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Hyperplane arrangements and compactifications of vector
groups

Colin Crowley

Abstract

Schubert varieties of hyperplane arrangements, also known as matroid Schubert varieties,
play an essential role in the proof of the Dowling-Wilson conjecture and in Kazhdan-
Lusztig theory for matroids. We begin by studying these varieties as equivariant compact-
ifications of affine spaces, and give necessary and sufficient conditions to characterize them.
Next, we generalize the theory to include partial compactifications and morphisms between
them. This theory resembles the correspondence between toric varieties and polyhedral
fans. Finally, in joint work with Connor Simpson and Botong Wang, we introduce a new
family of equivariant compactifications of affine spaces associated to arrangements of linear
subspaces of higher codimension. The associated combinatorics is that of polymatroids.
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Chapter 1

Introduction

The Schubert variety of a hyperplane arrangement is a compactification of the ambient

vector space of the arrangement, which is analogous to a classical Schubert variety in the

role it plays in Kazhdan-Lusztig theory for matroids (Braden, Huh, Matherne, Proudfoot,

and Wang 2020). Given an arrangement H1, . . . ,Hn of linear hyperplanes in a finite

dimensional complex vector space V , whose common intersection is zero, the Schubert

variety is the closure of V in (P1)n via the embedding

V ⊆ V/H1 × . . .× V/Hn ⊆ P1 × . . .× P1.

The Schubert variety of a hyperplane arrangement was first studied by (Ardila and

Boocher 2016), where the authors showed that the combinatorics of the matroid associ-

ated to the arrangement determined much of the geometry of the Schubert variety. The

intersection cohomology of the Schubert variety was used in (Huh and Wang 2017) to

prove Dowling and Wilson’s Top Heavy conjecture for matroids in the realizable case.

The affine reciprocal plane of an essential hyperplane arrangement is the intersection

of the Schubert variety with the affine chart (C× ∪ {∞})n ⊆ (P1)n. Reciprocal planes

are studied in (Terao 2002; Proudfoot and Speyer 2006; Elias, Proudfoot, and Wakefield

2016; Kummer and Vinzant 2019), were the authors also observe a two way street between

the combinatorics of arrangements and the geometry of their reciprocal planes. The in-
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tersection cohomology of the projectivized reciprocal plane was used in (Elias, Proudfoot,

and Wakefield 2016) to prove that the coefficients of the Kazhdan-Lusztig polynomial of

a realizable matroid are non-negative.

In this thesis we study the geometry of Schubert varieties of hyperplane arrangements

through the lens of equivariant compactifications. If G is an algebraic group, then an

equivariant compactification of G is a proper variety X containing G as a dense open set,

and an action G×X → X extending the group law G×G → G. With the word “proper”

omitted, we call X an equivariant partial compactification. For example, a toric variety

is by definition an equivariant partial compactification of the algebraic torus T = (C×)d.

One of the main theorems in toric geometry states that all normal toric varieties arise

from polyhedral fans. The Schubert variety of a hyperplane arrangement is an equivariant

compactification of the additive group V = Cd, which we will call a vector group.

In Chapter 2 we prove the following characterization of which equivariant compactifi-

cations of vector groups arise as Schubert varieties of hyperplane arrangements.

Theorem 1.0.1. An equivariant compactification Y of the vector group V = Cd is iso-

morphic to the Schubert variety of a hyperplane arrangement if and only if Y is normal

as a variety, Y has only finitely many orbits, and each orbit contains a point which can

be reached by a limit limt→∞ tv, for v ∈ V .

The limit condition in the above theorem is analogous to the fact that any orbit in a

normal toric variety can be reached by a one-parameter subgroup of the torus. Because

the fan corresponding to a normal toric variety is constructed by considering the limits of

one-parameter subgroups, it is natural to look for an analogous correspondence only for

equivariant compactifications of V where every orbit is reached by a one-variable limit.

In the course of proving the above theorem, we give another characterization in which

the limit condition is replaced by the stronger condition that each orbit admits a normal

slice satisfying certain properties. The second characterization resembles a key geometric

property of Schubert varieties of hyperplane arrangements: for each flat in a hyperplane

arrangement, the Schubert variety of the restriction is a normally nonsingular slice through
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the corresponding orbit (Braden, Huh, Matherne, Proudfoot, and Wang 2020).

In Chapter 3, we prove an equivalence of categories which generalizes both charac-

terizations to include partial compactifications as well as morphisms between them. The

objects in the first category are equivariant partial compactifications of V satisfying the

conditions of the above theorem, or the stronger formulation involving normal slices. The

objects in the second category we call partial hyperplane arrangements, which include all

essential hyperplane arrangements as examples. The construction of varieties from combi-

natorial data and vice versa in Chapter 2 and Chapter 3 have remarkably similar formulas

to those in toric geometry. We further explain this analogy in Section 3.1.1.

Chapter 4 is reproduced from forthcoming joint work with Connor Simpson and Botong

Wang, where we consider a generalized class of finite-orbit equivariant compactifications,

where the limit condition of Theorem 1.0.1 fails. We call these varieties polymatroid

schubert varieties, because the poset of orbits is determined by an associated integer

polymatroid.

Polymatroids axiomatize the combinatorics of arrangements of linear subspaces, much

like matroids axiomatize the combinatorics of hyperplane arrangements. Given a finite

collection of linear subspaces V1, . . . , Vn ⊆ V , the associated polymatroid is defined as the

rank function

rk : 2{1,...,n} → Z≥0, S 7→ codim
⋂
i∈S

Vi.

The most direct way to generalize the construction of matroid Schubert variety would

be to take the closure of V in the product of the projective closures of V/Vi. This con-

struction does give an equivariant compactification of V , however it does not have finitely

many V -orbits. The presence of infinitely many orbits means that (1) there is no natural

decomposition into affine cells, so the arguments of (Björner and Ekedahl 2009; Huh and

Wang 2017) do not generalize, and (2) there is no distinguished “most singular” point,

so one cannot define a Kazhdan-Lusztig polynomial for polymatroids in the same way as

(Elias, Proudfoot, and Wakefield 2016).

Our innovation is to replace the usual inclusion of V/Vi into its projective completion
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with the unique finite-orbit action of Cr on Pr, described in (Hassett and Tschinkel 1999).

We construct an equivariant compactification Cd ⊆ Y which depends on the arrangement

V1, . . . , Vn ⊆ V as well as a generic choice of coordinates on V/Vi, and prove:

Theorem 1.0.2. Y has finitely many orbits, and the orbit poset of Y is isomorphic

to the poset of combinatorial flats of the associated polymatroid, which we introduce in

Section 4.2.
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Chapter 2

Matroid Schubert varieties

2.1 Introduction and summary

We assume all varieties are irreducible and separated over C. Suppose that G is a com-

mutative linear algebraic group, acting on a variety X. Given a point x ∈ X, we write

G · x ⊆ X for the orbit and Gx ⊆ G for the stabilizer.

The main tool we will use throughout the chapter is the following notion of a slice

(Definition 2.2.4), which is standard for actions of Lie groups and algebraic groups (Gleason

1950; Mostow 1957; Montgomery and Yang 1957; Palais 1961). A (Zariski) slice through

x ∈ X is a Gx-stable subvariety Zx ⊆ X containing x, such that G · Zx ⊆ X is an open

set, and

G · Zx
∼= G× Zx/ ∼, where (gh, z) ∼ (g, hz) for all g ∈ G, h ∈ Gx, z ∈ Zx.

Geometrically, Zx is a normal slice through the orbit G · x, and G · Zx is neighborhood

of G · x that admits a product structure, similar to a tubular neighborhood. We use the

words “Zariski slice” to emphasize the difference between the above notion and that of an

étale slice.

In order to state our results, we make the following abbreviations. Suppose now that

X is an equivariant partial compactification of G. We say X satisfies
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• FO (Finite orbits) if X has finitely many G-orbits,

• OP (One-parameter subgroups) if for everyG-orbitG·x ⊆ X, there is a one dimensional

algebraic subgroup of G whose closure in X intersects G · x, and

• SL (Slices) if there exists a Zariski slice through every point of X.

The following is our main result on Schubert varieties of hyperplane arrangements,

which implies Theorem 1.0.1.

Theorem A. Suppose that Y is an equivariant compactification of the vector group

V = Cd. Then the following are equivalent.

i. Y is equivariantly isomorphic to the Schubert variety of an essential hyperplane ar-

rangement in V .

ii. Y is normal and satisfies FO and SL.

iii. Y is normal and satisfies FO and OP.

The original aim of this project was to prove that the third statement implies the first,

however we have found that it is most natural to prove that the third statement implies

second, and then prove that the second implies the first. For this reason, we view the

existence of slices as a more fundamental property of Schubert varieties of hyperplane

arrangements.

The study of equivariant compactifications of vector groups was initiated by (Hassett

and Tschinkel 1999), and we recommend (Arzhantsev and Zaitseva 2020) for a survey. We

will see in Section 3.1.1 that Schubert varieties of hyperplane arrangements show many

parallels to toric varieties, however the study of general equivariant compactifications of

vector groups has little in common with toric geometry (Arzhantsev and Zaitseva 2020).

In particular, toric varieties satisfy FO, OP, and SL, whereas these conditions need not

hold for equivariant compactifications of vector groups, as the following examples show.
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Example 2.1.1. Consider the action of a vector group V of dimension at least two on its

projective closure P(V ⊕ C), where the action on the boundary is trivial. This compacti-

fication satisfies SL and OP, but not FO.

Example 2.1.2 ((Hassett and Tschinkel 1999)). Consider the action of the two-dimensional

vector group C2 on P2 where (a1, a2) acts as

exp



0 0 0

a1 0 0

a2 a1 0


 =


1 0 0

a1 1 0

a2 +
1
2a

2
1 a1 1

 .

This action has one two-dimensional orbit (with which we can identify C2), one one-

dimensional orbit, and one zero-dimensional orbit, so FO holds. However SL and OP fail

for the one dimensional orbit.

2.2 Slices

2.2.1 Slices of group actions

We begin by reviewing the definition of homogeneous fiber spaces, following (Shafarevich

1994, Chapter II.4.8). Suppose that G is an algebraic group, H is an algebraic subgroup,

and Z is a quasiprojective variety on which H acts. Then there exists a variety G ∗H Z

called the homogeneous fiber space, which parameterizes equivalence classes in G × Z,

where

(gh, z) ∼ (g, hz), for all g ∈ G, h ∈ H, z ∈ Z.

There is a canonical map G × Z → G ∗H Z sending a point (g, z) to its equivalence

class, which we write as [g, z]. The universal property which characterizes G ∗H Z is the

following: if π : G × Z → X is a map of varieties such that π(gh, z) = π(g, hz) for all

g ∈ G, h ∈ H, z ∈ Z, then there is a unique factorization as follows.
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G× Z X

G ∗H Z

π

From the universal property, we see that there is a canonical map

τ : G ∗H Z → G/H, [g, z] 7→ gH,

with each fiber isomorphic to Z. We call τ the canonical fibration. If H ⊆ G is normal

and has a splitting s : G → H, then there is a G-equivariant isomorphism

G ∗H Z ∼= G/H × Z, [g, z] 7→ (gH, s(g) · z),

which makes the following diagram commute, where pr1 is the projection.

