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ABSTRACT

The supply chain involved in the manufacturing of equipment for oil and gas (O&G) in-
dustry faces several challenges due to fluctuations in demand and custom-engineered nature
of components. This research develops stochastic models to address important problems

related to production and subcontracting in this supply chain.

This research analyzes production and subcontracting policies for two types of components:
standard-type components and knowledge-type components. Standard-type components
do not have proprietary designs, and are often supported using Make-to-Stock (MTS) or
Assemble-to-Order (ATO) policies. In contrast, knowledge-type components are highly
custom-engineered components that use proprietary designs, and are often supported us-

ing Make-to-Order (MTO) policies.

For standard-type components, we first analyze single product ATO system with capacity
constraints and stochastic lead times. We assume that component replenishment is carried
out by orders placed to an internal manufacturing facility and/or an external subcontractor,
and component stock levels at the manufacturer are determined by dual index based policies.
Using queuing models, we analyze the tradeoffs related to internal manufacturing versus sub-
contracting under different types of dual index policies. We use matrix geometric methods
to conduct an exact analysis for systems with two components and develop a decomposition

based algorithm to analyze the performance of systems with more than two components.
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Numerical studies provide useful insights on the performance of various dual index policies.

Next, we analyze manufacturing system with multiple components where individual com-
ponents are made to stock through production either at a shared in-house manufacturing
facility or at facilities of external subcontractors dedicated to individual components. The
manufacturer and the subcontractor differ in terms of costs, production capacities, rates, and
service level capabilities. Using Markov decision process models, we determine the optimal
policy and characterize its structure. To address the curse of dimensionality, we derive a set
of conditions that partitions the state space into regions and characterize optimal policies
in each region. We consider several special scenarios and prove that the optimal policy has
a multi-index type structure in each of these settings with dual index type structure as a
special case in some settings. Next, we extend the analysis to multi-product ATO systems
where individual components can be made either at a shared manufacturing facility or at
facilities of external subcontractors dedicated to particular components. We develop an it-
erative procedure that exploits solution characteristics of subsystems to reduce the action

space and use the procedure to determine optimal policies for the original ATO system.

For knowledge-type components, we analyze strategic production and subcontracting deci-
sions for a system with centralized control and decentralized control. Since, these knowledge-
type components are often made to order, they pose different challenges especially in terms
of capacity investments and demand variations. In both up-markets and down-markets,
manufacturer must balance capacity investments, subcontracting production to certified sub-
contractors, and cost of unused capacity. We study this problem in both a centralized and
a decentralized setting using Markov decision process models and stochastic game formu-
lations. We analytically provide optimal capacity investment and production strategies for
both the manufacturer and the subcontractor, and show the impact of unused capacity
on such decisions. Using numerical studies, we analyze the inefficiencies of operating in a

decentralized setting.



Chapter 1
Introduction

For the foreseeable future, clean oil and gas (O&G) is likely to remain the biggest and the
most economical source of energy. O&G industries contribute about $1.2 trillion to the US
economy and support roughly 10 million jobs (Anonymous (2013)). Despite the importance,
its manufacturing and supply chain challenges have been vastly under-appreciated. This the-

sis develops stochastic models to address several important problems in these supply chains.

1.1 Supply Chain for Oil Drilling Equipment

Broadly speaking, the supply chain for oil drilling equipment (see Figure 1.1) is comprised
of mainly three phases: (1) exploration phase, (2) production phase, and (3) processing and
distribution phase. In the exploration phase, companies such as Exxon Mobil, BP, Shell,
etc identify potential drilling sites and oil wells. These companies hire drilling contractors
such as Seadrill, Transocean, etc, to drill oil using rigs that could be land rigs, floating rigs,
offshore rigs, or inland barge rigs. In the production phase, O&G equipment manufactur-
ers such as National Oilwell Varco, GE Oil and Gas, Cameron, Schlumberger, etc provide
custom-engineered equipment to support the oil drilling operations. These equipment can be
large in size and thus are transported to the drilling site as separate parts and assembled at
the drilling site. Once, the oil rig is fully functional, the safety and environmental authorities

conduct a thorough check to prevent any accidents during the drilling process. Next, drilling



contractors pump up oil. Finally, in the processing and distribution phase, logistic and distri-

bution systems transport these crude oil to operating companies for refining and distribution.
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Figure 1.1 Overview of Supply Chain in O&G Industries

Inefficiencies in this supply chain can be very expensive. For example, manufacturing de-
lays in delivery of the equipment could cost up to $10,000 per day. This implies that the
equipment manufacturers lie on the critical path of a supply chain that consists of drilling
contractors (Transocean, Seadrill), manufacturers of equipment (drawworks, top drives),

suppliers of parts (pumps, bearings), and suppliers of raw materials (castings, forgings).

A typical oil rig is mainly comprised of many equipment such as power system, drawworks,

top drives, etc as shown in Figure 1.2. Much of this equipment is custom-engineered for



specific drilling applications. Power system comprises of combustion engines and transmis-
sion system, and provides power to run various equipments on the rig. A top drive is a
mechanical equipment that is located on the oil rig (either on the land or under the ocean)
to facilitate the drilling process. Top drives are usually assembled from different components
such as hydraulic motors, main body, shaft, pipe handlers, etc. Similarly, drawworks is a
heavy equipment that wraps the wire-rope drilling line. It consists of a main drum to spool
the wire-rope with the help of powerful motors, a brake system to stop the spooling pro-

cess, a main body to provide the structure, and skids to support the weight of the drawworks.

Top
drive

Drill-floor Iron roughneck

control valves

brake system

(@ ®)

Figure 1.2 Oil Drilling Equipment (a) Land Rig, and (b) Top Drive

1.2 Challenges in the Supply Chain
The supply chain involved in the manufacturing of drilling equipment faces several challenges:
Custom-engineered equipment: Oil drilling equipment is highly custom-engineered and

could easily require over 10,000 hours in engineering and 50,000 hours in manufacturing. For

instance, drawworks could require around 20,000 components in the assembly process. This



requires the supply chain to have efficient assemble-to-order, make-to-order, or engineer-to-

order strategies.
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Figure 1.3 Variation in Crude Oil Prices (Anonymous (2015a))

Market fluctuations: The demand of oil drilling equipment directly depend on the price
of the crude oil. Figure 1.3 shows the price trend of the crude oil over a 10 year period
(2006 - 2015) (Anonymous (2015a)). We observe a highly variable trend in the price which
directly impacts the demand of oil drilling equipment. These price variations drive corre-
sponding fluctuations in demand for the drilling equipment used in this industry (Damodaran
(2009)). These demand fluctuations have a significant cascading impact throughout this sup-
ply chain. High retail price of the crude oil triggers drilling more oil to increase supply and
reduce prices. This results in more orders for drilling equipment. Demands could increase
by over 50% within a span of a year. This sudden spike in demands over a short time span

puts great stress on the supply chain. Similarly, low retail price of the crude oil results in



fewer orders for drilling equipment. For instance, demands could drop by over 50% in a
span of two years. This sudden drop in demand affects the entire supply chain and some-
times threaten the survival of equipment manufacturers. Companies like Samson Oil and
Gas and Sabine Oil and Gas, that barely survived the market downturn in year 2009, could
not survive the downturn in year 2015 (Anonymous (2015b,c); Stenner (2015)). Even larger
companies like Schlumberger, National Oilwell Varco, and General Electric have been forced
to layoff thousands of employees (Anonymous (2009); Merette (2009); Eaton (2015); Long
(2016)). Even during up-markets, manufacturers struggle to ramp up production capacities

at the pace necessary, and resulting product delays cost over $10,000 per day.

Manufacturing capacity: Oil drilling equipment supply chain manufactures massive equip-
ment which consumes significant manufacturing resources. For example, top drives and draw-
works can consume more than 2000 hours of manufacturing resources which is equivalent to
an years worth of manufacturing on a single machine. The limited internal manufacturing
capacity at equipment manufacturers impose a pressing challenge to meet the customer de-
mand. During up-market, manufacturers face capacity issues and struggle to keep up with
demand and avoid component shortages. For instance, drilling motors could be delayed due
to shortages of 20% of their components. Similarly, during down-market, manufacturers
struggle to keep the manufacturing resources busy which results in high unused capacity

costs (or overhead absorption risks).

Subcontracting: Since, capital equipment needed for manufacturing of oil drilling equip-
ment is expensive (often costing $2-3M for a single machine). Manufacturer often needs to
subcontract significant manufacturing operations to certified external subcontractors either
because the manufacturer does not have the required capacity or because the manufacturing
cost is lower at a subcontractor. For instance, as stated earlier, drawworks is assembled from
various parts such as drum assembly, brake system, main body, skids, etc. To satisfy the

demand of the drawworks and overcome internal capacity limitations, a manufacturer might



subcontract few parts such as drum assembly and skids to various external vendors. This

enables them to meet customer demand and reduce cost.

Knowledge versus standard components: Oil drilling equipment are mainly classified
into two categories: knowledge-type components and standard-type components. Knowledge-
type components are highly custom-engineered parts that use proprietary designs, and are
often supported using Make-to-Order (MTO) policies. However, these components require
high capital investment and have high costs associated with unused capacity. In contrast,
the standard-type components do not have proprietary designs, and are often supported us-
ing Make-to-Stock (MTS) or Assemble-to-Order (ATO) policies. These two categories drive

different supply chain partnerships and impose challenge in decision making process.

In the next section, we describe some of the research issues in this supply chain.

1.3 Research Issues and Questions

We develop a set of stochastic optimization models to derive insights that will address the
key supply chain challenges faced by equipment manufacturers for the O&G industry. From
the components perspective, we focus on two categories: standard-type components and
knowledge-type components. We describe research issues and questions in the subsequent

sections.

1.3.1 Subcontracting Strategies for Standard-type Components

At first, we analyze subcontracting issues in a manufacturing system where a single end prod-
uct is assembled to customer specification from multiple standard-type components that are
held in stock (See Figure 1.4). Each component is either manufactured in-house or sourced
from subcontractors. For instance, although the manufacturer could manufacture compo-

nents at a faster rate using in-house manufacturing capacity, they might choose to reserve



that capacity for other products and decide to subcontract production to a subcontractor
that might have a lower production rate. However, the availability of components in stock
is critical to assemble the final product and satisfy the demand in a timely manner. Under
this setting, we analyze the potential of dual index based production and stocking policies
that can be used by the manufacturer. We analyze the optimal thresholds for dual index

policies and provide answers to the following research questions:

Subcontractor 1 L @
)

Component /
Base Stock

Satisfied
Orders

Manufacturing
Departments

Demand/Orders

Subcontractor 2 F @ Component 2

Base Stock

Figure 1.4 Subcontracting Strategies for Single Product Made of Standard-type
Components

RQ1: What are the optimal thresholds and production quantities for the in-house manu-
facturer and the subcontractor?

RQ2: Under what conditions would certain types of dual index policies outperform other
dual index policies? How do these thresholds impact total cost, expected inventory, and

backorders?

In this thesis, we answer these research questions in Chapter 3.



Next, we analyze a make-to-stock (MTS) system comprising of multiple standard-type com-
ponents as shown in Figure 1.5. These components require special equipment that cannot
be dedicated to serve a specific component. So, the individual standard-type components
can be made either at a shared in-house manufacturing facility or at dedicated facilities of
external subcontractors. Therefore, the supply chain manager has to make decisions such as
when and how much capacity at the manufacturer should be dedicated to a given component
and when and how much production of a given component needs to be subcontracted. We

investigate the following research questions:

O

Figure 1.5 Subcontracting Strategies for Make-to-Stock Standard-type Components

Small Shafts

v Large Shafts

RQ3: How do differences in capabilities, costs and service level expectations impact the
optimal production and capacity utilization strategies?” How do such tradeoffs depend on
the differences in production costs?

RQ4: Do optimal policies have a easily describable structure that can be friendly for indus-

try implementation?

In this thesis, we answer these research questions in Chapter 4.



Next, we extend our research to systems with multiple end products assembled from standard-
type components. Here, multiple products are assembled from various standard-type com-
ponents as shown in Figure 1.6. Again, the manufacturer could produce components using
shared internal manufacturing capacity or choose to reserve that capacity for other products,
and instead subcontract production to a subcontractor that might have a lower production
rate. Now, multiple manufacturing resources are shared to make two or more components.

This increases the complexity of the problem. We investigate the following research questions:

W Large Shafts
W Small Shafts

Satisfied
Orders

ONO

"’ @ Large Top Drives
g S,
% 2; Large Main Small Top Drives
Bodies
> M, .
Satisfied

I . Orders
22 Small Main

Bodies

O,

Figure 1.6 Subcontracting Strategies for Multi-product Made of Standard-type
Components

RQ5: How could we address the state space complexity associated with determining the

optimal policies for multi-product systems? Are there efficient algorithms to resolve state
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space complexity?
RQG6: What is the optimal use of in-house manufacturing capacity?” What is the structure

of the optimal policy?

In this thesis, we answer these research questions in Chapter 5.

1.3.2 Subcontracting Strategies for Knowledge-type Components

We analyze subcontracting decisions for knowledge-type components in a multi-period set-
ting with non-stationary demands. Recall that knowledge-type components have proprietary
design and are often made to order. However, such components require high capital invest-
ment and the cost of under utilizing the available capacity is significant. In such cases,
knowledge-type components might need to be strategically subcontracted to vendors to ei-
ther to exploit available capacity at the subcontractor or to reduce the costs associated with
unused capacity. We analyze a manufacturing system under centralized control consisting
of a manufacturer and a subcontractor as shown in Figure 1.7. In each time period, the
manufacturer and the subcontractor needs to balance tradeoffs related to production costs
and unused capacity costs to determine the optimal production and capacity investment
decisions. Under centralized setting, we aim to provide answers to the following research

questions.

RQ7: When and how much capacity should the manufacturer and the subcontractor invest
in and utilize during each time period?
RQ8: What is the structure of the optimal policy and how does the unused capacity impact

the optimal production and subcontracting decisions?

Next, we analyze the tradeoffs under decentralized setting consisting of autonomous manu-
facturer and subcontractor as shown in Figure 1.8. The subcontractor provides the pricing

scheme and capacity availability, and the manufacturer decides their capacity, production,
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Figure 1.7 Capacity and Sourcing Decisions for Components in Centralized Setting

and subcontracting decisions. Under this setting, we aim to provide answers to the following

research questions.

RQ9: How do optimal capacity, manufacturing, and subcontracting decisions depend on
pricing scheme?
RQ10: How can we reduce the gap between the system with centralized control and a sys-

tem with decentralized control?
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Manufacturer

Manufacturer (M)

Demand

Knowledge-type
Components
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Supply from
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Subcontractor (S)

Capacity Decisions

Figure 1.8 Capacity and Sourcing Decisions for Components in Decentralized Setting

In this thesis, we answer these research questions in Chapter 6.
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1.4 Research Methodology

We approach this research through university-industry collaboration. We develop analytical
methods to provide structural insights of the models, and validate our models with industry

partners.

1.4.1 University-Industry Collaboration

This research is part of a multi-year, multi-university collaboration between National Oilwell
Varco (NOV), a leading O&G equipment manufacturer, and three universities (University of
Wisconsin-Madison, Texas A&M University, Pennsylvania State University). Each of the re-
search problem listed have been motivated and addressed in collaboration with our industry
partners. For instance, in the manufacturing of drilling motors at one of NOV manufactur-
ing facility, we observed the issues related to the standard-type components such as rotor,
stator, etc. In this setting, the facility could either subcontract the manufacturing of rotor,
stator, etc to external subcontractors at a slower production rate and lower costs, or manu-
facturer these components in-house at a faster production rate and higher production costs.
This motivated our research on single product ATO system with standard-type components
(RQ1, RQ2). Our model and insights for standard-type components have been validated

by the industry partners.

Next, while analyzing components/operations such as shafts, wire harnessing, PCB assem-
bly, we observe that some of these components require capacity on a special equipment. This
prevented the manufacturer from dedicating such equipment to a specific group of compo-
nents, and multiple components share the available capacity. This motivated our research

on make-to-stock systems and assembly systems comprising of multiple components (RQ3,

RQ4, RQ5, RQ6).

Finally, while analyzing knowledge-type components such as blowout preventers, we observed

that these components have proprietary designs and are made-to-order. These components
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require special equipment that require high capital investments. The manufacturer also
incurs penalty costs (overhead costs) for any under utilized capacity. These components are
strategically subcontracted to the external subcontractors to better balance capacity with
demand variations in different time periods. However, the industry partner is also concerned
with the overhead costs associated with unused capacity at the in-house manufacturing
facility. This motivated our research for knowledge-type components where we investigate
capacity and production decisions (RQ7, RQ8, RQ9, RQ10). In the next section, we
discuss analytical methods for subcontracting strategies for standard-type components and

knowledge-type components.

1.4.2 Analytical Approach and Thesis Outline

We develop stochastic models to analyze production, subcontracting, and capacity decisions
for standard-type and knowledge-type components. We derive theoretical results related to
optimal policies and costs, and validate the results using numerical computation and discus-

sions with industry partners.

At first, we analyze production and subcontracting decisions in assemble to order (ATO)
system for standard-type components. We use concepts of queuing theory and Markov de-
cision process to analyze ATO system with single product (Chapter 3) and ATO systems
with multiple products (Chapter 5). For ATO system with single products, we propose exact
method that uses queuing theory and matrix geometric approach to identify optimal thresh-
olds, and production quantities for the in-house manufacturer and the subcontractor. We
also propose a novel approximation to solve large systems and provide error bounds using
numerical studies (RQ1). Next, we compare multiple dual index policies under different

parameter settings to obtain conditions under which one dual index policy outperform other

policies (RQ2).
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In Chapter 4 of the thesis, we analyze MTS system with multiple components that share the
same manufacturing resource. Using Markov decisions process models and efficient action
elimination techniques, we determine the structure of the optimal policy. Numerical experi-
ments validate the theoretical results and highlight the impact of costs and service rates on
the optimal production decisions (RQ3). Using conditions on the cost and service rates, we
partition the state space into various regions and show that the optimal policy has a simple

characterization in each region (RQ4).

In Chapter 5 of the thesis, we extend our analysis to ATO system with multiple products that
share the same manufacturing resources. We address the state space complexity associated
with determining the optimal policies for ATO systems with multiple products by using a de-
composition based Markov decision process model, and provide the structure of the optimal
solution. Note that, in this case we model a shared resource where one could manufacture
multiple types of components on the same resources. We also provide insights on the use

of the shared resources and validate these observations using numerical studies (RQ5, RQG6).

In Chapter 6 of this thesis, we analyze subcontracting strategies for knowledge-type compo-
nents. In this case, we analyze the structure of the optimal capacity and production decision
in the centralized system using Markov decisions process models, and analyze the structure of
optimal capacity and production decision in the decentralized system using stochastic game
models (RQT). We analytically show the impact of unused capacity on optimal capacity
decision at the manufacturer and the subcontractor, and support this analysis with numer-
ical experiments (RQ8). Using numerical experiments, we also compare the gap between
centralized system and decentralized system and analyze the impact of pricing parameters

set by the subcontractor on this gap, and production and subcontracting decisions (RQ9,

RQ10).
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Chapter 2
Literature Review

In this chapter, we review relevant literature. This chapter in categorized into four sec-
tions. Section 2.1 focuses on subcontracting strategies in manufacturing systems. Section
2.2 focuses on the single product and multiple product systems. Section 2.3 focuses on the
capacity investment models. Section 2.4 focuses on supply chain competition for pricing,

capacity and production decisions.

2.1 Subcontracting Strategies in Manufacturing Systems

Studies on subcontracting often focus on how it enables manufacturing firms to improve
service levels (Li and Kouvelis (1999); Jiang et al. (2006); Yao et al. (2010)). However, sub-
contracting strategies have lead time and cost implications as well. Lee and Zipkin (1989)
analyze make-or-buy decision in a capacitated system where the manufacture satisfies de-
mand either through available internal capacity or through unrestricted purchasing from
the subcontractor. They assume zero replenishment lead time from both the sources and
provide the optimal make-or-buy quantities using a dynamic programming algorithm. They
also determine conditions where the manufacturer satisfies the demand through (1) only in-
house manufacturing (2) only purchasing from the external supplier, and (3) both in-house
manufacturing and purchasing from the external subcontractor. Additionally, the model is

extended to include backordering and bounded inventory while minimizing the total costs
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of production and subcontracting. Van Mieghem (1999) analyzes a two stage capacity ac-
quisition model where the in-house manufacturer and the subcontractor coordinate capacity
using game theory approach. They develop a two stage stochastic capacity game where
in the first stage the manufacturer and the subcontractor independently and simultaneously
decide their capacity levels while in the second stage the manufacturer and the subcontractor
independently and simultaneously decide their production levels to satisfy customer demand.
Platts et al. (2002) assume constant lead times for procurement and develop a subcontracting
framework to determine the quantity to be produced in-house and purchased from external
suppliers. Sethi et al. (2003) analyze manufacturing systems with subcontractors that differ

in delivery rates and costs and determine optimal (s,S) policies for these settings.

Next, we summarize the literature that studies dual index policies. Bradley (2005) analyzes
an in-house production and subcontracting model with exponential processing times for or-
ders and Poisson demand arrival process and shows that the stationary dual base stock policy
for component replenishment is optimal. They consider the setting where unit production
costs at the subcontractor exceeds the in-house manufacturing variable cost and derive a
closed-form structure for the optimal threshold and show that it is a dual base stock type
policy. The dual base stock policy specifies one threshold that separates the region where the
low production rate is used from the region where the high production rate is used. When
the low production rate is used, the production is carried out only by the in-house manu-
facturer, while when the high production rate is used, production is carried simultaneously
by both the subcontractor and the manufacturer. Our research focuses on make and buy
decisions (as opposed to make versus buy) i.e., the manufacturing facility primarily procures
components but reserves the option to make parts in-house to meet service level obligations.
Further, our focus on an ATO system makes our analysis more complex than the study in
Bradley (2005). Veeraraghavan and Scheller-Wolf (2008) determine optimal order quantities

for both the subcontractor as well as the in-house manufacturer under the assumption of
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deterministic lead times. They propose a dual index policy that is near optimal.

Our work builds on the dual base stock and dual index policies discussed in the literature,
but extends their application to a broad class of ATO systems with multiple components. In
particular, depending on the sourcing and replenishment decisions, the replenishment lead
times of these components could vary with the workload at both in-house manufacturing and
local subcontracting facilities. ATO systems that operate under dual index policies recog-
nize the sensitivity of lead time to workloads at the in-house manufacturing facility and local
subcontractor to suitably adapt their production and subcontracting decisions to improve

system performance.

In the subsequent sections, we review the literature related to the component replenishment
policies. Many studies on ATO systems build on the classical results reported in Rosling
(1989) and Clark and Scarf (1960). These studies analyze a multi-stage assembly system
and show that base stock policy is optimal when the system does not have any capacity
constraints. We analyze two streams of literature on ATO system: (1) system operating
under ATO system with single end product, and (2) system operating under ATO system
with multiple products.

2.2 Assemble-to-Order Systems

Single Product Systems: Several researchers have analyzed ATO system with a single
end product. Studies on ATO systems with single product focus on the impact of optimal
decisions and system parameters. One stream of literature focuses on base stock control
models. Song and Yao (2002) model a single product ATO system where the final product
is assembled from components or sub-assemblies that are made to stock. The paper assumes
that customer orders follows a Poisson process and the final product is assembled compo-

nents is negligible time if all components or sub-assemblies are available, otherwise the final
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product is backordered with positive backordering cost. The paper assumes that compo-
nent replenishment lead times are independent and identically distributed and the authors
analyze the performance of the system using M /G /oo queuing system. Using greedy-type al-
gorithm, the paper evaluates the impact on system parameters on the performance measures
and also determine a easy to compute performance bounds on the average backorders and
component inventory. Gallien and Wein (2001) analyze a single product ATO system with
independent and non-identical replenishment lead times using queuing theory and provide

an approximate solution to determine component replenishments.

Ko et al. (2011) model a single product ATO system with Poisson demand arrival for the
assembled product and exponential service times for the components. In this case, each
component is produced at a production facility (in-house or subcontractor). They assume
base stock policy for inventory replenishment and derive a closed-form expression using lin-
ear bounds for lead times of components. Karaarslan et al. (2013) consider single product
ATO system and derive the optimality condition for ATO system under two variations of

the pure base stock policy.

Another stream of literature focuses on continuous-review models. Glasserman and Wang
(1998) analyze a ATO system with a single product assembled from multiple components.
They assumes a continuous review base stock policy and establish trade-offs between delivery
performance and the average on-hand inventory of components in ATO systems. Song (2002)
considers continuous review model of single product ATO system with multiple components

and develop an efficient algorithm to analyze the performance of the ATO system.

All of these studies share two similarities: (i) the component stock replenishment is done
using a base stock policy, and (ii) the lead time distribution for component replenishment is
known. In Chapter 3 of this thesis, we analyze a ATO system with single end product. Our

research also assumes that the component stock replenishment is done using a base stock
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policy, but in contrast it assumes that the replenishment can be done either in-house or at a
subcontractor facility based on the stock level. This additional flexibility in turn influences

the distribution of lead time for component replenishment orders.

Multi-product Systems: Studies including Song (1998, 2000); Lu and Song (2005); Zhou
and Chao (2012) analyze the performance of ATO systems with multiple products. Song
(1998) is the first to analyze the order fill rate in a multi-component ATO system operat-
ing under a base stock policy. The demand process is modeled as a multivariate compound
Poisson process where several types of customer arrives and orders a certain subset of compo-
nents. The demand of each component is then superimposed to obtain a compound Poisson
process that models the demand for each product. The paper assumes that the unfulfilled
demand is backlogged at positive cost. However, the paper also assumes that upon demand
arrival, if some of the components are unavailable, then the in-stock components are shipped
to the customer and the customer only waits for the out-of stock components. The paper
derives a structured expression to determine the optimal order fill rate for multi-component
system and shows that the fill rate of an individual component is not a good indicator of the
order fill rate. Song (2000) analyzes a ATO system with multiple products where customer
orders arrives in batches of different sizes. They assume constant replenishment lead time
and compound Poisson process for customer demand. They present a model that estimates
the order fill rate for the final product. Lu and Song (2005) analyze an multi-product ATO
system operating under a base stock policy and develop simple bounds and approximations
to evaluate the expected backorders. Zhou and Chao (2012) analyze multi-product ATO
system using simple Stein-Chen approximation. They assume arbitrary distributed compo-

nent replenishment lead times and provide error bounds on the optimal order fill rate.

ATO systems with multiple products has been widely analyzed using numerical methods.
Zhao and Simchi-Levi (2006) develop an efficient numerical method based on Monte-Carlo

simulation to analyze large multi-product ATO system with batch ordering. They assume
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the demand arrival follows Poisson process and determine the optimal order fill rate. El-
Hafsi et al. (2008) develop heuristics to analyze production and inventory policies in a
multi-product ATO system. Under the assumption of independent lead time of compo-
nent replenishment and lost sales, they show that the base stock and inventory rationing
are the optimal production and inventory policies. Later, Zhao (2009) extends Zhao and
Simchi-Levi (2006) research to a general class of ATO systems that includes both non-split
orders and split-orders. The paper develop an exact method as well as an efficient sampling
method to determine the order fill rate in an ATO system. However, none of these studies
analyze production and subcontracting decisions while considering interaction in the com-
ponent replenishment in a multi-product, multi-component ATO system. In many settings,
subcontractors present an alternate production capability that could be used to reduce av-

erage backorders.

Several studies have analyzed MTS system with multiple products. Ha (1997) studies the
optimal production scheduling in a facility that manufacturers two products on a shared man-
ufacturing resource. For the special case where both products have equal service rates, they
develop a linear switching rule for production scheduling. Benjaafar et al. (2004) develop
a non-linear formulation for multi-product, multiple flexible resources demand allocation
problem and use branch and bound algorithm to determine stationary long-run fractions
for each resource and product. Gurvich et al. (2008) and Hu and Benjaafar (2009) analyze
system with multiple fully flexible resources, multiple demand classes and use queuing the-
ory to derive stationary policies to reduce number of resources, and wait time of customers
respectively. In contrast, Chapter 4 of this thesis analyzes partially flexible resources (dedi-
cated subcontractors and shared manufacturer) and determine the structure of the optimal
production scheduling and subcontracting decisions. Our research also requires that the

components have different service rates and can be made at one or more facilities.
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In Chapter 5 of this thesis, we analyze ATO system with multiple products. We consider
dedicated subcontractor and shared in-house manufacturing facility for component replen-
ishment. Using stochastic models, we analyze the interactions in components during the

manufacturing process and provide insights on optimal component replenishment strategy.

Subsequent section provides an survey of literature on strategic outsourcing in supply chain.
Research usually involves a game theoretic formulations involving either Cournot competi-
tions (Varian (2006)), Bertrand competitions (Bertrand (1883)), and/or Stackelberg games
(von Stackelberg (2011)).

We analyze two streams of literature: (1) capacity investment models, and (2) supply chain

competition in assembly systems.

2.3 Capacity Investment Models

Several studies in the literature derive capacity acquisition strategies to set optimal produc-
tion/capacity levels (Van Mieghem (1999); Atamturk and Hochbaum (2001); Rajagopalan
and Swaminathan (2001); Bish et al. (2005); Niroomand and Hochbaum (2012)). Van
Mieghem (1999) analyzes a single period centralized system and a decentralized system
where the manufacturer and the subcontractor decides the capacity levels at the beginning
of the time period, followed by production decisions when the demand is realized. The sub-
contractor optimally decides the production quantities to satisfy its own market demand and
also to supply products to the manufacturer. The paper analyzes various price contracts and
show that the lower price contracts with the supplier could decrease the overall profit of the
manufacturer. Next, Atamturk and Hochbaum (2001) develop a multi-period determinis-
tic linear capacity acquisition and subcontracting model for non-stationary demand. They

also provide insights on the tradeoffs to balance insufficient capacity and excess capacity
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in any time period to minimize the total cost of capacity acquisition, production, subcon-
tracting, and inventory decisions. Bradley and Glynn (2002) develop a Brownian motion
model to analyze capacity investment and inventory decisions for a single firm. Niroomand
and Hochbaum (2012) develop a mixed-integer formulation to identify the optimal capacity

allocation in manufacturing systems.

There have been several studies that use game theory models to determine the optimal
capacity and production levels under uncertain demand (Van Mieghem (1999); Wang and
Gerchak (2003); Iyer and Jain (2004); Bernstein et al. (2011)). Wang and Gerchak (2003)
consider a decentralized system where the components can be replenished through a sec-
ondary source and the manufacturer acts as a leader. The manufacturer can either invest
on capacity in-house or use external subcontractor to satisfy the demand. They assume
stochastic demand and use Stackelberg game to provide insights on the optimal capacity
and pricing levels of the components. Bernstein et al. (2011) develop a Stackelberg game
to analyze multi-product system where a single firms decides the capacity levels prior to
demand realization. Li and Debo (2009) analyze a two period model where one supplier
invests on non disposable capacity to satisfy demand of the downstream firm for the first
time period, and two suppliers could invest on non disposable capacity to satisfy demand
of the downstream firm for the second time period. They assume zero unused capacity cost
and show that both suppliers should produce in the second time period under increasing
demand case. Swinney et al. (2011) analyze capacity investment timing model where the
firms can invest on capacity at two times: (i) invest on capacity early at a lower price, when
the demand uncertainty is not resolved (ii) invest on capacity late at a higher price when
the demand uncertainty is resolved. They use game theory to show that under high demand
uncertainty, new firms should make early investment on capacity and the more established

firm should make late invest on capacity.
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2.4 Supply Chain Competition in Assembly Systems

Another stream of work relates to supply chain competition in assembly systems (Gerchak
and Wang (2004), Bernstein and DeCroix (2006), Zhang (2006); Zhang et al. (2008); Jiang
and Wang (2010)). For instance, Gerchak and Wang (2004) consider a decentralized assembly
system with uncertain demand and analyze two types of supply chain contracts between the
assembler and the subcontractors. First contract considers quantity game similar to Stack-
elberg game between the assembler and the subcontractors to maximize revenue while the
second contract considers a price game similar to Bertrand game between multiple suppliers
to select the best wholesale price for the product. Bernstein and DeCroix (2006) analyze a
decentralized assembly system with stochastic and stationary demand where a single prod-
uct is assembled from two components. The components are replenished using base stock
policy. Using game theory, they analyze equilibrium base stock levels for each component.
Zhang (2006) analyzes a decentralized assembly system that consists of a manufacturer and
multiple subcontractors. Using stochastic game formulation, they determine equilibrium
base stock levels for components under random demand case. Zhang et al. (2008) analyze
a decentralized assembly system where the manufacturer and subcontractors are involved in
the quantity game, and the manufacturer also provides the wholesale price for the compo-
nents according to a push and pull system. Jiang and Wang (2010) analyze a decentralized
assembly system where components are sourced from multiple suppliers. In this case, sup-
pliers are involved in Bertrand price competition to decide the price for the components. Li
(2002) considers a two-level supply chain consisting of an upstream manufacturer and multi-
ple downstream retailers, and analyze a setting with demand and cost information leakage.
They assume demand uncertainty and analyze a Stackelberg game between the manufacturer
and retailers where the manufacturer sets the pricing scheme and the retailers decide the
production quantity, and a Cournot competition between retailers to sell the product at a
constant cost. They identify the equilibrium price decision by the upstream manufacturer

and the equilibrium quantity decision made by retailers. Zhang (2002) extends Li (2002)
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research to include Bertrand price competition for the downstream firms and show that the

type of game at the downstream level does not impact the optimal strategy.

