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abstract

Deep learning has achieved remarkable success in various domains, including
computer vision, natural language processing, and game playing. However, this
success relies on the assumption that the distribution of the test data is identical
to the distribution of the training data. In practice, this assumption often does not
hold, leading to distribution shifts. There are two types of distribution shifts that
occur in real-world scenarios: naturally occurring shifts during data collection and
shifts intentionally crafted by adversaries to undermine machine learning systems.
It has been observed that deep neural networks (DNNs) typically experience a
significant performance decline under distribution shifts.

To address this issue, my research focuses on three main directions. Firstly, we
investigate robust deep learning techniques aimed at enhancing the adversarial
robustness of DNNs. This involves proposing and formulating novel defenses, such
as transductive-learning based defenses and defenses based on rejection. We also
develop robust attack frameworks to evaluate the effectiveness of these defenses.
Additionally, we explore robustness beyond prediction, examining aspects such as
robust attribution and robust out-of-distribution detection.

Secondly, we tackle the challenge of reliable model deployment by proposing a
new framework to estimate the generalization capabilities of DNNs during testing.
We also introduce an innovative learning paradigm called active selective prediction
to achieve better utilization of humans in the loop for reliable model deployment.

Lastly, we delve into foundation models and provide new insights into their
training. Our findings reveal a trade-off between the universality and label efficiency
of model representations trained through contrastive learning. Furthermore, we
present a novel framework for adaptation with self-evaluation, aiming to improve
the selective prediction performance of Large Language Models (LLMs) and ensure
their reliable deployment in real-world applications.

By addressing the challenges posed by distribution shifts in these three research
directions, our work contributes to the development of more robust deep learning
systems capable of handling real-world scenarios effectively.
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1 introduction

Deep learning has achieved remarkable success in various domains, including
computer vision (He et al., 2016a; Ren et al., 2015; Chen et al., 2018; Goodfellow
et al., 2014; Krizhevsky et al., 2012), natural language processing (Devlin et al., 2019;
Vaswani et al., 2017; Williams et al., 2018; Dolan and Brockett, 2005; Howard and
Ruder, 2018; Rajpurkar et al., 2016; Peters et al., 2018), speech recognition (Hannun
et al., 2014; Abdel-Hamid et al., 2014; Amodei et al., 2016; Chorowski et al., 2015)
and game playing (Silver et al., 2016, 2017), etc. Despite their success, deep neural
networks (DNNs) have been shown to be vulnerable to distribution shifts, limiting
their deployment in safety-critical domains (Sharma et al., 2019; Eykholt et al.,
2018). Specifically, while DNNs excel when the test data aligns with the training
data distribution, they often experience significant performance degradation when
faced with distribution shifts. For instance, object detectors trained on ImageNet
may exhibit a 40-45% drop in performance when evaluated on ObjectNet (Barbu
et al., 2019). This raises a critical research question: How can we develop deep learning
systems that are robust under distribution shifts?

In this thesis, we assert the following statement:

Developing novel techniques and methodologies to enhance the robustness of deep
learning systems in the face of distribution shifts is crucial for enabling their reliable
and effective deployment in real-world applications.

In the real world, distribution shifts leading to performance degradation primar-
ily fall into two categories: (1) adversarial attacks (Papernot et al., 2016), where
imperceptible perturbations are added to test inputs to induce incorrect predictions;
and (2) natural distribution shifts (Quiñonero-Candela et al., 2008), typically re-
sulting from changes in the image generation pipeline (Torralba and Efros, 2011) or
noise corruptions (Hendrycks and Dietterich, 2019). Adversarial attacks aim to in-
duce model failure by introducing a bounded worst-case distribution shift, whereas
natural distribution shifts occur without any adversarial intervention. Examples of
natural distribution shifts include covariate shift due to domain divergence, image
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corruptions due to weather conditions, and out-of-distribution (OOD) test inputs
originating from open-world environments. Adversarial attacks are commonly
applied to clean test inputs sampled from the training data distribution, but they
can also be employed on test inputs with natural distribution shifts to create even
stronger shifts.

This thesis tackles the challenge posed by these two categories of distribution
shifts through contributions in three key directions. The first direction is robust
deep learning, which aims to enhance the resilience of DNNs against adversarial
attacks. The objective is to develop techniques that effectively strengthen the DNNs’
ability to withstand such attacks. The second direction focuses on reliable model
deployment, aiming to establish techniques that ensure the safe and effective de-
ployment of DNNs in real-world scenarios. This involves addressing challenges
such as unsupervised accuracy estimation, error detection, and active selective
prediction. The third direction explores foundation models, which are trained on
extensive unlabeled data at scale and can be adapted to diverse downstream tasks,
even in the presence of significant distribution shifts. In the subsequent sections,
we will delve into the specific details of these three directions and discuss their
respective contributions.

1.1 Robust Deep Learning
Adversarial examples (Szegedy et al., 2014; Biggio et al., 2013a) are inputs deliber-
ately crafted by adversaries to induce erroneous outputs from machine learning
systems. As the use of machine learning becomes more widespread, there has
been significant recent research on developing robust models to defend against
adversarial attacks (Dalvi et al., 2004; Barreno et al., 2006; Globerson and Roweis,
2006; Barreno et al., 2010; Biggio et al., 2010; Šrndic and Laskov, 2013). Carlini
et al. identify three common motivations for studying defenses against adversarial
examples: (1) to defend against an adversary who will attack the system; (2) to test
the worst-case robustness of machine learning algorithms; (3) to measure progress
of machine learning algorithms towards human-level abilities.
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In this thesis, we contribute to enhancing the adversarial robustness of various
aspects of deep learning systems, including robust prediction, robust attribution,
and robust OOD detection. We provide detailed explanations of these contributions
below.

Robust prediction. Despite the numerous defense mechanisms proposed for
robust prediction, many of them have been shown to be vulnerable to strong adap-
tive attacks (Tramèr et al., 2020; Athalye et al., 2018). Adversarial training and its
variants have proven to be the most effective methods for learning robust mod-
els (Madry et al., 2018; Zhang et al., 2019). However, achieving satisfactory robust
accuracy on complex datasets remains a challenge. For example, as reported in
RobustBench (Croce et al., 2020), even state-of-the-art adversarially trained models
struggle to exceed 70% robust test accuracy on CIFAR-10. Moreover, the robust
models usually have poor generalization to threat models that are not utilized
during training (Stutz et al., 2020; Laidlaw et al., 2021). To address these challenges,
we investigate two novel defense approaches: transductive-learning based defenses
and defenses with a rejection option. We propose a novel attack framework Greedy
Model Space Attack (GMSA) that can serve as a strong baseline for evaluating
transductive-learning based defenses (Chen et al., 2021c). Through systematic
evaluation, we demonstrate that GMSA can break previous transductive-learning
based defenses and adversarially retraining the model using fresh randomness at
the test time gives a significant increase in robustness against the proposed GMSA
attack. Additionally, we study adversarially-robust classification with rejection in
the stratified rejection setting, which has rejection loss functions that are monotoni-
cally non-increasing in the perturbation magnitude. We propose new evaluation
metrics, namely the total robust loss and the robustness curve, that provide a more
fine-grained evaluation of adversarial robustness with rejection. We theoretically
analyze the stratified rejection setting and propose a novel defense method – Adver-
sarial Training with Consistent Prediction-based Rejection (CPR) – for building a robust
selective classifier (Chen et al., 2023a). Extensive experiments demonstrate that the
proposed method CPR significantly outperforms previous methods under strong
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adaptive attacks.

Robust attribution. As Ghorbani et al. convincingly demonstrated, for existing
DNNs, one can generate minimal perturbations that substantially change the DNNs’
interpretations, while keeping their correct predictions intact. Thus, images that
look very similar to a human may have very different attributions, a phenomenon
that can seriously erode trust in such models. For example, when a doctor uses a
deep model as a diagnostic tool, they usually want to know which features cause
the model to detect a certain disease. If the attributions are brittle, doctors will find
it difficult to trust the model. Therefore, it is important to train models that produce
reliable interpretations for their predictions. We take a step towards solving this
problem by viewing it through the lens of axiomatic attribution of neural networks,
and propose Robust Attribution Regularization (RAR) (Chen et al., 2019). RAR
aims to regularize the training so the resulting model will have robust attribu-
tions that are not substantially changed under minimal input perturbations. Our
theoretical analysis reveals that RAR gives principled generalizations of previous
objectives designed for robust predictions. Our empirical evaluation demonstrates
that RAR gives significantly better attribution robustness and also gives comparable
prediction robustness (sometimes even better), compared to adversarial training.

Robust OOD detection. Prior research has demonstrated the generation of ad-
versarial OOD examples by slightly perturbing clean OOD examples, causing
OOD detectors to misclassify them as in-distribution (ID) inputs (Sehwag et al.,
2019). Failing to detect adversarial OOD examples can have severe consequences
in safety-critical applications like autonomous driving. Motivated by this, we
make an important step towards the robust OOD detection problem, and propose
a novel training framework, Adversarial Training with informative Outlier Mining
(ATOM) (Chen et al., 2021a). We extensively evaluate ATOM on common OOD
detection benchmarks, as well as a suite of adversarial OOD tasks, and demonstrate
that ATOM achieves state-of-the-art performance under a broad family of classic
and adversarial OOD evaluation tasks.
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With our contributions in enhancing robust prediction, robust attribution, and
robust OOD detection, we aim to advance the field of adversarial machine learning
and promote the development of more reliable and secure deep learning systems.

1.2 Reliable Model Deployment
DNNs typically suffer a significant performance reduction when faced with dis-
tribution shifts. Consequently, post-deployment monitoring of trained model per-
formance is crucial to ensure safe deployment. This monitoring encompasses two
challenging tasks: unsupervised accuracy estimation, which aims to estimate the
accuracy of the model on unlabeled test data, and error detection, which aims
to identify individual misclassified inputs so that we know where to improve the
model. Our research contributes to these challenging aspects by introducing a novel
algorithmic framework – Self-Training Ensembles – which tackles both unsupervised
accuracy estimation and error detection simultaneously (Chen et al., 2021b). We
provide theoretical analysis identifying the success conditions of the framework
and perform extensive experiments to demonstrate that the instantiations of the
framework achieve state-of-the-art performance on both tasks.

When a performance drop is detected in the deployed model due to distribution
shifts in the test data, proactive measures must be taken to prevent performance
degradation. One effective solution involves incorporating humans in the loop.
Selective prediction serves as a means to involve humans in the loop: DNNs can ab-
stain from making predictions when model uncertainty is high, and these uncertain
predictions can be deferred to human experts for further evaluation. However, dis-
tribution shifts can lead to more inaccurate predictions, which necessitates increased
human labeling in selective prediction. Unfortunately, this can be challenging and
costly in many scenarios. Active learning mitigates this difficulty by selectively
querying the most informative examples, reducing overall labeling effort in several
cases.

Based on this motivation, this thesis presents a novel learning paradigm called
active selective prediction, which learns to query more informative samples from
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the shifted target domain while increasing accuracy and coverage in selective
prediction. To solve the active selective prediction problem, we propose a simple
but effective method, ASPEST, that trains ensembles of model snapshots using
self-training with their aggregated outputs as pseudo labels (Chen et al., 2023b).
Extensive experiments demonstrate that the proposed method ASPEST significantly
outperforms previous methods in selective prediction and active learning, leading
to more optimal utilization of humans in the loop.

1.3 Foundation Models
In the traditional approach, DNNs are trained using a substantial amount of la-
beled data within a supervised learning framework, assuming that both the training
and test data follow the same underlying distribution. However, obtaining a large
labeled dataset is often a difficult and expensive task in real-world situations. More-
over, practical scenarios often involve test data distributions that differ from those
of the training data. As a consequence of limited human-annotated data and the
presence of distribution shifts, DNNs tend to exhibit subpar performance when
tested on unseen data.

To overcome these challenges, a new learning paradigm has been developed:
we first pre-train a model (e.g., a representation function) on broad unlabeled data
at scale and then adapt (e.g., fine-tune) it to a wide range of downstream tasks.
It is sometimes referred to as the foundation models (Bommasani et al., 2021).
Current examples include BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020)
and CLIP (Radford et al., 2021). From a technological point of view, foundation
models are not new – they are based on deep neural networks and self-supervised
learning, both of which have existed for decades. Self-supervised learning is a type
of unsupervised learning where a model is trained on labels that are automatically
derived from the data itself without human annotation. Self-supervised learning
methods enable a model to learn useful knowledge about an unlabeled dataset by
learning useful representations. It has been shown that this learning paradigm can
significantly reduce the number of labeled data needed to build a good classifier.
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For example, Chen et al. demonstrated that on ImageNet, with only 10% of labels,
ResNet-50 trained with their method under this paradigm achieves 77.5% top-1
accuracy, outperforming standard supervised training with all of the labels. Besides,
as demonstrated in Albuquerque et al. (2020), self-supervised pre-training on
multiple tasks can learn representations that are robust to test data with distribution
shifts.

There are two key desiderata for the foundation models: (1) label efficiency:
the ability to learn an accurate classifier on top of the representation with a small
amount of labeled data; (2) universality: the pre-trained representation can be used
for various downstream tasks. Due to the universality property, the foundation
models can be used for different kinds of distributions and thus can help address the
issue of distribution shifts. We study one of the most popular instantiations of this
paradigm: contrastive learning with linear probing, i.e., learning a linear predictor
on the representation pre-trained by contrastive learning. We show that there exists
a trade-off between the two desiderata so that one may not be able to achieve both
simultaneously. Specifically, we provide analysis using a theoretical data model
and show that, while more diverse pre-training data result in more diverse features
for different tasks (improving universality), it puts less emphasis on task-specific
features, giving rise to larger sample complexity for down-stream supervised tasks,
and thus worse prediction performance. Guided by this analysis, we propose a
contrastive regularization method to improve the trade-off (Shi et al., 2022a). We
validate our analysis and method empirically with systematic experiments using
real-world datasets and foundation models.

Large Language Models (LLMs) belong to the family of foundation models and
have recently made remarkable progress in various tasks, such as natural language
understanding and generation. However, their use in high-stakes decision-making
scenarios is still limited due to the potential for errors. Selective prediction is a
technique that can be used to improve the reliability of the LLMs by allowing them
to abstain from making predictions when they are unsure of the answer. In this
thesis, we propose a novel framework ASPIRE for adaptation with self-evaluation
to improve the selective prediction performance of LLMs. Our framework is based
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on the idea of using parameter-efficient tuning to adapt the LLM to the specific
task at hand while improving its ability to perform self-evaluation. We evaluate
our method on a variety of question-answering (QA) datasets and show that it
outperforms state-of-the-art selective prediction methods.

In summary, this thesis makes significant contributions to the field of foundation
models. Firstly, it uncovers the trade-off between universality and label efficiency
of representations from contrastive learning. By investigating this trade-off, we
gain a deeper understanding of the factors influencing the effectiveness of these
representations. Secondly, it proposes a novel framework called ASPIRE, which
focuses on adaptation with self-evaluation to improve the selective prediction
performance of LLMs. Through the development of ASPIRE, we offer a practical
solution that enhances the reliability and performance of LLMs in high-stakes
decision-making scenarios. Together, these contributions advance the field of
foundation models and pave the way for further advancements in representation
learning and selective prediction techniques.

1.4 Contributions and Remaining Challenges
The thesis statement emphasizes the importance of developing deep learning sys-
tems that are robust under distribution shifts and proposes the need for novel tech-
niques and methodologies for their reliable and effective deployment in real-world
applications. We have presented the contributions made in three key directions:
robust deep learning, reliable model deployment, and foundation models. In robust
deep learning, we have developed new frameworks to enhance the performance of
machine learning systems in robust prediction, robust attribution, and robust OOD
detection tasks. For reliable model deployment, we have proposed frameworks to
estimate the generalization of DNNs during test time, along with introducing a
new learning paradigm called active selective prediction. In the field of foundation
models, we have made notable progress in understanding the trade-off between
universality and label efficiency. Additionally, we have proposed a novel framework
for adaptation with self-evaluation to improve the selective prediction performance
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of LLMs. These contributions provide substantial progress in achieving the thesis
statement.

However, despite these significant contributions, there are remaining challenges
that must be addressed to fully achieve the vision of developing robust deep learning
systems under distribution shifts. One major challenge is the ongoing development
of more effective defense mechanisms against adversarial attacks. Adversarial
attacks constantly evolve, and it is essential to stay ahead of the evolving landscape
of attack strategies. This requires continuous research and innovation to develop
robust defense mechanisms that can withstand increasingly sophisticated attacks.

Another challenge that needs further exploration is the scalability and gener-
alization of the proposed methodologies. While our research has demonstrated
promising results, it is essential to investigate the scalability of the developed tech-
niques to larger and more complex datasets. Additionally, the generalization of
these methodologies to different domains and applications is an important area of
future research. Ensuring that the developed techniques can be applied effectively
in diverse real-world scenarios will significantly enhance the practicality and impact
of our work.

Furthermore, the trade-off between universality and label efficiency in founda-
tion models is an ongoing challenge. Our research has shed light on this trade-off
and provided insights into its implications. However, further refinement and op-
timization of this trade-off are necessary to strike the right balance between the
universality of pre-trained representations and the sample efficiency of downstream
supervised adaptation tasks. By addressing this challenge, we can unlock the full
potential of foundation models in addressing distribution shifts and improving the
performance of deep learning systems in various domains.

In conclusion, while the presented contributions have made significant progress
in accomplishing the thesis statement, there are remaining challenges that need to be
tackled to fully realize the vision of developing robust deep learning systems under
distribution shifts. By addressing these challenges, we can continue to advance the
field and enable the reliable and effective deployment of deep learning systems in
real-world applications.
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1.5 Thesis Outline
This thesis is organized as follows:

In chapters 2 - 5, we present our contributions to robust deep learning. Chapter 2
focuses on transductive adversarial robustness, where we introduce the principle of
attacking model space and propose GMSA for evaluating the adversarial robustness
of transductive-learning based defenses (Chen et al., 2021c). Moving to Chapter 3,
we delve into adversarially-robust classification with rejection in the stratified
rejection setting. We theoretically analyze the stratified rejection setting and propose
a novel defense method CPR for building a robust selective classifier (Chen et al.,
2023a). Chapter 4 centers around attribution robustness, where we propose a novel
method RAR that can significantly improve the attribution robustness (Chen et al.,
2019). In Chapter 5, we investigate robust OOD detection. Here, we present a novel
training framework called ATOM that can significantly improve the robustness of
an OOD detector and generalize to unseen adversarial attacks (Chen et al., 2021a).

Chapters 6 - 7 detail our contributions to reliable model deployment. In Chap-
ter 6, we study two challenging tasks – unsupervised accuracy estimation and
error detection. We propose a novel framework called self-training ensembles to
solve these two challenging tasks simultaneously (Chen et al., 2021b). Chapter 7
introduces a new problem called active selective prediction, for which we propose
a simple yet effective solution ASPEST (Chen et al., 2023b).

Chapters 8 - 9 cover our contributions to foundation models. Chapter 8 inves-
tigates the trade-off between universality and label efficiency of representations
in contrastive learning. We provide empirical evidence for the existence of this
trade-off and analyze it theoretically to gain a deeper understanding of why it
occurs (Shi et al., 2022a). Moving to Chapter 9, we study selective prediction for
LLMs. We propose a novel framework ASPIRE for adaptation with self-evaluation
to improve the selective prediction performance of LLMs.

Finally, in Chapter 10, we conclude the thesis and discuss future research direc-
tions.
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2 toward evaluating the robustness of neural
networks learned by transduction

Contribution statement. This chapter is joint work with Xi Wu, Yang Guo, Yingyu
Liang, and Somesh Jha. The author Jiefeng Chen proposed the method and com-
pleted all the experiments. The paper version of this chapter appeared in ICLR
2022 (Chen et al., 2021c).

2.1 Introduction
Adversarial robustness of deep learning models has received significant attention
in recent years (see Kolter and Madry (2018) and references therein). The classic
threat model of adversarial robustness considers an inductive setting where a model
is learned at the training time and fixed, and then at the test time, an attacker
attempts to thwart the fixed model with adversarially perturbed input. This gives
rise to the adversarial training (Madry et al., 2018; Sinha et al., 2018; Schmidt et al.,
2018; Carmon et al., 2019) to enhance adversarial robustness.

Going beyond the inductive threat model, there has been emerging interest in
using transductive learning (Vapnik, 1998)1 for adversarial robustness (Goldwasser
et al., 2020; Wu et al., 2020b; Wang et al., 2021a). In essence, these defenses attempt
to leverage a batch of test-time inputs, which is common for ML pipelines deployed
with batch predictions (bat, 2021), to learn an updated model. The hope is that this
“test-time learning” may be useful for adversarial robustness since the defender can
adapt the model to the perturbed input from the adversary, which is distinct from
the inductive threat model where a model is fixed after training.

This chapter examines these defenses from a principled threat analysis perspec-
tive. We first formulate and analyze rigorous threat models. Our basic 1-round

1We note that this type of defense goes under different names such as “test-time adaptation” or
“dynamic defenses”. Nevertheless, they all fall into the classic transductive learning paradigm (Vap-
nik, 1998), which attempts to leverage test data for learning. We thus call them transductive-learning
based defenses. The word “transductive” is also adopted in Goldwasser et al. (2020).
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threat model considers a single-round game between the attacker and the defender.
Roughly speaking, the attacker uses an objective maxV ′∈N(V) La(Γ(U

′),V ′) (for-
mula (2.2)), where V is the given test batch, N(V) is a neighborhood around V ,
La is a loss function for attack gain, Γ is the transductive-learning based defense,
and U ′ = V ′|X, the projection of V ′ to features, is the adversarially perturbed data
for breaking Γ . This objective is transductive as U ′, the attacker’s output, appears
in both attack (V ′ in La) and defense (U ′ in Γ). We extend this threat model to
multiple rounds, which is necessary when considering DENT (Wang et al., 2021a)
and RMC (Wu et al., 2020b). We point out important subtleties in the modeling
that were unclear or overlooked in previous work.

We then study adaptive attacks, that is to leverage the knowledge about Γ to
construct attacks. Compared to situations considered in BPDA (Athalye et al., 2018),
a transductive learner Γ is even further from being differentiable, and theoretically
the attack objective is a bilevel optimization (Colson et al., 2007). To address
these difficulties, our key observation is to consider the transferability of adversarial
examples, and consider a robust version of (2.2): maxU ′ minU∈N(U ′) La(Γ(U),V ′)

(formula (2.6)), where we want to find a single attack set U ′ to thwart a family of
models, induced by U “around” U ′. This objective relaxes the attacker-defender
constraint, and provides more information in dealing with nondifferentiability. To
solve the robust objective, we propose Greedy Model Space Attack (GMSA), a
general attack framework which attempts to solve the robust objective in a greedy
manner. GMSA can serve as a new baseline for evaluating transductive-learning
based defenses.

We perform a systematic empirical study on various defenses. For RMC (Wu
et al., 2020b), DENT (Wang et al., 2021a), and URejectron (Goldwasser et al., 2020),
we show that even weak instantiations of GMSA can break respective defenses.
Specifically, for defenses based on adversarially training, we reduce the robust ac-
curacy to that of adversarial training alone. We note that, under AutoAttack (Croce
and Hein, 2020), the state-of-the-art adaptive attack for the inductive threat model,
some of these defenses have claimed to achieve substantial improvements compared
to adversarial training alone. For example, Wang et al. show that DENT can improve
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the robustness of the state-of-the-art adversarial training defenses by more than 20%
absolutely against AutoAttack on CIFAR-10. However, under our adaptive attacks,
DENT only has minor improvement: less than 3% improvement over adversarial
training alone. Our results thus demonstrates significant differences between at-
tacking transductive-learning based defenses and attacking in the inductive setting,
and significant difficulties in the use of transductive learning to improve adversarial
robustness. On the positive side, we report a somewhat surprising empirical result
of transductive adversarial training: Adversarially retraining the model using fresh
private randomness on a new batch of test-time data gives a significant increase in
robustness against all of our considered attacks.

2.2 Preliminaries
Let F be a model, and for a data point (x,y) ∈ X× Y, a loss function ℓ(F; x,y) gives
the loss of F on the point. Let V be a set of labeled data points, and let L(F,V) =

1
|V |

∑
(x,y)∈V ℓ(F; x,y) denote the empirical loss of F on V . For example, if we use

binary loss ℓ0,1(F; x,y) = 1[F(x) ̸= y], this gives the test error of F on V . We use the
notation V |X to denote the projection of V to its features, that is {(xi,yi)}mi=1|X 7→
{xi}mi=1. Throughout this chapter, we use N(·) to denote a neighborhood function
for perturbing features: That is, N(x) = {x ′ | d(x ′, x) < ϵ} is a set of examples that
are close to x in terms of a distance metric d (e.g., d(x ′, x) = ∥x ′ − x∥p). Given
U = {xi}mi=1, let N(U) = {{x ′

i}
m
i=1 | d(x ′

i, xi) < ϵ, i = 0, . . . ,m}. Since labels are
not changed for adversarial examples, we also use the notation N(V) to denote
perturbations of features, with labels fixed.

2.3 Modeling Transductive Robustness
In this section we formulate and analyze threat models for transductive defenses.
We first formulate a threat model for a single-round game between the attacker
and the defender. We then consider extensions of this threat model to multiple
rounds, which are necessary when considering DENT (Wang et al., 2021a) and
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RMC (Wu et al., 2020b), and point out important subtleties in modeling that were
not articulated in previous work. We characterize previous test-time defenses using
our threat models.

1-round game. In this case, the adversary “intercepts” a clean test data V (with
clean features U = V |X, and labels V |Y), adversarially perturbs it, and sends a
perturbed features U ′ to the defender. The defender learns a new model based on
U ′. A referee then evaluates the accuracy of the adapted model on U ′. Formally:

Definition 2.1 (1-round threat model for transductive adversarial robustness). Fix
an adversarial perturbation type (e.g., ℓ∞ perturbations with perturbation budget ε). Let
PX,Y be a data generation distribution. The attacker is an algorithm A, and the defender is a
pair of algorithms (T, Γ), where T is a supervised learning algorithm, and Γ is a transductive
learning algorithm. A (clean) training set D is sampled i.i.d. from PX,Y . A (clean) test set
V is sampled i.i.d. from PX,Y .
• [Training time, defender] The defender trains an optional base model F = T(D),

using the labeled source data D.
• [Test time, attacker] The attacker receives V , and produces an (adversarial) unla-

beled dataset U ′:

1. On input Γ , F, D, and V , A perturbs each point (x,y) ∈ V to (x ′,y) (subject to the
agreed attack type), giving V ′ = A(Γ , F,D,V) (that is, V ′ ∈ N(V)).

2. Send U ′ = V ′|X (the feature vectors of V ′) to the defender.

• [Test time, defender] The defender produces a model as F∗ = Γ(F,D,U ′).

Multi-round games. The extension of 1-round games to multi-round contains
several important considerations that were implicit or unclear in previous work,
and is closely related to what it means by adaptive attacks. Specifically:
Private randomness. Note that Γ uses randomness, such as random initialization
and random restarts2 in adversarial training. Since these randomness are generated

2When perturbing a data point during adversarial training, one starts with a random point in
the neighborhood.
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after the attacker’s move, they are treated as private randomness, and not known to
the adversary.
Intermediate defender states leaking vs. Non-leaking. In a multi-round game,
the defender may maintain states across rounds. For example, the defender may
store test data and updated models from previous rounds, and use them in a new
round. If these intermediate defender states are “leaked” to the attacker, we call it
intermediate defender states leaking, or simply states leaking, otherwise we call it non
states-leaking, or simply non-leaking. Note that the attacker cannot simply compute
these information by simulating on the training and testing data, due to the use of
private randomness. We note that, however, the initial pretrained model is assumed
to be known by the attacker. The attacker can also of course maintain arbitrary
states, and are assumed not known to the defender.
Adaptive vs. Non-adaptive. Because transductive learning happens after the
attacker produces U ′, the attacker may not be able to directly attack the model
Γ produced. Nevertheless, the attacker is assumed to have full knowledge of the
transductive mechanism Γ , except the private randomness. In this chapter, we call an
attack adaptive if it makes explicit use of the knowledge of Γ .

Naturally ordered vs. Adversarially ordered. Both RMC and DENT handle
batches of fixed sizes. An intuitive setup for multi-round game is that the batches
come in sequentially, and the attacker must forward perturbed versions of these
batches in the same order to the defender, which we call the “naturally ordered” game.
However, this formulation does not capture an important scenario: An adversary
can wait and pool a large amount of test data, then chooses a “worst-case” order of
perturbed data points, and then sends them in batches one at a time for adaptation
in order to maximize the breach. We call the latter “adversarially ordered” game.
We note that all previous work only considered naturally-ordered game, which
gives the defender more advantages, and is thus our focus in the rest of the chapter.
Modeling capacity of our threat models. Our threat models encompass a large
family of defenses. For example, without using Γ , the threat model degenerates to
the classic inductive threat model. Our threat models also capture various “test-
time defenses” proposals (e.g., those broken by the BPDA (Athalye et al., 2018)),
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where Γ is a “non-differentiable” function which “sanitizes” the test data, instead of
updating the model, before sending them to a fixed pretrained model. Therefore, in
particular, these proposals are not transductive-learning based. Below we describe
previous defenses which we study in the rest of this chapter, where Γ is indeed
transductive learning.

Example 2.2 (Runtime masking and cleansing). Runtime masking and cleansing
(RMC) (Wu et al., 2020b) is a recent transductive-learning defense. For RMC, the defender
is stateful and adapted from the model learned in the last round, on a single test point
(|U| = 1): The adaptation objective is F∗ = arg minF

∑
(x,y)∈N ′(x̂) L(F, x,y), where x̂ is the

test time feature point, and N ′(x̂) is the set of examples in the adversarial training dataset
D ′ that are top-K nearest to x̂ in a distance measure. RMC paper considered two attacks:
(1) Transfer attack, which generates perturbed data by attacking the initial base model,
and (2) PGD-skip attack, which at round p+ 1, runs PGD attack on the model learned
at round p. In our language, transfer attack is stateless (i.e. the adversary maintains no
state) and non-adaptive, PGD-skip attack is state-leaking, but still non-adaptive.

Example 2.3 (Defensive entropy minimization (DENT (Wang et al., 2021a))).
DENT adapts the model using test input, and can work with any training-time learning
procedure. The DENT defender is stateless: It always starts the adaptation from the original
pretrained model, fixed at the training time. During the test-time adaptation, only the affine
parameters in batch normalization layers of the base model are updated, using entropy
minimization with the information maximization regularization. In this chapter, we show
that with strong adaptive attacks under the naturally ordered setting, we are able to reduce
the robustness to be almost the same as that of static models. Further, under the adversarially
ordered setting, we can completely break DENT. Refer to Section 2.5 for the details.

Example 2.4 (Goldwasser et al.’s transductive threat model). While seemingly our
threat model is quite different from the one described in Goldwasser et al. (2020), one can
indeed recover their threat model naturally as a 1-round game: First, for the perturbation
type, we simply allow arbitrary perturbations in the threat model setup. Second, we have a
fixed pretrained model F, and the adaptation algorithm Γ learns a set S which represents the
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set of “allowable” points (so F|S yields a predictor with redaction, namely it outputs ⊥ for
points outside of S). Third, we define two error functions as (5) and (6) in Goldwasser
et al. (2020):

err
U ′

(F|S, f) ≡ 1
|U ′|

∣∣∣∣{x ′ ∈ U ′ ∩ S

∣∣∣∣F(x ′) ̸= f(x ′)

}∣∣∣∣, rej
U

(S) ≡ |U \ S|

|U|
(2.1)

where f is the ground truth hypothesis. The first equation measures prediction errors in
U ′ that passed through S, and the second equation measures the rejection rate of the clean
input. The referee evaluates by measuring two errors: L(F|S,V ′) =

(
errU ′(F|S), rejU(S)

)
.

2.4 Adaptive Attacks in One Round
In this section we study a basic question: How to perform adaptive attacks against a
transductive-learning based defense in one round? Note that, in each round of a multi-
round game, an independent batch of test input U is sampled, and the defender can
use transductive learning to produce a model specifically adapted to the adversarial
input U ′, after the defender receives it. Therefore, it is of fundamental interest to
attack this ad-hoc adaptation. We consider white-box attacks: The attacker knows
all the details of Γ , except private randomness, which is sampled after the attacker’s
move.

