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abstract

Electronic Design Automation (EDA) of Integrated Circuits (ICs) is fac-
ing many challenges in the dusk of Moore’s law. Among various EDA
tools, routing is a key contributor to the overall quality of an IC and has
become significantly complicated by technology scaling due to the in-
creasing number of design rules and fabrication constraints. Among
different steps of routing, the ‘detailed-routing’ step is particularly time-
consuming because at this step every design rule needs to be satisfied
for every routed net. To reduce the runtime spent on detailed routing,
the preceding ‘global routing’ step uses approximations to quickly gen-
erate a routing solution in order to provide a better starting point for
detailed routing. However the utility of global routing has been contin-
uously diminishing over the past years because existing global routing
procedures are inherently ignorant of design rules and fabrication con-
straints. As a result, the gap between global and detailed routing has
been growing.
This dissertation aims to bridge the gap between global and detailed
routing by making global routing aware of relevant factors which used
to only be considered at the detailed routing stage. We build models
to capture these factors by identifying the most significant sources of
mismatch between the global and detailed routing stages. These in-
clude models to capture variation in the size of inter-layer vias caused
by metal layer heterogeneity in modern fabrication technologies, as
well as models to estimate the locations of these vias to better estimate
routing resource usage at the global routing stage. We also utilize an
emerging integration technology for global routing to address the pin
accessibility challenge that is seen at the detailed routing stage. Finally
we introduce a new metric and optimization strategy for more effective
evaluation of ‘routability’ at the global routing stage. To validate our
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models and techniques, we have built a high-end validation framework
featuring 45nm and 22nm designs released by industry, and the Olym-
pus SoC tool-set by Mentor Graphics.
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1 introduction

1.1 Motivation and Preliminaries

Physical design is a step after circuit design and logic synthesis in the
VLSI design cycle. During this step physical information of the circuit
including component placement and interconnect routing are deter-
mined. A complete physical design flow usually contains several stages,
which are circuit partitioning, floor-planning, placement, clock network
synthesis, routing, and timing closure.
The routing stage connects all the pins for each net and is usually split
into global routing (GR) and detailed routing (DR). At the global rout-
ing stage, the entire layout region is first divided into tiles (commonly
known as global-cells or g-cells). An example is illustrated in Figure 1.1.
The boundaries between adjacent g-cells are called edges. Instead of
finding routes to connect the pins, global router finds routes to connect
those g-cells in which the pins are located. The goal is to connect the
pins in order to prevent wiring demands from exceeding edge capaci-
ties.
At the detailed routing stage, the exact physical information about de-
tailed wirings is determined using the global routing results as a start-
ing point. This means that every wire from the global routing stage will
be assigned to a routing track. For example, in Figure 1.1, the global
routing solution of net1 is the L-shape routing which consists of three
wires. The wire in the bottom will be assigned to one routing track be-
tween the two highlighted g-cells (in light green). In addition, the de-
tailed location of the vias, which are used to connect wires on adjacent
metal layers, will also be determined inside each g-cell after every rout-
ing segment is assigned to a routing track.
The gateway to transition from a global routing solution to a detailed
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Figure 1.1: Example of global cells (g-cells). The entire region is parti-
tioned into 3 × 3 g-cells. There are 4 routing tracks on the boundary
between the two highlighted g-cells.

one is through a step called ‘track assignment’. During this step, the flat
segments of each net routed during the GR stage are assigned to indi-
vidual routing tracks. Specifically, this assignment needs to follow the
global routing solution, i.e., it needs to ensure that the assigned track
to each flat segment is chosen from those g-cells in which the net was
routed at the GR stage. Once the track for each flat segment is deter-
mined, the DR stage initiates which may then change many of the track
assignments in order to satisfy various design rules and performance
requirements. This actual DR step is significantly more time-consuming
than the initial track assignment.
There are many design rules at the DR stage which need to be satis-
fied. This makes detailed routing extremely difficult and time consum-
ing. The increasing complexity of design rules in advanced technology
nodes also results in mismatch between global and detailed routing.
The mismatch is mainly resulted from the fact that many of these de-
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sign rules are ignored during global routing. Meanwhile, detailed rout-
ing utilizes the routing solution generated at the global routing stage
as its starting point. Therefore, detailed routing can converge faster to a
feasible routing solution that is free of design-rule violations if its mis-
match with the global routing is reduced. Modern VLSI design flow
typically requires multiple rounds of global and detailed routing so re-
ducing this mismatch can significantly accelerate the design cycle and
reduce time-to-market of the chip Graphics; Synopsys; Cadence.

1.2 Sources of Mismatch between Global and
Detailed Routing

In this section we categorize and discuss key sources of mismatch be-
tween global and detailed routing.

• Local Nets:

Local nets are those nets whose pins are located in the same g-cell.
For example, in Figure 1.1, net2 is a local net. The wirings of a lo-
cal net are usually within the same g-cell without traversing any of
the boundaries of the g-cell, so local nets are commonly ignored at
the global routing stage. However many nets may be local for ex-
ample, 31.20% of the nets in the ISPD’11 Viswanathan et al. (2011)
benchmarks are local nets Shojaei et al. (2013). Ignoring the rout-
ing resources consumed by local net routing during global routing
results in the mismatch between GR and DR.

A few prior works studied the local net routing during global
routing Wei et al. (2012); Shojaei et al. (2013, 2011). In LCGRIP
Shojaei et al. (2013, 2011), the area required to route a local net
during global routing is approximated by multiplying the wire
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width by the half-perimeter of the net’s bounding box. Further-
more it introduces a vertex capacity for each g-cell to be used dur-
ing global routing. If a g-cell is in the lowest two routing layers, its
vertex capacity will be deducted by the required area to route the
local nets inside the g-cell. In another recent work called GLARE
Wei et al. (2012), the evaluation of local net routing is based on the
pin density. GLARE blocks k × n routing tracks which it assumes
are taken by the local nets in the lowest two routing metal layers,
where k is a tuned parameter and n refers to the number of pins
inside the g-cell. It reports improved results using this estimation
technique. the estimation of local net modeling has not been veri-
fied by a commercial detailed router in any previous work.

• Inter-layer Vias:

At the global routing stage, vias are traditionally modeled as con-
nections between adjacent layers. A via model includes an esti-
mate of its routing resource usage of a g-cell Hsu et al. (2008).
However this model ignores many factors seen in modern tech-
nology nodes and is no longer effective during global routing.

First, the traditional via model does not capture the significant
change in the metal widths of adjacent routing layers. For ex-
ample, at the 32nm technology node, there are up to 6 different
metal widths ranging from 1x to 20x across 12 metal layers Alpert
et al. (2010). Vias between two adjacent layers with different metal
widths will consume additional routing resource on the lower
one. This issue was never considered in any previous work.

Second, to more accurately estimate the routing resource usage
by vias, it is desirable to introduce ‘via capacity’, similar to edge
capacity, at the global routing stage. In Hsu et al. (2008), a via ca-
pacity model is proposed to estimate the routing resource usage
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within a g-cell. In this model, the via capacity of a g-cell is deter-
mined by computing the available area inside a g-cell, divided by
the area of one via. This model captures the maximum number of
vias that can be included in a g-cell. However it can be too opti-
mistic in practice because the routing resources inside a g-cell are
mostly consumed by global routes and not vias. Furthermore, this
model does not take into account significant change in the widths
of wires in adjacent metal layers.

Third, various types of vias with squares or rectangular shapes
may be instantiated at the DR stage to trade off between manu-
facturability and routability. Typically square vias are preferred
to achieve better manufacturability. However square vias cause
more blockage of routing tracks because they need to be larger
than rectangular-shaped ones; indeed for better routability, square
vias can be replaced by smaller rectangular vias in certain cases
Han et al. (2015). This determination of the via shape further com-
plicates the detailed routing stage and increases the mismatch be-
tween GR and DR.

Fourth, the location of vias may have a big impact on local con-
gestions inside the g-cells. Specifically, during global routing, the
center of the g-cells are assumed to be the end-points of each flat
segment of a global net. Global router has no awareness of where
the vias are located in the g-cells. However the locations of the
vias determine how far each flat wire segment enters the g-cells.
Thus the locations of vias in the g-cells can help to more accurately
estimate the routing resource usage inside the g-cells. This lack of
knowledge about the via locations is another main source of mis-
match between global and detailed routing.

• Pin Access:
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Traditionally the detailed router is responsible to make sure that
all the pins of standard cells get successfully connected without
causing shorts or overlaps among different nets. However, this is
becoming a major challenge due to the ‘pin access’ issue seen in
modern technology nodes when the detailed router is increasingly
finding it challenging to access and connect to the pins in some
standard cells without causing violation.

Due to the technology scaling and increasing complexity, pin ac-
cess problem is becoming even more challenging for several rea-
sons Xu et al. (2014, 2015b, 2016); Paper; Alpert et al. (2013). First,
the number of routing tracks which are available for the pins of
a standard cell is reducing with technology scaling Xu et al. (2014,
2015b, 2016). This results in fewer tapping points (i.e. access points
to a pin) to connect to its detailed route. Second, the more intri-
cate structures of standard cells and the power-grid network cause
new types of blockage which further complicates pin access Pa-
per. Third, some subtle design rules such as end-of-line (EOL) and
min-length rules should be checked for the routes that connect to
the pins which create more constraints for how a pin can be ac-
cessed Paper; lef.

The issue may be alleviated if pin access is considered during
global routing because the locations of the pins of standard cells
inside the g-cells are known at this stage. However none of prior
work have considered modeling pin access at the global routing
stage, and as a result pin access is another major source of mis-
match between global and detailed routing.

With the dusk of Moore’s law, some novel device structures Qiu
and Sadowska (2013); Arabi et al. (2015); Billoint et al. (2015); Lee
et al. (2013); Acharya et al. (2016); Panth et al. (2015) are recently
developed and can be utilized to improve pin access issue. These
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structures are believed to be a promising path to alleviate the pin
access issue by redesigning the standard cells.

• Manufacturing Rules:

Some manufacturing rules cause mismatch between global and
detailed routing. These issues are not considered in global routing
at all but the design rules corresponding to them are required to
be satisfied at the detailed routing stage. Below we introduce three
examples of most-relevant manufacturing rules.

– Spacing rules
Spacing rules ensure the minimum distance between two
routes on the same metal layer as allowed by the fabrica-
tion technology lef. At the global routing stage, the minimum
spacing rule is required only between parallel routing tracks.
However there are many more spacing rules that are con-
sidered during detailed routing, which are ignored during
global routing. For example, there are various types of spac-
ing rules in 45/28 nm technology, including metal spacing
rule, end-of-line (EOL) rule, cut-to-cut spacing rule, etc. Jia
et al. (2014). A few recent works have done some modeling of
these spacing rules, but these are limited to the detailed rout-
ing stage Jia et al. (2014); Han et al. (2015); Zhang and Chu
(2011, 2012, 2013).

– Min-area rule
Min-area rule is another important design rule which is ac-
counted for during detailed routing. It requires a minimum
area for every polygon on the metal layer lef. Due to the fixed
width of routing wires, the min-area rule is converted to a
min-length rule which limits the minimum length of each
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routing segment Jia et al. (2014); Xu et al. (2015b). Min-area
rule has not been considered during global routing either.

– Self-Aligned Double Patterning-aware rules
Self-aligned double patterning (SADP) is considered as a
promising lithography technique at the 10nm technology
node Xu et al. (2014, 2015a). The process of double patterning
itself results in more restrictive design rules which need to
be satisfied during physical design. Those additional SADP-
aware design rules are mainly around the end-of-line of rout-
ing segments Xu et al. (2014, 2015a); Han et al. (2015). The
most recent work is about the pin access planning for SADP-
based manufacturing Xu et al. (2015b); Hsu et al. (2014). How-
ever this work is only targeted at the detailed routing stage.

• Routability Evaluation:

Routability is becoming an increasingly important issue in nano-
scale VLSI physical design Wei et al. (2012). Traditionally overflow-
based metrics are used which include estimating total overflow
and maximum overflow of routing resource usage during global
routing. However these metrics increasingly fail to give a clear pic-
ture of the routability of design for modern technology nodes and
hence are another source of mismatch with the detailed routing
stage. To reduce the mismatch in evaluating routability between
GR and DR, new congestion-based metrics are proposed in Wei
et al. (2012); Liu et al. (2013c) to capture the profile of routability
of the design. Net congestion-based metrics include ACN(x) (the
average congestion of the top x% congested nets) and WCI(y) (the
number of nets with congestion greater than or equal to y%). Edge
congestion-based metrics include the values of ACE(x) (the aver-
age congestion of the top x% congested edges). While these met-
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rics improve upon the traditional overflow-based metrics, none of
them have been evaluated at the detailed routing stage.

The above are the most significant sources of mismatch between the GR
and DR stages. In this dissertation we show that it is possible to model
some of these issues at the GR stage in order to provide a better start-
ing point to the detailed router. This in turn can reduce the runtime
spent at the DR stage. This is because the detailed router is more likely
to converge to a solution with fewer violations by following the global
routing solution, if the global router has been made aware of the above-
mentioned sources of mismatch.
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2 our contributions

This dissertation introduces techniques to bring awareness of various
detailed routing issues to the global routing stage. The summary of our
contributions is listed as follows.

• Via-size aware global routing Shi et al. (2016b)

To capture the impact of varying-size vias at the global routing
stage, we propose “via-aware edge overflow” and “edge-aware via
overflow” metrics. We then introduce a fast two-stage layer assign-
ment algorithm which optimizes these metrics. This is followed by
a proposed linear programming formulation to further optimize
these metrics. In our experiments, first we show significant im-
provement at the global routing stage is possible in our proposed
metrics without compromising the traditional metrics of total edge
overflow and via count. We also offer a multi-threaded version
of our algorithm to further improve its runtime. Furthermore, we
show optimizing our proposed metrics at the global routing stage
reduces the number of violations seen at the detailed routing stage
using the detailed routing tool of Olympus SoC by Mentor Graph-
ics Graphics.

Our via-size aware global routing technique is discussed in Chap-
ter 3.

• Via-aware track planning

We propose a framework to quickly predict congestion of individ-
ual routing tracks inside each g-cell at the global routing stage. A
distinguishing feature of our framework compared to prior work
is estimating the locations of vias and partial track utilization by a
segment of a global net inside each g-cell. We integrate this model
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with a novel algorithm for track assignment. There are two ways
that our framework can be used. First, it can be used as a ‘via ana-
lyzer’ to determine the via locations inside the g-cells for an exist-
ing track assignment solution. In this case we show in our experi-
ments that our ‘via analyzer’ can improve the prediction accuracy
of two recent track assignment techniques. Second, our model can
be used to directly analyze an existing global routing solution. In
this case our analyzer internally performs track assignment while
considering via locations to minimize track overlaps more effec-
tively. A major strength of this work is to measure the error of our
framework with respect to an accurate congestion map generated
by a commercial detailed router. To do so, we developed a modern
design flow which includes a close interaction with the commer-
cial Olympus SoC tool of Mentor Graphics Graphics. We also used
one of the latest benchmark suites Bustany et al. (2015) in industry
LEF/DEF formats. Our design flow included Tcl scripts to build
connections between our core C++ codes and Olympus DB.

Our via-aware track planning procedure is discussed in Chapter 4.

• Improving pin access and detailed routability with 3D mono-
lithic standard cells Shi and Davoodi (2017)

To improve pin access issue, we propose a framework to utilize
3D monolithic (3DM) standard cells. 3D monolithic integration is
an emerging technology which has recently been developed and
considered as a promising path in the dusk of Moore’s law. Here
we propose a design flow which transforms traditional standard
rows, implemented as ‘single-tier 2D’ structures, into rows of stan-
dard 3DM cells which are folded into two tiers. The main feature
of the transformation is that the 3DM cells contain redundant pins
to facilitate the pin access problem compared to their 2D counter-
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parts. This transformation also frees routing tracks in the two tiers
used by the 3DM cells which can be used to further improve pin
access and detailed routability. The transformation also preserves
layout characteristics such as overall area and number of metal
layers for signal routing. In fact besides the use of 3DM cells, the
rest of the design is implemented similar to a traditional ‘2D’ IC.
Using this transformation, we then propose an Integer Linear Pro-
gram which routes as many nets as possible on the free 3DM rout-
ing tracks, leaving the rest of the nets to be routed via a standard
global and detailed router on the metal layers dedicated for signal
routing. Our experiments show significant improvement in de-
tailed routability metrics using 3DM cells compared to using 2D
standard cells.