Cachon and Lariviere (2001) model a Stackelberg game between the manufacturer and single
supplier where the manufacturer is the leader and determine the production capacity levels.
Bernstein and DeCroix (2004) analyze a modular assembly system where the components are
purchased from different subcontractors. They analyze pricing and capacity games between
the assembler (leader) and the subcontractors and show that in equilibrium, the assembler
tends to set the price of the components such that the subcontractor always produces at
the same capacity level. Anand and Goyal (2009) use Stackelberg game to analyze demand
information leakage between the incumbent and the entrant in a supply chain with demand

uncertainty.

These studies do not consider the impact of unused capacity on the optimal capacity and
production decisions. In addition, studies on decentralized system usually assume single time
period. In Chapter 6 of this thesis, we consider a multi-time period problem and analyze
the effect of unused capacity cost at the manufacturer and the subcontractor on the optimal

capacity, production, and pricing decisions.
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Chapter 3

Single Product Systems with Standard-type
Components

3.1 Introduction

In order to cut costs and reduce lead times, many manufacturers design their products and
processes so that the final product can be quickly assembled from its components. In the lit-
erature, these systems are commonly referred to as assemble-to-order (ATO) systems. ATO
systems combine the benefits of make-to-order (MTO) systems and make-to-stock (MTS)
systems to provide custom products at short lead times. The strategy initially found popu-
larity in the computer industry, and since then the concept has gained acceptance in several
other industries. Our research is motivated by collaborations with a large manufacturer of
custom drilling motors for industrial applications. These drilling motors vary significantly
in terms of their power requirement, motor speed, motor size and shape. A typical drilling
motor is assembled from various components such as rotor, stator, shaft, and connection
box that have different specifications and ratings. Since the manufacturing of some of these
components takes considerable amount of time and machining resources, the manufacturer
often builds the critical components to stock. On receipt of an order, the drilling motor is
assembled to the required specification from the components in stock. Therefore, the avail-

ability of components is critical to guarantee high service levels and short lead times.
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In such a setting the manufacturer could either subcontract some components to a local ven-
dor or produce them in-house to minimize component stock outs. Consequently, the man-
ufacturer needs to balance the tradeoffs (in-house production costs, subcontracting costs,
on-hand inventory costs, and backordering costs) and determine when and how much quan-
tity of components need to be made in-house versus at the subcontractor. For example, if
the manufacturer can produce the components at shorter lead times, the benefits of short
lead times might outweigh the higher in-house production costs. In contrast, if the man-
ufacturer is constrained by capacity, they might subcontract manufacturing of components
to a local subcontractor and incur the subcontracting costs. Understandably, the manufac-

turer needs to analyze these tradeoffs while making production and subcontracting decisions.

In this chapter, we analyze an ATO system that uses a combination of stocking policies and
subcontracting strategies to improve component availability. The ATO system assembles a
single end-product from N components that are build to stock. Production and stocking
decisions are made based on one of three dual index policies namely, the dual base stock
policy (DB policy), the on-hand inventory based policy (OH policy), and the lead time
based policy (LT policy), respectively. The stock for the components are replenished either
from a local subcontractor or by the in-house manufacturing facility. Both facilities, have
finite production capacity and stochastic lead times. We use the Matrix Geometric approach
described in Neuts (1981) and exploit the structure in the sparse transition matrix to pro-
vide an exact solution to estimate system performance in moderately sized systems with two

components (N = 2).

For larger systems with more than two components (N > 2), state space explosion prevents
an exact analysis. We overcome this challenge through a novel approximation method that
uses decomposition of the Markov chain to efficiently evaluate the system performance. The
approximation method has several advantages. First, the approach scales well with increase

in the number of components (V). Second, the approach can be easily adapted to analyze
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system performance under various dual index policies. Third, the approach yields reasonably

accurate estimates of performance to guide managerial decisions.

Using numerical studies we illustrate the performance of our approach for a system operating
under three dual index policies (namely, DB, OH, and LT). We point out an operational
ambiguity that arises when a system operates under the DB policy and then show that the
OH policy and LT policy provide insights into how this ambiguity can be resolved in the

DB policy to realize its benefits in practice.

The rest of the chapter is organized as follows. Section 3.2 presents the Markov chain for-
mulation of the proposed system. Using these formulations, we develop an exact solution
methodology for solving ATO systems and analyze its computational challenge for large
scale problems. Section 3.3 presents an approximation method to solve large systems for
dual index polices. We also extend approximation method for an ATO system with multiple
components. Section 3.4 summarizes numerical studies for the proposed policies. Finally,

Section 3.5 summarizes model insights and conclusions.

3.2 Manufacturing System with Production and Subcontracting

Figure 3.1 illustrates an ATO system that assembles a single product with two components.
Component k, k = 1,2; can be manufactured by the the in-house manufacturing facility M;,
and the local subcontractor Sy. The components are stored at inventory location L and are
assembled at station A to satisfy the demand for the final product. We assume that the cus-
tomer orders for the final product arrive according to a Poisson process N(t),t > 0 with rate
A and are satisfied on a first-come-first serve (FCFS) basis at assembly station A. Assembly
operations of this station are instantaneous, i.e. if both components are available at the
demand arrival epoch, then the demand for the final product is immediately satisfied. If one

or more component is unavailable, then the demand for the final product is backordered and
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the customer order stays in the queue at station A. We model the local subcontractor Sy and
the in-house manufacturing facility My, k = 1,2 as a single server queue with exponentially
distributed service time with mean ,u;,ﬁ and u;:k, respectively. This allows us to model the
effect of workload on lead times at these facilities. The production cost per unit is ¢, and

Cm,k for component k at Sy and M, respectively. Without loss of generality, we assume that

M < g a0d €5 < G, B =1, 2.

We assume that the system maintains a base stock level z, for each component k, i.e., we
ensure that the net inventory position is z; through orders for replenishing inventory placed at
demand arrival epochs. Let Oy, 1 (t), Osx(t), I1(t), B(t) denote in-house manufacturer’s on-
orders, subcontractor’s on-orders, on-hand inventory quantity and backorders for component
k respectively at decision epoch t. Then, since the system maintains a base stock policy for

each component, the following equation holds:
2 = Opi(t) + O,k (t) + IL(t) — Br(t), k = 1,2, Vt (3.1)

Note that at anytime ¢, I;(t)By(t) = 0. For this system, we analyze system performance
under three ordering policies, namely dual base stock policy (or DB policy), on-hand inven-

tory base policy (or OH policy), and lead time based policy (or LT policy).

Dual Base Stock (DB) Policy:

Under the dual base stock policy, if at any instant ¢ corresponding to a demand arrival,
It (t) < ex (where e is a predefined inventory threshold limit), then the manufacturer uses
all available capacity at its internal manufacturing facility, M} and the local subcontractor,
Sk to replenish the inventory for component k. If instead at the demand arrival epoch ¢,
2, > Ii(t) > ey, the manufacturer places an order to replenish inventory for component k
only to its local subcontractor Sy. If It(t) = zx; at demand arrival epoch, no replenishment
order is placed for component k. Note that when [ (¢) < e, the dual base stock policy does
not specify who should get the order (Mj, or Si) as long as the order ensures that both the

internal manufacturing facility My and local subcontractor Sy are busy. However, from an
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Figure 3.1 Supply Chain Model for Single Product System

order fulfillment point of view, it is important to determine how workload of replenishing
inventory must be distributed between M}, and Sj. Therefore, we will consider two variations
of the dual base stock policy, namely the OH policy and the LT policy, that specifies who
gets the order when I (t) < ey.

1. On-hand inventory based (OH) policy: Under the OH policy, if at a demand arrival
epoch t, I;(t) < jr (where jj is a predefined inventory threshold limit), then the
manufacturer places the order for component £k order to its internal manufacturing
facility Mj. If at the demand arrival epoch ¢, z; > Ij.(t) > jk, the manufacturer places

the order for component k£ to the local subcontractor Sj.

2. Leadtime based (LT) policy: Under the LT policy, the manufacturer first determines the
estimates of lead time ﬁmk(t) = O i(t)/tm . for the in-house manufacturing facility
and [A/sﬁk(t) = Osx(t)/psr for the local subcontractor of component k, respectively.
Then, if at the demand arrival epoch ¢, ﬁmk(t) < lkﬁs,k(t) (where [ is a predefined lead
time threshold limit), the manufacturer places the order for component & to its internal

manufacturing facility M}, and to the local subcontractor S, when f)mk(t) > lkf/s,k(t).
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Note that we intentionally use separate notations, ey, ji, and [; to denote the thresholds
corresponding to the DB, OH, and LT policies, as these thresholds could be different from
each other. In the next section, we present an exact analysis of this system under these three
ordering policies. We shall show through numerical studies in Section 3.5, that despite the
operational ambiguities in the DB policy, the policy actually yields better performance. The
performance of OH and LT policy then provide an intuitive explanation for this superior
performance and also resolve this operational dilemma of who should get specific orders in

the DB policy.

3.3 Exact Analysis of System with Two Components

This section presents exact approach to determine the steady state probabilities II for an

ATO system with subcontracting flexibility.

3.3.1 Exact Analysis under DB Policy

Under dual base stock policy, let each state in the state space, P8 be defined as oP? =

(I, I); where, I} is the inventory position of component k, k = 1,2. Then, the system evolu-
tion can be modeled as a Markov chain. Let IIP® denote the steady state probability vector
and, mPB (I}, I,) denote the steady state probability of state (I1,l5). Let NPP denote the
possible values of I, under the dual base stock policy and B,,,, denote the finite maximum
limit for backorders of any component k, k = 1, 2. Then, the total number of states in £P7 is
NPBNPE and under the dual base stock policy, NPZ = (2 + Byaz), k = 1,2. Note that our
assumption that B,,., is finite is not restrictive and the analysis in the sections below can be
extended to the case where B,,,, = oo with minimal modifications. However, setting B4z
to be finite allows us to see the impact of various policies on the structure of the transition

probability matrices, and limits computations to finite matrices.
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The state space X8 can be re-written as P8 = APB x APB where APP | = 1,2; is the set
of all possible values of the (my, s) pair. To construct the transition matrix QP2 we exploit
the similarities in the transition probabilities for states belonging to a particular set within

each APB. Each set APB k = 1,2; can be further partitioned into 5 mutually exclusive

subsets, Aﬁf C APB =12 .5 where UiAﬁf = ADPB and

APV ={Iy: Iy = —Buas}

APY ={I; 11— Bpaw < Iy < e — 1}
Agf ={ly: Iy = e}
A,gf:{]k:ek—i—lg_fkgzk—l}
A{Zf ={l;: I = z.}

Note that if Bye, = oo, AYT and ApY merge into one subset. For notational simplicity,
we drop the superscript DB in the rest of this section. Using these subsets A, ; C Ay, =
1,2,...,5, Chapman-Kolmogorov (C-K) equations can be written. For instance, for I; € Ay 5

and I, € Ay the C-K equations are written as follows:

For I) € Ay and I, € Ay q:

(fsg + o1 + psg + pm2)m(l1, I2) = An(L+ 1,1+ 1)
+(pm + psp)m (L — 1, 1) (3.2)
For I} € A1 o and I, € Ay:
(AN pesg + o1 + psg + pm2)m(L1, L) = An(L+ 1,1+ 1) + (pm1 + psp)m(lh — 1, 1)
(o + ps2)m(ly, Ip — 1) (3.3)
For I € Ajo and I € Ay 3:

()\ -+ Hs,1 —+ Hm,1 + M572)7T(11, IQ) = )\71'(]1 + 1, _[2 -+ 1) + (,um71 + ,us’l)ﬂ'(fl — 1, ]2)

(a2 + ps2)m(l1, I — 1) (3.4)
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For I; € ALQ and I e A274I

A+ psg + pma + prso)m(li, L) = An(Li+ 1,1 + 1) 4+ (pma + psp)m(ly — 1, 1)
+MS’27T(11, _[2 - 1) (35)

For [1 € ALQ and [2 € A2’53

AN+ psg + pom + ps2)m(L, 1) = (pma + psp)m(ly — 1, Is) + psom(fh, 1o — 1) (3.6)

The C-K equations for other pairs Iy € A,s = 1,...,5 and I, € A, ; can be written in a
similar way. Unfortunately, these C-K equations yield a large and sparse transition matrix
Q. However, we can exploit the structural properties of the transition matrix using Matrix-

Geometric representation. We discuss the details below.

Let, C = diag(0,\, A\, X). Define I; as an identity matrix of size Ny x Ny, By =By, +C —
(Mm,Q + ,us,Q)I[l, IB33,1 = Bm - (,um,Q + Ms,2)]117 and IB4,1 = IB31,1 - (,Lbs,2)H1- The corresponding
matrices (Bg 2, Bso, and By o) for component 2 are defined in a similar way. The matrices,

B,k =1,2 and D are defined as follows:

0000
D A0 00
00X 00
00 XO
— (ke + Lske) (Hm e =+ hs k) 0 0
_ 0 —(N+ fge + k) (g + fhsk) 0
0 0 —(A + fm g + s k) s
0 0 0 —(A + ke + fsik)

Then the transition matrix, Q can be constructed using the above mentioned matrices as
shown in Equation (3.7) and the steady state probabilities can be calculated using the system

of Equations (3.8) and (3.9) and the Matrix-Geometric technique described in Neuts (1981).
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0" 17 2, %) B
(0, *5 B (o + pos1)o
(1, *; D B3 (ttm,1 + pes,1)Ia
Q= (2> *; D Byo fs,1 1o
(0, % D B
(3.7)
Q=0 (3.8)
[le =1 (3.9)

Here, e =[1,...,1] of size 1 x (N; x N3) and (‘0,—*_; represents a vector with all states having
I; = 0 in the dual base stock policy. From the solutions to Equations (3.8) and (3.9), the
expected on-hand inventory levels E[I;] and expected backorders E[Bj] for component 1
can be calculated using Equations (3.10) and (3.11). The performance measures for the
component 2 can be calculated in a similar way. The in-house throughput, T'H,, ; and the
supplier’s throughput, T'H, ; for component 1 are also computed using Equation (3.12) and
(3.13). Similarly, we can define the performance measures for component 2. Note that in

these equations (%, %) denotes the steady state probability at the particular state.

E[B)] = IZmax(—Il,O)w([l,*) (3.10)
E[L] = Zlmax(ll,())ﬂ(ll,*) (3.11)
THyy = Izljum,lw(fl,*) (3.12)
TH,, = Ii: prsam (I, %) (3.13)

1<z
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3.3.2 Exact Analysis under OH and LT Policy

When a system operates under policy, P, where P € {OH, LT}, the state of the system is
completely defined only if O, x(t) and Oy (t) are known for each component k,k = 1,2 at
any time t. Thus, we define a four-dimensional state variable to describe the system state un-

P = (mb S1, M3, 82)

der these policies. Let, ¥ denote a state in the state space £7, where o
and my (or sj) represents the on-order quantity of component k at in-house manufac-
turer Mj, (or local subcontractor Si). Then, the system evolution can be modeled as a
Markov chain. Let II” denote the steady state probability vector and 7% (my, s1,ms, so)
denote the steady state probability of state (mq,s1,ma,ss). Let, N} denote the possible
values in the tuple (mg,s;). Then, the total number of states in X7 is NP NJ. Under

the OH policy, NP# = (zx — ji + 2)(Bimax + (21 + jx + 1)/2) and under the LT policy,
NET = (2 + Binaz) (21 + Buae +1)/2 for k= 1,2.

The state space ¥.7 can be re-written as ¥ = AT x AY where, A7 k = 1,2; is the set of
all possible values of the (my, s) pair. To construct the transition matrix Q we exploit
the similarities in the transition probabilities for states belonging to a particular sets within

each A7. For instance, each set AP k = 1,2; can be further partitioned into 11 mutually

exclusive subsets, AC? ¢ AQY i = 1,2, ..., 11 where U;AQH = AP and

Akl = {(mg, sg) : mp =0, s =0}
AR = {(mp, s) : my = 0,1 < s < 2 — ji}
ARE = {(mu, 1) : my, = 0, 81, = 2, — Jr + 1}
Ak4 = {(mi,sk) @ <M < Braa+Ik+q—3, 8k = 2k —Je—q+2, q = {1, ..., 26— Jp+1}}
AR = {(mr,sk) : Mt = Brnaa +Jk + Qe — 2, 8k = 2k — Jk — Gk + 2, @ = {1, .., 26 — i + 1}}
AR = {(my, s) : 1 < mye < 2 — i, s = 0}
A ={(mp,se) : 1<mp < ze—jJe, 1<se <z —Jn— @+ 1, e = {2, ..., 2 — e + 1}}
Aks ={(mg,sk) : L<mp <z —Jrs Sk=2k —Jk — @ + 2, et = {2, .., 2z — Jr. + 1}}

)

A%I—{(mk,sk cmy =2, — Jp + 1, sy =0}
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AR = {(mus si) = 2 — Je +2 <y < 2 + Brae — 1, sp = 0}

Ako,ﬁ = {(mg, sk) : Mk = 2 + Baa, sk, = 0}

Note that if B,,,, = 00, subsets Agf and Agg merge into one subset, and subsets Agﬁ)

and Ag’ﬁ merge into another subset. Figure 3.2 represents these subsets pictorially. For

notational simplicity, we drop the superscript OH in the rest of the section. Using these
subsets Ag; C Ag,i = 1,2,...,11, Chapman-Kolmogorov (C-K) equations can be written.

For instance, for (mq, s1) € A; 4 and (mao, s2) € Ay the C-K equations are written as follows:
For (mq,s1) € Ay4 and (ma, s2) € Ag:
(>\ + ,us,l + Mm,l)T‘—(mla 51, M2, 52) == ,um,lﬂ-(ml + 17 S1, M2, 82) + ,us,Qﬂ-(mh S1,M3, S2 + 10314)

For (mq,s1) € Ay and (ma, s2) € Ago:

(A4 sy + 1 + ps2)m(my, $1,ma, S2) = Am(my — 1,81, Mg, 59 — 1)
Fimam(my + 1, 51, Mo, S2)
+[1'm,27r(m1a S1, M2 + 17 82)

+/’L5,27T(m17 S1,Ma, S2 + 1) (315)
For (mq,s1) € Ay4 and (ma, s2) € Ags:

(A ps1 + fm1 + ps2)m(my, S1,ma, s52) = Am(mg — 1,51, ma, 52 — 1)
+/~Lm,1ﬂ-<m1 + 17 S1, My, 52)

—{—[ngﬂ'(ml, S1, My + 1, 82) (316)
For (mq, s1) € Ay 4 and (mg, s2) € Asy:

(A st + Pt + fs2 + fm2)T(my, S1,Ma, 82) = Am(mq — 1,51, ma — 1, 59)
+Nm,17r<m1 + 17 51, M2, 82)

+/’Lm,27r(m17 S1, M2 + 17 52) (317>



For (mq,s1) € Ay 4 and (mg, s2) € Ay5:
(Hs1 + fm1 + fs2 + fm2)T (M1, S1, M2, S2) = Am(my — 1,51, ma — 1, 59)
+imam(my + 1, 51, Mo, S2)
For (mq,s1) € Ay 4 and (ma, s2) € Asg:
(At psg + fang + i 2)T (M1, 81,M2,82) = fimam(my + 1, 81, My, 52)
b 2m (M, s1,ma + 1, 82)
+its 0m (M, S1,Ma, g+ 1)
For (mq,s1) € Ay 4 and (mg, s2) € As 7
(A4 sy + o1 + tma + prs2)m(ma, s1, Mo, S2) = Am(my — 1, 51, ma, $2 — 1)
+imam(my + 1, 51, ma, S2)
+lm 2 (M, s1,ma + 1, S9)
+its 2m (M1, S1, Mo, 53+ 1)
For (mq,s1) € Ay4 and (ma, s2) € Agg:
(A ttsq + o1 + fma + phs2)T(My, 1, My, S2) = Am(my — 1, 51, M2, S2 — 1)
+imam(my + 1, 81, ma, S2)
+fm 2 (M, 51, M0 + 1, 59)
For (mq,s1) € Ay and (ma, s2) € Agg:
(At ps1 + fant + flm2) (M, S1,ma,82) = pimam(my + 1, 81, ma, 52)
b 2m (M, 51, M0 + 1, 89)
For (mq,s1) € Ay 4 and (mg, s2) € As1o:
(A sy + fom1 + fm2)T(my, S1,ma, 82) = Am(my — 1,51, mg — 1, 59)
+itmam(my + 1, 51, ma, $2)
it 2 (M, S1,ma + 1, 82)

+/,L3727T(m1, S1, M2, S + 1)
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(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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For (mq,s1) € Ay 4 and (mg, s2) € Az11:

(fsq + 1 + fma)m(my, S1,ma, S2) = Am(my — 1,51, mg — 1, 59)

1 (ma + 1, 81, M2, 52) (3.24)

The C-K equation for other states where (mq,s1) € Ay, i = 1,...,11 and (mo, s2) € Ay
for can be written in a similar way. As in the case of the dual base stock policy, we can
exploit structural properties using the Matrix-Geometric representation of Q9. Let, C =
diag(\, A\, X, 0, ), \,0) and define I, as an identity matrix of size NO# x NOH. Also define
Bs i = Bix — fts1le, Bag = Bigp — Cusaly + pimali), Bsp = Bip — (C 4+ 2p511k + fin1lk),
Bo s = By — ttmalk — psaly and Byy g = By g — (C+ pon 1 1k) + ps11i), where By g for k= 1,2

and D are defined as follows:

OAXN00O0O0O0

00 X0O0O0O0

000 X O0O0O0

D={0 000000

00000 XNO

000 0 O0O0 A

000 O0O0O0OTO O
A 0 0 0 0 0 0
po —(\ pien) 0 0 0 0 0
0 o —(A+ Lok + fm k) 0 s,k 0 0
Bie=1] 0 0 Ham, e —(Ks ke + fim,k) 0 Ham, e 0
Lot 0 0 0 —(A+ o) 0 0
0 0 0 0 ok —(A+ Lmk) 0

0 0 0 0 0 Mok — Mk

Then, we can construct the transition matrix, Q®¥ using the above mentioned matrices as

shown in Equation (3.25) and compute the steady state probabilities by solving the system
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of equations Equation (3.26) and Equation (3.27) using the Matrix-Geometric technique
described in Neuts (1981).

0,040 (0,1L507 LLeo0T @Le0T  (1L0x0T (205607 (3,0%%)7
(0,0, %, %) B12 D
(0717*a*; /14371]12 BS,Q D
(1,1, %, % o, 112 By,2 D s 112
QOH = (2,17*,*; tn, 112 Bs,2 ps, 112
(1,0, *,* pm, 112 Bg,2 D
(2,0, *,* pm, 112 Bog,2 D
(3,0, ,* o, 112 Bi1,2
(3.25)
1nQ°" =0 (3.26)
Ile=1 (3.27)

Here, e =[1,...,1] of size 1 x (N9# x NPH) and m denotes a vector with all states
having m; = s; = 0in OH policy. The expected on-hand inventory levels E[I;] and expected
backorders F[B;] for component 1 are also calculated using Equations (3.28) and (3.29). The
performance measures for component 2 can be calculated in a similar way. Note that in these

equations, 7(x, x, %, %) denote the steady state probability of the particular state.

E[B,] = Z (mq + 81 — z1)m(My, S1, *, *) (3.28)
m1+s1>21
ElL] = Z (z1 — my — s1)m(my, s1, *, *) (3.29)
mi1+s1<z1
THm,l = Z /’Lm,kﬂ-(mh *, %, *) (330>
m1>0
THs,l = Z ﬂs,k’ﬁ(*7 51, %, *) (331)
s1>0

Similarly, we can conduct the analysis for the LT policy. In Section 3.5, we conduct numeri-

cal analysis for these systems under the three polices (DB, OH and LT policy) respectively.
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3.4 Approximate Analysis

The exact analysis of ATO systems described above become computationally challenging
even with the Matrix-Geometric representation of the transition matrices. As we go from a
2-component ATO system to a 4-component ATO system, the total number of unique C-K
equations increases from 25 to 625 for the DB policy, and from 121 to 14641 in OH policy.
This limits the use of Matrix-Geometric approach to analyze large systems. To overcome
this issue, we propose an approximation method that uses decomposition (see Figure 3.3).
The key idea is to split the original Markov chain for a system with N components into N
independent Markov chains, each corresponding to a subsystem that models the evolution
of one of the components. However, for the decomposition technique to be accurate, in the
Markov chain for component k, the effect of the other components need to be accounted for

appropriately by using the effective demand arrival rate ;.

Note that in the original system described in Section 3.2, external orders are lost when
backorders due to one or more components reach B,,,,. However, in the decomposition
analysis, demands for component k arrive at subsystem k£ and queue at station A as long
as the backorders for that component is less than B,,,, i.e. the decomposition ignores the
fact that orders could be lost because backorders for one or more of the other components,
i (i # k) might reach B,,.,. Therefore, the effective effective demand arrival rate A for
component k£ needs to be set to recognize this possibility. Let X; denote the event that the
backorders at subsystem i is equal to B,,.,, and let P; denote the probability of this event.
Then assuming that X; is independent of X; for every pair, 7 and j, then, [], 2k (1-P)is
the probability that the backorders at all of the others subsystem i is less than B,,,,. Then
[1 =1,z (1 = P)][1— P4] is the probability that the backorders at one or more of the others

subsystem ¢ # k is equal to B4, while the backorders at subsystem k is less than B,,q;.
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This implies that effective demand arrival rate Ay for component k in the analysis of subsys-

tem for component k is given by

A= A (1 —p-JJa-rn- Pk]> (3.32)

i#k
Clearly, the solution to subsystem k requires estimates of P;,Vi € 1,2,.... N and ¢ # k. In
Section 3.4.1 and 3.4.2 we characterize the subsystems under the DB and OH policy, and

in Section 3.4.3 we present the approximate solution algorithm.

3.4.1 Characterizing Subsystems under DB Policy

Let QPP denote the transition matrix for subsystem corresponding to component & under
dual base stock based policy. Let Ay denote the demand arrival rate corresponding to com-
ponent k in the decomposition approach, and let 722 (1I;,) denote the corresponding steady
state probabilities. For notational simplicity, we drop the superscript DB in the rest of the

section. Then, Q4 can be written using the Chapman-Kolmogorov (C-K) equations shown

below:

For I, € Ay 1:
(s + pomge)me(Ie) = Memp(Ip + 1) (3.33)

For I, € Ay o:
(A s g + ) Te(lk) = Neme(L + 1) + (pme + s o) (L — 1) (3.34)

For I, € Ay 3:
AN+ s p)me(L) = Meme(Le + 1) + (e + s ge) T (L — 1) (3.35)

For I, € Ay4:

()\ + ,Us,k)ﬂ‘k(lk) = Akﬁk([k + 1) + us,kﬂk(lk — 1) (336)
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For I, € Ay 5:

()\ + ,LL57]€)7T]€(I]€) = ,uS,k?Tk(Ik — 1) (337)
These equations are solved using iterative algorithm described in Section 3.4.3.

3.4.2 Characterizing Subsystems under OH Policy

Let QY denote the transition matrix for the subsystem corresponding to component k under

the on-hand inventory based policy. Let A\, denote the demand arrival rate corresponding to

component k in the decomposition approach, and let 79 (my,, s;) denote the corresponding

steady state probabilities. For notational simplicity, we drop the superscript OH in the rest
of the section. Then, Qj can be written using the Chapman-Kolmogorov (C-K) equations

shown below:

For (mk, Sk) € A]ﬁli

)\kﬂ'k(mk, Sk) = ,us,kﬂk(mk, Sk + 1) (338)

For (myg, sk) € Ay

(Mk + s i) (me, sk) = XeTe(mu, Sk — 1) + fm pmx6 (M + 1, 53)

+its gk (M, S+ 1) (3.39)

For (myg, sk) € Ags:
(M + ps )i (me, sp) = Meme(me, sk — 1) + o emr(my + 1, sg) (3.40)

For (my, s) € Ay 4
(M + tsge + tomge)Th(ME, sK) = Meme(mg — 1, 8k) + o7 (M + 1, Sg) (3.41)

For (my, si) € Ay

(s + P k)T (Mg, s) = N (my, — 1, s) (3.42)
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For (my, si) € Ayg:
(M + pm )T (Miy Sk) = ek (me + 1, 8x) + fs o7 (Mg, Sp + 1) (3.43)

For (my, si) € Az

(M + tomge + fsge)Te(ME, k) = MeTe(mpg, sk — 1) 4+ fo e (M, + 1, Sg)
—f-,us’kﬂk(mk, Sk —f- 1) (344)

For (my, s) € Ayg:
(N + tom g + fsge)Te(ME, SK) = MeTe(mpg, sk — 1) 4+ fo e (M, + 1, Sg) (3.45)

For (my, s,) € Ay

(>\k + ,um,k)ﬂk(mk, Sk) = umk?rk(mk + 1, Sk) (346)
For (mk, Sk) € A]ﬁloi
Ak + o) Tie(mi, 56) = Neme(mu — 1, 88) + fm o (Mg + 1, 51)
+,us,k7rk(mk, Sk + 1) (347)
For (my, si) € Agq1:
(>\k + HmJg)ﬂ'k(mk, Sk) = )\kﬂ'k(mk — 1, Sk) (348)

These equations are solved using iterative algorithm described in Section 3.4.3.

3.4.3 Solution Algorithm and Performance Measures

Recall that the solution to subsystem k requires the estimates of P;,Vi,i # k must be ob-
tained from the solution to subsystem Vi, 7 # k and vice versa. Therefore, we use an iterative

approach. The steps of the iterative approach are shown below:

Step 0: Initialize P,SO) =0, €e=10"° 0, = 1, and calculate an estimate of )\,(go) using

Equation (3.32), for k = 1,..., N. At each iteration n, n = 1, ...., while &, > ¢,
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Step 1: Solve subsystem k,k = 1,..., N using )\,(ﬁnfl),i > 1

— For DB policy: Solve Equations (3.33) - (3.37).
— For OH policy: Solve Equations (3.38) - (3.48).
— Compute estimates of P,En) from the steady state probabilities.

Step 2: Calculate new estimate of )\,(Qn) using P,En).

Step 3: Compute §j, = |P,§n) - P,gn_l)|.
If 0 < €,Vk, stop. Else, repeat steps 1 — 3.

Using a similar approach, we can analyze the performance of an ATO system operating un-

der LT policy as well.

The expected on-hand quantities E[I], expected backorders F[By], the throughput T H,, x
for component k at the manufacturing facility, and T'H,, at the subcontractor facility are

calculated using Equations (3.49) - (3.52) for DB policy.

E[By] = IZmax(—Ik,O)ﬂk(Ik) (3.49)
ElL] = Izkmax(lk,O)wk(Ik) (3.50)
THyp = Z o 7k (1) (3.51)
TH,, = jgkﬂsm(fk) (3.52)

The corresponding equations for the OH policy are given by Equations (3.53) - (3.56).
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E[By] = Z (i, + sk — 2x) (M1, 51) (3.53)
mp+SE>zk
ElL] = Z (21 — Mg — si) (M, si) (3.54)
mk—i-skgzk
THpp = Y pnr(m, ) (3.55)
my >0
THop = Y prspm(*, sp) (3.56)
5,>0

Note that the performance measures obtained using the above equations use approximation
method. Alternatively, for smaller systems, these performance measures could be obtained
from exact solutions using Equations (3.2) - (3.6) for DB policy and Equations (3.14) - (3.24)
for OH policy respectively. For larger systems where exact solutions of the Markov chain
becomes computationally challenging, we derive results from detailed simulation models. We

compare the accuracy of these estimates as part of our numerical studies in Section 3.5.

3.5 Numerical Comparison of Dual Index Policies

In this section, we discuss the numerical experiments conducted to compare the performance
of policies under different scenarios. We define the total cost function TC' = Y, (¢ T Hypy i+
cs kT Hg 4 b E[By] + hi E[1i]) where, by, is the cost of backordering per unit of component k
and hy, is holding cost per unit for component k. We conduct three sets of experiments. The
first two experiments compare the performance of DB, OH, and LT policies (see Sections
3.5.1 and 3.5.2), while the third experiment investigates the performance of the decomposi-
tion algorithm for ATO systems with N > 2 (see Section 3.5.3). In all our experiments, we
observed that the algorithm converges within 0.5 seconds on a personal computer with an
Intel core i5 processor. Further, we always obtained a unique solution to the system. Al-
though we do not have a proof for the convergence, in our numerical computations, we find

that the time for convergence does not increase with increase in the number of components.
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3.5.1 Performance Comparison of DB, OH, and LT Policy

We present the properties and the comparison of the expected costs for system operating
under DB policy, OH policy, and LT policy using Matrix-Geometric approach. We ana-
lyze an ATO system with 2 components and use Matrix-Geometric approach to solve and
compare the costs in DB policy, LT policy, and OH policy. We consider a symmetric case
where all the parameters for component 1 are equal to that of component 2 (see Table 3.1).
We set Bjnq. to be large enough so that the probability of lost sales is less than 1072 in all
cases. For z, = 10, we vary the threshold limits ey, ji, and [ from 1 to z, and calculate in

each case the total costs for each policy.

