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ABSTRACT

The supply chain involved in the manufacturing of equipment for oil and gas (O&G) in-

dustry faces several challenges due to fluctuations in demand and custom-engineered nature

of components. This research develops stochastic models to address important problems

related to production and subcontracting in this supply chain.

This research analyzes production and subcontracting policies for two types of components:

standard-type components and knowledge-type components. Standard-type components

do not have proprietary designs, and are often supported using Make-to-Stock (MTS) or

Assemble-to-Order (ATO) policies. In contrast, knowledge-type components are highly

custom-engineered components that use proprietary designs, and are often supported us-

ing Make-to-Order (MTO) policies.

For standard-type components, we first analyze single product ATO system with capacity

constraints and stochastic lead times. We assume that component replenishment is carried

out by orders placed to an internal manufacturing facility and/or an external subcontractor,

and component stock levels at the manufacturer are determined by dual index based policies.

Using queuing models, we analyze the tradeoffs related to internal manufacturing versus sub-

contracting under different types of dual index policies. We use matrix geometric methods

to conduct an exact analysis for systems with two components and develop a decomposition

based algorithm to analyze the performance of systems with more than two components.
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Numerical studies provide useful insights on the performance of various dual index policies.

Next, we analyze manufacturing system with multiple components where individual com-

ponents are made to stock through production either at a shared in-house manufacturing

facility or at facilities of external subcontractors dedicated to individual components. The

manufacturer and the subcontractor differ in terms of costs, production capacities, rates, and

service level capabilities. Using Markov decision process models, we determine the optimal

policy and characterize its structure. To address the curse of dimensionality, we derive a set

of conditions that partitions the state space into regions and characterize optimal policies

in each region. We consider several special scenarios and prove that the optimal policy has

a multi-index type structure in each of these settings with dual index type structure as a

special case in some settings. Next, we extend the analysis to multi-product ATO systems

where individual components can be made either at a shared manufacturing facility or at

facilities of external subcontractors dedicated to particular components. We develop an it-

erative procedure that exploits solution characteristics of subsystems to reduce the action

space and use the procedure to determine optimal policies for the original ATO system.

For knowledge-type components, we analyze strategic production and subcontracting deci-

sions for a system with centralized control and decentralized control. Since, these knowledge-

type components are often made to order, they pose different challenges especially in terms

of capacity investments and demand variations. In both up-markets and down-markets,

manufacturer must balance capacity investments, subcontracting production to certified sub-

contractors, and cost of unused capacity. We study this problem in both a centralized and

a decentralized setting using Markov decision process models and stochastic game formu-

lations. We analytically provide optimal capacity investment and production strategies for

both the manufacturer and the subcontractor, and show the impact of unused capacity

on such decisions. Using numerical studies, we analyze the inefficiencies of operating in a

decentralized setting.
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Chapter 1

Introduction

For the foreseeable future, clean oil and gas (O&G) is likely to remain the biggest and the

most economical source of energy. O&G industries contribute about $1.2 trillion to the US

economy and support roughly 10 million jobs (Anonymous (2013)). Despite the importance,

its manufacturing and supply chain challenges have been vastly under-appreciated. This the-

sis develops stochastic models to address several important problems in these supply chains.

1.1 Supply Chain for Oil Drilling Equipment

Broadly speaking, the supply chain for oil drilling equipment (see Figure 1.1) is comprised

of mainly three phases: (1) exploration phase, (2) production phase, and (3) processing and

distribution phase. In the exploration phase, companies such as Exxon Mobil, BP, Shell,

etc identify potential drilling sites and oil wells. These companies hire drilling contractors

such as Seadrill, Transocean, etc, to drill oil using rigs that could be land rigs, floating rigs,

offshore rigs, or inland barge rigs. In the production phase, O&G equipment manufactur-

ers such as National Oilwell Varco, GE Oil and Gas, Cameron, Schlumberger, etc provide

custom-engineered equipment to support the oil drilling operations. These equipment can be

large in size and thus are transported to the drilling site as separate parts and assembled at

the drilling site. Once, the oil rig is fully functional, the safety and environmental authorities

conduct a thorough check to prevent any accidents during the drilling process. Next, drilling
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contractors pump up oil. Finally, in the processing and distribution phase, logistic and distri-

bution systems transport these crude oil to operating companies for refining and distribution.

Figure 1.1 Overview of Supply Chain in O&G Industries

Inefficiencies in this supply chain can be very expensive. For example, manufacturing de-

lays in delivery of the equipment could cost up to $10,000 per day. This implies that the

equipment manufacturers lie on the critical path of a supply chain that consists of drilling

contractors (Transocean, Seadrill), manufacturers of equipment (drawworks, top drives),

suppliers of parts (pumps, bearings), and suppliers of raw materials (castings, forgings).

A typical oil rig is mainly comprised of many equipment such as power system, drawworks,

top drives, etc as shown in Figure 1.2. Much of this equipment is custom-engineered for
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specific drilling applications. Power system comprises of combustion engines and transmis-

sion system, and provides power to run various equipments on the rig. A top drive is a

mechanical equipment that is located on the oil rig (either on the land or under the ocean)

to facilitate the drilling process. Top drives are usually assembled from different components

such as hydraulic motors, main body, shaft, pipe handlers, etc. Similarly, drawworks is a

heavy equipment that wraps the wire-rope drilling line. It consists of a main drum to spool

the wire-rope with the help of powerful motors, a brake system to stop the spooling pro-

cess, a main body to provide the structure, and skids to support the weight of the drawworks.

Figure 1.2 Oil Drilling Equipment (a) Land Rig, and (b) Top Drive

1.2 Challenges in the Supply Chain

The supply chain involved in the manufacturing of drilling equipment faces several challenges:

Custom-engineered equipment: Oil drilling equipment is highly custom-engineered and

could easily require over 10,000 hours in engineering and 50,000 hours in manufacturing. For

instance, drawworks could require around 20,000 components in the assembly process. This
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requires the supply chain to have efficient assemble-to-order, make-to-order, or engineer-to-

order strategies.

Figure 1.3 Variation in Crude Oil Prices (Anonymous (2015a))

Market fluctuations: The demand of oil drilling equipment directly depend on the price

of the crude oil. Figure 1.3 shows the price trend of the crude oil over a 10 year period

(2006 - 2015) (Anonymous (2015a)). We observe a highly variable trend in the price which

directly impacts the demand of oil drilling equipment. These price variations drive corre-

sponding fluctuations in demand for the drilling equipment used in this industry (Damodaran

(2009)). These demand fluctuations have a significant cascading impact throughout this sup-

ply chain. High retail price of the crude oil triggers drilling more oil to increase supply and

reduce prices. This results in more orders for drilling equipment. Demands could increase

by over 50% within a span of a year. This sudden spike in demands over a short time span

puts great stress on the supply chain. Similarly, low retail price of the crude oil results in
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fewer orders for drilling equipment. For instance, demands could drop by over 50% in a

span of two years. This sudden drop in demand affects the entire supply chain and some-

times threaten the survival of equipment manufacturers. Companies like Samson Oil and

Gas and Sabine Oil and Gas, that barely survived the market downturn in year 2009, could

not survive the downturn in year 2015 (Anonymous (2015b,c); Stenner (2015)). Even larger

companies like Schlumberger, National Oilwell Varco, and General Electric have been forced

to layoff thousands of employees (Anonymous (2009); Merette (2009); Eaton (2015); Long

(2016)). Even during up-markets, manufacturers struggle to ramp up production capacities

at the pace necessary, and resulting product delays cost over $10,000 per day.

Manufacturing capacity: Oil drilling equipment supply chain manufactures massive equip-

ment which consumes significant manufacturing resources. For example, top drives and draw-

works can consume more than 2000 hours of manufacturing resources which is equivalent to

an years worth of manufacturing on a single machine. The limited internal manufacturing

capacity at equipment manufacturers impose a pressing challenge to meet the customer de-

mand. During up-market, manufacturers face capacity issues and struggle to keep up with

demand and avoid component shortages. For instance, drilling motors could be delayed due

to shortages of 20% of their components. Similarly, during down-market, manufacturers

struggle to keep the manufacturing resources busy which results in high unused capacity

costs (or overhead absorption risks).

Subcontracting: Since, capital equipment needed for manufacturing of oil drilling equip-

ment is expensive (often costing $2-3M for a single machine). Manufacturer often needs to

subcontract significant manufacturing operations to certified external subcontractors either

because the manufacturer does not have the required capacity or because the manufacturing

cost is lower at a subcontractor. For instance, as stated earlier, drawworks is assembled from

various parts such as drum assembly, brake system, main body, skids, etc. To satisfy the

demand of the drawworks and overcome internal capacity limitations, a manufacturer might
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subcontract few parts such as drum assembly and skids to various external vendors. This

enables them to meet customer demand and reduce cost.

Knowledge versus standard components: Oil drilling equipment are mainly classified

into two categories: knowledge-type components and standard-type components. Knowledge-

type components are highly custom-engineered parts that use proprietary designs, and are

often supported using Make-to-Order (MTO) policies. However, these components require

high capital investment and have high costs associated with unused capacity. In contrast,

the standard-type components do not have proprietary designs, and are often supported us-

ing Make-to-Stock (MTS) or Assemble-to-Order (ATO) policies. These two categories drive

different supply chain partnerships and impose challenge in decision making process.

In the next section, we describe some of the research issues in this supply chain.

1.3 Research Issues and Questions

We develop a set of stochastic optimization models to derive insights that will address the

key supply chain challenges faced by equipment manufacturers for the O&G industry. From

the components perspective, we focus on two categories: standard-type components and

knowledge-type components. We describe research issues and questions in the subsequent

sections.

1.3.1 Subcontracting Strategies for Standard-type Components

At first, we analyze subcontracting issues in a manufacturing system where a single end prod-

uct is assembled to customer specification from multiple standard-type components that are

held in stock (See Figure 1.4). Each component is either manufactured in-house or sourced

from subcontractors. For instance, although the manufacturer could manufacture compo-

nents at a faster rate using in-house manufacturing capacity, they might choose to reserve
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that capacity for other products and decide to subcontract production to a subcontractor

that might have a lower production rate. However, the availability of components in stock

is critical to assemble the final product and satisfy the demand in a timely manner. Under

this setting, we analyze the potential of dual index based production and stocking policies

that can be used by the manufacturer. We analyze the optimal thresholds for dual index

policies and provide answers to the following research questions:

Figure 1.4 Subcontracting Strategies for Single Product Made of Standard-type
Components

RQ1: What are the optimal thresholds and production quantities for the in-house manu-

facturer and the subcontractor?

RQ2: Under what conditions would certain types of dual index policies outperform other

dual index policies? How do these thresholds impact total cost, expected inventory, and

backorders?

In this thesis, we answer these research questions in Chapter 3.
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Next, we analyze a make-to-stock (MTS) system comprising of multiple standard-type com-

ponents as shown in Figure 1.5. These components require special equipment that cannot

be dedicated to serve a specific component. So, the individual standard-type components

can be made either at a shared in-house manufacturing facility or at dedicated facilities of

external subcontractors. Therefore, the supply chain manager has to make decisions such as

when and how much capacity at the manufacturer should be dedicated to a given component

and when and how much production of a given component needs to be subcontracted. We

investigate the following research questions:

Figure 1.5 Subcontracting Strategies for Make-to-Stock Standard-type Components

RQ3: How do differences in capabilities, costs and service level expectations impact the

optimal production and capacity utilization strategies? How do such tradeoffs depend on

the differences in production costs?

RQ4: Do optimal policies have a easily describable structure that can be friendly for indus-

try implementation?

In this thesis, we answer these research questions in Chapter 4.
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Next, we extend our research to systems with multiple end products assembled from standard-

type components. Here, multiple products are assembled from various standard-type com-

ponents as shown in Figure 1.6. Again, the manufacturer could produce components using

shared internal manufacturing capacity or choose to reserve that capacity for other products,

and instead subcontract production to a subcontractor that might have a lower production

rate. Now, multiple manufacturing resources are shared to make two or more components.

This increases the complexity of the problem. We investigate the following research questions:

Figure 1.6 Subcontracting Strategies for Multi-product Made of Standard-type
Components

RQ5: How could we address the state space complexity associated with determining the

optimal policies for multi-product systems? Are there efficient algorithms to resolve state
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space complexity?

RQ6: What is the optimal use of in-house manufacturing capacity? What is the structure

of the optimal policy?

In this thesis, we answer these research questions in Chapter 5.

1.3.2 Subcontracting Strategies for Knowledge-type Components

We analyze subcontracting decisions for knowledge-type components in a multi-period set-

ting with non-stationary demands. Recall that knowledge-type components have proprietary

design and are often made to order. However, such components require high capital invest-

ment and the cost of under utilizing the available capacity is significant. In such cases,

knowledge-type components might need to be strategically subcontracted to vendors to ei-

ther to exploit available capacity at the subcontractor or to reduce the costs associated with

unused capacity. We analyze a manufacturing system under centralized control consisting

of a manufacturer and a subcontractor as shown in Figure 1.7. In each time period, the

manufacturer and the subcontractor needs to balance tradeoffs related to production costs

and unused capacity costs to determine the optimal production and capacity investment

decisions. Under centralized setting, we aim to provide answers to the following research

questions.

RQ7: When and how much capacity should the manufacturer and the subcontractor invest

in and utilize during each time period?

RQ8: What is the structure of the optimal policy and how does the unused capacity impact

the optimal production and subcontracting decisions?

Next, we analyze the tradeoffs under decentralized setting consisting of autonomous manu-

facturer and subcontractor as shown in Figure 1.8. The subcontractor provides the pricing

scheme and capacity availability, and the manufacturer decides their capacity, production,
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Figure 1.7 Capacity and Sourcing Decisions for Components in Centralized Setting

and subcontracting decisions. Under this setting, we aim to provide answers to the following

research questions.

RQ9: How do optimal capacity, manufacturing, and subcontracting decisions depend on

pricing scheme?

RQ10: How can we reduce the gap between the system with centralized control and a sys-

tem with decentralized control?

Figure 1.8 Capacity and Sourcing Decisions for Components in Decentralized Setting

In this thesis, we answer these research questions in Chapter 6.
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1.4 Research Methodology

We approach this research through university-industry collaboration. We develop analytical

methods to provide structural insights of the models, and validate our models with industry

partners.

1.4.1 University-Industry Collaboration

This research is part of a multi-year, multi-university collaboration between National Oilwell

Varco (NOV), a leading O&G equipment manufacturer, and three universities (University of

Wisconsin-Madison, Texas A&M University, Pennsylvania State University). Each of the re-

search problem listed have been motivated and addressed in collaboration with our industry

partners. For instance, in the manufacturing of drilling motors at one of NOV manufactur-

ing facility, we observed the issues related to the standard-type components such as rotor,

stator, etc. In this setting, the facility could either subcontract the manufacturing of rotor,

stator, etc to external subcontractors at a slower production rate and lower costs, or manu-

facturer these components in-house at a faster production rate and higher production costs.

This motivated our research on single product ATO system with standard-type components

(RQ1, RQ2). Our model and insights for standard-type components have been validated

by the industry partners.

Next, while analyzing components/operations such as shafts, wire harnessing, PCB assem-

bly, we observe that some of these components require capacity on a special equipment. This

prevented the manufacturer from dedicating such equipment to a specific group of compo-

nents, and multiple components share the available capacity. This motivated our research

on make-to-stock systems and assembly systems comprising of multiple components (RQ3,

RQ4, RQ5, RQ6).

Finally, while analyzing knowledge-type components such as blowout preventers, we observed

that these components have proprietary designs and are made-to-order. These components
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require special equipment that require high capital investments. The manufacturer also

incurs penalty costs (overhead costs) for any under utilized capacity. These components are

strategically subcontracted to the external subcontractors to better balance capacity with

demand variations in different time periods. However, the industry partner is also concerned

with the overhead costs associated with unused capacity at the in-house manufacturing

facility. This motivated our research for knowledge-type components where we investigate

capacity and production decisions (RQ7, RQ8, RQ9, RQ10). In the next section, we

discuss analytical methods for subcontracting strategies for standard-type components and

knowledge-type components.

1.4.2 Analytical Approach and Thesis Outline

We develop stochastic models to analyze production, subcontracting, and capacity decisions

for standard-type and knowledge-type components. We derive theoretical results related to

optimal policies and costs, and validate the results using numerical computation and discus-

sions with industry partners.

At first, we analyze production and subcontracting decisions in assemble to order (ATO)

system for standard-type components. We use concepts of queuing theory and Markov de-

cision process to analyze ATO system with single product (Chapter 3) and ATO systems

with multiple products (Chapter 5). For ATO system with single products, we propose exact

method that uses queuing theory and matrix geometric approach to identify optimal thresh-

olds, and production quantities for the in-house manufacturer and the subcontractor. We

also propose a novel approximation to solve large systems and provide error bounds using

numerical studies (RQ1). Next, we compare multiple dual index policies under different

parameter settings to obtain conditions under which one dual index policy outperform other

policies (RQ2).
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In Chapter 4 of the thesis, we analyze MTS system with multiple components that share the

same manufacturing resource. Using Markov decisions process models and efficient action

elimination techniques, we determine the structure of the optimal policy. Numerical experi-

ments validate the theoretical results and highlight the impact of costs and service rates on

the optimal production decisions (RQ3). Using conditions on the cost and service rates, we

partition the state space into various regions and show that the optimal policy has a simple

characterization in each region (RQ4).

In Chapter 5 of the thesis, we extend our analysis to ATO system with multiple products that

share the same manufacturing resources. We address the state space complexity associated

with determining the optimal policies for ATO systems with multiple products by using a de-

composition based Markov decision process model, and provide the structure of the optimal

solution. Note that, in this case we model a shared resource where one could manufacture

multiple types of components on the same resources. We also provide insights on the use

of the shared resources and validate these observations using numerical studies (RQ5, RQ6).

In Chapter 6 of this thesis, we analyze subcontracting strategies for knowledge-type compo-

nents. In this case, we analyze the structure of the optimal capacity and production decision

in the centralized system using Markov decisions process models, and analyze the structure of

optimal capacity and production decision in the decentralized system using stochastic game

models (RQ7). We analytically show the impact of unused capacity on optimal capacity

decision at the manufacturer and the subcontractor, and support this analysis with numer-

ical experiments (RQ8). Using numerical experiments, we also compare the gap between

centralized system and decentralized system and analyze the impact of pricing parameters

set by the subcontractor on this gap, and production and subcontracting decisions (RQ9,

RQ10).
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Chapter 2

Literature Review

In this chapter, we review relevant literature. This chapter in categorized into four sec-

tions. Section 2.1 focuses on subcontracting strategies in manufacturing systems. Section

2.2 focuses on the single product and multiple product systems. Section 2.3 focuses on the

capacity investment models. Section 2.4 focuses on supply chain competition for pricing,

capacity and production decisions.

2.1 Subcontracting Strategies in Manufacturing Systems

Studies on subcontracting often focus on how it enables manufacturing firms to improve

service levels (Li and Kouvelis (1999); Jiang et al. (2006); Yao et al. (2010)). However, sub-

contracting strategies have lead time and cost implications as well. Lee and Zipkin (1989)

analyze make-or-buy decision in a capacitated system where the manufacture satisfies de-

mand either through available internal capacity or through unrestricted purchasing from

the subcontractor. They assume zero replenishment lead time from both the sources and

provide the optimal make-or-buy quantities using a dynamic programming algorithm. They

also determine conditions where the manufacturer satisfies the demand through (1) only in-

house manufacturing (2) only purchasing from the external supplier, and (3) both in-house

manufacturing and purchasing from the external subcontractor. Additionally, the model is

extended to include backordering and bounded inventory while minimizing the total costs
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of production and subcontracting. Van Mieghem (1999) analyzes a two stage capacity ac-

quisition model where the in-house manufacturer and the subcontractor coordinate capacity

using game theory approach. They develop a two stage stochastic capacity game where

in the first stage the manufacturer and the subcontractor independently and simultaneously

decide their capacity levels while in the second stage the manufacturer and the subcontractor

independently and simultaneously decide their production levels to satisfy customer demand.

Platts et al. (2002) assume constant lead times for procurement and develop a subcontracting

framework to determine the quantity to be produced in-house and purchased from external

suppliers. Sethi et al. (2003) analyze manufacturing systems with subcontractors that differ

in delivery rates and costs and determine optimal (s,S) policies for these settings.

Next, we summarize the literature that studies dual index policies. Bradley (2005) analyzes

an in-house production and subcontracting model with exponential processing times for or-

ders and Poisson demand arrival process and shows that the stationary dual base stock policy

for component replenishment is optimal. They consider the setting where unit production

costs at the subcontractor exceeds the in-house manufacturing variable cost and derive a

closed-form structure for the optimal threshold and show that it is a dual base stock type

policy. The dual base stock policy specifies one threshold that separates the region where the

low production rate is used from the region where the high production rate is used. When

the low production rate is used, the production is carried out only by the in-house manu-

facturer, while when the high production rate is used, production is carried simultaneously

by both the subcontractor and the manufacturer. Our research focuses on make and buy

decisions (as opposed to make versus buy) i.e., the manufacturing facility primarily procures

components but reserves the option to make parts in-house to meet service level obligations.

Further, our focus on an ATO system makes our analysis more complex than the study in

Bradley (2005). Veeraraghavan and Scheller-Wolf (2008) determine optimal order quantities

for both the subcontractor as well as the in-house manufacturer under the assumption of
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deterministic lead times. They propose a dual index policy that is near optimal.

Our work builds on the dual base stock and dual index policies discussed in the literature,

but extends their application to a broad class of ATO systems with multiple components. In

particular, depending on the sourcing and replenishment decisions, the replenishment lead

times of these components could vary with the workload at both in-house manufacturing and

local subcontracting facilities. ATO systems that operate under dual index policies recog-

nize the sensitivity of lead time to workloads at the in-house manufacturing facility and local

subcontractor to suitably adapt their production and subcontracting decisions to improve

system performance.

In the subsequent sections, we review the literature related to the component replenishment

policies. Many studies on ATO systems build on the classical results reported in Rosling

(1989) and Clark and Scarf (1960). These studies analyze a multi-stage assembly system

and show that base stock policy is optimal when the system does not have any capacity

constraints. We analyze two streams of literature on ATO system: (1) system operating

under ATO system with single end product, and (2) system operating under ATO system

with multiple products.

2.2 Assemble-to-Order Systems

Single Product Systems: Several researchers have analyzed ATO system with a single

end product. Studies on ATO systems with single product focus on the impact of optimal

decisions and system parameters. One stream of literature focuses on base stock control

models. Song and Yao (2002) model a single product ATO system where the final product

is assembled from components or sub-assemblies that are made to stock. The paper assumes

that customer orders follows a Poisson process and the final product is assembled compo-

nents is negligible time if all components or sub-assemblies are available, otherwise the final
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product is backordered with positive backordering cost. The paper assumes that compo-

nent replenishment lead times are independent and identically distributed and the authors

analyze the performance of the system using M/G/∞ queuing system. Using greedy-type al-

gorithm, the paper evaluates the impact on system parameters on the performance measures

and also determine a easy to compute performance bounds on the average backorders and

component inventory. Gallien and Wein (2001) analyze a single product ATO system with

independent and non-identical replenishment lead times using queuing theory and provide

an approximate solution to determine component replenishments.

Ko et al. (2011) model a single product ATO system with Poisson demand arrival for the

assembled product and exponential service times for the components. In this case, each

component is produced at a production facility (in-house or subcontractor). They assume

base stock policy for inventory replenishment and derive a closed-form expression using lin-

ear bounds for lead times of components. Karaarslan et al. (2013) consider single product

ATO system and derive the optimality condition for ATO system under two variations of

the pure base stock policy.

Another stream of literature focuses on continuous-review models. Glasserman and Wang

(1998) analyze a ATO system with a single product assembled from multiple components.

They assumes a continuous review base stock policy and establish trade-offs between delivery

performance and the average on-hand inventory of components in ATO systems. Song (2002)

considers continuous review model of single product ATO system with multiple components

and develop an efficient algorithm to analyze the performance of the ATO system.

All of these studies share two similarities: (i) the component stock replenishment is done

using a base stock policy, and (ii) the lead time distribution for component replenishment is

known. In Chapter 3 of this thesis, we analyze a ATO system with single end product. Our

research also assumes that the component stock replenishment is done using a base stock
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policy, but in contrast it assumes that the replenishment can be done either in-house or at a

subcontractor facility based on the stock level. This additional flexibility in turn influences

the distribution of lead time for component replenishment orders.

Multi-product Systems: Studies including Song (1998, 2000); Lu and Song (2005); Zhou

and Chao (2012) analyze the performance of ATO systems with multiple products. Song

(1998) is the first to analyze the order fill rate in a multi-component ATO system operat-

ing under a base stock policy. The demand process is modeled as a multivariate compound

Poisson process where several types of customer arrives and orders a certain subset of compo-

nents. The demand of each component is then superimposed to obtain a compound Poisson

process that models the demand for each product. The paper assumes that the unfulfilled

demand is backlogged at positive cost. However, the paper also assumes that upon demand

arrival, if some of the components are unavailable, then the in-stock components are shipped

to the customer and the customer only waits for the out-of stock components. The paper

derives a structured expression to determine the optimal order fill rate for multi-component

system and shows that the fill rate of an individual component is not a good indicator of the

order fill rate. Song (2000) analyzes a ATO system with multiple products where customer

orders arrives in batches of different sizes. They assume constant replenishment lead time

and compound Poisson process for customer demand. They present a model that estimates

the order fill rate for the final product. Lu and Song (2005) analyze an multi-product ATO

system operating under a base stock policy and develop simple bounds and approximations

to evaluate the expected backorders. Zhou and Chao (2012) analyze multi-product ATO

system using simple Stein-Chen approximation. They assume arbitrary distributed compo-

nent replenishment lead times and provide error bounds on the optimal order fill rate.

ATO systems with multiple products has been widely analyzed using numerical methods.

Zhao and Simchi-Levi (2006) develop an efficient numerical method based on Monte-Carlo

simulation to analyze large multi-product ATO system with batch ordering. They assume
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the demand arrival follows Poisson process and determine the optimal order fill rate. El-

Hafsi et al. (2008) develop heuristics to analyze production and inventory policies in a

multi-product ATO system. Under the assumption of independent lead time of compo-

nent replenishment and lost sales, they show that the base stock and inventory rationing

are the optimal production and inventory policies. Later, Zhao (2009) extends Zhao and

Simchi-Levi (2006) research to a general class of ATO systems that includes both non-split

orders and split-orders. The paper develop an exact method as well as an efficient sampling

method to determine the order fill rate in an ATO system. However, none of these studies

analyze production and subcontracting decisions while considering interaction in the com-

ponent replenishment in a multi-product, multi-component ATO system. In many settings,

subcontractors present an alternate production capability that could be used to reduce av-

erage backorders.

Several studies have analyzed MTS system with multiple products. Ha (1997) studies the

optimal production scheduling in a facility that manufacturers two products on a shared man-

ufacturing resource. For the special case where both products have equal service rates, they

develop a linear switching rule for production scheduling. Benjaafar et al. (2004) develop

a non-linear formulation for multi-product, multiple flexible resources demand allocation

problem and use branch and bound algorithm to determine stationary long-run fractions

for each resource and product. Gurvich et al. (2008) and Hu and Benjaafar (2009) analyze

system with multiple fully flexible resources, multiple demand classes and use queuing the-

ory to derive stationary policies to reduce number of resources, and wait time of customers

respectively. In contrast, Chapter 4 of this thesis analyzes partially flexible resources (dedi-

cated subcontractors and shared manufacturer) and determine the structure of the optimal

production scheduling and subcontracting decisions. Our research also requires that the

components have different service rates and can be made at one or more facilities.
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In Chapter 5 of this thesis, we analyze ATO system with multiple products. We consider

dedicated subcontractor and shared in-house manufacturing facility for component replen-

ishment. Using stochastic models, we analyze the interactions in components during the

manufacturing process and provide insights on optimal component replenishment strategy.

Subsequent section provides an survey of literature on strategic outsourcing in supply chain.

Research usually involves a game theoretic formulations involving either Cournot competi-

tions (Varian (2006)), Bertrand competitions (Bertrand (1883)), and/or Stackelberg games

(von Stackelberg (2011)).

We analyze two streams of literature: (1) capacity investment models, and (2) supply chain

competition in assembly systems.

2.3 Capacity Investment Models

Several studies in the literature derive capacity acquisition strategies to set optimal produc-

tion/capacity levels (Van Mieghem (1999); Atamturk and Hochbaum (2001); Rajagopalan

and Swaminathan (2001); Bish et al. (2005); Niroomand and Hochbaum (2012)). Van

Mieghem (1999) analyzes a single period centralized system and a decentralized system

where the manufacturer and the subcontractor decides the capacity levels at the beginning

of the time period, followed by production decisions when the demand is realized. The sub-

contractor optimally decides the production quantities to satisfy its own market demand and

also to supply products to the manufacturer. The paper analyzes various price contracts and

show that the lower price contracts with the supplier could decrease the overall profit of the

manufacturer. Next, Atamturk and Hochbaum (2001) develop a multi-period determinis-

tic linear capacity acquisition and subcontracting model for non-stationary demand. They

also provide insights on the tradeoffs to balance insufficient capacity and excess capacity
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in any time period to minimize the total cost of capacity acquisition, production, subcon-

tracting, and inventory decisions. Bradley and Glynn (2002) develop a Brownian motion

model to analyze capacity investment and inventory decisions for a single firm. Niroomand

and Hochbaum (2012) develop a mixed-integer formulation to identify the optimal capacity

allocation in manufacturing systems.

There have been several studies that use game theory models to determine the optimal

capacity and production levels under uncertain demand (Van Mieghem (1999); Wang and

Gerchak (2003); Iyer and Jain (2004); Bernstein et al. (2011)). Wang and Gerchak (2003)

consider a decentralized system where the components can be replenished through a sec-

ondary source and the manufacturer acts as a leader. The manufacturer can either invest

on capacity in-house or use external subcontractor to satisfy the demand. They assume

stochastic demand and use Stackelberg game to provide insights on the optimal capacity

and pricing levels of the components. Bernstein et al. (2011) develop a Stackelberg game

to analyze multi-product system where a single firms decides the capacity levels prior to

demand realization. Li and Debo (2009) analyze a two period model where one supplier

invests on non disposable capacity to satisfy demand of the downstream firm for the first

time period, and two suppliers could invest on non disposable capacity to satisfy demand

of the downstream firm for the second time period. They assume zero unused capacity cost

and show that both suppliers should produce in the second time period under increasing

demand case. Swinney et al. (2011) analyze capacity investment timing model where the

firms can invest on capacity at two times: (i) invest on capacity early at a lower price, when

the demand uncertainty is not resolved (ii) invest on capacity late at a higher price when

the demand uncertainty is resolved. They use game theory to show that under high demand

uncertainty, new firms should make early investment on capacity and the more established

firm should make late invest on capacity.
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2.4 Supply Chain Competition in Assembly Systems

Another stream of work relates to supply chain competition in assembly systems (Gerchak

and Wang (2004), Bernstein and DeCroix (2006), Zhang (2006); Zhang et al. (2008); Jiang

and Wang (2010)). For instance, Gerchak and Wang (2004) consider a decentralized assembly

system with uncertain demand and analyze two types of supply chain contracts between the

assembler and the subcontractors. First contract considers quantity game similar to Stack-

elberg game between the assembler and the subcontractors to maximize revenue while the

second contract considers a price game similar to Bertrand game between multiple suppliers

to select the best wholesale price for the product. Bernstein and DeCroix (2006) analyze a

decentralized assembly system with stochastic and stationary demand where a single prod-

uct is assembled from two components. The components are replenished using base stock

policy. Using game theory, they analyze equilibrium base stock levels for each component.

Zhang (2006) analyzes a decentralized assembly system that consists of a manufacturer and

multiple subcontractors. Using stochastic game formulation, they determine equilibrium

base stock levels for components under random demand case. Zhang et al. (2008) analyze

a decentralized assembly system where the manufacturer and subcontractors are involved in

the quantity game, and the manufacturer also provides the wholesale price for the compo-

nents according to a push and pull system. Jiang and Wang (2010) analyze a decentralized

assembly system where components are sourced from multiple suppliers. In this case, sup-

pliers are involved in Bertrand price competition to decide the price for the components. Li

(2002) considers a two-level supply chain consisting of an upstream manufacturer and multi-

ple downstream retailers, and analyze a setting with demand and cost information leakage.

They assume demand uncertainty and analyze a Stackelberg game between the manufacturer

and retailers where the manufacturer sets the pricing scheme and the retailers decide the

production quantity, and a Cournot competition between retailers to sell the product at a

constant cost. They identify the equilibrium price decision by the upstream manufacturer

and the equilibrium quantity decision made by retailers. Zhang (2002) extends Li (2002)
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research to include Bertrand price competition for the downstream firms and show that the

type of game at the downstream level does not impact the optimal strategy.