We deduce a principle for adaptive attacks in one round, which we call the
principle of attacking model space: Effective attacks against a transductive defense may
need to consider attacking a set of representative models induced in the neighborhood of
U. We give concrete instantiations of this principle, and show in experiments that
they break previous transductive-learning based defenses.
Attacks in multi-round. If the transductive-learning based defense is stateless,
then we simply repeat one-round attack multiple times. If it is stateful, then we
need to consider state-leaking setting or non-leaking setting. For all experiments in
Section 2.5, we only evaluate non-leaking setting, which is more challenging for the
adversary.
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2.4.1 Goal of the attacker and challenges

To start with, given a defense mechanism Γ , the objective of the attacker can be
formulated as:

max
V ′∈N(V),U ′=V ′|X

La(Γ(F,D,U ′),V ′). (2.2)

where La is the loss function of the attacker. We make some notational simplifica-
tions: Since D is a constant, in the following we drop it and write Γ(U ′). Also, since
the attacker does not modify the labels in the threat model, we abuse the notation
and write the objective as

max
V ′,U ′=V ′|X

La(Γ(U
′),U ′). (2.3)

A generic attacker would proceed iteratively as follows: It starts with the clean
test set V , and generates a sequence of (hopefully) increasingly stronger attack sets
U(0) = V |X,U(1), . . . ,U(i) (U(i) must satisfy the attack constraints at U, such as
ℓ∞ bound). We note several basic but important differences between transductive
attacks and inductive attacks in the classic minimax threat model:

(D1) Γ(U ′) is not differentiable. For the scenarios we are interested in, Γ is
an optimization algorithm to solve an objective F∗ ∈ arg minF Ld(F,D,U ′). This
renders (2.3) into a bilevel optimization problem (Colson et al., 2007):

max
V ′∈N(V);U ′=V ′|X

La(F
∗,V ′) subject to: F∗ ∈ arg min

F

Ld(F,D,U ′), (2.4)

In these cases, Γ is in general not (in fact far from) differentiable. A natural attempt
is to approximate Γ with a differentiable function, using theories such as Neural
Tangent Kernels (Jacot et al., 2018). Unfortunately no existing theory applies to
the transductive learning, which deals with unlabeled data U ′ (also, as we have
remarked previously, tricks such as BPDA (Athalye et al., 2018) also does not
apply because transductive learning is much more complex than test-time defenses
considered there).
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(D2) U ′ appears in both attack and defense. Another significant difference is
that the attack setU ′ also appears as the input for the defense (i.e. Γ(U ′)). Therefore,
while it is easy to find U ′ to fail Γ(U) for any fixed U, it is much harder to find a
good direction to update the attack and converge to an attack set U∗ that fails an entire
model space induced by itself: Γ(U∗).

(D3) Γ(U ′) can be a random variable. In the classic minimax threat model, the
attacker faces a fixed model. However, the output of Γ can be a random variable
of models due to its private randomness, such as the case of Randomized Smooth-
ing (Cohen et al., 2019). In these cases, successfully attacking a single sample of
this random variable does not suffice.

Algorithm 1 Fixed Point Attack (FPA)
Require: A transductive learning algorithm Γ , an optional training dataset D, a clean test

set V , an initial model F(0), and an integer parameter T ⩾ 0 (the number of iterations).
1: for i = 0, 1, . . . , T do
2: Attack the model obtained in the last iteration to get the perturbed set:

V(i) = arg max
V ′∈N(V)

La(F
(i),V ′) (2.5)

where La is a loss function. Set U(i) = V(i) |X.
3: Run the transductive learning algorithm Γ to get the next model: F(i+1) = Γ(D,U(i)).
4: end for
5: Select the best attack set U(k) as k = arg max0⩽i⩽T L(F

(i+1),V(i)).
6: return U(k).

Fixed Point Attack: A first attempt. We adapt previous literature for solving
bilevel optimization in deep learning setting (Lorraine and Duvenaud, 2018) (de-
signed for supervised learning). The idea is simple: At iteration i+ 1, we fix U(i)

and model space F(i) = Γ(U(i)), and construct U(i+1) to fail it. We call this the Fixed
Point Attack (FPA) (Algorithm 1), as one hopes that this process converges to a
good fixed point U∗. Unfortunately, we found FPA to be weak in experiments. The
reason is exactly (D2): U(i+1) failing F(i) may not give any indication that it can
also fail F(i+1) induced by itself. Note that transfer attack is a special case of FPA by
setting T = 0.
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2.4.2 Strong adaptive attacks from attacking model spaces

To develop stronger adaptive attacks, we consider a key property of the adversarial
attacks: The transferability of adversarial examples. Various previous work have
identified that adversarial examples transfer (Tramèr et al., 2017; Liu et al., 2016),
even across vastly different architectures and models. Therefore, if U ′ is a good
attack set, we would expect that U ′ also fails Γ(U) for U close to U ′. This leads to
the consideration of the following objective:

max
U ′

min
U∈N(U ′)

La(Γ(U),U ′). (2.6)

where N(·) is a neighborhood function (possibly different than N). It induces a
family of models {Γ(U) | U ∈ N(U ′)}, which we call a model space. (in fact, this can
be a family of random variables of models) This can be viewed as a natural robust
version of (2.3) by considering the transferability of U ′. While this is seemingly even
harder to solve, it has several benefits: (1) Considering a model space naturally
strengthens FPA. FPA naturally falls into this formulation as a weak instantiation
where we consider a single U = U(i). Also, considering a model space gives the
attacker more information in dealing with the nondifferentiability of Γ (D1). (2)
It relaxes the attacker-defender constraint (D2). Perhaps more importantly, for
the robust objective, we no longer need the same U ′ to appear in both defender
and attacker. Therefore it gives a natural relaxation which makes attack algorithm
design easier.

In summary, while “brittle” U ′ that does not transfer may indeed exist theoreti-
cally, their identification can be challenging algorithmically, and its robust variant
provides a natural relaxation considering both algorithmic feasibility and attack
strength. This thus leads us to the following principle:

The Principle of Attacking Model Spaces. An effective adaptive attack against a
transductive-learning based defense may need to consider a model space induced by a
proper neighborhood of U.
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Algorithm 2 Greedy Model Space Attack (GMSA)
Require: A transductive learning algorithm Γ , an optional training dataset D, a clean test

set V , an initial model F(0), and an integer parameter T ⩾ 0 (the number of iterations).
1: for i = 0, 1, . . . , T do
2: Attack the previous models to get the perturbed set:

V(i) = arg max
V ′∈N(V)

LGMSA({F
(j)}ij=0,V ′) (2.7)

where LGMSA is a loss function. Set U(i) = V(i) |X.
3: Run the transductive learning algorithm Γ to get the next model: F(i+1) = Γ(D,U(i)).
4: end for
5: Select the best attack U(k) as k = arg max0⩽i⩽T L(F

(i+1),V(i)),
6: return U(k).

An instantiation: Greedy Model Space Attack (GMSA). We give a simplest
possible instantiation of the principle, which we call the Greedy Model Space At-
tack (Algorithm 2). In experiments we use this instantiation to break previous
defenses. In this instantiation, the family of model spaces to consider is just
all the model spaces constructed in previous iterations. LGMSA({F

(j)}ij=0,V ′) is
a loss function that the attacker uses to attack the history model spaces. We
consider two instantiations: (1) LAVG

GMSA({F
(j)}ij=0,V ′) = 1

i+1
∑i
j=0 La(F

(j),V ′), (2)
LMIN

GMSA({F
(j)}ij=0,V ′) = min0⩽j⩽i La(F

(j),V ′), where LAVG
GMSA gives attack algorithm

GMSA-AVG, and LMIN
GMSA gives attack algorithm GMSA-MIN. We solve (2.7) via

Projected Gradient Decent (PGD). For GMSA-AVG, at the i-th iteration, when ap-
plying PGD on the data point x to generate the perturbation δ, we need to do one
backpropagation operation for each model in {F(j)}ij=0 per PGD step. We do the
backpropagation for each model sequentially and then accumulate the gradients to
update the perturbation δ since we might not have enough memory to store all the
models and compute the gradients at once, especially when i is large. For GMSA-
MIN, we find that it requires more PGD steps to solve the attack objective at the
i-th iteration where we need to attack i+ 1 models simultaneously. Thus, we scale
the number of PGD steps at the i-th iteration by a factor of i+ 1 for GMSA-MIN.
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2.5 Empirical Study
This section evaluates various transductive-learning based defenses. Our main
findings are: (1) The robustness of existing transductive defenses like RMC and
DENT is overestimated. Under our evaluation framework, those defenses either
have little robustness or have almost the same robustness as that of the static
base model. To this end, we note that while AutoAttack is effective in evaluating
the robustness of static models, it is not effective in evaluating the robustness
of transductive defenses. In contrast, our GMSA attack is a strong baseline for
attacking transductive defenses. (2) We experimented a novel idea of applying
Domain Adversarial Neural Networks (Ajakan et al., 2014), an unsupervised
domain adaptation technique (Wilson and Cook, 2020), as a transductive-learning
based defense. We show that DANN has nontrivial and even better robustness
compared to existing work, under AutoAttack, PGD attack, and FPA attack, even
though it is broken by GMSA. (3) We report a somewhat surprising phenomenon
on transductive adversarial training: Adversarially retraining the model using fresh
private randomness on a new batch of test-time data gives a significant increase in
robustness, against all of our considered attacks. (4) Finally, we demonstrated that
URejectron, while enjoying theoretical guarantees in the bounded-VC dimensions
situation, can be broken in natural deep learning settings.
Evaluation framework. For each defense, we report accuracy and robustness. The
accuracy is the performance on the clean test inputs, and the robustness is the
performance under adversarial attacks. The robustness of transductive defenses is
estimated using AutoAttack (AA)3, PGD attack, FPA, GMSA-MIN and GMSA-AVG.
We use PGD attack and AutoAttack in the transfer attack setting for the transductive
defense: We generate adversarial examples by attacking a static model (e.g. the base
model used by the transductive defense), and then evaluate the transductive defense
on the generated adversarial examples. Accuracy and robustness of the static
models are also reported for comparison. We always use AutoAttack to estimate the
robustness of static models since it is the state-of-the-art for the inductive setting. For

3We use the standard version of AutoAttack: https://github.com/fra31/auto-attack/.

https://github.com/fra31/auto-attack/
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Dataset Base
Model

Accuracy Robustness

Static RMC Static RMC
AA AA PGD FPA GMSA-AVG GMSA-MIN

MNIST Standard 99.50 99.00 0.00 97.70 98.30 0.60 0.50 1.10
Madry et al. 99.60 97.00 87.70 95.70 96.10 59.50 61.40 58.80

CIFAR-10 Standard 94.30 93.10 0.00 94.20 97.60 8.50 8.00 8.10
Madry et al. 83.20 90.90 44.30 77.90 71.70 40.80 42.50 39.60

Table 2.1: Results of evaluating RMC. We also evaluate the static base model for comparison.
Bold numbers are worst results.

all experiments, the defender uses his own private randomness, which is different
from the one used by the attacker. Without specified otherwise, all reported values
are percentages. Below we give details.
Runtime Masking and Cleansing (RMC (Wu et al., 2020b)). RMC adapts the
network at test time, and was shown to achieve state-of-the-art robustness under
several attacks that are unaware of the defense mechanism (thus these attacks are
non-adaptive according to our definition). We follow the setup in Wu et al. (2020b)
to perform experiments on MNIST and CIFAR-10 to evaluate the robustness of
RMC. On MNIST, we consider L∞ norm attack with ϵ = 0.3 and on CIFAR-10, we
consider L∞ norm attack with ϵ = 8

255 . We set T = 9 for FPA, GMSA-AVG and
GMSA-MIN. The performance of RMC is evaluated on a sequence of test points
x(1), · · · , x(n) randomly sampled from the test dataset. So we have a n-round game.
The FPA and GMSA attacks are applied on each round and the initial model F(0)

used by the attacks at the (k+1)-th round is the adapted model (with calibration in
RMC) obtained at the k-th round. To save computational cost, we set n = 1000. The
robustness of RMC is evaluated on a sequence of adversarial examples x̂(1), · · · , x̂(n)

generated by the attacker on the sequence of test points x(1), · · · , x(n). We evaluate
the robustness of RMC in the non-state leaking setting with private randomness
(both are in favor of the defender).
Results. The results are in Table 2.1. RMC with the standard model is already
broken by FPA attack (weaker than GSMA). Compared to the defense-unaware
AutoAttack, our GMSA-AVG attack reduces the robustness from 97.70% to 0.50% on
MNIST and from 94.20% to 8.00% on CIFAR-10. Further, RMC with adversarially
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trained model actually provides worse adversarial robustness than using adversarial
training alone. Under our GMSA-MIN attack, the robustness is reduced from 96.10%
to 58.80% on MNIST and from 71.70% to 39.60% on CIFAR-10.
Defensive Entropy Minimization (DENT (Wang et al., 2021a)). DENT performs
test-time adaptation, and works for any training-time learner. It was shown that
DENT improves the robustness of the state-of-the-art adversarial training defenses
by 20+ points absolute against AutoAttack on CIFAR-10 under L∞ norm attack
with ϵ = 8

255 (DENT is implemented as a model module, and AutoAttack is directly
applied to the module, and we denote this as DENT-AA). Wang et al. also considers
adaptive attacks for DENT, such as attacking the static base model using AutoAttack
to generate adversarial examples, which is the same as the AutoAttack (AA) in our
evaluation.

We evaluate the best version of DENT, called DENT+ in Wang et al., under their
original settings on CIFAR-10: DENT is combined with various adversarial training
defenses, and only the model adaptation is included without input adaptation. The
model is adapted sample-wise for six steps by AdaMod (Ding et al., 2019) with learn-
ing rate of 0.006, batch size of 128 and no weight decay. The adaptation objective is
entropy minimization with the information maximization regularization. To save
computational cost, we only evaluate on 1000 examples randomly sampled from the
test dataset. We consider L∞ norm attack with ϵ = 8

255 . We set T = 2 for FPA, GMSA-
AVG and GMSA-MIN. We design loss functions for the attacks to generate adversar-
ial examples with high confidence. For PGD attack, FPA, GMSA-AVG and GMSA-
MIN, we use the following loss function to find adversarial examples with high
confidence: La(F,V) = 1

|V |

∑
(x,y)∈V maxk̸=y f(x)k, where f(x) is the softmax output

of the model F. However, it is hard to optimize this loss function. Thus, we use two
alternative loss functions to find adversarial examples. One is the untargeted CW
loss (Carlini and Wagner, 2017): L1

a(F,V) = 1
|V |

∑
(x,y)∈V −Z(x)y + maxk̸=y Z(x)k,

where Z(x) is the logits of the model F (the output of the layer before the softmax
layer). The other is the targeted CW loss: L2

a(F,V) = 1
|V |

∑
(x,y)∈V −Z(x)y + Z(x)t,

where t is the targeted label and t ̸= y. For each attack, we use 14 PGD subroutines
to solve its attack objective, including 5 PGD subroutines using the untargeted CW
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Base Model
Accuracy Robustness

Static DENT Static DENT
AA DENT-AA AA PGD FPA GMSA-AVG GMSA-MIN

Wu et al. (2020a) 85.70 86.10 58.00 78.80 64.40 59.50 59.30 59.60 59.60
Carmon et al. (2019) 88.00 87.40 57.30 80.10 61.70 58.40 58.40 58.50 58.50
Sehwag et al. (2020) 87.30 86.90 54.90 76.50 59.60 55.80 55.80 55.80 55.80
Wang et al. (2020) 86.60 85.60 53.60 75.90 61.30 55.90 55.80 56.10 56.10
Hendrycks et al. (2019a) 85.80 85.50 51.80 77.20 58.40 54.20 54.40 54.20 54.20
Wong et al. (2020) 81.20 81.00 42.40 69.70 48.90 44.10 44.30 44.50 44.30
Ding et al. (2020) 82.40 82.40 39.70 62.80 44.80 39.90 39.40 39.10 39.20

Table 2.2: Results of evaluating DENT on CIFAR-10 under the naturally-ordered game.
We also evaluate the static base model for comparison. Bold numbers are worst results.

Base
Model

Robustness
Static DENT
AA AA PGD FPA GMSA-AVG GMSA-MIN

Wu et al. (2020a) 58.00 58.00 50.40 50.30 50.40 50.40
Carmon et al. (2019) 57.30 58.00 51.80 51.80 51.80 51.80
Sehwag et al. (2020) 54.90 55.90 50.10 49.80 50.00 50.00
Wang et al. (2020) 53.60 55.90 49.00 49.10 48.90 48.70
Hendrycks et al. (2019a) 51.80 53.10 48.10 48.20 48.30 48.30
Wong et al. (2020) 42.40 44.60 40.10 39.90 40.00 40.00
Ding et al. (2020) 39.70 42.10 36.20 35.70 35.30 35.00

Table 2.3: Results of evaluating DENT on CIFAR-10 under the adversarially-ordered game.
Bold numbers are worst results.

loss L1
a with different random restarts and 9 PGD subroutines using the targeted

CW loss L2
a with different targeted labels. So for each clean test input x, these

PGD subroutines will return 14 adversarial examples x ′
1, . . . , x ′

14. Among these
adversarial examples, we select the one that maximizes the attack loss with the
loss function La(F,V) as the final adversarial example x ′ for x. We use the same
hyper-parameters for all PGD subroutines: the step size is 1

255 , the number of steps
is 100, and the random start is used.
Results. We first evaluate the robustness of DENT under the naturally-ordered
game, which is the evaluation setting considered in Wang et al. (2021a). The results
in Table 2.2 show that both DENT-AA and AA overestimate the robustness of DENT.
Our PGD attack reduces the robustness of DENT to be almost the same as that of
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Dataset
Accuracy Robustness

Standard Madry et al. DANN Standard Madry et al. DANN
AA AA AA PGD FPA GMSA-AVG GMSA-MIN

MNIST 99.42 99.16 99.27 0.00 88.92 97.59 96.66 96.81 79.37 6.17
CIFAR-10 93.95 86.06 89.61 0.00 39.49 66.61 60.54 53.98 5.53 8.56

Table 2.4: Results of evaluating DANN. Bold numbers are worst results.

the static defenses. Further, our FPA, GMSA-AVG and GMSA-MIN have similar
performance as the PGD attack. The results show that AutoAttack is not effective in
evaluating the robustness of transductive defenses. We then evaluate the robustness
of DENT under the adversarially-ordered game where the adversary can choose a
"worst-case" order of perturbed data points after receiving a large amount of test
data and then sends them in batches one at a time to the defender. Specifically, each
time the attacker will generate adversarial examples on up to 256 data points, and
then sort the adversarial examples by their labels from lowest to highest, and finally
send the sorted adversarial examples in batches one at a time to the defender. The
results in Table 2.3 show that under the adversarially-ordered game, we can reduce
the robustness of DENT to be lower than that of static base models.
Domain Adversarial Neural Network (DANN (Ajakan et al., 2014)). We consider
DANN as a transductive defense for adversarial robustness. We train DANN on the
labeled training dataset D (source domain) and unlabeled adversarial test dataset
U ′ (target domain), and then evaluate DANN on U ′. For each adversarial set U ′,
we train a new DANN model from scratch. We use the standard model trained on
D as the base model for DANN. We perform experiments on MNIST and CIFAR-10
to evaluate the adversarial robustness of DANN. On MNIST, we consider L∞ norm
attack with ϵ = 0.3 and on CIFAR-10, we consider L∞ norm attack with ϵ = 8/255.
We set T = 9 for FPA, GMSA-AVG and GMSA-MIN.
Results. The results in Table 2.4 show that DANN has non-trivial robustness under
AutoAttack, PGD attack and FPA attack. However, under our GMSA attack, DANN
has little robustness.
Transductive Adversarial Training (TADV). We consider a simple but novel
transductive-learning based defense called transductive adversarial training: After
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Dataset
Accuracy Robustness

Madry et al. TADV Madry et al. TADV
AA AA PGD FPA GMSA-AVG GMSA-MIN

MNIST 99.01 99.05 86.61 96.07 96.48 95.47 94.27 95.48
CIFAR-10 87.69 88.51 45.29 72.12 59.05 58.64 54.12 57.77

Table 2.5: Results of evaluating TADV. Bold numbers are worst results.

receiving a set of examples at the test time, we always adversarially retrain the model
using fresh randomness. The key point of this transduction is that private randomness
is sampled after the attacker’s move, and so the attacker cannot directly attack the
resulting model as in the inductive case. Specifically, for our GMSA attacks, we
attack (with loss LAVG

GMSA or LMIN
GMSA) an ensemble of T = 10 models, adversarially

trained with independent randomness, and generate a perturbed test set U ′. Then
we adversarially train another model from scratch with independent randomness,
and check whether U ′ transfers to the new model (this thus captures the scenario
described earlier). We perform experiments on MNIST and CIFAR-10 to evaluate
the adversarial robustness of TADV. On MNIST, we consider L∞ norm attack with
ϵ = 0.3 and on CIFAR-10, we consider L∞ norm attack with ϵ = 8/255. We set
T = 9 for FPA, GMSA-AVG and GMSA-MIN. Somewhat surprisingly, we find that
U ′ does not transfer very well, and the TADV improves robustness significantly.
Results. The results in Table 2.5 show that transductive adversarial training signif-
icantly improves the robustness of adversarial training (Madry et al., 2018). On
MNIST, the robustness is improved from 86.61% to 94.27%. On CIFAR-10, the
robustness is improved from 45.29% to 54.12%.
URejectron in deep learning settings. URejectron performs transductive learning
for defense, and has theoretical guarantees under bounded VC dimension case. We
evaluated URejectron on GTSRB dataset using ResNet18 network. We used the
same implementation by Goldwasser et al..
Results. Figure 2.1(a) shows that for transfer attacks generated by the PGD at-
tack (Madry et al., 2018), URejectron can indeed work as expected. However, by
using different attack algorithms, such as CW attack (Carlini and Wagner, 2017),
we observe two failure modes: (1) Imperceptible adversarial perturbations that slip
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Figure 2.1: URejectron in three settings. z contains “normal” examples on which the
classifier can have high accuracy. x̃ includes z and consists of a mix of 50% “normal”
examples and 50% adversarial examples. In (a), the normal examples are clean test inputs
and the adversarial examples are generated by PGD attack. In (b), the “normal” examples
are still clean test inputs but adversarial examples are generated by CW attack. In (c), the
“normal” examples are generated by image corruptions (adversarial examples are generated
by PGD attacks).

through. Figure 2.1(b) shows that one can construct adversarial examples that are
very similar to the clean test inputs that can slip through their URejectron con-
struction of S (in the deep learning setting), and cause large errors. (2) Benign
perturbations that get rejected. Figure 2.1(c) shows that we can generate “benign”
perturbed examples using image corruptions, such as slightly increased brightness,
but URejectron rejects all.

2.6 Conclusion
In this chapter, we formulated threat models for transductive defenses and proposed
an attack framework called Greedy Model Space Attack (GMSA) that could serve as
a new baseline for evaluating transductive defenses. We showed that GMSA could
break previous transductive defenses, which were resilient to previous attacks
such as AutoAttack. On the positive side, we showed that transductive adversarial
training gave a significant increase in robustness against attacks we considered. For
future work, one could explore transductive defenses that could be robust under
our GMSA attacks, and could also explore even stronger adaptive attacks that were
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effective in evaluating transductive defenses.



30

3 stratified adversarial robustness with rejection

Contribution statement. This chapter is joint work with Jayaram Raghuram, Jihye
Choi, Xi Wu, Yingyu Liang, and Somesh Jha. The author Jiefeng Chen proposed
the method, contributed to part of the theoretical analysis, and completed all the
experiments. The paper version of this chapter appeared in ICML 2023 (Chen et al.,
2023a).

3.1 Introduction
Building robust models against adversarial attacks is critical for designing secure
and reliable machine learning systems (Biggio et al., 2013b; Szegedy et al., 2014;
Biggio and Roli, 2018; Madry et al., 2018; Zhang et al., 2019). However, the robust
error of existing methods on complex datasets is still not satisfactory (e.g., Croce
et al. (2020)). Also, the robust models usually have poor generalization to threat
models that are not utilized during training (Stutz et al., 2020; Laidlaw et al., 2021).
Given these limitations, it is important to design selective classifiers that know when
to reject or abstain from predicting on adversarial examples. This can be especially
crucial when it comes to real-world, safety-critical systems such as self-driving cars,
where abstaining from prediction is often a much safer alternative than making an
incorrect decision. Along this line of adversarial robustness with rejection, several
recent studies (Laidlaw and Feizi, 2019b; Stutz et al., 2020; Sheikholeslami et al.,
2021; Pang et al., 2022; Tramèr, 2021; Kato et al., 2020) have extended the standard
definition of robust error to the setting where the classifier can also reject inputs,
and they consider rejecting any perturbed input to be a valid decision that does not
count towards the robust error.

A key limitation with these studies is that they associate zero cost with the
rejection decision on perturbed inputs 1, whereas rejection can often have a high
cost in many practical applications. For example, consider a selective classifier for

1Note that the rejection of clean inputs does incur a cost.
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traffic signs in a self-driving system. If it rejects an input (e.g., a perturbed “speed
limit 60” sign), then the system may not know how to react and thus need human
intervention (e.g., adjust the speed). In such cases, rejection has the cost of service-
denial and manual intervention (Markoff, 2016; Cunningham and Regan, 2015;
Mozannar and Sontag, 2020). In contrast to the practical consideration, existing
studies on adversarial robustness with rejection typically do not explicitly consider
a cost for rejecting perturbed inputs. The learned models thus may not satisfy the
need of these applications. Indeed, the models from existing methods may end up
rejecting too many slightly-perturbed inputs that could be correctly classified. As
a concrete example, on MNIST with ℓ∞-perturbation magnitude 0.4, the method
CCAT (Stutz et al., 2020) achieves very good performance on the existing metrics
such as 1.82% rejection rate on clean test inputs and 75.50% robust accuracy with
detection (a metric introduced in (Tramèr, 2021); see Eq. 3.2). However, for 99.30%
of the test points, CCAT will reject some small perturbations within magnitude
as small as 0.02. More results can be found in our experiments in Section 3.6. In
summary, while rejecting such small perturbations has a cost, existing studies have
not adequately measured the quality of the selective classifiers, and the training
methods may not learn desired models for such applications.

To address this limitation, we revisit adversarially-robust classification with
rejection by introducing rejection loss functions to model the potential cost of
rejection. This offers a more flexible framework than the traditional adversarial
robustness studies that do not consider rejection (roughly equivalent to associating
with rejection the same loss as mis-classification), and recent studies on adversarial
robustness with rejection (e.g. (Tramèr, 2021)) that associate zero loss with rejecting
any perturbed input. We focus on the stratified rejection setting where the rejection
loss functions are monotonically non-increasing in the perturbation magnitude. This
is motivated by the consideration that small input perturbations should not be
rejected when correct classification is possible, and thus their rejection should incur
a large cost. However, large input perturbations can often be harder to classify, and
rejection may be the best option when correct classification is not possible; so they
should incur a lower rejection cost compared to smaller perturbations. Furthermore,
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we consider the challenging scenario where the rejection loss function used for testing
is unknown at training time. That is, the learning method is not designed for one
specific rejection loss; the learned selective classifier should work under a range of
reasonable rejection loss functions. Our goal is then to design such a method that
can learn a robust selective classifier with small loss due to both mis-classification
and rejection.

In summary, we make the following contributions:

• We propose to introduce rejection loss functions to model the potential cost
of rejection in applications, and study the stratified rejection setting with
monotonically non-increasing rejection loss functions (Section 3.3).

• We provide a theoretical analysis of the stratified rejection setting. We analyze
the existence of a robust selective classifier and discuss conditions when it
can improve over classifiers without rejection (Section 3.4).

• We propose a novel defense method CPR inspired by our theoretical analysis.
Our experiments demonstrate that CPR significantly outperforms previous
methods under strong adaptive attacks (Sections 3.5 and 3.6). Its performance
is strong for different rejection losses, on both traditional and our new metrics,
and under seen and unseen attacks. CPR can be combined with different
kinds of adversarial training methods (e.g., TRADES (Zhang et al., 2019)) to
enhance their robustness.

3.2 Related Work
Adversarial robustness of deep learning models has received significant attention
in recent years. Many defenses have been proposed and most of them have been
broken by strong adaptive attacks (Athalye et al., 2018; Tramèr et al., 2020). The
most effective approach for improving adversarial robustness is adversarial train-
ing (Madry et al., 2018; Zhang et al., 2019). However, adversarial training still
does not achieve very high robust accuracy on complex datasets. For example, as
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reported in RobustBench (Croce et al., 2020), even state-of-the-art adversarially
trained models struggle to exceed 67% robust test accuracy on CIFAR-10.

One approach to break this adversarial robustness bottleneck is to allow the
classifier to reject inputs, instead of trying to correctly classify all of them. Standard
(non-adversarial) classification with a reject option (or selective classification) has
been extensively studied in the literature (Tax and Duin, 2008; Geifman and El-Yaniv,
2019; Charoenphakdee et al., 2021; Cortes et al., 2016). Selective classification in the
transductive setting with provable guarantees has been studied by Goldwasser et al.
(2020). Recently, there has been a great interest in exploring adversarially robust
classification with a reject option (Laidlaw and Feizi, 2019b; Stutz et al., 2020; Kato
et al., 2020; Yin et al., 2020; Sheikholeslami et al., 2021; Tramèr, 2021; Pang et al.,
2022; Balcan et al., 2023). We next discuss some of these closely related works.

Stutz et al. (2020) proposed to adversarially train confidence-calibrated models
using label smoothing and confidence thresholding so that they can generalize to
unseen adversarial attacks. Sheikholeslami et al. (2021) modified existing certified-
defense mechanisms to allow the classifier to either robustly classify or detect
adversarial attacks, and showed that it can lead to better certified robustness, es-
pecially for large perturbation sizes. Pang et al. (2022) observed that two coupled
metrics, the prediction confidence and the true confidence (T-Con), can be com-
bined to provably distinguish correctly-classified inputs from mis-classified inputs.
Based on this, they propose to learn a rectified confidence (R-Con) that models
T-Con, which is then used to adversarially train a selective classifier. Laidlaw and
Feizi (2019b) proposed a method called Combined Abstention Robustness Learning
(CARL) for jointly learning a classifier and the region of the input space on which it
should abstain, and showed that training with CARL can result in a more accurate
and robust classifier. In Balcan et al. (2023), the authors introduced a random
feature subspace threat model and showed that classifiers without the ability to
abstain (reject) are provably vulnerable to this adversary; but allowing the classifier
to abstain (e.g., via a thresholded nearest-neighbor algorithm) can overcome such
attacks.

An important aspect that has not been explored in prior works is the cost or loss
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of rejecting perturbed inputs. This is important for designing robust classifiers that
do not reject many slightly-perturbed inputs which could be correctly classified. To
the best of our knowledge, we are the first to study adversarially-robust classification
with rejection in the stratified-rejection setting.

3.3 Stratified Adversarial Robustness with Rejection
Notations. Let X ⊆ Rd denote the space of inputs x and Y := {1, · · · ,k} denote the
space of outputs y. Let Y := Y∪ {⊥} be the extended output space where ⊥ denotes
the abstain or rejection option. Let ∆k denote the set of output probabilities over
Y (i.e., the simplex in k-dimensions). Let d(x, x ′) be a norm-induced distance on
X (e.g., the ℓp-distance for some p ⩾ 1), and let N(x, r) := {x ′ ∈ X : d(x ′, x) ⩽ r}

denote the neighborhood of x with distance r. Let ∧ and ∨ denote the min and
max operations respectively (reducing to AND and OR operations when applied
on boolean values). Let 1{c} define the binary indicator function which takes value
1 (0) when the condition c is true (false).

Review. We first review the standard setting of adversarial robustness without
rejection and the setting with rejection in a recent line of work. Given samples from
a distribution D over X× Y, the goal is to learn a classifier with a reject option (a
selective classifier), f : X → Y, that has a small error. The standard robust error at
adversarial budget ϵ > 0 is defined as Madry et al. (2018):

Rϵ(f) := E
(x,y)∼D

[
max

x ′∈N(x,ϵ)
1{f(x ′) ̸= y}

]
, (3.1)

which does not allow rejection (i.e., rejection is an error). A few recent studies
(e.g. Tramèr (2021)) have proposed the robust error with detection at adversarial
budget ϵ as

Rrej
ϵ (f) := E

(x,y)∼D

[
1{f(x) ̸= y} ∨ max

x′∈N(x,ϵ)
1
{
f(x′) ̸∈ {y,⊥}

}]
, (3.2)
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which allows the rejection of small (even infinitesimal) perturbations without
incurring any error.

Rejection Loss Functions. The above studies are not well-suited for the needs of
certain applications where rejection can have a cost. We would like to associate with
the reject decision a loss that is a function of the perturbation magnitude. Intuitively,
rejecting a clean input should incur the maximum loss, and the loss of rejecting
a perturbed input should decrease (or at least not increase) as the perturbation
magnitude increases. Formally, let ℓrej(r) : [0,∞)→ [0, 1] be a function specifying
the loss of rejecting a perturbation x ′ of a clean input x with perturbation magnitude
r = d(x, x ′). We consider two concrete cases of such losses. The step rejection loss is
defined as

ℓrej(r) = 1{r ⩽ α0ϵ} (3.3)

for some α0 ∈ [0, 1]. That is, rejecting a perturbed input of magnitude smaller than
α0ϵ has a loss 1 but rejecting larger perturbations has no loss. The ramp rejection
loss is defined as follows for some t ⩾ 0

ℓrej(r) =
(

1 −
r

ϵ

)t
. (3.4)

For instance, for t = 1, the ramp rejection loss decreases linearly with the perturba-
tion magnitude.

