview of the experiments described in this work.
After basic pre-processing steps, a baseline model based on logistic regres-
sion using frequencies of LIWC categories was performed. Then BERT was
fine-tuned on classification and compared to the LIWC-based model. Fi-
nally, two data augmentation techniques further improve the performance
of BERT on down-stream tasks.

The primary outcome was the patient’s HRQOL trajectory measured
by each of validated HRQOL surveys. As stated above, we defined the
HRQOL trajectory to be the direction of the difference in the HRQOL
score (PCS, MCS, or average THYCA) between two time points. Of up to
five transcripts from pre-defined time points at which the survey packet
was administered, two trajectories were computed: the 1-2 trajectory (the

66

Figure 5.1: Data analysis workflow

direction of HRQOL change between transcript 1 and transcript 2) and
the 2-last trajectory (between transcript 2 and the last available transcript).
Patients’ utterance in transcript 1 was used for the classification of 1-2
trajectory label, and utterances in the last available transcript was used for
the classification of 2-last trajectory label. Sequences that had a positive
HRQOL trajectory were labeled as class 1, and those had a negative tra-
jectory were labeled by class 0. The problem thus becames one of binary
classification.

Since LIWC is a widely used computational tool meant to ascertain
the linguistic characteristics of text, we use this as a benchmark to extract

67

sequence representations for our analysis. LIWC operates by comparing
every word in a given text to an internal dictionary of 76 categories, and
then assigns the word to the appropriate categories. LIWC only considers
its lexical contents.

LIWC categories include grammatical parts of speech (e.g., articles,
pronouns, prepositions), psychological processes (e.g., affect, cognition,
sensory and perceptual processing), and personal concerns (e.g., body
states, death, and religion). For each text, LIWC produces an output
specifying the percentage of words contained in that text that fall into each
linguistic category of interest. For example, a text containing 15 first-person
pronouns within a total of 1000 words would receive a score of 1.5 for
the first-person pronouns category. For each patient, all transcripts were
concatenated and frequencies were calculated for 9 LIWC categories of
interest: positive emotion, negative emotion, feeling, biological processes,
body, health, past-focused, present-focused, and future-focused (Table
5.1). The frequencies were then normalized, and then we applied logistic
regression with the LIWC features to create a baseline model. We use
under-sampling to deal with the imbalanced training set distribution.

LIWC categories Examples
Positive emotions Love, nice, sweet

Negative emotions Hurt, ugly, nasty
Feeling Feels, touch

Biologic processes Eat, blood, pain
Body Cheek, hands, spit

Health Clinic, flu, pill
Past-focused Ago, did, talked

Present-focused Today, is, now
Future-focused May, will, soon

Table 5.1: Linguistic features of patient interview transcripts

68

Analysis with BERT

A large amount of previous work has demonstrated the improvements in
text classification within biomedical and clinical domains by using modern
language models [74, 57, 80, 1]. In our experiments, a logistic regression
layer was added on top of BERT. It was then trained together with BERT
for sequence classification. The first token of the BERT output ([CLS]),
an array with dimension 768, was used as the sequence embedding. To
deal with the imbalanced class distribution, we also under-sampled the
majority classes. Three BERT models were fine-tuned separately with
respect to each outcome.

Training data augmentation

Augmentation via GPT-2 Inspired by previous work which used GPT-
2 to synthesize sequences for training set augmentation [72, 2], we use
GPT-2 to generate representative sequences, or synthetic sequences similar
in nature to those found in the original dataset in order to augment the
training data. The main idea is shown in Algorithm 1.

Algorithm 3 Augmentation via GPT-2
Input:
Let D = (xi,yi)

n
i=1 be original data

Do:
Train a classifier h from D

Fine-tune language model G by D and obtain Gtuned

Generate D∗ = (x
′

i,y
′

i)
N

i=1 using Gtuned
Filter D∗ by h to obtain Dgenerated
return Dgenerated

We first fine-tuned GPT-2 G on the original dataset D, and the fine-
tuned model Gtuned was used for sequence generation. For fine-tuning,
each input utterance in the model was represented as a concatenation

69

of the textual class label, the sequence itself, and an end-of-text marker
in the following form: Label: seq <endoftext>. The class label was ei-
ther “positive” or “negative” (representing the HRQOL trajectory). Two
separate GPT-2 models were trained on the data from each class. After
training, the fine-tuned models were used to synthesize new sequences.
The textual labels ("positive" or "negative") were provided as prompt into
one of the fine-tuned GPT-2 models corresponding to their training class.
Then a sequence was generated and extended until it reached the special
end-of-text marker, thus simulating additional data from that class. In this
way, an arbitrary number of label-invariant sequences can be generated.

Next, we fine-tuned BERT on the original dataset and it was used as a
classifier h to evaluate the quality of the generated sequences and obtain
Ggenerated. Specifically, each generated sequence was input into the trained
BERT model and output the predicted label along with a probability score,
which is actually softmax of the output. Generated sequences were dis-
carded if their predicted labels did not match the initial prompt or if the
probability scores were less than a threshold value. After augmenting the
training set by 2, 3, and 4 times its original size, we combined the original
training set with the generated set for training to make full use of the
available data. Then the models were evaluated on the test set, which is a
subset of the original dataset that is maintained separately.

Augmentation via sequence pairing Up to this point, only sequences
from transcript 1 were used to classify 1-2 trajectory, and only sequences
from the last transcript were used to classify 2-last trajectory. Incorporat-
ing sequences from transcript 2 into the model, as well as the temporal
relationship between transcript 1 and transcript 2, would make full use
of available data. Similarly, we wished to incorporate utterances from
transcript 2 in the prediction of 2-last trajectory.

Inspired by [90], which augmented the dataset by concatenating ran-

70

dom two halves of the sequences with the same polarity, we propose a
novel method of pairing sequences between the different transcripts from
the same patient. Specifically, we paired sequences from transcript 1 or
the last transcript (text A) with sequences from transcript 2, 3 or 4 (text B).
Each pair shared a single label indicating the trajectory. After creating the
sequence pairs between text A and text B, the training set was augmented
by randomly selecting from these pairs for each patient. Assuming an
equal number of sequences n for each transcript, the dataset could be
augmented to at most n2 pairs using this technique.

Then sequence pairs were input into BERT separated by the special
[SEP] token in the following form: [CLS]sequence1[SEP]sequence 2[SEP].
The separator between two sequences indicated the end of sequence 1 and
the start of sequence 2. During training, each pair was iteratively truncated
to fit the maximum length requirement.

5.7 Experiments and Results

Experimental setup

In this study we selected the Physical Score (PCS) and Mental Score (MCS)
of the SF-12 and the average of the score on THYCA-QoL (Average THYCA)
as primary outcome measures. Each transcript consists of alternating
utterances between the patient and the interviewer. After removing all
interviewer utterances, as well as all utterances under five words long, the
remaining lines in the cleaned transcript were used as a sequence to be
input into the models. Missing data were considered missing at random.
Patients missing a particular HRQOL outcome score were excluded from
the corresponding analysis. The distribution of each label on patient
level after preprocessing is shown in Figure 5.2. Each patient has up to 5
transcripts, and each transcript has 250 utterances. From Figure 5.2, there

71

are more negative samples in preoperative phase and more positive ones
afterwards, as we expected.

After balancing the dataset using random undersampling of the ma-
jority class, the number of sequences corresponding to PCS, MCS, and
Average THYCA labels were 18074, 14450, and 16056, respectively. For
each experiment, 80% of the dataset was used for training, and 20% held
out as a test set.