G ∗H Z G/H × Z

G/H

∼=

τ pr1

Remark 2.2.1. For the remainder of the chapter we will take G to be commutative. There-

fore it is possible for us to avoid defining G ∗H Z by choosing splittings and working with

G/H ×Z instead. While G/H ×Z is a simpler construction, we have found that thinking

in terms of the more canonical construction G ∗H Z shortens and clarifies the rest of the

chapter enough to make it worthwhile.

We need the following lemmas, which are formal consequence of the definitions.

Lemma 2.2.2 (Associativity of ∗). Suppose that H ′ ⊆ H ⊆ G are closed subgroups and

H ′ acts on a variety Z ′. Then there is a natural isomorphism

G ∗H (H ∗H′ Z ′) ∼= G ∗H′ Z ′, [g, [h, z]] 7→ [gh, z].

Lemma 2.2.3 (Orbits and stabilizers of G ∗H Z).

i. There is a one-to-one correspondence between G-orbits in G ∗H Z and H-orbits in Z

which sends G · [v, z] to H · z.
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ii. Suppose that G is commutative, and x = [v, z] ∈ G ∗H Z. Then the stabilizers Gx

and Hz coincide as subgroups of G.

Definition 2.2.4. Suppose that X is an algebraic variety with a G-action. If x ∈ X

is a point with stabilizer Gx, we say that a Gx-stable locally closed subvariety Zx ⊆ X

containing x is a (Zariski) slice at x if the natural map

G ∗Gx Zx → X, [g, z] 7→ g · z

is a G-equivariant Zariski open embedding.

The point x is in the image of G ∗Gx Zx, so we have that G ∗Gx Zx is identified with a

G-stable neighborhood of the orbit G · x.

We will often use the following criterion for open embeddings to prove the existence of

slices.

Theorem 2.2.5 (Zariski’s main theorem). Suppose that π : X → Y is a morphism of

varieties which is birational and injective on closed point, and that Y is normal. Then π

is an open embedding.

For the above formulation, we refer to (Vakil n.d., Exercise 29.6.D) and the surrounding

discussion. For our purposes, checking injectivity on closed points can be rephrased as

follows.

Lemma 2.2.6. Suppose that x ∈ X and Zx ⊆ X is a Gx-stable subvariety containing x.

Then G ∗Gx Zx → X is injective on closed points if g1 · z1 = g2 · z2 implies g−1
2 g1 ∈ Gx for

all g1, g2 ∈ G and z1, z2 ∈ Zx.

2.2.2 Partial compactifications with slices

For this subsection let G be a commutative linear algebraic group, and X a normal equiv-

ariant partial compactification of G such that FO and SL hold. We will first collect some

basic consequences.
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Lemma 2.2.7. If x ∈ X has a slice Zx, then Zx ∩G is a coset of Gx.

Proof. We have that G is contained in any invariant open neighborhood of X, and the

natural map

G ∗Gx Zx → X

is a G-equivariant open embedding, so there must be [v, z] ∈ G ∗Gx Zx mapping to G.

Therefore Zx∩G ̸= ∅. We also have that G∗Gx Zx
∼= G/Gx×Zx embeds as a Zariski open

set in the variety X, so Zx and thus Zx∩G is irreducible of dimension dimG−dimG/Gx =

dimGx. Finally we note that the only irreducible Gx-invariant closed subsets of G of

dimension dimGx are cosets.

There is a special point in each orbit corresponding to the trivial coset:

Definition 2.2.8. We say that a point x ∈ X is distinguished if it has a slice containing

the identity of G.

It follows from Lemma 2.2.7 that every orbit contains a distinguished point, and we

will see in Lemma 2.2.11 that every orbit contains at most one distinguished point.

The orbits of X form a finite stratification, so each orbit G · x has a unique smallest

G-invariant open neighborhood defined as follows.

Definition 2.2.9. The minimal G-invariant neighborhood Ux of x ∈ X is given by

the union of all orbits G · y such that G · x ⊂ G · y.

There exists a unique slice through x ∈ X contained in Ux, defined as follows:

Definition 2.2.10. The minimal slice through x ∈ X is Zx ∩ Ux, where Zx is any slice

of x.

It follows by (Shafarevich 1994, Proposition II.4.21) that the minimal slice through x

is indeed a slice, and uniqueness of the minimal slice for distinguished points (the case of

an arbitrary point follows easily) comes from the following observation:
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Lemma 2.2.11. The minimal slice Zx at a distinguished point x ∈ X is the closure of

Gx in Ux.

Proof. Because x is distinguished, Zx contains the identity of G. Since G ∩ Zx is a coset

of Gx by Lemma 2.2.7, G ∩ Zx = Gx. Thus the closure of Gx in Ux is contained in Zx.

Because G ∗Gx Zx
∼= G/Gx×Zz embeds as an open set in X, we get that Zx is irreducible

of dimension dimG − dimG/Gx = dimGx, and closed in Ux. Therefore the closure of

Gx in Ux equals Zx, since they are both irreducible closed subvarieties of Ux of the same

dimension.

Example 2.2.12 (Distinguished points and minimal slices of P1).

i. Consider P1 = C× ∪ {0} ∪ {∞} as an equivariant compactification of C×. The

distinguished points are 1, 0, and ∞ with minimal invariant open neighborhoods

C×,C× ∪ {0}, and C× ∪ {∞} respectively. The minimal slices are {1},C× ∪ {0}, and

C× ∪ {∞} respectively. Note that P1 is a non minimal slice through both 0 and ∞.

ii. Consider P1 = C ∪ {∞} as an equivariant compactification of C. The distinguished

points are 0 and∞ with minimal invariant open neighborhoods C and P1 respectively.

The minimal slices are {0} and P1 respectively.

In Section 2.5 we demonstrate the notions developed in this section for the Schubert

variety of a hyperplane arrangement.

We now prove that the class of varieties we are working with is closed under taking

slices:

Lemma 2.2.13. If x ∈ X is a distinguished point, then the minimal slice Zx is a normal

partial compactification of Gx satisfying FO and SL.

Proof. By Lemma 2.2.11, Zx is an equivariant partial compactification of Gx, and Zx is

normal by (Shafarevich 1994, Proposition II.4.22). By Lemma 2.2.3, the Gx-orbits of Zx

correspond to the G-orbits of an open set in X, so Zx has finitely many Gx-orbits. Finally

we check that Zx has slices. For a point y ∈ Zx, simply take the slice Zy through y in X.
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Since y ∈ Zx ⊆ Ux, G · x ⊆ G · y by definition of Ux. Therefore Gy ⊆ Gx, so Zy ⊆ Zx by

Lemma 2.2.11. Now consider the diagram

G ∗Gy Zy X

Gx ∗Gy Zy Zx

where the horizontal maps are the open embeddings [v, z] 7→ v ·z, and the left vertical map

is given by [v, z] 7→ [v, z]. We wish to show that the bottom arrow is an open embedding, for

which we use Theorem 2.2.5. The bottom arrow restricts to an isomorphism Gx ∗Gy Gy
∼=

Gx, so it is birational. All three arrows except the bottom one are already known to be

injective on closed points, so the bottom arrow is injective on closed points.

Remark 2.2.14. It follows from (Shafarevich 1994, Proposition II.4.21) that every orbit

closure satisfies SL for the group G/Gx. So modulo normality, the class of varieties

studied in this section is also closed under taking orbit closures.

2.2.3 Topology of orbit stratification

In the previous section we studied partial compactifications of tori and vector groups

simultaneously. In this section, we will use properties of vector groups which fail for tori.

Proposition 2.2.15. If X is an equivariant partial compactification of a vector group V

satisfying FO and SL, and x ∈ X is a distinguished point, then the minimal slice Zx is

proper and has x as the unique Vx-fixed point.

The proof follows from a general topological observation about varieties stratified into

affine spaces. We say that an algebraic cell decomposition of a variety X is a partition

X = ⊔αSα into finitely many locally closed subvarieties Sα called cells, such that each cell

is isomorphic to an affine space and the closure of a cell is a union of cells.

Lemma 2.2.16. Suppose that Z is a connected variety with an algebraic cell decomposition

that has at least one zero dimensional cell. Then Z is proper and has exactly one zero

dimensional cell.
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Proof. Consider the singular cohomology with compact support H i
c(Z;Q). Since Z is

connected, we have that H0
c (Z;Q) is zero if Z is not proper and one dimensional if Z is

proper. The lemma follows from the well known fact that

dimH2i
c (Z;Q) = #{i-dimensional cells in Z}.

One way to prove the above equation is by inducting on the number of cells as follows.

Suppose S is a cell of lowest dimension in Z and U is its open complement. Since S ∼= Ar

for some r, H2r
c (S;Q) = Q and H i

c(S;Q) = 0 for i ̸= 2r. Then the above equation follows

from induction using long exact sequence

. . . → H i
c(U ;Q) → H i

c(Z;Q) → H i
c(S;Q) → H i+1

c (U ;Q) → . . . .

Proof of Proposition 2.2.15. We have by Lemma 2.2.13 that Zx has finitely many Vx or-

bits. Each orbit of Vx is isomorphic to an affine space, and as is true of any algebraic group

action, orbits are locally closed and the closure of an orbit is a union of orbits. Thus the

Vx-orbits of Zx form an algebraic cell decomposition. Since x ∈ Zx is a zero dimensional

cell, the proposition follows from Lemma 2.2.16.

Remark 2.2.17. In the notation of Proposition 2.2.15, it follows that the minimal slice

through x is the unique slice through x, as opposed to the torus case. See Example 2.2.12.

Remark 2.2.18. In the case where X is a toric variety with torus T , the minimal slice

Zx through a point x ∈ X is not proper but rather affine. However Zx still has x as the

unique Tx-fixed point for a different reason. This is due to the fact that disjoint T -invariant

closed sets in an affine T -variety can be separated by an invariant function (Dolgachev

2003, Lemma 6.1). Since Zx has a dense Tx-orbit, all invariant functions are constant.

Therefore all invariant closed sets intersect, so x is the only Tx-fixed point.
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2.2.4 Slices and one-parameter subgroups

In this section we prove that Item ii and Item iii in Theorem B are equivalent. We break

the proof into two lemmas.

Definition 2.2.19. Suppose that X is an equivariant partial compactification of a vector

group V , and x ∈ X. Define

V ◦
x = Vx \

⋃
Vy

where the union is over y ∈ X such that Vy ⊊ Vx.

Lemma 2.2.20. Suppose X is a normal equivariant partial compactification of a vector

group V , satisfying FO and SL. Let x ∈ X be a distinguished point, and let v ∈ V . Then

limt→∞ tv = x if and only if v ∈ V ◦
x . In particular, X satisfies OP.