Total Robust Loss. With the rejection loss modeling the potential cost of rejection,
the adversary can make the selective classifier suffer a mis-classification loss when
there exists a perturbation x ′ with f(x′) ̸∈ {y,⊥}, or suffer a rejection loss ℓrej(d(x, x ′))

when there exists a perturbation x ′ that is rejected (i.e., f(x ′) = ⊥). Then our goal is
to learn a selective classifier that has a small total loss due to both mis-classification
and rejection induced by the adversary, which is formalized as follows.
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Definition 3.1. The total robust loss of a selective classifier f at adversarial budget ϵ > 0
with respect to a given rejection loss function ℓrej is:

Lϵ(f; ℓrej) := E
(x,y)∼D

[
max

x′∈N(x,ϵ)

(
1
{
f(x′) ̸∈ {y,⊥}

}
∨ 1{f(x ′) = ⊥} ℓrej(d(x, x ′))

)]
.

Here ∨ denotes the maximum of the mis-classification loss and the rejection
loss. While this definition is compatible with any rejection loss, we will focus on
the monotonically non-increasing ones. This definition also applies to classifiers
without a rejection option, in which case the total robust loss reduces to the standard
robust error Rϵ(f).

The Curve of Robust Error. The definition of the total robust loss however de-
pends on the specific instantiation of ℓrej, which may vary for different applications.
In practice, we would like to have a single evaluation of f which can be combined
with different definitions of ℓrej to compute the total robust loss. Towards this end,
we propose the notion of the curve of robust error (or accuracy), which generalizes
the existing metrics. More importantly, Lemma 3.3 shows that the curve can be
used to compute the total robust loss for different rejection losses (proof given in
Appendix A.1.2).

Definition 3.2. The curve of robust error of a selective classifier f at adversarial budget
ϵ ⩾ 0 is {Rrej

ϵ (f,α) : α ∈ [0, 1]}, where

Rrej
ϵ (f,α) := E

(x,y)∼D

[
max

x ′∈N(x,αϵ)
1{f(x ′) ̸= y} ∨ max

x ′′∈N(x,ϵ)
1
{
f(x ′′) ̸∈ {y,⊥}

}]
. (3.5)

The curve of robust accuracy or simply the robustness curve of f at adversarial budget
ϵ is defined as

{Arej
ϵ (f,α) := 1 − Rrej

ϵ (f,α) : α ∈ [0, 1]}. (3.6)
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We name R
rej
ϵ (f,α) the robust error with rejection at α, and A

rej
ϵ (f,α) the robust-

ness with rejection at α. The intuition behind R
rej
ϵ (f,α) for a fixed α is clear. For

small perturbations within N(x, αϵ), both an incorrect prediction and rejection
are considered an error. For larger perturbations outside N(x, αϵ), rejection is not
considered to be an error (i.e., the classifier can either classify correctly or reject
larger perturbations). Moreover, Rrej

ϵ (f,α) actually includes several existing metrics
as special cases:

• When α = 1, the metric reduces to the standard robust error at budget ϵ in
Eq. (3.1), i.e., Rrej

ϵ (f, 1) = Rϵ(f).

• When α = 0, it reduces to the robust error with detection at budget ϵ in
Eq. (3.2), i.e., Rrej

ϵ (f, 0) = R
rej
ϵ (f). Here rejection incurs an error only for clean

inputs.

• For any classifier fwithout rejection and anyα ∈ [0, 1], it reduces to the standard
robust error at budget ϵ defined in Eq. (3.1), i.e., Rrej

ϵ (f,α) = Rϵ(f).

Lemma 3.3. Let s(α) := R
rej
ϵ (f,α). Suppose the rejection loss ℓrej : [0,∞) 7→ [0, 1]

is monotonically non-increasing, differentiable almost everywhere, and ℓrej(0) = 1 and
ℓrej(ϵ) = 0. Then the total robust loss simplifies to

Lϵ(f; ℓrej) = −

∫ 1

0
s(α) dℓrej(αϵ). (3.7)

Given this nice connection between the total robust loss and the curve of robust
error, we advocate for evaluating a selective classifier f using the curve {R

rej
ϵ (f,α) :

α ∈ [0, 1]}. Without knowing the concrete definition of the rejection loss ℓrej, this
curve can give a holographic evaluation of the model. Even when f is trained with a
specific rejection loss ℓrej in mind, the curve is helpful in providing a more complete
evaluation w.r.t. any other definition of the rejection loss at deployment time.
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3.4 Theoretical Analysis
Our goal is to learn a robust selective classifier, even when the training does not
know the precise specification of the rejection loss for testing. Some fundamental
questions arise:

Q1. Whether and under what conditions does there exist a selective classifier with a small
total robust loss? Many applications could have a cost for certain rejections, e.g.,
rejecting very small perturbations is undesirable. To design algorithms for
such applications, we would like to first investigate the existence of a solution
with a small total robust loss.

Q2. Can allowing rejection lead to a smaller total robust loss? The question is essen-
tially about the benefit of selective classification over traditional adversarial
robustness (without rejection) that tries to correctly classify all perturbations,
typically by adversarial training or its variants.

The following theorem helps address these questions: by allowing rejection,
there exists a selective classifier with a small total robust loss under proper condi-
tions.

Theorem 3.4. Consider binary classification. Let f∗(x) be any classifier without a rejection
option. For any δ ∈ [0, 1] and ϵ ⩾ 0, there is a selective classifier fδ whose robust error
curve is bounded by:

Rrej
ϵ (fδ,α) ⩽ Rϵ ′(f∗), ∀α ∈ [0, 1] (3.8)

where ϵ ′ = max{(α + δ)ϵ, (1 − δ)ϵ}. Moreover, the bound is tight: for any α ∈ [0, 1],
there exist simple data distributions and f∗ such that any f must have Rrej

ϵ (f,α) ⩾ Rϵ ′(f∗).

Proof Sketch: For any r ⩾ 0, let N(f∗, r) denote the region within distance r to the
decision boundary of f∗: N(f∗, r) := {x ∈ X : ∃x ′ ∈ N(x, r), f∗(x ′) ̸= f∗(x)}. Consider
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Figure 3.1: Proposed construction of a selective classifier fδ from the base classifier f∗

for Theorem 3.4. Input x1 is close to the boundary of f∗ and is rejected, while input x2 is
accepted.

a parameter δ ∈ [0, 1] and construct fδ as follows:

fδ(x) :=

⊥ if x ∈ N(f∗, δϵ),

f∗(x) otherwise.
(3.9)

This is illustrated in Fig. 3.1. We will show that any clean data (x,y) contributing er-
ror in R

rej
ϵ (fδ,α) must contribute error in Rϵ ′(f∗), so R

rej
ϵ (fδ,α) ⩽ Rϵ ′(f∗). Intuitively,

fδ and f∗ differ on the region N(f∗, δϵ). If fδ gets a loss on a (possibly perturbed)
input x ′ ∈ N(f∗, δϵ), then the original input x is close to x ′ and thus close to the
boundary of f∗. Therefore, x can be perturbed to cross the boundary and contribute
error in Rϵ ′(f∗). The complete proof is given in Appendix A.1.3.

Condition for Successful Selective Classification. The theorem shows that when
the data allows a small robust error at budget ϵ ′ = max{(α+ δ)ϵ, (1 − δ)ϵ}, there
is a selective classifier fδ with a small robust error with rejection R

rej
ϵ (fδ,α), which

is bounded by the small robust error Rϵ ′(f∗). This shows a trade-off between the
performance for small and large α. For α < 1 − δ, we have ϵ ′ < ϵ and R

rej
ϵ (fδ,α) ⩽

Rϵ ′(f∗) ⩽ Rϵ(f
∗). Note that Rϵ(f∗) = R

rej
ϵ (f∗,α), so R

rej
ϵ (fδ,α) ⩽ R

rej
ϵ (f∗,α), i.e., fδ

can be better than f∗ for such an α. However, for α ⩾ 1 − δ, the theorem does not
guarantee R

rej
ϵ (fδ,α) ⩽ Rϵ(f

∗), i.e., fδ may be worse than f∗ for such an α. This
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trade-off is necessary in the worst case since the bound is tight, and is also observed
in our experiments in Section 3.6. It is favorable towards a lower total robust loss
when the rejection loss is monotonically non-increasing, as discussed in detail
below.

Benefit of Selective Classification. The trade-off discussed above shows that by
allowing rejection, the selective classifier fδ can potentially have a smaller total
robust loss than the classifier f∗ without rejection. When α < 1 − δ, we have
R

rej
ϵ (fδ,α) ⩽ Rϵ ′(f∗) ⩽ Rϵ(f

∗) = R
rej
ϵ (f∗,α). There can be a big improvement:

when a large fraction of correctly-classified clean inputs have distances in (ϵ ′, ϵ)
to the boundary of f∗, we have Rϵ ′(f∗) ≪ Rϵ(f

∗) and thus R
rej
ϵ (fδ,α) ≪ R

rej
ϵ (f∗,α).

This can lead to a significant improvement in the total robust loss. When α ⩾

1 − δ, Rrej
ϵ (f,α) may be worse than R

rej
ϵ (f∗,α), but that only leads to milder rejection

loss when ℓrej is monotonically decreasing. Then overall, the total robust loss can
be improved, while the decreased amount would depend on the concrete data
distribution and rejection loss.

Theorem A.3 in Appendix A.1.4 provides a rigorous and fine-grained analysis
of the robustness curve and the total robust loss of fδ. In general, the total robust
losses of fδ and f∗ only differ on points with distances larger than (1 − δ)ϵ from
the boundary of f∗. For such points, fδ can correctly classify all their small per-
turbations of magnitude at most ϵ0 := (1 − 2δ)ϵ, and reject or correctly classify
their larger perturbations. Intuitively, it correctly classifies small perturbations and
rejects or correctly classifies large perturbations. Then fδ only gets rejection loss for
large magnitudes, and thus potentially gets smaller total robust losses than f∗ for
monotonically non-increasing rejection losses.

For a concrete example, suppose f∗ has 0 standard error on the data distribution
and each data point has distance at least 3ϵ

4 to the decision boundary of f∗. Then
when δ = 1

4 , for any data point, fδ can correctly classify all the small perturbations
with magnitude bounded by ϵ

2 , and can reject or correctly classify the larger pertur-
bations. Then R

rej
ϵ (fδ,α) = 0 for α ⩽ 1

2 . For any step rejection loss with parameter
α0 ⩽ 1

2 , the total robust loss of fδ is 0, i.e., this fixed fδ can work well for a wide
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range of step rejection losses. In contrast, the total robust loss of f∗ is as large as
Rϵ(f

∗), which is the probability mass of points within ϵ distance to the boundary of
f∗. If there is a large mass of points with distance in [ 3ϵ

4 , ϵ], then fδ has a significant
advantage over f∗.

3.5 Proposed Defense
We propose a defense method called adversarial training with consistent prediction-
based rejection (CPR), following our theoretical analysis. CPR aims to learn the fδ

in our analysis, where PGD is used to check the condition for rejection efficiently at
test time. Our defense is quite general in that it can take any base classifier f∗ to
construct the selective classifier fδ. Finally, to evaluate the robustness of the defense,
we also discuss the design of adaptive attacks.

3.5.1 Consistent Prediction-Based Rejection

The CPR defense is essentially the selective classifier fδ in Eq. (3.9) in Theorem 3.4:
given a base classifier and an input x, we define a selective classifier that rejects
the input whenever the predictions in a small neighborhood of x are not consistent;
otherwise it returns the class prediction of x. Equivalently, it rejects inputs within a
small distance to the decision boundary of the given base classifier.

To formalize the details, we introduce some notations. Consider a base clas-
sifier without rejection (i.e., f∗) realized by a network with parameters θ, whose
predicted class probabilities are h(x ;θ)= [h1(x ;θ), · · · ,hk(x ;θ)]∈∆k. The class
prediction is ŷ(x) := argmaxy∈Y hy(x ;θ), and the cross-entropy loss is ℓCE(x,y) =
− loghy(x ;θ). CPR aims to learn a selective classifier (corresponding to fδ):

gϵ̃(x ;θ) =

h(x ;θ) if max
x̃∈N(x,ϵ̃)

1{ŷ(x̃) ̸= ŷ(x)} = 0

⊥ otherwise,
(3.10)
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Algorithm 3 Consistent prediction-based Rejection
Require: A base model h, a test input x (potentially with adversarial perturbations), the

consistency radius ϵ̃ > 0, the number of PGD steps m ⩾ 1, and the PGD step size η > 0.

1: Class prediction: y = ŷ(x) = arg maxy ′∈Y hy ′(x ;θ)
2: Initialize the adversarial input: x0 = x
3: for i = 1, 2, . . . ,m do
4: x̂i = xi−1 + η sign

(
∇xi−1ℓCE(xi−1,y)

)
5: xi = Proj

(
x̂i,N(x, ϵ̃)

)
{Project x̂i to N(x, ϵ̃)}

6: end for
7: Define T(x) := xm

Ensure: If arg maxy ′∈Y hy ′(T(x) ;θ) ̸= y, reject x ; otherwise, accept x and output the
predicted class y.

where ϵ̃ > 0 is a hyper-parameter we call the consistency radius. To check the
consistent-prediction condition efficiently, we use the projected gradient descent
(PGD) method (Madry et al., 2018) to find the worst-case perturbed input x̃. The
selective classifier is then redefined as:

gϵ̃(x ;θ) =

h(x ;θ) if ŷ(x̃) = ŷ(x)

⊥ otherwise,
(3.11)

where x̃ = arg max
x̃∈N(x,ϵ̃)

ℓCE(x̃, ŷ(x)). (3.12)

Then ŷ(x) is the predicted class when the input is accepted. The details of our CPR
defense are given in Algorithm 3. Note that the PGD method in the algorithm is
deterministic. Thus, the mapping T(x) = xm is deterministic and we can summarize
the defense as: if ŷ(T(x)) ̸= ŷ(x), then reject x ; otherwise accept x and output the
predicted class ŷ(x).

The robust base model for our defense h can be trained using methods such as
standard adversarial training (AT) (Madry et al., 2018), TRADES (Zhang et al.,
2019), and MART (Wang et al., 2020) (we will focus on the first two methods). An
advantage of the proposed defense is that it is agnostic of the rejection loss function
used for evaluation, and therefore can generalize to multiple choices of the rejection
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loss function (see Section 3.6). We note that prior works such as Laidlaw and Feizi
(2019b) and Tramèr (2021) have also proposed the idea of using the consistency
check for rejecting inputs to a classifier (equivalent to rejecting inputs based on
their distance to the decision boundary). However, we are the first to systematically
implement and evaluate such a defense, and propose strong adaptive attacks for
evaluating it.

3.5.2 Adaptive Attacks

In this section, we design principled adaptive attacks to evaluate the proposed
defense. By Definition 3.2 and Proposition 8, in order to compute the robustness
curve, we need to design both inner and outer attacks and then combine them to
get the final attack. We design multiple inner and outer attacks sketched below
and ensemble them to get the strongest final attack. More details can be found in
Appendix A.3

Inner Attack. For a given α ∈ [0, 1] on the robustness curve, the goal of the inner
attack is to find an input x′ ∈ N(x,αϵ) that is rejected. For CPR, this translates to
finding x′ ∈ N(x,αϵ) such that the base model has different predictions on x′ and
T(x′).

Our first attack is Low-Confidence Inner Attack (LCIA), which finds x′ by mini-
mizing the confidence of the base model within N(x,αϵ). Recall that the mapping
T(x′) attempts to minimize the base model’s probability on the predicted class ŷ(x′).
So, if the base model has low confidence on x′, then it will very likely have even
lower probability for ŷ(x′) on T(x′), and thus have different predictions on T(x′)

and x′. The attack objective in this case is x′ = arg maxz∈N(x,αϵ) − loghmax(z ;θ),
where hmax(z ;θ) = maxy∈Y hy(z ;θ) is the prediction confidence. We use the
temperature-scaled log-sum-exponential approximation to the max function in or-
der to make it differentiable. We also consider a variant of LCIA, named Consistent-
Low-Confidence Inner Attack (CLCIA), that minimizes the confidence of the base
model on both x ′ and T(x ′) (details in Appendix A.3).
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The third attack is Prediction-Disagreement Inner Attack (PDIA), an adaptive
multi-target attack based on the BPDA method (Athalye et al., 2018). We use BPDA
since T(x) does not have a closed-form expression and is not differentiable. This
attack considers all possible target classes and attempts to find x′ such that the base
model has high probability for the target class at x′ and a low probability for the
target class at T(x′) (thereby encouraging rejection). The attack objective is: for
each target class j = 1, . . . ,k,

x′
j = arg max

z∈N(x,αϵ)

[
loghj(z ;θ) − loghj(T(z) ;θ)

]
.

Then we select the strongest adversarial example x′ from the multiple target classes
as follows:

x′ = x′
j⋆ where j⋆ = arg max

j∈[k]

[
loghj(x′

j ;θ) − loghj(T(x′
j) ;θ)

]
. (3.13)

Outer Attack. Given a clean input (x,y), the goal of the outer attack is to find
x ′′ ∈ N(x, ϵ) such that the base model has a consistent incorrect prediction with
high confidence on both x ′′ and T(x ′′) (ensuring that x ′′ is accepted and mis-
classified). We propose the Consistent High-Confidence Misclassification Outer
Attack (CHCMOA), an adaptive multi-target attack based on BPDA. The attack
objective is: for each target class j ∈ [k] \ {y},

x ′′
j = arg max

z∈N(x,ϵ)

[
loghj(z ;θ) + loghj(T(z) ;θ)

]
.

Then we select the strongest adversarial example x ′′ via:

x ′′ = x ′′
j⋆ where j⋆ = arg max

j∈[k]\{y}

[
loghj(x ′′

j ;θ) + loghj(T(x ′′
j ) ;θ)

]
. (3.14)

We also consider the High-Confidence Misclassification Outer Attack (HCMOA),
which solves for an adversarial input x ′′ such that the base model has incorrect
prediction with high confidence on x ′′ (details in Appendix A.3).
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Final Attack. To get the strongest evaluation, our final attack is an ensemble of all
attacks, including those designed above and some existing ones. We apply each
attack in the ensemble with different hyper-parameters on each clean test input. If
any of the attacks achieves the attack goal on an input, then the attack is considered
to be successful on it.

3.6 Experiments
In this section, we perform experiments to evaluate the proposed method CPR and
compare it with competitive baseline methods. Our main findings are summarized
as follows:

1) CPR outperforms the baselines significantly in terms of the total robust loss
with respect to different rejection losses, under both seen attacks and unseen
attacks;

2) CPR usually has significantly higher robustness with rejection compared to
the baselines for small to moderate α under both seen attacks and unseen
attacks;

3) CPR also has strong performance under the traditional metrics such as robust
accuracy with detection (1 − R

rej
ϵ (f, 0)).

3.6.1 Experimental Setup

We briefly describe the experimental setup here.

Datasets. We use the MNIST (LeCun, 1998), SVHN (Netzer et al., 2011), and
CIFAR-10 (Krizhevsky et al., 2009) datasets. Each dataset has a test set containing
10,000 images. Following Stutz et al. (2020), we compute the accuracy of the models
on the first 9,000 images of the test set and compute the robustness of the models
on the first 1,000 images of the test set. We use the last 1,000 images of the test set
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as a held-out validation set for selecting the hyper-parameters of the methods (e.g.,
the rejection threshold).

Baselines. We consider the following baselines: (1) AT + CR: adversarial training
(AT) (Madry et al., 2018) with Confidence-based Rejection; (2) TRADES + CR:
TRADES (Zhang et al., 2019) with Confidence-based Rejection; (3) CCAT (Stutz
et al., 2020); (4) RCD (Sheikholeslami et al., 2021); (5) ATRR (Pang et al., 2022).

CPR Setup. CPR requires a base model. We consider robust base models trained
using the well-known standard adversarial training (AT) (Madry et al., 2018) and
TRADES (Zhang et al., 2019). Our experimental results show that CPR can boost
the robustness of these models. CPR has three hyper-parameters: the consistency
radius ϵ̃, the number of PGD steps m, and the PGD step size η. The ϵ̃ value controls
the rejection rate of the selective classifier. We choose it such that CPR does not
reject more than a small fraction of the correctly-classified clean inputs (however,
it can reject a majority of the mis-classified inputs that are likely to be close to the
decision boundary of the base model; rejecting such inputs is reasonable). The
rejection rate of the selective classifier gϵ̃ on correctly-classified clean inputs from
a distribution D is given by E(x,y)∼D

[
1{gϵ̃(x ;θ) = ⊥} | ŷ(x) = y

]
, which can be

estimated using a labeled validation dataset. We choose a large enough ϵ̃ > 0 such
that this rejection rate is approximately prej, where prej is a user-specified rejection
rate. The number of PGD steps m also affects the robustness. We use a validation
set to select suitable ϵ̃ and m. We do not tune the PGD step size η and set it to a
fixed value.

On MNIST, we set ϵ̃ = 0.1 (such that prej = 1%), m = 20, and η = 0.01. On
SVHN and CIFAR-10, we set ϵ̃ = 0.0055 (such that prej = 5%), m = 10, and
η = 0.001.

Evaluation Metrics. We use the robustness curve at adversarial budget ϵ (Eq. (3.6))
and the total robust loss to evaluate all the methods. The curve is calculated for α
values from the set {0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1} since in practice, we
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Dataset Method
Total Robust Loss under Seen Attacks ↓ Total Robust Loss under Unseen Attacks ↓

Step Rej. Loss Ramp Rej. Loss Step Rej. Loss Ramp Rej. Loss
α0 = 0.0 α0 = 0.05 α0 = 0.1 t = 2 t = 4 α0 = 0.0 α0 = 0.05 α0 = 0.1 t = 2 t = 4

MNIST

AT+CR 0.084 0.085 0.085 0.097 0.087 1.000 1.000 1.000 1.000 1.000
TRADES+CR 0.060 0.061 0.061 0.075 0.065 1.000 1.000 1.000 1.000 1.000
CCAT 0.168 0.926 1.000 0.945 0.894 0.245 0.994 1.000 0.955 0.914
RCD 0.135 0.135 0.135 0.135 0.135 1.000 1.000 1.000 1.000 1.000
ATRR 0.088 0.088 0.089 0.107 0.095 1.000 1.000 1.000 1.000 1.000
AT+CPR (Ours) 0.039 0.039 0.040 0.133 0.059 0.096 0.097 0.098 0.187 0.116
TRADES+CPR (Ours) 0.042 0.042 0.042 0.130 0.058 0.133 0.133 0.133 0.208 0.145

SVHN

AT+CR 0.539 0.539 0.539 0.542 0.540 0.882 0.882 0.882 0.882 0.882
TRADES+CR 0.471 0.472 0.472 0.475 0.473 0.874 0.874 0.874 0.874 0.874
CCAT 0.547 1.000 1.000 0.977 0.956 0.945 1.000 1.000 0.999 0.998
RCD 0.662 0.662 0.662 0.662 0.662 0.903 0.903 0.903 0.903 0.903
ATRR 0.552 0.552 0.552 0.566 0.556 0.885 0.885 0.885 0.891 0.887
AT+CPR (Ours) 0.442 0.442 0.442 0.454 0.444 0.853 0.853 0.853 0.856 0.854
TRADES+CPR (Ours) 0.380 0.380 0.380 0.390 0.381 0.813 0.813 0.813 0.816 0.814

CIFAR-10

AT+CR 0.500 0.501 0.501 0.507 0.503 0.895 0.895 0.895 0.895 0.895
TRADES+CR 0.500 0.500 0.500 0.503 0.501 0.849 0.849 0.849 0.849 0.849
CCAT 0.723 1.000 1.000 0.984 0.969 0.912 1.000 1.000 0.998 0.997
RCD 0.533 0.533 0.533 0.533 0.533 0.905 0.905 0.905 0.905 0.905
ATRR 0.512 0.513 0.513 0.518 0.515 0.887 0.887 0.887 0.887 0.887
AT+CPR (Ours) 0.433 0.433 0.433 0.443 0.435 0.829 0.829 0.829 0.836 0.830
TRADES+CPR (Ours) 0.429 0.429 0.429 0.438 0.430 0.781 0.781 0.781 0.787 0.782

Table 3.1: The total robust loss for different rejection loss functions under both seen and
unseen attacks. The best result is boldfaced.

are mainly interested in the robustness with rejection for small values of α. We
plot the robustness curve, with α along the x-axis and the robustness with rejection
along the y-axis. We also evaluate the total robust loss Lϵ(f; ℓrej) with respect to the
ramp rejection loss (Eq. (3.4)) for t ∈ {2, 4}, and the step rejection loss (Eq. (3.3))
for α0 ∈ {0, 0.05, 0.1}. This gives a single metric that summarizes the robustness
curve of the different methods.

Evaluation. We consider ℓ∞-norm bounded attacks and generate adversarial ex-
amples to compute the robustness with rejection metric via an ensemble of adversarial
attacks. The worst-case robustness is reported under the attack ensemble. A detailed
discussion of the unified approach for designing strong adaptive attacks for CPR
and all the baseline methods is given in Appendix A.3. We consider both seen
attacks and unseen attacks. Suppose ϵ ′ is the attack perturbation budget for testing.
For seen attacks, the perturbation budget ϵ ′ = ϵ (on MNIST, ϵ ′ = 0.3, while on
SVHN and CIFAR-10, ϵ ′ = 8

255). For unseen attacks, the perturbation budget ϵ ′ > ϵ

(on MNIST, ϵ ′ = 0.4, while on SVHN and CIFAR-10, ϵ ′ = 16
255). Finally, we use
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the same approach to set the rejection threshold for all the baselines. Specifically,
on MNIST, we set the threshold such that only 1% of clean correctly-classified
validation inputs are rejected. On SVHN and CIFAR-10, we set the threshold such
that only 5% of clean correctly-classified validation inputs are rejected.
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Figure 3.2: The robustness curve of our method CPR and the baselines for both seen and
unseen attacks.

Dataset Method
Robustness with Reject at α = 0 ↓ Robustness with Reject at α = 1 ↓

Outer Attack Inner Attack (with Ensemble Outer Attacks)
AutoAttack HCMOA CHCMOA LCIA CLCIA PDIA

MNIST AT+CPR 97.60 97.80 96.10 50.90 12.30 65.80
TRADES+CPR 98.10 98.40 95.80 7.60 5.10 0.40

SVHN AT+CPR 64.20 57.50 56.70 42.60 49.40 43.90
TRADES+CPR 71.10 63.40 62.90 51.00 56.10 54.30

CIFAR-10 AT+CPR 60.70 57.50 57.40 44.40 48.30 48.50
TRADES+CPR 61.50 57.40 57.20 45.90 51.10 53.10

Table 3.2: Ablation study on the outer and inner adaptive attacks for CPR. Refer to Ap-
pendix A.3 for more details on these attacks and the choice of metrics. All values are in
percentage, and smaller values correspond to a stronger attack. Bold values show the
strongest attacks.
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3.6.2 Results

Evaluating the Total Robust Loss. Table 3.1 compares the total robust loss of
different methods for different rejection loss functions under both seen attacks and
unseen attacks. The proposed method CPR outperforms the baselines significantly
in almost all cases. The only exception is on MNIST for the ramp rejection loss
with t = 2 under seen attacks, where CPR is worse than TRADES+CR and some
baselines. This is because small perturbations on MNIST are easy to correctly
classify and the ramp rejection loss penalizes rejecting large perturbations more,
while CPR tends to reject large perturbations. In all other cases, CPR performs
significantly better than the baselines. For instance, under unseen attacks, CPR
reduces the total robust loss (with respect to different rejection losses) by at least
60.8%, 6.6% and 7.3% on MNIST, SVHN and CIFAR-10, respectively. Under seen
attacks, CPR reduces the total robust loss by at least 18.0% and 12.8% on SVHN
and CIFAR-10, respectively.
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Figure 3.3: Ablation study for the proposed method CPR where we vary the hyper-
parameter ϵ̃ while fixing the hyper-parameter m.
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Figure 3.4: Ablation study for the proposed method CPR where we vary the hyper-
parameter m while fixing the hyper-parameter ϵ̃.

Evaluating the Robustness Curve. Figure 3.2 compares the robustness with
rejection A

rej
ϵ (f,α) of the different methods as a function of α under both seen and

unseen attacks. Our method CPR usually has significantly higher robustness with
rejection compared to the baselines for small to moderate α. The robustness with
rejection of CPR only drops for large α values, which suffers less rejection loss and
thus leads to smaller total robust loss (as predicted by our analysis). We also note
that CCAT has worse performance than other methods since our adaptive attacks
are stronger than the PGD-with-backtracking attack used in CCAT paper (Stutz
et al., 2020).

Ablation Study on Attacks. We performed an ablation experiment to study
the strength of each inner and outer attack in the attack ensemble. The results in
Table 3.2 show that for the outer attack, CHCMOA is consistently the best across all
datasets. For the inner attack, LCIA is usually the best, and CLCIA and PDIA are
strong on MNIST. We emphasize that we use an ensemble of all the attacks to get
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the strongest final evaluation.

Ablation Study on Hyper-parameters. We performed an ablation experiment
to study the effect of the hyper-parameters ϵ̃ and m used by CPR. The results in
Figure 3.3 and Figure 3.4 show that larger ϵ̃ (consistency radius) leads to better
robustness with rejection at α = 0. However, it also leads to lower robustness with
rejection when α is large, which suggests that CPR rejects more perturbed inputs.
Similarly, larger m (number of PGD steps) also leads to better robustness with
rejection at α = 0, but can lead to a lower robustness with rejection when α is
large. We set m = 10 in our main experiments, which is usually sufficient for good
performance, and larger values lead to minimal improvements.

Evaluating Traditional Metrics. We also evaluate different methods on the
traditional metrics, including accuracy with rejection, rejection rate on clean test
inputs, an F1 score-like metric (harmonic mean of accuracy-with-rejection and 1−
rejection rate), and the robust accuracy with detection defined in Tramèr (2021).
The results in Table 3.3 show that CPR has comparable performance to the baselines
on clean test inputs, and also significantly outperforms the baselines w.r.t. robust
accuracy with detection.

3.7 Conclusion
In this chapter, we studied adversarially-robust classification with rejection in
the practical setting where rejection carried a loss that was monotonically non-
increasing with the perturbation magnitude. We proposed the total robust loss as a
generalization of the robust error for selective classifiers where rejection carried a
loss, and the robustness curve as a tool to study the total robust loss. We provided an
analysis of the setting and proposed a novel defense CPR for robustifying any given
base model, which significantly outperformed previous methods under strong
adaptive attacks.
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Dataset Method Clean Test Inputs Under Seen Attacks Under Unseen Attacks
Acc. with Rej. ↑ Rej. Rate ↓ F1 Score ↑ Robust Acc. with Det. ↑ Robust Acc. with Det. ↑

MNIST

AT 98.81 0.00 99.40 84.70 0.00
AT+CR 99.55 1.79 98.87 91.60 0.00
TRADES 99.07 0.00 99.53 89.30 0.00
TRADES+CR 99.67 1.86 98.90 94.00 0.00
CCAT 99.90 1.82 99.03 83.20 75.50
RCD 99.02 0.00 99.51 86.50 0.00
ATRR 99.62 2.51 98.54 91.20 0.00
AT+CPR (Ours) 99.60 1.99 98.80 96.10 90.40
TRADES+CPR (Ours) 99.63 1.63 98.99 95.80 86.70

SVHN

AT 92.58 0.00 96.15 45.10 11.70
AT+CR 96.22 8.91 93.58 46.10 11.80
TRADES 92.19 0.00 95.94 52.00 12.30
TRADES+CR 95.47 9.06 93.15 52.90 12.60
CCAT 99.04 7.73 95.53 45.30 5.50
RCD 96.58 0.00 98.26 33.80 9.70
ATRR 96.14 8.98 93.51 44.80 11.50
AT+CPR (Ours) 95.86 7.34 94.23 55.80 14.70
TRADES+CPR (Ours) 94.96 6.56 94.20 62.00 18.70

CIFAR-10

AT 84.84 0.00 91.80 47.60 10.80
AT+CR 90.55 13.00 88.74 50.00 10.50
TRADES 82.12 0.00 90.18 48.70 15.20
TRADES+CR 86.57 9.59 88.45 50.00 15.10
CCAT 93.18 9.12 92.01 27.70 8.80
RCD 88.13 2.07 92.77 46.70 9.50
ATRR 89.36 12.09 88.63 48.80 11.30
AT+CPR (Ours) 89.05 9.57 89.74 56.70 17.10
TRADES+CPR (Ours) 86.30 9.57 88.32 57.10 21.90

Table 3.3: Evaluation of traditional metrics (percentages). Top-1 boldfaced.
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4 robust attribution regularization

Contribution statement. This chapter is joint work with Xi Wu, Vaibhav Rastogi,
Yingyu Liang, and Somesh Jha. The author Jiefeng Chen proposed the method,
contributed to part of the theoretical analysis, and completed all the experiments.
The paper version of this chapter appeared in NeurIPS 2019 (Chen et al., 2019).