Cachon and Lariviere (2001) model a Stackelberg game between the manufacturer and single

supplier where the manufacturer is the leader and determine the production capacity levels.

Bernstein and DeCroix (2004) analyze a modular assembly system where the components are

purchased from different subcontractors. They analyze pricing and capacity games between

the assembler (leader) and the subcontractors and show that in equilibrium, the assembler

tends to set the price of the components such that the subcontractor always produces at

the same capacity level. Anand and Goyal (2009) use Stackelberg game to analyze demand

information leakage between the incumbent and the entrant in a supply chain with demand

uncertainty.

These studies do not consider the impact of unused capacity on the optimal capacity and

production decisions. In addition, studies on decentralized system usually assume single time

period. In Chapter 6 of this thesis, we consider a multi-time period problem and analyze

the effect of unused capacity cost at the manufacturer and the subcontractor on the optimal

capacity, production, and pricing decisions.
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Chapter 3

Single Product Systems with Standard-type

Components

3.1 Introduction

In order to cut costs and reduce lead times, many manufacturers design their products and

processes so that the final product can be quickly assembled from its components. In the lit-

erature, these systems are commonly referred to as assemble-to-order (ATO) systems. ATO

systems combine the benefits of make-to-order (MTO) systems and make-to-stock (MTS)

systems to provide custom products at short lead times. The strategy initially found popu-

larity in the computer industry, and since then the concept has gained acceptance in several

other industries. Our research is motivated by collaborations with a large manufacturer of

custom drilling motors for industrial applications. These drilling motors vary significantly

in terms of their power requirement, motor speed, motor size and shape. A typical drilling

motor is assembled from various components such as rotor, stator, shaft, and connection

box that have different specifications and ratings. Since the manufacturing of some of these

components takes considerable amount of time and machining resources, the manufacturer

often builds the critical components to stock. On receipt of an order, the drilling motor is

assembled to the required specification from the components in stock. Therefore, the avail-

ability of components is critical to guarantee high service levels and short lead times.
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In such a setting the manufacturer could either subcontract some components to a local ven-

dor or produce them in-house to minimize component stock outs. Consequently, the man-

ufacturer needs to balance the tradeoffs (in-house production costs, subcontracting costs,

on-hand inventory costs, and backordering costs) and determine when and how much quan-

tity of components need to be made in-house versus at the subcontractor. For example, if

the manufacturer can produce the components at shorter lead times, the benefits of short

lead times might outweigh the higher in-house production costs. In contrast, if the man-

ufacturer is constrained by capacity, they might subcontract manufacturing of components

to a local subcontractor and incur the subcontracting costs. Understandably, the manufac-

turer needs to analyze these tradeoffs while making production and subcontracting decisions.

In this chapter, we analyze an ATO system that uses a combination of stocking policies and

subcontracting strategies to improve component availability. The ATO system assembles a

single end-product from N components that are build to stock. Production and stocking

decisions are made based on one of three dual index policies namely, the dual base stock

policy (DB policy), the on-hand inventory based policy (OH policy), and the lead time

based policy (LT policy), respectively. The stock for the components are replenished either

from a local subcontractor or by the in-house manufacturing facility. Both facilities, have

finite production capacity and stochastic lead times. We use the Matrix Geometric approach

described in Neuts (1981) and exploit the structure in the sparse transition matrix to pro-

vide an exact solution to estimate system performance in moderately sized systems with two

components (N = 2).

For larger systems with more than two components (N > 2), state space explosion prevents

an exact analysis. We overcome this challenge through a novel approximation method that

uses decomposition of the Markov chain to efficiently evaluate the system performance. The

approximation method has several advantages. First, the approach scales well with increase

in the number of components (N). Second, the approach can be easily adapted to analyze
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system performance under various dual index policies. Third, the approach yields reasonably

accurate estimates of performance to guide managerial decisions.

Using numerical studies we illustrate the performance of our approach for a system operating

under three dual index policies (namely, DB, OH, and LT ). We point out an operational

ambiguity that arises when a system operates under the DB policy and then show that the

OH policy and LT policy provide insights into how this ambiguity can be resolved in the

DB policy to realize its benefits in practice.

The rest of the chapter is organized as follows. Section 3.2 presents the Markov chain for-

mulation of the proposed system. Using these formulations, we develop an exact solution

methodology for solving ATO systems and analyze its computational challenge for large

scale problems. Section 3.3 presents an approximation method to solve large systems for

dual index polices. We also extend approximation method for an ATO system with multiple

components. Section 3.4 summarizes numerical studies for the proposed policies. Finally,

Section 3.5 summarizes model insights and conclusions.

3.2 Manufacturing System with Production and Subcontracting

Figure 3.1 illustrates an ATO system that assembles a single product with two components.

Component k, k = 1, 2; can be manufactured by the the in-house manufacturing facility Mk

and the local subcontractor Sk. The components are stored at inventory location Lk and are

assembled at station A to satisfy the demand for the final product. We assume that the cus-

tomer orders for the final product arrive according to a Poisson process N(t), t ≥ 0 with rate

λ and are satisfied on a first-come-first serve (FCFS) basis at assembly station A. Assembly

operations of this station are instantaneous, i.e. if both components are available at the

demand arrival epoch, then the demand for the final product is immediately satisfied. If one

or more component is unavailable, then the demand for the final product is backordered and
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the customer order stays in the queue at station A. We model the local subcontractor Sk and

the in-house manufacturing facility Mk, k = 1, 2 as a single server queue with exponentially

distributed service time with mean µ−1
s,k and µ−1

m,k respectively. This allows us to model the

effect of workload on lead times at these facilities. The production cost per unit is cs,k and

cm,k for component k at Sk and Mk respectively. Without loss of generality, we assume that

µs,k < µm,k and cs,k < cm,k, k = 1, 2.

We assume that the system maintains a base stock level zk, for each component k, i.e., we

ensure that the net inventory position is zk through orders for replenishing inventory placed at

demand arrival epochs. Let Om,k(t), Os,k(t), Ik(t), Bk(t) denote in-house manufacturer’s on-

orders, subcontractor’s on-orders, on-hand inventory quantity and backorders for component

k respectively at decision epoch t. Then, since the system maintains a base stock policy for

each component, the following equation holds:

zk = Om,k(t) +Os,k(t) + Ik(t)−Bk(t), k = 1, 2,∀t (3.1)

Note that at anytime t, Ik(t)Bk(t) = 0. For this system, we analyze system performance

under three ordering policies, namely dual base stock policy (or DB policy), on-hand inven-

tory base policy (or OH policy), and lead time based policy (or LT policy).

Dual Base Stock (DB) Policy:

Under the dual base stock policy, if at any instant t corresponding to a demand arrival,

Ik(t) < ek (where ek is a predefined inventory threshold limit), then the manufacturer uses

all available capacity at its internal manufacturing facility, Mk and the local subcontractor,

Sk to replenish the inventory for component k. If instead at the demand arrival epoch t,

zk > Ik(t) ≥ ek, the manufacturer places an order to replenish inventory for component k

only to its local subcontractor Sk. If Ik(t) = zk; at demand arrival epoch, no replenishment

order is placed for component k. Note that when Ik(t) < ek, the dual base stock policy does

not specify who should get the order (Mk or Sk) as long as the order ensures that both the

internal manufacturing facility Mk and local subcontractor Sk are busy. However, from an
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Figure 3.1 Supply Chain Model for Single Product System

order fulfillment point of view, it is important to determine how workload of replenishing

inventory must be distributed between Mk and Sk. Therefore, we will consider two variations

of the dual base stock policy, namely the OH policy and the LT policy, that specifies who

gets the order when Ik(t) < ek.

1. On-hand inventory based (OH) policy : Under the OH policy, if at a demand arrival

epoch t, Ik(t) < jk (where jk is a predefined inventory threshold limit), then the

manufacturer places the order for component k order to its internal manufacturing

facility Mk. If at the demand arrival epoch t, zk > Ik(t) ≥ jk, the manufacturer places

the order for component k to the local subcontractor Sk.

2. Leadtime based (LT) policy : Under the LT policy, the manufacturer first determines the

estimates of lead time L̂m,k(t) = Om,k(t)/µm,k for the in-house manufacturing facility

and L̂s,k(t) = Os,k(t)/µs,k for the local subcontractor of component k, respectively.

Then, if at the demand arrival epoch t, L̂m,k(t) < lkL̂s,k(t) (where lk is a predefined lead

time threshold limit), the manufacturer places the order for component k to its internal

manufacturing facility Mk, and to the local subcontractor Sk when L̂m,k(t) ≥ lkL̂s,k(t).
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Note that we intentionally use separate notations, ek, jk, and lk to denote the thresholds

corresponding to the DB, OH, and LT policies, as these thresholds could be different from

each other. In the next section, we present an exact analysis of this system under these three

ordering policies. We shall show through numerical studies in Section 3.5, that despite the

operational ambiguities in the DB policy, the policy actually yields better performance. The

performance of OH and LT policy then provide an intuitive explanation for this superior

performance and also resolve this operational dilemma of who should get specific orders in

the DB policy.

3.3 Exact Analysis of System with Two Components

This section presents exact approach to determine the steady state probabilities Π for an

ATO system with subcontracting flexibility.

3.3.1 Exact Analysis under DB Policy

Under dual base stock policy, let each state in the state space, ΣDB be defined as σDB =

(I1, I2); where, Ik is the inventory position of component k, k = 1, 2. Then, the system evolu-

tion can be modeled as a Markov chain. Let ΠDB denote the steady state probability vector

and, πDB(I1, I2) denote the steady state probability of state (I1, I2). Let NDB
k denote the

possible values of Ik under the dual base stock policy and Bmax denote the finite maximum

limit for backorders of any component k, k = 1, 2. Then, the total number of states in ΣDB is

NDB
1 NDB

2 and under the dual base stock policy, NDB
k = (zk +Bmax), k = 1, 2. Note that our

assumption that Bmax is finite is not restrictive and the analysis in the sections below can be

extended to the case where Bmax = ∞ with minimal modifications. However, setting Bmax

to be finite allows us to see the impact of various policies on the structure of the transition

probability matrices, and limits computations to finite matrices.
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The state space ΣDB can be re-written as ΣDB = ADB
1 ×ADB

2 where ADB
k , k = 1, 2; is the set

of all possible values of the (mk, sk) pair. To construct the transition matrix QDB, we exploit

the similarities in the transition probabilities for states belonging to a particular set within

each ADB
k . Each set ADB

k , k = 1, 2; can be further partitioned into 5 mutually exclusive

subsets, ADB
k,i ⊂ ADB

k , i = 1, 2, ..., 5 where ∪iADB
k,i = ADB

k and

ADBk,1 = {Ik : Ik = −Bmax}

ADBk,2 = {Ik : 1−Bmax ≤ Ik ≤ ek − 1}

ADBk,3 = {Ik : Ik = ek}

ADBk,4 = {Ik : ek + 1 ≤ Ik ≤ zk − 1}

ADBk,5 = {Ik : Ik = zk}

Note that if Bmax = ∞, ADBk,1 and ADBk,2 merge into one subset. For notational simplicity,

we drop the superscript DB in the rest of this section. Using these subsets Ak,i ⊂ Ak, i =

1, 2, ..., 5, Chapman-Kolmogorov (C-K) equations can be written. For instance, for I1 ∈ A1,2

and I2 ∈ A2 the C-K equations are written as follows:

For I1 ∈ A1,2 and I2 ∈ A2,1:

(µs,1 + µm,1 + µs,2 + µm,2)π(I1, I2) = λπ(I1 + 1, I2 + 1)

+(µm,1 + µs,1)π(I1 − 1, I2) (3.2)

For I1 ∈ A1,2 and I2 ∈ A2,2:

(λ+ µs,1 + µm,1 + µs,2 + µm,2)π(I1, I2) = λπ(I1 + 1, I2 + 1) + (µm,1 + µs,1)π(I1 − 1, I2)

+(µm,2 + µs,2)π(I1, I2 − 1) (3.3)

For I1 ∈ A1,2 and I2 ∈ A2,3:

(λ+ µs,1 + µm,1 + µs,2)π(I1, I2) = λπ(I1 + 1, I2 + 1) + (µm,1 + µs,1)π(I1 − 1, I2)

+(µm,2 + µs,2)π(I1, I2 − 1) (3.4)
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For I1 ∈ A1,2 and I2 ∈ A2,4:

(λ+ µs,1 + µm,1 + µs,2)π(I1, I2) = λπ(I1 + 1, I2 + 1) + (µm,1 + µs,1)π(I1 − 1, I2)

+µs,2π(I1, I2 − 1) (3.5)

For I1 ∈ A1,2 and I2 ∈ A2,5:

(λ+ µs,1 + µm,1 + µs,2)π(I1, I2) = (µm,1 + µs,1)π(I1 − 1, I2) + µs,2π(I1, I2 − 1) (3.6)

The C-K equations for other pairs I1 ∈ A, i = 1, ..., 5 and I2 ∈ Ak,j can be written in a

similar way. Unfortunately, these C-K equations yield a large and sparse transition matrix

Q. However, we can exploit the structural properties of the transition matrix using Matrix-

Geometric representation. We discuss the details below.

Let, C = diag(0, λ, λ, λ). Define I1 as an identity matrix of size N1 ×N1, B2,1 = B1,1 + C−

(µm,2 + µs,2)I1, B3,1 = B1,1 − (µm,2 + µs,2)I1, and B4,1 = B1,1 − (µs,2)I1. The corresponding

matrices (B2,2,B3,2, and B4,2) for component 2 are defined in a similar way. The matrices,

B1,k, k = 1, 2 and D are defined as follows:

D =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0

λ 0 0 0

0 λ 0 0

0 0 λ 0

∣∣∣∣∣∣∣∣∣∣∣∣

B1,k =

∣∣∣∣∣∣∣∣∣∣∣∣

−(µm,k + µs,k) (µm,k + µs,k) 0 0

0 −(λ+ µm,k + µs,k) (µm,k + µs,k) 0

0 0 −(λ+ µm,k + µs,k) µs,k

0 0 0 −(λ+ µm,k + µs,k)

∣∣∣∣∣∣∣∣∣∣∣∣
Then the transition matrix, Q can be constructed using the above mentioned matrices as

shown in Equation (3.7) and the steady state probabilities can be calculated using the system

of Equations (3.8) and (3.9) and the Matrix-Geometric technique described in Neuts (1981).
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−−−−→
(0, ∗)>

−−−−→
(1, ∗)>

−−−→
2, ∗)>

−−−−→
(3, ∗)>

−−−→
(0, ∗) B2,2 (µm,1 + µs,1)I2

−−−→
(1, ∗) D B3,2 (µm,1 + µs,1)I2

Q =
−−−→
(2, ∗) D B4,2 µs,1I2

−−−→
(0, ∗) D B1,2

(3.7)

ΠQ = 0 (3.8)

Πe = 1 (3.9)

Here, e =[1,...,1] of size 1 × (N1 ×N2) and
−−−→
(0, ∗) represents a vector with all states having

I1 = 0 in the dual base stock policy. From the solutions to Equations (3.8) and (3.9), the

expected on-hand inventory levels E[I1] and expected backorders E[B1] for component 1

can be calculated using Equations (3.10) and (3.11). The performance measures for the

component 2 can be calculated in a similar way. The in-house throughput, THm,1 and the

supplier’s throughput, THs,1 for component 1 are also computed using Equation (3.12) and

(3.13). Similarly, we can define the performance measures for component 2. Note that in

these equations π(∗, ∗) denotes the steady state probability at the particular state.

E[B1] =
∑
I1

max(−I1, 0)π(I1, ∗) (3.10)

E[I1] =
∑
I1

max(I1, 0)π(I1, ∗) (3.11)

THm,1 =
∑
I1<e1

µm,1π(I1, ∗) (3.12)

THs,1 =
∑
I1<zk

µs,1π(I1, ∗) (3.13)
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3.3.2 Exact Analysis under OH and LT Policy

When a system operates under policy, P , where P ∈ {OH,LT}, the state of the system is

completely defined only if Om,k(t) and Os,k(t) are known for each component k, k = 1, 2 at

any time t. Thus, we define a four-dimensional state variable to describe the system state un-

der these policies. Let, σP denote a state in the state space ΣP , where σP = (m1, s1,m2, s2)

and mk (or sk) represents the on-order quantity of component k at in-house manufac-

turer Mk (or local subcontractor Sk). Then, the system evolution can be modeled as a

Markov chain. Let ΠP denote the steady state probability vector and πP(m1, s1,m2, s2)

denote the steady state probability of state (m1, s1,m2, s2). Let, NPk denote the possible

values in the tuple (mk, sk). Then, the total number of states in ΣP is NP1 N
P
2 . Under

the OH policy, NOH
k = (zk − jk + 2)(Bmax + (zk + jk + 1)/2) and under the LT policy,

NLT
k = (zk +Bmax)(zk +Bmax + 1)/2 for k = 1, 2.

The state space ΣP can be re-written as ΣP = AP1 × AP2 where, APk , k = 1, 2; is the set of

all possible values of the (mk, sk) pair. To construct the transition matrix QP we exploit

the similarities in the transition probabilities for states belonging to a particular sets within

each APk . For instance, each set AOH
k , k = 1, 2; can be further partitioned into 11 mutually

exclusive subsets, AOH
k,i ⊂ AOH

k , i = 1, 2, ..., 11 where ∪iAOH
k,i = AOH

k and

AOHk,1 = {(mk, sk) : mk = 0, sk = 0}

AOHk,2 = {(mk, sk) : mk = 0, 1 ≤ sk ≤ zk − jk}

AOHk,3 = {(mk, sk) : mk = 0, sk = zk − jk + 1}

AOHk,4 = {(mk, sk) : qk ≤ mk ≤ Bmax+jk+qk−3, sk = zk−jk−qk+2, qk = {1, ..., zk−jk+1}}

AOHk,5 = {(mk, sk) : mk = Bmax + jk + qk − 2, sk = zk − jk − qk + 2, qk = {1, ..., zk − jk + 1}}

AOHk,6 = {(mk, sk) : 1 ≤ mk ≤ zk − jk, sk = 0}

AOHk,7 = {(mk, sk) : 1 ≤ mk ≤ zk − jk, 1 ≤ sk ≤ zk − jk − qk + 1, qk = {2, ..., zk − jk + 1}}

AOHk,8 = {(mk, sk) : 1 ≤ mk ≤ zk − jk, sk = zk − jk − qk + 2, qk = {2, ..., zk − jk + 1}}

AOHk,9 = {(mk, sk) : mk = zk − jk + 1, sk = 0}
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AOHk,10 = {(mk, sk) : zk − jk + 2 ≤ mk ≤ zk +Bmax − 1, sk = 0}

AOHk,11 = {(mk, sk) : mk = zk +Bmax, sk = 0}

Note that if Bmax = ∞, subsets AOHk,4 and AOHk,5 merge into one subset, and subsets AOHk,10

and AOHk,11 merge into another subset. Figure 3.2 represents these subsets pictorially. For

notational simplicity, we drop the superscript OH in the rest of the section. Using these

subsets Ak,i ⊂ Ak, i = 1, 2, ..., 11, Chapman-Kolmogorov (C-K) equations can be written.

For instance, for (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2 the C-K equations are written as follows:

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,1:

(λ+ µs,1 + µm,1)π(m1, s1,m2, s2) = µm,1π(m1 + 1, s1,m2, s2) + µs,2π(m1, s1,m2, s2 + 1)(3.14)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,2:

(λ+ µs,1 + µm,1 + µs,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2, s2 − 1)

+µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2)

+µs,2π(m1, s1,m2, s2 + 1) (3.15)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,3:

(λ+ µs,1 + µm,1 + µs,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2, s2 − 1)

+µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2) (3.16)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,4:

(λ+ µs,1 + µm,1 + µs,2 + µm,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2 − 1, s2)

+µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2) (3.17)
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For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,5:

(µs,1 + µm,1 + µs,2 + µm,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2 − 1, s2)

+µm,1π(m1 + 1, s1,m2, s2) (3.18)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,6:

(λ+ µs,1 + µm,1 + µm,2)π(m1, s1,m2, s2) = µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2)

+µs,2π(m1, s1,m2, s2 + 1) (3.19)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,7:

(λ+ µs,1 + µm,1 + µm,2 + µs,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2, s2 − 1)

+µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2)

+µs,2π(m1, s1,m2, s2 + 1) (3.20)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,8:

(λ+ µs,1 + µm,1 + µm,2 + µs,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2, s2 − 1)

+µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2) (3.21)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,9:

(λ+ µs,1 + µm,1 + µm,2)π(m1, s1,m2, s2) = µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2) (3.22)

For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,10:

(λ+ µs,1 + µm,1 + µm,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2 − 1, s2)

+µm,1π(m1 + 1, s1,m2, s2)

+µm,2π(m1, s1,m2 + 1, s2)

+µs,2π(m1, s1,m2, s2 + 1) (3.23)
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For (m1, s1) ∈ A1,4 and (m2, s2) ∈ A2,11:

(µs,1 + µm,1 + µm,2)π(m1, s1,m2, s2) = λπ(m1 − 1, s1,m2 − 1, s2)

+µm,1π(m1 + 1, s1,m2, s2) (3.24)

The C-K equation for other states where (m1, s1) ∈ Ak,i, i = 1, ..., 11 and (m2, s2) ∈ Ak,j

for can be written in a similar way. As in the case of the dual base stock policy, we can

exploit structural properties using the Matrix-Geometric representation of QOH . Let, C =

diag(λ, λ, λ, 0, λ, λ, 0) and define Ik as an identity matrix of size NOH
k x NOH

k . Also define

B3,k = B1,k − µs,1Ik, B4,k = B1,k − (2µs,1Ik + µm,1Ik), B5,k = B1,k − (C + 2µs,1Ik + µm,1Ik),

B9,k = B1,k−µm,1Ik−µs,1Ik and B11,k = B1,k− (C+µm,1Ik) +µs,1Ik), where B1,k for k = 1, 2

and D are defined as follows:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 λ 0 0 0 0 0

0 0 λ 0 0 0 0

0 0 0 λ 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 λ 0

0 0 0 0 0 0 λ

0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B1,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 0 0 0 0

µs,k −(λ+ µs,k) 0 0 0 0 0

0 µm,k −(λ+ µs,k + µm,k) 0 µs,k 0 0

0 0 µm,k −(µs,k + µm,k) 0 µm,k 0

µm,k 0 0 0 −(λ+ µm,k) 0 0

0 0 0 0 µm,k −(λ+ µm,k) 0

0 0 0 0 0 µm,k −µm,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Then, we can construct the transition matrix, QOH using the above mentioned matrices as

shown in Equation (3.25) and compute the steady state probabilities by solving the system
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of equations Equation (3.26) and Equation (3.27) using the Matrix-Geometric technique

described in Neuts (1981).

−−−−−−−→
(0, 0, ∗, ∗)>

−−−−−−−→
(0, 1, ∗, ∗)>

−−−−−−−→
(1, 1, ∗, ∗)>

−−−−−−−→
(2, 1, ∗, ∗)>

−−−−−−−→
(1, 0, ∗, ∗)>

−−−−−−−→
(2, 0, ∗, ∗)>

−−−−−−−→
(3, 0, ∗, ∗)>

−−−−−−→
(0, 0, ∗, ∗) B1,2 D
−−−−−−→
(0, 1, ∗, ∗) µs,1I2 B3,2 D
−−−−−−→
(1, 1, ∗, ∗) µm,1I2 B4,2 D µs,1I2

QOH =
−−−−−−→
(2, 1, ∗, ∗) µm,1I2 B5,2 µs,1I2
−−−−−−→
(1, 0, ∗, ∗) µm,1I2 B9,2 D
−−−−−−→
(2, 0, ∗, ∗) µm,1I2 B9,2 D
−−−−−−→
(3, 0, ∗, ∗) µm,1I2 B11,2

(3.25)

ΠQOH = 0 (3.26)

Πe = 1 (3.27)

Here, e =[1,...,1] of size 1 × (NOH
1 × NOH

2 ) and
−−−−−−→
(0, 0, ∗, ∗) denotes a vector with all states

having m1 = s1 = 0 in OH policy. The expected on-hand inventory levels E[I1] and expected

backorders E[B1] for component 1 are also calculated using Equations (3.28) and (3.29). The

performance measures for component 2 can be calculated in a similar way. Note that in these

equations, π(∗, ∗, ∗, ∗) denote the steady state probability of the particular state.

E[B1] =
∑

m1+s1>z1

(m1 + s1 − z1)π(m1, s1, ∗, ∗) (3.28)

E[I1] =
∑

m1+s1≤z1

(z1 −m1 − s1)π(m1, s1, ∗, ∗) (3.29)

THm,1 =
∑
m1>0

µm,kπ(m1, ∗, ∗, ∗) (3.30)

THs,1 =
∑
s1>0

µs,kπ(∗, s1, ∗, ∗) (3.31)

Similarly, we can conduct the analysis for the LT policy. In Section 3.5, we conduct numeri-

cal analysis for these systems under the three polices (DB,OH and LT policy) respectively.
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3.4 Approximate Analysis

The exact analysis of ATO systems described above become computationally challenging

even with the Matrix-Geometric representation of the transition matrices. As we go from a

2-component ATO system to a 4-component ATO system, the total number of unique C-K

equations increases from 25 to 625 for the DB policy, and from 121 to 14641 in OH policy.

This limits the use of Matrix-Geometric approach to analyze large systems. To overcome

this issue, we propose an approximation method that uses decomposition (see Figure 3.3).

The key idea is to split the original Markov chain for a system with N components into N

independent Markov chains, each corresponding to a subsystem that models the evolution

of one of the components. However, for the decomposition technique to be accurate, in the

Markov chain for component k, the effect of the other components need to be accounted for

appropriately by using the effective demand arrival rate λk.

Note that in the original system described in Section 3.2, external orders are lost when

backorders due to one or more components reach Bmax. However, in the decomposition

analysis, demands for component k arrive at subsystem k and queue at station A as long

as the backorders for that component is less than Bmax i.e. the decomposition ignores the

fact that orders could be lost because backorders for one or more of the other components,

i (i 6= k) might reach Bmax. Therefore, the effective effective demand arrival rate λk for

component k needs to be set to recognize this possibility. Let Xi denote the event that the

backorders at subsystem i is equal to Bmax, and let Pi denote the probability of this event.

Then assuming that Xi is independent of Xj for every pair, i and j, then,
∏

i 6=k (1− Pi) is

the probability that the backorders at all of the others subsystem i is less than Bmax. Then

[1−
∏

i 6=k (1− Pi)][1−Pk] is the probability that the backorders at one or more of the others

subsystem i 6= k is equal to Bmax, while the backorders at subsystem k is less than Bmax.
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This implies that effective demand arrival rate λk for component k in the analysis of subsys-

tem for component k is given by

λk = λ

(
1− [1−

∏
i 6=k

(1− Pi)][1− Pk]

)
(3.32)

Clearly, the solution to subsystem k requires estimates of Pi, ∀i ∈ 1, 2, ..., N and i 6= k. In

Section 3.4.1 and 3.4.2 we characterize the subsystems under the DB and OH policy, and

in Section 3.4.3 we present the approximate solution algorithm.

3.4.1 Characterizing Subsystems under DB Policy

Let QDB
k denote the transition matrix for subsystem corresponding to component k under

dual base stock based policy. Let λk denote the demand arrival rate corresponding to com-

ponent k in the decomposition approach, and let πDBk (Ik) denote the corresponding steady

state probabilities. For notational simplicity, we drop the superscript DB in the rest of the

section. Then, Qk can be written using the Chapman-Kolmogorov (C-K) equations shown

below:

For Ik ∈ Ak,1:

(µs,k + µm,k)πk(Ik) = λkπk(Ik + 1) (3.33)

For Ik ∈ Ak,2:

(λ+ µs,k + µm,k)πk(Ik) = λkπk(Ik + 1) + (µm,k + µs,k)πk(Ik − 1) (3.34)

For Ik ∈ Ak,3:

(λ+ µs,k)πk(Ik) = λkπk(Ik + 1) + (µm,k + µs,k)πk(Ik − 1) (3.35)

For Ik ∈ Ak,4:

(λ+ µs,k)πk(Ik) = λkπk(Ik + 1) + µs,kπk(Ik − 1) (3.36)
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For Ik ∈ Ak,5:

(λ+ µs,k)πk(Ik) = µs,kπk(Ik − 1) (3.37)

These equations are solved using iterative algorithm described in Section 3.4.3.

3.4.2 Characterizing Subsystems under OH Policy

Let QOH
k denote the transition matrix for the subsystem corresponding to component k under

the on-hand inventory based policy. Let λk denote the demand arrival rate corresponding to

component k in the decomposition approach, and let πOHk (mk, sk) denote the corresponding

steady state probabilities. For notational simplicity, we drop the superscript OH in the rest

of the section. Then, Qk can be written using the Chapman-Kolmogorov (C-K) equations

shown below:

For (mk, sk) ∈ Ak,1:

λkπk(mk, sk) = µs,kπk(mk, sk + 1) (3.38)

For (mk, sk) ∈ Ak,2:

(λk + µs,k)πk(mk, sk) = λkπk(mk, sk − 1) + µm,kπk(mk + 1, sk)

+µs,kπk(mk, sk + 1) (3.39)

For (mk, sk) ∈ Ak,3:

(λk + µs,k)πk(mk, sk) = λkπk(mk, sk − 1) + µm,kπk(mk + 1, sk) (3.40)

For (mk, sk) ∈ Ak,4:

(λk + µs,k + µm,k)πk(mk, sk) = λkπk(mk − 1, sk) + µm,kπk(mk + 1, sk) (3.41)

For (mk, sk) ∈ Ak,5:

(µs,k + µm,k)πk(mk, sk) = λkπk(mk − 1, sk) (3.42)
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For (mk, sk) ∈ Ak,6:

(λk + µm,k)πk(mk, sk) = µm,kπk(mk + 1, sk) + µs,kπk(mk, sk + 1) (3.43)

For (mk, sk) ∈ Ak,7:

(λk + µm,k + µs,k)πk(mk, sk) = λkπk(mk, sk − 1) + µm,kπk(mk + 1, sk)

+µs,kπk(mk, sk + 1) (3.44)

For (mk, sk) ∈ Ak,8:

(λk + µm,k + µs,k)πk(mk, sk) = λkπk(mk, sk − 1) + µm,kπk(mk + 1, sk) (3.45)

For (mk, sk) ∈ Ak,9:

(λk + µm,k)πk(mk, sk) = µm,kπk(mk + 1, sk) (3.46)

For (mk, sk) ∈ Ak,10:

(λk + µm,k)πk(mk, sk) = λkπk(mk − 1, sk) + µm,kπk(mk + 1, sk)

+µs,kπk(mk, sk + 1) (3.47)

For (mk, sk) ∈ Ak,11:

(λk + µm,k)πk(mk, sk) = λkπk(mk − 1, sk) (3.48)

These equations are solved using iterative algorithm described in Section 3.4.3.

3.4.3 Solution Algorithm and Performance Measures

Recall that the solution to subsystem k requires the estimates of Pi,∀i, i 6= k must be ob-

tained from the solution to subsystem ∀i, i 6= k and vice versa. Therefore, we use an iterative

approach. The steps of the iterative approach are shown below:

Step 0: Initialize P
(0)
k = 0, ε = 10−5, δk = 1, and calculate an estimate of λ

(0)
k using

Equation (3.32), for k = 1, ..., N . At each iteration n, n = 1, ...., while δk ≥ ε,
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Step 1: Solve subsystem k, k = 1, ..., N using λ
(n−1)
k , i > 1

– For DB policy: Solve Equations (3.33) - (3.37).

– For OH policy: Solve Equations (3.38) - (3.48).

– Compute estimates of P
(n)
k from the steady state probabilities.

Step 2: Calculate new estimate of λ
(n)
k using P

(n)
k .

Step 3: Compute δk = |P (n)
k − P (n−1)

k |.

If δk < ε,∀k, stop. Else, repeat steps 1− 3.

Using a similar approach, we can analyze the performance of an ATO system operating un-

der LT policy as well.

The expected on-hand quantities E[Ik], expected backorders E[Bk], the throughput THm,k

for component k at the manufacturing facility, and THs,k at the subcontractor facility are

calculated using Equations (3.49) - (3.52) for DB policy.