Proof. Suppose that v ∈ V ◦
x . By Proposition 2.2.15, Zx is proper, so limt→∞ tv must

converge to a boundary point of Zx ⊇ Vx. In addition, v lies in the stabilizer of limt→∞ tv,

so limt→∞ tv be a Vx-fixed point. By Proposition 2.2.15, x is the unique Vx-fixed point in

Zx, so limt→∞ tv = x. To prove the other direction, we note that V is partitioned into

sets of the form V ◦
y for y ∈ X, so if v ̸∈ V ◦

x then limt→∞ tv = y for some y ̸= x.

Lemma 2.2.21. Suppose that X is a normal equivariant partial compactification of V

satisfying FO and OP. Then X satisfies SL.

Proof. We wish to construct a slice through a point x ∈ X. We first explain why it is

enough to show that the quotient map

V → V/Vx

extends to a V -equivariant map

τ : Ux → V/Vx,

where Ux is the minimal invariant open neighborhood of Definition 2.2.9. We can assume

without loss of generality that τ(x) = 0, since the translation of a slice is a slice. Setting
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Zx := τ−1(0), we have that Vx acts on Zx and x ∈ Zx. To show that Zx is a slice, we must

check that the natural map

V ∗Vx Zx → X, [v, z] 7→ v · z

is an open embedding. For this we use Theorem 2.2.5. As before we have that V ∗VxZx → X

restricts to an isomorphism V ∗Vx Vx
∼= V , so it is birational. By Lemma 2.2.6 we must

show that if v1, v2 ∈ V and z1, z2 ∈ Zx such that

v1 · z2 = v1 · z2,

then v1 − v2 ∈ Vx. We check this by applying τ :

τ(v1) · τ(z1) = τ(v2) · τ(z2) by equivariance of τ ,

τ(v1) = τ(v2) because z1, z2 ∈ Zx = τ−1(0),

v1 − v2 ∈ Vx because τ extends V → V/Vx.

Next we show how to construct τ . We wish to construct a V -equivariant map

Sym(V/Vx)
∨ → H0(Ux,OX),

so it is enough to show that if f ∈ V ∨ vanishes on Vx, then f can extend to Ux. Since Ux

is normal, it suffices to show that f does not have a pole along any codimension one orbit.

Let L ⊆ V be a one dimensional vector subspace of V , and let y be the boundary point

of L in X. Assume that y ∈ Ux. By our assumption that X satisfies OP, it is enough to

show that f does not have a pole along V · y. Since the action of L fixes the boundary of

L, L ⊆ Vy. We also have Vy ⊆ Vx by definition of Ux. Therefore f vanishes on L. Now let

L′ denote the translation of L by a generic vector, and y′ the boundary point of L′. Since

f is linear, f is constant and nonzero on L′. Thus f−1 is constant and nonzero on L′. If

f−1 is undefined at y′, then since y′ is generic in V · y, f has a zero along V · y. If on the
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other hand f−1 is defined at y′, then f−1 cannot vanish at y′ by continuity, so f does not

have a pole along V · y.

This completes the proof that the statements Item ii and Item iii in Theorem B are

equivalent.

2.3 The orbit-flat correspondence

Now that we have proved the equivalence of the statements Item ii and Item iii in Theo-

rem B, we will refer to an equivariant partial compactification of a vector group V which

satisfies either of these conditions as a linear V -variety. In Lemma 2.2.20, we showed that if

X is a linear V -variety and x ∈ X is a distinguished point, then v ∈ V ◦
x (Definition 2.2.19)

if and only if limt→∞ tv = x. As a consequence, we have:

Corollary 2.3.1. If X is a linear V -variety, then there is a canonical bijection between

any two of the following sets.

• Orbits of X

• Distinguished points of X

• Stabilizers of points of X

Moreover, each of the above sets is functorial on the category of normal equivariant partial

compactifications of vector groups, and the bijections between them are natural.

Proof. The correspondence between orbits and distinguished points is automatic, and

we have by Lemma 2.2.20 that any distinguished point x ∈ X can be recovered from

its stabilizer Vx by taking the limit limt→∞ tv for v ∈ V ◦
x . Thus all three sets are in

correspondence.

Suppose that T is a morphism of linear vector group varieties. It is automatic that

orbits are mapped inside of orbits and stabilizers are mapped inside of stabilizers. Since

distinguished points are the set of points that arise as limits of one-parameter subgroups,
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distinguished points are mapped to distinguished points. Naturality of these correspon-

dences follows formally.

Definition 2.3.2. Let X be a linear V -variety. The partial hyperplane arrangement

L (X) associated to X is the collection of stabilizers of points in X.

To justify the definition of L (X), we will prove:

Proposition 2.3.3.

(i) If X is a proper linear V -variety, then L (X) is the collection of flats of an essential

hyperplane arrangement in V .

(ii) If X is a linear V -variety then L (X) is a partial hyperplane arrangement in V .

By combining Corollary 2.3.1 and Proposition 2.3.3 we have a natural one-to-one cor-

respondence between the orbits of X and the flats of its relative hyperplane arrangement

L (X), as described in Section 3.1.1.

Lemma 2.3.4. If X is a linear V -variety, then L (X) is closed under intersections.

Proof. Suppose that x, y ∈ X are distinguished points, and consider the action of Vx ∩ Vy

on the closure Vx ∩ Vy in X. Let Zx be the minimal slice through x. Then Vx ⊆ Zx by

Lemma 2.2.11, so Vx ∩ Vy is a closed subvariety of Zx. Then by Proposition 2.2.15, Zx is

proper, so Vx ∩ Vy is proper. By the Borel fixed point theorem (Humphreys 1975, Chapter

21.2), there exists a (Vx ∩ Vy)-fixed point z ∈ Vx ∩ Vy. Thus Vx ∩ Vy ⊆ Vz. To show the

opposite inclusion, note that

z ∈ Vx ∩ Vy ⊆ Zx ∩ Zy ⊆ Ux ∩ Uy,

where Ux is the minimal invariant neighborhood. Therefore by definition of Ux, we have

x, y ∈ V · z, and thus Vz ⊆ Vx ∩ Vy.

To prove Proposition 2.3.3 (i), it now suffices to prove that any stabilizer Vx ⊊ V is

the intersection of the codimension one stabilizers containing it. For this we need the

following lemmas.
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Lemma 2.3.5. Suppose that G is a linear algebraic group acting on a variety X, and Zx

is a slice through x ∈ X. Then any regular function on G · x extends to the neighborhood

G ∗Gx Zx ⊆ X.

Proof. This follows from the universal property of G∗GxZx applied to the map G×Zx → C

given by (g, z) 7→ f(g · x) where f is a regular function on G · x.

Lemma 2.3.6. If U is a connected algebraic variety which has nonconstant global regular

functions, and U ⊆ K is a compactification, then the boundary K\U has has an irreducible

component of codimension one in K.

Proof. Assume for a contradiction that every component of K \ U has codimension at

least two. Consider the inclusion of the normalizations Ũ ⊆ K̃. Since U has nonconstant

global regular functions, then so must Ũ . The normalization map is finite and therefore

preserves the codimension of the boundary, so K̃ \ Ũ is a closed set of codimension at least

two. Thus any regular function on Ũ extends to K̃, so we get that the proper variety K̃

has nonconstant global regular functions, which is a contradiction.

Proof of Proposition 2.3.3 (i). Suppose that x ∈ X is a distinguished point with stabilizer

Vx of codimension at least two in V . We wish to show that Vx is the intersection of the

codimension one stabilizers containing it, so by induction it is enough to find y, z ∈ X

such that

Vx = Vy ∩ Vz, dimVy = dimVz = dimVx + 1.

By Corollary 2.3.1, V · y ̸= V · z implies Vy ̸= Vz. Therefore it suffices to show that the

orbit closure V · x contains two distinct orbits of codimension one in V · x. Suppose that

V · y ⊆ V · x is an orbit of codimension one in V · x. Since Vx ⊆ V is codimension at

least two, dimV · y > 0, and so we can choose a nonconstant regular function f on V · y.

By Lemma 2.3.5, f extends to a regular function on the minimal invariant neighborhood

Uy ⊇ V · x ∪ V · y, which is nonconstant when restricted to V · x ∪ V · y. Therefore by

Lemma 2.3.6 with U = V · x ∪ V · y and K = V · x, there is another orbit V · z ⊆ V · x of

codimension one.
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Proof of Proposition 2.3.3 (ii). We will apply Proposition 2.3.3 (i) to the slices of X. We

have that {0} ∈ L (X), and by Lemma 2.3.4, L (X) is closed under intersections. It

remains to show that for F ∈ L (X), {G ∈ L (X) : G ⊆ F} is the collection of flats of

a partial hyperplane arrangement in F . Suppose that F is the stabilizer of the distin-

guished point x ∈ X. Then the slice Zx is a proper linear F -variety by Lemma 2.2.13

and Proposition 2.2.15, so the set of stabilizer L (Zx) is the collection of flats of an es-

sential hyperplane arrangement in F by Proposition 2.3.3 (i). Then by Lemma 2.2.3,

L (Zx) = {G ∈ L (X) : G ⊆ F}.

2.4 Proof of Theorem A

Let X be an equivariant compactification of V , such that X is normal and satisfies FO

and SL. We have shown in Lemma 2.2.20 and Lemma 2.2.21 that this is equivalent to

assuming X is normal and satisfies FO and OP. In Corollary 2.5.2 we show that the

Schubert variety of a hyperplane arrangement satisfies FO and SL, and normality of the

Schubert variety follows from (Brion 2003, Theorem 1) together with (Ardila and Boocher

2016, Theorem 1.3(c)). Thus it only remains to show that X is equivariantly isomorphic

to the Schubert variety of a hyperplane arrangement in V .

By Proposition 2.3.3, there exists an essential hyperplane arrangement A = {H1, . . . ,Hn}

in V whose lattice of flats is the collection of stabilizers of X. We write

ΦA : V → V/H1 × . . .× V/Hn,

for the induced linear embedding, and YA for the Schubert variety of A . Our goal is to

show that there exists an isomorphism

T : X → YA (X)

extending the isomorphism

ΦA : V → ΦA (V ).
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For each hyperplane Hi, we denote by xi, Zi, and V ∗Hi Zi ⊆ X the corresponding distin-

guished point, slice, and minimal V -invariant open neighborhood, respectively. Explicitly,

Zi is the closure of Hi in X, xi is the Hi-fixed point in Zi, and V ∗HiZi is embedded in X as

the union of all V -orbits in X which intersect Zi (see Section 2.2.2). Because Zi is proper

(Proposition 2.2.15) and X is separated, Zi ⊆ X is closed. Recall from Section 2.2.1 that

Zi is the fiber of the trivial V -equivariant fibration

τ : V ∗Hi Zi → V/Hi.