Table 3.1 System Parameters and Costs for Dual Index Policies

System Parameters Costs

A 15 | sk =1,210
2k, k=12 10 sk =1,2 15
i, k=1,2] 2 be,k=1,2 |20
fop, k= 1,2 1 hik=1,2 | 1

Figure 3.4 plots different costs (in-house throughput costs, subcontractor’s throughput costs,
on-hand inventory costs, and backordering costs) vs threshold limit (eg,jx, and Ij) for
DB,OH, and LT policy. In Figure 3.4(a) we observe that as the threshold (eg, jk,l;) in-
creases, the throughput cost at the manufacturing facility increases under all three policies
(DB, OH, and LT policy). This is to be expected because in these policies when the
threshold is high, orders for component k are placed more to the manufacturing facility
than external subcontractor. This results in the increase in the throughput cost at the
manufacturing facility. However under LT policy, the in-house throughput cost increases at
low threshold and becomes flat at high threshold. Correspondingly, in Figure 3.4(b) as the

threshold (eg, jk, lx) increases, we observe that throughput cost at the external subcontractor
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decreases under all three policies.

In Figure 3.4(c) as the threshold (ey, jk, lx) increases, we observe that the on-hand inventory
cost increases under DB, OH, and LT policy. In these three policies as the threshold in-
creases, more orders for component k are placed to the manufacturing facility, which has a
faster production rate and therefore replenishes the component inventory at a faster rate. In
Figure 3.4(d) as the threshold increases, we observe that the backordering cost for the system
operating under DB, OH, and LT policy is convex. The backordering costs are convex due
to the effects of increased queue length and lead times at the manufacturing facility at higher

thresholds.

We can get the total cost, T'C' by adding the above mentioned costs. Our solution algorithm
can then be used to identify this optimal threshold ej, j;, and [} numerically that minimizes
the total cost T'C. We compare the total cost for these three policies and find DB policy as

the best among the three policies.

3.5.2 Comparison of Optimal Costs under DB, OH, and LT Policy

We analyze an ATO system with 2 components and use decomposition approach to solve and
compare the optimal costs in DB policy, LT policy, and OH policy. The results are shown
in Figure 3.5. We consider a symmetric case shown in Table 3.1 where all the parameters
for component 1 are equal to that of component 2. In this experiment, we vary zp = 2 to 25,
and for each z;, we determine the corresponding optimal threshold limit (e} for DB policy, j;
for OH policy, and [} for LT policy). Then, we calculate the optimal cost TC* and compare
this cost across the three policies. Therefore, determining each point in the corresponding

plots in Figure 3.5 itself requires a search procedure.

In this subsection, we discuss insights related to the optimal solution for each policy using

the same system parameters and costs listed in Table 3.1 and varying z; = 2 to 25. Figure
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Figure 3.4 Estimated Costs in Policies at 2z, = 10

3.5 shows the optimal costs for both OH and LT policy with increasing z; under different
zones. In zone 1, the expected inventory cost is less than the expected backordering cost.
Note that in LT policy, orders for component k are placed based on the lead time estimates
(Lymi(t), Ly (). Therefore, the LT policy encourages reduction in backordering cost as
opposed to inventory costs. However in the OH policy, orders for component k are placed

based on the inventory levels (I(t)). Therefore, the OH policy encourages reduction in

inventory cost as opposed to backordering costs. In zone 1, the expected inventory cost is
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Figure 3.5 Optimal Cost Comparison for Policies

less significant than the expected backorder cost. Thus, LT policy outperforms OH policy in
zone 1. Similarly in zone 2, the expected inventory cost is more significant than the expected
backorder cost. Thus, OH policy outperforms LT policy in zone 2. However, the dual base
stock policy always outperforms OH policy and LT policy as it has the most flexibility. In
the dual base stock policy, in zone 1 if the inventory level is above a certain threshold , orders
for component k are placed to only external subcontractor. This results in the replenishment
of the components at a slower rate (u, ), which in turn reduces the expected inventory cost.
Similarly in zone 2, if the inventory level is below a certain threshold, orders for component
k are placed to both the in-house manufacturer and the external subcontractor. This results
in the replenishment of the components at a faster rate (55 + ftm.x), Which in turn reduces

the expected backorder cost.

Although, the results for z;, = 0 and z;, = M (M is significantly large, say M = 1000) are not

shown in these numerical experiments, we observe that when 2z, = 0, the LT policy converges
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to the DB policy, and for large values of z;, say zx = 1000, the OH policy converges to the
DB policy. This provides an intuitive solution to the operational ambiguity inherent in the
DB policy, suggesting that the LT policy should be preferred at lower z; and OH policy
should be preferred at higher z;.

3.5.3 Performance of a System with N Components

In this subsection, we analyze the approximate method for N-component ATO system and
provide insights on its performance. We analyze the performance of the decomposition based

approximation for both the symmetric and asymmetric cases.

Under DB policy, we analyze an ATO system with N components (N = 2,4,8,16) and com-
pare the numerical accuracy of the decomposition based approach with the exact solution
for three choices of service time distributions, namely exponential (£, shifted-exponential
(S), and triangular (7') distribution. We use simulation models to obtain the exact solutions
for ATO systems with N > 2. We use 5 replications and a 99.99% confidence interval in our
simulations and ensure that the half width was less than 0.001% in all cases. For ease of
readability, we do not report the half-width intervals in the paper. The results from the de-
composition are then compared with the exact results for several inputs. Table 3.2 presents
the processing time parameters used for exponential, shifted-exponential, and triangular dis-
tribution under symmetric case. For sake of comparison, we ensure that the mean processing

time is the same for all three distributions.

Table 3.2 Distribution Parameters of a System with N Components

Distribution Processing time at My | Processing time at Sk
Exponential (E) EXP(0.5) EXP(1)
Shifted-Exponential (5) 0.1+ EXP(04) 0.1+ EXP(0.9)
Triangular (77) TRIAG(0,0.5,1) TRIAG(0,1,2)
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We define A[THE || = (THZ , —TH ,)/THE  as the error in the estimate of the through-
put at the manufacturing facility My, and is computed as the relative difference between
estimates from the approximation solution and the exact solution for the case of with ex-
ponentially distributed processing times. Similarly, we define the error measures for other
performance measures and distributions. We analyze the performance of the approximate
method under two cases: (1) symmetry with respect to service rate for each component i.e.
Usitr = fhsi and flmiv1 = fmi,t = 1,2,..., N — 1, and (2) asymmetry with respect to service
rate for each component with 5,41 = 1.1ps,; and fiy i1 = L.1py,,% = 1,2,..., N — 1. The

rest of the parameters are same as described in Table 6.1.

Table 3.3 shows the error in T'H,; obtained from the decomposition-based approach for
2,4,8, and 16 component symmetric ATO system under dual base stock policy. We observe
that the estimates of subcontractor’s throughput, 7'Hs; and manufacturer’s throughput,
TH,, are within 2% for the exponential (£) and shifted-exponential (S) case, and within
4% for the triangular distribution (7") case.

Table 3.4 reports the error in E[[;] obtained from the decomposition approach for a symmet-
ric ATO system with 2,4,8, and 16 components under dual base stock policy. We observe
that the expected on-hand inventory, E[l;] is within 3% for all cases, except for the low
threshold case under the triangular distribution (7') where the error is less than 9%. Similar

performance is observed for expected backorders E[Bj] as well.

Table 3.5 reports the error in T'H,; in the approximation for 2,4,8, and 16 component
asymmetric ATO system under dual base stock policy. We observe that the estimates of
subcontractor’s throughput, T'H,; and manufacturer’s throughput, T'H,,; are within 4% of

the exact values for most of the cases.



Table 3.3 Performance of T'H,; under DB Policy for the Symmetric Case

N | ex | THZ, | THP, | A[THE|] | THS, | A[THS,] | THY, | A[THT)]
2 | 0.990 | 0.989 0.07% 0.993 | -0.29% | 0.999 | -0.90%
2 | 4 | 0977 | 0976 0.12% 0.982 | -0.52% | 0.995 | -1.80%
6 | 0.945 | 0.942 0.31% 0.952 | -0.74% | 0.978 | -3.32%
8 | 0.857 | 0.850 0.81% 0.861 | -0.45% | 0.892 | -3.86%
2 | 0.990 | 0.989 0.06% 0.993 | -0.29% | 0.999 | -0.92%
4 | 4| 0977 | 0.976 0.13% 0.982 | -0.50% | 0.995 | -1.81%
6 | 0945 | 0.942 0.32% 0.952 | -0.72% | 0.978 | -3.31%
8 | 0.857 | 0.850 0.84% 0.861 | -0.40% | 0.892 | -3.86%
2 | 0.989 | 0.989 0.01% 0.992 | -0.29% | 0.999 | -0.97%
8 | 4 | 0977 | 0.975 0.13% 0.981 | -0.46% | 0.995 | -1.83%
6 | 0945 | 0.941 0.39% 0952 | -0.72% | 0.977 | -3.31%
8 | 0.857 | 0.850 0.85% 0.860 | -0.38% | 0.891 | -3.84%
2 | 0989 | 0.987 0.22% 0.992 | -0.25% | 0.999 | -0.97%
16 | 4 | 0977 | 0973 0.34% 0.981 | -0.43% | 0.995 | -1.83%
6 | 0945 | 0.941 0.47% 0.951 | -0.60% | 0.977 | -3.31%
8 | 0.857 | 0.848 1.04% 0.860 | -0.31% | 0.891 | -3.83%

Table 3.4 Performance of E[I;] under DB Policy for the Symmetric Case

N e [ Bu) [ BUP) [ aeur) | Bus) | aeus) [ Buf) | aEur)
2 2.945 2.988 -1.45% 2.939 0.20% 2.707 8.76%
2 4 4.670 4.623 1.02% 4.613 1.25% 4.593 1.69%
6 6.353 6.225 2.05% 6.258 1.51% 6.452 -1.55%
8 7.860 7.635 2.96% 7.728 1.71% 8.083 -2.76%
2 2.964 3.022 -1.91% 2.982 -0.60% 2.708 9.48%
4 4 4.675 4.674 0.01% 4.618 1.23% 4.607 1.47%
6 6.354 6.244 1.76% 6.259 1.51% 6.458 -1.62%
8 7.860 7.643 2.84% 7.728 1.71% 8.089 -2.83%
2 3.001 3.050 -1.61% 3.049 -1.57% 2.760 8.72%
8 4 4.684 4.682 0.04% 4.656 0.60% 4.609 1.64%
6 6.356 6.246 1.75% 6.273 1.31% 6.460 -1.62%
8 7.861 7.673 2.45% 7.731 1.68% 8.090 -2.83%
2 3.001 3.091 -2.89% 3.064 -2.03% 2.764 8.60%
16 4 4.684 4.815 -2.71% 4.720 -0.75% 4.609 1.63%
6 6.356 6.302 0.85% 6.310 0.72% 6.460 -1.62%
8 7.861 7.689 2.24% 7.746 1.48% 8.080 -2.72%
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Table 3.5 Performance of T'H,; under DB Policy for the Asymmetric Case

N | ex | THZ, | THP, | A[THE|] | THS, | A[THS,] | THY, | A[THT)]
2 | 0.990 | 0.989 0.06% 0.993 | -0.29% | 0.999 | -0.88%
2 | 4 | 0977 | 0976 0.10% 0.982 | -0.50% | 0.995 | -1.79%
6 | 0.945 | 0.943 0.23% 0.952 | -0.74% | 0.978 | -3.32%
8 | 0.857 | 0.850 0.81% 0.861 | -0.45% | 0.892 | -3.88%
2 | 0.990 | 0.989 0.06% 0.993 | -0.30% | 0.999 | -0.89%
4 | 4 | 0977 | 0.976 0.10% 0.982 | -0.50% | 0.995 | -1.79%
6 | 0.945 | 0.943 0.23% 0.952 | -0.74% | 0.978 | -3.30%
8 | 0.857 | 0.850 0.81% 0.861 | -0.45% | 0.892 | -3.88%
2 | 0.990 | 0.989 0.06% 0.993 | -0.30% | 0.999 | -0.89%
8 | 4 | 0977 | 0.976 0.10% 0982 | -0.50% | 0.995 | -1.79%
6 | 0945 | 0.943 0.23% 0.952 | -0.74% | 0.892 6.00%
8 | 0.857 | 0.850 0.81% 0.861 | -0.45% | 0.892 | -3.88%
2 | 0.990 | 0.989 0.06% 0.993 | -0.30% | 0.999 | -0.89%
16 | 4 | 0977 | 0.976 0.10% 0.982 | -0.50% | 0.995 | -1.79%
6 | 0945 | 0.943 0.23% 0.952 | -0.74% | 0.978 | -3.30%
8 | 0.857 | 0.845 1.43% 0.861 | -0.45% | 0.892 | -3.88%

Table 3.6 reports the error in E[;] obtained from the approximation for an asymmetric ATO
system with 2,4,8, and 16 components under dual base stock policy. We observe that the
expected on-hand inventory, E[I;] is within 3% of the exact values for all cases, except for
the low threshold case under the triangular distribution (7') where the error is within than

9%. Similar performance is observed for expected backorders E[B;] as well.

For a given e as the number of components increases, we observe a decrease in the through-
put at the external subcontractor, and an increase in the expected inventory. This is because,
as components increase, backorders increase and more orders for component k are placed to
the internal manufacturing facility. This reduces throughput at the external subcontractor,
and increases the expected inventory. Again for any given NN, as e, increases, we observe a
decrease in the throughput at the external subcontractor, and an increase in the expected

inventory. This is because, with increase in the threshold, e, more orders for component &
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Table 3.6 Performance of E[I;] under DB Policy for the Asymmetric Case

N | e | B | BUP) | AlEUP) | BUS) | ABUSY | EUT) | ABUT
2 2.939 3.027 -2.89% 2.905 1.17% 2.695 9.06%
2 4 4.669 4.624 0.98% 4.594 1.62% 4.603 1.44%
6 6.352 6.220 2.13% 6.255 1.56% 6.452 -1.54%
8 7.860 7.632 2.99% 7.725 1.75% 8.082 -2.74%
2 2.942 3.030 -2.91% 2.925 0.57% 2.697 9.10%
4 4 4.669 4.624 0.97% 4.602 1.47% 4.603 1.45%
6 6.352 6.228 1.99% 6.258 1.51% 6.452 -1.54%
8 7.860 7.633 2.97% 7.726 1.73% 8.083 -2.76%
2 2.942 3.033 -2.99% 2.930 0.43% 2.698 9.07%
8 4 4.669 4.628 0.90% 4.604 1.41% 4.603 1.44%
6 6.352 6.229 1.98% 6.263 1.42% 6.460 -1.67%
8 7.860 7.635 2.95% 7.726 1.73% 8.088 -2.81%
2 2.942 3.033 -3.00% 2.930 0.41% 2.705 8.80%
16 4 4.669 4.629 0.88% 4.607 1.36% 4.603 1.44%
6 6.352 6.229 1.97% 6.267 1.35% 6.460 -1.67%
8 7.860 7.636 2.93% 7.727 1.73% 8.088 -2.82%

are placed to the internal manufacturing facility. This reduces the throughput at the exter-

nal subcontractor, and increases the expected inventory.

Our results suggests that the decomposition approach is fairly accurate for various choices
of service time distributions. Further, in terms of computational effort, it should be noted
that all these experiments were performed on a personal computer with a 1.6GHz Intel Core
i5 Processor. We observe that the run time for the decomposition approach ranges from
0-20 seconds, and did not increase significantly as we varied N from 2 to 16. This suggests
that the approach can be used to analyze fairly large systems. In contrast, the run time for

obtaining exact results using simulation ranged from 5-10 minutes for each case.
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3.6 Conclusions

We consider a single product ATO system where the product is assembled from multiple
components. The components can be manufactured in-house or purchased from the local
subcontractor with different system parameters and costs. We analyze dual index policies
(DB, OH, and LT policy) using Matrix-Geometric approach for moderately sized systems,
and using a decomposition based approximation for large systems. The OH policy uses
thresholds limits on the inventory levels of both the components where as the LT policy
uses thresholds limits on the on-order levels of both the components. The performance of
these policies are compared to determine regions in the system design space where they
each perform well. We observe that LT policy works well at low base stock levels, while
OH policy works well at high base stock levels. The DB policy outperforms other two
policies although, it lacks details necessary for implementation. However, we observe that
in particular settings, the performance of OH policy and LT policy closely resembles with
DB policy and also provides the clarity needed for implementation. This suggests using
a combination of LT policy and OH policy to overcome the operational ambiguity in DB
policy. For an ATO system with N > 2 components, we face computational challenges with
the exact approach used to analyze smaller systems. However, our proposed approximations
exploits structural characteristics of the system to address this challenge. The approach not
only provides reasonably accurate estimates of performance measures for large systems, but
also scales well in terms of computational effort. Developing similar decomposition based
approaches for ATO systems with both multiple components and end products seems to be

a promising area of future research.
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Chapter 4

Production Systems with Multiple Standard-type
Components

4.1 Introduction

This research is motivated by production and capacity utilization issues observed in supply
chains involved in the manufacturing of complex engineered components for drilling systems.
Components of top drives (used to drill oil), blowout preventers (a safety mechanism), drilling
subs, mud pumps, control systems that form core components of oil drilling systems all in-
volve several thousands of hours of engineering and hundreds of hours of machining. In this
industry, strategic collaborations with pre-certified subcontractors is essential to providing
high customer service levels at reasonable cost. For instance, manufacturing of components
of top drives and blowout preventers requires special purpose equipment which is very ex-
pensive. Consequently, capacity on this equipment is often shared across multiple types
of top drives. When demands for particular top drives are high or when service levels ex-
pectations extend beyond internal capabilities, production is strategically subcontracted to
pre-certified subcontractors. Although, these subcontractors may have higher costs and/or
slower production rates, the belief is that subcontracting under these odds relieve capacity
on critical internal resources that can be used for other components, resulting in overall
economic benefits. Therefore, supply chain managers need to decide when and how much
capacity, the manufacturer should dedicate to a given component, and when and how much

production of a given component needs to be subcontracted. It is important to understand
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how differences in capabilities, costs, and service level expectations impact the optimal pro-
duction and capacity utilization strategies for the manufacturer. In this chapter, our research
investigates whether optimal policies have a easily describable structure that can be friendly
for industry implementation and investigates the efficiency of simple control limit policies
in this environment. Although, our motivating industry are manufacturers of oil drilling
equipment, our model and insights extend into other environments, such as manufacturers
of power equipment (thermal, nuclear, hydroelectric) and equipment used in chemical and

process industries (condensers, reactors, turbines).

Some of the key studies in the literature that address the relevant questions include Ha
(1997), Bradley (2005), and Huh et al. (2013). Ha (1997) studies the optimal production
scheduling in a facility that manufacturers two components on a shared manufacturing re-
source. For the special case where both components have equal service rates, they develop
a linear switching rule for production scheduling. In contrast, our research setting assumes
that the components have different service rates and can be made at one or more facilities
(in-house manufacturer or subcontractors). Bradley (2005) analyzes a single component sys-
tem with dual-sourcing (in-house manufacturer and subcontractors) and shows that the dual
base stock policy for component replenishment is optimal. Our research is an expansion of
this problem setting as it considers multi-component system that share a manufacturing re-
source. We attempt to characterize the structure of the optimal policy in this general setting
and explore whether policies have a dual index structure at least in some problem settings.
Huh et al. (2013) analyze capacity decisions using a finite horizon model with multiple de-
mand classes requiring different resources sequentially. For this setting they provide bounds
on the structure of the optimal policy and argue that the characterization of the optimal
policy is challenging. In contrast, our research analyzes infinite horizon model and allows

components to be produced in parallel using capacity available at the manufacturer and the
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subcontractor. However, like Huh et al. (2013), we also find that characterizing optimal pol-

icy is hard, but we are able to characterize optimal policy in various regions of the state space.

While the Markov decision process (MDP) framework provides a convenient methodology to
study the underlying production and capacity utilization problem, it suffers from the curse
of dimensionality, often the state space description requires us to keep track of stocking
levels of each component. In addition, in our case, the action space involves decisions for
both shared manufacturing facility and each subcontracting facility. As a result, the un-
derlying production-inventory problem can be very challenging in terms of the size of the
underlying state and action space for even small problems. Further, since the manufacturer
needs to balance the tradeoffs in costs due to production, backordering, and inventory of
components, deriving the relevant monotonicity results become non-trivial. To address this
complexity, we derive various conditions in terms of costs, capabilities, and production rates
and use them to partition the state space into regions. Within each region, we are then able
to show dominance of certain actions thereby reducing the relevant action space for that
region. Further, for a complete symmetric system (with respect to costs and service rates of
the products), we show that the optimal policy is of dual index type. Exploiting relations
between costs and service rates, we further reduce the action space and analytically derive
other settings where the optimal policy has a multi-index type structure. This implies that
in these settings, the components may not be manufactured at all or only manufactured at
the subcontractor or they might be manufactured simultaneously by both the manufacturer

and the subcontractor.

The rest of the chapter is organized as follows. Section 4.2 describes the model of the system
with multiple components and presents the MDP formulation of the system with multi-
ple components. Section 4.3 derives conditions under which particular actions are optimal.

Section 4.4 derives conditions under which optimal policy is multi-index type. Section 4.5
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provides numerical studies and Section 4.6 summarizes model insights and conclusions.

4.2 Mathematical Model

We analyze a system that manufacturers two components C;,2 = 1,2 to stock as shown
in Figure 4.1. The demand for each component C; is assumed to be a Poisson process

N;(t),t > 0 with rate A; and is satisfied from stock whenever possible; and otherwise backo-

rdered.

Cs,l > /'ls 1
R @ L(0)

v Component (7,
Cm,l > /um,l

~ ) 1,0)

m,2 s Mm2 v Component C2
CS,2 ° us 2

Figure 4.1 Manufacturing System

We let I;(t) denote the net inventory (on-hand minus backorders) for component C; at time
t. The manufacturer has the option to replenish inventory for component C; either using ca-
pacity available at the external subcontractor, S; or using capacity available at the in-house
manufacturing facility M. We model the external subcontractor, S;,7 = 1,2 and the internal
manufacturing facility M as single server queues and assume that they have exponential
service time for component C; with mean ,u;ll and /vc;:i respectively. Further, let ¢, ; and ¢, ;
denote the unit cost rate to manufacture component C; at the external subcontractor and
in-house manufacturing facility respectively. We let h; denote the unit inventory holding cost

rate for component Cj, and b; denote the unit backordering cost rate of component C;. The
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key elements in Markov decision process problem for determining the optimal production

and inventory strategy are as follows:

Decision epoch: We analyze the problem in the continuous time domain and assume that
actions are taken at epochs corresponding to state change, i.e at demand arrival and service

completion epochs.

State space, 3: The state of the system at any time t is described as ¢ = (I3, I), where

I;,i = 1,2 is the net inventory position of component C; and o € X.

A | M|S |5
ap | 1| 1] 2
a9 1 0 2
az | 1 | 110
a, | 11010
as | 2 | 1| 2
ag | 2 | 0| 2
az | 2] 10
as | 2 | 0] 0
a | 0| 1] 2
a10 0 0 2
aip | 0] 110
12 0 0 0

Figure 4.2 Action Space for the System

Action space, A: The set of actions A is defined by a; = (m,s1,$2),j = 1,...,12. In any
action aj, m takes the value 7 if the action corresponds to manufacturing of component C;
at the in-house manufacturing facility M and takes the value 0 if the action corresponds to
being idle. Similarly, s;,7 = 1,2 takes the value ¢ when the action corresponds to manufac-
turing of component C; at the external subcontractor S; and takes the value 0 if the action

corresponds to the external subcontractor being idle. Figure 4.2 lists the 12 possible actions
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available for the decision maker. For instance, action a; implies that component C' is man-
ufactured at both the in-house manufacturer M and the external subcontractor S;, while
component Cy is manufactured only at the external subcontractor S;. Note that the action
space can be partitioned into Ay = {ay, as, as, ag, ag, 10, a11, a12} and Ay = {ag, a4, ar, ag}
where actions in Ay imply that the manufacturer uses the capacity to produce one of the
components C;,7 = 1,2 when the corresponding subcontractor 5; is idle. Further, actions in
Ay can be grouped based on how the action impacts the component rate used to replenish

the stock for component C;,i = 1,2 (see Figure 4.3).

MS,Z + Mm,Z a6 a5 -
Production
rate for C, Hs,2 Qqg Qg aq
0 a1z aiq as
0 ”s,l -us,l + num,l
Production

rate for C,;

Figure 4.3 Actions in A,

Transition probabilities: Define p(o’|o, a;) as the transition probability from state o = (I3, I5)
to state o’ = (I}, I5) under action a; € A. Let v = 37 N+ S (ftms + i) + A denote
the normalizing factor used for uniformization (Lippman (1975)). Then, the transition prob-

abilities p(o’|o, a;) are defined as follows:

Demand arrival for component C;: Then I} = I;—1,i = 1, 2; and the corresponding p(o’|o, a;)
is given by:

p(o’|o,a;) = Ni/v,Vi=1,2
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Service completion for component Cy: Then I{ = I; +1; and the corresponding p(o'|o, a;) is
given by:
plo'lo, az) = (I gbma + Lo ghsa) /v

where 1,,;; and 1,;;,7 = 1,2 are indicator functions that takes the value 1 if manufacturer
M and subcontractor \S; respectively are producing component C; under action a;, and 0

otherwise.

Service completion for component Cy: Then I, = I, +1; and the corresponding p(o'|o, a;) is
given by:
po'lo, az) = (Imzjtme + Ls2jhts2) [V

Finally, I/ = I;,i = 1,2; and the corresponding p(c’|o, a;) is given by:

p(o'loya;) = (v =Y (Ai + Lot + Loijitei))/V

Cost function: Define h(o) = hymax([1,0) + ho max(/2,0) as the total inventory holding
cost rate and b(o) = by max(—1Iy,0) + by max(—1s,0) as the total backordering cost rate. Let
c(aj) = (cmilmi;+ Csilsij) represent the production cost rate for action a;. Let (o, a;)
denote the immediate cost function at state o for action a;. This means that r(o,a;) =
h(c) +b(o) + c¢(a;). Let V(o) denote the value function at state o at time ¢. For simplicity,
we normalize and set v = 1 and A = 0. Equation (4.1) defines the standard Bellman cost

equation with value function, V(o) at state o and decision epoch t with discount factor

n,n € (0,1).

ajEA

Vi, ) = minfh(o) +b(o) +cla;) +1) _ p(o’|o, a;)Vi(o")] (4.1)

The system described above presents challenges in terms of structural analysis of the optimal
policy. First, the size of the state space > and action space A increases the complexity of the
analysis. For example, with I;,i = 1,2 varying from —500 to 500, the model has 1 million

states and 12 actions. Second, the optimal value function V;*(I;, Is) may not be convex in
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I; and the transition probabilities may not have sub-additivity or super-additivity property

with respect to I; in the state space ¥ and action space A because of high action space.

Despite of the above mentioned challenges, in the next section (Section 4.3) we describe the
characteristics of the optimal policy and the optimal value function. We use efficient action
comparison and action elimination techniques to develop conditions that relate change in
value function to production cost rates and service rates, and show that under these condi-
tions particular actions are optimal. Then in Section 4.4, using action elimination conditions,
we significantly reduce the action space which helps us to prove when simple multi-index
policies are optimal. For notational simplicity where possible, we suppress subscript ¢ in

subsequent sections.

4.3 Characteristics of Optimal Solution

We analyze the formulation described in Section 4.2 and determine the characteristics of the
optimal solution. Section 4.3.1 provides some necessary preliminaries required to show the

main results of Sections 4.3.2 and 4.3.3 respectively.

4.3.1 Preliminaries

We develop set of conditions to characterize the structure of the optimal policy for both
the products. Let Ai(l1,1s) = Vi1 (L1 + 1, 1s) — Vi1 ([, I2) be the first difference of the
value function with respect to Iy, and Aq([y, I5) = Vip1(Ih, Is + 1) — Viey (11, Io) be the first
difference of the value function with respect to I. Table 4.1 defines a set of conditions used

in subsequent sections to characterize the optimal policy.

These conditions provide the relationship between rate of change of the value function per
unit of a component and the unit production and subcontracting costs. For example, con-

dition Ay4(11, I2) holds if the expected cost at state (I; + 1, [3) with a unit change in the



65

Table 4.1 Preliminary Conditions

Notation Definition

Ais(1h, 1) Ai(h, ) > ui-s,ylln

A~ Cs,1

Ais(1h, 1) Ay(Iy, I) TR
A (11, I5) Ay(L, 1) > _;f:,’lln
Alm(lly-[Q) AI(IhIQ) < _:;Z’lln

As (I, 1) Do(hh, ) > ==

Ao (11, 1) Ag(I1, Ir) < ;f:fn
Ag(Iy, 1) Ao(hh, ) > — et

~ Cm,2
Ao (11, I5) Ay(l1, 1) < fm,21

81(117[2) 67:7‘2 —+ [j,mQAQ(Il,IQ) < Cﬂ:}’l + Mm,lAl([1>[2)
By(Ih, 1) C’"TQ + tm 2 Do (11, I3) > cr;;,l + pm 1 (1h, 1)

inventory [; while incurring a unit production cost :—117] for component C at the subcon-
tractor is greater than the expected cost at state (I1,I3). Condition By(Iy, I5) has a useful

interpretation when fi,,1 = pim 2, it implies that the expected cost at state (I, Iy + 1) with a

Cm,2
Hm,27

unit change in the inventory I, while incurring a unit production cost for component

(5 at the manufacturer is greater than the the expected cost at state (I; 41, Is) with a unit
change in the inventory /; while incurring a unit production cost % for component C at

the manufacturer. In the next section, we analyze the conditions for optimal decision using

these conditions.

4.3.2 Characteristics of Optimal Policy

We use the conditions defined in Section 4.3.1 to show that certain actions are optimal. For
notational simplicity, we suppress (I1, I3) in the conditions, but note that these conditions
hold for each state (I, l3). Theorem 4.1 provides relationship between the change in the
value function, costs, and service rates for which the optimal action is that neither the

manufacturer nor the subcontractor produces a given component C;.
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Theorem 4.1. For system in state o:

(1) if conditions Ais A\ (A1 V By) hold, then the optimal action implies that neither the
manufacturer M nor the subcontractor Sy should manufacture component CY.

(2) if conditions Ags N (Aapm V Ba) hold, then the optimal action implies that neither the

manufacturer M nor the subcontractor Sy should manufacture component Cs.

Proof. We prove Theorem 4.1 in two parts. In the first part, we consider component C5 and

show that under conditions (Ay > —=2) A((Ay > =220V (lin 280 — i1 Ay > =522,
actions from the set {ay, as, as, ag, az, as, ag, ajo} have higher costs than that of at least one
action from the set {as, a4, a11, aja}. Since, the optimal action is from the set {as, a4, a11, a1},
the result of Theorem 4.1, part (2) holds. The proof of part (1) follows along similar lines

by considering component ' instead of component Cs. Refer to Appendix for the proof of

Theorem 4.1. O

Next, Theorem 4.2 provides the relationship between the change in the value function, costs,
and service rates for which the optimal action is that only the external subcontractor should

use available capacity to produce a given component C;.

Theorem 4.2. For system in state o:

(1) if conditions Ays A (Aym V By) hold, then the optimal action implies that only the sub-
contractor S1 should manufacture component Cf.

(2) if conditions Aoy A (Az, V By) hold, the optimal action implies that only the subcontractor

So should manufacture component Cs.

Proof. We prove Theorem 4.2 in two parts. In the first part, we consider component C5 and

show that under conditions (Ay < —::’2217) A((Ag > _:an)v(ﬂmva?_”mlel > W)),
actions from the set {a3, a4, as, ag, ar, as, ai1, a1z} have higher costs than that of at least one
action from the set {ay, as, ag, aip}. Since, the optimal action is from the set {ay, az, ag, aip},
the result of Theorem 4.2, part (2) holds. The proof of part (1) follows along similar lines

by considering component C; instead of component C5. Refer to Appendix for the proof of

Theorem 4.2.
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O

Next, Theorem 4.3 provides relationship between the change in the value function, costs,
and service rates for which the optimal action is that only the manufacturer and not the

corresponding subcontractor should use the available capacity to produce a given component

C;.

Theorem 4.3. For system in state o:

(1) if conditions A5 A fllm A By hold, then the optimal action implies that only the manu-
facturer M should manufacture component C'.

(2) if conditions Aas A Aom A By hold, then the optimal action implies that only the manu-

facturer M should manufacture component Cs.

Proof. We prove Theorem 4.3 in two parts. In the first part, we consider component C5 and
show that under conditions (A, > —ﬁ) A (Ay < —%) A (tm 2D — pima Ay < W),
actions from the set {aq,aq,as, a4, as, ag, ag, ajp, a1, aja} have higher costs than that of at
least one action from the set {a7,as}. Since, the optimal action is from the set {ar,as},
the result of Theorem 4.3, part (2) holds. The proof of part (1) follows along similar lines

by considering component C' instead of component C5. Refer to Appendix for the proof of

Theorem 4.3.

[
Corollary 4.1. If ;m’ > ff”:,i = 1,2, then the optimal action does not belong to the set
AQ - {GQ, a4, am, a8}'
Proof. The proof follows immediately from the proof of Theorem 4.3. [

Corollary 4.1 provides the conditions when it could never be optimal for the manufacturer
to invest capacity in manufacturing a component while the relevant subcontractor is idle.
Finally, Theorem 4.4 provides relationship between the change in the value function, costs,
and service rates for which the optimal action is that both the external subcontractor and

manufacturer should use their respective capacity to produce a given component C;.
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Theorem 4.4. For system in state o:

(1) if conditions flls A /llm A By hold, then the optimal action implies that both the manu-
facturer M and the subcontractor Sy should manufacture component C}.