E[Bk] =
∑
Ik

max(−Ik, 0)πk(Ik) (3.49)

E[Ik] =
∑
Ik

max(Ik, 0)πk(Ik) (3.50)

THm,k =
∑
Ik<ek

µm,kπk(Ik) (3.51)

THs,k =
∑
Ik<zk

µs,kπk(Ik) (3.52)

The corresponding equations for the OH policy are given by Equations (3.53) - (3.56).
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E[Bk] =
∑

mk+sk>zk

(mk + sk − zk)πk(m1, s1) (3.53)

E[Ik] =
∑

mk+sk≤zk

(zk −mk − sk)πk(mk, sk) (3.54)

THm,k =
∑
mk>0

µm,kπk(mk, ∗) (3.55)

THs,k =
∑
sk>0

µs,kπk(∗, sk) (3.56)

Note that the performance measures obtained using the above equations use approximation

method. Alternatively, for smaller systems, these performance measures could be obtained

from exact solutions using Equations (3.2) - (3.6) for DB policy and Equations (3.14) - (3.24)

for OH policy respectively. For larger systems where exact solutions of the Markov chain

becomes computationally challenging, we derive results from detailed simulation models. We

compare the accuracy of these estimates as part of our numerical studies in Section 3.5.

3.5 Numerical Comparison of Dual Index Policies

In this section, we discuss the numerical experiments conducted to compare the performance

of policies under different scenarios. We define the total cost function TC =
∑

k(cm,kTHm,k+

cs,kTHs,k + bkE[Bk] +hkE[Ik]) where, bk is the cost of backordering per unit of component k

and hk is holding cost per unit for component k. We conduct three sets of experiments. The

first two experiments compare the performance of DB, OH, and LT policies (see Sections

3.5.1 and 3.5.2), while the third experiment investigates the performance of the decomposi-

tion algorithm for ATO systems with N ≥ 2 (see Section 3.5.3). In all our experiments, we

observed that the algorithm converges within 0.5 seconds on a personal computer with an

Intel core i5 processor. Further, we always obtained a unique solution to the system. Al-

though we do not have a proof for the convergence, in our numerical computations, we find

that the time for convergence does not increase with increase in the number of components.
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3.5.1 Performance Comparison of DB, OH, and LT Policy

We present the properties and the comparison of the expected costs for system operating

under DB policy, OH policy, and LT policy using Matrix-Geometric approach. We ana-

lyze an ATO system with 2 components and use Matrix-Geometric approach to solve and

compare the costs in DB policy, LT policy, and OH policy. We consider a symmetric case

where all the parameters for component 1 are equal to that of component 2 (see Table 3.1).

We set Bmax to be large enough so that the probability of lost sales is less than 10−3 in all

cases. For zk = 10, we vary the threshold limits ek, jk, and lk from 1 to zk and calculate in

each case the total costs for each policy.

Table 3.1 System Parameters and Costs for Dual Index Policies

System Parameters Costs

λ 1.5 cm,k, k = 1, 2 10

zk, k = 1, 2 10 cs,k, k = 1, 2 5

µm,k, k = 1, 2 2 bk, k = 1, 2 20

µs,k, k = 1, 2 1 hk, k = 1, 2 1

Figure 3.4 plots different costs (in-house throughput costs, subcontractor’s throughput costs,

on-hand inventory costs, and backordering costs) vs threshold limit (ek, jk, and lk) for

DB,OH, and LT policy. In Figure 3.4(a) we observe that as the threshold (ek, jk, lk) in-

creases, the throughput cost at the manufacturing facility increases under all three policies

(DB, OH, and LT policy). This is to be expected because in these policies when the

threshold is high, orders for component k are placed more to the manufacturing facility

than external subcontractor. This results in the increase in the throughput cost at the

manufacturing facility. However under LT policy, the in-house throughput cost increases at

low threshold and becomes flat at high threshold. Correspondingly, in Figure 3.4(b) as the

threshold (ek, jk, lk) increases, we observe that throughput cost at the external subcontractor
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decreases under all three policies.

In Figure 3.4(c) as the threshold (ek, jk, lk) increases, we observe that the on-hand inventory

cost increases under DB, OH, and LT policy. In these three policies as the threshold in-

creases, more orders for component k are placed to the manufacturing facility, which has a

faster production rate and therefore replenishes the component inventory at a faster rate. In

Figure 3.4(d) as the threshold increases, we observe that the backordering cost for the system

operating under DB, OH, and LT policy is convex. The backordering costs are convex due

to the effects of increased queue length and lead times at the manufacturing facility at higher

thresholds.

We can get the total cost, TC by adding the above mentioned costs. Our solution algorithm

can then be used to identify this optimal threshold e∗k, j
∗
k , and l∗k numerically that minimizes

the total cost TC. We compare the total cost for these three policies and find DB policy as

the best among the three policies.

3.5.2 Comparison of Optimal Costs under DB, OH, and LT Policy

We analyze an ATO system with 2 components and use decomposition approach to solve and

compare the optimal costs in DB policy, LT policy, and OH policy. The results are shown

in Figure 3.5. We consider a symmetric case shown in Table 3.1 where all the parameters

for component 1 are equal to that of component 2. In this experiment, we vary zk = 2 to 25,

and for each zk we determine the corresponding optimal threshold limit (e∗k for DB policy, j∗k

for OH policy, and l∗k for LT policy). Then, we calculate the optimal cost TC∗ and compare

this cost across the three policies. Therefore, determining each point in the corresponding

plots in Figure 3.5 itself requires a search procedure.

In this subsection, we discuss insights related to the optimal solution for each policy using

the same system parameters and costs listed in Table 3.1 and varying zk = 2 to 25. Figure
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Figure 3.4 Estimated Costs in Policies at zk = 10

3.5 shows the optimal costs for both OH and LT policy with increasing zk under different

zones. In zone 1, the expected inventory cost is less than the expected backordering cost.

Note that in LT policy, orders for component k are placed based on the lead time estimates

(L̂m,k(t), L̂s,k(t)). Therefore, the LT policy encourages reduction in backordering cost as

opposed to inventory costs. However in the OH policy, orders for component k are placed

based on the inventory levels (Ik(t)). Therefore, the OH policy encourages reduction in

inventory cost as opposed to backordering costs. In zone 1, the expected inventory cost is
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Figure 3.5 Optimal Cost Comparison for Policies

less significant than the expected backorder cost. Thus, LT policy outperforms OH policy in

zone 1. Similarly in zone 2, the expected inventory cost is more significant than the expected

backorder cost. Thus, OH policy outperforms LT policy in zone 2. However, the dual base

stock policy always outperforms OH policy and LT policy as it has the most flexibility. In

the dual base stock policy, in zone 1 if the inventory level is above a certain threshold , orders

for component k are placed to only external subcontractor. This results in the replenishment

of the components at a slower rate (µs,k), which in turn reduces the expected inventory cost.

Similarly in zone 2, if the inventory level is below a certain threshold, orders for component

k are placed to both the in-house manufacturer and the external subcontractor. This results

in the replenishment of the components at a faster rate (µs,k + µm.k), which in turn reduces

the expected backorder cost.

Although, the results for zk = 0 and zk = M (M is significantly large, say M = 1000) are not

shown in these numerical experiments, we observe that when zk = 0, the LT policy converges
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to the DB policy, and for large values of zk, say zk = 1000, the OH policy converges to the

DB policy. This provides an intuitive solution to the operational ambiguity inherent in the

DB policy, suggesting that the LT policy should be preferred at lower zk and OH policy

should be preferred at higher zk.

3.5.3 Performance of a System with N Components

In this subsection, we analyze the approximate method for N -component ATO system and

provide insights on its performance. We analyze the performance of the decomposition based

approximation for both the symmetric and asymmetric cases.

Under DB policy, we analyze an ATO system with N components (N = 2, 4, 8, 16) and com-

pare the numerical accuracy of the decomposition based approach with the exact solution

for three choices of service time distributions, namely exponential (E), shifted-exponential

(S), and triangular (T ) distribution. We use simulation models to obtain the exact solutions

for ATO systems with N ≥ 2. We use 5 replications and a 99.99% confidence interval in our

simulations and ensure that the half width was less than 0.001% in all cases. For ease of

readability, we do not report the half-width intervals in the paper. The results from the de-

composition are then compared with the exact results for several inputs. Table 3.2 presents

the processing time parameters used for exponential, shifted-exponential, and triangular dis-

tribution under symmetric case. For sake of comparison, we ensure that the mean processing

time is the same for all three distributions.

Table 3.2 Distribution Parameters of a System with N Components

Distribution Processing time at Mk Processing time at Sk

Exponential (E) EXP (0.5) EXP (1)

Shifted-Exponential (S) 0.1 + EXP (0.4) 0.1 + EXP (0.9)

Triangular (T ) TRIAG(0, 0.5, 1) TRIAG(0, 1, 2)
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We define ∆[THE
m,k] = (THA

m,k−THE
m,k)/TH

E
m,k as the error in the estimate of the through-

put at the manufacturing facility Mk, and is computed as the relative difference between

estimates from the approximation solution and the exact solution for the case of with ex-

ponentially distributed processing times. Similarly, we define the error measures for other

performance measures and distributions. We analyze the performance of the approximate

method under two cases: (1) symmetry with respect to service rate for each component i.e.

µs,i+1 = µs,i and µm,i+1 = µm,i, i = 1, 2, ..., N − 1, and (2) asymmetry with respect to service

rate for each component with µs,i+1 = 1.1µs,i and µm,i+1 = 1.1µm,i, i = 1, 2, ..., N − 1. The

rest of the parameters are same as described in Table 6.1.

Table 3.3 shows the error in THs,1 obtained from the decomposition-based approach for

2, 4, 8, and 16 component symmetric ATO system under dual base stock policy. We observe

that the estimates of subcontractor’s throughput, THs,1 and manufacturer’s throughput,

THm,1 are within 2% for the exponential (E) and shifted-exponential (S) case, and within

4% for the triangular distribution (T ) case.

Table 3.4 reports the error in E[I1] obtained from the decomposition approach for a symmet-

ric ATO system with 2, 4, 8, and 16 components under dual base stock policy. We observe

that the expected on-hand inventory, E[I1] is within 3% for all cases, except for the low

threshold case under the triangular distribution (T ) where the error is less than 9%. Similar

performance is observed for expected backorders E[B1] as well.

Table 3.5 reports the error in THs,1 in the approximation for 2, 4, 8, and 16 component

asymmetric ATO system under dual base stock policy. We observe that the estimates of

subcontractor’s throughput, THs,1 and manufacturer’s throughput, THm,1 are within 4% of

the exact values for most of the cases.
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Table 3.3 Performance of THs,1 under DB Policy for the Symmetric Case
N e1 THA

s,1 THE
s,1 ∆[THE

s,1] THS
s,1 ∆[THS

s,1] THT
s,1 ∆[THT

s,1]

2 0.990 0.989 0.07% 0.993 -0.29% 0.999 -0.90%

2 4 0.977 0.976 0.12% 0.982 -0.52% 0.995 -1.80%

6 0.945 0.942 0.31% 0.952 -0.74% 0.978 -3.32%

8 0.857 0.850 0.81% 0.861 -0.45% 0.892 -3.86%

2 0.990 0.989 0.06% 0.993 -0.29% 0.999 -0.92%

4 4 0.977 0.976 0.13% 0.982 -0.50% 0.995 -1.81%

6 0.945 0.942 0.32% 0.952 -0.72% 0.978 -3.31%

8 0.857 0.850 0.84% 0.861 -0.40% 0.892 -3.86%

2 0.989 0.989 0.01% 0.992 -0.29% 0.999 -0.97%

8 4 0.977 0.975 0.13% 0.981 -0.46% 0.995 -1.83%

6 0.945 0.941 0.39% 0.952 -0.72% 0.977 -3.31%

8 0.857 0.850 0.85% 0.860 -0.38% 0.891 -3.84%

2 0.989 0.987 0.22% 0.992 -0.25% 0.999 -0.97%

16 4 0.977 0.973 0.34% 0.981 -0.43% 0.995 -1.83%

6 0.945 0.941 0.47% 0.951 -0.60% 0.977 -3.31%

8 0.857 0.848 1.04% 0.860 -0.31% 0.891 -3.83%

Table 3.4 Performance of E[I1] under DB Policy for the Symmetric Case
N e1 E[IA1 ] E[IE1 ] ∆[E[IE1 ]] E[IS1 ] ∆[E[IS1 ]] E[IT1 ] ∆[E[IT1 ]]

2 2.945 2.988 -1.45% 2.939 0.20% 2.707 8.76%

2 4 4.670 4.623 1.02% 4.613 1.25% 4.593 1.69%

6 6.353 6.225 2.05% 6.258 1.51% 6.452 -1.55%

8 7.860 7.635 2.96% 7.728 1.71% 8.083 -2.76%

2 2.964 3.022 -1.91% 2.982 -0.60% 2.708 9.48%

4 4 4.675 4.674 0.01% 4.618 1.23% 4.607 1.47%

6 6.354 6.244 1.76% 6.259 1.51% 6.458 -1.62%

8 7.860 7.643 2.84% 7.728 1.71% 8.089 -2.83%

2 3.001 3.050 -1.61% 3.049 -1.57% 2.760 8.72%

8 4 4.684 4.682 0.04% 4.656 0.60% 4.609 1.64%

6 6.356 6.246 1.75% 6.273 1.31% 6.460 -1.62%

8 7.861 7.673 2.45% 7.731 1.68% 8.090 -2.83%

2 3.001 3.091 -2.89% 3.064 -2.03% 2.764 8.60%

16 4 4.684 4.815 -2.71% 4.720 -0.75% 4.609 1.63%

6 6.356 6.302 0.85% 6.310 0.72% 6.460 -1.62%

8 7.861 7.689 2.24% 7.746 1.48% 8.080 -2.72%
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Table 3.5 Performance of THs,1 under DB Policy for the Asymmetric Case
N e1 THA

s,1 THE
s,1 ∆[THE

s,1] THS
s,1 ∆[THS

s,1] THT
s,1 ∆[THT

s,1]

2 0.990 0.989 0.06% 0.993 -0.29% 0.999 -0.88%

2 4 0.977 0.976 0.10% 0.982 -0.50% 0.995 -1.79%

6 0.945 0.943 0.23% 0.952 -0.74% 0.978 -3.32%

8 0.857 0.850 0.81% 0.861 -0.45% 0.892 -3.88%

2 0.990 0.989 0.06% 0.993 -0.30% 0.999 -0.89%

4 4 0.977 0.976 0.10% 0.982 -0.50% 0.995 -1.79%

6 0.945 0.943 0.23% 0.952 -0.74% 0.978 -3.30%

8 0.857 0.850 0.81% 0.861 -0.45% 0.892 -3.88%

2 0.990 0.989 0.06% 0.993 -0.30% 0.999 -0.89%

8 4 0.977 0.976 0.10% 0.982 -0.50% 0.995 -1.79%

6 0.945 0.943 0.23% 0.952 -0.74% 0.892 6.00%

8 0.857 0.850 0.81% 0.861 -0.45% 0.892 -3.88%

2 0.990 0.989 0.06% 0.993 -0.30% 0.999 -0.89%

16 4 0.977 0.976 0.10% 0.982 -0.50% 0.995 -1.79%

6 0.945 0.943 0.23% 0.952 -0.74% 0.978 -3.30%

8 0.857 0.845 1.43% 0.861 -0.45% 0.892 -3.88%

Table 3.6 reports the error in E[I1] obtained from the approximation for an asymmetric ATO

system with 2, 4, 8, and 16 components under dual base stock policy. We observe that the

expected on-hand inventory, E[I1] is within 3% of the exact values for all cases, except for

the low threshold case under the triangular distribution (T ) where the error is within than

9%. Similar performance is observed for expected backorders E[B1] as well.

For a given ek as the number of components increases, we observe a decrease in the through-

put at the external subcontractor, and an increase in the expected inventory. This is because,

as components increase, backorders increase and more orders for component k are placed to

the internal manufacturing facility. This reduces throughput at the external subcontractor,

and increases the expected inventory. Again for any given N , as ek increases, we observe a

decrease in the throughput at the external subcontractor, and an increase in the expected

inventory. This is because, with increase in the threshold, ek, more orders for component k
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Table 3.6 Performance of E[I1] under DB Policy for the Asymmetric Case
N e1 E[IA1 ] E[IE1 ] ∆[E[IE1 ]] E[IS1 ] ∆[E[IS1 ]] E[IT1 ] ∆[E[IT1 ]]

2 2.939 3.027 -2.89% 2.905 1.17% 2.695 9.06%

2 4 4.669 4.624 0.98% 4.594 1.62% 4.603 1.44%

6 6.352 6.220 2.13% 6.255 1.56% 6.452 -1.54%

8 7.860 7.632 2.99% 7.725 1.75% 8.082 -2.74%

2 2.942 3.030 -2.91% 2.925 0.57% 2.697 9.10%

4 4 4.669 4.624 0.97% 4.602 1.47% 4.603 1.45%

6 6.352 6.228 1.99% 6.258 1.51% 6.452 -1.54%

8 7.860 7.633 2.97% 7.726 1.73% 8.083 -2.76%

2 2.942 3.033 -2.99% 2.930 0.43% 2.698 9.07%

8 4 4.669 4.628 0.90% 4.604 1.41% 4.603 1.44%

6 6.352 6.229 1.98% 6.263 1.42% 6.460 -1.67%

8 7.860 7.635 2.95% 7.726 1.73% 8.088 -2.81%

2 2.942 3.033 -3.00% 2.930 0.41% 2.705 8.80%

16 4 4.669 4.629 0.88% 4.607 1.36% 4.603 1.44%

6 6.352 6.229 1.97% 6.267 1.35% 6.460 -1.67%

8 7.860 7.636 2.93% 7.727 1.73% 8.088 -2.82%

are placed to the internal manufacturing facility. This reduces the throughput at the exter-

nal subcontractor, and increases the expected inventory.

Our results suggests that the decomposition approach is fairly accurate for various choices

of service time distributions. Further, in terms of computational effort, it should be noted

that all these experiments were performed on a personal computer with a 1.6GHz Intel Core

i5 Processor. We observe that the run time for the decomposition approach ranges from

0-20 seconds, and did not increase significantly as we varied N from 2 to 16. This suggests

that the approach can be used to analyze fairly large systems. In contrast, the run time for

obtaining exact results using simulation ranged from 5-10 minutes for each case.
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3.6 Conclusions

We consider a single product ATO system where the product is assembled from multiple

components. The components can be manufactured in-house or purchased from the local

subcontractor with different system parameters and costs. We analyze dual index policies

(DB, OH, and LT policy) using Matrix-Geometric approach for moderately sized systems,

and using a decomposition based approximation for large systems. The OH policy uses

thresholds limits on the inventory levels of both the components where as the LT policy

uses thresholds limits on the on-order levels of both the components. The performance of

these policies are compared to determine regions in the system design space where they

each perform well. We observe that LT policy works well at low base stock levels, while

OH policy works well at high base stock levels. The DB policy outperforms other two

policies although, it lacks details necessary for implementation. However, we observe that

in particular settings, the performance of OH policy and LT policy closely resembles with

DB policy and also provides the clarity needed for implementation. This suggests using

a combination of LT policy and OH policy to overcome the operational ambiguity in DB

policy. For an ATO system with N > 2 components, we face computational challenges with

the exact approach used to analyze smaller systems. However, our proposed approximations

exploits structural characteristics of the system to address this challenge. The approach not

only provides reasonably accurate estimates of performance measures for large systems, but

also scales well in terms of computational effort. Developing similar decomposition based

approaches for ATO systems with both multiple components and end products seems to be

a promising area of future research.
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Chapter 4

Production Systems with Multiple Standard-type

Components

4.1 Introduction

This research is motivated by production and capacity utilization issues observed in supply

chains involved in the manufacturing of complex engineered components for drilling systems.

Components of top drives (used to drill oil), blowout preventers (a safety mechanism), drilling

subs, mud pumps, control systems that form core components of oil drilling systems all in-

volve several thousands of hours of engineering and hundreds of hours of machining. In this

industry, strategic collaborations with pre-certified subcontractors is essential to providing

high customer service levels at reasonable cost. For instance, manufacturing of components

of top drives and blowout preventers requires special purpose equipment which is very ex-

pensive. Consequently, capacity on this equipment is often shared across multiple types

of top drives. When demands for particular top drives are high or when service levels ex-

pectations extend beyond internal capabilities, production is strategically subcontracted to

pre-certified subcontractors. Although, these subcontractors may have higher costs and/or

slower production rates, the belief is that subcontracting under these odds relieve capacity

on critical internal resources that can be used for other components, resulting in overall

economic benefits. Therefore, supply chain managers need to decide when and how much

capacity, the manufacturer should dedicate to a given component, and when and how much

production of a given component needs to be subcontracted. It is important to understand
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how differences in capabilities, costs, and service level expectations impact the optimal pro-

duction and capacity utilization strategies for the manufacturer. In this chapter, our research

investigates whether optimal policies have a easily describable structure that can be friendly

for industry implementation and investigates the efficiency of simple control limit policies

in this environment. Although, our motivating industry are manufacturers of oil drilling

equipment, our model and insights extend into other environments, such as manufacturers

of power equipment (thermal, nuclear, hydroelectric) and equipment used in chemical and

process industries (condensers, reactors, turbines).

Some of the key studies in the literature that address the relevant questions include Ha

(1997), Bradley (2005), and Huh et al. (2013). Ha (1997) studies the optimal production

scheduling in a facility that manufacturers two components on a shared manufacturing re-

source. For the special case where both components have equal service rates, they develop

a linear switching rule for production scheduling. In contrast, our research setting assumes

that the components have different service rates and can be made at one or more facilities

(in-house manufacturer or subcontractors). Bradley (2005) analyzes a single component sys-

tem with dual-sourcing (in-house manufacturer and subcontractors) and shows that the dual

base stock policy for component replenishment is optimal. Our research is an expansion of

this problem setting as it considers multi-component system that share a manufacturing re-

source. We attempt to characterize the structure of the optimal policy in this general setting

and explore whether policies have a dual index structure at least in some problem settings.

Huh et al. (2013) analyze capacity decisions using a finite horizon model with multiple de-

mand classes requiring different resources sequentially. For this setting they provide bounds

on the structure of the optimal policy and argue that the characterization of the optimal

policy is challenging. In contrast, our research analyzes infinite horizon model and allows

components to be produced in parallel using capacity available at the manufacturer and the
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subcontractor. However, like Huh et al. (2013), we also find that characterizing optimal pol-

icy is hard, but we are able to characterize optimal policy in various regions of the state space.

While the Markov decision process (MDP) framework provides a convenient methodology to

study the underlying production and capacity utilization problem, it suffers from the curse

of dimensionality, often the state space description requires us to keep track of stocking

levels of each component. In addition, in our case, the action space involves decisions for

both shared manufacturing facility and each subcontracting facility. As a result, the un-

derlying production-inventory problem can be very challenging in terms of the size of the

underlying state and action space for even small problems. Further, since the manufacturer

needs to balance the tradeoffs in costs due to production, backordering, and inventory of

components, deriving the relevant monotonicity results become non-trivial. To address this

complexity, we derive various conditions in terms of costs, capabilities, and production rates

and use them to partition the state space into regions. Within each region, we are then able

to show dominance of certain actions thereby reducing the relevant action space for that

region. Further, for a complete symmetric system (with respect to costs and service rates of

the products), we show that the optimal policy is of dual index type. Exploiting relations

between costs and service rates, we further reduce the action space and analytically derive

other settings where the optimal policy has a multi-index type structure. This implies that

in these settings, the components may not be manufactured at all or only manufactured at

the subcontractor or they might be manufactured simultaneously by both the manufacturer

and the subcontractor.

The rest of the chapter is organized as follows. Section 4.2 describes the model of the system

with multiple components and presents the MDP formulation of the system with multi-

ple components. Section 4.3 derives conditions under which particular actions are optimal.

Section 4.4 derives conditions under which optimal policy is multi-index type. Section 4.5
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provides numerical studies and Section 4.6 summarizes model insights and conclusions.

4.2 Mathematical Model

We analyze a system that manufacturers two components Ci, i = 1, 2 to stock as shown

in Figure 4.1. The demand for each component Ci is assumed to be a Poisson process

Ni(t), t ≥ 0 with rate λi and is satisfied from stock whenever possible; and otherwise backo-

rdered.

Figure 4.1 Manufacturing System

We let Ii(t) denote the net inventory (on-hand minus backorders) for component Ci at time

t. The manufacturer has the option to replenish inventory for component Ci either using ca-

pacity available at the external subcontractor, Si or using capacity available at the in-house

manufacturing facility M . We model the external subcontractor, Si, i = 1, 2 and the internal

manufacturing facility M as single server queues and assume that they have exponential

service time for component Ci with mean µ−1
s,i and µ−1

m,i respectively. Further, let cs,i and cm,i

denote the unit cost rate to manufacture component Ci at the external subcontractor and

in-house manufacturing facility respectively. We let hi denote the unit inventory holding cost

rate for component Ci, and bi denote the unit backordering cost rate of component Ci. The
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key elements in Markov decision process problem for determining the optimal production

and inventory strategy are as follows:

Decision epoch: We analyze the problem in the continuous time domain and assume that

actions are taken at epochs corresponding to state change, i.e at demand arrival and service

completion epochs.

State space, Σ: The state of the system at any time t is described as σ = (I1, I2), where

Ii, i = 1, 2 is the net inventory position of component Ci and σ ∈ Σ.

Figure 4.2 Action Space for the System

Action space, A: The set of actions A is defined by aj = (m, s1, s2), j = 1, ..., 12. In any

action aj, m takes the value i if the action corresponds to manufacturing of component Ci

at the in-house manufacturing facility M and takes the value 0 if the action corresponds to

being idle. Similarly, si, i = 1, 2 takes the value i when the action corresponds to manufac-

turing of component Ci at the external subcontractor Si and takes the value 0 if the action

corresponds to the external subcontractor being idle. Figure 4.2 lists the 12 possible actions
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available for the decision maker. For instance, action a1 implies that component C1 is man-

ufactured at both the in-house manufacturer M and the external subcontractor S1, while

component C2 is manufactured only at the external subcontractor S2. Note that the action

space can be partitioned into A1 = {a1, a3, a5, a6, a9, a10, a11, a12} and A2 = {a2, a4, a7, a8}

where actions in A2 imply that the manufacturer uses the capacity to produce one of the

components Ci, i = 1, 2 when the corresponding subcontractor Si is idle. Further, actions in

A1 can be grouped based on how the action impacts the component rate used to replenish

the stock for component Ci, i = 1, 2 (see Figure 4.3).

Figure 4.3 Actions in A1

Transition probabilities: Define p(σ′|σ, aj) as the transition probability from state σ = (I1, I2)

to state σ′ = (I ′1, I
′
2) under action aj ∈ A. Let ν =

∑2
i=1 λi +

∑2
i=1(µm,i + µs,i) + A denote

the normalizing factor used for uniformization (Lippman (1975)). Then, the transition prob-

abilities p(σ′|σ, aj) are defined as follows:

Demand arrival for component Ci: Then I ′i = Ii−1, i = 1, 2; and the corresponding p(σ′|σ, aj)

is given by:

p(σ′|σ, aj) = λi/ν,∀i = 1, 2
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Service completion for component C1: Then I ′1 = I1 + 1; and the corresponding p(σ′|σ, aj) is

given by:

p(σ′|σ, aj) = (1m,1,jµm,1 + 1s,1,jµs,1)/ν

where 1m,i,j and 1s,i,j, i = 1, 2 are indicator functions that takes the value 1 if manufacturer

M and subcontractor Si respectively are producing component Ci under action aj, and 0

otherwise.

Service completion for component C2: Then I ′2 = I2 + 1; and the corresponding p(σ′|σ, aj) is

given by:

p(σ′|σ, aj) = (1m,2,jµm,2 + 1s,2,jµs,2)/ν

Finally, I ′i = Ii, i = 1, 2; and the corresponding p(σ′|σ, aj) is given by:

p(σ′|σ, aj) = (ν −
∑
i

(λi + 1m,i,jµm,i + 1s,i,jµs,i))/ν

Cost function: Define h(σ) = h1 max(I1, 0) + h2 max(I2, 0) as the total inventory holding

cost rate and b(σ) = b1 max(−I1, 0) + b2 max(−I2, 0) as the total backordering cost rate. Let

c(aj) =
∑

i(cm,i1m,i,j + cs,i1s,i,j) represent the production cost rate for action aj. Let r(σ, aj)

denote the immediate cost function at state σ for action aj. This means that r(σ, aj) =

h(σ) + b(σ) + c(aj). Let Vt(σ) denote the value function at state σ at time t. For simplicity,

we normalize and set ν = 1 and A = 0. Equation (4.1) defines the standard Bellman cost

equation with value function, Vt(σ) at state σ and decision epoch t with discount factor

η, η ∈ (0, 1).

Vt(I1, I2) = min
aj∈A

[h(σ) + b(σ) + c(aj) + η
∑
σ′

p(σ′|σ, aj)Vt(σ′)] (4.1)

The system described above presents challenges in terms of structural analysis of the optimal

policy. First, the size of the state space Σ and action space A increases the complexity of the

analysis. For example, with Ii, i = 1, 2 varying from −500 to 500, the model has 1 million

states and 12 actions. Second, the optimal value function V ∗t (I1, I2) may not be convex in



64

Ii and the transition probabilities may not have sub-additivity or super-additivity property

with respect to Ii in the state space Σ and action space A because of high action space.

Despite of the above mentioned challenges, in the next section (Section 4.3) we describe the

characteristics of the optimal policy and the optimal value function. We use efficient action

comparison and action elimination techniques to develop conditions that relate change in

value function to production cost rates and service rates, and show that under these condi-

tions particular actions are optimal. Then in Section 4.4, using action elimination conditions,

we significantly reduce the action space which helps us to prove when simple multi-index

policies are optimal. For notational simplicity where possible, we suppress subscript t in

subsequent sections.

4.3 Characteristics of Optimal Solution

We analyze the formulation described in Section 4.2 and determine the characteristics of the

optimal solution. Section 4.3.1 provides some necessary preliminaries required to show the

main results of Sections 4.3.2 and 4.3.3 respectively.

4.3.1 Preliminaries

We develop set of conditions to characterize the structure of the optimal policy for both

the products. Let ∆1(I1, I2) = Vt+1(I1 + 1, I2) − Vt+1(I1, I2) be the first difference of the

value function with respect to I1, and ∆2(I1, I2) = Vt+1(I1, I2 + 1)− Vt+1(I1, I2) be the first

difference of the value function with respect to I2. Table 4.1 defines a set of conditions used

in subsequent sections to characterize the optimal policy.

These conditions provide the relationship between rate of change of the value function per

unit of a component and the unit production and subcontracting costs. For example, con-

dition A1s(I1, I2) holds if the expected cost at state (I1 + 1, I2) with a unit change in the
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Table 4.1 Preliminary Conditions

Notation Definition

A1s(I1, I2) ∆1(I1, I2) > − cs,1
µs,1η

Â1s(I1, I2) ∆1(I1, I2) < − cs,1
µs,1η

A1m(I1, I2) ∆1(I1, I2) > − cm,1
µm,1η

Â1m(I1, I2) ∆1(I1, I2) < − cm,1
µm,1η

A2s(I1, I2) ∆2(I1, I2) > − cs,2
µs,2η

Â2s(I1, I2) ∆2(I1, I2) < − cs,2
µs,2η

A2m(I1, I2) ∆2(I1, I2) > − cm,2
µm,2η

Â2m(I1, I2) ∆2(I1, I2) < − cm,2
µm,2η

B1(I1, I2) cm,2
η

+ µm,2∆2(I1, I2) < cm,1
η

+ µm,1∆1(I1, I2)

B2(I1, I2) cm,2
η

+ µm,2∆2(I1, I2) > cm,1
η

+ µm,1∆1(I1, I2)

inventory I1 while incurring a unit production cost cs,1
µs,1η

for component C1 at the subcon-

tractor is greater than the expected cost at state (I1, I2). Condition B2(I1, I2) has a useful

interpretation when µm,1 = µm,2, it implies that the expected cost at state (I1, I2 + 1) with a

unit change in the inventory I2 while incurring a unit production cost cm,2
µm,2η

for component

C2 at the manufacturer is greater than the the expected cost at state (I1 + 1, I2) with a unit

change in the inventory I1 while incurring a unit production cost cm,1
µm,1η

for component C1 at

the manufacturer. In the next section, we analyze the conditions for optimal decision using

these conditions.

4.3.2 Characteristics of Optimal Policy

We use the conditions defined in Section 4.3.1 to show that certain actions are optimal. For

notational simplicity, we suppress (I1, I2) in the conditions, but note that these conditions

hold for each state (I1, I2). Theorem 4.1 provides relationship between the change in the

value function, costs, and service rates for which the optimal action is that neither the

manufacturer nor the subcontractor produces a given component Ci.
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Theorem 4.1. For system in state σ:

(1) if conditions A1s ∧ (A1m ∨ B1) hold, then the optimal action implies that neither the

manufacturer M nor the subcontractor S1 should manufacture component C1.

(2) if conditions A2s ∧ (A2m ∨ B2) hold, then the optimal action implies that neither the

manufacturer M nor the subcontractor S2 should manufacture component C2.