Therefore Zi is a prime Cartier divisor in X, so there is an associated line bundle OX(Zi).

Fix a linearization of OX(Zi), which exists by (Dolgachev 2003, Theorem 7.2). We then

have a linear action

V ↷ H0(X,OX(Zi)).

Because τ is V -equivariant, the translations of Zi under the action of V are the fibers

of τ , so letting Z ′
i ̸= Zi be any such translation, we have that Zi and Z ′

i are linearly

equivalent and disjoint. Thus OX(Zi) is globally generated, since the sections (up to

scaling) corresponding to Zi and Z ′
i have no common zeros. So far, we have that Zi

defines a V -equivariant morphism

Ti : X → P(H0(X,OX(Zi))
∨).

Finally, we have that the target of Ti is P1 from a general observation:

Lemma 2.4.1. Suppose X is a proper normal variety, and Z and Z ′ are prime Cartier

divisors which are linearly equivalent and such that Z ∩ Z ′ = ∅. Then the space of global

sections of OX(Z) is two dimensional.

Proof. Let i : Z → X denote the inclusion, and consider the short exact sequence

0 OX OX(Z) OX(Z)⊗ i∗OZ 0.

By the projection formula, the sheaf on the right is isomorphic to i∗(i
∗OX(Z) ⊗ OZ).
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However the restriction of OX(Z) to Z is trivial because Z can be moved to the disjoint

divisor Z ′. Thus OX(Z)⊗ i∗OZ
∼= i∗OZ . Now take the long exact sequence in cohomology.

0 H0(X,OX) H0(X,OX(Z)) H0(X, i∗OZ) . . .

Since X and Z are proper and irreducible, dimH0(X,OX) = dimH0(X, i∗OZ) = 1.

Therefore dimH0(X,OX(Z)) ≤ 2. We also have that the sections (up to scaling) corre-

sponding to Z and Z ′ are independent, so dimH0(X,OX(Z)) = 2.

Let us choose coordinates on the target of Ti:

s0, s1 ∈ H0(X,OX(Zi)), div(s0) = Zi, s1 ̸= 0 is V -fixed.

The section s1 exists because V is unipotent. For any isomorphism between OX(Zi)|V

and OV , we have that s0|V is sent to a linear form vanishing on Hi, and s1|V is sent to a

constant since s0 is V -fixed. Thus there is a commutative square

X P(V/Hi ⊕ C)

V V/Hi

Ti

where the right vertical arrow is the embedding

V/Hi → P1, v 7→ [s0(v) : s1(v)].

From this it follows that the product map X →
∏n

i=1 P(V/Hi ⊕C) extends ΦA , and thus

we can define a morphism

T : X → YA (X), T := (T1, . . . , Tn).

Since T is birational, by Theorem 2.2.5 we can show that T is an isomorphism by showing

that it is bijective on closed points. Since T extends ΦA , it is a morphism of linear V -

varieties. The set of stabilizers of X is the lattice of flats of A by assumption, and one

can prove in coordinates that the set of stabilizers of YA is the image under ΦA of the
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lattice of flats of A (see Corollary 2.5.2 (iii)). Thus T carries the set of stabilizers of

X bijectively onto the set of stabilizers of YA . Furthermore, T carries the distinguished

points of X bijectively onto the distinguished points of YA by Corollary 2.3.1. Let x ∈ X

be a distinguished point with stabilizer Vx, and let T (x) ∈ YA be the corresponding

distinguished point with stabilizer ΦA (Vx). We have the following commutative square

relating the orbit V · x in X and the corresponding orbit ΦA (V ) · T (x) in YA .

V · x ΦA (V ) · T (x)

V/Vx ΦA (V )/ΦA (Vx)

T

∼= ∼=

Since the bottom arrow is an isomorphism, it follows that the top arrow is an isomorphism,

and we take the disjoint union over all distinguished points to obtain that T is a bijection

on closed points.

This completes the proof of Theorem A.

2.5 Schubert varieties of hyperplane arrangements in coor-

dinates

In this section we give a coordinate formula for the Schubert variety of a hyperplane

arrangement as a closed subset of (P1)n, as well as coordinate formulas for the orbits,

distinguished points, stabilizers, minimal V -invariant open neighborhoods, and slices. All

of the following formulas are consequences of the defining multihomogeneous equations of

the Schubert variety given in (Ardila and Boocher 2016), and they will be familiar to the

experts.

We fix the following notation.

• Coordinates: Set E = {1, . . . , n}, and let A = {H1, . . . ,Hn} be an essential hyper-

plane arrangement in V . In order to work with coordinates, let us fix an isomorphism

of V/Hi with C for each i, and thus we can consider V ⊆ CE .

• Group action: Let us identify P1 = C ∪ {∞} set theoretically, writing z for [z : 1]
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and ∞ for [1 : 0]. In this notation, the action of CE on (P1)E is given by coordinate

wise addition, using the rule z +∞ = ∞ for all z ∈ C. Since the action of V on YA is

restricted from the action of V on (P1)E , we have that the action of V on YA is also

given by coordinate wise addition.

• Projections: Given S ⊆ E, write πS : (P1)E → (P1)S for the coordinate projection.

Because we consider CE ⊆ (P1)E , we will also write πS(V ) for the coordinate projection

of V onto CS × {0}E\S .

• Matroid flats: A flat of the matroid associated to V ⊆ CE is a subset F ⊆ E such

that F = {i ∈ E : vi = 0} for some v ∈ V . Write F for the collection of flats of the

matroid associated to V . There is a natural bijection between F and the lattice of flats

of A given by sending F ∈ F to ∩i∈FHi.

We begin with a set theoretic description of YA :

Proposition 2.5.1 ((Proudfoot, Xu, and Young 2018) Lemma 7.5 and Lemma 7.6). Write

YA as the closure of the linear subspace V ⊆ CE. Fix a point x ∈ (P1)E, and write F ⊆ E

for the set of indices corresponding to non-infinite entries of x. Then x ∈ YA if and only

if F ∈ F and πF (x) ∈ πF (V ). Equivalently,

YA =
⋃

F∈F

πF (V )× {∞}E\F ⊆ (P1)E .

Let us now demonstrate in explicit coordinates the objects defined in Section 2.2.2.

Corollary 2.5.2. Let x, y ∈ YA , and write F,G ⊆ E for the set of indices corresponding

to non-infinite entries of x and y respectively.

(i) The V -orbit of x is V · x = πF (V )× {∞}E\F .

(ii) The distinguished point in the V -orbit of x is xF = {0}F × {∞}E\F .

(iii) The stabilizer of x is Vx = V ∩ ({0}F × CE\F ).
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(iv) The minimal V -invariant open neighborhood Ux of x contains y if and only if F ⊆ G.

Equivalently,

Ux =
⋃

G∈F ,F⊆G

πG(V )× {∞}E\G.

(v) The minimal slice Zx through x contains y if and only if F ⊆ G and πF (x) = πF (y).

Equivalently

Zx =
⋃

G∈F ,F⊆G

(
πG(V ) ∩

(
πF (x)× CG\F

))
× {∞}E\G.

(vi) Set YAF
equal to the closure of V ∩CE\F in (P1)E\F . The minimal slice through the

distinguish point xF = {0}F × {∞}E\G is ZxF = {0}F × YAF
.

Proof. We begin with Corollary 2.5.2 (i). Since xi = ∞ for i ̸∈ F , we have that v ∈ V

acts on x via (v · x)i = vi + xi for i ∈ F and (v · x)i = ∞ for i ̸∈ F . Thus V · x ⊆

πF (V )× {∞}E\F . For the reverse inclusion, let y ∈ πF (V )× {∞}E\F , and choose v ∈ V

such that πF (v) = πF (y)− πF (x). Then v · x = y.

We have that v · x = x if and only vi + xi = xi for all i ∈ F , so Corollary 2.5.2 (iii)

follows.

To prove Corollary 2.5.2 (iv), let y ∈ YA and write G = {i ∈ E : yi ̸= ∞}. We wish

to show that the set of y for which F ⊆ G is equal to the minimal open neighborhood

Ux. We first note that the set of y such that F ⊆ G is a V -stable open set of V · x, so

it contains the minimal one. To show the reverse inclusion we must check that if F ⊆ G,

then πF (V )×{∞}E\F ⊆ πG(V )× {∞}E\G. Since F ∈ F is a flat, we may choose a vector

v ∈ V such that vi = 0 for i ∈ F and vi ̸= 0 for i ̸∈ F . Then for each value of t ∈ C,

πG(tv)× {∞}E\G ∈ πG(V )× {∞}E\G, but as t → ∞, the limit lies in πF (V )× {∞}E\F .

We now turn to Corollary 2.5.2 (v). We have that

Zx := {y ∈ YA : F ⊆ G, πF (x) = πF (y)}

is contained in Ux by Corollary 2.5.2 (iv), and so we just need to check that it is a slice.
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We have that Vx acts on Zx, so we use Lemma 2.2.6 to show that the induced map

V ∗Vx Zx → YA is injective on closed points. Suppose that v · z = v′ · z′ for v, v′ ∈ V and

z, z′ ∈ Zx. Then πF (v) + πF (z) = πF (v
′) + πF (z

′), however πF (z) = πF (z
′) = πF (x), so

πF (v − v′) = 0 as required. Since V ∩ Zx is a coset of Vx, we have that V ∗Vx Zx → YA is

birational, and thus an open embedding by Theorem 2.2.5.

Now Corollary 2.5.2 (ii) and Corollary 2.5.2 (vi) follow from knowing the slice through

xF .
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Chapter 3

Partial compactifications and

morphisms

3.1 Introduction and summary

We now describe how Theorem A extends to equivariant partial compactifications of vec-

tor groups, as well as morphisms between them. We define a morphism of equivariant

compactifications of vector groups to be a map of varieties, which restricts to a linear map

from the first vector group to the second.

Let us first review some hyperplane arrangement terminology. We will work only with

arrangements of linear hyperplanes in a finite dimensional complex vector space. We do

not consider arrangements of affine hyperplanes. We say that a hyperplane arrangement

is essential if the common intersection of the hyperplanes is zero. A flat of a hyperplane

arrangement is a linear subspace of the ambient vector space which can be written as the

intersection of several hyperplanes. We consider the ambient vector space to be a flat,

because it arises from the empty intersection of hyperplanes.

Remark 3.1.1. Following the standard convention, we equip the collection of flats with

the partial order given by reverse inclusion, writing F ≤ G if F and G are flats such

that G ⊆ F . When the arrangement is essential, this partial order gives the collection of
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flats the structure of a finite geometric lattice, or equivalently, a simple matroid. For our

purposes, the partial order will only be used in Example 3.1.3 and in the fact that will

refer to the flats of an essential hyperplane arrangement as the “lattice of flats.”