(2) if conditions Aog A Asyn A By hold, then the optimal action implies that both the manu-

facturer M and the subcontractor Sy should manufacture component Cs.

Proof. We prove Theorem 4.4 in two parts. In the first part, we consider component Cy and
show that under conditions (A, < _;Z_L;?) A (A < —%) A (fm2Ds — pim 181 < W},
actions from the set {ay,as, as, a4, ar, ag, ag, ajp, ai1, aja} have higher costs than that of at
least one action from the set {as,ag}. Since, the optimal action is from the set {as,as},

the result of Theorem 4.4, part (2) holds. The proof of part (1) follows along similar lines

by considering component C; instead of component Csy. Refer to Appendix for the proof of

Theorem 4.4.
A A (A VB | A A (A V By)
us,2 + Mm,2 /\AQS A A2m A Bl /\-/425 A -AQm A Bl -
(Action ag) (Action as)
Producﬁon A}S A (Alm \ Bl) AAls VAN (Alm V Bl) 415 AN Alm A BQ
rate for C s2 ANAgs N (Aom V Ba) | Adas A (Ao V Ba) | Adag A (Agy, V Ba)
2 (Action aqy) (Action ay) (Action a,)
"413 A (Alm \ Bl) -/[ll.s A (Alm \ Bl) Als A -/lem A BQ
0 NAgs A (Ao V Ba) | Aag A (Ao V Ba) | AAas A (Agp V Bs)
(Action aq2) (Action aqy) (Action as)

0

us,l

Production
rate for C,

Ms,1 + Hm,1

Figure 4.4 Conditions for Optimal Actions

Figure 4.4 summarizes the insights from Theorems 4.1, 4.2, 4.3, 4.4. For instance, if A, A
(A V By) Aoy A Asy, A By, then the component Cs is produced by both manufacturer
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M and subcontractor Sy, and component C; is produced by only subcontractor S; which

corresponds to action as. Note that the conditions presented in Section 4.3.1 exclude the

Cs,1
#3,17]7

equality cases, such as Ay ([, ) = — etc since in these cases multiple actions could
be optimal. Theorems 4.1 - 4.4 provide a strong characterization of optimal policies for this
production inventory problem. For a general system, the conditions allow us to partition
the state space into regions where the optimal policy has a simple characterization. Further

insights on the characteristics of the optimal policy are obtained by considering symmetric

setting of the problem parameters. We elaborate on this in Section 4.3.3.

4.3.3 Optimal Policy for Symmetric Systems

We consider two types of symmetry, M — S symmetry and complete symmetry. For an
M — S symmetric system, the costs and service rates for a given component C; for the man-
ufacturer M is the same as that of the subcontractor S;, i.e. ¢ = csi, and iy, = fisy-
Complete symmetry corresponds to a special case of M — S symmetric system where the
production costs and the service rates are same across the components. Figure 4.5 sum-
marizes the conditions under which particular actions are optimal. Although, Figure 4.5
presents a simple version of the conditions presented in Figure 4.4, it reveals a useful insight:
in a symmetric system, action ag is never optimal, i.e. both the components will not be
simultaneously manufactured only by the respective external subcontractors. This happens

because condition flgs and As,, can never be simultaneously satisfied under M —.S symmetry.

Next, we consider complete symmetric system. For this case, first we use Theorem 4.5 and

further reduce the optimal action space from 12 actions to only 5 actions.

Theorem 4.5. If ¢, = €54, and fiy,; = [ts4,% = 1,2, then optimal action belongs to the set
{a1, a3, as, ag, a12}.

Proof. From results for M — S symmetric case, it follows that actions in the set {ay, as, as, a,

a0, a11,a12} could be optimal. Next, from Theorem 4.4.1, if Ay < —:’"—fn, then action ag

results in lower cost than action ajg. Thus, action a;yp cannot be optimal. Similarly, if
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2 Als A AQS A Bl Als A Bl A AQS _

Hs2 (Action ag) | (Action as)

Production A A Aos A By ) A A By A Ao,

rate for C, M2 (Action aqo) (Action aq)

0 Als A AQS Als A\ Bl A AQS Als A AQS
(Action aq2) | (Action ay1) | (Action ag)
0 .us,l 2.U'.s;,l

Production
rate for C,

Figure 4.5 Conditions for Optimal Actions under M — S Symmetry

Ay > —:m’lln, then action as results in lower cost than action aq;. Thus, action ay; cannot
m,

be optimal. This concludes the proof. O

Note that under complete symmetric system with respect to costs and service rates of the
components, the optimal policy suggests that either one of the components should be al-
ways produced at the fastest rate or none of the components should be produced. This is
because actions a9 and ay; are never optimal. Figure 4.4 and 4.5 demonstrate dual index
characterization of the optimal policy; i.e., under certain condition, there exists thresholds
in /; and [, at which optimal production rates for particular component structures. Such
simple characterization of the optimal policy can be very useful in practice. However, due
to the structure of the value function, it is hard to show exhaustively set of conditions under
which dual index policies are optimal. However, in the next section we prove conditions and

instances where multi-index policies can be demonstrated to be optimal.
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4.4 Optimality of Multi-index Policies

In this section, we derive conditions when multi-index policies are optimal. Proposition 4.1
derives a condition and a subset S over which the optimal value function V*(Iy, I) can be

proved to be convex.

Proposition 4.1. For system with state 0 € S = {(I1, Is)|[1+12 = K}, where K is constant,

the optimal value function V*(Iy, I3) is convex over S.

Proof. We prove this proposition in two steps. First, we show that the cost function r (o, a;)
is convex over S, and then we show the required properties of the transition probabilities.

Refer to Appendix for the proof of Proposition 4.1. n

Further, the transition probabilities are sub-additive or super-additive in A x S. We make
no claim that the value function is convex only over this set. In fact, it can be shown that
the value function is convex over other subset of the state space. For example, V*(Iy, I5) is
convex with respect to I; for state o € S; = {(I, I1)|l> = K'}. However, we do not observe
monotonicity property in the optimal actions because the transition probabilities are neither

sub-additive nor super-additive in A x S;.

We consider three cases and show optimality of multi-index policies in each case.

Case 1: Negligible production costs: Typically, certain components/operations such as
mechanical assembly, PCB assembly, wire harnesses assembly, etc have negligible production
costs as compared to corresponding material costs/inventory costs. Under this setting, the
production cost could be assumed to be zero. Theorem 4.6 shows that if the production
costs are zero then the optimal decisions are non-increasing in the service rate of component

Cy with respect to Iy, (I1, I5) € S.

Theorem 4.6. For system with state 0 € S, S = {(I1, Is)|I1+ 1, = K} where, K is constant,
if Cmi = Csi = 0,4 = 1,2 and Ay # 0, Ay # 0, then the optimal action a* is non-increasing

in service rates for component Cy with respect to increasing I.
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Proof. We prove this theorem in two parts. At first, we consider the case where V*(Iy, )
is non-decreasing with respect to I; and show that the optimal actions are monotone with
respect to I;. Next, we we consider the case where V*(I3, I3) is non-decreasing with respect

to I, and show that the optimal actions are monotone with respect to Is. O

Theorem 4.6 implies that the supply chain manager could keep track of the stock levels of
components and follow the dual index type optimal policy, i.e. there exists thresholds k;
and ko, ko > ki such that the component C (i) is not manufactured if I; > ko, or (ii) is only
be produced by the corresponding subcontractor if k; < I; < ko to replenish inventory at
a slower rate, or (iii) is produced at both the manufacturer and the corresponding subcon-

tractor if [; < k; to replenish inventory at a faster rate.

Case 2: Manufacturer is cheaper: When demand is high and exceeds internal capac-
ity, the supply chain manager could subcontract components to the external subcontrac-
tor to alleviate the production and capacity burden at the manufacturer, even though the
subcontractor is more expensive than the manufacturer. For example, blowout preventers
(prominent energy product) vary significantly in size and require special equipment. For
this component, the production cost at the subcontractor could be more than the produc-
tion cost at the manufacturer. Theorem 4.7 shows that if the production cost per unit at
the manufacturer is less than the production cost per unit at the subcontractor, service
rate of the component ' is significantly more than the service rate of component C, then

optimal decisions are non-increasing in the service rate of component C; with respect to

I, (L, 1) €S.

Theorem 4.7. For system with state 0 € S, S = {(I1, Is)|[1 + I, = K} where, K is constant
and I, > K, if:

C i Cs.i .
(1) Smi < Lot j— 19
Hm,i Hs,i

(2) Hs1 > Hs,2
(3) Hm,1 > Hm, 2 + Hs,1 + Ms2
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Then the optimal action a* is non-increasing in service rates for component Cy with respect

to increasing 1.

Proof. We prove this theorem in three steps. First, we show that the optimal value function,

V*(I, I5) is non-decreasing over I1, I > K. Next, we show that if ;m < Z2ij=1,2 then

m,i Hs

actions from the set {ayg, a19, @11 } are not optimal. Finally, we show that ¢((I{, I3)|([1, I2), a;)
is sub-additive with respect to non-decreasing I; and action A. The details of the proof are

in the Appendix. O]

Theorem 4.7 implies that a multi-index policy with three thresholds kq, ks, and ks, k3 > ko >
kq is optimal. With respect to component C7, this multi-index policy implies that compo-
nent C (i) is not manufactured if I; > ks, (ii) is only be produced by the corresponding
subcontractor if ko < I} < ks, (ii) is only be produced by the manufacturer if k; < I1 < ko,

(iii) is produced at the manufacturer and the corresponding subcontractor if I; < kj.

Case 3: Subcontractor is cheaper: For example, components of top drives are often
expensive to produce using capacity only available at the manufacturer. Using capacity
available at the subcontractor is often cheaper. However, if the subcontractor has a higher
lead time, this could lead to high backorders and poor service levels. So, the supply chain
manager needs to balance the tradeoffs in cost and delivery performance to decide on the
production and subcontracting decisions. Theorem 4.8 shows that if the production cost per
unit at the manufacturer is more than the production cost per unit at the subcontractor,
service rate of the component (] is significantly more than the service rate of component Cs,
then optimal decisions are non-increasing in the service rate of component € with respect

to [1, ([1,[2) € S.

Theorem 4.8. For system with state 0 € S, S = {(I1, I)|[1 + I, = K} where, K is constant
and I, > K, if:
(1) 2t > £t =9

(2) Hm,1 > Hm,2 + s 1
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(3) s, > Hm, 2 + s 2

Then the optimal action a* is non-increasing in service rates for component C with respect

to increasing I.

Proof. We prove this theorem in three steps. First, we show that the optimal value function,

V*(I1, I5) is non-decreasing over I, I; > K. Next, we show that if ;"” < ;S’f,i = 1,2 then

using Corollary 4.1, actions from the set {as, a4, a7, as} are not optimal. Finally, we show
that q((17,1))|(I1, I2), a;) is sub-additive with respect to non-decreasing I; and action A.
The details of the proof are in the Appendix. n

Theorem 4.8 implies that the supply chain manager could keep track of the stock levels of
components and follow the dual index type optimal policy, i.e. there exists thresholds k&
and ko, ko > ki such that the component C; (i) is not manufactured if I; > ks, or (ii) is only
be produced by the corresponding subcontractor if k; < I; < ko to replenish inventory at
a slower rate, or (iii) is produced at both the manufacturer and the corresponding subcon-

tractor if I; < ki to replenish inventory at a faster rate.

Having shown that the multi-index policy is optimal under certain conditions on the service
rate and costs, in the next section we use numerical studies to validate these observations

and also demonstrate other situations where multi-index policies are optimal.

4.5 Numerical Studies

This section presents numerical studies to provide insights on the characteristics of the
optimal solution. Section 4.5.1 demonstrates multi-index policies while Section 4.5.2 analyzes

the impact of service rates on the optimal policy.
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4.5.1 Demonstration of Multi-index Policy

In this experiment, we numerically validate the results shown in Theorem 4.7 where the unit

production cost at the manufacturer is less than the unit production cost at the subcon-

tractor, i.e. ™% < =i i =1 2. Table 4.2 presents the system and cost parameters for this

Hm,i Ms,i ’

experiment.

Table 4.2 System Parameters and Costs for Multi-index Policy

Subcontractor’s Parameters | Manufacturer’s Parameters
Cs.1 15 Cm1 30
Cs2 10 Cm,2 20
fs,1 1.5 fom 1 4
fhs,2 0.5 fm,2 1.1
System Parameters Other Costs
Binaz 5 bj,i=1,2 40
Aiyi=1,2 1.5 hi,i=1,2 2

Here, the manufacturer is twice as expensive (¢,,1 = 2¢s1) as the external subcontractor.
The service rates for the in-house manufacturing department and the external subcontrac-
tor are set to satisfy the conditions given in Theorem 4.7. For B,,.. = 5, we fix any
K, K € {-10,-9,...,9,10} and analyze the optimal solution for monotonicity property in

the service rate.

Table 4.3 presents the optimal actions for system corresponding to each state o. The optimal
policy contains actions in the set {aq, as, a4, as, ag, a12}. For fixed total inventory position,
I; + I, we observe a monotone property in service rates of components with increasing
I; or I,. For instance, for I; + Iy = —8, the production rate of component C; is always

Mm1 + fts1 as Ip increases, meaning that both the manufacturer M and the corresponding
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subcontractor S; are producing component C. Similarly, for I + I, = 0, (i) if I; < 0, the
production rate of component C} is (i1 + jts,1, meaning that both the manufacturer M and
the corresponding subcontractor S; are producing component Cp, (i) if 0 < I; < 5, the
production rate of component C; decreases from i, 1 + fts1 to fis1, meaning that only the
subcontractor S is producing component Cf, (iii) if I; = 5, the production rate of compo-
nent C is 0, meaning that the component C is neither manufactured by the manufacturer
M nor by the subcontractor S;. Finally, for I1 + I = 7, (i) if I; < 3, the production rate of
component Cj iS fi,, 1, meaning that the manufacturer M is producing component Ci, (ii) if
3 < I; <5, the production rate of component C; decreases from fi,,, 1 + pts1 to fis1, meaning
that only the subcontractor Sy is producing component Cy, (iii) if [; = 5, the production
rate of component (' is 0, meaning that the component C} is neither manufactured by the
manufacturer M nor by the subcontractor S;. This demonstrates the result in Theorem 4.7

where the optimal policy is multi-index index type with three thresholds.

Table 4.3 Optimal Actions Corresponding to Each State o for B, = 5

L/l | -5]-4|-3|-2|-1]0]1]2]|3]4 )
-5 aq aq a, aq aq aq ay aq aq aq as
-4 aq aq aq aq aq aq aq aq aq ai as
-3 ay ay ay ay ay ay ai aq aq aq as
-2 aq aq aq aq aq aq aq ay ay ap as
-1 aq aq aq aq aq aq aq ay ay ay as
0 aq as as as as as as as aq aq as
1 aq as as as as as as as as as as
2 as as as as as as as as as as agy
3 as | as |ag | as | a5 | a5 | as | a5 | a5 | a5 | aa
4 as |as | a5 | as | a5 | a5 | a5 | a5 | a5 | ag | Qa
5 Ag | Ug ag Qg ag ag Qg | Qg | Qg g | A12
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4.5.2 Impact of Service Rates on the Optimal Policy

In this experiment, we analyze the impact of service rates on the optimal policy. Table 4.4

presents the system and cost parameters for this experiment. We analyze two cases.

Table 4.4 System Parameters and Costs for Sensitivity Analysis

Subcontractor’s Parameters | Manufacturer’s Parameters
Cs1 15 Cm1 30
Cs.2 10 Cm,2 20
[s.1 1.1 o, 1 1,2,34
fbs 2 1.1 2 1,2,3,4
System Parameters Other Costs
Binax 5 bi,i=1,2 40
Ayt =1,2 1.5 hi,1=1,2 2

Case 1: Manufacturer is cheaper: The scenario where the unit production cost at the

manufacturer is less than the unit production cost at the subcontractor, i.e. ZL =

mi O Heyi
1,2 is analyzed by considering the case where p,,1 = 3,4 and pi,,, o = 3,4. For B,,,, = 10 and
I, + I, = 0, Figure 4.6 shows the impact of service rates on the optimal decision if the man-
ufacturer is cheaper. We observe that the service rate of the component C' is non-increasing
with increasing inventory position /. This implies that the optimal policy is of dual index
type. For example, for p,,1 = 3 and p,,2 = 3, the optimal service rate of component C}
at inventory position I; = 1 changes from 4.1 to 1.1 implying that only the subcontractor
Sy is producing component C at Iy = 1. Next, the component C is neither produced by
the manufacturer M nor by the subcontractor S; at inventory position I; > 4. We also
observe that the increase in the service rate of the manufacturer results in (i) non-decreasing

threshold to switch the service rate from fu,,, 1 + fts1 to fs1, (ii) non-increasing threshold to

switch the service rate from s, to 0. For example, one of the thresholds for scenario with
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Hma = 3, fim2 = 4 (see Figure 4.6(b)) is at [; = 0 and switches to I; = 1 as the service rate

changes from fi,, 1 = 3 to fiy1 = 4.

Service rate of component C; at u,, ,=3 Service rate of component C; at u, ,=4
Hmi1= 3 Um1 = 4 Hm1 = 3 Hmi1 = 4
6 6
5 5
D i’
- ~—
S g4
EE 23
- -
5 2 B 2
2 jop
1 1
0 0
-10-98-7-6-5-4-3-2-10122345 678910 -10-9-8-7-6-5-4-3-2-1012345 6728910
Inventory position /; Inventory position /;
(a) (b)

Figure 4.6 Optimal Service Rate of Component C; at (a) fim2 =3, (b) 2 =4

Similarly, another threshold for scenario with ji,,1 = 3, ftme = 4 is at I; = 4 and switches
to I; = 2 as the service rate changes from p,,,1 = 3 to p,1 = 4. This happens because if
tm,1 = 4, ftm2 = 4 then the component C; is being produced at a faster rate longer than
compared to scenario where fi,, 1 = 4, i,y 2 = 3, replenishing inventory at a faster rate. So,

it is not optimal to produce the component longer at the expensive subcontractor.

Case 2: Subcontractor is cheaper: The scenario where the unit production cost at

Cm i

the manufacturer is more than the unit production cost at the subcontractor, i.e.

;S’f,i = 1,2 is analyzed by considering the case where p,,1 = 1,2 and p,,2 = 1,2. For
Biee = 10 and I; + I, = 0, Figure 4.7 shows the impact of service rates on the optimal

decision if the subcontractor is cheaper. We observe that the service rate of the component
('} is non-increasing with increasing inventory position I;. This implies that the optimal
policy is of dual index type. For example, for p,,; = 1 and p,,2 = 1, the optimal service

rate of component C' at inventory position I; = 0 changes from 2.1 to 1.1 implying that
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only the subcontractor S is producing component C; at I; = 0.

Service rate of component C; at x,, ,=1 Service rate of component C'; at y,, ,=2

Hm1 = 1 Umi = 2 Uma = 1 Hma1 = 2

1
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Lind
in
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Service rate
U

Service rate
-

<

n
o
in

o
<

-10-9-8-76-5-4-3-2-101223456 728910 -10-9-8-7-6-5-4-3-2-1012345¢6 7282910

Inventory position /; Inventory position /,

(@) (®)

Figure 4.7 Optimal Service Rate of Component C at (a) pimo =1, (b) fim2 =2

Next, the component (' is neither produced by the manufacturer M nor by the subcontrac-
tor S at inventory position I; = 10. We also observe that the increase in the service rate of
the manufacturer results in non-decreasing thresholds. For example, the threshold switches
from I; = 0 to I; = 1 when the service rate of the manufacturer for component C; changes

from fiy1 =1 to piym,1 = 2. We observe similar results when p,, o = 2.

4.6 Conclusions

We consider a system with multiple components where components can be produced us-
ing capacity available at the shared manufacturing resource and using capacity available at
dedicated subcontractors. We develop Markov decision process formulation of the system

that captures subcontracting and scheduling of shared resource for multiple components,

and provide insights on the optimal policies.

We analytically provide exhaustive sets of conditions to characterize the structure of the

optimal policy and optimal value function. We show conditions based on first difference



80

of value function and unit production cost under which the optimal action is that (i) a
component is neither produced by the manufacturer nor by the subcontractor, (ii) a com-
ponent is only produced by the manufacturer, (iii) a component is only produced by the
corresponding subcontractor, (iv) a component is produced by both the manufacturer and
corresponding subcontractor. For M — .S symmetric system, we show that it is never optimal
to keep the manufacturer idle if subcontractors are producing their corresponding compo-
nents. For complete symmetric system (with respect to cost and service rates), we show that
the optimal policy is of dual index type, i.e. it suggests that either one of the components

should be always produced at the fastest rate or none of the components should be produced.

Next, we consider three cases using simple conditions on the costs and service rate. Using
these conditions we show that the multi-index policy is optimal under three cases. In the
first case, if the unit production costs are negligible which is typical in manual assembly,
we show that the optimal policy is of dual index type , i.e. there exists thresholds k; and
ks, ko > kq such that the component C; (i) is not manufactured if I; > ko, or (ii) is only be
produced by the corresponding subcontractor if k; < I} < ko, or (iii) is produced at both
the manufacturer and the corresponding subcontractor if I; < ky. In the second case, if the
components vary significantly in size and the unit production cost at the manufacturer is
less than that of subcontractor, we show that multi-index type policy with three thresholds
ki, ko, and kg, ks > ko > ki is optimal, i.e. component C; (i) is not manufactured if I; > ks,
(ii) is only be produced by the corresponding subcontractor if ko < I; < k3, (ii) is only be
produced by the manufacturer if ky < I; < ko, (iii) is produced at both the manufacturer
and the corresponding subcontractor if I; < k;. Finally, in the third case, if the components
vary significantly in size and the unit production cost at the manufacturer is more than that

of subcontractor, we again show that dual index policy is optimal.

In the next chapter, we use insights obtained in this chapter to derive optimal policies for

assembly systems with multiple standard-type components.
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4.7 Appendix

Proof of Theorem 4.1: We prove Theorem 4.1 in two parts. In the first part, we consider

component Cy and show that under conditions (A > —%) A ((Ag > —%) V (fm,209 —

PmaA > W)), actions from the set {ay,as, as,ag, ar,as, ag, ajp} have higher costs
than that of at least one action from the set {as,a4,a11,a12}. Since, the optimal action
is from the set {as,a, a11,a12}, the result of Theorem 4.1, part (2) holds. Let f;.(0) =
c(a;) +n). plo'|o,a;)Vi(c’) denote the sum of total production cost rate and discounted
cost at state o after taking action a;. Then, f;,(c0) at each state o = (I3, I5) for each action

a; is defined as follows:

fiis(li, L) = cma+csq+ Cso+ (fma + ps1)nVe(lh + 1, L) + pisonVi(Lh, Io 4+ 1)

FAV (I = 1, 1) + AonVi(Iy, Iy — 1) + pm 2nVi(11, I2)
Jor(Ii, ) = cma+ oo+ pmanVi(ly + 1, Iy) + psonVi(lh, I + 1)

+MnVi(lh — 1, 1) + AanVi(Ly, 1o — 1) + (ps 1 + pm2)nVi( 11, I2)
f3:(li, 1) = cma+con+ (ma + ps)nVi(lh + 1, 1)

+AnVi(ly — 1, L) + XanVi(Ly, Is — 1) + (2 + ps2)nVi(I1, I2)
il ) = cma+ pmanVi(li + 1, 15)

+AnVi(lh — 1, L) + XanVi(Ly, Ia — 1) + (psq + fomo + ps2)nVi(1h, I2)
fo:(li, 1) = cmao+csq+ Coo+ psanVi(ls + 1, 1) + (pmo + ps2)nVi(lh, Io + 1)

AVl = 1, L) + donVi(ly, I — 1) + prmainVi(ly, I2)
Joi(I1, 1) = cmo+cso+ (ma+ ps2)nVi(ly, 1o + 1)

+AnVi(lh — 1, 1) + XanVi(Lh, Ia — 1) + (g + ps1)nVi(L1, I2)
fri(li,Is) = cs1+ cma+ psanVi(lh + 1, o) + pimonVi(lh, Io + 1)

+AnVi(ly — 1, 1) + XanVi(Ly, Lo — 1) + (pma + ps2)nVi(11, I2)
fsi(l1,I) = cmo+ pmonVi(ly, 1o+ 1)

FAnVi(li = 1, 1) + AonVi(Ly, Iy — 1) + (1 + psg + ps2)nVi(1i, I2)
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for(I1, 1) = cs1+cso+ psanVi(li + 1, 15) + psonVi(lh, Io + 1)

+AnVi(ly — 1, 15) + AanVi(Ly, Lo — 1) 4 (1 + pm2)nVi(11, I2)
froe(I1, ) = oo+ psanVi(ly, Io + 1)

FAVilly = 1, I2) + AanVi(ly, Lo = 1) + (g + pimz + ps)nVe(11, 12)
fia(l, L) = co1+ pusanVi(lh + 1, )

FAMnVi(lh — 1, 1) + AanVi(L1, Iy — 1) + (ptm,1 + fmg2 + ps2)nVi(11, 1)
froa(l, L) = MnVi(ly — 1, 1) + AanVi(1y, I — 1)

(1 + fm2 + sy + s 2)nVi(Iy, Io) (4.2)

So, Equation (4.1) can rewritten as:

Villi, Is) = h(U)+b(0)+£?£[fj,t(h,lz)] (4.3)

At first, we show that if A, > —:S’;n, then actions from the set {ay,as,as, ag,ajp} have

higher costs than that of at least one action from the set {as, a4, ai1,a2}. To show that a,
is not optimal, we show that fi (I, ls) — fs:([1,12) > 0.
fralli, Is) — f31(L1,12) = cma+csp+ oo+ (Hma + 1s1)NA1 + 115210
—(ema + o1+ (B + 11s1)nA1 (11, 12))

Cs,2 F 15212 (4.4)

IfA2>—

::’2277, then from Equation (4.4) f1,(I1, I5) — f3.(I1, Is) > 0. So, action a; results

in higher cost than actions as. To show that as is not optimal, we show that fo:(I1,I5) —

f4,t<]17 [2) > 0.

for(l1, o) — faui (L1, I2) = cCma+ Cs2+ pmainAi(Lr, I2) + psonDa(1y, 1)
—(Cm1 + pmanAi (1, I2))

= Cs2+ s 2mAo (4.5)

If Ay > —=22 then from Equation (4.5) fo,(I1,ls) — f1:(1,I2) > 0. So, action ay results

Hs,2m’
Cs

in higher cost than actions a4. Similarly, if Ay > — ’22 , we can show that action ag results

Hs,27
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in higher cost than action a1, and action a1y results in higher cost than action ais.

Next, we show that actions from the set {as, ag, ar,ag} results in higher cost than at least
one action from the set {as, a4, ag, a1, air, a;2}. So, actions from the set {as, ag, ar, ag} could
have higher costs than at least one action from the set {as, a4} or could have higher cost

than at least one action from the set {ag, a10, a1, a12}.

To show that a; is not optimal, we show that fr.(Iy, ) — f3.(I1, I2) > 0.

frilli, L) — f34([1, 1) = Cmoa+ Csp+ fsiNA1 + Ll 21D
—(Cma +csq + (B + ps1)nAq)

= Cm2 — Cm1 t+ Hm 2N D2 — fm 1A (4.6)

If ,quAQ — ,LLm,lAl > W, then from Equation (46) f?,t(IhIQ) — f3¢([1,]2) > 0. SO,

action a; results in higher cost than actions as.

To show that ag is not optimal, we show that fs:(I1, I2) — fa:(I1, I2) > 0.

fsi(I1, o) — far(I1, I2) = cCmo+ tmanDa — (Cma + tmanlr) (4.7)

If ,quAQ — Mm71A1 > w, then from Equation (47) fg’t(]hlg) — f4,t(117l2) > 0. SO,

Cm,1—Cm,2

action ag results in higher cost than actions a4. Similarly, if ft,, 29 — 141 > p

, we
can show that action as results in higher cost than action a3, and action ag results in higher

cost than action ay.

To show that a5 is not optimal, we show that f5.(I1, I2) — fo.(I1, I2) > 0.

fo1(l1, I2) = four(L1,12) = Cma+csi+ Cso+ s 1A + (fm2 + f1s,2)10
—(Cs1 + Co2 + s 1M1 + f152mAs)

= Cpa2+ Mm,?”AQ (48)
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If Ay > —==2 then from Equation (4.8) f5.(I1,Is) — fo:(I1,I2) > 0. So, action a5 results

in hlgher cost than actions ag.

To show that ag is not optimal, we show that fe.(I1, I2) — fi0+(11,12) > 0.

foi(lh, o) — for(L1,I2) = cma+ Cs2+ (fma + s 2)NDo — (Cs2 + fs2nAa)  (4.9)

If Ay > —=22 then from Equation (4.9) fs.:(I1, I2) — fi04([1, I2) > 0. So, action ag results

in hlgher cost than actions ajg. Similarly, if Ay > _um 2
in higher cost than action a;;, and action ag results in higher cost than action a;s. This

concludes the proof.

Proof of Theorem 4.2: We prove Theorem 4.2 in two parts. In the first part, we consider

component Cy and show that under conditions (Ay < —:2’227]) (Ag > —m2 )V (2 Do —

fmd—fm2)) " actions from the set {as,as,as, ag, ar,as, ary, ajn} have higher costs

,um,lAl >
than that of at least one action from the set {ai, as,ag,a19}. Since, the optimal action is

from the set {ay, as, ag, aip}, the result of Theorem 4.2, part (2) holds. Using logic used in

the proof of Theorem 4.1, we can show that if Ay < —::’2217, action az results in higher cost
than action aq, action a4 results in higher cost than action as, action a;; results in higher
cost than action ag, and action ajs results in higher cost than action aig. Again, we show
that if Ay > —:Z—ifn, action aj results in higher cost than action ag, action ag results in
higher cost than action ayg, action a7 results in higher cost than action a1, and action ag

Cm,1—Cm,2

results in higher cost than action ajs. If ft,, 20080 — 1481 > , action as results in
higher cost than action a;, action ag results in higher cost than action as, action a7 results
in higher cost than action ag, action ag results in higher cost than action as. This concludes

the proof.

Proof of Theorem 4.3: We prove Theorem 4.3 in two parts. In the first part, we consider

component Cy and show that under conditions (A, > —::‘2277) (Ay < —-m2 ) (m 2o —
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pmaAr < W), any actions in the set {ai, as, as, aq, as, ag, ag, ajo, ai1, aio} have higher
costs than that of at least one action in the set {ar,as}. Since, the optimal action is from

the set {a7, ag}, the result of Theorem 4.3, part (2) holds. Using logic used in the proof of

Theorem 4.1, we can show that if Ay > —:5‘22n, action as results in higher cost than action

Cm,2

a7, action ag results in higher cost than action ag. Again, we show that if Ay < e

action ag results in higher cost than action as, action a;¢ results in higher cost than action

ag, action aq; results in higher cost than action a7, and action aqo results in higher cost than

Cm,1—Cm,2

action ag. Finally, if fi,, 0Ag — pm 1A < ;

, action ag results in higher cost than action
a7, action a4 results in higher cost than action ag, action a; results in higher cost than action

as, and action as results in higher cost than action ag. This concludes the proof.

Proof of Theorem 4.4: We prove Theorem 4.4 in two parts. In the first part, we consider

component Cy and show that under conditions (Ay < _::;n) A (A < —ﬁ) A (fm20s —

Cm,1—Cm,2 )

fma Ay < =

, actions from the set {ay,as,as, a4, ar, ag, ag, ajp, a1, a2} have higher
costs than that of at least one action from the set {as, ag}. Since, the optimal action is from
the set {as, ag}, the result of Theorem 4.4, part (2) holds. Using logic used in the proof of
Theorem 4.1, we can show that if Ay < —%, action ag results in higher cost than action

a1, action ay results in higher cost than action as, action a; results in higher cost than action

Cm,2

as, and action ag results in higher cost than action ag. Again, we show that if Ay < e

action ag results in higher cost than action as, action a;¢ results in higher cost than action
ag, action aq; results in higher cost than action a7, and action aq5 results in higher cost than

Cm,1—Cm,2

action ag. Finally, if fi,, 0Ag — pm 1A < , action a; results in higher cost than action

as, and action as results in higher cost than action ag. This concludes the proof.

Proof of Proposition 4.1: We prove this proposition in two steps. First, we show that the
cost function r(o, a;) is convex over S, and then we show the required properties of the tran-
sition probabilities. Note that h; max(/y,0) is non-decreasing with I, and b; max(—17,0) is

non-increasing with 7;. Thus, hy max([y,0) + by max(—1;,0) is convex with respect to I.



86

Next, since I1+ 15 = K, hs max(K — I, 0) is non-increasing with I;, and by max(—K +13,0) is
non-decreasing with ;. Thus, he max(K — I1,0) + by max(—K + I;,0) is convex with respect
to I; and since (hy max(/ly,0) + by max(—1I,0)) + (ho max(K — I1,0) + by max(—K + I,0))
is a sum of convex functions, it is also convex. Finally, since the total production cost rate,
c(a;j) at action a; does not depend on I, the cost function r(o,a) = h(o) + b(o) + ¢(a;) is

convex with respect to I.