Proof. We prove Theorem 4.1 in two parts. In the first part, we consider component C2 and

show that under conditions (∆2 > − cs,2
µs,2η

)∧((∆2 > − cm,2
µm,2η

)∨(µm,2∆2−µm,1∆1 >
cm,1−cm,2

η
)),

actions from the set {a1, a2, a5, a6, a7, a8, a9, a10} have higher costs than that of at least one

action from the set {a3, a4, a11, a12}. Since, the optimal action is from the set {a3, a4, a11, a12},

the result of Theorem 4.1, part (2) holds. The proof of part (1) follows along similar lines

by considering component C1 instead of component C2. Refer to Appendix for the proof of

Theorem 4.1.

Next, Theorem 4.2 provides the relationship between the change in the value function, costs,

and service rates for which the optimal action is that only the external subcontractor should

use available capacity to produce a given component Ci.

Theorem 4.2. For system in state σ:

(1) if conditions Â1s ∧ (A1m ∨ B1) hold, then the optimal action implies that only the sub-

contractor S1 should manufacture component C1.

(2) if conditions Â2s∧(A2m∨B2) hold, the optimal action implies that only the subcontractor

S2 should manufacture component C2.

Proof. We prove Theorem 4.2 in two parts. In the first part, we consider component C2 and

show that under conditions (∆2 < − cs,2
µs,2η

)∧((∆2 > − cm,2
µm,2η

)∨(µm,2∆2−µm,1∆1 >
cm,1−cm,2

η
)),

actions from the set {a3, a4, a5, a6, a7, a8, a11, a12} have higher costs than that of at least one

action from the set {a1, a2, a9, a10}. Since, the optimal action is from the set {a1, a2, a9, a10},

the result of Theorem 4.2, part (2) holds. The proof of part (1) follows along similar lines

by considering component C1 instead of component C2. Refer to Appendix for the proof of

Theorem 4.2.
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Next, Theorem 4.3 provides relationship between the change in the value function, costs,

and service rates for which the optimal action is that only the manufacturer and not the

corresponding subcontractor should use the available capacity to produce a given component

Ci.

Theorem 4.3. For system in state σ:

(1) if conditions A1s ∧ Â1m ∧ B2 hold, then the optimal action implies that only the manu-

facturer M should manufacture component C1.

(2) if conditions A2s ∧ Â2m ∧ B1 hold, then the optimal action implies that only the manu-

facturer M should manufacture component C2.

Proof. We prove Theorem 4.3 in two parts. In the first part, we consider component C2 and

show that under conditions (∆2 > − cs,2
µs,2η

)∧ (∆2 < − cm,2
µm,2η

)∧ (µm,2∆2− µm,1∆1 <
cm,1−cm,2

η
),

actions from the set {a1, a2, a3, a4, a5, a6, a9, a10, a11, a12} have higher costs than that of at

least one action from the set {a7, a8}. Since, the optimal action is from the set {a7, a8},

the result of Theorem 4.3, part (2) holds. The proof of part (1) follows along similar lines

by considering component C1 instead of component C2. Refer to Appendix for the proof of

Theorem 4.3.

Corollary 4.1. If
cm,i
µm,i
≥ cs,i

µs,i
, i = 1, 2, then the optimal action does not belong to the set

A2 = {a2, a4, a7, a8}.

Proof. The proof follows immediately from the proof of Theorem 4.3.

Corollary 4.1 provides the conditions when it could never be optimal for the manufacturer

to invest capacity in manufacturing a component while the relevant subcontractor is idle.

Finally, Theorem 4.4 provides relationship between the change in the value function, costs,

and service rates for which the optimal action is that both the external subcontractor and

manufacturer should use their respective capacity to produce a given component Ci.
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Theorem 4.4. For system in state σ:

(1) if conditions Â1s ∧ Â1m ∧ B2 hold, then the optimal action implies that both the manu-

facturer M and the subcontractor S1 should manufacture component C1.

(2) if conditions Â2s ∧ Â2m ∧ B1 hold, then the optimal action implies that both the manu-

facturer M and the subcontractor S2 should manufacture component C2.

Proof. We prove Theorem 4.4 in two parts. In the first part, we consider component C2 and

show that under conditions (∆2 < − cm,2
µm,2η

)∧ (∆2 < − cs,2
µs,2η

)∧ (µm,2∆2− µm,1∆1 <
cm,1−cm,2

η
),

actions from the set {a1, a2, a3, a4, a7, a8, a9, a10, a11, a12} have higher costs than that of at

least one action from the set {a5, a6}. Since, the optimal action is from the set {a5, a6},

the result of Theorem 4.4, part (2) holds. The proof of part (1) follows along similar lines

by considering component C1 instead of component C2. Refer to Appendix for the proof of

Theorem 4.4.

Figure 4.4 Conditions for Optimal Actions

Figure 4.4 summarizes the insights from Theorems 4.1, 4.2, 4.3, 4.4. For instance, if A1s ∧

(A1m ∨ B1) ∧Â2s ∧ Â2m ∧ B1, then the component C2 is produced by both manufacturer
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M and subcontractor S2, and component C1 is produced by only subcontractor S1 which

corresponds to action a5. Note that the conditions presented in Section 4.3.1 exclude the

equality cases, such as ∆1(I1, I2) = − cs,1
µs,1η

, etc since in these cases multiple actions could

be optimal. Theorems 4.1 - 4.4 provide a strong characterization of optimal policies for this

production inventory problem. For a general system, the conditions allow us to partition

the state space into regions where the optimal policy has a simple characterization. Further

insights on the characteristics of the optimal policy are obtained by considering symmetric

setting of the problem parameters. We elaborate on this in Section 4.3.3.

4.3.3 Optimal Policy for Symmetric Systems

We consider two types of symmetry, M − S symmetry and complete symmetry. For an

M −S symmetric system, the costs and service rates for a given component Ci for the man-

ufacturer M is the same as that of the subcontractor Si, i.e. cm,i = cs,i, and µm,i = µs,i.

Complete symmetry corresponds to a special case of M − S symmetric system where the

production costs and the service rates are same across the components. Figure 4.5 sum-

marizes the conditions under which particular actions are optimal. Although, Figure 4.5

presents a simple version of the conditions presented in Figure 4.4, it reveals a useful insight:

in a symmetric system, action a9 is never optimal, i.e. both the components will not be

simultaneously manufactured only by the respective external subcontractors. This happens

because condition Â2s and A2m can never be simultaneously satisfied under M−S symmetry.

Next, we consider complete symmetric system. For this case, first we use Theorem 4.5 and

further reduce the optimal action space from 12 actions to only 5 actions.

Theorem 4.5. If cm,i = cs,i, and µm,i = µs,i, i = 1, 2, then optimal action belongs to the set

{a1, a3, a5, a6, a12}.

Proof. From results for M−S symmetric case, it follows that actions in the set {a1, a3, a5, a6,

a10, a11, a12} could be optimal. Next, from Theorem 4.4.1, if ∆2 < − cm,2
µm,2η

, then action a6

results in lower cost than action a10. Thus, action a10 cannot be optimal. Similarly, if
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Figure 4.5 Conditions for Optimal Actions under M − S Symmetry

∆1 > − cm,1
µm,1η

, then action a3 results in lower cost than action a11. Thus, action a11 cannot

be optimal. This concludes the proof.

Note that under complete symmetric system with respect to costs and service rates of the

components, the optimal policy suggests that either one of the components should be al-

ways produced at the fastest rate or none of the components should be produced. This is

because actions a10 and a11 are never optimal. Figure 4.4 and 4.5 demonstrate dual index

characterization of the optimal policy; i.e., under certain condition, there exists thresholds

in I1 and I2 at which optimal production rates for particular component structures. Such

simple characterization of the optimal policy can be very useful in practice. However, due

to the structure of the value function, it is hard to show exhaustively set of conditions under

which dual index policies are optimal. However, in the next section we prove conditions and

instances where multi-index policies can be demonstrated to be optimal.
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4.4 Optimality of Multi-index Policies

In this section, we derive conditions when multi-index policies are optimal. Proposition 4.1

derives a condition and a subset S over which the optimal value function V ∗(I1, I2) can be

proved to be convex.

Proposition 4.1. For system with state σ ∈ S = {(I1, I2)|I1+I2 = K}, where K is constant,

the optimal value function V ∗(I1, I2) is convex over S.

Proof. We prove this proposition in two steps. First, we show that the cost function r(σ, aj)

is convex over S, and then we show the required properties of the transition probabilities.

Refer to Appendix for the proof of Proposition 4.1.

Further, the transition probabilities are sub-additive or super-additive in A × S. We make

no claim that the value function is convex only over this set. In fact, it can be shown that

the value function is convex over other subset of the state space. For example, V ∗(I1, I2) is

convex with respect to I1 for state σ ∈ S1 = {(I1, I2)|I2 = K}. However, we do not observe

monotonicity property in the optimal actions because the transition probabilities are neither

sub-additive nor super-additive in A× S1.

We consider three cases and show optimality of multi-index policies in each case.

Case 1: Negligible production costs: Typically, certain components/operations such as

mechanical assembly, PCB assembly, wire harnesses assembly, etc have negligible production

costs as compared to corresponding material costs/inventory costs. Under this setting, the

production cost could be assumed to be zero. Theorem 4.6 shows that if the production

costs are zero then the optimal decisions are non-increasing in the service rate of component

C1 with respect to I1, (I1, I2) ∈ S.

Theorem 4.6. For system with state σ ∈ S, S = {(I1, I2)|I1 +I2 = K} where, K is constant,

if cm,i = cs,i = 0, i = 1, 2 and ∆1 6= 0,∆2 6= 0, then the optimal action a∗ is non-increasing

in service rates for component C1 with respect to increasing I1.
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Proof. We prove this theorem in two parts. At first, we consider the case where V ∗(I1, I2)

is non-decreasing with respect to I1 and show that the optimal actions are monotone with

respect to I1. Next, we we consider the case where V ∗(I1, I2) is non-decreasing with respect

to I2 and show that the optimal actions are monotone with respect to I2.

Theorem 4.6 implies that the supply chain manager could keep track of the stock levels of

components and follow the dual index type optimal policy, i.e. there exists thresholds k1

and k2, k2 > k1 such that the component C1 (i) is not manufactured if I1 > k2, or (ii) is only

be produced by the corresponding subcontractor if k1 < I1 < k2 to replenish inventory at

a slower rate, or (iii) is produced at both the manufacturer and the corresponding subcon-

tractor if I1 < k1 to replenish inventory at a faster rate.

Case 2: Manufacturer is cheaper: When demand is high and exceeds internal capac-

ity, the supply chain manager could subcontract components to the external subcontrac-

tor to alleviate the production and capacity burden at the manufacturer, even though the

subcontractor is more expensive than the manufacturer. For example, blowout preventers

(prominent energy product) vary significantly in size and require special equipment. For

this component, the production cost at the subcontractor could be more than the produc-

tion cost at the manufacturer. Theorem 4.7 shows that if the production cost per unit at

the manufacturer is less than the production cost per unit at the subcontractor, service

rate of the component C1 is significantly more than the service rate of component C2, then

optimal decisions are non-increasing in the service rate of component C1 with respect to

I1, (I1, I2) ∈ S.

Theorem 4.7. For system with state σ ∈ S, S = {(I1, I2)|I1 +I2 = K} where, K is constant

and I1 > K, if:

(1)
cm,i
µm,i

<
cs,i
µs,i
, i = 1, 2

(2) µs,1 > µs,2

(3) µm,1 > µm,2 + µs,1 + µs,2
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Then the optimal action a∗ is non-increasing in service rates for component C1 with respect

to increasing I1.

Proof. We prove this theorem in three steps. First, we show that the optimal value function,

V ∗(I1, I2) is non-decreasing over I1, I1 > K. Next, we show that if
cm,i
µm,i

<
cs,i
µs,i
, i = 1, 2 then

actions from the set {a9, a10, a11} are not optimal. Finally, we show that q((I ′′1 , I
′′
2 )|(I1, I2), aj)

is sub-additive with respect to non-decreasing I1 and action A. The details of the proof are

in the Appendix.

Theorem 4.7 implies that a multi-index policy with three thresholds k1, k2, and k3, k3 > k2 >

k1 is optimal. With respect to component C1, this multi-index policy implies that compo-

nent C1 (i) is not manufactured if I1 > k3, (ii) is only be produced by the corresponding

subcontractor if k2 < I1 < k3, (ii) is only be produced by the manufacturer if k1 < I1 < k2,

(iii) is produced at the manufacturer and the corresponding subcontractor if I1 < k1.

Case 3: Subcontractor is cheaper: For example, components of top drives are often

expensive to produce using capacity only available at the manufacturer. Using capacity

available at the subcontractor is often cheaper. However, if the subcontractor has a higher

lead time, this could lead to high backorders and poor service levels. So, the supply chain

manager needs to balance the tradeoffs in cost and delivery performance to decide on the

production and subcontracting decisions. Theorem 4.8 shows that if the production cost per

unit at the manufacturer is more than the production cost per unit at the subcontractor,

service rate of the component C1 is significantly more than the service rate of component C2,

then optimal decisions are non-increasing in the service rate of component C1 with respect

to I1, (I1, I2) ∈ S.

Theorem 4.8. For system with state σ ∈ S, S = {(I1, I2)|I1 +I2 = K} where, K is constant

and I1 > K, if:

(1)
cm,i
µm,i

>
cs,i
µs,i
, i = 1, 2

(2) µm,1 > µm,2 + µs,1
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(3) µs,1 > µm,2 + µs,2

Then the optimal action a∗ is non-increasing in service rates for component C1 with respect

to increasing I1.

Proof. We prove this theorem in three steps. First, we show that the optimal value function,

V ∗(I1, I2) is non-decreasing over I1, I1 > K. Next, we show that if
cm,i
µm,i

<
cs,i
µs,i
, i = 1, 2 then

using Corollary 4.1, actions from the set {a2, a4, a7, a8} are not optimal. Finally, we show

that q((I ′′1 , I
′′
2 )|(I1, I2), aj) is sub-additive with respect to non-decreasing I1 and action A.

The details of the proof are in the Appendix.

Theorem 4.8 implies that the supply chain manager could keep track of the stock levels of

components and follow the dual index type optimal policy, i.e. there exists thresholds k1

and k2, k2 > k1 such that the component C1 (i) is not manufactured if I1 > k2, or (ii) is only

be produced by the corresponding subcontractor if k1 < I1 < k2 to replenish inventory at

a slower rate, or (iii) is produced at both the manufacturer and the corresponding subcon-

tractor if I1 < k1 to replenish inventory at a faster rate.

Having shown that the multi-index policy is optimal under certain conditions on the service

rate and costs, in the next section we use numerical studies to validate these observations

and also demonstrate other situations where multi-index policies are optimal.

4.5 Numerical Studies

This section presents numerical studies to provide insights on the characteristics of the

optimal solution. Section 4.5.1 demonstrates multi-index policies while Section 4.5.2 analyzes

the impact of service rates on the optimal policy.
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4.5.1 Demonstration of Multi-index Policy

In this experiment, we numerically validate the results shown in Theorem 4.7 where the unit

production cost at the manufacturer is less than the unit production cost at the subcon-

tractor, i.e.
cm,i
µm,i

<
cs,i
µs,i
, i = 1, 2. Table 4.2 presents the system and cost parameters for this

experiment.

Table 4.2 System Parameters and Costs for Multi-index Policy

Subcontractor’s Parameters Manufacturer’s Parameters

cs,1 15 cm,1 30

cs,2 10 cm,2 20

µs,1 1.5 µm,1 4

µs,2 0.5 µm,2 1.1

System Parameters Other Costs

Bmax 5 bi, i = 1, 2 40

λi, i = 1, 2 1.5 hi, i = 1, 2 2

Here, the manufacturer is twice as expensive (cm,1 = 2cs,1) as the external subcontractor.

The service rates for the in-house manufacturing department and the external subcontrac-

tor are set to satisfy the conditions given in Theorem 4.7. For Bmax = 5, we fix any

K,K ∈ {−10,−9, ..., 9, 10} and analyze the optimal solution for monotonicity property in

the service rate.

Table 4.3 presents the optimal actions for system corresponding to each state σ. The optimal

policy contains actions in the set {a1, a3, a4, a5, a6, a12}. For fixed total inventory position,

I1 + I2, we observe a monotone property in service rates of components with increasing

I1 or I2. For instance, for I1 + I2 = −8, the production rate of component C1 is always

µm,1 + µs,1 as I1 increases, meaning that both the manufacturer M and the corresponding
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subcontractor S1 are producing component C1. Similarly, for I1 + I2 = 0, (i) if I1 < 0, the

production rate of component C1 is µm,1 +µs,1, meaning that both the manufacturer M and

the corresponding subcontractor S1 are producing component C1, (ii) if 0 ≤ I1 < 5, the

production rate of component C1 decreases from µm,1 + µs,1 to µs,1, meaning that only the

subcontractor S1 is producing component C1, (iii) if I1 = 5, the production rate of compo-

nent C1 is 0, meaning that the component C1 is neither manufactured by the manufacturer

M nor by the subcontractor S1. Finally, for I1 + I2 = 7, (i) if I1 < 3, the production rate of

component C1 is µm,1, meaning that the manufacturer M is producing component C1, (ii) if

3 ≤ I1 < 5, the production rate of component C1 decreases from µm,1 +µs,1 to µs,1, meaning

that only the subcontractor S1 is producing component C1, (iii) if I1 = 5, the production

rate of component C1 is 0, meaning that the component C1 is neither manufactured by the

manufacturer M nor by the subcontractor S1. This demonstrates the result in Theorem 4.7

where the optimal policy is multi-index index type with three thresholds.

Table 4.3 Optimal Actions Corresponding to Each State σ for Bmax = 5

I1/I2 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3

-4 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3

-3 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3

-2 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3

-1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3

0 a1 a5 a5 a5 a5 a5 a5 a5 a1 a1 a3

1 a1 a5 a5 a5 a5 a5 a5 a5 a5 a5 a3

2 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a4

3 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a4

4 a5 a5 a5 a5 a5 a5 a5 a5 a5 a6 a4

5 a6 a6 a6 a6 a6 a6 a6 a6 a6 a6 a12
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4.5.2 Impact of Service Rates on the Optimal Policy

In this experiment, we analyze the impact of service rates on the optimal policy. Table 4.4

presents the system and cost parameters for this experiment. We analyze two cases.

Table 4.4 System Parameters and Costs for Sensitivity Analysis

Subcontractor’s Parameters Manufacturer’s Parameters

cs,1 15 cm,1 30

cs,2 10 cm,2 20

µs,1 1.1 µm,1 1,2,3,4

µs,2 1.1 µm,2 1,2,3,4

System Parameters Other Costs

Bmax 5 bi, i = 1, 2 40

λi, i = 1, 2 1.5 hi, i = 1, 2 2

Case 1: Manufacturer is cheaper: The scenario where the unit production cost at the

manufacturer is less than the unit production cost at the subcontractor, i.e.
cm,i
µm,i

<
cs,i
µs,i
, i =

1, 2 is analyzed by considering the case where µm,1 = 3, 4 and µm,2 = 3, 4. For Bmax = 10 and

I1 + I2 = 0, Figure 4.6 shows the impact of service rates on the optimal decision if the man-

ufacturer is cheaper. We observe that the service rate of the component C1 is non-increasing

with increasing inventory position I1. This implies that the optimal policy is of dual index

type. For example, for µm,1 = 3 and µm,2 = 3, the optimal service rate of component C1

at inventory position I1 = 1 changes from 4.1 to 1.1 implying that only the subcontractor

S1 is producing component C1 at I1 = 1. Next, the component C1 is neither produced by

the manufacturer M nor by the subcontractor S1 at inventory position I1 > 4. We also

observe that the increase in the service rate of the manufacturer results in (i) non-decreasing

threshold to switch the service rate from µm,1 + µs,1 to µs,1, (ii) non-increasing threshold to

switch the service rate from µs,1 to 0. For example, one of the thresholds for scenario with
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µm,1 = 3, µm,2 = 4 (see Figure 4.6(b)) is at I1 = 0 and switches to I1 = 1 as the service rate

changes from µm,1 = 3 to µm,1 = 4.

Figure 4.6 Optimal Service Rate of Component C1 at (a) µm,2 = 3, (b) µm,2 = 4

Similarly, another threshold for scenario with µm,1 = 3, µm,2 = 4 is at I1 = 4 and switches

to I1 = 2 as the service rate changes from µm,1 = 3 to µm,1 = 4. This happens because if

µm,1 = 4, µm,2 = 4 then the component C1 is being produced at a faster rate longer than

compared to scenario where µm,1 = 4, µm,2 = 3, replenishing inventory at a faster rate. So,

it is not optimal to produce the component longer at the expensive subcontractor.

Case 2: Subcontractor is cheaper: The scenario where the unit production cost at

the manufacturer is more than the unit production cost at the subcontractor, i.e.
cm,i
µm,i

>

cs,i
µs,i
, i = 1, 2 is analyzed by considering the case where µm,1 = 1, 2 and µm,2 = 1, 2. For

Bmax = 10 and I1 + I2 = 0, Figure 4.7 shows the impact of service rates on the optimal

decision if the subcontractor is cheaper. We observe that the service rate of the component

C1 is non-increasing with increasing inventory position I1. This implies that the optimal

policy is of dual index type. For example, for µm,1 = 1 and µm,2 = 1, the optimal service

rate of component C1 at inventory position I1 = 0 changes from 2.1 to 1.1 implying that
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only the subcontractor S1 is producing component C1 at I1 = 0.

Figure 4.7 Optimal Service Rate of Component C1 at (a) µm,2 = 1, (b) µm,2 = 2

Next, the component C1 is neither produced by the manufacturer M nor by the subcontrac-

tor S1 at inventory position I1 = 10. We also observe that the increase in the service rate of

the manufacturer results in non-decreasing thresholds. For example, the threshold switches

from I1 = 0 to I1 = 1 when the service rate of the manufacturer for component C1 changes

from µm,1 = 1 to µm,1 = 2. We observe similar results when µm,2 = 2.

4.6 Conclusions

We consider a system with multiple components where components can be produced us-

ing capacity available at the shared manufacturing resource and using capacity available at

dedicated subcontractors. We develop Markov decision process formulation of the system

that captures subcontracting and scheduling of shared resource for multiple components,

and provide insights on the optimal policies.

We analytically provide exhaustive sets of conditions to characterize the structure of the

optimal policy and optimal value function. We show conditions based on first difference
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of value function and unit production cost under which the optimal action is that (i) a

component is neither produced by the manufacturer nor by the subcontractor, (ii) a com-

ponent is only produced by the manufacturer, (iii) a component is only produced by the

corresponding subcontractor, (iv) a component is produced by both the manufacturer and

corresponding subcontractor. For M−S symmetric system, we show that it is never optimal

to keep the manufacturer idle if subcontractors are producing their corresponding compo-

nents. For complete symmetric system (with respect to cost and service rates), we show that

the optimal policy is of dual index type, i.e. it suggests that either one of the components

should be always produced at the fastest rate or none of the components should be produced.

Next, we consider three cases using simple conditions on the costs and service rate. Using

these conditions we show that the multi-index policy is optimal under three cases. In the

first case, if the unit production costs are negligible which is typical in manual assembly,

we show that the optimal policy is of dual index type , i.e. there exists thresholds k1 and

k2, k2 > k1 such that the component C1 (i) is not manufactured if I1 > k2, or (ii) is only be

produced by the corresponding subcontractor if k1 < I1 < k2, or (iii) is produced at both

the manufacturer and the corresponding subcontractor if I1 < k1. In the second case, if the

components vary significantly in size and the unit production cost at the manufacturer is

less than that of subcontractor, we show that multi-index type policy with three thresholds

k1, k2, and k3, k3 > k2 > k1 is optimal, i.e. component C1 (i) is not manufactured if I1 > k3,

(ii) is only be produced by the corresponding subcontractor if k2 < I1 < k3, (ii) is only be

produced by the manufacturer if k1 < I1 < k2, (iii) is produced at both the manufacturer

and the corresponding subcontractor if I1 < k1. Finally, in the third case, if the components

vary significantly in size and the unit production cost at the manufacturer is more than that

of subcontractor, we again show that dual index policy is optimal.

In the next chapter, we use insights obtained in this chapter to derive optimal policies for

assembly systems with multiple standard-type components.
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4.7 Appendix

Proof of Theorem 4.1: We prove Theorem 4.1 in two parts. In the first part, we consider

component C2 and show that under conditions (∆2 > − cs,2
µs,2η

)∧ ((∆2 > − cm,2
µm,2η

)∨ (µm,2∆2 −

µm,1∆1 > cm,1−cm,2
η

)), actions from the set {a1, a2, a5, a6, a7, a8, a9, a10} have higher costs

than that of at least one action from the set {a3, a4, a11, a12}. Since, the optimal action

is from the set {a3, a4, a11, a12}, the result of Theorem 4.1, part (2) holds. Let fj,t(σ) =

c(aj) + η
∑

σ′ p(σ′|σ, aj)Vt(σ′) denote the sum of total production cost rate and discounted

cost at state σ after taking action aj. Then, fj,t(σ) at each state σ = (I1, I2) for each action

aj is defined as follows:

f1,t(I1, I2) = cm,1 + cs,1 + cs,2 + (µm,1 + µs,1)ηVt(I1 + 1, I2) + µs,2ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + µm,2ηVt(I1, I2)

f2,t(I1, I2) = cm,1 + cs,2 + µm,1ηVt(I1 + 1, I2) + µs,2ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µs,1 + µm,2)ηVt(I1, I2)

f3,t(I1, I2) = cm,1 + cs,1 + (µm,1 + µs,1)ηVt(I1 + 1, I2)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,2 + µs,2)ηVt(I1, I2)

f4,t(I1, I2) = cm,1 + µm,1ηVt(I1 + 1, I2)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µs,1 + µm,2 + µs,2)ηVt(I1, I2)

f5,t(I1, I2) = cm,2 + cs,1 + cs,2 + µs,1ηVt(I1 + 1, I2) + (µm,2 + µs,2)ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + µm,1ηVt(I1, I2)

f6,t(I1, I2) = cm,2 + cs,2 + (µm,2 + µs,2)ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,1 + µs,1)ηVt(I1, I2)

f7,t(I1, I2) = cs,1 + cm,2 + µs,1ηVt(I1 + 1, I2) + µm,2ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,1 + µs,2)ηVt(I1, I2)

f8,t(I1, I2) = cm,2 + µm,2ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,1 + µs,1 + µs,2)ηVt(I1, I2)
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f9,t(I1, I2) = cs,1 + cs,2 + µs,1ηVt(I1 + 1, I2) + µs,2ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,1 + µm,2)ηVt(I1, I2)

f10,t(I1, I2) = cs,2 + µs,2ηVt(I1, I2 + 1)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,1 + µm,2 + µs,1)ηVt(I1, I2)

f11,t(I1, I2) = cs,1 + µs,1ηVt(I1 + 1, I2)

+λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1) + (µm,1 + µm,2 + µs,2)ηVt(I1, I2)

f12,t(I1, I2) = λ1ηVt(I1 − 1, I2) + λ2ηVt(I1, I2 − 1)

+(µm,1 + µm,2 + µs,1 + µs,2)ηVt(I1, I2) (4.2)

So, Equation (4.1) can rewritten as:

Vt(I1, I2) = h(σ) + b(σ) + min
aj∈A

[fj,t(I1, I2)] (4.3)

At first, we show that if ∆2 > − cs,2
µs,2η

, then actions from the set {a1, a2, a5, a9, a10} have

higher costs than that of at least one action from the set {a3, a4, a11, a12}. To show that a1

is not optimal, we show that f1,t(I1, I2)− f3,t(I1, I2) > 0.

f1,t(I1, I2)− f3,t(I1, I2) = cm,1 + cs,1 + cs,2 + (µm,1 + µs,1)η∆1 + µs,2η∆2

−(cm,1 + cs,1 + (µm,1 + µs,1)η∆1(I1, I2))

= cs,2 + µs,2η∆2 (4.4)

If ∆2 > − cs,2
µs,2η

, then from Equation (4.4) f1,t(I1, I2) − f3,t(I1, I2) > 0. So, action a1 results

in higher cost than actions a3. To show that a2 is not optimal, we show that f2,t(I1, I2) −

f4,t(I1, I2) > 0.

f2,t(I1, I2)− f4,t(I1, I2) = cm,1 + cs,2 + µm,1η∆1(I1, I2) + µs,2η∆2(I1, I2)

−(cm,1 + µm,1η∆1(I1, I2))

= cs,2 + µs,2η∆2 (4.5)

If ∆2 > − cs,2
µs,2η

, then from Equation (4.5) f2,t(I1, I2) − f4,t(I1, I2) > 0. So, action a2 results

in higher cost than actions a4. Similarly, if ∆2 > − cs,2
µs,2η

, we can show that action a9 results
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in higher cost than action a11, and action a10 results in higher cost than action a12.

Next, we show that actions from the set {a5, a6, a7, a8} results in higher cost than at least

one action from the set {a3, a4, a9, a10, a11, a12}. So, actions from the set {a5, a6, a7, a8} could

have higher costs than at least one action from the set {a3, a4} or could have higher cost

than at least one action from the set {a9, a10, a11, a12}.

To show that a7 is not optimal, we show that f7,t(I1, I2)− f3,t(I1, I2) > 0.

f7,t(I1, I2)− f3,t(I1, I2) = cm,2 + cs,1 + µs,1η∆1 + µm,2η∆2

−(cm,1 + cs,1 + (µm,1 + µs,1)η∆1)

= cm,2 − cm,1 + µm,2η∆2 − µm,1η∆1 (4.6)

If µm,2∆2 − µm,1∆1 >
cm,1−cm,2

η
, then from Equation (4.6) f7,t(I1, I2) − f3,t(I1, I2) > 0. So,

action a7 results in higher cost than actions a3.

To show that a8 is not optimal, we show that f8,t(I1, I2)− f4,t(I1, I2) > 0.

f8,t(I1, I2)− f4,t(I1, I2) = cm,2 + µm,2η∆2 − (cm,1 + µm,1η∆1) (4.7)

If µm,2∆2 − µm,1∆1 >
cm,1−cm,2

η
, then from Equation (4.7) f8,t(I1, I2) − f4,t(I1, I2) > 0. So,

action a8 results in higher cost than actions a4. Similarly, if µm,2∆2−µm,1∆1 >
cm,1−cm,2

η
, we

can show that action a5 results in higher cost than action a3, and action a6 results in higher

cost than action a4.

To show that a5 is not optimal, we show that f5,t(I1, I2)− f9,t(I1, I2) > 0.

f5,t(I1, I2)− f9,t(I1, I2) = cm,2 + cs,1 + cs,2 + µs,1η∆1 + (µm,2 + µs,2)η∆2

−(cs,1 + cs,2 + µs,1η∆1 + µs,2η∆2)

= cm,2 + µm,2η∆2 (4.8)
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If ∆2 > − cm,2
µm,2η

, then from Equation (4.8) f5,t(I1, I2) − f9,t(I1, I2) > 0. So, action a5 results

in higher cost than actions a9.

To show that a6 is not optimal, we show that f6,t(I1, I2)− f10,t(I1, I2) > 0.

f5,t(I1, I2)− f9,t(I1, I2) = cm,2 + cs,2 + (µm,2 + µs,2)η∆2 − (cs,2 + µs,2η∆2) (4.9)

If ∆2 > − cm,2
µm,2η

, then from Equation (4.9) f6,t(I1, I2)− f10,t(I1, I2) > 0. So, action a6 results

in higher cost than actions a10. Similarly, if ∆2 > − cm,2
µm,2η

, we can show that action a7 results

in higher cost than action a11, and action a8 results in higher cost than action a12. This

concludes the proof.

Proof of Theorem 4.2: We prove Theorem 4.2 in two parts. In the first part, we consider

component C2 and show that under conditions (∆2 < − cs,2
µs,2η

)∧ ((∆2 > − cm,2
µm,2η

)∨ (µm,2∆2 −

µm,1∆1 > cm,1−cm,2
η

)), actions from the set {a3, a4, a5, a6, a7, a8, a11, a12} have higher costs

than that of at least one action from the set {a1, a2, a9, a10}. Since, the optimal action is

from the set {a1, a2, a9, a10}, the result of Theorem 4.2, part (2) holds. Using logic used in

the proof of Theorem 4.1, we can show that if ∆2 < − cs,2
µs,2η

, action a3 results in higher cost

than action a1, action a4 results in higher cost than action a2, action a11 results in higher

cost than action a9, and action a12 results in higher cost than action a10. Again, we show

that if ∆2 > − cm,2
µm,2η

, action a5 results in higher cost than action a9, action a6 results in

higher cost than action a10, action a7 results in higher cost than action a11, and action a8

results in higher cost than action a12. If µm,2∆2 − µm,1∆1 >
cm,1−cm,2

η
, action a5 results in

higher cost than action a1, action a6 results in higher cost than action a2, action a7 results

in higher cost than action a3, action a8 results in higher cost than action a4. This concludes

the proof.