Our framework for improving pin access using 3DM cells is ex-
plained in Chapter 5.

• Improving the distribution of congestion during global routing
Shi et al. (2016a)

We introduce a procedure which takes as input a global routing
solution that is already improved for routability based on the tra-
ditional overflow metric. It then improves the distribution of con-
gestion while ensuring that the traditional overflow metric is not
degraded. Our router is able to significantly decrease the num-
ber of edges in undesirable ranges of congestion by optimizing a
convex piece-wise linear penalty function. In our experiments, us-
ing the already-optimized global routing solutions of the ISPD’11
benchmarks Viswanathan et al. (2011) we show the number of
edges which are utilized very close to capacity can be significantly
reduced (which implies more flexibility for optimization at the
detailed routing stage) while keeping the traditional overflow
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metric intact. This work is the first to explicitly target improving
the distribution of edge congestion–besides traditional routability
metrics–at the global routing stage.

Our procedure to optimize the distribution of congestion at the
GR stage is explained in Chapter 6.

It is noteworthy that some other sources of mismatch between GR and
DR (introduced in Chapter 1.2) are also covered by the above contribu-
tions although they are not specific to a single work introduced above.
For example, our proposed via-size aware layer assignment procedure
in Chapter 3 not only considers the impacts of via sizes but also includes
the consideration of the spacing rules. In addition, we also considered
modeling the local nets in Chapter 4 on via-aware track planning. In
Chapter 5 on improving pin access, we also considered the local nets in
our framework.
Overall, in this dissertation we dived into major sources of mismatch
between the GR and DR stages. We showed our work can reduce the
gap between global routing and detailed routing by developing DR-
level models which can be incorporated at the GR stage.
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3 via size-aware global routing

A typical characteristic of advanced technology nodes is significantly-
high variation, up to a factor of two, in wire sizes that may exist be-
tween adjacent metal layers. Routing from a metal layer to its top layer
results in using a via which is typically as wide as the wire size on the
top layer. The via will then consume wire tracks from the lower metal
layer so it acts as a source of local congestion within the (lower layer) g-
cell. This source of local congestion is a dynamic one which varies dur-
ing the global routing stage as a routing solution gets evolved. More-
over, similar to pins in library cells, vias do not scale as well as devices
with each technology node so the issue is expected to deteriorate with
further technology scaling. For example, in the 32nm technology node,
the metal width in the top layer can be up to 20x larger than the one in
bottom layer Alpert and Tellez (2010); Alpert et al. (2010).
Figure 3.1 shows an example illustrating the issue. Consider case 2 or
3. They each show a wire that gets connected to a lower metal layer.
Here, the used via does not block additional routing tracks so from that
aspect it can be considered similar to case 1 except for the portion of a
routing track that is utilized by the wire. This is because the lower layer
always has same or lower track width. However consider case 4 or 5.
Here connecting to the top layer with wider track results in the via to
actually block available routing tracks in the g-cell. In case 4, the block-
age is only corresponding to the left boundary of the g-cell. Therefore
unstacked vias can act as local congestion and reduce the number of
available tracks that can pass one or more boundaries of the g-cell. Such
issue has not been modeled in prior literature.
Some prior work on layer assignment have considered modeling local
congestion caused by vias dynamically Lee and Wang (2008, 2009); Liu
and Li (2011). Specifically, prior work such as Hsu et al. (2008) intro-
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CASE 2

CASE 1

CASE 4

CASE 5

CASE 3
CASE 6

Unstacked Via

Stacked Via

Metal 3

Metal 4

Metal 5

Required Spacing

Figure 3.1: Via connecting to the top metal layer blocks additional rout-
ing tracks compared to the one connecting to the lower metal layer. See
more explanations in Table I.

duced a model for via overflow of a g-cell which took into account the
area taken by the used wire tracks, considering the size and spacing re-
quirements, as well as area and spacing requirements for existing vias,
and other types of routing blockages inside a g-cell to compute how
many new stacked vias could pass through the g-cell. However, prior
work typically assumed stacked and unstacked vias in a g-cell have the
same size which can be inaccurate in computing the via overflow.
Moreover, unstacked vias can impact stacked vias beyond what was
considered in prior work. As an example consider Figure 3.1 again.
In case 5, a rectangular region as wide as the via size (and spacing re-
quirement) and as long as the g-cell’s side is blocked by the unstacked
via. This region would have been smaller if the via connection was to a
lower layer. As a result, the tile can support fewer stacked vias before
having a via overflow and a stacked via such as case 6 cannot be placed
in this entire blocked region.
Prior work on layer assignment have done limited study on modeling



16

local congestion caused by vias Lee and Wang (2008, 2009); Liu and
Li (2011). Specifically, prior work such as Hsu et al. (2008) introduced
a model for via overflow of a g-cell which took into account the area
taken by the used wire tracks, considering the size and spacing require-
ments, as well as area and spacing requirements for existing vias, and
other types of routing blockages inside a g-cell to compute how many
new stacked vias could pass through the g-cell. However, prior work
typically assumed stacked and unstacked vias in a g-cell have the same
size which can be inaccurate in computing the via overflow.
In this work new models are proposed for local congestion caused by
stacked and unstacked vias of varying sizes in a g-cell. Specifically, we
propose a via-aware edge overflow (VA-EOF) metric to model the impact
of unstacked vias on the available g-cell boundary (Chapter 3.1). We
also extended the existing via overflow model from prior work to an
edge-aware via overflow (EA-VOF) metric to account for the impact of
unstacked vias to better control the stacked ones (Chapter 3.1).

3.1 Via Size-Aware Overflow Models

Before introducing our models we introduce the basic notations used
in this work. A global routing instance is defined using a grid-graph
G = (V ,E). Each vertex v ∈ V represents a global cell (g-cell) and each
edge e ∈ E represents the common boundary of two adjacent g-cells.
For edge e ∈ E, a capacity ce represents the available length of the g-
cell’s boundary that can be used for routing after accounting for static
routing blockage. Traditionally, when a route t crosses the boundary
of a g-cell, it was assumed that it utilizes routing resource equal to the
summation of its width wt and spacing st Viswanathan et al. (2011).
Utilization of an edge is expressed by ue =

∑
∀t passing e(wt + st). The

overflow of edge e is given by oe = max(0,ue − ce). The total edge
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rteg2=wv+svrteg1=wt+st

g1 g2

Figure 3.2: The wire needs different amount of routing resource from
each side of the common boundary of two g-cells when considering via
size and spacing.

overflow metric is given by EOF=
∑

∀e∈E oe.

Via-Aware Edge Overflow Model

Consider a g-cell g and a wire t. In this work we model various cases in
which wire t may partially or fully utilize a track inside g which are the
cases included in Figure 3.1. A core idea behind both of our overflow
metrics is modeling how one wire utilizes routing resources within a
g-cell as well as from the boundaries with respect to a single g-cell.
First, consider one boundary e of g-cell g. We define rteg to be the amount
of routing resource taken by t from boundary e inside g. Note as shown
in Figure 3.2 it is possible that a wire needs different amount of rout-
ing resource from the common boundary of two g-cells when vias are
considered. Therefore we differentiate with respect to a g-cell boundary.
In Table I, column 2, we give the expression for rteg for the cases shown
from the example of Figure 3.1.
Here wt and st are the width and spacing of wire t, and wv and sv are
the wire width and spacing of the corresponding via. For cases 1 and 2,
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Table I: Resource utilization of a g-cell in different cases in Figure 3.1

rte atg

Case 1 L&R: (wt + st) (wt + st)×W

Case 2 L&R: (wt + st) (wt + st)×W

Case 3 R: (wt + st) (wt + st)×W/2
Case 4 L: (wv + sv) (wv + sv)×W/2
Case 5 L&R: (wv + sv) (wv + sv)×W

Case 6 - (wv + sv)
2

rteg is equal to sum of width and spacing of t and edge e could be either
of the two boundaries of the g-cell (for passing a horizontal wire). The
rteg is expressed the same way in case 3 but here edge e corresponds to
the right boundary of g as shown in Figure 3.1. For cases 4, the given
expression in the table is for the left boundary of the g-cell; for cases
5, the given expression in the table is for both boundaries of the g-cell.
They are determined based on the via width and spacing, wv and sv,
respectively, because the via size is wider than the wire size in these
two cases. In this work we do not model the impact of a stacked via on
blocking a g-cell boundary (case 6).
We now define the via-aware utilization of an edge e representing the
common boundary of two g-cells g1 and g2 as follows.

uVA
e = max(

∑
∀t passing e

rteg1
,

∑
∀t passing e

rteg2
) (3.1)

The above equation computes an edge utilization for each side of a com-
mon boundary. The via-aware utilization of the edge is then defined as
the maximum of the utilization of the two sides. The via-aware over-
flow of an edge is denoted by oVA

e and expressed as max(0,uVA
e − ce).

The total via-aware edge overflow is given by VA-EOF=
∑

∀e∈E o
VA
e .

Note that the traditional edge overflow metric (oe) (EOF) can be con-
sidered a special case of via-aware edge overflow (oVA

e ). This is because
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when via-sizes are not considered, the utilizations of a wire from each
side of a common boundary of two g-cells are the same and equal to
summation of wire width and spacing.

Edge-Aware Via Overflow Model

We first derive expressions for resource usage of a wire that is routed
inside a g-cell which is essentially the area used by the wire. We denote
this area by atg for wire t and g-cell g. Table I, column 3, gives the ex-
pression for atg for each of the cases in the example of Figure 3.1. In the
table, the new parameter W is the g-cell’s width.
The expressions are similar to the boundary expressions (column 2 of
the table) expect they require an estimation of the portion of the track
that a wire uses inside the g-cell to compute the area. For cases 1, 2,
and 5, the expressions are exact because the wires take the entire track.
For cases 3 and 4, the expressions are approximate and assume the wire
uses half of the track (W/2). We used this assumption from prior work
Hsu et al. (2008) and find it to be a reasonable assumption if the actual
wire lengths inside a g-cell have a uniform distribution. For case 6, the
expression is exact and is the area of the stacked via after considering
its spacing requirement. Note, it assumes the stacked via has a square
shape in order to keep the notation simple, but in case it is not square,
the expression can be easily modified to reflect that which is actually
considered in our experiments for some benchmarks in which the g-
cells are not square.
Next we can derive the edge-aware utilization of a g-cell by a group of
wires passing through it as uEA

g =
∑

∀t passing g ate .
We also denote the capacity of a g-cell by cg which is the available area
inside the g-cell after accounting for static routing blockage including
an approximation of resources needed for the local nets, for example
as described in Wei et al. (2012). The edge-aware overflow of a g-cell is
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denoted by oEA
g and expressed as below.

oEA
g = max(0,uEA

g − cg) (3.2)

The total edge-aware via overflow is given by EA-VOF=
∑

∀g o
EA
g .

The main difference between our edge-aware via overflow model com-
pared to prior work is how atg is computed for each wire t that passes
g. Specifically, situations that are more accurately handled by our model
are cases 4 and 5 in Figure 3.1, when a wire that crosses a g-cell edge
connects to a larger unstacked via inside the g-cell, thereby taking more
area. This is why the via overflow model is “edge-aware”.
Moreover, as an optimization metric, EA-VOF correlates most with con-
trolling the number of stacked vias if minimized in a layer assignment
procedure. Therefore EA-VOF can also be thought as also capturing the
resource overhead caused by unstacked vias on determining the avail-
able area in a g-cell, which in turn influences the allocation of stacked
vias in a layer assignment procedure.

3.2 Layer Assignment Framework

Figure 3.3 gives an overview of our layer assignment framework. The
input is a projected 2D routing solution. The output is a 3D solution
which has the same 2D projection as the input. Our framework has two
stages. The first stage is a dynamic programming (DP) algorithm which
minimizes a cost function that can be a combination of traditional met-
rics EOF and via count, as well as our proposed metrics VA-EOF and
EA-VOF. It can also be set to remove the traditional EOF metric and only
use our proposed metric. We show the impact of both variations when
reporting our experimental results.
The DP algorithm operates on a single net and sequentially processes
the nets similar to Lee and Wang (2008, 2009); Liu and Li (2011); Liu
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(1) DP : Reach a reasonable compromise 

between via count and overflow metrics

• Determine net ordering

• Solve layer assignment per net 

sequentially by dynamic programming

Projected 2D routing solution Final 3D routing solution

(2) LP : minimize via count with 

minimal overflow degradation

• Use Nautilus “edge set” ordering

• Solve LP for each edge set 

concurrently

Figure 3.3: Overview of our layer assignment framework.

et al. (2013a). The algorithm results in slight increase in via count be-
cause minimizing VA-EOF tends to increase the via count during layer
assignment, compared to only minimizing EOF and via count.
The second stage of our framework is solving a simple but elegant lin-
ear programming (LP) formulation. It aims to minimize the via count
of the solution generated by DP without increase in EOF and with min-
imal compromise on VA-EOF and implicitly optimize EA-VOF. The LP
formulation operates on an “edge-set” which is the set of 3D edges that
have the same 2D projection. So it considers all the edges in the same
set concurrently. It processes the edge-sets using a novel “Nautilus-
shaped” ordering. The LP benefits from the property of totally unimod-
ular polyhedron in optimization theory.

Stage 1: Dynamic Programming

At the first stage, we visit the nets sequentially according to a net order-
ing. For each individual net, a dynamic programming (DP) formula-
tion is solved which determines the layer assignment for that net. Our
DP formulation extends other prior work such as Lee and Wang (2008,
2009); Liu and Li (2011); Liu et al. (2013a) to account for our proposed
metrics. We determine our net ordering by evaluating the following
“score” for each net n given by score(n) = C1

WL(n)
+ C2 × Deg(n),

where C1 and C2 are two constants, WL(n) is the wirelength of the 2D
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projection of net n and Deg(n) is the number of pins of the net. We set
C1 = 1000 and C2 = 0.4 in our experiments. Nets with higher score are
processed first.
This ordering promotes nets with shorter 2D wire-length and higher
pin count to be processed earlier. First, if a net has higher 2D wire-length,
it is more flexible during layer assignment because it usually has more
flat fragments so it can be processed later. Second, the higher pin count
of a net may significantly restrict the number of possible layer assign-
ment solutions. This net ordering has been applied by some other ex-
isting layer assignment works Lee and Wang (2008, 2009); Liu and Li
(2011); Liu et al. (2013a).
To solve the DP formulation for one net n, we receive as input, the 2D
routing tree of the net which we denote by tn. The output of DP is the
layer for each edge e ∈ tn. We first introduce some notations before
discussing the DP algorithm.

• τv: subtree rooted at v for a node v ∈ tn.

• Cv: set of all the children nodes of v. The edge between v and a
child node cv ∈ Cv is called a “child-edge”.

• CLA(v): an array [l1, . . . , lm] representing an assigned layer for
each child-edge of v with m children. The ith entry of CLA(v) is
the layer assigned to the ith child-edge.