Figure 5.2: Distribution of HRQOL trajectories after preprocessing

To fine-tune BERT on classification, 5-fold cross validation was used to
find the optimal hyperparameter values. The model bert-base-uncased
provided in the package of huggingface was used [135]. We use batch size
16 and maximum sequence length of 256 (sentences with more than 256
tokens were truncated). During the optimization procedure, a dropout
probability of 0.1 was used. AdamW was used as an optimizer, we used
epoch∈ {3, 4, 5} and the learning rate was set to 2e-5 with a linear decay
scheduler.

To fine-tune GPT-2, we use DistilGPT2, which is a smaller and faster
version of GPT-2, also provided in huggingface’s package [135]. We use 3
epochs, learning rate 3e-5, maximum sequence length 1024, and batch size
16. The output sequences were filtered using top-k sampling with k=50,
and selected using top-p sampling with p ⩾ 0.8. We synthesized 60000
samples for each class. The generated sequences were pre-processed in
the manner described in the preprocessing section. While using BERT as

72

a filtering, generated sequences were discarded if their predicted labels
did not match the initial prompt, or if the associated probability scores
were less than 0.9.

Experimental results

LIWC After 500 epochs of training, the accuracy of sequence classifica-
tion using logistic regression on the test set with respect to PCS, MCS, and
Average THYCA were 0.58, 0.55, 0.55, respectively. While this model had
some classification power, it was only slightly better than chance. This
may have been due to the low dimensionality and sparsity of the LIWC
features, which failed to capture enough features correlated with the labels,
a disadvantage inherent in using a fixed set of human engnineered feature
categories. Next, we turned to modern deep learning methods to improve
upon these results.

BERT Results in predicting HRQOL trajectories by fine-tuning BERT are
shown in Table 5.2 and Figure 5.3. For PCS, MCS, and average THYCA, the
sequence classification accuracies were 0.64, 0.64, and 0.61, respectively;
the AUC were 0.69, 0.69, and 0.65. For the performance at the patient level,
when the label was determined using a majority vote of the classification
of all sequences belonging to the patient, the accuracy for PCS, MCS, and
Avg_Thyca were 0.77, 0.62 and 0.61, respectively. Thus when fine-tuning
BERT on the down-stream classification problem, it outperformed the
baseline model with LIWC features by improving model generalization
capabilities.

Training set augmentation via GPT-2 The next set of experiments aug-
ment the training set by 2, 3, and 4 times its original size and then evaluates
on the same test set. The results are shown in Table 5.3. From the results,
the model performance improved with the increase of training set size.

73

PCS MCS Avg_Thyca
Accuracy 0.64 0.64 0.61

F1 0.62 0.64 0.59
Precision 0.65 0.65 0.62

Recall 0.58 0.64 0.56
AUC 0.69 0.69 0.65

Table 5.2: Performance of fine-tuning BERT on the original dataset

Figure 5.3: ROC curves of PCS, MCS, and Avg_Thyca by fine-tuning BERT

When the training set was augmented to 4 times that of the original dataset,
classification accuracy and AUC were 0.71 and 0.78, respectively. These
improve the accuracy by around 11% in comparison to the model trained
on the original dataset. In addition, the accuracy at the patient level de-
termined by a majority vote of sequences classification was 0.78 when
training set was 4 times the size of the original. Thus, we find that the
model performance can be significantly improved by augmenting the
training set using GPT-2 generated sequences.

Training set augmentation via utterance pairing Similarly, the training
set was augmented to 2, 3, and 4 times its original size and the model
was evaluated on the same test set. The results are shown in Table 5.4.

74

Training set size
(As multiple of original)

1 2 3 4
Accuracy 0.64 0.68 0.70 0.71

F1 0.62 0.67 0.68 0.69
Precision 0.65 0.70 0.72 0.73

Recall 0.58 0.63 0.65 0.66
AUC 0.69 0.74 0.77 0.78

Table 5.3: Performance with training set augmentated by GPT-2

From the results, with the augmentation of the training set to 4 times of its
original size, the classification accuracy can be improved by around 7%.
The accuracy at patient level was 0.68.

Training set size
(As multiple of original)

1 2 3 4
Accuracy 0.62 0.65 0.65 0.68

F1 0.61 0.63 0.64 0.67
Precision 0.63 0.66 0.67 0.68

Recall 0.59 0.60 0.60 0.67
AUC 0.66 0.70 0.71 0.73

Table 5.4: Performance with training set augmented by pairing utterances

In summary, we have classified the trajectory of HRQOL measure-
ments by using patient utterances. We first showed that compared to
using the logistic regression model with LIWC features, fine-tune BERT
on down-stream classification can boost the performance since a better
representation can be generated. Then we proposed two training data
augmentation methods to further improve the performance. Specifically,
we augment the training set by using GPT-2 to generate label-invariant
sequences, and by randomly pairing utterances from two transcripts for

75

each patient.
Classifying HRQOL trajectory is of great clinical relevance for assess-

ing and forecasting a cancer patient’s response to treatment. Since exact
HRQOL values represent one point in time, they are of less interest than
HRQOL trajectory. Moreover, this suggests that narrative data analysis
may provide more detailed or nuanced HRQOL information than survey
results alone. Based on these findings, we propose using our methodology
for the extraction of PRO using patient narrative data.

5.8 Conclusions
NLP models that extract HRQOL from narrative data such as interview
transcripts can allow for tailoring of treatment options and identification of
patients at risk for worse outcomes. We demonstrated the effectiveness of
leveraging modern deep language models to predict the HRQOL trajecto-
ries. We also proposed two training data augmentation methods to further
improve the performance. Future work will validate the methods in this
paper on transcriptions of unstructured patient-physician conversations
taking place in a typical office visit.

76

6 pratical tasks in social media analysis

6.1 Overview
This chapter shows how modern language models such as those discussed
in the previous chapters can be applied to real-world problems in commu-
nication analysis. In Section 6.2, we applied language models to analyze
favorability and hesitancy about the COVID-19 vaccine by analyzing Twit-
ter posts. This work first appeared in [62] and [59]. In section 6.3, we
analyze the public discourse on MeToo across four platforms: Facebook,
Twitter, Instagram, and Reddit. This work first appeared in [118].

6.2 Ideological Differences about COVID-19
Vaccine Favorability and Hesitancy

Vaccine hesitancy has been a growing public health issue, but during
COVID-19, understanding vaccine hesitancy and promoting vaccine fa-
vorability takes on a troubling immediacy. With the growing political
polarization on scientific issues, the COVID-19 vaccine-related sentiment
has recently become divided across ideological lines. This study aims
to understand how vaccine favorability and specific vaccine-related con-
cerns including possible side effects, distrust in medical professionals,
and conspiratorial beliefs concerning COVID-19 vaccines were articulated
and transmitted by Twitter users from opposing ideological camps and
with different follower scopes. Using a combination of computational
approaches, including supervised machine-learning and structural topic
modeling, we examined tweets surrounding COVID-19 vaccination.

