
UNDERSTANDING THE INFLUENCE OF FAMILIARITY ON 

ROUTE CHOICE AMONG OLDER DRIVERS 

 

By 

Rashmi Premnath Payyanadan 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

(Industrial and Systems Engineering) 

 

at the 

 

UNIVERSITY OF WISCONSIN-MADISON 

2018 

 

Date of final oral exam: 12-14-2017 

This dissertation is approved by the following members of the Final Oral Committee: 

John D. Lee, Emerson Electric Quality & Productivity Professor, Industrial and Systems 

Engineering 

Douglas A. Wiegmann, Associate Professor, Industrial and Systems Engineering 

Bilge D. Mutlu, Associate Professor, Computer Science 

Dhavan Shah, Maier-Bascom Professor, Journalism and Mass Communication 

Catalina Toma, Associate Professor, Communication Science 

Gregg C. Vanderheiden, Professor, Information Studies, University of Maryland  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Rashmi P. Payyanadan 2018 

All Rights Reserved



i 
 

ABSTRACT 

A number of studies have established the role of familiarity as an important factor of driving 

for older drivers. Familiarity is known to govern route choice, and there is a need for familiarity 

to be included in choice models. But very limited work has been conducted in quantifying the 

degree to which familiarity influences route choice, under what conditions, and how robustly 

models can approximate familiarity. This dissertation attempts to answer the first 2 knowledge 

gaps in Chapter 3, where analyses conducted on the factors that influence route choice among 

older adults showed that a) familiar routes were preferred as they were perceived to be shorter, 

direct, and had minimal traffic; b) different factors of familiarity were involved in choosing a 

route; and c) familiarity was the most important factor in explaining route choice after baseline 

route choice behavior, accounting for 26 percent of the explained variance. Additionally, 

extensive literature review revealed that current models of route choice that included familiarity 

failed to capture the multi-criteria nature of familiarity. In Chapter 4, this dissertation attempts to 

develop an abstraction hierarchy framework for describing the multi-criteria nature of route 

familiarity, and establishing a mathematical framework that can be used to calculate a new 

measure of familiarity – estimated route familiarity. The final chapter discusses the applications 

of the estimated route familiarity measure and abstraction hierarchy framework for the 

personalization of driver support systems and vehicle algorithm design.
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CHAPTER 1: INTRODUCTION 

For older adults, driving is central and plays an important role in prolonging their mobility, 

independence, autonomy, and ability to age in place. But age-related physical, cognitive, and 

functional declines make older adults vulnerable to traffic injuries and motor vehicle crashes 

(MVC). According to the Center for Disease Control and Prevention, one-third of adults 80 years 

and older are hospitalized due to MVCs, and incur at least $57,000 in hospitalization costs – 

higher than other age groups. For older adults, MVCs not only incur high financial costs 

compared to younger adults, but also result in reduced driving and driving cessation. Reduced 

driving and driving cessation has been shown to affect the overall mobility and independence of 

older adults, and result in adverse long-term consequences such as higher levels of depressive 

symptoms, general health decline, decreased life satisfaction, fewer social and recreational trips, 

and reduced participation in social activities. To address these concerns and take preventative 

measures, the aim of this dissertation is to explore opportunities for enhancing the mobility and 

safety of older drivers. 

1.1 Older drivers 

From 2003 to 2013, the number of adults 65 and older in the U.S. increased from 35.9 

million to 44.7 million, and is projected to more than double to 98 million by 2060 

(Administration on Aging, 2014). This increase has led to a rise in the number of licensed older 

drivers, from 14 percent in 2000 to 16 percent in 2012 (TRIP, 2012). Along with this increase, 

the mobility patterns of older drivers are also shifting. From 1990 to 2009, older drivers spent 

more time driving, made longer trips, and made more trips (Rosenbloom & Santos, 2014). This 

shift in driving patterns has been attributed to a number of factors such as older adults leading a 
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more active lifestyle, improved health care, education, and higher income (TRIP, 2012), and an 

increasing number of older adults remaining in the work force well after retirement age 

(Rosenbloom & Santos, 2014). Ninety percent of trips taken by adults 65 and older, and 80 

percent of trips taken by adults 85 and older are taken in a private vehicle (Rosenbloom, 2003). 

Hence driving continues to play an important role in maintaining the mobility and independence 

of older adults. 

Older adults are generally safe drivers. But driving maneuvers such as left turns and 

intersection negotiations can become more challenging with age (Cooper, 1990; Evans, 1991). 

When driving conditions become challenging – especially due to declining health, it can affect 

driving ability. Under such conditions, older drivers often limit their driving through self-

regulation. Older drivers self-regulate by avoiding difficult driving situations such as rush hours, 

intersections, nighttime driving, unfamiliar areas, and bad weather (Planek & Fowler, 1971). 

Experiencing an MVC also prompts self-regulation, such that drivers avoid driving in the rain, 

making left turns, and driving in rush hours (Ball et al., 1998). Such self-regulation, although 

important for prolonging driving safety and mobility, can often cause older drivers to cease 

driving. 

Driving cessation, an extreme form of self-regulation, avoids driving-related risk but also 

reduces participation in social and leisure activities, and can affect overall quality of life and 

well-being (Herzog, Ofstedal, & Wheeler, 2002). To avoid the costs associated with driving 

cessation, various interventions have been developed to help drivers adapt to their limits in a way 

that enhances safety without compromising mobility. These include the use of driver support 

systems (DSS) such as collision warning systems (CWS), lane departure warnings (LDW), and 

lane keeping assistance (LKA) that can guide drivers’ attention to hazards (Dingus et al., 1997).  
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The safety benefits analysis of these DSS technologies have shown promising results, with 

intelligent braking and lateral driver support systems having the potential to avoid many crashes. 

Most notably, 40.8 percent of all car accidents might be avoided with Collision Mitigation 

Braking Systems (CMBS), 16.8 percent for Lane Keeping Assist Systems, 1.4 percent for Blind 

Spot Detection systems, and 24.7 percent for Lane Change Assist systems (Kuehn, Hummel, & 

Bende, 2009). 

Training can also target functional requirements for driving such as physical status, visual 

functioning, and cognition (Marmeleira, Godinho, & Fernandes, 2009). Speed-of-processing and 

spatial attention training – a task relevant to driving – has been shown to improve UFOV among 

older drivers. A study on the effects of speed-of-processing and driver simulator training on 

driving performance among older drivers revealed training was effective in reducing the degree 

of UFOV reduction by 38% versus 13% (Roenker, Cissell, Ball, Wadley, & Edwards, 2003). 

Educational programs have also been suggested as useful in providing remediation for driving 

skills. Owsley et al. (2004) assessed the Knowledge Enhances Your Safety (KEYS) education 

program among visually impaired older drivers at high risk for crash involvement. Older drivers 

who received the KEYS intervention were more likely to acknowledge that they had poor 

eyesight, admit to experiencing more difficulty with visually challenging situations, were more 

likely to engage in self-regulatory practices, avoid hazardous driving, and reduce overall driving 

exposure. Thus training and education interventions offer promise in improving driving safety as 

they can help maintain safe driving among older drivers in the years following their training 

(Owsley, Stalvey, & Phillips, 2003). 

But older drivers are already known to choose routes that help them avoid challenging 

driving situations (Kua, Korner-Bitensky, & Desrosiers, 2007). Avoiding challenging driving 
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situations, such as left turns, has emerged as an effective response for 8 out of the 14 age-related 

conditions facing older drivers (Staplin, Lococo, Martell, & Stutts, 2012). However, little is 

known regarding the type of routes older drivers choose, factors that influence their route choice, 

and their route choice behavior. 

1.2 Route choice and the role of familiarity 

Understanding the type of route is complex because each origin-destination pair can have a 

number of routes that vary in travel time, distance, road characteristics, traffic conditions, etc. 

Whereas the factors that influence route choice is also complex, involving various driver 

preferences and knowledge about the route such as landmarks, shortest distance, fewer turns, less 

traffic, etc. (Bovy, 2009). And choice behavior along a route may consists of different choice 

processes such as sequential (decision making along the route), simultaneous (decision made in 

advance on which route to take), or strategic (adapting to new or unexpected situations along a 

route) (Gao & Chabini, 2006; Marzano, Papola, & Simonelli, 2009). 

To understand the type of routes driven, factors influencing route choice, and choice behvior 

of older drivers, three studies were conducted. In study I, an in-vehicle instrumentation suite 

consisting of a two-way facing camera, audio and video recorders, and an on-board diagnostic 

device were used to record driving behavior, driver state, and driving environment of older 

drivers for two weeks. Results of the study showed that older drivers planned trips in advance, 

preferred routes that had fewer turns, construction zones, and traffic incidents (Payyanadan, 

Gibson, Chiou, Ghazizadeh, & Lee, 2016). A route selection algorithm that implemented older 

driver route preferences, while considering older driver safety, was developed in study II using 

the General Estimates System crash statistics (Payyanadan, Sanchez, et al., 2016). Results from 
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the study showed that for the trips driven, there was opportunity to reduce the number of left 

turns and U-turns by 1.50 and 0.23, and reduce the distance travelled by 0.44 miles per trip.  

In study III, the route selection algorithm was implemented in web-based Trip Diaries to 

provide older adults retrospective feedback of their routes driven and risky driving behavior, 

with alternate route suggestions based on their preferences and designed to lower route risk 

(Payyanadan, Maus, et al., 2016). Results from the study showed that although feedback could 

lower older drivers’ route risk by 2.9% per week and speeding behavior by 0.9% per week; the 

low-risk route alternatives were not always adopted by the drivers. Further analysis indicated that 

familiarity with the route played an important role in route choice for older drives. 

Limited research concerning the influence of familiarity on route choice has shown that 

compared to younger drivers, older drivers prefer routes with similar trip attributes such as travel 

time, distance, traffic delays, and speed limits for commuting to events and visiting friends and 

family, but not for shopping and recreational trips (Zhang & Levinson, 2008). And compared to 

younger drivers, across trip purposes, older drivers prefer routes that are familiar, as familiarity 

with the route has been shown to increase recall of the environment and its objects (Peron, 

Baroni, Job, & Salmaso, 1990), and reduce the likelihood of getting lost (Uc, Rizzo, Anderson, 

Shi, & Dawson, 2004).  

While older drivers prefer familiar routes, few navigation systems consider familiarity. 

Current navigation systems implement route choice algorithms only for shortest route (Ruan, 

Luo, & Wu, 2014), routes with less navigational complexity at intersections (Haque, Kulik, & 

Klippel, 2006), simplest route (Duckham & Kulik, 2003), scenic routes (Zheng et al., 2013), 

regionalized path planning (Richter, 2009), landmarks (Klippel & Winter, 2005), and traffic 
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congestion (Gehrke & Wojtusiak, 2008). More recent navigational systems have implemented 

multi-criteria route selection based on driver preferences (Sadeghi, 2008), but fall short as they 

are primarily concerned with minimizing costs such as time and distance, rather than balancing 

factors such as familiarity, fewer turns, and stop lights (Jozefowiez, Semet, & Talbi, 2008). 

Thus, considering familiarity as part of a multi-criteria route selection algorithm could benefit 

the wayfinding and route planning needs of older drivers. 

But modelling route choice as a function of familiarity is complex as it involves a number of 

factors based on the driver’s preference, their cognitive map, and characteristics of the driving 

environment (Prato, 2009). Given the limited understanding on the influence of familiarity on 

route choice, the goal of this dissertation is two-fold: a) To determine how familiarity influences 

route choice, and b) To develop a framework for measuring route familiarity. 

1.3 Representing familiarity using Abstraction Hierarchies 

Early work on understanding the influence of familiarity on route choice has shown that 

familiarity with the route is influenced by levels of dynamic and static knowledge about the route 

and the route network such as type of roads, infrastructure, traffic conditions, and travel speed; 

spatial and temporal factors such a travel time and distance; type of trip such as purpose of 

travel; and external factors related to weather, time of departure, etc. (Lotan, 1997; O’Neill, 

1992). These knowledge representations have been used to model the decisison process, 

attitudes, and perceptions involved in route choice using fuzzy set theory, approximate 

reasoning, fuzzy control, and “if then” rules (Lotan & Koutsopoulos, 1993). But modelling these 

decision processes has been limited due to the complexity in generating the associated 

membership functions, rule calibrations, and data collection. As a result, only one or two 
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membership functions and rules have been used to model the influence of familiarity on route 

choice (Prato, Bekhor, & Pronello, 2012); with model testing primarily conducted using data 

from simulator and survey studies (Prato, 2009). Thus, current route choice models that include 

familiarty often do not appropriately reflect real-world route choice behavior. 

Bovy and Stern (1990; 2012) suggested that models representing real-world route choice 

behavior should include: distinct mental processes that follow different rules governing route 

choice; decision-making processes based on constraints, compensatory strategies, and 

preferences; trial-and-error of route use; information acquistion processes; and account for rule 

differences between individual drivers even under the same travel conditions. To develop such a 

complex route choice model, the conceptual framework by Bovy and Stern (1990; 2012) 

suggests using factor-importance hierarchy. Factor-importance hierarchy refers to the 

hierarchical ordering of factors relevant for selecting a satisfactory route. For example, if for any 

given origin and destination a driver prefers to take a familiar route, then factors such as 

familiarity with the road network would be at the top of the hierarchy to eliminate route 

alternatives not within the network; and then be followed by other factors such as trade-offs 

between familiar routes within the network based on time and distance – often referred to as the 

utility function in route choice models (Ben-Akiva, Bergman, Daly, & Ramaswamy, 1984). 

Similar hierarchical approaches have been implemented in cognitive, neuropsychological, and 

neuroimaging studies, where familiarity is represented as hierarchical levels of knowledge 

(Yonelinas, Kroll, Dobbins, & Soltani, 1999; Yonelinas, 1994, 2002). 

Early work in developing a framework to represent different levels of a hierarchy originated 

from Hierarchy Theory – an analytical approach for understanding complexity (Ahl & Allen, 

1999). But with the need to understand complex non-biological systems, hierarchical structures 
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became more widely used in Systems Theory to describe complex dynamic systems such as the 

organizational structure of steel and petrochemical industries (Mesarovic, Macko, & Takahara, 

2000). In Cognitive Engineering, similar hierarchical frameworks have been used to represent 

complex systems of human problem solving and reasoning, especially for driver behavior such as 

Michon’s Hierarchical Control Model consisting of three hierarchically ordered levels combining 

driving task and information processing (Michon, 1985); the GADGET-Matrix motivational 

model of driver behavior – representing a compensatory mechanism for drivers to self-regulate 

(Christ et al., 2000); and the Drivability Model that considers driving behavior as dynamic and 

context-dependent (Bekiaris, Amditis, & Panou, 2003). Rasmussen’s abstraction hierarchy 

presents a complementary perspective, which focusses on describing the hierarchical structure of 

the environment in which the person acts (Rasmussen, 1986). 

Among these models, Rasmussen’s Abstraction Hierarchy (AH) is the preferred theoretical 

framework for representing the levels of familiarity influencing route choice because it provides 

a mechanism for uncovering and representing both the physical and social constraints of a 

complex system (Roth & Bisantz, 2013). Uncovering and representing these constraints provides 

a basis for developing better models and designs of support that are robust, and foster flexible 

and adaptive performance. 

1.4 Research objectives 

For this dissertation, the vehicle of 29 drivers 65 years and older were instrumented with an 

on-board diagnostic device (OBII) for a period of 4 months to record their driving behavior, 

route choice, and trip characteristics. Customized web-based Trip Diaries were used to provide 

retrospective feedback of their trips. Retrospective feedback included information about routes 
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driven, low-risk route alternatives, risky driving behavior, and a questionnaire on the factors that 

influence choice of route, familiarity with the route driven, and familiarity with the alternate low-

risk route suggested. As such, this dissertation has two measures of drivers’ familiarity. Stated 

familiarity taken directly from the Trip Diary feedback responses, will refer to the self-reported 

responses on familiarity with the driven and alternate low-risk suggested route. This familiarity 

value is measured in a binary fashion: 1 (yes) and 0 (no). Estimated route familiarity is a new 

measure of familiarity proposed in this dissertation, and determined by mapping the OBDII data 

recorded from older drivers trips to the results of the content analysis conducted on the Trip 

Diary feedback responses. This dissertation will address the following questions: 

a) What is the influence of familiarity on route choice for older drivers? Stated familiarity 

responses with the route driven and alternate low-risk suggested route from the Trip Diary were 

used to conduct a mixed-effects model to test the influence of their stated familiarity on route 

choice. Additionally, Content Analyses – a qualitative approach for analyzing text data, and 

identifying themes and patterns within the text data (Hsieh & Shannon, 2005) – was conducted 

on the feedback responses from older drivers on the reasons for choosing a certain route. Results 

of the content analysis were used to determine the range of factors that affect route choice for 

older drivers; where route choice is the selection of a path from origin to destination. 

 

b) Can features defined by an abstraction hierarchy representation of routes estimate familiarity? 

Results from the Content Analysis were used to develop a hierarchical framework of route 

familiarity using the levels of Abstraction Hierarchy by Rasmussen (1986). The abstraction 

hierarchy framework was used to develop a measure of route familiarity – estimated route 

familiarity. To assess the accuracy of estimated route familiarity, it is important to understand 

How well do the levels of the AH explain the differences in the participants stated familiarity? 
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and How well does the estimated familiarity predict stated familiarity on a test data set? To 

answer these questions, the accuracy of the estimated familiarity was tested using a logistic 

regression where estimated familiarity predicted stated familiarity responses from the 

participants on the route driven and alternative low-risk routes suggested. 

 

1.5 Contributions 

The motivation for this dissertation lies in the evidence pertaining to the multi-criteria nature 

of route familiarity that influences route choice, the lack of a current approach for assessing route 

familiarity, and the opportunity for using such an approach to help better predict route choice for 

route planning and navigation systems that can better match the needs and preferences of select 

cohort of drivers. This dissertation makes a number of theoretical and practical contributions to 

understanding the influences of familiarity on route choice. 

Theoretical contributions: This is the first framework of familiarity that is based on a 

hierarchy of whole-part, means-end features of route choice. This representation of familiarity 

gives the necessary levels of granularity for modelling and better interpretation of spatial and 

contextual route choice decisions (Matyas & Schlieder, 2009). Secondly, work on assessing the 

role of familiarity on route choice especially among older drivers has been limited. By showing 

how strongly familiarity influences route choice can help establish route familiarity as an 

important measure for future route choice models. Thirdly, the proposed mathematical and 

theoretical framework for describing route familiarity can be extended to include factors such as 

memory decay, satisficing behavior, and habit, which have also been shown to influence route 

choice. 
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Practical contributions: An important application of the proposed framework of familiarity 

for predicting route choice is the potential benefits to travel demand, crash risk predictions, and 

navigation system applications. The emergence of GPS technologies that can capture location, 

travel behavior, and driver behavior at the individual level can provide valuable insights into the 

decision-making process, route choice, preferences, and driving safety needs of drivers.
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CHAPTER 2: REVIEW OF THE INFLUENCE OF FAMILIARITY ON 

THE ROUTE CHOICE OF OLDER DRIVERS 

Familiarity with the road network condition and layout has been shown to aid drivers in 

efficiently assessing traffic delays, congestion, predicting diversions (Adler & McNally, 1994; 

Dia, 2002), and reducing perceived risk and uncertainty associated with route diversions 

(Bonsall, Firmin, Anderson, Palmer, & Balmforth, 1997). A study on the driving safety errors of 

stroke patients reported that drivers with stroke made fewer at-fault safety errors, and were less 

likely to get lost when they were driving a familiar versus an unfamiliar route (Uc, Rizzo, 

Anderson, Shi, & Dawson, 2004). Although familiarity with the route can enhance safety, it can 

also result in willingness to engage in risky driving behavior (Maples & Tiefenbacher, 2009). 

Familiarity has been shown to result in shorter fixations on objects in the driving environment 

(such as traffic signs), and decrease attention needed to actively encode the environment 

(Martens & Fox, 2003; Martens, 2004). Yanko and Spalek (2013) found that drivers reduced 

their headway distance with the lead vehicle, had slower reaction time to lead vehicle braking, 

and engaged in mind-wandering, when driving familiar routes. Increasing familiarity with the 

route can also reduce glance durations and attention to environmental changes; as well as reduce 

attention to peripheral items (Martens & Fox, 2007; Mourant & Rockwell, 1970). Thus, 

familiarity can have both positive and negative effects on driving safety. 

A limited number of studies on the effects of route familiarity on the driving safety outcomes 

of older drivers have reported similar results. A report on the intersection negotiation problems 

found that drivers 61 years and older conducted fewer unsafe lane change maneuvers, left-turns 

errors, and hard braking events before lane change, on familiar versus unfamiliar routes (Staplin, 
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Gish, Decina, Lococo, & McKnight, 1998). Older drivers with Parkinson’s disease had fewer 

safety errors for turn taking and speed control on familiar routes (Uc et al., 2009). Read et al. 

(2011) found that older drivers were less likely to make navigational errors and get lost during 

wayfinding on familiar versus unfamiliar routes. Whereas other studies have shown that 

familiarity with the route did not improve the driving performance of older drivers with cognitive 

decline (Aksan et al., 2013), increased the number of unsafe driving behavior events among 

older drivers, and prevented older adults from taking low-risk route alternatives (Payyanadan & 

Lee, 2017; Peeta & Ramos, 2006). Among older drivers, familiarity with the route has also been 

associated with reducing attention when driving; negatively influencing driving behavior such as 

maintaining proper speed and lane position; impairing navigation maneuvers such as turning, 

following a sequence of turns, and wayfinding; and decreasing visual search that requires 

attention sharing (McKnight & McKnight, 1999). 

Cognitive, neuropsychological, and neuroimaging studies have highlighted a number of 

reasons why familiarity has both a positive and negative effect on performance. Familiarity and 

recollection are the two main types of memory processes in the dual-process theory of 

recognition memory, and commonly measured by recognition and recall tests (Yonelinas, 2002). 

Compared to recollection, familiar items are recognized more quickly (Hintzman, Caulton, & 

Levitin, 1998; Hintzman & Caulton, 1997), is automatic (Kelley & Jacoby, 2000), and associated 

with fluent processing of an item based on past experience; allowing the item to be more easily 

identified (Jacoby & Dallas, 1981). Whereas recollection is a consciously controlled process, 

involves active encoding of the object or environment, and supports learning of novel 

associations (Yonelinas et al., 1999). Studies that have assessed the effect of cognitive behavior 

such as divided attention on recall and recognition have shown that when subjects conducted 
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concurrent tasks, divided attention had a more disruptive effect on recall than on recognition 

(Craik, Govoni, & Naveh-Benjamin, M. Anderson, 1996; Troyer, Winocur, Craik, & 

Moscovitch, 1999). Thus, recollection is more attention-demanding than recognition. 

Additionally, recognition tests to assess accuracy and response time have shown that the fast 

recognition process can result in incorrect selections, but additional retrieval time allowed 

subjects to use the recollection process to reject incorrect selections (Dosher, 1984; Gronlund & 

Ratcliff, 1989; Rotello & Heit, 2000). Thus familiarity contributes to performance earlier in the 

decision process than recollection; and under conditions that require quick response or when 

recollection is impaired, familiarity-based memory can undermine decision-making performance. 