Viewing an essential hyperplane arrangement as its lattice of flats, we make the fol-

lowing generalization:

Definition 3.1.2. A partial hyperplane arrangement in V = Cd is a finite collection

L of vector subspaces of V , such that

i. {0} ∈ L ,

ii. if F,G ∈ L then F ∩G ∈ L ,

iii. for each F ∈ L , the set {G ∈ L : G ⊆ F} is the lattice of flats of an essential

hyperplane arrangement in the vector space F .

Example 3.1.3. Suppose that L is the lattice of flats of an essential hyperplane arrange-

ment, and P ⊆ L is an order filter (i.e. an upward closed set under the partial order of

reverse inclusion.) Then P is a partial hyperplane arrangement.

Example 3.1.4. Here we give an example of a partial hyperplane arrangement in C4. Let

L consist of the zero subspace of C4, together with the affine cones of the points, lines,

and planes in P3 listed in Fig. 3.1.

Points Lines Planes

A = [0 : 0 : 1 : 1] AB ABCD
B = [0 : 1 : 0 : 1] AC BCDE
C = [0 : 0 : 0 : 1] AD
D = [0 : −1 : 0 : 1] BE
E = [1 : 0 : 0 : 1] CE

DE
AE
BCD C

B

E

D

A

Figure 3.1: The projectivization of a partial hyperplane arrangement in C4.
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Example 3.1.5. Here we give an example of a partial hyperplane arrangement which cannot

be realized as an order filter in the lattice of flats of a hyperplane arrangement. Consider

the partial hyperplane arrangement L in C3 consisting of the proper coordinate subspaces,

and a general line. Any hyperplane passing through the general line will intersect one of

the coordinate hyperplanes in a non-coordinate line. Therefore if there is hyperplane

arrangement whose lattice of flats contains L , then L cannot be upward closed.

Definition 3.1.6. Suppose that Li is a partial hyperplane arrangement in a vector group

Vi for i = 1, 2, and T : V1 → V2 is a linear map. Then we say T is a morphism of partial

hyperplane arrangements if

i. for each F1 ∈ L1 there exists F2 ∈ L2 such that T (F1) ⊆ F2,

ii. for each F1 ∈ L1 and F2 ∈ L2, T
−1(F2) ∩ F1 ∈ L1.

Example 3.1.7. In the case where Li is the lattice of flats of a hyperplane arrangement

Ai, then T is a morphism of partial hyperplane arrangements if and only if the preimage

of each hyperplane in A2 is either a hyperplane in A1 or is V1.

The following is our main result, in maximal generality.

Theorem B. There is a fully faithful embedding of categories from partial hyperplane

arrangements to equivariant partial compactifications of vector groups, such that the fol-

lowing are equivalent for an equivariant partial compactification Y .

i. Y arises from a partial hyperplane arrangement.

ii. Y is normal and satisfies FO and SL.

iii. Y is normal and satisfies FO and OP.

3.1.1 Analogy with toric varieties

For the remainder of the introduction, we say that an equivariant partial compactification

of V satisfying any of the equivalent conditions of Theorem B is a linear V -variety. In
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Toric varieties Linear V -varieties

Combinatorics Geometry Combinatorics Geometry

N T V V

Full dimensional
cones in NR

Affine toric
varieties with no
torus factors

Essential
hyperplane
arrangements in
V

Schubert
varieties of
hyperplane
arrangements

Cones in NR
Affine toric
varieties

Essential
hyperplane
arrangements in
F ⊆ V

Simple linear
V -varieties

Fans in NR Toric varieties

Partial
hyperplane
arrangements in
V

Linear
V -varieties

Cones in a fan Σ

Orbits,
distinguished
points, and
invariant affine
opens in XΣ

Flats in a partial
hyperplane
arrangement L

Orbits,
distinguished
points, and
invariant simple
opens in YL

Figure 3.2: Correspondences for toric varieties versus correspondences for linear V -
varieties.

this section, we explain the analogy between Theorem B and the correspondence between

normal toric varieties and polyhedral fans. From now on, we assume all toric varieties are

normal.

Toric varieties satisfies FO, SL, and OP, and once we impose these conditions onto an

equivariant partial compactification of a vector group, there is dictionary (Fig. 3.2) which

is similar to the dictionary between toric varieties and fans. In both cases the idea is to

cover the variety with “simple” open sets. The main difference is that these open sets are

affine in the torus case and non-affine in the vector group case.

One-parameter subgroups

Let T be an algebraic torus. A one-parameter subgroup of T is an algebraic group ho-

momorphism from C× to T . The one-parameter subgroups of T form a finitely generated

free abelian group N , and write NR = N ⊗Z R for the corresponding real vector space.



30

Let V be a vector group. By a one-parameter subgroup of V , we mean an algebraic group

homomorphism from C to V . The one-parameter subgroups of V naturally correspond to

the elements of V , so V will play the role of both T and N .

Full dimensional cones and essential hyperplane arrangements

The toric varieties arising from full dimensional cones are exactly the affine toric vari-

eties that have no torus factors. If σ ⊆ NR is full dimensional (strictly convex rational

polyhedral) cone, then there is a canonical embedding of tori T ⊆
∏

u∈H C× where H

is the unique minimal basis of the dual semigroup. Note that this embedding is only

canonical when σ is full dimensional. The corresponding toric variety is the closure of

T in
∏

u∈H (C× ∪ {0}). If A is an essential hyperplane arrangement in V , then there is

a canonical embedding of vector groups V ⊆
∏

H∈A V/H. The corresponding Schubert

variety is the closure of V in
∏

H∈A (V/H ∪ {∞}).

Simple partial compactifications

Suppose an algebraic group G acts on a variety X with finitely many orbits. We say that

X is simple if there is a unique closed orbit. Since the orbits form a finite stratification,

X can be covered with simple G-stable open sets. Simple toric varieties are exactly affine

toric varieties by (Sumihiro 1974, Corrollary 2), and every affine toric variety arises from a

sublattice N ′ ⊆ N and a full dimensional cone σ ⊆ N ′⊗ZR. Simple linear V -varieties are

not affine, however by Proposition 2.2.15 and Theorem A, every simple linear V -variety

arises from a vector subspace F ⊆ V and an essential hyperplane arrangement in F .

Partial compactifications

Toric varieties are constructed from affine toric varieties by gluing according to the fan,

and likewise linear V -varieties are constructed from simple linear V -varieties by gluing

according to the partial hyperplane arrangement. See Section 3.2.3 for more details.
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Orbit correspondences

Let Σ be a fan in NR corresponding to a toric variety XΣ. Let σ◦ denote the relative

interior of a cone σ ∈ Σ. That is, σ◦ = σ \
⋃
τ where the union is over τ ∈ Σ such

that τ ⊊ σ. The cones σ ∈ Σ are in one-to-one correspondence with distinguished points

xσ ∈ XΣ, given by

N ∩ σ◦ = {λ ∈ N : lim
t→0

λ(t) = xσ}.

Let L be a partial hyperplane arrangement corresponding to a linear V -variety YL . Given

F ∈ L , write F ◦ = F \
⋃
G where the union is over G ∈ L such that G ⊊ F . The flats

F ∈ L are in one-to-one correspondence with distinguished points yF ∈ YL , given by

F ◦ = {v ∈ V : lim
t→∞

tv = yF }.

In both cases, each orbit contains exactly one distinguished point. Therefore cones (resp.

flats) also correspond to orbits, and to simple invariant open sets in XΣ (resp. YL ). See

Section 2.3 for more details.

3.2 Proof of Theorem B

3.2.1 Overview

In this section V = Cd will denote a vector group, and we will use the term linear V -

variety to mean a normal equivariant partial compactification V ⊆ X, which has finitely

many orbits and a slice through every point. We have proved in Section 2.2.4 that Item ii

and Item iii in Theorem B are equivalent. To prove Theorem B, it remains to show the

following.

Theorem 3.2.1. Given a linear V -variety X, let L (X) denote the associated partial

hyperplane arrangement of Definition 2.3.2.

(i) Functoriality: If Xi is a linear Vi-variety for i = 1, 2 and T : X1 → X2 is a

morphism, then the restricted linear map T : V1 → V2 is a morphism of partial
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hyperplane arrangements L (X1) → L (X2).

(ii) Full faithfulness: If Xi is a linear Vi-variety for i = 1, 2 and T : V1 → V2 is

a morphism of partial hyperplane arrangements L (X1) → L (X2), then T extends

uniquely to a morphism of linear V -varieties X1 → X2.

(iii) Essential surjectivity: If L is an essential hyperplane arrangement in V , then

there exists a linear V -variety X such that L (X) ∼= L .

The proof of essential surjectivity describes how to construct the linear V -variety

associated to a partial hyperplane arrangement.

3.2.2 Morphisms

In this section we prove functoriality and full faithfulness. To prove functoriality, we

generalize the proof of Lemma 2.3.4, appealing again to the Borel fixed point theorem.

Proof of Theorem 3.2.1 (i). Since the stabilizer of x ∈ X1 is mapped into the stabilizer

of T (x) ∈ X2, it follows that for each flat of L (X1) is mapped into a flat of L (X2), as

required in Item i of Definition 3.1.6. If F1 ∈ L (X1) and F2 ∈ L (X2), it remains to show

that T−1(F2) ∩ F1 ∈ L (X1). Write Z1 for the minimal slices through the distinguished

point x1 ∈ X1 corresponding to F1. Then Z1 is proper by Proposition 2.2.15, so T−1(F2)∩

Z1 is proper. By the Borel fixed point theorem, there exists z ∈ T−1(x2) ∩ Z1 such that

T−1(F2) ∩ F1 ⊆ (V1)z.

We now show the opposite inclusion. By Proposition 2.2.15 there is a unique F1-fixed

point in Z1, and F1 · z contains a F1-fixed point, so x1 ∈ F1 · z. Therefore (V1)z ⊆ F1. On

the other hand, z ∈ T−1(x2), so (V1)z ⊆ T−1(F2).

Let us start by proving full faithfulness in the compact case.

Lemma 3.2.2. Suppose that Ai is an essential hyperplane arrangement in the vector

group Vi for i = 1, 2, and T : V1 → V2 is a linear map such that the preimage of each
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hyperplane in A2 is either a hyperplane in A1 or is V1. Then T extends to a morphism

between Schubert varieties YA1 → YA2.

Proof. Since YAi
is the closure of Vi ⊆

∏
H∈Ai

P(Vi/H ⊕ C), we are reduced to showing

that T extends to a map

∏
H1∈A1

P(V1/H1 ⊕ C) →
∏

H2∈A2

P(V2/H2 ⊕ C).

Fix H2 ∈ A2. If T−1(H2) = V1, then the H2 component of the displayed function can be

defined to be constant with value 0 ∈ V2/H2. Otherwise T−1(H2) ∈ A1, in which case the

H2 component of the displayed function can be defined as projection onto P(V1/T
−1(H2)⊕

C) followed by the map

[v + T−1(H2) : z] 7→ [T (v) +H2 : z].