We used Synthesio to retrieve a 1% random sample of tweets containing
a broad range of COVID-19-related keywords between 1 March and 30
June 2020. A collection of vaccine-related keywords were used to extract

77

a vaccine-related dataset, resulting in a sample of 349,979 tweets. The
coding schemes for variables of interest pertain to general vaccination
favorability, side effects, distrust in scientists, and conspiracy theories. We
classified tweets along these variables of interests by manually labeling a
subset of tweets, which were used to train a ML classifier. Specifically, two
human coders encoded vaccine favorability on a binary basis for each of
the following variables: vaccine favorability, vaccine unfavorability, side
effects, distrust, and conspiracy. They labeled 5,000 randomly selected
tweets and continued coding until the balance between the two classes
was roughly reached.

We then fine-tuned BERT on the downstream classification problem.
To deal with the unbalanced dataset, we use under-sampling, which ran-
domly removes samples from the majority classes. After fine-tuning, the
models were used to automatically label the remaining tweets. The perfor-
mance in terms of each variable is shown in Table 6.1. Samples labeled by
both human and BERT are combined for further analysis.

Accuracy AUC F1
Vaccine favorability 0.71 0.79 0.70

Vaccine unfavorability 0.75 0.82 0.74
Side effects 0.92 0.95 0.95

Distrust 0.84 0.89 0.85
Conspiracy 0.86 0.90 0.81

Table 6.1: BERT performance on the testset

While the raw results of this study may appear modest, with classi-
fication accuracies in the range of 70-90%, the presentation in [62] has
already been cited 46 times, indicating that the work is both timely and of
significant interest to researchers in the application domain.

78

6.3 Public Discourse Before and After #MeToo
across Four Platforms

In digital spaces, sharing personal stories and sexually traumatic experi-
ences have created a network of acknowledgment, raising the conscious-
ness about gender violence and inequality. The expanded capacity to
personal expressions and social sharing has catalyzed different types of
politicization: it has a mobilizing potential for social change, while invit-
ing increased contention. Focusing on public discourses on #MeToo and
feminism over three years across Twitter, Facebook, Instagram, and Reddit,
we employ supervised machine learning to classify the different strands
of discourses and use time-series modeling to formally model their inter-
relations.

Twitter, Facebook, Instagram, and Reddit data were collected using
Synthesio (www.synthesio.com), which is a social listening platform that
collects online conversations across various media platforms and sources.
Synthesio allows us to collect Twitter data from Twitter Decahose Stream,
available public facing (non-regional) content from Facebook and Insta-
gram, and Reddit data from Firehose of all major subreddits. We collected
#MeToo, sexual violence, and related discourses on these platforms over a
three-year time span (December 1, 2016 – April 31, 2020), using search
strings and relevant hashtags such as "#MeToo", "sexual assault," and
"sexual abuse", etc. Given the focus of the study, we retained English
content only, resulting in a total number of 26,965,357 social media posts
(Twitter 14,894,578, Facebook 1,803,220, Instagram 2,186,127, and Reddit
8,081,432).

Then we used a supervised machine learning technique to classify
social media posts into key variables of the study. Two trained undergrad-
uate students coded the following variables, all of which obtained the
satisfactory level of intercoder reliability: (1) networked acknowledgment,

79

(2) activism, (3) Feminism contention. Using the 11,000 social media posts
with human labels, we trained a deep neural network on the subset of
human-coded data; then this model was used to label the remaining unla-
beled utterances. Specifically, we fine tune the pre-trained BERT, which is
one of the widely established transformer-based language models, on the
down-stream binary classification and let the trained model be a classifier
to automatically annotate the remaining samples.

In our experiments, we first employed commonly used text prepro-
cessing methods such as removing URL, RT, , extra space, and non-ASCII
words and characters to process the sequences. To fine-tune BERT on the
down-stream classification, a linear classifier was added on top, and the
hyperparameters were tuned together to better facilitate the predictions.
The BERT output of the first token was used as a sequence representation,
where each sequence embedding is of dimension 768. For each discourse
hyperparameter, a grid-search with 5-fold cross-validation was used on
the training set to find optimal values. Besides, given the imbalanced
nature of the dataset (i.e., distribution is extremely skewed), we applied
an under-sampling approach. The performance of our final variables is
shown in Table 6.2.

Accuracy Macro F1 Precision Recall AUC
Networked acknowledgement 0.78 0.78 0.78 0.78 0.86

General feminism criticism 0.85 0.86 0.84 0.87 0.93
Feminism contention 0.85 0.86 0.84 0.87 0.93

Table 6.2: Supervised machine learning results for three discourses

80

7 future work

7.1 Apply LA-SCL to Real-World Social Media
Analysis

While doing human annotations, people leverage codebooks, which con-
tain keywords or rules to assign sentiment labels. Given that, we can create
a description of each class from this information, thus applying our pro-
posed LA-SCL described in Chapter 2. By applying this, the requirement
of labeled samples is reduced while maintaining the performance on the
downstream classification problem.

7.2 Whether Contrastive Learning can Improve
Reinforcement Learning for Human
Feedback (RLHF)

When applying RLHF, the choice of representations can influence how
well the model learns from human feedback. By using contrastive learning
to pretrain the model, we provide it with a stronger initial understanding
of the data’s underlying structure. This can lead to more effective learning
during RLHF, as the model has better-starting representations to build
upon. High-quality representations obtained through contrastive learning
can potentially enhance the model’s ability to generalize from human
feedback to unseen scenarios.

81

7.3 Investigate Whether the Discriminative
Representations could Improve Generative
Language Model Performance

Given the exploding of very large-scale generative language models (e.g.,
ChatGPT), it is natural to think about how the emergence of aligned or
separated representations correlates with the generative prompt-based
prediction ability. On the other hand, Zimmermann et al. [164] proved that
feedforward models trained with objectives belonging to the commonly
used InfoNCE family learn to invert the underlying generative model of the
observed data implicitly. It is important to bridge the correlation between
the discriminative representations and the generative ability of LLMs.

7.4 Apply LLMs to Social Media Analysis
Regarding real-world scenarios, it is not only costly to obtain human-
annotated data but also ends up with imbalanced or long-tailed distri-
butions. These challenges can be mitigated by leveraging large language
models (LLMs) such as ChatGPT, as a lot of work has shown its supe-
rior ability on few-shot or even zero-shot learning. Work such as Chain-
of-Thought (CoT) [132] has significantly improved the ability of large
language models to perform complex reasoning.

Inspired by these investigations, we can apply LLMs such as ChatGPT
to our social media analysis in collaboration with CCCR and SMAD. Par-
ticularly, we can first show a few human-annotated samples to ChatGPT
by combing the text and its corresponding sentiment information. Then
we can ask the LLMs to make predictions on massive unlabeled samples
by giving them proper prompts. This will largely reduce the labor work
on human annotation.

82

references

[1] Alsentzer, Emily, John R Murphy, Willie Boag, Wei-Hung Weng,
Di Jin, Tristan Naumann, and Matthew McDermott. 2019. Publicly
available clinical bert embeddings. arXiv preprint arXiv:1904.03323.

[2] Anaby-Tavor, Ateret, Boaz Carmeli, Esther Goldbraich, Amir Kan-
tor, George Kour, Segev Shlomov, Naama Tepper, and Naama Zw-
erdling. 2020. Do not have enough data? deep learning to the
rescue! In Proceedings of the aaai conference on artificial intelligence,
vol. 34, 7383–7390.

[3] Auer, Sören, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. 2007. Dbpedia: A nucleus for
a web of open data. In The semantic web: 6th international semantic web
conference, 2nd asian semantic web conference, iswc 2007+ aswc 2007,
busan, korea, november 11-15, 2007. proceedings, 722–735. Springer.

[4] Baumgartner, Jason. 2019. Reddit comments dumps.