Next, we show that ¢((1{, I})|(]1, I2), a;) is non-decreasing over over S, where

(10 1)1y o), a5) = S5 (1% I\ (11, F2), ), (T4, I3) €S, and (17, If) € S. From the
definition of transition probabilities, we have

q((I7, IN|(1h, 1), a1) = pma/v, if IY < I, and 0 otherwise.

q((17, I5) (1, I2), as
q((Iy, 15)|(11, L),
(], 13
q((Iy, 13
(7, 13

(1, I5)
(17, I3)
(I, 1)
(I, I5)
(17, I3)
(17, 1)
(1, I5)
(1, I5)
(I, I3)
(I, I5)
(1, I5)

(ftm2 + ps1)/v, if I7 < I;, and 0 otherwise.

=]

3 (2 + ps2)/v, if I < I;, and 0 otherwise.

I, 15), a4 (m2 + psy + ps2) /v, it I{ < I, and 0 otherwise.

(11, I2), as)
(11, I2), as)
(11, 12), as)
(I1,15), as)
(11, I2), ag) =
(11, I2), az)
(11, 12), as)
(11, I2), ag)
(11, I2)
(11, 13)
(11, 12)

pma /v, if If < I, and 0 otherwise.
fma + ts1)/v, if 17 < I, and 0 otherwise.

q((I7, I3
q((I7, I3
q((17, 14
q ]{l)]é/
q((I7, I3

]laIQ , Ag

(

(m1 + ps2)/v, if IY < I, and 0 otherwise.

(ma + ps1 + ps2) /v, if 17 < I, and 0 otherwise.
(

1, 1), ag P + fm2)/v, it 1] < I, and 0 otherwise.

I, 15), ar) Png + pm2 + ps1) /v, if If < 11, and 0 otherwise.

|
|
|
|
|
|
|
| = (

|(I1, 1), a11) = (fm1 + fm2 + ps2)/v, if I{ < I;, and 0 otherwise.
| = (

I, 1), a12) = (Mm,1 + 2 + fs1 + ps2) /v, if IY < 1, and 0 otherwise. (4.10)

For for any state (I; +d, I —d) € S with discrete d = 1,2, ..., p(({1 + d, [ — d)|(I1, I2), a;) =
0, Va; because each transition impacts at most inventory position I; or I but not both. Thus,
q((I{, I))| (11, I2),a;) > 0 if I{ < I and 0 otherwise. This implies that ¢((I{, I3)|([1, I2), a;)
is non-decreasing in I. Since, (o, a;) is convex over S Va;, and ¢((I7,I¥)|(]1, I2), a;) is

non-decreasing over S Va;, from Proposition 4.7.3 from Puterman (1994), it follows that the
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optimal value function V*(I, I5) is convex over S. This concludes the proof.

Proof of Theorem 4.6: We prove this theorem in two parts. At first, we consider the
case where V*(1y, I3) is non-decreasing with respect to I; and show that the optimal actions
are monotone with respect to I;. Next, we we consider the case where V*(I,I5) is non-
decreasing with respect to o and show that the optimal actions are monotone with respect

to _[2.

If ¢ = 0,¢5; = 0,7 = 1,2, then using Theorem 4.3, action ay is optimal if Ay < 0 and
Ay > 0, which is not feasible. So, action as is not optimal. Similarly, we can show using
Theorem 4.1 - 4.4 that actions from the set {as, a4, a7, as, ag, aig, a1} are not optimal. Next,
if V*(Iy, I5) is non-decreasing with respect to Iy, (11, I5) € S, then A; — Ay > 0. From Figure
4.4, if action az is optimal then A; < 0 and Ay > 0. This implies that A; — Ay < 0. This
contradicts our assumption and therefore action ag is not optimal. Next, using definition
of g((I4, )|(In, 1), 5), 3 fims > i then g((10, I)[(Is, ), ar) < q((I4, E)| (1, Do), as).
Again from Figure 4.4, if p,,1 > ftm 2 then action a; is not optimal. So, for non-increasing
sequence of service rate for component C; that are defined by the sequence {as, ag,aia},
q(0"|o, a;) is sub-additive with respect to non-decreasing I; and action space A. Similarly,
we consider V*(Iy, I5) to be non-decreasing with respect to Iy, (I, I5) € S, and prove that
the optimal actions are monotone with respect to Iy for the other half of the state space.

This concludes the proof.

Proof of Theorem 4.7: We prove this theorem in two parts. At first, we consider the
case where V*(I4, I,) is non-decreasing with respect to I; and show that the optimal actions
are monotone with respect to I;. Next, we we consider the case where V*(Iy, I5) is non-
decreasing with respect to I, and show that the optimal actions are monotone with respect
to Iy. If (I + 1) = K and I;, > max(0, K), then h; max([;,0) is non-decreasing with Iy,

by max(—1,0) is zero, ho max(K — I,0) is zero, and by max(—K + I1,0) is non-decreasing
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with I;. Thus, r(Iy,I3) is non-decreasing for I;, > max(0, K'). Also, from Proposition 4.1,

q((I{, I))|(11, I2), a;) is non-decreasing in I;. Thus, V*(I;, I3) is non-decreasing over I;.

Next, using Theorem 4.1, 4.2, 4.3, and 4.4, we observe that if % < ‘™ y — 1 2 then

Iz Bom,i?

any action in the set {ag, a10, a11} is not optimal. This implies that optimal action belongs
to the set {a1, as, as, as, as, ag, az, as, a12}. Next, using definition of ¢((17, I5)|(11, I2), a;), if
fs1 > prs2 then q((I7, I3)|(I1, I2), a3) < q((I7, 13)[(L1, I2), a2), if pma > pim2 + Hsi + fhs2
then q((I7, IY)|(11, 1), a4) < q((I7,IY)|(11, I3),as5). So, for non-increasing sequence of ser-
vice rate for component C; that are defined by the sequence {a, as, as, a4, as, az, ag, as, aia},
q(0"]o, a;) is sub-additive with respect to non-decreasing I; and action space A. Thus, from
Theorem 4.7.4 of Puterman (1994), we can conclude that the optimal action a* is non-
increasing in service rates for component C with respect to increasing I, i.e. there exists
thresholds k1, ko, and ks, k3 > ko > k; such that the component C; (i) is not manufactured
if I; > ks, (ii) is only be produced by the corresponding subcontractor if ko < I; < kg, (ii) is
only be produced by the manufacturer if ky < I; < ko, (iii) is produced at the manufacturer

and the corresponding subcontractor if I; < k.

Proof of Theorem 4.8: We prove this theorem in three steps. First, we show that the

optimal value function, V*(Iy, I3) is non-decreasing over I;,[; > K. Next, we show that

if ZL < ;—,z = 1,2 then using Corollary 4.1, actions from the set {as,as,ar,as} are

not optimal. Finally, we show that ¢((I{,17)|(]1, I2), a;) sub-additive with respect to non-

decreasing I; and action A. In Theorem 4.7, we show that V*([y, I5) is non-decreasing over

I, (I, I) € S. Next, using Corollary 4.1, we observe that if ;L > ;’” ,i = 1,2, then actions
from the set {as, ay4, a7, as} is not optimal. This implies that optimal action belongs to the
set {a1,as, as, ag, ag, ajp, arr,a12}. Next, using definition of ¢((I7, IY)|(I1, I2), a;), if pm1 >
pm, 24 pisy then (17, 15) (11, 12), as) < q((I{, I5)|(1, 12), a5), i pusy > pis2+ pm 2+ 1,2 then

q((I7, IN)|(11, I5), a11) < q((1], 13)|(I1, I2), a6). So, for non-increasing sequence of service rate

for component C that are defined by the sequence {a1, as, as, ag, a1, ag, @10, a12}, ¢(0”|o, a;)
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is sub-additive with respect to non-decreasing I; and action space A. Thus, from Theorem
4.7.4 of Puterman (1994), we can conclude that the optimal action a* is non-increasing in
service rates for component C with respect to increasing I, i.e. there exists thresholds &,
and ks, ks > ky such that the component C (i) is not manufactured if [; > ko, or (ii) is only
be produced by the corresponding subcontractor if ky < I} < ko, or (iii) is produced at the

manufacturer and the corresponding subcontractor if I; < k.
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Chapter 5

Assembly Systems with Multiple Standard-type
Components

5.1 Introduction

In this chapter, we model a multi-product system where products are assembled from its
respective components. The components are made to stock with inventory being replenished
from both the subcontractor and the in-house manufacturing facility. The subcontractor and
the manufacturing facility have finite production capacity and stochastic lead times. How-
ever, the manufacturing facility is shared across components needed for multiple products.

Further, both the subcontractor and the manufacturing facility have stochastic lead times.

In practice, multiple components might require similar operations on a specialized equip-
ment. However, such equipment might require high capital investment. This prevents the
manufacturer from dedicating this equipment to a single product and often the available
capacity is shared across multiple products and components. Sometimes, the manufacturer
could subcontract the production of these components to external subcontractor to meet ex-
pectations of high demands. In this context, we assume the following two research questions
in this chapter: (i) What is the structure of the optimal policy for the manufacturer? (ii)

How should the components be scheduled on shared resources?
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We analyze a system with multiple products using stochastic models. However, the state
space of multi-product system requires us to keep track of stocking levels of each compo-
nent. In addition, action space involves decisions for manufacturing and each supplier. Thus,
deriving the monotonicity results for optimal policy is non-trivial. This poses additional re-
search challenges related to the state space complexity associated with determining optimal

policies for multi-product systems.

We use efficient action elimination techniques to determine the exact solution of the multi-
product system for small sized problems. Additionally, we propose a fairly accurate approach
that combines decomposition and Markov decision process (MDP) to address larger sized
problems. In this approach, we first decompose the system with multiple products into two
equivalent subsystems that involve a component for each end product. Next, using an it-
erative approach, we determine the optimal production and subcontracting policy for the

original system.

The rest of the chapter is organized as follows. Section 5.2 describes the model of the system
with multiple products. Section 5.3 describes the MDP formulations of the multi-product
system. Section 5.4 provide structural results on the optimal policy for a subsystem. Section
5.5 presents a decomposition based approach to solve multi-product system. Section 5.6
provides numerical studies to validate the structure of the optimal policy. Finally, Section

5.7 summarizes model insights and conclusions.

5.2 System Model

We analyze a manufacturing system that assembles two products ¢ = 1,2, each from its re-
spective two components Cj;, j = 1,2 as shown in Figure 5.1. We assume that each assembly
needs one unit of each component. For example, the products ¢+ = 1,2 could correspond to

transmissions (large and small) that are assembled from gears and housings (large and small
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respectively). In Figure 5.1, L;; represents the storage location of component Cj;,j = 1,2;
of product 7,7 = 1,2. Product 7 is assembled at assembly station S; and we assume that
assembly time for product ¢ at station S; is negligible. The demand for product i is assumed
to be a Poisson process N;(t),t > 0 with rate \;. If at the arrival epoch of the demand for
product 7, both components Cj;, 7 = 1,2; are available, then the demand for product ¢ is
immediately satisfied. If one or more components required for product ¢ is unavailable, then

the demand for product i is backordered.

cs,ll’lus 11
. @ 1,

Large Shafts
Conito M1 ;;

Satisfied

> i, L) Orders
C
m2v 2 W Small Shafts A
Cs 010 M 01
i @ Large Top Drives
CS,IZ’ ILIS 12
g I 12 (l ) N /12
S, —
,/ Large Main Small Top Drives
Co125 M 12 Bodies
i & L,(1) Satisfied
Cn22o 22 Orders

- Ly Small Main
5,222 ,US 22 Bodies

) |

Figure 5.1 Supply Chain Model for System with Two Products

Let [;;(t) denote the net inventory for component C;; which is defined as on-hand inventory
minus backorders of component Cj; at time t. The manufacturer has the option to replen-
ish inventory for component j using available capacity at the external subcontractor, S;; or

use capacity from the in-house manufacturing facility M; that can be used to manufacturer
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either component C; or Cy;.

We model the external subcontractor, S;; and the internal manufacturing facility M; as
single server queues with exponential service time with mean u;}j and ,u;nbj respectively
and ¢, ;; and ¢, ;; denote the unit cost rate to manufacture component C;; at the external
subcontractor and in-house manufacturing facility receptively. We let h;; denote the unit
inventory holding cost rate for component Cj; and b; denote the unit backordering cost rate
of product i. Next section presents the Markov decision process formulation to determine

the optimal production and subcontracting decisions.

5.3 Markov Decision Process Formulation

We develop a continuous-time Markov chain to capture the dynamics of the system. For
analysis purposes, we define two subsystems x;,j = 1,2 as subsystem j that corresponds
to the manufacturing of components Cy; and Cy; (see Figure 5.2). This subsystem includes
external subcontractors S1; and Sy;, and in-house manufacturing department M;. Note that

this subsystem has similarities to the system analyzed in Chapter 4.

Cs,lj’uslj

> Ilj (t)
W 4
cm,lj > lum,lj

> O L,

Corajo P2 W 4,
cs,2j7/’ls j

Figure 5.2 Subsystem x;,j = 1,2
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Following are the key elements in the infinite horizon Markov decision process formulation:

Decision epoch: In the proposed system, actions are taken at a state change, i.e upon de-

mand arrival and service completion epochs.

State space, 33: The state of the system can be completely described with a 4-tupled state
space with state o = (I11, Ia1, [12, I2), 0 € ¥ where [;; is the net inventory position of com-

ponent Cj;.

Action space, A: We define the action space, A = A; x Ay where A;,j = 1,2; represents
the set of actions for subsystem x; with a;x, = (m;, 515, 525), ajx, € Ay, kj =1,...,12. Here,
m; takes the value ¢ if action corresponds to manufacturing of component Cj; at the in-
house manufacturing facility M; and takes the value 0 the action corresponds to being idle.
Similarly, s;;,7 = 1,2 takes the value 7 when the action corresponds to manufacturing of
component C;; at the external supplier S;; and takes the value 0 if the action corresponds
to being idle. Table 5.1 defines the 12 possible action available for subsystem ;. Note that
since A = A; x Ay, there are 144 potential actions ay = (a1 x,,a24,) € A to choose from at

each state.

Transition probabilities: Define p(o'|o, a1k, , a2,) as the transition probability for any state
g = (]117121,112,]22) to state o/ = (111,1517112,152) under actions a1k, S A176L2’]€2 c AQ.
We define v = Z?:l Ai + Z?zl Z?zl(um,ij + f1s45) + A as the normalizing factor for the
uniformization technique described in Lippman (1975). Then the transition probabilities

p(o’|o, ark,, as,) are defined as follows:

Demand arrival for product i: Then I}, = I;; — 1, j = 1,2; and the corresponding transition

probability p(o’|o, a1k, , as,) is given by:

p<0-/|0,7 al,k1;a2,k2> = )\Z'/I/7 Vi = 1’2
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Table 5.1 Action Space for Subsystem Y;

Aj | M; | Sy | Sy
ajp | 1 1 2
ajo | 1 0| 2
a3 1 1 0
;.4 1 0 0
a5 | 2 1 2
aje | 2 0] 2
aj7 | 2 1 0
ajg | 2 0 0
ajo | 0 1 2
ajio | O 0 2
ajii | O 1 0
aji2| 0 | 0 | O

Service completion of component C1j: Then Ij; = I1; + 1; and the corresponding transition

probability p(o’|o, a1k, , as,) is given by:

p(o’lo,ar g, ask,) = Z(ﬂ-m,l,kj,um,lj + Lo 1k Hs,1j) /v
J

where 1, %, and 1,;4,,7 = 1,2 are indicator functions that takes the value 1 if manufacturer
M; and subcontractor S;; respectively are producing component Cj; under action ajy;, and

0 otherwise.

Service completion of component Cyj: Then I;; = I; + 1; and the corresponding transition

probability p(o’|o, a1k, , as,) is given by:

p(0']o, a1, asg,) = Z(ﬂm,zk]-,um,zj + Ly ok s,25) /v
J
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Finally, I]; = I;;, Vi, j = 1,2; and the transition probability p(o’|o, aix,, ask,) is given by:

p(o'|o, a1 gy, asp,) = (v — Z(Az + Lonisky omyig + Lsik; hsiij)) /v

1,J
Cost equation: Define h(c) = .3 hijmax(l;;,0) as the total inventory holding cost
and b(o) = ) .b;max; max(—1I;;,0) as the total backordering cost. Let, c(aik,,aor,) =
Zi’j(cmﬁijllm,@kj + ¢s,ij1s,i,k;) Tepresents the total production cost for action aix, and agp,,
where 1, ; 1, (or Hs,i,kj) is a binary variable that takes the value 1 if the in-house manufacturer
(or the subcontractor) is producing component C;;, and takes the value 0 otherwise . For
instance, if a; 2 = (1,0,2) and ag s = (1,0,2); then C(a12,a22) = (¢ma1+Cs21 + Cm12+Cs22).
This implies that system incurs production cost at a facility only if action suggests to produce
at the facility. Then, we construct a standard Bellman cost equation with value function,
Vi(o) at state o and decision epoch t. Equation (5.1) defines the value function V;(o) at

state . We use the discount factor n € (0,1) in the optimization.

Vi(e) = h(o)+b(o)

FMIN(ay 4, 0z p,)en (a1, a2) + UZP(U/\U» 1k, G2,k,)Vir1(0')], Vo € B (5.1)

0—/

The objective minimizes the value function, V;(o) at each state o and determine the optimal
action (aj, ,a3y,). The system described above presents challenges in terms of structural
analysis of the optimal policy. First, the size of the state space ¥ and action space A in-
creases the complexity of the analysis. For example, with I;;,7,j = 1,2 varying from —100
to 100, the model has 1 billion states and 144 actions. Second, the optimal value function
V() may not be convex in [;,j = 1,2 and the transition probabilities may not have sub-
additivity or super-additivity property with respect to I;; in the state space X and action

space A because of high action space.

Despite of the above mentioned challenges, we are able to analyze the original problem by
decomposing the original system into two subsystems as presented in the next section. Each

subsystem x;,j = 1,2 only models components C; and Cy;, requiring 2-tupled state space
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and 12 actions. This decreases the complexity of the model. Further, we use efficient action
comparison and action elimination techniques to significantly reduce the action space which
helps us to prove that simple multi-index policies are optimal when the sum of inventory

position of product C'; and product Cy; are constant.

Next, we describe the characteristics of the optimal policy. We present the characteristics of

the optimal value function of the subsystem x;,7 = 1,2.

5.4 Characteristics of the Optimal Policy for Subsystem Y

We model each subsystem x; as a Markov decision process model. In each subsystem y;,
actions are taken at epochs corresponding to the state change. Note that, the state of subsys-
tem y; is two tupled and is described in a similar way as the system presented in Chapter 4.
We define state o; = (115, I5;), where I;;,i = 1,2 is the net inventory position of component
Cij and o; € ;. Next, the set of actions A; is defined by a;x, = (m;, 515, 525), k; = 1,...,12.
Next, we use definitions of transition probabilities and immediate cost function to define the
equivalent transition probabilities p(o%|o;, a; ;) and immediate cost function r;(0;, a;,) for
subsystem ;. This means that r;(0;, a;x,) = hj(0;) 4+ bj(0;) 4+ cj(a;x;),j = 1,2. Note that
hj(o;) = >, hijmax(l;;,0) is the total inventory holding cost, b;(o;) = . b;j max(—1;;,0) is
the total backordering cost, and c;(ajx;) = > _;(Cm,ijLm,ik; + Csijlsik,;) represents the total
production cost for action ajg,. Finally, we construct a standard Bellman cost equation
for subsystem x; with value function, V; ;(o;) at state o; and decision epoch ¢ as shown in

Equation (5.2). For simplicity, we normalize and set v; = 1 and A; = 0.

Vii(Lij, In;) = hj(o;) + bi(o;)

+minag, . en,[¢j(aje;) + 7 > 0010, ajn,)Visr(07)] (5.2)

7j
We analyze a complete symmetric system (with respect to costs and service rates of the

products), and show that the optimal policy is of dual index type, i.e. it suggests that
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either one of the products should be always produced at the fastest rate or none of the
products should be produced. In other words, actions a;i9 and a;;; are never optimal.
Next, we analyze asymmetric systems (with respect to costs and service rates) and partition
the action space into regions based on the unit production cost of the manufacturer and
the subcontractor, and show that the multi-index policies could be optimal under specific
conditions on the service rates. In this section, we use Proposition 4.1 from Chapter 4 to

summarize optimal policies for several cases of subsystem ;.

5.4.1 Optimal Policy for Symmetric Systems

We consider two types of symmetry, M — S symmetry and complete symmetry. For an M — S
symmetric system, the costs and service rates for a given component C;; for the manufac-
turer M, is the same as that of the subcontractor S;;, i.e. Cpij = Csij, and fiij = fhsij-
Complete symmetry corresponds to a special case of M — S symmetric system where the
production costs and the service rates are same across the products. Under M — S symmetry
, we observe that action a;g is never optimal, i.e. both the products will not be simultane-
ously manufactured only by the respective external subcontractors. This happens because

the action a;g¢ has higher costs than action a; .

Next, we consider complete symmetric system. For this case, first we use Proposition 5.1

and further reduce the optimal action space from 12 actions to only 5 actions.

Proposition 5.1. If ¢, = Cs4j, and fimi; = fisij,t = 1,2, then optimal action belongs to

the set {CL]"17 Qj3,055,0;56, CLj’lg}.
Proof. The results follows from Theorem 4.5 in Chapter 4. O

Further, we show that under complete symmetric system with respect to costs and service
rates of the products, the optimal policy suggests that either one of the products should be
always produced at the fastest rate or none of the products should be produced. In other

words, actions a; 19 and a; 11 are never optimal.
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5.4.2 Optimal Policy for Asymmetric Systems

For the asymmetric, we analyze three cases : (1) system with negligible production costs,

(2) system with cheaper manufacturer, (3) system with cheaper subcontractor.

Case 1: Negligible production costs: Typically, in the energy industry, certain prod-
ucts/ operations such as manual assembly, PCB assembly, wire harnesses, etc have negligible
production costs as compared to material costs or inventory costs. Under this setting, the
production cost could be assumed to be zero. Proposition 5.2 shows that if the production
costs are zero then the optimal action belongs to the set {a;1,a;3,0a;5,aj6,a;12} and the
decisions are non-increasing in the service rate of product Cy; with respect to Iy, (11, I) € S;.
Note that this case significantly reduces the action space for subsystem y; from 12 actions

to 5 actions, and thereby reducing the computational complexity in the original system.

Proposition 5.2. For subsystem x; with state o; € S; = {(11;, I2;)|]1; + Io; = K;} where,
K; is constant, if ¢, 5 = cs45 = 0,1 = 1,2, then the optimal action a;kj

(1) belongs to the set {a;1,a;3,a;5,aj6,aj12}

(2) is non-increasing in service rates for product Cy; with respect to increasing Iy;.
Proof. Refer to Theorem 4.6 in Chapter 4 for the proof. n

Case 2: Manufacturer is cheaper: When demand is high and exceeds internal capac-
ity, the supply chain manager could subcontract products to the external subcontractor to
alleviate the production and capacity burden at the manufacturer, even though the subcon-
tractor is more expensive than the manufacturer. However, for example, blowout preventers
(prominent energy product) vary significantly in size and require special equipment. For
this product, the production cost at the subcontractor could be more than the production
cost at the manufacturer. Proposition 5.3 shows that if the production cost per unit at the
manufacturer is less than the production cost per unit at the subcontractor, then the optimal
actions belongs to the set {a;1,a;2,a;3,04,0;5,a56,0;7,05s,a;12}. Additionally, if service

rate of the product C; is significantly more than the service rate of product Cy; which is
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typical for products which high variation in size, then optimal decisions are non-increasing
in the service rate of product Cy; with respect to Iyj, (115, 12;) € S;. Note that this case

reduces the action space for subsystem y; from 12 actions to 9 actions.

Proposition 5.3. For subsystem x; with state o; € S; = {(I1;, I2j)|]1; + Is; = K;} where,

. Cor i Co i .
K; is constant -~ < == i =1,2, then
Hm,i Hs,i

(1) the optimal action i, belongs to the set {a;1,a;2,a;3,0j4,0;5,Qj6,Qj7,Ajs,Gj12}-
(2) if Ij > K, ps1; > fhs2i, and fim1; > fm2j + [s1j + [s2j, then the optimal action i,

is mon-increasing in service rates for product Cy; with respect to increasing Iy;.
Proof. Refer to Theorem 4.7 in Chapter 4 for the proof. m

Case 3: Subcontractor is cheaper: For example, products such as top drives are often
expensive to produce using capacity available at the manufacturer. Using capacity available
at the subcontractor is often cheaper. However, if the subcontractor has a higher lead time,
this could lead to high backorders and poor service levels. So, the supply chain manager
needs to balance the tradeoffs in cost and delivery performance to decide on the production
and subcontracting decisions. Proposition 5.4 shows that if the production cost per unit at
the manufacturer is more than the production cost per unit at the subcontractor, then the
optimal actions belongs to the set {a;1,a;3,a;5, a6, aj9,aj10,0511,aj12}. Additionally, if
the service rate of the product C; is significantly more than the service rate of product Cy;,
then optimal decisions are non-increasing in the service rate of product C'; with respect to
L, (115, 15;) € S;. Note that this case reduces the action space for subsystem y; from 12

actions to 8 actions.

Proposition 5.4. For subsystem x; with state o; € S; = {(l1;, I2j)|]1; + I2; = K;} where,

. C : Ceq 5 .
K; is constant ==~ > == ¢ = 1,2, then
Hm,i Hs,i

(1) the optimal action aj. belongs to the set {a;1,a;3,a;s, aj6, aj9, @510, @j11, @j2}-
(2) Zf Ilj > Kj, Hm,15 > Hm,25 + Ms,15, and Ms,15 > Hm,2j + Ms 25, then the Optimal action a;f,kj

is non-increasing in service rates for product Cy; with respect to increasing Iy ;.
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Proof. Refer to Theorem 4.8 in Chapter 4 for the proof. O

Next, we use the characteristics of the optimal policy of the subsystem x; to propose an

approximate analysis of the optimal policy for the original multi-product system.

5.5 Approximate Analysis

Recall that the system described in Section 5.3 presents challenges in terms the size of the
state space ¥ and action space A. For example, with I;;,¢,5 = 1,2 varying from —100 to
100, the model has 1 billion states and 144 actions. So, we leverage results summarized
in Section 5.4 for subsystem x; to develop efficient approximate solution for the original
system. This section outlines the approximate analysis of the original system. We develop
a decomposition based approach which considers two Markov chains corresponding to two

subsystems, x;,7 = 1,2.

In the original multi-product system described in Section 5.2, for states Iy;,I»;,j = 1,2
where, I1; > —Bpaz, l2j > —Bpas,J = 1,2, transition probabilities and behavior of yx; is
exactly the same as in the original system. The difference only occurs when I;; or I5; reaches
— B4 in one of the subsystems. For instance, if either I1; or Iy is equal to — B4, in X1; in
the original system, demands would be backordered. But subsystem y, cannot record this
information and demands continue to queue in x2. To account for this in the subsystem y;,
we define the surrogate demand arrival rate, \;; corresponding to component Cj; for product
t,t = 1,2. In the decomposition, we adjust the demand arrival rate A\;; and Agj, 7 = 1,2 to
ensure that each subsystem ; models the behavior of the original two-product system. For
subsystem x1, A\j1 = \j(1 — P + P P;s) where, Py, is the probability that the backorders for
component Co and Csy in subsystem y, are equal to B,,.., and P;; is the probability that

the backorders for component C; and Cy; in subsystem y; are equal to B,,4.. Similarly, for
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subsystem X2, A2 = A\i(1 — P + Py Pi).

Clearly, the solution to subsystem y; requires the estimates of P;; that is obtained from
the optimal action set for subsystem yo and vice versa. This suggests an iterative approach
as shown in Figure 5.3. We analyze the optimal action for each subsystem using policy
iteration algorithm within a larger iterative approach. Let @); <@§*137> denote the transition
probability matrix and (1}, I5, ajj‘,zj) € Hj(ay,zj) denotes the corresponding steady state
probabilities for subsystem x;. Then, in system x;, we first assume P, = 0 and determine
the optimal optimal action af,zl for subsystem y; using policy iteration. Then, we construct
the Markov chain model for subsystem x; with aﬁ‘,ll and determine the steady state probabil-
ities 71 (111, Io1, af,il) by solving the Chapman-Kolmogorov equations. Next, we use steady
state probabilities to evaluate the estimates of P;; (see Figure 5.3). Subsystem y» uses this
estimate of P;; to calculate the surrogate demand arrival rate \;5. Next, we use this demand
arrival rate \;» and determine the optimal optimal action aéf,lz for subsystem ys using policy
iteration. Then, we construct the Markov chain model for subsystem yx, with agf,)gz and de-
termine the steady state probabilities 7y (112, Io2, agf,)cz) by solving the Chapman-Kolmogorov

equations. Next, we use steady state probabilities to evaluate the estimates of Pj;. This

iterative process continues till the convergence is achieved for P;;,4,j = 1, 2.

Executing this iterative procedure therefore, has two key steps: i) solving the simplified
Markov decision process formulations for each subsystem to obtain the optimal action for
the subsystem for a given estimates P;; and Pjy. and ii) solving the Markov chain for each

subsystem under current estimates of optimal action to obtain new estimates P;; and Pjs.
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Section 5.4 already described the formulation of subsystem x;,7 = 1,2, and the struc-
tural properties of optimal value function and optimal policy. In the following paragraph,
we describe the details of Markov chain formulation used to determine the estimates of
P;;,i,7 =1,2. Although, we have not proved the convergence of this algorithm, we observed
that it always converged in our numerical experiments. In the iterative procedure, policy
iteration on subsystem x; for a given estimate of P;; and Pj, provides the optimal actions
corresponding to each state o;,j = 1,2. We use the optimal actions al ,2 obtained at each
iteration to develop a Markov chain formulation for the subsystem x; under these optimal
actions.

Let p;(o’|o;, aﬁ.) denote the transition probability from state o; = (11, Iy;) to state o =
(11, I5;) by taking action ag,g , and let m;(1y;, Iy, a;zj) e Il; ( ) denotes the corresponding
steady state probabilities. Then, the Chapman Kolmogorov (CK) equations for all states in

subsystem y; with given action a?,ij is shown as follows:

o If —Byu < I1j <max(ly;) and — B, < Iyj < max(ly;), Vj =1,2:

(A1j 4 Agj 4 1y + Hsj + H,25) 5 (11, Lo, aﬁj) = MLy + 1, Iy, al) )

J

+)‘2j7rj(jlj7 Igj + 1, a 2 ) (53)
)

*

255 (L1, Loj — Laﬁ,kj)

F(tm,1j + ps,15)m5 (1 — 1, Loy, afﬁj

o If —Bu < I1j < max(ly;) and Iy; = maz(ly;), Vj =1,2:

(Mj + g + 1 + 1) (T, Do aS) ) = Agmy(Dy + 1, g al))
s 2575 (11, Toj — 1, aﬁf,ij) (5.4)

+(pom,j + prsaj)mi(Ly — 1, Iy, a;-flzj)

)
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If — Bz < Ilj < ma:v([lj) and ]2]' = _Bmaxy VJ =12

(A + fmaj + s + ps2) 75 (115, Lo, “5‘2) = Mym(h; +1, [Zj’ )
oy (g, Ty + 1, a( L) (5.5)
+(Mm,1j + Ms,lj)ﬂj(llj — 1, I, a§:2j)
If Ilj = —Biae and —Byq, < [2j < max([2j)7 vj =12

(A2j 4 Hm1j + s+ Hs2)T5 (L1, g, afzzj) = MLy + 1 Iy al))

J

+X95m5( Ly, by + 1,057 ) (5.6)

A tts,2575 (115, Toj — 17a§*k);])

If [1] = _Bmax and [2j = ma:v(fgj), VJ = 1, 2:

(A2j + pm,1j + frs,15) 75 (11, L2, aﬁj) = Mymi(1y + 1, Iy, ) I

s 2575 (115, Laj — 1,a§-,;3j) (5.7)
If [1J = _Bmax and [2] = _Bmam> VJ = 1, 2:

(tm,1j + ts,1j + s25) 5 (115, Lo, Gf;zj) = Aymi(Ly; + 1, 1y, a ) )

g (L, I + 1 a;*g) (5.8)

If I1; = maz(ly;) and —Ba, < Ioj < maz(ly;), Vj =1,2:

(A1 + A2j + ps 2)7 (L1, Loy, a§-§2j) = Noym;(Lj, Iy +1,a) 2

s (I, Ty — 1,57 ) (5.9)
If I;; = max(ly;) and Iy; = max(ly;), Vi =1,2:
(A1 + Agj) 7 (L1, L2, ag-jﬂk);j) = 15,275 (115, Loy — 1, afk);j) (5.10)
If [1; = max(ly;) and I, = —Bys, Vj =1,2:

(Arj + ps,2)7 (L1, Loj, afk);j) = Agym;(Li, Iy + 1, aﬁj) (5.11)
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The CK equations for other actions ag.:k,zj € A, can be written in similar way. Then, the

steady state probabilities 7;(Iy;, I, a?,ij) corresponding to the optimal action are obtained

using Equation (5.12) and Equation (5.13).

Hj(aj,kj)Qj(ag‘lej) =0 (5.12)
Zzﬁj(hjabjﬂ%) =1 (5.13)
I Iz

Using these steady state probabilities, we estimate F;;, Vi = 1,2;j = 1,2 as shown in Equa-
tion (5.14) and Equation (5.15).