4.1 Introduction
Trustworthy machine learning has received considerable attention in recent years.
An emerging problem to tackle in this domain is to train models that produce
reliable interpretations for their predictions. For example, a pathology predic-
tion model may predict certain images as containing malignant tumor. Then one
would hope that under visually indistinguishable perturbations of an image, sim-
ilar sections of the image, instead of entirely different ones, can account for the
prediction. However, as Ghorbani et al. (2019) convincingly demonstrated, for
existing models, one can generate minimal perturbations that substantially change
model interpretations, while keeping their predictions intact. Unfortunately, while the
robust prediction problem of machine learning models is well known and has been
extensively studied in recent years (for example, Madry et al. (2018); Sinha et al.
(2018); Wong and Kolter (2018), and also the tutorial by Kolter and Madry (2018)),
there has only been limited progress on the problem of robust interpretations.

In this chapter, we take a step towards solving this problem by viewing it through
the lens of axiomatic attribution of neural networks, and propose Robust Attribution
Regularization. Our theory is grounded in the recent work, Integrated Gradients
(IG) (Sundararajan et al., 2017), in axiomatically attributing a neural network’s output
change to its input change. Specifically, given a model f, two input vectors x, x ′, and
an input coordinate i, IGfi(x, x ′) defines a path integration (parameterized by a
curve from x to x ′) that assigns a number to the i-th input as its “contribution”
to the change of the model’s output from f(x) to f(x ′). IG enjoys several natural
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NATURAL IG-NORM IG-SUM-NORM

Top-1000 Intersection: 0.1%
Kendall’s Correlation: 0.2607

Top-1000 Intersection: 58.8%
Kendall’s Correlation: 0.6736

Top-1000 Intersection: 60.1%
Kendall’s Correlation: 0.6951

Figure 4.1: Attribution robustness comparing different models. Top-1000 In-
tersection and Kendall’s Correlation are rank correlations between original and
perturbed saliency maps. NATURAL is the naturally trained model, IG-NORM and
IG-SUM-NORM are models trained using our robust attribution method. We use
attribution attacks described in Ghorbani et al. (2019) to perturb the attributions
while keeping predictions intact. For all images, the models give correct prediction –
Windflower. However, the saliency maps (also called feature importance maps),
computed via IG, show that attributions of the naturally trained model are very
fragile, either visually or quantitatively as measured by correlation analyses, while
models trained using our method are much more robust in their attributions.

theoretical properties (such as the Axiom of Completeness1) that other related
methods violate.

We briefly overview our approach. Given a loss function ℓ and a data generating
distribution P, our Robust Attribution Regularization objective contains two parts:
(1) Achieving a small loss over the distribution P, and (2) The IG attributions of
the loss ℓ over P are “close” to the IG attributions over Q, if distributions P and
Q are close to each other. We can naturally encode these two goals in two classic
robust optimization models: (1) In the uncertainty set model (Ben-Tal et al., 2009)
where we treat sample points as “nominal” points, and assume that true sample

1Axiom of Completeness says that summing up attributions of all components should give
f(x ′) − f(x).
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points are from certain vicinity around them, which gives:

minimize
θ

E
(x,y)∼P

[ρ(x,y; θ)]

where ρ(x,y; θ) = ℓ(x,y; θ) + λ max
x ′∈N(x,ε)

s(IGℓyh (x, x ′; r))

where IGℓyh (·) is the attribution w.r.t. neurons in an intermediate layer h, and s(·) is
a size function (e.g., ∥ · ∥2) measuring the size of IG, and (2) In the distributional
robustness model (Sinha et al., 2018; Mohajerin Esfahani and Kuhn, 2015), where
closeness between P and Q is measured using metrics such as Wasserstein distance,
which gives:

minimize
θ

E
P
[ℓ(P; θ)] + λ sup

Q;M∈
∏

(P,Q)

{
E
Z,Z ′

[dIG(Z,Z ′)] s.t. E
Z,Z ′

[c(Z,Z ′)] ⩽ ρ
}

,

In this formulation,
∏

(P,Q) is the set of couplings of P and Q, and M = (Z,Z ′)

is one coupling. c(·, ·) is a metric, such as ∥ · ∥2, to measure the cost of an adversary
perturbing z to z ′. ρ is an upper bound on the expected perturbation cost, thus
constraining P and Q to be “close” with each together. dIG is a metric to measure
the change of attributions from Z to Z ′, where we want a large dIG-change under a
small c-change. The supremum is taken over Q and

∏
(P,Q).

We provide theoretical characterizations of our objectives. First, we show that
they give principled generalizations of previous objectives designed for robust pre-
dictions. Specifically, under weak instantiations of size function s(·), and how we
estimate IG computationally, we can leverage axioms satisfied by IG to recover the
robust prediction objective of Madry et al. (2018), the input gradient regularization
objective of Ross and Doshi-Velez (2018), and also the distributional robust pre-
diction objective of Sinha et al. (2018). These results provide theoretical evidence
that robust prediction training can provide some control over robust interpreta-
tions. Second, for one-layer neural networks, we prove that instantiating s(·) as
1-norm coincides with the instantiation of s(·) as sum, and further coincides with
classic soft-margin training, which implies that for generalized linear classifiers,
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soft-margin training will robustify both predictions and interpretations. Finally, we
generalize previous theory on distributional robust prediction (Sinha et al., 2018)
to our objectives, and show that they are closely related.

Through detailed experiments we study the effect of our method in robustifying
attributions. On MNIST, Fashion-MNIST, GTSRB and Flower datasets, we report
encouraging improvement in attribution robustness. Compared with naturally
trained models, we show significantly improved attribution robustness, as well as
prediction robustness. Compared with Madry et al.’s model (Madry et al., 2018)
trained for robust predictions, we demonstrate comparable prediction robustness
(sometimes even better), while consistently improving attribution robustness. We
observe that even when our training stops, the attribution regularization term
remains much more significant compared to the natural loss term. We discuss this
problem and point out that current optimization techniques may not have effectively
optimized our objectives. These results hint at the need for better optimization
techniques or new neural network architectures that are more amenable to robust
attribution training.

4.2 Preliminaries
Axiomatic attribution and Integrated Gradients Let f : Rd 7→ R be a real-valued
function, and x and x ′ be two input vectors. Given that function values changes
from f(x) to f(x ′), a basic question is: “How to attribute the function value change
to the input variables?” A recent work by Sundararajan et al. (2017) provides an
axiomatic answer to this question. Formally, let r : [0, 1] 7→ Rd be a curve such that
r(0) = x, and r(1) = x ′, Integrated Gradients (IG) for input variable i is defined as
the following integral:

IGfi(x, x ′; r) =
∫ 1

0

∂f(r(t))

∂xi
r ′i(t)dt, (4.1)

which formalizes the contribution of the i-th variable as the integration of the i-th
partial as we move along curve r. Let IGf(x, x ′; r) be the vector where the i-th
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component is IGfi , then IGf satisfies some natural axioms. For example, the Axiom
of Completeness says that summing all coordinates gives the change of function
value: sum(IGf(x, x ′; r)) =

∑d
i=1 IGfi(x, x ′; r) = f(x ′) − f(x). We refer readers to the

paper (Sundararajan et al., 2017) for other axioms IG satisfies.
Integrated Gradients for an intermediate layer. We can generalize the theory
of IG to an intermediate layer of neurons. The key insight is to leverage the fact
that Integrated Gradients is a curve integration. Therefore, given some hidden layer
h = [h1, . . . ,hl], computed by a function h(x) induced by previous layers, one can
then naturally view the previous layers as inducing a curve h ◦ r which moves from
h(x) to h(x ′), as we move from x to x ′ along curve r. Viewed this way, we can thus
naturally compute IG for h in a way that leverages all layers of the network2,

Lemma 4.1. Under curve r : [0, 1] 7→ Rd such that r(0) = x and r(1) = x ′ for moving x
to x ′, and the function induced by layers before h, the attribution for hi for a differentiable
f is

IGfhi(x, x ′) =

d∑
j=1

{∫ 1

0

∂f(h(r(t)))

∂hi

∂hi(r(t))

∂xj
r ′j(t)dt

}
. (4.2)

The corresponding summation approximation is:

IGfhi(x, x ′) =
1
m

d∑
j=1

{
m−1∑
k=0

∂f(h(r(k/m)))

∂hi

∂hi(r(k/m))

∂xj
r ′j(k/m)

}
(4.3)

4.3 Robust Attribution Regularization
In this section, we propose objectives for achieving robust attribution, and study
their connections with existing robust training objectives. At a high level, given a
loss function ℓ and a data generating distribution P, our objectives contain two parts:
(1) Achieving a small loss over the data generating distribution P, and (2) The IG
attributions of the loss ℓ over P are “close” to the IG attributions over distribution

2Proofs are deferred to Appendix B.1.2.
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Q, if P and Q are close to each other. We can naturally encode these two goals in
existing robust optimization models. Below we do so for two popular models: the
uncertainty set model and the distributional robustness model.

4.3.1 Uncertainty Set Model

In the uncertainty set model, for any sample (x,y) ∼ P for a data generating dis-
tribution P, we think of it as a “nominal” point and assume that the real sample
comes from a neighborhood around x. In this case, given any intermediate layer h,
we propose the following objective function:

minimize
θ

E
(x,y)∼P

[ρ(x,y; θ)]

where ρ(x,y; θ) = ℓ(x,y; θ) + λ max
x ′∈N(x,ε)

s(IGℓyh (x, x ′; r))
(4.4)

where λ ⩾ 0 is a regularization parameter, ℓy is the loss function with label y fixed:
ℓy(x; θ) = ℓ(x,y; θ), r : [0, 1] 7→ Rd is a curve parameterization from x to x ′, and
IGℓy is the integrated gradients of ℓy, and therefore gives attribution of changes
of ℓy as we go from x to x ′. s(·) is a size function that measures the “size” of the
attribution.3

We now study some particular instantiations of the objective (4.4). Specifically,
we recover existing robust training objectives under weak instantiations (such as
choosing s(·) as summation function, which is not metric, or use crude approxi-
mation of IG), and also derive new instantiations that are natural extensions to
existing ones.

Proposition 1 (Madry et al.’s robust prediction objective). If we set λ = 1 , and let
s(·) be the sum function (sum all components of a vector), then for any curve r and any
intermediate layer h, (4.4) is exactly the objective proposed by Madry et al. (2018) where
ρ(x,y; θ) = maxx ′∈N(x,ε) ℓ(x ′,y; θ).

3We stress that this regularization term depends on model parameters θ through loss function
ℓy.
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We note that: (1) sum is a weak size function which does not give a metric.
(2) As a result, while this robust prediction objective falls within our framework,
and regularizes robust attributions, it allows a small regularization term where
attributions actually change significantly but they cancel each other in summation.
Therefore, the control over robust attributions can be weak.

Proposition 2 (Input gradient regularization). For any λ ′ > 0 and q ⩾ 1, if we set
λ = λ ′/εq, s(·) = ∥ · ∥q1 , and use only the first term of summation approximation (4.3) to
approximate IG, then (4.4) becomes exactly the input gradient regularization of Drucker
and LeCun (1992), where we have ρ(x,y; θ) = ℓ(x,y; θ) + λ∥∇xℓ(x,y; θ)∥qq.

In the above we have considered instantiations of a weak size function (summa-
tion function), which recovers Madry et al.’s objective, and of a weak approximation
of IG (picking the first term), which recovers input gradient regularization. In the
next example, we pick a nontrivial size function, the 1-norm ∥ · ∥1, use the precise
IG, but then we use a trivial intermediate layer, the output loss ℓy.

Proposition 3 (Regularizing by attribution of the loss output). Let us set λ = 1,
s(·) = ∥ · ∥1, and h = ℓy (the output layer of loss function!), then we have ρ(x,y; θ) =
ℓy(x) + maxx ′∈N(x,ε){|ℓy(x ′) − ℓy(x)|}.

We note that this loss function is a “surrogate” loss function for Madry et al.’s loss
function because ℓy(x)+maxx ′∈N(x,ε){|ℓy(x ′)−ℓy(x)|} ⩾ ℓy(x)+maxx ′∈N(x,ε){(ℓy(x ′)−

ℓy(x))} = maxx ′∈N(x,ε) ℓy(x ′). Therefore, even at such a trivial instantiation, robust
attribution regularization provides interesting guarantees.

4.3.2 Distributional Robustness Model

A different but popular model for robust optimization is the distributional robust-
ness model. In this case we consider a family of distributions P, each of which is
supposed to be a “slight variation” of a base distribution P. The goal of robust opti-
mization is then that certain objective functions obtain stable values over this entire
family. Here we apply the same underlying idea to the distributional robustness
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model: One should get a small loss value over the base distribution P, and for any
distribution Q ∈ P, the IG-based attributions change only a little if we move from P

to Q. This is formalized as:

minimize
θ

E
P
[ℓ(P; θ)] + λ sup

Q∈P

{WdIG(P,Q)} ,

where the WdIG(P,Q) is the Wasserstein distance between P and Q under a distance
metric dIG.4 We use IG to highlight that this metric is related to integrated gradients.

We propose again dIG(z, z ′) = s(IGℓh(z, z ′)). We are particularly interested in the
case where P is a Wasserstein ball around the base distribution P, using “perturba-
tion” cost metric c(·). This gives regularization term λEWc(P,Q)⩽ρ sup{WdIG(P,Q)}.
An unsatisfying aspect of this objective, as one can observe now, is that WdIG and Wc

can take two different couplings, while intuitively we want to use only one coupling
to transport P to Q. For example, this objective allows us to pick a coupling M1

under which we achieve WdIG (recall that Wasserstein distance is an infimum over
couplings), and a different coupling M2 under which we achieve Wc, but under
M1 = (Z,Z ′), Ez,z ′∼M1 [c(z, z ′)] > ρ, violating the constraint. This motivates the
following modification:

minimize
θ

E
P
[ℓ(P; θ)] + λ sup

Q;M∈
∏

(P,Q)

{
E
Z,Z ′

[dIG(Z,Z ′)] s.t. E
Z,Z ′

[c(Z,Z ′)] ⩽ ρ
}

,

(4.5)

In this formulation,
∏

(P,Q) is the set of couplings of P and Q, and M = (Z,Z ′) is
one coupling. c(·, ·) is a metric, such as ∥ · ∥2, to measure the cost of an adversary
perturbing z to z ′. ρ is an upper bound on the expected perturbation cost, thus
constraining P and Q to be “close” with each together. dIG is a metric to measure
the change of attributions from Z to Z ′, where we want a large dIG-change under a
small c-change. The supremum is taken over Q and

∏
(P,Q).

4For supervised learning problem where P is of the form Z = (X, Y), we use the same treatment
as in Sinha et al. (2018) so that cost function is defined as c(z, z ′) = cx(x, x ′) +∞ · 1{y ̸= y ′}. All
our theory carries over to such c which has range R+ ∪{∞}.
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Proposition 4 (Wasserstein prediction robustness). Let s(·) be the summation func-
tion and λ = 1, then for any curve γ and any layer h, (4.5) reduces to

sup
Q:Wc(P,Q)⩽ρ

{
E
Q
[ℓ(Q; θ)]

}

, which is the objective proposed by Sinha et al. (2018) for robust predictions.

Lagrange relaxation. For any γ ⩾ 0, the Lagrange relaxation of (4.5) is

minimize
θ

{
E
P
[ℓ(P; θ)] + λ sup

Q;M∈
∏

(P,Q)

{
E

M=(Z,Z ′)

[
dIG(Z,Z ′) − γc(Z,Z ′)

]}}
(4.6)

where the supremum is taken over Q (unconstrained) and all couplings of P and Q,
and we want to find a coupling under which IG attributions change a lot, while the
perturbation cost from P to Q with respect to c is small. Recall that g : Rd×Rd → R
is a normal integrand if for each α, the mapping z→ {z ′|g(z, z ′) ⩽ α} is closed-valued
and measurable (Rockafellar and Wets, 2009).

Our next two theorems generalize the duality theory in Sinha et al. (2018) to a
much larger, but natural, class of objectives.

Theorem 4.2. Suppose c(z, z) = 0 and dIG(z, z) = 0 for any z, and suppose γc(z, z ′) −

dIG(z, z ′) is a normal integrand. Then,

sup
Q;M∈

∏
(P,Q)

{ E
M=(Z,Z ′)

[dγIG(Z,Z ′)]} = E
z∼P

[sup
z ′

{dγIG(z, z ′)}].

Consequently, we have (4.6) to be equal to the following:

minimize
θ

E
z∼P

[
ℓ(z; θ) + λ sup

z ′
{dIG(z, z ′) − γc(z, z ′)}

]
(4.7)

The assumption dIG(z, z) = 0 is true for what we propose, and c(z, z) = 0 is true
for any typical cost such as ℓp distances. The normal integrand assumption is also
very weak, e.g., it is satisfied when dIG is continuous and c is closed convex.
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Note that (4.7) and (4.4) are very similar, and so we use (4.4) for the rest of the
chapter. Finally, given Theorem 4.2, we are also able to connect (4.5) and (4.7) with
the following duality result:

Theorem 4.3. Suppose c(z, z) = 0 and dIG(z, z) = 0 for any z, and suppose γc(z, z ′) −

dIG(z, z ′) is a normal integrand. For any ρ > 0, there exists γ ⩾ 0 such that the optimal
solutions of (4.7) are optimal for (4.5).

4.3.3 One Layer Neural Networks

We now consider the special case of one-layer neural networks, where the loss
function takes the form of ℓ(x,y; w) = g(−y⟨w, x⟩), w is the model parameters, x is
a feature vector, y is a label, and g is nonnegative. We take s(·) to be ∥ · ∥1, which
corresponds to a strong instantiation that does not allow attributions to cancel each
other. Interestingly, we prove that for natural choices of g, this is however exactly
Madry et al.’s objective (Madry et al., 2018), which corresponds to s(·) = sum(·).
That is, the strong (s(·) = ∥ · ∥1) and weak instantiations (s(·) = sum(·)) coincide
for one-layer neural networks. This thus says that for generalized linear classifiers,
“robust interpretation” coincides with “robust predictions,” and further with classic
soft-margin training.

Theorem 4.4. Suppose that g is differentiable, non-decreasing, and convex. Then for λ = 1,
s(·) = ∥ · ∥1, and ℓ∞ neighborhood, (4.4) reduces to Madry et al.’s objective:

m∑
i=1

max
∥x ′
i−xi∥∞⩽ε

g(−yi⟨w, x ′
i⟩) (Madry et al.’s objective)

=

m∑
i=1

g(−yi⟨w, xi⟩+ ε∥w∥1) (soft-margin).

Natural losses, such as Negative Log-Likelihood and softplus hinge loss, satisfy
the conditions of this theorem.
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4.4 Instantiations and Optimizations
In this section we discuss instantiations of (4.4) and how to optimize them. We
start by presenting two objectives instantiated from our method: (1) IG-NORM,
and (2) IG-SUM-NORM. Then we discuss how to use gradient descent to optimize
these objectives.
IG-NORM. As our first instantiation, we pick s(·) = ∥ · ∥1, h to be the input layer,
and r to be the straightline connecting x and x ′. This gives:

minimize
θ

E
(x,y)∼P

[
ℓ(x,y; θ) + λ max

x ′∈N(x,ε)
∥ IGℓy(x, x ′)∥1

]
IG-SUM-NORM. In the second instantiation we combine the sum size function
and norm size function, and define s(·) = sum(·) + β∥ · ∥1. Where β ⩾ 0 is a
regularization parameter. Now with the same h and r as above, and put λ = 1, then
our method simplifies to:

minimize
θ

E
(x,y)∼P

[
max

x ′∈N(x,ε)

{
ℓ(x ′,y; θ) + β∥ IGℓy(x, x ′)∥1

}]
which can be viewed as appending an extra robust IG term to ℓ(x ′).
Gradient descent optimization. We propose the following gradient descent frame-
work to optimize the objectives. The framework is parameterized by an adversary
A which is supposed to solve the inner max by finding a point x⋆ which changes
attribution significantly. Specifically, given a point (x,y) at time step t during
SGD training, we have the following two steps (this can be easily generalized to
mini-batches):
Attack step. We run A on (x,y) to find x⋆ that produces a large inner max term (that
is ∥ IGℓy(x, x⋆)∥1 for IG-NORM, and ℓ(x⋆) + β∥ IGℓy(x, x⋆)∥1 for IG-SUM-NORM.
Gradient step. Fixing x⋆, we can then compute the gradient of the corresponding
objective with respect to θ, and then update the model.
Important objective parameters. In both attack and gradient steps, we need to dif-
ferentiate IG (in attack step, θ is fixed and we differentiate w.r.t. x, while in gradient
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step, this is reversed), and this induces a set of parameters of the objectives to tune
for optimization, which is summarized in Table 4.1. Differentiating summation
approximation of IG amounts to compute second partial derivatives. We rely on
the auto-differentiation capability of TensorFlow (Abadi et al., 2016) to compute
second derivatives.

Adversary A Adversary to find x⋆. Note that our goal is simply to
maximize the inner term in a neighborhood, thus in
this chapter, we choose Projected Gradient Descent for
this purpose.

m in the attack step To differentiate IG in the attack step, we use summa-
tion approximation of IG, and this is the number of
segments for apprioximation.

m in the gradient step Same as above, but in the gradient step. We have this
m separately due to efficiency consideration.

λ Regularization parameter for IG-NORM.
β Regularization parameter for IG-SUM-NORM.

Table 4.1: Optimization parameters.

4.5 Experiments
We now perform experiments using our method. We ask the following questions:
(1) Comparing models trained by our method and naturally trained models at
test time, do we maintain the accuracy on unperturbed test inputs? (2) At test
time, if we use attribution attacks mentioned in Ghorbani et al. (2019) to perturb
attributions while keeping predictions intact, how does the attribution robustness
of our models compare with that of the naturally trained models? (3) Finally, how
do we compare attribution robustness of our models with weak instantiations for
robust predictions?

To answer these questions, We perform experiments on four classic datasets:
MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), GTSRB (Stallkamp et al.,
2012), and Flower (Nilsback and Zisserman, 2006). In summary, our findings
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are the following: (1) Our method results in very small drop in test accuracy
compared with naturally trained models. (2) On the other hand, our method gives
signficantly better attribution robustness, as measured by correlation analyses. (3)
Finally, our models yield comparable prediction robustness (sometimes even better),
while consistently improving attribution robustness. In the rest of the section we
give more details.
Evaluation setup. In this chapter, we use IG to compute attributions (i.e. feature
importance map), which, as demonstrated by Ghorbani et al. (2019), is more robust
compared to other related methods (note that, IG also enjoys other theoretical
properties). To attack attribution while retaining model predictions, we use Iterative
Feature Importance Attacks (IFIA) proposed by Ghorbani et al. (2019). We use
two metrics to measure attribution robustness (i.e. how similar the attributions are
between original and perturbed images):

Kendall’s tau rank order correlation. Attribution methods rank all of the fea-
tures in order of their importance, we thus use the rank correlation (Kendall, 1938)
to compare similarity between interpretations.

Top-k intersection. We compute the size of intersection of the k most important
features before and after perturbation.

Compared with Ghorbani et al. (2019), we use Kendall’s tau correlation, instead
of Spearman’s rank correlation. The reason is that we found that on the GTSRB and
Flower datasets, Spearman’s correlation is not consistent with visual inspection,
and often produces too high correlations. In comparison, Kendall’s tau correlation
consistently produces lower correlations and aligns better with visual inspection.
Finally, when computing attribution robustness, we only consider the test samples
that are correctly classified by the model.
Comparing with natural models. Figures (a), (b), (c), and (d) in Figure 4.2 show
that, compared with naturally trained models, robust attribution training gives
significant improvements in attribution robustness (measured by either median
or confidence intervals). The exact numbers are recorded in Table 4.2: Compared
with naturally trained models (rows where “Approach” is NATURAL), robust
attribution training has significantly better adversarial accuracy and attribution
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robustness, while having a small drop in natural accuracy (denoted by Nat Acc.).

(a) MNIST (b) Fashion-MNIST

(c) GTSRB (d) Flower

Figure 4.2: Experiment results on MNIST, Fashion-MNIST, GTSRB and Flower.

Ineffective optimization. We observe that even when our training stops, the
attribution regularization term remains much more significant compared to the
natural loss term. For example for IG-NORM, when training stops on MNIST, ℓ(x)
typically stays at 1, but ∥ IG(x, x ′)∥1 stays at 10 ∼ 20. This indicates that optimization
has not been very effective in minimizing the regularization term. There are two
possible reasons to this: (1) Because we use summation approximation of IG, it
forces us to compute second derivatives, which may not be numerically stable for
deep networks. (2) The network architecture may be inherently unsuitable for
robust attributions, rendering the optimization hard to converge.
Comparing with robust prediction models. Finally we compare with Madry et
al.’s models, which are trained for robust prediction. We use Adv Acc. to denote ad-
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versarial accuracy (prediction accuracy on perturbed inputs). Again, TopK Inter.
denotes the average topK intersection (K = 100 for MNIST, Fashion-MNIST and GT-
SRB datasets, K = 1000 for Flower), and Rank Corr. denotes the average Kendall’s
rank order correlation. Table 4.2 gives the details of the results. As we can see,
our models give comparable adversarial accuracy, and are sometimes even better
(on the Flower dataset). On the other hand, we are consistently better in terms of
attribution robustness.

Dataset Approach Nat Acc. Adv Acc. TopK Inter. Rank Corr.

MNIST

NATURAL 99.17% 0.00% 46.61% 0.1758
Madry et al. 98.40% 92.47% 62.56% 0.2422
IG-NORM 98.74% 81.43% 71.36% 0.2841

IG-SUM-NORM 98.34% 88.17% 72.45% 0.3111

Fashion-MNIST

NATURAL 90.86% 0.01% 39.01% 0.4610
Madry et al. 85.73% 73.01% 46.12% 0.6251
IG-NORM 85.13% 65.95% 59.22% 0.6171

IG-SUM-NORM 85.44% 70.26% 72.08% 0.6747

GTSRB

NATURAL 98.57% 21.05% 54.16% 0.6790
Madry et al. 97.59% 83.24% 68.85% 0.7520
IG-NORM 97.02% 75.24% 74.81% 0.7555

IG-SUM-NORM 95.68% 77.12% 74.04% 0.7684

Flower

NATURAL 86.76% 0.00% 8.12% 0.4978
Madry et al. 83.82% 41.91% 55.87% 0.7784
IG-NORM 85.29% 24.26% 64.68% 0.7591

IG-SUM-NORM 82.35% 47.06% 66.33% 0.7974

Table 4.2: Experiment results including prediction accuracy, prediction robustness
and attribution robustness.

4.6 Discussion and Conclusion
In this chapter, we built a theory to robustify model interpretations through the
lens of axiomatic attributions of neural networks. We showed that our theory gave
principled generalizations of previous formulations for robust predictions, and we
characterized our objectives for one-layer neural networks.
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We believe that this chapter opens many intriguing avenues for future research,
and we discuss a few topics below.
Why we want robust attributions? Model attributions are facts about model be-
haviors. While robust attribution does not necessarily mean that the attribution is
correct, a model with brittle attribution can never be trusted. To this end, it seems
interesting to examine attribution methods other than Integrated Gradients.
Robust attribution leads to more human-aligned attribution. Note that our pro-
posed training scheme requires both prediction correctness and robust attributions,
and therefore it encourages to learn invariant features from data that are also highly
predictive. In our experiments, we found an intriguing phenomenon that our regu-
larized models produce attributions that are much more aligned with human perceptions
(for example, see Figure 4.1). Our results are aligned with the recent work (Tsipras
et al., 2019; Engstrom et al., 2019).
Robust attribution may help tackle spurious correlations. In view of our discus-
sion so far, we think it is plausible that robust attribution regularization can help
remove spurious correlations because intuitively spurious correlations should not
be able to be reliably attributed to. Future research on this potential connection
seems warranted.
Difficulty of optimization. While our experimental results are encouraging, we
observe that when training stops, the attribution regularization term remains signif-
icant (typically around tens to hundreds), which indicates ineffective optimization
for the objectives. To this end, a main problem is network depth, where as depth
increases, we get very unstable trajectories of gradient descent, which seems to be
related to the use of second order information during robust attribution optimization
(due to summation approximation, we have first order terms in the training objec-
tives). Therefore, it is natural to further study better optimization techniques or
better architectures for robust attribution training.
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5 atom: robustifying out-of-distribution detection
using outlier mining

Contribution statement. This chapter is joint work with Yixuan Li, Xi Wu, Yingyu
Liang, and Somesh Jha. The author Jiefeng Chen proposed the method, contributed
to part of the theoretical analysis, and completed all the experiments. The paper
version of this chapter appeared in ECML 2021 (Chen et al., 2021a).

5.1 Introduction
Out-of-distribution (OOD) detection has become an indispensable part of building
reliable open-world machine learning models (Bendale and Boult, 2015). An OOD
detector determines whether an input is from the same distribution as the training
data, or different distribution. As of recently a plethora of exciting literature has
emerged to combat the problem of OOD detection (Hein et al., 2019; Hsu et al.,
2020; Huang and Li, 2021; Lakshminarayanan et al., 2017; Lee et al., 2018b; Liang
et al., 2018; Lin et al., 2021; Liu et al., 2020; Mohseni et al., 2020).

Despite the promise, previous methods primarily focused on clean OOD data,
while largely underlooking the robustness aspect of OOD detection. Concerningly,
recent works have shown the brittleness of OOD detection methods under adver-
sarial perturbations (Bitterwolf et al., 2020; Hein et al., 2019; Sehwag et al., 2019).
As illustrated in Figure 5.1, an OOD image (e.g., mailbox) can be perturbed to be
misclassified by the OOD detector as in-distribution (traffic sign data). Failing
to detect such an adversarial OOD example1 can be consequential in safety-critical
applications such as autonomous driving (Filos et al., 2020). Empirically on CIFAR-
10, our analysis reveals that the false positive rate (FPR) of a competitive method
Outlier Exposure (Hendrycks et al., 2019b) can increase from 3.66% to 99.94%
under adversarial attack.

1Adversarial OOD examples are constructed w.r.t the OOD detector, which is different from the
standard notion of adversarial examples (constructed w.r.t the classification model).
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Figure 5.1: Robust out-of-distribution detection. When deploying an image classification
system (OOD detector G(x) + image classifier f(x)) in an open world, there can be mul-
tiple types of OOD examples. We consider a broad family of OOD inputs, including (a)
Natural OOD, (b) L∞ OOD, (c) corruption OOD, and (d) Compositional OOD. A detailed
description of these OOD inputs can be found in Section 5.4.1. In (b-d), a perturbed OOD
input (e.g., a perturbed mailbox image) can mislead the OOD detector to classify it as an
in-distribution sample. This can trigger the downstream image classifier f(x) to predict
it as one of the in-distribution classes (e.g., speed limit 70). Through adversarial training
with informative outlier mining (ATOM), our method can robustify the decision boundary of
OOD detector G(x), which leads to improved performance across all types of OOD inputs.
Solid lines are actual computation flow.

Motivated by this, we make an important step towards the robust OOD detection
problem, and propose a novel training framework, Adversarial Training with informa-
tive Outlier Mining (ATOM). Our key idea is to selectively utilize auxiliary outlier
data for estimating a tight decision boundary between ID and OOD data, which
leads to robust OOD detection performance. While recent methods (Hein et al.,
2019; Hendrycks et al., 2019b; Meinke and Hein, 2020; Mohseni et al., 2020) have
leveraged auxiliary OOD data, we show that randomly selecting outlier samples for
training yields a large portion of uninformative samples, which do not meaning-
fully improve the decision boundary between ID and OOD data (see Figure 5.2).
In this chapter, we demonstrate that by mining low OOD score data for training,
one can significantly improve the robustness of an OOD detector, and somewhat
surprisingly, generalize to unseen adversarial attacks.
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We extensively evaluate ATOM on common OOD detection benchmarks, as
well as a suite of adversarial OOD tasks, as illustrated in Figure 5.1. ATOM achieves
state-of-the-art performance, significantly outperforming competitive methods
using standard training on random outliers (Hendrycks et al., 2019b; Meinke and
Hein, 2020; Mohseni et al., 2020), or using adversarial training on random outlier
data (Hein et al., 2019). On the classic OOD evaluation task (clean OOD data),
ATOM achieves comparable and often better performance than current state-of-the-
art methods. On L∞ OOD evaluation task, ATOM outperforms the best baseline
ACET (Hein et al., 2019) by a large margin (e.g. 53.9% false positive rate deduction
on CIFAR-10). Moreover, our ablation study underlines the importance of having
both adversarial training and outlier mining (ATOM) for achieving robust OOD
detection.