[5] Bayer, Markus, Marc-André Kaufhold, and Christian Reuter. 2021.
A survey on data augmentation for text classification. arXiv preprint
arXiv:2107.03158.

[6] Bennett, Paul N, Ryen W White, Wei Chu, Susan T Dumais, Peter
Bailey, Fedor Borisyuk, and Xiaoyuan Cui. 2012. Modeling the
impact of short-and long-term behavior on search personalization.
In Proceedings of the 35th international acm sigir conference on research
and development in information retrieval, 185–194.

[7] Bevilacqua, Michele, Giuseppe Ottaviano, Patrick Lewis, Wen-tau
Yih, Sebastian Riedel, and Fabio Petroni. 2022. Autoregressive search
engines: Generating substrings as document identifiers. arXiv
preprint arXiv:2204.10628.

83

[8] Bielak, Piotr, Kamil Tagowski, Maciej Falkiewicz, Tomasz Kajdanow-
icz, and Nitesh V Chawla. 2021. Fildne: A framework for incremen-
tal learning of dynamic networks embeddings. Knowledge-Based
Systems 107453.

[9] Biggiogera, Jacopo, George Boateng, Peter Hilpert, Matthew Vowels,
Guy Bodenmann, Mona Neysari, Fridtjof Nussbeck, and Tobias
Kowatsch. 2021. Bert meets liwc: Exploring state-of-the-art language
models for predicting communication behavior in couples’ conflict
interactions. arXiv preprint arXiv:2106.01536.

[10] Brennan, M. D. n.d. The 20 newsgroups dataset. Available online.

[11] Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. 2020. Language models are
few-shot learners. Advances in neural information processing systems
33:1877–1901.

[12] Bui, Duc, Kshitiz Malik, Jack Goetz, Honglei Liu, Seungwhan Moon,
Anuj Kumar, and Kang G Shin. 2019. Federated user representation
learning. arXiv preprint arXiv:1909.12535.

[13] Caron, Mathilde, Ishan Misra, Julien Mairal, Priya Goyal, Piotr
Bojanowski, and Armand Joulin. 2020. Unsupervised learning of
visual features by contrasting cluster assignments. Advances in neural
information processing systems 33:9912–9924.

[14] Chen, Boli, Xin Huang, Lin Xiao, Zixin Cai, and Liping Jing. 2020.
Hyperbolic interaction model for hierarchical multi-label classifi-
cation. In Proceedings of the aaai conference on artificial intelligence,
vol. 34, 7496–7503.

84

[15] Chen, Chun-Fu Richard, Quanfu Fan, and Rameswar Panda. 2021.
Crossvit: Cross-attention multi-scale vision transformer for image
classification. In Proceedings of the ieee/cvf international conference on
computer vision, 357–366.

[16] Chen, Haibin, Qianli Ma, Zhenxi Lin, and Jiangyue Yan. 2021.
Hierarchy-aware label semantics matching network for hierarchi-
cal text classification. In Proceedings of the 59th annual meeting of
the association for computational linguistics and the 11th international
joint conference on natural language processing (volume 1: Long papers),
4370–4379.

[17] Chen, Jiaao, Zichao Yang, and Diyi Yang. 2020. Mixtext:
Linguistically-informed interpolation of hidden space for semi-
supervised text classification. arXiv preprint arXiv:2004.12239.

[18] Chen, Junfan, Richong Zhang, Yongyi Mao, and Jie Xu. 2022. Con-
trastnet: A contrastive learning framework for few-shot text classi-
fication. In Proceedings of the aaai conference on artificial intelligence,
vol. 36, 10492–10500.

[19] Chen, Tao, Haizhou Shi, Siliang Tang, Zhigang Chen, Fei Wu, and
Yueting Zhuang. 2021. Cil: Contrastive instance learning frame-
work for distantly supervised relation extraction. arXiv preprint
arXiv:2106.10855.

[20] Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey
Hinton. 2020. A simple framework for contrastive learning of visual
representations. In International conference on machine learning, 1597–
1607. PMLR.

[21] Chen, Yinpeng, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi
Dong, Lu Yuan, and Zicheng Liu. 2022. Mobile-former: Bridging

85

mobilenet and transformer. In Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, 5270–5279.

[22] Chen, Zhe, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng
Dai, and Yu Qiao. 2022. Vision transformer adapter for dense pre-
dictions. arXiv preprint arXiv:2205.08534.

[23] Chi, Jianfeng, William Shand, Yaodong Yu, Kai-Wei Chang, Han
Zhao, and Yuan Tian. 2022. Conditional supervised contrastive
learning for fair text classification. arXiv preprint arXiv:2205.11485.

[24] Chuang, Yung-Sung, Rumen Dangovski, Hongyin Luo, Yang Zhang,
Shiyu Chang, Marin Soljačić, Shang-Wen Li, Wen-tau Yih, Yoon
Kim, and James Glass. 2022. Diffcse: Difference-based contrastive
learning for sentence embeddings. arXiv preprint arXiv:2204.10298.

[25] Church, Kenneth Ward. 2017. Word2vec. Natural Language Engineer-
ing 23(1):155–162.

[26] Coulombe, Claude. 2018. Text data augmentation made simple by
leveraging nlp cloud apis. arXiv preprint arXiv:1812.04718.

[27] Cui, Yutao, Cheng Jiang, Limin Wang, and Gangshan Wu. 2022.
Mixformer: End-to-end tracking with iterative mixed attention. In
Proceedings of the ieee/cvf conference on computer vision and pattern
recognition, 13608–13618.

[28] Damashek, Marc. 1995. Gauging similarity with n-grams:
Language-independent categorization of text. Science 267(5199):
843–848.

[29] De Cao, Nicola, Gautier Izacard, Sebastian Riedel, and Fabio
Petroni. 2020. Autoregressive entity retrieval. arXiv preprint
arXiv:2010.00904.

86

[30] Dehghani, Mostafa, Hamed Zamani, Aliaksei Severyn, Jaap Kamps,
and W Bruce Croft. 2017. Neural ranking models with weak super-
vision. In Proceedings of the 40th international acm sigir conference on
research and development in information retrieval, 65–74.

[31] Demszky, Dorottya, Dana Movshovitz-Attias, Jeongwoo Ko, Alan
Cowen, Gaurav Nemade, and Sujith Ravi. 2020. Goemotions: A
dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547.

[32] Deng, Yang, Yaliang Li, Wenxuan Zhang, Bolin Ding, and Wai
Lam. 2022. Toward personalized answer generation in e-commerce
via multi-perspective preference modeling. ACM Transactions on
Information Systems (TOIS) 40(4):1–28.

[33] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2018. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint arXiv:1810.04805.

[34] ———. 2019. BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 conference of
the north American chapter of the association for computational linguistics:
Human language technologies, 4171–4186.

[35] Dou, Zhicheng, Ruihua Song, and Ji-Rong Wen. 2007. A large-
scale evaluation and analysis of personalized search strategies. In
Proceedings of the 16th international conference on world wide web, 581–
590.

[36] Dwibedi, Debidatta, Yusuf Aytar, Jonathan Tompson, Pierre Ser-
manet, and Andrew Zisserman. 2021. With a little help from my
friends: Nearest-neighbor contrastive learning of visual representa-
tions. In Proceedings of the ieee/cvf international conference on computer
vision, 9588–9597.