Research on the effects of aging on recognition memory have shown that healthy aging, mild 

cognitive impairment, and Alzheimer’s disease impairs recollection-based memory processes, 

leaving familiarity-based memory processes intact (Koen & Yonelinas, 2014). Similar research 

has been conducted on pattern completion processes. Pattern completion process – also called 

hippocampal computation – involves the successful retrieval of memories from degraded or 

partial cues, and is affected by aging (Vieweg, Stangl, Howard, & Wolbers, 2015). Older adults 

are reported to have lower recognition accuracy with decreasing pattern completeness, and a 

tendency to incorrectly select the familiar item as a response, compared to younger adults 

(Vieweg et al., 2015). Thus older adults in particular, rely more on their recognition processes 

for quick response and performance behavior, and have a positive response bias toward familiar 

stimuli. 

The positive bias toward familiarity tends to increase perceived safety among older drivers. 

Studies on the self-regulation strategies of older drivers have reported that they consider familiar 

roads to be safe (Sullivan, Smith, Horswill, & Lurie-Beck, 2011). Drivers tend to take familiar 
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routes (Payyanadan & Lee, 2017), even if the routes have features that are risky for older drivers, 

such as left turns, U-turns, traffic incidents, and construction zones (NHTSA, 2014). But 

research by Uc et al. (2009) and Read et al. (2011) show that there are safety benefits to driving 

familiar routes for older drivers, because they have fewer errors on familiar routes. Yet very 

limited work has considered the true influence of familiarity on driving behavior and safety, 

especially among older drivers.  

These studies suggest that familiarity has multiple effects on driving behavior: familiarity can 

decrease attention demand and workload, and increase risky driving behavior; but from the 

perspective of the driver, familiarity with the route may allow drivers to select routes, adjust their 

driving behavior, and possibly drive more safely (Intini, 2016). Current driving behavior and 

route choice models have focused on safety, but do not consider how route familiarity affects 

safety. There is also a lack of comprehensive analysis on the combined effect of driving 

behavior, route choice, and familiarity parameters on driving safety. Given that driving is a 

complex task, and involves a number of tasks and subtasks – understanding the influence of 

familiarity on driving behavior, route choice, and safety is still largely incomplete. 

The limited research on route familiarity has raised a number of questions such as, a) How do 

we measure route familiarity? and b) Can route familiarity be used to predict route choice? To 

answer these questions and determine the current gaps and challenges, a literature review is 

conducted on the current measures of route familiarity, route choice models that consider route 

familiarity, and how route choice models can help older drivers. 
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2.1 Measures of route familiarity 

Familiarity has been highlighted as a necessary factor for assessing route quality and 

generating routes that better reflect preferences (McGinty & Smyth, 2000). Familiarity is either 

defined by the frequency of exposure to an item, or by the opportunity to learn about the item 

determined through characteristics of the item and frequency of exposure to the item (Boster, 

1988). In the driving domain, familiarity has been defined in multiple studies by either the 

expectancy of the driver (travel time, travel distance, traffic conditions, weather), prior driving 

experience with the route (knowledge of the route attributes, road characteristics, driving 

environment), personal characteristics of the driver (socioeconomic, choice preference), trip 

characteristics (purpose, time of day), or the referent frequencies of the route learnt by driving 

the same routes. While not exhaustive, Table 1 represents common approaches used to measure 

route familiarity. 
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Table 1: Review on the measures of route familiarity 

Author Study goal 
Study 

setting 
Familiarity operationalized as 

Mourant & 

Rockwell, 1970 

Effect of route familiarity on 

driver search and scan behavior 
Simulator Training drivers on a preset route 

Allen et al., 1991 

Effect of navigation system 

characteristics on driver route 

diversion behavior 

Simulator 
Recruiting drivers with knowledge 

of the road network 

Kantowitz, 

Hanowski, & 

Kantowitz, 1997 

Effect of familiarity on the use 

and acceptance of ATIS 
Simulator 

Recruiting drivers with knowledge 

of the road network 

Lotan, 1997 
Effects of network familiarity on 

route choice behavior 
Simulator 

Using travel behavior surveys and 

interviewing drivers with 

knowledge of the road network 

Beijer, Smiley, & 

Eizenman, 2004 

Effect of route familiarity on 

glance behavior  
On-road 

Frequency of travel along a 6 km 

stretch of an expressway 

Srinivas & Hirtle, 

2006 

Preferences of schematized 

direction for familiar and 

unfamiliar routes 

- Training on set routes 

Martens & Fox, 

2007 

Effect of route familiarity on eye 

fixation changes  
Simulator 

Repeated exposure to the simulated 

driving scenarios 

Uc et al., 2007 
Effect of route familiarity on 

navigation and safety errors 
On-road 

Asking drivers of their knowledge 

of the road network 

Mader et al., 2009 
Effect of route familiarity on 

attention and perception processes 
Simulator  

Repeated exposure to the simulated 

driving scenarios 

Yanko & Spalek, 

2013 

Effect of route familiarity on 

hazard avoidance 
Simulator Training drivers on a preset route 

Li, Miwa, & 

Morikawa, 2013 
Effect of familiarity to O-D pairs On-road 

Frequency of trips for the same O-

D pair 

Ramachandran, 

Karpov, Gupta, & 

Raux, 2013 

Modelling familiarity for 

navigation 
On-road  

Categorizing a route as familiar if 

the driver can complete a route 

from A to B with minimal 

map/device assistance 

Marquez et al., 

2015 

Effect of route familiarity on 

wayfinding 
- 

Interviews of drivers with 

knowledge of the road network 
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Payyanadan & Lee, 

2016 

Effect of route familiarity on 

driving behavior and risk 
On-road 

Route familiarity questions of trips 

driven 

Intini, 2016 
Effect of route familiarity on 

driving behavior 
On-road 

Recruiting drivers with knowledge 

of the set route  

Current challenges in measuring route familiarity (Table 1) is that familiarity is measured 

based on knowledge about the route or route network, which may or may not involve knowledge 

of the type of roads, infrastructure, traffic conditions, and travel speed; spatial and temporal 

knowledge such as travel time and distance; or knowledge related to weather, time of departure, 

etc. Additionally, these studies mainly use simulated environments and measure familiarity 

through ratings. Although simulator studies use measurement validity – defined by indicators 

that measure the concept of interest to determine whether inferences about real driving behaviors 

can be made from driving simulator data (Reimer, D’Ambrosio, Coughlin, Kafrissen, & 

Biederman, 2006); these simulator studies may not necessarily capture the concept of route 

familiarity. This is because current approaches for measuring route familiarity in simulator 

settings involve training drivers on preset routes, and using questionnaires and retrieval cues to 

determine route familiarity. But extensive work by Yonelinas (1994, 2002) has provided 

empirical evidence to suggest that while recollection is associated with learning novel 

associations, familiarity only supports novel learning under very limited conditions. Thus studies 

that train drivers over a short period of time on preset routes, often capture responses that mainly 

reflect recollection – conscious experience of remembering associated with when or where an 

item was studied, versus familiarity – conscious experience of knowing, which cannot 

discriminate when or where an item was studied (Jacoby, 1991; Yonelinas, 2002).  
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2.2 Route choice models that include route familiarity 

Despite the challenges with measuring route familiarity, models have been developed to 

assess how familiarity influences drivers’ route choice. These models have implemented 

different approaches to representing familiarity. For example, Ramachandran et al. (2013) used 

GPS traces of drivers recorded over a two-month period to develop familiarity prediction models 

representing different aspects of route familiarity such as landmarks, segments, and turns. Table 

2 highlights some of the models and the representations of route familiarity to predict route 

choice. 

Table 2: Route choice models optimized for route familiarity 

Author Study goal 
System/ 

algorithm/ model 

Familiarity 

represented as 

Route choice model 

optimization criterion 

Bonsall et 

al., 1997 

Determine the ability of 

a route choice simulation 

to reflect driver’s route 

choice outcomes based 

on network familiarity 

VLADIMIR – 

route choice 

model 

Subject rating 

of familiarity 

with the road 

network 

Familiarity with the road 

network 

McGinty 

& Smyth, 

2000 

Develop a case-based 

route planning system 

that generates routes 

based on implicit user 

preferences 

Case-based route 

planning 

algorithm 

Degree of 

overlap 

between route 

segments 

Process complexity, route 

similarity, familiarity 

Hamed & 

Abdul-

Hussain, 

2001 

Develop a method to 

quantify driver’s 

familiarity with the route 

network 

Driver’s 

familiarity 

estimation using 

maximum 

likelihood 

Subject rating 

of familiarity on 

routes driven 

Route familiarity, traffic, 

socioeconomic, familiarity with 

alternate route, time of travel 

Dia, 2002 

Determine the influence 

of route choice feedback 

in real-time 

Agent-based 

approach 

familiarity with 

network 

conditions 

Travel patterns, traffic, route 

preferences, willingness to 

divert, familiarity 
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Patel, 

Chen, 

Smith, & 

Landay, 

2006 

Develop a MyRoute 

navigation system to 

provide users with 

alternate shorter familiar 

routes 

Personalized 

routing system 

using familiar 

landmarks 

Subject 

familiarity of 

landmarks 

Landmark familiarity, distance, 

time 

Zhang & 

Levinson, 

2008 

Develop a calibration 

framework for 

calibrating parameters of 

a driver behavior model 

Genetic 

algorithm 

Subject rating 

on familiarity 

on travelled and 

alternate routes 

Road geometry, traffic, vehicle 

controls, OD demands, car-

following, lane change, route 

choice parameters, familiarity 

Lin & 

Chou, 

2008 

Develop a route 

guidance system that can 

adapt to different driving 

behaviors 

Adaptive-

network-based 

fuzzy inference 

system 

Frequency of 

travel along a 

route segment 

Driver attributes (socio-

economic, network familiarity, 

confidence, sensitivity to delay, 

personal preferences), route 

characteristics (travel time, 

distance, toll, route complexity, 

location type), situational factors 

(weather, time-of-day, trip 

purpose) 

Li, Miwa, 

& 

Morikawa, 

2013 

Determine whether route 

choice behavior is 

influenced by 

heterogeneity in the 

familiarity with O-D 

pairs 

Random utility 

framework 

Expanding-path 

size logit model 

with a sampling 

of alternatives 

Frequency of 

travel between 

an origin-

destination pair 

Familiarity, O-D pairs 

Major gaps with the current route choice models (Table 2) result from their focus on traffic 

assignment problems, and on enhancing path generation techniques (Prato et al., 2012), rather 

than understanding the influence of familiarity on driving safety outcomes. The route choice 

models assume that drivers mainly prefer to maximize their utility based on travel time, distance, 

and en-route diversion (Lotan, 1997; Prato et al., 2012), and have all the information needed to 

make an informed decision about a route (Prato, 2009). Additionally, current route choice 

models that consider familiarity do not consider the context and situational aspects that influence 

driving behavior such as trip purpose and motivation (Payyanadan et al., 2016). Thus the role of 
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familiarity in these models has been to inform trip planning and real-time route diversion 

algorithms, rather than model and predict route choice based on driver preferences (Papinski, 

Scott, & Doherty, 2009). 

2.3 Why we need customized route choice models for older drivers 

The number of licensed older drivers is growing – increasing by 21 percent from 2002 to 

2011, and accounting for 16 percent of all licensed drivers in the U.S. (NHTSA, 2014). This shift 

towards more older drivers on the road has brought about a need to reassess their driving 

challenges, and concerns related to their mobility and driving safety outcomes, such as their risk 

of crash, age-related decline, and driving cessation (Hakamies-Blomqvist & Wahlstrom, 1998; 

Hakamies-Blomqvist, 2004; Lundberg, Hakamies-Blomqvist, Almkvist, & Johansson, 1998). 

Understanding these challenges and concerns can help better define the support structure and 

technology needed to prolong the driving safety, mobility, and independence of older drivers. 

2.3.1 Crash risk 

In 2011, 5,401 adults age 65 and older were killed, and 185,000 injured in traffic crashes. 

These older adults made up for 17 percent of all traffic fatalities, and 8 percent of the total 

population injured in traffic crashes (NHTSA, 2014). In 2012, NHTSA reported that for two-

vehicle crashes, older drivers were 75 percent more likely to be involved in a crash between 2 

pm and 6 pm, and during daylight – attributed to their increased driving exposure during the day. 

Older drivers are also involved in greater number of intersection and crossing-related crashes 

(Hakamies-Blomqvist, 1993) as a result of their increased exposure to intersections due to choice 

of road type, such as the preference to avoid highways (Langford & Koppel, 2006). The 2012 

NHTSA report also showed that left-turn crashes were particularly frequent for older drivers, 
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with 20 percent of drivers 70-79 years, and 25 percent of drivers 80 years and older involved in a 

left-turn crash. These results suggest that the risk of crash among older drivers under certain 

driving situations is influenced by their driving exposure patterns and is a major safety concern, 

as older adults are more vulnerable to crash-related injuries and death. 

The increased vulnerability of older drivers to crash-related injuries and death can be 

attributed to their increased fragility, frailty, and age-related decline. Fragility is commonly 

defined as the probability of an injury occurring, and frailty is the conditional probability of 

death given a certain injury (Kent, Trowbridge, Lopez-Valdes, Ordoyo, & Segui-Gomez, 2009). 

A study on the impact of frontal and side crashes on injury outcomes showed that older drivers 

sustained higher rates of AIS2+ (Abbreviated Injury Scale) organ injuries (lung, heart and 

myocardium), as well as more rib and sternum fractures compared to younger drivers 17-39 

years old (Morris, Welsh, Frampton, Charlton, & Fildes, 2002). Li, Braver, and Chen (2003) 

reported that 60-95 percent of the increase in death rates per vehicle mile travelled among older 

drivers is due to  their increased fragility. Analysis of the FARS (Fatality Analysis Reporting 

System) and NASS-CDS (National Automotive Sampling System Crashworthiness Data System) 

datasets have shown that the relative mortality rate for frontal and left side crashes is three times 

greater for older adults than younger adults (Kent, Henary, & Matsuoka, 2005). In the study, 

despite lower speed and increased seatbelt use, older drivers had significantly greater injury and 

mortality rates due to their frailty. Studies on chest deflection to assess risk of an injury during a 

crash showed that regardless of injury onset or injury severity, chest deflection injury strongly 

depends on age – decreasing to 13 percent for 70 year olds’ compared to 30 year olds’ with 

deflection level of 35 percent (Kent & Patrie, 2005). Thus, aging inevitably leads to greater 

fragility and frailty, which are major risk factors for crashes. But while fragility increases by a 
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factor of 8 from ages 20-80, frailty only increases by a factor of less than two over the same 

range. 

2.3.2 Age-related declines 

Numerous studies have highlighted the risk factors for increased motor vehicle crashes 

among older drivers due to age-related decline. These risk factors include cognitive impairments 

(Lundberg et al., 1998), reduced visual and motor function (Rubin et al., 2007), and decline in 

physical functioning (Marottoli, Cooney, Wagner, Doucette, & Tinetti, 1994). These age-related 

factors can degrade driving skills over time.  

Cognitive factors that affect driving performance include perceptual and visuo-spatial 

abilities, processing speed and reaction time, memory, executive function, and mental status. 

Visuo-perceptual tests such as movement perception have been shown to have moderate 

association with driving performance. De Raedt and Ponjaert-Kristoffersen (2000) used 

neuropsychological tests that were relevant to safe driving and sensitive to aging to evaluate 

response to complex traffic situations among older drivers. Their results showed that movement 

perception was strongly correlated to driving performance. Reaction time was also shown to 

have moderate correlations with on-road driving performance, but more so for complex reaction 

than simple reaction time (McKnight & McKnight, 1999). Additionally, work by Carr and Ott 

(2010) showed that cognitive impairments such as dementia in older drivers led to a two-fold 

increase in crash risk.  

Driving is a highly visual task and many aspects of visual functioning decline past age 50 

(Johnson & Choy, 1987). For older drivers, the primary cause of driving difficulty is the high 

incidence of visual problems and eye disease (Leibowitz et al., 1979). Hence identifying decline 
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in visual function has been suggested as an indicator of crash risk. Older drivers with acuities in 

the range of 20/40 to 20/50 are shown to have a greater risk of crashing than other older drivers 

with better acuity (Gresset & Meyer, 1994). For older drivers, strong association between visual 

impairment and driving performance has also been reported especially under low luminance 

conditions (West, Gildengorin, Haegerstrom-Portnoy, Lott, Schneck, & Brabyn, 2003). 

Decline of motor functions also affects driving performance of older drivers by restricting 

their ability to perform certain driving tasks. These include tasks such as entering and exiting a 

vehicle, depressing the brakes, and gripping the steering wheel; which can lead to difficulty 

parking, reversing into a parking lot, and checking blind spots. Decline of physical motor 

functions has been shown to affect the ability of older drivers to control movement with speed 

and accuracy (Larsson, Grimby, & Karlsson, 1979), impair tracking ability (Jagacinski, Liao, & 

Fayyad, 1995), and increase the reaction time for carrying out complex driving motor control 

tasks (Gisolfi, 1995). Marottoli et al., (1998) reported poor neck rotation to be associated with 

twice the risk of crashing. 

2.3.3 Driving cessation and self-regulation 

For older adults, crashes not only produces more injury and deaths compared to younger 

adults (Committee on Trauma, 2003), but also result in reduced driving, which can lead to 

driving cessation (Oxley & Charlton, 2009). Driving cessation occurs when one or more mobility 

options such as driving a personal vehicle becomes unsafe, impractical or impossible due to 

changing health, function, and/or other circumstances of life (Meuser, Berg-Weger, Chibnall, 

Harmon, & Stowe, 2013). Driving cessation has been shown to affect the overall mobility and 

independence of older adults (Burkhardt, 1999), and results in adverse long-term consequences. 

Ross, et al. (2009) reported that the odds ratio of not driving for older adults to be 1.11 for each 
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additional year of age and 1.15 for each additional medical condition. In a nine year study 

Brayne et al. (2000) found that common reasons for driving cessation among drivers 80 years 

and older were health problems (28.6%), and loss of confidence (17.9%); while one third 

reported giving up driving on advice from family, friends, or a medical specialist (Gilhotra et al., 

2001). A recent study on the potential predictors for driving cessation among older drivers 

reported similar results, with 35 percent of older adults reporting vision and health as the main 

reason for driving cessation, while only 7 percent reporting failure of license renewal test as the 

reason (Choi, Adams, & Kahana, 2012). 

Social activity is a strong correlate of life satisfaction and health. Banister and Bowling 

(2004) reported that having access to a car was associated with greater social activities among 

older adults. Whereras reduced driving exposure or driving cessation reduced social engagement 

activities from 13 to 5 percent (Taylor & Tripodes, 2001), and decreased overall out-of-home 

activities (Siren & Hakamies-Blomqvist, 2004). Reduced activity also increases burden and 

reliance on family and friends. Fifty-six percent of older adults who stopped driving depended 

solely on their spouses for medical trips, whereas 24 percent relied on their adult children 

(Taylor & Tripodes, 2001). Reduced out-of-home activity has been associated with poor health 

status, well-being, and survival in old age. Edwards et al. (2009) reported the hazard ratio of 

mortality for nondrivers to be 6.11 times greater than that for current drivers. Thus for older 

adults, driving cessation reduces participation in social and leisure activities, which in turn can 

affect quality of life and overall well-being. 

To address the challenges associated with crash risk, age-related decline, and driving 

cessation, older drivers practice self-regulation by avoiding unfamiliar routes; routes with a 

history of crashes or near misses; roads with traffic, construction, and detours; and avoid driving 
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during poor weather and on roads with poor infrastructure (Payyanadan, Gibson, et al., 2016; 

Payyanadan, Lee, & Greppo, 2018). These studies have shown that the primary self-regulation 

strategy among older drivers involves making route-selection decisions based on the familiarity 

and preferences with the road environment and driving task (Walker, Fain, Fisk, & McGuire, 

1997). 

2.4 Use of navigation system for route choice assistance 

Navigation systems have been shown to improve mobility and safety by providing drivers 

with information on traffic and road conditions, vehicle location and navigation, and safety 

warnings (Dingus et al., 1997). Such driver support systems are useful for older drivers – helping 

make decisions about a preferred route, mode, and departure time against a set of alternative 

choices (Adler & Blue, 1998), providing route descriptions as well as important sequential traffic 

information while driving (Entenmann & Küting, 2000), and serving as companions to assist in 

coping with increasingly complex road networks (Emmerson, Guo, Blythe, Namdeo, & Edwards, 

2013). 

NHTSA and FHWA reports on early adopters and safety-related driving with advanced 

technologies found a rise in the use of navigation systems among drivers 60 and older to help 

with route-selection decisions and driving tasks (Band & Perel, 2007). These reports found that 

73 percent of older drivers were willing to drive in unfamiliar areas when using navigation 

systems, and 98 percent of all drivers preferred using navigation systems to a paper map. The use 

of navigation systems increased confidence among older drivers when travelling in unfamiliar 

and congested areas (Emmerson et al., 2013). 
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But current navigation systems focus primarily on trip optimization strategies, such as 

avoiding congestion and poor road conditions, and provide only positioning capabilities (Brandt, 

2013). Additionally, alternate route suggestion algorithms in navigation systems use traditional 

trip-based models and activity-based models. Trip-based approaches are part of the four-stage 

traffic model – trip generation, trip distribution, modal split, and assignment; and is commonly 

used for traffic planning (Ortúzar & Willumsen, 2001). Although trip-based approaches have 

helped better understand travel demand and network performance such as traffic flow and 

equilibrium, they are a simplified way of understanding travel behavior, and do not consider 

context (Ortuzar & Willumsen, 2011). Context provides important behavioral information 

needed to understand the safety and mobility needs of a driver, decision-making process for a 

trip, social and motivational aspects of a trip, and information needs, perspectives, preferences, 

and priorities of the driver (Federal Highway Administration, 2010). Thus, to better understand 

how drivers organize their trips and driving behaviors associated with these trips requires an 

understanding of context, which can provide a better basis for travel demand modelling. 

In contrast, activity-based models focus on reproducing the actual travel decision-making of 

drivers by not only capturing trip information such as locations, successful trips, and travel time 

and distance; but also driver activities such as type of trip (work, social), time and monetary 

constraints, coordinated trips with members of their social network, availability and accessibility 

to resources and services, time and location constraints such as avoiding rush hours, and 

individual constraints due to prior commitments (to a friend or family member), or health-related 

issues (Ortuzar & Willumsen, 2011). Despite the focus on context, current activity-based models 

remain experimental. This is because the two promising approaches to activity-based models – 

econometric methods and computational process models have a number of limitations. While the 
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models using econometric methods only focus on the optimization of driver’s choice by 

assessing the cost of information acquisition, information representation, information processing, 

decision making, and choosing the best among alternatives; the computational process models 

employ ‘if-then’ rules rather than utility-maximization decision criteria. Thus, despite the 

numerous applications of activity-based models, they have not yet been adopted for transport 

modelling and policy development. And both trip-based and activity-based approaches model 

route choice based on travel and traffic demand rather than preferences, safety, or familiarity. 