Lastly, we provide theoretical analysis for ATOM, characterizing how outlier
mining can better shape the decision boundary of the OOD detector. While hard
negative mining has been explored in different domains of learning, e.g., object
detection, deep metric learning (Felzenszwalb et al., 2009; Gidaris and Komodakis,
2015; Shrivastava et al., 2016), the vast literature of OOD detection has not explored
this idea. Moreover, most uses of hard negative mining are on a heuristic basis,
but in this chapter, we derive precise formal guarantees with insights. Our key
contributions are summarized as follows:

• We propose a novel training framework, adversarial training with outlier
mining (ATOM), which facilitates efficient use of auxiliary outlier data to
regularize the model for robust OOD detection.

• We perform extensive analysis and comparison with a diverse collection of
OOD detection methods using: (1) pre-trained models, (2) models trained
on randomly sampled outliers, (3) adversarial training. ATOM establishes
state-of-the-art performance under a broad family of clean and adversarial
OOD evaluation tasks.

• We contribute theoretical analysis formalizing the intuition of mining infor-
mative outliers for improving the robustness of OOD detection.
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• Lastly, we provide a unified evaluation framework that allows future research
examining the robustness of OOD detection algorithms under a broad family
of OOD inputs.

5.2 Preliminaries
We consider the setting of multi-class classification. We consider a training dataset
Dtrain

in drawn i.i.d. from a data distribution PX,Y , where X is the sample space and
Y = {1, 2, · · · ,K} is the set of labels. In addition, we have an auxiliary outlier data
D

auxiliary
out from distribution UX. The use of auxiliary outliers helps regularize the

model for OOD detection, as shown in several recent works (Hein et al., 2019; Lee
et al., 2018a; Liu et al., 2020; Meinke and Hein, 2020; Mohseni et al., 2020).

Robust out-of-distribution detection. The goal is to learn a detector G : x →
{−1, 1}, which outputs 1 for an in-distribution example x and output −1 for a clean
or perturbed OOD example x. Formally, let Ω(x) be a set of small perturbations on
an OOD example x. The detector is evaluated on x from PX and on the worst-case
input inside Ω(x) for an OOD example x from QX. The false negative rate (FNR)
and false positive rate (FPR) are defined as:

FNR(G) = Ex∼PXI[G(x) = −1], FPR(G;QX,Ω) = Ex∼QX max
δ∈Ω(x)

I[G(x+ δ) = 1].

Remark. Note that test-time OOD distribution QX is unknown, which can be
different from UX. The difference between the auxiliary data UX and test OOD
data QX raises the fundamental question of how to effectively leverage D

auxiliary
out

for improving learning the decision boundary between in- vs. OOD data. For
terminology clarity, we refer to training OOD examples as outliers, and exclusively
use OOD data to refer to test-time anomalous inputs.
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5.3 Method
In this section, we introduce Adversarial Training with informative Outlier Mining
(ATOM). We first present our method overview, and then describe details of the
training objective with informative outlier mining.

Method overview: a conceptual example. We use the terminology outlier mining
to denote the process of selecting informative outlier training samples from the
pool of auxiliary outlier data. We illustrate our idea with a toy example in Fig-
ure 5.2, where in-distribution data consists of class-conditional Gaussians. Outlier
training data is sampled from a uniform distribution from outside the support of
in-distribution. Without outlier mining (left), we will almost sample those “easy"
outliers and the decision boundary of the OOD detector learned can be loose. In
contrast, with outlier mining (right), selective outliers close to the decision bound-
ary between ID and OOD data, which improves OOD detection. This is particularly
important for robust OOD detection where the boundary needs to have a margin
from the OOD data so that even adversarial perturbation (red color) cannot move
the OOD data points across the boundary. We proceed with describing the train-
ing mechanism that achieves our novel conceptual idea and will provide formal
theoretical guarantees in Section 5.5.

5.3.1 ATOM: Adversarial Training with Informative Outlier
Mining

Training objective. The classification involves using a mixture of ID data and
outlier samples. Specifically, we consider a (K+ 1)-way classifier network f, where
the (K + 1)-th class label indicates out-of-distribution class. Denote by Fθ(x) the
softmax output of f on x. The robust training objective is given by

minimize
θ

E(x,y)∼Dtrain
in

[ℓ(x,y; Fθ)] + λ · Ex∼Dtrain
out

max
x ′∈Ω∞,ϵ(x)

[ℓ(x ′,K+ 1; Fθ)] (5.1)
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Figure 5.2: A toy example in 2D space for illustration of informative outlier mining. With
informative outlier mining, we can tighten the decision boundary and build a robust OOD
detector.

where ℓ is the cross entropy loss, and Dtrain
out is the OOD training dataset. We use

Projected Gradient Descent (PGD) (Madry et al., 2018) to solve the inner max of
the objective, and apply it to half of a minibatch while keeping the other half clean
to ensure performance on both clean and perturbed data.

Once trained, the OOD detector G(x) can be constructed by:

G(x) =

−1 if F(x)K+1 ⩾ γ,

1 if F(x)K+1 < γ,
(5.2)

where γ is the threshold, and in practice can be chosen on the in-distribution data
so that a high fraction of the test examples are correctly classified by G. We call
F(x)K+1 the OOD score of x. For an input labeled as in-distribution by G, one can
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obtain its semantic label using F̂(x):

F̂(x) = arg max
y∈{1,2,··· ,K}

F(x)y (5.3)

Informative outlier mining. We propose to adaptively choose OOD training
examples where the detector is uncertain about. Specifically, during each training
epoch, we randomly sample N data points from the auxiliary OOD dataset Dauxiliary

out ,
and use the current model to infer the OOD scores2. Next, we sort the data points
according to the OOD scores and select a subset of n < N data points, starting
with the qNth data in the sorted list. We then use the selected samples as OOD
training data Dtrain

out for the next epoch of training. Intuitively, q determines the
informativeness of the sampled points w.r.t the OOD detector. The larger q is, the
less informative those sampled examples become. Note that informative outlier
mining is performed on (non-adversarial) auxiliary OOD data. Selected examples
are then used in the robust training objective (5.1).

Algorithm 4 ATOM: Adversarial Training with informative Outlier Mining

Require: Dtrain
in , Dauxiliary

out , Fθ, m, N, n, q
for t = 1, 2, · · · ,m do

Randomly sample N data points from D
auxiliary
out to get a candidate set S;

Compute OOD scores on S using Fθ to get set V = {F(x)K+1 | x ∈ S};
Sort scores in V from the lowest to the highest;
Dtrain

out ← V[qN : qN+ n]; {q ∈ [0, 1 − n/N]}
Train Fθ for one epoch using the training objective of (5.1);

end for
Build G and F̂ using (5.2) and (5.3) respectively;
return F̂, G

We provide the complete training algorithm using informative outlier mining
in Algorithm 4. Importantly, the use of informative outlier mining highlights
the key difference between ATOM and previous work using randomly sampled

2Since the inference stage can be fully parallel, outlier mining can be applied with relatively low
overhead.
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outliers (Hein et al., 2019; Hendrycks et al., 2019b; Meinke and Hein, 2020; Mohseni
et al., 2020).

5.4 Experiments
In this section, we describe our experimental setup and show that ATOM can
substantially improve OOD detection performance on both clean OOD data and
adversarially perturbed OOD inputs. We also conducted extensive ablation analysis
to explore different aspects of our algorithm.

5.4.1 Setup

In-distribution datasets. We use SVHN (Netzer et al., 2011), CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) as in-distribution datasets.

Auxiliary OOD datasets. By default, we use 80 Million Tiny Images (TinyImages)
(Torralba et al., 2008) as Dauxiliary

out , which is a common setting in prior works. We also
use ImageNet-RC, a variant of ImageNet (Chrabaszcz et al., 2017) as an alternative
auxiliary OOD dataset.

Out-of-distribution datasets. For OOD test dataset, we follow common setup
in literature and use six diverse datasets: SVHN, Textures (Cimpoi et al., 2014),
Places365 (Zhou et al., 2017), LSUN (crop), LSUN (resize) (Yu et al., 2015), and
iSUN (Xu et al., 2015).

Hyperparameters. The hyperparameter q is chosen on a separate validation set
from TinyImages, which is different from test-time OOD data. Based on the valida-
tion, we set q = 0.125 for CIFAR-10 and q = 0.5 for CIFAR-100. For all experiments,
we set λ = 1. For CIFAR-10 and CIFAR-100, we set N = 400, 000, and n = 100, 000.

Robust OOD evaluation tasks. We consider the following family of OOD inputs:
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• Natural OOD: This is equivalent to the classic OOD evaluation with clean
OOD input x, and Ω = ∅.

• L∞ attacked OOD (white-box): We consider small L∞-norm bounded per-
turbations on an OOD input x (Athalye et al., 2018; Madry et al., 2018), which
induce the model to produce a high confidence score (or a low OOD score)
for x. We denote the adversarial perturbations by Ω∞,ϵ(x), where ϵ is the
adversarial budget. We provide attack algorithms for all eight OOD detection
methods in Appendix C.2.

• Corruption attacked OOD (black-box): We consider a more realistic type
of attack based on common corruptions (Hendrycks and Dietterich, 2019),
which could appear naturally in the physical world. For each OOD image, we
generate 75 corrupted images (15 corruption types × 5 severity levels), and
then select the one with the lowest OOD score.

• Compositionally attacked OOD (white-box): Lastly, we consider applying
L∞-norm bounded attack and corruption attack jointly to an OOD input x, as
considered in Laidlaw and Feizi (2019a).

Evaluation metrics. We measure the following metrics: the false positive rate
(FPR) at 5% false negative rate (FNR), and the area under the receiver operating
characteristic curve (AUROC).

5.4.2 Results

ATOM vs. existing methods. We show in Table 5.1 that ATOM outperforms com-
petitive OOD detection methods on both classic and adversarial OOD evaluation
tasks. There are several salient observations. First, on classic OOD evaluation task
(clean OOD data), ATOM achieves comparable or often even better performance
than the current state-of-the-art methods. Second, on the existing adversarial OOD
evaluation task, L∞ OOD, ATOM outperforms current state-of-the-art method
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

MSP (Hendrycks and Gimpel, 2017) 38.84 93.57 99.68 68.48 99.89 1.39 100.00 0.19
ODIN (Liang et al., 2018) 31.45 93.52 97.11 63.21 99.86 0.61 100.00 0.05
Mahalanobis (Lee et al., 2018b) 22.80 95.57 93.14 60.78 97.33 8.89 99.89 0.23
SOFL (Mohseni et al., 2020) 0.06 99.98 3.78 99.07 75.31 46.78 99.81 2.75
OE (Hendrycks et al., 2019b) 0.60 99.88 23.44 96.23 69.36 52.19 99.65 1.27
ACET (Hein et al., 2019) 0.49 99.91 17.03 97.23 29.33 86.75 99.85 5.13
CCU (Meinke and Hein, 2020) 0.50 99.90 24.17 96.11 52.17 62.24 99.42 1.60
ROWL (Sehwag et al., 2019) 2.04 98.87 55.03 72.37 77.24 61.27 99.79 50.00
ATOM (ours) 0.07 99.97 5.47 98.52 7.02 98.00 96.33 49.52

CIFAR-10

MSP (Hendrycks and Gimpel, 2017) 50.54 91.79 100.00 58.35 100.00 13.82 100.00 13.67
ODIN (Liang et al., 2018) 21.65 94.66 99.37 51.44 99.99 0.18 100.00 0.01
Mahalanobis (Lee et al., 2018b) 26.95 90.30 91.92 43.94 95.07 12.47 99.88 1.58
SOFL (Mohseni et al., 2020) 2.78 99.04 62.07 88.65 99.98 1.01 100.00 0.76
OE (Hendrycks et al., 2019b) 3.66 98.82 56.25 90.66 99.94 0.34 99.99 0.16
ACET (Hein et al., 2019) 12.28 97.67 66.93 88.43 74.45 78.05 96.88 53.71
CCU (Meinke and Hein, 2020) 3.39 98.92 56.76 89.38 99.91 0.35 99.97 0.21
ROWL (Sehwag et al., 2019) 25.03 86.96 94.34 52.31 99.98 49.49 100.00 49.48
ATOM (ours) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

CIFAR-100

MSP (Hendrycks and Gimpel, 2017) 78.05 76.11 100.00 30.04 100.00 2.25 100.00 2.06
ODIN (Liang et al., 2018) 56.77 83.62 100.00 36.95 100.00 0.14 100.00 0.00
Mahalanobis (Lee et al., 2018b) 42.63 87.86 95.92 42.96 95.44 15.87 99.86 2.08
SOFL (Mohseni et al., 2020) 43.36 91.21 99.93 45.23 100.00 0.35 100.00 0.27
OE (Hendrycks et al., 2019b) 49.21 88.05 99.96 45.01 100.00 0.94 100.00 0.59
ACET (Hein et al., 2019) 50.93 89.29 99.53 54.19 76.27 59.45 99.71 38.63
CCU (Meinke and Hein, 2020) 43.04 90.95 99.90 48.34 100.00 0.75 100.00 0.48
ROWL (Sehwag et al., 2019) 93.35 53.02 100.00 49.69 100.00 49.69 100.00 49.69
ATOM (ours) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15

Table 5.1: Comparison with competitive OOD detection methods. We use DenseNet as network
architecture for all methods. We evaluate on four types of OOD inputs: (1) natural OOD, (2)
corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked OOD inputs.
The description of these OOD inputs can be found in Section 5.4.1. ↑ indicates larger value is better,
and ↓ indicates lower value is better. All values are percentages and are averaged over six different
OOD test datasets described in Section 5.4.1. Bold numbers are superior results.

ACET (Hein et al., 2019) by a large margin (e.g. on CIFAR-10, our method outper-
forms ACET by 53.9% measured by FPR). Third, while ACET is somewhat brittle
under the new Corruption OOD evaluation task, our method can generalize surpris-
ingly well to the unknown corruption attacked OOD inputs, outperforming the best
baseline by a large margin (e.g. on CIFAR-10, by up to 30.99% measured by FPR).
Finally, while almost every method fails under the hardest compositional OOD
evaluation task, our method still achieves impressive results (e.g. on CIFAR-10, re-
duces the FPR by 57.99%). The performance is noteworthy since our method is not
trained explicitly on corrupted OOD inputs. Consistent performance improvement
is observed on alternative in-distribution datasets (SVHN and CIFAR-100).



79

Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5%FNR) (5% FNR) (5%FNR) (5%FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-10
AT (no outlier mining) 2.65 99.11 42.28 91.94 44.31 68.64 65.17 72.62
NTOM (no adversarial training) 1.87 99.28 30.58 94.67 99.90 1.22 99.99 0.45
ATOM (ours) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

CIFAR-100
AT (no outlier mining) 51.50 89.62 99.70 58.61 70.33 58.84 99.80 34.98
NTOM (no adversarial training) 36.94 92.61 98.17 65.70 99.97 0.76 100.00 0.16
ATOM (ours) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15

Table 5.2: Ablation on ATOM training objective. We use DenseNet as network architecture.
↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages and are averaged over six different OOD test datasets described in Section
5.4.1.

Adversarial training alone is not able to achieve strong OOD robustness. We
perform an ablation study that isolates the effect of outlier mining. In particular, we
use the same training objective as in Equation (5.1), but with randomly sampled
outliers. The results in Table 5.2 show AT (no outlier mining) is in general less
robust. For example, under L∞ OOD, AT displays 23.76% and 31.61% reduction
in FPR on CIFAR-10 and CIFAR-100 respectively. This validates the importance of
outlier mining for robust OOD detection, which provably improves the decision
boundary as we will show in Section 5.5.

Effect of adversarial training. We perform an ablation study that isolates the
effect of adversarial training. In particular, we consider the following objective
without adversarial training:

minimize
θ

E(x,y)∼Dtrain
in

[ℓ(x,y; F̂θ)] + λ · Ex∼Dtrain
out

[ℓ(x,K+ 1; F̂θ)], (5.4)

which we name Natural Training with informative Outlier Mining (NTOM). In Ta-
ble 5.2, we show that NTOM achieves comparable performance as ATOM on natural
OOD and corruption OOD. However, NTOM is less robust under L∞ OOD (with
79.35% reduction in FPR on CIFAR-10) and compositional OOD inputs. This under-
lies the importance of having both adversarial training and outlier mining (ATOM)
for overall good performance, particularly for robust OOD evaluation tasks.
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Dtest
in Model

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

ATOM (q=0.0) 0.07 99.97 5.47 98.52 7.02 98.00 96.33 49.52
ATOM (q=0.125) 1.30 99.63 34.97 94.97 39.61 82.92 99.92 6.30
ATOM (q=0.25) 1.36 99.60 41.98 94.30 52.39 71.34 99.97 1.35
ATOM (q=0.5) 2.11 99.46 44.85 93.84 59.72 65.59 99.97 3.15
ATOM (q=0.75) 2.91 99.26 51.33 93.07 66.20 57.16 99.96 2.04

CIFAR-10

ATOM (q=0.0) 2.24 99.20 40.46 92.86 36.80 73.11 66.15 73.93
ATOM (q=0.125) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71
ATOM (q=0.25) 2.34 99.12 22.71 95.29 24.93 94.83 41.58 91.56
ATOM (q=0.5) 4.03 98.97 33.93 93.51 22.39 95.16 45.11 90.56
ATOM (q=0.75) 5.35 98.77 41.02 92.78 21.87 93.37 43.64 91.98

CIFAR-100

ATOM (q=0.0) 44.38 91.92 99.76 60.12 68.32 65.75 99.80 49.85
ATOM (q=0.125) 26.91 94.97 98.35 71.53 34.66 87.54 98.42 68.52
ATOM (q=0.25) 32.43 93.93 97.71 72.61 40.37 82.68 97.87 65.19
ATOM (q=0.5) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15
ATOM (q=0.75) 38.56 91.20 97.59 58.53 62.66 78.70 97.97 54.89

Table 5.3: Ablation study on q. We use DenseNet as network architecture. ↑ indicates
larger value is better, and ↓ indicates lower value is better. All values are percentages and
are averaged over six natural OOD test datasets mentioned in Section 5.4.1. Note: the
hyperparameter q is chosen on a separate validation set, which is different from test-time
OOD data.

Effect of sampling parameter q. Table 5.3 shows the performance with differ-
ent sampling parameter q. For all three datasets, training on auxiliary outliers
with large OOD scores (i.e., too easy examples with q = 0.75) worsens the per-
formance, which suggests the necessity to include examples on which the OOD
detector is uncertain. Interestingly, in the setting where the in-distribution data
and auxiliary OOD data are disjoint (e.g., SVHN/TinyImages), q = 0 is optimal,
which suggests that the hardest outliers are mostly useful for training. However,
in a more realistic setting, the auxiliary OOD data can almost always contain data
similar to in-distribution data (e.g., CIFAR/TinyImages). Even without removing
near-duplicates exhaustively, ATOM can adaptively avoid training on those near-
duplicates of in-distribution data (e.g. using q = 0.125 for CIFAR-10 and q = 0.5
for CIFAR-100).

Ablation on a different auxiliary dataset. To see the effect of the auxiliary dataset,
we additionally experiment with ImageNet-RC as an alternative. From results in
Table 5.4, we observe a consistent improvement of ATOM, and in many cases with
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

MSP 38.84 93.57 99.68 68.48 99.89 1.39 100.00 0.19
ODIN 31.45 93.52 97.11 63.21 99.86 0.61 100.00 0.05
Mahalanobis 22.80 95.57 93.14 60.78 97.33 8.89 99.89 0.23
SOFL 0.02 99.99 5.93 98.57 58.53 68.85 67.34 61.42
OE 0.13 99.96 15.76 97.51 68.76 49.57 98.80 6.21
ACET 0.31 99.94 29.02 95.65 2.37 99.51 30.58 95.20
CCU 0.17 99.96 18.64 96.94 45.38 69.14 92.30 20.88
ROWL 2.04 98.87 55.03 72.37 77.24 61.27 99.79 50.00
ATOM (ours) 0.02 99.99 7.03 98.38 0.14 99.95 7.30 98.32

CIFAR-10

MSP 50.54 91.79 100.00 58.35 100.00 13.82 100.00 13.67
ODIN 21.65 94.66 99.37 51.44 99.99 0.18 100.00 0.01
Mahalanobis 26.95 90.30 91.92 43.94 95.07 12.47 99.88 1.58
SOFL 6.96 98.71 22.30 95.89 97.61 12.39 99.74 7.49
OE 9.70 98.35 49.84 91.76 91.30 43.88 98.82 31.12
ACET 10.72 98.01 53.85 90.19 17.10 96.01 55.21 89.78
CCU 10.30 98.25 44.42 92.34 93.02 20.88 99.17 9.95
ROWL 25.03 86.96 94.34 52.31 99.98 49.49 100.00 49.48
ATOM (ours) 4.08 99.14 16.17 96.94 7.46 98.50 18.35 96.60

CIFAR-100

MSP 78.05 76.11 100.00 30.04 100.00 2.25 100.00 2.06
ODIN 56.77 83.62 100.00 36.95 100.00 0.14 100.00 0.00
Mahalanobis 42.63 87.86 95.92 42.96 95.44 15.87 99.86 2.08
SOFL 20.95 96.06 73.33 83.31 93.41 12.90 99.98 3.36
OE 18.52 95.27 86.83 66.95 96.27 18.79 99.97 4.88
ACET 19.79 94.76 81.63 70.04 26.23 91.46 81.95 69.67
CCU 19.44 95.05 84.11 69.09 84.89 35.85 99.61 15.67
ROWL 93.35 53.02 100.00 49.69 100.00 49.69 100.00 49.69
ATOM (ours) 15.49 97.18 57.79 89.49 18.32 96.57 58.49 89.36

Table 5.4: Comparison with competitive OOD detection methods. We use ImageNet-RC as
the auxiliary OOD dataset for SOFL, OE, ACET, CCU, NTOM and ATOM. We use DenseNet
as network architecture for all methods. We evaluate on four types of OOD inputs: (1)
natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally
attacked OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better.
All values are percentages and are averaged over six natural OOD test datasets described
in Section 5.4.1. Bold numbers are superior results.

performance better than using TinyImages. For example, on CIFAR-100, the FPR
under natural OOD inputs is reduced from 32.30% (w/ TinyImages) to 15.49% (w/
ImageNet-RC). Interestingly, in all three datasets, using q = 0 (hardest outliers)
yields the optimal performance since there are substantially fewer near-duplicates
between ImageNet-RC and in-distribution data. This ablation suggests that ATOM’s
success does not depend on a particular auxiliary dataset.
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5.5 Theoretical Analysis
In this section, we provide theoretical insight on mining informative outliers for
robust OOD detection. We proceed with a brief summary of our key results.

Results overview. At a high level, our analysis provides two important insights.
First, we show that with informative auxiliary OOD data, less in-distribution data
is needed to build a robust OOD detector. Second, we show using outlier mining
achieves a robust OOD detector in a more realistic case when the auxiliary OOD
data contains many outliers that are far from the decision boundary (and thus non-
informative), and may contain some in-distribution data. The above two insights
are important for building a robust OOD detector in practice, particularly because
labeled in-distribution data is expensive to obtain while auxiliary outlier data is
relatively cheap to collect. By performing outlier mining, one can effectively reduce the
sample complexity while achieving strong robustness. We provide the main results and
intuition here and refer readers to Appendix C.1 for the details and the proofs.

5.5.1 Setup

Data model. To establish formal guarantees, we use a Gaussian N(µ,σ2I) to model
the in-distribution PX and the test OOD distribution can be any distribution largely
supported outside a ball around µ. We consider robust OOD detection under
adversarial perturbation with bounded ℓ∞ norm, i.e., the perturbation ∥δ∥∞ ⩽ ϵ.
Given µ ∈ Rd,σ > 0,γ ∈ (0,

√
d), ϵτ > 0, we consider the following data model:

• PX (in-distribution data) is N(µ,σ2I). The in-distribution data {xi}
n
i=1 is

drawn from PX.

• QX (out-of-distribution data) can be any distribution from the family Q =

{QX : Prx∼QX [∥x− µ∥2 ⩽ τ] ⩽ ϵτ}, where τ = σ
√
d+ σγ+ ϵ

√
d.

• Hypothesis class of OOD detector: G = {Gu,r(x) : Gu,r(x) = 2 · I[∥x− u∥2 ⩽

r] − 1,u ∈ Rd, r ∈ R+}.
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Here, γ is a parameter indicating the margin between the in-distribution and OOD
data, and ϵτ is a small number bounding the probability mass the OOD distribution
can have close to the in-distribution.

Metrics. For a detector G, we are interested in the False Negative Rate FNR(G)

and the worst False Positive Rate supQX∈Q
FPR(G;QX,Ω∞,ϵ(x)) over all the test

OOD distributions Q under ℓ∞ perturbations of magnitude ϵ. For simplicity, we
denote them as FNR(G) and FPR(G;Q).

While the Gaussian data model may be simpler than the practical data, its
simplicity is desirable for our purpose of demonstrating our insights. Finally, the
analysis can be generalized to mixtures of Gaussians which better models real-world
data.

5.5.2 Learning with Informative Auxiliary Data

We show that informative auxiliary outliers can reduce the sample complexity for
in-distribution data. Note that learning a robust detector requires to estimate µ

to distance γσ, which needs Θ̃(d/γ2) in-distribution data, for example, one can
compute a robust detector by:

u = x̄ =
1
n

n∑
i=1

xi, r = (1 + γ/4
√
d)σ̂, (5.5)

where σ̂2 = 1
n

∑n
i=1 ∥xi − x̄∥2

2. Then we show that with informative auxiliary data,
we need much less in-distribution data for learning. We model the auxiliary data
UX as a distribution over the sphere {x : ∥x− µ∥2

2 = σ2
od} for σo > σ, and assume its

density is at least η times that of the uniform distribution on the sphere for some
constant η > 0, i.e., it’s surrounding the boundary of PX. Given {xi}

n
i=1 from PX and

{x̃i}
n ′

i=1 from UX, a natural idea is to compute x̄ and r as above as an intermediate
solution, and refine it to have small errors on the auxiliary data under perturbation,
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i.e., find u by minimizing a natural “margin loss”:

u = arg min
p:∥p−x̄∥2⩽s

1
n ′

n ′∑
i=1

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t] (5.6)

where s, t are hyper-parameters to be chosen. We show that with Õ(d/γ4) in-
distribution data and sufficient auxiliary data can give a robust detector. See proof
in Appendix C.1.2.

5.5.3 Learning with Informative Outlier Mining

In this subsection, we consider a more realistic data distribution where the auxiliary
data can contain non-informative outliers (far away from the boundary), and in
some cases mixed with in-distribution data. The non-informative outliers may not
provide useful information to distinguish a good OOD detector statistically, which
motivates the need for outlier mining.

Uninformative outliers can lead to bad detectors. To formalize, we model the non-
informative (“easy" outlier) data asQq = N(0,σ2

qI), where σq is large to ensure they
are obvious outliers. The auxiliary data distribution Umix is then a mixture of UX,
Qq and PX, where Qq has a large weight. Formally, Umix = νUX +(1− 2ν)Qq+νPX

for a small ν ∈ (0, 1). Then we see that the previous learning rule cannot work:
those robust detectors (with u of distance O(σγ) to µ) and those bad ones (with u

far away from µ) cannot be distinguished. There is only a small fraction of auxiliary
data from UX for distinguishing the good and bad detectors, while the majority
(those from Qq) do not differentiate them and some (those from PX) can even
penalize the good ones and favor the bad ones.

Informative outlier mining improves the detector with reduced sample complex-
ity. The above failure case suggests that a more sophisticated method is needed.
Below we show that outlier mining can help to identify informative data and im-
prove the learning performance. It can remove most data outside UX, and keep the
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data from UX, and the previous method can work after outlier mining. We first
use in-distribution data to get an intermediate solution x̄ and r by equations (5.5).
Then, we use a simple thresholding mechanism to only pick points close to the
decision boundary of the intermediate solution, which removes non-informative
outliers. Specifically, we only select outliers with mild “confidence scores” w.r.t. the
intermediate solution, i.e., the distances to x̄ fall in some interval [a,b]:

S := {i : ∥x̃i − x̄∥2 ∈ [a,b], 1 ⩽ i ⩽ n ′} (5.7)

The final solution uom is obtained by solving (5.6) on only S instead of all auxiliary
data. We can prove:

Proposition 5. (Error bound with outlier mining.) Suppose σ2γ2 ⩾ Cϵσod and
σ
√
d + Cσγ2 < σo

√
d < Cσ

√
d for a sufficiently large constant C, and σq

√
d >

2(σo
√
d + ∥µ∥2). For some absolute constant c and any α ∈ (0, 1), if the number of

in-distribution data n ⩾ Cd
γ4 log 1

α
and the number of auxiliary data n ′ ⩾ exp(Cγ4)

ν2η2 log dσ
α

,
then there exist parameter values s, t,a,b such that with probability ⩾ 1 − α, the detector
Guom,r computed above satisfies:

FNR(Guom,r) ⩽ exp(−cγ2), FPR(Guom,r;Q) ⩽ ϵτ.

This means that even in the presence of a large amount of uninformative or even
harmful auxiliary data, we can successfully learn a good detector. Furthermore,
this can reduce the sample size n by a factor of γ2. For example, when γ = Θ(d1/8),
we only need n = Θ̃(

√
d), while in the case without auxiliary data, we need n =

Θ̃(d3/4).

Remark. We note that when UX is as ideal as the uniform distribution over the
sphere (i.e., η = 1), then we can let u be the average of points in S after mining,
which will require n ′ = Θ̃(d/(ν2γ2)) auxiliary data, much less than that for more
general η. We also note that our analysis and the result also hold for many other



86

auxiliary data distributions Umix, and the particular Umix used here is for the ease
of explanation; see Appendix C.1 for more discussions.

5.6 Related Work
OOD detection. Hendrycks and Gimpel (2017) introduced a baseline for OOD
detection using the maximum softmax probability from a pre-trained network.
Subsequent works improve the OOD uncertainty estimation by using deep ensem-
bles (Lakshminarayanan et al., 2017), the calibrated softmax score (Liang et al.,
2018), the Mahalanobis distance-based confidence score (Lee et al., 2018b), as well
as the energy score (Liu et al., 2020). Some methods regularize the model with aux-
iliary anomalous data that were either realistic (Hendrycks et al., 2019b; Mohseni
et al., 2020; Papadopoulos et al., 2021) or artificially generated by GANs (Lee
et al., 2018a). Several other works (Bevandić et al., 2018; Malinin and Gales, 2018;
Subramanya et al., 2017) also explored regularizing the model to produce lower
confidence for anomalous examples. Recent works have also studied the computa-
tional efficiency aspect of OOD detection (Lin et al., 2021) and large-scale OOD
detection on ImageNet (Huang and Li, 2021).

Robustness of OOD detection. Worst-case aspects of OOD detection have been
studied in Hein et al. (2019); Sehwag et al. (2019). However, these papers are
primarily concerned with L∞ norm bounded adversarial attacks, while our evalua-
tion also includes common image corruption attacks. Besides, Hein et al.; Meinke
and Hein only evaluate adversarial robustness of OOD detection on random noise
images, while we also evaluate it on natural OOD images. Meinke and Hein have
shown the first provable guarantees for worst-case OOD detection on some balls
around uniform noise, and Bitterwolf et al. studied the provable guarantees for
worst-case OOD detection not only for noise but also for images from related but
different image classification tasks. This chapter proposes ATOM which achieves
state-of-the-art performance on a broader family of clean and perturbed OOD in-
puts. The key difference compared to prior work is introducing the informative
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outlier mining technique, which can significantly improve the generalization and
robustness of OOD detection.

Adversarial robustness. Adversarial examples (Biggio et al., 2013a; Goodfellow
et al., 2015; Papernot et al., 2016; Szegedy et al., 2014) have received considerable
attention in recent years. Many defense methods have been proposed to mitigate
this problem. One of the most effective methods is adversarial training (Madry
et al., 2018), which uses robust optimization techniques to render deep learning
models resistant to adversarial attacks. Carmon et al.; Najafi et al.; Uesato et al.;
Zhai et al. showed that unlabeled data could improve adversarial robustness for
classification.