Proof of Theorem 4.3: We prove Theorem 4.3 in two parts. In the first part, we consider

component C2 and show that under conditions (∆2 > − cs,2
µs,2η

) ∧ (∆2 < − cm,2
µm,2η

) ∧ (µm,2∆2 −
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µm,1∆1 <
cm,1−cm,2

η
), any actions in the set {a1, a2, a3, a4, a5, a6, a9, a10, a11, a12} have higher

costs than that of at least one action in the set {a7, a8}. Since, the optimal action is from

the set {a7, a8}, the result of Theorem 4.3, part (2) holds. Using logic used in the proof of

Theorem 4.1, we can show that if ∆2 > − cs,2
µs,2η

, action a5 results in higher cost than action

a7, action a6 results in higher cost than action a8. Again, we show that if ∆2 < − cm,2
µm,2η

,

action a9 results in higher cost than action a5, action a10 results in higher cost than action

a6, action a11 results in higher cost than action a7, and action a12 results in higher cost than

action a8. Finally, if µm,2∆2−µm,1∆1 <
cm,1−cm,2

η
, action a3 results in higher cost than action

a7, action a4 results in higher cost than action a8, action a1 results in higher cost than action

a5, and action a2 results in higher cost than action a6. This concludes the proof.

Proof of Theorem 4.4: We prove Theorem 4.4 in two parts. In the first part, we consider

component C2 and show that under conditions (∆2 < − cm,2
µm,2η

) ∧ (∆2 < − cs,2
µs,2η

) ∧ (µm,2∆2 −

µm,1∆1 < cm,1−cm,2
η

), actions from the set {a1, a2, a3, a4, a7, a8, a9, a10, a11, a12} have higher

costs than that of at least one action from the set {a5, a6}. Since, the optimal action is from

the set {a5, a6}, the result of Theorem 4.4, part (2) holds. Using logic used in the proof of

Theorem 4.1, we can show that if ∆2 < − cs,2
µs,2η

, action a3 results in higher cost than action

a1, action a4 results in higher cost than action a2, action a7 results in higher cost than action

a5, and action a8 results in higher cost than action a6. Again, we show that if ∆2 < − cm,2
µm,2η

,

action a9 results in higher cost than action a5, action a10 results in higher cost than action

a6, action a11 results in higher cost than action a7, and action a12 results in higher cost than

action a8. Finally, if µm,2∆2−µm,1∆1 <
cm,1−cm,2

η
, action a1 results in higher cost than action

a5, and action a2 results in higher cost than action a6. This concludes the proof.

Proof of Proposition 4.1: We prove this proposition in two steps. First, we show that the

cost function r(σ, aj) is convex over S, and then we show the required properties of the tran-

sition probabilities. Note that h1 max(I1, 0) is non-decreasing with I1, and b1 max(−I1, 0) is

non-increasing with I1. Thus, h1 max(I1, 0) + b1 max(−I1, 0) is convex with respect to I1.
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Next, since I1+I2 = K, h2 max(K−I1, 0) is non-increasing with I1, and b2 max(−K+I1, 0) is

non-decreasing with I1. Thus, h2 max(K− I1, 0) + b2 max(−K+ I1, 0) is convex with respect

to I1 and since (h1 max(I1, 0) + b1 max(−I1, 0)) + (h2 max(K − I1, 0) + b2 max(−K + I1, 0))

is a sum of convex functions, it is also convex. Finally, since the total production cost rate,

c(aj) at action aj does not depend on I1, the cost function r(σ, a) = h(σ) + b(σ) + c(aj) is

convex with respect to I1.

Next, we show that q((I ′′1 , I
′′
2 )|(I1, I2), aj) is non-decreasing over over S, where

q((I ′′1 , I
′′
2 )|(I1, I2), aj) =

∑∞
I′1=I′′1

p((I ′1, I
′
2)|(I1, I2), aj), (I ′1, I

′
2) ∈ S, and (I ′′1 , I

′′
2 ) ∈ S. From the

definition of transition probabilities, we have

q((I ′′1 , I
′′
2 )|(I1, I2), a1) = µm,2/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a2) = (µm,2 + µs,1)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a3) = (µm,2 + µs,2)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a4) = (µm,2 + µs,1 + µs,2)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a5) = µm,1/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a6) = (µm,1 + µs,1)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a7) = (µm,1 + µs,2)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a8) = (µm,1 + µs,1 + µs,2)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a9) = (µm,1 + µm,2)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a10) = (µm,1 + µm,2 + µs,1)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a11) = (µm,1 + µm,2 + µs,2)/ν, if I ′′1 ≤ I1, and 0 otherwise.

q((I ′′1 , I
′′
2 )|(I1, I2), a12) = (µm,1 + µm,2 + µs,1 + µs,2)/ν, if I ′′1 ≤ I1, and 0 otherwise. (4.10)

For for any state (I1 + d, I2− d) ∈ S with discrete d = 1, 2, ..., p((I1 + d, I2− d)|(I1, I2), aj) =

0,∀aj because each transition impacts at most inventory position I1 or I2 but not both. Thus,

q((I ′′1 , I
′′
2 )|(I1, I2), aj) ≥ 0 if I ′′1 ≤ I1 and 0 otherwise. This implies that q((I ′′1 , I

′′
2 )|(I1, I2), aj)

is non-decreasing in I1. Since, r(σ, aj) is convex over S ∀aj, and q((I ′′1 , I
′′
2 )|(I1, I2), aj) is

non-decreasing over S ∀aj, from Proposition 4.7.3 from Puterman (1994), it follows that the
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optimal value function V ∗(I1, I2) is convex over S. This concludes the proof.

Proof of Theorem 4.6: We prove this theorem in two parts. At first, we consider the

case where V ∗(I1, I2) is non-decreasing with respect to I1 and show that the optimal actions

are monotone with respect to I1. Next, we we consider the case where V ∗(I1, I2) is non-

decreasing with respect to I2 and show that the optimal actions are monotone with respect

to I2.

If cm,i = 0, cs,i = 0, i = 1, 2, then using Theorem 4.3, action a2 is optimal if ∆2 < 0 and

∆2 > 0, which is not feasible. So, action a2 is not optimal. Similarly, we can show using

Theorem 4.1 - 4.4 that actions from the set {a2, a4, a7, a8, a9, a10, a11} are not optimal. Next,

if V ∗(I1, I2) is non-decreasing with respect to I1, (I1, I2) ∈ S, then ∆1−∆2 > 0. From Figure

4.4, if action a3 is optimal then ∆1 < 0 and ∆2 > 0. This implies that ∆1 −∆2 < 0. This

contradicts our assumption and therefore action a3 is not optimal. Next, using definition

of q((I ′′1 , I
′′
2 )|(I1, I2), aj), if µm,1 > µm,2 then q((I ′′1 , I

′′
2 )|(I1, I2), a1) < q((I ′′1 , I

′′
2 )|(I1, I2), a5).

Again from Figure 4.4, if µm,1 > µm,2 then action a1 is not optimal. So, for non-increasing

sequence of service rate for component C1 that are defined by the sequence {a5, a6, a12},

q(σ′′|σ, aj) is sub-additive with respect to non-decreasing I1 and action space A. Similarly,

we consider V ∗(I1, I2) to be non-decreasing with respect to I2, (I1, I2) ∈ S, and prove that

the optimal actions are monotone with respect to I2 for the other half of the state space.

This concludes the proof.

Proof of Theorem 4.7: We prove this theorem in two parts. At first, we consider the

case where V ∗(I1, I2) is non-decreasing with respect to I1 and show that the optimal actions

are monotone with respect to I1. Next, we we consider the case where V ∗(I1, I2) is non-

decreasing with respect to I2 and show that the optimal actions are monotone with respect

to I2. If (I1 + I2) = K and I1, > max(0, K), then h1 max(I1, 0) is non-decreasing with I1,

b1 max(−I1, 0) is zero, h2 max(K − I1, 0) is zero, and b2 max(−K + I1, 0) is non-decreasing
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with I1. Thus, r(I1, I2) is non-decreasing for I1, > max(0, K). Also, from Proposition 4.1,

q((I ′′1 , I
′′
2 )|(I1, I2), aj) is non-decreasing in I1. Thus, V ∗(I1, I2) is non-decreasing over I1.

Next, using Theorem 4.1, 4.2, 4.3, and 4.4, we observe that if
cm,i
µm,i

<
cm,i
µm,i

, i = 1, 2, then

any action in the set {a9, a10, a11} is not optimal. This implies that optimal action belongs

to the set {a1, a2, a3, a4, a5, a6, a7, a8, a12}. Next, using definition of q((I ′′1 , I
′′
2 )|(I1, I2), aj), if

µs,1 > µs,2 then q((I ′′1 , I
′′
2 )|(I1, I2), a3) < q((I ′′1 , I

′′
2 )|(I1, I2), a2), if µm,1 > µm,2 + µs,1 + µs,2

then q((I ′′1 , I
′′
2 )|(I1, I2), a4) < q((I ′′1 , I

′′
2 )|(I1, I2), a5). So, for non-increasing sequence of ser-

vice rate for component C1 that are defined by the sequence {a1, a3, a2, a4, a5, a7, a6, a8, a12},

q(σ′′|σ, aj) is sub-additive with respect to non-decreasing I1 and action space A. Thus, from

Theorem 4.7.4 of Puterman (1994), we can conclude that the optimal action a∗ is non-

increasing in service rates for component C1 with respect to increasing I1, i.e. there exists

thresholds k1, k2, and k3, k3 > k2 > k1 such that the component C1 (i) is not manufactured

if I1 > k3, (ii) is only be produced by the corresponding subcontractor if k2 < I1 < k3, (ii) is

only be produced by the manufacturer if k1 < I1 < k2, (iii) is produced at the manufacturer

and the corresponding subcontractor if I1 < k1.

Proof of Theorem 4.8: We prove this theorem in three steps. First, we show that the

optimal value function, V ∗(I1, I2) is non-decreasing over I1, I1 > K. Next, we show that

if
cm,i
µm,i

<
cs,i
µs,i
, i = 1, 2 then using Corollary 4.1, actions from the set {a2, a4, a7, a8} are

not optimal. Finally, we show that q((I ′′1 , I
′′
2 )|(I1, I2), aj) sub-additive with respect to non-

decreasing I1 and action A. In Theorem 4.7, we show that V ∗(I1, I2) is non-decreasing over

I1, (I1, I2) ∈ S. Next, using Corollary 4.1, we observe that if
cm,i
µm,i

>
cm,i
µm,i

, i = 1, 2, then actions

from the set {a2, a4, a7, a8} is not optimal. This implies that optimal action belongs to the

set {a1, a3, a5, a6, a9, a10, a11, a12}. Next, using definition of q((I ′′1 , I
′′
2 )|(I1, I2), aj), if µm,1 >

µm, 2+µs,1 then q((I ′′1 , I
′′
2 )|(I1, I2), a3) < q((I ′′1 , I

′′
2 )|(I1, I2), a5), if µs,1 > µs,2 +µm,2 +µs,2 then

q((I ′′1 , I
′′
2 )|(I1, I2), a11) < q((I ′′1 , I

′′
2 )|(I1, I2), a6). So, for non-increasing sequence of service rate

for component C1 that are defined by the sequence {a1, a3, a5, a9, a11, a6, a10, a12}, q(σ′′|σ, aj)
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is sub-additive with respect to non-decreasing I1 and action space A. Thus, from Theorem

4.7.4 of Puterman (1994), we can conclude that the optimal action a∗ is non-increasing in

service rates for component C1 with respect to increasing I1, i.e. there exists thresholds k1

and k2, k2 > k1 such that the component C1 (i) is not manufactured if I1 > k2, or (ii) is only

be produced by the corresponding subcontractor if k1 < I1 < k2, or (iii) is produced at the

manufacturer and the corresponding subcontractor if I1 < k1.
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Chapter 5

Assembly Systems with Multiple Standard-type

Components

5.1 Introduction

In this chapter, we model a multi-product system where products are assembled from its

respective components. The components are made to stock with inventory being replenished

from both the subcontractor and the in-house manufacturing facility. The subcontractor and

the manufacturing facility have finite production capacity and stochastic lead times. How-

ever, the manufacturing facility is shared across components needed for multiple products.

Further, both the subcontractor and the manufacturing facility have stochastic lead times.

In practice, multiple components might require similar operations on a specialized equip-

ment. However, such equipment might require high capital investment. This prevents the

manufacturer from dedicating this equipment to a single product and often the available

capacity is shared across multiple products and components. Sometimes, the manufacturer

could subcontract the production of these components to external subcontractor to meet ex-

pectations of high demands. In this context, we assume the following two research questions

in this chapter: (i) What is the structure of the optimal policy for the manufacturer? (ii)

How should the components be scheduled on shared resources?
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We analyze a system with multiple products using stochastic models. However, the state

space of multi-product system requires us to keep track of stocking levels of each compo-

nent. In addition, action space involves decisions for manufacturing and each supplier. Thus,

deriving the monotonicity results for optimal policy is non-trivial. This poses additional re-

search challenges related to the state space complexity associated with determining optimal

policies for multi-product systems.

We use efficient action elimination techniques to determine the exact solution of the multi-

product system for small sized problems. Additionally, we propose a fairly accurate approach

that combines decomposition and Markov decision process (MDP) to address larger sized

problems. In this approach, we first decompose the system with multiple products into two

equivalent subsystems that involve a component for each end product. Next, using an it-

erative approach, we determine the optimal production and subcontracting policy for the

original system.

The rest of the chapter is organized as follows. Section 5.2 describes the model of the system

with multiple products. Section 5.3 describes the MDP formulations of the multi-product

system. Section 5.4 provide structural results on the optimal policy for a subsystem. Section

5.5 presents a decomposition based approach to solve multi-product system. Section 5.6

provides numerical studies to validate the structure of the optimal policy. Finally, Section

5.7 summarizes model insights and conclusions.

5.2 System Model

We analyze a manufacturing system that assembles two products i = 1, 2, each from its re-

spective two components Cij, j = 1, 2 as shown in Figure 5.1. We assume that each assembly

needs one unit of each component. For example, the products i = 1, 2 could correspond to

transmissions (large and small) that are assembled from gears and housings (large and small
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respectively). In Figure 5.1, Lij represents the storage location of component Cij, j = 1, 2;

of product i, i = 1, 2. Product i is assembled at assembly station Si and we assume that

assembly time for product i at station Si is negligible. The demand for product i is assumed

to be a Poisson process Ni(t), t ≥ 0 with rate λi. If at the arrival epoch of the demand for

product i, both components Cij, j = 1, 2; are available, then the demand for product i is

immediately satisfied. If one or more components required for product i is unavailable, then

the demand for product i is backordered.

Figure 5.1 Supply Chain Model for System with Two Products

Let Iij(t) denote the net inventory for component Cij which is defined as on-hand inventory

minus backorders of component Cij at time t. The manufacturer has the option to replen-

ish inventory for component j using available capacity at the external subcontractor, Sij or

use capacity from the in-house manufacturing facility Mj that can be used to manufacturer
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either component C1j or C2j.

We model the external subcontractor, Sij and the internal manufacturing facility Mj as

single server queues with exponential service time with mean µ−1
s,ij and µ−1

m,ij respectively

and cs,ij and cm,ij denote the unit cost rate to manufacture component Cij at the external

subcontractor and in-house manufacturing facility receptively. We let hij denote the unit

inventory holding cost rate for component Cij and bi denote the unit backordering cost rate

of product i. Next section presents the Markov decision process formulation to determine

the optimal production and subcontracting decisions.

5.3 Markov Decision Process Formulation

We develop a continuous-time Markov chain to capture the dynamics of the system. For

analysis purposes, we define two subsystems χj, j = 1, 2 as subsystem j that corresponds

to the manufacturing of components C1j and C2j (see Figure 5.2). This subsystem includes

external subcontractors S1j and S2j, and in-house manufacturing department Mj. Note that

this subsystem has similarities to the system analyzed in Chapter 4.

Figure 5.2 Subsystem χj, j = 1, 2
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Following are the key elements in the infinite horizon Markov decision process formulation:

Decision epoch: In the proposed system, actions are taken at a state change, i.e upon de-

mand arrival and service completion epochs.

State space, Σ: The state of the system can be completely described with a 4-tupled state

space with state σ = (I11, I21, I12, I22), σ ∈ Σ where Iij is the net inventory position of com-

ponent Cij.

Action space, A: We define the action space, A = A1 × A2 where Aj, j = 1, 2; represents

the set of actions for subsystem χj with aj,kj = (mj, s1j, s2j), aj,kj ∈ Aj, kj = 1, ..., 12. Here,

mj takes the value i if action corresponds to manufacturing of component Cij at the in-

house manufacturing facility Mj and takes the value 0 the action corresponds to being idle.

Similarly, sij, i = 1, 2 takes the value i when the action corresponds to manufacturing of

component Cij at the external supplier Sij and takes the value 0 if the action corresponds

to being idle. Table 5.1 defines the 12 possible action available for subsystem χj. Note that

since A = A1 × A2, there are 144 potential actions ak = (a1,k1 , a2,k2) ∈ A to choose from at

each state.

Transition probabilities: Define p(σ′|σ, a1,k1 , a2,k2) as the transition probability for any state

σ = (I11, I21, I12, I22) to state σ′ = (I ′11, I
′
21, I

′
12, I

′
22) under actions a1,k1 ∈ A1, a2,k2 ∈ A2.

We define ν =
∑2

i=1 λi +
∑2

i=1

∑2
j=1(µm,ij + µs,ij) + A as the normalizing factor for the

uniformization technique described in Lippman (1975). Then the transition probabilities

p(σ′|σ, a1,k1 , a2,k2) are defined as follows:

Demand arrival for product i: Then I ′ij = Iij − 1, j = 1, 2; and the corresponding transition

probability p(σ′|σ, a1,k1 , a2,k2) is given by:

p(σ′|σ, a1,k1 , a2,k2) = λi/ν,∀i = 1, 2
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Table 5.1 Action Space for Subsystem χj

Aj Mj S1j S2j

aj,1 1 1 2

aj,2 1 0 2

aj,3 1 1 0

aj,4 1 0 0

aj,5 2 1 2

aj,6 2 0 2

aj,7 2 1 0

aj,8 2 0 0

aj,9 0 1 2

aj,10 0 0 2

aj,11 0 1 0

aj,12 0 0 0

Service completion of component C1j: Then I ′1j = I1j + 1; and the corresponding transition

probability p(σ′|σ, a1,k1 , a2,k2) is given by:

p(σ′|σ, a1,k1 , a2,k2) =
∑
j

(1m,1,kjµm,1j + 1s,1,kjµs,1j)/ν

where 1m,i,kj and 1s,i,kj , i = 1, 2 are indicator functions that takes the value 1 if manufacturer

Mj and subcontractor Sij respectively are producing component Cij under action aj,kj , and

0 otherwise.

Service completion of component C2j: Then I ′2j = I2j + 1; and the corresponding transition

probability p(σ′|σ, a1,k1 , a2,k2) is given by:

p(σ′|σ, a1,k1 , a2,k2) =
∑
j

(1m,2,kjµm,2j + 1s,2,kjµs,2j)/ν
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Finally, I ′ij = Iij,∀i, j = 1, 2; and the transition probability p(σ′|σ, a1,k1 , a2,k2) is given by:

p(σ′|σ, a1,k1 , a2,k2) = (ν −
∑
i,j

(λi + 1m,i,kjµm,ij + 1s,i,kjµs,ij))/ν

Cost equation: Define h(σ) =
∑

j

∑
i hij max(Iij, 0) as the total inventory holding cost

and b(σ) =
∑

i bi maxj max(−Iij, 0) as the total backordering cost. Let, c(a1,k1 , a2,k2) =∑
i,j(cm,ij1m,i,kj + cs,ij1s,i,kj) represents the total production cost for action a1,k1 and a2,k2 ,

where 1m,i,kj (or Is,i,kj) is a binary variable that takes the value 1 if the in-house manufacturer

(or the subcontractor) is producing component Cij, and takes the value 0 otherwise . For

instance, if a1,2 = (1, 0, 2) and a2,2 = (1, 0, 2); then C(a1,2, a2,2) = (cm,11 +cs,21 +cm,12 +cs,22).

This implies that system incurs production cost at a facility only if action suggests to produce

at the facility. Then, we construct a standard Bellman cost equation with value function,

Vt(σ) at state σ and decision epoch t. Equation (5.1) defines the value function Vt(σ) at

state σ. We use the discount factor η ∈ (0, 1) in the optimization.

Vt(σ) = h(σ) + b(σ)

+min(a1,k1 ,a2,k2 )∈A[c(a1, a2) + η
∑
σ′

p(σ′|σ, a1,k1 , a2,k2)Vt+1(σ′)],∀σ ∈ Σ (5.1)

The objective minimizes the value function, Vt(σ) at each state σ and determine the optimal

action (a∗1,k1 , a
∗
2,k2

). The system described above presents challenges in terms of structural

analysis of the optimal policy. First, the size of the state space Σ and action space A in-

creases the complexity of the analysis. For example, with Iij, i, j = 1, 2 varying from −100

to 100, the model has 1 billion states and 144 actions. Second, the optimal value function

V ∗t (σ) may not be convex in I1j, j = 1, 2 and the transition probabilities may not have sub-

additivity or super-additivity property with respect to Iij in the state space Σ and action

space A because of high action space.

Despite of the above mentioned challenges, we are able to analyze the original problem by

decomposing the original system into two subsystems as presented in the next section. Each

subsystem χj, j = 1, 2 only models components C1j and C2j, requiring 2-tupled state space
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and 12 actions. This decreases the complexity of the model. Further, we use efficient action

comparison and action elimination techniques to significantly reduce the action space which

helps us to prove that simple multi-index policies are optimal when the sum of inventory

position of product C1j and product C2j are constant.

Next, we describe the characteristics of the optimal policy. We present the characteristics of

the optimal value function of the subsystem χj, j = 1, 2.

5.4 Characteristics of the Optimal Policy for Subsystem χj

We model each subsystem χj as a Markov decision process model. In each subsystem χj,

actions are taken at epochs corresponding to the state change. Note that, the state of subsys-

tem χj is two tupled and is described in a similar way as the system presented in Chapter 4.

We define state σj = (I1j, I2j), where Iij, i = 1, 2 is the net inventory position of component

Cij and σj ∈ Σj. Next, the set of actions Aj is defined by aj,kj = (mj, s1j, s2j), kj = 1, ..., 12.

Next, we use definitions of transition probabilities and immediate cost function to define the

equivalent transition probabilities p(σ′j|σj, aj,kj) and immediate cost function rj(σj, aj,kj) for

subsystem χj. This means that rj(σj, aj,kj) = hj(σj) + bj(σj) + cj(aj,kj), j = 1, 2. Note that

hj(σj) =
∑

i hij max(Iij, 0) is the total inventory holding cost, bj(σj) =
∑

i bij max(−Iij, 0) is

the total backordering cost, and cj(aj,kj) =
∑

i(cm,ij1m,i,kj + cs,ij1s,i,kj) represents the total

production cost for action aj,kj . Finally, we construct a standard Bellman cost equation

for subsystem χj with value function, Vt,j(σj) at state σj and decision epoch t as shown in

Equation (5.2). For simplicity, we normalize and set νj = 1 and Aj = 0.

Vt,j(I1j, I2j) = hj(σj) + bj(σj)

+minaj,kj∈Aj [cj(aj,kj) + ηj
∑
σ′
j

pj(σ
′
j|σj, aj,kj)Vt+1,j(σ

′
j)] (5.2)

We analyze a complete symmetric system (with respect to costs and service rates of the

products), and show that the optimal policy is of dual index type, i.e. it suggests that
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either one of the products should be always produced at the fastest rate or none of the

products should be produced. In other words, actions aj,10 and aj,11 are never optimal.

Next, we analyze asymmetric systems (with respect to costs and service rates) and partition

the action space into regions based on the unit production cost of the manufacturer and

the subcontractor, and show that the multi-index policies could be optimal under specific

conditions on the service rates. In this section, we use Proposition 4.1 from Chapter 4 to

summarize optimal policies for several cases of subsystem χj.

5.4.1 Optimal Policy for Symmetric Systems

We consider two types of symmetry, M−S symmetry and complete symmetry. For an M−S

symmetric system, the costs and service rates for a given component Cij for the manufac-

turer Mj is the same as that of the subcontractor Sij, i.e. cm,ij = cs,ij, and µm,ij = µs,ij.

Complete symmetry corresponds to a special case of M − S symmetric system where the

production costs and the service rates are same across the products. Under M−S symmetry

, we observe that action aj,9 is never optimal, i.e. both the products will not be simultane-

ously manufactured only by the respective external subcontractors. This happens because

the action aj,9 has higher costs than action aj,5.

Next, we consider complete symmetric system. For this case, first we use Proposition 5.1

and further reduce the optimal action space from 12 actions to only 5 actions.

Proposition 5.1. If cm,ij = cs,ij, and µm,ij = µs,ij, i = 1, 2, then optimal action belongs to

the set {aj,1, aj,3, aj,5, aj,6, aj,12}.

Proof. The results follows from Theorem 4.5 in Chapter 4.

Further, we show that under complete symmetric system with respect to costs and service

rates of the products, the optimal policy suggests that either one of the products should be

always produced at the fastest rate or none of the products should be produced. In other

words, actions aj,10 and aj,11 are never optimal.
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5.4.2 Optimal Policy for Asymmetric Systems

For the asymmetric, we analyze three cases : (1) system with negligible production costs,

(2) system with cheaper manufacturer, (3) system with cheaper subcontractor.

Case 1: Negligible production costs: Typically, in the energy industry, certain prod-

ucts/ operations such as manual assembly, PCB assembly, wire harnesses, etc have negligible

production costs as compared to material costs or inventory costs. Under this setting, the

production cost could be assumed to be zero. Proposition 5.2 shows that if the production

costs are zero then the optimal action belongs to the set {aj,1, aj,3, aj,5, aj,6, aj,12} and the

decisions are non-increasing in the service rate of product C1j with respect to I1, (I1, I2) ∈ Sj.

Note that this case significantly reduces the action space for subsystem χj from 12 actions

to 5 actions, and thereby reducing the computational complexity in the original system.

Proposition 5.2. For subsystem χj with state σj ∈ Sj = {(I1j, I2j)|I1j + I2j = Kj} where,

Kj is constant, if cm,ij = cs,ij = 0, i = 1, 2, then the optimal action a∗j,kj

(1) belongs to the set {aj,1, aj,3, aj,5, aj,6, aj,12}.

(2) is non-increasing in service rates for product C1j with respect to increasing I1j.

Proof. Refer to Theorem 4.6 in Chapter 4 for the proof.

Case 2: Manufacturer is cheaper: When demand is high and exceeds internal capac-

ity, the supply chain manager could subcontract products to the external subcontractor to

alleviate the production and capacity burden at the manufacturer, even though the subcon-

tractor is more expensive than the manufacturer. However, for example, blowout preventers

(prominent energy product) vary significantly in size and require special equipment. For

this product, the production cost at the subcontractor could be more than the production

cost at the manufacturer. Proposition 5.3 shows that if the production cost per unit at the

manufacturer is less than the production cost per unit at the subcontractor, then the optimal

actions belongs to the set {aj,1, aj,2, aj,3, aj,4, aj,5, aj,6, aj,7, aj,8, aj,12}. Additionally, if service

rate of the product C1j is significantly more than the service rate of product C2j which is
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typical for products which high variation in size, then optimal decisions are non-increasing

in the service rate of product C1j with respect to I1j, (I1j, I2j) ∈ Sj. Note that this case

reduces the action space for subsystem χj from 12 actions to 9 actions.

Proposition 5.3. For subsystem χj with state σj ∈ Sj = {(I1j, I2j)|I1j + I2j = Kj} where,

Kj is constant
cm,i
µm,i

<
cs,i
µs,i
, i = 1, 2, then

(1) the optimal action a∗j,kj belongs to the set {aj,1, aj,2, aj,3, aj,4, aj,5, aj,6, aj,7, aj,8, aj,12}.

(2) if I1j > Kj, µs,1j > µs,2j, and µm,1j > µm,2j + µs,1j + µs,2j, then the optimal action a∗j,kj

is non-increasing in service rates for product C1j with respect to increasing I1j.

Proof. Refer to Theorem 4.7 in Chapter 4 for the proof.

Case 3: Subcontractor is cheaper: For example, products such as top drives are often

expensive to produce using capacity available at the manufacturer. Using capacity available

at the subcontractor is often cheaper. However, if the subcontractor has a higher lead time,

this could lead to high backorders and poor service levels. So, the supply chain manager

needs to balance the tradeoffs in cost and delivery performance to decide on the production

and subcontracting decisions. Proposition 5.4 shows that if the production cost per unit at

the manufacturer is more than the production cost per unit at the subcontractor, then the

optimal actions belongs to the set {aj,1, aj,3, aj,5, aj,6, aj,9, aj,10, aj,11, aj,12}. Additionally, if

the service rate of the product C1j is significantly more than the service rate of product C2j,

then optimal decisions are non-increasing in the service rate of product C1j with respect to

I1j, (I1j, I2j) ∈ Sj. Note that this case reduces the action space for subsystem χj from 12

actions to 8 actions.

Proposition 5.4. For subsystem χj with state σj ∈ Sj = {(I1j, I2j)|I1j + I2j = Kj} where,

Kj is constant
cm,i
µm,i

>
cs,i
µs,i
, i = 1, 2, then

(1) the optimal action a∗j,kj belongs to the set {aj,1, aj,3, aj,5, aj,6, aj,9, aj,10, aj,11, aj,12}.

(2) if I1j > Kj, µm,1j > µm,2j + µs,1j, and µs,1j > µm,2j + µs,2j, then the optimal action a∗j,kj

is non-increasing in service rates for product C1j with respect to increasing I1j.
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Proof. Refer to Theorem 4.8 in Chapter 4 for the proof.

Next, we use the characteristics of the optimal policy of the subsystem χj to propose an

approximate analysis of the optimal policy for the original multi-product system.

5.5 Approximate Analysis

Recall that the system described in Section 5.3 presents challenges in terms the size of the

state space Σ and action space A. For example, with Iij, i, j = 1, 2 varying from −100 to

100, the model has 1 billion states and 144 actions. So, we leverage results summarized

in Section 5.4 for subsystem χj to develop efficient approximate solution for the original

system. This section outlines the approximate analysis of the original system. We develop

a decomposition based approach which considers two Markov chains corresponding to two

subsystems, χj, j = 1, 2.

In the original multi-product system described in Section 5.2, for states I1j, I2j, j = 1, 2

where, I1j > −Bmax, I2j > −Bmax, j = 1, 2, transition probabilities and behavior of χj is

exactly the same as in the original system. The difference only occurs when I1j or I2j reaches

−Bmax in one of the subsystems. For instance, if either I11 or I21 is equal to −Bmax in χ1; in

the original system, demands would be backordered. But subsystem χ2 cannot record this

information and demands continue to queue in χ2. To account for this in the subsystem χj,

we define the surrogate demand arrival rate, λij corresponding to component Cij for product

i, i = 1, 2. In the decomposition, we adjust the demand arrival rate λ1j and λ2j, j = 1, 2 to

ensure that each subsystem χj models the behavior of the original two-product system. For

subsystem χ1, λi1 = λi(1−Pi2 +Pi1Pi2) where, Pi2 is the probability that the backorders for

component C12 and C22 in subsystem χ2 are equal to Bmax, and Pi1 is the probability that

the backorders for component C11 and C21 in subsystem χ1 are equal to Bmax. Similarly, for
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subsystem χ2, λi2 = λi(1− Pi1 + Pi1Pi2).

Clearly, the solution to subsystem χ1 requires the estimates of Pi2 that is obtained from

the optimal action set for subsystem χ2 and vice versa. This suggests an iterative approach

as shown in Figure 5.3. We analyze the optimal action for each subsystem using policy

iteration algorithm within a larger iterative approach. Let Qj(a
(∗)
j,kj

) denote the transition

probability matrix and πj(I1j, I2j, a
(∗)
j,kj

) ∈ Πj(a
(∗)
j,kj

) denotes the corresponding steady state

probabilities for subsystem χj. Then, in system χ1, we first assume Pi2 = 0 and determine

the optimal optimal action a
(∗)
1,k1

for subsystem χ1 using policy iteration. Then, we construct

the Markov chain model for subsystem χ1 with a
(∗)
1,k1

and determine the steady state probabil-

ities π1(I11, I21, a
(∗)
1,k1

) by solving the Chapman-Kolmogorov equations. Next, we use steady

state probabilities to evaluate the estimates of Pi1 (see Figure 5.3). Subsystem χ2 uses this

estimate of Pi1 to calculate the surrogate demand arrival rate λi2. Next, we use this demand

arrival rate λi2 and determine the optimal optimal action a
(∗)
2,k2

for subsystem χ2 using policy

iteration. Then, we construct the Markov chain model for subsystem χ2 with a
(∗)
2,k2

and de-

termine the steady state probabilities π2(I12, I22, a
(∗)
2,k2

) by solving the Chapman-Kolmogorov

equations. Next, we use steady state probabilities to evaluate the estimates of Pi2. This

iterative process continues till the convergence is achieved for Pij, i, j = 1, 2.