Algorithm 1 shows the procedure called SubTreeLA(v) which deter-
mines the layer assignment for all the child-edges of v. It returns a quadru-
ple with four elements which are scores directly related to EOF, via
count (denoted by VC), VA-EOF and EA-VOF, respectively.
We start by calling SubTreeLA for the root node of tn and the proce-
dure recursively calls itself to ensure each node is only processed after
its children are processed.
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Algorithm 1 DP-based algorithm for a sub-tree τv

1: procedure SubTreeLA(v)
2: if v is leaf then return {0,0,0,0}
3: end if
4: bstCLA←unknown; bstScore←∞; bstQuad←
5: {EOF=∞,VC=∞, VA-EOF=∞,EA-VOF=∞ }
6: for each possible combination of CLA(v) do
7: s=GetScore(v,CLA(v))
8: score=s.EOF+s.VC+s.VA-EOF+s.EA-VOF
9: if score < bestScore then

10: bestCLA← CLA(v); bestQuad← st;
11: bestScore← score
12: end if
13: end for
14: assign layers to all the child-edges according to bestCLA

return bestQuad
15: end procedure

When the procedure SubTreeLA starts processing node v, it considers
the edge between v and child cv to be assigned to any layer, and further
considers all combinations of layer assignments among all the child-
edges of v, ∀cv ∈ Cv.
For each combination, the function GetScore (Algorithm 2) is then called
to compute a corresponding quadruple and score, based on the already-
computed CLA(cv) of the child, and the layer for edge (v,cv), for all
cv ∈ Cv. Note, the computed quadruple of one combination represents
the EOF, VC, VA-EOF, and EA-VOF of τcv

.
The actual score is computed as shown on line 8 of Algorithm 1. We like
to clarify that the 4 metrics of EOF, VC, VA-EOF, EA-VOF are weighted
so the normalized values are added to each other on line 8. These weights
are 1000, 200, 1, 1, for the above metrics respectively. We assign higher
weights to EOF and VC to show the benefits of our new metrics only
after these traditional metrics have been fully optimized.
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Algorithm 2 DP score of sub-problem
1: procedure GetScore(v,CL(v))
2: score← {0,0,0,0}
3: for each child node cv of v do
4: add elements in SubTreeLA(cv) to score
5: end for
6: for each layer li assigned to the ith child-edge do
7: add EOF of edge (cv,v) to score.EOF
8: update score.VC so subtrees of cv and v connect
9: update score.VA-EOF for edge (cv,v)

10: end for
11: for each g-cell with same x,y coordinate as v do
12: update score.EA-VOF for vertex v

13: end for
return score

14: end procedure

Once a score is determined, among the combinations, the one with the
smallest score will be selected as the best one which determines the
layer assignment for all the child-edges. In case the best score is tied
among multiple assignments, the tie is broken by selecting the assign-
ment with lower EOF, else lower VC, else lower VA-EOF, and else lower
EA-VOF.

Stage 2: Linear Programming

As mentioned before, considering VA-EOF makes the DP stage to slightly
increase via count because a g-cell experiences overflow earlier when
via sizes are considered. However minimizing via count is also a very
important objective of layer assignment. Therefore, at the second stage,
LP tries to minimize the via count as its only objective with minimal or
no degradation in already-optimized VA-EOF and EOF based on the
solution generated by DP.
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Layer 2

Layer 6

Layer 10

Edges belonging to 

the same edge set

Assigned edges of net i in neighboring edge sets (taken from an 

already-processed edge set, and otherwise from the solution of DP)

Layer 4

Considering assigning a 2D 

edge of net i to layer 6

Layer 8

Figure 3.4: Assigning an edge of net i to layer 6 in the considered edge-
set results in 2 vias with left neighbor and 1 via with right neighbor.
Our LP formulation makes this assignment for all nets in the same
edge-set to minimize via count subject to keeping EOF intact and mini-
mal increase in VA-EOF.

Figure 3.4 shows an overview to explain the LP with a simple example.
We first group all the 3D edges with the same 2D projection in the same
edge-set. Let G2D = (V2D,E2D) be the 2D projection of the 3D global
routing grid-graph. We denote the edge-set defined by a 2D edge e ∈
V2D as Se. The edge-sets are then sorted according to a novel Nautilus-
shaped sorting procedure which we discuss later. The edge-sets are pro-
cessed sequentially using this sorting.
To process an edge-set Se, we further identify, from the provided 2D
routing solution, all the nets whose route contain e ∈ V2D. We refer
to this related set of nets for edge-set Se as Ne. Next an LP is formed
which considers all the nets in Ne concurrently. For each net n ∈ Ne, it
generates the layer assignment for its 2D edge.
The LP minimizes via count as its objective. When evaluating the as-
signment of a 2D edge of a net to a specific layer, the number of vias are
estimated by looking at the assigned layer for the continuation of the
net in neighboring edge-sets. Each individual LP also has a constraint to
guarantee that EOF will not increase compared to DP. At the same time,
it is effective in controlling any increase in VA-EOF in that edge-set.
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Formulation

Consider net n ∈ Ne and edge-set Se. Based on our prior definitions,
this means the 2D projected route of net n passes from edge e ∈ V2D

and the edge-set Se is made of all the 3D edges that map to e. During
LP, we decide if we assign (this edge of) net n to layer ℓ. So we define
variable xnℓ which falls between 0 and 1, and is assigned to 1 if and only
if net n is assigned to layer ℓ in this edge-set. Here ℓ refers to any edge
(or alternatively corresponding layer) that belongs to the edge-set.
Our formulation is given below.

min
x

∑
n∈Ne,ℓ∈Se

wℓxnℓ

∑
ℓ∈Se

xnℓ = 1, ∀n ∈ Ne (3.3)∑
n∈Ne

xnℓ ⩽ uℓ, ∀ℓ ∈ Se (3.4)

0 ⩽ xnℓ ⩽ 1, ∀n ∈ Ne,∀ℓ ∈ Se (3.5)

First we note that this problem is totally uni-modular because there exists
a bi-coloring row partition Kelly (1985) for every submatrix of the con-
straint matrix. It implies that each feasible solution of this LP problem
is integral by Hoffman-Kruskal theorem Hoffman and Kruskal (2010).
With the desirable property of this specific LP, we can feel free to solve
this LP to obtain binary solutions.
Inequality 3.4 ensures the number of nets assigned to (a 3D edge in)
layer ℓ of edge-set Se is bounded by quantity uℓ. Here uℓ is a constant
parameter. It is equal to the number of routed nets passing that 3D edge
from the layer assignment solution generated by DP. Inequality 3.4 ex-
plicitly guarantees that the utilization of each edge does not increase
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Figure 3.5: Illustration of (a) Nautilus-based edge-set ordering; and
(b-c) Creating dependency list and edge-set scheduling in the Multi-
Threaded Multi-Pass LP (MT-MPLP).

compared to DP. Thus it ensures that traditional EOF will not increase
and is effective in limiting any increase in VA-EOF.
The objective of our formulation is minimizing via count for the nets
in the edge-set. For each variable xnℓ, define weight wnℓ indicating the
number of vias if net n is assigned to layer ℓ in the edge-set as it con-
nects to its other fragments in neighboring edge-sets. For the example
in Figure 4, assigning net n to layer 6 results in 2 vias with the left and 1
via with the right edge-set so the value of xn6 is equal to 3. We assume
a solution for the neighboring edge-set as follows. If the edge-set is al-
ready processed, we take the solution generated by LP. Otherwise, the
solution is taken from the DP stage.
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Nautilus Edge-Set Ordering

Edge-sets are processed using an ordering procedure which we call
Nautilus ordering, as illustrated in Figure 3.5-(a). The figure shows the
2D projected grid-graph so each 2D edge represents an edge-set. The
main idea behind the Nautilus ordering is as follows. First, note that
each edge-set has 6 adjacent edge-sets. For example the edge labeled e1
in the figure, has neighboring edge-sets labeled e2 to e7. Second, recall
in the LP that in order to count the number of vias when assigning a
net n to layer ℓ we need to know how the net continues in the adjacent
edge-sets. In other words, in the LP for an edge-set we assume the solu-
tion for the neighboring edge-sets is already fixed.
This assumption is initially inaccurate when we just start processing
the very first edge-set. But as more edge-sets get processed, it becomes
more likely that the neighboring edge-sets have been processed by LP
to a stable solution. Therefore, the goal of our ordering is to solve neigh-
boring edge-sets consecutively, as much as possible, which we propose
to do in a Nautilus-shaped order as shown in Figure 3.5-(a).
We start by selecting the first edge-set (indexed e1) in the figure which is
the edge with the highest via count based on the DP solution generated.
The via count for an edge-set is computed similar to the example shown
in Figure 3.4.
We store the two vertices corresponding to the selected edge-set (ver-
tices v1 and v2 in the figure) in a queue. The ordering proceeds as fol-
lows. We select the vertex from the head of the queue, and process the
edge-sets connected to it (if they are not already processed) in a counter-
clockwise fashion. We then enqueue the neighboring vertices of this
vertex, again in a counter-clockwise fashion. The process continues un-
til the queue does not contain anymore vertices.
In the example of Figure 3.5-(a), (after processing edge-set e1) we first
enqueue v1 and v2. We dequeue v1 and process edge-sets e2 to e4. We
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Algorithm 3 Multi-pass LP
1: procedure MPLP
2: while true do
3: Compute new edge-set ordering based on via count
4: Solve LP for all the edge-sets in order
5: Exit if the total via count did not decrease
6: end while
7: end procedure

then enqueue the vertices adjacent to v1 in counter-clockwise if they
have not been enqueued before, which are v3, v4, v5. We then dequeue v2

and the process continues. In the figure, the ordering of edge-sets and
the order to enqueue the vertices are shown by edge and vertex labels.

Improvement Using a Multi-Pass Strategy

While the Nautilus-based ordering helps with better estimating the via
connecting an edge-set to its neighbors, it is still subject to some error.
For example the very first edge-set estimates its via count based on the
solution of its neighboring edge-sets from the DP stage, which are then
potentially altered when the LP is solved for them later on.
This estimation error is the highest for the first few edge-sets but the
Nautilus-based ordering results in less estimation in the subsequent
edge-sets because the Nautilus shape makes it more likely that the neigh-
bors of an edge-set are processed by the time the LP is solved for them.
To further improve the Nautilus-based ordering, here we simply repeat
the ordering procedure over multiple passes. At the beginning of each
pass, first a new ordering is generated (using the same procedure) by
sorting based on via count and starting with the edge-set which has the
highest via count. Then the LP is solved for each edge-set according to
the order.
The Multiple Pass LP (MPLP) procedure terminates when no reduction
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Figure 3.6: Reduction in via count over 10 passes in s18.

in via count is obtained in two consecutive passes. Algorithm 3 gives a
high-level pseudo-code. Figure 3.6 shows the reduction of via count at
each pass for benchmark s18. This simple MPLP procedure results in
less estimation error and gradual convergence to a final solution over 10
passes but it increases the runtime.
Next, we show a multi-threaded procedure to speed up MPLP without
any loss in its solution quality.

Improving the Multi-Pass Strategy via Multi-Threading

Figure 3.5-(a) shows Nautilus-based edge-set ordering in a single pass
of MPLP. For example assume it shows pass k in which the edge-set or-
dering is decided based on the via count of the edge-sets from the solu-
tion from pass k− 1.
We first define a dependency list between the ordered edge-sets based
on the following observation. We define edge-set i to depend on any of
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edge-sets indexed from 1 to i − 1, if and only if they are neighbors of
i. For example, for the edge-set ordering in Figure 3.5-(a), e5 only de-
pends on e1 because e2 to e4 are not neighbors of e5. In other words, the
layer assignment results in e2 to e4 won’t affect the LP formulation built
for e5. Therefore, in a multi-core environment, it is possible to schedule
e5 as soon as e1 terminates, i.e., schedule e5 to run simultaneously with
e2. Note this multi-threaded variation keeps the solution of the MPLP
intact and only results in speedup. We denote the multi-threaded varia-
tion of MPLP by MT-MPLP.
Figure 3.5-(b) shows the dependency list for the top 20 edge-sets given
in Figure 3.5-(a). The dependency constraint requires each edge-set to
wait for all the edge-sets in its dependency list to finish before getting
processed to ensure the solution of MPLP remains intact after multi-
threading. Figure 3.5-(c) shows how edge-sets can be assigned to threads
to ensure the dependency constraints given in Figure 3.5-(b) are hon-
ored.
Algorithm 4 shows the MT-MPLP procedure. At the beginning, all the
edge-sets are scheduled for multiple threads according to a scheduling
procedure (which will be shortly given in Algorithm 5) to ensure de-
pendency constraints are met. Once the scheduling finishes, we start all
the threads together. At each step, all the active threads solve the LP for
their corresponding edge-sets and wait for other active threads to finish
before doing the next step.
Algorithm 5 illustrates the scheduling algorithm for all the edge-sets. To
schedule edge-set i, we first check its dependency list. Suppose d(i) < i

is the highest index in the list and edge-set d(i) has been scheduled at
time td(i). Therefore i can be scheduled no earlier than tdi

+ 1. Any
thread free at tdi

+ 1 can be selected to schedule i. Otherwise, we can
either create a new thread if allowed or delay the time slot by 1 and then
repeat the similar process for time tdi

+ 2.
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Algorithm 4 Multi-threaded multi-pass LP
1: procedure MT-MPLP
2: Build the dependency list for each edge-set
3: Schedule all the edge-sets using the dependencies
4: & determine M (the number of threads)
5: for t = t0, t1, ..., tM do
6: Let each active thread solve a scheduled edge-set
7: end for
8: end procedure

The maximum allowed number of threads in Algorithm 5 is limited by
the number of threads supported in the system or can be set to a smaller
number by the user. The terminal command lscpu returns the maxi-
mum allowed number of threads on a Linux machine. For our machine,
we had 4 cores and 2 thread per core. Therefore we used 8 threads for
the MT-MPLP algorithm in our experiments.
Since all the active threads are solving a similar-sized LP (given that
they all correspond to same-sized edge-sets), we expect that it takes
similar CPU time for each active thread to finish its job in one step. So
all the active threads execute their jobs simultaneously and wait for all
the other threads to finish before executing the next scheduled job.
We note in the MT-MPLP procedure, all the working threads are created
in the beginning. They are not killed until the MT-MPLP finishes. So the
overhead of creating / deleting threads is negligible in our case.

3.3 Experimental Results

We implemented our two-stage layer assignment algorithm in C++. We
refer to our program as VALA (for Via size-Aware Layer Assignment).
We used CPLEX 12.6 to solve the linear programs. All experiments ran
on a Linux machine with a 3.4GHz Intel 4-core CPU and 12GB of mem-
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Algorithm 5 Scheduling algorithm for MT-MPLP
1: procedure Scheduling-MT-MPLP
2: Set number of threads M = 0
3: for i = 1, . . . do
4: d(i): highest index in the dependency list of i
5: Set target time to schedule i to ti = td(i) + 1
6: while Edge-set i has not been scheduled do
7: if Free thread k exists at time ti then
8: Schedule edge-set i at time ti to thread k

9: else
10: if New thread can be created then
11: Create a new thread
12: Schedule edge-set i at time ti
13: Increment M by 1
14: else
15: Increment ti by 1
16: end if
17: end if
18: end while
19: end for
20: end procedure

ory. The input solution to VALA is a 2D projected global routing so-
lution. We first used the NCTU-GR 2.0 Liu et al. (2013a) router to gen-
erate a 3D global routing solution and then created the 2D-projected
version of that solution to feed as input to VALA. We used the ISPD’11
Viswanathan et al. (2011) benchmarks. Specifically, for each benchmark
we chose the best placement solution among the contestants (which are
posted on the 2011 contest website).
Table II shows technology information used in this work. Information
about wire size and spacing were provided in the ISPD’11 benchmarks.
As can be seen if a via is between metal k and metal k + 1, we let the via
size be wk+1, which is the wire size on metal k+ 1. We set the minimum
via spacing equal to the via size, which is a common rule used in other
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Table II: Information on wire size and spacing, and via enclosure rules
in our experiments

Layer Wire width Wire spacing Down-via size Up-via size
M1 1 1 N/A 1
M2 1 1 1 1
M3 1 1 1 1
M4 1 1 1 2
M5 2 2 2 2
M6 2 2 2 2
M7 2 2 2 4
M8 4 4 4 4
M9 4 4 4 N/A

benchmarks (for example, ISPD’15 benchmarks Bustany et al. (2015)).
There is no knowledge about the technology node for the ISPD’11 bench-
marks. However to do detailed routing we need to specify the DATABASE
MICRONS in Olympus SoC. We set the minimum wire size in bottom lay-
ers to 200nm which is the same value used in the ISPD’15 benchmarks
Bustany et al. (2015).
The dimensions of the global routing grid-graph is given for each bench-
mark in column 2 of Table III. The size of g-cells were either 32x32 or
32x40 in a benchmark.
In our first experiment we made comparison between the following
cases.

• Base: We ran a variation of the first stage of our framework based
on dynamic programming in which all considerations for the new
metrics (i.e., VA-EOF and VA-EOF) were eliminated. This was
done by eliminating VA-EOF and VA-EOF when computing the
score of each solution of a subproblem during dynamic program-
ming. The only considered metrics were via count and EOF.
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• DP: We ran the first stage of our framework (DP) and considered
all metrics including VA-EOF and EA-VOF.

• DP+LP: We ran the two-stage VALA framework completely by
applying DP followed by LP.

