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Hyperplane arrangements and compactifications of vector
groups

Colin Crowley

Abstract

Schubert varieties of hyperplane arrangements, also known as matroid Schubert varieties,
play an essential role in the proof of the Dowling-Wilson conjecture and in Kazhdan-
Lusztig theory for matroids. We begin by studying these varieties as equivariant compact-
ifications of affine spaces, and give necessary and sufficient conditions to characterize them.
Next, we generalize the theory to include partial compactifications and morphisms between
them. This theory resembles the correspondence between toric varieties and polyhedral
fans. Finally, in joint work with Connor Simpson and Botong Wang, we introduce a new
family of equivariant compactifications of affine spaces associated to arrangements of linear
subspaces of higher codimension. The associated combinatorics is that of polymatroids.
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Chapter 1

Introduction

The Schubert variety of a hyperplane arrangement is a compactification of the ambient
vector space of the arrangement, which is analogous to a classical Schubert variety in the
role it plays in Kazhdan-Lusztig theory for matroids (Braden, Huh, Matherne, Proudfoot,
and Wang [2020). Given an arrangement Hi,..., H, of linear hyperplanes in a finite
dimensional complex vector space V', whose common intersection is zero, the Schubert

variety is the closure of V in (P!)" via the embedding
VCV/H x...xV/H, CP' x...xP".

The Schubert variety of a hyperplane arrangement was first studied by (Ardila and
Boocher [2016|), where the authors showed that the combinatorics of the matroid associ-
ated to the arrangement determined much of the geometry of the Schubert variety. The
intersection cohomology of the Schubert variety was used in (Huh and Wang 2017)) to
prove Dowling and Wilson’s Top Heavy conjecture for matroids in the realizable case.

The affine reciprocal plane of an essential hyperplane arrangement is the intersection
of the Schubert variety with the affine chart (C* U {oo})” C (PY)™. Reciprocal planes
are studied in (Terao 2002; Proudfoot and Speyer [2006; Elias, Proudfoot, and Wakefield
2016; Kummer and Vinzant 2019), were the authors also observe a two way street between

the combinatorics of arrangements and the geometry of their reciprocal planes. The in-



tersection cohomology of the projectivized reciprocal plane was used in (Elias, Proudfoot,
and Wakefield 2016) to prove that the coefficients of the Kazhdan-Lusztig polynomial of
a realizable matroid are non-negative.

In this thesis we study the geometry of Schubert varieties of hyperplane arrangements
through the lens of equivariant compactifications. If GG is an algebraic group, then an
equivariant compactification of GG is a proper variety X containing G as a dense open set,
and an action G x X — X extending the group law G x G — G. With the word “proper”
omitted, we call X an equivariant partial compactification. For example, a toric variety
is by definition an equivariant partial compactification of the algebraic torus 7' = (C* )<,
One of the main theorems in toric geometry states that all normal toric varieties arise
from polyhedral fans. The Schubert variety of a hyperplane arrangement is an equivariant
compactification of the additive group V = C%, which we will call a vector group.

In Chapter [2] we prove the following characterization of which equivariant compactifi-

cations of vector groups arise as Schubert varieties of hyperplane arrangements.

Theorem 1.0.1. An equivariant compactification Y of the vector group V = C¢ is iso-
morphic to the Schubert variety of a hyperplane arrangement if and only if Y is normal
as a variety, Y has only finitely many orbits, and each orbit contains a point which can

be reached by a limit lim;_, tv, forv e V.

The limit condition in the above theorem is analogous to the fact that any orbit in a
normal toric variety can be reached by a one-parameter subgroup of the torus. Because
the fan corresponding to a normal toric variety is constructed by considering the limits of
one-parameter subgroups, it is natural to look for an analogous correspondence only for
equivariant compactifications of V' where every orbit is reached by a one-variable limit.

In the course of proving the above theorem, we give another characterization in which
the limit condition is replaced by the stronger condition that each orbit admits a normal
slice satisfying certain properties. The second characterization resembles a key geometric
property of Schubert varieties of hyperplane arrangements: for each flat in a hyperplane

arrangement, the Schubert variety of the restriction is a normally nonsingular slice through



the corresponding orbit (Braden, Huh, Matherne, Proudfoot, and Wang 2020)).

In Chapter [3] we prove an equivalence of categories which generalizes both charac-
terizations to include partial compactifications as well as morphisms between them. The
objects in the first category are equivariant partial compactifications of V' satisfying the
conditions of the above theorem, or the stronger formulation involving normal slices. The
objects in the second category we call partial hyperplane arrangements, which include all
essential hyperplane arrangements as examples. The construction of varieties from combi-
natorial data and vice versa in Chapter [2]and Chapter [3] have remarkably similar formulas
to those in toric geometry. We further explain this analogy in Section [3.1.1

Chapter [4is reproduced from forthcoming joint work with Connor Simpson and Botong
Wang, where we consider a generalized class of finite-orbit equivariant compactifications,
where the limit condition of Theorem fails. We call these varieties polymatroid
schubert varieties, because the poset of orbits is determined by an associated integer
polymatroid.

Polymatroids axiomatize the combinatorics of arrangements of linear subspaces, much
like matroids axiomatize the combinatorics of hyperplane arrangements. Given a finite
collection of linear subspaces Vi,...,V, C V, the associated polymatroid is defined as the
rank function

vk 2tbmt 5 70 S codim ﬂ Vi.
i€S

The most direct way to generalize the construction of matroid Schubert variety would
be to take the closure of V' in the product of the projective closures of V/V;. This con-
struction does give an equivariant compactification of V', however it does not have finitely
many V-orbits. The presence of infinitely many orbits means that (1) there is no natural
decomposition into affine cells, so the arguments of (Bjérner and Ekedahl 2009; Huh and
Wang 2017) do not generalize, and (2) there is no distinguished “most singular” point,
so one cannot define a Kazhdan-Lusztig polynomial for polymatroids in the same way as
(Elias, Proudfoot, and Wakefield [2016]).

Our innovation is to replace the usual inclusion of V/Vj into its projective completion



with the unique finite-orbit action of C" on P", described in (Hassett and Tschinkel [1999).
We construct an equivariant compactification C* C Y which depends on the arrangement

Vi,...,Vu, CV as well as a generic choice of coordinates on V/V;, and prove:

Theorem 1.0.2. Y has finitely many orbits, and the orbit poset of Y 1is isomorphic

to the poset of combinatorial flats of the associated polymatroid, which we introduce in

Section [{.3



Chapter 2

Matroid Schubert varieties

2.1 Introduction and summary

We assume all varieties are irreducible and separated over C. Suppose that G is a com-
mutative linear algebraic group, acting on a variety X. Given a point x € X, we write
G -z C X for the orbit and G, C G for the stabilizer.

The main tool we will use throughout the chapter is the following notion of a slice
(Deﬁnition, which is standard for actions of Lie groups and algebraic groups (Gleason
1950; Mostow 1957; Montgomery and Yang 1957; Palais |1961). A (Zariski) slice through
x € X is a G-stable subvariety Z, C X containing z, such that G- Z, C X is an open

set, and
G-Zy=GXZy/~, where (gh,z)~ (g,hz) forall g € G,h € G,z € Z,.

Geometrically, Z, is a normal slice through the orbit G - z, and G - Z, is neighborhood
of G - x that admits a product structure, similar to a tubular neighborhood. We use the
words “Zariski slice” to emphasize the difference between the above notion and that of an
étale slice.

In order to state our results, we make the following abbreviations. Suppose now that

X is an equivariant partial compactification of G. We say X satisfies



e FO (Finite orbits) if X has finitely many G-orbits,

e OP (One-parameter subgroups) if for every G-orbit G-z C X, there is a one dimensional

algebraic subgroup of G whose closure in X intersects G - x, and
e SL (Slices) if there exists a Zariski slice through every point of X.

The following is our main result on Schubert varieties of hyperplane arrangements,

which implies Theorem [1.0.1

Theorem A. Suppose that Y is an equivariant compactification of the vector group

V = C¢. Then the following are equivalent.

i. Y is equivariantly isomorphic to the Schubert variety of an essential hyperplane ar-

rangement in V.
ii. Y is normal and satisfies FO and SL.
iii. Y is normal and satisfies FO and OP.

The original aim of this project was to prove that the third statement implies the first,
however we have found that it is most natural to prove that the third statement implies
second, and then prove that the second implies the first. For this reason, we view the
existence of slices as a more fundamental property of Schubert varieties of hyperplane
arrangements.

The study of equivariant compactifications of vector groups was initiated by (Hassett
and Tschinkel |1999), and we recommend (Arzhantsev and Zaitseva 2020) for a survey. We
will see in Section that Schubert varieties of hyperplane arrangements show many
parallels to toric varieties, however the study of general equivariant compactifications of
vector groups has little in common with toric geometry (Arzhantsev and Zaitseva 2020).
In particular, toric varieties satisfy FO, OP, and SL, whereas these conditions need not

hold for equivariant compactifications of vector groups, as the following examples show.



Ezample 2.1.1. Consider the action of a vector group V of dimension at least two on its
projective closure P(V @ C), where the action on the boundary is trivial. This compacti-

fication satisfies SL and OP, but not FO.

Ezample 2.1.2 ((Hassett and Tschinkel|1999)). Consider the action of the two-dimensional

vector group C2 on P? where (a1, az) acts as

0 0 0 1 0 0
€xp ai 0 O = a1 1 0
as a; O az + %CL% ap 1

This action has one two-dimensional orbit (with which we can identify C?), one one-
dimensional orbit, and one zero-dimensional orbit, so FO holds. However SL and OP fail

for the one dimensional orbit.