87

[37] Fang, Hongchao, Sicheng Wang, Meng Zhou, Jiayuan Ding, and
Pengtao Xie. 2020. Cert: Contrastive self-supervised learning for
language understanding. arXiv preprint arXiv:2005.12766.

[38] Faramarzi, Mojtaba, Mohammad Amini, Akilesh Badrinaaraayanan,
Vikas Verma, and Sarath Chandar. 2020. Patchup: A regulariza-
tion technique for convolutional neural networks. arXiv preprint
arXiv:2006.07794.

[39] Feng, Steven Y, Varun Gangal, Jason Wei, Sarath Chandar, Soroush
Vosoughi, Teruko Mitamura, and Eduard Hovy. 2021. A sur-
vey of data augmentation approaches for nlp. arXiv preprint
arXiv:2105.03075.

[40] Gao, Tianyu, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Sim-
ple contrastive learning of sentence embeddings. arXiv preprint
arXiv:2104.08821.

[41] Ge, Songwei, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and
Ji-Rong Wen. 2018. Personalizing search results using hierarchical
rnn with query-aware attention. In Proceedings of the 27th acm inter-
national conference on information and knowledge management, 347–356.

[42] Ge, Weifeng. 2018. Deep metric learning with hierarchical triplet
loss. In Proceedings of the european conference on computer vision (eccv),
269–285.

[43] Gillick, Daniel, Alessandro Presta, and Gaurav Singh Tomar.
2018. End-to-end retrieval in continuous space. arXiv preprint
arXiv:1811.08008.

[44] Giorgi, John M, Osvald Nitski, Gary D Bader, and Bo Wang. 2020.
Declutr: Deep contrastive learning for unsupervised textual repre-
sentations. arXiv preprint arXiv:2006.03659.

88

[45] Grbovic, Mihajlo, and Haibin Cheng. 2018. Real-time personaliza-
tion using embeddings for search ranking at airbnb. In Proceedings
of the 24th acm sigkdd international conference on knowledge discovery &
data mining, 311–320.

[46] Greaves, Felix, Daniel Ramirez-Cano, Christopher Millett, Ara Darzi,
and Liam Donaldson. 2013. Use of sentiment analysis for capturing
patient experience from free-text comments posted online. Journal
of medical Internet research 15(11):e239.

[47] Grill, Jean-Bastien, Florian Strub, Florent Altché, Corentin Tallec,
Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo
Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. 2020.
Bootstrap your own latent-a new approach to self-supervised learn-
ing. Advances in neural information processing systems 33:21271–21284.

[48] Gunel, Beliz, Jingfei Du, Alexis Conneau, and Ves Stoyanov. 2020.
Supervised contrastive learning for pre-trained language model
fine-tuning. arXiv preprint arXiv:2011.01403.

[49] Guo, Hongyu, Yongyi Mao, and Richong Zhang. 2019. Augmenting
data with mixup for sentence classification: An empirical study.
arXiv preprint arXiv:1905.08941.

[50] Guo, Qian, Wei Chen, and Huaiyu Wan. 2021. Aol4ps: A large-scale
data set for personalized search. Data Intelligence 3(4):548–567.

[51] Han, Xu, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng Li.
2018. Hierarchical relation extraction with coarse-to-fine grained
attention. In Proceedings of the 2018 conference on empirical methods in
natural language processing, 2236–2245.

89

[52] Harris, Ethan, Antonia Marcu, Matthew Painter, Mahesan Niranjan,
Adam Prügel-Bennett, and Jonathon Hare. 2020. Fmix: Enhancing
mixed sample data augmentation. arXiv preprint arXiv:2002.12047.

[53] Hasan, Fatema, Kevin S Xu, James R Foulds, and Shimei Pan. 2021.
Learning user embeddings from temporal social media data: A
survey. arXiv preprint arXiv:2105.07996.

[54] He, Junxian, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick,
and Graham Neubig. 2021. Towards a unified view of parameter-
efficient transfer learning. arXiv preprint arXiv:2110.04366.

[55] He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.
2020. Momentum contrast for unsupervised visual representation
learning. In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, 9729–9738.

[56] Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Mor-
rone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan,
and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, 2790–2799. PMLR.

[57] Huang, Kexin, Jaan Altosaar, and Rajesh Ranganath. 2019. Clinical-
bert: Modeling clinical notes and predicting hospital readmission.
arXiv preprint arXiv:1904.05342.

[58] Hui, Kai, Honglei Zhuang, Tao Chen, Zhen Qin, Jing Lu, Dara
Bahri, Ji Ma, Jai Prakash Gupta, Cicero Nogueira dos Santos, Yi Tay,
et al. 2022. Ed2lm: Encoder-decoder to language model for faster
document re-ranking inference. arXiv preprint arXiv:2204.11458.

[59] Hwang, Juwon, Min-Hsin Su, Xiaoya Jiang, Ruixue Lian, Arina
Tveleneva, and Dhavan Shah. 2022. Vaccine discourse during the

90

onset of the covid-19 pandemic: Topical structure and source pat-
terns informing efforts to combat vaccine hesitancy. Plos one 17(7):
e0271394.

[60] Jaiswal, Ashish, Ashwin Ramesh Babu, Mohammad Zaki Zadeh,
Debapriya Banerjee, and Fillia Makedon. 2020. A survey on con-
trastive self-supervised learning. Technologies 9(1):2.

[61] ———. 2021. A survey on contrastive self-supervised learning.
Technologies 9(1):2.

[62] Jiang, Xiaoya, Min-Hsin Su, Juwon Hwang, Ruixue Lian, Markus
Brauer, Sunghak Kim, and Dhavan Shah. 2021. Polarization over vac-
cination: Ideological differences in twitter expression about covid-
19 vaccine favorability and specific hesitancy concerns. Social Media+
Society 7(3):20563051211048413.

[63] Jiang, Zheng Ping, Sarah Ita Levitan, Jonathan Zomick, and Julia
Hirschberg. 2020. Detection of mental health from reddit via deep
contextualized representations. In Proceedings of the 11th international
workshop on health text mining and information analysis, 147–156.

[64] Kabbach, Alexandre, Kristina Gulordava, and Aurélie Herbelot.
2019. Towards incremental learning of word embeddings using
context informativeness. In Proceedings of the 57th annual meeting of
the association for computational linguistics: Student research workshop,
162–168. Association for Computational Linguistics.

[65] Kalyan, Katikapalli Subramanyam, Ajit Rajasekharan, and Sivane-
san Sangeetha. 2021. Ammus: A survey of transformer-based
pretrained models in natural language processing. arXiv preprint
arXiv:2108.05542.

91

[66] Kang, Taegwan, Hwanhee Lee, Byeongjin Choe, and Kyomin Jung.
2021. Entangled bidirectional encoder to autoregressive decoder for
sequential recommendation. In Proceedings of the 44th international
acm sigir conference on research and development in information retrieval,
1657–1661.

[67] Kang, Wang-Cheng, and Julian McAuley. 2018. Self-attentive se-
quential recommendation. In 2018 ieee international conference on
data mining (icdm), 197–206. IEEE.

[68] Karpukhin, Vladimir, Barlas Oğuz, Sewon Min, Patrick Lewis,
Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020.
Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906.

[69] Khosla, Prannay, Piotr Teterwak, Chen Wang, Aaron Sarna, Yon-
glong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip
Krishnan. 2020. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362.

[70] Kim, Jang-Hyun, Wonho Choo, and Hyun Oh Song. 2020. Puzzle
mix: Exploiting saliency and local statistics for optimal mixup. In
International conference on machine learning, 5275–5285. PMLR.