We verified the global routing results of Base were similar to the 3D
global routing results generated by NCTU-GR Liu et al. (2013a) in EOF
and via count. The Base case allows us to make a fair comparison to
evaluate VALA because it is a variation of our existing implementation
and during dynamic programming, we like to keep a controllable be-
havior to precisely measure the effects of enabling or disabling EOF, via
count, VA-EOF, and EA-VOF which are primary goals of this work.
We note in our dynamic programming (DP) implementation of all the
above variations (including Base) we used the exact same cost func-
tion with the same weights for the metrics (EOF, VA-EOF, EA-VOF, VC)
across all benchmarks, and there was no benchmark-specific tuning.
This is except for the case when a metric was disabled when its corre-
sponding weight in the cost function was set to 0.

Global Routing Comparisons

Here we made comparison in traditional total edge overflow (EOF), via
count, total via-aware edge overflow (VA-EOF), and total edge-aware
via-overflow (EA-VOF) at the global routing stage. These metrics were
defined in Section 3.1.
Table III shows the results. For Base, we report the actual values of these
quantities. For DP and DP+LP we report the percentage increase com-
pared to Base. We also report the runtime of each approach in seconds.
(For DP(No-EOF+LP), we do not report any runtime because it is very
similar to DP+LP.) The runtime of DP+LP includes the runtime of DP.
We also only report the EOF for Base because the EOF of all 3 variations
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of VALA are identical to Base except for benchmark s2 in which all 3
variations of VALA have slightly lower EOF compared to Base. So, over-
all, EOF remains same or unchanged in all VALA variations.
As can be seen DP allows decrease in VA-EOF and EA-VOF by on-average
63.92% and 20.22% respectively. But it increases the via count by on-
average 2.26%. However after applying LP, the increase in via count re-
duces to on-average 1.01% of the base case. This is expected because the
objective of LP is to explicitly minimize via count of the LP’s solution.
This still results in substantial improvement in VA-EOF to 58.60%. The
EA-VOF improves to 31.06% because minimizing vias also help improve
EA-VOF.
For DP(No-EOF)+LP, the improvements in VA-EOF and EA-VOF are
57.52% and 22.9%, respectively. Note it has the most reduction in the
number of vias (better than DP+LP), and on-average only 0.23% of Base.
The average runtimes of Base, DP, and LP stages were 206, 211, and 298
seconds, respectively. As expected the runtimes of Base and DP are both
very fast and similar to each other. The runtime of LP is even faster even
though it operates on many edge-sets because each LP has a very small
size. The runtimes of DP(No- EOF)+LP almost identical to DP+LP.

Evaluation of the Multi-Threaded Multi-Pass Strategy

Next, we made another comparison between LP, the multi-pass LP (MPLP)
and the multi-threaded version (MT-MPLP). The comparisons are made
in via count, total via-aware edge overflow (VA-EOF), total edge-aware
via-overflow (EA-VOF) and total elapsed times at the global routing
stage. In all experiments we used the same dynamic programming solu-
tion which was DP(No-EOF).
Table IV shows the results. For MPLP (and MT-MPLP), the number of
LP passes are reported as well which is on-average about 26 passes per
benchmark.
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As can be seen by applying multiple passes of LP runs, all the metrics
of via count, VA-EOF and EA-VOF are improved in MPLP compared to
LP. Most notably, the via count is actually decreased for each benchmark
(compared to the Base case). MT-MPLP has the exactly same results as
MPLP except for runtime because MT-MPLP is a multi-threading varia-
tion of MPLP which guarantees no change in the results of MPLP. Due
to the license restriction of CPLEX in our machine, we were not able to
run multiple instances of CPLEX in parallel. So the runtimes in the right
most column of Table IV are estimated run times based on the analysis
of scheduling procedure given in Algorithm 5 (but using the actual run-
times taken by CPLEX to solve each LP sequentially). The analysis was
made on our target machine with 4 cores and 2 threads per core.

Evaluation of the Nautilus Ordering

We made comparison with a random ordering in which edge-sets were
randomly shuffled. (The LP corresponding to each edge-set was then
solved in the random order.) We compared this ordering with Nautilus
ordering in terms of runtime and global routing metrics which were
measured in terms of number of vias, VA-EOF, and EA-VOF.
Specifically we compare the multi-pass variation (MPLP) with Nautilus
ordering and with ordering determined by random shuffling. In ran-
dom shuffling the ordering changed at each new pass. The stopping cri-
teria in both orderings was the same, i.e., do not initiate a new pass if no
reduction in via count can be seen in the past two consecutive passes.
Table V shows the results. As can be seen the global routing metrics are
only slightly better with Nautilus ordering because of more reduction
in via count, VA-EOF, and EA-VOF metrics. (The reported numbers are
percentages compared to the same Base case given in the previous ex-
periment.) However the runtime of MPLP with Nautilus ordering is
significantly faster. This is because Nautilus ordering resulted in a sig-
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nificantly smaller number of passes to converge. The number of passes
was on-average 26.1 with Nautilus ordering as opposed to on-average
39.1 with random shuffling.

Detailed Routing Comparisons

In this experiment we made comparison between the Base case and
VALA (DP+LP) at the detailed routing stage. We created a setup to
feed in our global routing solutions to the Olympus-SoC detailed router
Graphics. Specifically, global routes were loaded into Olympus using a
custom tcl script. The script parses a routing file generated by us which
was in the standard format used in the ISPD 2011 contest. Horizontal
and vertical wire segments on metal layers are added using the create_wire
command and vias are inserted one at a time using the create_via
command. We imitate the Olympus global router’s operation by plac-
ing end points of global wire segments and vias at the center of global
cells.
Furthermore, to convert the placement info from the Bookshelf format
to LEF/DEF, we wrote a perl script similar to the “convert” function in
Liu et al. (2013b). This differs from the NCTU-GR converter in a few
ways. First, it adds rectilinear-shaped cells to the OVERLAP layer, to
properly represent their shapes in Olympus and remove placement vio-
lations. Second, the NCTU-GR converter scales via size on a metal layer
based on the minimum width of only that layer. Our converter allowed
vias to be additionally scaled when changing layers with differing min-
imum widths. Third, our script outputs a Verilog file to specify each
net’s pin connections. Finally, pins on cells with blockage are at their
default/actual locations which is metal1 according to the Bookshelf
guidelines for such cells that are not declared NI (non-interfering). This
causes issues with pin access, so blockage is removed in order to allow
these pins to be routed. The router still is forced to route around these
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blockages as the track router strictly follows the global routing solution,
and only violates blockages in order to access these pins.
The ISPD 2011 benchmarks provide neither pin shape information nor
the cell library information. In our experiments, in order to incorpo-
rate such information for detailed routing we did the following. The
“.nets” files of benchmarks tell the (x,y, z) position of each pin. We de-
fined a net pin as the smallest square (1 unit per side) in the layout at
the locations specified by the “.nets” file. Each unit was set to 200nm as
discussed before.
After importing our global routing solution into Olympus, we then ran
the track_route command which creates an initial detailed routing so-
lution based on our global routing solution. For our runs, in order to
respect routing blockages, we instructed the track_route to strictly fol-
low the global routing solution during track assignment. Track routing
ran in congestion mode (as opposed to timing mode). To save time, the
track router ran with “medium” effort, which runs two passes. The first
minimizes metal and cut space violations, and the second minimizes
polygon-based violations.
These experiments ran on an Intel(R) Core(TM) i7-2600 CPU. The re-
sults are shown in Table VI. For each benchmark we report the number
of DRC violations. For Base we report the actual number of violations.
For the two VALA variations we report a percentage improvement com-
pared to Base. As can be seen both VALA variations improve the num-
ber of DRC violations. The improvements for DP+LP and DP(No-EOF)+LP
are on-average 3.6% and 9.1%, respectively. Note, these improvements
are made only by changing the layer assignment of the same 2D global
routing solution. In DP(No-EOF)+LP, when we completely replace opti-
mizing EOF with our proposed metrics, the reduction in the number of
DRC violations is higher which suggests our proposed overflow metrics
may act as a good replacement for traditional EOF during global rout-
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Table VI: Comparison at the detailed routing stage

Design Base Case VALA(DP+LP) VALA(DP(No-EOF)+LP)
s1 69471 4.8% -2.7%
s2 351969 -4.5% -11.3%
s4 158892 -5.2% -6.2%
s5 141145 -5.6% -12.9%
s12 624414 -0.9% -4.2%
s15 295567 -2.8% -10.6%
s18 186862 -10.6% -16.1%

AVERAGE -3.6% -9.1%

ing.
For benchmark s1 we observe an overall less improvement compared
to the other benchmarks. If we look back at Table III, we can observe
from the ‘Base Case’ that the VA-EOF and EA-VOF metrics are signifi-
cantly smaller in s1 compared to the other benchmarks. Also the other
ISPD’11 benchmarks are similar in terms of number of g-cells, number
of nets and number of cells. Lower VA-EOF and EA-VOF in s1 implies
that the local congestion issues caused by varying-size vias are not as
significant compared to other benchmarks.
In summary, as tested by detailed router in Olympus SoC tool, this set
of solutions shows the least DRC violations. It implies that our metrics
of VA-EOF and EA-VOF are reasonable and feasible in practice.

Impact of Varying the G-cell Size

In this experiment our goal is to study the impact of the EA-VOF model
with change in the g-cell size. Recall Table I showed how much routing
resource is consumed by the routing segments and vias under differ-
ent cases. If the cell width W changes, the parameter atg (reflecting the
routing resource usage inside the g-cell) will also change. In Table I, for
cases 1 to 5, atg has a factor of W in its expression. In cases 1, 2 and 5, in
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Figure 3.7: Impact of varying the g-cell size on EA-VOF metric.

which the routing segment goes through the g-cell completely, the con-
sumed routing resource is exactly given by atg . So the routing resource
won’t be over-estimated if W increases. In cases 3 and 4, the factor W/2
is an approximation about how far the routing segment enters the g-cell
from one side. However whether this factor will over- or under- esti-
mate the routing resources is independent of W.
To see the impact of changing the g-cell size, we manually modified the
“.route” file of one benchmark (s18) and made the g-cell half its size
and then applied global routing in each case. Figures 3.7 shows the
maps of EA-VOF for regular g-cell size and half g-cell size on metal
layer 4. This is the layer in which the via sizes are different when con-
necting to layer 3 versus connecting to layer 5 as specified in Table II.
For the EA-VOF maps, a normalized number between 0 and 1 was gen-
erated for each g-cell. This was by dividing the EA-VOF of the g-cell to
the g-cell area.
When comparing the two EA-VOF maps with each other, the one with
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half g-cell size has higher EA-VOF estimates which can be seen by the
brighter colors in its map. This could be because, if a route fragment
partially passes a regular-sized g-cell under case 3 or 4, then the same
fragment will break into two pieces when using half-sized g-cells: one
piece completely passes through a g-cell (under case 1, 2, or 5) and the
other piece passes the second g-cell under case 3 or 4. So overall there
will be a higher number of g-cells falling under cases 1, 2, and 5 which
naturally results in higher normalized EA-VOF values because of more
resource usage in cases 1, 2, and 5 compared to cases 3 and 4. This means
that for the whole layout there will be less approximation error with
half-sized g-cells because of fewer percentages of g-cells falling under
cases 3 and 4.
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4 via-aware track planning for global routing

In this work in order to reduce the gap between GR and DR, we propose
a framework to estimate local congestion seen at the DR stage within
the GR stage. Our framework can be used as an analyzer to estimate the
routing resource usage seen inside each g-cell. While our framework
considers local nets inside the g-cells, its main feature is determining
the locations of vias on the routing tracks. Via locations in turn allow
estimating partial track utilization for better estimation of local track
congestion (both utilization and overlap) inside each g-cell. This in-
formation can potentially be used as feedback to improve the global
router, for example by adjusting the modeling of routing resources in
the global routing grid-graph using vertex or edge capacities Viswanathan
et al. (2011); Wong et al. (2016), or it can be fed to a routability-driven
placer for further optimization. Note, the scope of this work is limited to
the analysis part; there is just not enough space to discuss global routing
and placement -based optimizations.
There are two ways that our analyzer can be used. First, it can analyze
an existing track assignment of a GR solution to estimate via locations
and partial track utilization inside the g-cells. Recently a number of fast
track assignment techniques have been proposed but none of them es-
timate via locations. We show in our experiments that our analyzer can
improve the prediction accuracy of two recent track assignment tech-
niques Zhang and Chu (2013); Wong et al. (2016) with respect to the
congestion seen at the DR stage obtained by a commercial tool. Second,
our analyzer can be directly used to analyze an existing GR solution.
This is because we also integrated our model of local track congestion
with a newly-proposed track assignment algorithm to more effectively
reduce track overlaps-when the tracks are fully and partially utilized.
For example in Figure 4.1, estimating via location and partial track uti-
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Figure 4.1: Finding via locations from the (potential) track assignment
of the segments of a global net allows better estimation of track utiliza-
tion inside each g-cell.

lization of the segment of net A (on layer M3) allows better planning of
track assignment for the segment of net B, thus avoiding track overlap
inside the g-cell. In this case, our analyzer is also compared with recent
track assignment techniques. We show better prediction of track over-
laps using the congestion seen at the DR stage as reference.
Our algorithms are runtime-efficient and our analyzer runs fast as shown
for the ISPD’15 detailed routability-driven placement benchmarks Bus-
tany et al. (2015).
Before we discuss our techniques, we give an overview of two related
works. These two recent works aim at reducing track overlap which is
similar to the objective used by us. Consideration of other objectives
such as yield, timing, coupling capacitance Cho et al. (2008); Hu et al.
(2005) is beyond the scope of this dissertation.
First, RegularRoute Zhang and Chu (2013) performs fast detailed rout-
ing by doing track assignment on a panel-by-panel basis. As shown in
Figure 4.2, each panel corresponds to a row of g-cells on the same layer.
Based on the GR solution, for each panel, a set of segments of the global
nets are identified. These segments compete for the routing tracks in-
side the panel.
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tracks
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Figure 4.2: Definition of segments and panel from Zhang and Chu
(2013).

To determine the track assignment for each segment in a panel, Regu-
larRoute solves a maximum-weight independent set formulation which
greedily assigns segments to tracks by prioritizing them according to
factors such as segment length, via/pin connection, and density at g-
cell boundaries. The assignment aims to maximize the number of non-
overlapping segments. RegularRoute then performs additional opti-
mizations to finalize the track assignment. A DR solution can be con-
structed from the track assignment in the end by using vias to connect
consecutive segments of the same net on their assigned tracks. In this
case vias may be assumed to be located at the middle of the tracks in the
g-cells. The panel-by-panel strategy of RegularRoute is effective in min-
imizing track violations by packing as many non-overlapping segments
on the tracks of the same panel.
A recent work NTA Wong et al. (2016) provides an alternative and fast
track assignment algorithm. After an initial assignment which includes
consideration for local nets, NTA proceeds to a negotiation-based over-
lap reduction stage. Specifically this stage is done by visiting the seg-
ments in a panel-by-panel manner; for each panel, segments with over-
lap are ripped up and re-assigned to reduce a cost function which de-
pends on metrics such as degree of overlap, wire-length (based on the
pin locations), blockage, and history. The rip-up and reroute in NTA al-
lows explicit reduction of degree of overlap between the segments (as
opposed to maximizing number of overlap-free segments such as in
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Chang et al. (2008); Batterywala et al. (2002); Zhang and Chu (2013) in
order to provide routability feedback to the global router.
Both NTA and RegularRoute have the limitation that they only consider
overlap reduction without accurately accounting for partial track over-
lap inside the g-cells when a via is used. This is inherently because seg-
ments are viewed independently during overlap reduction. However
to estimate the via locations, it is essential to simultaneously view seg-
ments of the same net belonging to more than one panel.
In this work, we propose a track assignment algorithm which utilizes
a net-based processing however the net ordering is guided by a panel-
based processing. Similar to prior works, we consider groups of seg-
ments on a panel-by-panel basis however, whenever a segment is con-
sidered, then all other segments belonging to the same net (on differ-
ent panels) will be also be considered and assigned to tracks simultane-
ously. This hybrid approach allows using the benefits of panel-by-panel
assignment similar to RegularRoute and NTA but also incorporates a
net-by-net processing to estimate the via locations inside the g-cells.
Similar to NTA, our work aims to minimize the degree of segment over-
lap. However we consider both fully and partially utilized tracks to
compute and reduce the track overlaps. Also unlike NTA and RR, we
actually evaluate our prediction accuracy with the intra-gcell congestion
as seen at the DR stage, and generated by a commercial tool.
In the remainder of this Chapter, we explain our model to estimate via
locations and partial track assignment in Chapter 4.1. Our track assign-
ment algorithm is explained in Chapter 4.2. Experimental results are
given in Chapter 4.3.
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4.1 Modeling the Via Locations

To find the location of a via we assume we are given the track assign-
ments of two consecutive segments (in the same global net (g-net)) which
are connected by the via. In case the two segments are apart by more
than one layer, we determine the locations all the vias connecting the
intermediate layers which may fall under stacked and unstacked scenar-
ios.
For a given track assignment of a global routing solution, our model can
be repeatedly applied to estimate the via locations of every pair of seg-
ments connected by a via. It can also be applied within our proposed
track assignment algorithm which will be explained Chapter 4.2.
We first introduce some notations. Let capacity ctg be the portion of
track t falling inside g-cell g. Let utilization utg be the total length of
segment(s) of g-nets that fall on track t inside g-cell g. Using these quan-
tities, we define a ‘total track utilization’ seen inside g-cell g as below.