Other route choice modelling approaches used in navigation systems use a form of the classic 

path-based and link-based approach (Fosgerau, Frejinger, & Karlstrom, 2013). The path-based 

approach uses discrete choice sets among paths, which combine the observed paths and paths 

sampled from a path generation algorithm. Whereas for link-based approach, the choices are 

modeled as a sequence of link choices. While these route choice model approaches are very 

useful, they have mainly used simulated data for parameter estimation, raising issues of 

generalizability and biases. Additionally, these modelling approaches have not been able to 

successfully capture trade-offs between trip attributes such as travel time versus distance, as they 

require the use of survey data, and observations of routes driven, which are often not recorded. 

Lastly, these models continue to focus mainly on dynamic traffic assignment problems for 

estimating equilibrium traffic flow, rather than driver preference and safety.   

Thus, navigation systems and route guidance technologies focus primarily on optimizing 

route attributes based on travel time, distance, traffic delays, and speed limits, and providing 

feedback of alternate route options based on routes with fewer traffic incidents and delays. While 

these factors have been able to provide drivers with the fastest and shortest routes to their 

destination, and prevent them from getting lost or taking a wrong turn; these technologies are 
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unable to provide route guidance based on the underlying needs, behaviors, challenges, and route 

preferences specific to the driver (Leshed, Velden, Rieger, Kot, & Sengers, 2008). Currently, the 

Intelligent Learning Navigation (ILENA) by BMW, which is in the developmental stages; and 

the Volkswagen Regular Routes navigation system, are the only known examples of navigation 

systems providing route options based on route familiarity. ILENA records driving patterns and 

road conditions to predict route choice, destinations, and driving behavior (Autocar, 2017). And 

the Volkswagen system records regularly driven routes, and provides alternate familiar route 

options to avoid traffic congestion based on the three frequently driven routes (Volkswagen, 

2016).  

2.5 Addressing the gap 

With the continued advances in driver support systems, there are opportunities to customize 

navigation systems with route choice models that can support the delivery of relevant routing 

options, driving safety, and behavioral feedback to meet the specific driving challenges, safety 

needs, and driving preferences of older drivers. From the literature reviewed, a number of gaps 

and approaches to address these challenges have been highlighted below: 

a) Influence of familiarity on route choice among older drivers. To understand how familiarity 

influences route choice, in Chapter 3, the driving behaviors, trip characteristics, route 

familiarity, and route choice data recorded by OBDII devices and Trip Diary feedback 

responses of 29 adults 65 years and older were analyzed. Content analyses was conducted on 

the feedback responses from older drivers to determine the reasons for choosing a familiar 

route. A mixed-effects model using the OBDII data was used to assess the relationship 

between stated familiarity and route choice. 
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b) A multi-criteria measure of route familiarity. To develop a measure of route familiarity, 

results from the content analysis suggesting the multi-criteria nature of familiarity was used in 

Chapter 4 to develop a hierarchical framework representing route familiarity. Representation 

of familiarity within each level of the hierarchy framework was guided by the Abstraction 

Hierarchy framework by Rasmussen (1986). The hierarchical framework was used to propose 

a theoretical measure of route familiarity – estimated route familiarity. 

 

c) Predict familiarity. To predict stated familiarity using the proposed estimated route 

familiarity, the abstraction hierarchy framework for describing route familiarity was fit to the 

OBDII data. Parameter estimation was then conducted using logistic regression models to test 

the relationship between drivers’ stated familiarity and familiarity estimated using the 

abstraction hierarchy framework.
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CHAPTER 3: ASSESSING THE ROLE OF FAMILIARITY ON THE 

DRIVING BEHAVIOR AND ROUTE CHOICE OF OLDER DRIVERS 

3.1 Introduction 

For older drivers, limited research on the effect of route familiarity on route choice, driving 

behavior, and safety have reported mainly positive outcomes. But to determine the true influence 

of route familiarity on route choice and driving behavior is complex. Complexity arises because 

route choice and driving behavior are also influenced by the driver’s personal characteristics 

such as age, health, task complexity, stress, and time-pressure (Brunyé, Wood, Houck, & Taylor, 

2016; Taylor & Brunyé, 2013), and trip attributes such as travel time, distance, and traffic 

(Bonsall, 1992). A number of studies have assessed the effect of familiarity on search and 

scanning behavior (Mourant & Rockwell, 1970), driving performance (Yanko & Spalek, 2013), 

ATIS use and acceptance (Hanowski, Kantowitz, & Kantowitz, 1994), route choice behavior 

(Lotan, 1997), driving challenges and intersection errors (Staplin et al., 1998), and glance 

behavior (Beijer et al., 2004). While these studies have made significant contributions to 

understanding the influence of familiarity on driving behaviors, few have attempted to assess the 

effect of route familiarity on route choice and the challenging situational factors governing route 

choice. 

In this Chapter we attempt to assess the influence of familiarity on driving behaviors, route 

choice, and challenging situational factors that influence route choice. The vehicles of older 

drivers were instrumented with OBDII devices for a period of 4 months to record their driving 

behaviors and choice of route. For each trip driven, older drivers were given access to 

customized web-based Trip Diaries with feedback of their  risky driving behaviors and alternate 
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low-risk routes (Payyanadan, Maus, et al., 2016). Risky driving behaviors were driving 

behaviors such as hard accelerations, hard braking, and hard cornering that are related to the 

immediate risk of an injury or crash (Blows, Ameratunga, Ivers, Lo, & Norton, 2005); and low-

risk routes were suggested using a route risk measure that determined the probability of a crash 

for any given route based on the route characteristics, such as left turns and U-turns 

(Payyanadan, Sanchez, & Lee, 2016). Along with the feedback, older drivers were also asked 

three questions for each trip driven: a) their familiarity with the route driven, b) familiarity with 

the alternate low-risk suggested route, and reasons or challenging situational factors when 

choosing a familiar versus unfamiliar route. Challenging situational factors such as traffic 

incidents, visibility, other drivers, and near misses are associated with greater crash involvement 

or pose an increased risk of crash to older drivers (Chang, Matz, & Chang, 2013).  

3.2 Method 

The vehicles of 29 older drivers were instrumented with OBDII devices to collect GPS data, 

and driving behaviors such as speeding, acceleration, hard braking, and harsh cornering events. 

The OBDII devices were installed in their cars, and data collected for four months. Reports of 

each trip, driving behaviors, and feedback questions were made available for the older drivers on 

a personal Trip Diary page.  

3.2.1 Participants 

A total of 29 drivers 65 and older were recruited from a Midwestern state in the U.S. 

Participant’s age ranged from 65 to 82 years. To participate in the study, older adults were 

required to hold a valid driver’s license, have internet access, and drive at least twice a week. 
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The demographic data along with the trip details of the participants in the study are shown in 

Table 3. 

Table 3: Mean ages of the older drivers in the study, and driving data of their baseline and treatment 

periods, grouped by gender. 

  Baseline period (1 month) Treatment period (3 months) 

Gender Total  Age Distance (miles) Time (minutes) Distance (miles) Time (minutes) 

Males 14 73 7.0 12.6 7.9 13.6 

Females 15 70 7.2 13.5 7.0 13.2 

 

3.2.2 OBDII devices 

Geotab GO6 OBDII devices were installed in the vehicles of older drivers to collect trip 

information using GPS data, and risky driving behavior such as speeding, hard braking, 

accelerating, and cornering events (Table 4). Baseline data were collected from participants for 

one month, with no access to their trips driven and risky driving behavior events. After the 

baseline period, participants were given access to a personal web-based Trip Diary page for three 

months. During the treatment period, the Trip Diary page provided information about their trips 

driven and risky driving behavior events, along with alternate low-risk route options. The 

suggested low-risk route is a route with the least number left turns, U-turns, traffic incidents, and 

lane closures from a subset of routes for any given origin and destination, with minimal increase 

of trip distance and travel time (Payyanadan, Sanchez, & Lee, 2016). 
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Table 4: Geotab GO6 OBDII device settings and sensitivity metrics to record participant trip 

information and risky driving behavior events 

Geotab GO6 

OBDII data 
Definition 

Measure and sensitivity 

settings for passenger 

vehicle 

GPS 

coordinates 
Latitude and longitude data for location retrieval Event-based 

Trip 

start/stop 

A trip starts when the vehicle starts moving. A stop is recorded when the vehicle ignition is 

turned off, or when the vehicle has a speed of less than 1 km/h for more than 200 seconds. 

Distance  Distance travelled for each trip from origin to destination Miles  

Time  Time taken to travel for each trip from origin to destination Seconds  

Speed Records changes in speed during a trip  m/s2, Event-based 

Acceleration 3-axis accelerometer recordings to determine vehicle acceleration 
Threshold change of 300 

milli-G in any direction 

Speed 

violation 

Speed is monitored against the posted road speed. If there was no 

data on the posted speed limit for a section of a trip, no speed 

violation was recorded. 

5 mph over the posted 

speed limit 

Hard braking 
A hard braking incident is recorded when it caused a force of 1/2 G 

to be exerted on the vehicle. 

G-force exertion set at – 

0.58 

Hard 

cornering 

A hard cornering incident is recorded when a hard or aggressive 

turn causes a force greater than 2/5 G to be exerted on the vehicle. 

G-force exertion set at > 

0.47 and < - 0.47 

Hard 

acceleration 

A hard acceleration incident is recorded when it causes a force of 

1/3 G to be exerted on the vehicle. 
G-force exertion set at 0.4 

Seatbelt 

violation 

A seatbelt violation is recorded when the driver is not wearing a seatbelt while the vehicle is 

moving faster than 6.21 mph. This information is communicated through the ECM (electronic 

control unit) of the vehicle. But not all vehicles transmit information about the seatbelt, hence 

reporting depended on the type of vehicle driven. 

Engine light Identifies vehicles driven with the ‘Check Engine’ light on. 

Possible 

accident 

A possible accident event is recorded when the accelerometer detects a change in speed of more 

than 15 mph in 1 second in any direction. 

3.2.3 Trip Diary page and feedback questions 

The Trip Diary reports and feedback questions were provided for a period of three months. 

Trips driven and risky driving behavior events recorded by the OBDII devices were logged on 
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the Trip Diary page. Participants were requested to access their personal Trip Diary page two to 

three times a week, review each of their trips driven, risky driving behavior events, alternate low-

risk route suggestions, and provide responses to the feedback questions for each trip driven. 

Three feedback questions: familiarity with the route driven, familiarity with the suggested low-

risk route, and reasons for choosing the driven route, were asked on each trip report (Figure 1). 
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Figure 1: Trip Diary page of a participant with list of trips and trip details with feedback questions 

from participant drives. 

The two familiarity questions: familiarity with the route driven and familiarity with the 

alternate suggested route, were yes/no questions because the pilot study showed that older adults 

found the five-point Likert scale for familiarity to be confusing. The third question on reasons for 
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choosing a route was an open-ended question where participants could state the decisions and 

challenges that influenced their route choice. 

3.2.4 Models, assumptions, and analysis 

OBDII devices recorded GPS data and risky driving behaviors such as hard braking, hard 

cornering, speeding, and hard acceleration events. From the GPS data, the route risk – a measure 

developed to quantify the crash risk based on the route’s physical characteristics, such as 

distance, number of left and right turns, and portion under construction, was determined 

(Payyanadan, Sanchez, et al., 2016). This crash risk measure of a route was used to estimate risk 

associated with a participant’s route choice by comparing the risk of the route they chose to drive 

against alternative low-risk routes – route choice risk. In this study, time under treatment is the 

amount of time passed since the participants were given access to the Trip Diary. To understand 

the true effect of route familiarity on route choice risk and risky driving behavior events, we 

control for the effect of the treatment—Trip Diary feedback. To determine the influence of 

familiarity on the route choice risk and risky driving behavior events, the following assumptions 

were made: 

- Older drivers’ route choice risk is a function of their route choice, route familiarity, and the 

amount of time under treatment. 

- Older drivers’ risky driving behavior events are a function of their route choice, route 

familiarity, and the amount of time under treatment. 

- The older driver population has a mean route choice risk and response to treatment, but 

individuals within the population may differ. 
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Influence of familiarity on risky driving behavior events: Analysis was conducted at two 

levels – at the route level and at the participant level. At the route level, a paired sample t-test 

was conducted on the difference in risky driving behavior events between familiar and 

unfamiliar routes. At the route level, we tested the hypothesis that there was no difference in 

risky driving behavior events between familiar and unfamiliar routes, with the expectation that 

participants would exhibit more frequent risky driving behavior events on familiar routes. At the 

participant level, we tested the hypothesis that there is a non-zero relationship between 

familiarity with driven routes and risky driving behavior events, with the expectation that 

participants would have more frequent risky driving events on familiar routes.  

Influence of familiarity on route choice risk: For analyzing the influence of familiarity on 

route choice risk, a mixed-effects regression with identity link was used. The model assumptions 

are, 

a) An older driver’s route choice risk is a linear function of the chosen route’s risk X, and the 

amount of time under treatment Xt (Equation 2). In equation 2, T is the effect of time under 

treatment, BR is the effect of baseline route choice risk, FD is the effect of familiarity with 

driven routes, FA is the effect of familiarity with alternate low-risk routes, TBR is the effect 

of the interaction between time under treatment and baseline route choice risk, TFD and TFA 

are the effect of the interaction between time under treatment and familiarity. The Zi 

represent randomness from the participants and are hence random effects (both slope and 

intercept), where Zi ~ N(0, σi
2), i ∈ {T, BR} and εj ~ N(0, σ2).  
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Route Choice Risk Ratioj ~ β0 + Z0 + T ∙ Xt +  Zt ∙ Xt + BR ∙ XBR + ZBR ∙ XBR + TBR ∙ Xt ∙

XBR +  FD ∙ XFD + TFD ∙ Xt ∙ XFD +  FA ∙ XFA + TFA ∙ Xt ∙ XFA +  εj                                  (2) 

 

b) There is a mean population route choice risk and effect of time under treatment, but drivers 

in the population vary around each mean with constant variance.  

c) The effect of treatment time depends on the baseline route choice risk, i.e. TBR ≠ 0. 

d) For any two routes k and j in the network of routes driven by a participant, εk ⊥  εj for all 

k≠j. 

Using the generalized linear mixed-effects regression model, two hypotheses were 

considered to determine the influence of familiarity on route choice risk (Table 5). 

Table 5: Hypotheses to determine the interaction between familiarity and route choice risk 

Claims Hypothesis – Influence of familiarity on route choice risk 

HC 
There is an interaction between familiarity with driven route and 

treatment time 

HC0: TFD = 0,   

HC1: TFD ≠ 0 

HD 
There is an interaction between familiarity with alternative low-

risk suggested route and treatment time 

HD0: TFA = 0,   

HD1: TFA ≠ 0 

Factors influencing route choice: A total of 612 feedback responses were collected during 

the three-month treatment period. Fifty-eight percent of the responses were written responses 

that reflected the reasons governing route choice, 80 percent of the responses were yes/no 

responses to familiarity with the route driven, and 27 percent of the responses were yes/no 

responses to familiarity with the suggested alternate low-risk route. To assess the factors 
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influencing route choice among older drivers, and its relation to route familiarity, the written 

feedback responses were analyzed using Content Analysis. 

Content analysis is a research method used for analyzing text data, identifying themes and 

patterns within text data, coding through a systematic classification process, interpreting content 

and concepts, and assessing contextual meaning of the identified concepts (Hsieh & Shannon, 

2005). Two types of content analysis were used to assess the feedback responses from older 

drivers: conceptual analysis and relational analysis. Conceptual analysis was used to establish the 

existence and frequency of the concepts, and relational analysis was used to examine the 

relationship between the concepts (Busch et al., 2012). Steps for assessing the feedback 

responses using content analysis are shown in Figure 2. 

 

  Figure 2: Steps to conduct content analysis on the feedback responses from older drivers 

3.3 Results 

The results are organized into five sections. The first and second section provide a summary 

of the trip details, route choice risk, risky driving behavior events, and familiarity responses of 

older drivers in the study. The third and fourth section shows the influence of familiarity on the 
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risky driving behavior events and route choice risk of older drivers. The final section describes 

the situational factors, derived from the content analysis that influences the decision to choose a 

route. 

3.3.1 Risky driving behavior events and route choice risk of older drivers 

Older drivers’ trips had a mean length of 7.1 miles, a mean trip time of 13.2 minutes, and 

mean speed of 23.4 miles/hr. A total of 5,365 trips were completed during the treatment period, 

and familiarity responses were received for 5.3% of the trips driven. Based on the trips with 

familiarity responses, 78% of the driven routes were familiar (CI = (74.9, 82.1)), 14% unfamiliar 

(CI = (10.3, 17.5)), and the remaining 8% had no responses (CI = (4.3, 11.6)). Summary 

statistics of the routes driven and risky driving behavior events are shown in Table 6. From the 

list of OBDII data recorded (Table 4), driving with the engine light on was not recorded for all 

vehicles, and only one participant had a crash event recorded. For the baseline period of the 

study, the mean route choice risk was 1.56 (SE of 0.03). This can be interpreted as the average 

route chosen was 1.56 times the risk of the safest suggested alternative. For the treatment period 

of the study, the mean route choice risk ratio was 1.59 (SE of 0.02), which establishes whether 

meaningfully safer choices exist. 

Table 6: Summary of the risky driving behavior events of older drivers for baseline and 

treatment periods 

  Percent of trips with 

 
Total 

trips 

Average 

speed 

Speed 

violations 
Hard braking 

Hard 

cornering 

Harsh 

acceleration 

Seatbelt 

violation 

Baseline 

(1 month) 
2450 23.44 47 0.52 3 88 0.7 

Treatment 

(3 months) 
5365 23.34 44 0.49 5 91 0.4 
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Estimated odds ratio [95% CI] 
0.80 

[0.70, 0.92] 

1.32 

[0.63, 2.74] 

0.90 

[0.64, 1.26] 

1.85 

[0.84, 4.07] 

0.56 

[0.37, 0.83] 

 

3.3.2 Route familiarity of older drivers 

A total of 612 familiarity feedback responses were recorded from older drivers during the 

treatment period. The quartiles of the baseline route choice risk were used to group the 

familiarity responses of older drivers for the driven and alternate low-risk suggested route. Table 

7 shows the relationship between route choice risk, and familiarity with the driven routes and 

alternate low-risk suggested routes. In Table 7, older drivers with a greater familiarity with the 

alternative routes had lower baseline route choice risk than those who did not; as each 10% 

increase in familiarity with the alternate low-risk route was associated with a 5.5% (CI = (1.6%, 

9.2%)) decrease in baseline route choice risk. 

Table 7: Summary of the responses for familiarity with routes driven and alternate low-risk 

suggested routes for each baseline route choice risk group 

Baseline route 

choice risk  

Range of baseline 

route choice risk 

Percentage of driven routes 

that a driver was familiar with 

Percentage of low-risk alternate 

routes that a driver was familiar with 

Low [0.69, 1.03] 79.6% 71.0% 

Medium (1.03, 1.41] 75.0% 60.5% 

High (1.41, 1.81] 86.2% 59.6% 

Very high (1.81, 2.45] 93.6% 82.8% 

All [0.69, 2.45] 85.3% 67.0% 

3.3.3 Influence of familiarity on risky driving behavior events of older drivers 

The effect of familiarity on risky driving behavior events is reflected in the data in two ways 

– through the frequency that the risky driving behavior event is observed per mile, and the 
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frequency that the behavior is observed per trip. Both possibilities were tested using paired 

samples t-tests (𝛼 = 0.05), with participant’s risky driving behavior event per mile and per trip 

on familiar and unfamiliar routes comprising the paired samples. Table 8 shows the results for 

the per mile t-tests. Risky driving behavior events measured on a per mile driven basis was done 

to control for the difference in length between routes.  

Table 8: Paired sample t-test results of the risky driving behavior events per mile driven 

Risky driving 

behavior events 

per mile 

For familiar 

routes (mean) 

For unfamiliar 

routes (mean) 

Estimated difference 

of familiar and 

unfamiliar routes 

P-value 95% CI 

Harsh cornering 0.005 0.001 0.004 0.41 [-0.005, 0.013] 

Hard braking 0.00 0.00 0.00 0.33 [0.000, 0.001] 

Hard acceleration 2.10 3.91 -1.90 0.12 [-3.94, 0.14] 

Speeding 0.87 0.78 0.09 0.74 [-0.37, 0.54] 

Overall events 2.89 4.69 -1.81 0.13 [-3.76, 0.15] 

For routes where risky driving behavior events occurred, there might be a difference in their 

frequency of occurrence on familiar and unfamiliar routes (Table 9). Results showed that on a 

per trip basis, there was no significant difference in the risky driving behavior events of older 

drivers across familiar and unfamiliar routes. Together, these tests imply there is no evidence to 

suggest that driving familiar routes have higher frequencies of risky driving behavior events 

compared to unfamiliar routes. 
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Table 9: Paired sample t-test results of the driving behavior events per trip. 

Risky driving 

behavior events 

per trip 

Proportion of 

familiar routes 

with 

Proportion of 

unfamiliar 

routes with 

Estimated difference in 

proportions between familiar 

and unfamiliar routes 

P-value 95% CI 

Harsh cornering 0.01 0.01 0.004 0.79 [-0.02, 0.03] 

Hard braking 0.004 0.00 0.004 0.33 [-0.003, 0.01] 

Hard acceleration 0.82 0.81 0.01 0.94 [-0.12, 0.13] 

Speeding 0.46 0.47 -0.01 0.890 [-0.18, 0.15] 

Overall events 0.86 0.85 0.02 0.83 [-0.11, 0.14] 

Although the results of the paired t-tests (Table 8, Table 9) provide little evidence for 

differences in risky driving behavior events between familiar and unfamiliar routes; they do not 

address the difference in risky driving behavior events between participants who are more (or 

less) familiar with the routes they drove. To test this difference, a linear regression was used to 

assess how the frequency of risky driving behavior events depended on their familiarity with 

routes driven. To do so, the frequency of risky driving behavior events per mile, and proportion 

of familiar routes driven were aggregated and used as inputs for the regression analysis. Results 

from the linear regression showed that for every 10 percent increase in proportion of familiar 

routes driven, there is an estimated 0.70 (CI[0.19,1.23]) increase in risky driving behavior events 

per mile. Thus older drivers with a higher proportion of familiarity with the driven routes had 

more risky driving behavior events per mile. 

3.3.4 Influence of familiarity on the route choice risk of older drivers 

A generalized mixed-effects regression model with an identity link was used to analyze the 

influence of familiarity on the route choice risk of older drivers. Table 10 shows the combined 



45 
 

 

effect of treatment and familiarity on the participant’s route choice risk. The interaction between 

treatment time and familiarity with driven routes was not significantly different from zero, 

providing insufficient evidence to support the hypothesis that familiarity with driven routes 

affects participant’s response to the Trip Diary feedback. The interaction between treatment time 

and proportion of familiarity with alternate low-risk route was significant, supporting the claim 

that familiarity with suggested low-risk alternative routes affects participant’s response to the 

Trip Diary feedback. The positive slope implies that the more familiar a participant is with the 

suggested low-risk alternatives, the longer they are in the study, the less likely they are to choose 

low-risk routes.  