2.2 Slices

2.2.1 Slices of group actions

We begin by reviewing the definition of homogeneous fiber spaces, following (Shafarevich
1994, Chapter I1.4.8). Suppose that G is an algebraic group, H is an algebraic subgroup,
and Z is a quasiprojective variety on which H acts. Then there exists a variety G xy Z
called the homogeneous fiber space, which parameterizes equivalence classes in G x Z,
where

(gh,z) ~ (g,hz), forallge G,he H,z € Z.

There is a canonical map G x Z — G *g Z sending a point (g,z) to its equivalence
class, which we write as [g, z]. The universal property which characterizes G p Z is the
following: if 7 : G x Z — X is a map of varieties such that 7(gh,z) = (g, hz) for all

g€ G, h € H,z € Z, then there is a unique factorization as follows.



GxZ T X

~

G*HZ

From the universal property, we see that there is a canonical map
T7:Gxg Z — G/H, lg,z]— gH,

with each fiber isomorphic to Z. We call 7 the canonical fibration. If H C G is normal

and has a splitting s : G — H, then there is a G-equivariant isomorphism
Gryg Z=G/H x Z, |[g,2]— (9H,5(g) - 2),

which makes the following diagram commute, where pr; is the projection.

GsyZ —— G/Hx Z

\ [P

G/H
Remark 2.2.1. For the remainder of the chapter we will take G to be commutative. There-
fore it is possible for us to avoid defining G g Z by choosing splittings and working with
G/H x Z instead. While G/H x Z is a simpler construction, we have found that thinking
in terms of the more canonical construction G *g Z shortens and clarifies the rest of the

chapter enough to make it worthwhile.

We need the following lemmas, which are formal consequence of the definitions.

Lemma 2.2.2 (Associativity of *). Suppose that H C H C G are closed subgroups and

H' acts on a variety Z'. Then there is a natural isomorphism
G*H (H*H’ Z,)gG*H’ Z/a [gv [h,z]]H[gh,z]

Lemma 2.2.3 (Orbits and stabilizers of G xg Z).

i. There is a one-to-one correspondence between G-orbits in G xy Z and H-orbits in Z

which sends G - [v, z] to H - z.



it. Suppose that G is commutative, and x = [v,z] € G xg Z. Then the stabilizers G

and H, coincide as subgroups of G.

Definition 2.2.4. Suppose that X is an algebraic variety with a G-action. If x € X
is a point with stabilizer G, we say that a G.-stable locally closed subvariety Z, C X

containing x is a (Zariski) slice at z if the natural map

Gxg, Zo — X, [9,2]—g-z

is a G-equivariant Zariski open embedding.

The point z is in the image of G xg, Z,, so we have that G *¢, Z, is identified with a
G-stable neighborhood of the orbit G - x.
We will often use the following criterion for open embeddings to prove the existence of

slices.

Theorem 2.2.5 (Zariski’s main theorem). Suppose that 7 : X — Y is a morphism of
varieties which is birational and injective on closed point, and that Y is normal. Then 7

is an open embedding.

For the above formulation, we refer to (Vakil n.d., Exercise 29.6.D) and the surrounding
discussion. For our purposes, checking injectivity on closed points can be rephrased as

follows.

Lemma 2.2.6. Suppose that x € X and Z, C X is a Gy-stable subvariety containing x.
Then G xg, Zy — X is injective on closed points if g1 - z1 = g2 - z2 implies g;lgl € G, for

all g1,92 € G and 21,29 € Z,.

2.2.2 Partial compactifications with slices

For this subsection let G be a commutative linear algebraic group, and X a normal equiv-
ariant partial compactification of G such that FO and SL hold. We will first collect some

basic consequences.



10

Lemma 2.2.7. If v € X has a slice Z, then Z, NG is a coset of G.

Proof. We have that G is contained in any invariant open neighborhood of X, and the
natural map

Gxg, Zy > X

is a G-equivariant open embedding, so there must be [v,z] € G *¢, Z, mapping to G.
Therefore Z, NG # (. We also have that G xq, Z, =2 G/G, X Z, embeds as a Zariski open
set in the variety X, so Z, and thus Z, NG is irreducible of dimension dim G—dim G/G, =
dim G,. Finally we note that the only irreducible G -invariant closed subsets of G of

dimension dim G, are cosets. ]
There is a special point in each orbit corresponding to the trivial coset:

Definition 2.2.8. We say that a point x € X is distinguished if it has a slice containing

the identity of G.

It follows from Lemma that every orbit contains a distinguished point, and we
will see in Lemma [2.2.11| that every orbit contains at most one distinguished point.
The orbits of X form a finite stratification, so each orbit GG - x has a unique smallest

G-invariant open neighborhood defined as follows.

Definition 2.2.9. The minimal G-invariant neighborhood U, of x € X is given by

the union of all orbits G -y such that G-x C G - y.
There exists a unique slice through x € X contained in U,, defined as follows:

Definition 2.2.10. The minimal slice through =z € X is Z, N U,, where Z, is any slice

of z.

It follows by (Shafarevich 1994, Proposition 11.4.21) that the minimal slice through z
is indeed a slice, and uniqueness of the minimal slice for distinguished points (the case of

an arbitrary point follows easily) comes from the following observation:
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Lemma 2.2.11. The minimal slice Z, at a distinguished point x € X is the closure of

Gy in U,.

Proof. Because x is distinguished, Z, contains the identity of G. Since G N Z, is a coset
of G, by Lemma 2:2.7, G N Z, = G,. Thus the closure of G, in U, is contained in Z,.
Because G xq, Z; = G/G, X Z, embeds as an open set in X, we get that Z, is irreducible
of dimension dim G — dim G/G, = dim G,, and closed in U,. Therefore the closure of
G, in U, equals Z,, since they are both irreducible closed subvarieties of U, of the same

dimension. O
Ezample 2.2.12 (Distinguished points and minimal slices of P!).

i. Consider P! = C* U {0} U {co} as an equivariant compactification of C*. The
distinguished points are 1,0, and oo with minimal invariant open neighborhoods
C*,C*U{0}, and C* U{oo} respectively. The minimal slices are {1}, C* U {0}, and

C* U {oo} respectively. Note that P! is a non minimal slice through both 0 and co.

ii. Consider P! = CU {oc} as an equivariant compactification of C. The distinguished
points are 0 and co with minimal invariant open neighborhoods C and P! respectively.

The minimal slices are {0} and P! respectively.

In Section 2.5 we demonstrate the notions developed in this section for the Schubert
variety of a hyperplane arrangement.
We now prove that the class of varieties we are working with is closed under taking

slices:

Lemma 2.2.13. If x € X is a distinguished point, then the minimal slice Z, is a normal

partial compactification of Gy satisfying FO and SL.

Proof. By Lemma [2.2.11], Z, is an equivariant partial compactification of G,, and Z, is
normal by (Shafarevich 1994, Proposition 11.4.22). By Lemma the G -orbits of Z,
correspond to the G-orbits of an open set in X, so Z, has finitely many G -orbits. Finally

we check that Z, has slices. For a point y € Z,, simply take the slice Z, through y in X.
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Since y € Z; C U,, G-x C G -y by definition of U,. Therefore G, C G, so Z, C Z, by
Lemma Now consider the diagram

Gra, Zy — X

I T

Gy *xg, Zy — Zz
where the horizontal maps are the open embeddings [v, z| — vz, and the left vertical map
is given by [v, z] — [v, z]. We wish to show that the bottom arrow is an open embedding, for
which we use Theorem The bottom arrow restricts to an isomorphism G xg, Gy =
Gz, so it is birational. All three arrows except the bottom one are already known to be

injective on closed points, so the bottom arrow is injective on closed points. ]

Remark 2.2.14. Tt follows from (Shafarevich 1994, Proposition I1.4.21) that every orbit
closure satisfies SL for the group G/G,. So modulo normality, the class of varieties

studied in this section is also closed under taking orbit closures.

2.2.3 Topology of orbit stratification

In the previous section we studied partial compactifications of tori and vector groups

simultaneously. In this section, we will use properties of vector groups which fail for tori.

Proposition 2.2.15. If X is an equivariant partial compactification of a vector group V
satisfying FO and SL, and x € X is a distinguished point, then the minimal slice Z, is

proper and has x as the unique V,-fized point.

The proof follows from a general topological observation about varieties stratified into
affine spaces. We say that an algebraic cell decomposition of a variety X is a partition
X = UyS, into finitely many locally closed subvarieties S, called cells, such that each cell

is isomorphic to an affine space and the closure of a cell is a union of cells.

Lemma 2.2.16. Suppose that Z is a connected variety with an algebraic cell decomposition
that has at least one zero dimensional cell. Then Z is proper and has exactly one zero

dimensional cell.
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Proof. Consider the singular cohomology with compact support H!(Z;Q). Since Z is
connected, we have that H?(Z;Q) is zero if Z is not proper and one dimensional if Z is

proper. The lemma follows from the well known fact that

dim H?(Z;Q) = #{i-dimensional cells in Z}.

One way to prove the above equation is by inducting on the number of cells as follows.
Suppose S is a cell of lowest dimension in Z and U is its open complement. Since S = A"
for some 7, H2"(S;Q) = Q and H(S;Q) = 0 for i # 2r. Then the above equation follows

from induction using long exact sequence

... = HY(U;Q) —» HYZ;Q) — H(S;Q) — H(U;Q) — ... O

Proof of Proposition [2.2.15. We have by Lemma that Z, has finitely many V, or-
bits. Each orbit of V;, is isomorphic to an affine space, and as is true of any algebraic group
action, orbits are locally closed and the closure of an orbit is a union of orbits. Thus the
V,-orbits of Z, form an algebraic cell decomposition. Since x € Z, is a zero dimensional

cell, the proposition follows from Lemma [2.2.16 ]

Remark 2.2.17. In the notation of Proposition [2.2.15] it follows that the minimal slice

through x is the unique slice through x, as opposed to the torus case. See Example[2.2.12

Remark 2.2.18. In the case where X is a toric variety with torus 7', the minimal slice
Z through a point x € X is not proper but rather affine. However Z, still has x as the
unique T,-fixed point for a different reason. This is due to the fact that disjoint T-invariant
closed sets in an affine T-variety can be separated by an invariant function (Dolgachev
2003, Lemma 6.1). Since Z, has a dense T,-orbit, all invariant functions are constant.