[71] Krishna, Kundan, Amy Pavel, Benjamin Schloss, Jeffrey P Bigham,
and Zachary C Lipton. 2021. Extracting structured data from
physician-patient conversations by predicting noteworthy utter-
ances. In Explainable ai in healthcare and medicine, 155–169. Springer.

[72] Kumar, Varun, Ashutosh Choudhary, and Eunah Cho. 2020. Data
augmentation using pre-trained transformer models. arXiv preprint
arXiv:2003.02245.

92

[73] Lee, Hyunji, Sohee Yang, Hanseok Oh, and Minjoon Seo. 2022. Gen-
erative retrieval for long sequences. arXiv preprint arXiv:2204.13596.

[74] Lee, Jinhyuk, Wonjin Yoon, Sungdong Kim, Donghyeon Kim,
Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020. Biobert: a pre-
trained biomedical language representation model for biomedical
text mining. Bioinformatics 36(4):1234–1240.

[75] Li, Bohan, Yutai Hou, and Wanxiang Che. 2021. Data augmentation
approaches in natural language processing: A survey. arXiv preprint
arXiv:2110.01852.

[76] Li, Dongyang, Taolin Zhang, Nan Hu, Chengyu Wang, and Xi-
aofeng He. 2022. Hiclre: A hierarchical contrastive learning frame-
work for distantly supervised relation extraction. arXiv preprint
arXiv:2202.13352.

[77] Li, Jiwei, Michel Galley, Chris Brockett, Georgios P Spithourakis,
Jianfeng Gao, and Bill Dolan. 2016. A persona-based neural conver-
sation model. arXiv preprint arXiv:1603.06155.

[78] Li, Junnan, Pan Zhou, Caiming Xiong, and Steven CH Hoi. 2020.
Prototypical contrastive learning of unsupervised representations.
arXiv preprint arXiv:2005.04966.

[79] Li, Xiang Lisa, and Percy Liang. 2021. Prefix-tuning: Optimizing
continuous prompts for generation. arXiv preprint arXiv:2101.00190.

[80] Li, Yikuan, Shishir Rao, Jose Roberto Ayala Solares, Abdelaali
Hassaine, Rema Ramakrishnan, Dexter Canoy, Yajie Zhu, Kazem
Rahimi, and Gholamreza Salimi-Khorshidi. 2020. Behrt: trans-
former for electronic health records. Scientific reports 10(1):1–12.

[81] Lian, Ruixue, Vivian Hsiao, Juwon Hwang, Yue Ou, Sarah E Rob-
bins, Nadine P Connor, Cameron L Macdonald, Rebecca S Sippel,

93

William A Sethares, and David F Schneider. 2023. Predicting health-
related quality of life change using natural language processing in
thyroid cancer. Intelligence-Based Medicine 7:100097.

[82] Lian, Ruixue, Che-Wei Huang, Yuqing Tang, Qilong Gu, Chengyuan
Ma, and Chenlei Guo. 2022. Incremental user embedding modeling
for personalized text classification. In Icassp 2022-2022 ieee inter-
national conference on acoustics, speech and signal processing (icassp),
7832–7836. IEEE.

[83] Lian, Ruixue, William Sethares, and Junjie Hu. 2023. Learning label
hierarchy with supervised contrastive learning. Preprint.

[84] Liu, Hong, Jeff Z HaoChen, Adrien Gaidon, and Tengyu Ma. 2021.
Self-supervised learning is more robust to dataset imbalance. arXiv
preprint arXiv:2110.05025.

[85] Liu, Jingjing, Chang Liu, and Nicholas J Belkin. 2020. Personaliza-
tion in text information retrieval: A survey. Journal of the Association
for Information Science and Technology 71(3):349–369.

[86] Liu, Jiongnan, Zhicheng Dou, Qiannan Zhu, and Ji-Rong Wen. 2022.
A category-aware multi-interest model for personalized product
search. In Proceedings of the acm web conference 2022, 360–368.

[87] Liu, Xiao, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing
Zhang, and Jie Tang. 2021. Self-supervised learning: Generative or
contrastive. IEEE Transactions on Knowledge and Data Engineering.

[88] Losing, Viktor, Barbara Hammer, and Heiko Wersing. 2018. Incre-
mental on-line learning: A review and comparison of state of the
art algorithms. Neurocomputing 275:1261–1274.

94

[89] Lowell, David, Brian E Howard, Zachary C Lipton, and Byron C
Wallace. 2020. Unsupervised data augmentation with naive augmen-
tation and without unlabeled data. arXiv preprint arXiv:2010.11966.

[90] Luque, Franco M. 2019. Atalaya at tass 2019: Data augmenta-
tion and robust embeddings for sentiment analysis. arXiv preprint
arXiv:1909.11241.

[91] Van der Maaten, Laurens, and Geoffrey Hinton. 2008. Visualizing
data using t-sne. Journal of machine learning research 9(11).

[92] Małkiński, Mikołaj, and Jacek Mańdziuk. 2022. Multi-label con-
trastive learning for abstract visual reasoning. IEEE Transactions on
Neural Networks and Learning Systems.

[93] Meng, Yu, Chenyan Xiong, Payal Bajaj, Saurabh Tiwary, Paul Ben-
nett, Jiawei Han, and Xia Song. 2021. Coco-lm: Correcting and
contrasting text sequences for language model pretraining. arXiv
preprint arXiv:2102.08473.

[94] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. 2013. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, 3111–3119.

[95] Miller, George A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.

[96] Mireshghallah, Fatemehsadat, Vaishnavi Shrivastava, Milad Shok-
ouhi, Taylor Berg-Kirkpatrick, Robert Sim, and Dimitrios Dimitri-
adis. 2021. Useridentifier: implicit user representations for sim-
ple and effective personalized sentiment analysis. arXiv preprint
arXiv:2110.00135.

95

[97] Murdock, Calvin, Zhen Li, Howard Zhou, and Tom Duerig. 2016.
Blockout: Dynamic model selection for hierarchical deep networks.
In Proceedings of the ieee conference on computer vision and pattern
recognition, 2583–2591.

[98] Nakano, Reiichiro, Jacob Hilton, Suchir Balaji, Jeff Wu, Long
Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vi-
neet Kosaraju, William Saunders, et al. 2021. Webgpt: Browser-
assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332.

[99] Ni, Jianmo, Gustavo Hernández Ábrego, Noah Constant, Ji Ma,
Keith B Hall, Daniel Cer, and Yinfei Yang. 2021. Sentence-t5: Scal-
able sentence encoders from pre-trained text-to-text models. arXiv
preprint arXiv:2108.08877.

[100] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. 2018. Represen-
tation learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

[101] Pakhomov, Serguei, Nilay Shah, Penny Hanson, Saranya Balasub-
ramaniam, and Steven A Smith. 2008. Automatic quality of life
prediction using electronic medical records. In Amia annual sym-
posium proceedings, vol. 2008, 545. American Medical Informatics
Association.

[102] Pakhomov, Serguei VS, Nilay D Shah, Holly K Van Houten, Penny L
Hanson, and Steven A Smith. 2011. The role of the electronic medical
record in the assessment of health related quality of life. In Amia
annual symposium proceedings, vol. 2011, 1080. American Medical
Informatics Association.

96

[103] Park, Jin-Hee, Yong Sik Jung, Ji Young Kim, Yujung Jo, and Sun Hy-
oung Bae. 2020. Trajectories of health-related quality of life in breast
cancer patients. Supportive Care in Cancer 28(7):3381–3389.