IQj:Bmaac

Plj = Z Wj(—Bmax,]Qj,ag-T]gj) (514)
IQj:_Bmax
Ilj:Bma,z

Py = > (I, —Bues.aly) (5.15)
Ilj:_Bmaz

5.6 Numerical Studies

This section presents numerical studies of the proposed multi-product system to provide
insights on the characteristics of the optimal solution. We conduct three experiments: Ex-
periment 1, Experiment 2, and Experiment 3. Experiment 1 discussed in Section 5.6.1
considers zero production costs, Experiment 2 discussed in Section 5.6.2 considers cheaper
manufacturer, and Experiment 3 discussed in Section 5.6.3 considers expensive manufac-
turer. Finally, in Section 5.6.4, we analyze the accuracy of the decomposition approach for
these three experiments. We let B,,,, denote the maximum backordering limit. Thus, we

have _Bmam S [l] S OO,i,j = 1,2
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5.6.1 Experiment 1: Zero Production Costs

In Experiment 1, we consider a case where the manufacturer and the subcontractor have
zero costs i.e. ¢y ; = 0,¢5,5 = 0, ¢ = 1,2, 7 = 1,2. Using Proposition 5.2, the optimal
action belongs to the set {a;1,a;3,a;5,a;6,a;12}, reducing the total action space from 144
actions to 25 actions. Table 5.2 presents the system and cost parameters for Experiment 1.
Here, the manufacturer is twice as faster (um, 1; = 24s,1;) as the external subcontractor. We
perform an exact analysis and analyze characteristics of the optimal solution for the original

system.

Table 5.2 System Parameters and Costs for Experiment 1

Subcontractor’s Parameters | Manufacturer’s Parameters
CsjyJ = 1,2 0 Cm,15,] = 1,2 0
Cs2j,J = 1,2 0 Cmp2j,] = 1,2 0
fs,i1, @ = 1,2 1 Mmi1,? = 1,2 2
[s,i2, @ = 1,2 1.5 M2, 0 = 1,2 3

System Parameters Other Costs

Binaa 5 bi,i=1,2 80
Aiyt=1,2 1.5 hij,i,5 =1,2 2

For B,,.. = 5, we analyze the characteristics of the optimal solution. Table 5.3 presents
the optimal actions for subsystem x; corresponding to each state (01, 03),02 = (0,0). For
instance, if I;; = Iy; = —b5, the optimal action a;5 corresponding to state (—5,—5,0,0).
Under given parameters and o7 = (=5, —5), the optimal decision suggests to use in-house
manufacturing department M; as well as external subcontractor Sy; to manufacture compo-
nent Cy; and only use external subcontractor S;; to manufacture component C;. Similarly,

the optimal actions for other states are defined as well. The optimal policy contains actions
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{%,1, aj3,055,0;56, aj,l?}-

For a fixed total inventory position, I;; + I3, we observe a monotone property in service
rates of components with increasing I;; or I;. For instance, if I1; 4 I5; = 0, the total service
rate for component C'; is non-increasing with increasing inventory position I;;. In contrast,
if I, + Is; = —6, the total service rate for component C1; is non-decreasing with increasing
inventory position /;;. Under the given parameter setting, these results suggest a dual in-
dex type policy for component replenishment for a fixed total inventory position I1; + Io;.
Although, the results shown in Table 5.3 is for o5 = (0,0), we observe this property to hold
for all other values of o5. This means that for every state in the subsystem y», there is dual

index type structure of state in subsystem y; if I;; + Is; = K, where is K is constant.

Table 5.3 Optimal Actions Corresponding to Each State o; in Experiment 1

111/[21 -5 -4 -3 -2 -1 0 1 2 3 4 5)
-5 a15 | A15 ais Q15 | @15 | A11 | Q11 | A1;1 a1,3 a3 | 41,3
-4 a1,1 | A1 ais | @15 | A11 | G121 | Q11 | A1;1 a3 | @1,3 | 413
-3 ain | i1 | @11 | @11 | G131 | Q11 | Q11 | G101 | Q1,3 | (13 ai1,3
-2 a11 | @11 | A1 Q15 | A11 | G11 | G171 | @1,3 | A13 a1,3 ai1,3
-1 a1 | 15 a5 15 | 15 | 11 | Q1,1 | Q1.3 a1.3 1.3 1.3
0 a15 | a1 ais 15 | di15 | Q1,1 | G111 a1,3 a1,3 1,3 1,3
1 ais | ais | G5 | Q15 | @Qis | Qs | Q15 | Q13 | Q13 | a1z | a13
2 Q15 | A15 15 | Q16 | Q16 | A16 | Q16 | 1,12 | @112 | Q112 | A1,12
3 16 | A16 Q16 | Q16 | A16 | Q16 | A16 | A1,12 | Q1,12 | G112 | G112
4 16 | Q1,6 1,6 Q16 | A1 | Q16 | Q16 | Q1,12 | A112 | G112 | Q1,12
5 Q16 | Q16 1,6 Q16 | A16 | Q16 | A16 | A1,12 | G112 | G1,12 | Q1,12
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For I,; + Is; = 0, Figure 5.4 shows the characteristics of the optimal solution for oy =
(0,0),09 = (=5,—5),00 = (5,5). We observe that the service rate of the component Cj;
is non-increasing with increasing inventory position I;;. Under all states of the subsystem
X2, these results suggest a dual index type policy for product replenishment for a fixed total
inventory position I1; + Iy; = 0. For example, for o9 = (=5, —5), the optimal service rate
of component C; at inventory position I;; = 1 changes from 3 to 1 meaning that only
the subcontractor Sy; is producing product Cy; at [;; = 1. Next, the component Cy; is
neither produced by the manufacturer M; nor by the subcontractor S;; at inventory po-
sition I; = 3. We observe similar results for I; + I, = K, K = —10,...,10. However,
the optimal policy might not be dual index type for other parameters. We also observe that

there is no monotone property in service rate of a given component C4; if I;; = K or I = K.

—0,=(00) = 0y,=(-5-5) —0,=(55)

Service rate
o b
Lh th

—_
— L M

j=
LN

: \

5 -4 -3 -2 -1 0 1 2 3 4 5
Inventory position [;,

Figure 5.4 Optimal Service Rate of Component C}; for Experiment 1
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5.6.2 Experiment 2: Manufacturer is Cheaper than Subcontractor

In Experiment 2, we consider that the manufacturer is cheaper than the external subcon-
tractor. In this setting, the component C5;, 7 = 1,2 is more expensive than the component
C1;,j = 1,2. Using Proposition 5.3, the optimal action belongs to the set {a;1,a;2,a;3, a;4,
ajs, aj6, 7, 48, @12}, reducing the total action space from 144 actions to 81 actions. Note
that in Experiment 2, we have more than twice the actions as compared to Experiment 1
which increases the computational complexity of this experiment. Table 5.4 presents the
system and cost parameters for Experiment 2. Here again, the manufacturer is twice as
faster (pm,1; = 25,1;) as the external subcontractor. We perform an exact analysis and

analyze characteristics of the optimal solution for the original system.

Table 5.4 System Parameters and Costs for Experiment 2

Subcontractor’s Parameters | Manufacturer’s Parameters
Cs15,7 = 1,2 35 Cm1j,J = 1,2 15
Cs25,7 = 1,2 25 Cmo2j,J = 1,2 10
fsi1, e = 1,2 1 fomit, e = 1,2 2
sz, 1 = 1,2 1.5 M2, t = 1,2 3

System Parameters Other Costs

Binax 5 bi,i=1,2 80
Ayt =1,2 1.5 hij, i =1,2 2

For B,,.. = 5, we analyze the characteristics of the optimal solution. Table 5.5 presents
the optimal actions for subsystem x; corresponding to each state (01,02),02 = (0,0). For
instance, if I;; = Iy = —b5, the optimal action a;¢ corresponding to state (—5,—5,0,0).
Under given parameters and o; = (=5, —5), the optimal decision suggests to use manufac-
turer M, as well as external subcontractor Sy; to manufacture component Cy; and do not

manufacture component C;. Similarly, the optimal actions for other states are defined as
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well. The optimal policy contains actions {a;1,a;3,aj4,@j5,aj6, Gjs, Qj12}-

For a fixed total inventory position, I1; + I5;, we sometime observe a monotone property in
service rates of components with increasing I;; or Ip; but sometime do not observe monotone
property. For instance, if I1; + I5; = 0, the total service rate for component C; is not always
non-increasing with increasing inventory position ;1. In contrast, if I;; + Is; = —6, the total
service rate for component C'; is non-decreasing with increasing inventory position I;;. This
suggests that the optimal policy may not be dual index type. But, if we consider condition
on service rates as given in Proposition 5.3 then we do observe dual index type policy to be

optimal at fixed total inventory position.

Table 5.5 Optimal Actions Corresponding to Each State oy in Experiment 2

111/121 -5 -4 -3 -2 -1 0 1 2 3 4 5)
-9 16 | A16 | Q16 | A16 | Q1,6 | A14 | Q14 1.4 1.4 Q14 | Q1,4
-4 11 | 16 | Q16 | Q16 | Q16 | Q13 | Q14 1.4 14 | Q1,4 | A14
-3 a11 | di15 | Q15 | Q15 | Q11 | A1,3 | Q13 a13 | 1,3 | 13 | A13
-2 11 | @11 | Q15 | Q15 | Q11 | Q14 | Q14 | Q1,4 | A14 a1.4 Ay 4
-1 Q11 | 15 | Q15 | Q15 | Q16 | Q14 | Q1,4 | Q14 1.4 1.4 Ay 4
0 16 | A16 | Q16 | A16 | Q16 | Q1,8 | A112 | A112 | A1,12 | G1,12 | Q1,12
1 16 | A16 | Q16 | A16 | Q1,8 | Q18 | A112 | A1,12 | A1,12 | G1,12 | Q1,12
2 16 | A16 | Q16 | Q16 | A1,8 | Q18 | A112 | A1,12 | A1,12 | G1,12 | Q1,12
3 16 | A16 | Q1,6 | A16 | A18 | Q18 | A1,12 | A112 | Q1,12 | Q1,12 | A1,12
4 16 | 16 | Q16 | A16 | A18 | Q18 | A1,12 | A112 | Q1,12 | Q1,12 | A1,12
5 Q16 | Q16 | A16 | Q16 | A18 | A18 | A112 | Q1,12 | Q1,12 | A1,12 | G112

For Iy + Is; = 0, Figure 5.5 shows the characteristics of the optimal solution for gy =

(0,0),09 = (=5,—5),09 = (5,5). We observe that the service rate of the component Cf; is
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not always non-increasing with increasing inventory position /1. For example, for o = (5,5),
the optimal service rate of product C; at inventory position I;; = —4 changes from 2 to 3
meaning that the manufacturer M; and the subcontractor Si; is producing component C;

at I; = 1 then the service rate again changes to 2 at ;1 = —2 and 0 at I;; = 0.

—~— 0, = (00) 0, = (_5.'-_5) 0, = (55)
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Figure 5.5 Optimal Service Rate of Component C'; for Experiment 2

5.6.3 Experiment 3: Subcontractor is Cheaper than Manufacturer

In Experiment 3, we consider a case where the subcontractor is cheaper than the manufac-
turer. In this setting, the component Cy;,j = 1,2 is more expensive than the component
C1;,7 = 1,2. Using Proposition 5.4, the optimal action belongs to the set {a;1,a;3,a;5, a6,
aj9,aj10, @11, Gj12}, reducing the total action space from 144 actions to 64 actions. Note
that in Experiment 3, we have more than twice the actions as compared to Experiment 1
but less number of actions as compared to Experiment 2. Table 5.6 presents the system and
cost parameters for Experiment 3. Here, the manufacturer is twice as faster (umlj = 2us,1j)

as the external subcontractor. We perform an exact analysis and analyze characteristics of
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the optimal solution for the original system.

Table 5.6 System Parameters and Costs for Experiment 3

Subcontractor’s Parameters | Manufacturer’s Parameters
Cs15,7 = 1,2 15 Cmi1j,J = 1,2 35
Cs2iyJ = 1,2 10 Cm,2j,] = 1,2 25
fs,i, b = 1,2 1 fomit,t = 1,2 2
[si2, 0= 1,2 1.5 Mo, = 1,2 3

System Parameters Other Costs

Binaa 5 bii=1,2 80
Aiyt=1,2 1.5 hij, i, =1,2 2

For B,,.. = 5, we analyze the characteristics of the optimal solution. Table 5.7 presents
the optimal actions for subsystem y; corresponding to each state (oy,03),09 = (0,0). The
optimal policy contains actions a; 1, a;s, a;s,a;6,a;12. The results look very similar to Ex-
periment 1. Although, we did not observe actions a9, a; 10, @511 for o2 = (0,0), we do observe

these action in the optimal policy for other states of subsystem .

For a fixed total inventory position, 11+ I51, we observe a monotone property in service rates
of components with increasing I, or Is;. For instance, if I, + I5; = 0, the total service rate
for component C}; is non-increasing with increasing inventory position I;; where at I1; < 0
both the manufacturer and the subcontractor is producing component Cyy, and at I1; > 0
component (4 is not manufactured. In contrast, if I;; + Is; = —7, the total service rate for
component C; is non-decreasing with increasing inventory position I1;. Under the given pa-
rameter setting, these results suggest a dual index type policy for component replenishment
for a fixed total inventory position I1; + Is;. Although, we show this result for o5 = (0,0), we

observe this property to hold for all other values of o9 whenever the subcontractor is cheaper
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Table 5.7 Optimal Actions Corresponding to Each State o; in Experiment 3

111/]21 -5 -4 -3 -2 -1 0 1 2 3 4 5}
-9 a5 | a15 | Q15 | 15 | Qs | @13 | a3 | a13 | @13 | a13 | Q1,3
-4 11 | 15 | 15 | Q1,5 | A1,1 a13 1.3 1.3 a3 | 1,3 | aA13
-3 11 | Q15 | Q1,5 | Q15 | A1,1 a13 1,3 a13 | 1,3 | A13 a3
-2 11 | @15 | A15 | G15 | G111 a1,3 a13 | @1,3 | 413 a3 | a3
-1 Q15 | 15 | A15 | 15 | A15 a13 ai,3 | 1,3 1,3 1,3 a3
0 Q16 | A16 | Q16 | A16 | Q16 | A1,12 | 1,12 | Q112 | Q112 | A1,12 | A1,12
1 Q16 | A16 | Q16 | A16 | Q1,6 | Q1,12 | G112 | @112 | Q112 | A1,12 | A1,12
2 Q16 | A16 | Q16 | Q16 | Q16 | Q1,12 | 1,12 | @112 | Q112 | A1,12 | A1,12
3 Q16 | A16 | Q1,6 | Q16 | A16 | A1,12 | Q1,12 | Q1,12 | A112 | G112 | Q1,12
4 16 | 16 | Q16 | Q16 | A16 | A1,12 | Q1,12 | Q1,12 | A112 | G112 | Q1,12
5 Q16 | Q16 | A16 | Q16 | Q16 | Q1,12 | Q1,12 | A112 | Q1,12 | Q1,12 | 41,12

than the manufacturer. This means that for every state in the subsystem y», there is dual

index type structure of state in subsystem x; if I;; + Io; = K, where is K is constant.

For I,; + Is; = 0, Figure 5.6 shows the characteristics of the optimal solution for oy =
(0,0),09 = (=5,—5),092 = (5,5) when the subcontractor is cheaper than the manufacturer.
We again observe that the service rate of the component C'; is non-increasing with increasing
inventory position /7;. Under all states of the subsystem x», these results suggest a dual index
type policy for component replenishment for a fixed total inventory position I1; + Is; = 0.
For example, for oo = (—5,—5), the optimal service rate of component Cy; at inventory
position I;; = 1 changes from 3 to 1 meaning that only the subcontractor Sy; is producing
component C'; at [1; = 1. Next, the component C; is neither produced by the manufacturer
M; nor by the subcontractor Si; at inventory position I; = 3. We observe similar results for

L1+ 1, =K, K=-10,...,10. However, the optimal policy might not be dual index type for
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Figure 5.6 Optimal Service Rate of Component C; for Experiment 3

other parameters. We also observe that there is no monotone property in service rate of a

given product Cy; if Iyy = K or Iy = K.

5.6.4 Accuracy of the Decomposition Approach

In this section, we present the accuracy of the decomposition method to solve multi-product
system. We define V(0)%* as the optimal value function at state o = (o1, 03) for the original
system, and define V(0)4* = Vi(01)* + Va(0o2)* as the sum of optimal value functions for
subsystems y; and o respectively. Next, let Er(c) = (1 — V(0)**/V(0)F*) % 100 be the
error percentage in the approximate method for state o. To measure the accuracy of the
decomposition method, we define b(o) = 3, b;; max(—1;;,0) as the total backordering cost

where b;; = 40,¢,5 = 1,2.

Table 5.8 presents the error range in the decomposition and the number states that have

error in the value function in the corresponding error range. For example, in Experiment 1,



Table 5.8 Accuracy of the Decomposition Approach

Experiment | Er(o) Range | Number of States

0—-5% 1420

Experiment 1 5—10% 6641
10 — 15% 6206

> 15% 374

0—5% 7371

Experiment 2 5—10% 5090
10 — 15% 1078

> 15% 1102

0—5% 5682

Experiment 3 5—10% 6723
10 — 15% 903

> 15% 1333
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1420 states falls under 0 — 5% error range with respect to value functions. When the pro-

duction costs are zero, then more than 50% of states have less than 10% error range leading

to an average error of 9.5%. Next, when the manufacturer is cheaper, then more than 85%

of states have less than 10% error range leading to an average error of 6.7%. Finally, when

the subcontractor is cheaper, then more than 85% of states have less than 10% error range

leading to an average error of 8.1%.

5.7 Conclusions

In this chapter, we consider a multi-product system where two products are assembled from

two components. we assume that components are made to stock and can manufactured

from dedicated external subcontractor and shared in-house manufacturing department. We
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develop an approximate method that uses decomposition of the original system into com-
ponent based subsystems and uses iterative procedure to determine the solution. For each
subsystem, we leverage results from Chapter 4 to significantly reduce the action space of
the original system. For instance, for a subsystem with negligible production costs, the ac-
tion space for each subsystem reduces from 12 actions to 5 actions. Similarly, we reduce
the action space for subsystems where the manufacturer is cheaper than the subcontractor,
and subsystems where the manufacturer is expensive than the subcontractor. Next, using
iterative approach, we determine the optimal solution of the original system. We develop
numerical experiments that provide insights on the structure the optimal solution for the
original system. If the productions costs of the manufacturer and the subcontractor are zero
or the manufacturer is expensive than the subcontractor then we observe that for every state
in subsystem y, there is a dual index type policy in subsystem yx;. Numerically, we show

that the approximate method is fairly accurate in certain cases.
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Chapter 6

Capacity and Production Decision for Knowledge-type
Components

6.1 Introduction

In the energy equipment industry, knowledge-type components could account for 30-50% of
the bill of materials of the final product and contribute to 20-40% of the product revenue
(in terms of sales from original equipment and aftermarket). Knowledge-type involve in-
volve proprietary intellectual property (in the form of proprietary designs, manufacturing

processes, or both).

Knowledge-type components are made to order (in contrast to standard-type components
that are made to stock); based on the customers’ unique requirements (performance criteria,
operating environment, etc). These components often help manufacturers differentiate their
components from those manufactured by competitors and help to gain a competitive edge
in the market. For instance, blow out preventer (BOP) valves are considered as knowledge-
type components by several rig manufacturers like Cameron, National Oilwell Varco, and
Schlumberger. The proprietary designs for these components provide unique safety and re-
liability ratings for the rigs and are sometimes the deciding factor in awarding contracts.
However, such components require high capital investment and the cost to under utilize the
available capacity is significant. In such cases, knowledge-type components might need to be
strategically subcontracted to vendors for various reasons: (i) the subcontractor has avail-

able capacity that helps the manufacturer gain more revenue during the market up-cycles, or
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(ii) the manufacturer has high unused capacity costs (overhead costs) and balances tradeoffs

between unused capacity costs and production costs during market down-cycles.

In this chapter, we consider a supply chain setting where the manufacturer could subcontract
manufacturing of knowledge-type components to external vendors. However, we consider the
scenario where the subcontractor has cost associated with unused capacity. This leads to the
following research questions: (i) When and how much capacity should the manufacturer and
the subcontractor invest on? (ii) What is the structure of the optimal policy and how does
the unused capacity impact the optimal policy? (iii) How can we reduce the gap between
the system with centralized control and system if decentralized control. We develop Markov
decision process model for centralized system and stochastic game model for decentralized

system, and analytically analyze the structure of the optimal policy under both settings.

The rest of the chapter is organized as follows: Section 6.2 describes the system model and
assumptions for the centralized system and presents the Markov decision process model for
the system. Section 6.3 describes the optimal production and capacity decisions for one
time period model. Section 6.4 describes the optimal production and capacity decisions for
multiple time period model. Section 6.5 describes the system model and assumptions for
decentralized system and presents the stochastic game formulation of the system. Finally,

Section 6.6 summarizes the findings.

6.2 Capacity and Production System Model

We analyze a make-to-order manufacturing system producing knowledge-type components
in a multi-period setting under centralized decision making. At each time ¢,¢ =1,...,T, com-
ponents can be manufactured either by using available capacity C,,; at the manufacturer
M, or by using available capacity C;; at the subcontractor S (see Figure 6.1). Typically, the

time periods could be in years. We assume that the capacities C,,; and C; are associated
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with long term investment on a special purpose capital equipment that cannot be disposed
or decreased in the later time periods. We assume that the demand at time ¢ is denoted by

d; and can take values dj, ¢ Or dpign With probability ¢ and (1 — g) respectively.

Capacity Decisions

Supply from
Manufacturer

Manufacturer (M)

Knowledge-type
Components

Supply from
Subcontractor

Subcontractor (S)

Capacity Decisions

Figure 6.1 Manufacturing System with Knowledge-type Components

At the beginning of each time period ¢, both the manufacturer M and the subcontractor
S decide if they want to invest in additional capacity c,,; and c,; respectively. We assume
that the lead time to make these capital investments is negligible and hence a decision to
invest increases the capacity level of the manufacturer and subcontractor from C,, ;1 to
Cmt = Chi—1+ Cmi—1, and Csyq to Csy = C5 -1 + c54—1 respectively. Next, the demand
d; is realized. Demands are in the terms of confirmed order of components with promised
delivery dates in the future. After observing the demand, the manufacturer M decides to
produce z,,; quantity of the component at a production cost of f,, per unit, and subcon-
tract =, quantity to the subcontractor S at a subcontracting cost of f; per unit. Note that
excess production at time period ¢ cannot be used to satisfy demands for later time peri-
ods as the demand is associated with knowledge-type components and are make-to-order.
Therefore, any excess inventory is disposed at zero cost. Since, the capacity investments cor-
respond to capital equipment, both the manufacturer and the subcontractor incur unused
capacity costs o,, and o, respectively to absorb the relevant overheads. The total unused

capacity cost incurred by the manufacturer and the subcontractor in time period ¢ is given
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by 0 (Cint + ¢t — Tmt) and os(Csy + st — x54) respectively. At the end of time period
t, manufacturer generates a per unit revenue w; = A — e, min(d;, T, + xs4) by satisfying
demands to the extent possible through components manufactured in that time period. Note
that, A and e,, control the intersection and slope of the revenue function with respect to the

total production.

We use Markov decision process formulation to determine the optimal capacity and produc-
tion decisions of the system. The key elements in the Markov decision process formulation

are as follows:

Decision epoch: In the manufacturing system, actions are taken at epochs corresponding to

every time periods t =1,2,...,T.

State space, X: The state of the system is described with a 2-tupled state space with state
0 = (Cnt,Cst),0 € X, where C,,; and Cy, are the capacity levels at the manufacture M

and the subcontractor S respectively at the beginning of time t.

Action space, A: The action space A represents the set of actions with a = (¢, ¢s¢),a € A.
Here, ¢, is the available capacity choices for the manufacturer M and can take values
0,¢,2c,...,nc, and ¢y, is the available capacity choices for the subcontractor S and can take
values 0, ¢, 2¢, ..., nc. Note that the manufacturer and the subcontractor, each has n capacity

level choices.

Transition probabilities: Define p(o’|o,a) as the transition probability for any state o =

(Cint, Cs ) to state o' = (C)

.t Cty) corresponding to action a € A. Then, the transition

probability p(o'|o,a) = 1if C, ; = Cpy + ¢y and Cf, = Cy; + ¢4, 0 otherwise.



122

Cost equation: Define w(o,a, Tpmy, Tsy) = wymin(dy, T, + x54) as the total expected rev-
enue, f(0,0, Tmt, Tst) = fmTme + fsTse as the total production cost, and o(c, a, Ty 1, Ts¢) =
0m(Cmt + Cmt — Tmt) + 0s(Cst + 54 — xs¢) as the total unused capacity cost. We let
Go.a(Tmt, Tst) = W(0, 0, Ty, Tst) + f(O, 0, Ty, Tst) + 0(0, a4, Ty, 1) denote the expected
reward at state o = (Cp,4, Csy), action a = (¢, ¢s¢), and production quantities @y, s, s 4.
Let r(o, a) denote the immediate reward function at state o for action a, defined as r(o,a) =
MaXey,, , 2., BJo.a(Tm,, Tst)], where 2 and z7; correspond to optimal production quantities
of the manufacturer and the subcontractor respectively that maximizes the expected reward
Elgo.a(Tm.t, st)]. We construct a standard Bellman cost equation for the system with value
function, V;(o) at state o and decision epoch ¢t. Equation (6.1) defines the value function

Vis1(0o) at state o = (Cy, 1, Cs ) and discount factor n,n € (0,1).

a€h

Vi(Conts Cn) = maxfr(o,a) + 1S p(0lo, @) Visa (o) (6.1)

lea

Note that our formulation does not include cost of capacity investment, but only costs/revenues
associated with use of invested capacity for two reasons: (i) capacity investments often are
paid from strategic cost pool; our focus is on the operational costs/revenues from the use of
this capacity, (ii) considering investments confound the operational challenge of how capacity

must be used with the strategic question of payback on capacity investment.

The underlying problem has two-tupled state space and action space with (n + 1)? states
and (n + 1)? actions, increasing the complexity to characterize the structure of the opti-
mal policy. In the next section, we analyze one time period problem to study the impact
of tradeoffs in unused capacity costs and productions costs on the optimal production and

capacity decisions.



123

6.3 Optimal Solution for One Time Period Problem

We analyze a one time period problem (n = 1) where the manufacturer and the subcontrac-
tor have 0 capacity at the beginning of ¢ =1, i.e. C,,,; = Cs4 = 0. The manufacturer M and
subcontractor S, each has two capacity choices ¢, = {0, ¢} and ¢, = {0, ¢} respectively.
Note that for one time period problem and for any state 0 = (Cy,2,Cs2), Va(o) = 0 in the
Equation (6.1). If the manufacturer and the subcontractor, each invest in capacity ¢, and
cs respectively, then we define the supply chain capacity to be Cy,+ + ¢y + Csy + c5 OF
equivalently, ¢, ; + ¢s ;. Further, we assume that parameters A and e,, take values such that

the total profit at optimal decision is always positive.

For this two-tupled state space and action space, determining the optimal capacity and
production decisions for one time period problem is non-trivial. Typically, for a system
with no unused capacity costs (i.e. 0, = 05 = 0), the optimal decision should recommend
capacity investment at whoever has the lower production cost. Similarly, for a system with
equal production costs (i.e. f,, = fs), the optimal decision should recommend capacity
investment at whoever has the lower unused capacity cost. However, if the productions
costs and the unused capacity costs are distinct and non-zero then the tradeoffs between
production costs and unused capacity costs make the capacity investment decisions non-
trivial. Further, understanding the tradeoffs in the context of a single time period setting
can be very useful to determine the optimal decisions for the multi-time period problem
(Section 6.4). In the subsequent sections, we analyze the structure of the optimal policy and

reward function for one time period problem.

6.3.1 Properties of the Reward Function

In this section, we present properties of the expected reward function r(o,a). Note that
Cii+1 and Csyqq correspond to the capacity of the manufacturer and the subcontractor
respectively after making capacity investments at time ¢, i.e Cy, 111 = Crp+cme and Cypqq =

Cst + cs. We assume that o, < f,,, and o, < f,. This ensures that the optimal production
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Ty, + T3, at time ¢ is less than the maximum demand djign¢. Further, we assume that

diowst = 0,t =1,...,T. Then, the expected reward function is defined as:

7”(0', CL) = E[w(av a, x?n,t? x:,t) + f(O', a, xTn,M x:,t) + 0(07 a, x:n,tv x:,t)]

= E[(A — e, min(d;, 'T:n,t + x:t)) min(dy, m;kn,t + x:t) + fmx:nt + fsx:,t

+0m (Crnt + € — T ) +05(Cop + o — 5] (6.2)

If we have Ty + x5, < dhight, then E[(A — e, min(dt,xjnvt + th)) min(dt,xat + x;t)] =
Al —q)(z},, +2t,) —em(L—q)*(x},, +2%,)?. Similarly, if we have @7, , + 2%, > dpigny, then

E[(A — ey min(dy, z;, , + 2% ,)) min(dy, 2}, , + 2% ,)] = A(1 = q)dnight — em(1 — q)?d}, - Then,

for instance, if @, , + 2% ; < dpigns, Equation (6.2) can be further simplified as:

r(o,a) = A(l—q)(zp,, +27,) = en(l — @) (2}, + 27,)°
A [, A [y + 0m(Coe + Cmp — Ty ) + 05(Cy 4 oy — 23 ,)
= —en(l— Q)2<x:1,t + x:,t)Q + (A(1 = q) + 0 — fm)x;knt
+(A(L —q) + o5 — fs)xif,t — 0 (Crnt + mt) — 05(Csp + Cst)

= —a(z), +a,)’ + By, +yxl, 4+ 0 (6.3)

Where a = e,(1 —q)?, 8 = A1 —q) + 0o — fm, v = A(1 = q) + 05 — fs, and § =
—0m(Crnt + €mt) — 05(Cst + ¢s¢). Lemma 6.1 provides the optimal production quantity for

the manufacturer and the subcontractor for a given state ¢ and action a at time t.

Lemma 6.1. For the system with expected reward gy o(Tm (0, a), 251(0,a)) = —a(zm (o, a)+
To4(0,0))? + Brmi(o,a) + yrss(o,a) + 3§ at state 0 = (Cpoy, Csy) and action a = (Cpyp, Cst),
and for dpigns > min(%, =),

(1) if B <7, then x},(0,a) = min(max(3/2a — 2% ,(0,a),0), Cpnt + cmy) and x5 ,(0,a) =
min(y/2a, Cst + Cs4).

(2) if B >, then x}, ,(0,a) = min(8/2a, Cpy + cmy) and x%,(0,a) = min(max(y/2a —
wy,(0,a),0),Csy + coy).
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Proof. To prove Lemma 6.1, we take partial derivatives of ¢, q(2m (0, a),zs:(0,a)) with
respect to x,, (0, a) and xs4(0, a) and show the desired results. The details of the proof are

in the Appendix. n

Note that the expected reward function g, ,(%m+,%s:) is concave with respect to z,,; and

* -
mt —

Tst, and x B/2c and x, = v/2a are the individual saddle points of the maximiza-
tion equation g, o(Tmt, Tst) = —(Tpmy + Te1)? + Bxmy + Y5y + 6. We observe that the
optimal production decision depends on the relative difference between [ and ~. Define
Ao = (05 — o) and Af = (fs — fm). Then 8 < 7 implies o, — fin < 0s — fs or equiv-
alently Af < Ao. Similarly, § > ~ implies Af > Ao. In Lemma 6.1, we observe that
for the case of equal production cost i.e. f,, = f,, if the unused capacity cost at the sub-
contractor, o, is more than the unused capacity cost at the manufacturer, o, then the
optimal production quantity at the supplier is more than that of the manufacturer. This
happens to reduce the total unused capacity cost at the subcontractor. Then, if 3 < ~,
B/200 < Cpp + Cmg, and 7/2a0 < Cyy + ¢4y, then 27 (0, a) = v/2a and w3, (0,a) = 0. How-
ever, if 8 <7, B/2a < Cpp + iy, and 7/2a > Cyy + c5y, then 27, (0,a) = Cyy + ¢,y and

x5, (0, a) = min(max(8/20 — 2% ,(0),0), Crnt 4 Cint).-

Further note that, based on relative difference of demand and saddle points, we get three

cases. For example, when § < ~:

Case (i): demand is more than the saddle point of the subcontractor, i.e. dpignt > v/200 >
[ /2a then the optimal production quantities are given by Lemma 6.1 and illustrated in

Figure 6.2(a).

Case (ii): demand is more than the saddle point of the manufacturer but less than the
saddle point of the subcontractor, i.e. 3/2a < dpigns < 7/2c then we use Lemma 6.1 to
determine production quantities, we find that both the manufacturer and the subcontractor

should produce at most up to the capacity, or their respective saddle points, or up to the
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demand.
Case (i11): demand is less than the saddle point of the manufacturer, i.e. dpign: < 5/2a <
v/2c then the optimal production quantity of the subcontractor is the minimum of the cur-

rent capacity and the demand (Figure 6.2(b)).

If 5> v, then based on relative difference of dp;gn+, 3/20, v/2c, we get three similar cases.