TrUg =
∑

∀track t in g

utg (4.1)

We also define a ‘total track overlap’ metric for a g-cell g denoted by
TrOVg as below.

TrOVg =
∑

∀track t in g

max(utg − ctg, 0) (4.2)

The above computes the sum of the track overlaps for all tracks in g

from the utilization and capacity of each track.
Next we discuss how ctg and utg are computed in detail in order to
compute the TrOVg and TrUg metrics.
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Track Capacity of A G-cell

To compute a specific ctg, we initialize it to be equal to the length of that
boundary of g which runs parallel to the track as shown in Figure 4.3-
(a). Next, the lengths of pre-routed nets and obstacles on t are deducted
from this initial value. In this work, pre-routed nets and obstacles in-
clude power/ground mesh, standard cells, macro obstacles, and the de-
tailed routes of the clock nets which are the inputs to our framework.
It also includes a detailed routing estimate for each local net which we
discuss in Chapter 4.2.
In this work, pre-routed nets and obstacles include power/ground mesh,
macro cell macro obstacles, and the detailed routes of the clock nets
which are the inputs to our framework. Our framework ensures that the
routing tracks used by the pre-reouted nets and blocked by the block-
ages are not used as it runs to predict the violations inside each g-cell.
It also includes a detailed routing estimate for each local net which we
discuss in Chapter 4.2.

Via Location and Track Utilization of A G-cell

Assume we are given a g-cell g that includes some segments of g-nets
and track t which passes g. The quantity utg represents how much length
is consumed by the segments on track t inside g. (In our track assign-
ment framework, this quantity is initially set to zero and then updated
every time a new segment is assigned to t inside g.)
We estimate track utilization for 3 distinct cases. These cases depend on
whether a segment connects to a subsequent segment in another layer,
in which case a via location is estimated inside each of the two g-cells
that include the via. The cases also depend on the number of layers that
two subsequent segments are apart from each other which requires esti-
mating (potentially-different) locations for each via in the intermediate
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Figure 4.3: Cases for estimating via locations inside a g-cell.

layers. For each case, we first discuss how vias are located and then we
assume track utilization is the corresponding length obtained from the
via locations. Also we assume track utilization includes the area used
by the vias on the track.
First, which is the simplest case, a segment completely passes through
a g-cell. In this case no via is used and the track utilization taken by the
segment equals to the g-cell’s boundary length as shown in Figure 4.3-
(a).
Second, if the two consecutive segments of a g-net are located on adja-
cent layers, they are connected by a single via. For a considered track
assignment for these two segments, the via location is easily computed
from the track indexes (track locations) of the two segments in the two
g-cells. Specifically, the via location lies on the intersection area of the
two tracks in 2D space 1.

1Note, the analysis relies on the assumption that in practice, the direction of rout-
ing tracks alternate in adjacent layers.
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For example, as shown in Figure 4.3-(b), one segment is assigned to
track t2 on M3 and the other one is assigned to t3 on M4. The via lo-
cation is determined by computing the overlap area of t2 and t3. Next,
the track utilizations are updated using the via locations: for the above
example 4 × pitch_size units are added to the utilization on t2 on M3
and 3 × pitch_size units are added to the utilization on track t3 on M4
inside the corresponding g-cells.
Third, and the most complex case is when two segments of a g-net are
apart by more than one layer. In this case, the two segments need to be
connected by multiple vias. Here the vias may be stacked or unstacked.
In the case of unstacked vias which is the more generic case, we con-
sider introducing additional, local, segment(s) in the intermediate layer(s)
to connect the two segments to each other. For example, as shown in
Figure 4.3-(c), the assigned routing tracks of the two segments of the
g-net are t29 on M3 and t2 on M5. In our approach, we introduce a lo-
cal segment on M4 and estimate a track for it. The local segment on M4
falls completely inside the g-cell and connects the two global segments
on M3 and M5.
To estimate the track(s) for the local segment(s) in the intermediate layer(s),
we evaluate all track options for the local segment(s). Each evaluation
considers a temporary track assignment to the local segment(s). For
each track assignment, we compute the via locations; this is done sim-
ilar to the second case, i.e., by looking at the overlap point of assigned
tracks of local and global segments in adjacent layers. Using the via lo-
cations, we update the track utilization inside the affected g-cells for
each option. In the end, among all track assignment options for the lo-
cal segment(s) we pick the one which results in minimum TrOVg metric
when added over all the affected g-cells.
In the example in Figure 4.3-(c), if track t3 is selected on M4, we update
the track utilizations as follows: 27 × pitch_size units are added to
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Figure 4.4: Overview of our framework.

the utilization of track t29 on M3, 28 × pitch_size units are added to
the utilization of track t3 on M4, and 4 × pitch_size are added to the
utilization of track t2 on M5. These are determined by looking at the
overlapping points of the assigned tracks at the adjacent layers (falling
under case 2) to determine the via locations.
Finally, in a special case when the via locations are found to be the same
point in different g-cells, the length of the local segment in the inter-
mediate layer(s) is 1. It indicates that the segments of the g-net will be
connected by a set of stacked vias to each other.

4.2 Track Assignment Framework

Figure 4.4 shows an overview of our framework. We first do fast de-
tailed routing for all the local nets. A local net has all its pins located
inside the same g-cell. A detailed route for a local net is composed of
local segments, each of which falls on a specific track inside a g-cell.
The local segments are also connected by vias which we determine in
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our framework. The impact of the detailed routes of the local nets is re-
flected in our framework by updating the track utilizations inside the
affected g-cells.
To route the local nets, we observe detailed routings of the local nets
are typically on M2 and M3, the lowest two routable layers which al-
low routing in vertical and horizontal directions. For example, in the
detailed routing results generated by Olympus SoC tool Graphics, 46%
of all the detailed wirings of the local nets are vertical routes in M2 and
44% are horizontal routes in M3, accounting for over 90% of all detailed
wirings. With this observation, our framework routes each local net by
only using vertical routes in M2 and horizontal routes in M3 inside the
g-cells located above the pins of the local net.
Specifically, we first create one vertical trunk (V-trunk) on a specific
track on M2. The range of the V-trunk covers the span of the local net
based on the locations of its pins.
After creating the V-trunk, all the pins of a local net are connected to it
by adding horizontal branches (H-branches) on M3. For each local net,
to decide the track to be used as its V-trunk, we pick the track which
minimizes the TrOVg metric. This is done based on the local nets pro-
cessed so far and based on other existing static blockages which were
given as part of the input to our framework.
After all the local nets are routed, we sort the panels based on the num-
ber of segments of global nets (g-nets) which fall on each panel. The
panels are then visited in descending order. For each visited panel p, we
create a detailed route for all the g-nets which have at least one global
segment on p. This is assuming the g-net has not been processed before
as part of another panel. Algorithm 6 shows the details.
First, each time the procedure RoutePanel is called for a panel, it sorts
all segments that fall on it by their lengths. The segments are then vis-
ited in descending order. For each segment s, the algorithm calls DRouteNet
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Algorithm 6 Track routing for one panel
1: procedure RrocessPanel(panel p)
2: sort all the global segments on p by length
3: for each global segment s do
4: let gnet(s) be the global net containing s

5: if gnet(s) is NOT ‘processed’ then
6: DRoute(gnet(s))
7: mark gnet(s) ‘processed’
8: end if
9: end for

10: end procedure

which creates a detailed route for the entire g-net which includes s across
multiple panels. This is assuming the net has not been processed/de-
tailed routed before by an already-visited panel.
The detailed route of each g-net is created in order to minimize the sum
of the TrOVg metric over the affected g-cells. (The TrOVg metric is up-
dated every time a new g-net is processed over the g-cells included in
the g-net). Next we discuss the details of the DRouteNet procedure.
Our framework continues until all panels are processed.

Detailed Routing of A Single Global Net

The DRouteNet procedure takes as input a g-net (specified by its pin lo-
cations and set of global segments), and outputs a detailed route for it.
Creating a detailed route includes making a track assignment for each
segment. The track assignment should in part ensure the pins of a g-net
which fall on specific tracks connect to its segments. It also needs to find
the via locations inside the g-cells. The detailed route of a g-net is done
with the goal to minimize the sum of TrOVg over the affected g-cells
which in part depends on the track utilizations of the g-nets that have
already been detailed routed according to Algorithm 6 and the static
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Figure 4.5: Graph model for detailed routing of one g-net.

obstacles and local nets that were considered initially by our framework.
In DRouteNet we propose a procedure which simultaneously solves
the problem of track assignment and finding via locations. It optimally
solves the detailed routing problem for one net, given our track utiliza-
tion and overlap models.
First, a weighted graph is constructed to represent all track assignment
options for each segment of a g-net, and all corresponding vias options
in any two consecutive segments. Figure 4.5 shows how this weighted
graph is constructed for a two-pin g-net.
(Multi-pin nets are decomposed and processed as union of two-pin sub-
nets.) First, two vertices namely SRC and DST representing the two pins
are created. Next, for every global segment s of a g-net and track option
t, we add an upstream and a downstream vertex for the two ends of s.
We denote these by vust and vdst, respectively. A directed edge is then
added from vust to vdst. Figure 4.5 shows the set of edges corresponding
to the track options for each segment as a group in green. We refer to
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this type of edge in the graph as a ‘segment-edge’.
Next, for each via connecting two consecutive segments such as s and
s ′, we add directed edges for every possible combination of their track
assignments. Figure 4.5 shows the set of edges corresponding to the via
options between two consecutive segments as a group in red. Specifi-
cally, an edge is added from vdst to vus ′t ′ as shown in Figure 4.5. We refer
to this type of edge in the graph as a ‘via-edge’.
Finally, a set of ‘start-edges’ are added from the SRC vertex to vust if s is
the first segment and for every feasible track t. Similarly, a set of ‘end-
edges’ are added from vdst to the DST vertex, if s is the last segment of
the global net, for every feasible track t connecting to the DST pin. Feasi-
ble tracks are the ones that the SRC or DST pins fall on. Figure 4.5 shows
a simplistic example when all tracks are considered feasible.
Next, the edge weights in the graph are computed for each category of
edges. First, the weights of start-edges and end-edges are set to 0. For
each segment-edge between vust and vdst, assuming s is not the first or
the last segment of the g-net, the edge weight is equal to sum of TrOVg

over the affected g-cells. The affected g-cells are the ones that are in-
cluded in s except the two end g-cells of a segment. (This is because the
track overlaps in the first and last g-cells of a segment will be reflected
in the corresponding via-edges.) If s is the first segment of a g-net, the
edge weight will additionally include the track overlap of the g-cell con-
taining the SRC pin. Similarly, if s is the last segment, the edge weight
will additionally include the track overlap of the g-cell connecting to the
DST pin.
Finally, for each via-edge connecting vdst to vus ′t ′ for consecutive tracks
s and s ′ on tracks t and t ′, respectively, the edge weight is defined as
follows. We compute the via location and subsequently compute the
track overlap in the two g-cells that are connected by the via in s as well
as all the g-cells in the layers between s and s ′. This is according to the
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procedure given in Chapter 4.1. The weight of a via-edge is the sum of
the track overlaps in these g-cells.
Once the graph is constructed, we find the min-cost path from SRC to
DST. The path identifies one segment-edge for each segment and one
via-edge for each via. It produces the track assignment of all the seg-
ments while accurately considering the impact of via locations. The pro-
cedure finds the optimal track assignment for the given edge weights. It
is also run-time efficient because the graph size only depends on the
track count in a g-cell and number of segments in a g-net which are
both small in practice.

4.3 Experimental Results

We implemented our analyzer in C++ on a Linux machine with a 2.8GHz
Intel CPU and 12GB memory. We built an evaluation platform using the
Olympus SoC tool of Mentor Graphics Graphics. Our evaluation infras-
tructure is shown in Figure 4.6. We first read the input files in LEF/DEF
format for the 45nm ISPD’15 detailed routability-driven placement bench-
marks Bustany et al. (2015). Then we executed the built-in commands
of place_global and place_detail to place each design. Next we ran
global and detailed routing for the clock net and then executed the built-
in route_global for all the signal nets to generate global segments for
each net. We refer to this solution as Olympus-GR in our experiments.
We then proceeded with detailed routing. Specifically we used the track_route
command which according to the Olympus manual (v2015.2) generates
an initial detailed routing solution and includes information on via lo-
cation and partial track utilization and track overlap inside the g-cells.
This command took longer to run per design as we report. We refer to
this solution as Olympus-DR.
Moreover, after generating the global routing solution by Olympus-GR,
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Figure 4.6: Overview of our evaluation infrastructure.

we fed the global routing solution as input to our analyzer. Specifically,
we wrote and sourced a Tcl script in Olympus tool to export the infor-
mation of built-in DB such as layout dimensions, netlist, placement of
cells, exact physical information of various types of blockages and the
global routing segments for each global net. The above information was
then stored in a custom file and provided as input to the C++ code im-
plementing our analyzer. Our framework computed a total track over-
lap (TrOVg) and utilization (TrUg) in individual g-cells g which we com-
pare with other approaches and Olympus-GR in terms of ‘mismatch’
errors computed with respect to Olympus-DR as reference.
We made comparison with our implementation of RegluarRoute Zhang
and Chu (2013) (denoted by RR) and with NTA Wong et al. (2016) tech-
niques. These techniques both did track routing on the Olympus-GR
solution. The RR and NTA techniques were discussed in the beginning
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of this Chapter.
For fair comparison, both RR and NTA used the same procedure for
routing the local nets as the one in our analyzer which was explained in
Chapter 4.2.
We use our analyzer in two ways. First we use it to determine the via
locations and consequently partial track utilization and overlaps in-
side the g-cell for existing track assignment solutions generated by RR
and NTA. We refer to this variation of our framework as ViA (for Via
Analyzer). In the second way we directly apply our analyzer to the
Olympus-GR solution. As explained in Chapter 4.2, this variation does
track assignment while minimizing track overlaps, accounting for par-
tial overlaps inside the g-cells. We refer to this variation of our analyzer
as TraPL (for Planning Local Track congestion).

Comparison of Track Overlap

In our first experiment we compare the TrOVg metric of different ap-
proaches with respect to Olympus-DR as reference. We only consid-
ered those g-cells g which contained at least one via; this is because this
work is about estimating via locations inside the g-cells. Also the num-
ber of such g-cells was quite high in our benchmarks; the percentage
of g-cells containing at least one g-cell compared to total number of g-
cells is given in Table VII column 5, and was on-average 62.4% across
the benchmarks.
Recall the TrOVg metric reflects the degree of track overlap inside each
g-cell and is computed using Equation 4.2. Since RR and NTA do not
explicitly consider via locations, we assumed all vias are located at the
middle of the corresponding track inside the g-cell which we used in
order to compute the track overlaps. However in TraPL we used our
model of via location to compute the track overlap.
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We compute the TrOVg metric for each approach. We also compute what
we consider as the ‘actual’ value of this metric. This is done by measur-
ing this metric using the via locations inside each g-cell as generated in
Olympus-DR.
Next, for RR, NTA, and TraPL, we compute the absolute value of differ-
ence in TrOVg between each approach and Olympus-DR for all g-cells.
We add this error over all g-cells, divide it by the total number of g-cells,
and report it as a percentage per benchmark in Table VII. Each entry can
be viewed as a ‘mismatch’ error in estimating track overlaps due to via
locations inside the g-cells that contain vias.
In Table VII we report the error for RR, NTA, and TraPL. As can be seen
from the table, TraPL has the smallest error over all approaches, on-
average 6.7% across all benchmarks. NTA and RR consider minimizing
track overlaps and number of overlaps respectively but they do not con-
sider via locations and partial track utilization in computing the over-
laps.
Overall we show that integrating track assignment with our model of
via location to minimize track overlap results in the smallest mismatch
with respect to Olympus-DR.