Therefore all invariant closed sets intersect, so x is the only T,.-fixed point.
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2.2.4 Slices and one-parameter subgroups

In this section we prove that Item [if and Item [iiil in Theorem [B| are equivalent. We break

the proof into two lemmas.

Definition 2.2.19. Suppose that X is an equivariant partial compactification of a vector

group V, and = € X. Define

vy =v:\JV,
where the union is over y € X such that V, C V.

Lemma 2.2.20. Suppose X is a normal equivariant partial compactification of a vector
group V', satisfying FO and SL. Let x € X be a distinguished point, and let v € V. Then

lim; yoo tv = x if and only if v € V7. In particular, X satisfies OP.

Proof. Suppose that v € V. By Proposition Z, is proper, so lim; ,o tv must
converge to a boundary point of Z, O V.. In addition, v lies in the stabilizer of lim;_, , tv,
so lim;_, o tv be a V-fixed point. By Proposition [2.2.15] x is the unique V,-fixed point in
Zy, 80 limy_ oo tv = x. To prove the other direction, we note that V is partitioned into

sets of the form V;? for y € X, so if v ¢ V7 then limy_,oc tv = y for some y # z. O

Lemma 2.2.21. Suppose that X is a mormal equivariant partial compactification of V'

satisfying FO and OP. Then X satisfies SL.

Proof. We wish to construct a slice through a point x € X. We first explain why it is

enough to show that the quotient map
V=V/V,

extends to a V-equivariant map

T:Up = V)V,

where U, is the minimal invariant open neighborhood of Definition 2:2.9] We can assume

without loss of generality that 7(z) = 0, since the translation of a slice is a slice. Setting
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Z; = 7-10), we have that V, acts on Z, and x € Z,. To show that Z, is a slice, we must

check that the natural map

Vsy Zy = X, [v,z]—v-z

is an open embedding. For this we use Theorem As before we have that Vi, Z, — X
restricts to an isomorphism V xy, V, = V| so it is birational. By Lemma we must

show that if v1,v9 € V and z1, 29 € Z, such that

V1 22 = V1 - 22,

then v; —vg € V.. We check this by applying 7:

T(v1) - 7(21) = 7(v2) - T(22) by equivariance of T,
T(v1) = 7(v2) because 21,2 € Z, = 7 1(0),
v — vy €V because 7 extends V — V/V,.

Next we show how to construct 7. We wish to construct a V-equivariant map

Sym(V/V,)" — H°(U,, Ox),

so it is enough to show that if f € V'V vanishes on V,,, then f can extend to U,. Since U,
is normal, it suffices to show that f does not have a pole along any codimension one orbit.
Let L C V be a one dimensional vector subspace of V', and let y be the boundary point
of L in X. Assume that y € U,. By our assumption that X satisfies OP, it is enough to
show that f does not have a pole along V - y. Since the action of L fixes the boundary of
L, L CV,. We also have V}, C V,, by definition of U,. Therefore f vanishes on L. Now let
L' denote the translation of L by a generic vector, and 3’ the boundary point of L’. Since
f is linear, f is constant and nonzero on L’. Thus f~! is constant and nonzero on L’. If

f~! is undefined at 3/, then since 3/’ is generic in V -y, f has a zero along V -y. If on the
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other hand f~! is defined at 3/, then f~! cannot vanish at 3’ by continuity, so f does not

have a pole along V - y. 0

This completes the proof that the statements Item [if] and Item [ii] in Theorem [B] are

equivalent.

2.3 The orbit-flat correspondence

Now that we have proved the equivalence of the statements Item [ii] and Item [iii| in Theo-
rem |B], we will refer to an equivariant partial compactification of a vector group V' which
satisfies either of these conditions as a linear V -variety. In Lemma[2.2.20, we showed that if
X is a linear V-variety and x € X is a distinguished point, then v € V7 (Definition [2.2.19))

if and only if lim; ,o tv = x. As a consequence, we have:

Corollary 2.3.1. If X is a linear V-variety, then there is a canonical bijection between

any two of the following sets.
o Orbits of X

e Distinguished points of X
o Stabilizers of points of X

Moreover, each of the above sets is functorial on the category of normal equivariant partial

compactifications of vector groups, and the bijections between them are natural.

Proof. The correspondence between orbits and distinguished points is automatic, and
we have by Lemma that any distinguished point z € X can be recovered from
its stabilizer V, by taking the limit lim; . tv for v € V7. Thus all three sets are in
correspondence.

Suppose that T is a morphism of linear vector group varieties. It is automatic that
orbits are mapped inside of orbits and stabilizers are mapped inside of stabilizers. Since

distinguished points are the set of points that arise as limits of one-parameter subgroups,
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distinguished points are mapped to distinguished points. Naturality of these correspon-

dences follows formally. O
Definition 2.3.2. Let X be a linear V-variety. The partial hyperplane arrangement
Z(X) associated to X is the collection of stabilizers of points in X.
To justify the definition of £ (X), we will prove:

Proposition 2.3.3.

(i) If X is a proper linear V -variety, then £(X) is the collection of flats of an essential

hyperplane arrangement in V.
(i) If X is a linear V-variety then £ (X) is a partial hyperplane arrangement in V.

By combining Corollary and Proposition [2.3.3] we have a natural one-to-one cor-
respondence between the orbits of X and the flats of its relative hyperplane arrangement

Z(X), as described in Section
Lemma 2.3.4. If X is a linear V-variety, then £ (X) is closed under intersections.

Proof. Suppose that z,y € X are distinguished points, and consider the action of V, NV},

on the closure V, NV, in X. Let Z, be the minimal slice through x. Then V, C Z, by

Lemma 2.2.11|, so V; NV, is a closed subvariety of Z,. Then by Proposition [2.2.15] Z, is
proper, so V,, NV}, is proper. By the Borel fixed point theorem (Humphreys 1975, Chapter
21.2), there exists a (V; N'V,)-fixed point z € V, N'V,. Thus V, NV, C V,. To show the

opposite inclusion, note that
zeVoNV, CZ,NZ, CU,NUy,
where U, is the minimal invariant neighborhood. Therefore by definition of U,, we have

z,y €V -z and thus V, C V, NV,. ]

To prove Proposition [2.3.3 (i), it now suffices to prove that any stabilizer V, C V is
the intersection of the codimension one stabilizers containing it. For this we need the

following lemmas.
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Lemma 2.3.5. Suppose that G is a linear algebraic group acting on a variety X, and Z,
1s a slice through x € X. Then any regular function on G - x extends to the neighborhood

Proof. This follows from the universal property of G*q, Z, applied to the map Gx Z,; — C

given by (g,z) — f(g-x) where f is a regular function on G - z. O

Lemma 2.3.6. IfU is a connected algebraic variety which has nonconstant global regular
functions, and U C K is a compactification, then the boundary K\U has has an irreducible

component of codimension one in K.

Proof. Assume for a contradiction that every component of K \ U has codimension at
least two. Consider the inclusion of the normalizations U C K. Since U has nonconstant
global regular functions, then so must U. The normalization map is finite and therefore
preserves the codimension of the boundary, so K \ U is a closed set of codimension at least
two. Thus any regular function on U extends to K , so we get that the proper variety K

has nonconstant global regular functions, which is a contradiction. O

Proof of Proposition . Suppose that x € X is a distinguished point with stabilizer
V., of codimension at least two in V. We wish to show that V,. is the intersection of the
codimension one stabilizers containing it, so by induction it is enough to find y,z € X
such that

V,=V,NV,, dimV,=dimV, =dimV, + 1.

By Corollary V -y #V .z implies V;, # V.. Therefore it suffices to show that the
orbit closure V -z contains two distinct orbits of codimension one in V - 2. Suppose that
V .y C V -z is an orbit of codimension one in V - z. Since V, C V is codimension at
least two, dim V' -y > 0, and so we can choose a nonconstant regular function f on V - y.
By Lemma [2.3.5] f extends to a regular function on the minimal invariant neighborhood
Uy, 2V -2zUV -y, which is nonconstant when restricted to V -2 UV -y. Therefore by
Lemma withU =V -2UV -y and K =V -z, there is another orbit V-2 CV -z of

codimension one. O
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Proof of Proposition |2.5.3 (ii). We will apply Proposition [2.3.3 (i)| to the slices of X. We
have that {0} € Z(X), and by Lemma [2.3.4] Z(X) is closed under intersections. It

remains to show that for F' € Z(X), {G € Z(X) : G C F} is the collection of flats of
a partial hyperplane arrangement in F. Suppose that F' is the stabilizer of the distin-
guished point € X. Then the slice Z, is a proper linear F-variety by Lemma [2.2.13]
and Proposition so the set of stabilizer £ (Z,) is the collection of flats of an es-

sential hyperplane arrangement in F' by Proposition [2.3.3 ()] Then by Lemma [2.2.3]
L(Z:)={G e L (X):GCF}. O

2.4 Proof of Theorem [A]

Let X be an equivariant compactification of V', such that X is normal and satisfies FO
and SL. We have shown in Lemma and Lemma that this is equivalent to
assuming X is normal and satisfies FO and OP. In Corollary we show that the
Schubert variety of a hyperplane arrangement satisfies FO and SL, and normality of the
Schubert variety follows from (Brion 2003, Theorem 1) together with (Ardila and Boocher
2016, Theorem 1.3(c)). Thus it only remains to show that X is equivariantly isomorphic
to the Schubert variety of a hyperplane arrangement in V.
By Proposition there exists an essential hyperplane arrangement o = {Hy,..., H,}

in V whose lattice of flats is the collection of stabilizers of X. We write

S, :V = V/H x...xV/H,,

for the induced linear embedding, and Y,, for the Schubert variety of /. Our goal is to

show that there exists an isomorphism

TX—)Y&((X)

extending the isomorphism

(bﬂ V- (I)d(V)
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For each hyperplane H;, we denote by x;, Z;, and V *xp, Z; C X the corresponding distin-
guished point, slice, and minimal V-invariant open neighborhood, respectively. Explicitly,
Z; is the closure of H; in X, z; is the H;-fixed point in Z;, and V' *g, Z; is embedded in X as
the union of all V-orbits in X which intersect Z; (see Section . Because Z; is proper
(Proposition and X is separated, Z; C X is closed. Recall from Section that

Z; is the fiber of the trivial V-equivariant fibration

Therefore Z; is a prime Cartier divisor in X, so there is an associated line bundle Ox(Z;).
Fix a linearization of Ox(Z;), which exists by (Dolgachev 2003, Theorem 7.2). We then
have a linear action

V ~ HYX,0x(Z)).