Table 10: Estimated effects on the route choice risk of older drivers 

 Estimated effect Std. error t-value 95% CI 

(Intercept) -0.31 0.23 -1.37 [-0.76, 0.13] 

Treatment time 0.07 0.07 0.83 [-0.08, 0.20] 

Baseline risk choice ratio 0.61 0.12 5.02* [0.37, 0.85] 

Familiarity with driven routes 0.25 0.23 1.08 [-0.20, 0.70] 

Familiarity with suggested low-risk routes -0.56 0.20 -2.75* [-0.96, -0.16] 

Treatment time X baseline choice risk ratio -0.10 0.04 -2.26* [-0.18, -0.01] 

Treatment time X Familiarity with driven 

routes 
-0.04 0.08 -0.49 [-0.19, 0.11] 

Treatment time X Familiarity with suggested 

low-risk routes 
0.21 0.07 3.18* [0.08, 0.34] 

The results in Table 10 suggests that familiarity influences route choice risk and route choice 

interventions. Prior to incorporating familiarity into the analysis (see Payyanadan, Maus, et al., 
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2016), the most important factor affecting route choice risk was how risky an individual’s 

baseline route choices were – those with high baseline route choice risk showed the most 

improvement. When familiarity was included in the model, the most important factor became 

familiarity with the alternative low-risk routes (Figure 3). 

   

Figure 3: The y-axis is the route choice risk of the driven route compared to that of the suggested 

low-risk alternative route. The set of plots on the left show the importance of baseline route 

choice risk when familiarity is ignored. The strong downward slope of the high baseline route 

choice risk group highlights the effectiveness of the treatment for that group. The plot on the 

right shows the effect of familiarity. The columns differentiating high and low familiarity 

indicate that drivers take the suggested low-risk alternatives if they are unfamiliar with the route. 
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In Figure 3, values above 0 imply that the driven route had higher crash risk versus the 

alternative low-risk suggested routes. These results also showed that older drivers with no 

familiarity with the alternative low-risk routes were expected to lower their route choice risk by 

3.9 percent per week, whereas a 50 percent familiarity with the alternative route showed an 

expected increase in route choice risk by 1 percent per week. This suggest that older drivers with 

a higher proportion of familiarity with alternative low-risk suggested routes are likely to show no 

change or increase their route choice risk when provided with feedback. This may indicate a type 

of digging in your heels affect – where when a driver is confident in their familiarity with the 

alternative route, dismisses the lower risk associated with the alternate route, and affirm their 

conviction that they are already making safe route choices. 

3.3.5 Understanding the influence of familiarity on route choice among older drivers 

Trip Diaries were used to provide reports of routes driven, alternate low-risk routes, risky 

driving behavior events along the route driven, and three feedback questions to determine: 

driver’s familiarity with the route driven, familiarity with the alternate low-risk route suggested, 

and reasons for choosing the route driven and not considering the alternate low-risk suggested 

route. To assess the reasons for choosing a route by older drivers, the feedback questions were 

analyzed using content analysis. 

A total of 612 feedback responses were recorded. Content analysis was conducted on the 

responses from older drivers. Conceptual analysis was first used to develop codes from the 

written responses for all the reasons that governed route choice, and record their frequency of 

occurrence. Conceptual analysis revealed a total of 18 concepts that reflected the reasons for 

choosing a route. The 18 concepts, concept frequency, and examples of the driving situations 

reported by older drivers are shown in Table 11. 
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Table 11: Reasons for route choice along with the corresponding driving context and situations 

Reasons for 

route choice 

Frequency 

of 

occurrence 

Driving context and examples of route choice reasons 

Less traffic 25 Route chosen based on traffic conditions – where less traffic conditions were 

preferred, traffic referred to medium traffic, which was also acceptable and driven 

if necessary. But heavy traffic was almost always avoided. 

E.g. Certain routes will have heavy traffic at different times of the day. Routes are 

chosen keeping the varying traffic along different route segments in mind.  

Traffic 84 

Heavy traffic 25 

Construction 46 

Avoiding construction zones. 

E.g. Construction zones involved detours, lane changes and merging were 

avoided even if the alternate route was longer. 

Habitual 41 
No particular reason for choosing a route. 

E.g. Used to taking the same route every day. 

Travel time 24 

A route was chosen based on minimal delays to travel time. 

E.g. Depending on the intent of the trip, shortest route was chosen to a particular 

destination due to time constraints, and to reduce time in traffic. Else the most 

scenic route with no traffic was chosen.  

Road type 20 

Route chosen based on the type of road characteristics. 

E.g. Roads that involve crossing 4 lanes, roundabouts, and quick merging were 

avoided. Roads that were scenic and along familiar residential areas were 

preferred. 

Errands 18 

Make multiple stops along a trip. 

E.g. Trips such as visiting the bank, dropping off mail, grocery shopping are 

conducted as a single trip with multiple stops for efficiency. 

Not interested 16 
Not inclined to alter current route choices or driving behavior. 

E.g. Did not consider their route choice or driving behavior needed any feedback. 

Stop signs 

and traffic 

lights 

15 

Route chosen based on the preference for traffic lights and avoidance of stop 

signs. 

E.g. Stop signs cause drivers to often miss their turn, hence traffic lights are 

preferred.  

Time of day 13 

Driving during the day versus night, and during low traffic conditions. 

E.g. Choice of route and departure time depended on the level of traffic along 

certain routes and daylight for ease of visibility.  
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Unfamiliar 

streets 
12 

Route avoided due to lack of knowledge of the street and neighborhood. 

E.g. Preferred to avoid unfamiliar streets and neighborhoods as it was difficult to 

pay attention to both driving and the new routes. Driving unfamiliar routes also 

increased fear of getting lost.  

Direct route 11 

Route chosen based on the directness of the route. 

E.g. If the route has no turns and is the shortest route to the destination, it is 

preferred even if there is traffic. 

Driving 

maneuvers 
10 

Route chosen based on the comfort with driving maneuvers. 

E.g. Routes that require driving on a roundabout involve driving maneuvers that 

are new and hence avoided. 

Controlled 

left turns 
7 

Choosing routes with controlled versus uncontrolled left turns. 

E.g. Controlled left turns were preferred and considered safest. 

Safety 

concern 
7 

Routes avoided based on past history of near misses or crashes. 

E.g. Due to driver inattention such as merging without checking their blind spot 

resulted in a near miss. Hence such routes with a history of crashing or near 

misses was avoided.  

Complicated 

route 
6 

Route avoided if it had too many direction changes. 

E.g. Older drivers defined routes with too many turns and merging to be 

complicated. 

Speed limit 5 

Avoiding routes with varying speed limits. 

E.g. Changes in speed limits was difficult to always keep track off when paying 

attention to the road. Hence routes with fewer speed limit variations were 

preferred. 

Based on the frequency of concepts, the conceptual analysis revealed that traffic, 

construction, and habit dominated the reasons for choosing a route, accounting for 47 percent of 

the total written responses. To determine which of the concepts were associated with familiarity, 

the 18 concepts were clustered based on the familiarity responses to the route driven and 

alternate low-risk suggested route, as shown in Figure 4. 
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Figure 4: Route choice concepts associated with preferring a) familiar route and b) familiar 

alternate low-risk routes suggested. 

Conceptual analysis revealed that the reasons for choosing a familiar route was governed by 

four main concepts – the route being direct, less traffic, the sequence of errands, and habitual 

route. Habitual routes were defined by older drivers as a route that they were familiar with, drove 

frequently, and were considered reliable. Road type, the number of stop signs, and traffic lights 

further influenced the choice of route. For the alternate low-risk suggested routes that older 

drivers were familiar with but chose not to drive; drivers’ reasons included construction, more 

traffic, increased travel time, and involved more complex driving maneuvers. 

Relational analysis was conducted to determine the relationship between the 18 route choice 

concepts for four situations – when the driver was familiar and unfamiliar with the route driven, 

and familiar and unfamiliar with the low-risk suggested route. 

Familiar with the route driven – Seventy-six percent of the older drivers preferred the driven 

route versus the alternate route, irrespective of fewer number of left turns, U-turns, travel time 



51 
 

 

and distance. Responses from older drivers showed that apart from general preference to drive a 

route that was familiar, route characteristics such as short and direct, minimal traffic, and time of 

day contributed to the overall route choice. Driving familiar routes versus alternate unfamiliar 

low-risk routes was also preferred when running errands. Route choice was also influenced by 

route characteristics such as road type, number of stop signs, and number and length of traffic 

light stops. Road types such as freeways, poor road conditions, winding roads, roads with a lot of 

pedestrian crossings, roundabouts, and roads with parked vehicles that obstructed view of traffic 

were avoided. Older drivers also avoided driving in areas such as school zones in the morning, 

and downtown areas in the evening. Driving on main roads, along scenic routes, and in familiar 

residential areas were preferred. Older drivers preferred to avoid stop signs because waiting their 

turn often resulted in them losing their chance to turn due to late reaction. On the other hand, 

they preferred traffic lights to stop signs, as it gave them time to complete their driving 

maneuver. 

Unfamiliar with the route driven – Older adults drove unfamiliar routes for 15 percent of the 

trips. Reasons for choosing the unfamiliar route was if they were touring or running errands that 

required deviating from a familiar route, detour due to construction zones or lane closures, drop-

off their spouse or friend at a particular location.  

Familiar with the suggested low-risk route alternative – Twenty-nine percent of the 

responses showed familiarity with the alternate low-risk suggested route. Older drivers stated 

construction and travel time to be the main factors for avoiding the suggested low-risk route. The 

511 DOT data used to retrieve construction information as part of the low-risk measure for 

suggesting alternate routes were not always updated, accurate, or current; hence the suggested 

route alternatives were not always void of construction. Travel time was considered a major 
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factor for avoiding the alternative route, because even though distance and turns were fewer, 

traffic was not considered as part of the determining factor for the suggested alternative low-risk 

route. Older drivers preferred to avoid any type of traffic condition, with time of departure to 

destination governed by the current and projected traffic along the route. Additionally, the 

alternative low-risk route was not driven because of the driving maneuvers involved. Older 

drivers reported that although the alternative routes had fewer left turns and U-turns, it required 

other driving maneuvers such as crossing a four-lane road in traffic, turn taking across a wide 

intersection, required a lot of merging, and conducting unprotected left turn maneuvers. 

Unfamiliar with the suggested low-risk route alternative – In 6% of the responses, older 

drivers considered taking the suggested unfamiliar route. Older drivers reported avoiding the 

alternative unfamiliar route when they were concerned with following the directions while 

driving – especially if the directions were confusing or the route was long, and driving on routes 

with too many turns that would increase the number of maneuvers. 

3.4 Discussion 

This study showed that route familiarity influences the risky driving behavior events and 

route choice risk of older drivers. This is especially true for the proportion of familiar routes 

older drivers chose to drive, and their familiarity with the alternative low-risk routes they could 

have driven instead. Older drivers who were familiar with the low-risk alternative routes had an 

increase in the rate of risky driving behavior rate of 5 percent for every 10 percent more 

familiarity they had with the routes. Results also showed that as older drivers gained familiarity 

with the route, they increased their route choice risk by 2 percent for every 10 percent gain in 

familiarity with the alternative low-risk suggested route. Even though these results show the 
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effect of familiarity with the routes driven and alternate low-risk suggested route, it is important 

to note that the influence of familiarity on a more granular level of individual routes was not 

found to be significant in this study. 

For alternate low-risk route options that had fewer left turns, U-turns, and traffic incidents – 

only 6 percent of the older drivers considered driving the alternate route. Reasons for preferring 

the driven route included shorter distance, direct route, and minimal traffic. Previous studies 

have shown that route familiarity can lead to inefficient route choice (Ardeshiri, Jeihani, & 

Peeta, 2015), and perception bias between actual and perceived travel distance (Zhang & 

Levinson, 2008). The content analysis conducted on the feedback responses from older drivers in 

this study showed that habitual route choice behavior was also a reason for preferring the driven 

route despite being familiar with the low-risk route option. Habitual route choice behavior can 

deter drivers from switching to a new route of comparable or better efficiency because of the 

costs of information acquisition and processing, and risk aversion (Zhang & Levinson, 2008). 

Drivers have been reported to make trade-offs between risk and travel time by increasing 

their speed on familiar roads (Intini, Colonna, Berloco, & Ranieri, 2017). Ciscal-Terry et al., 

(2016) quantified the deviation of an observed route from its optimal alternative and reported 

that there are a number of reasons drivers might choose riskier routes – a) to avoid traffic by 

opting for faster roads even if they are twice the length of the shortest route, b) habitual driving, 

c) to avoid driving through the city even if it is shorter, and d) opting for routes with deviations 

that allow for driving on alternate routes with higher speeds. For older drivers, content analysis 

of the familiarity feedback responses showed similar reasons for not driving the low-risk 

alternative – route familiarity, avoiding heavy traffic, number of stop signs, and number and 

length of traffic light stops.  
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For older drivers, much of the decision-making governing route choice occur before 

departure (Payyanadan et al., 2016, 2017). Thus the opportunity to incorporate familiarity with 

the route as part of the user preference in trip planning and route guidance systems could produce 

useful route choice models that may better reflect real-world route choice behavior. Future work 

will involve developing a route choice model that incorporates user preferences such as route 

familiarity in generating alternate routes. 

The study has a number of limitations that need to be addressed. Due to limited sample size, 

especially with the number of unfamiliar driven routes, the number of unfamiliar driven routes 

would often be 0 or 1, even if the participant provided feedback on 20 or more routes. Trip 

distance and time were not included as independent variables in the linear mixed-effects model 

due to the incorporation of these variables in the route choice risk measure. Although the 

suggested low-risk routes were developed to provide drivers with fewer left turns, U-turns, 

traffic incidents, and construction zones; written responses from older drivers revealed that some 

of the low-risk route alternatives had construction. Further investigation revealed that the 511 

Department of Transportation source used to provide the information was not always updated. 

Traffic as a factor of risk was not part of the low-risk algorithm for suggesting alternative route 

options. Lastly, it was not always possible to accurately assess whether the alternate low-risk 

suggested route was driven because of the limited number of GPS points recorded per trip by the 

Geotab GO6 device. 

3.5 Chapter summary 

In this chapter we investigated the influence of familiarity on driving behavior and route 

choice among older drivers. Findings suggest that older drivers’ route choice risk depended 
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primarily on familiarity with the route and traffic conditions, which also influenced their 

willingness to change routes. Including factors such as familiarity in modelling route choice 

behavior for older drivers can have important implications for the development of driver support 

systems such as advanced travel information systems and navigation systems, which can increase 

willingness of older drivers to switch to safer route alternatives. 
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CHAPTER 4: A THEORETICAL AND MATHEMATICAL FRAMEWORK 

FOR MEASURING ROUTE FAMILIARITY 

Older drivers prefer avoiding risky driving situations, and are known to choose routes based 

on their preferences, and dynamic and static knowledge about the route and route network such 

as time of day, traffic conditions, weather, etc. (Lotan, 1997; O’Neill, 1992; Payyanadan & Lee, 

2017). But ICT (information and communication technology) based decision-support systems, 

navigational tools, and route guidance systems developed to provide alternate route options 

based on the preferences and driving safety needs of the driver have reported low adherence 

especially among older adults to divert from their route compared to younger drivers (Abdel-Aty, 

Vaughn, Kitamura, Jovanis, & Mannering, 1993; Payyanadan, Maus, et al., 2016). The 

unwillingness to divert among older drivers has been attributed to preference for routes that are 

primarily familiar, which can involves multiple factors such as knowledge of estimated trip time 

and distance, traffic conditions, road type, direction of travel, road and weather conditions, etc. 

(Abdel-Aty & Huang, 2004; Mannering, Kim, Barfield, & Ng, 1994; Payyanadan & Lee, 2017; 

Zhang & Levinson, 2008). 

Preliminary work conducted in Chapter 3 found similar results, where stated familiarity 

responses from 29 older drivers collected over a six month period was used to determine the 

factors of route familiarity that influenced choice of route among older drivers. Results from the 

study showed that while older drivers preferred to drive familiar routes, where familiarity was 

influenced by their prior knowledge about route characteristics (direct route, less traffic, road 

type), and preferences such as trip purpose; they were willing to divert to the alternate low-risk 

suggested route if they were not familiar with the suggested route. But current interventions 
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aimed at providing smarter route alternatives face challenges incorporating features such as route 

familiarity into their route choice models due to the complexity involved in generating route 

alternatives based on the multi-criteria nature of familiarity (Prato, 2009), lack of understanding 

about the reasons for choosing a familiar versus unfamiliar route (Payyanadan & Lee, 2017), and 

in identifying the factors of familiarity within a framework (Bovy & Stern, 2012). 

To address these challenges, the goal of this dissertation is two-fold: a) to develop a 

theoretical and mathematical representation of route familiarity that captures the multi-faceted 

nature of route familiarity; and b) to develop a model of route choice governed by route 

familiarity (Figure 5). This Chapter will focus on developing a theoretical and mathematical 

representation of route familiarity. Stated familiarity feedback responses collected from 29 

drivers 65 years and older representing the factors of familiarity that influenced their choice of 

route were mapped onto levels of an abstraction hierarchy framework (Figure 5A). The 

abstraction hierarchy framework was then used to conceptualize a mathematical representation 

of route familiarity (Figure 5B). Operationalizing the mathematical representation of route 

familiarity using naturalistic driving data from the 29 older drivers recorded for a period of four 

months was then used to develop a new measure of route familiarity – estimated route familiarity 

(Figure 5C). 
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Figure 5: Steps for developing a measure of route familiarity – estimated route familiarity, to 

predict route choice 

This Chapter is organized into three sections. The first section provides an overview of the 

theoretical abstraction hierarchy (AH) framework – Rasmussen’s Abstraction Hierarchy 

(Rasmussen, 1983) used to represent the multi-faceted nature of route familiarity. In this section, 

prompts and keywords provided by Naikar (2013) are applied to the 612 feedback responses 

from older drivers to extract the multiple factors of route familiarity, and mapped to the specific 

levels of the AH framework. In the second section, the AH framework describing the factors of 

route familiarity is formalized into a mathematical representation. The goal of the mathematical 

representation is to establish a method for quantifying each of the AH levels, establish a measure 

of familiarity – estimated route familiarity, and illustrate how to incorporate different types of 

driving data structures (Mesarovic & Takahara, 1975). In the final section, naturalistic driving 

data from 29 older drivers are used to validate the estimated route familiarity measure.  
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4.1 Framework for describing the factors of route familiarity that influence route choice 

Cognitive and computational models of geographic information and the effect of this 

information on orientation and navigation have considered the environment in terms of a space 

consisting of different dimensions representing external objects, representation of self, 

embodiment of value, and arena for action (Ittelson, 1973). Within this environmental model, the 

information selection of a set of attributes, objects, or actions required for the goal or task  

creates levels of abstraction, defined as the ordering imposed on the environmental model 

depending on the goal or task (Timpf, 1999). When the selection is repeated several times, 

hierarchies are created by abstracting information. Research on mental map models have shown 

that humans cluster spatial and non-spatial information as abstraction hierarchies even when 

there are no predetermined hierarchies (Hirtle & Jonides, 1985). Thus abstraction hierarchies 

play an important role in human cognition. 

Abstraction hierarchy models have been used to represent categories of mental 

representations of object or events abstracted from observations of the environment (Smith & 

Medin, 1989). But not all categories observed in the environment can be structured into 

hierarchies. For example, Rosch et al. (1976) showed that while for some concepts such as 

concreteness or imagability, there does not exist a preference for basic, subordinate, and 

superordinate levels of categorization; other studies have shown that only the basic levels are 

representational of concepts (Tversky & Hemenway, 1984). For understanding familiarity, early 

work using abstraction hierarchy models have shown that familiarity was strongly associated 

with categorization of features to describe an item or event as familiar (Goldberg, 1986). Thus 

abstraction hierarchies serve as a suitable framework for describing the features of familiarity 

that influence route choice. 
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4.1.1 Overview of Rasmussen’s abstraction hierarchy (AH) framework 

In Cognitive Engineering, Rasmussen’s AH framework is used to represent systems in a way 

that reflects human memory and problem solving characteristics, but is also event independent, 

allowing for a wide range of situations and unforeseen events  (Vicente & Wang, 1998). Such a 

framework offers an opportunity to model the functional structure of the physical, social, and 

cultural environments of actors in the system; which enables a) identifying constraints on actors, 

b) revealing possibilities of actions available, c) determining rationale for actor’s behavior, d) 

applicable across a range of situations, and e) result in designs that can support the actor in 

dealing with a variety of events (Hajdukiewicz, Burns, Vicente, & Eggleston, 1999; Naikar, 

2013). Thus Rasmussen’s AH framework is the preferred theoretical framework for representing 

the multi-faceted nature of route familiarity because it provides a systematic description of the 

system in engineering terms that is compatible with the psychological representation people use 

to deal with complex systems (Vicente & Wang, 1998). 

Rasmussen’s AH framework commonly used for modelling the functional structure of the 

environment, is also referred to as the abstraction-decomposition space, and is represented as a 

matrix (Figure 6). In the abstraction-decomposition space, the vertical axis comprises of the 

means-ends relations of the abstraction dimension, and the horizontal axis comprises of the part-

whole relations of the decomposition dimension (Naikar, 2013). The cells of the matrix are 

populated with representations of the functional structure of the environment, and is specific to 

the particular level of abstraction and decomposition. While the abstraction dimension is 

typically described by five levels, there are no set levels for the decomposition dimension. 
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                  Figure 6: The abstraction-decomposition space 

The abstraction dimension describes the properties of the environment used for achieving an 

end, and is comprised of five levels reflecting distinct concepts – functional purpose, abstract 

function, generalized functions, physical functions, and physical form. Functional purpose 

represents the primary purpose of the system; abstract function represents the intentions or the 

intended operational state of the system; and generalized functions represent the functional 

relationships in the system independent of physical manifestation. Lastly, physical function level 

represents the mechanical, electrical, or chemical processes of the system or its parts; and the 

physical form represents the appearance or configuration of the systems and its parts. Moving up 

or down the levels of abstraction represents the means-ends relations. The abstraction dimension 

allows both a bottoms-up approach for describing the use of the system components and 

functions for serving the purpose or goal; and a top-down approach of how the purpose or goal 

can be implemented by the functions and components of the system. Although each cell can be 

populated with specific constraints or means, it is not considered efficient (Miller & Vicente, 
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1998). Instead, it is recommended that only the constraints or means that provide meaningful or 

useful information about the environment be incorporated into the abstraction-decomposition 

matrix – represented along the diagonal of the matrix (Naikar, 2013). 

Each level of the abstraction dimension describes a different set of constraints or means 

associated with the activities in a system. For example, to drive to the hospital for a doctor’s 

appointment, a driver may choose a route that has less traffic, fewer stop lights, and park in a 

spot that is easy to access (Payyanadan et al., 2016). Here the route chosen and parking spot are 

the means for getting to the doctor’s appointment on time, and the traffic and stop lights are the 

constraints of the driving environment on the driver. These means-end relations are determined 

as a how-what-why triad, representing the demands on the actor and the context of the situation 

for the actor (Hajdukiewicz et al., 1999; Naikar, 2013; Rasmussen, 1986). 