[104] Pei, Jiahuan, Pengjie Ren, and Maarten de Rijke. 2021. A cooperative
memory network for personalized task-oriented dialogue systems
with incomplete user profiles. In Proceedings of the web conference
2021, 1552–1561.

[105] Pennebaker, James W, Roger J Booth, Ryan L Boyd, and Martha E
Francis. 2015. Linguistic inquiry an d word count: Liwc2015 opera-
tor’s manual. Retrieved June 20:2017.

[106] Pulijala, Ashwin, and Susan Gauch. 2004. Hierarchical text clas-
sification. In International conference on cybernetics and information
technologies, systems and applications: Citsa, vol. 1, 257–262.

[107] Qu, Yanru, Dinghan Shen, Yelong Shen, Sandra Sajeev, Jiawei Han,
and Weizhu Chen. 2020. Coda: Contrast-enhanced and diversity-
promoting data augmentation for natural language understanding.
arXiv preprint arXiv:2010.08670.

[108] Quteineh, Husam, Spyridon Samothrakis, and Richard Sutcliffe.
2020. Textual data augmentation for efficient active learning on tiny
datasets. Association for Computational Linguistics.

[109] Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog 1(8):9.

[110] Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140):1–67.

97

[111] Regina, Mehdi, Maxime Meyer, and Sébastien Goutal. 2020. Text
data augmentation: Towards better detection of spear-phishing
emails. arXiv preprint arXiv:2007.02033.

[112] Rethmeier, Nils, and Isabelle Augenstein. 2021. A primer on
contrastive pretraining in language processing: Methods, lessons
learned and perspectives. arXiv preprint arXiv:2102.12982.

[113] ———. 2023. A primer on contrastive pretraining in language
processing: Methods, lessons learned, and perspectives. ACM
Computing Surveys 55(10):1–17.

[114] Reyes-Ortiz, José A, Beatriz A González-Beltrán, and Lizbeth
Gallardo-López. 2015. Clinical decision support systems: a sur-
vey of nlp-based approaches from unstructured data. In 2015 26th
international workshop on database and expert systems applications (dexa),
163–167. IEEE.

[115] Ruixue Lian, Clint Solomon Gustavo Aguilar Pragaash Ponnusamy
Jialong Han Chengyuan Ma Chenlei Guo, Sixing Lu. 2023. Person-
altm: Transformer memory for personalized search. In Proceedings
of the 46th international acm sigir conference on research and development
in information retrieval.

[116] Sedghamiz, Hooman, Shivam Raval, Enrico Santus, Tuka Alhanai,
and Mohammad Ghassemi. 2021. Supcl-seq: Supervised contrastive
learning for downstream optimized sequence representations. arXiv
preprint arXiv:2109.07424.

[117] Sokal, Robert R., and F. James Rohlf. 1962. The comparison of
dendrograms by objective methods. Taxon 11(2):33–40.

[118] Suk, Jiyoun, Yini Zhang, Zhiying Yue, Rui Wang, Xinxia Dong,
Dongdong Yang, and Ruixue Lian. 2023. When the personal be-

98

comes political: Unpacking the dynamics of sexual violence and
gender justice discourses across four social media platforms. Com-
munication Research 00936502231154146.

[119] Sun, Lichao, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S
Yu, and Lifang He. 2020. Mixup-transformer: Dynamic data aug-
mentation for nlp tasks. arXiv preprint arXiv:2010.02394.

[120] Sutskever, Ilya, Oriol Vinyals, and Quoc V Le. 2014. Sequence to se-
quence learning with neural networks. Advances in neural information
processing systems 27.

[121] Tanana, Michael J, Christina S Soma, Patty B Kuo, Nicolas M Bertag-
nolli, Aaron Dembe, Brian T Pace, Vivek Srikumar, David C Atkins,
and Zac E Imel. 2021. How do you feel? using natural language
processing to automatically rate emotion in psychotherapy. Behavior
Research Methods 1–14.

[122] Tay, Yi, Vinh Q Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri,
Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, et al. 2022.
Transformer memory as a differentiable search index. arXiv preprint
arXiv:2202.06991.

[123] Uddin, AFM, Mst Monira, Wheemyung Shin, TaeChoong Chung,
Sung-Ho Bae, et al. 2020. Saliencymix: A saliency guided data
augmentation strategy for better regularization. arXiv preprint
arXiv:2006.01791.

[124] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
2017. Attention is all you need. Advances in neural information
processing systems 30.

99

[125] Verma, Nakul, Dhruv Mahajan, Sundararajan Sellamanickam, and
Vinod Nair. 2012. Learning hierarchical similarity metrics. In 2012
ieee conference on computer vision and pattern recognition, 2280–2287.
IEEE.

[126] Verma, Vikas, Alex Lamb, Christopher Beckham, Amir Najafi, Ioan-
nis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. 2019. Mani-
fold mixup: Better representations by interpolating hidden states.
In International conference on machine learning, 6438–6447. PMLR.

[127] Voita, Elena, Rico Sennrich, and Ivan Titov. 2019. The bottom-up
evolution of representations in the transformer: A study with ma-
chine translation and language modeling objectives. arXiv preprint
arXiv:1909.01380.

[128] Wang, Tongzhou, and Phillip Isola. 2020. Understanding contrastive
representation learning through alignment and uniformity on the
hypersphere. In International conference on machine learning, 9929–
9939. PMLR.

[129] Wang, William Yang, and Diyi Yang. 2015. That’s so annoying!!!: A
lexical and frame-semantic embedding based data augmentation
approach to automatic categorization of annoying behaviors using#
petpeeve tweets. In Proceedings of the 2015 conference on empirical
methods in natural language processing, 2557–2563.

[130] Wang, Yujing, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin
Wu, Hao Sun, Qi Chen, Yuqing Xia, Chengmin Chi, Guoshuai Zhao,
et al. 2022. A neural corpus indexer for document retrieval. arXiv
preprint arXiv:2206.02743.

[131] Wang, Zihan, Peiyi Wang, Lianzhe Huang, Xin Sun, and Houfeng
Wang. 2022. Incorporating hierarchy into text encoder: a contrastive

100

learning approach for hierarchical text classification. arXiv preprint
arXiv:2203.03825.

[132] Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei
Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought
prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems 35:24824–24837.

[133] Wei, Jason, and Kai Zou. 2019. Eda: Easy data augmentation tech-
niques for boosting performance on text classification tasks. arXiv
preprint arXiv:1901.11196.

[134] Wei, Kun, Cheng Deng, Xu Yang, and Maosen Li. 2020. Incremen-
tal embedding learning via zero-shot translation. arXiv preprint
arXiv:2012.15497.

[135] Wolf, Thomas, Julien Chaumond, Lysandre Debut, Victor Sanh,
Clement Delangue, Anthony Moi, Pierric Cistac, Morgan Funtowicz,
Joe Davison, Sam Shleifer, et al. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on
empirical methods in natural language processing: System demonstrations,
38–45.

[136] Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771.

[137] Wu, Xing, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin
Hu. 2019. Conditional bert contextual augmentation. In International
conference on computational science, 84–95. Springer.

101

[138] Wu, Yuwei, Xuezhe Ma, and Diyi Yang. 2021. Personalized response
generation via generative split memory network. In Proceedings of
the 2021 conference of the north american chapter of the association for
computational linguistics: Human language technologies, 1956–1970.