Executing this iterative procedure therefore, has two key steps: i) solving the simplified

Markov decision process formulations for each subsystem to obtain the optimal action for

the subsystem for a given estimates Pi1 and Pi2. and ii) solving the Markov chain for each

subsystem under current estimates of optimal action to obtain new estimates Pi1 and Pi2.
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Section 5.4 already described the formulation of subsystem χj, j = 1, 2, and the struc-

tural properties of optimal value function and optimal policy. In the following paragraph,

we describe the details of Markov chain formulation used to determine the estimates of

Pij, i, j = 1, 2. Although, we have not proved the convergence of this algorithm, we observed

that it always converged in our numerical experiments. In the iterative procedure, policy

iteration on subsystem χj for a given estimate of Pi1 and Pi2 provides the optimal actions

corresponding to each state σj, j = 1, 2. We use the optimal actions a
(∗)
j,kj

obtained at each

iteration to develop a Markov chain formulation for the subsystem χj under these optimal

actions.

Let pj(σ
′
j|σj, a

(∗)
j,kj

) denote the transition probability from state σj = (I1j, I2j) to state σ′j =

(I ′1j, I
′
2j) by taking action a

(∗)
j,kj

, and let πj(I1j, I2j, a
(∗)
j,kj

) ∈ Πj(a
(∗)
j,kj

) denotes the corresponding

steady state probabilities. Then, the Chapman Kolmogorov (CK) equations for all states in

subsystem χj with given action a
(∗)
j,kj

is shown as follows:

• If −Bmax < I1j < max(I1j) and −Bmax < I2j < max(I2j), ∀j = 1, 2:

(λ1j + λ2j + µm,1j + µs,1j + µs,2j)πj(I1j, I2j, a
(∗)
j,kj

) = λ1jπj(I1j + 1, I2j, a
(∗)
j,kj

)

+λ2jπj(I1j, I2j + 1, a
(∗)
j,kj

) (5.3)

+µs,2jπj(I1j, I2j − 1, a
(∗)
j,kj

)

+(µm,1j + µs,1j)πj(I1j − 1, I2j, a
(∗)
j,kj

)

• If −Bmax < I1j < max(I1j) and I2j = max(I2j), ∀j = 1, 2:

(λ1j + λ2j + µm,1j + µs,1j)πj(I1j, I2j, a
(∗)
j,kj

) = λ1jπj(I1j + 1, I2j, a
(∗)
j,kj

)

+µs,2jπj(I1j, I2j − 1, a
(∗)
j,kj

) (5.4)

+(µm,1j + µs,1j)πj(I1j − 1, I2j, a
(∗)
j,kj

)
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• If −Bmax < I1j < max(I1j) and I2j = −Bmax, ∀j = 1, 2:

(λ1j + µm,1j + µs,1j + µs,2j)πj(I1j, I2j, a
(∗)
j,kj

) = λ1jπj(I1j + 1, I2j, a
(∗)
j,kj

)

+λ2jπj(I1j, I2j + 1, a
(∗)
j,kj

) (5.5)

+(µm,1j + µs,1j)πj(I1j − 1, I2j, a
(∗)
j,kj

)

• If I1j = −Bmax and −Bmax < I2j < max(I2j), ∀j = 1, 2:

(λ2j + µm,1j + µs,1j + µs,2j)πj(I1j, I2j, a
(∗)
j,kj

) = λ1jπj(I1j + 1, I2j, a
(∗)
j,kj

)

+λ2jπj(I1j, I2j + 1, a
(∗)
j,kj

) (5.6)

+µs,2jπj(I1j, I2j − 1, a
(∗)
j,kj

)

• If I1j = −Bmax and I2j = max(I2j), ∀j = 1, 2:

(λ2j + µm,1j + µs,1j)πj(I1j, I2j, a
(∗)
j,kj

) = λ1jπj(I1j + 1, I2j, a
(∗)
j,kj

)

+µs,2jπj(I1j, I2j − 1, a
(∗)
j,kj

) (5.7)

• If I1j = −Bmax and I2j = −Bmax, ∀j = 1, 2:

(µm,1j + µs,1j + µs,2j)πj(I1j, I2j, a
(∗)
j,kj

) = λ1jπj(I1j + 1, I2j, a
(∗)
j,kj

)

+λ2jπj(I1j, I2j + 1, a
(∗)
j,kj

) (5.8)

• If I1j = max(I1j) and −Bmax < I2j < max(I2j), ∀j = 1, 2:

(λ1j + λ2j + µs,2j)πj(I1j, I2j, a
(∗)
j,kj

) = λ2jπj(I1j, I2j + 1, a
(∗)
j,kj

)

+µs,2jπj(I1j, I2j − 1, a
(∗)
j,kj

) (5.9)

• If I1j = max(I1j) and I2j = max(I2j), ∀j = 1, 2:

(λ1j + λ2j)πj(I1j, I2j, a
(∗)
j,kj

) = µs,2jπj(I1j, I2j − 1, a
(∗)
j,kj

) (5.10)

• If I1j = max(I1j) and I2j = −Bmax, ∀j = 1, 2:

(λ1j + µs,2j)πj(I1j, I2j, a
(∗)
j,kj

) = λ2jπj(I1j, I2j + 1, a
(∗)
j,kj

) (5.11)
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The CK equations for other actions a
(∗)
j,kj
∈ Aj can be written in similar way. Then, the

steady state probabilities πj(I1j, I2j, a
(∗)
j,kj

) corresponding to the optimal action are obtained

using Equation (5.12) and Equation (5.13).

Πj(aj,kj)Qj(a
(∗)
j,kj

) = 0 (5.12)∑
I1j

∑
I2j

πj(I1j, I2j, a
(∗)
j,kj

) = 1 (5.13)

Using these steady state probabilities, we estimate Pij,∀i = 1, 2; j = 1, 2 as shown in Equa-

tion (5.14) and Equation (5.15).

P1j =

I2j=Bmax∑
I2j=−Bmax

πj(−Bmax, I2j, a
(∗)
j,kj

) (5.14)

P2j =

I1j=Bmax∑
I1j=−Bmax

πj(I1j,−Bmax, a
(∗)
j,kj

) (5.15)

5.6 Numerical Studies

This section presents numerical studies of the proposed multi-product system to provide

insights on the characteristics of the optimal solution. We conduct three experiments: Ex-

periment 1, Experiment 2, and Experiment 3. Experiment 1 discussed in Section 5.6.1

considers zero production costs, Experiment 2 discussed in Section 5.6.2 considers cheaper

manufacturer, and Experiment 3 discussed in Section 5.6.3 considers expensive manufac-

turer. Finally, in Section 5.6.4, we analyze the accuracy of the decomposition approach for

these three experiments. We let Bmax denote the maximum backordering limit. Thus, we

have −Bmax ≤ Iij ≤ ∞, i, j = 1, 2.
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5.6.1 Experiment 1: Zero Production Costs

In Experiment 1, we consider a case where the manufacturer and the subcontractor have

zero costs i.e. cm,ij = 0, cs,ij = 0, i = 1, 2, j = 1, 2. Using Proposition 5.2, the optimal

action belongs to the set {aj,1, aj,3, aj,5, aj,6, aj,12}, reducing the total action space from 144

actions to 25 actions. Table 5.2 presents the system and cost parameters for Experiment 1.

Here, the manufacturer is twice as faster (µm,1j = 2µs,1j) as the external subcontractor. We

perform an exact analysis and analyze characteristics of the optimal solution for the original

system.

Table 5.2 System Parameters and Costs for Experiment 1

Subcontractor’s Parameters Manufacturer’s Parameters

cs,1j, j = 1, 2 0 cm,1j, j = 1, 2 0

cs,2j, j = 1, 2 0 cm,2j, j = 1, 2 0

µs,i1, i = 1, 2 1 µm,i1, i = 1, 2 2

µs,i2, i = 1, 2 1.5 µm,i2, i = 1, 2 3

System Parameters Other Costs

Bmax 5 bi, i = 1, 2 80

λi, i = 1, 2 1.5 hij, i, j = 1, 2 2

For Bmax = 5, we analyze the characteristics of the optimal solution. Table 5.3 presents

the optimal actions for subsystem χ1 corresponding to each state (σ1, σ2), σ2 = (0, 0). For

instance, if I11 = I21 = −5, the optimal action aj,5 corresponding to state (−5,−5, 0, 0).

Under given parameters and σ1 = (−5,−5), the optimal decision suggests to use in-house

manufacturing department Mj as well as external subcontractor S2j to manufacture compo-

nent C2j and only use external subcontractor S1j to manufacture component C1j. Similarly,

the optimal actions for other states are defined as well. The optimal policy contains actions
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{aj,1, aj,3, aj,5, aj,6, aj,12}.

For a fixed total inventory position, I11 + I21, we observe a monotone property in service

rates of components with increasing I11 or I21. For instance, if I11 + I21 = 0, the total service

rate for component C11 is non-increasing with increasing inventory position I11. In contrast,

if I11 + I21 = −6, the total service rate for component C11 is non-decreasing with increasing

inventory position I11. Under the given parameter setting, these results suggest a dual in-

dex type policy for component replenishment for a fixed total inventory position I11 + I21.

Although, the results shown in Table 5.3 is for σ2 = (0, 0), we observe this property to hold

for all other values of σ2. This means that for every state in the subsystem χ2, there is dual

index type structure of state in subsystem χ1 if I11 + I21 = K, where is K is constant.

Table 5.3 Optimal Actions Corresponding to Each State σ1 in Experiment 1

I11/I21 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 a1,5 a1,5 a1,5 a1,5 a1,5 a1,1 a1,1 a1,1 a1,3 a1,3 a1,3

-4 a1,1 a1,5 a1,5 a1,5 a1,1 a1,1 a1,1 a1,1 a1,3 a1,3 a1,3

-3 a1,1 a1,1 a1,1 a1,1 a1,1 a1,1 a1,1 a1,1 a1,3 a1,3 a1,3

-2 a1,1 a1,1 a1,5 a1,5 a1,1 a1,1 a1,1 a1,3 a1,3 a1,3 a1,3

-1 a1,1 a1,5 a1,5 a1,5 a1,5 a1,1 a1,1 a1,3 a1,3 a1,3 a1,3

0 a1,5 a1,5 a1,5 a1,5 a1,5 a1,1 a1,1 a1,3 a1,3 a1,3 a1,3

1 a1,5 a1,5 a1,5 a1,5 a1,5 a1,5 a1,5 a1,3 a1,3 a1,3 a1,3

2 a1,5 a1,5 a1,5 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12

3 a1,6 a1,6 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12

4 a1,6 a1,6 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12

5 a1,6 a1,6 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12
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For I11 + I21 = 0, Figure 5.4 shows the characteristics of the optimal solution for σ2 =

(0, 0), σ2 = (−5,−5), σ2 = (5, 5). We observe that the service rate of the component C11

is non-increasing with increasing inventory position I11. Under all states of the subsystem

χ2, these results suggest a dual index type policy for product replenishment for a fixed total

inventory position I11 + I21 = 0. For example, for σ2 = (−5,−5), the optimal service rate

of component C11 at inventory position I11 = 1 changes from 3 to 1 meaning that only

the subcontractor S11 is producing product C11 at I11 = 1. Next, the component C11 is

neither produced by the manufacturer M1 nor by the subcontractor S11 at inventory po-

sition I1 = 3. We observe similar results for I1 + I2 = K, K = −10, ..., 10. However,

the optimal policy might not be dual index type for other parameters. We also observe that

there is no monotone property in service rate of a given component C11 if I11 = K or I21 = K.

Figure 5.4 Optimal Service Rate of Component C11 for Experiment 1
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5.6.2 Experiment 2: Manufacturer is Cheaper than Subcontractor

In Experiment 2, we consider that the manufacturer is cheaper than the external subcon-

tractor. In this setting, the component C2j, j = 1, 2 is more expensive than the component

C1j, j = 1, 2. Using Proposition 5.3, the optimal action belongs to the set {aj,1, aj,2, aj,3, aj,4,

aj,5, aj,6, aj,7, aj,8, aj,12}, reducing the total action space from 144 actions to 81 actions. Note

that in Experiment 2, we have more than twice the actions as compared to Experiment 1

which increases the computational complexity of this experiment. Table 5.4 presents the

system and cost parameters for Experiment 2. Here again, the manufacturer is twice as

faster (µm,1j = 2µs,1j) as the external subcontractor. We perform an exact analysis and

analyze characteristics of the optimal solution for the original system.

Table 5.4 System Parameters and Costs for Experiment 2

Subcontractor’s Parameters Manufacturer’s Parameters

cs,1j, j = 1, 2 35 cm,1j, j = 1, 2 15

cs,2j, j = 1, 2 25 cm,2j, j = 1, 2 10

µs,i1, i = 1, 2 1 µm,i1, i = 1, 2 2

µs,i2, i = 1, 2 1.5 µm,i2, i = 1, 2 3

System Parameters Other Costs

Bmax 5 bi, i = 1, 2 80

λi, i = 1, 2 1.5 hij, i = 1, 2 2

For Bmax = 5, we analyze the characteristics of the optimal solution. Table 5.5 presents

the optimal actions for subsystem χ1 corresponding to each state (σ1, σ2), σ2 = (0, 0). For

instance, if I11 = I21 = −5, the optimal action aj,6 corresponding to state (−5,−5, 0, 0).

Under given parameters and σ1 = (−5,−5), the optimal decision suggests to use manufac-

turer Mj as well as external subcontractor S2j to manufacture component C2j and do not

manufacture component C1j. Similarly, the optimal actions for other states are defined as
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well. The optimal policy contains actions {aj,1, aj,3, aj,4, aj,5, aj,6, aj,8, aj,12}.

For a fixed total inventory position, I11 + I21, we sometime observe a monotone property in

service rates of components with increasing I11 or I21 but sometime do not observe monotone

property. For instance, if I11 +I21 = 0, the total service rate for component C11 is not always

non-increasing with increasing inventory position I11. In contrast, if I11 +I21 = −6, the total

service rate for component C11 is non-decreasing with increasing inventory position I11. This

suggests that the optimal policy may not be dual index type. But, if we consider condition

on service rates as given in Proposition 5.3 then we do observe dual index type policy to be

optimal at fixed total inventory position.

Table 5.5 Optimal Actions Corresponding to Each State σ1 in Experiment 2

I11/I21 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 a1,6 a1,6 a1,6 a1,6 a1,6 a1,4 a1,4 a1,4 a1,4 a1,4 a1,4

-4 a1,1 a1,6 a1,6 a1,6 a1,6 a1,3 a1,4 a1,4 a1,4 a1,4 a1,4

-3 a1,1 a1,5 a1,5 a1,5 a1,1 a1,3 a1,3 a1,3 a1,3 a1,3 a1,3

-2 a1,1 a1,1 a1,5 a1,5 a1,1 a1,4 a1,4 a1,4 a1,4 a1,4 a1,4

-1 a1,1 a1,5 a1,5 a1,5 a1,6 a1,4 a1,4 a1,4 a1,4 a1,4 a1,4

0 a1,6 a1,6 a1,6 a1,6 a1,6 a1,8 a1,12 a1,12 a1,12 a1,12 a1,12

1 a1,6 a1,6 a1,6 a1,6 a1,8 a1,8 a1,12 a1,12 a1,12 a1,12 a1,12

2 a1,6 a1,6 a1,6 a1,6 a1,8 a1,8 a1,12 a1,12 a1,12 a1,12 a1,12

3 a1,6 a1,6 a1,6 a1,6 a1,8 a1,8 a1,12 a1,12 a1,12 a1,12 a1,12

4 a1,6 a1,6 a1,6 a1,6 a1,8 a1,8 a1,12 a1,12 a1,12 a1,12 a1,12

5 a1,6 a1,6 a1,6 a1,6 a1,8 a1,8 a1,12 a1,12 a1,12 a1,12 a1,12

For I11 + I21 = 0, Figure 5.5 shows the characteristics of the optimal solution for σ2 =

(0, 0), σ2 = (−5,−5), σ2 = (5, 5). We observe that the service rate of the component C11 is



112

not always non-increasing with increasing inventory position I11. For example, for σ2 = (5, 5),

the optimal service rate of product C11 at inventory position I11 = −4 changes from 2 to 3

meaning that the manufacturer Mj and the subcontractor S11 is producing component C11

at I11 = 1 then the service rate again changes to 2 at I11 = −2 and 0 at I11 = 0.

Figure 5.5 Optimal Service Rate of Component C11 for Experiment 2

5.6.3 Experiment 3: Subcontractor is Cheaper than Manufacturer

In Experiment 3, we consider a case where the subcontractor is cheaper than the manufac-

turer. In this setting, the component C2j, j = 1, 2 is more expensive than the component

C1j, j = 1, 2. Using Proposition 5.4, the optimal action belongs to the set {aj,1, aj,3, aj,5, aj,6,

aj,9, aj,10, aj,11, aj,12}, reducing the total action space from 144 actions to 64 actions. Note

that in Experiment 3, we have more than twice the actions as compared to Experiment 1

but less number of actions as compared to Experiment 2. Table 5.6 presents the system and

cost parameters for Experiment 3. Here, the manufacturer is twice as faster (µm,1j = 2µs,1j)

as the external subcontractor. We perform an exact analysis and analyze characteristics of
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the optimal solution for the original system.

Table 5.6 System Parameters and Costs for Experiment 3

Subcontractor’s Parameters Manufacturer’s Parameters

cs,1j, j = 1, 2 15 cm,1j, j = 1, 2 35

cs,2j, j = 1, 2 10 cm,2j, j = 1, 2 25

µs,i1, i = 1, 2 1 µm,i1, i = 1, 2 2

µs,i2, i = 1, 2 1.5 µm,i2, i = 1, 2 3

System Parameters Other Costs

Bmax 5 bi, i = 1, 2 80

λi, i = 1, 2 1.5 hij, i, j = 1, 2 2

For Bmax = 5, we analyze the characteristics of the optimal solution. Table 5.7 presents

the optimal actions for subsystem χ1 corresponding to each state (σ1, σ2), σ2 = (0, 0). The

optimal policy contains actions aj,1, aj,3, aj,5, aj,6, aj,12. The results look very similar to Ex-

periment 1. Although, we did not observe actions aj,9, aj,10, aj,11 for σ2 = (0, 0), we do observe

these action in the optimal policy for other states of subsystem χ2.

For a fixed total inventory position, I11+I21, we observe a monotone property in service rates

of components with increasing I11 or I21. For instance, if I11 + I21 = 0, the total service rate

for component C11 is non-increasing with increasing inventory position I11 where at I11 < 0

both the manufacturer and the subcontractor is producing component C11, and at I11 ≥ 0

component C11 is not manufactured. In contrast, if I11 + I21 = −7, the total service rate for

component C11 is non-decreasing with increasing inventory position I11. Under the given pa-

rameter setting, these results suggest a dual index type policy for component replenishment

for a fixed total inventory position I11 +I21. Although, we show this result for σ2 = (0, 0), we

observe this property to hold for all other values of σ2 whenever the subcontractor is cheaper
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Table 5.7 Optimal Actions Corresponding to Each State σ1 in Experiment 3

I11/I21 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 a1,5 a1,5 a1,5 a1,5 a1,5 a1,3 a1,3 a1,3 a1,3 a1,3 a1,3

-4 a1,1 a1,5 a1,5 a1,5 a1,1 a1,3 a1,3 a1,3 a1,3 a1,3 a1,3

-3 a1,1 a1,5 a1,5 a1,5 a1,1 a1,3 a1,3 a1,3 a1,3 a1,3 a1,3

-2 a1,1 a1,5 a1,5 a1,5 a1,1 a1,3 a1,3 a1,3 a1,3 a1,3 a1,3

-1 a1,5 a1,5 a1,5 a1,5 a1,5 a1,3 a1,3 a1,3 a1,3 a1,3 a1,3

0 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12 a1,12 a1,12

1 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12 a1,12 a1,12

2 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12 a1,12 a1,12

3 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12 a1,12 a1,12

4 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12 a1,12 a1,12

5 a1,6 a1,6 a1,6 a1,6 a1,6 a1,12 a1,12 a1,12 a1,12 a1,12 a1,12

than the manufacturer. This means that for every state in the subsystem χ2, there is dual

index type structure of state in subsystem χ1 if I11 + I21 = K, where is K is constant.

For I11 + I21 = 0, Figure 5.6 shows the characteristics of the optimal solution for σ2 =

(0, 0), σ2 = (−5,−5), σ2 = (5, 5) when the subcontractor is cheaper than the manufacturer.

We again observe that the service rate of the component C11 is non-increasing with increasing

inventory position I11. Under all states of the subsystem χ2, these results suggest a dual index

type policy for component replenishment for a fixed total inventory position I11 + I21 = 0.

For example, for σ2 = (−5,−5), the optimal service rate of component C11 at inventory

position I11 = 1 changes from 3 to 1 meaning that only the subcontractor S11 is producing

component C11 at I11 = 1. Next, the component C11 is neither produced by the manufacturer

M1 nor by the subcontractor S11 at inventory position I1 = 3. We observe similar results for

I1 + I2 = K, K = −10, ..., 10. However, the optimal policy might not be dual index type for
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Figure 5.6 Optimal Service Rate of Component C11 for Experiment 3

other parameters. We also observe that there is no monotone property in service rate of a

given product C11 if I11 = K or I21 = K.

5.6.4 Accuracy of the Decomposition Approach

In this section, we present the accuracy of the decomposition method to solve multi-product

system. We define V (σ)E∗ as the optimal value function at state σ = (σ1, σ2) for the original

system, and define V (σ)A∗ = V1(σ1)∗ + V2(σ2)∗ as the sum of optimal value functions for

subsystems χ1 and χ2 respectively. Next, let Er(σ) = (1 − V (σ)A∗/V (σ)E∗) ∗ 100 be the

error percentage in the approximate method for state σ. To measure the accuracy of the

decomposition method, we define b(σ) =
∑

ij bij max(−Iij, 0) as the total backordering cost

where bij = 40, i, j = 1, 2.

Table 5.8 presents the error range in the decomposition and the number states that have

error in the value function in the corresponding error range. For example, in Experiment 1,
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Table 5.8 Accuracy of the Decomposition Approach

Experiment Er(σ) Range Number of States

0− 5% 1420

Experiment 1 5− 10% 6641

10− 15% 6206

> 15% 374

0− 5% 7371

Experiment 2 5− 10% 5090

10− 15% 1078

> 15% 1102

0− 5% 5682

Experiment 3 5− 10% 6723

10− 15% 903

> 15% 1333

1420 states falls under 0 − 5% error range with respect to value functions. When the pro-

duction costs are zero, then more than 50% of states have less than 10% error range leading

to an average error of 9.5%. Next, when the manufacturer is cheaper, then more than 85%

of states have less than 10% error range leading to an average error of 6.7%. Finally, when

the subcontractor is cheaper, then more than 85% of states have less than 10% error range

leading to an average error of 8.1%.

5.7 Conclusions

In this chapter, we consider a multi-product system where two products are assembled from

two components. we assume that components are made to stock and can manufactured

from dedicated external subcontractor and shared in-house manufacturing department. We
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develop an approximate method that uses decomposition of the original system into com-

ponent based subsystems and uses iterative procedure to determine the solution. For each

subsystem, we leverage results from Chapter 4 to significantly reduce the action space of

the original system. For instance, for a subsystem with negligible production costs, the ac-

tion space for each subsystem reduces from 12 actions to 5 actions. Similarly, we reduce

the action space for subsystems where the manufacturer is cheaper than the subcontractor,

and subsystems where the manufacturer is expensive than the subcontractor. Next, using

iterative approach, we determine the optimal solution of the original system. We develop

numerical experiments that provide insights on the structure the optimal solution for the

original system. If the productions costs of the manufacturer and the subcontractor are zero

or the manufacturer is expensive than the subcontractor then we observe that for every state

in subsystem χ2 there is a dual index type policy in subsystem χ1. Numerically, we show

that the approximate method is fairly accurate in certain cases.
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Chapter 6

Capacity and Production Decision for Knowledge-type

Components

6.1 Introduction

In the energy equipment industry, knowledge-type components could account for 30-50% of

the bill of materials of the final product and contribute to 20-40% of the product revenue

(in terms of sales from original equipment and aftermarket). Knowledge-type involve in-

volve proprietary intellectual property (in the form of proprietary designs, manufacturing

processes, or both).

Knowledge-type components are made to order (in contrast to standard-type components

that are made to stock); based on the customers’ unique requirements (performance criteria,

operating environment, etc). These components often help manufacturers differentiate their

components from those manufactured by competitors and help to gain a competitive edge

in the market. For instance, blow out preventer (BOP) valves are considered as knowledge-

type components by several rig manufacturers like Cameron, National Oilwell Varco, and

Schlumberger. The proprietary designs for these components provide unique safety and re-

liability ratings for the rigs and are sometimes the deciding factor in awarding contracts.

However, such components require high capital investment and the cost to under utilize the

available capacity is significant. In such cases, knowledge-type components might need to be

strategically subcontracted to vendors for various reasons: (i) the subcontractor has avail-

able capacity that helps the manufacturer gain more revenue during the market up-cycles, or
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(ii) the manufacturer has high unused capacity costs (overhead costs) and balances tradeoffs

between unused capacity costs and production costs during market down-cycles.

In this chapter, we consider a supply chain setting where the manufacturer could subcontract

manufacturing of knowledge-type components to external vendors. However, we consider the

scenario where the subcontractor has cost associated with unused capacity. This leads to the

following research questions: (i) When and how much capacity should the manufacturer and

the subcontractor invest on? (ii) What is the structure of the optimal policy and how does

the unused capacity impact the optimal policy? (iii) How can we reduce the gap between

the system with centralized control and system if decentralized control. We develop Markov

decision process model for centralized system and stochastic game model for decentralized

system, and analytically analyze the structure of the optimal policy under both settings.

The rest of the chapter is organized as follows: Section 6.2 describes the system model and

assumptions for the centralized system and presents the Markov decision process model for

the system. Section 6.3 describes the optimal production and capacity decisions for one

time period model. Section 6.4 describes the optimal production and capacity decisions for

multiple time period model. Section 6.5 describes the system model and assumptions for

decentralized system and presents the stochastic game formulation of the system. Finally,

Section 6.6 summarizes the findings.

6.2 Capacity and Production System Model

We analyze a make-to-order manufacturing system producing knowledge-type components

in a multi-period setting under centralized decision making. At each time t, t = 1, ..., T , com-

ponents can be manufactured either by using available capacity Cm,t at the manufacturer

M , or by using available capacity Cs,t at the subcontractor S (see Figure 6.1). Typically, the

time periods could be in years. We assume that the capacities Cm,t and Cs,t are associated
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with long term investment on a special purpose capital equipment that cannot be disposed

or decreased in the later time periods. We assume that the demand at time t is denoted by

dt and can take values dlow,t or dhigh,t with probability q and (1− q) respectively.

Figure 6.1 Manufacturing System with Knowledge-type Components

At the beginning of each time period t, both the manufacturer M and the subcontractor

S decide if they want to invest in additional capacity cm,t and cs,t respectively. We assume

that the lead time to make these capital investments is negligible and hence a decision to

invest increases the capacity level of the manufacturer and subcontractor from Cm,t−1 to

Cm,t = Cm,t−1 + cm,t−1, and Cs,t−1 to Cs,t = Cs,t−1 + cs,t−1 respectively. Next, the demand

dt is realized. Demands are in the terms of confirmed order of components with promised

delivery dates in the future. After observing the demand, the manufacturer M decides to

produce xm,t quantity of the component at a production cost of fm per unit, and subcon-

tract xs,t quantity to the subcontractor S at a subcontracting cost of fs per unit. Note that

excess production at time period t cannot be used to satisfy demands for later time peri-

ods as the demand is associated with knowledge-type components and are make-to-order.

Therefore, any excess inventory is disposed at zero cost. Since, the capacity investments cor-

respond to capital equipment, both the manufacturer and the subcontractor incur unused

capacity costs om and os respectively to absorb the relevant overheads. The total unused

capacity cost incurred by the manufacturer and the subcontractor in time period t is given
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by om(Cm,t + cm,t − xm,t) and os(Cs,t + cs,t − xs,t) respectively. At the end of time period

t, manufacturer generates a per unit revenue wt = A − em min(dt, xm,t + xs,t) by satisfying

demands to the extent possible through components manufactured in that time period. Note

that, A and em control the intersection and slope of the revenue function with respect to the

total production.

We use Markov decision process formulation to determine the optimal capacity and produc-

tion decisions of the system. The key elements in the Markov decision process formulation

are as follows:

Decision epoch: In the manufacturing system, actions are taken at epochs corresponding to

every time periods t = 1, 2, ..., T .

State space, Σ: The state of the system is described with a 2-tupled state space with state

σ = (Cm,t, Cs,t), σ ∈ Σ, where Cm,t and Cs,t are the capacity levels at the manufacture M

and the subcontractor S respectively at the beginning of time t.

Action space, A: The action space A represents the set of actions with a = (cm,t, cs,t), a ∈ A.

Here, cm,t is the available capacity choices for the manufacturer M and can take values

0, c, 2c, ..., nc, and cs,t is the available capacity choices for the subcontractor S and can take

values 0, c, 2c, ..., nc. Note that the manufacturer and the subcontractor, each has n capacity

level choices.

Transition probabilities: Define p(σ′|σ, a) as the transition probability for any state σ =

(Cm,t, Cs,t) to state σ′ = (C ′m,t, C
′
s,t) corresponding to action a ∈ A. Then, the transition

probability p(σ′|σ, a) = 1 if C ′m,t = Cm,t + cm,t and C ′s,t = Cs,t + cs,t, 0 otherwise.
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Cost equation: Define w(σ, a, xm,t, xs,t) = wt min(dt, xm,t + xs,t) as the total expected rev-

enue, f(σ, a, xm,t, xs,t) = fmxm,t + fsxs,t as the total production cost, and o(σ, a, xm,t, xs,t) =

om(Cm,t + cm,t − xm,t) + os(Cs,t + cs,t − xs,t) as the total unused capacity cost. We let

gσ,a(xm,t, xs,t) = w(σ, a, xm,t, xs,t) + f(σ, a, xm,t, xs,t) + o(σ, a, xm,t, xs,t) denote the expected

reward at state σ = (Cm,t, Cs,t), action a = (cm,t, cs,t), and production quantities xm,t, xs,t.

Let r(σ, a) denote the immediate reward function at state σ for action a, defined as r(σ, a) =

maxxm,t,xs,t E[gσ,a(xm,t, xs,t)], where x∗m,t and x∗s,t correspond to optimal production quantities

of the manufacturer and the subcontractor respectively that maximizes the expected reward

E[gσ,a(xm,t, xs,t)]. We construct a standard Bellman cost equation for the system with value

function, Vt(σ) at state σ and decision epoch t. Equation (6.1) defines the value function

Vt+1(σ) at state σ = (Cm,t, Cs,t) and discount factor η, η ∈ (0, 1).

Vt(Cm,t, Cm,t) = max
a∈A

[r(σ, a) + η
∑
σ′

p(σ′|σ, a)Vt+1(σ′)] (6.1)

Note that our formulation does not include cost of capacity investment, but only costs/revenues

associated with use of invested capacity for two reasons: (i) capacity investments often are

paid from strategic cost pool; our focus is on the operational costs/revenues from the use of

this capacity, (ii) considering investments confound the operational challenge of how capacity

must be used with the strategic question of payback on capacity investment.

The underlying problem has two-tupled state space and action space with (n + 1)2 states

and (n + 1)2 actions, increasing the complexity to characterize the structure of the opti-

mal policy. In the next section, we analyze one time period problem to study the impact

of tradeoffs in unused capacity costs and productions costs on the optimal production and

capacity decisions.
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6.3 Optimal Solution for One Time Period Problem

We analyze a one time period problem (n = 1) where the manufacturer and the subcontrac-

tor have 0 capacity at the beginning of t = 1, i.e. Cm,t = Cs,t = 0. The manufacturer M and

subcontractor S, each has two capacity choices cm,t = {0, c} and cs,t = {0, c} respectively.

Note that for one time period problem and for any state σ = (Cm,2, Cs,2), V2(σ) = 0 in the

Equation (6.1). If the manufacturer and the subcontractor, each invest in capacity cm,t and

cs,t respectively, then we define the supply chain capacity to be Cm,t + cm,t + Cs,t + cs,t or

equivalently, cm,t + cs,t. Further, we assume that parameters A and em take values such that

the total profit at optimal decision is always positive.