The decomposition dimension consists of few or many levels representing details of the 

functional environment as its parts and wholes. Thus, the levels of decomposition are connected 

by part-whole relations, where the lower levels are the functional parts of the higher levels, and 

the higher levels are the wholes of the lower levels – representing different levels of the same 

system. For most applications of the framework, specifying the decomposition dimension of the 

model is important for providing a complete and accurate representation of the system, but a 

methodological analysis of the decomposition dimension is not essential, and hence will not be 

explored in this dissertation. 

4.1.2 Levels of the abstraction hierarchy 

The abstraction dimension is made up of five qualitatively distinct concepts used for 

modeling the structural properties of the environment, and is characterized by the means-ends 
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relations. The labels ascribed to each level and the constraints or means represented within each 

level by Rasmussen (1986) along with examples from the driving domain are defined below: 

Functional purpose level – The function purpose level represents the overall goals and 

purpose of the system, objectives, and the external limits on the system due to the environment. 

The system’s purpose remains relatively constant, while the objectives and external limits of a 

system are dynamic – changing with respect to the situation (Burns & Vicente, 2001). The 

system can have multiple objectives. The external limits refer to the properties of the 

environment that impose on the system’s purpose (Naikar, 2013). For example, the purpose of a 

trip is to reach the destination. Whereas there might be multiple objectives for the trip – primary 

objective to arrive for dinner on time; and the secondary objective is to stop and pick up dessert 

before dinner. External limits by the driving environment on the trip could include traffic 

regulations. Thus at the functional purpose level, purpose, objectives, and external limits govern 

the interaction between the system and the environment. 

Abstract function level  – The abstract function level represents the values and priority 

measures needed to fulfill the purpose of the system (Naikar, 2013). For example, for the trip 

where the purpose is the reason for making the trip such as going out for dinner, with the primary 

objective to arrive on time for dinner, and secondary objective to stop and pick up dessert; 

several criteria can be employed for evaluating how the purpose is fulfilled. Criteria such as 

selecting the shortest, selecting the fastest route, etc., can allow the driver to compare, prioritize, 

and allocate resources to achieve the trip purpose. Assessing these criteria can help evaluate 

whether the purpose is fulfilled. 
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Generalized function level  – The generalized functions level represents the functions that 

must be supported to fulfill the system’s purpose, independent of the underlying physical objects 

or object-related processes needed to implement them (Naikar, 2013). For example, for the trip 

where the primary objective is to arrive on time for dinner, the secondary objective to stop and 

pick up dessert, and criteria such as time of departure is used to evaluate fulfillment of the trip 

purpose; requires a number of purpose-related functions that need to be supported. These include 

challenges such as maintaining a certain speed and acceleration with other drivers on the road, 

overtake vehicles if they are driving to slow, etc. (Kesting, Treiber, & Helbing, 2010). While 

there are no reported variations on how factors at this level are characterized, these functions 

need to be represented in general terms using terminology common to the field, such that the 

functions indicate the type of system but not the specific system (Naikar, 2013; Rasmussen, 

1994). 

Physical function level  – The physical functions level represents the object-related processes 

or parts of the system that are used to characterize the functional states (Rasmussen, 1986). The 

object-related processes or parts are tightly related to the physical objects, and represented by 

their reason for use, or by their limiting properties. The resolution of the details represented in 

this level depends on the specific task or interaction with the system. For a trip, the number of 

stop signs, street parking, etc. (at the physical properties level), influences the purpose-related 

functions such as speed maintenance, start-stop events, etc. (at the driving challenges level), 

affecting the evaluation criteria such as duration of travel (at the travel conditions level), and the 

goals and objectives of the trip such as reaching on time at the destination (at the trip purpose 

level). The physical representation is tightly coupled with the functional states, where changes at 
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the physical functional level propagate up the hierarchy, and influence the higher levels 

(Rasmussen, 1986). 

Physical form level  – The bottommost level represents the physical appearance and 

configuration of the system and its parts (Rasmussen, 1986). Representation of the system and its 

parts at this level reflects what parts are vital for interaction with, and manipulation of the system 

to achieve the purpose-related functions of the system. For example, for the trip where the 

primary objective is to arrive on time for dinner, and the secondary objective to stop and pick up 

dessert, based on the route chosen – trip features of the route can include information about the 

name and type of road, appearance of the road (winding, curvy), location or position (cardinal 

points, origin, destination), and physical distribution and connections (GPS trace, proximity, 

overlap) (Naikar, 2013). Thus, this level is represented by names or attributes that can help 

identify and distinguish objects and their properties for navigating the system (Rasmussen, 

1986). 

4.1.3 Mapping the factors of route familiarity into levels of abstraction 

For specifying levels of the abstraction hierarchy to describe the factors of route familiarity 

that influence route choice; Trip Diary feedback responses from older drivers collected for a 

period of four months were used. A total of 612 feedback responses representing reasons for 

choosing a familiar route were first transcribed. Concepts were then extracted from the 

transcriptions using the prompts and keywords provided by Naikar (2013) to determine the 

constraints and means specific to each level of the abstraction hierarchy as shown in Table 12. 
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Table 12: Examples showing the extraction of the means and constraints for each level of the 

abstraction dimension from the Trip Diary feedback responses from older drivers, using the 

prompts and keywords 

Examples of Trip 

Diary feedback 

responses 

Prompts 

(Naikar, 2013) 

Keywords 

(Naikar, 2013) 

AH Levels 

(Rasmussen, 

1986) 

Had to visit the bank, 

then drop off some 

mail, get my 

groceries 

Why does the system exist? 

Why is the system necessary? 

What objectives is the system designed to achieve? 

What external constraints is the system designed to 

fulfill? 

Reasons, 

purpose, goals, 

aims, objectives, 

intentions, 

outputs 

LEVEL 1 

Functional 

purpose 

There was 

construction 

there…had detours, 

needed a lot lane 

changes, and 

merging with traffic 

What purpose-related criteria must be met to 

achieve the functional purpose? 

What criteria can be used for comparing, 

prioritizing, and allocating resources to the 

purpose-related functions of the system? 

Criteria, 

measures of 

success, 

effectiveness, 

performance 

LEVEL 2 

Values and 

priority 

measures 

Higher speed limit on 

this route 

What functions must the system be capable of 

support to achieve its functional purpose? 

What functions are afforded by the systems object-

related processes? 

Processes, 

activities, roles, 

responsibilities, 

positions 

LEVEL 3 

Purpose-

related 

functions 

Prefer to avoid that 

route because of the 

roundabout 

What functional capabilities or limitations of 

physical objects are of relevance to the system? 

Limitations, 

capacity, 

applications 

LEVEL 4 

Object-

related 

processes 

Needed to leave from 

my friend’s place at 

6PM and take the 

highway 

What physical objects are necessary to enable the 

system’s object-related process? 

Geographical 

features, 

infrastructure, 

tools 

LEVEL 5 

Physical 

objects 

Each level of the abstraction-dimension space was then populated along the diagonal and 

labelled to represent the AH levels describing route familiarity within the framework. The factors 

of familiarity that influenced route choice for older drivers was shown to depend on the purpose 

of the trip (grocery shopping, bank work), preferred driving conditions (less traffic, fewer 
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pedestrians, shortest distance), avoidance of certain situational challenges (construction zones, 

lane change), knowledge of the physical properties of the driving environment (posted road 

speed, landmarks), and the cardinal direction for the trip (origin and destination). In Table 13, the 

abstraction hierarchy describes the driver’s familiarity through the five levels of abstraction: trip 

purpose, travel conditions, driving challenges, properties of the driving environment, and trip 

features. And the part-whole abstraction aggregates each level of the means-end abstraction by 

representing a trip as a sequence of segments, series of maneuvers, micro adjustments of lateral 

and longitudinal control, and cardinality. The constraints and means identified from the feedback 

responses for familiar and unfamiliar routes were populated along the diagonal. 

Table 13: Levels of the abstraction hierarchy applied to describe familiarity 

                                                DECOMPOSITION DIMENSION 

 Type of trip 
Sequence of 

segments of a trip 

Series of maneuvers 

along a trip 

Micro 

adjustments of 

lateral and 

longitudinal 

control 

Cardinality 

constraint 

prompts 

Reasons, goals, 

aims, objectives 

Criteria, 

measures, 

effectiveness 

Activities, processes 
Limitations, 

capabilities 

Geographic

al features 

Trip 

Purpose  

LEVEL 1 

Grocery shopping 

Church 

Touring 

Multiple errands 

Visiting family and 

friends 

Volunteer work 

Rides for family and 

friends 

Bank work 
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Travel 

conditions 

LEVEL 2 

 

Safety 

Travel time 

Less pedestrians 

Less traffic 

Direct route 

Time of day 

Access to parking 

 

 

Driving 

Challenges 

LEVEL 3 

 

Speeding to keep with flow of the traffic 

Crossing a number of wide intersections 

Multiple lane changes on 4-lane, high traffic 

roads 

Hard braking for quick turns 

Speeding on turns to merge with speeding 

traffic  

Construction zones 

 

 

Physical 

properties 

of the 

environme

nt 

LEVEL 4  

 

Onramp 

Complex navigation 

Wide intersections 

High speed limit 

Crossing 4-lane in traffic 

Long traffic lights 

Multiple stop signs 

Narrow routes 

Landmarks 

 

 

Trip 

features 

LEVEL 5 

 
Direction of travel 

Origin and 

destination 

The levels of the abstraction hierarchy in Table 13, applied to describe familiarity, show that 

familiarity depends not only on the higher levels of trip purpose and travel conditions, but also 

on the lower levels of situational challenges, properties of the driving environment, and trip 

features. Previous research on understanding the driving challenges of older drivers have 
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reported similar results, where familiarity with the road network, neighborhood, traffic 

conditions, traffic lights, stop signs, and signals along a route, controlled turn intersections, types 

of driving maneuvers along a route, time of day, travel time, alternate routes, weather conditions, 

road conditions, construction zones, traffic incidents, and rush hours, influenced route choice 

(Dickerson et al., 2007; Molnar & Eby, 2008; Payyanadan et al., 2017; Payyanadan, Maus, et al., 

2016). Thus such a framework can be used to understand and guide the development of a 

familiarity measure to help determine the influence of familiarity on a driver’s decision to choose 

a route, predict the willingness to deviate from a route, and develop better models of route 

choice. 

4.2 Mathematical representation of the AH framework describing route familiarity 

The AH framework describing familiarity was constructed by abstracting information about a 

driver’s familiarity with the route to form abstraction levels representing ordered classes of 

information. But drivers can have different contexts and definitions that represent their 

conceptualization of familiarity of objects or events. To develop a mathematical structure that 

represents each of the AH levels, the following sections provides a review of the common 

approaches for measuring familiarity; and using these approaches to guide the formalization of a 

mathematical framework for route familiarity. 

4.2.1 Similarity, recency, and frequency as measures of route familiarity 

Current hierarchy models have used similarity, recency, and frequency functions to facilitate 

the comparison among objects or events, take meaning into account, and obtain better matches 

between user-expected and system-retrieved information (Lee, Kim, & Lee, 1993; Richardson, 

Smeaton, & Murphy, 1994). In the driving domain, similar parallels have been made to 
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understand wayfinding on familiar and unfamiliar routes, where similarity measures are used to 

assess differences in the routes driven (Bryden, Charlton, Oxley, & Lowndes, 2013) based on 

four types of information – geometric (position, shape), features (landmarks), attributes 

(characteristics of the features such as number of lanes, etc.), and topology (Olteanu-Raimond, 

Mustiere, & Ruas, 2015); and recency and frequency measures to assess driving activities (Trick, 

2004). 

But route choice studies often use similarity, and frequency and recency separately to assess 

route familiarity measures (Froehlich & Krumm, 2008). For example, cognitive models using 

computational representation of human behavior have commonly used only recency and 

frequency measures to understand decision-making behaviors such as travelling patterns 

(Richard, Zito, & Paterson, 2016). This is because studies have shown that the recency and 

frequency of a trip increased the likelihood of the same trip recurring (Barbosa, de Lima-Neto, 

Evsukoff, & Menezes, 2015), and also due to limitations in the modelling approach, technology, 

and tools available to appropriately capture and compare GPS trace data to asses similarity. 

Due to the limited work in using recency, frequency, and similarity measures in assessing 

familiarity in the driving domain; we draw from experimental psychology research on learning, 

memory, and cognition, where models of recency, frequency, and similarity, and their 

relationship for assessing familiarity have been studied (Hintzman, 2001; Kelley & Jacoby, 

2000; Mickes, Johnson, & Wixted, 2010; Wixted, 2007). Past studies in experimental 

psychology have shown that similarity, recency, and frequency are considered as independent 

and orthogonal dimensions for measuring familiarity (Helgoe, 1976; Hintzman, 2001; Zhang & 

Ghorbani, 2004); where similarity is determined by the relatedness between the characterizing 

attributes of two or more events (Vrotsou & Forsell, 2011); recency by the distribution of 
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occurrences across time of the event; and frequency by the rate of occurrences of the event 

(Wixted, 2007).  

4.2.2 Visualization and hypotheses of the proposed relationship between similarity, recency, and 

frequency, and route familiarity 

In the proposed AH framework describing route familiarity, the lower levels represent the 

physical features, processes, and attributes of the route, and the higher levels represent the trip 

purpose and driving functions. We assume that similarity, recency, and frequency dimensions 

across the levels of the abstraction hierarchy will determine familiarity. Then, familiarity can be 

formally defined as a function of the degree of similarity between routes, and the frequency and 

recency with which the routes are travelled; where frequency and recency are represented in the 

structure of the five levels of the similarity measure and the reference set upon which they are 

defined. The space on which familiarity lives as a function of similarity, recency, and frequency 

can be represented by a unit cube (Figure 7).  

 

Figure 7: Proposed relationship between familiarity, similarity, recency, and frequency 

dimensions. 
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We hypothesize that as recency, frequency, and similarity increases, the degree of familiarity 

also increases (Figure 7). We also hypothesize that the degree of familiarity within the unit cube 

is not fixed across the population of drivers – i.e. each driver can have their own unit cube, and 

the strength of familiarity will depend on how receptive the driver is to each of the inputs of the 

proposed familiarity model. Route familiarity and the way we propose to estimate it is an attempt 

to determine if there is a common distribution for familiarity within the unit cube. Lastly, it is 

important to note that although similarity, frequency, and recency are proposed to be the primary 

dimensions that influence familiarity in this dissertation, there is evidence to suggest that other 

dimensions such as memory strength, knowledge, and decision-making attributes also influence 

familiarity (Wixted, 2007).  

4.2.3 A measure of route familiarity - Estimated route familiarity 

For the proposed AH framework for describing and developing a measure of route 

familiarity, some trips are closer than others because they share similar trip attributes (distance, 

time, direction of travel etc.), are frequently driven, or have been driven recently. To 

conceptualize a mathematical representation of route familiarity using the AH framework, 

similarity between trips will be determined by the relatedness between the characterizing 

attributes of two or more trips such as distance, time, and direction of travel (Vrotsou & Forsell, 

2011), recency by the distribution of trip occurrences across time; and frequency by the rate of 

occurrences of the trip (Wixted, 2007). Thus, repeating the same trip many times and having 

done so recently makes the trip familiar. And a trip that has never been taken might be 

considered familiar if it is very similar to another trip that has been taken many times. 

To mathematically represent each of the AH levels describing route familiarity, we first 

define trips for all origin 𝑂 and destination 𝐷 pairs. For each O-D pair, there are 𝑁 possible route 
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choices to get from 𝑂 to 𝐷, and the route associated with an O-D pair is the route driven. Then 

each individual will have a set of all routes driven to create their own route reference set 𝑅𝐼, 

where 𝑅𝐼 is the set of routes ordered by when they were driven, and 𝐼 is a distinct individual in 

the population. 

We assume that, 𝑅𝐼 is not a set of distinct routes, i.e., any route can occur multiple times in 

𝑅𝐼.  And the ordering of 𝑅𝐼is based on the absolute point in time that each route was driven. In 

the route reference set, the ordering of the routes captures recency, and the aggregation of routes 

driven captures the frequency of the routes driven. For each level of the AH framework 

describing route familiarity, familiarity is determined by the degree of similarity between routes, 

and the recency and frequency with which the routes are driven; where similarity is 

characterized by the degree of relatedness between shared features of two or more routes, and 

relatedness is the measure of overlap or distance between the two features. The mathematical 

representation for each of the AH levels describing route familiarity is shown in Table 14. 

Appendix A provides details of the underlying assumptions and the formulation of the 

mathematical structure to aid further understanding of the proposed theory, modelling approach, 

and results. 

Table 14: Mathematical representation of each of the AH levels describing route familiarity 

Description of the AH Levels 

by Rasmussen (1983) 

AH Levels (and 

examples) describing 

familiarity 

Mathematical representation 

of the AH Levels describing 

familiarity 

Similarity measure 

for each of the AH 

Levels describing 

familiarity 

Overall Purpose of the 

system, Objectives, and the 

External Constraints on the 

Trip Purpose 

LEVEL 1 

(e.g. grocery shopping, 

running errands) 

Similarity (𝑆𝐹) of the trip 

Purpose (𝐒𝐩), Objectives 

(𝐒𝐨), and External 

SF(Rj)

=   𝑓(𝑆𝑝,  𝑆𝑜 ,  𝑆𝑒) 
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system due to the 

environment 

Constraints (𝐒𝐞) between 

two or more trips 

Values and Priority measures 

needed to fulfill the 

functional purpose of the 

system 

Travel Conditions 

LEVEL 2 

(e.g. shortest route, 

fastest route) 

Similarity (𝑆𝐴) in the 

Overlap (𝐎)  between the 

travel conditions Criteria 

(𝐂) between two or more 

routes 

SA(Rj) 

=   𝑓(𝑂(𝐶)) 

Functions and Processes that 

must be supported to fulfill 

the system’s functional 

purpose, independent of the 

underlying physical objects 

or object-related processes 

needed to implement them 

Driving Challenges 

LEVEL 3 

(e.g. braking, 

accelerating) 

Similarity (𝑆𝐺) in the 

overlap of driving 

challenges Criteria (𝐆) 

between two or more routes 

SG(Rj) 

=   𝑓(𝑂(𝐺)) 

Object-related Processes or 

Parts of the system that are 

used to characterize the 

functional states 

Physical properties of 

the environment 

LEVEL 4 

(e.g. speed bumps, U-

turns) 

Similarity (𝑆𝑃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) in the 

Overlap (𝐌) of sequence of 

the object-related 

processes or parts (N) 

between two or more routes 

SPfunction(Rj)

=   𝑓(𝑁,  𝑀) 

Physical Appearance and 

Configuration of the system 

and its parts 

Trip features 

LEVEL 5 

(e.g. home to grocery 

store) 

Similarity (𝑆𝑃𝑓𝑜𝑟𝑚) in the 

Overlap (𝐎) of Physical 

location (𝐀), and spatial 

distribution (𝐏𝐫) between 

two or more routes 

SPform(Rj)

=   𝑓(𝑂(𝐴,  𝑃𝑟)) 

In Table 14, the mathematical structure establishes how similarity can be represented at each 

of the AH levels to describe familiarity, and generalized such that the mathematical structures 

can incorporate a wide range of situations and unforeseen factors in the driving domain 

(Rasmussen, 1986). Since recency and frequency depend on the set of routes driven by an 

individual and contribute to a driver’s familiarity with the route; they are represented in the 

driver’s route reference set 𝑅𝐼 where recency is captured in 𝑅𝐼 by the ordering of each trip, and 
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frequency by how many times a distinct route is in 𝑅𝐼. Then, the estimated route familiarity can 

be mathematically represented as a function of the similarity in the travel conditions, driving 

challenges, properties of the driving environment, and trip features, between the target route 

(route driven) and the routes in the route reference set 𝑅𝐼 (Eq. 1). For Eq. 1, we assume that 

route familiarity is a continuous, bounded variable defined on a subset of the unit interval. 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 Route Familiarity =  𝑓(𝑆𝐹 , 𝑆𝐴, 𝑆𝐺 , 𝑆𝑃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑆𝑃𝑓𝑜𝑟𝑚, 𝑅𝐼) ∈ [0,1]                     (1) 

4.3 Using naturalistic driving data to operationalize estimated route familiarity measure 

The proposed estimated route familiarity is represented as a linear combination of the 

similarity, recency, and frequency between trip purposes, travel conditions, driving challenges, 

properties of the driving environment, and trip features. To operationalize the estimated route 

familiarity, naturalistic driving data was collected from 32 drivers 65 years and older for a period 

of 6 months.  

4.3.1 Method 

On-board diagnostic devices (OBDII) were installed in the vehicles of 32 drivers 65 years 

and older. Participants had the devices installed for a period of six months. Participants were also 

given access to personalized web-based Trip Diaries to provide them with feedback of their 

driving behaviors, routes driven, alternate routes; and a questionnaire of their route familiarity. 

4.3.2 Participants 

A total of 32 adults 65 years and older were recruited from a larger study conducted in a 

Midwestern State, USA, focused on understanding the needs of older adults at risk of entering 

nursing care (see Gustafson et al., 2015). Eligibility criteria for this study required that 
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participants hold a valid driver’s license, own their own vehicle, and drive at least twice a week. 

Demographic data of the participants are shown in Table 15. 

Table 15: Demographic data and trip characteristics of older drivers in the study 

Gender Total  Mean age Total trips Distance (miles) Time (minutes) Speed (miles/hr) 

Males 14 73 27,348 7.0 12.6 44 

Females 15 70 17,468 7.2 13.5 42 

Although data was collected from the 32 participants, only 29 participants provided at least 

one familiarity response, and 14 (of the 29) provided both yes and no responses to familiarity. 

Thus analyses using stated familiarity was conducted using only data from the 14 participants.  

4.3.3 Tools and technology 

Geotab GO6 OBDII devices from Sprint were installed in the vehicles of 32 older drivers for 

six months to collect trip information using GPS data, and risky driving behaviors such as 

speeding, hard braking, accelerating, and cornering events. Personalized web-based Trip Diaries 

were used to provide information about their trips driven and risky driving behavior events, 

along with alternate low-risk route options (see Payyanadan, Sanchez, & Lee, 2016). The web-

based Trip Diaries were also used to collect feedback on participants’ familiarity with the route 

driven (yes/no responses), familiarity with the alternate low-risk route suggested (yes/no 

responses), and reasons for choosing the driven route (open ended response).  

4.3.4 Data structure and transformation for analyzing each of the AH levels 

The OBDII devices had pre-defined measure and sensitivity settings that were set based on 

the recommended specifications for a passenger vehicle. This data was used to build the route 

reference set 𝑅𝐼 for each participant. 𝑅𝐼 was then used to calculate the route similarity, recency, 
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and frequency for each of the AH levels. Due to the limitations of the device, the physical 

properties of the environment (pedestrian crossing, stop signs) representing AH level 4 could not 

be captured. Additionally, the recorded GPS coordinates were event-based (see Chapter 3, Table 

4), where GPS data was recorded by events (start, stop, hard braking, harsh cornering, etc.), and 

not just by time; where event-based measures reflect the frequency of the behavior, and time-

based measures show how long it took for a behavior to begin, and an estimate of event duration. 

This can potentially result in incorrect estimation in travel distance due to missing GPS 

coordinates (Battelle Institute, 1995). To accurately fill in the missing GPS coordinates, a match-

and-fill algorithm was used to fill in the missing GPS points (see Payyanadan, Sanchez, et al., 

2016). 