Because 7 is V-equivariant, the translations of Z; under the action of V are the fibers
of 7, so letting Z! # Z; be any such translation, we have that Z; and Z, are linearly
equivalent and disjoint. Thus Ox(Z;) is globally generated, since the sections (up to
scaling) corresponding to Z; and Z; have no common zeros. So far, we have that Z;

defines a V-equivariant morphism

T;: X = P(HY(X,0x(Z;))V).

Finally, we have that the target of T} is P! from a general observation:

Lemma 2.4.1. Suppose X is a proper normal variety, and Z and Z' are prime Cartier
divisors which are linearly equivalent and such that Z N Z' = (). Then the space of global

sections of Ox(Z) is two dimensional.

Proof. Let i : Z — X denote the inclusion, and consider the short exact sequence

0 Ox » Ox(Z) —— Ox(Z2) ® 1,07 —— 0.

By the projection formula, the sheaf on the right is isomorphic to i.(i*Ox(Z) ® Ogz).
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However the restriction of Ox(Z) to Z is trivial because Z can be moved to the disjoint
divisor Z'. Thus Ox(Z)®1i.0z = i,0Oz. Now take the long exact sequence in cohomology.
0 — HYX,0x) —— HY(X,0x(2)) —— H°(X,i,0z) — ...

Since X and Z are proper and irreducible, dim H°(X,0Ox) = dim H°(X,i,0z) = 1.
Therefore dim H°(X, Ox(Z)) < 2. We also have that the sections (up to scaling) corre-

sponding to Z and Z’ are independent, so dim H°(X,0x(Z)) = 2. O

Let us choose coordinates on the target of T;:
50,51 € HY(X,0x(Z;)), div(so) = Zi, s1 # 0 is V-fixed.

The section s; exists because V' is unipotent. For any isomorphism between Ox(Z;)|y
and Oy, we have that sg|y is sent to a linear form vanishing on H;, and s1|y is sent to a

constant since sg is V-fixed. Thus there is a commutative square

X I P(V/H; & C)

J J

V — > V/H;

where the right vertical arrow is the embedding
V/H; = P, v [so(v) : s1(v)].

From this it follows that the product map X — [[;_, P(V/H; ® C) extends @/, and thus

we can define a morphism
T:X—>Yyx), T:=,...,T).

Since T is birational, by Theorem [2.2.5| we can show that 7" is an isomorphism by showing
that it is bijective on closed points. Since T extends ¥/, it is a morphism of linear V-
varieties. The set of stabilizers of X is the lattice of flats of &/ by assumption, and one

can prove in coordinates that the set of stabilizers of Y, is the image under ®, of the
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lattice of flats of & (see Corollary [2.5.2 (iii)). Thus T carries the set of stabilizers of
X bijectively onto the set of stabilizers of Y,,. Furthermore, T carries the distinguished
points of X bijectively onto the distinguished points of Y, by Corollary Let r € X
be a distinguished point with stabilizer V,, and let T'(x) € Y, be the corresponding
distinguished point with stabilizer ®.(V,). We have the following commutative square

relating the orbit V' -z in X and the corresponding orbit ® ./ (V) - T'(z) in Y.

Veoz —L 5 &,(V) T(z)

F |=

ViV —— @5(V)/ @y (Va)
Since the bottom arrow is an isomorphism, it follows that the top arrow is an isomorphism,
and we take the disjoint union over all distinguished points to obtain that T is a bijection
on closed points.

This completes the proof of Theorem [A]

2.5 Schubert varieties of hyperplane arrangements in coor-

dinates

In this section we give a coordinate formula for the Schubert variety of a hyperplane
arrangement as a closed subset of (P')”, as well as coordinate formulas for the orbits,
distinguished points, stabilizers, minimal V-invariant open neighborhoods, and slices. All
of the following formulas are consequences of the defining multihomogeneous equations of
the Schubert variety given in (Ardila and Boocher [2016), and they will be familiar to the
experts.

We fix the following notation.

e Coordinates: Set £ = {1,...,n}, and let & = {Hy,..., H,} be an essential hyper-
plane arrangement in V. In order to work with coordinates, let us fix an isomorphism

of V/H; with C for each i, and thus we can consider V C CF.

e Group action: Let us identify P! = C U {oo} set theoretically, writing z for [z : 1]



23

and oo for [1 : 0]. In this notation, the action of C¥ on (P')¥ is given by coordinate
wise addition, using the rule z + oo = oo for all z € C. Since the action of V on Y, is
restricted from the action of V on (P')¥, we have that the action of V on Y, is also

given by coordinate wise addition.

e Projections: Given S C E, write mg : (P1)F — (P')* for the coordinate projection.
Because we consider C¥ C (P1)¥, we will also write (V) for the coordinate projection

of V onto C¥ x {0}F\S,

e Matroid flats: A flat of the matroid associated to V' C CE is a subset F C E such
that F' = {i € E : v; = 0} for some v € V. Write .# for the collection of flats of the
matroid associated to V. There is a natural bijection between .% and the lattice of flats

of &/ given by sending F' € .% to N;cr H,;.
We begin with a set theoretic description of Y, ,:

Proposition 2.5.1 ((Proudfoot, Xu, and Young 2018) Lemma 7.5 and Lemma 7.6). Write
Y., as the closure of the linear subspace V. C C¥. Fix a point x € (IP’l)E, and write F C K
for the set of indices corresponding to non-infinite entries of x. Then x € Y, if and only

if F € % and mp(z) € mp(V). Equivalently,

Yy = |J 7r(V) x {oc}"\F C (PP,
Fez

Let us now demonstrate in explicit coordinates the objects defined in Section [2.2.2

Corollary 2.5.2. Let x,y € Y/, and write F,G C E for the set of indices corresponding

to non-infinite entries of x and y respectively.
(i) The V-orbit of x is V -z = mp(V) x {oc}E\F,
(ii) The distinguished point in the V-orbit of x is xp = {0} x {co}P\F.

(iii) The stabilizer of x is Vy = V N ({0} x CP\F),
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(iv) The minimal V -invariant open neighborhood U, of x contains y if and only if F C G.

Equivalently,

U= |J ma(V)x {0},
GeF ,FCG

(v) The minimal slice Z, through x contains y if and only if FF C G and wp(z) = mr(y).

FEquivalently

Z.= | (WG(V) N (WF(x) X CG\F)) x {00} P\C
GeZ ,FCG
(vi) Set Y., equal to the closure of V NCEN in (PYYE\F . The minimal slice through the

distinguish point xr = {0} x {00}\C is Z,, = {0} x Vi,

Proof. We begin with Corollary Since x; = oo for i € F, we have that v € V
acts on z via (v-x); = v;+x; fori € F and (v-xz); = oo for i € F. Thus V -z C
(V) x {00} P\F. For the reverse inclusion, let y € mp (V) x {oo}\F', and choose v € V
such that 7p(v) = 7p(y) — 7p(x). Then v-x = y.

We have that v -z = z if and only v; + x; = x; for all i € F, so Corollary
follows.

To prove Corollary let y € Yoy and write G = {i € E : y; # co}. We wish
to show that the set of y for which F' C G is equal to the minimal open neighborhood
U,. We first note that the set of y such that F' C G is a V-stable open set of V -z, so

it contains the minimal one. To show the reverse inclusion we must check that if FF C G,

then (V) x {oc}\F C (V) x {00}E\G, Since F € . is a flat, we may choose a vector
v € V such that v; = 0 for i € F and v; # 0 for ¢ ¢ F. Then for each value of t € C,
76 (tv) x {oo}E\G € (V) x {00} P\C, but as t — oo, the limit lies in 7p(V) x {oo}E\F.

We now turn to Corollary We have that
Zy:={yeYy :FCG, mp(z)=rr(y)}

is contained in U, by Corollary [2.5.2 (iv)| and so we just need to check that it is a slice.
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We have that V, acts on Z,, so we use Lemma to show that the induced map
V %y, Z, — Y, is injective on closed points. Suppose that v -z =’ 2’ for v,v' € V and
2,2 € Zy. Then wp(v) + 7p(2) = 7p(v') + 7p (7)), however 7p(2) = 7p(2') = 7p(x), so
(v —v") = 0 as required. Since V N Z, is a coset of V.., we have that V *y, Z, — Y, is
birational, and thus an open embedding by Theorem [2.2.5

Now Corollary [2.5.2 (ii)|and Corollary [2.5.2 (vi)| follow from knowing the slice through

TFE. ]
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Chapter 3

Partial compactifications and

morphisms

3.1 Introduction and summary

We now describe how Theorem [A] extends to equivariant partial compactifications of vec-
tor groups, as well as morphisms between them. We define a morphism of equivariant
compactifications of vector groups to be a map of varieties, which restricts to a linear map
from the first vector group to the second.