To prove full faithfulness in general, we apply Lemma 3.2.2 to the slices in a linear

V -variety, which are Schubert varieties of hyperplane arrangements by Proposition 2.2.15

and Theorem A.

Proof of Theorem 3.2.1 (ii). Since V1 ⊆ X1 is dense, uniqueness follows immediately. We

now argue that an extension T : X1 → X2 exists.

Suppose that Fi ∈ L (Xi) for i = 1, 2 such that T (F1) ⊆ F2, and denote by Zi ⊆

Xi the slices through the corresponding distinguished points. By Proposition 2.2.15,

Lemma 2.2.13, and Theorem A, Zi is the Schubert variety of a hyperplane arrangement in

Fi. By Lemma 2.2.3, the hyperplane arrangement corresponding to Zi is given by those

flats of L (Xi) which are contained in Fi. Therefore, since T is a morphism of partial

hyperplane arrangements, the hypotheses of Lemma 3.2.2 are satisfied for the restriction

T |F1 : F1 → F2. Thus T |F1 extends to a morphism T |F1 : Z1 → Z2.

We can now extend T to the open set V1∗F1Z1 ⊆ X1 by sending [v, z] to [T (v), T |F1(z)] ∈
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V2 ∗F2 Z2. As F1 and F2 vary, the open sets V1 ∗F1 Z1 cover X1 (here we are using Item i

in Definition 3.1.6), and the extensions of T to V1 ∗F1 Z1 are unique and thus compatible

on intersections, so they define a global extension X1 → X2.

3.2.3 Construction of linear V -varieties

Now we turn to essential surjectivity. Let L be a partial hyperplane arrangement in V .

A diagram of hyperplane arrangements

From Definition 3.1.2 we have that for every F ∈ L , there is an essential hyperplane

arrangement AF in the vector space F whose lattice of flats is {G ∈ L : G ⊆ F}. It

follows immediately that AF is unique. If G ⊆ F are elements of L , then AG is called

the restriction of AF to the flat G.

A diagram of Schubert varieties

For each F ∈ L , we have the Schubert variety YAF
associated to the hyperplane arrange-

ment AF . If G ∈ L is contained in F , then G is a flat of AF . Therefore YAG
is the

slice through a distinguished point xG ∈ YAF
by the coordinate formula given in Corol-

lary 2.5.2 (vi). So L indexes a diagram of Schubert varieties of hyperplane arrangements,

where each arrow is the inclusion of a slice.

A diagram of open embeddings

Given G ⊆ F elements of L , we have an open embedding F ∗G YAG
⊆ YAF

because YAG
is

a slice through xG. It is straight forward to check that V ∗F − preserves open embeddings,

so by the associativity property of Lemma 2.2.2 we have an open embedding

V ∗G YAG
∼= V ∗F (F ∗G YAG

) ⊆ V ∗F YAF
.

Therefore L indexes a diagram of open embeddings between the varieties V ∗F YAF
for F ∈

L . By Lemma 2.2.3, V ∗F YAF
has finitely many V -orbits, and again by the associativity
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property of Lemma 2.2.2 each point [v, y] ∈ V ∗F YAF
has a slice V ∗F Zy, where Zy is a

slice through y ∈ YAF
. Thus V ∗F YA is a linear V -variety.

Cocycle condition

To verify that the V ∗F YAF
glue together, we must check the cocycle condition (Hartshorne

1977, Exercise II.2.12). This reduces to the following lemma.

Lemma 3.2.3. If G,H ⊆ F and I = G ∩H are elements of L , then

V ∗G YAG
∩ V ∗H YAH

= V ∗I YAI

considered as open sets in V ∗F YAF
.

Proof. A point [v, z] ∈ V ∗F YAF
lies in V ∗G YAG

if and only if z ∈ YAG
, so we are reduced

to showing that YAG
∩YAH

= YAI
, considered as closed sets in YAF

. To check this one can

use the set theoretic formula of Proposition 2.5.1.

Separation

We now prove that the variety YL glued from the V ∗F YAF
is separated. By (Hartshorne

1977, Corralary II.4.2), checking that the diagonal morphism YL → YL × YL is a closed

embedding reduces to the following lemma.

Lemma 3.2.4. Suppose that F = G ∩H where F,G,H ∈ L , and write

i : V ∗F YAF
→ V ∗G YAG

× V ∗H YAH
, [v, y] 7→ [v, y]× [v, y].

Then i has a closed image.

Proof. Consider the canonical fibration defined in Section 2.2.1,

τF : V ∗F YAF
→ V/F, [v, y] 7→ v + F.

We get that the following square is commutative.
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V ∗F YAF
V ∗G YAG

× V ∗H YAH

V/F V/G× V/H

τF

i

f
τG×τH

j

Notice that j is a closed embedding, since F = G ∩ H. We also have that τF is proper

(it’s conjugate to the projection V/F × YAF
→ V/F ), so f is proper. Then i is proper by

(Hartshorne 1977, Corralary II.4.8(e)), and thus closed.

Linearity

Since the action of V extends to each open set in a cover of YL and is compatible on

intersections, the action extends to YL . From the fact that YL is glued from linear V -

varieties with maps that preserve V , it follows that YL is normal, that it has finitely many

V -orbits, and that every point has a slice. Thus YL is a linear V -variety.

Proof of Theorem 3.2.1 (iii). We have constructed a linear V -variety YL , and we wish to

show that the collection of stabilizers L (YL ) coincides with L .

First we check that each flat of L is the stabilizer of a point in YL . Suppose that

F ∈ L . Then consider the point [0, xF ] ∈ V ∗F YAF
⊆ YL , where xF is the unique fixed

point of YAF
. By Lemma 2.2.3, F is the stabilizer of [0, xF ] ∈ YL .

Now we check that the stabilizer of each point of YL is a flat of L . From the construc-

tion of YL , we have that every point is contained in an open set isomorphic to V ∗F YAF

for F ∈ L . Suppose that [v, y] ∈ V ∗F YAF
. Then the stabilizer of [v, y] with respect

to the action of V is equal the stabilizer of y ∈ YAF
with respect to the action of F by

Lemma 2.2.3, and is therefore equal to a flat in AF by Corollary 2.5.2 (iii).

This completes the proof of Theorem B.

Comparison with toric varieties

We conclude this section by explaining how the construction of a toric variety form a

polyhedral fan can be made to look like the construction above. In order to be consistent

with (Cox, Little, and Schenck 2011), we will use n for the dimension of a toric variety
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rather than d as we have been doing so far. We will use d for the dimension of a cone. Let

us fix the following notation.

• N ∼= Zn, a lattice of dimension n,

• T = SpecC[N∨], the corresponding n-dimensional torus,

• Σ, a fan of strictly convex rational polyhedral cones in N ⊗Z R,

• σ ∈ Σ, a cone of dimension d,

• Uσ,N , the toric variety of dimension n corresponding to σ considered as a cone in N⊗ZR

(Cox, Little, and Schenck 2011, Theorem 1.2.18),

• xσ ∈ Uσ,N , the distinguished point in the minimal T -orbit (Cox, Little, and Schenck

2011, Chapter 3.2),

• Nσ = spanZ(σ ∩N), the sublattice of dimension d generated by σ,

• Tσ = SpecC[N∨
σ ], the d-dimensional torus corresponding to Nσ,

• Uσ,Nσ , the toric variety of dimension d corresponding to σ considered as a cone in

Nσ ⊗Z R,

• Hσ, the unique minimal basis (see (Cox, Little, and Schenck 2011, Proposition 1.2.23))

for the semigroup

Sσ,Nσ = {u ∈ HomZ(Nσ,Z) : u is nonnegative on σ}.

The fan Σ indexes a commutative diagram of inclusions among its cones, as in Section 3.2.3.

The cone σ defines an embedding of the torus Tσ in the larger torus (C×)Hσ (see (Cox,

Little, and Schenck 2011, Definition 1.1.7)), and the closure of Tσ ⊆ (A1)Hσ is Uσ,Nσ

(see (Cox, Little, and Schenck 2011, Theorem 1.1.17)), similar to the definition of the

Schubert variety of a hyperplane arrangement. Given τ ⊆ σ elements of Σ, the natural

homomorphism of tori Tτ ⊆ Tσ extends to a morphism of toric varieties Uτ,Nτ ⊆ Uσ,Nσ , and
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one can check that Uτ,Nτ is the minimal slice through the distinguished point xτ ∈ Uσ,Nσ ,

as in Section 3.2.3. As in Section 3.2.3, for elements τ ⊆ σ of Σ, we have a natural open

embedding

T ∗Tτ Uτ,Nτ
∼= T ∗Tσ (T ∗Tτ Uτ,Nτ ) ⊆ T ∗Tσ Uσ,Nσ .

One can verify that Uσ,Nσ is the minimal slice through the distinguished point xσ ∈ Uσ,N ,

so there is natural isomorphism T ∗Tσ Uσ,Nσ
∼= Uσ,N . Thus the above diagram of open

embeddings is isomorphic to the usual diagram of open embeddings Uτ,N ⊆ Uσ,N (see

(Cox, Little, and Schenck 2011, Section 3.1)), whose colimit is the toric variety XΣ.



39

Chapter 4

Subspace arrangements

4.1 Introduction and summary

Let us begin by recalling the main result of Chapter 2:

Theorem 1.0.1. An equivariant compactification Y of the vector group V = Cd is iso-

morphic to the Schubert variety of a hyperplane arrangement if and only if Y is normal

as a variety, Y has only finitely many orbits, and each orbit contains a point which can

be reached by a limit limt→∞ tv, for v ∈ V .

We observed in Example 2.1.2 that there is an additive action of C2 on P2 which has

finitely many orbits. Since P2 is not the Schubert variety of hyperplane arrangement (it

cannot embedded into (P1)n for any n), this shows that the limit condition is necessary

in the above theorem statement. In fact, projective space of any dimension admits an

additive action with finitely many orbits:

Theorem 4.1.1. (Hassett and Tschinkel 1999, Proposition 3.7) Over a field of charac-

teristic zero, the projection space Pn admits a unique (up to isomorphism) action by Cn

with finitely many orbits.
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In coordinates, the action is given by the faithful representation ρn : Cn → Aut(Pn)

a = (a1, . . . , an) 7→ exp



0 0 0 · · · 0

a1 0 0
. . .

...

a2 a1 0
. . . 0

...
. . .

. . .
. . . 0

an · · · a2 a1 0


.

Notice that the matrix exponential in the displayed formula has polynomial entries, so ρn

is an algebraic action.

In this chapter, we construct a class of equivariant compactifications containing both

Schubert varieties of hyperplane arrangements and the finite-orbit actions on projective

spaces considered by (Hassett and Tschinkel 1999).

Definition 4.1.2. Given an arrangement of linear subspaces V1, . . . , Vn ⊆ V = Cd, write

Vi as the intersection of ci := codim(Vi) generic hyperplanes defined by linear forms

aij : V → C. Let A = {aij}ij . We define the polymatroid Schubert variety YA to be

the orbit closure of the origin in
∏n

i=1 Pci under the V -action given by

V →
n∏

i=1

Aut(Pci), v 7→ ρci(aij(v)).