Individual route reference set - 𝑹𝑰, recency, and frequency 

The 𝑅𝐼 for each participant was created as a rolling set of 𝑅𝐼 at the weekly level because 

participants were required to access their Trip Diary page only weekly to provide feedback on 

their familiarity questionnaire. Every new route driven (here on referred to as the target route) 

was then compared to the reference routes (routes in their 𝑅𝐼). It is important to note that 

participant’s familiarity response rate was on average 77 percent for the six month period. But 

irrespective of whether a response was received or not, 𝑅𝐼 was updated every week. This was to 

ensure that the relative density of the routes driven by each participant was captured for accurate 

representation of each driver’s reference set of routes and their recency. 

In the following sections, the 𝑅𝐼 for each AH level is created based on the data collected 

from the OBDII devices. For each of the AH levels, frequency of a route is included in the 𝑅𝐼 as 

the reference set contains all routes driven, regardless of whether it was a previously driven 

route. Whereas the route recency was assessed based on the forgetting curve equation, which 
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defines how information is forgotten over time by the human brain (Ebbinghaus, 1985). 

Variations of the forgetting curve are commonly implemented in route choice modelling 

approaches to measure route recency (Tang, Gao, & Ben-Elia, 2015). 

Level 1 – Trip purpose - 𝑭𝒑 

The trip purpose estimated familiarity 𝐹𝑝 is determined by the similarity, recency, and 

frequency of the trip purposes, objectives, and external limits between two or more trips. In this 

dissertation, only trip purposes will be used to measure 𝐹𝑝. The 𝑅𝐼 for individual trip purposes 

was populated by using origin, 𝑂 and destination, 𝐷 GPS points of a trip (Wolf, Guensler, & 

Bachman, 2001), and from the feedback responses to determine the trip purpose. Data collected 

from the study consisted of 18,868 unique 𝑂 − 𝐷 pairs. Trip purpose for each 𝑂 and 𝐷 were 

manually identified using Google Maps, and coded for destination type. For example, in 

response to the reason for choosing a route, a participant stated ‘I was driving home from the 

grocery store and prefer this route for running my errands’. Thus the 𝑂 and 𝐷 were labelled as 

home and grocery shopping, respectively. Additionally, using Google Maps, each 𝑂 and 𝐷 were 

labeled using both specific and general codes defined by the 2009 National Household Travel 

Survey (Table 16); where specific code corresponds to the location address name reported by 

Google Maps, and general code corresponds to the trip purpose categories (Santos, McGuckin, 

Nakamoto, Gray, & Liss, 2011). For example, if the destination address is East Towne Mall, 

Madison WI on Google Maps, the specific code would be East Towne Mall and the general code 

would be shopping. 
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Table 16: List of all the general codes by the 2009 National Household Travel Survey used to 

determine trip purpose 

General code Characteristics of the general code 

Home To or from the driver’s primary residence 

Residence To or from a residence 

School 
To or from a school, school park, school field, school park, school library, school gym, 

daycare, after school care 

Church To or from a church or religious institution 

Medical 
To or from a hospital, clinic, health and wellness center, private clinic, health 

professional service centers, dental, chiropractic care 

Errands 
To or from shopping, groceries, hardware store, post office, bank, car service, 

professional services (non-medical), pet care, drop someone 

Social/recreational 
To or from dining, gym, park, sports field, recreational and sports clubs, entertainment 

centers, wedding, funeral 

Unknown No clear distinction of the GPS location 

NA When GPS coordinates were in the middle of the road network 

Due to the variability in parking, some of the destinations were difficult to characterize, as 

the driver might park at a residence or near a variety of businesses that serve a range of purposes 

such as shopping, dining, personal business, etc. In the absence of driver feedback, for the 

former, a 0.25 mile radius from the destination location were inspected using Google Maps 

Streetview to determine whether the surrounding locations were only residences, or whether 

there were shops or churches in the area. Unless a shop, senior center, or church was identified 

within a 0.25 mile radius, these destinations were marked as residence – indicating that the 

driver visited a friend or family. The latter were labelled as errands, if the 0.25 mile search 
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revealed no residences. In cases where there was no clear distinction, or where the destination 

GPS data point was located on or away from the road network versus a property boundary; the 

destination was labelled as unknown and NA, respectively. 

Thus at the trip purpose estimated route familiarity, 𝐹𝑝 can be represented by the proportion 

of times the target route 𝑅𝑗, had the same purpose as the routes in their reference set 𝑅𝐼 (Eq. 1). 

In Equation 1, the numerator denotes the number of times the trip purpose matches the routes in 

the reference set, and the denominator represents the total number of routes in the reference set. 

                                     𝐹𝑝(𝑅𝑗) =  
∑ 𝑊𝑘∗𝐼(𝑃(𝑅𝑘) = 𝑃(𝑅𝑗))

|𝑅𝐼|

𝑘≠𝑗

∑ 𝑊𝑘
|𝑅𝐼|

𝑘≠𝑗

                                                      (1) 

Where, 

𝑘 – 𝑘𝑡ℎ route of the reference set for individual 𝐼 

𝑊𝑘 – Recency of route 𝑘 

𝐼 – Indicator function, (1 – True, 0 – False) 

𝑃(𝑅𝑗) – Purpose of route 𝑗 

Level 2 – Travel conditions - 𝑭𝑨 

The travel conditions estimated familiarity, 𝐹𝐴 is determined by the similarity in the overlap 

of travel conditions for two or more routes, and the recency and frequency with which the route 

is driven. In this level, criteria is used to evaluate whether the trip purpose was fulfilled (Naikar, 

2013; Rasmussen, 1986). Contextual inquiry used to understand the travel conditions 

experienced by older drivers revealed that criteria such as choosing routes with fewer turns, 

shortest distance, and short travel time were important (Payyanadan et al., 2016). Based on these 

findings, the travel conditions criteria chosen for this dissertation are the safest route and fastest 
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route for a driven 𝑂 − 𝐷 pair. If the route driven was both the fastest and the safest, it was given 

a criteria label – Other. Using the list of 3-8 routes available from Google Maps for any driven 

𝑂 − 𝐷 pair, the reference routes in 𝑅𝐼 of each participant were classified based on these criteria – 

safest route, fastest route, and Other. The classification of the routes driven into safest, fastest, 

and other followed the approach conducted previously in the work by Payyanadan, Sanchez, and 

Lee (2016). 

There are other criteria such as driver comfort (Blanchard & Myers, 2010), traffic conditions 

(Charlton et al., 2006), weather conditions (Myers, Trang, & Crizzle, 2011), etc. that are known 

to influence trip purpose, but were not recorded in this study; and hence not considered. Thus the 

travel conditions estimated familiarity, 𝐹𝐴 can be represented by the proportion of times the 

target route 𝑅𝑗, had the same criteria as the routes in their reference set 𝑅𝐼 (Eq. 2). 

                                       𝐹𝐴(Rj) =   ∑ ∑ 𝑂(𝑇𝑘(𝐶𝑖), 𝑇𝑗(𝐶𝑖))
𝑁𝑖
𝑖

|𝑅𝐼|

𝑘≠𝑗                                        (2) 

Where, 

𝑘 – 𝑘𝑡ℎ route of the reference set for individual 𝐼 

𝑖 – 𝑖𝑡ℎ criterion out of the set of all criteria 

𝑁𝑖 – Number of trip criteria 

𝑂 – Function that measures the overlap of the travel conditions criteria 

𝑇𝑘 – Travel conditions for the 𝑘𝑡ℎ route of criterion 𝑖 

𝐶𝑖 – Countable set of distinct criteria 

𝑇𝑘(𝐶𝑖), 𝑇𝑗(𝐶𝑖) – Measure on criteria 𝑖 between routes 𝑘 and 𝑗 
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Level 3 – Driving challenges - 𝑭𝑮 

Older drivers modify their driving behavior to adapt to the driving challenges, which arise 

due to complexities in the driving environment, or due to cognitive, functional, and physical 

declines – increasing their risk of crash. Adapting to driving challenges cause older drivers to 

self-regulate their driving behavior by driving only at a certain speed, accelerating, braking, 

steering, lane change, etc. (Smiley, 2004; Vlahodimitrakou et al., 2013). Thus the estimated 

familiarity in driving challenges, 𝐹𝐺  involves the driving challenges that need to be overcome to 

fulfill the trip purpose, and is determined by the similarity in the overlap of driving challenges 

between two or more routes, and the recency and frequency with which those driving challenges 

occurred. 

The reference routes in 𝑅𝐼 of each participant were classified based on these driving 

behaviors (hard braking, harsh cornering, harsh accelerating, and speeding). Magnitude and 

frequency of each of the driving behaviors measured, for example how often the speeding 

occurred and how much over the speed limit; were used as proxies for driving challenges. To 

keep the analysis simple, this dissertation will only consider the point of time and space at which 

the driving challenges occurred, i.e. the frequency of the driving challenge For this we assume 

the time and space measure of familiarity to be negligible. Thus the estimated familiarity in the 

driving challenges, 𝐹𝐺  can be represented by the overlap of hard braking, hard cornering, harsh 

acceleration, and speeding events between the target route and the routes in reference set 𝑅𝐼 (Eq. 

3). 

                                        𝐹𝐺(Rj) =   ∑ ∑ ∑ 𝑂(𝐺𝐷∈𝑀)
𝑚𝑖
𝑛

𝐺
𝑖

|𝑅𝐼|

𝑘≠𝑗 , and                                       (3) 

𝑂(𝐺𝐷∈𝑀) =  min (𝑓𝑘(𝐺𝑖), 𝑓𝑗(𝐺𝑖)) 
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Where, 

𝐺 – The number of driving challenges 

𝑛 – 𝑛𝑡ℎ dimension of strategy 𝑖 

𝑚𝑖 – Total number of dimension for strategy 𝑖 

𝑂 – Overlap function measure 

𝐺𝐷∈𝑀 – Measure on driving challenges 𝑖 between routes 𝑗 and 𝑘 

𝑓𝑘(𝐺𝑖) – Proportion of route 𝑘 where the driving challenge 𝑖 occurred 

Level 4 – Physical properties of the driving environment - 𝑭𝒑𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

The estimated familiarity in the physical properties of the environment, 𝐹𝑝𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is 

determined by the similarity measured by the overlap of objects (stop lights, traffic lights, 

landmarks, etc.), and the sequence of these objects between the target route and reference route, 

and the recency and frequency with which the overlap and sequence occurs. A number of studies 

have been conducted on assessing the sequence of objects by using longitudinal and lateral 

acceleration and speed to understand driving patterns when turn taking (Mitrović, 2005), and 

speed and acceleration behavior to differentiate between healthy drivers and drivers with 

obstructive sleep apnea (McLaurin et al., 2014). Other studies have studied the sequence of 

landmarks – especially among older drivers, for navigation support and wayfinding behavior 

(Goodman, Gray, Khammampad, & Brewster, 2004); and the use of Online Traffic Information 

System (OTIS), for tracing the sequence of traffic lights, traffic signs, etc. along a route. Then 

estimated familiarity in the physical properties of the environment, 𝐹𝑝𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 can be determined 

by the similarity measured by the overlap and sequence of objects in the driving environment 

between two or more routes (Eq. 4). 
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               𝐹𝑃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(Rj) =   
∑ ∑ 𝐼(𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑁𝑘= 𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑁𝑗)

|𝑁𝑘|

𝑖

|𝑅𝐼|

𝑘≠𝑗

∑ ∑ 1
|𝑁𝑘|

𝑖

|𝑅𝐼|

𝑘≠𝑗

                                    (4) 

Where, 

𝑁𝑘 – Set of elements (objects in the driving environment) in the 𝑘𝑡ℎ route 

𝐼 – Indicator function 

The OBDII data only recorded event-and time-based latitude and longitudinal points along a 

route. This limited the ability to extrapolate the GPS route traces to include the sequence of 

traffic lights, traffic signs, etc. Thus, this dissertation will not include level 4. In the following 

section 4.3.3 on Model, Analyses, and Assumptions, we address how this would affect the overall 

estimated route familiarity measure. 

Level 5 – Trip features - 𝑭𝒑𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 

The estimated familiarity at the trip features level, 𝐹𝑝𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is determined by the similarity 

in the appearance, location, and spatial distribution of the physical attributes between two or 

more routes, 𝑆𝑃𝑓𝑜𝑟𝑚, and the recency and frequency with which these features occur. Similarity 

between two or more routes at the trip features level involves comparing information about the 

name and type of road, appearance of the road (winding, curvy), location or position (cardinal 

points, origin, destination), and physical distribution and connections (GPS trace, proximity, 

overlap) (Naikar, 2013). Common approaches in measuring similarity at the geographic or 

topographic level have involved assessing length or proportion of overlap between GPS points 

(Payyanadan, Sanchez, et al., 2016), sequence of locations using GPS points (Zheng & Xie, 

2011), and point-segment distance measures (Froehlich & Krumm, 2008). Since the OBDII data 

only recorded event-and time-based latitude and longitudinal GPS points along a route, this 
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dissertation will only use the available absolute GPS coordinates in the 𝑅𝐼 of each participant.  

The estimated route familiarity at the trip features level can be determined by the similarity 

measured by the overlap of the probability density function (pdf) for the GPS latitude and 

longitude points between the target route and reference routes (Eq. 5). 

                         𝐹𝑃𝑓𝑜𝑟𝑚(𝑅𝑡) =
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑡)

∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑗) 
𝑗∈𝑅𝐼

 ∈ [0,1]                                                      (5) 

Where, 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑡) = 
∑ 𝑝𝑑𝑓(𝑅𝑡|𝑅𝐼)

|𝑅𝑡|
  – average similarity across GPS latitude and longitude points 

𝑅𝑡 – target route  

𝑅𝑗  – route in reference set 

Previous studies have mainly focused on matching GPS traces based on the degree of GPS 

overlap between two or more routes (Payyanadan, Sanchez, et al., 2016). But overlap measures 

tend to be binary, and does not provide further information on whether the route is close in terms 

of distance to another route. To account for closeness between routes, a bivariate kernel density 

estimation (KDE) approach was used (Downs, 2010). KDE quantifies the spatial intensity of 

each latitude and longitude GPS point using a kernel function, and then weights the contribution 

of the latitude and longitude points based on their distance from other GPS points (Silverman, 

1986). Thus, every latitude and longitude has a density estimate. 

The bivariate KDE approach provided a better understanding of whether a route driven was 

closer to a certain neighborhood or location of another route. Because the GPS traces were sparse 

and event-dependent; using KDE made the comparison calculation more suitable. Additionally, 

the KDE could be normalized, allowing it to align with the proposed AH mathematical structure. 
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And to ensure that the grid representing all the routes was computationally feasible, a fixed 

kernel bandwidth (Silverman, 1986) of 200 units was found to be the optimal value. Visual 

representation of the RI using KDE for level 5 are shown in Figure 8. 

 

 

Figure 8: Examples of kernel density estimation to calculate the route density for each RI 
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To calculate similarity of a route using KDE, where each latitude and longitude point has a 

density; similarity of the target route to the reference routes was determined by the mean kernel 

density of all points in the target route. The mean versus the sum was chosen because the sum 

would imply that very short routes would be less similar than longer routes. The normalized 

kernel density of the target route was then calculated by dividing it by the sum of the mean 

kernel densities of all the routes in the reference set. 

4.3.3 Models, Analyses, and Assumptions for calculating and validating estimated route 

familiarity 

The estimated route familiarity using the AH framework will be operationalized by 

measuring the relationship between the probability that a route is familiar and a linear 

combination of the five AH levels: trip purposes, travel conditions, driving challenges, properties 

of the driving environment, and trip features similarity; so that the influence of similarity on one 

level of the hierarchy is independent of the value of similarity at other levels in the abstraction 

hierarchy.  

For this dissertation, there are two values of drivers’ familiarity. Stated familiarity taken 

directly from the Trip Diary feedback responses, refers to the self-reported responses on 

familiarity with the driven and alternate low-risk suggested route. And estimated route 

familiarity developed by mapping the OBDII data recorded from older drivers trips to the results 

of the content analysis conducted on the Trip Diary feedback responses. An important motivation 

for developing the estimated route familiarity is that it could help eliminate the need to 

continuously sample participant familiarity responses. 
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But it is unknown which levels of the AH are most closely related to stated route familiarity, 

raising two important questions: How well do the levels of the AH explain the differences in the 

participants familiarity responses? and How well does the estimated route familiarity perform on 

a test data set? To answer these questions, logistic regression is used to a) determine the 

predictability of the stated familiarity using the levels of the estimated route familiarity as inputs; 

and b) the effect size of the coefficients for each of the levels of AH will be used to determine 

the relationship with stated familiarity. 

Since stated familiarity is binary, the appropriate way to relate the levels of the proposed 

estimated route familiarity to stated familiarity is through the log odds of the probability of a 

route being familiar based on a the linear combination of the similarity constructs. This 

relationship can be represented in Eq. 1 as follows, 

                log (
P(F(Rj)=1)

1−P(F(Rj)=1)
) = ∑ βkSk(Rj)

5
k=1                                                                    (1) 

Where, 

𝑘 – Index for the 5 similarity constructs 

𝐹 – Stated familiarity response of route 𝑗 

𝛽 – Coefficient relating the effect of similarity 𝑘 on stated familiarity 

𝑆𝑘 – Value of similarity 𝑘 

For the analysis, there are a number of model assumptions that need to be specified as the 

AH framework represents both characteristics of the driver and the driving environment, as well 

as subjective interpretation of the environment and preferences of the driver. Model assumptions 

are as follow: 
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- The effect of the similarity levels on stated familiarity is independent of the value of the other 

levels 

- Stated familiarity is a binary variable 

- Estimated familiarity of route 𝑖 is independent of estimated familiarity of route 𝑗 once the 

similarity of all the levels for route 𝑖 and 𝑗 are taken into account, 

𝑓(𝑅𝑖|𝑆𝐹 , 𝑆𝐴, 𝑆𝐺 , 𝑆𝑃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑆𝑃𝑓𝑜𝑟𝑚) ⊥  𝑓(𝑅𝑗|𝑆𝐹, 𝑆𝐴, 𝑆𝐺 , 𝑆𝑃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑆𝑃𝑓𝑜𝑟𝑚) 

- There exists a linear relationship between the log odds of stated familiarity and some 

function of each of the levels of similarity. 

The logistic regression results will be supported with sensitivity analyses (cross-validation 

and ROC curves). Inferences will be conducted on the coefficients to determine the estimated 

effect of the levels of familiarity on stated familiarity. Coefficients will measure the estimated 

change in the log odds of stated familiarity based on the unit change of each of the hierarchy 

levels.  

4.4 Results 

The results section is divided into five parts. The first section shows the summary of the trips 

driven, driving behaviors, route choice, and stated familiarity responses of older drivers in the 

study. The second and third section provides details of the computational checks for calculating 

the estimated route familiarity and predicting stated familiarity at each AH level, and with all the 

levels. The fourth section explores the ability for estimated route familiarity to predict stated 

familiarity with the presence and absence of driver’s identities. And the final section sheds light 

on the reasons for choosing a mean-centered estimated route familiarity measure for our 

analyses. 
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4.4.1 Trips driven by older adults and the stated route familiarity 

A total of 44,816 trips were driven over a six-month period by 32 drivers 65 years and older, 

with a total of 25,390 unique trips. Older adults in the study had a mean speed of 45 miles/hr, 

0.50 hard braking events, 3.5 hard cornering events, 89 hard acceleration events, and 0.3 seatbelt 

violations. While all the participants provided yes stated familiarity responses, only 14 

participants gave a no stated familiarity response as well. Thus for the analyses, only data of 14 

participants were used.  

4.4.2 Predicting stated familiarity using the estimated route familiarity at each AH level 

For each of the AH levels, logistic regression was used to predict stated familiarity, using the 

levels of the estimated route familiarity as inputs. The effect size of the coefficients for each of 

the AH levels were used to determine the relationship with stated familiarity. 

At the trip purpose level 1, there were 465 unique trip purposes. Based on the trip 

destination, each unique trip was categorized into one of 8 codes defined by the National 

Household Travel Survey (Santos et al., 2011): home, residence, school, medical, church, 

social/recreational, errands, unknown, and NA. Of the 8 coded purposes, travelling home 

comprised 34% of the total trip purposes, followed by 31% for running errands such as grocery 

shopping, and 18% for visiting family and friends. Trip were not analyzed for multiple purposes. 

Similarity between trip purposes was determined by the percentage of times the target route’s 

trip purpose was in the reference set. Frequency of trip purposes for each participant was 

calculated, representing the application of the mathematical framework for the trip purpose level 

on RI. This results in the estimated route familiarity at the purpose level. Results from 

conducting a logistic regression with logit link using the estimated route familiarity at the trip 
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purpose level (Figure 9) revealed that there was no significance on stated familiarity at the 95% 

confidence level (odds ratio lift per 1 standard deviation change in level 1 estimated route 

familiarity = 0.97, CI = (0.74, 1.26), SD = 0.16). The lack of significance could be due to the fact 

that the NHTS survey may not provide enough granularity in assessing the trip purposes; and the 

trip purposes were only coded based on the destination, rather than using the O-D pair.  

 

Figure 9: The large confidence interval around the slope shows there is an inconsistent 

relationship between estimated route familiarity at the purpose level and stated familiarity. The N 

labels represent the number of routes that fell into each interval of estimated route familiarity at 

the purpose level. 
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For each trip, the alternate routes generated by Google and MapQuest were assessed for the 

fastest or safest alternative. At the travel conditions level 2, each trip was then classified as being 

more similar to the fastest, safest, or other route; where a route was classified as other when the 

safest and fastest route were identical, or when the driven route had zero overlap with either the 

safest or fastest route. This classification represented the choice of ordering the travel conditions 

criteria for level 2.  

Similarity between travel conditions was determined by the percentage of times the target 

route’s travel conditions criteria was in the reference set.  Frequency of the travel conditions 

criteria for each participant was calculated, representing the application of the mathematical 

framework for the travel conditions level on RI. This results in the estimated route familiarity at 

level 2. Results from conducting the logistic regression with logit link using the estimated route 

familiarity at level 2 (Figure 10) revealed that there was a significant effect on stated familiarity 

at the 95% confidence level (odds ratio lift per 1 standard deviation change in level 2 estimated 

route familiarity = 1.46, CI = (1.12, 1.9), SD = 0.12). 
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Figure 10: The confidence interval around the slope shows there is a significant relationship 

between estimated route familiarity at the travel conditions level and stated familiarity. The N 

labels represent the number of routes that fell into each interval of estimated route familiarity at 

the travel conditions level. 

At the driving challenges level, multiple driving behaviors representing driving challenges –

hard acceleration, hard braking, harsh cornering, seatbelt violation, and speeding were available. 

Frequency of each of the driving challenges for each participant was calculated, representing the 

application of the mathematical framework for the driving challenges level on RI. This results in 

the estimated route familiarity at level 3. Only hard acceleration and speeding events were used 

for the analysis because these were the only driving challenges that had enough variability in 
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driver behavior to warrant estimation. The similarity between hard acceleration and speeding 

events were determined by the percentage of times these driving challenges in the target route 

were in the reference set. Fitting the logistic regression with logit link using the estimated route 

familiarity at level 3 (Figure 11) revealed an effect of level 3 familiarity on stated familiarity 

(odds ratio lift per 1 standard deviation change in level 3 familiarity = 1.46, CI = (1.09, 1.96), SD 

= 0.11).  