Let us first review some hyperplane arrangement terminology. We will work only with
arrangements of linear hyperplanes in a finite dimensional complex vector space. We do
not consider arrangements of affine hyperplanes. We say that a hyperplane arrangement
is essential if the common intersection of the hyperplanes is zero. A flat of a hyperplane
arrangement is a linear subspace of the ambient vector space which can be written as the
intersection of several hyperplanes. We consider the ambient vector space to be a flat,

because it arises from the empty intersection of hyperplanes.

Remark 3.1.1. Following the standard convention, we equip the collection of flats with
the partial order given by reverse inclusion, writing /' < G if F and G are flats such

that G C F. When the arrangement is essential, this partial order gives the collection of
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flats the structure of a finite geometric lattice, or equivalently, a simple matroid. For our
purposes, the partial order will only be used in Example and in the fact that will

refer to the flats of an essential hyperplane arrangement as the “lattice of flats.”
Viewing an essential hyperplane arrangement as its lattice of flats, we make the fol-

lowing generalization:

Definition 3.1.2. A partial hyperplane arrangement in V = C? is a finite collection

& of vector subspaces of V', such that
i. {0} e .2,
ii. if G € .Z then FNG € .2,

iii. for each F' € &, the set {G € £ : G C F} is the lattice of flats of an essential

hyperplane arrangement in the vector space F.

Example 3.1.3. Suppose that £ is the lattice of flats of an essential hyperplane arrange-
ment, and & C & is an order filter (i.e. an upward closed set under the partial order of

reverse inclusion.) Then & is a partial hyperplane arrangement.

Example 3.1.4. Here we give an example of a partial hyperplane arrangement in C*. Let
% consist of the zero subspace of C*, together with the affine cones of the points, lines,

and planes in P? listed in Fig.

Points Lines | Planes
A=[0:0:1:1] AB | ABCD
B=[0:1:0:1] AC | BCDE
C=100:0:0:1] AD
D=[0:-1:0:1] | BE
E=[1:0:0:1] CFE
DE
AE
BCD

Figure 3.1: The projectivization of a partial hyperplane arrangement in C*.
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FEzxample 3.1.5. Here we give an example of a partial hyperplane arrangement which cannot
be realized as an order filter in the lattice of flats of a hyperplane arrangement. Consider
the partial hyperplane arrangement . in C? consisting of the proper coordinate subspaces,
and a general line. Any hyperplane passing through the general line will intersect one of
the coordinate hyperplanes in a non-coordinate line. Therefore if there is hyperplane

arrangement whose lattice of flats contains .Z, then . cannot be upward closed.

Definition 3.1.6. Suppose that .%; is a partial hyperplane arrangement in a vector group
Vifori=1,2,and T : Vj — V5 is a linear map. Then we say T is a morphism of partial

hyperplane arrangements if
i. for each F} € 4] there exists Fy € % such that T'(Fy) C Fj,
ii. for each I} € 4 and Fy € %, T_l(FQ) NFeZ.

Example 3.1.7. In the case where % is the lattice of flats of a hyperplane arrangement
&;, then T is a morphism of partial hyperplane arrangements if and only if the preimage

of each hyperplane in @ is either a hyperplane in @/ or is Vj.

The following is our main result, in maximal generality.

Theorem B. There is a fully faithful embedding of categories from partial hyperplane
arrangements to equivariant partial compactifications of vector groups, such that the fol-

lowing are equivalent for an equivariant partial compactification Y.
i. Y arises from a partial hyperplane arrangement.
ii. Y is normal and satisfies FO and SL.

iii. Y is normal and satisfies FO and OP.

3.1.1 Analogy with toric varieties

For the remainder of the introduction, we say that an equivariant partial compactification

of V satisfying any of the equivalent conditions of Theorem [B|is a linear V -variety. In
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Correspondences for toric varieties versus correspondences for linear V-

varieties.

this section, we explain the analogy between Theorem [B| and the correspondence between
normal toric varieties and polyhedral fans. From now on, we assume all toric varieties are
normal.

Toric varieties satisfies FO, SL, and OP, and once we impose these conditions onto an
equivariant partial compactification of a vector group, there is dictionary (Fig. which
is similar to the dictionary between toric varieties and fans. In both cases the idea is to
cover the variety with “simple” open sets. The main difference is that these open sets are

affine in the torus case and non-affine in the vector group case.

One-parameter subgroups

Let T be an algebraic torus. A one-parameter subgroup of 7' is an algebraic group ho-
momorphism from C* to T'. The one-parameter subgroups of T' form a finitely generated

free abelian group N, and write Ng = N ®gz R for the corresponding real vector space.
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Let V' be a vector group. By a one-parameter subgroup of V', we mean an algebraic group
homomorphism from C to V. The one-parameter subgroups of V naturally correspond to

the elements of V', so V will play the role of both T and .

Full dimensional cones and essential hyperplane arrangements

The toric varieties arising from full dimensional cones are exactly the affine toric vari-
eties that have no torus factors. If ¢ C Ng is full dimensional (strictly convex rational
polyhedral) cone, then there is a canonical embedding of tori 7' C [, ,,» C* where J#
is the unique minimal basis of the dual semigroup. Note that this embedding is only
canonical when o is full dimensional. The corresponding toric variety is the closure of
T in [[,cn(C*U{0}). If & is an essential hyperplane arrangement in V', then there is
a canonical embedding of vector groups V' C [[;.., V/H. The corresponding Schubert

variety is the closure of V' in [ ¢, (V/H U {oo}).

Simple partial compactifications

Suppose an algebraic group G acts on a variety X with finitely many orbits. We say that
X is simple if there is a unique closed orbit. Since the orbits form a finite stratification,
X can be covered with simple G-stable open sets. Simple toric varieties are exactly affine
toric varieties by (Sumihiro|1974, Corrollary 2), and every affine toric variety arises from a
sublattice N’ C N and a full dimensional cone 0 C N’ ®zR. Simple linear V-varieties are
not affine, however by Proposition and Theorem [A] every simple linear V-variety

arises from a vector subspace F' C V and an essential hyperplane arrangement in F.

Partial compactifications

Toric varieties are constructed from affine toric varieties by gluing according to the fan,
and likewise linear V-varieties are constructed from simple linear V-varieties by gluing

according to the partial hyperplane arrangement. See Section for more details.
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Orbit correspondences

Let ¥ be a fan in NNg corresponding to a toric variety Xy. Let ¢° denote the relative
interior of a cone o € . That is, 0° = o \ |J7 where the union is over 7 € ¥ such
that 7 € 0. The cones o € X are in one-to-one correspondence with distinguished points
rs € Xy, given by

Nno :{)\EN:%E%/\(t):xU}.

Let .Z be a partial hyperplane arrangement corresponding to a linear V-variety Y¢. Given
F e £, write F° = F \ |JG where the union is over G € .Z such that G C F. The flats

F € £ are in one-to-one correspondence with distinguished points yr € Y, given by
F° = Vo lim tv = .
{veV:lim tv=yr}

In both cases, each orbit contains exactly one distinguished point. Therefore cones (resp.
flats) also correspond to orbits, and to simple invariant open sets in Xy (resp. Y¢). See

Section [2.3] for more details.

3.2 Proof of Theorem

3.2.1 Overview

In this section V = C? will denote a vector group, and we will use the term linear V-
variety to mean a normal equivariant partial compactification V' C X, which has finitely
many orbits and a slice through every point. We have proved in Section that Item
and Item [iij in Theorem [B] are equivalent. To prove Theorem [B] it remains to show the

following.

Theorem 3.2.1. Given a linear V-variety X, let £ (X) denote the associated partial
hyperplane arrangement of Definition [2.3.2,
(i) Functoriality: If X; is a linear Vi-variety for i = 1,2 and T : X1 — X2 is a

morphism, then the restricted linear map T : Vi3 — Va is a morphism of partial
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hyperplane arrangements £ (X1) — £ (Xa2).

(ii) Full faithfulness: If X; is a linear Vi-variety for i = 1,2 and T : Vi — Va is
a morphism of partial hyperplane arrangements £ (X1) — £(Xz2), then T extends

uniquely to a morphism of linear V -varieties X1 — Xo.

(iii) Essential surjectivity: If £ is an essential hyperplane arrangement in V', then

there exists a linear V-variety X such that £(X) = Z.

The proof of essential surjectivity describes how to construct the linear V-variety

associated to a partial hyperplane arrangement.

3.2.2 Morphisms

In this section we prove functoriality and full faithfulness. To prove functoriality, we

generalize the proof of Lemma appealing again to the Borel fixed point theorem.

Proof of Theorem . Since the stabilizer of x € X; is mapped into the stabilizer
of T(x) € Xy, it follows that for each flat of Z(X;) is mapped into a flat of £ (X3), as
required in Item [if of Definition If F1 € £(X;) and Fy € Z(X>), it remains to show
that T-1(Fy) N Fy € £(X1). Write Z; for the minimal slices through the distinguished
point z1 € X; corresponding to Fy. Then Z7 is proper by Proposition so T=Y)N

7y is proper. By the Borel fixed point theorem, there exists z € T~!(z2) N Z; such that
T71<F2) NF; C (Vl)z

We now show the opposite inclusion. By Proposition [2.2.15] there is a unique F}-fixed
point in Zq, and F} - z contains a Fj-fixed point, so x; € F - z. Therefore (V7), C F;. On

the other hand, z € T~ !(x2), so (V1), C T }(Fy). O
Let us start by proving full faithfulness in the compact case.

Lemma 3.2.2. Suppose that o is an essential hyperplane arrangement in the vector

group V; for i = 1,2, and T : Vi — V5 is a linear map such that the preimage of each
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hyperplane in <t is either a hyperplane in </ or is Vi. Then T extends to a morphism

between Schubert varieties Yo — Yoy, .