If V1, . . . , Vn are codimension one, then YA coincides with the matroid Schubert variety,

and if n = 1 then YA is a projective space with V action as in Theorem 4.1.1. Because YA

above is defined as an orbit closure, it automatically has the structure of an equivariant

compactification of V . The main result of this chapter is the following.

Theorem 4.1.3. YA has finitely many orbits, and the orbit poset of YA is isomorphic

to the poset of combinatorial flats of the associated polymatroid, which we introduce in

Section 4.2.

Since YA has finitely many V -orbits, the orbits form an algebraic cell decomposition.

It then follows by the arguments of (Björner and Ekedahl 2009; Huh and Wang 2017)
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that the orbit poset of YA is always top-heavy. One way to see that the orbit poset of YA

cannot be the usual lattice of flats of the polymatroid, is that the usual lattice of flats is

not top heavy in general.

4.1.1 Future directions

Motivated by Theorem 1.0.1, it would be interesting to classify all finite-orbit equivariant

compactifications of V . Towards this direction, we pose the following questions.

Question 4.1.4.

i. Is every polymatroid Schubert variety normal?

ii. Suppose that Y is a normal equivariant compactification of V = Cd, with finitely

many orbits. Is Y isomorphic to a polymatroid Schubert variety?

At the time of writing this thesis, the author does not know the answer to either

question.

In the realizable case, the Kazhdan-Lusztig polynomial and Z-polynomail of a matroid

(Elias, Proudfoot, and Wakefield 2016; Proudfoot, Xu, and Young 2018) measure the local

intersection cohomology (at the V -fixed point) and global intersection cohomology of a

matroid Schubert variety respectively. Since the polymatroid Schubert variety YA has a

unique fixed point, we can formulate the following question:

Question 4.1.5. Can one define a Kazhdan-Lusztig polynomail and a Z polynomial for

polymatroids by studying the (local) intersection cohomology of YA?

4.2 Polymatroids

A polymatroid on a finite set E = {1, . . . , n} is the data of a rank function rk : 2E → Z≥0

that is

normalized rk(∅) = 0,

increasing if A ⊆ B, then rk(A) ≤ rk(B), and
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submodular if A,B ⊆ E, then rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B).

A polymatroid is a matroid if its rank function satisfies rk(A) ≤ |A| for any A ⊆ E.

Let P be a polymatroid on E. A flat of P is a subset F ⊆ E maximal among those

of its rank. The closure of S ⊆ E is the unique minimal flat containing S, denoted

S. The deletion of a subset T ⊆ E is the polymatroid P \ T on E \ T defined by

rkP\T (S) := rkP (S) for S ⊆ E \ T . The contraction P/T is the polymatroid on E \ T

defined by rkP/T (S) := rkP (S ∪ T )− rkP (T ).

Prototypical examples of polymatroids arise from linear subspaces.

Example 4.2.1. Let V1, . . . , Vn ⊆ V be an essential arrangement of linear subspaces in a

complex vector space V of dimension d. By essential we mean that
⋂

i∈E Vi = {0}. The

associated polymatroid P is defined by the rank function

rkP (S) := codim
⋂
i∈S

Vi.

We will often consider V ⊆
∏

i∈E V/Vi as a linear subspace. Writing

πS :
∏
i∈E

V/Vi →
∏
i∈S

V/Vi

for the projection, we have that rkP (S) = dimπS(V ). A polymatroid that arises in this

way is realizable, and V1, . . . , Vn ⊆ V is a realization. Let us write VT :=
⋂

i∈T Vi. Then

the deletion P \ T is realized by the subspace arrangement

Vi/VE\T ⊆ V/VE\T for each i ∈ E \ T,

and the contraction P/T is realized by the subspace arrangement

Vi ∩ VT ⊆ VT for each i ∈ E \ T.
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4.2.1 Lifts

Let P be a polymatroid on E = {1, . . . , n}, and Ẽ a finite set, equipped with a surjection

ν : Ẽ → E such that |ν−1(i)| ≥ rkP (i) for each i ∈ E. The multisymmetric lift of P

associated to ν is the matroid Pν on Ẽ defined by

rkPν (S) = min{rkP (A) + |S \ ν−1(A)| : A ⊆ E}.

The lift carries a natural action by the product of symmetric groups S =
∏n

i=1Sν−1(i).

Any flat stable under the action of S is geometric. Each flat F of Pν contains a unique

maximal geometric flat F geo =
⋂

σ∈S σ · F .

Lemma 4.2.2 ((Crowley, Huh, Larson, Simpson, and Wang 2020)). If F is a flat of Pν ,

then there is a unique maximal geometric flat F geo contained in F , and

rkPν (F ) = rkPν (F
geo) + |F \ F geo|.

Lemma 4.2.3 ((Crowley, Huh, Larson, Simpson, and Wang 2020)). If S ⊆ Ẽ, then for

each i ∈ E, either S ∩ ν−1(i) = S ∩ ν−1(i) or S ∩ ν−1(i) = ν−1(i).

Remark 4.2.4. Suppose P is a polymatroid realized by V1, . . . , Vn ⊆ V , and let Pν be a

lift. Choosing generic coordinates ai1, . . . , ai codimVi
on each V/Vi gives an isomorphism∏

i∈E V/Vi
∼= CẼ , and the resulting embedding V ⊆ CẼ is a realization of Pν .

4.2.2 Combinatorial flats

A multiset on a finite set E is an element of ZE
≥0. If ν : Ẽ → E is a surjection, then

S ⊆ Ẽ represents a multiset s = (si)i∈E if si = |ν−1(i) ∩ S| for all i ∈ E.

A combinatorial flat of a polymatroid P on E is any multiset represented by a flat of

Pν . If s is represented by S, then the closure of s is the multiset s = (s̄i)i∈E represented

by S, the closure of S in Pν , and the rank of s is rk(s) := rkPν (S). The S-symmetry of

Pν guarantees that both s and rk(s) are independent of S.
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We can give a more direct description of the combinatorial flats of a polymatroid,

which does not involve the lift Pν . Let C ⊆ ZE
≥0 be the rectangle {s : si ≤ rkP (i)}. Then

the independence polytope of P is given by

IndP = {s ∈ C :
∑
i∈A

si ≤ rkP (A) for all A ⊆ E} ⊆ C

Lemma 4.2.5. s ∈ IndP if and only if there exists a set Ĩ ⊆ Ẽ, independent in Pν , such

that #(Ĩ ∩ ν−1(i)) = si.

Proof. Let s ∈ C, and let Ĩ ⊆ Ẽ be any set such that #(Ĩ ∩ ν−1(i)) = si. We will show

that s ∈ IndP if and only if Ĩ is independent. By definition of Pν , the rank Ĩ is equal to

its size if and only if for all A ⊆ E, #(Ĩ ∩ ν−1(A)) ≥ rkP (A ∩ ν(Ĩ)). This condition is

equivalent to
∑

i∈A si ≤ rkP (A) for all A ⊆ E.

Proposition 4.2.6. As above, let IndP be the independence polytope of P , inscribed in

the rectangle C ⊆ ZE
≥0.

i. For each s ∈ C, rk(s) = max{
∑

i∈E s′i : s
′ ∈ IndP and s′ ≤ s coordinate wise}.

ii. s ∈ C is a combinatorial flat if and only if it is coordinate-wise maximal with respect

to its rank.

Proof. Let S ⊆ Ẽ be a set representing s ∈ C. By Lemma 4.2.5, the maximum in Item i

is equal to the maximum size of an independent subset of S. This proves Item i. Item ii

follows by definition of rk(s) as rk(S).

We a lemma which we will need in the following sections.

Lemma 4.2.7. Let P be the polymatroid. If s is not a combinatorial flat of P and

sn < ν−1(n), then s′ = (s1, . . . , sn−1) is not a combinatorial flat of P \ n.

Proof. Let rk be the rank function of P . Choose S ⊆ Ẽ representing s. Since s is not a

combinatorial flat, S properly contains S. In fact, S \ν−1(n) properly contains S \ν−1(n):
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this is because |S ∩ ν−1(n)| < |ν−1(n)|, so S ∩ ν−1(n) = S ∩ ν−1(n) by Lemma 4.2.3. By

Lemma 4.2.2,

rk(S \ ν−1(n)) = rk(S)− sn = rk(S)− sn = rk(S \ ν−1(n)).

Since S \ ν−1(n) is properly contained in S \ ν−1(n), this means S \ ν−1(n) is not a flat of

Pν \ν−1(n). By (Crowley, Huh, Larson, Simpson, and Wang 2020), Pν \ν−1(n) = (P \n)ν ,

so S \ ν−1(n) is also not a flat of (P \ n)ν . Since S \ ν−1(n) represents s′, this means s′ is

not a combinatorial flat of P \ n.

4.3 The finite-orbit equivariant structure on Pn

4.3.1 Group actions on varieties

Following (Hassett and Tschinkel 1999), let G be a connected linear algebraic group. A

G-structure on a variety X is a left action of G on X such that the stabilizer of a generic

point is trivial and the orbit of a generic point in X is dense. A G-variety is a variety with

a fixed G-structure. A morphism of G-varieties is a map X1 → X2 that commutes with

the G-action. An isomorphism of G-varieties is a commuting square

G×X1 G×X2

X1 X2

(α,j)

j

where α is an automorphism of G, and j is an isomorphism.

4.3.2 The finite-orbit action on Pn

We now specialize to consider the vector group Cn.

Theorem 4.3.1. (Hassett and Tschinkel 1999, Proposition 3.7) The projection space Pn

admits a unique (up to isomorphism of Cn-varieties) Cn structure with finitely many orbits.
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In coordinates, the action is given by the faithful representation ρn : Cn → Aut(Pn)

a = (a1, . . . , an) 7→ exp



0 0 0 · · · 0

a1 0 0
. . .

...

a2 a1 0
. . . 0

...
. . .

. . .
. . . 0

an · · · a2 a1 0


.

Let b0, . . . , bn be the coordinates on the projective space Pn, and let the boundary (resp.

interior) of Pn be the locus given by b0 = 0 (resp. b0 ̸= 0).

We will only need the following properties of the action ρn, which can be derived

directly from the definition.

Lemma 4.3.2. The vector group Cn is mapped isomorphically onto the interior of Pn by

(a1, . . . , an) 7→ ρn(a1, . . . , an) · [1 : 0 : . . . : 0],

and ρn(a1, . . . , an) acts on the boundary of Pn as ρn−1(a1, . . . , an−1).