 

Figure 11: The confidence interval around the slope shows there is a significant relationship 

between estimated route familiarity at the driving challenges level and stated familiarity. 

At the trip features level, first the density for each GPS point of the participant within a 

single route was calculated (Figure 12). In Figure 12, the vertical dashed line represents the mean 
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density for a single route. This was followed by calculating the raw mean density for all the 

routes of each participant and normalizing the mean density. These steps were conducted for all 

participants for estimated route familiarity at level 5. 

 

Figure 12: Representation of the computational checks and steps for calculating the estimated 

route familiarity at the trip features level. 

The similarity in the trip features were determined by the percentage of times the features in 

the target route was in the reference set. Results from conducting the logistic regression with 

logit link using the estimated route familiarity at level 5 (Figure 13) revealed that there was a 

significant effect on stated familiarity at the 90% confidence level (odds ratio lift per 1 standard 

deviation change in level 5 familiarity = 1.33, CI = (1.01, 1.75), SD = 0.17). 
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Figure 13: The confidence interval around the slope shows a weak relationship between 

estimated route familiarity at the trip features level and stated familiarity. 
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4.4.3 Predicting stated familiarity using estimated route familiarity with all AH levels 

Before conducting the logistic regression, a test for correlation between the AH levels was 

conducted. Results are shown in the correlation matrix in Table 17. Only level 5 had a significant 

correlation with the levels 2 and 3. All other correlations were not significant.  

Table 17: Upper diagonal correlation matrix between AH levels 

 Level 1 Level 2 Level 3 Level 5 

Level 1 1.00 0.09 0.11 -0.05 

Level 2  1.00 0.05 0.26* 

Level 3   1.00 -0.17* 

Level 5    1.00 

Logistic regression model predicting stated familiarity using all the AH levels as predictors 

was fit. Compared to the null model, the Chi-squared test conducted for the estimated route 

familiarity model was shown to be significant (p-value < 0.001, 12.59, 4 DOF). Figure 14a 

shows the regression coefficient and their standard errors, where AH Levels 2 and 3 were 

significant at the 0.05 and 0.1 levels, respectively. In addition, a Chi-squared test was also 

conducted to determine if there were interaction between the levels and their association with 

stated familiarity. Results (Figure 14b) showed that none of the interaction coefficients were 
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significant, and the interaction model failed to reject the Chi-squared test (p-value > 0.10, 2.8, 6 

DOF) when compared to the non-interaction model. 

 Estimate Std. Error Z Value Pr(>|Z|) 

(Intercept) -1.53 0.75 -1.38 0.06* 

Trip purpose level 1 estimated familiarity 0.23 1.10 0.95 0.44 

Travel conditions level 2 estimated familiarity 0.98 1.38 1.89 0.08** 

Driving challenges level 3 estimated familiarity 1.10 0.48 2.32 0.02** 

Trip features level 5 estimated familiarity 0.53 0.13 1.63 0.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To test the ability of the estimated route familiarity measure to differentiate between yes and 

no stated familiarity responses, a receiver operating characteristics (ROC) analysis was 

Figure 14: A) Regression coefficients and the standard errors. B) Plot showing the estimated 

route familiarity using all the AH levels against stated familiarity responses. 

A 

B 
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conducted (Figure 15). ROC curve and analysis provides a graphical representation of the 

relationship between sensitivity and specificity and helps decide the optimal model through 

determining the best threshold for the diagnostic test (Zhu, Zeng, & Wang, 2010). While 

sensitivity is the proportion of true positives that are correctly identified by the diagnostic test; 

specificity is the proportion of true negatives correctly identified by the diagnostic test. The 

threshold provides a measure of accuracy – how correctly the diagnostic test identifies and 

excludes a given condition. The ROC analysis resulted in an AUC of 0.67, implying that there 

are viable trade-offs for predicting unfamiliar routes. Based on the AUC = 0.67, we describe a 

scenario where a navigational system can provide route options under three settings depending 

on the trade-off between the rate of identification and degree of accuracy of familiar and 

unfamiliar routes.  
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Figure 15: ROC curve for estimated route familiarity 

Setting 1: Low rate of identification but high degree of accuracy (Table 18) 

When the threshold for estimated route familiarity is less than 50%, the navigational system 

will rarely provide a suggestion for unfamiliar routes (< 1%). But when the system provides a 

suggestion, it is highly likely that the route is truly unfamiliar to the driver. That is, about 4% of 

unfamiliar routes will be correctly identified by the system. 

Setting 2: Medium rate of identification and medium degree of accuracy (Table 18) 

When the threshold for estimated route familiarity is less than 60%, the navigational system 

will occasionally provide suggestions for unfamiliar routes (~ 5%). But when the system 
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provides a suggestion, it is 50% likely that the route will be truly unfamiliar to the driver. That is, 

about 12% of unfamiliar routes will be correctly identified by the system. 

Setting 3: High rate of identification, but low degree of accuracy (Table 18) 

When the threshold for estimated route familiarity is over 77%, the navigational system will 

be able to regularly provide suggestions for unfamiliar routes (~37%). But when the system 

provides a suggestion, 35% of the time the route will be truly unfamiliar to the driver. That is, 

about 57% of unfamiliar routes will be correctly identified. 

Table 18: Settings 1, 2 and 3 to differentiate between unfamiliar and familiar routes 

 

The results in sections 4.4.2 and 4.4.3 use only information from the driving data, RI, where 

individuals were not identified in the population. It would also be interesting to determine 

whether the estimated route familiarity measure holds under the condition where we use the 
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identity of individuals in the population, along with estimated route familiarity to predict stated 

familiarity. 

4.4.4 Prediction of stated familiarity using estimated route familiarity and driver identity 

For the condition where the driver’s identities were used to determine whether we could 

improve on the prediction of stated familiarity using estimated route familiarity, a model with 

only the driver’s identities was used; resulting in an AUC of 0.75. Then the estimated route 

familiarity was added in with the identities, resulting in an AUC of 0.81. This improvement 

implies that under the hypothetical scenario, navigational systems could be further improved on 

their familiar and unfamiliar route identification and accuracy if drivers occasionally provide 

feedback on their route familiarity. 

 

Figure 16: ROC curve for estimated route familiarity with drivers identified 
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4.4.5 Absolute versus relative estimated route familiarity 

In the analyses conducted in sections 4.4.3 and 4.4.4, estimated route familiarity for each of 

the AH levels were mean-centered at the participant level to conduct the logistic regression to 

predict stated familiarity. Here, mean-centered is simply the difference between a given 

familiarity and the mean estimated route familiarity of a driver. The rationale for using mean-

centered estimated route familiarity is due to the possibility that familiarity is a relative judgment 

rather than an absolute judgment (Fox & Levav, 2000). For example, absolute judgement is 

when a driver who is 70% familiar with their reference routes will have a higher rate of yes 

stated familiarity responses than a driver who is 25% familiar with their reference routes. 

Whereas relative judgment is when in the same situation, the drivers will have an equal 

proportion of yes stated familiarity responses. In this case, the driver with a 70% average 

familiarity is more likely to mark a route with 40% familiarity as ‘unfamiliar’. Whereas a driver 

with a 25% average familiarity is likely to mark a route with 40% familiarity as ‘familiar’. 

Figure 17 shows a histogram of the absolute and relative judgement of participants in the study, 

where relative is the mean-centered estimated route familiarity. Results in Table 19 and Figure 

18 showed that for all the AH levels, relative judgment is best supported by the data. 
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Figure 17: For absolute judgement, the participants estimated route familiarity were congregated 

to the right or left of the center. For relative judgement, mean-centering allowed each participant 

to be centered in the histogram. 

Table 19: logistic regression to test which judgement best supported the data 

 Absolute judgment 

 

Relative judgment 

 
Logit(stated familiarity) ~ L1.abs + 

L2.abs + L3.abs + L5.abs 

Logit(stated familiarity) ~ L1.rel + L2.rel + L3.rel + 

L5.rel 

Coefficient Estimated Value P-value Estimated Value P-value 

Intercept -0.24 0.73 -1.53 0.06* 
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Level 1 1.18 0.27 0.23 0.44 

Level 2 3.55 0.009*** 0.98 0.08* 

Level 3 0.24 0.85 1.10 0.02** 

Level 5 -1.09 0.21 0.53 0.11 

 

 
Figure 18: Mean-centered estimated route familiarity 

4.5 Discussion 

By introducing a theoretical and mathematical framework for describing route familiarity, 

this dissertation addresses an important question: Can a measure of familiarity, defined by 

features of trips considered at five levels of abstraction, be used to predict a driver’s familiarity 
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with a route? To address this question, in the following sections we attempt to highlight the 

importance and limitations of the framework proposed for describing route familiarity, and the 

implications of our analyses conducted to establish estimated route familiarity.  

4.5.1 The theoretical and mathematical framework for describing route familiarity 

The AH framework is a useful representation for route familiarity as it provides both a static 

and scalable view of the dynamic processes involved in understanding familiarity and its 

influence on route choice  behavior (Jones, 2016). To determine the usefulness of the proposed 

AH framework describing route familiarity and the attempt to operationalize estimated route 

familiarity, we first address the utility and limitations of the framework. The following 

discussion reflects some of the uses and challenges of the theoretical AH framework, and 

grounds for future work. 

Levels of the abstraction hierarchy: The framework uses a complex approach that attempts to 

reflect the influence of familiarity on route choice using the driving activities and stated 

preferences of the driver. In the framework, assumptions are made about the stated familiarity, 

and observed (route driven, direction of travel, sequence of events) and unobserved (purpose, 

constraints) activities of the driver – represented as features within levels of the AH framework. 

An important challenge for such a framework is that the probability of a feature being a member 

of a particular AH level to describe familiarity is mainly judged on the basis of how 

representative the feature is of the level (Lind, 1999). For example, features such as fastest and 

safest route, although not directly associated with route familiarity, represented criteria chosen 

by older adults (see Payyanadan et al., 2016) as reasons for preferring a familiar route. Thus the 

framework does not require that every input into each of the AH levels be a direct feature of 

route familiarity, rather it has a less restrictive requirement in that the inputs at each level simply 
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be associated with familiarity. Additionally, the goal of the AH framework is to estimate route 

familiarity using naturalistic driving data. This can place a high demand on data validation, and 

may bias the base rate probabilities of the representations within a familiarity level (Jacko, 

2012). Lastly, the abstraction hierarchy levels are fixed – creating a stable environment for 

parameter estimation and implementing value learning algorithms; but suffers from increased 

computational complexity. Whereas adaptive abstractions can enable algorithms to find 

abstraction levels that can adapt to the current state, or by aggregating parts of the model by 

grouping levels – allowing model minimization (Van Otterlo, 2009). 

 

Representations within the levels of the abstraction hierarchy: There are a number of limitations 

that arise from the availability or lack of information. Information needed for developing such 

multi-level models can be greatly limited by the sensor technology suite, affecting the reliability, 

usability, and integrity of the information needed for capturing the different feature 

representations within the AH levels (Vicente & Rasmussen, 1992). But there are also concerns 

that arise as more information is added to the representations, and as they become more specific 

within each of the AH levels. Firstly, it can produce high specificity among the features that 

might be unrelated to the baseline preference of the user, decrease the meaningfulness of the 

feature, and result in choices that are inconsistent with user preferences (Laran & Wilcox, 2011). 

Secondly, increased representations and feature complexity can bias analyses measuring the 

strength of similarity on the familiarity levels. Thirdly, greater representations can lead to shared 

attributes resulting in cross-correlation. This in turn can lead to erratic coefficient estimation, and 

dilute the robustness of estimating the effect of individual features of the model on familiarity. 

Additionally, recent work has highlighted the limited understanding of whether the source of the 
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variances from individual-specific constructs such as familiarity and route choice are from 

preference heterogeneity and/or process heterogeneity. Where preference heterogeneity refers to 

the different preferences based on the context, situation, or experience; and process 

heterogeneity refers to the different decision rules used to implement the preference attributes 

(Johnson, Hardie, Meyer, & Walsh, 2006). Future work could shed light on how often these 

challenges may occur in practice. 

 

Values and membership of the features: A number of features are incorporated within the levels 

of the AH framework such as directionality of the trip, purpose, etc. But there is no clear 

understanding of the order or ranking of these criteria within each of the AH levels, and whether 

order is important. While the proposed AH mathematical framework provides structure for 

incorporating ranking of criteria and estimating its importance; determining ranking or ordering 

is needed, and future work could address the importance of ranking, and under what driving 

context and conditions. Studies conducted on ranking features or categories within AH levels has 

suggested increased dependency of the representations on the geographic context, thereby 

reducing the significance of the user’s overall ranking and context (Zheng & Xie, 2011). 

Additionally, the representations captured from the feedback and preferences of older drivers are 

of varying generality – safe, interesting, which could be split into several lower-level attributes 

as well. Future work can explore better ways to characterize user feedback and description of 

preferences. 

4.5.2 Estimated route familiarity 

The formulation and quantifications that have been developed as theoretical and 

methodological contributions for assessing an estimate of route familiarity are preliminary, and 
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require further refinement as highlighted in the limitations in this Chapter and future work in 

Chapter 5. Preliminary results showed that when only information from the driving data, RI was 

used, and when individuals were not identified in the population, the estimated route familiarity 

was able to predict driver’s familiarity with the route. This has important implications for the 

customization of route choice models for navigational systems, as it provides drivers with the 

opportunity to set their own thresholds for receiving important notifications along a route based 

on their familiarity with the route. For example, older drivers in general prefer avoiding 

unfamiliar routes (Payyanadan et al., 2016). Incorporating their relative estimated route 

familiarity measure in route choice models can help navigational systems provide a more 

customized, safer, alternate route suggestion that matches their route choice and driving 

preferences. Additionally, the ability to use the estimated route familiarity measure to determine 

whether a route is familiar or not can also be used to customize driver feedback by providing 

additional safety-related route information when driving routes that are unfamiliar.  

 

Similar applications can be implemented for older drivers with mild to medium cognitive 

decline. Research has shown that older adults with Alzheimer’s, Parkinson’s, and dementia make 

fewer driving and navigation errors on familiar routes (Uc et al., 2009, 2004). The ability to use 

only driving data and individual RIs to capture route familiarity provides a first step towards 

incorporating measures such as estimated route familiarity in route choice models and 

navigational systems for such drivers; and an opportunity to prolong their driving safety, 

mobility, and independence. From a design and information theory perspective, the opportunity 

to use different familiarity thresholds in recommending route alternatives can be used by 

navigational systems to reduce mind wandering and inattention often caused due to the 
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monotonic nature of driving long and familiar routes (Martens & Fox, 2007; McKnight & 

McKnight, 1999), by providing alternate routes that are less familiar. 

 

The goal of this chapter was to focus on developing a framework for describing and 

operationalizing a measure of route familiarity. The following Chapter focuses on some of the 

theoretical and practical applications of the proposed abstraction hierarchy theoretical and 

mathematical framework; and opportunities for using the estimated route familiarity as a 

measure of route choice behavior. 

4.5.3 Study limitations 

Older drivers were recruited for the study through a larger study (see Gustafson et al., 2015). 

But the sample of older drivers who volunteered for the study may not be representative of the 

older driver population, as the participants could be considered active drivers, interested in 

understanding their driving behavior, and already avoid risky driving situations. Additionally, the 

driving strategies and behavior recorded by the OBDII devices may not be representative of the 

driving behavior due to the Hawthorne effect from the devices in the vehicle. 

There are a number of challenges and limitations with the analytical approach that need to be 

addressed due to the nature of the data recorded. A major limitation in the analyses was the 

constraint on the number of representations that could be used for measuring similarity within 

each of the abstraction levels. For example, at the trip purpose level, only trip purpose 

similarities were considered, as trip objectives and external limitations were not recorded. Each 

trip was recorded and analyzed only as a single, independent trip. It is possible to consider 

multiple-stop trips by assessing the number of trips taken in a day, and creating a time window of 

30-40 minutes between O-D pairs to assume a multi-purpose trip. 
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At the travel conditions level, criteria was determined through analyses of open-ended 

feedback questions. Future work could develop better approaches for capturing and ranking the 

criteria of preferences. At the driving challenges level, due to the complexity involved in 

implementing the point of time at which the driving strategies occurred along a route, only the 

frequency of occurrence of the driving challenges were considered. Lastly, at the physical 

properties of the driving environment and trip features levels, the OBDII devices only captured 

GPS points based on events, limiting the availability of road and infrastructure data that could be 

obtained from whole GPS traces to develop additional representations within the hierarchy such 

as landmarks. 

For each the AH levels, it could be argued that further data transformation could be done to 

extract information. For level 2, fastest and safest routes were selected as criteria important for 

fulfilling the trip purpose for older drivers. Based on different driver cohorts, these criteria could 

vary. For example, teenage and middle-aged drivers are known to prefer the shortest route, and 

willing to divert from their current route irrespective of their route familiarity. Similarly, for 

level 4, which was not included in the estimated route familiarity calculation; overlap in the 

sequence of turns could be extracted from the GPS traces, and used as a proxy for assessing level 

4 estimated route familiarity. For level 1, trip purpose was determined by manual coding of the 

O-D pairs by the research team and assigning the destination as the trip purpose. Future work 

could include a questionnaire where drivers provide feedback of their trip purpose. And for level 

5, only the densities of GPS traces were used, but other trip features such as scenery, etc. could 

be further investigated as separate elements within level 5. 
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4.6 Chapter summary 

The proposed theoretical and mathematical AH framework describing route familiarity 

provides a useful first step towards an estimated route familiarity measure, which could help 

guide the development of better route choice models that can be customized to meet the specific 

route choice and safety needs of drivers. The implementation of such route choice models in 

driver support systems can have multiple benefits, such as the ability to include familiarity in the 

cost function for selecting routes so that the resulting routes are more likely to be accepted; used 

to update membership functions and ‘if-then’ rules in different scenarios based on the driver’s 

route familiarity; and to assist in both pre-trip planning and dynamic route choice feedback.
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CHAPTER 5: FUTURE WORK 

A driver’s route choice behavior depends on their individual experience which has been 

accumulated through daily driving (Tanaka, Uno, Shiomi, & Ahn, 2014). For older drivers in 

particular, studies conducted to understand the factors that influence route choice behavior have 

shown that they tend to be risk averse. They prefer certain routes such as freeways (Madanat & 

Jain, 1997), driving during specific times of the day (Payyanadan et al., 2016), and driving 

familiar routes. Chapter 3 showed that route choice also depended on older driver’s familiarity 

with the available alternate routes; where those more familiar with the alternate routes were less 

likely to change their route choice to a low-risk route. Additionally, limited work on route 

familiarity has suggested that habit, attention, and automation also interact with familiarity. 

Although not exhaustive, the following sections below provide insights on how the body of work 

presented in this dissertation can be further expanded to other research areas in Human Factors. 

5.1 Assessing the role of recency and frequency on route familiarity 

Most route choice models have used some measure of recency, frequency, or both to 

understand and predict route choice behavior. But recent work in route choice modelling has 

revealed that there are interactions between recency and frequency with other behavioral factors 

such as memory and information. Work by Ben-Elia and Shiftan (2010) showed that when 

drivers had route information, they were more likely to choose a route based on both the recency 

of route driven and long-run (memory) learning. Whereas in the absence of information, the 

decision to choose a route was based on the most recent route driven. Additionally, other studies 

in cognitive behavior have shown that there is interaction between recency and frequency, where 
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the temporal order of frequency learning is positively biased towards the recency of the learning 

(Zhang, Johnson, & Wang, 1998). 

Results from Chapter 4 showed that frequency and not recency influenced route familiarity. 

Using the AH framework for describing route familiarity, the relationship between recency and 

frequency can be further explored as shown in Figure 19. From Figure 19 we can hypothesize 

whether a) Recency, frequency, or both have a global effect on familiarity; and b) Recency, 

frequency, or both have a local effect on familiarity, where at each of the AH levels, a 

combination of recency and frequency has a different effect on familiarity.  

 

Figure 19: Hypotheses and relationships for testing the local and global effect of recency and 

frequency on familiarity to understand route choice behavior 

5.2 Route choice and habit 

Habit is commonly defined as learned sequences of acts that have become automatic 

responses to specific cues, and are functional in obtaining certain goals or end states 
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(Verplanken & Aarts, 1999). In the driving domain, a number of studies have observed the 

relationship between route familiarity and habit. Recent work by Vacca, Prato, and Meloni 

(2017) showed that the greater the habit of travelling along a certain route, the less likely drivers 

were willing to switch their route. Results from the content analysis conducted in Chapter 3 

showed that despite providing older adults with shorter routes with fewer turns, habit was a 

reason for driving the preferred route; even though the preferred route had more turns, travel 

time, and distance. In economics, habit is distinguished from choice, where habit is a behavior 

that is performed repetitively and is considered automatic with conscious thought. Whereas 

choice is a behavior selected from a range of alternatives, and involves conscious deliberation. 

Work by Duhigg (2013) in the Power of Habit reported that habit formation is influenced by 

a cycle of reminder, routine, and reward. Reminder is a cue or trigger that starts the habit; 

routine refers to the action taken in response to the reminder; and reward is the benefit from 

doing the habit. By using the feedback responses from older drivers who responded to a route 

being habitual, it is possible to focus on only routes labelled habit by participants and determine 

which of the AH levels might be triggered by the habit cycle. 

5.3 Customizing driver support systems based on the driver’s estimated route familiarity 

Enabling driver support systems to adapt to the driver’s specific needs, expertise, and 

knowledge of the road and road network can reduce burden on drivers by delivering only useful 

information about the route, and instructions for staying on the intended route. Having an 

estimate measure of a driver’s familiarity with the route or road network can help determine the 

extent of a driver’s familiarity with the route, and in turn help develop customizable driver 

support systems (DSS) such as navigational aids to not only provide better route alternatives, but 



116 
 

 

also improve the delivery of route information by adapting the information content and 

information presentation of navigational systems to match the drivers’ performance. 

The categories of driving performance can be distinguished as three levels: Skill-, Rule-, and 

Knowledge-based performance (Rasmussen, 1983) for different levels of route familiarity. This 

SRK Model has been used extensively for describing the various mechanisms of driver’s 

processing information, where knowledge-based performance involves analytical problem 

solving (slow, laborious, serial), and skill-based performance and rule-based performance 

involves perceptual processing (fast, effortless, parallel), and action, respectively (Wang, Hou, 

Tan, & Bubb, 2010). When considering different driving situations, it is important to determine 

how DSS technologies can enhance driving performance through efficient function modification 

and allocation. 

5.4 Using estimated route familiar as a marker for assessing driver’s situation awareness 

Situation awareness (SA) is a state of knowledge pertaining to the state of the dynamic 

environment; and situation assessment is the process of achieving, acquiring, or maintaining SA 

(Endsley, 1995). Individual factors such as goals, preconceptions, knowledge, experience, 

training, abilities, and environmental factors are used to develop and maintain SA (Endsley, 

1995). When SA is incomplete or inaccurate, research has shown that it is linked to poor driving 

performance; but can be addressed if drivers are aware of their lack of SA. 