Proof. Since Yy, is the closure of V; C [[g¢,, P(Vi/H © C), we are reduced to showing

that T" extends to a map

I Pi/H eC)— ][] P(Va/H2&0).
Hi€9 Hocats
Fix Hy € af. If T7'(H3) = Vi, then the Ho component of the displayed function can be
defined to be constant with value 0 € Vo/Hs. Otherwise T~!(Hs) € 47, in which case the
Ho component of the displayed function can be defined as projection onto P(Vy /T~ (Hs)®

C) followed by the map
[v+ T Y (Hy) : 2] = [T(v) + Ha : 2].

O]

To prove full faithfulness in general, we apply Lemma to the slices in a linear
V-variety, which are Schubert varieties of hyperplane arrangements by Proposition [2.2.15

and Theorem [Al

Proof of Theorem . Since V1 C X is dense, uniqueness follows immediately. We
now argue that an extension 7T : X7 — Xo exists.

Suppose that F; € Z(X;) for i = 1,2 such that T'(Fy) C Fs, and denote by Z; C
X; the slices through the corresponding distinguished points. By Proposition [2.2.15
Lemma[2.2.13] and Theorem[A] Z; is the Schubert variety of a hyperplane arrangement in
F;. By Lemma the hyperplane arrangement corresponding to Z; is given by those
flats of Z(X;) which are contained in F;. Therefore, since T' is a morphism of partial
hyperplane arrangements, the hypotheses of Lemma [3.2.2] are satisfied for the restriction

T|r, : F1 — Fy. Thus T'|p, extends to a morphism T'|p, : Z1 — Za.

We can now extend T to the open set Vixp, Z1 C X3 by sending [v, 2] to [T'(v), T|r, (2)] €
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Vo xp, Zo. As F1 and F; vary, the open sets Vi xp, Z; cover X; (here we are using Item
in Definition [3.1.6)), and the extensions of T" to Vj xg, Z; are unique and thus compatible

on intersections, so they define a global extension X; — Xo. ]

3.2.3 Construction of linear V-varieties

Now we turn to essential surjectivity. Let .Z be a partial hyperplane arrangement in V.

A diagram of hyperplane arrangements

From Definition [3.1.2] we have that for every F' € 2, there is an essential hyperplane
arrangement </ in the vector space F' whose lattice of flats is {G € & : G C F}. It
follows immediately that o7 is unique. If G C F' are elements of ., then o7 is called

the restriction of o/ to the flat G.

A diagram of Schubert varieties

For each F' € .Z, we have the Schubert variety Y, associated to the hyperplane arrange-
ment /p. If G € £ is contained in F, then G is a flat of &/p. Therefore Y, is the
slice through a distinguished point zg € Y., by the coordinate formula given in Corol-
lary So .Z indexes a diagram of Schubert varieties of hyperplane arrangements,

where each arrow is the inclusion of a slice.

A diagram of open embeddings

Given G' C F' elements of .Z, we have an open embedding F'xg Y, C Y, because Yy, is
a slice through xg. It is straight forward to check that V xp — preserves open embeddings,

so by the associativity property of Lemma we have an open embedding

Vixg Yy, =2V sp (FxgYy,) CV*p Yy,

Therefore . indexes a diagram of open embeddings between the varieties V*pY,, for F' €

Z. By Lemma V xp Y., has finitely many V-orbits, and again by the associativity
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property of Lemma each point [v,y] € V *p Y, has a slice V *p Z,, where Z, is a
slice through y € Y,,.. Thus V g Y, is a linear V-variety.
Cocycle condition

To verify that the VpY,,, glue together, we must check the cocycle condition (Hartshorne

1977, Exercise 11.2.12). This reduces to the following lemma.

Lemma 3.2.3. If G,H C F and I = GN H are elements of £, then
V*GYQ{GQV*HYMH ZV*IYQ{I

considered as open sets in V xp Yy, .

Proof. A point [v, z] € Vxp Yy, lies in V % Yy, if and only if z € Y, so we are reduced
to showing that Y, NY,,, = Y, , considered as closed sets in Y,,,. To check this one can
use the set theoretic formula of Proposition [2.5.1 O

Separation

We now prove that the variety Y glued from the V %y Yy, is separated. By (Hartshorne
1977, Corralary 11.4.2), checking that the diagonal morphism Yy — Yo x Yy is a closed

embedding reduces to the following lemma.

Lemma 3.2.4. Suppose that ' = G N H where F,G,H € £, and write
iV xp Yy, 5 Vg Yy, x Vg Yy, [v,y]—[v,y] x[v,y].

Then i has a closed image.

Proof. Consider the canonical fibration defined in Section
TF:V*FY;&/F%V/Fz [U,y]f—)’l)-f-F.

We get that the following square is commutative.
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Vxp Yo, i, Vxg Yoy, x Vg Yy,

|- \ |rexn

V/F — s V/GxV/H
Notice that j is a closed embedding, since F' = G N H. We also have that 7¢ is proper
(it’s conjugate to the projection V/F x Y., — V/F), so f is proper. Then i is proper by
(Hartshorne 1977, Corralary 11.4.8(e)), and thus closed. O

Linearity

Since the action of V' extends to each open set in a cover of Yy and is compatible on
intersections, the action extends to Y¢. From the fact that Y¢ is glued from linear V-
varieties with maps that preserve V', it follows that Yo is normal, that it has finitely many

V-orbits, and that every point has a slice. Thus Y is a linear V-variety.

Proof of Theorem . We have constructed a linear V-variety Y, and we wish to
show that the collection of stabilizers .2 (Yy) coincides with .Z.

First we check that each flat of . is the stabilizer of a point in Y. Suppose that
F € Z. Then consider the point [0,zr] € V xp Y, C Yy, where 2 is the unique fixed
point of Y,/,. By Lemma F is the stabilizer of [0,zp] € Y.

Now we check that the stabilizer of each point of Y¢ is a flat of .. From the construc-
tion of Y, we have that every point is contained in an open set isomorphic to V xp Y,
for F € £. Suppose that [v,y] € V *p Yy,. Then the stabilizer of [v,y] with respect

to the action of V' is equal the stabilizer of y € Y, with respect to the action of F' by
Lemma [2.2.3] and is therefore equal to a flat in @/ by Corollary O

This completes the proof of Theorem [B]

Comparison with toric varieties

We conclude this section by explaining how the construction of a toric variety form a
polyhedral fan can be made to look like the construction above. In order to be consistent

with (Cox, Little, and Schenck 2011)), we will use n for the dimension of a toric variety
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rather than d as we have been doing so far. We will use d for the dimension of a cone. Let

us fix the following notation.

o N =X 7", a lattice of dimension n,

T = Spec C[NV], the corresponding n-dimensional torus,
e > a fan of strictly convex rational polyhedral cones in N ®z R,
e 0 €Y, a cone of dimension d,

e U, v, the toric variety of dimension n corresponding to o considered as a cone in N ®zR

(Cox, Little, and Schenck [2011, Theorem 1.2.18),

e 2, € U, n, the distinguished point in the minimal T-orbit (Cox, Little, and Schenck
2011, Chapter 3.2),

e N, = spany (o N N), the sublattice of dimension d generated by o,
e T, = Spec C[N,/], the d-dimensional torus corresponding to N,,

e Uy n,, the toric variety of dimension d corresponding to o considered as a cone in

No’ ®Z ]R7

e 7, the unique minimal basis (see (Cox, Little, and Schenck 2011, Proposition 1.2.23))

for the semigroup

Se.n, = {u € Homz(N,,Z) : u is nonnegative on o}.

The fan 3 indexes a commutative diagram of inclusions among its cones, as in Section|3.2.3
The cone o defines an embedding of the torus 7, in the larger torus (C*)* (see (Cox,
Little, and Schenck 2011, Definition 1.1.7)), and the closure of T, C (A is U, n,
(see (Cox, Little, and Schenck 2011, Theorem 1.1.17)), similar to the definition of the
Schubert variety of a hyperplane arrangement. Given 7 C ¢ elements of 3, the natural

homomorphism of tori T C T, extends to a morphism of toric varieties U, . C Uy n,, and
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one can check that U, n, is the minimal slice through the distinguished point x,; € U, n,,
as in Section [3.2.3] As in Section [3.2.3] for elements 7 C o of ¥, we have a natural open
embedding

T *T'r UT7NT = T *Ta (T *TT UT7NT) g T *Ta U0-7NCF'

One can verify that U, y, is the minimal slice through the distinguished point z, € Uy n,
so there is natural isomorphism 1" *7, Uy n, = Uy n. Thus the above diagram of open
embeddings is isomorphic to the usual diagram of open embeddings U,y C U, n (see

(Cox, Little, and Schenck [2011} Section 3.1)), whose colimit is the toric variety Xs.
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Chapter 4

Subspace arrangements

4.1 Introduction and summary

Let us begin by recalling the main result of Chapter

Theorem An equivariant compactification Y of the vector group V = C% is iso-
morphic to the Schubert variety of a hyperplane arrangement if and only if Y is normal
as a variety, Y has only finitely many orbits, and each orbit contains a point which can

be reached by a limit lim;_, tv, forv e V.

We observed in Example that there is an additive action of C? on P? which has
finitely many orbits. Since P? is not the Schubert variety of hyperplane arrangement (it
cannot embedded into (P')" for any n), this shows that the limit condition is necessary
in the above theorem statement. In fact, projective space of any dimension admits an

additive action with finitely many orbits:

Theorem 4.1.1. (Hassett and Tschinkel 1999, Proposition 3.7) Over a field of charac-
teristic zero, the projection space P admits a unique (up to isomorphism) action by C™

with finitely many orbits.
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In coordinates, the action is given by the faithful representation p, : C* — Aut(P")

0 0 O 0

ap O 0
a=(ai,...,an)—explay ag 0 . 0
0
a, -+ ay a3 O

Notice that the matrix exponential in the displayed formula has polynomial entries, so p,
is an algebraic action.