Hard example mining. Hard example mining was introduced in Sung (1995) for
training face detection models, where they gradually grew the set of background
examples by selecting those examples for which the detector triggered a false alarm.
The idea has been used extensively for object detection literature (Felzenszwalb
et al., 2009; Gidaris and Komodakis, 2015; Shrivastava et al., 2016). It also has
been used extensively in deep metric learning (Cui et al., 2016; Harwood et al.,
2017; Simo-Serra et al., 2015; Suh et al., 2019; Wang and Gupta, 2015) and deep
embedding learning (Duan et al., 2019; Smirnov et al., 2018; Wu et al., 2017; Yuan
et al., 2017). Although hard example mining has been used in various learning
domains, to the best of our knowledge, we are the first to explore it to improve the
robustness of out-of-distribution detection.

5.7 Conclusion
In this chapter, we proposed Adversarial Training with informative Outlier Mining
(ATOM), a method that enhanced the robustness of the OOD detector. We showed
the merit of adaptively selecting the OOD training examples which the OOD detec-
tor was uncertain about. Extensive experiments showed ATOM could significantly
improve the decision boundary of the OOD detector, achieving state-of-the-art
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performance under a broad family of clean and perturbed OOD evaluation tasks.
We also provided a theoretical analysis that justified the benefits of outlier mining.
Further, our unified evaluation framework allowed future research to examine the
robustness of the OOD detector. We hoped our research could raise more attention
to a broader view of robustness in out-of-distribution detection.
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6 detecting errors and estimating accuracy on
unlabeled data with self-training ensembles

Contribution statement. This chapter is joint work with Frederick Liu, Besim
Avci, Xi Wu, Yingyu Liang, and Somesh Jha. The author Jiefeng Chen proposed
the method, contributed to part of the theoretical analysis, and completed all the
experiments. The paper version of this chapter appeared in NeurIPS 2021 (Chen
et al., 2021b).

6.1 Introduction
Data distribution in the real world may be wildly different from the training dataset
for various reasons such as covariate shift due to domain divergence, corruption of
images due to weather conditions, or out-of-distribution test inputs. When facing
these issues, a deployed deep learning model can have unexpected performance
drop on the test data. This performance degradation can be mitigated by test
data annotation, which may be costly. Hence, estimating the accuracy of a pre-
trained model on the unlabeled test data provides an alternative to avoid the cost
when it is not necessary. Furthermore, it is beneficial to estimate the correctness
of the predictions on individual points. This leads to an even more challenging
task of error detection, which aims to identify points in the unlabeled test set that
are mis-classified by the pre-trained model. Such a finer-grained estimation can
facilitate a further improvement of the pre-trained model (e.g., manually label those
mis-classified data points and retrain the model on them).

While there have been previous attempts to address accuracy estimation or the
broader problem of error detection, their successes usually rely on some conditions
or assumptions that may not hold in practice. For example, a natural approach
is to use confidence based metrics to measure the performance of the pre-trained
model, e.g., as in Elsahar and Gallé (2019). If the model is well-calibrated on the
test data, then the average confidence approximates its accuracy. However, it has
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been observed that many machine learning systems, in particular modern neural
networks, are poorly calibrated, especially on test data with distribution shift (Guo
et al., 2017; Ovadia et al., 2019). Another method is to learn a regression function
that takes statistics about the model and the test data as input, and predicts the
performance on the test data (Elsahar and Gallé, 2019; Schelter et al., 2020). This
requires training on labeled data from various data distributions, which is very
expensive or even impractical. Furthermore, the performance predictor trained on
the labeled data may not generalize to unknown data distributions. Recent work
by Chuang et al. (2020) proposes to learn a “check” model using domain-invariant
representation and use it as a proxy for the unknown true test labels to estimate the
performance via error detection. It relies on the success of the domain-invariant
representation methods to obtain a highly accurate check model on the test data.
Hence, the check model performance suffers when domain-invariant representation
is not accurate in circumstances such as test data having outlier feature vectors or
different class probabilities than the training data.

In this chapter, we propose a principled and practically effective framework
for the challenging tasks of accuracy estimation and error detection (Section 6.4).
The framework makes a novel use of the self-training technique on ensembles for
these tasks. It first learns an ensemble of models to identify some mis-classified
points. Then it assigns pseudo-labels to these points and uses self-training with
these pseudo-labeled data to identify more mis-classified points. We also provide
provable guarantees for the framework (Section 6.5). Our analysis shows that it
provably outputs an accurate estimate of the accuracy as well as the mis-classified
points, under mild practical conditions: the ensemble make small errors on the test
inputs correctly classified by the model f, mostly disagree with f on the current
identified mis-classified inputs, and are correct or have diverse predictions on
the remaining inputs. These conditions can be readily satisfied by deep learning
model ensembles. Furthermore, they have no explicit assumptions on the test
distribution and thus the framework can be instantiated by incorporating properly
designed ensemble methods for different settings (Section 6.6). Experimental
results on 59 tasks over five dataset categories including image classification and
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sentiment classification datasets show that our method achieves state-of-the-art on
both accuracy estimation and error detection (Section 6.7). The experiments also
provide positive support for our analysis, verifying the conditions and implications.

6.2 Related Work
Confidence Estimation and Error Detection. Recently, estimating model confi-
dence has been an important area of research because of the perceived relationship
between model uncertainty and trusting its predictions (Lo Piano, 2020). However,
modern neural networks have been observed to be poorly calibrated (e.g. they may
make wrong predictions with very high confidence) (Guo et al., 2017), especially
on distributions with dataset shift (Ovadia et al., 2019). Many approaches have
been proposed to address this issue, such as Temperature Scaling (Guo et al., 2017),
Monte-Carlo Dropout (Gal and Ghahramani, 2016) and Deep Ensemble (Lakshmi-
narayanan et al., 2017), but the challenge still remains. A similar challenge appears
in error detection, where the goal is to identify erroneous predictions given a test
set. Combining these two problems, some early work uses confidence estimates
to detect incorrect predictions. For example, Hendrycks and Gimpel proposed to
use maximum softmax probability to detect misclassified examples. Corbière et al.
proposed True Class Probability for failure prediction. Jiang et al. proposed to use
Trust Score to estimate the confidence in model predictions. These methods require
a robust estimate of confidence, and an empirically chosen threshold that is mostly
problem- and model-dependent, to identify error data points. Recently, Chuang
et al. proposed to use a check model to predict mis-classification.

Unsupervised Accuracy Estimation. The problem of unsupervised accuracy (or
risk) estimation has received relatively scant attention from the research commu-
nity. Donmez et al. offered a solution with certain assumptions on the marginal
output distribution p(y). Platanios et al. proposed to estimate the accuracies of
the approximations to some target Boolean functions based on the agreement rates
method. A follow-up work by Platanios et al. (2017) also considered the “multiple
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approximations” problem setting where the target classes may be tied together
through logical constraints, and proposed an efficient method to estimate the accu-
racy of classifiers using only unlabeled data. Jaffe et al. proposed a spectral-based
approach to estimate the accuracies of multiple classifiers, mainly in the binary
case and with some assumptions on the classifiers. Steinhardt and Liang proposed
a method to estimate the model’s error on distributions different from the training
distribution by assuming a conditional independence structure of the data. These
problem settings are different from ours and the constraints may not be satisfied
by the data and model we consider. Recently, Elsahar and Gallé studied three
families of methods (H-divergence, reverse classification accuracy and confidence
measures) and demonstrated how they could be used to predict the performance
drop. Schelter et al. also proposed to learn a performance predictor on the statistics
of model outputs with an assumption that they know the typical cases of dataset
shift in advance. Similarly, Deng and Zheng proposed to train regression models
on the feature statistics of the datasets sampled from a meta-dataset to predict
model performance and Deng et al. proposed to utilize linear regression to es-
timate classifier performance from the accuracy of rotation prediction. Guillory
et al. proposed to use difference of confidences to estimate classifier performance.
Chen et al. proposed MANDOLINE that utilizes user-specified slicing functions
to improve the importance of weighting to make the accuracy estimation more
accurate. With the most similar setup to ours, Chuang et al. used a set of domain-
invariant predictors as a proxy for the unknown target labels to estimate a given
model’s performance under distribution shift. In a concurrent work, Jiang et al.
empirically showed that the test accuracy of deep networks can be estimated by
measuring disagreement rate between a pair of models independently trained via
Stochastic Gradient Descent (SGD) and theoretically related this phenomenon to
the well-calibrated nature of ensembles of SGD-trained models.
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6.3 Problem Statement
Consider the classification problem with sample space X and label space Y. Let
Dtr be a set of labeled data from the training distribution PX,Y . Let U = {(x,yx)}
be a set of labeled data from the test distribution QX,Y , where yx is the label for
x. Let UX = {x : (x,yx) ∈ U} be the set of input feature vectors in U. Define the
accuracy of a model f on U as: acc(f,U) := 1

|U|

∑
(x,yx)∈U I[f(x) = yx], where |U|

is the cardinality of the set U. When clear from the context, we will omit U and
simply write acc(f). Given a model f : X→ Y trained on Dtr, together with Dtr and
UX, the goal of unsupervised accuracy estimation is to get an estimate ˆacc so that the
absolute estimation error | ˆacc − acc(f)| is small. We assume access to the training
data Dtr to help in estimating acc(f).

Though acc(f) is usually sufficient to provide an estimate of whether the model
could perform well on U, it would be beneficial if the algorithm could also provide
an estimate of the correctness of individual points so that we can know where to
improve the model f. Thus, we also consider a more challenging task of identifying
the mis-classified points in U: WX := {x : (x,yx) ∈ U, f(x) ̸= yx}. Given f, Dtr and
UX, the goal of error detection is to identify a subset RX ⊆ UX, such that |WX△RX| is
small, where WX△RX := (WX \ RX) ∪ (RX \WX).

6.4 Algorithmic Framework via Self-Training
Ensembles

Intuition. We consider the approach of learning a “check model” h and using the
disagreement betweenh and the pre-trained model f for our tasks. The fundamental
idea is to identify a point x as mis-classified if h disagrees with f on x. To derive
our method, we note a simple fact: the disagreement approach succeeds if (1) h

agrees with f on points where f is correct and (2) h disagrees with f on points
where f is incorrect. Our first key observation is that usually (1) can be satisfied
approximately in practice. Intuitively, this is because h and f use the same training
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data, and h can be trained to be correct on the subset of the instance space where f is
correct. However, (2) may not be easily satisfied (e.g., h can make similar mistakes
as f), which leads to an overestimation of the accuracy. We thus focus on improving
the disagreement on mis-classified points.

To disagree with f on a mis-classified test input x, we have two ways: (1) make
the check model h correct on x; (2) diverse ensembles. The first way may be
achievable when the training data contains information for prediction on x. A
prototypical example is when the test inputs are corruption of clean data from
the training distribution (e.g., the training data are images in sunny days while
the test inputs are ones in rainy days), and techniques like unsupervised domain
adaptation can be used to improve the prediction on such test inputs. However,
correct predictions on x may not be feasible in many interesting scenarios due
to insufficient information (e.g., the test image in the open world can contain an
object that is never seen in the training data ). Fortunately, it has been shown that
for such inputs, one can obtain an ensemble of models with diverse predictions
(e.g.,Lakshminarayanan et al. (2017)). This then gives the second way to achieve
disagreement: using diverse ensembles. Therefore, our method will learn an
ensemble of models (instead of one check model) and identify a point x as mis-
classified if the ensemble disagree with f on x (i.e., a large fraction of the models
in the ensemble disagree with f on their predictions on x). A mis-classified test
input, x, will be successfully identified, if a majority of the ensemble models predict
correctly, or they have large diversity on x.

However, the ensemble may only be able to identify a subset of the mis-classified
points. Therefore, we propose to iteratively identify more and more mis-classified
points by self-training. For each mis-classified data point x identified by the ensemble,
we assign it a pseudo-label that is different from f(x) (e.g. use the majority vote
of the ensemble or a random label as the pseudo-label). Then we can train (with
regularization) a new ensemble to encourage their disagreement with f on the
pseudo-labeled data R (e.g., use a supervised loss on R with a small weight as
the regularization). Note that the pseudo-labels may not all be correct, and we
do not need the new ensemble to exactly fit the pseudo-labels. We only need
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Framework 5 Error Detection and Unsupervised Accuracy Estimation via Self-
Training Ensembles
Require: A training dataset Dtr, an unlabeled test dataset UX, a pre-trained model

f, an ensemble learning method T, and a hyper-parameter τ
1: Initialize R = ∅
2: for t = 1, 2, · · · , T do
3: Use T to generate an ensemble T(Dtr,UX,R).
4: Identify those points on which the ensemble and f disagree as mis-classified

points:

RX := {x ∈ UX : Pr
h∼T

{h(x) = f(x)} < τ}.

5: For each x ∈ RX, assign a pseudo-label ỹx ̸= f(x) (e.g., using the majority
vote of the ensemble or a random label). And set R = {(x, ỹx) : x ∈ RX}.

6: end for
Ensure: The estimated mis-classified points RX, and the estimated accuracy |UX\RX|

|UX|
.

the new ensemble to mostly disagree with f on R so that they still identify R as
mis-classified points. Furthermore, self-training can help the ensemble identify
more mis-classified points. When some pseudo-labels are correct, we observe that
these additional data can help the new ensemble become more accurate and thus
help with identifying more mis-classified points. We also observe that the new
ensemble will be less diverse on the pseudo-labeled data and thus have diversity
on the remaining test inputs.

Our framework. We assume access to an ensemble learning method T (specific
instantiations will be given later) that takes as input a training set Dtr, an unlabeled
test set UX, and a pseudo-labeled set R (and potentially some other parameters) and
outputs an ensemble, which is a distribution over functions h : X→ Y.1 We denote
the generated ensemble as T(Dtr,UX,R) and write h ∼ T(Dtr,UX,R) for sampling h

1This includes one single h as a special case. It also includes the case of h with probabilistic
outputs, i.e., h(x) = [h1(x), . . . ,hK(x)] for Y = {1, 2, . . . ,K}, where hi(x) is the predicted probability
of x from class i. One can think of such an h as an ensemble T where Prg∼T[g(x) = i] = hi(x).
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from the ensemble, or simply h ∼ T when clear from context.
We are now ready to describe our method (Framework 5). Our framework

begins with an empty set of pseudo-labeled data R, and executes in T iterations. In
each iteration, it generates an ensemble T(Dtr,UX,R) and then uses the ensemble
to construct a new pseudo-labeled dataset R for the next iteration: let RX be those
points x ∈ UX where the agreement rate between the ensemble and f is below a
threshold, assign a pseudo-label ỹx different from f(x), and let R be the set of these
pseudo-labeled data. Finally, it outputs RX as the mis-classified points and outputs
the fraction of points outside RX as the accuracy.

Some existing work also use models’ disagreement to estimate the error on the
unlabeled data in different ways. For example, Platanios et al. consider a set of
pre-trained models and aim to estimate the error for each model; Chuang et al. learn
a single check model and compare it with f. On the other hand, our novelty is using
ensembles to identify a set of mis-classified points and further using self-training
for learning the ensembles. Note that our self-training ensembles is different from
standard self-training and ensemble: standard self-training+ensemble aims to get
accurate predictions while ours is to increase disagreement on mis-classified points.

6.5 Theoretical Analysis
As described in the intuition above, our framework succeeds if in each iteration,
the ensemble satisfy the following conditions: (A) correct on UX \WX, (B) mostly
disagree with f on RX, and (C) either correct or diverse on WX \ RX. This section
first introduces notions formalizing these conditions and then provides provable
guarantees under these conditions. Here we focus on intuitions and provide the
proofs and more discussion in Appendix D.1.

Notations. Recall that the ensemble method T outputs a distribution over models,
and we write h ∼ T for sampling a model h from this distribution. Let Eh denote the
expectation over this output distribution, and Ex denote the average over x ∈ UX

or (x,yx) ∈ U.
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Formalizing Condition (A). A key observation we make in practice is that usually
on points where f is correct, the ensemble models are also correct. Intuitively, this
is because the only labeled information for learning the ensemble is Dtr, while Dtr

is also used for learning f. For illustration, suppose f and the ensemble have zero
training errors on Dtr. When they are from hypothesis classes of bounded VC-
dimensions and the training set is large enough compared to the VC-dimensions,
standard error bounds show that the ensemble will have small errors on the subset
of the feature space {x ∈ X : f(x) = yx}, i.e., it will have small errors on points
where f is correct. To formalize this observation, we introduce the following notion.

Definition 6.1 (Error on Correct Points). Let ν denote the average probability of h ∼ T

making error on test inputs where the model f is correct: ν := Pr(x,yx)∼U,h∼T [h(x) ̸= yx |

f(x) = yx].

Formalizing Condition (B). We assume the new ensemble trained with regular-
ization on R will mostly disagree with f on RX. We define the following notion:

Definition 6.2 (Agreement on Pseudo-Labeled Data). Let γ denote the average proba-
bility of agreement between h ∼ T and f on RX: γ := Prx∼RX,h∼T {h(x) = f(x)}.

Formalizing Condition (C). Let GX denote the good points in WX \ RX on which
the ensemble will have correct predictions with high confidence, BX the remaining
bad points. Formally, we define: GX := {x ∈WX \ RX : Prh∼T{h(x) = yx} ⩾ 1 − ν}

and BX := WX \ (RX ∪GX).
(Here we choose the confidence level 1−ν for convenience, where ν is the error

on correct points. Other sufficiently high confidence levels can also be used with
slight change to the analysis.) We would like the ensemble to have large diversity
on BX.

Definition 6.3 (Diversity of Ensemble). Let σ2 denote the average probability of dis-
agreement between two ensemble models on BX: σ2 := Ex[σ2

x|x ∈ BX], where σ2
x :=

Prh1,h2∼T[h1(x) ̸= h2(x)].
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Provable Guarantees. Based on the above notions we obtain our guarantees:

Theorem 6.4. Assume in each iteration of the framework, τ =
√

1 − η for some η ∈
(0, 3Bη/4) where Bη := min{σ2, 1 − ν2}. Let σ2

L > 0 be a lower bound on the diversity σ2,
γ̃ > 0 be an upper bound on γ, and ν̃ be an upper bound on ν over all iterations. Then
for any δ ∈ (0,σ2

L/4), after at most ⌈1/δ⌉ iterations, we can get |UX\RX|

|UX|
approximates the

accuracy acc(f) and RX approximates the mis-classified points WX as follows:

∣∣∣∣acc(f) − |UX \ RX|

|UX|

∣∣∣∣ ⩽ max{ ν̃

1 − τ
(1 − ef), ϵef}, where ϵ :=

γ̃
τ

(
1 + ν̃

1−τ
1−ef
ef

)
σ2
L

4 − δ+ γ̃
τ

,

(6.1)

|WX△RX| ⩽
ν̃

1 − τ
|UX \WX|+ ϵ|WX|. (6.2)

Proof Sketch. Let’s first consider one iteration, assuming small ν,γ and large σ2.
Intuitively, on the correct points UX \WX, the ensemble have a small error ν and
thus disagree with f on only a few such points. On the old RX, the ensemble mostly
disagree with f(x); similarly on GX. On the remaining points BX, we show that if the
ensemble have large diversity, then their predictions must have large variances on
a significant subset of points and thus have large disagreement with f, facilitating
the detection. Overall, our framework can construct a new pseudo-labeled set
R ′
X that contains mostly mis-classified points and is also larger than the old RX

(Lemma D.1 in Appendix D.1). Therefore, each iteration can make some progress
by identifying more mis-classified points than before, and enough iterations achieve
the guarantees.

The theorem provides guarantees for general values of ν,γ and σ2. To get some
intuition, note that typically ef < τ and suppose we set τ = 3/4 and δ = γ̃/τ, then
the accuracy is estimated up to error max{ν̃, 16γ̃

3σ2
L
(ef + ν̃)}. When ν̃, γ̃ are small and

σ2
L is large, the error is small. Therefore, under mild conditions, our framework can

give a provable estimation of the accuracy and the mis-classified points up to small
errors.
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Algorithm 1 Error Detection and Unsupervised Accuracy Estimation via Self-
Training Ensembles
Require: Dtr, UX, f, ensemble method T, parameters T , N

1: Initialize R = ∅
2: for t = 1, 2, · · · , T do
3: Set {hi}Ni=1 = T(Dtr,UX,R,N, other parameters)
4: Let ỹx be the majority vote of {hi}Ni=1: ỹx := arg maxj∈Y

1
N

∑N
i=1 I[hi(x) = j].

5: Set R = {(x, ỹx) : x ∈ UX, ỹx ̸= f(x)}.
6: end for

Ensure: Estimated mis-classified points RX = {x : (x,y) ∈ R}, estimated accuracy
|UX\RX|

|UX|
.

The theorem formalizes that the framework can succeed under mild conditions
(A)(B)(C) on the ensembles, without explicit conditions on the data distributions
and the pre-trained model (note that the conditions on them are implicitly captured
in the mild conditions on the ensemble). The framework is thus flexible, and
different ensemble methods satisfying these conditions can be incorporated to
get concrete instantiations applicable to various settings. Indeed, the crux of our
framework is then to design ensemble methods meeting the conditions. This turns
out to be not difficult, in particular for deep learning pre-trained models and deep
learning ensemble models. Even an ensemble of deep networks simply trained
from random initialization works well. Two concrete instantiations are presented
in Section 6.6 below and evaluated in Section 6.7.

6.6 Instantiations of the Framework
Based on our framework, we propose Algorithm 1 for accuracy estimation and

error detection. It executes in T iterations. In each iteration, it trains an ensemble of
models {hi}Ni=1 and then uses the ensemble to construct the pseudo-labeled data.
Finally, it outputs RX as the set of mis-classified points and outputs the fraction
of points outside RX as the accuracy. The algorithm uses an intuitive heuristic to
implement the threshold on the agreement rate: it sets RX as the points x ∈ UX
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with f(x) different from the majority vote of the ensemble models. Empirically, we
observe that this leads to similar RX and thus similar results as explicit thresholding,
but is much more convenient.

While different ensemble methods T can be used in Algorithm 1, here we pro-
pose two concrete instantiations TRI and TRM based on the success conditions of our
framework.

Ensemble Method TRI. Algorithm 2 describes a natural method that trains the
models from different random initialization. It first trains h ′

i on Dtr (e.g., using
the same training algorithm as for f), to ensure that ensemble has small error on
points where f is correct. It then fine-tunes h ′

i on Dtr and R for one epoch to get
hi that mostly disagrees with f on RX. Finally, deep models trained from different
random initialization have been shown to be diverse on outlier data points (Laksh-
minarayanan et al., 2017; Fort et al., 2019). In summary, the ensemble constructed
can satisfy our three conditions.

Ensemble Method TRM. Algorithm 3 describes another method designed with the
representation matching technique for domain adaptation, which can potentially
improve the accuracy of the ensemble on some test inputs related to the training data
and thus satisfy our success condition (C) better. It requires the model architecture
to be c(ϕ(x)), i.e., a composition of a prediction function c and a representation
function ϕ. Beginning from a pre-trained model h0, it fine-tunes h0 for N epochs by
minimizing the loss on Dtr and R plus a representation matching loss α · d(pϕ

Dtr ,pϕUX),
and outputs the N checkpoint models at the end of each training epoch as the
ensemble. A key component of TRM is representation matching, which aims to learn
a function ϕ that minimizes d(pϕ

Dtr ,pϕUX). It has been shown that representation
matching can improve the accuracy on the test data from the target domain. Also, we
have observed that the checkpoint models can have diversity on the mis-classified
data points empirically. Thus, the ensemble constructed can satisfy our conditions.
For our experiments, we use the representation matching loss from the classic
DANN (Ajakan et al., 2014).
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Algorithm 2 TRI: Ensemble via Random Initialization
Require: Dtr, UX, R, N, parameter γ

1: Pre-train {h ′
i}
N
i=1 on Dtr from different random initialization

2: for i = 1, 2, . . . ,N do
3: Learn hi by fine-tuning h ′

i for one epoch by:

minimize
h

E(x,y)∈Dtr [ℓ(h(x),y)] + γ · E(x,y)∈R[ℓ(h(x),y)] (6.3)

4: end for
Ensure: The ensemble of models {hi}Ni=1

Algorithm 3 TRM: Ensemble via Representation Matching
Require: Dtr, UX, R, N, initial pre-trained model h0, parameters α,γ

// h0(x) = c(ϕ(x)) is a composition of a prediction function c and a representation
function ϕ

1: Fine-tune h0 for N epochs using the objective:

minimize
h

E(x,y)∈Dtr [ℓ(h(x),y)] + γ · E(x,y)∈R[ℓ(h(x),y)] + α · d(pϕ
Dtr ,pϕUX)

(6.4)

where d(pϕ
Dtr ,pϕUX) is the distance between the distribution of ϕ(x) on Dtr and

that on UX.
2: Use the N checkpoint models at the end of each training epoch as the model

ensemble {hi}
N
i=1.

Ensure: The ensemble of models {hi}Ni=1

6.7 Experiments
We perform experiments for unsupervised accuracy estimation and error detection
tasks on 59 pairs of training-test datasets from five dataset categories, including
image classification and sentiment classification datasets. In summary, our findings
are: (1) Our method achieves state-of-the-art results on both accuracy estimation
and error detection tasks than the existing methods. (2) Both ensemble and self-
training techniques have positive effects on the tasks and it is easy to pick suitable
hyper-parameters for our algorithms. (3) Empirical results show that the conditions
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made in our analysis hold approximately.

6.7.1 Setup

We briefly describe the experiment setup here.

Dataset. The task needs a pair of training-test datasets Dtr and UX. We use five
dataset categories, each containing multiple training-test dataset pairs. Specifi-
cally, we use the following dataset categories: Digits (including MNIST (LeCun,
1998), MNIST-M (Ajakan et al., 2014), SVHN (Netzer et al., 2011), USPS (Hull,
1994)), Office-31 (Saenko et al., 2010), CIFAR10-C (Krizhevsky et al., 2009), iWild-
Cam (Beery et al., 2020) and Amazon Review (Blitzer et al., 2007). Digits has 12
dataset pairs, Office-31 has 6, CIFAR10-C has 19, iWildCam has 10 and Amazon
Review has 12.

Evaluation Metrics. We use absolute estimation error for accuracy estimation
and use F1 score for error detection.

Our Models. On each dataset category, we design a neural network architecture
for the DANN training algorithm (Ajakan et al., 2014), which is named DANN-arch.
It contains an encoder, a predictor branch and a discriminator branch. For TRM, we
use the DANN-arch for the ensemble {hi} and pre-train the initial model h0 on Dtr

and UX using DANN algorithm. For {hi} in TRI, we also use the DANN-arch. The
model f is pre-trained on D and we mainly consider two kinds of architectures
for it: one is the DANN-arch (i.e., the model f shares the same architecture as the
check model h); the other is a typical deep neural network (DNN).

Hyper-parameters. The hyper-parameters T , N and γ can be easily selected since
a broad range of values can lead to good results. Based on our observation, larger
T and N can lead to better results. In our experiments, we set T = 5 and N = 5 by
considering the computational cost (on Amazon Review, we set N = 20). We set
γ = 0.1 and set α following the domain adaptation methods.
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Baselines. For accuracy estimation, we consider Proxy Risk (Chuang et al., 2020),
Average Confidence (Avg Conf) (Elsahar and Gallé, 2019), and Ensemble Average
Confidence (Ens Avg Conf). For error detection, we consider Proxy Risk, Maximum
Softmax Probability (MSP) (Hendrycks and Gimpel, 2017), and Trust Score (Jiang
et al., 2018). Although Proxy Risk and our method share some similar ideas such
as the use of check models, disagreement and representation matching, they have
some major differences in the key ideas, training objectives, and the implementation
of training objectives.

6.7.2 Results

Performance for Accuracy Estimation. The results in Table 6.1 show that our
method (with TRM) achieves significantly better results across various dataset
categories compared to existing methods. Specifically, on Digits and CIFAR10-C, it
outperforms current state-of-the-art method Proxy Risk significantly (e.g. reduce
the error by > 40%). On Office-31 and Amazon Review, it also outperforms the
others and has a large advantage on the pre-trained models using DANN-arch.

We would like to emphasize the results on the challenging dataset iWildCam.
Our method (with either TRI or TRM) outperforms the other methods significantly
(e.g., reduce the error by > 70%), and the instantiation with TRI gets the best
results. Note that on iWildCam, the label distribution of the test data is imbalanced
and different from that of the training data. In such a case, the representation
matching technique will fail since the representations of the two domains may be
misaligned. Thus, the performance of Proxy Risk becomes worse, as it relies on
representation matching. Our method with TRM also uses DANN in the ensemble
method, but performs significantly better than Proxy Risk, since the diversity helps
satisfy condition (C) though the representation matching fails to improve accuracy
there. This shows that our ensemble and self-training techniques could alleviate the
drawbacks of representation matching in such cases. Furthermore, our method with
TRI achieves even better results, which demonstrates the flexibility and effectiveness
of our framework.
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Task Accuracy Estimation Error Detection
Metric Absolute Estimation Error ↓ F1 score ↑

Dataset Method Model f Method Model f
Typical DNN DANN-arch Typical DNN DANN-arch

Digits

Avg Conf 0.404±0.180 0.350±0.230 MSP 0.467±0.195 0.485±0.209
Ens Avg Conf 0.337±0.229 0.246±0.230 Trust Score 0.496±0.195 0.484±0.187
Proxy Risk 0.085±0.142 0.095±0.181 Proxy Risk 0.844±0.118 0.796±0.155
Ours (RI) 0.164±0.218 0.087±0.077 Ours (RI) 0.698±0.235 0.701±0.126
Ours (RM) 0.023±0.020 0.024±0.022 Ours (RM) 0.881±0.084 0.841±0.112

Office-31

Avg Conf 0.054±0.044 0.259±0.134 MSP 0.281±0.266 0.584±0.128
Ens Avg Conf 0.080±0.041 0.281±0.136 Trust Score 0.401±0.240 0.559±0.143
Proxy Risk 0.033±0.012 0.042±0.034 Proxy Risk 0.605±0.177 0.629±0.140
Ours (RI) 0.051±0.038 0.044±0.031 Ours (RI) 0.715±0.124 0.770±0.027
Ours (RM) 0.029±0.021 0.018±0.023 Ours (RM) 0.767±0.052 0.790±0.087

CIFAR10-C

Avg Conf 0.353±0.175 0.369±0.176 MSP 0.505±0.043 0.550±0.043
Ens Avg Conf 0.237±0.144 0.237±0.133 Trust Score 0.494±0.045 0.568±0.060
Proxy Risk 0.053±0.070 0.052±0.070 Proxy Risk 0.850±0.107 0.843±0.101
Ours (RI) 0.149±0.089 0.197±0.115 Ours (RI) 0.654±0.064 0.568±0.063
Ours (RM) 0.022±0.009 0.029±0.012 Ours (RM) 0.872±0.083 0.860±0.091

iWildCam

Avg Conf 0.388±0.045 0.395±0.043 MSP 0.692±0.006 0.741±0.009
Ens Avg Conf 0.177±0.025 0.158±0.020 Trust Score 0.717±0.009 0.737±0.010
Proxy Risk 0.119±0.043 0.094±0.036 Proxy Risk 0.755±0.038 0.773±0.039
Ours (RI) 0.015±0.008 0.007±0.004 Ours (RI) 0.792±0.013 0.806±0.012
Ours (RM) 0.035±0.022 0.026±0.024 Ours (RM) 0.796±0.014 0.809±0.010

Amazon Review

Avg Conf 0.290±0.043 0.310±0.045 MSP 0.420±0.022 0.218±0.031
Ens Avg Conf 0.229±0.038 0.217±0.036 Trust Score 0.414±0.024 0.237±0.044
Proxy Risk 0.021±0.014 0.037±0.076 Proxy Risk 0.417±0.042 0.434±0.046
Ours (RI) 0.065±0.037 0.062±0.051 Ours (RI) 0.384±0.032 0.453±0.037
Ours (RM) 0.018±0.010 0.022±0.011 Ours (RM) 0.426±0.036 0.440±0.037

Table 6.1: Results for unsupervised accuracy estimation and error detection. For typi-
cal DNN, We use CNN-BN for Digits, ResNet50 for Office-31, ResNet34 for CIFAR10-C,
ResNet50 for iWildCam, and Fully Connected Network for Amazon Review. We show the
mean and standard deviation of absolute estimation error and F1 score (mean±std). The
numbers are calculated over the training-test dataset pairs in each dataset category. Bold
numbers are the superior results.
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The results for each dataset pair are plotted in Figure 6.1. The plots show
that proxy risk tends to underestimate the accuracy. This is because proxy risk
maximizes disagreement which can overly suppress the accuracy. While the average
confidence methods tend to overestimate the accuracy, because the model f tends to
be overconfident on the data with dataset shift, even when this issue gets rectified
in the ensemble average confidence method. In comparison, our method with TRM

exhibits a clear advantage.