Comparison of Track Utilization

Table VII also shows comparison for total track utilization inside a g-cell
denoted by Ug and computed by Equation 4.1. T his metric can be very
different from track overlap. For example two g-cells may have all their
tracks fully utilized but one may have 0 overlaps while the other may
have a very high overlap because all segments are assigned to the same
track.
For this approach we additionally compare the solution of Olympus-
GR and measure track utilization. Since the Olympus-GR solution does
not provide any via locations, we assume all vias are located at the cen-
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ter of the g-cells. For NTA and RR, we note that the track utilizations
are equal to each other so the same column (column 7) in the table rep-
resents both techniques; in fact when considering track utilization in a
g-cell, NTA and RR are only different from Olympus-GR because local
nets are considered in them.
The reason NTA and RR have the same track utilization per g-cell is be-
cause they do not consider via locations so all utilizations are computed
with respect to the middle of a track whenever a via is used. This uti-
lization is independent of how track assignment is done. In fact differ-
ent track assignment procedures only result in different track overlaps
as we showed in the previous experiment.
Finally, in this experiment we also report results for two cases of NTA+ViA
and RR+ViA. In this case, we use our ‘via analyzer’ to analyze the track
assignment solution generated by NTA and RR and estimate the via lo-
cations inside the g-cells for each case.
When considering the track utilization metric (TrUg), we similarly mea-
sure the absolute value of difference in this metric between each ap-
proach and the Olympus-DR. We report this as a percentage over all
g-cells containing vias, just like the previous experiment. As can be
seen our approach (TraPL) drops the average error from about 13% (in
Olympus-GR / NTA / RR) to 9.4%.
We can also observe that our analyzer reduces the error in NTA and
RR. For example for RR, the error drops from on-average 13% (in RR) to
11.3% (in RR+ViA).
So overall we show in this experiment that TraPL can reduce the mis-
match error in estimating the track utilization inside the g-cells. It can
also be used as an analyzer to reduce the mismatch of the track assign-
ment solutions generated by RR and NTA by estimating the via loca-
tions.
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Comparison of Runtime

Table VII reports the runtimes of RR, NTA, TraPL, and Olympus-DR.
The runtime of our ‘via analyzer’ (denoted by ViA) was negligible com-
pared to the runtimes of the other approaches so they are not reported
in the table. As can be seen, RR, NTA, and TraPL all have significantly
faster runtimes than Olympus-DR. Their runtimes are all feasible to be
used at the GR stage in order to analyze a GR solution. Our TraPL al-
gorithm supports some degree of parallelism by allowing independent
groups of panels to be processed simultaneously. We have observed this
opportunity in our preliminary analysis of the benchmarks and plan to
pursue this extension in our future work.
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5 improving detailed routability and pin access
with 3d monolithic standard cells

A main issue complicating the detailed routability effort is the pin ac-
cess challenge which at a fundamental level occurs in dense layouts
with devices implemented with a very fine pitch size. An effort from
academia showed that a new device structure called VeSFET can signif-
icantly improve pin access by allowing two-sided routing Qiu and Sad-
owska (2013). Recently, industry is exploring a new technology, namely
3D monolithic (or 3D VLSI) Acharya et al. (2016); Arabi et al. (2015); Bil-
loint et al. (2015); Panth et al. (2015) which among its various features
allows creation of ‘3D’ logic cells. These cells can be implemented on
two separate tiers as opposed to their ‘2D’ single-tier counterparts. The
tier can then be accessed separately.
To implement a 3D cell, one way is to fold a 2D cell by placing the NMOS
portion on the top tier and PMOS portion on the bottom tier Arabi et al.
(2015); Billoint et al. (2015); Lee et al. (2013). Here by a 2D cell we mean
a standard logic cell that is implemented on a single tier. Figure 5.1
from Lee et al. (2013) shows an example of how the folding is done for
an inverter. The left side shows the 2D cell. The right side shows its 3D
monolithic counter-part which we denote by a ‘3DM’ cell in this work.
The figure shows how pin Z can be made accessible in both the top and
bottom tiers by creating separate pins on each tier and internally con-
necting them using monolithic inter-tier vias (MIVs).
In this work we utilize the above model of transforming 2D cells into
3DM cells to highlight the substantial benefits to improve detailed routabil-
ity and pin access. We note while the above folding technique for a 2D
cell was shown before, it’s usage to improve routability has not been
studied so far. Specifically, first we propose a design flow to translate
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Figure 5.1: Two layouts of an inverter from Lee et al. (2013) (a) a single-
tier standard cell, and (b) it’s folded two-tier 3D monolithic one.

a placed design with 2D cells into one which has 3DM cells with re-
dundant pins. The translation creates an extra tier to implement the
3DM cells but it ensures the layout area and number of layers for sig-
nal routing (i.e., M2 and above) remain the same, while creating new
opportunities to improve routability and pin access. Figure 5.2 shows
overview of our design flow. Compared to a traditional flow, we first
apply a transformation to translate a pair of back-to-back 2D standard
rows (with shared VDD or VSS in the middle) into a pair of 3DM stan-
dard rows with free routing tracks in the middle, moving the VDD/VSS
lines to the sides and individual tiers. This transformation is explained
in Chapter 5.1.
Then we try to route as many nets as possible on the top tier of metal 1
(denoted by M1T) and the bottom tier (denoted by M1B). We do this in
two steps: First, we apply cell-to-cell track routing to directly connect
adjacent cells on the same tier, by also taking advantage of redundant
pins. This step is explained in Chapter 5.2.
Next, we discuss an Integer Linear Program which routes as many re-
maining nets as possible on the free tracks running between a pair of
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Figure 5.2: Design flow with traditional (2D) standard cells versus 3D
monolithic (3DM) standard cells.

3DM rows on M1T or M1B. We discuss this process in Chapter 5.3. Fi-
nally, all remaining unrouted nets are global and detailed routed on M2
and above layers using a commercial global and detailed router.
Our experiments show that the number of segment violations and DRC
errors are reduced on-average by 29.8% and 20.7%, respectively. This
work is the first to highlight the promise of 3D monolithic cells to im-
prove detailed routability via better pin access.
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Figure 5.3: Example transforming 2D to 3DM standard rows.

5.1 Transforming 2D Standard Rows to 3DM
Standard Rows

Figure 5.3 shows the transformation from 2D to 3DM standard rows us-
ing an example. In Figure 5.3-(a) two standard rows are shown with a
height of 10 M1 pitches per row which is the case for the ISPD’15 bench-
mark suite Bustany et al. (2015). The rows are placed back-to-back so
a pair of rows either share VDD (as shown in Figure 5.3-(a)) or share
VSS. For each 2D cell, the area occupied by NMOS and PMOS transis-
tors are shown. For a standard CMOS layout, the PMOS transistors will
be placed closer to VDD and NMOS transistors are placed closer to VSS.
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Due to the difference in carrier mobility, the PMOS to NMOS channel
lengths have a ratio >1 and for example a ratio of 7:3 in Figure 5.3-(a).
Therefore if we assume a standard cell height of 10 pitches, the PMOS
and NMOS take 7 and 3 tracks respectively as shown in Figure 5.3-(a).
We use the same folding technique described in Arabi et al. (2015); Lee
et al. (2013) with the feature of having redundant pins inside the 3DM
cells.
As shown in Figure 5.3-(b), the ‘2D’ standard rows will be transformed
into 3D monolithic (3DM) standard cells folded over two tiers, i.e., NMOS
on the top tier and PMOS on the bottom tier. Here two rows of NMOS
are enclosed by VSS lines running in parallel, and similarly two rows
of PMOS are enclosed by VDD lines after the transformation. To en-
sure creating standard 3DM rows, i.e., with the same height, we keep
the height of the PMOS and NMOS portions on the two tiers equal to
each other which are 7 tracks in this example, as shown in Figure 5.3-
(b). This results in unused area in the NMOS portion. Note the width of
each 3DM cell remains the same as its 2D counterpart.
From a routing perspective, instead of metal layer M1 in 2D, two layers
of M1T (top) and M1B (bottom) are added.
The two M1T and M1B layers connect with monolithic inter-tier vias
(denoted by MIVs), which are placed only inside each 3DM cell. Specif-
ically, for each pin on M1 in the 2D case, we create two pins in the 3DM
cell, one located on M1T and the other located on M1B which connect
to each other by MIVs as also shown in Figure 5.1. These redundant pins
allow improving pin access because they are connected to each other
within the standard cell and a route can connect to either one of them
on either tier. For example in Figure 5.3-(b), notice for cell g1 that each
of pins A, B, and Z are paired with a redundant one on the other tier. In
the figure the pins are drawn to have equal height for simplicity.
Moreover, we assume the transformation preserves the placement of
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each cell. Given the same width for each cell but shorter height, the
transformation results in additional tracks running between the two
3DM rows (per tier) which is 6 (= 20 − 7 − 7) free tracks in the exam-
ple shown in Figure 5.3-(b). This assumes the shared VDD line in the
center is ignored but it should be added as an additional track other-
wise so in that case there will be 7 free tracks in the center. Overall, the
above transformation results in the same layout area. However, it is also
possible to trade off (reduce) the number of these free tracks for smaller
layout area as we show in our experiments.

5.2 Cell-to-Cell Intra-Row Track Routing

After the 2D to 3DM standrd row transformation, we try to route as
many nets which connect adjacent cells within the same 3DM row on
either M1B or M1T. Note this is intra-row routing and does not use the
free tracks in the middle of two standard rows. Figure 5.4 shows an ex-
ample of two 2-pin nets. One net connects g1.Z to g2.A, and the other
one connects g3.Z to g4.A. In the case when the two pins of a net that
need to connect are in adjacent standard cells, we can connect them
directly in either M1B or M1T (because of redundant pins), assuming
there exists a common and free track which connects the two pins to
each other.
Specifically, in our framework, after the 3DM cell transformation, we
visit all the nets. For each visited 2-pin net, we then check if it can be
routed on the same row between two neighboring cells. As we show
in our experiments, in practice only a very small fraction of nets can be
routed using this technique so next we apply inter-row track routing.
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Figure 5.4: Cell-to-cell intra-row track routing on M1T.

5.3 Inter-Row Track Routing

In this section we present an ILP-based track routing technique which
maximizes the number of nets that may be routed on the free tracks run-
ning between a pair of standard 3DM rows on either M1T or M1B. It
also takes advantage of the redundant pins in 3DM cells.
The ILP is written for a double-row ‘panels’ with each panel containing
two standard rows with free tracks in between, as shown in Figure 5.3-
(b). One panel is located in the top tier and its corresponding panel is
located in the bottom pier. The ILP considers routing all the nets with
pins completely inside the double-row panels (which were not routed
using the intra-row cell-to-cell technique.)
Recall during the transformation stage, each pin of a 2D cell translates
into a pair of redundant pins located on M1B and M1T which are in-
ternally connected by MIVs. In order to simplify the discussions in this
section, we only refer to the pins inside one of the double-row panels
but the discussions hold for the corresponding pins in the other panel
as well.
If a net has all its pins within a double-row panel, each pin belongs to
either the higher or the lower standard row. We denote all the pins of
net i belonging to the higher row as its north pins and all the pins of
net i belonging to the lower row as the south pins of net i, as shown in
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Figure 5.5: The single-trunk routing structure used for inter-row track
routing with branches located on the same tier.

Figure 5.5.
When considering routing a net on M1B or M1T, the ILP assumes can-
didate routes with the simple structure made of a single trunk span-
ning the interval defined by the pins of the net and a set of branches
connecting the pins to the trunk. The trunks may be located on either
M1B or M1T and should be one of the available free tracks in the middle
of the double-row panel. The branches are also located on M1B or M1T
so they directly connect to the trunk (without need for vias). This is be-
cause M1B and M1T can support both horizontal and vertical routing.
Figure 5.5 shows one candidate route of a net on one tier and there is
another one identical to this on the other tier for the same net.
Finally, depending on the locations of north and south pins, we can
sometimes make assertion that the candidate routes of two nets running
on the same tier will definitely create a conflict (overlap) if selected si-
multaneously. Therefore the two nets may never be routed on the same
tier. These conflicts are discussed in detail in Chapter 5.3, and are ac-
counted for by the ILP.
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Integer Linear Programming Formulation

Given a double-row panel P, all the nets whose pins are falling in these
panels are first denoted by the set NP.
For each net i ∈ NP we define three binary variables xiB, xiT and xiA ex-
pressing whether net i can be routed in M1B, M1T or above (referring to
routing on M2 or higher layers). The ILP is formulated to maximize the
number of nets which may be routed on either M1T or M1B and is given
below:

max
xB,xT ,xA

∑
i∈NP

xiB + xiT

s.t.

xiB + xiT + xiA = 1 ∀i ∈ NP (5.1)

xiB + x
j
B < 1, xiT + x

j
T < 1 ∀conflicted i, j ∈ NP (5.2)

xiB, xiT , xiA ∈ {0, 1} ∀i ∈ NP (5.3)

The first set of constraints ensures that for each net i only one route op-
tion is selected which indicates the net may be routed on M1B or M1T
or above layers.
The second set of constraints checks each pair of nets i and j which have
a routing conflict and ensures they cannot get simultaneously routed
on M1B or on M1T. We discuss checking for conflict for a pair of nets in
Chapter 5.3.
Once the integer program is solved, all the nets with xiB = 1 may be
routed in M1B and all the nets with xiT = 1 may be routed in M1T.
Those nets with xiA = 1 will have to be routed in M2 or above using
commercial router, since routing them in M1B or M1T will definitely
cause conflict.
Please note that the objective is to maximize the number of conflict-free
nets which may be routed on M1B or on M1T. (Alternatively it can be
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set to minimize the number of nets that are routed on M2 or above, i.e.,
sum of the xA variables). In fact it is possible that the ILP generates a so-
lution in which the number of nets that may be routed on a double-row
panel exceeds the capacity of the panel. By capacity we mean the num-
ber of tracks located in the middle of the double-row panel, e.g., 7 tracks
in the example of Figure 5.3-(b). Therefore, after ILP, we apply a final
step to determine the nets that can be routed up to the panel capacity
per tier. We discuss this procedure in Chapter 5.3.

Conflict Checking for A Pair of Nets

For two nets a and b that belong to the same double-row panel P, exis-
tence of a conflict means they cannot be routed simultaneously on M1T
or M1B because their routes will overlap at some point. This is assum-
ing the (single-trunk) routing structure as shown in Figure 5.5.
Table VIII is a look-up table (LUT) that we use to check if two nets a and
b do not have a conflict based on their sets N and S. In case of a conflict,
a pair of constraints are created for them in the ILP as we discussed be-
fore.
Based on the north and south pins of the two net, we first look up columns
2 to 5 to identify one of the rows (9 cases). For each case, the conflict-
free condition is listed in column 6 and a graphical example of that is
listed in column 7. Note when multiple conditions are listed per case,
only one of them needs to be satisfied. For example consider case 3
which is identified when all pins of nets a and b are north pins. Here
one of the 3 listed conditions must be satisfied which are shown in the
figure to ensure they are conflict-free. If none are satisfied, then the two
nets have a conflict.
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Table VIII: Look-up table of non-conflict conditions between nets, assuming all the elements in the
set N or S are sorted in ascending order.

Case Net a Net b Conditions Examples
N(a) S(a) N(b) S(b)

1 na
1 , . . . ,na

Na
∅ ∅ sb1 , . . . , sbSb

• No conflict between na and
nb in any case

2 ∅ sa1 , . . . , saSa
nb

1 , . . . ,nb
Nb

∅

3 na
1 , . . . ,na

Na
∅ nb

1 , . . . ,nb
Nb

∅

a) N(a) and N(b) do no over-
lap:
na
Na

< nb
1 OR nb

Nb
< na

1

b) all north pins of net a are
between two neighboring
pins in N(b) : ∃k s.t. nb

k <
na

1 AND na
Na

< nb
k+1

c) all north pins of net b are
between two neighboring
pins in N(a) : ∃k s.t. na

k <
nb

1 AND nb
Nb

< na
k+1

4 ∅ sa1 , . . . , saSa
∅ sb1 , . . . , sbSb

Similar to case 3.