In this chapter, we construct a class of equivariant compactifications containing both
Schubert varieties of hyperplane arrangements and the finite-orbit actions on projective

spaces considered by (Hassett and Tschinkel [1999).

Definition 4.1.2. Given an arrangement of linear subspaces Vi,...,V,, C V = C¢, write
V; as the intersection of ¢; := codim(V;) generic hyperplanes defined by linear forms
a;j : V. — C. Let A = {aj;}ij. We define the polymatroid Schubert variety Y4 to be

the orbit closure of the origin in [[;" ; P% under the V-action given by

Vo [TAwt®), v pe,(ai;(v)).
-1

If Vi,...,V, are codimension one, then Y4 coincides with the matroid Schubert variety,
and if n = 1 then Y4 is a projective space with V action as in Theorem Because Y4

above is defined as an orbit closure, it automatically has the structure of an equivariant

compactification of V. The main result of this chapter is the following.

Theorem 4.1.3. Y4 has finitely many orbits, and the orbit poset of Ya is isomorphic

to the poset of combinatorial flats of the associated polymatroid, which we introduce in

Section [{.4

Since Y4 has finitely many V-orbits, the orbits form an algebraic cell decomposition.

It then follows by the arguments of (Bjérner and Ekedahl |2009; Huh and Wang [2017)
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that the orbit poset of Y, is always top-heavy. One way to see that the orbit poset of Y4
cannot be the usual lattice of flats of the polymatroid, is that the usual lattice of flats is

not top heavy in general.

4.1.1 Future directions

Motivated by Theorem [I.0.1], it would be interesting to classify all finite-orbit equivariant

compactifications of V. Towards this direction, we pose the following questions.
Question 4.1.4.
i. Is every polymatroid Schubert variety normal?

#. Suppose that'Y is a normal equivariant compactification of V.= C?, with finitely

many orbits. Is Y isomorphic to a polymatroid Schubert variety?

At the time of writing this thesis, the author does not know the answer to either
question.

In the realizable case, the Kazhdan-Lusztig polynomial and Z-polynomail of a matroid
(Elias, Proudfoot, and Wakefield 2016; Proudfoot, Xu, and Young2018) measure the local
intersection cohomology (at the V-fixed point) and global intersection cohomology of a
matroid Schubert variety respectively. Since the polymatroid Schubert variety Y4 has a

unique fixed point, we can formulate the following question:

Question 4.1.5. Can one define a Kazhdan-Lusztig polynomail and a Z polynomial for

polymatroids by studying the (local) intersection cohomology of Y4 ?

4.2 Polymatroids

A polymatroid on a finite set E = {1,...,n} is the data of a rank function rk : 2¥ — Z>q

that is
normalized tk(()) = 0,

increasing if A C B, then rk(A4) < rk(B), and



42

submodular if A, B C E, then rk(AU B) +rk(AN B) <rk(A) + rk(B).

A polymatroid is a matroid if its rank function satisfies rk(A) < |A| for any A C E.

Let P be a polymatroid on E. A flat of P is a subset F' C E maximal among those
of its rank. The closure of S C FE is the unique minimal flat containing S, denoted
S. The deletion of a subset T C E is the polymatroid P\ T on E \ T defined by
tkp\7(S) :=rkp(S) for S € E\ T. The contraction P/T is the polymatroid on £\ T
defined by rkp;7(S) :=1kp(SUT) — rkp(T).

Prototypical examples of polymatroids arise from linear subspaces.

FEzample 4.2.1. Let Vi,...,V, C V be an essential arrangement of linear subspaces in a
complex vector space V' of dimension d. By essential we mean that (), Vi = {0}. The

associated polymatroid P is defined by the rank function

rkp(S) := codim ﬂ Vi.
€S

We will often consider V' C [[;c5 V/V; as a linear subspace. Writing

ms: [[V/Vi—= [ Vv/Vi

S €S

for the projection, we have that rkp(S) = dim7g(V). A polymatroid that arises in this
way is realizable, and V1,...,V, C V is a realization. Let us write Vz := (\,c Vi. Then

the deletion P \ T is realized by the subspace arrangement
Vi/Vine € V/Viny for each i € E\T,
and the contraction P/T is realized by the subspace arrangement

VinVp CVp foreachie E\T.
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4.2.1 Lifts

Let P be a polymatroid on E = {1,...,n}, and E a finite set, equipped with a surjection
v: E — E such that [v=(i)| > rkp(i) for each i € E. The multisymmetric lift of P

associated to v is the matroid P, on E defined by
rkp, (S) = min{rkp(A) 4+ |S\ v~ }(A4)|: A C E}.

The lift carries a natural action by the product of symmetric groups & = [[", Sp-1())-
Any flat stable under the action of & is geometric. Each flat F' of P, contains a unique

maximal geometric flat F&° = g0 F.

Lemma 4.2.2 ((Crowley, Huh, Larson, Simpson, and Wang 2020))). If F' is a flat of P,,

then there is a unique mazximal geometric flat F'8°° contained in F, and
tkp, (F') = rkp, (F8%°) 4 |F\ F&°|.

Lemma 4.2.3 ((Crowley, Huh, Larson, Simpson, and Wang 2020)). If S C E, then for

each i € E, either SNv~1(i) = SNv=1(i) or SNv=1(i) = v1(3).

Remark 4.2.4. Suppose P is a polymatroid realized by Vi,...,V, C V, and let P, be a
lift. Choosing generic coordinates a;1,. .., @; codimy; on each V/V; gives an isomorphism

[LegV/Vi = (CE, and the resulting embedding V' C CF is a realization of P,.

4.2.2 Combinatorial flats

A multiset on a finite set F is an element of Zgo. Ifv:E— Eisa surjection, then
S C E represents a multiset s = (s;);ep if s; = [v™1(i) N S| for all i € E.

A combinatorial flat of a polymatroid P on F is any multiset represented by a flat of
P,. If s is represented by S, then the closure of s is the multiset S = (S;);cr represented
by S, the closure of S in P,, and the rank of s is rk(s) := rkp,(S). The &-symmetry of

P, guarantees that both s and rk(s) are independent of S.
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We can give a more direct description of the combinatorial flats of a polymatroid,
which does not involve the lift P,. Let C' C Zgo be the rectangle {s : s; <rkp(i)}. Then

the independence polytope of P is given by
Indp={seC: Zsi <rkp(A) forall ACE} CC
€A
Lemma 4.2.5. s € Indp if and only if there exists a set IcC E’, independent in P,, such

that #(I Nv=1()) = s;.

Proof. Let s € C, and let I C E be any set such that #(I Nv~1(i)) = s;. We will show
that s € Indp if and only if I is independent. By definition of P,, the rank T is equal to
its size if and only if for all A C FE, #(fﬂ v=1(A)) > tkp(AN v(I)). This condition is

equivalent to Y, 4 5; <1kp(A) for all A C E. O

Proposition 4.2.6. As above, let Indp be the independence polytope of P, inscribed in

the rectangle C' C Zgo'
i. For each s € C, rk(s) = max{)_,cps; :s’ € Indp and s’ <'s coordinate wise}.

ii. s € C is a combinatorial flat if and only if it is coordinate-wise maximal with respect

to its rank.

Proof. Let S C E be a set representing s € C. By Lemma the maximum in Item
is equal to the maximum size of an independent subset of S. This proves Item [] Item

follows by definition of rk(s) as rk(S). O
We a lemma which we will need in the following sections.

Lemma 4.2.7. Let P be the polymatroid. If s is not a combinatorial flat of P and

3n < v i(n), thens' = (s1,...,8n_1) is not a combinatorial flat of P\ n.

Proof. Let rk be the rank function of P. Choose S C E representing s. Since s is not a

combinatorial flat, S properly contains S. In fact, S\ v~ (n) properly contains S\ v~1(n):
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this is because |S Nv~1(n)| < [v~1(n)|, so SNv~1(n) = SNv~(n) by Lemma By
Lemma

rk(S\ v (n)) = 1k(S) — s, = 1k(S) — 5, = 1k(S \ v (n)).

Since S\ v~1(n) is properly contained in S\ »~!(n), this means S\ v~!(n) is not a flat of
P,\v~1(n). By (Crowley, Huh, Larson, Simpson, and Wang 2020), P, \v~1(n) = (P\n),,
so S\ v~1(n) is also not a flat of (P \ n),. Since S\ v~!(n) represents s’, this means s’ is

not a combinatorial flat of P\ n. O

4.3 The finite-orbit equivariant structure on P"

4.3.1 Group actions on varieties

Following (Hassett and Tschinkel 1999), let G be a connected linear algebraic group. A
G-structure on a variety X is a left action of G on X such that the stabilizer of a generic
point is trivial and the orbit of a generic point in X is dense. A G-variety is a variety with
a fixed G-structure. A morphism of G-varieties is a map X; — Xo that commutes with

the G-action. An isomorphism of G-varieties is a commuting square

GXX1M>GXX2

! |

Xl%XQ

where « is an automorphism of G, and j is an isomorphism.

4.3.2 The finite-orbit action on P"

We now specialize to consider the vector group C".

Theorem 4.3.1. (Hassett and Tschinkel 1999, Proposition 3.7) The projection space P"

admits a unique (up to isomorphism of C"™-varieties) C™ structure with finitely many orbits.
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In coordinates, the action is given by the faithful representation p, : C* — Aut(P")

0 0 O 0
ap O 0
a=(ai,...,an)—explay ag 0 . 0
0
a, -+ ay a3 O
Let bg, ..., b, be the coordinates on the projective space P", and let the boundary (resp.

interior) of P™ be the locus given by by = 0 (resp. by # 0).
We will only need the following properties of the action p,, which can be derived

directly from the definition.