[139] Wu, Zhuofeng, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun,
and Hao Ma. 2020. Clear: Contrastive learning for sentence repre-
sentation. arXiv preprint arXiv:2012.15466.

[140] Xie, Qizhe, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and
Quoc V Le. 2019. Unsupervised data augmentation for consistency
training. arXiv preprint arXiv:1904.12848.

[141] Xie, Qizhe, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le.
2020. Unsupervised data augmentation for consistency training.
Advances in neural information processing systems 33:6256–6268.

[142] Xie, Tianbao, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten
Scholak, Michihiro Yasunaga, Chien-Sheng Wu, Ming Zhong,
Pengcheng Yin, Sida I Wang, et al. 2022. Unifiedskg: Unifying and
multi-tasking structured knowledge grounding with text-to-text
language models. arXiv preprint arXiv:2201.05966.

[143] Yang, Fan, Kai Wu, Shuyi Zhang, Guannan Jiang, Yong Liu, Feng
Zheng, Wei Zhang, Chengjie Wang, and Long Zeng. 2022. Class-
aware contrastive semi-supervised learning. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition, 14421–
14430.

[144] Yoon, Soyoung, Gyuwan Kim, and Kyumin Park. 2021. Ssmix:
Saliency-based span mixup for text classification. arXiv preprint
arXiv:2106.08062.

102

[145] Yun, Sangdoo, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun,
Junsuk Choe, and Youngjoon Yoo. 2019. Cutmix: Regularization
strategy to train strong classifiers with localizable features. In Pro-
ceedings of the ieee/cvf international conference on computer vision, 6023–
6032.

[146] Zeng, Siqi, Remi Tachet des Combes, and Han Zhao. 2023. Learning
structured representations by embedding class hierarchy. In The
eleventh international conference on learning representations.

[147] Zhang, Dejiao, Shang-Wen Li, Wei Xiao, Henghui Zhu, Ramesh
Nallapati, Andrew O Arnold, and Bing Xiang. 2021. Pairwise su-
pervised contrastive learning of sentence representations. arXiv
preprint arXiv:2109.05424.

[148] Zhang, Dejiao, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu,
Kathleen McKeown, Ramesh Nallapati, Andrew Arnold, and Bing
Xiang. 2021. Supporting clustering with contrastive learning. arXiv
preprint arXiv:2103.12953.

[149] Zhang, Han, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang
Jiang, Yun Xiao, Weipeng Yan, and Wen-Yun Yang. 2020. Towards
personalized and semantic retrieval: An end-to-end solution for
e-commerce search via embedding learning. In Proceedings of the
43rd international acm sigir conference on research and development in
information retrieval, 2407–2416.

[150] Zhang, Hongyi, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz. 2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.

[151] Zhang, Saizheng, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe
Kiela, and Jason Weston. 2018. Personalizing dialogue agents: I
have a dog, do you have pets too? arXiv preprint arXiv:1801.07243.

103

[152] Zhang, Shu, Ran Xu, Caiming Xiong, and Chetan Ramaiah. 2022.
Use all the labels: A hierarchical multi-label contrastive learning
framework. In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, 16660–16669.

[153] Zhang, Xiang, Junbo Zhao, and Yann LeCun. 2015. Character-level
convolutional networks for text classification. Advances in neural
information processing systems 28:649–657.

[154] Zhang, Xinyi, Jiahao Xu, Charlie Soh, and Lihui Chen. 2022. La-hcn:
label-based attention for hierarchical multi-label text classification
neural network. Expert Systems with Applications 187:115922.

[155] Zhang, Yi, Tao Ge, and Xu Sun. 2020. Parallel data augmentation
for formality style transfer. arXiv preprint arXiv:2005.07522.

[156] Zhang, Yin, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding
bag-of-words model: a statistical framework. International journal of
machine learning and cybernetics 1:43–52.

[157] Zhang, Yizhe, Xiang Gao, Sungjin Lee, Chris Brockett, Michel
Galley, Jianfeng Gao, and Bill Dolan. 2019. Consistent dialogue
generation with self-supervised feature learning. arXiv preprint
arXiv:1903.05759.

[158] Zhou, Giulio, and Jacob Devlin. 2021. Multi-vector attention models
for deep re-ranking. In Proceedings of the 2021 conference on empirical
methods in natural language processing, 5452–5456.

[159] Zhou, Guorui, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou,
Xiaoqiang Zhu, and Kun Gai. 2018. Deep interest evolution network
for click-through rate prediction. 1809.03672.

1809.03672

104

[160] Zhou, Jie, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding,
Haoyu Zhang, Pengjun Xie, and Gongshen Liu. 2020. Hierarchy-
aware global model for hierarchical text classification. In Proceedings
of the 58th annual meeting of the association for computational linguistics,
1106–1117.

[161] Zhou, Y, Z Dou, S Ge, and JR Wen. 2019. Dynamic personalized
search based on rnn with attention mechanism. Chinese Journal of
Computer 42:812–826.

[162] Zhou, Yujia, Zhicheng Dou, and Ji-Rong Wen. 2020. Encoding
history with context-aware representation learning for personalized
search. In Proceedings of the 43rd international acm sigir conference on
research and development in information retrieval, 1111–1120.

[163] Zhuang, Shengyao, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong,
Guido Zuccon, and Daxin Jiang. 2022. Bridging the gap between
indexing and retrieval for differentiable search index with query
generation. arXiv preprint arXiv:2206.10128.

[164] Zimmermann, Roland S, Yash Sharma, Steffen Schneider, Matthias
Bethge, and Wieland Brendel. 2021. Contrastive learning inverts
the data generating process. In International conference on machine
learning, 12979–12990. PMLR.

[165] Zuo, Simiao, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin,
Chao Zhang, and Tuo Zhao. 2022. Context-aware query rewriting
for improving users’ search experience on e-commerce websites.
arXiv preprint arXiv:2209.07584.

	Contents
	Abstract
	List of Tables
	List of Figures
	Introduction and Background
	Introduction
	Text Data Augmentation
	Contrastive Learning
	Personalization
	Outline of this Document

	Learning Label Hierarchy with Supervised Contrastive Learning
	Overview
	Abstract
	Introduction
	Background
	Method
	Experimental Settings
	Results and Analysis
	Related Work
	Conclusion and Limitations
	Appendix

	PersonalTM: Transformer Memory for Personalized Search
	Overview
	Abstract
	Introduction
	Proposed Methods
	Experiments
	Ablation Study
	Case Study
	Conclusions and Limitations

	Incremental User Embedding Modeling for Personalized Text Classification
	Overview
	Abstract
	Introduction
	Proposed Methods
	Experiments
	Conclusions and Future Work

	Predicting Health-Related Quality of Life Change from Patient Language in Thyroid Cancer Studies using Natural Language Processing
	Overview
	Abstract
	Introduction
	Related Work
	Dataset Description
	Proposed Methods
	Experiments and Results
	Conclusions

	Pratical Tasks in Social Media Analysis
	Overview
	Ideological Differences about COVID-19 Vaccine Favorability and Hesitancy
	Public Discourse Before and After #MeToo across Four Platforms

	Future Work
	Apply LA-SCL to Real-World Social Media Analysis
	Whether Contrastive Learning can Improve Reinforcement Learning for Human Feedback (RLHF)
	Investigate Whether the Discriminative Representations could Improve Generative Language Model Performance
	Apply LLMs to Social Media Analysis

	References