A B (x B
20 (or 2,;,) Demand 4 Demand | 3, (or i)
= =
g 8
3 3
s &
Production quantity Production quantity
(2) (b)

Figure 6.2 Reward Function with Respect to Production Quantity

So far we considered optimal production decisions for a given capacity decision. In Section
6.3.2 and Section 6.3.3, we analyze optimal capacity decisions. First for the case of system
with sufficient capacity where the saddle point corresponding to the manufacturer and the
subcontractor is less than the capacity ¢, i.e. 5/2a < ¢, v/2a < ¢ in Section 6.3.2, and then
for the case of system with insufficient capacity with respect to the subcontractor where the
saddle point for manufacturer is less than the maximum capacity at manufacturer, but the
saddle point at the subcontractor is more than the maximum capacity at subcontractor, i.e

B/2a < ¢, v/2a > ¢ in Section 6.3.3.
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6.3.2 System with Sufficient Capacity

We define a system with sufficient capacity as a system where §/2a < ¢, v/2a < ¢. We
define it in terms of the saddle points and not in the traditional terms of demand and
capacity because in this setting, the manufacturer and the subcontractor are going to make
no more than their optimal production quantities defined by 5/2a and v/2«. Theorem 6.1
provides the conditions under which either the subcontractor invests in capacity ¢ or the
manufacturer invests in capacity c¢. Recall that Ao = (05 — 0,,) and Af = (fs — fin). The
capacity investment decision depends on the relative difference between Ao and A f, and the

difference in the maximum unused capacity cost cAo.

Theorem 6.1. For the system with sufficient capacity,
(1) if (Ao — Af) > kiAo, where ki = —5=——— then the optimal policy suggests that

iIl( 4-:\/ »dhigh,l)

only the subcontractor should invest in capacity c.
(2) if (Ao — Af) < kiAo then the optimal policy suggests that only the manufacturer should
mwest in capacity c.

(8) if 0y > 0,05 > 0, it is not optimal for the supply chain capacity to take value of 0 or 2c.

Proof. We prove Theorem 6.1 separately in three parts. For part (1) of the theorem, we show
that if (Ao — Af) > k1 Ao, then the profit when only the subcontractor invests in capacity ¢
is more than the profit when only the manufacturer invests in capacity ¢ or when the supply
chain capacity is 0 or 2¢. Similarly, we prove results for other parts. The details of the proof

are in the Appendix. O

We observe that if Ao — Af is more than a threshold k;Ao, then only the subcontractor
should invest in capacity c¢. Similarly, if Ao— Af is less than a threshold k1 Ao, then only the
manufacturer should invest in capacity c. Table 6.1 summarizes the conditions for Theorem
6.1. We observe that if the difference in the unused capacity cost, Ao is more than the
difference in the production cost, Af and if the demand dp;4,1 decreases, then threshold k;
increases and only the manufacturer invests in capacity ¢ as opposed to the subcontractor.

We also observe that it is not optimal for both the manufacturer and the subcontractor to
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invest in capacity at the same time, i.e. the supply chain capacity will never take the value

2¢ where the manufacturer and the subcontractor, each investing in a capacity c.

Table 6.1 Conditions for Optimal Capacity Levels for Theorem 6.1

¢ | (Ao—Af)> kAo —
Capacity at

Subcontractor

0 - (Ao — Af) < kiAo

0 c

Capacity at Manufacturer

If the unused capacity cost at the manufacturer is more than unused capacity cost at the
subcontractor, i.e Ao < 0, and the difference in unused capacity cost, Ao is more than the
difference in production cost, Af, then conditions presented in Theorem 6.1 part (1) always
hold, and suggests that only the subcontractor should invest in capacity c. Similarly, if the
unused capacity cost at the manufacturer is less than unused capacity cost at the subcon-
tractor, i.e Ao > 0, and the difference in unused capacity cost, Ao is less than the difference
in production cost, Af, then conditions presented in Theorem 6.1 part (2) always hold, and

suggests that only the manufacturer should invest in capacity c.

Next, consider the special case where the unused capacity costs are negligible, i.e. 0, =0
and o; = 0. Then from Theorem 6.1 part (1), if the production cost at the manufacturer,
fm is more than the production cost at the subcontractor, fs then only the subcontractor
should invest in capacity c¢. Similarly, from Theorem 6.1 part (2), if the production cost at
the manufacturer, f,, is less than the production cost at the subcontractor, f; then only the

manufacturer should invest in capacity c¢. These results are shown in Corollary 6.1.
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Corollary 6.1. For the system with sufficient capacity and o, = os = 0,

(1) if Af < 0 then the optimal policy suggests that either only the subcontractor should invest
m capacity c.

(2)if Af > 0 then the optimal policy suggests that either only the manufacturer should invest

m capacity c.
Proof. Proof of Corollary 6.1 follows directly from Theorem 6.1 by setting 0,, = 0,0, = 0. [J

Next note that, if o, = 0, = 0, then the optimal decision could suggest that both the man-
ufacturer and the subcontractor should invest in capacity, which is not practical and hence

we exclude this result from Corollary 6.1.

Note that under sufficient capacity, min(%,dhighvl) < ¢, and if the production costs are
the same, i.e. Af = 0, then from Theorem 6.1 part (1) if the unused capacity cost at the
manufacturer, o, is more than the unused capacity cost at the subcontractor, o, then only
the subcontractor should invest in capacity c¢. Similarly, from Theorem 6.1 part (2) if the
unused capacity cost at the manufacturer, o,, is less than the unused capacity cost at the
subcontractor, oy then only the manufacturer should invest in capacity c¢. These results are
shown in Corollary 6.2. Table 6.2 summarizes these conditions for special case presented in

Corollary 6.1 and Corollary 6.2.

Corollary 6.2. For the system with sufficient capacity and Af =0,

(1) if Ao < 0 then the optimal policy suggests that only the subcontractor should invest in
capacity c.

(2) if Ao > 0 then the optimal policy suggests that only the manufacturer should invest in

capacity c.

Proof. Proof of Corollary 6.2 follows directly from Theorem 6.1. m
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Table 6.2 Conditions for Optimal Capacity Levels for Corollary 6.1 and 6.2

((om =0s=0)A(Af <0))V
((Af =0)A (A0 <0))
Capacity at

Subcontractor
((om =05 =0) AN (Af >0))V
(Af =0)A(Ao>0))

Capacity at Manufacturer

6.3.3 System with Insufficient Capacity at Subcontractor

In this section, we present analysis for a system with insufficient capacity at the subcontractor,
i.e. we assume that the saddle point of the subcontractor is more than the capacity (or
v/2a > ¢). However, we do assume that for the saddle point of the manufacturer is less
than the capacity (or §/2a < ¢). Note that for the other case, for a system with insufficient
capacity at the manufacturer, i.e. when the saddle point of the manufacturer is more than
the capacity (or /2« > ¢), and saddle point of the subcontractor is less than the capacity
(or v/2a < ¢), the analysis is very similar. The results can be obtained in similar way
by interchanging the parameters of the manufacturer and the subcontractor. Theorem 6.2
provides conditions under which at optimal, only the manufacturer should invest in capacity
¢, or only the subcontractor should invest in capacity c. Table 6.3 summarizes the conditions

in Theorem 6.2.

Theorem 6.2. For the system with insufficient capacity,

2

222
(1) if 5= < dhign1 and (Ao — Af) > kyAo + ks, where ky = 55 and ks = % then the

optimal policy suggests that only the subcontractor should invest in capacity c.
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(2) if 5 < dnigny and (Ao — Af) < kyAo+ k3 then the optimal policy suggests that only the

manufacturer should invest in capacity c.

Proof. To prove Theorem 6.2, we compare the profits when either manufacturer or subcon-
tractor or both are investing in capacity and show the desired conditions. For part (1) of
the theorem, we show that if 3= < duign1 and (Ao — Af) > kaAo + ks, then the profit when
only the subcontractor invests in capacity ¢ is more than the profit when either only the
manufacturer invests in capacity ¢ or both the manufacturer and the subcontractor invest in

capacity c. Similarly, we prove part (2). The details of the proof are in the Appendix.  [J

Note that Theorem 6.2 considers the case where % < dpign,1. However, if % > dhigh,1, then
the optimal production at the subcontractor and the manufacturer should either sum to the
demand or should be up to their respective capacities. In this case, results can be obtained
by following the similar procedure presented in the proof of Theorem 6.2. The condition
presented in Theorem 6.2 does not consider equality such as (Ao — Af) = keAo + k3, since
in this case multiple decisions could be optimal where either only the manufacturer invests

in capacity or only the subcontractor invests in capacity.

Table 6.3 Conditions for Optimal Capacity Levels for Theorem 6.2

C (AO — Af) > koo + ks -
Capacity at

Subcontractor

0 - (Ao — Af) < kaAo + ks

0 c

Capacity at Manufacturer

As a special case, note that if the unused capacity cost at the manufacturer is more than the

unused capacity cost at the subcontractor, i.e Ao < 0, and the difference in unused capacity
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costs, Ao is more than the difference in production costs, Af, then conditions presented in
Theorem 6.2 part (1) always hold, and suggests that only the subcontractor should invest
in capacity c. Similarly, if the unused capacity cost at the manufacturer is less than the
unused capacity cost at the subcontractor, i.e Ao > 0, and the difference in unused capacity
costs, Ao is less than the difference in production costs, Af, then conditions presented in
Theorem 6.2 part (2) always hold, and suggests that only the manufacturer should invest in
capacity c. Similarly, for the system with zero unused capacity costs, the optimal capacity

levels follow same conditions as in Corollary 6.1.

Next, if the production costs are the same, i.e. Af = 0, then from Theorem 6.2 part (1),
if Ao > koAo + k3 then only the subcontractor should invest in capacity c¢. Similarly, from
Theorem 6.2 part (2), if Ao < kaAo+ks then only the manufacturer should invest in capacity

c. These results are shown in Corollary 6.3.

Corollary 6.3. For the system with insufficient capacity and f,, = fs (or Af =0),

(1) if & < dnigny and Ao > kAo + kg then the optimal policy suggests that only the
subcontractor should invest in capacity c.

(2) if 3 < dnigng and Do < kyAo + ks then the optimal policy suggests that only the

manufacturer should invest in capacity c.
Proof. Proof of Corollary 6.3 follows directly from Theorem 6.2. m

Note that the conditions presented in Section 6.3 exclude the equality cases, such as Ao =
Af, etc since in these cases multiple decisions could be optimal. For one time period prob-
lem, we observe that the characterization of the optimal capacity and production decisions
depend on not just productions costs (f,,, fs) or unused capacity costs (0, 0s), but on the
the difference in unused capacity cost, Ao and the difference in production cost, Af. These
results provides useful insights on the structure of the optimal policy and the results can be

further extended to multi-time period model as described in the next section.
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6.4 Optimal Solution for Multiple Time Period Problem

We first consider a two time period problem and make few observations. In contrast to the
one time period problem, two time period problem poses additional challenges. First, under
the assumption that capacity once acquired cannot be disposed, any capacity investment
decisions in the first time period affects the capacity decisions and costs in the second time
period. For example, under market down-cycles, capacity investments made at time ¢t = 1
could result in high unused capacity costs at time ¢t = 2. So, the resulting problem cannot
be decomposed into multiple one-time period problems. Second, the optimal decision de-
pends on the saddle points, 5/2«,v/2c and demands, dpign1, dnigh2. Note that, in the one
time period problem, we observed three cases with respect to demand and saddle points.
Using similar approach, we get six demand cases for two time period problem (three case
for each time period). For example, if dpign1 > 7/20c > B/2a and dpign2 > v/20c > B/2a,
then the optimal production quantity of the manufacturer and the subcontractor at both
time periods should be up to capacity or saddle points §/2a,y/2a respectively. Similarly, if
dhigh1 < v/20 < B/2a and dpign2 < 7/2a < B/2c, then the optimal production quantity of
the manufacturer and the subcontractor at time period ¢ should be up to capacity or demand

dhight- Other demand cases can be defined in similar way.

We analyze a two time period problem (n = 2) and provide structure of the optimal policy.
We assume that the manufacturer and the subcontractor have 0 capacity at the beginning
of time t = 1, i.e. Cpy = Csy = 0 and can make capacity investment ¢,,; = {0,c} and
cst = {0, ¢} respectively at time ¢ = 1, 2. For notational simplicity, Table 6.4 defines several
conditions that will be subsequently used to determine optimal actions. Each condition listed
in Table 6.4 depends on the difference in unused capacity costs, Ao, difference in production

costs, Af, maximum unused capacity costs, o,c, 0sc, and demands, dpign,1, dnigh,2-



134

Table 6.4 Preliminary Conditions for Centralized System

O (Ao—Af)>0
O (Ao—Af) <0
My (Ao — AYf) mln( Ly dhigh,1) > A0 — opc
M, (Ao — Af) min(ﬂ, dhigh1) < cAO — 0y
My (Ao—Af) mm(ﬂ;j, dhigh,2) > 0sC
M, (Ao — Af) mm(ﬁz;v, dhigh2) < 0sC
S (Ao — Af) mm(ﬂ;;”, dhigh,1) < cAo — o04¢
S (Ao — Af) mln(ﬁjoj, dhigh1) > cAo — osc
Ss (Ao — Af) mln(ﬁéfj, Ahigh2) < —OmC
S, (Ao — Af) mm(’i‘fj, dhigh2) > —0mC
MS | (Ao — Af)(min(ZE, dpign,1), min(ZE2 dpign.2)) > 2¢Ao
MS | (Ao — Af)(min(E2, dyign1), min(E2, dyign2)) < 2cA0

We observe that conditions My, M, S;, S; define the relationship between difference in un-
used capacity costs, difference in production costs, demand, and maximum unused capacity
costs for time period t = 1. For instance, condition Ml could hold for low demand dpigp,1.
Similarly, conditions Mo, Mo, Sy, Sy define the relationship between difference in unused
capacity costs, difference in production costs, demand, and maximum unused capacity costs
for time period t = 2. For instance, condition MQ could hold for low demand dp;gn 2. Fi-
nally, conditions MS and MS connect demand and costs across the two time periods. In
Section 6.4.1, we characterize the structure of the optimal decisions for two time periods

under sufficient capacity case.

6.4.1 System with Sufficient Capacity

We define a system with sufficient capacity as a system where 5/2a < ¢, v/2a < ¢ for each

time period t,t = 1,2. Under system with sufficient capacity, Theorem 6.3 provides the
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optimal capacity decisions. These conditions depend on the demands dpign. 1, dhigh,2, and the

relative difference between Ao and Af.

Theorem 6.3. For the system with sufficient capacity,

(1) if conditions (O A My A MS) V (My A M)V (O A Sy A MS) hold, then the optimal
policy suggests that only the subcontractor should invest in capacity ¢ at time period t = 1
and should maintain that capacity at time t = 2.

(2) if conditions (O A My A MS)V (O NSy A MS)V (Sa A Sy)) hold, then the optimal
policy suggests that only the manufacturer should invest in capacity ¢ at time period t = 1
and should maintain that capacity at time t = 2.

(3) if conditions (OAMQAMl) hold, then the optimal policy suggests that the manufacturer
should invest in capacity c at time periodt = 1 and the subcontractor should invest in capacity
c at time t = 2.

(4) if conditions (@ASQ/\Sl) hold, then the optimal policy suggests that only the subcontractor
should invest in capacity ¢ at time periodt = 1 and the manufacturer should invest in capacity

c at time t = 2.

Proof. We prove each part of Theorem 6.3 separately. To prove part (1), we show that if
conditions ((O A My AMS)V (MyAM;))V (O AS, A MS) hold, then the the profit when
only subcontractor invests in capacity ¢ at t = 1 and should maintain that capacity at t = 2
is more than the profit at any other actions. Similarly, we prove other parts. The details of

the proof are in the Appendix. O]

We observe that at optimal, the supply chain capacity can take the value of ¢ at time t = 1,
where either only the manufacturer invests in capacity or only the subcontractor invests in
capacity. However, at time ¢ = 2 the supply chain capacity can take the ¢ or 2¢. If condition
O : (Ao— Af) > 0 holds, or equivalently if Ao > Af, and if conditions (My A Ml) hold,
then the manufacturer invests in capacity ¢ at time ¢ = 1 and the subcontractor invests in
capacity ¢ at time t = 2. This happens because if Ao > Af, then Lemma 6.1 suggests

that producing components using available capacity of the subcontractor could be cheaper
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than that of the manufacturer. So, for some thresholds on Ao — Af, we observe that the
subcontractor invests in capacity at ¢ = 2. Similarly, if condition O : (Ao — Af) < 0 holds,
or equivalently if Ao < Af, then Lemma 6.1 suggests that producing components using
available capacity of the manufacturer could be cheaper than that of the subcontractor. So,
for some thresholds on Ao — Af, we observe that the manufacturer invests in capacity at

t=2.

We observe that if the difference in the unused capacity cost, Ao is more than the differ-
ence in the production cost, Af, then Lemma 6.1 suggests that producing components using
available capacity of the subcontractor could be cheaper than that of the manufacturer,
and at low demand dj;gp 2, there is enough capacity at the subcontractor to satisfy the de-
mand. So, the optimal decision could recommend capacity investment at the subcontractor
instead at the manufacturer. Similarly, if the difference in the unused capacity cost Ao is
less than the difference in the production cost Af, then Lemma 6.1 suggests that producing
components using available capacity of the manufacturer could be cheaper than that of the
subcontractor, and at low demand dp;gn2, there is enough capacity at the manufacturer to
satisfy the demand. So, the optimal decision could recommend capacity investment at the
manufacturer instead at the subcontractor. Table 6.5 summarizes the results of Theorem

6.3 where we only show states with optimal solution.

Table 6.5 Conditions for Optimal Capacity Levels for Theorem 6.3

Time ¢t = Time ¢t = Conditions
(0,¢) (0,¢) (OAMy AMS)V (Mg AM))V (OASy AMS)
(c,0) (c,0) (OAMGAMSE)V (OAS; AMSE)V (S2 ASy))
(¢,0) (¢,c) (O A My A M)
(0,¢) (c,c) (OANSAS)
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Conditions presented in Theorem 6.3 depend primarily on the relative difference between Ao
and Af, and certain threshold values. Using Corollary 6.4, we show a sufficient condition

which depends on the relative difference between Ao and Af.

Corollary 6.4. For the system with sufficient capacity,

(1) if Ao < 0 and (Ao — Af) > ks where ks is a non-negative threshold then the optimal
policy suggests that only the subcontractor should invest in capacity ¢ at time period t = 1
and maintain that capacity at time t = 2.

(2) if Ao > 0 and (Af — Ao) > k,, where k,, is a non-negative threshold then the optimal
policy suggests that only the manufacturer should invest in capacity ¢ at time period t = 1
and maintain that capacity at time t = 2.

(3) if ks < (Ao — Af) < ks where kys is some threshold then the optimal policy suggests
that only the manufacturer should invest in capacity c at time period t = 1 and subcontractor
should invest in capacity c at time t = 2.

(4) if km < (Af — A0) < kg where ks is some threshold then the optimal policy suggests
that only the subcontractor should invest in capacity ¢ at time period t = 1 and manufacturer

should invest in capacity c at time t = 2.
Proof. Proof of Corollary 6.4 follows directly from Theorem 6.3. [

We observe that if the unused capacity cost at the manufacturer is more than the unused

capacity cost at the subcontractor, and Ao — Af is more than a non-negative threshold

(0s—20m)c 0sC

min( 6427 Jhigh,1)’ min( BZ;V dhigh,2)

ks = min , then from Theorem 6.3 part (1), the optimal pol-
p P p

icy suggests that only the subcontractor should invest in capacity ¢ at time ¢ = 1 and
maintain that capacity at time ¢ = 2. Similarly, if the unused capacity cost at the manufac-

turer is less than at the subcontractor, and Af — Ao is more than a non-negative threshold

(om—20s)c OmC

min(%vdhigh,l)’ miﬂ(itj JAhigh,2)

Ky, = min( ) then from Theorem 6.3 part (2) the optimal policy

suggests that only the manufacturer should invest in capacity ¢ at time t = 1 and maintain

that capacity at time t = 2.
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Again, if Ao — Af is bounded by thresholds, ks and k,,, = (05;2—0’")6 then the optimal

min( 407 7dhigh,1)

policy suggests that only the manufacturer should invest in capacity ¢ at time ¢ = 1 and

subcontractor should invest in capacity ¢ at time ¢ = 2. Similarly, if Af — Ao is bounded

by thresholds, k,, and k,, = # then the optimal policy suggests that only the
min( =z >=,qhigh,2

subcontractor should invest in capacity ¢ at time ¢ = 1 and the manufacturer should invest

in capacity c at time t = 2. Table 6.6 summarizes the results of Corollary 6.4.

Table 6.6 Conditions for Optimal Capacity Levels for Corollary 6.4

Timet=1 | Timet =2 Conditions
(0,¢) (0,¢) (Ao < 0) A (Ao — Af) > kg
(c,0) (¢,0) (Ao > 0) A (Af — Ao) > ky,
(0,¢) (¢c,c) km < (Af — Ao) < ks
(c,0) (¢c,c) ks < (Ao — Af) < ks

For the system with zero unused capacity costs, the optimal capacity levels for two time
period follow same conditions as in Corollary 6.1. In Section 6.4.2, we numerically analyze
the impact of unused capacity costs on the optimal decisions. Note that the conditions pre-
sented in Section 6.4 exclude the equality cases, such as Ao = Af, etc since in these cases

multiple decisions could be optimal.

6.4.2 Effect of Unused Capacity Cost

Using numerical studies, we analyze the effect of unused capacity on the optimal decision.
Table 6.7 presents the system and production parameters for the experiment. We assume
that the production cost at the manufacturer is more than the production cost at the subcon-
tractor, and the unused capacity cost at the manufacturer is less than the unused capacity
cost at the subcontractor. To analyze the effect of unused capacity, we consider that the
unused capacity cost at the subcontractor can take values of 3, 3.5, and 4. Note that if

0s = 3 then conditions presented in Theorem 6.3 part (1) hold, if o, = 3.5 then conditions
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presented in Theorem 6.3 part (3) hold, and if o = 4 then conditions presented in Theorem

6.3 part (2) hold.

Table 6.7 Parameters for Centralized System

System Parameters | Production Parameters
T=2 A =150
qg=20.5 em = 20

Ahight = 2,8 om = 1
diow,y = 0,0 0s =3,3.5,4
a, ={0,15} fm =25
a, = {0,15} fs =18

Figure 6.3 shows the optimal capacity levels for two time period model. We observe that as
the unused capacity cost at the subcontractor increases then the production gradually shifts
to the manufacturer to reduce the total cost due to unused capacity. For instance, if o, = 3
then we observe that only the subcontractor invests in capacity at ¢t = 1 and keep the same
capacity at t = 2, validating the claim in Theorem 6.3 part (1). Next, if o, = 3.5 then we
observe that the subcontractor invests in capacity at ¢t = 1 and the manufacturer invests in
capacity at t = 2, validating the claim in Theorem 6.3 part (3). Finally, if oy = 4 then we
observe that the manufacturer invests in capacity at ¢ = 1 and keep the same capacity at

t = 2, validating the claim in Theorem 6.3 part (2).

Note that the centralized system prevents manufacturer and the subcontractor to make their
own respective decisions to maximize individual profits. Typically in industry, it is common
for multiple facilities (manufacturers or subcontractors) to make their own decisions. How-
ever, such decision could potentially lead to lower overall profit of the supply chain. In the

next section, we present the decentralized system and study the impact of unused capacity
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Figure 6.3 Optimal Capacity Decisions at (a) o5 = 3, (b) o5 = 3.5, (c) 0y =4

costs on the characteristics of the optimal decision.

6.5 Decentralized System

We consider a decentralized supply chain setting with two autonomous firms, the manu-
facturer, M and the supplier, S that collaborate in the production of a knowledge-type
component over a finite time horizon with distinct time periods, 1,...,7. In this set-
ting, the manufacturer (follower) and the subcontractor (leader) indulge in a sequence of
capacity-production-price game to produce a knowledge-type component (Cachon and Lar-

iviere (2001); Wang and Gerchak (2003); Savaskan et al. (2004); Bernstein and DeCroix
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(2004)). Figure 6.4 describes the sequence of events in the game.

Manutacturer Manufacturer Manufacturer sells

invests on produces X, ; and components and
capacity Cp, ¢ subcontracts xg profits are realized

>

Time

Subcontractor sets Subcontractor Demand. d, Subcontractor Subcontractor’s
the pricing scheme  1nvests on is realized delivers x,, to  profits are realized

Pe(€serXst) capacity € manufacturer

Figure 6.4 Sequence of Events

At the beginning of each time period ¢, the subcontractor shares the unit price, p(es, xs¢) =
(bg — €s+xs4) with the manufacturer, where by and e, ; are the intercept and the slope of the
price function with respect to production zs;. The manufacturer M and the subcontractor S
decide to invest in capacity ¢, + and ¢, respectively. This changes the current capacity levels
of the manufacturer and the subcontractor to C,,; = Cp, 4—1+¢mi—1 and Csy = Cs 41 +C54-1
respectively. Next, the demand d; is realized which takes the values djou: O dpigns With
probability ¢ and (1 — g) respectively. In response to the subcontractor S, the manufacturer
M decides to produce x,,; units where, z,,; € [0, Cy,,], and incurs a total production cost
of fru(Tmt) = frm®ms. The manufacturer also decides to subcontract zs, units where, xs; €
[0, Cs¢], and the subcontractor incurs a total production cost of fs(zs:) = fsxs:. Note that,
any unused capacity incurs a penalty cost 04,7 = M, .S per unit capacity resulting in a cost
hi(xit) = 0,4(Cis+cir—xi4),1 = M, S for the unused capacity. Unused capacity is of concern,
since, capital investments are expensive and there is a pressure to recover the investments
on assets. The market is characterized by diminishing return on the production quantity x;
with revenue function wy(z,, +s,) per unit with wy (2, +xs:) = A—ep min(dy, T+ Ts4t)

being a special case of this function. At the end of time period ¢, profits of manufacturer M,



142
Tmy and subcontractor S, 7, are realized as shown in Equation (6.4) and (6.5) respectively.

7rm,t = wt(xm,t + xs,t) min(dt7 xm,t + xs,t) - fm(xm,t) - hm(xm,t> - pt(es,t> 33'57,5)1'5715(6.4)

st — pt(es,ta xs,t)xs,t - fs(l‘s,t) - hs(ms,t) (65)

We analyze this system as a finite horizon stochastic game consisting of sequence of capacity-
production-price type competition between the manufacturer and the subcontractor. The

key elements of the stochastic game are:

Decision epoch: The manufacturer and the subcontractor take decisions at every time period

tt=1,..,T.

State space, ¥.: We define state, o = (Cy, 4, Cs ), 0 € X, where C,; and Cy, are the capaci-

ties of manufacturer and subcontractor respectively at the beginning of time t.

Action space, A: Let the action space A = A, x A,, where a,, = (¢m1), @m € A, denote
the action action taken by manufacturer M, and a; = (cg4, €51), a5 € Ag denote the action

action taken by supplier S, where e, , is the pricing scheme parameter.

Transition probabilities: Let p(o’|o, a.,, as) denote the probability of transitioning from state

0 = (Cnt, Csy) to state o’ = (C!

".ts Cty) under actions a,, and a,. Then, the transition

probabilities are defined as: p(o’|o, am, as) = 1, if, O}, ; = Cpy + ey and CF, = Cyy + cyy,

and p(o’'|o, an, as) = 0, otherwise.

Profit function: Let ,,4(0, Gm, Gs, T, Tst) denote the profit function for manufacturer M
at time ¢ for state o, actions a,,, as, and production quantities x,,, s, as given by Equa-
tion (6.6). The profit function of the manufacturer comprises of the following terms: revenue
on the knowledge part (wy(zms + s¢) min(dy, Tms + T54)), production cost (fr,(my)), un-

used capacity cost function (A, (2,)), and price paid to the subcontractor (p;(est, Tst)Tst)-
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Similarly, let 75 (0, @, as, Tmy, Ts:) denote the profit function for subcontractor S at state
o, actions a,, as, and production quantities ., xs¢, as given by Equation (6.7). The
profit function of the subcontractor comprises of the following terms: revenue from the
manufacturer (p;(es s, s1)Ts:), production cost (fs(xs+)), and unused capacity cost function
(hs(xst)). We assume that the capacity investment cost is normalized within the unused
capacity cost. Note that 7, (0, Gm, Gs, Timts Tst) + Tt (T, Qmy Qsy Tty Tst) 1S same as the re-
ward go.q(Tmt, Ts¢) function presented in Section 6.2. However, in contrast to centralized
system, in the decentralized system the manufacturer and the subcontractor makes their

own capacity and production decisions.

71—m,t(0_7 Am, As, xm,h xs,t) = wt($s7t + xm,t) min(dt7 xm,t + xs,t) - fm(zm,t) - hm(mm,t)
—Pt(€sty Ts ) Ts t (6.6)
7Ts,t<07 Ay Asy Tty 'rs,t) = pt(es,ta xs,t>xs,t - fs(xs,t) - hs(xs,t» (67)

FEzxpected utility: Let Uy, +(0) and Us (o) denote the expected utility of manufacturer M and
subcontractor S respectively at state o and decision epoch ¢t. Then we can write the expected

utilities for both firms as follows:

Uii(o) = max( max 7 (0, G, As, Tty Tst)
Am,0s Ts,t,m,t
7> p(0'|0, . as)ui,m(a')) i=M,S (6.8)
o'ex

The above decentralized formulation has 2-dimensional states and 3-dimensional action which
increases the complexity of the problem. In the next section, we use numerical examples to

study the inefficiencies in the system due to decentralized control.

6.5.1 Inefficiencies due to Decentralized Control

Using numerical studies, we analyze the inefficiencies in the system due to decentralized
control as compared to the system with centralized control. We assume that the subcon-
tractor is the leader and the manufacturer is the follower. Table 6.8 presents the system and

production parameters for the experiment. We consider a 5 period problem with 3 capacity
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level choices for the manufacturer. We assume that the production cost at the manufacturer
is more than the production cost at the subcontractor, and the unused capacity cost at the
manufacturer is less than the unused capacity cost at the subcontractor. we conduct this
experiment in two steps. In the first step, we vary the price parameter by from 10 to 30 to
determine the optimal pricing parameter by that results in lowest deviation in the total ex-
pected utility function (for the states transitioned at optimal) as compared to total expected

value function (for the states transitioned at optimal) in the centralized system.

Table 6.8 Parameters for Centralized and Decentralized System

System Parameters | Production Parameters
T=5 A =150
q=0.5 em = 20

dhight = 2,4,8,10,12 om =1
diowt = 0,0,0,0,0 0s = 3.5
cm =40,2,4} fmn =25
cs =40,2,4} fs =18

est = {0,1,2}

by = 10 to 30

Figure 6.5 shows the optimal total expected value function in the centralized system and the
total expected utility function in the decentralized system. For example, at by = 10, the total
expected value function for the transitioned states is 2416 while the total expected utility
function for the transitioned states is 1120. We observe that by results in the lower difference
between the total expected value function and utility function. We also, observe that the
subcontractor should set e, = 0,t = 1,...,5 meaning that the price increases linearly with

the production quantity.
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Variation in Utility Function and Value Function

—eo—Total Utility Function = =#Total Value Function

1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Price parameter b,

Figure 6.5 Variation in the Value Function and Utility Function with Respect to by

Next, Figure 6.6 presents the optimal capacity decisions for the system with centralized con-

trol and the corresponding system with decentralized control with bj = 19.

Optimal Capacity for Centralized System Optimal Capacity for Decentralized System

E Manufacture @ Subcontractor

B Manufacture @Subcontractor

10 10

E 1°®
- 6 - 6
z )
g 4 g 4
& &
O 2 L2

0 0

1 2 3 4 5 1 2 3 4 5
Time period Time period
(a) (b)

Figure 6.6 Optimal Capacity Decisions for (a) Centralized System (b) Decentralized
System

We observe that only the subcontractor makes capacity investment, and the optimal capac-
ity decisions for the system with decentralized control is same as the optimal decision for
the system with centralized control. This happens because the optimal pricing parameter
by makes the total expected utility function very close to the total expected value function.

However, in reality the subcontractor may choose a different pricing parameter which could
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significantly change the optimal decisions.