5 na
1 , . . . ,na

Na
∅ nb

1 , . . . ,nb
Nb

sb1 , . . . , sbSb

a) N(a) and N(b) do not over-
lap:
na
Na

< nb
1 OR nb

Nb
< na

1

b) all north pins of net a are
between two neighboring
pins in N(b) : ∃k s.t. nb

k < na
1

AND na
Na

< nb
k+1

6 ∅ sa1 , . . . , saSa
nb

1 , . . . ,nb
Nb

sb1 , . . . , sbSb
Similar to case 5.

7 na
1 , . . . ,na

Na
sa1 , . . . , saSa

∅ sb1 , . . . , sbSb
Similar to case 5.

8 na
1 , . . . ,na

Na
sa1 , . . . , saSa

nb
1 , . . . ,nb

Nb
∅ Similar to case 5.

9 na
1 , . . . ,na

Na
sa1 , . . . , saSa

nb
1 , . . . ,nb

Nb
sb1 , . . . , sbSb

a) N(a) is to the left of N(b)
AND S(a) is to the left of
S(b):
na
Na

< nb
1 AND saSa

< sb1

b) N(a) is to the right of N(b)
AND S(a) is to the right of
S(b) :
nb
Nb

< na
1 AND sbSb

< sa1



77

Figure 5.6: Available tracks per column before/after routing net i. As-
sume the blue nets have already been routed.

Finalizing the Inter-Track Routing Solution

Once the lists of conflict-free nets that may be routed on M1B and M1T
are found from the ILP solution, we try to route as many as possible
up to the panel’s capacity. Our procedure works on each tier indepen-
dently. For example for M1T, all nets with xT = 1 are first identified for
the top tier. Next, these nets are sorted in ascending order, by the length
of the interval defined by their left-most and right-most pins.
Next we attempt to route each net in the sorted order using the simple
structure (one trunk connected by branches), if there exists free tracks
in the middle of the panel. Specifically, we keep track of the number of
free tracks per ‘column’ (corresponding to pin coordinates) as each net
gets routed. Initially all the tracks are available per column. Once a net
gets routed, the number of tracks in each column covered in the net’s
range is deducted by 1. Figure 5.6 illustrates.
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5.4 Experimental Results

We implemented our design flow in C++ on the 45nm ISPD’15 Bustany
et al. (2015) benchmarks. All simulations ran on a Linux machine with a
2.8GHz Intel CPU and 12GB memory.
To apply the transformation from 2D to 3DM standard rows, we as-
sumed a 2D standard row height of 10 tracks which resulted in a 3DM
row height with 7 tracks and 6 free tracks in between a pair of 3DM
rows, as shown in Figure 5.3.
Next our framework routed as many nets as possible on M1T and M1B.
Specifically it first identified and routed all nets in adjacent cells which
were eligible for cell-to-cell intra-row track routing. Then, for each double-
row panel, we used our ILP formulation to maximize the number of
nets which may be routed using inter-row tracking using and selected
a group of eligible nets. After the ILP, we used the technique given in
Chapter 5.3 to route as many as possible from the selected nets on the
free tracks in the middle of each double-row panel. We used CPLEX
12.6 IBM to solve the ILPs. We then removed the nets which were routed
on M1B and M1T from the benchmarks and used the Olympus SoC
global and track router Graphics for the remaining nets. The detailed
routing solution generated by Olympus was finally evaluated by run-
ning the ‘check_drc’ command.
In our experiments we make comparison between the above 3DM-based
implementation and a standard implementation using 2D cells. Specif-
ically in the 2D case, we started with the same placed design and only
ran it through the Olympus SoC global and detailed router and then
evaluated the generated solution for detailed routability.
Next we discuss our simulation results at different stages of our frame-
work (i.e., M1B/M1T routing as well as M2 and above routing). We also
do an experiment in which we vary the number of free tracks in the
middle of a double-row panel to show the existing trade offs between
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area reduction and improvement in routability.

Routing on M1B/M1T

Table IX shows the results of M1B/M1T routing. Columns 3 and 4 show
the numbers and percentages of nets routed at the cell-to-cell intra-
row routing stage. As can be seen only a small percentage (on-average
1.39%) of nets were routed at this step. This shows intra-row routing in
practice is quite limited for making improvement.
Columns 5 and 6 report the numbers and percentages of nets selected
by ILP. The nets which are eventually routed in M1B/M1T using the ILP
solution are reported in columns 7 and 8. As can be seen, on-average
27.76% were routed on M1B/M1T across the benchmarks which is a rel-
atively high percentage and we show results in significant improvement
in detailed routability.
The last three columns (9 to 11) report information about ILPs, which
includes the number of ILP problems (i.e. the number of double-row
panels), the average number of constraints per ILP and the total run-
time to solve all the ILPs. As can be seen on-average about 194 ILPs are
solved in 5.3 seconds and each include on-average 617 constraints.

Routing on M2 and Above

After routing nets in M1B/M1T, we performed global routing and track
routing on the remaining nets. These nets are routed on M2 or above
(i.e. M2 to M5 in the ISPD 2015 benchmarks). We used the Olympus
commands ‘route_global’ and ‘route_track’ to perform global and
track routing. Table X shows the comparison of detailed routing re-
sults between the 2D and 3DM cases. Recall in the 2D case, the original
benchmarks containing all the nets are global and detailed routed.
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We ran the ‘check_drc’ command on the detailed routing DB in Olym-
pus SoC which reported the total number of violated segments and total
number of DRC errors. The total number of violated segments included
errors on shorts, spacing, port shorts, cross shorts, twist shorts, diffnet
shorts, diffnet spacings, samenet spacings, cut projection, cut spacing,
end of line, min-area bottom, min-area, loop over port, minstep, and
vias overlap.
As can be seen from the table the total number of violated segments and
DRC errors were reduced on-average by 29.8% and 20.7% in the 3DM
case, compared to the 2D case.

Table X: Results of routing on M2 and above

Design # violated segments # DRC errors
2D 3DM 2D 3DM

des_perf_1 2768 75.4% 1987 65.2%
des_perf_a 7062 30.1% 5262 22.2%
des_perf_b 307 61.6% 550 50.4%
edit_dist_a 83671 46.8% 33581 40.4%

fft_1 205 25.4% 388 -11.3%
fft_2 2584 13.1% 2577 9.8%
fft_a 1474 11.2% 1418 11.6%
fft_b 3024 15.2% 4218 1.9%

matrix_mult_1 10906 46.4% 7984 25.1%
matrix_mult_a 5141 18.0% 3348 8.7%
matrix_mult_b 9416 11.4% 7561 9.2%
pci_bridge32_b 730 2.9% 712 14.9%

AVERAGE 10607.3 5968.8
(29.8%)

5418.0 3896.6
( 20.7%)
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Impacts of Number of Free Tracks on the M1B/M1T
Routing

Recall the transformation process of 2D to 3DM standard row results in
free tracks in the middle of a double-row panel as shown in Figure 5.3.
In this experiment we reduce the number of free tracks which translates
into direct area saving in terms of reducing the height of the layout. We
show the tradeoff of this reduction with fewer number of nets that were
routed by our framework on M1B and M1T. Note that this step only im-
pacts the inter-row track routing step of our framework.
Table XI reports the result when the number of free tracks vary from
6 (original) to 4, 2, and 1 tracks in the middle. As can be seen, using
6 free tracks our framework routed 29.00% of all the nets (which can
also be obtained by adding the nets routed at the intra-row and inter-
row stages of our framework in Table IX). Using 4 and 2 free tracks our
framework routed 28.69% and 24.69%, respectively. With just 1 free
track, we were still able to route 17.01% of the nets on M1B/M1T. We
note 1 free track translates into area saving of 5 (= 6−1) tracks per panel
for per each pair of standard rows. This is a significant reduction in the
height of the layout. These results are fundamentally because many nets
connect pins which are placed close to each other and located on adja-
cent standard rows.
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Table XI: Impact of varying number of free tracks in the middle on the
number of nets routed in M1B and M1T

Design # free tracks
6 4 2 1

des_perf_1 34.4% 33.4% 25.8% 16.4%
des_perf_a 26.9% 26.6% 22.0% 14.7%
des_perf_b 28.0% 27.6% 23.1% 15.6%
edit_dist_a 22.7% 22.4% 19.5% 14.0%

fft_1 33.4% 33.0% 26.7% 17.1%
fft_2 32.7% 32.6% 28.6% 19.3%
fft_a 22.5% 22.5% 21.1% 15.8%
fft_b 24.0% 24.0% 22.4% 16.5%

matrix_mult_1 33.5% 32.9% 26.0% 16.5%
matrix_mult_a 30.4% 30.3% 26.7% 18.2%
matrix_mult_b 24.6% 24.5% 22.3% 16.0%
pci_bridge32_b 34.8% 34.7% 32.1% 23.9%

AVERAGE 29.00% 28.69% 24.69% 17.01%
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6 improving the distribution of congestion in
global routing

To improve routability, typically global routing procedures minimize
a total edge-overflow metric (denoted by EOF) Chen et al. (2009); Cho
et al. (2009); Xu and Chu (2011); Chang et al. (2010); Pan and Chu (2007);
Zhang et al. (2008); Xu et al. (2009); Pan et al. (2012). Total overflow is
sum of edge overflows in the global routing (GR) grid-graph. However,
minimizing EOF may no longer be sufficient for routability.
Recently new metrics are proposed to evaluate routability based on
edge congestion ratio, which is the ratio of edge utilization to edge ca-
pacity. The authors in Wei et al. (2012) propose two rank-based metrics
denoted by ACE(x) and WCI(y), where ACE(x) measures the average
congestion ratio of the top x% most-congested edges, and WCI(y) mea-
sures the percentage of nets with congestion ratio higher than y%. A
fast global router is then proposed in Liu et al. (2013a) with the main
purpose to quickly build a congestion map to interact with a routability-
driven placer (and not to create an improved global routing solution).
However the impact on the traditional EOF metric is unclear and not
shown in the experiments.
In this work we propose a procedure to shape the congestion ratio dis-
tribution of a GR solution while guaranteeing that EOF is not increased.
Our framework at high-level is based on defining non-overlapping 3D
routing subregions covering about 25% of the layout. Our procedure is
then applied to the subregions independently without perturbing the
routing outside the subregions. This allows independent and parallel
processing of all the subregions. Shaping of the distribution is done
in a controlled manner, using a convex penalty function; the user is al-
lowed to associate a higher penalty to minimize the edges which will
fall within undesirable ranges of congestion. In our experiments we



85

show that a significant improvement can be made to the distribution
of the congested edges in an already-optimized global routing solution
on realistic modern design instances while guaranteeing that the total
overflow is not increased.

6.1 Problem Statement

Before discussing our techniques we give a review of basic notations in
this work and provide a problem statement. We are given a grid-graph
G = (V ,E) for global routing of dimension V = X × Y × L, where L

represents the number of metal layers. We are also given a set of nets
N to route. Each net is identified by some terminals which are a subset
of the vertices in V . In modern designs, some of these terminals may be
virtual indicating that they may be located at the higher metal layers.
Each edge e ∈ E has a constant capacity ce and is associated with an
individual (sum of) wire size and spacing denoted by se. It may also
have a constant blockage amount of be for example representing routing
resources taken by pre-routed power delivery or clock networks. Intu-
itively, edge e represents the boundary of two adjacent global cells and
its capacity represents the available routing resources on the boundary
when ignoring its routing blockage.
We are also given an initial solution where for each net i ∈ N, we have
a Steiner tree t̂i, a subset of the edges in E that connects the terminals of
net i. Each edge e ∈ E has a utilization ûe, which is the amount of rout-
ing resource consumed from edge e by the initial solution. The overflow
of an edge in the initial solution is given by max(ûe − (ce − be), 0) and
the total overflow denoted by ˆTOF is the sum of all the edge overflows.
We wish to improve the distribution of this initial solution while ensur-
ing the total overflow of the global routing solution does not exceed its
current value ˆTOF.
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We also define a congestion ratio re for each edge e which is given by
r̂e = ûe+be

ce
. A congestion ratio less than or equal to 1 corresponds to

an edge with 0 overflow. Our routing framework models all the factors
captured in the ISPD’11 benchmarks Viswanathan et al. (2011).

6.2 Global Routing Framework

Our router works on non-overlapping routing subregions which are
identified around the congested edges in the input solution. In this sec-
tion, we first describe how our routing subregions are created. We then
present a mathematical formulation to be solved inside each subregion
followed by our techniques to improve the runtime efficiency of our
routing framework.

Forming the Routing Subregions

We start by visiting the edges in decreasing order of their initial con-
gestion ratios (r̂e for edge e). When visiting an edge, we first create a
3D subregion of fixed size centered around the edge. The shape of the
subregion is a hyper-cube which extends over all the metal layers. (In
our experiments we use subregion size of 20x20x9 which we found ap-
propriate based on typical global grid dimension and number of metal
layers for ISPD’11 benchmarks Viswanathan et al. (2011).)
If the subregion of an edge overlaps with a previous subregion, then the
subregion will be dropped so that subregions will be non-overlapping.
The process stops as soon as the sum of the volume of the subregions
corresponding to the edges visited so far becomes at least 25% of the
overall routing space. The remaining edges (which will have a lower
congestion ratio) won’t be visited.
For each routing subregion R = (VR,ER), we then identify a subset of
the nets that are fully or partially routed inside R. If a route crosses the
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boundary of R, the crossing point will be added as a new terminal of
the corresponding net. If a net terminal falls outside R, it will be elimi-
nated from the set of the terminals of the net. In the end, for subregion
R, the new set of nets to be routed is denoted by NR and includes those
nets that have one or more terminals inside R, and/or have a “pseudo-
terminal” on the boundary.
The above procedure creates independent subregions that will be pro-
cessed in parallel. The routing of each net will be completely inside the
subregion and will more effectively utilize the 3D-routing resources.
Note that the above procedure ensures the routing solution outside the
re-routed subregions remains intact which is useful to ensure minimal
change to the already-optimized initial solution.

Mixed-Integer Linear Programming Formulation

Here we present a mathematical formulation to precisely describe the
routing problem that we propose to be solved inside each subregion.
We first describe the objective optimized by the formulation, and then
describe the formulation as a mixed-integer linear program.
The objective of our formulation is to minimize a convex, piecewise-
linear penalty function of the edge congestion ratios re = ue+be

ce
with ue,

ce and be representing the utilization, capacity and blockage of edge e

respectively. The piecewise-linear function is given as a set of slope and
y-intercept pairs Je = {(mje,dje) | j = 1, 2 . . . , |Je|}, so that the penalty for
edge e ∈ E is pe = mjere + dje for some j ∈ Je.
Figure 6.1-(a) depicts a typical example of the penalty function. The x-
axis is the congestion ratio re, and the y-axis is the penalty pe. The in-
tervals on the x-axis represent thresholds to specify ranges of interest
for congestion ratios which are denoted by (TCRs). Figure 6.1-(a) shows
a realization of the penalty function with three line segments. Assume
TCR1 = 1 and TCR2 = 1.1. The edges with re ⩽ 1 do not have overflow,
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Figure 6.1: (a) Mapping edge congestion ratio to edge penalty based on
a convex piece-wise linear function; (b) Variation when edge penalty is
its overflow.

therefore the associated line segment has a very small slope represent-
ing a very small penalty. For the edges with congestion ratio between 1
and 1.1, the line segment has a higher slope indicating a higher penalty.
For the remaining range of re > 1.1, the penalty is incurred at a much
higher rate. The objective is to minimize the sum of these edge penal-
ties, which we denote by PCR (for Penalized Congestion Ratios).
The piecewise-linear penalty function PCR is extremely flexible. For
example as shown in Figure 6.1-(b), by creating only the two slope-
intercept pairs Je = {(0, 0), (1,−1)} ∀e ∈ E, the PCR metric becomes
equivalent to the total edge-overflow metric EOF (when there is no block-
age and if all edge capacities are equal).
Given a routing region R = (VR,ER) and nets NR, we propose a mixed-
integer linear programming (MILP) formulation that identifies nets that
will improve the PCR metric. We first give the following definitions.

• Ti: set of candidate routes for net i ∈ NR.

• Parameter ate = 1 if route t ∈ Ti contains edge e ∈ ER.