Performance for Error Detection. Table 6.1 shows that our method with TRM

outperforms existing methods on all dataset categories. Specifically, our method
improves the F1 score by at least 4.4% on Digits, by at least 25.6% on Office-31, by
at least 2.0% on CIFAR10-C, by at least 4.7% on iWildCam and by at least 1.4% on
Amazon Review. This shows the advantages of our method to identify error points
in the unlabeled test dataset.

Ablation Studies. To study the effect of using ensembles, we vary the ensemble
size N (N = 1 means one single h, without ensemble) in our method with TRM.
Similarly, for self-training, we vary the self-training iteration number T (T = 1
means no self-training). Figure 6.2 shows their effect on the average F1 score: both
ensemble and self-training techniques have positive effects for identifying error
points and thus also for accuracy estimation. Moreover, increasing T and N can
lead to further improvement. In addition to N and T , we similarly exam the effect
of the last hyper-parameter γ. The figure shows that a wide range of γ can lead to
good results, so it is easy to pick a suitable γ.

Validating the Theoretical Analysis. Our analysis relies on three conditions
(A)(B)(C) stated in Section 6.5. The experimental results in Table 6.2 show
that empirically they are roughly satisfied. For example, for typical DNN f on
MNIST→MNIST-M, ν̃ = 3.39%, γ̃ = 0.73% while σ2

L = 26.58%. We note that our
theoretical analysis is for formalizing our intuition and is for the worst case. Even
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Dataset Category Digits Office-31
Dataset Pair M→MM M→U MM→U A→D D→W A→W
Actual Acc 27.19 67.56 60.04 76.31 95.97 72.96

Estimated Acc w/o self-training 33.05 70.30 69.76 80.52 95.85 74.34
Estimated Acc w/ self-training 27.50 68.21 64.28 78.11 95.09 70.57

ν̃ 3.15 2.18 4.22 6.16 2.17 11.11
γ̃ 0.57 0.90 3.82 1.92 0.20 0.29
σ2
L 26.54 12.89 24.57 15.61 8.80 14.67

Table 6.2: Empirical results to support the theoretical analysis. We use typical DNN as the
architecture for the model f. M is MNIST, MM is MNIST-M, U is USPS, A is Amazon, D is
Dslr and W is Webcam. The ensemble training algorithm we use is TRM. On Digits, we use
N = 10 and T = 3 while on Office-31, we use N = 15 and T = 2. All values are percentages.

when our assumptions are not fully satisfied on some complex datasets, our method
can still have empirical performance better than the error bound.

6.8 Discussions
While our framework is general and flexible when combined with different en-
semble methods, and it is easy to design ensemble methods satisfying the success
conditions, we note that some prior knowledge about the data is needed to achieve
the best performance. For example, iWildCam has imbalanced classes which hurt
representation matching and thus TRM, while TRI is more suitable for such data.
Different instantiations thus have their own limitations. For TRM, matching failure
can cause errors on f’s correct points, and too strong matching can decrease the
diversity since the models are too restricted. For TRI, it does not attempt to improve
the accuracy on the test inputs and relies only on diversity to satisfy condition
(C). Then it can have worse performance than TRM on test data with connection
to the training data that can be exploited. The success conditions we identified
can guide the design of different instantiations. We focus on ensembles of deep
learning models, since they readily satisfy the conditions. However, other ensemble
methods with other types of models may also be useful. We leave the exploration
for future work.
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6.9 Conclusion
In this chapter, we proposed a principled and practically effective framework that
simultaneously addressed two challenging tasks – unsupervised accuracy estimation
and error detection. Our theoretical analysis demonstrated that our framework
enjoyed provable guarantees for both accuracy estimation and error detection
under mild conditions readily satisfied by practical deep learning models. Along
with the framework, we proposed and experimented with two instantiations and
achieved state-of-the-art results on 59 tasks.
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Figure 6.1: Accuracy estimation detailed results for each dataset pair. We use typical
DNN as the architecture for the model f. We use symbols to represent training datasets
and colors to represent test datasets. For CIFAR10-C, there is only one training dataset
with multiple test datasets. The dashed line represents perfect prediction (target accuracy
= estimated accuracy). Points beneath (above) the dashed line indicate overestimation
(underestimation). The solid lines are regression lines of the results.
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Figure 6.2: Ablation study for the effect of ensemble and self-training techniques on Digits.
N is the number of models in the ensemble, T is the number of self-training iterations, and
γ is the weighting parameter for the loss term on the pseudo-labeled data. The ensemble
training algorithm we use is TRM.
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7 aspest: bridging the gap between active learning and
selective prediction

Contribution statement. This chapter is joint work with Jinsung Yoon, Sayna
Ebrahimi, Sercan O Arik, Somesh Jha, and Tomas Pfister. The author Jiefeng Chen
proposed the method and completed all the experiments.

7.1 Introduction
Deep Neural Networks (DNNs) have shown notable success in many applications
that require complex understanding of input data (He et al., 2016a; Devlin et al.,
2019; Hannun et al., 2014), including the ones that involve high-stakes decision
making (Yang, 2020). For safe deployment of DNNs in high-stakes applications, it
is typically required to allow them to abstain from their predictions that are likely to
be wrong, and ask humans for assistance (a task known as selective prediction) (El-
Yaniv et al., 2010; Geifman and El-Yaniv, 2017). Although selective prediction can
render the predictions more reliable, it does so at the cost of human interventions.
For example, if a model achieves 80% accuracy on the test data, an ideal selective
prediction algorithm should reject those 20% misclassified samples and send them
to a human for review.

Distribution shift can significantly exacerbate the need for such human inter-
vention. The success of DNNs often relies on the assumption that both training and
test data are sampled independently and identically from the same distribution.
In practice, this assumption may not hold and can degrade the performance on
the test domain (Barbu et al., 2019; Koh et al., 2021). For example, for satellite
imaging applications, images taken in different years can vary drastically due to
weather, light, and climate conditions (Koh et al., 2021). Existing selective pre-
diction methods usually rely on model confidence to reject inputs (Geifman and
El-Yaniv, 2017). However, it has been observed that model confidence can be poorly
calibrated, especially with distribution shifts (Ovadia et al., 2019). The selective
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classifier might end up accepting many mis-classified test inputs, making the pre-
dictions unreliable. Thus, selective prediction might yield an accuracy below the
desired target performance, or obtain a low coverage, necessitating significant
human intervention.

Low confidence
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predictor

Human 
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Unlabeled 
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t-th round (t+1)-th round

Update

Figure 7.1: Illustration of the active selective prediction problem, where active learning
is used to improve selective prediction under distribution shift. In this setting,
active learning selects a small subset of data for labeling which are used to improve
selective prediction on the remaining unlabeled test data. This yields more reliable
predictions and more optimized use of humans in the loop.

To improve the performance of selective prediction, one idea is to rely on ac-
tive learning and to have humans label a small subset of selected test data. The
correct labels provided by humans can then be used to improve the accuracy and
coverage (see Sec. 7.3.2) of selective prediction on the remaining unlabeled test
data, thus reducing the need for subsequent human labeling efforts. In separate
forms, selective prediction (Geifman and El-Yaniv, 2017; Geifman and El-Yaniv,
2019) and active learning (Settles, 2009) have been studied extensively, however, to
the best of our knowledge, we are the first to propose performing active learning to
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improve selective prediction jointly, with the focus on the major real-world chal-
lenge of distribution shifts. Active domain adaptation (Su et al., 2020; Fu et al., 2021;
Prabhu et al., 2021) is one area close to this setting, however, it does not consider
selective prediction. In selective prediction, not only does a classifier need to be
learned, but a selection scoring function also needs to be constructed for rejecting
misclassified inputs. Thus, going beyond conventional active learning methods
that focus on selecting examples for labeling to improve the accuracy, we propose to
also use those selected labeled examples to improve the selection scoring function.
The optimal acquisition function (used to select examples for labeling) for this
new setting is different compared to those in traditional active learning – e.g. if
a confidence-based selection scoring function is employed, the selected labeled
samples should have the goal of improving the estimation of that confidence score.

In this chapter, we introduce a new machine learning paradigm: active selective
prediction under distribution shift (see Fig. 7.1), which combines selective predic-
tion and active learning to improve accuracy and coverage, and hence use human
labeling in a more optimal way. Active selective prediction is highly important for
most real-world deployment scenarios. To the best of our knowledge, we are the
first to formulate and investigate this problem, along with the judiciously chosen
evaluation metrics for it (Sec. 7.3). We also introduce a novel and simple yet effec-
tive method, ASPEST, for this active selective prediction problem (Sec. 7.4). The
key components of ASPEST, checkpoint ensembling and self-training, are designed
to address the fundamental challenges in the active selective prediction problem.
On numerous real-world datasets, we show that ASPEST consistently outperforms
other baselines proposed for active learning and selective prediction (Sec. 7.5).

7.2 Related Work
Selective prediction. Selective prediction (also known as prediction with re-
jection/deferral options) constitutes a common deployment scenario for DNNs,
especially in high-stakes decision making scenarios. In selective prediction, models
abstain from yielding outputs if their confidence on the likelihood of correctness
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is not sufficiently high. Such abstinence usually incurs deferrals to humans and
results in additional cost (Mozannar and Sontag, 2020). Increasing the coverage –
the ratio of the samples for which the DNN outputs can be reliable – is the funda-
mental goal (El-Yaniv et al., 2010; Fumera and Roli, 2002; Hellman, 1970; Geifman
and El-Yaniv, 2019). Geifman and El-Yaniv consider selective prediction for DNNs
with the ‘Softmax Response’ method, which applies a carefully selected threshold
on the maximal response of the softmax layer to construct the selective classifier.
Lakshminarayanan et al. show that using deep ensembles can improve predictive
uncertainty estimates and thus improve selective prediction. Rabanser et al. pro-
pose a novel method, NNTD, for selective prediction that utilizes DNN training
dynamics by using checkpoints during training. Our proposed method ASPEST
also uses checkpoints to construct ensembles for selective prediction. In contrast to
NNTD and other aforementioned methods, we combine selective prediction with
active learning to improve its data efficiency while considering a holistic perspective
of having humans in the loop. This new active selective prediction setup warrants
new methods for selective prediction along with active learning.

Active learning. To utilize the human labeling budget more effectively while
training DNNs, active learning employs acquisition functions to select unlabeled
examples for labeling, and uses these labeled examples to train models (Settles,
2009; Dasgupta, 2011). Commonly-used active learning methods employ acquisi-
tion functions by considering uncertainty (Gal et al., 2017; Ducoffe and Precioso,
2018; Beluch et al., 2018) or diversity (Sener and Savarese, 2017; Sinha et al., 2019),
or their combination (Ash et al., 2019; Huang et al., 2010). One core challenge
for active learning is the “cold start” problem: often the improved obtained from
active learning is less significant when the amount of labeled data is significantly
smaller (Yuan et al., 2020; Hacohen et al., 2022). Moreover, active learning can be
particularly challenging under distribution shift (Kirsch et al., 2021; Zhao et al.,
2021). Recently, active domain adaptation has been studied, where domain adapta-
tion is combined with active learning (Su et al., 2020; Fu et al., 2021; Prabhu et al.,
2021). Different from traditional active learning, active domain adaptation typically
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adapts a model pre-trained on the labeled source domain to the unlabeled target
domain. Although we also try to adapt a source trained model to the unlabeled
target test set using active learning, we focus on building a selective classification
model and reducing the human labeling effort.

Distribution shift. Distribution shift, where the training distribution differs from
the test distribution, often occurs in practice and can substantially degrade the
accuracy of the deployed DNNs (Koh et al., 2021; Yao et al., 2022; Barbu et al.,
2019). Distribution shift can also substantially reduce the quality of uncertainty
estimation (Ovadia et al., 2019), which is often used for rejecting examples in se-
lective prediction and selecting samples for labeling in active learning. Several
techniques try to tackle the challenge caused by distribution shift, including accu-
racy estimation (Chen et al., 2021b; Chuang et al., 2020), error detection (Hendrycks
and Gimpel, 2017; Granese et al., 2021), out-of-distribution detection (Salehi et al.,
2021), domain adaptation (Ganin et al., 2016; Saito et al., 2019), selective predic-
tion (Kamath et al., 2020) and active learning (Kirsch et al., 2021). In this chapter, we
combine selective prediction with active learning to address the issue of distribution
shift.

Deep ensembles. Ensembles of DNNs (or deep ensembles) have been success-
fully used to boost predictive performance (Moghimi et al., 2016; Zhu et al., 2018).
Deep ensembles can also be used to improve the predictive uncertainty estima-
tion (Lakshminarayanan et al., 2017; Fort et al., 2019). Lakshminarayanan et al.
show that random initialization of the NN parameters along with random shuffling
of the data points are sufficient for deep ensembles to perform well in practice.
However, training multiple DNNs from random initialization can be very expensive.
To obtain deep ensembles more efficiently, recent papers explore using checkpoints
during training to construct the ensemble (Wang et al., 2021b; Huang et al., 2017a),
or fine-tuning a single pre-trained model to create the ensemble (Kobayashi et al.,
2022). In the proposed method, we use the checkpoints during fine-tuning a source-
trained model via active learning as the ensemble and further boost the ensemble’s



115

performance via self-training. We also use the ensemble’s uncertainty measured by
a margin to select samples for labeling in active learning.

Self-training. Self-training is a common algorithmic paradigm for leveraging
unlabeled data with DNNs. Self-training methods train a model to fit pseudo-
labels (i.e., predictions on unlabeled data made by a previously-learned model) to
boost the model’s performance (Yarowsky, 1995; Grandvalet and Bengio, 2004; Lee
et al., 2013; Wei et al., 2020; Sohn et al., 2020). In this chapter, we use self-training
to improve selective prediction performance. Instead of using predicted labels as
pseudo-labels as a common practice in prior works, we use the average softmax
outputs of the checkpoints during training as the pseudo-labels and self-train the
models in the ensemble on them with the KL-Divergence loss to improve selective
prediction performance.

7.3 Active Selective Prediction
In this section, we first formulate the active selective prediction problem and then
present the proposed evaluation metrics to quantify the efficacy of the methods.

7.3.1 Problem Setup

Let X be the input space and Y = {1, 2, . . . ,K} the label space.1 The training data
distribution is given as PX,Y and the test data distribution is QX,Y (both are defined
in the space X×Y). There might exist distribution shifts such as covariate shifts (i.e.,
QX,Y might be different from PX,Y). Suppose for each input x, an oracle (e.g., the
human annotator) can assign a ground-truth class label yx to it. Given a classifier
f̄ : X→ Y trained on a source training dataset Dtr ∼ PX,Y (∼ means “sampled from”),
and an unlabeled target test dataset UX = {x1, . . . , xn} ∼ QX, our goal is to employ f̄

to yield reliable predictions on UX in human-in-the-loop scenario. Holistically, we
1In this chapter, we focus on the classification problem, although it can be extended to the

regression problem.
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consider the two approaches to involve humans via the predictions they provide
on the data: (i) selective prediction where uncertain predictions are deferred to
humans to maintain a certain accuracy target; and (ii) active learning where a
subset of UX unlabeled samples are selected for humans to improve the model with
the extra labeled data to be used at the subsequent iterations. These two approaches
to involve humans have different objectives and thus, their joint optimization to
best use the human labeling resources is not straightforward.

As an extension of the classifier f (initialized by f̄), we propose to employ a
selective classifier fs including a selection scoring function g : X → R to yield
reliable predictions on UX. We define the predicted probability of the model f on
the k-th class as f(x | k). Then, the classifier is f(x) = arg maxk∈Y

f(x | k). g can be
based on statistical operations on the outputs of f (e.g., g(x) = maxk∈Y f(x | k)).
With f and g, the selective prediction model fs is defined as:

fs(x; τ) =

f(x) if g(x) ⩾ τ,

⊥ if g(x) < τ
, (7.1)

where τ is a threshold. If fs(x) = ⊥, then the DNN system would defer the
predictions to a human in the loop. To improve the overall accuracy to reach
the target, such deferrals require manual labeling. To reduce the human labeling
cost and improve the accuracy of the selective classifier, we consider labeling a
small subset of UX and adapt the selective classifier fs on the labeled subset via
active learning. The goal is to significantly improve the accuracy and coverage of
the selective classifier fs and thus reduce the total human labeling effort.

Suppose the labeling budget for active learning is M (i.e., M examples are
selected to be labeled from UX to improve the selective prediction performance).
We assume that the human in the loop can provide the correct labels. For active
learning, we consider the transductive learning paradigm (Vapnik, 1998), which
assumes all training and test data are observed beforehand and we can make use of
the unlabeled test data for learning. Specifically, the active learning is performed on
UX to build the selective classifier fs, with performance evaluation of fs only on UX.
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We don’t consider training fs from scratch, but adapt the source-trained classifier f̄
to obtain fs to maintain feasibly-low computational cost (e.g., by fine-tuning f̄ on
the M labeled data points from UX).

Let’s first consider the single-round setting. Suppose the acquisition function is
a : Xm × F × G→ R, where m ∈ N+, F is the classifier space and G is the selection
scoring function space. This acquisition function is the same as the one used in
active learning literature (Gal et al., 2017) (refer to Appendix E.1 for some examples
of the function a). In the beginning, f is initialized by f̄. We then select a batch B∗

for labeling by solving the following objective:

B∗ = arg max
B⊂UX,|B|=M

a(B, f,g), (7.2)

for which the labels are obtained to get B̃∗. Then, we use B̃∗ to update f and g (e.g.,
via fine-tuning the model on B̃∗).

The above can be extended to a multi-round setting. Suppose we have T rounds
and the labeling budget for each round is m = [M

T
]. In the beginning, f0 is initialized

by f̄. At the t-th round, we first select a batch B∗
t for labeling by solving the following

objective:

B∗
t = arg max

B⊂UX\(∪t−1
l=1B

∗
l ),|B|=m

a(B, ft−1,gt−1), (7.3)

for which the labels are obtained to get B̃∗
t . Then we use B̃∗

t to update ft−1 and
gt−1 to get ft and gt (e.g., via fine-tuning the model on B̃∗

t). With multiple-rounds
setting, we define B∗ = ∪Ti=1B

∗
i .

7.3.2 Evaluation Metrics

To quantify the efficacy of the methods that optimize human-in-the-loop adaptation
and decision making performance, appropriate metrics are needed.

The performance of the selective classifier fs (defined in Eq. (7.1)) is evaluated
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by the accuracy and coverage metrics. The accuracy of fs on UX is defined as:

acc(fs, τ) =
Ex∼UXI[f(x) = yx ∧ g(x) ⩾ τ∧ x /∈ B∗]

Ex∼UXI[g(x) ⩾ τ∧ x /∈ B∗]
(7.4)

Here, the accuracy is measured on the predictions made by the model without
human intervention (excluding those predictions on B∗ and rejected data points).
The coverage of fs on UX is defined as:

cov(fs, τ) =
Ex∼UXI[g(x) ⩾ τ∧ x /∈ B∗]

Ex∼UXI[x /∈ B∗]
(7.5)

The coverage is the fraction of remaining unlabeled data points where we can rely
on the model’s prediction without human intervention. We can tune the threshold
τ to achieve a certain coverage. We know that there could be an accuracy-coverage
trade-off – as we increase coverage, the accuracy could be lower. We consider the
following metrics that are agnostic to the threshold τ:

Maximum Accuracy at a Target Coverage. Given a target coverage tc, the maxi-
mum accuracy is defined as:

max
τ

acc(fs, τ), s.t. cov(fs, τ) ⩾ tc (7.6)

We denote this metric as acc|cov ⩾ tc.

Maximum Coverage at a Target Accuracy. Given a target accuracy ta, the maxi-
mum coverage is defined as:

max
τ

cov(fs, τ), s.t. acc(fs, τ) ⩾ ta (7.7)

When τ = ∞, we define cov(fs, τ) = 0 and acc(fs, τ) = 1. We denote this metric as
cov|acc ⩾ ta.



119

Area Under the Accuracy-Coverage Curve (AUC). We define the AUC metric as:

AUC(fs) =

∫ 1

0
acc(fs, τ)dcov(fs, τ) (7.8)

We use the composite trapezoidal rule to estimate the integration.

7.3.3 Challenges
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Figure 7.2: Illustration of the challenges in active selective prediction using a linear
model to maximize the margin (distance to the decision boundary) for binary
classification. The model confidence is considered to be proportional to the margin
(when the margin is larger, the confidence is higher and vice versa). The triangles
belong to the negative class while the circles belong to the positive class. The empty
markers represent the unlabeled test samples while the solid markers are the selected
samples for labeling in active learning. Fig. (a) shows that if the samples close to
the current decision boundary are selected for labeling, then the adapted model
suffers from the overconfidence issue (mis-classification with high confidence),
which results in acceptance of some mis-classified points. Fig. (b) shows that if
diverse samples are selected for labeling, then the adapted model suffers from low
accuracy. This leads to rejection of many points, necessitating significant human
intervention.
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For active selective prediction, we want to utilize active learning to improve the
coverage and accuracy of the selective classifier fs, that consists of a classifier f and
a selection scoring function g. Different from conventional active learning, which
only aims to improve the accuracy of the classifier f, active selective prediction also
aims to improve g so that it can accept those examples where f predicts correctly
and reject those where f predicts incorrectly. With distribution shift and a small
labeling budget M, it can be challenging to train f for high accuracy. Therefore,
g is critical in achieving high coverage and accuracy of fs, for which we consider
the confidence of f (i.e., the maximum softmax score of f) and train f such that its
confidence can be used to distinguish correct and incorrect predictions. This might
not be achieved easily since it has been observed that under distribution shift, f can
have overconfident predictions (Goodfellow et al., 2015; Hein et al., 2019). Besides,
for active learning, typically we select samples for labeling based on uncertainty
or diversity. However, in active selective prediction, sample selection based on
uncertainty may lead to the overconfidence issue and sample selection based on
diversity may lead to low accuracy of f, as illustrated in Fig. 7.2. The results in
Table 7.1 show that these issues indeed exist – the methods based on uncertainty
sampling (SR+Confidence, SR+Entropy and SR+Margin) achieve relatively high
accuracy of f, but suffer from the overconfidence issue (i.e., mis-classification with
high confidence). The method based on diversity sampling (SR+kCG) doesn’t
have the overconfidence issue, but suffers from low accuracy of f. Also, the hybrid
methods based on uncertainty and diversity sampling (SR+CLUE and SR+BADGE)
still suffer from the overconfidence issue. To tackle these, we propose a novel
method ASPEST. The results show that the proposed method ASPEST achieves
much higher accuracy of f, effectively alleviates the overconfidence issue, and
significantly improves the selective prediction performance. We describe ASPEST
next.

7.4 Proposed Method: ASPEST
We propose a novel method called Active Selective Prediction using Ensem-
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Method Accuracy of f ↑ Overconfidence ratio ↓ AUC↑
SR+Confidence 45.29±3.39 16.91±2.24 64.14±2.83
SR+Entropy 45.78±6.36 36.84±18.96 65.88±4.74
SR+Margin 58.10±0.55 13.18±1.85 76.79±0.45
SR+kCG 32.68±3.87 0.04±0.01 48.83±7.21
SR+CLUE 55.22±2.27 9.47±0.94 73.15±2.68
SR+BADGE 56.55±1.62 8.37±2.56 76.06±1.63
ASPEST (ours) 71.82±1.49 0.10±0.02 88.84±1.02

Table 7.1: Evaluating the Softmax Response (SR) method with various active learning
methods and the proposed ASPEST on MNIST→SVHN. The experimental setup is describe
in Section 7.5.1. The labeling budget M is 100. The overconfidence ratio is the ratio of
mis-classified unlabeled test inputs that have confidence ⩾ 1 (the highest confidence). The
mean and std of each metric over three random runs are reported (mean±std). All numbers
are percentages. Bold numbers are superior results.

bles and Self-training (ASPEST), which utilizes two key techniques checkpoint
ensembles and self-training, to solve the active selective prediction problem. The
key constituents, checkpoint ensembles and self-training, are designed to tackle
the fundamental challenges in active selective prediction, with the ideas of select-
ing samples for labeling based on uncertainty to achieve high accuracy and using
checkpoint ensembles and self-training to alleviate the overconfidence issue. We
empirically analyze why they can tackle the challenges in Section 7.5.3. The full
ASPEST algorithm is shown in Algorithm 4 and the details are explained next.

We first describe how the weigths from the intermediate model checkpoints
during training are used to construct the checkpoint ensemble. Since we have all
the test inputs, we don’t need to save the checkpoints during training, but just
record their outputs on the test set UX. Specifically, we use a n× K matrix P (recall
that n = |UX| and K is the number of classes) to record the average of the softmax
outputs of the checkpoint ensemble and use Ne to record the number of checkpoints
in the current checkpoint ensemble. During training, we get a stream of checkpoints,
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Algorithm 4 Active Selective Prediction using Ensembles and Self-Training
Require: A training set Dtr, a unlabeled test set UX, the number of rounds T ,

the labeling budget M, the number of models N, the number of initial training
steps ns, the initial checkpoint steps cs, a checkpoint epoch ce, a threshold η, a
sub-sampling fraction p, and a hyper-parameter λ.
Let fj0 = f̄ for j = 1, . . . ,N.
Set Ne = 0 and P = 0n×K.
Fine-tune each fj0 for ns training steps using objective (7.10) and update P and
Ne using Eq. (7.9) every cs training steps.
for t = 1, · · · , T do

Select a batch Bt from UX for labeling using the sample selection objec-
tive (7.11).
Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Set Ne = 0 and P = 0n×K.
Fine-tune each fjt−1 using objective (7.12), while updating P and Ne using
Eq (7.9) every ce training epochs.
Let fjt = fjt−1.
Construct the pseudo-labeled set R via Eq (7.13) and create Rsub by randomly
sampling up to [p · n] data points from R.
Train each fjt further via SGD using the objective (7.14) and update P and Ne
using Eq (7.9) every ce training epochs.

end for
Ensure: The classifier f(xi) = arg maxk∈Y

Pi,k and the selection scoring function
g(xi) = maxk∈Y Pi,k.

and for each incoming checkpoint model f, we update P and Ne as:

Pi,k ←
1

Ne + 1(Pi,k ·Ne + f(xi | k)) for 1 ⩽ i ⩽ n and 1 ⩽ k ⩽ K, (7.9)

Ne ← Ne + 1.

Since it has been observed that an ensemble of DNNs (known as ‘deep ensembles’)
usually produces a confidence score that is better calibrated compared to a single
DNN (Lakshminarayanan et al., 2017), we consider f to be in the form of deep
ensembles and g to be the confidence of the ensemble. Specifically, we continue
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fine-tuning N models independently via Stochastic Gradient Descent (SGD) with
different random seeds (e.g., the randomness can come from different random
orders of training batches). At the beginning, we set each model fj0 = f̄ (j =

1, . . . ,N), and set Ne = 0 and P = 0n×K. Here, we initialize each model fj0 with
the source-trained classifier f̄ instead of random initialization, to minimize the
computational cost. We fine-tune each model fj0 on Dtr for ns steps via SGD using
the following training objective:

min
θj

E(x,y)∈Dtr ℓCE(x,y; θj), (7.10)

where ℓCE is the cross-entropy loss and θj is the model parameters of fj0. For every cs

steps when training each fj0, we update P and Ne using Eq (7.9) with the checkpoint
model fj0.

After constructing the initial checkpoint ensemble, we perform a T -round active
learning process. In each round of active learning, we first select samples for
labeling based on the margin of the checkpoint ensemble, then fine-tune the models
on the selected labeled test data, and finally perform self-training. We describe the
procedure below:

Sample selection. In the t-th round, we select a batch Bt with a size of m = [M
T
]

from UX via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
−

∑
xi∈B

S(xi) (7.11)

where B0 = ∅, S(xi) = Pi,ŷ − maxk∈Y\{ŷ} Pi,k and ŷ = arg maxk∈Y
Pi,k. We use an

oracle to assign ground-truth labels to the examples in Bt to get B̃t. Here, we select
the test samples for labeling based on the margin of the checkpoint ensemble. The
test samples with lower margin should be closer to the decision boundary and they
are data points where the ensemble is uncertain about its predictions. Training on
those data points can either make the predictions of the ensemble more accurate or
make the ensemble have higher confidence on its correct predictions.
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Fine-tuning. After the sample selection, we reset Ne and P as Ne = 0 and
P = 0n×K, because we want to remove those checkpoints in the previous rounds
with a worse performance from the checkpoint ensemble. We then fine-tune each
model fjt−1 (j = 1, . . . ,N) independently via SGD with different randomness on
the selected labeled test data to get fjt using the following training objective:

min
θj

E(x,y)∈∪tl=1B̃l
ℓCE(x,y; θj) + λ · E(x,y)∈Dtr ℓCE(x,y; θj), (7.12)

where θj is the model parameters of fjt−1 and λ is a hyper-parameter. Note that
here we use joint training on Dtr and ∪tl=1B̃l to avoid over-fitting to the small set
of labeled test data and prevent the models from forgetting the source training
knowledge. For every ce epoch when fine-tuning each model fjt−1, we update P

and Ne using Eq. (7.9) with the checkpoint model fjt−1.

Self-training. After fine-tuning the models on the selected labeled test data and
with the checkpoint ensemble, we construct a pseudo-labeled set R via:

R = {(xi,Pi,:) | xi ∈ UX ∧ (η ⩽ max
k∈Y

Pi,k < 1)}, (7.13)

where maxk∈Y Pi,k is the confidence of the checkpoint ensemble on xi and η is a
threshold. We do not add those test data points with confidence equal to 1 into the
pseudo-labeled set because training on those data points cannot change the models
much and may even hurt the performance. We then perform self-training on the
pseudo-labeled set R. For computational efficiency, we only apply self-training on a
subset of R. We construct the subset Rsub by randomly sampling up to [p · n] data
points from R, where p ∈ [0, 1]. We train each model fjt (j = 1, . . . ,N) further on
the pseudo-labeled subset Rsub via SGD using the following training objective:

min
θj

E(x,y)∈Rsub ℓKL(x, y; θj) + λ · E(x,y)∈Dtr ℓCE(x,y; θj) (7.14)
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where ℓKL is the KL-Divergence loss, which is defined as: ℓKL(x, y; θ) =
∑K
k=1 yk ·

log( yk
f(x|k;θ)). Note that for self-training, we typically use predicted labels as pseudo-

labels and the cross-entropy loss. We don’t follow this because the predicted labels
might be wrong and training the models on those misclassified pseudo-labeled data
points using the cross entropy loss will make the models have very high confidence
on their wrong predictions, which will hurt selective prediction performance. For
every ce epoch of self-training each model fjt, we will update P and Ne using
Eq (7.9) with the checkpoint model fjt. We add checkpoints during self-training
into checkpoint ensemble to improve the sample selection in the next round of
active learning.

After T rounds active learning, we use the checkpoint ensemble as the final
selective classifier: the classifier f(xi) = arg maxk∈Y

Pi,k and the selection scoring
function g(xi) = maxk∈Y Pi,k.

7.5 Experiments
This section presents experimental results, especially focusing on the following
questions: (Q1) Can we use a small labeling budget to significantly improve se-
lective prediction performance under distribution shift? (Q2) Does the proposed
ASPEST outperform baselines across different datasets with distribution shift? (Q3)
What is the effect of checkpoint ensembles and self-training in ASPEST?

7.5.1 Setup

Datasets. We perform experiments on the following datasets with distribution
shift: (i) MNIST→SVHN (LeCun, 1998; Netzer et al., 2011), (ii) CIFAR-10→CINIC-
10 (Krizhevsky et al., 2009; Darlow et al., 2018), (iii) FMoW (Koh et al., 2021),
(iv) Amazon Review (Koh et al., 2021), (v) DomainNet (Peng et al., 2019) and
(vi) Otto (Benjamin Bossan, 2015). Details of the datasets are described in Ap-
pendix E.2.1.



126

Architectures and training. On MNIST→SVHN, we use a Convolutional Neural
Network (CNN) (LeCun et al., 1989) model. On CIFAR-10→CINIC-10, we use the
ResNet-20 model (He et al., 2016b). On the FMoW dataset, we use the DensetNet-
121 model (Huang et al., 2017b). On Amazon Review, we use the pre-trained
RoBERTa model (Liu et al., 2019). On the DomainNet dataset, we use the ResNet-
50 model (He et al., 2016a). On the Otto dataset, we use a multi-layer perceptron.
On each dataset, we train the models on the training set Dtr. More details on model
architectures and training on source data are presented in Appendix E.2.2.

Active learning hyper-parameters. We evaluate different methods with different
labeling budget M values on each dataset. By default, we set the number of rounds
T = 10 for all methods. During the active learning process, we fine-tune the model
on the selected labeled test data. During fine-tuning, we don’t apply any data
augmentation to the test data. We use the same fine-tuning hyper-parameters for
different methods to ensure a fair comparison. More details on the fine-tuning
hyper-parameters can be found in Appendix E.2.3.