For this two-tupled state space and action space, determining the optimal capacity and

production decisions for one time period problem is non-trivial. Typically, for a system

with no unused capacity costs (i.e. om = os = 0), the optimal decision should recommend

capacity investment at whoever has the lower production cost. Similarly, for a system with

equal production costs (i.e. fm = fs), the optimal decision should recommend capacity

investment at whoever has the lower unused capacity cost. However, if the productions

costs and the unused capacity costs are distinct and non-zero then the tradeoffs between

production costs and unused capacity costs make the capacity investment decisions non-

trivial. Further, understanding the tradeoffs in the context of a single time period setting

can be very useful to determine the optimal decisions for the multi-time period problem

(Section 6.4). In the subsequent sections, we analyze the structure of the optimal policy and

reward function for one time period problem.

6.3.1 Properties of the Reward Function

In this section, we present properties of the expected reward function r(σ, a). Note that

Cm,t+1 and Cs,t+1 correspond to the capacity of the manufacturer and the subcontractor

respectively after making capacity investments at time t, i.e Cm,t+1 = Cm,t+cm,t and Cs,t+1 =

Cs,t + cs,t. We assume that om < fm and os < fs. This ensures that the optimal production
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x∗m,t + x∗s,t at time t is less than the maximum demand dhigh,t. Further, we assume that

dlow,t = 0, t = 1, ..., T . Then, the expected reward function is defined as:

r(σ, a) = E[w(σ, a, x∗m,t, x
∗
s,t) + f(σ, a, x∗m,t, x

∗
s,t) + o(σ, a, x∗m,t, x

∗
s,t)]

= E[(A− em min(dt, x
∗
m,t + x∗s,t)) min(dt, x

∗
m,t + x∗s,t) + fmx

∗
m,t + fsx

∗
s,t

+om(Cm,t + cm,t − x∗m,t) + os(Cs,t + cs,t − x∗s,t)] (6.2)

If we have x∗m,t + x∗s,t < dhigh,t, then E[(A − em min(dt, x
∗
m,t + x∗s,t)) min(dt, x

∗
m,t + x∗s,t)] =

A(1− q)(x∗m,t +x∗s,t)− em(1− q)2(x∗m,t +x∗s,t)
2. Similarly, if we have x∗m,t +x∗s,t ≥ dhigh,t, then

E[(A− em min(dt, x
∗
m,t +x∗s,t)) min(dt, x

∗
m,t +x∗s,t)] = A(1− q)dhigh,t− em(1− q)2d2

high,t. Then,

for instance, if x∗m,t + x∗s,t < dhigh,t, Equation (6.2) can be further simplified as:

r(σ, a) = A(1− q)(x∗m,t + x∗s,t)− em(1− q)2(x∗m,t + x∗s,t)
2

+fmx
∗
m,t + fsx

∗
s,t + om(Cm,t + cm,t − x∗m,t) + os(Cs,t + cs,t − x∗s,t)

= −em(1− q)2(x∗m,t + x∗s,t)
2 + (A(1− q) + om − fm)x∗m,t

+(A(1− q) + os − fs)x∗s,t − om(Cm,t + cm,t)− os(Cs,t + cs,t)

= −α(x∗m,t + x∗s,t)
2 + βx∗m,t + γx∗s,t + δ (6.3)

Where α = em(1 − q)2, β = A(1 − q) + om − fm, γ = A(1 − q) + os − fs, and δ =

−om(Cm,t + cm,t)− os(Cs,t + cs,t). Lemma 6.1 provides the optimal production quantity for

the manufacturer and the subcontractor for a given state σ and action a at time t.

Lemma 6.1. For the system with expected reward gσ,a(xm,t(σ, a), xs,t(σ, a)) = −α(xm,t(σ, a)+

xs,t(σ, a))2 + βxm,t(σ, a) + γxs,t(σ, a) + δ at state σ = (Cm,t, Cs,t) and action a = (cm,t, cs,t),

and for dhigh,t > min( β
2α
, γ

2α
),

(1) if β < γ, then x∗m,t(σ, a) = min(max(β/2α − x∗s,t(σ, a), 0), Cm,t + cm,t) and x∗s,t(σ, a) =

min(γ/2α,Cs,t + cs,t).

(2) if β > γ, then x∗m,t(σ, a) = min(β/2α,Cm,t + cm,t) and x∗s,t(σ, a) = min(max(γ/2α −

x∗m,t(σ, a), 0), Cs,t + cs,t).
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Proof. To prove Lemma 6.1, we take partial derivatives of gσ,a(xm,t(σ, a), xs,t(σ, a)) with

respect to xm,t(σ, a) and xs,t(σ, a) and show the desired results. The details of the proof are

in the Appendix.

Note that the expected reward function gσ,a(xm,t, xs,t) is concave with respect to xm,t and

xs,t, and x∗m,t = β/2α and x∗s,t = γ/2α are the individual saddle points of the maximiza-

tion equation gσ,a(xm,t, xs,t) = −α(xm,t + xs,t)
2 + βxm,t + γxs,t + δ. We observe that the

optimal production decision depends on the relative difference between β and γ. Define

∆o = (os − om) and ∆f = (fs − fm). Then β < γ implies om − fm < os − fs or equiv-

alently ∆f < ∆o. Similarly, β > γ implies ∆f > ∆o. In Lemma 6.1, we observe that

for the case of equal production cost i.e. fm = fs, if the unused capacity cost at the sub-

contractor, os is more than the unused capacity cost at the manufacturer, om then the

optimal production quantity at the supplier is more than that of the manufacturer. This

happens to reduce the total unused capacity cost at the subcontractor. Then, if β < γ,

β/2α < Cm,t + cm,t, and γ/2α < Cs,t + cs,t, then x∗s,t(σ, a) = γ/2α and x∗m,t(σ, a) = 0. How-

ever, if β < γ, β/2α < Cm,t + cm,t, and γ/2α > Cs,t + cs,t, then x∗s,t(σ, a) = Cs,t + cs,t and

x∗m,t(σ, a) = min(max(β/2α− x∗s,1(σ), 0), Cm,t + cm,t).

Further note that, based on relative difference of demand and saddle points, we get three

cases. For example, when β < γ:

Case (i): demand is more than the saddle point of the subcontractor, i.e. dhigh,t > γ/2α >

β/2α then the optimal production quantities are given by Lemma 6.1 and illustrated in

Figure 6.2(a).

Case (ii): demand is more than the saddle point of the manufacturer but less than the

saddle point of the subcontractor, i.e. β/2α < dhigh,t < γ/2α then we use Lemma 6.1 to

determine production quantities, we find that both the manufacturer and the subcontractor

should produce at most up to the capacity, or their respective saddle points, or up to the
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demand.

Case (iii): demand is less than the saddle point of the manufacturer, i.e. dhigh,t < β/2α <

γ/2α then the optimal production quantity of the subcontractor is the minimum of the cur-

rent capacity and the demand (Figure 6.2(b)).

If β > γ , then based on relative difference of dhigh,t, β/2α, γ/2α, we get three similar cases.

Figure 6.2 Reward Function with Respect to Production Quantity

So far we considered optimal production decisions for a given capacity decision. In Section

6.3.2 and Section 6.3.3, we analyze optimal capacity decisions. First for the case of system

with sufficient capacity where the saddle point corresponding to the manufacturer and the

subcontractor is less than the capacity c , i.e. β/2α < c, γ/2α < c in Section 6.3.2, and then

for the case of system with insufficient capacity with respect to the subcontractor where the

saddle point for manufacturer is less than the maximum capacity at manufacturer, but the

saddle point at the subcontractor is more than the maximum capacity at subcontractor, i.e

β/2α < c, γ/2α > c in Section 6.3.3.
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6.3.2 System with Sufficient Capacity

We define a system with sufficient capacity as a system where β/2α < c, γ/2α < c. We

define it in terms of the saddle points and not in the traditional terms of demand and

capacity because in this setting, the manufacturer and the subcontractor are going to make

no more than their optimal production quantities defined by β/2α and γ/2α. Theorem 6.1

provides the conditions under which either the subcontractor invests in capacity c or the

manufacturer invests in capacity c. Recall that ∆o = (os − om) and ∆f = (fs − fm). The

capacity investment decision depends on the relative difference between ∆o and ∆f , and the

difference in the maximum unused capacity cost c∆o.

Theorem 6.1. For the system with sufficient capacity,

(1) if (∆o − ∆f) > k1∆o, where k1 = c

min(β+γ
4α

,dhigh,1)
then the optimal policy suggests that

only the subcontractor should invest in capacity c.

(2) if (∆o−∆f) < k1∆o then the optimal policy suggests that only the manufacturer should

invest in capacity c.

(3) if om > 0, os > 0, it is not optimal for the supply chain capacity to take value of 0 or 2c.

Proof. We prove Theorem 6.1 separately in three parts. For part (1) of the theorem, we show

that if (∆o−∆f) > k1∆o, then the profit when only the subcontractor invests in capacity c

is more than the profit when only the manufacturer invests in capacity c or when the supply

chain capacity is 0 or 2c. Similarly, we prove results for other parts. The details of the proof

are in the Appendix.

We observe that if ∆o − ∆f is more than a threshold k1∆o, then only the subcontractor

should invest in capacity c. Similarly, if ∆o−∆f is less than a threshold k1∆o, then only the

manufacturer should invest in capacity c. Table 6.1 summarizes the conditions for Theorem

6.1. We observe that if the difference in the unused capacity cost, ∆o is more than the

difference in the production cost, ∆f and if the demand dhigh,1 decreases, then threshold k1

increases and only the manufacturer invests in capacity c as opposed to the subcontractor.

We also observe that it is not optimal for both the manufacturer and the subcontractor to
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invest in capacity at the same time, i.e. the supply chain capacity will never take the value

2c where the manufacturer and the subcontractor, each investing in a capacity c.

Table 6.1 Conditions for Optimal Capacity Levels for Theorem 6.1

c (∆o−∆f) > k1∆o −

Capacity at

Subcontractor

0 − (∆o−∆f) < k1∆o

0 c

Capacity at Manufacturer

If the unused capacity cost at the manufacturer is more than unused capacity cost at the

subcontractor, i.e ∆o < 0, and the difference in unused capacity cost, ∆o is more than the

difference in production cost, ∆f , then conditions presented in Theorem 6.1 part (1) always

hold, and suggests that only the subcontractor should invest in capacity c. Similarly, if the

unused capacity cost at the manufacturer is less than unused capacity cost at the subcon-

tractor, i.e ∆o > 0, and the difference in unused capacity cost, ∆o is less than the difference

in production cost, ∆f , then conditions presented in Theorem 6.1 part (2) always hold, and

suggests that only the manufacturer should invest in capacity c.

Next, consider the special case where the unused capacity costs are negligible, i.e. om = 0

and os = 0. Then from Theorem 6.1 part (1), if the production cost at the manufacturer,

fm is more than the production cost at the subcontractor, fs then only the subcontractor

should invest in capacity c. Similarly, from Theorem 6.1 part (2), if the production cost at

the manufacturer, fm is less than the production cost at the subcontractor, fs then only the

manufacturer should invest in capacity c. These results are shown in Corollary 6.1.
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Corollary 6.1. For the system with sufficient capacity and om = os = 0,

(1) if ∆f < 0 then the optimal policy suggests that either only the subcontractor should invest

in capacity c.

(2) if ∆f > 0 then the optimal policy suggests that either only the manufacturer should invest

in capacity c.

Proof. Proof of Corollary 6.1 follows directly from Theorem 6.1 by setting om = 0, os = 0.

Next note that, if om = os = 0, then the optimal decision could suggest that both the man-

ufacturer and the subcontractor should invest in capacity, which is not practical and hence

we exclude this result from Corollary 6.1.

Note that under sufficient capacity, min(β+γ
4α
, dhigh,1) < c, and if the production costs are

the same, i.e. ∆f = 0, then from Theorem 6.1 part (1) if the unused capacity cost at the

manufacturer, om is more than the unused capacity cost at the subcontractor, os then only

the subcontractor should invest in capacity c. Similarly, from Theorem 6.1 part (2) if the

unused capacity cost at the manufacturer, om is less than the unused capacity cost at the

subcontractor, os then only the manufacturer should invest in capacity c. These results are

shown in Corollary 6.2. Table 6.2 summarizes these conditions for special case presented in

Corollary 6.1 and Corollary 6.2.

Corollary 6.2. For the system with sufficient capacity and ∆f = 0,

(1) if ∆o < 0 then the optimal policy suggests that only the subcontractor should invest in

capacity c.

(2) if ∆o > 0 then the optimal policy suggests that only the manufacturer should invest in

capacity c.

Proof. Proof of Corollary 6.2 follows directly from Theorem 6.1.
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Table 6.2 Conditions for Optimal Capacity Levels for Corollary 6.1 and 6.2

c
((om = os = 0) ∧ (∆f < 0))∨

((∆f = 0) ∧ (∆o < 0))
−

Capacity at

Subcontractor

0 −
((om = os = 0) ∧ (∆f > 0))∨

((∆f = 0) ∧ (∆o > 0))

0 c

Capacity at Manufacturer

6.3.3 System with Insufficient Capacity at Subcontractor

In this section, we present analysis for a system with insufficient capacity at the subcontractor,

i.e. we assume that the saddle point of the subcontractor is more than the capacity (or

γ/2α > c). However, we do assume that for the saddle point of the manufacturer is less

than the capacity (or β/2α < c). Note that for the other case, for a system with insufficient

capacity at the manufacturer, i.e. when the saddle point of the manufacturer is more than

the capacity (or β/2α > c), and saddle point of the subcontractor is less than the capacity

(or γ/2α < c), the analysis is very similar. The results can be obtained in similar way

by interchanging the parameters of the manufacturer and the subcontractor. Theorem 6.2

provides conditions under which at optimal, only the manufacturer should invest in capacity

c, or only the subcontractor should invest in capacity c. Table 6.3 summarizes the conditions

in Theorem 6.2.

Theorem 6.2. For the system with insufficient capacity,

(1) if γ
2α
< dhigh,1 and (∆o−∆f) > k2∆o+ k3, where k2 = c

β+γ
4α

and k3 =
4( γ

2

4α2
−c2)

β+γ
then the

optimal policy suggests that only the subcontractor should invest in capacity c.
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(2) if γ
2α
< dhigh,1 and (∆o−∆f) < k2∆o+ k3 then the optimal policy suggests that only the

manufacturer should invest in capacity c.

Proof. To prove Theorem 6.2, we compare the profits when either manufacturer or subcon-

tractor or both are investing in capacity and show the desired conditions. For part (1) of

the theorem, we show that if γ
2α
< dhigh,1 and (∆o−∆f) > k2∆o+ k3, then the profit when

only the subcontractor invests in capacity c is more than the profit when either only the

manufacturer invests in capacity c or both the manufacturer and the subcontractor invest in

capacity c. Similarly, we prove part (2). The details of the proof are in the Appendix.

Note that Theorem 6.2 considers the case where γ
2α
< dhigh,1. However, if γ

2α
≥ dhigh,1, then

the optimal production at the subcontractor and the manufacturer should either sum to the

demand or should be up to their respective capacities. In this case, results can be obtained

by following the similar procedure presented in the proof of Theorem 6.2. The condition

presented in Theorem 6.2 does not consider equality such as (∆o−∆f) = k2∆o+ k3, since

in this case multiple decisions could be optimal where either only the manufacturer invests

in capacity or only the subcontractor invests in capacity.

Table 6.3 Conditions for Optimal Capacity Levels for Theorem 6.2

c (∆o−∆f) > k2∆o+ k3 −

Capacity at

Subcontractor

0 − (∆o−∆f) < k2∆o+ k3

0 c

Capacity at Manufacturer

As a special case, note that if the unused capacity cost at the manufacturer is more than the

unused capacity cost at the subcontractor, i.e ∆o < 0, and the difference in unused capacity
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costs, ∆o is more than the difference in production costs, ∆f , then conditions presented in

Theorem 6.2 part (1) always hold, and suggests that only the subcontractor should invest

in capacity c. Similarly, if the unused capacity cost at the manufacturer is less than the

unused capacity cost at the subcontractor, i.e ∆o > 0, and the difference in unused capacity

costs, ∆o is less than the difference in production costs, ∆f , then conditions presented in

Theorem 6.2 part (2) always hold, and suggests that only the manufacturer should invest in

capacity c. Similarly, for the system with zero unused capacity costs, the optimal capacity

levels follow same conditions as in Corollary 6.1.

Next, if the production costs are the same, i.e. ∆f = 0, then from Theorem 6.2 part (1),

if ∆o > k2∆o + k3 then only the subcontractor should invest in capacity c. Similarly, from

Theorem 6.2 part (2), if ∆o < k2∆o+k3 then only the manufacturer should invest in capacity

c. These results are shown in Corollary 6.3.

Corollary 6.3. For the system with insufficient capacity and fm = fs (or ∆f = 0),

(1) if γ
2α

< dhigh,1 and ∆o > k2∆o + k3 then the optimal policy suggests that only the

subcontractor should invest in capacity c.

(2) if γ
2α

< dhigh,1 and ∆o < k2∆o + k3 then the optimal policy suggests that only the

manufacturer should invest in capacity c.

Proof. Proof of Corollary 6.3 follows directly from Theorem 6.2.

Note that the conditions presented in Section 6.3 exclude the equality cases, such as ∆o =

∆f , etc since in these cases multiple decisions could be optimal. For one time period prob-

lem, we observe that the characterization of the optimal capacity and production decisions

depend on not just productions costs (fm, fs) or unused capacity costs (om, os), but on the

the difference in unused capacity cost, ∆o and the difference in production cost, ∆f . These

results provides useful insights on the structure of the optimal policy and the results can be

further extended to multi-time period model as described in the next section.
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6.4 Optimal Solution for Multiple Time Period Problem

We first consider a two time period problem and make few observations. In contrast to the

one time period problem, two time period problem poses additional challenges. First, under

the assumption that capacity once acquired cannot be disposed, any capacity investment

decisions in the first time period affects the capacity decisions and costs in the second time

period. For example, under market down-cycles, capacity investments made at time t = 1

could result in high unused capacity costs at time t = 2. So, the resulting problem cannot

be decomposed into multiple one-time period problems. Second, the optimal decision de-

pends on the saddle points, β/2α, γ/2α and demands, dhigh,1, dhigh,2. Note that, in the one

time period problem, we observed three cases with respect to demand and saddle points.

Using similar approach, we get six demand cases for two time period problem (three case

for each time period). For example, if dhigh,1 > γ/2α > β/2α and dhigh,2 > γ/2α > β/2α,

then the optimal production quantity of the manufacturer and the subcontractor at both

time periods should be up to capacity or saddle points β/2α, γ/2α respectively. Similarly, if

dhigh,1 < γ/2α < β/2α and dhigh,2 < γ/2α < β/2α, then the optimal production quantity of

the manufacturer and the subcontractor at time period t should be up to capacity or demand

dhigh,t. Other demand cases can be defined in similar way.

We analyze a two time period problem (n = 2) and provide structure of the optimal policy.

We assume that the manufacturer and the subcontractor have 0 capacity at the beginning

of time t = 1, i.e. Cm,t = Cs,t = 0 and can make capacity investment cm,t = {0, c} and

cs,t = {0, c} respectively at time t = 1, 2. For notational simplicity, Table 6.4 defines several

conditions that will be subsequently used to determine optimal actions. Each condition listed

in Table 6.4 depends on the difference in unused capacity costs, ∆o, difference in production

costs, ∆f , maximum unused capacity costs, omc, osc, and demands, dhigh,1, dhigh,2.
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Table 6.4 Preliminary Conditions for Centralized System

O (∆o−∆f) > 0

Ô (∆o−∆f) < 0

M1 (∆o−∆f) min(β+γ
4α
, dhigh,1) > c∆o− omc

M̂1 (∆o−∆f) min(β+γ
4α
, dhigh,1) < c∆o− omc

M2 (∆o−∆f) min(β+γ
4α
, dhigh,2) > osc

M̂2 (∆o−∆f) min(β+γ
4α
, dhigh,2) < osc

S1 (∆o−∆f) min(β+γ
4α
, dhigh,1) < c∆o− osc

Ŝ1 (∆o−∆f) min(β+γ
4α
, dhigh,1) > c∆o− osc

S2 (∆o−∆f) min(β+γ
4α
, dhigh,2) < −omc

Ŝ2 (∆o−∆f) min(β+γ
4α
, dhigh,2) > −omc

MS (∆o−∆f)(min(β+γ
4α
, dhigh,1),min(β+γ

4α
, dhigh,2)) > 2c∆o

M̂S (∆o−∆f)(min(β+γ
4α
, dhigh,1),min(β+γ

4α
, dhigh,2)) < 2c∆o

We observe that conditionsM1, M̂1, S1, Ŝ1 define the relationship between difference in un-

used capacity costs, difference in production costs, demand, and maximum unused capacity

costs for time period t = 1. For instance, condition M̂1 could hold for low demand dhigh,1.

Similarly, conditions M2, M̂2, S2, Ŝ2 define the relationship between difference in unused

capacity costs, difference in production costs, demand, and maximum unused capacity costs

for time period t = 2. For instance, condition M̂2 could hold for low demand dhigh,2. Fi-

nally, conditions MS and M̂S connect demand and costs across the two time periods. In

Section 6.4.1, we characterize the structure of the optimal decisions for two time periods

under sufficient capacity case.

6.4.1 System with Sufficient Capacity

We define a system with sufficient capacity as a system where β/2α < c, γ/2α < c for each

time period t, t = 1, 2. Under system with sufficient capacity, Theorem 6.3 provides the
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optimal capacity decisions. These conditions depend on the demands dhigh,1, dhigh,2, and the

relative difference between ∆o and ∆f .

Theorem 6.3. For the system with sufficient capacity,

(1) if conditions ((O ∧ M̂2 ∧ M̂S) ∨ (M2 ∧M1)) ∨ (Ô ∧ Ŝ2 ∧ M̂S) hold, then the optimal

policy suggests that only the subcontractor should invest in capacity c at time period t = 1

and should maintain that capacity at time t = 2.

(2) if conditions (O ∧ M̂2 ∧MS) ∨ ((Ô ∧ Ŝ2 ∧MS) ∨ (S2 ∧ S1)) hold, then the optimal

policy suggests that only the manufacturer should invest in capacity c at time period t = 1

and should maintain that capacity at time t = 2.

(3) if conditions (O∧M2∧M̂1) hold, then the optimal policy suggests that the manufacturer

should invest in capacity c at time period t = 1 and the subcontractor should invest in capacity

c at time t = 2.

(4) if conditions (Ô∧S2∧Ŝ1) hold, then the optimal policy suggests that only the subcontractor

should invest in capacity c at time period t = 1 and the manufacturer should invest in capacity

c at time t = 2.

Proof. We prove each part of Theorem 6.3 separately. To prove part (1), we show that if

conditions ((O∧M̂2 ∧M̂S)∨ (M2 ∧M1))∨ (Ô ∧ Ŝ2 ∧M̂S) hold, then the the profit when

only subcontractor invests in capacity c at t = 1 and should maintain that capacity at t = 2

is more than the profit at any other actions. Similarly, we prove other parts. The details of

the proof are in the Appendix.

We observe that at optimal, the supply chain capacity can take the value of c at time t = 1,

where either only the manufacturer invests in capacity or only the subcontractor invests in

capacity. However, at time t = 2 the supply chain capacity can take the c or 2c. If condition

O : (∆o −∆f) > 0 holds, or equivalently if ∆o > ∆f , and if conditions (M2 ∧ M̂1) hold,

then the manufacturer invests in capacity c at time t = 1 and the subcontractor invests in

capacity c at time t = 2. This happens because if ∆o > ∆f , then Lemma 6.1 suggests

that producing components using available capacity of the subcontractor could be cheaper



136

than that of the manufacturer. So, for some thresholds on ∆o − ∆f , we observe that the

subcontractor invests in capacity at t = 2. Similarly, if condition Ô : (∆o−∆f) < 0 holds,

or equivalently if ∆o < ∆f , then Lemma 6.1 suggests that producing components using

available capacity of the manufacturer could be cheaper than that of the subcontractor. So,

for some thresholds on ∆o − ∆f , we observe that the manufacturer invests in capacity at

t = 2.

We observe that if the difference in the unused capacity cost, ∆o is more than the differ-

ence in the production cost, ∆f , then Lemma 6.1 suggests that producing components using

available capacity of the subcontractor could be cheaper than that of the manufacturer,

and at low demand dhigh,2, there is enough capacity at the subcontractor to satisfy the de-

mand. So, the optimal decision could recommend capacity investment at the subcontractor

instead at the manufacturer. Similarly, if the difference in the unused capacity cost ∆o is

less than the difference in the production cost ∆f , then Lemma 6.1 suggests that producing

components using available capacity of the manufacturer could be cheaper than that of the

subcontractor, and at low demand dhigh,2, there is enough capacity at the manufacturer to

satisfy the demand. So, the optimal decision could recommend capacity investment at the

manufacturer instead at the subcontractor. Table 6.5 summarizes the results of Theorem

6.3 where we only show states with optimal solution.

Table 6.5 Conditions for Optimal Capacity Levels for Theorem 6.3

Time t = 1 Time t = 2 Conditions

(0, c) (0, c) ((O ∧ M̂2 ∧ M̂S) ∨ (M2 ∧M1)) ∨ (Ô ∧ Ŝ2 ∧ M̂S)

(c, 0) (c, 0) (O ∧ M̂2 ∧MS) ∨ ((Ô ∧ Ŝ2 ∧MS) ∨ (S2 ∧ S1))

(c, 0) (c, c) (O ∧M2 ∧ M̂1)

(0, c) (c, c) (Ô ∧ S2 ∧ Ŝ1)
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Conditions presented in Theorem 6.3 depend primarily on the relative difference between ∆o

and ∆f , and certain threshold values. Using Corollary 6.4, we show a sufficient condition

which depends on the relative difference between ∆o and ∆f .

Corollary 6.4. For the system with sufficient capacity,

(1) if ∆o < 0 and (∆o − ∆f) > ks where ks is a non-negative threshold then the optimal

policy suggests that only the subcontractor should invest in capacity c at time period t = 1

and maintain that capacity at time t = 2.

(2) if ∆o > 0 and (∆f −∆o) > km where km is a non-negative threshold then the optimal

policy suggests that only the manufacturer should invest in capacity c at time period t = 1

and maintain that capacity at time t = 2.

(3) if ks < (∆o − ∆f) < kms where kms is some threshold then the optimal policy suggests

that only the manufacturer should invest in capacity c at time period t = 1 and subcontractor

should invest in capacity c at time t = 2.

(4) if km < (∆f −∆o) < ksm where kms is some threshold then the optimal policy suggests

that only the subcontractor should invest in capacity c at time period t = 1 and manufacturer

should invest in capacity c at time t = 2.

Proof. Proof of Corollary 6.4 follows directly from Theorem 6.3.

We observe that if the unused capacity cost at the manufacturer is more than the unused

capacity cost at the subcontractor, and ∆o − ∆f is more than a non-negative threshold

ks = min( (os−2om)c

min(β+γ
4α

,dhigh,1)
, osc

min(β+γ
4α

,dhigh,2)
), then from Theorem 6.3 part (1), the optimal pol-

icy suggests that only the subcontractor should invest in capacity c at time t = 1 and

maintain that capacity at time t = 2. Similarly, if the unused capacity cost at the manufac-

turer is less than at the subcontractor, and ∆f −∆o is more than a non-negative threshold

km = min( (om−2os)c

min(β+γ
4α

,dhigh,1)
, omc

min(β+γ
4α

,dhigh,2)
) then from Theorem 6.3 part (2) the optimal policy

suggests that only the manufacturer should invest in capacity c at time t = 1 and maintain

that capacity at time t = 2.
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Again, if ∆o −∆f is bounded by thresholds, ks and kms = (os−2om)c

min(β+γ
4α

,dhigh,1)
then the optimal

policy suggests that only the manufacturer should invest in capacity c at time t = 1 and

subcontractor should invest in capacity c at time t = 2. Similarly, if ∆f − ∆o is bounded

by thresholds, km and ksm = omc

min(β+γ
4α

,dhigh,2)
then the optimal policy suggests that only the

subcontractor should invest in capacity c at time t = 1 and the manufacturer should invest

in capacity c at time t = 2. Table 6.6 summarizes the results of Corollary 6.4.

Table 6.6 Conditions for Optimal Capacity Levels for Corollary 6.4

Time t = 1 Time t = 2 Conditions

(0, c) (0, c) (∆o < 0) ∧ (∆o−∆f) > ks

(c, 0) (c, 0) (∆o > 0) ∧ (∆f −∆o) > km

(0, c) (c, c) km < (∆f −∆o) < ksm

(c, 0) (c, c) ks < (∆o−∆f) < kms

For the system with zero unused capacity costs, the optimal capacity levels for two time

period follow same conditions as in Corollary 6.1. In Section 6.4.2, we numerically analyze

the impact of unused capacity costs on the optimal decisions. Note that the conditions pre-

sented in Section 6.4 exclude the equality cases, such as ∆o = ∆f , etc since in these cases

multiple decisions could be optimal.

6.4.2 Effect of Unused Capacity Cost

Using numerical studies, we analyze the effect of unused capacity on the optimal decision.

Table 6.7 presents the system and production parameters for the experiment. We assume

that the production cost at the manufacturer is more than the production cost at the subcon-

tractor, and the unused capacity cost at the manufacturer is less than the unused capacity

cost at the subcontractor. To analyze the effect of unused capacity, we consider that the

unused capacity cost at the subcontractor can take values of 3, 3.5, and 4. Note that if

os = 3 then conditions presented in Theorem 6.3 part (1) hold, if os = 3.5 then conditions
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presented in Theorem 6.3 part (3) hold, and if os = 4 then conditions presented in Theorem

6.3 part (2) hold.

Table 6.7 Parameters for Centralized System

System Parameters Production Parameters

T = 2 A = 150

q = 0.5 em = 20

dhigh,t = 2, 8 om = 1

dlow,t = 0, 0 os = 3, 3.5, 4

am = {0, 15} fm = 25

as = {0, 15} fs = 18

Figure 6.3 shows the optimal capacity levels for two time period model. We observe that as

the unused capacity cost at the subcontractor increases then the production gradually shifts

to the manufacturer to reduce the total cost due to unused capacity. For instance, if os = 3

then we observe that only the subcontractor invests in capacity at t = 1 and keep the same

capacity at t = 2, validating the claim in Theorem 6.3 part (1). Next, if os = 3.5 then we

observe that the subcontractor invests in capacity at t = 1 and the manufacturer invests in

capacity at t = 2, validating the claim in Theorem 6.3 part (3). Finally, if os = 4 then we

observe that the manufacturer invests in capacity at t = 1 and keep the same capacity at

t = 2, validating the claim in Theorem 6.3 part (2).

Note that the centralized system prevents manufacturer and the subcontractor to make their

own respective decisions to maximize individual profits. Typically in industry, it is common

for multiple facilities (manufacturers or subcontractors) to make their own decisions. How-

ever, such decision could potentially lead to lower overall profit of the supply chain. In the

next section, we present the decentralized system and study the impact of unused capacity
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Figure 6.3 Optimal Capacity Decisions at (a) os = 3, (b) os = 3.5, (c) os = 4

costs on the characteristics of the optimal decision.

6.5 Decentralized System

We consider a decentralized supply chain setting with two autonomous firms, the manu-

facturer, M and the supplier, S that collaborate in the production of a knowledge-type

component over a finite time horizon with distinct time periods, 1, . . . , T . In this set-

ting, the manufacturer (follower) and the subcontractor (leader) indulge in a sequence of

capacity-production-price game to produce a knowledge-type component (Cachon and Lar-

iviere (2001); Wang and Gerchak (2003); Savaskan et al. (2004); Bernstein and DeCroix
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(2004)). Figure 6.4 describes the sequence of events in the game.

Figure 6.4 Sequence of Events

At the beginning of each time period t, the subcontractor shares the unit price, pt(es,t, xs,t) =

(b0− es,txs,t) with the manufacturer, where b0 and es,t are the intercept and the slope of the

price function with respect to production xs,t. The manufacturer M and the subcontractor S

decide to invest in capacity cm,t and cs,t respectively. This changes the current capacity levels

of the manufacturer and the subcontractor to Cm,t = Cm,t−1 +cm,t−1 and Cs,t = Cs,t−1 +cs,t−1

respectively. Next, the demand dt is realized which takes the values dlow,t or dhigh,t with

probability q and (1− q) respectively. In response to the subcontractor S, the manufacturer

M decides to produce xm,t units where, xm,t ∈ [0, Cm,t], and incurs a total production cost

of fm(xm,t) = fmxm,t. The manufacturer also decides to subcontract xs,t units where, xs,t ∈

[0, Cs,t], and the subcontractor incurs a total production cost of fs(xs,t) = fsxs,t. Note that,

any unused capacity incurs a penalty cost oi,t, i = M,S per unit capacity resulting in a cost

hi(xi,t) = oi,t(Ci,t+ci,t−xi,t), i = M,S for the unused capacity. Unused capacity is of concern,

since, capital investments are expensive and there is a pressure to recover the investments

on assets. The market is characterized by diminishing return on the production quantity xi,t

with revenue function wt(xm,t+xs,t) per unit with wt(xm,t+xs,t) = A−em min(dt, xm,t+xs,t)

being a special case of this function. At the end of time period t, profits of manufacturer M ,
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πm,t and subcontractor S, πs,t are realized as shown in Equation (6.4) and (6.5) respectively.