• Piecewise linear functions given as a set of slope-intercept pairs
Je = {(mje,dje) | j = 1, 2 . . . |Je|} ∀e ∈ ER.
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• Binary variable xit set to 1 if route t ∈ Ti is selected for net i and 0
otherwise.

• Real variables ue ⩾ 0, oe ⩾ 0. and pe ⩾ 0 representing the utiliza-
tion, overflow, and penalty for each edge e ∈ ER.

Also recall that parameters ce, be, and se represent the capacity, block-
age, and sum of wire size and spacing corresponding to edge e as de-
fined in Chapter 6.1. With the above definitions, the MILP is expressed
as follows:

min
x,p,u,r,o

PCR =
∑
e∈ER

pe∑
t∈Ti

xit = 1 ∀i ∈ NR (6.1)

se
∑
i∈N

∑
t∈Ti

atexit = ue ∀e ∈ ER (6.2)

ue + be

ce
= re ∀e ∈ ER (6.3)

pe ⩾ mjere + dje ∀e ∈ ER ∀j ∈ Je (6.4)

ue − ce + be ⩽ oe ∀e ∈ ER (6.5)∑
∀e∈ER

oe ⩽ ˆTOF (6.6)

In this formulation, the first set of equations states that for each net in R,
only one route should be selected from the set of its routing trees. The
second set of equations computes the utilization for each edge in region
R. (Here if a route t includes edge e, it contributes se units to the uti-
lization of the edge where se is a constant parameter representing the
sum of wire size and spacing on the layer corresponding to edge e.) The
third set of equations computes the congestion ratio re for edge e using
its utilization ue and the constant parameters ce and be correspond-
ing to the edge capacity and blockage. The fourth set of inequalities
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computes the edge penalties pe using the specified parameters mje and
dje. The objective PCR minimizes the sum of the edge penalties. Finally,
the fifth and sixth set of inequalities compute the edge overflow oe and
bound the sum of all edge overflows to be at most the total overflow of
the initial solution which was denoted by TÔF (in Chapter 6.1).
The presented formulation selects a new route for each net from all its
possible routing trees inside the subregion such that in the resulting
routing solution, the sum of the penalized congestion ratios (PCR) is
minimized. The objective of the formulation is designed to “shape” the
distribution of the congestion away from highly-congested edges.
Our global routing procedure solves the above MILP formulation as a
sequence of linear programs (LPs) in which only a subset of “critical”
net variables are considered. This allows to develop a fast procedure.
Furthermore, each LP updates the candidate routes defined by the set
NR by adding new candidate routes to it. We solve a sequence of 20 LPs
to create a final set of candidate routes for each net. Finally, the route
of a net is found by solving the MILP (mixed-integer) formulation, by
setting NR to be the set of candidate routes obtained from the last LP.

Techniques for Improving Runtime Efficiency

Here we present our techniques to improve the runtime efficiency of
our routing framework. After trying various strategies, we follow the
following procedure to consider a small number of nets for each LP in
order to improve the runtime spent on solving it.

1. For subregion R, sort all the edges e ∈ R in descending order of
their congestion ratio. (The congestion ratio re is directly taken
from the initial solution in the first LP, and from the correspond-
ing variable assignment from the previous LP.)
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2. For a visited edge e, select net i ∈ NR if its largest candidate route
variable (i.e., highest xit value from the previous LP solution) in-
cludes edge e. For the first iteration, use the route provided by the
initial solution.

3. Go to the next edge and repeat step 2. Stop as soon as a fixed num-
ber of nets (=200) are selected. We determined this value to be
suitable in our experiments for all the ISPD’11 benchmarks and
our discussed subregion size.

Note, each LP includes all the constraints given in the MILP formulation
so all edges in the subregions are included in it. All binary variables are
relaxed to be in the interval [0,1]. Overall, the above procedure ensures
that a small number of nets are selected in each subregion. The nets are
deemed critical because the edges used to identify them have higher
congestion as determined by the most-recent LP solution. The LP-solver
can in turn more effectively reduce the PCR objective in consecutive LPs
because congested edges have a higher degree of contribution to the
PCR.
Once the set of critical nets are selected, each LP adds at most two candi-
date routes per critical net.
We first explain how the first candidate route is found for a critical net.
This is done by applying decomposition for a multi-terminal net to break
it into two-terminal subnets which is done similar to prior works such
as Shojaei et al. (2011). We then use the shortest path (i.e., min-cost path
in a weighted graph) to connect each sub-net.
Specifically, we start by assigning a weight we for each edge e ∈ R in the
considered (3D) routing subregion. The weight of each edge is deter-
mined based on its utilization which is computed from the most-recent
LP solution (or the initial routing solution in the first LP). We then ap-
ply a transformation to simplify this 3D graph to a weighted 2D graph
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in order to reduce its size and accelerate the runtime of the min-cost
path problem.
Specifically, for the 3D grid-graph G of size X× Y × L, the 2D grid-graph
G2D will be of size X×Y. To determine the weight of an edge in the G2D,
for each edge e2D = ((i1, j1), (i2, j2)) we consider all edges in G specified
by e = ((i1, j1, ℓ), (i2, j2, ℓ)),∀ℓ ∈ L. The weight of e2D denoted by w2D

is given by we2D := minℓ(we). A net terminal located at (i,j,ℓ) in G will
also map to (i,j) in G2D. For each edge e2D in G2D we also remember
the layer ℓ of the corresponding 3D edge in G which had the minimum
weight.
Figure 6.2 shows an example on how this transformation is done to-
gether with the layer remembered for each 2D edge.
Once a shortest path is found in G2D, a 3D path is immediately created
by assigning each edge to its corresponding layer and then connecting
the edges (which have a shared vertex in G2D) with vias.

Theorem 6.1. Our transformation guarantees that the shortest-weight path in
G2D creates the shortest-weight path on G.

Proof. Assume there exists a shortest path P in G which includes at least
one edge e = ((i1, j1, ℓ), (i2, j2, ℓ)) in which we is not the smallest com-
pared to e ′ = ((i1, j1, ℓ ′), (i2, j2, ℓ ′)) which is above or below it on a differ-
ent layer. Replace e with e ′ in P and create a connected path by adding
vias from the two end points of e ′. The new path P ′ will have a smaller
total weight than P because 0 < we ′ < we and the added vias have a
weight of 0. This contradicts the initial assumption that P is the shortest
path.

We also consider adding a second candidate route for each selected net
as follows. We first identify the “best” candidate route of net i which
corresponds to tree t with the highest xit value from the solution of the
previous LP iteration. After updating the edge weights at the beginning
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Figure 6.2: Creating a 2D grid graph for solving the 3D shortest path
problem.

of the new iteration, we consider moving each flat segment of t to the
other layers. If the sum of the edge weights for a segment decreases,
then it will be moved. This approach founds a second candidate route
for a net if there is at least one such segment that has a decreased cost.
Determining if a second candidate route can be found for a net is done
extremely fast and in a runtime smaller than solving the shortest path
problem.

6.3 Experimental Results

We implemented our global routing procedure, denoted by IGR, in C++
and ran experiments on a 2.8GHz Intel CPU with 12GB of memory. Ex-
periments were ran on the ISPD’11 routability-driven placement bench-
mark Viswanathan et al. (2011). Table XII lists the benchmark informa-
tion including the global routing X and Y grid-dimension (with 9 metal
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layers for all benchmarks), and number of nets. We used a placed ver-
sion for each benchmark by downloading the best placement solution
generated for that benchmark from the ISPD’11 contest website.
To create an initial solution for IGR, we used the NCTU-GR 2.0 Liu et al.
(2013a) global router which ran in regular mode. As a result our initial
global routing solutions were already optimized and had a total over-
flow of 0 in most benchmarks.
To implement IGR, 3D non-overlapping subregions were formed which
covered about 25% of the layout. The global routing problem inside
each subregion was defined to optimize the PCR objective according
to the following penalty function.

pe =


0 if 0 ⩽ re < 0.5

10re − 5 if 0.5 ⩽ re < 0.7

1000re − 698 if re ⩾ 0.7

(6.7)

This function assigns a mild penalty to edges with congestion ratio of
0.5 ⩽ re < 0.7. However it assigns a much higher (X10) penalty slope
for congestion ratio of 0.7 or above. This makes all the edges with con-
gestion ratio greater than 0.7 to have a higher contribution to the PCR
objective, thus be more likely to be reduced by IGR. This includes edges
with overflow (i.e., congestion ratio above 1) as well as edges with con-
gestion ratio close to 1; as noted in Alpert and Tellez (2010), this latter
group of edges can easily get over-capacity if rerouting becomes nec-
essary at the detailed-routing stage when additional factors need to be
considered which were ignored during global routing. All LPs and the
MILPs of subregions were solved using CPLEX V12.6.0 IBM.
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Table XII: Benchmark information and placement tools

Design GX ×GY #Nets Placer
s1 704x516 822744 SimPLR
s2 770x1114 990899 Ripple
s4 467x415 567607 Ripple
s5 774x713 786999 Ripple
s10 638x968 1085737 RADIANT
s12 444x518 1293436 SimPLR
s15 399x495 1080409 Ripple
s18 381x404 468918 mPL11

Comparison of the Distribution of the Congestion Ratios

Table XIII shows the impact of IGR on the distribution of edge conges-
tion ratios. Columns 4-10 correspond to edges with different ranges of
congestion ratio. Different rows show the distribution for the initial so-
lution (expressed in terms of number of edges in each range) as well as
of IGR (expressed in terms of % reduction in number of edges in each
range compared to the initial). For example for s1, there were 327201
edges with congestion ratio in the range of (0.8,1] in the initial solution,
and IGR reduced the number of these edges by 18.09%.
Within the (0.8,1] range, we were able to further reduce the number of
edges within the (0.9,1] sub-range, on-average by 12.83% and at most by
23.80% over all the benchmark.
Columns 11 and 12 report the total wire-length (TWL) and total edge-
overflow (EOF). We verified that our calculation of these quantities
matched with the ones generated by the ISPD’11 contest evaluation
script for each benchmark. All EOFs remained unchanged after apply-
ing IGR. TWL increased slightly, however TWL is not considered in our
formulation and to control long detouring, we ensure the initial routes
are decomposed on the subregion boundaries and rerouted only inside
each subregion.
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The last row shows the average %reduction by IGR for each range over
all the benchmarks. On average IGR was able to reduce the number
of congested edges which fall in the range (0.8,1] by 9.9%. Only two
benchmarks (s2 and s4) had edges with congestion ratio >1. These are
few edges having overflow and IGR associates a higher penalty with
them so IGR reduced their count by a higher percentage of 17.57% and
25.00% for s2 and s4 respectively. In return, IGR increased the edge
count falling in the ranges with lower congestion ratio (0.4,0.8].
Column 13 reports the number of subregions created by IGR for each
benchmark. Note these are independent and non-overlapping subre-
gions of fixed size 20x20x9 so they can be parallel-processed. Column
14 reports the maximum runtime of a subregion in each benchmark in
seconds. The average runtime is less than a minute and the maximum
runtime of subregion over all benchmarks was 113 seconds. This run-
time includes all steps of the global routing procedure for a subregion.
We note, we consider IGR to be a fast procedure in the presence of par-
allel cores/machines which is common these days. So the wall runtime
of our procedure will also be very fast and comparable to the the max-
imum runtime of a subregion. Through IGR we are able to modify the
congestion ratio distribution of a given GR solution.

Comparison of Runtime

Table XIV reports information related to the runtime of IGR. The num-
ber of subregions created by IGR is reported in column 2 for each bench-
mark. Note these are independent and non-overlapping subregions
of fixed size 20x20x9 which cover about 25% of the layout and can be
parallel-processed. Column 3 reports the maximum runtime of a sub-
region in each benchmark in minutes. The average runtime is less than
a minute and the maximum runtime of subregion over all benchmarks
was 1.28 minutes. This per-subregion runtime includes all steps of the
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global routing procedure for a subregion including solving iterations of
column generation using linear programming and the final MILP. We
note, in the presence of enough number of cores (which should not be
an issue for EDA companies), the estimate of the wall clock time will
be close to (slightly higher than) the maximum runtime of a subregion
per benchmark because the subregions are completely independent of
each other. The only additional overhead is to send information about
each subregion (which is a small-sized problem relative to the entire
layout) to each core and then collect back the solutions and assemble
them together. The overall CPU time when all subregions are processed
sequentially (which is based on our current implementation) is reported
in minutes per benchmark and is on average 69.98 minutes.
Columns SBR, SHP, LP, ILP show the breakdown of the overall sequen-
tial runtime as a percentage. Specifically SBR represents the percentage
of the time spent on creating the subregion, SHP represents the percent-
age spent on solving all the shortest path problems, LP represents the
percentage spent on solving the linear programs which is done at each
iteration of column generation, and ILP represents the percentage spent
on one-time solving the ILP at each subregion. We note these percent-
ages are computed by adding the corresponding times over all the sub-
regions and then dividing each by the overall sequential runtime. As
can be seen, most of the runtime is spent on solving LP and ILP using
CPLEX. Interesting solving the shortest path problem to generate new
candidate routes takes a small percentage of on-average only 0.08% over
all the benchmarks which is due to our graph transformation procedure
to quickly solve many instances of the 3D minimum-weight path prob-
lem using our proposed 2D variation.
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Table XIV: Analysis of runtime and number of subregions in IGR

Design Runtime (minutes) Breakdown(%)
#regions Tmax

region Tseq SBR SHP LP ILP
s1 227 0.72 64.47 5.8 0.09 63.7 30.4
s2 536 1.14 112.00 2.3 0.09 50.9 46.7
s4 121 0.48 32.27 1.8 0.09 51.0 47.1
s5 344 1.42 111.88 3.1 0.08 81.5 15.3
s10 385 1.28 125.78 11.4 0.08 60.4 28.1
s12 143 0.77 50.12 4.0 0.07 53.7 42.2
s15 123 0.51 37.35 3.5 0.08 69.9 26.5
s18 96 0.41 26.01 3.6 0.08 62.3 33.9

Average 265.9 0.84 69.98 4.45% 0.08% 61.69% 33.78%

X: Normalized distance of a subregion from the four boundaries
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Y: Percentage PCR improvement in a subregion

Figure 6.3: Improvement in solution quality as a function of subregion
distance from the closest boundary shown for the 227 subregions in s1.

Comparison Among the Subregions

Figure 6.3 shows the percentage improvement in solution quality (PCR)
that is obtained per subregion as a function of its distance from the
closest boundary. This is for benchmark s1 when running IGR using
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the same setup as in the previous experiments. The closest distance is
normalized to the corresponding grid size. (So if the closest distance
is measured horizontally it is normalized to the size of the X-grid, and
similarly if it is vertical it is normalized to the size of the Y-grid.)
The Y-axis measure the improvement in PCR (locally) within each sub-
region. As can be seen from the figure, most of the improvements in
PCR are in subregions which are not very close to the boundary. Overall
about 8% of the subregions were close to a boundary (with normalized
distance of at most 0.05). The average of these local PCR improvements
over the subregions is about 20% which is quite high. We note these are
higher than the average PCR reported in Table XIII which is measured
globally over all the subregions. We think this is due to the combination
of two factors: (1) our subregions only cover about 25% of the layout,
and (2) these designs are highly congested. Therefore, more improve-
ment is likely for these benchmarks if a higher percentage of the layout
was covered.

Analysis of One Subregion

Table XV shows the details when solving one subregion in benchmark
s1. Iteration 0 is the initial solution. Rows 1 to 7 correspond to the it-
erations of column generation. (Here the stopping criteria forces ter-
mination before reaching the 10 maximum iterations of column gener-
ation.) Column 2 shows the actual PCR in iteration 0, and the reduc-
tion in PCR (compared to iteration 0) as a percentage in iterations 1 to
7. As expected improvement in PCR increases (from 3.4% to 12.08%)
because the total number of candidate routes increase at each iteration.
The number of new candidate routes added per iteration is reported in
column 3. For example 270 new candidate routes are added at iteration
7. The runtimes of each iteration is also reported in seconds. As can be
seen, with increase in the number of candidate routes it takes longer to
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Table XV: Analysis for one subregion

Iteration PCR #NewCandidateRoutes Runtime (sec)
0 423328.1 360 1.19
1 3.40% 358 1.49
2 5.61% 354 1.21
3 7.55% 353 1.45
4 8.80% 342 1.72
5 10.06% 300 1.70
6 11.50% 295 2.05
7 12.08% 270 2.36

solve the LP at each iteration.
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