Proof. We expand the matrix exponential and apply it to the origin in the interior of Pn:

ρn(a1, . . . , an)·[1 : 0 : . . . : 0] = [1 : a1 : a2+p2(a1) : a3+p3(a1, a2) : . . . : an+pn(a1, . . . , an−1)],

where pi are polynomials. Therefore an = bn− pn(a1, . . . , an−1), and each ai for i < n can

be written as a polynomial in the bi by induction. This proves that Cn is embedded as

the interior of Pn. For the second statement, note that ρn(a1, . . . , an) acts on an element

of the boundary as the submatrix obtained by deleting the first row and column.

Lemma 4.3.3. The action of Cn on Pn partitions Pn into orbits

Ok = {b0 = b1 = · · · = bn−k−1 = 0, bn−k ̸= 0}, 0 ≤ k ≤ n.
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The stabilizer of any point of Ok is

Wk = {a1 = a2 = · · · = ak = 0} ⊆ Gn
a ,

and the closure of Ok in Pn is Ok = Ok ∪Ok−1 ∪ · · · ∪O0.

Proof. By Lemma 4.3.2 On is an orbit with stabilizer Wn and closure On = Pn. The

other statements follow by induction since ρn(a1, . . . , an) acts on the boundary of Pn as

ρn−1(a1, . . . , an−1).

Example 4.3.4. On P2, we have

(a1, a2)·[b0 : b1 : b2] =


1 0 0

a1 1 0

1
2a

2
1 + a2 a1 1

·[b0 : b1 : b2] =
[
b0 : a1b0 + b1 :

1
2a

2
1b0 + a2b0 + a1b1 + b2

]
.

4.4 Polymatroid Schubert varieties

Let ν : Ẽ → E = {1, . . . , n} be a surjection of finite sets, and let V1, . . . , Vn ⊆ V be an

essential subspace arrangement with ci := codimVi = |ν−1(i)| for 1 ≤ i ≤ n. Write P

for the associated polymatroid. Choose ci general
1 hyperplanes containing Vi defined by

linear forms ai1, . . . , aici for 1 ≤ i ≤ n. These coordinates define maps

ιi : V → V/Vi → Pci , v 7→ ρci(aij(v)) · [1 : 0 : 0 : · · · : 0].

Set A = {aij}ij and ιA = (ι1, . . . , ιn). The Schubert variety defined by these choices is

YA := img

(
V

ι−→
∏
i

Pci

)
.

1Here, “general” means that the coordinates define a realization of Pν , as in Remark 4.2.4.
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For each vector s = (s1, . . . , sn) with 0 ≤ si ≤ ci for all i, set

Cs :=
∏n

i=1Csi ∼=
∏n

i=1Osi , Ps := Cs, and Ws :=
∏n

i=1Wsi ⊆
∏n

i=1 Vi.

By Lemma 4.3.2, YA is a compactification of V , and since ιA is a V -equivariant map, YA

is a V -equivariant compactification.

Proposition 4.4.1. Suppose YA ∩ Cs is non-empty.

i. YA ∩ Cs is a (perhaps infinite) union translates of V/ι−1(Ws).

ii. dimYA ∩ Cs ≥ dim spanC(aij : 1 ≤ i ≤ n, 1 ≤ j ≤ si) = rk(s).

If we further suppose s is a combinatorial flat, then

i’. YA ∩ Cs is a translate of V/ι−1(Ws)

ii’. dimYA ∩ Cs = dim spanC(aij : 1 ≤ i ≤ n, 1 ≤ j ≤ si) = rk(s).

Proof. The first statement follows immediately from the equivariance of YA and our de-

scription of the stabilizer of a point in Cs. Combining these two facts with the generality

of the coordinates {aij} yields the second.

For the latter two statements, we proceed by induction on n. When n = 1, YA ⊆

P(C⊕ V/V1) and its combinatorial flats are (0), (1), . . . , (dimV − 1) and (c1). If s = (c1),

then YA ∩ Cs = ι(V ), so (i’) and (ii’) hold. These statements also hold for the remaining

combinatorial flats because for any 0 ≤ i ≤ dimV − 1, (ii) implies the orbit of a point in

Ci under V is equal to Ci.

We now consider n > 1. If all coordinates of s are maximal, then YA ∩ Cs = ι(V ),

so (i’) and (ii’) hold. Otherwise, we may assume (without loss of generality) that sn is

non-maximal. Set A′ := {aij ∈ A : i ̸= n} and s′ := (s1, . . . , sn−1). Let π : Cs → Cs′ be

the restriction of the projection
∏n

i=1 Pci →
∏n−1

i=1 Pci to Cs.

The projection induces a surjection YA → YA′ . In particular, π(YA ∩ Cs) ⊆ YA′ ∩ Cs′ ,

so the nonemptiness of YA∩Cs implies YA′ ∩Cs′ is also nonempty. This allows us to apply
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the induction hypothesis in the following chain of inequalities:

dimYA ∩ Cs ≤ dimπ−1(YA′ ∩ Cs′)

= dim spanC⟨aij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ si⟩+ sn by induction hypothesis

= dim spanC⟨aij : 1 ≤ i ≤ n, 1 ≤ j ≤ si⟩ by Lemmas 4.2.2 & 4.2.4.

The above inequalities and (ii) imply (ii’). From (ii’), we obtain

YA ∩ Cs = π−1(YA′ ∩ Cs′) = (YA′ ∩ Cs′)× Csn .

By the induction hypothesis, the right-most term is connected, and by (ii’), YA∩Cs consists

of finitely many translates of V/ι−1(Ws), which proves (i’).

Proposition 4.4.2. If s is not a combinatorial flat, then YA ∩ Cs = ∅.

Proof. We first establish the following claim.

Claim. If s is not a combinatorial flat and rk(s) = dimV , then YA ∩ Cs = ∅.

Proof of claim. Suppose towards a contradiction that YA ∩ Cs is nonempty. By Item ii

of Proposition 4.4.1, dimYA ∩ Cs ≥ rk(s) = dimYA. However, s is not a combinatorial

flat, so YA ∩ Cs is contained in the proper closed subvariety YA ∩ Ps of YA. In particular,

dimYA ∩ Cs < dimYA, a contradiction. ⋄

We finish the proof with induction on n. If n = 1, then YA ⊆ P(C ⊕ V1), and the

multisets that are not combinatorial flats of P are (dimV ), (dimV + 1), · · · , (c1 − 1). All

of these multisets have rank dimV , so the desired result holds by the preceding claim.

If n > 1 and rk(s) = dimV , then YA∩Cs = ∅ by the claim. Otherwise, if rk(s) < dimV ,

we may assume without loss of generality that the final coordinate of s is not maximal.

Let A′ = {aij ∈ A : i ̸= n} and s′ = (s1, . . . , sn−1). The projection
∏n

i=1 Pci →
∏n−1

i=1 Pci

induces a map π : YA ∩Cs → YA′ ∩Cs′ . By Lemma 4.2.7, s′ is not a combinatorial flat of

P \ n, so YA′ ∩ Cs′ = ∅ by the induction hypothesis. This implies YA ∩ Cs = ∅, too.
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Proposition 4.4.3. If s is a combinatorial flat, then YA ∩ Cs is nonempty.

To prove the proposition, we will need the following dimension counting lemma. The

proof is not specific to the automorphism V/Vi → V/Vi given by aij 7→ bij(aij), but rather

works for any regular automorphism of V/Vi, as long as the linear forms aij are chosen

generically.

Lemma 4.4.4. Let s be a multiset and consider the coordinate projection

βs :
n∏

i=1

V/Vi → Ws, v 7→ (aij(v) : 1 ≤ i ≤ n, si + 1 ≤ j ≤ ci).

Then dimβs(ι(V )) = rk(s).

Proof. To make use of the genericity assumption, suppose that V ⊆
∏

V/Vi with coordi-

nates xij , and let xij 7→ aij(xij) be a generic map of graded vector spaces. We have the

following diagram.

V
∏

V/Vi
∏

V/Vi
∏

V/Vi

Ws

β′′
s

x 7→a(x)

β′
s

a7→b(a)

βs

We have that dimβ′′
s (V ) is equal to the rank of the derivative of β′′

s at a generic point.

However, since the derivative of βs is surjective at a generic point of
∏

V/Vi, and x 7→ a(x)

is a generic linear map, it follows that the derivative of β′
s at a generic point is a generic

map of graded vector spaces. Thus, dimβ′′
s (V ) is equal to the rank in the linear matroid

M associated to

V ⊆
∏

Vi, x 7→ aij(x)

of a set S ⊆ Ẽ such that ν−1(i) = si. However, M is the multisymmetric lift of the

polymatroid P , so rkM (S) = dimβs(ι(V )), and as discussed in Item ii, rk(s) = rkM (S).

proof of Proposition 4.4.3. Suppose that s is a combinatorial flat. Let βs be as in Lemma 4.4.4,

and let Z ⊆ ι(V ) denote a generic fiber of βs|ι(V ) : ι(V ) → Ws. Let Cs′ ⊆ YA be a minimal
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orbit which intersects Z ⊆ YA. We will show that s = s′.

First, we argue that s ≤ s′. By the assumption that Z projects to a point in Ws,

we have that Z projects to a point in Wsi ⊆ P(C ⊕ V/Vi). Therefore, the coordinate

functions bi,si+1/bi,0, bi,si+2/bi,0, . . . , bi,ci/bi,0 are constant on Z for all i. So the coordi-

nates bi,si+1, bi,si+2, . . . , bi,ci vanish on the boundary of Z, meaning that Z is contained in⋃
s≤s′ Cs′ .

Next, we argue that corank(s) ≤ corank(s′). By assumption that Cs′ is a minimal orbit

intersecting Z, we have that Z ∩ Cs′ = Z ∩ Cs′ . Thus, Z ∩ Cs′ is closed in both YA and

Cs′ , so it is both affine and projective, and is therefore zero-dimensional. Therefore the

codimension of Cs′∩YA in YA is at least dimZ, which is equal to corank(s) by Lemma 4.4.4.

proof of Theorem 4.1.3. By Proposition 4.4.2 and Proposition 4.4.3, we have that YA is

the union of YA ∩ Cs where s runs over all combinatorial flats of the polymatroid, and

each YA ∩ Cs is a V -orbit by Proposition 4.4.1. This proves that YA has finitely many

V -orbits, indexed by the combinatorial flats. By Proposition 4.4.1, the set of V -orbits in

the closure of Cs for a combinatorial flat s is identified with the combinatorial flats of the

polymatroid P ′ of V/ι−1(Ws). Therefore to show that the orbit-poset of YA is the lattice

of combinatorial flats, it suffices to show that the combinatorial flats of P ′ are identified

with the lower interval at s in the lattice of combinatorial flats of P . To show this, note

that the matroid of V/ι−1(Ws) is the matroid restriction of the multisymmetric lift Pν to

S ⊆ Ẽ, for some set S representing s. Since combinatorial flat s′ satisfies s ≤ s′ if and

only if s′ can be represented by a flat S′ ⊆ Ẽ of Pν such that S′ ⊆ S, the theorem follows

from the fact that Pν |S is a multisymmetric lift of the polymatroid of V/ι−1(Ws).
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