Current approaches to measuring SA have been through different task performances such as 

real-time probes, SAGAT – situation awareness global assessment technique, and WOMBAT 

situational awareness and stress tolerance test (Jones & Endsley, 2000; Strater, Endsley, Pleban, 

& Matthews, 2001). Despite the usefulness and broad application of SA in error analysis, safety, 
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design, prediction, teamwork, and automation and workload; there have been concerns over the 

measurement approaches (Durso, Rawson, & Girotto, 2007), and the need for more naturalistic 

techniques to measure SA (Wickens, 2008). 

Past research has shown that older drivers in particular prefer to drive familiar routes, but 

driving familiar routes can increase the number of risky driving behavior events among older 

drivers. This has been attributed to reduced attention and mind wandering when encoding a 

familiar driving environment (Martens & Fox, 2003, 2007; McKnight & McKnight, 1999). 

Based on the work in this dissertation, it may be theoretically possible to assess whether a 

driver’s SA can be determined through naturalistic driving data used to measure their estimated 

route familiarity. Figure 20 proposes an approach to mapping levels of estimated route 

familiarity to a driver’s SA levels. We assume that there is an ideal one-to-one relationship 

between a driver’s estimated route familiarity and SA levels. But due to factors that limit SA, a 

driver’s estimated route familiarity might fall to the lower level – observed relationship. To 

establish the one-to-one relationship, We propose two hypotheses: a) Under SA that do not limit 

SA, high, medium, and low estimated route familiarity is correlated with SA level 3, 2, and 1 – 

ideal relationship; and b) Under situations that limit SA, the estimated route familiarity will be 

correlated with the immediate lower level of SA – observed relationship. The difference between 

the ideal and observed relationship can then be bridged by identifying and developing the factors 

that limit SA. 
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Figure 20: Framework for using estimated route familiarity as a marker of SA in the driving 

domain 
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describing route familiarity into Neisser’s (1976) process-oriented perceptual cycle model 

(PCM), which emphasizes the role that both schemata (internal mental templates), and world 

information play a role in governing actions, and decisions (Figure 21). 

 

Figure 21: A modified abstraction hierarchy perceptual model using Rasmussen’s (1986) and 

Neisser’s (1976) model. 

In the PCM model, the schema highlights the prior knowledge, experience, and expectations; 

the action refers to the actions conducted or potential actions that could be taken; and the world 
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categories of the AH levels are fit into the PCM model, the action and world categories are the 

most representational for the AH framework; with no concepts identified in the schema category 

(Figure 21). Results from the content analysis conducted in Chapter 3, analyzing the feedback 

responses from older drivers revealed some of the underlying schema influencing route choice, 

such as preference and habit. Such factors that influence the decision to choose a route need to be 

incorporated in the estimated route familiarity measure. Implementing the modified abstraction 

hierarchy perceptual model could be a first step towards understanding the interaction between 

the schema categories and the action and world categories. By decomposing the schema category 

into more detailed features can provide additional explanatory power for understanding decision-

making, especially critical decision-making during situations that might turn into incidents or 

accidents (Dekker, 2014).  

5.6 Using estimated route familiarity as a marker for assessing driver’s situation awareness 

As vehicles become more automated, both the driver and the automation play a role in 

vehicle control and engagement. For the driver and the automation to work jointly, there is a 

need to understand the issues when working with automation within a joint cognitive system. 

One useful approach to study driver-automation interaction is to treat the driver and automation 

as agents collaborating in a workspace. Workspace awareness (WA) involves knowledge about 

where someone is working, what they are doing, and what they are going to do next (Gutwin, 

Greenberg, & Roseman, 1996). The information gathered by the agents in the workspace can 

then be used for collaboration, action coordination, managing coupling, anticipating actions, and 

opportunities to assist the other agent. 
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Previous work studying human-automation interaction within a computational workspace 

(human and automated agents) has shown that awareness is not easy to maintain as there is a) 

lesser information than actions generated in a computational workspace, and b) manipulation of 

information is less direct when working in a computational workspace (Gutwin & Greenberg, 

1998). The computational WA framework derived from Endsley’s (1995) three levels of 

situational awareness (SA) is organized around: a) what kinds of information agents need to keep 

track of in the shared workspace, b) how agents should gather WA information; and c) how 

agents can use the WA information for collaboration. But while SA can be limited at all 3 levels, 

computational WA focuses on only the first and second SA levels as the primary levels where 

awareness problems occur. 
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Figure 22: Using the AH framework and the perceptual cycle model to build a workspace 

awareness framework representing driver-automation information interaction loop with driver 

and automation as agents in the workspace (Gutwin et al., 1996). 
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APPENDIX: Model assumptions and mathematical formalization of the AH 

levels describing route familiarity 

The mathematical formulation of the AH levels presented in the dissertation are detailed in 

this appendix. The underlying assumptions and technical aspects are discussed. To 

mathematically represent each of the AH levels to describe familiarity, we recap the definitions 

of trips for all origin 𝑂 and destination 𝐷 pairs. For each O-D pair, there are 𝑁 possible route 

choices to get from 𝑂 to 𝐷. Then the route associated with that O-D pair is the route driven. Thus 

each individual has a set of all routes driven to create their own route reference set 𝑅𝐼, where 𝑅𝐼 

is the set of routes ordered by when they were driven, and 𝐼 is a distinct individual in the 

population. 𝑅𝐼 is ordered, if for any 2 subsets 𝑖, 𝑗 of 𝑅𝐼, 𝑅𝑖 =  𝑅𝑗, iff two conditions hold,  

- |𝑅𝑖| =  |𝑅𝑗|, and 

- The first element of 𝑅𝑖  equals the first element of 𝑅𝑗, and so on till the nth element of 𝑅𝑖 equals 

the nth element of 𝑅𝑗. 

We assume that 𝑅𝐼 is not a set of distinct routes, i.e., any route can occur multiple times in 𝑅𝐼.  

And the ordering of 𝑅𝐼is based on the absolute point in time that each route was driven. In the 

reference set, for each of the levels of the AH framework, the ordering of the routes captures 

recency, and the aggregation of routes driven captures the frequency of the routes driven. 

We then represent familiarity by the degree of similarity between routes, where similarity is 

characterized by the degree of relatedness between shared features of two or more routes, and 

relatedness by the measure of overlap or distance between the two features. For the proposed 
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mathematical framework, the similarity measures across the five levels of abstraction – 

functional, abstract, generalized, physical function, and physical form are represented below. 

A. AH Level 1: Trip purpose 

Trip purpose represents the overall goals and purpose of the system, objectives, and the 

external limits on the system due to the environment. The system’s purpose remains relatively 

constant, while the objectives and external limits of a system are dynamic – changing with 

respect to the situation (Burns & Vicente, 2001). The system can have multiple objectives. The 

external limits refer to the properties of the environment that impose on the system’s purpose 

(Naikar, 2013). For example, the purpose of a trip is to reach the destination. Whereas there 

might be multiple objectives for the trip – primary objective to arrive for dinner on time; and the 

secondary objective is to stop and pick up dessert before dinner. External limits by the driving 

environment on the trip could include traffic regulations. Thus at the trip purpose level, purpose, 

objectives, and external limits govern the interaction between the system and the environment. 

At the trip purpose level, familiarity can be determined by the similarity of the trip purposes, 

objectives, and external limits between two or more trips, 𝑆𝐹. To measure similarity at the 

functional level, we make the following assumptions: 

- The purpose, objectives, and external limits of a trip will be a countable set of distinct 

purposes 𝑃, objectives 𝑂, and external limits 𝐸. 

- For any one or more purposes 𝑝𝑖  ∈  𝑃, a measure 𝑀 on them will have the following 

properties, 

 

The similarity of any single purpose is 0; 𝑀(𝑝𝑖) =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖  

The similarity of no purpose is 0; 𝑀(∅) =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖  
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The similarity between any two distinct purposes lies between [0,1); 0 ≤ 𝑀(𝑝𝑖, 𝑝𝑗) < 1,

𝑖𝑓 𝑝𝑖  ≠  𝑝𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗 

The similarity between identical purposes is 1; 𝑀(𝑝𝑖, 𝑝𝑗) = 1, 𝑖𝑓 𝑝𝑖  =  𝑝𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠

 𝑗 

The similarity between multiple purposes is the same as the pairwise similarity between 

all combinations of two purposes; 𝑀(⋃ 𝑝𝑘) =  ∑
𝑀(𝑝𝑖,𝑝𝑗)

(
𝑘
2

)
,

(
𝑘
2

)

𝑖,𝑗
 where 𝑘 are the purposes in 

the union being measured, and the sum across 𝑖 and 𝑗 form all pairwise combinations of 

⋃ 𝑝𝑘. 

- Every route 𝑅𝑗 in the reference set 𝑅𝐼will have one and only one 𝑝𝑖 ∈ 𝑃 

Then similarity (Eq. 1) can be represented as a function of the similarity of the trips purpose 

𝑆𝑝, objectives 𝑆𝑜, and constraints 𝑆𝑐, where Sp =  fp(𝑝), So =  fo(𝑜), and Se =  𝑓e(𝑒), and 𝑓 

follows the rules for 𝑀 stated above. 

                                                SF(Rj) =   𝑓(𝑆𝑝, 𝑆𝑜 , 𝑆𝑒)                                                                           (1) 

B. AH Level 2: Travel conditions 

This level represents the values and priority measures needed to fulfill the purpose of the 

system (Naikar, 2013). For example, for the trip where the purpose is to arrive at the destination, 

with the primary objective to arrive on time for dinner, and secondary objective to stop and pick 

up dessert; several criteria can be employed for evaluating how the purpose is fulfilled. Criteria 

such as selecting the shortest, selecting the fastest route, etc., can allow the driver to compare, 
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prioritize, and allocate resources so as to achieve the trip purpose. Assessing these criteria can 

help evaluate whether the purpose is fulfilled. 

At the travel conditions level, familiarity can be defined as the similarity in the overlap and 

ranking of travel conditions for two or more routes, 𝑆𝐴. To measure similarity at this level, we 

make the following assumptions: 

- The travel conditions for a trip is an ordered, countable set of distinct criteria 𝐶, ordered by 

the importance of each criteria 

- Let 𝑂 be a measure of similarity on 𝐶, where 𝑂 has the same properties as 𝑀 (see Purpose 

level), such that for each ci ∈  𝐶, 

 

If a criteria appears in only one route there is no similarity 

𝑂(ci) =  0  𝑖𝑓 ci ∈  C1 and ci ∉  C2 or ci ∈  C2 and ci ∉  C1, where C1 and C2 represent the 

order of criteria for routes 1 and 2 

If a criteria appears in two or more routes, but is in different order, then it will have a 

similarity between [0,1) 

0 ≤  𝑂(ci) < 1, 𝑖𝑓 ci ∈  C1 and  ci ∈  C2 and order of ci is not the same in C1 and C2 

If a criteria appears in two or more routes, and in the same order, then it has a similarity 

of 1 

𝑂(ci) =  1  𝑖𝑓𝑓 ci ∈  C1 and  ci ∈  C2 and order of ci is the same in C1 and C2 

Then similarity 𝑆𝐴 (Eq. 2) can be represented as a function of the overlap of the ranked travel 

conditions criteria between 2 routes 𝑗 and 𝑘, where 𝑘 ≠ 𝑗 as we are not measuring the similarity 

of a route to itself, 𝑇𝑗𝑘 is the travel conditions for routes 𝑗 and 𝑘, and 𝑅𝐼 is the reference set. 

                                 SA(Rj) =   𝑓(𝑂, 𝑇𝑗𝑘)                                                                      (2) 
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C. AH Level 3: Driving challenges 

This level represents the functions that must be supported to fulfill the system’s purpose, 

independent of the underlying physical objects or object-related processes needed to implement 

them (Naikar, 2013). For example, for the trip where the primary objective is to arrive on time 

for dinner, the secondary objective to stop and pick up dessert, and criteria such as time of 

departure is used to evaluate fulfillment of the trip purpose; requires a number of purpose-related 

functions that need to be supported. These include challenges such as maintaining a certain speed 

and acceleration with other drivers on the road, overtake vehicles if they are driving to slow, etc. 

(Kesting et al., 2010). While there are no reported variations in how factors at this level are 

characterized, these functions needs to be represented in general terms using terminology 

common to the field, such that the functions indicate the type of system but not the specific 

system (Naikar, 2013; Rasmussen, 1994). 

At the driving challenges level, familiarity can be represented by the similar driving 

challenges to overcome to fulfill the trip purpose, defined as the similarity in the overlap of 

driving challenges between two or more routes, 𝑆𝐺. To measure similarity at this level, we make 

the following assumptions: 

- Let 𝐺 be a countable set of driving challenges, where each 𝐺𝑖 ∈ 𝐺 has a countable set of 𝑀 

dimensions 𝐷, with values in 𝐷𝑚𝑖 for each 𝑚𝑖 ∈  𝑀. 

- Let 𝐷𝑗𝑘
𝑚 =  𝐷𝑚(𝐺𝑖 ∈ 𝑅𝑗) −  𝐷𝑚(𝐺𝑖 ∈ 𝑅𝑘), difference between any driving challenge for one 

route and the same driving challenge in another route. 

- To relate the difference in driving challenges between routes, we create a measure 𝑂 that 

takes values in [0,1] to be a function on 𝐷𝑗𝑘
𝑚, such that,  
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If the difference in driving challenges between routes is zero, then the overlap of driving 

challenges is the same 

O(𝐷𝑗𝑘
𝑚(Gi)) =  1     𝑖𝑓𝑓    𝐷𝑗𝑘

𝑚(Gi) =  0 

If the difference in driving challenges between routes is not zero, then the overlap of 

driving challenges will take a value between [0,1) 

0 ≤ O (𝐷𝑗𝑘
𝑚(Gi)) <  1       𝑖𝑓    𝐷𝑚(𝐺𝑖 ∈ 𝑅𝑗) ≠  𝐷𝑚(𝐺𝑖 ∈ 𝑅𝑘) 

Then similarity 𝑆𝐺 (Eq. 3) can be represented as a function of the overlap of driving 

challenges between 2 routes 𝑗 and 𝑘, where |𝑅𝐼| is the size of the reference set 𝑅𝐼, and  𝐷𝑗𝑘
𝑚(Gi) 

is the measure on driving challenges 𝑖 between routes 𝑗 and 𝑘, where 𝑘 ≠ 𝑗. 

                                              SG(Rj) =   f(O, 𝐷𝑗𝑘
𝑛 , Gi, 𝑀, 𝑅𝐼)                                               (3) 

D. AH Level 4: Physical properties of the environment 

This level represents the object-related processes or parts of the system that are used to 

characterize the functional states (Rasmussen, 1986). The object-related processes or parts are 

tightly related to the physical objects, and represented by their reason for use, or by their limiting 

properties. The resolution of the details represented in this level depends on the specific task or 

interaction with the system. For a trip, the number of stop signs, street parking, etc. (at the 

physical properties level), influences the purpose-related functions such as speed maintenance, 

start-stop events, etc. (at the driving challenges level), affecting the evaluation criteria such as 

duration of travel (at the travel conditions level), and the goals and objectives of the trip such as 

reaching on time at the destination (at the trip purpose level). The physical representation is 
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tightly coupled with the functional states, where changes at the physical functional level 

propagate up the hierarchy, and influence the higher levels (Rasmussen, 1986). 

It is important to note that the purpose-related functions (at the driving challenges level) 

represent the intentionality in how the physical objects of a system are used, whereas object-

related functions (at the physical properties level) represent what these physical objects can 

afford. Thus familiarity at the physical properties level can be represented by the affordance of 

the physical objects. But a route consists of a sequence of object-related processes or parts 

(Vrotsou, Ynnerman, & Cooper, 2014). Hence we define familiarity at the physical properties 

level as the similarity in the sequence of the physical processes or parts between two or more 

routes, 𝑆𝑃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. To measure similarity at the physical properties level, we make the following 

assumptions: 

- Each route has a countable ordered set of object-related processes or parts, 𝑁 

- For each object-related process or part 𝑒𝑖 ∈ 𝑁, there is a measure 𝑀 as defined in the 

functional purpose level 

- For any two routes 𝑗 and 𝑘, let one be the target route 𝑗 and the other be the reference route 𝑘, 

such that, there is a measure of similarity 𝑀 between 𝑒 in the 𝑖𝑡ℎposition of the route 𝑗  and 

the 𝑖𝑡ℎ position of route 𝑘 

𝑀(𝑒𝑖𝑗) =  0, 𝑓𝑜𝑟 𝑀(∅) ≠  0 

0 ≤ 𝑀(𝑒𝑖𝑗, 𝑒𝑖𝑘) < 1, 𝑖𝑓 𝑒𝑖𝑗 ≠  𝑒𝑖𝑘 , 𝑎𝑛𝑑 𝑗 ≠  𝑘 

𝑀(𝑒𝑖𝑗 , 𝑒𝑖𝑘) = 1, 𝑖𝑓 𝑒𝑖𝑗 =  𝑒𝑖𝑘 , 𝑎𝑛𝑑 𝑗 ≠  𝑘 

- For each 𝑒𝑖 ∈ 𝑁, there is an associated probability measure 𝑃 on [0,1], such that, 

0 ≤ 𝑃𝑒𝑖
(𝑆)  ≤ 1, for any 𝑆 subset of [0,1) 
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- For each route 𝑗 there are 𝑛𝑗  events and let 𝑃𝑟𝑜𝑝𝑗 be the function that measures the 

proportion into route 𝑗, such that 

𝑃𝑟𝑜𝑝𝑗(𝑓𝑖𝑟𝑠𝑡 𝑒𝑣𝑒𝑛𝑡) =  
𝑖

𝑛𝑗
 

- To measure how similar 𝑀1 an object-related process or part 𝑒𝑖 is, let 

𝑀1 = max { 𝑀1(𝑒𝑖𝑗, 𝑒𝑖𝑘)} 

If 𝑀1 ≥ 0, then 𝑀2  =  0, else 𝑀1 > 0 

- To measure how far apart in a route 𝑀2 an object-related process or part 𝑒𝑖 is, let 

𝑀2 = min { 𝑃 (𝑃𝑟𝑜𝑝𝑒𝑖𝑗
) −  𝑃 (𝑃𝑟𝑜𝑝𝑒𝑗𝑘

)} 

- The final measure of how similar and how far apart an object-related process or part 𝑒𝑖 can 

be represented as 

𝑀𝑜 =  ∏ 𝑀1(𝑒𝑖). 𝑀2(𝑒𝑖) 

Then similarity (Eq. 4) can be represented as a function of the measure 𝑀𝑜 on the set of 

object-related processes or parts in the 𝑖𝑡ℎ and 𝑗𝑡ℎ routes and the reference set 𝑅𝐼. 

                                SPfunction(Rj) =   F(𝑀𝑜 , 𝑅𝐼)                                                                        (4) 

E. AH Level 5: Trip features 

The bottommost level represents the physical appearance and configuration of the system and 

its parts (Rasmussen, 1986). Representation of the system and its parts at this level reflects what 

parts are vital for interaction with, and manipulation of the system to achieve the purpose-related 

functions of the system. For example, for the trip where the primary objective is to arrive on time 

for dinner, and the secondary objective to stop and pick up dessert, based on the route chosen – 
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trip features of the route can include information about the name and type of road, appearance of 

the road (winding, curvy), location or position (cardinal points, origin, destination), and physical 

distribution and connections (GPS trace, proximity, overlap) (Naikar, 2013). Thus, this level is 

represented by names or attributes that can help identify and distinguish objects and their 

properties for navigating the system (Rasmussen, 1986). 

Familiarity at the trip features level can be represented by the sameness of the names and 

physical attributes of the system, and defined as function of the similarity in the appearance, 

location, and spatial distribution of the physical attributes between two or more routes, 𝑆𝑃𝑓𝑜𝑟𝑚 

(Eq. 5). To measure trip features level similarity, we make the following assumptions: 

- Let 𝐴 be a countable set of physical appearances of a route. 

- Let 𝑃𝑟 be a continuous space in the 𝑥, 𝑦, 𝑧, 𝑡 direction. 

- Let 𝑂𝐴 be a function on 𝐴, and 𝑂𝑃𝑟 be a function on 𝑃𝑟, such that,  

The similarity of 1 physical appearance is 0 

𝑂𝐴(𝑎𝑖) =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

The similarity of no physical appearance is 0 

𝑂𝐴(∅) =  0, 𝑂𝑃𝑟({𝑥, 𝑦, 𝑧, 𝑡}𝑖) =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 {𝑥, 𝑦, 𝑧, 𝑡}𝑖 ∈ 𝑃𝑟 

Similarity of a point in space has 0 similarity 

𝑂𝑃𝑟(∅) =  0 

Non-identical physical appearances between routes has a similarity between [0,1) 

0 ≤ 𝑂𝐴(𝑎𝑖, 𝑎𝑗) <   𝑖𝑓 𝑎𝑖  ≠  𝑎𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗 

Identical physical appearances and points of time or space between routes have similarity 

between [0,1) 

0 ≤ 𝑂𝑃𝑟({𝑥, 𝑦, 𝑧, 𝑡}𝑖 , {𝑥, 𝑦, 𝑧, 𝑡}𝑗) < 1  𝑖𝑓 {𝑥, 𝑦, 𝑧, 𝑡}𝑖  ≠  {𝑥, 𝑦, 𝑧, 𝑡}𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗 
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𝑂𝐴 (𝑎𝑖 , 𝑎𝑗) = 1, 𝑖𝑓 𝑎𝑖 = 𝑎𝑗    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠  𝑗  

𝑂𝑃𝑟({𝑥, 𝑦, 𝑧, 𝑡}𝑖  , {𝑥, 𝑦, 𝑧, 𝑡}𝑗 ) = 1, 𝑖𝑓 {𝑥, 𝑦, 𝑧, 𝑡}𝑖 =  {𝑥, 𝑦, 𝑧, 𝑡}𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠  𝑗 

Then trip features similarity 𝑆𝑃𝑓𝑜𝑟𝑚 (Eq. 5) can be represented as a function of  

                               SPform(Rj) =   F(𝐴, 𝑃𝑟, 𝑂𝐴, 𝑂𝑃𝑟, 𝑅𝐼)                                                   (5) 

F. Estimated route familiarity measure 

Thus the mathematical representation of the five levels of familiarity described in the AH 

framework is a function of the similarity between trip purposes, travel conditions, driving 

challenges, properties of the driving environment, and trip features, shown in Eq. 6 (Tenenbaum, 

1996). Since recency and frequency arise from the set of routes driven by an individual; they are 

represented in the set of all routes driven to create their own route reference set 𝑅𝐼. 𝑅𝐼 is defined 

as the set of routes ordered by when they were driven, where recency is represented in 𝑅𝐼 by the 

ordering of each trip, and frequency is represented by how many times a distinct route is in 𝑅𝐼. 

For Eq. 6 we assume that route familiarity is a continuous, bounded variable defined on a subset 

of the unit interval. 

             𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 Route Familiarity =  f(SF, SA, SG, SPfunction, SPform, 𝑅𝐼) ∈ [0,1]               (6) 

 