πm,t = wt(xm,t + xs,t) min(dt, xm,t + xs,t)− fm(xm,t)− hm(xm,t)− pt(es,t, xs,t)xs,t(6.4)

πs,t = pt(es,t, xs,t)xs,t − fs(xs,t)− hs(xs,t) (6.5)

We analyze this system as a finite horizon stochastic game consisting of sequence of capacity-

production-price type competition between the manufacturer and the subcontractor. The

key elements of the stochastic game are:

Decision epoch: The manufacturer and the subcontractor take decisions at every time period

t, t = 1, ..., T .

State space, Σ: We define state, σ = (Cm,t, Cs,t), σ ∈ Σ, where Cm,t and Cs,t are the capaci-

ties of manufacturer and subcontractor respectively at the beginning of time t.

Action space, A: Let the action space A = Am × As, where am = (cm,t), am ∈ Am denote

the action action taken by manufacturer M , and as = (cs,t, es,t), aS ∈ AS denote the action

action taken by supplier S, where es,t is the pricing scheme parameter.

Transition probabilities: Let p(σ′|σ, am, as) denote the probability of transitioning from state

σ = (Cm,t, Cs,t) to state σ′ = (C ′m,t, C
′
s,t) under actions am and as. Then, the transition

probabilities are defined as: p(σ′|σ, am, as) = 1, if, C ′m,t = Cm,t + cm,t and C ′s,t = Cs,t + cs,t,

and p(σ′|σ, am, as) = 0, otherwise.

Profit function: Let πm,t(σ, am, as, xm,t, xs,t) denote the profit function for manufacturer M

at time t for state σ, actions am, as, and production quantities xm,t, xs,t, as given by Equa-

tion (6.6). The profit function of the manufacturer comprises of the following terms: revenue

on the knowledge part (wt(xm,t + xs,t) min(dt, xm,t + xs,t)), production cost (fm(xm,t)), un-

used capacity cost function (hm(xm,t)), and price paid to the subcontractor (pt(es,t, xs,t)xs,t).



143

Similarly, let πs,t(σ, am, as, xm,t, xs,t) denote the profit function for subcontractor S at state

σ, actions am, as, and production quantities xm,t, xs,t, as given by Equation (6.7). The

profit function of the subcontractor comprises of the following terms: revenue from the

manufacturer (pt(es,t, xs,t)xs,t), production cost (fs(xs,t)), and unused capacity cost function

(hs(xs,t)). We assume that the capacity investment cost is normalized within the unused

capacity cost. Note that πm,t(σ, am, as, xm,t, xs,t) + πs,t(σ, am, as, xm,t, xs,t) is same as the re-

ward gσ,a(xm,t, xs,t) function presented in Section 6.2. However, in contrast to centralized

system, in the decentralized system the manufacturer and the subcontractor makes their

own capacity and production decisions.

πm,t(σ, am, as, xm,t, xs,t) = wt(xs,t + xm,t) min(dt, xm,t + xs,t)− fm(xm,t)− hm(xm,t)

−pt(es,t, xs,t)xs,t (6.6)

πs,t(σ, am, as, xm,t, xs,t) = pt(es,t, xs,t)xs,t − fs(xs,t)− hs(xs,t)) (6.7)

Expected utility: Let Um,t(σ) and Us,t(σ) denote the expected utility of manufacturer M and

subcontractor S respectively at state σ and decision epoch t. Then we can write the expected

utilities for both firms as follows:

Ui,t(σ) = max
am,as

(
max

xs,t,xm,t
πi,t(σ, am, as, xm,t, xs,t)

+η
∑
σ′∈Σ

p(σ′|σ, am, as)Ui,t+1(σ′)
)
,∀i = M,S (6.8)

The above decentralized formulation has 2-dimensional states and 3-dimensional action which

increases the complexity of the problem. In the next section, we use numerical examples to

study the inefficiencies in the system due to decentralized control.

6.5.1 Inefficiencies due to Decentralized Control

Using numerical studies, we analyze the inefficiencies in the system due to decentralized

control as compared to the system with centralized control. We assume that the subcon-

tractor is the leader and the manufacturer is the follower. Table 6.8 presents the system and

production parameters for the experiment. We consider a 5 period problem with 3 capacity
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level choices for the manufacturer. We assume that the production cost at the manufacturer

is more than the production cost at the subcontractor, and the unused capacity cost at the

manufacturer is less than the unused capacity cost at the subcontractor. we conduct this

experiment in two steps. In the first step, we vary the price parameter b0 from 10 to 30 to

determine the optimal pricing parameter b0 that results in lowest deviation in the total ex-

pected utility function (for the states transitioned at optimal) as compared to total expected

value function (for the states transitioned at optimal) in the centralized system.

Table 6.8 Parameters for Centralized and Decentralized System

System Parameters Production Parameters

T = 5 A = 150

q = 0.5 em = 20

dhigh,t = 2, 4, 8, 10, 12 om = 1

dlow,t = 0, 0, 0, 0, 0 os = 3.5

cm = {0, 2, 4} fm = 25

cs = {0, 2, 4} fs = 18

es,t = {0, 1, 2}

b0 = 10 to 30

Figure 6.5 shows the optimal total expected value function in the centralized system and the

total expected utility function in the decentralized system. For example, at b0 = 10, the total

expected value function for the transitioned states is 2416 while the total expected utility

function for the transitioned states is 1120. We observe that b0 results in the lower difference

between the total expected value function and utility function. We also, observe that the

subcontractor should set e∗s,t = 0, t = 1, ..., 5 meaning that the price increases linearly with

the production quantity.
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Figure 6.5 Variation in the Value Function and Utility Function with Respect to b0

Next, Figure 6.6 presents the optimal capacity decisions for the system with centralized con-

trol and the corresponding system with decentralized control with b∗0 = 19.

Figure 6.6 Optimal Capacity Decisions for (a) Centralized System (b) Decentralized
System

We observe that only the subcontractor makes capacity investment, and the optimal capac-

ity decisions for the system with decentralized control is same as the optimal decision for

the system with centralized control. This happens because the optimal pricing parameter

b∗0 makes the total expected utility function very close to the total expected value function.

However, in reality the subcontractor may choose a different pricing parameter which could
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significantly change the optimal decisions.

6.6 Conclusions

We analyze a centralized system and a corresponding decentralized system consisting of a

manufacturer and a subcontractor that balances tradeoffs between unused capacity costs

and production costs to produce knowledge-type components. In the centralized system, the

manufacturer and the subcontractor makes capacity investment and production decisions

that maximizes the total profit of the system. Using Markov decision process, we analyze

single period and multi-period problem and provide conditions to determine when and how

much capacity should the manufacturer and the subcontractor invest. We observe that the

optimal capacity decision depends on the relative difference between the unused capacity

costs, ∆o and production costs, ∆f , and the relative difference between the maximum un-

used capacity at the manufacturer, omc and maximum unused capacity at the subcontractor

osc. In the decentralized system, the manufacturer and the subcontractor makes capacity

investment and production decisions that maximizes their individual profits. Using game the-

ory, we analyze single period and multi-period problem and provide conditions to determine

when and how much capacity should the manufacturer and the subcontractor invest. we ob-

serve that the optimal decision depends on the relative difference between pricing parameter

b0, and the difference in the production cost and unused capacity cost at the manufacturer

fm−om. Using numerical experiments, we analyze the gap in the decentralized system as op-

posed to centralized system and determine the optimal pricing parameters to reduce the gap.
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6.7 Appendix

Proof of Lemma 6.1: To prove Lemma 6.1, we first consider state σ = (Cm,t, Cs,t) and

action a = (cm,t, cs,t), and take partial derivatives of gσ,a(xm,t(σ, a), xs,t(σ, a)) with respect

to xm,t(σ, a) and xs,t(σ, a) and show the desired results. Let gσ,a(xm,t(σ, a), xs,t(σ, a)) be the

expected reward function defined by:

gσ,a(xm,t(σ, a), xs,t(σ, a)) = −α(xm,t(σ, a) + xs,t(σ, a))2 + βxm,t(σ, a) + γxs,t(σ, a) + δ

Now taking partial derivative of gσ,a(xm,t(σ, a), xs,t(σ, a)) with respect to xm,t(σ, a) and

xs,t(σ, a) we get

∂gσ,a(xm,t(σ, a), xs,t(σ, a))

∂xm,t(σ, a)
= −2α(x∗m,t(σ, a) + x′s,t(σ, a)) + β (6.9)

∂gσ,a(xm,t(σ, a), xs,t(σ, a))

∂xs,t(σ, a)
= −2α(x′m,t(σ, a) + x∗s,t(σ, a)) + γ (6.10)

Here, x′s,t(σ, a) represents the production quantity of the subcontractor when the expected

reward function gσ,a(xm,t(σ, a), xs,t(σ, a)) is maximized with respect to xm,t(σ, a). Similarly,

x′m,t(σ, a) represents the production quantity of the manufacturer when the expected reward

function gσ,a(xm,t(σ, a), xs,t(σ, a)) is maximized with respect to xs,t(σ, a). Again, taking dou-

ble derivative of gσ,a(xm,t(σ, a), xs,t(σ, a)) with respect to xm,t(σ, a) and xs,t(σ, a) we get

∂2gσ,a(xm,t(σ, a), xs,t(σ, a))

∂x2
m,t(σ, a)

= −2α (6.11)

∂2gσ,a(xm,t(σ, a), xs,t(σ, a))

∂x2
s,t(σ, a)

= −2α (6.12)

Note that from Equation (6.11), we get ∂2gσ,a(xm,t(σ,a),xs,t(σ,a))

∂x2m,t(σ,a)
< 0, from Equation (6.12), we

get ∂2gσ,a(xm,t(σ,a),xs,t(σ,a))

∂x2s,t(σ,a)
< 0 suggesting that the expected reward is concave with respect to

xm,t(σ, a) and xs,t(σ, a).

Now, we consider a case where Cm,t+cm,t = c and Cs,t+cs,t = c, t = 1, ..., T . If β/2α < c and

γ/2α < c, then by using Equation (6.9), the optimal reward function gσ(x∗m,t(σ, a), x′s,t(σ, a))
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with respect to xm,t(σ, a) can be written as:

gσ,a(x
∗
m,t(σ, a), x′s,t(σ, a)) = −α(β/2α)2 + β2/2α + (γ − β)x′s,t(σ, a) + δ

= β2/4α + (γ − β)x′s,t(σ, a) + δ (6.13)

From Equation (6.13), if γ < β then x′s,t(σ, a) = 0 to maximize the expected reward. Sim-

ilarly, using Equation (6.10), the optimal reward function gσ,a(x
′
m,t(σ, a), x∗s,t(σ, a)) with re-

spect to xs,t(σ, a) can be written as:

gσ,a(x
′
m,t(σ, a), x∗s,t(σ, a)) = −α(γ/2α)2 + γ2/2α + (β − γ)x′m,t(σ, a) + δ

= γ2/4α + (β − γ)x′m,t(σ, a) + δ (6.14)

From Equation (6.14), if γ > β then x′m,t(σ, a) = 0 to maximize the total profit. Let

∆gσ,a = gσ,a(x
∗
m,t(σ, a), x′s,t(σ, a))− gσ,a(x′m,t(σ, a), x∗s,t(σ, a)) then

∆gσ,a = β2/4α + (γ − β)x′s,t(σ, a)− γ2/4α− (β − γ)x′m,t(σ, a)

= (β2 − γ2)/4α− (β − γ)(x′m,t(σ, a) + x′s,t(σ, a))

= (β − γ)((β + γ)/4α− (x′m,t(σ, a) + x′s,t(σ, a))) (6.15)

If β > γ then from Equation (6.13), x′s,t(σ, a) = 0 and from Equation (6.14), x′m,t(σ, a) =

γ/2α. So Equation (6.10) implies that ∆gσ,a = (β + γ)/4α − (γ/2α) or ∆gσ,a = (β −

γ)/4α > 0. Thus, gσ,a(x
∗
m,t(σ, a), x′s,t(σ, a)) > gσ,a(x

′
m,t(σ, a), x∗s,t(σ, a)), x∗m,t(σ, a) = β/2α,

and x∗s,t(σ, a) = 0. Similarly, if β < γ then from Equation (6.14), x′m,t(σ, a) = 0 and from

Equation (6.13), x′s,t(σ, a) = β/2α. So Equation (6.10) implies that ∆gσ,a = (β + γ)/4α −

(β/2α) or ∆gσ,a = (γ−β)/4α > 0. Thus, gσ,a(x
′
m,t(σ, a), x∗s,t(σ, a)) > gσ,a(x

∗
m,t(σ, a), x′s,t(σ, a)),

x∗s,t(σ, a) = γ/2α, and x∗m,t(σ, a) = 0. This concludes the proof of the case where Cm,t+cm,t =

c and Cs,t + cs,t = c, t = 1, ..., T ..

Next, we consider other states and actions and use the above results to prove this lemma.

From above, if β > γ then gσ,a(x
∗
m,t(σ, a), x′s,t(σ, a)) > gσ,a(x

′
m,t(σ, a), x∗s,t(σ, a)) and if β/2α >

c then x∗m,t(σ, a) = Cm,t+cm,t. So, maximizing expected reward gσ,a(xm,t(σ, a), xs,t(σ, a)) with
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respect to xs,t(σ, a), using Equation (6.10) we get x∗s,t(σ, a) = max(γ/2α− x∗m,t(σ, a), 0). We

know that x∗s,t(σ, a) < Cs,t + cs,t, so x∗s,t(σ, a) = min(max(γ/2α − x∗m,t(σ, a), 0), Cs,t + cs,t).

Similarly, if β < γ then gσ,a(x
∗
m,t(σ, a), x′s,t(σ, a)) < gσ,a(x

′
m,t(σ, a), x∗s,t(σ, a)) and if γ/2α > c

then x∗s,t(σ, a) = Cs,t + cs,t. Now, maximizing expected reward gσ,a(xm,t(σ, a), xs,t(σ, a)) with

respect to xs,t(σ, a), we get x∗m,t(σ, a) = max(β/2α − x∗s,t(σ, a), 0) using Equation (6.9). We

know that x∗m,t(σ, a) < Cm,t+ cm,t, so x∗m,t(σ, a) = min(max(β/2α−x∗s,t(σ, a), 0), Cm,t+ cm,t).

This concludes the proof.

Proof of Theorem 6.1: We prove Theorem 6.1 separately in three parts. For part (1) of

the theorem, we show that if (∆o−∆f) > k1∆o, then the profit when only the subcontractor

invests in capacity c is more than the profit when only the manufacturer invests in capacity

c or when the supply chain capacity is 0 or 2c.

We assume β < γ, then from Lemma 6.1 we know that if β/2α < c and γ/2α < c, then

x∗m,t = β/2α and x∗s,t = 0. Then the expected reward when only manufacturer invests in

capacity, and expected reward when both the manufacture and the subcontractor invest in

capacity is given by:

r((0, 0), (c, 0)) = β2/4α− omc (6.16)

r((0, 0), (c, c)) = β2/4α− omc− osc (6.17)

Next, if β > γ then from Lemma 6.1 we know that if β/2α < c and γ/2α < c, then

x∗s,t = γ/2α and x∗m,t = 0. Then the expected reward when only subcontractor invests in

capacity, and expected reward when both the manufacture and the subcontractor invest in

capacity is given by:

r((0, 0), (0, c)) = γ2/4α− osc (6.18)

r((0, 0), (c, c)) = γ2/4α− omc− osc (6.19)
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Next, considering various demand cases. If max( β
2α
, γ

2α
) < dhigh,1 then from Equations (6.16)

and (6.18):

r((0, 0), (0, c))− r((0, 0), (c, 0)) = (γ2 − β2)/4α− (osc− omc)

= (γ − β)(γ + β)/4α− (osc− omc)

= ((os − om)− (fs − fm))(γ + β)/4α− (osc− omc)

If ((os−om)−(fs−fm))β+γ
4α

> osc−omc, then r((0, 0), (0, c)) > r((0, 0), (c, 0)). This concludes

the proof of part (1). Next, for part (2) of the theorem, we show that if min( β
2α
, γ

2α
) > dhigh,1

and ((os−om)− (fs−fm))dhigh,1 > osc−omc, then the profit when the supply chain capacity

is c is more than the profit when the supply chain capacity is c. If min( β
2α
, γ

2α
) > dhigh,1 then

the expected profit at state (0, c) and (c, 0) is given by:

r(0, c) = −αd2
high,1 + γdhigh,1 − osc (6.20)

r(c, 0) = −αd2
high,1 + βdhigh,1 − omc (6.21)

Then r((0, 0), (0, c)) − r((0, 0), (c, 0)) = (γ − β)dhigh,1 − (osc − omc) or r((0, 0), (0, c)) −

r((0, 0), (c, 0)) = ((os−om)− (fs−fm))dhigh,1− (osc−omc). If ((os−om)− (fs−fm))dhigh,1 >

osc− omc, then r((0, 0), (0, c)) > r((0, 0), (c, 0)). We use similar approach described above to

prove other demand cases. This concludes the proof of part (1). Similarly, we can prove part

(2) by reversing the inequality in the conditions in part (1). If os > 0 then from Equations

(6.16) and (6.17), r((0, 0), (c, 0)) > r((0, 0), (c, c)). If om > 0 then from Equations (6.18) and

(6.19), r((0, 0), (0, c)) > r((0, 0), (c, c)). This concludes proof of part (3).

Proof of Theorem 6.2: To prove Theorem 6.2, we compare the profits when either the man-

ufacturer or the subcontractor or both invest in capacity and show the desired conditions. For

part (1) of the theorem, we show that if γ
2α
< dhigh,1 and (∆o−∆f)β+γ

4α
> c∆o+α( γ2

4α2 − c2),

then the profit when only the subcontractor invests in capacity c is more than the profit

when either only the manufacturer invests in capacity c or both the manufacturer and the

subcontractor invest in capacity c.
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If γ
2α
< dhigh,1 and β < γ, then using Lemma 6.1 expected optimal rewards are given by:

r((0, 0), (0, c)) = −αc2 + γc− osc (6.22)

r((0, 0), (c, 0)) = β2/4α− omc (6.23)

r((0, 0), (c, c)) = −αc2 + γc− omc− osc (6.24)

Therefore,

r((0, 0), (0, c))− r((0, 0), (c, 0)) = −αc2 + γc− osc− β2/4α + omc

> −αc2 + γ2/2α− osc− β2/4α + omc

= (γ2/4α− αc2) + γ2/4α− osc− β2/4α + omc

= α((
γ

2α
)2 − c2) + (γ − β)

γ + β

4α
− (osc− omc)

If ((om−os)−(fm−fs))β+γ
4α

< (omc−osc)+α( γ2

4α2 −c2) then r((0, 0), (0, c)) > r((0, 0), (c, 0)).

Also r((0, 0), (0, c)) > r((0, 0), (c, c)). Similarly, if β > γ, then using Lemma 6.1 expected

optimal rewards are given by:

r((0, 0), (0, c)) = −αc2 + γc− osc (6.25)

r((0, 0), (c, 0)) = β2/4α− omc (6.26)

r((0, 0), (c, c)) = β2/4α− omc− osc (6.27)

Therefore,

r((0, 0), (0, c))− r((0, 0), (c, 0)) > α((
γ

2α
)2 − c2) + (γ − β)

γ + β

4α
− (osc− omc)

This concludes the proof for part (1). Similarity, we can prove part(2) where if ((om− os)−

(fm − fs))β+γ
4α

> (omc− osc) + α( γ2

4α2 − c2), then r((0, 0), (0, c)) < r((0, 0), (c, 0)). This con-

cludes the proof of part (1) and part (2).

Proof of Theorem 6.3: We prove each part of Theorem 6.3 separately. To prove part (1),

we show that if conditions ((O∧M̂2 ∧M̂S)∨ (M2 ∧M1))∨ (Ô ∧ Ŝ2 ∧M̂S) hold, then the
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the profit when only subcontractor invests in capacity c at t = 1 and maintain that capacity

at t = 2 is more than the profit at any other actions.

At first we consider a case where ∆o > ∆f and show that if conditions ((O ∧ M̂2 ∧ M̂S) ∨

(M2 ∧M1)) hold, then the the profit when only subcontractor invests in capacity c at t = 1

and maintain that capacity at t = 2 is more than the profits at any other actions. We analyze

a demand case where min( β
2α
, γ

2α
) ≥ dhigh,1 and max( β

2α
, γ

2α
) < dhigh,2.

Let V1,(am,as)(0, 0) be the value function at time t = 1 after taking actions am, as. Now, if

β < γ, min( β
2α
, γ

2α
) ≥ dhigh,1, max( β

2α
, γ

2α
) < dhigh,2 then the optimal value function can be

written as:

V ∗1 (0, 0) = max[V1,(0,0)(0, 0), V1,(0,c)(0, 0), V1,(c,0)(0, 0), V1,(c,c)(0, 0)]

= max[V ∗2 (0, 0),

−αd2
high,1 + γdhigh,1 − osc+ V ∗2 (0, c),

−αd2
high,1 + βdhigh,1 − omc+ V ∗2 (c, 0),

−αd2
high,1 + γdhigh,1 − osc− omc+ V ∗2 (c, c)]

From the assumption of positive revenue at demand satisfaction, V ∗2 (0, 0) < V ∗2 (0, c), and

−αd2
high,1 + γdhigh,1 − osc > 0. This implies that V1,(0,0)(0, 0) < V1,(0,c)(0, 0) and action (0, 0)

is not optimal at time t = 1. Next, if β < γ and γ/2α < c then using Equations (6.25) and

(6.27), r((0, 0), (0, c)) > r((0, 0), (c, c)) resulting in V ∗2 (c, c) < V ∗2 (0, c). This implies that

V1,(c,c)(0, 0) < V1,(0,c)(0, 0) and action (c, c) is not optimal at time t = 1. Next, we derive

conditions under which V1,(c,0)(0, 0) is less than V1,(c,c)(0, 0).

We know that only actions (0, 0) and (0, c) are available at state (c, 0), i.e. either neither the

manufacturer nor the subcontractor invests on additional capacity at time t = 2, or only the

subcontractor invests in capacity c at time t = 2. So, if β < γ, β/2α < c, and γ/2α < c then

using Lemma 6.1, the optimal action at state (c, 0) at time t = 2, i.e. argmax{V ∗2 (c, 0)} is
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defined as:

argmax{V ∗2 (c, 0)} = argmax{β2/4α− omc, γ2/4α− omc− osc} (6.28)

We consider two cases where argmax{V ∗2 (c, 0)} = (0, 0) or argmax{V ∗2 (c, 0)} = (0, c). In the

first case, if β < γ and γ2−β2 < 4αosc, then from Equation (6.28) argmax{V ∗2 (c, 0)} = (0, 0).

So, V1,(0,c)(0, 0)− V1,(c,0)(0, 0) can be written as:

V1,(0,c)(0, 0)− V1,(c,0)(0, 0) = (γ − β)dhigh,1 + γ2/4α− 2osc− (β2/4α− 2omc)

= (γ − β)(
β + γ

4α
+ dhigh,1)− 2(osc− omc) (6.29)

Equation (6.29) implies that if (β − γ)(β+γ
4α

+ dhigh,1) < 2(omc − osc) then V1,(0,c)(0, 0) >

V1,(c,0)(0, 0). In the second case, if β < γ and γ2 − β2 > 4αosc, then argmax{V ∗2 (c, 0)} =

(0, c). So, V1,(0,c)(0, 0)− V1,(c,0)(0, 0) can be written as:

V1,(0,c)(0, 0)− V1,(c,0)(0, 0) = (γ − β)dhigh,1 + γ2/4α− 2osc− (γ2/4α− osc− 2omc)

= (γ − β)(dhigh,1)− (osc− 2omc) (6.30)

Equation (6.30) implies that if (β − γ)dhigh,1 < (2omc− osc) then V1,(0,c)(0, 0) > V1,(c,0)(0, 0).

Using the similar approach, we can show condition for other demand cases. Next, we con-

sider a case where ∆o < ∆f and using similar approach described above, we show that

if conditions (Ô ∧ Ŝ2 ∧ M̂S) hold, then the the profit when only subcontractor invests in

capacity c at t = 1 and maintain that capacity at t = 2 is more than the profit at any other

actions. This concludes proof of part (1) of the theorem.

Next, to prove part (2), we show that if conditions (O∧M̂2∧MS)∨((Ô∧Ŝ2∧MS)∨(S2∧S1))

hold, then the the profit when only manufacturer invests in capacity c at t = 1 and main-

tain that capacity at t = 2 is more than the profits at any other actions. Note that

V1,(0,c)(0, 0) − V1,(c,0)(0, 0) is only defined as Equation (6.29) if β < γ and γ2 − β2 < 4αosc.

From Equation (6.29), if (β−γ)(β+γ
4α

+dhigh,1) > 2(omc−osc) then V1,(0,c)(0, 0) < V1,(c,0)(0, 0).

This concludes the proof of part (2) of the theorem.
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Next, to prove part (3), we show that if conditions (O ∧ M2 ∧ M̂1) hold, then the the

profit when the manufacturer invests in capacity in time t = 1 and the subcontractor in-

vest in capacity at time t = 2 is more than the profits at any other actions. Note that

V1,(0,c)(0, 0)−V1,(c,0)(0, 0) is only defined as Equation (6.30) if β < γ and γ2−β2 > 4αosc. If

γ2 − β2 > 4αosc and (β − γ)dhigh,1 > (2omc− osc) then from Equation (6.30), V1,(0,c)(0, 0) <

V1,(c,0)(0, 0). This concludes the proof of part (3) of the theorem. In the similar way described

above, we prove part (4) for the case where condition Ô holds.
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Chapter 7

Research Summary and Extensions

In this chapter, we discuss model summaries, insights, conclusions, and potential extensions

of the research.

7.1 Research Summaries and Insights

In Chapter 3 of this thesis, we consider a single product ATO system where individual

product is assembled from multiple standard-type components that are made to stock. The

supply chain manager can decide to replenish these components at a lower cost by using ca-

pacity available at the external subcontractor with high lead times. Additionally, the supply

chain manager can also leverage capacity available at the in-house manufacturer to replenish

components at a higher cost and faster service rate, reducing the lead time of components.

We assume that the demand of the final product is random, and at the demand arrival if

all components are available then the customer orders are satisfied, otherwise the demand

is backordered. We analyze three dual index policies that are common in practice: (i) base

stock policy (DB policy), (ii) on-hand inventory based policy (OH policy), and (iii) lead

time based policy (LT policy) and determine the optimal thresholds for these policies. Next,

we use Matrix-geometric approach to exploit the structure of sparse matrix and provide

exact solution for the single product ATO system with two components. However, for large

systems, we propose an efficient decomposition based approach that decomposes the original
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system into component based subsystems.

We observe that the DB policy outperforms OH policy and LT policy. However, DB policy

has operational ambiguity which is resolved by using combination of OH policy and LT

policy. Next, the OH policy works well at high base stock levels, while the LT policy works

well at low base stock levels. Finally, decomposition provides accurate results with error

< 2% in most cases.

In Chapter 4 of this thesis, we consider a make-to-stock system with multiple standard-type

components. These components require capacity on a special equipment that cannot be

dedicated to serve a specific component, and the components share the same manufacturing

resource. However, the supply chain manager can also decide be replenished these compo-

nents by using capacity available at the dedicated external subcontractor. The number of

components and the size of state space and action space increases the complexity of the

problem and the the underlying problem is hard to solve. However, we use efficient action

elimination techniques that partitions the action space into three regions: (i) zero production

costs, (ii) manufacturer is cheaper, (iii) subcontractor is cheaper, and using Markov decisions

process models, we analyze the structure of the optimal policy in each region. We analyti-

cally provide an exhaustive set of conditions that depends on the value function, costs, and

service rate, under which each actions are optimal.

We observe that for a complete symmetric system (with respect to cost and service rates),

the optimal policy is of dual index type, i.e. it suggests that either one of the components

should be always produced at the fastest rate or none of the components should be produced.

We analyze three cases: (i) if production costs are zero, then the optimal policy is dual index

type whenever the sum of inventory positions is constant, (ii) next, if the manufacture is

cheaper, then the optimal policy is multi-index type with three thresholds whenever the sum

of inventory positions is constant and the service rates satisfy specific conditions, (iii) finally,
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if the subcontractor is cheaper, then the optimal policy is dual index type whenever the sum

of inventory positions is constant and the service rates satisfy specific conditions.

In Chapter 5 of this thesis, we analyze a multi-product ATO system where the products

are assembled from multiple standard-type components that share the same manufacturing

resource. In this case, the supply chain manager could replenish components using capacity

available at the in-house manufacturer and using capacity available at the dedicated exter-

nal subcontractors. We propose a fairly accurate approach that combines decomposition and

Markov decision process where, we decompose the ATO system with multiple products into

two equivalent subsystems that characterize a component for each product. For a subsys-

tem, we leverage results from Chapter 4 to determine the structure of the optimal policy.

Next, using iterative algorithm for subsystems, we provide optimal solutions to the original

multi-product ATO system.

We observe that if production costs are zero or the subcontractor is cheaper, then for each

state of one subsystem there exists a dual index type policy in another subsystem. Next, if

the manufacture is cheaper, then the dual index type policy might not be optimal. We also

compare results from exact analysis and decomposition approach for three cases: negligible

production costs, manufacturer is cheaper, and subcontractor is cheaper, and observe that

the decomposition approach is fairly accurate specially if the manufacture is cheaper.

In Chapter 6 of this thesis, we analyze make to order system with knowledge-type compo-

nents. Knowledge-type components require high capital investment that have costs associ-

ated with unused capacity. The supply chain manager could subcontract these components

to external subcontractors to gain additional capacity. Additionally, the supply chain man-

ager could also produce these components in-house to absorb overhead costs associated with

under utilized capacity. We analyze two system : centralized system and decentralized sys-

tem. Using Markov decision process, we analyze the system with centralized control and
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analytically characterize the structure of the optimal capacity and production decisions. Us-

ing stochastic games formulations, we analyze the system with decentralized control. We

also analyze the gap in the decentralized system as compared to centralized system.

We observe that for equal production cost, if the unused capacity cost at the subcontractor,

is more than the unused capacity cost at the manufacturer, then the optimal production

quantity at the supplier is more than the manufacturer. Next, the optimal capacity and

production decisions depend on the relative difference between the difference in the cost

of unused capacity (manufacturer and the subcontractor) and difference in the production

costs.

7.2 Research Extensions

In this section, we discuss potential research extensions of this thesis.

Dynamic production, capacity and sourcing models: With changing production en-

vironment, certified subcontractors’ pool, product mix, etc, the industry faces issues with

maintaining the existing optimization and production planning system. This could even

result in the change of the entire model altogether. This problem can be divided into two

categories: (i) maintaining stable connection with the existing supply chain data sources and

dynamically update the model with the changing data, (ii) analyzing the effect of change

in system parameters such as service rates, demand distribution, capabilities and service

requirements on system performance and optimal decisions. Using concepts of robust opti-

mization paired with advanced data analytics, we plan to invest such problems and provide

solutions in an dynamic environment.

Reliability models: In addition to the supply chain and manufacturing issues prevalent in

O&G industries, reliability of equipments is emerging as one of the critical aspects of O&G

industries. Scheduling issues related to mandatory third party inspection presents complex
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challenges due to the multiple iterations needed before approval. Thus, determining the

optimal scheduling policy for third party inspection that balances tradeoffs in quality, costs,

and lead times is an important question. We plan to investigate such third party inspection

scheduling and reliability concerns using Markov decision process models that capture real-

world restrictions and uncertainty in inspection and production decisions.

R&D investment strategy: With depleting fossil fuel reserves, advancement of renewable

energy sources present exciting new opportunities. These advancements emphasize com-

plex equipments (wind turbines, generators, etc) which promotes advanced manufacturing

capabilities with targeted R&D investments by renewable energy industries. Determining

the optimal R&D investment and process improvement strategies for such industries and

estimating the impact off these strategies on quality and costs is an important research

area. Using Markov decision process models, We plan to investigate a holistic approach

to R&D investments that includes capability investment decisions, manufacturing process

improvement and reliability decisions.
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