Lemma 4.3.2. The vector group C™ is mapped isomorphically onto the interior of P by

(a1,...,an) — pplai,...,ap) - [1:0:...:0],

and pp(ay,...,an) acts on the boundary of P™ as pp—1(ai,...,an—1).

Proof. We expand the matrix exponential and apply it to the origin in the interior of P™:

pn(ai,...;an) [1:0:...:0] =[1:a;:az+p2(ar) : as+ps(ai,az) : ... ap+pn(ar, ..., an—1)],

where p; are polynomials. Therefore a,, = b, — pp(a1,...,an—1), and each a; for i < n can
be written as a polynomial in the b; by induction. This proves that C™ is embedded as
the interior of P". For the second statement, note that p,(ai,...,a,) acts on an element

of the boundary as the submatrix obtained by deleting the first row and column. O

Lemma 4.3.3. The action of C™ on P™ partitions P* into orbits

Ok:{bozblz-'-:bn_k_lzo,bn_k#O}, nggn
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The stabilizer of any point of Oy is
Wiy={a1=ar=---=a,=0} CG},

and the closure of Oy in P" is O = O U Op_1 U--- U Oy.

Proof. By Lemma O, is an orbit with stabilizer W,, and closure O,, = P". The

other statements follow by induction since p,(ai,...,ay) acts on the boundary of P" as

prn—1(ai, ... ,an—1). O

Example 4.3.4. On P?, we have

1 0 O
(al,ag)-[bo 2 by bg] = a1 1 0 -[bo 1 by bg] = [bo sarbg + b1 : %a%bo + asbg + a1b1 + bg] .

%a% +ay a1 1
4.4 Polymatroid Schubert varieties

Letv:E — E = {1,...,n} be a surjection of finite sets, and let V;,...,V, C V be an
essential subspace arrangement with ¢; := codimV; = |[v=1(i)| for 1 < i < n. Write P
for the associated polymatroid. Choose ¢; genera]lﬂ hyperplanes containing V; defined by

linear forms a;1, ..., a; for 1 <i < n. These coordinates define maps
L V=V/Vi=P9 v pe(ag(v))-[1:0:0:---:0].

Set A = {a;;j}ij and ta4 = (t1,...,tn). The Schubert variety defined by these choices is

7

Y, = img (V LN HIP’Q).

'Here, “general” means that the coordinates define a realization of P,, as in Remark [4.2.4
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For each vector s = (s1,...,sy,) with 0 < s; < ¢; for all 7, set
Cs = H?:1 Cs H?:l Os,, P°:= Cs, and Wy := H?:l W, C H?:l Vi.

By Lemma [£.3:2] Y4 is a compactification of V, and since ¢4 is a V-equivariant map, Y4

is a V-equivariant compactification.
Proposition 4.4.1. Suppose Y4 N C® is non-empty.
i. YANCS is a (perhaps infinite) union translates of V /1= H(Ws).
. dimY, NC® > dimspang(a;; : 1 <i<n,1<j<s;) =1k(s).
If we further suppose s is a combinatorial flat, then
i’. YaANCS is a translate of V)1~ (W)
i’ dimY, NC® = dimspang(ai; : 1 <i<n,1<j<s;)=rk(s).

Proof. The first statement follows immediately from the equivariance of Y4 and our de-
scription of the stabilizer of a point in C5. Combining these two facts with the generality
of the coordinates {a;;} yields the second.

For the latter two statements, we proceed by induction on n. When n = 1, Y4 C
P(C® V/V1) and its combinatorial flats are (0), (1),...,(dimV —1) and (¢1). If s = (c1),
then Y4 NC® = «(V), so (i’) and (ii’) hold. These statements also hold for the remaining
combinatorial flats because for any 0 < ¢ < dimV — 1, (ii) implies the orbit of a point in
C? under V is equal to C'.

We now consider n > 1. If all coordinates of s are maximal, then Y4 N C® = +(V),
so (i) and (ii’) hold. Otherwise, we may assume (without loss of generality) that s, is
non-maximal. Set A’ := {a;; € A:i#n} and 8’ := (s1,...,8,_1). Let 7 : CS — C¥ be
the restriction of the projection [[;"  P% — H?;ll P< to Cs.

The projection induces a surjection Y4 — Y. In particular, 7(Y4 NC®%) C Y4 N (O

so the nonemptiness of Y4 NCS implies Y4/ N C¥ is also nonempty. This allows us to apply
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the induction hypothesis in the following chain of inequalities:

dim Y4 NC® < dim7~ (Y NC¥)

=dimspanc(a;j: 1 <i<n—1,1<j<s5)+ s, by induction hypothesis
=dimspanc(a; : 1 <i<n,1<j<s) by Lemmas [£.2.2) &

The above inequalities and (ii) imply (ii’). From (ii’), we obtain
Y4NC® = Wﬁl(YA/ N (CSI) = (Ya N (CS/) x C*,

By the induction hypothesis, the right-most term is connected, and by (ii’), Y4NC® consists

of finitely many translates of V/1=1(Ws), which proves (i’). O
Proposition 4.4.2. If s is not a combinatorial flat, then Y, N CS = (.

Proof. We first establish the following claim.
Claim. 1If s is not a combinatorial flat and rk(s) = dim V', then Y4 N C® = ).

Proof of claim. Suppose towards a contradiction that Y4 N C® is nonempty. By Item
of Proposition dimYy N CS > rk(s) = dimY4. However, s is not a combinatorial
flat, so Y4 N C® is contained in the proper closed subvariety Y4 NP® of Y4. In particular,

dim Y4 N C® < dim Yy, a contradiction. o

We finish the proof with induction on n. If n = 1, then Y4 C P(C @ V7), and the
multisets that are not combinatorial flats of P are (dim V), (dimV +1),---,(c; —1). All
of these multisets have rank dim V', so the desired result holds by the preceding claim.

If n > 1 and rk(s) = dim V, then YANC® = () by the claim. Otherwise, if rk(s) < dim V/,
we may assume without loss of generality that the final coordinate of § is not maximal.
Let A" = {a;; € A:i#n}ands = (s1,...,5,1). The projection [[/_, P% — [/ P%
induces a map 7 : Y4 NC% — Y4 NC¥. By Lemma m s’ is not a combinatorial flat of

P\ n,so Yy NC¥ =0 by the induction hypothesis. This implies Y4 N C% = (), too. [
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Proposition 4.4.3. If s is a combinatorial flat, then Y, N C® is nonempty.

To prove the proposition, we will need the following dimension counting lemma. The
proof is not specific to the automorphism V/V; — V/V; given by a;; — b;;(a;j), but rather
works for any regular automorphism of V/V;, as long as the linear forms a;; are chosen

generically.

Lemma 4.4.4. Let s be a multiset and consider the coordinate projection
n
,BS:HV/VQ—H/VS, v (ai(v) 1 <i<n,s,+1 <5 <¢).
i=1
Then dim Bs(¢(V)) = rk(s).
Proof. To make use of the genericity assumption, suppose that V' C [[ V/V; with coordi-

nates z;;, and let xz;; — aij(xz-j) be a generic map of graded vector spaces. We have the

following diagram.

v H V/V; z—a(zx) 1_[ V/V; a—b(a) H V/V;
BL Bs l
Ws

We have that dim 87(V) is equal to the rank of the derivative of ) at a generic point.
However, since the derivative of (s is surjective at a generic point of [[ V/V;, and x +— a(x)
is a generic linear map, it follows that the derivative of §, at a generic point is a generic
map of graded vector spaces. Thus, dim 87(V) is equal to the rank in the linear matroid
M associated to

V C HVi, x = ag(x)

of a set S C E such that v~1(i) = s;. However, M is the multisymmetric lift of the
polymatroid P, so rkys(S) = dim Bs(¢(V')), and as discussed in Item i} rk(s) = rkas(5).
O

proof of Proposition[4.4.3 Suppose that s is a combinatorial flat. Let s be as in Lemma[4.4.4

and let Z C (V') denote a generic fiber of Ss|,(v) : t(V)) — Ws. Let C% C Y4 be a minimal



o1

orbit which intersects Z C Y4. We will show that s = s'.
First, we argue that s < s’. By the assumption that Z projects to a point in W,

we have that Z projects to a point in W, C P(C & V/V;). Therefore, the coordinate

functions b; s,11/bi.0, bi s;+2/bi0, - -, bic,/bio are constant on Z for all i. So the coordi-
nates b; 5,41,bi 5,42, .., i, vanish on the boundary of 7, meaning that Z is contained in
Us<s C°

Next, we argue that corank(s) < corank(s’). By assumption that C¥ is a minimal orbit
intersecting Z, we have that Z N CY =Zncs. Thus, Z N C¥ is closed in both Y4 and
C¥, so it is both affine and projective, and is therefore zero-dimensional. Therefore the
codimension of C*'NY} in Yy is at least dim Z, which is equal to corank(s) by Lemma

O

proof of Theorem[{.1.3 By Proposition and Proposition [4.4.3, we have that Y, is
the union of Y4 N C® where s runs over all combinatorial flats of the polymatroid, and
each Y4 N C® is a V-orbit by Proposition This proves that Y4 has finitely many
V-orbits, indexed by the combinatorial flats. By Proposition the set of V-orbits in
the closure of C® for a combinatorial flat s is identified with the combinatorial flats of the
polymatroid P’ of V//1=1(W5). Therefore to show that the orbit-poset of Y, is the lattice
of combinatorial flats, it suffices to show that the combinatorial flats of P’ are identified
with the lower interval at s in the lattice of combinatorial flats of P. To show this, note
that the matroid of V/.=1(Ws) is the matroid restriction of the multisymmetric lift P, to
S C E, for some set S representing s. Since combinatorial flat s’ satisfies s < s’ if and
only if s’ can be represented by a flat S’ C E of P, such that S’ C S, the theorem follows

from the fact that P,|s is a multisymmetric lift of the polymatroid of V/.=1(Wj). O
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