6.6 Conclusions

We analyze a centralized system and a corresponding decentralized system consisting of a
manufacturer and a subcontractor that balances tradeoffs between unused capacity costs
and production costs to produce knowledge-type components. In the centralized system, the
manufacturer and the subcontractor makes capacity investment and production decisions
that maximizes the total profit of the system. Using Markov decision process, we analyze
single period and multi-period problem and provide conditions to determine when and how
much capacity should the manufacturer and the subcontractor invest. We observe that the
optimal capacity decision depends on the relative difference between the unused capacity
costs, Ao and production costs, Af, and the relative difference between the maximum un-
used capacity at the manufacturer, o,,c and maximum unused capacity at the subcontractor
osc. In the decentralized system, the manufacturer and the subcontractor makes capacity
investment and production decisions that maximizes their individual profits. Using game the-
ory, we analyze single period and multi-period problem and provide conditions to determine
when and how much capacity should the manufacturer and the subcontractor invest. we ob-
serve that the optimal decision depends on the relative difference between pricing parameter
by, and the difference in the production cost and unused capacity cost at the manufacturer
fm —om. Using numerical experiments, we analyze the gap in the decentralized system as op-

posed to centralized system and determine the optimal pricing parameters to reduce the gap.
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6.7 Appendix

Proof of Lemma 6.1: To prove Lemma 6.1, we first consider state o = (Cy,,+,Cs) and
action a = (¢4, cse), and take partial derivatives of g, .(zmi(0, a), xs+(0,a)) with respect
to X ¢(0,a) and z4,(0, a) and show the desired results. Let gy q(@m (0, a),25:(0,a)) be the

expected reward function defined by:
9o.a(Tmi(0,0),1,4(0,0)) = —a(Tmi(0,a) + 254(0,a))* + Brmi(o,a) +Yws4(0,a) + 0

Now taking partial derivative of g, q(Tm(0,a),z5.(0,a)) with respect to x,,:(o,a) and

zs1(0,a) we get

aga',a (xm,t<07 CL), :Cs,t(o-u (I))

axmt(o, a) = _QO‘(xm,t(Ua a) + 51757,5(0, a)) + (6.9)
09oa(Tmi(0,a), Te(0,0)) *
O44(0, a) = —20(a},(0,0) + 23,(0,0)) + (6.10)

Here, z{ (0, a) represents the production quantity of the subcontractor when the expected
reward function g, .(zm(0,a), xs+(0,a)) is maximized with respect to x,, (o, a). Similarly,
x;mt(a, a) represents the production quantity of the manufacturer when the expected reward
function g, q(@m+(0, a), x5 (0, a)) is maximized with respect to x,+(o, a). Again, taking dou-

ble derivative of g, o(Tmi(0,a), zs4(0, a)) with respect to (0, a) and x,4(o, a) we get

82go,a (xm,t (07 a)7 xs,t(o-a CL))

= =2 A1

ax?n,t(‘L a) “ (6 )
8290'(1(33771 t(o—a a)a Ts t(07 a))

arTm, : = -2 12

6:7 (7,0) . (612

Note that from Equation (6.11), we get Pgralamoa)en(@a) - from BEquation (6.12), we

8w3n,t (0,a)

8290',a (xm,t (U’a) »Ls,t (U’a))
Bmit(o,a)

get < 0 suggesting that the expected reward is concave with respect to

Tmi(o,a) and z44(0, a).

Now, we consider a case where Cy, 1+ ¢y = cand Csi+cp = c,t =1,...,T. If §/2a < ¢ and

v/2a < ¢, then by using Equation (6.9), the optimal reward function g, (}, ,(0,a), 2! (0, a))
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with respect to ,,.(0,a) can be written as:

Goa(@mi(0,0),2,(0,0)) = —a(B/20)" + 5720 + (v = B)a,,(0,a) + 9

= (/Ao + (v — B)a,,(0,a) + 6 (6.13)

From Equation (6.13), if v < 8 then 2/ ,(0,a) = 0 to maximize the expected reward. Sim-
ilarly, using Equation (6.10), the optimal reward function g, (2, ,(0,a), v} (0, a)) with re-

spect to z4.(0,a) can be written as:

ra(@na(0,0),2%,(0,0)) = —a(y/20)" +9°/200+ (B = 7)al,,(0,a) +

= 0+ (8~ )l (.0) +6 (614

From Equation (6.14), if v > 8 then 7, ,(c,a) = 0 to maximize the total profit. Let

Aboa = Yoa(¥5, (0, 0), 7 4(0,0)) = goa(2, (0, a), 25 (0, a)) then

Agoa = [P/4a+ (v = B)al (0,a) —~* /4 — (B — v)a, (0, a)
= (8 =) /4a = (B —7)(x),(0,a) + 2} ,(0,a))
= (B=)((B+7)/4a = (2;,,(0,a) + z,(0,a))) (6.15)

If 3 > ~ then from Equation (6.13), 2 ,(0,a) = 0 and from Equation (6.14), 7, ,(0,a) =
v/2a. So Equation (6.10) implies that Ag,, = (8 + v)/4a — (7/2a) or Ag,, = (5 —

7)/4a > 0. Thus, go.a(27, (0, a),25,(0,a)) > goa(ty,(0,a), 23,4(0, a)) Th4(0,0) = B/20,
and 7} ,(0,a) = 0. Similarly, if 3 < 7 then from Equation (6.14), 7, ,(0,a) = 0 and from
Equation (6.13), 77 ,(0,a) = 8/2a. So Equation (6.10) implies that Agy, = (8 + 7)/4a —
(8/2a) or Agyq = (v=P)/4a > 0. Thus, go (a7, (0, a),37(0,0)) > goa(7, (0, a), ¢ (0, a)),
v} ,(0,a) = v/2a, and w3, (0, a) = 0. This concludes the proof of the case where C, 1 +cpt =
cand Csy + ¢y =c,t=1,...,T..

Next, we consider other states and actions and use the above results to prove this lemma.

From above, if 8 > v then g, (2, ,(0,a), 2 ,(0,a)) > go.a(2), ,(0,a), 7%, (0,a)) and if B/2a >

Vst st

cthen 7, (0,a) = Cpyy+Cpmy. S0, maximizing expected reward gy o(¥m,¢(0, @), 754(0, a)) with
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respect to x,(0, a), using Equation (6.10) we get z (0, a) = max(y/2a — x}, ,(0,a),0). We
know that z7,(0,a) < Csy + csy, 50 5 ,(0,a) = min(max(y/2a — x, ,(0,a),0), Csy + cs).
Similarly, if 8 < v then g, (7}, ,(0,a), 7 (0,0)) < go.a(;, (0, a), 7} ,(0,a)) and if v/2a > ¢
then w7 ,(0,a) = C,; + cs . Now, maximizing expected reward go.o(7m,¢(0, a), zs:(0, a)) with
respect to (0, a), we get xy, ,(0,a) = max(3/2a — 7 (0, a),0) using Equation (6.9). We
know that x;, (0,a) < Cpy+Cpmy, 50 23, (0, a) = min(max(8/2a — x7} (0, a),0), Cry 4 o)

This concludes the proof.

Proof of Theorem 6.1: We prove Theorem 6.1 separately in three parts. For part (1) of
the theorem, we show that if (Ao—Af) > k;Ao, then the profit when only the subcontractor
invests in capacity ¢ is more than the profit when only the manufacturer invests in capacity

c or when the supply chain capacity is 0 or 2c.

We assume 5 < v, then from Lemma 6.1 we know that if §/2a < ¢ and v/2a < ¢, then
xy,. = [B/2a and x%, = 0. Then the expected reward when only manufacturer invests in
capacity, and expected reward when both the manufacture and the subcontractor invest in

capacity is given by:

7((0,0),(c,0)) = B%/4a — opme (6.16)
7((0,0), (c,c)) = B?/4a — opme — osc (6.17)

Next, if f > 7 then from Lemma 6.1 we know that if 5/2a < ¢ and v/2a < ¢, then

*

vy, = v/2c and w7, , = 0. Then the expected reward when only subcontractor invests in

capacity, and expected reward when both the manufacture and the subcontractor invest in

capacity is given by:

7((0,0),(0,¢)) = ~*/da — osc (6.18)
7((0,0), (c,c)) = ~*/4a — opc — o4 (6.19)
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Next, considering various demand cases. If max(%, 5=) < dpign,1 then from Equations (6.16)

and (6.18):

7“((0, 0)7 <O7 C)) - T((O7 0)7 (67 0)) = (72 - 62)/405 - (OSC - Omc)
= (v=B)(y + B)/4a — (0s¢ — omc)
= ((0s = om) = (fs = fm)) (v + B) /4 — (05¢ — 0pC)

If ((os—om)—(fs—fm))% > 05¢—0pc, then r((0,0), (0,¢)) > r((0,0), (¢,0)). This concludes
the proof of part (1). Next, for part (2) of the theorem, we show that if min(%, =) > dhigh,1
and ((0s —om) — (fs — fm))dhighy > 0sc— omc, then the profit when the supply chain capacity
is ¢ is more than the profit when the supply chain capacity is c. If min(%, 7=) > dpign,1 then
the expected profit at state (0,c¢) and (c,0) is given by:

r(0,c) = —ozd%ngh’l + Ydhigh,1 — 0sC (6.20)

T(C, O) = —Oéd%nth + ﬁdhigh,l — OmC (621)

Then 7((0,0), (0,¢)) — r((0,0),(c,0)) = (v — B)dnigh1 — (0s¢ — o) or r((0,0),(0,¢)) —
7((0,0), (¢,0)) = ((05s = 0m) = (fs = fin) ) dnigh1 — (05 —0me). I ((05 —0m) = (fs — fin))dnign1 >
05C — 0m ¢, then r((0,0),(0,¢)) > r((0,0), (¢,0)). We use similar approach described above to
prove other demand cases. This concludes the proof of part (1). Similarly, we can prove part
(2) by reversing the inequality in the conditions in part (1). If o5 > 0 then from Equations
(6.16) and (6.17), 7((0,0), (¢,0)) > r((0,0), (¢, ¢)). If 0,,, > 0 then from Equations (6.18) and
(6.19), r((0,0), (0,¢)) > r((0,0), (¢,c)). This concludes proof of part (3).

Proof of Theorem 6.2: To prove Theorem 6.2, we compare the profits when either the man-
ufacturer or the subcontractor or both invest in capacity and show the desired conditions. For
part (1) of the theorem, we show that if 5&- < djgn1 and (Ao — Af)i—t;’ > cA0+a(% —?),
then the profit when only the subcontractor invests in capacity ¢ is more than the profit
when either only the manufacturer invests in capacity ¢ or both the manufacturer and the

subcontractor invest in capacity c.
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If 5& < dpign1 and B < v, then using Lemma 6.1 expected optimal rewards are given by:

7((0,0),(0,¢)) = —ac® +vc— osc (6.22)
7((0,0),(c,0)) = B%/4a — opme (6.23)
r((0,0), (¢,¢)) = —ac®+y¢c — opc — osc (6.24)
Therefore,
T((()?O)?(O?C)) —T((0,0),(C, O)) = _ac2+7c_ Osc_ﬂ2/4a+0mc

> —ac® + 72 /2a — o,c — (2 Jda + op,c
= (v*/da — ac®) + 7 /4o — o,c — B2 /4o + opC

= oLy -+ (-l

If (o —o0s) — (fim — fs))ﬂﬂ < (opmc—o0sc )—I—Oz(m—c ) then r((0,0), (0,¢)) > r((0,0), (¢, 0)).
Also r((0,0),(0,¢)) > r((0,0),(c,c)). Similarly, if § > ~, then using Lemma 6.1 expected

(0s¢ — OpC)

optimal rewards are given by:

7((0,0),(0,¢)) = —ac®+yc—osc (6.25)
7((0,0), (c,0)) = B*/4a — opc (6.26)
7((0,0), (¢c,c)) = B?/da — opme — osc (6.27)

Therefore,

(0,00, 0,6) = r((0,0).,0) > alEY =)+ (= )L — (0= 00

This concludes the proof for part (1). Similarity, we can prove part(2) where if ((0,, — 05) —
(fm — fs))ﬁﬂ > (opC — 0sC) + a(% — ¢?), then 7((0,0), (0,¢)) < 7((0,0), (¢,0)). This con-
cludes the proof of part (1) and part (2).

Proof of Theorem 6.3: We prove each part of Theorem 6.3 separately. To prove part (1),
we show that if conditions (O A My AMS)V (MyAM1))V (O A S, AMS) hold, then the
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the profit when only subcontractor invests in capacity ¢ at t = 1 and maintain that capacity

at t = 2 is more than the profit at any other actions.

At first we consider a case where Ao > Af and show that if conditions ((O A My A MS) V
(My AM,)) hold, then the the profit when only subcontractor invests in capacity c at t = 1
and maintain that capacity at ¢ = 2 is more than the profits at any other actions. We analyze

B B

a demand case where min(4-, 5&) > dpign,1 and max(g;, 5&) < dhign,2-

Let Vi (a,.a.)(0,0) be the value function at time ¢t = 1 after taking actions a,,a,. Now, if
B

3= 5=) < dhign2 then the optimal value function can be

b <7, mln(Qﬁ =) > dhigh,1, max(s-

written as:

Vi(0,0) = max{Vio0)(0,0), Va0, 0), Va0 (0,0), Vi e (0,0)]
= max|[V5(0,0),
_adiigh,l + Ydpigh1 — 0sc + V5 (0, ¢),
—ad;; 1 + Bdnigny — ome + V5 (¢, 0),

—adiyi o 1 + Ydhighy — 0s¢ — ome + V5 (¢, ¢)]

From the assumption of positive revenue at demand satisfaction, V5(0,0) < V5(0,¢), and
—ozd,%igh’1 + Ydpigh,y — 0sc > 0. This implies that V; 9,0)(0,0) < V1,0,¢)(0,0) and action (0,0)
is not optimal at time t = 1. Next, if 5 < v and 7/2a < ¢ then using Equations (6.25) and
(6.27), 7((0,0),(0,¢)) > 7((0,0), (¢, c)) resulting in V5 (c,c) < V5(0,¢). This implies that
Vi e,)(0,0) < Vi0,¢(0,0) and action (c,c) is not optimal at time ¢ = 1. Next, we derive
conditions under which Vj (¢0)(0,0) is less than V; (. (0,0).

We know that only actions (0,0) and (0, ¢) are available at state (c,0), i.e. either neither the
manufacturer nor the subcontractor invests on additional capacity at time t = 2, or only the
subcontractor invests in capacity ¢ at time ¢ = 2. So, if 5 < 7, 5/2a < ¢, and v/2a < ¢ then

using Lemma 6.1, the optimal action at state (¢,0) at time ¢ = 2, i.e. argmax{V;(c,0)} is
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defined as:
argmaz{Vy (c,0)} = argmaz{3*/4a — omc,y* /4a — opc — 05} (6.28)

We consider two cases where argmaxz{V;(c,0)} = (0,0) or argmazx{V5(c,0)} = (0,¢). In the
first case, if 3 < v and v2— % < 4ao,c, then from Equation (6.28) argmax{V;(c,0)} = (0,0).
S0, Vi,(0,)(0,0) = V1,(c0)(0,0) can be written as:

Vi0.6(0,0) = Vi 0)(0,0) = (v — B)dnign1 +7*/da — 205c — (B /4 — 20,,,¢)

= ( ﬂ)(ﬁ i + dhzgh 1) 2(056 - OmC) (629)

Equation (6.29) implies that if (5 — 7)(5” + dhigh,l) < 2(ome — o0sc) then Vi ,4(0,0) >
Vi,(c,0)(0,0). In the second case, if B < v and * — 5% > 4ao,e, then argmaz{V;(c,0)} =
(0,¢). So, V1,0,¢(0,0) = Vi, (¢,0)(0,0) can be written as:

V(0.0 (0,0) — Vl,(c,O)(Oa 0) = (v— B)dnign1 + 72/4(1 — 204Cc — (72/4a — 05C — 20,,C)
= (’7 - 6) (dhigh,l) - (Osc - 20mc> (630)

Equation (6.30) implies that if (8 — v)dhigh,1 < (20m¢ — 05¢) then Vi ¢)(0,0) > Vi (¢0)(0,0).
Using the similar approach, we can show condition for other demand cases. Next, we con-
sider a case where Ao < Af and using similar approach described above, we show that
if conditions (O A Sy A MS) hold, then the the profit when only subcontractor invests in
capacity ¢ at t = 1 and maintain that capacity at ¢ = 2 is more than the profit at any other

actions. This concludes proof of part (1) of the theorem.

Next, to prove part (2), we show that if conditions (OAMLAMSE)V ((OASAMS)V(S;AS))
hold, then the the profit when only manufacturer invests in capacity ¢ at ¢t = 1 and main-
tain that capacity at ¢ = 2 is more than the profits at any other actions. Note that
V10,)(0,0) = Vi (0,0)(0,0) is only defined as Equation (6.29) if § < v and v* — % < dao,c.
From Equation (6.29), if (5—7)(5ﬂ +dpigh,1) > 2(0pmc—o0sc) then Vi 0,)(0,0) < Vi,0)(0,0).
This concludes the proof of part (2) of the theorem.
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Next, to prove part (3), we show that if conditions (O A My A M;) hold, then the the
profit when the manufacturer invests in capacity in time ¢ = 1 and the subcontractor in-
vest in capacity at time ¢ = 2 is more than the profits at any other actions. Note that
V1,0,6(0,0) = Vi (,0)(0,0) is only defined as Equation (6.30) if § < v and +* — 32 > 4aosc. If
v — 32 > daoge and (8 — ¥)dpign1 > (20mc — 0s¢) then from Equation (6.30), V3,0, (0,0) <
Vi,(¢,0)(0,0). This concludes the proof of part (3) of the theorem. In the similar way described

above, we prove part (4) for the case where condition O holds.
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Chapter 7
Research Summary and Extensions

In this chapter, we discuss model summaries, insights, conclusions, and potential extensions

of the research.

7.1 Research Summaries and Insights

In Chapter 3 of this thesis, we consider a single product ATO system where individual
product is assembled from multiple standard-type components that are made to stock. The
supply chain manager can decide to replenish these components at a lower cost by using ca-
pacity available at the external subcontractor with high lead times. Additionally, the supply
chain manager can also leverage capacity available at the in-house manufacturer to replenish
components at a higher cost and faster service rate, reducing the lead time of components.
We assume that the demand of the final product is random, and at the demand arrival if
all components are available then the customer orders are satisfied, otherwise the demand
is backordered. We analyze three dual index policies that are common in practice: (i) base
stock policy (DB policy), (ii) on-hand inventory based policy (OH policy), and (iii) lead
time based policy (LT policy) and determine the optimal thresholds for these policies. Next,
we use Matrix-geometric approach to exploit the structure of sparse matrix and provide
exact solution for the single product ATO system with two components. However, for large

systems, we propose an efficient decomposition based approach that decomposes the original
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system into component based subsystems.

We observe that the DB policy outperforms OH policy and LT policy. However, DB policy
has operational ambiguity which is resolved by using combination of OH policy and LT
policy. Next, the OH policy works well at high base stock levels, while the LT policy works
well at low base stock levels. Finally, decomposition provides accurate results with error

< 2% in most cases.

In Chapter 4 of this thesis, we consider a make-to-stock system with multiple standard-type
components. These components require capacity on a special equipment that cannot be
dedicated to serve a specific component, and the components share the same manufacturing
resource. However, the supply chain manager can also decide be replenished these compo-
nents by using capacity available at the dedicated external subcontractor. The number of
components and the size of state space and action space increases the complexity of the
problem and the the underlying problem is hard to solve. However, we use efficient action
elimination techniques that partitions the action space into three regions: (i) zero production
costs, (ii) manufacturer is cheaper, (iii) subcontractor is cheaper, and using Markov decisions
process models, we analyze the structure of the optimal policy in each region. We analyti-
cally provide an exhaustive set of conditions that depends on the value function, costs, and

service rate, under which each actions are optimal.

We observe that for a complete symmetric system (with respect to cost and service rates),
the optimal policy is of dual index type, i.e. it suggests that either one of the components
should be always produced at the fastest rate or none of the components should be produced.
We analyze three cases: (i) if production costs are zero, then the optimal policy is dual index
type whenever the sum of inventory positions is constant, (ii) next, if the manufacture is
cheaper, then the optimal policy is multi-index type with three thresholds whenever the sum

of inventory positions is constant and the service rates satisfy specific conditions, (iii) finally,
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if the subcontractor is cheaper, then the optimal policy is dual index type whenever the sum

of inventory positions is constant and the service rates satisfy specific conditions.

In Chapter 5 of this thesis, we analyze a multi-product ATO system where the products
are assembled from multiple standard-type components that share the same manufacturing
resource. In this case, the supply chain manager could replenish components using capacity
available at the in-house manufacturer and using capacity available at the dedicated exter-
nal subcontractors. We propose a fairly accurate approach that combines decomposition and
Markov decision process where, we decompose the ATO system with multiple products into
two equivalent subsystems that characterize a component for each product. For a subsys-
tem, we leverage results from Chapter 4 to determine the structure of the optimal policy.
Next, using iterative algorithm for subsystems, we provide optimal solutions to the original

multi-product ATO system.

We observe that if production costs are zero or the subcontractor is cheaper, then for each
state of one subsystem there exists a dual index type policy in another subsystem. Next, if
the manufacture is cheaper, then the dual index type policy might not be optimal. We also
compare results from exact analysis and decomposition approach for three cases: negligible
production costs, manufacturer is cheaper, and subcontractor is cheaper, and observe that

the decomposition approach is fairly accurate specially if the manufacture is cheaper.

In Chapter 6 of this thesis, we analyze make to order system with knowledge-type compo-
nents. Knowledge-type components require high capital investment that have costs associ-
ated with unused capacity. The supply chain manager could subcontract these components
to external subcontractors to gain additional capacity. Additionally, the supply chain man-
ager could also produce these components in-house to absorb overhead costs associated with
under utilized capacity. We analyze two system : centralized system and decentralized sys-

tem. Using Markov decision process, we analyze the system with centralized control and
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analytically characterize the structure of the optimal capacity and production decisions. Us-
ing stochastic games formulations, we analyze the system with decentralized control. We

also analyze the gap in the decentralized system as compared to centralized system.

We observe that for equal production cost, if the unused capacity cost at the subcontractor,
is more than the unused capacity cost at the manufacturer, then the optimal production
quantity at the supplier is more than the manufacturer. Next, the optimal capacity and
production decisions depend on the relative difference between the difference in the cost
of unused capacity (manufacturer and the subcontractor) and difference in the production

costs.

7.2 Research Extensions

In this section, we discuss potential research extensions of this thesis.

Dynamic production, capacity and sourcing models: With changing production en-
vironment, certified subcontractors’ pool, product mix, etc, the industry faces issues with
maintaining the existing optimization and production planning system. This could even
result in the change of the entire model altogether. This problem can be divided into two
categories: (i) maintaining stable connection with the existing supply chain data sources and
dynamically update the model with the changing data, (ii) analyzing the effect of change
in system parameters such as service rates, demand distribution, capabilities and service
requirements on system performance and optimal decisions. Using concepts of robust opti-
mization paired with advanced data analytics, we plan to invest such problems and provide

solutions in an dynamic environment.

Reliability models: In addition to the supply chain and manufacturing issues prevalent in
O&G industries, reliability of equipments is emerging as one of the critical aspects of O&G

industries. Scheduling issues related to mandatory third party inspection presents complex
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challenges due to the multiple iterations needed before approval. Thus, determining the
optimal scheduling policy for third party inspection that balances tradeoffs in quality, costs,
and lead times is an important question. We plan to investigate such third party inspection
scheduling and reliability concerns using Markov decision process models that capture real-

world restrictions and uncertainty in inspection and production decisions.

R&D investment strategy: With depleting fossil fuel reserves, advancement of renewable
energy sources present exciting new opportunities. These advancements emphasize com-
plex equipments (wind turbines, generators, etc) which promotes advanced manufacturing
capabilities with targeted R&D investments by renewable energy industries. Determining
the optimal R&D investment and process improvement strategies for such industries and
estimating the impact off these strategies on quality and costs is an important research
area. Using Markov decision process models, We plan to investigate a holistic approach
to R&D investments that includes capability investment decisions, manufacturing process

improvement and reliability decisions.



160

LIST OF REFERENCES

Anand, K. S., Goyal, M. 2009. Strategic information management under leakage in a supply
chain. Management Science. 55(3) 438-452.

Anonymous. 2009. Layoffs in oil & gas. Portal  Seven.
http:/ /portalseven.com/employment/Layoffs_Oil_Gas_Industry.jsp.

Anonymous. 2013. Economic impacts of the oil and natural gas in-
dustry on the US economy in 2011. American  Petroleum  Institute,

www.api.org/~ /media/Files/Policy/Jobs/Economic_impacts-Ong_2011.pdf.

Anonymous.  2015a. Crude oil.  NASDAQ. hittp://www.nasdaq.com/markets/crude-

oil.aspx?timeframe=10y.

Anonymous. 2015b. Samson Oil & Gas Limited interactive stock chart. NASDAQ.

http://www.nasdaq.com/symbol/ssn/interactive-chart.

Anonymous. 2015c. SOGCQ interactive stock chart. NASDAQ.

http://www.nasdaq.com/markets/crude-oil. aspx ?timeframe=10y.

Atamturk, A., Hochbaum, D. S. 2001. Capacity acquisition, subcontracting, and lot sizing.
Management Science. 47(8) 1081-1100.

Benjaafar, S., ElHafsi, M., Vericourt, F. D. 2004. Demand allocation in multiple-product,

multiple-facility, make-to-stock systems. Management Science. 50(10) 1431-1448.

Bernstein, F., DeCroix, G. A. 2004. Decentralized pricing and capacity decisions in a

multitier system with modular assembly. Management Science. 50(9) 1293-1308.



161

Bernstein, F., DeCroix, G. A. 2006. Inventory policies in a decentralized assembly system.

Operations Research. 54(2) 324-336.

Bernstein, F. G., DeCroix, G. A., Wang, Y. 2011. The impact of demand aggregation through
delayed component allocation in an assemble-to-order system. Management Science. 57(6)

1154-1171.

Bertrand, J. 1883. Book review of theorie mathematique de la richesse sociale and of
recherches sur les principles mathematiques de la theorie des richesses. Journal des Savants.

67(1) 499-508.

Bish, F. G., Muriel, A., Biller, S. 2005. Managing flexible capacity in a make-to-order

environment. Management Science. 51(2) 167-180.

Bradley, J. R. 2005. Optimal control of a dual service rate M/M/1 production-inventory
model. European Journal of Operational Research. 161(3) 812-837.

Bradley, J. R., Glynn, P. W. 2002. Managing capacity and inventory jointly in manufacturing
systems. Management Science. 48(2) 273-288.

Cachon, G. P.; Lariviere, M. A. 2001. Contracting to assure supply: how to share demand
forecasts in a supply chain. Management Science. 47(5) 629-646.

Clark, A. J., Scarf, H. 1960. Optimal policies for a multi-echelon inventory problem. Man-
agement Science. 6(4) 475-490.

Damodaran, A. 2009. Ups and downs: valuing cyclical and commodity companies. Stern

School of Business, New York University.

Eaton, C. 2015. Schlumberger cuts another 11,000 jobs in wake of oil crash. Fu-
elfix. hitp://fuelfiz.com/blog/2015/04/16/schlumberger-cuts-another-11000-jobs-in-wake-
of-oil-crash/#31744101=0.



162

ElHafsi, M., Camus, H., Craye, E. 2008. Optimal control of a nested-multiple-product
assemble-to-order system. International Journal of Production Research. 46(19) 5367

5392.

Gallien, J., Wein, L. M. 2001. A simple and effective component procurement policy for

stochastic assembly systems. Queueing Systems. 38(2) 221-248.

Gerchak, Y., Wang, Y. Z. 2004. Revenue-sharing vs. wholesale-price contracts in assembly

systems with random demand. Production and Operations Management. 13(1) 23-33.

Glasserman, P., Wang, Y. 1998. Leadtime-inventory trade-offs in assemble-to-order systems.

Operations Research. 46(6) 858-871.

Gurvich, I., Armony, M., Mandelbaum, A. 2008. Service-level differentiation in call centers

with fully flexible servers. Management Science. 54(2) 279-294.

Ha, A. H. 1997. Optimal dynamic scheduling policy for a make-to-stock production system.
Operations Research. 45(1) 42-53.

Hu, B., Benjaafar, S. 2009. Partitioning of servers in queueing systems during rush hour.

Manufacturing € Service Operations Management. 11(3) 416-428.

Huh, W., Liu, N., Truong, V.-A. 2013. Multi-resource allocation scheduling in dynamic

environments. Manufacturing € Service Operations Management. 15(2) 280-291.

Iyer, A. V., Jain, S. 2004. Modeling the impact of merging capacity in production-inventory
systems. Management Science. 50(8) 1082-1094.

Jiang, B., Frazier, G. V., Prater, E. L. 2006. Outsourcing effects on firms’ operational per-
formance: An empirical study. International Journal of Operations € Production Man-

agement. 26(12) 1280-1300.



163

Jiang, L., Wang, Y. 2010. Supplier competition in decentralized assembly systems with
price-sensitive and uncertain demand. Manufacturing € Service Operations Management.

12(1) 93-101.

Karaarslan, A. G., Kiesmiiller, G. P., De Kok, A. G. 2013. Analysis of an assemble-to-order
system with different review periods. [International Journal of Production Economics.

143(2) 335-341.

Ko, S. S., Choi, J. Y., Seo, D. W. 2011. Approximations of lead-time distributions in an
assemble-to-order system under a base-stock policy. Computers and Operations Research.

38(2) 582-590.

Lee, S.-B., Zipkin, P. H. 1989. A dynamic lot-size model with make-or-buy decisions.
Management Science. 35(4) 447-458.

Li, C., Debo, L. G. 2009. Second sourcing vs. sole sourcing with capacity investment and
asymmetric information. Manufacturing & Service Operations Management. 11(3) 448—

470.

Li, C.-L., Kouvelis, P. 1999. Flexible and risk-sharing supply contracts under price uncer-
tainty. Management Science. 45(10) 1378-1398.

Li, L. 2002. Information sharing in a supply chain with horizontal competition. Management

Science. 48(9) 1196-1212.

Lippman, S. 1975. Applying a new device in the optimization of exponential queueing

systems. Operations Research. 23(4) 687-710.

Long, H. 2016. America’s top 10 job-killing companies. CNN,
http://http://money.cnn.com/2016/05/15/news/economy/america-job-killing-

companies/.

Lu, Y., Song, J.-S. 2005. Order-based cost optimization in assemble-to-order systems.

Operations Research. 53(1) 151-169.



164

Merette, M.  2009.  Schlumberger Ltd. announces layoffs. Times Record News.

http://www.timesrecordnews.com/news/schlumberger-ltd-announces-layoffs.

Neuts, M. F. 1981. Matriz-geometric solutions in stochastic models: an algorithmic approach.

Johns Hopkins University Press, Baltimore, MD.

Niroomand, I., Hochbaum, D. S. 2012. Impact of reconfiguration characteristics for capi-

tal investment strategies in manufacturing systems. International Journal of Production

FEconomics. 139(1) 288-301.

Platts, K. W., Probert, D. R., Céez, L. 2002. Make vs. buy decisions: A process incorporating
multi-attribute decision-making. International Journal of Production Economics. 77(3)

247-257.

Puterman, M. L. 1994. Markov decision processes: discrete stochastic dynamic programming.

John Wiley & Sons, Inc., New York, NY.

Rajagopalan, S., Swaminathan, J. M. 2001. A coordinated production planning model with

capacity expansion and inventory management. Management Science. 47(11) 1562-1580.

Rosling, K. 1989. Optimal inventory policies for assembly systems under random demands.

Operations Research. 37(4) 565-579.

Savaskan, R. C., Bhattacharya, S., Van Wassenhove, L. N. 2004. Closed-loop supply chain
models with part remanufacturing. Management Science. 50(2) 239-252.

Sethi, S. P., Yan, H., Zhang, H. 2003. Inventory models with fixed costs, forecast updates,
and two delivery modes. Operations Research. 51(2) 321-328.

Song, J.-S. 1998. On the order fill rate in a multi-item, base-stock inventory system. Oper-
ations Research. 46(6) 831-845.

Song, J.-S. 2000. A note on assemble-to-order systems with batch ordering. Management

Science. 46(5) 739-743.



165
Song, J.-S. 2002. Order-based backorders and their implications in multi-item inventory
systems. Management Science. 48(4) 499-516.

Song, J.-S., Yao, D. D. 2002. Performance analysis and optimization of assemble-to-order

systems with random lead times. Operations Research. 50(5) 889-903.

Stenner, J. M. 2015. Seven oil & gas producers file for bankruptcy in 2015, two this
week. PennEnergy. hitp://www.pennenergy.com/articles/pennenergy/2015/07/seven-oil-
gas-producers-file-for-bankruptcy-in-2015-two-this-week. html.

Swinney, R., Cachon, G. P., Netessine, S. 2011. Capacity investment timing by start-ups
and established firms in new markets. Management Science. 57(4) 763-777.

Van Mieghem, J. A. 1999. Coordinating investment, production, and subcontracting. Man-

agement Science. 45(7) 954-971.

Varian, H. R. 2006. Intermediate microeconomics: a modern approach. W. W. Norton &

Company, New York, NY.

Veeraraghavan, S., Scheller-Wolf, A. 2008. Now or later: a simple policy for effective dual

sourcing in capacitated systems. Operations Research. 56(4) 850-864.
Stackelberg, H., von. 2011. Market structure and equilibrium. Springer, Heidelberg, Germany.

Wang, Y., Gerchak, Y. 2003. Capacity games in assembly systems with uncertain demand.

Manufacturing € Service Operations Management. 5(3) 252.

Yao, T., Jiang, B., Young, S. T., Talluri, S. 2010. Outsourcing timing, contract selection,
and negotiation. International Journal of Production Research. 48(2) 305-326.

Zhang, F. 2006. Competition, cooperation, and information sharing in a two-echelon assem-

bly system. Manufacturing & Service Operations Management. 8(3) 273-291.

Zhang, H. 2002. Vertical information exchange in a supply chain with duopoly retailers.

Production and Operations Management. 11(4) 531-546.



166

Zhang, X., Ou, J., Gilbert, S. M. 2008. Coordination of stocking decisions in an assemble-

to-order environment. Furopean Journal of Operational Research. 189(2) 540-558.

Zhao, Y. 2009. Analysis and evaluation of an assemble-to-order system with batch ordering
policy and compound Poisson demand. European Journal of Operational Research. 198(3)

800-809.

Zhao, Y., Simchi-Levi, D. 2006. Performance analysis and evaluation of assemble-to-order

systems with stochastic sequential lead times. Operations Research. 54(4) 706-724.

Zhou, W., Chao, X. 2012. Stein-Chen approximation and error bounds for order fill rates in
assemble-to-order systems. Naval Research Logistics. 59(8) 643-655.