Baselines. We consider Softmax Response (SR) (Geifman and El-Yaniv, 2017)
and Deep Ensembles (DE) (Lakshminarayanan et al., 2017) with various active
learning sampling methods as the baselines. SR+Uniform means combining SR
with an acquisition function based on uniform sampling (similarly for DE and
other acquisition functions). We consider sampling methods from both traditional
active learning (e.g., BADGE (Ash et al., 2019)) and active domain adaptation (e.g.,
CLUE (Prabhu et al., 2021)). Appendix E.1 further describes the details of the
baselines.

Hyper-parameters of ASPEST. We set λ = 1, ns = 1000 and N = 5, which are the
same as those for Deep Ensembles, for fair comparisons. For all datasets, we use
cs = 200, p = 0.1, η = 0.9, the number of self-training epochs to be 20 and ce = 5.
Note that we don’t tune cs, ce, p and use the fixed values. We select η based on
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the performance on a validation dataset (i.e., DomainNet R→I) and use the same
value across all other datasets.

7.5.2 Results

Dataset MNIST→SVHN
Metric cov∗|acc ⩾ 90% ↑ acc|cov∗ ⩾ 90% ↑
SR (without active learning) 0.08±0.0 25.80±0.0
SR+Margin (M=500) 62.38±2.7 80.21±0.9
SR+Margin (M=1000) 79.04±0.2 85.36±0.3
DE (without active learning) 0.12±0.1 28.17±0.5
DE+Margin (M=500) 76.35±2.7 84.34±1.1
DE+Margin (M=1000) 89.19±0.3 89.59±0.1
ASPEST (M=500) 87.51±0.9 88.88±0.4
ASPEST (M=1000) 94.91±0.4 92.44±0.2

Table 7.2: Results on MNIST→SVHN to describe the effect of combining selective
prediction with active learning. The mean and std of each metric over three random
runs are reported (mean±std). cov∗ is defined in Appendix E.3.3. All numbers are
percentages. Bold numbers are superior results.

Impacts of combining selective prediction with active learning. We evaluate
the accuracy of the source trained models on the test set UX of different datasets.
The results in Appendix E.3.1 show that the models trained on the source training
set Dtr suffer a performance drop on the target test set UX, and sometimes this
drop can be large. For example, the model trained on MNIST has a source test
accuracy of 99.40%. However, its accuracy on the target test set UX from SVHN is
only 24.68%. If we directly build a selective classifier on top of the source trained
model, then to achieve a target accuracy of 90%, the coverage would be at most
27.42%. In Table 7.2, we demonstrate that for a target accuracy of 90%, the coverage
achieved by SR and DE without active learning is very low (nearly 0%). It means
that almost all test examples need human intervention or labeling. This is a large
cost since the test set of SVHN contains over 26K images. However, by combining
selective prediction with active learning (e.g., using the proposed method ASPEST),
we only need to label 500 test examples to achieve a target accuracy of 90% with a
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coverage of 87.5%. Thus, during active learning and selective prediction processes,
only 12.5% test examples from SVHN need to be labeled by a human to achieve the
target accuracy of 90%, resulting in a significant reduction of the overall human
labeling cost. Similar results are observed for other datasets (see Appendix E.3.3).

Dataset DomainNet R→C (easy) Amazon Review Otto
Metric cov|acc ⩾ 80% ↑ AUC ↑ cov|acc ⩾ 80% ↑ AUC ↑ cov|acc ⩾ 80% ↑ AUC ↑
SR+Uniform 25.56±0.6 63.31±0.4 13.71±11.3 72.71±1.5 63.58±0.7 84.46±0.2
SR+Confidence 25.96±0.2 64.20±0.6 11.28±8.9 72.89±0.7 69.63±1.7 85.91±0.3
SR+Entropy 25.44±1.0 63.52±0.6 5.55±7.8 71.96±1.6 67.79±0.8 85.41±0.3
SR+Margin 26.28±1.2 64.37±0.8 14.48±10.9 73.25±1.0 68.10±0.1 85.56±0.1
SR+kCG 21.12±0.3 58.88±0.0 20.02±11.0 72.34±3.2 64.84±0.7 85.08±0.2
SR+CLUE 27.17±0.8 64.38±0.6 4.15±5.9 73.43±0.4 68.21±1.2 85.82±0.3
SR+BADGE 27.78±0.8 64.90±0.5 22.58±0.4 73.80±0.6 67.23±1.0 85.41±0.3
DE+Uniform 30.82±0.8 67.60±0.4 34.35±1.4 76.20±0.3 70.74±0.5 86.78±0.1
DE+Entropy 29.13±0.9 67.48±0.3 31.74±1.4 75.98±0.4 75.71±0.3 87.87±0.1
DE+Confidence 29.90±0.8 67.45±0.3 35.12±1.8 76.63±0.2 75.52±0.2 87.84±0.1
DE+Margin 31.82±1.3 68.85±0.4 33.42±1.3 76.18±0.2 75.49±0.8 87.89±0.2
DE+Avg-KLD 32.23±0.2 68.73±0.2 33.03±1.5 76.21±0.4 75.91±0.2 87.89±0.0
DE+CLUE 30.80±0.3 67.82±0.2 33.92±3.0 76.27±0.6 69.66±0.5 86.67±0.1
DE+BADGE 30.16±1.3 68.46±0.3 32.23±3.7 76.13±0.7 73.23±0.2 87.55±0.1
ASPEST (ours) 37.38±0.1 71.61±0.2 38.44±0.7 77.69±0.1 77.85±0.2 88.28±0.1

Table 7.3: Results of comparing ASPEST to the baselines on DomainNet R→C,
Amazon Review and Otto. The mean and std of each metric over three random
runs are reported (mean±std). The labeling budget M is 500. All numbers are
percentages. Bold numbers are superior results.

Baseline comparisons. We compare ASPEST with the two existing selective clas-
sification methods: SR and DE with various active learning sampling approaches.
The results in Table 7.3 (complete results on all datasets for all metrics and different
labeling budgets are provided in Appendix E.3.2) show that ASPEST consistently
outperforms the baselines across different image, text and tabular datasets. For
example, for MNIST→SVHN, ASPEST improves the AUC from 79.36% to 88.84%
when the labeling budget (M) is only 100. When M = 500, for CIFAR-10→CINIC-
10, ASPEST improves the AUC from 90.74% to 90.95%; for FMoW, ASPEST improves
the AUC from 70.59% to 71.12%; for Amazon Review, ASPEST improves the AUC
from 76.63% to 77.69%; for DomainNet R→C, ASPEST improves the AUC from



129

68.85% to 71.61%; for DomainNet R→P, ASPEST improves the AUC from 56.67% to
58.74%; for DomainNet R→S, ASPEST improves the AUC from 46.38% to 49.62%;
for Otto, ASPEST improves the AUC from 87.89% to 88.28%.

7.5.3 Analyses and Discussions

In this section, we analyze why the key components checkpoint ensembles and
self-training in ASPEST can improve selective prediction and perform ablation
study to show their effect.

Checkpoint ensembles can alleviate overfitting and overconfidence. We observe
that in active selective prediction, when fine-tuning the model on the small amount
of selected labeled test data, the model can suffer overfitting and overconfidence
issues and ensembling the checkpoints in the training path can effectively alleviate
these issues (see the analysis in Appendix E.3.4).

Self-training can alleviate overconfidence. We observe that the checkpoint en-
semble constructed after fine-tuning is less confident on the test data UX compared
to the deep ensemble. Thus, using the softmax outputs of the checkpoint ensemble
as soft pseudo-labels for self-training can alleviate overconfidence and improve
selective prediction performance (see the analysis in Appendix E.3.5).

Ablation studies. Compared to DE+Margin, ASPEST has two additional com-
ponents: checkpoint ensemble and self-training. We perform ablation experiments
on MNIST→SVHN and DomainNet to analyze the effect of these. We also study
the effect of the threshold η in self-training. The results in Table 7.4 show that
for MNIST→SVHN, adding the checkpoint ensemble component alone (ASPEST
without self-training) does not improve the performance over DE+Margin, whereas
adding the self-training component alone (ASPEST without checkpoint ensem-
ble) can significantly improve the performance. For DomainNet, both checkpoint
ensemble and self-training have positive contributions. For both cases, ASPEST
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Dataset MNIST→SVHN DomainNet R→C
Metric AUC ↑ AUC ↑
Labeling Budget 100 500 500 1000
DE+Margin 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
ASPEST without self-training 78.09±1.3 94.25±0.4 69.59±0.2 72.45±0.1
ASPEST without checkpoint ensemble 83.78±2.9 96.54±0.2 69.94±0.1 72.20±0.4
ASPEST (η=0.1) 83.77±1.7 96.01±0.4 70.35±0.2 72.89±0.4
ASPEST (η=0.5) 83.99±1.3 96.24±0.2 70.92±0.3 73.37±0.1
ASPEST (η=0.6) 85.17±1.3 96.24±0.2 70.96±0.2 73.05±0.1
ASPEST (η=0.8) 85.40±2.3 96.74±0.1 71.05±0.2 72.99±0.3
ASPEST (η=0.9) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (η=0.95) 87.67±1.3 96.74±0.1 71.03±0.3 73.38±0.2

Table 7.4: Ablation study results for ASPEST. The mean and std of each metric over
three random runs are reported (mean±std). All numbers are percentages. Bold
numbers are superior results.

(with both self-training and checkpoint ensemble) achieves much better results
than DE+Margin or applying those components alone. We also show that the per-
formance is not highly sensitive to η, while typically setting larger η (e.g. η = 0.9)
yields better results.

Integrating with UDA. To study whether incorporating unsupervised domain
adaption (UDA) techniques into training could improve active selective prediction,
we evaluate DE with UDA and ASPEST with UDA in Appendix E.3.6. Our results
show that ASPEST outperforms (or on par with) DE with UDA, although ASPEST
doesn’t utilize UDA. Furthermore, we show that by combining ASPEST with UDA,
it might achieve even better performance. For example, on MNIST→SVHN, ASPEST
with DANN improves the mean AUC from 96.62% to 97.03% when the labeling
budget is 500. However, in some cases, combining ASPEST with UDA yields much
worse results. For example, on MNIST→SVHN, when the labeling budget is 100,
combining ASPEST with UDA will reduce the mean AUC by over 4%. We leave the
exploration of UDA techniques to improve active selective prediction to future work
– superior and robust UDA techniques can be easily incorporated into ASPEST to
enhance its overall performance.
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7.6 Conclusion
In this chapter, we introduced a new learning paradigm called active selective predic-
tion which used active learning to improve selective prediction under distribution
shift. We showed that this new paradigm resulted in improved accuracy and cov-
erage on a distributionally shifted test domain and reduced the need for human
labeling. We also proposed a novel method ASPEST using checkpoint ensemble
and self-training with a low labeling cost. We demonstrated ASPEST’s effective-
ness over other baselines for this new problem setup on various image, text and
structured datasets. Future work in this direction could investigate unsupervised
hyperparameter tuning on test data, online data streaming, or further minimizing
the labeling effort by designing time-preserving labeling interfaces.
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8 the trade-off between universality and label
efficiency of representations from contrastive learning

Contribution statement. This chapter is joint work with Zhenmei Shi, Kunyang
Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh Jha. The author Jiefeng
Chen contributed to part of the experiments. The paper version of this chapter
appeared in ICLR 2023 (Shi et al., 2022a).

8.1 Introduction
Representation pre-training is a recent successful approach that utilizes large-scale
unlabeled data to address the challenges of scarcity of labeled data and distri-
bution shift. Different from the traditional supervised learning approach using
a large labeled dataset, representation learning first pre-trains a representation
function using large-scale diverse unlabeled datasets by self-supervised learning
(e.g., contrastive learning), and then learns predictors on the representation using
small labeled datasets for downstream target tasks. The pre-trained model is com-
monly referred to as a foundation model (Bommasani et al., 2021), and has achieved
remarkable performance in many applications, e.g., BERT (Devlin et al., 2019),
GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), and Flamingo (Alayrac
et al., 2022). To this end, we note that there are two properties that are key to
their success: (1) label efficiency: with the pre-trained representation, only a small
amount of labeled data is needed to learn accurate predictors for downstream target
tasks; (2) universality: the pre-trained representation can be used across various
downstream tasks.

In this chapter, we focus on contrastive learning with linear probing that learns a lin-
ear predictor on the representation pre-trained by contrastive learning, which is an
exemplary pre-training approach (e.g., Arora et al. (2019); Chen et al. (2020a)). We
highlight and study a fundamental trade-off between label efficiency and universal-
ity, though ideally, one would like to have these two key properties simultaneously.
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Since pre-training with large-scale diverse unlabeled data is widely used in practice,
such a trade-off merits deeper investigation.

Theoretically, we provide an analysis of the features learned by contrastive
learning, and how the learned features determine the downstream prediction
performance and lead to the trade-off. We propose a hidden representation data model,
which first generates a hidden representation containing various features, and then
uses it to generate the label and the input. We first show that contrastive learning
is essentially generalized nonlinear PCA that can learn hidden features invariant to
the transformations used to generate positive pairs. We also point out that additional
assumptions on the data and representations are needed to obtain non-vacuous
guarantees for prediction performance. We thus consider a setting where the data
are generated by linear functions of the hidden representation, and formally prove
that the difference in the learned features leads to the trade-off. In particular, pre-
training on more diverse data learns more diverse features and is thus useful for
prediction on more tasks. But it also down-weights task-specific features, implying
larger sample complexity for predictors and thus worse prediction performance on
a specific task. This analysis inspires us to propose a general method – contrastive
regularization – that adds a contrastive loss to the training of predictors to improve
the accuracy on downstream tasks.

Empirically, we first perform controlled experiments to reveal the trade-off.
Specifically, we first pre-train on a specific dataset similar to that of the target task,
and then incrementally add more datasets into pre-training. In the end, the pre-
training data includes both datasets similar to the target task and those not so
similar, which mimics the practical scenario that foundation models are pre-trained
on diverse data to be widely applicable for various downstream tasks. Fig. 8.1
gives an example of this experiment: As we increase task diversity for contrastive
learning, it increases the average accuracy on all tasks from 18.3% to 20.1%, while it
harms the label efficiency of an individual task, on CIFAR-10 the accuracy drops
from 88.5% to 76.4%. We also perform experiments on contrastive regularization,
and demonstrate that it can consistently improve over the typical fine-tuning method
across multiple datasets. In several cases, the improvement is significant: 1.3% test
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Figure 8.1: Illustration of the trade-off between universality and label efficiency. x-axis:
from left to right, incrementally add CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32
(I) for pre-training MoCo v2. For example, “CS” means CINIC-10+SVHN. The average test
accuracy of prediction on all 4 datasets (red line) increases with more diverse pre-training
data, while that on the target task CIFAR-10 (blue line) decreases. (The variance of the
blue line is too small to be seen.) Refer to Section 8.4.1 for details.

accuracy improvement for CLIP on ImageNet, 4.8% for MoCo v3 on GTSRB (see
Table 8.1 and 8.2 for details). With these results, we believe that it is of importance to
bring the community’s attention to this trade-off and the forward path of foundation
models.

Our main contributions are summarized as follows:

• We propose a hidden representation data model and prove that contrastive
learning is essentially generalized nonlinear PCA, and can encode hidden
features invariant to the transformations used in positive pairs (Section 8.3.1).

• We formally prove the trade-off in a simplified setting with linear data (Sec-
tion 8.3.2).

• We empirically demonstrate the trade-off across different methods and dif-
ferent datasets for contrastive learning with linear probing (Section 8.4.1
and 8.4.2).
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• We propose a contrastive regularization method for training the predictor on
a target task (Section 8.3.2), which achieves consistent improvement in our
experiments (Section 8.4.3).

8.2 Related Work
Related Work on Representation Pre-training. This paradigm pre-trains a repre-
sentation function on a large dataset and then uses it for prediction on various down-
stream tasks (Devlin et al., 2019; Kolesnikov et al., 2020; Brown et al., 2020; Newell
and Deng, 2020). The representations are also called foundation models (Bom-
masani et al., 2021). There are mainly two kinds of approaches: (1) supervised
approaches (e.g., (Kolesnikov et al., 2020)) that pre-train on large labeled datasets;
(2) self-supervised approaches (e.g., (Newell and Deng, 2020)) that pre-train on
large and diverse unlabeled datasets. Recent self-supervised pre-training can com-
pete with or outperform supervised pre-training on the downstream prediction
performance (Ericsson et al., 2021). Practical examples like BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), DALL·E (Ramesh
et al., 2022), PaLM (Chowdhery et al., 2022) and Flamingo (Alayrac et al., 2022)
have obtained effective representations universally useful for a wide range of down-
stream tasks.

A popular method is contrastive learning, i.e., to distinguish matching and
non-matching pairs of augmented inputs (e.g., van den Oord et al. (2018); Chen
et al. (2020a); He et al. (2020a); Grill et al. (2020); Chen and He (2021); Zbontar
et al. (2021); Gao et al. (2021)). Some others solve “pretext tasks” like predicting
masked parts of the inputs (e.g.,Doersch et al. (2015); Devlin et al. (2019)).

Related Work on Analysis of Self-supervised Pre-training. There exist abundant
studies analyzing self-supervised pre-training (Arora et al., 2019; Tsai et al., 2020;
Yang et al., 2020; Wang and Isola, 2020; Garg and Liang, 2020; Zimmermann et al.,
2021; Tosh et al., 2021; HaoChen et al., 2021; Wen and Li, 2021; Liu et al., 2021a; Kotar
et al., 2021; Van Gansbeke et al., 2021; Lee et al., 2021; Saunshi et al., 2022; Shen et al.,
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2022; Kalibhat et al., 2022). They typically focus on pre-training or assume the same
data distribution in pre-training and prediction. Since different distributions are the
critical reason for the trade-off we focus on, we provide a new analysis. Some studies
have connected contrastive learning to component analysis (Balestriero and LeCun,
2022; Tian, 2022; Ko et al., 2022). Our analysis focuses on the trade-off, while also
showing a connection to PCA based on our notion of invariant features and is thus
fundamentally different. Recently, Cole et al. have attempted to identify successful
conditions for contrastive learning and pointed out that diverse pre-training data
can decrease prediction performance compared to pre-training on the specific task
data. However, they do not consider universality and provide no systematic study.
Similarly, Bommasani et al. call for more research on specialization vs. diversity in
pre-training data but provide no study. We aim to provide a better understanding
of the trade-off between universality and label efficiency.

8.3 Theoretical Analysis
Our experiments in Section 8.4.1 demonstrate a trade-off between the universality
and label efficiency of contrastively pre-trained representations when used for
prediction on a distribution different from the pre-training data distribution. See
Fig. 8.1 for an example. Intuitively, from the unlabeled data, pre-training can learn
semantic features useful for prediction on even different data distributions. To
analyze this, we need to formalize the notion of useful semantic features. So we
introduce a hidden representation data model where a hidden representation (i.e., a
set of semantic features) is sampled and then used for generating the data. Similar
models have been used in some studies (HaoChen et al., 2021; Zimmermann et al.,
2021), while we introduce the notion of spurious and invariant features and obtain
a novel analysis for contrastive learning.

Using this theoretical model of data, Section 8.3.1 investigates what features are
learned by contrastive learning. We show that contrastive learning can be viewed as
a generalization of Principal Components Analysis, and it encodes the invariant features
not affected by the transformations but removes the others. We also show that further
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assumptions on the data and the representations are needed necessary for any non-
vacuous bounds for downstream prediction. So Section 8.3.2 considers a simplified
setting with linear data. We show that when pre-trained on diverse datasets (mod-
eled as a mixture of unlabeled data from different tasks), it encodes all invariant
features from the different tasks and thus is useful for all tasks. On the other hand,
it essentially emphasizes those that are shared among the tasks, but down-weights
those that are specific to a single task. Compared to pre-training only on unlabeled
data from the target task, this then leads to a larger sample complexity and thus
worse generalization for prediction on the target task. Therefore, we show that the
trade-off between universality and label efficiency occurs due to the fact that when
many useful features from diverse data are packed into the representation, those for a specific
target task can be down-weighted and thus worsen the prediction performance on it. Based
on this insight, we propose a contrastive regularization method for using represen-
tations in downstream prediction tasks, which achieves consistent improvement
over the typical fine-tuning method in our experiments in Section 8.4.3.

Contrastive Learning. Let X ⊆ Rd denote the input space, Y the label space, and
Z ⊆ Rk the output vector space of the learned representation function. Let Φ denote
the hypothesis class of representations ϕ : X→ Z, and Fϕ the hypothesis class of
predictors on ϕ. A task is simply a data distribution over X × Y. In pre-training,
using transformations on unlabeled data from the tasks, we have some pre-train
distribution Dpre over positive pairs (x, x+) and negative examples x−, where x, x+

are obtained by applying random transformations on the same input (e.g., cropping
or color jitter for images), and x− is an independent example. The contrastive loss
is ℓ
(
ϕ(x)⊤(ϕ(x+) − ϕ(x−))

)
where ℓ(t) is a suitable loss function. Typically, the

logistic loss ℓ(t) = log(1 + exp(−t)) is used, while our analysis also holds for other
loss functions. A representation ϕ is learned by:

min
ϕ∈Φ

E(x,x+,x−)∼Dpre

[
ℓ
(
ϕ(x)⊤(ϕ(x+) − ϕ(x−))

)]
. (8.1)
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(We simply consider the population loss since pre-training data are large-scale.)
Then a predictor f is learned on top of ϕ using m labeled points {(xi,yi)}mi=1 from a
specific target task D:

min
f∈Fϕ

1
m

m∑
i=1

ℓc(f(ϕ(xi)),yi) (8.2)

where ℓc is a prediction loss (e.g. cross-entropy). Usually, f is a linear classifier
(Linear Probing) with a bounded norm: Fϕ = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ⩽ B},
where ∥ · ∥ denotes the ℓ2 norm.

Hidden Representation Data Model. We now consider the pre-train distribution
Dpre over (x, x+, x−). To capture that pre-training can learn useful features, we
assume a hidden representation for generating the data: first sample a hidden
representation z ∈ Z from a distribution Dz over some hidden representation
space Z ⊆ Rd, and then generate the input x and the label y from z. (The space
Z models semantic features, and can be different from the learned representation
space Z.) The dimensions of z are partitioned into two disjoint subsets of [d] :=
{1, · · · ,d}: spurious features U that are affected by the transformations, and invariant
features R that are not. Specifically, let DU,DR denote the distributions of zU and
zR, respectively, and let x = g(z) denote the generative function for x. Then the
positive pairs (x, x+) are generated as follows:

z = [zR; zU] ∼ Dz, z+U ∼ DU, z+ = [zR; z+U], x = g(z), x+ = g(z+). (8.3)

That is, x, x+ are from the same zR but two random copies of zU that model the
random transformations. Finally, x− is an i.i.d. sample from the same distribution
as x: z− ∼ Dz, x− = g(z−).
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8.3.1 What Features are Learned by Contrastive Learning?

Before analyzing prediction performance, we first analyze what features are learned
in pre-training.

Contrastive Learning is Generalized Nonlinear PCA. Recall that given data
x from a distribution D, Principal Components Analysis (PCA) (Pearson, 1901;
Hotelling, 1933) aims to find a linear projection function ϕ on some subspace such
that the variance of the projected data ϕ(x) is maximized, i.e., it is minimizing the
following PCA objective:

−Ex∼D[∥ϕ(x) − Ex ′∼D[ϕ(x
′)]∥2] = −Ex∼D[∥ϕ(x) − ϕ0∥2] (8.4)

where ϕ0 := E[ϕ(x ′)] is the mean of the projected data. Nonlinear PCA replaces lin-
ear representation functions ϕ with nonlinear ones. We next show that contrastive
learning is a generalization of nonlinear PCA on the smoothed representation after
smoothing out the transformations.

Theorem 8.1. If ℓ(t) = −t, then the contrastive loss is equivalent to the PCA objective on
ϕzR :

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
= −E

[
∥ϕzR − ϕ0∥2] (8.5)

where ϕzR := E[ϕ(x) | zR] = E[ϕ(g(z)) | zR]. If additionally ϕ(x) is linear in x, then
it is equivalent to the linear PCA objective −E

[
∥ϕ(x̄) − ϕ0∥2] on data x̄ := E[x|zR] =

E[g(z)|zR].

So contrastive learning is essentially nonlinear PCA when ℓ(t) = −t, and further
specializes to linear PCA when the representation is linear. As PCA finds directions
with large variances, the analogue is that contrastive learning encodes important
invariant features but not spurious ones.
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Contrastive Learning Encodes Invariant Features and Removes Spurious Fea-
tures. For a formal statement we need some weak assumptions on the data, the
representations, and the loss:

(A1) zR can be recovered from x, i.e., the inputs x = g(z) from different zR’s are
disjoint.

(A2) The representation functions are the regular functions with ∥ϕ(x)∥ = Br (∀x)
for some Br > 0. Being regular means there are a finite L and a partition
of Z into a finite number of subsets, such that in each subset all ϕ ◦ g have
Lipschitz constants bounded by L.

(A3) The loss ℓ(t) is convex, decreasing, and lower-bounded.

The first condition means the invariant features zR can be extracted from x (note
that g need not be invertible). The regular condition on the representation is to
exclude some pathological cases like the Dirichlet function; essentially reasonable
functions relevant for practice satisfy this condition, e.g., when g is Lipschitz and
ϕ are neural networks with the ReLU activation. Also, note that the logistic loss
typically used in practice satisfies the last condition.

We say a function f(z) is independent of a subset of input dimensions zS, if there
exists a function f ′ such that f(z) = f ′(z−S) with probability 1, where z−S denotes
the set of all zj with j ̸∈ S. We say the representation ϕ encodes a feature zi, if
ϕ ◦ g : Z→ Z is not independent of zi as long as the generative function g(z) is not
independent of zi.

Theorem 8.2. Under Assumptions (A1)(A2)(A3), the optimal representation ϕ∗ satis-
fies:

(1) ϕ∗ does not encode the spurious features zU: ϕ∗ ◦ g(z) is independent of zU.

(2) For any invariant feature i ∈ R, there exists Bi > 0 such that as long as the repre-
sentations’ norm Br ⩾ Bi, then ϕ∗ encodes zi. Furthermore, if Z is finite, then Bi is
monotonically decreasing in Pr[zR\{i} = z−R\{i}, zi ̸= z−i ], the probability that in zR

and z−R , the i-th feature varies while the others remain the same.
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So contrastive learning aims to remove the spurious features and preserve the
invariant features. Then the transformations should be chosen such that they will
not affect the useful semantic features, but change those irrelevant to the label.
Interestingly, the theorem further suggests that contrastive learning tends to favor
the more “spread-out” invariant features zi, as measured by Pr[zR\{i} = z−R\{i}, zi ̸=
z−i ]. As we increase the representation capacity Br, Br passes the threshold Bi for
more features zi, so ϕ∗ first encodes the more spread-out invariant features and
then the others.

This further suggests the following intuition for the trade-off. When pre-trained
on diverse data modeled as a mixture from multiple tasks with different invariant
features, the representation encodes all the invariant features and thus is useful for
prediction on all the tasks. When pre-trained on only a specific task, features specific
to this task are favored over those that only show up in other tasks, which leads to
smaller sample complexity for learning the predictor and thus better prediction.
However, to formalize this, some inductive bias assumptions about the data and the
representation are necessary to get any non-vacuous guarantee for the prediction
(see discussion in Appendix F.1.1). Therefore, Section 8.3.2 introduces additional
assumptions and formalizes the trade-off.

D1

S

D2

DT

UR

.

.

.

P1

P2

PT

Figure 8.2: Illustration of the features in our data distributions.
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8.3.2 Analyzing the Trade-Off: Linear Data

To analyze the prediction performance, we first need to model the relation between
the pre-training data and the target task. We model the diverse pre-training data as
a mixture of data from T different tasks Dt’s, while the target task is one of the tasks.
All tasks share a public feature set S of size s, and each task Dt additionally owns a
private disjoint feature set Pt of size r−s, i.e., Pt∩S = ∅ and Pt1 ∩Pt2 = ∅ for t1 ̸= t2

(Fig. 8.2). The invariant features for Dt are then Rt = S ∪ Pt. All invariant features
are R = ∪Tt=1Rt, and spurious features are U = [d] \ R. In task Dt, the (x, x+) are
generated as follows:

zRt ∼ N(0, I), zR\Rt = 0, zU ∼ N(0, I), z = [zR; zU], x = g(z), (8.6)

z+U ∼ N(0, I), z+ = [zR; z+U], x+ = g(z+), (8.7)

and x− is simply an i.i.d. copy from the same distribution as x. In practice, multiple
independent negative examples are used, and thus we consider the following
contrastive loss minϕ∈Φ E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
for a convex and

decreasing ℓ(t) to pre-train a representation ϕ. Then, when using ϕ for prediction
in the target task Dt, the predictor class should contain a predictor matching the
ground-truth label:

Fϕ,t = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ⩽ Bϕ,t} (8.8)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x)

on Dt.
Now, given the necessity of inductive biases for non-vacuous guarantees (see

Appendix F.1.1), and inspired by classic dictionary learning and recent analysis on
such data (e.g., Olshausen and Field (1997); Wen and Li (2021); Shi et al. (2022b)),
we assume linear data and linear representations:

• x is linear in z: x = g(z) = Mz where M ∈ Rd×d is an orthonormal dictionary.
Since linear probing has strong performance on pre-trained representations,
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we thus assume that the label in each task t is linear in its invariant features
y = (u∗

t)
⊤zRt for some u∗

t ∈ Rr.

• The representations are linear functions with weights of bounded spectral
and Frobenius norms:

Φ = {ϕ(x) = Wx : W∈Rk×d, ∥W∥⩽1, ∥W∥F⩽
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recov-
ering the invariant features in the target task, i.e., there exists ϕ ∈ Φ such that
ϕ(x) = [zRt ; 0].

We compare two representations: a specific one pre-trained on unlabeled data
from the target task Dt, and a universal one pre-trained on an even mixture of data
from T tasks. (Appendix F.2 provides analysis for more general cases like uneven
mixtures.) This captures the situation that the pre-training data contains some data
similar to the target task and also other less similar data. Let vt,1 =

∑
j∈S(u

∗
t)

2
j and

vt,2 =
∑
j∈Pt(u

∗
t)

2
j be the weights on the shared and task-specific invariant features,

respectively. Also, assume the prediction loss ℓc is L-Lipschitz.

Proposition 6. The representation ϕ∗ obtained on an even mixture of data from all the tasks
{Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some

α ∈ [0, 1], β = min
(

1, r−αs
T(r−s)

)
, where ej’s are the basis vectors and Q is any orthonormal

matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has
risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x),y)]

⩽4L

√
1
m

(
vt,1

α
+

vt,2

β

)(√
sα+ (r− s)β+O

(√
r

sα+ (r− s)β

))
+ 8
√

2 ln(4/δ)
m

.
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Proposition 7. The representation ϕ∗
t obtained on data from Dt satisfies ϕ∗

t ◦ g(z) =

Q
(∑

j∈Rt zjej
)

where ej’s are the basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗

t ,t on ϕ∗
t using m labeled data points from Dt has

risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗
t(x),y)] ⩽ 4L

√
r

m
∥u∗
t∥+ 8

√
2 ln(4/δ)

m
.

While on task Di(i ̸= t), any linear predictor on ϕ∗
t has error at least

min
u

EDi
[ℓc(u

⊤zS,y)].

Difference in Learned Features Leads to the Trade-off. The key of the analysis (in
Appendix F.2) is about what features are learned in the representations. Pre-trained
on all T tasks, ϕ∗ is a rotation of the weighted features, where the shared features
are weighted by

√
α and task-specific ones are weighted by

√
β. Pre-trained on

one task Dt, ϕ∗
t is a rotation of the task-specific features Rt. So compared to ϕ∗

t , ϕ∗

encodes all invariant features but down-weights the task-specific features Pt.
The difference in the learned features then determines the prediction perfor-

mance and results in a trade-off between universality and label efficiency: compared
to ϕ∗

t , ϕ∗ is useful for more tasks but has worse performance on the specific task Dt.
For illustration, suppose r = 2s, and the shared and task-specific features are equally
important for the labels on the target task: vt,1 = vt,2 = ∥u∗

t∥2/2. In Appendix F.2.3
we show that ϕ∗ has α = 1,β = 1

T
and the error is O

(
L
√
Tr
m
∥u∗
t∥
)

, while the
error using ϕ∗

t is O
(
L
√

r
m
∥u∗
t∥
)
. Therefore, the error when using representations

pre-trained on data from T tasks is O(
√
T) worse than that when just pre-training

on data from the target task. On the other hand, the former can be used in all T
tasks and the prediction error diminishes with the labeled data number m. While
the latter only encodes Rt and the only useful features on the other tasks are zS,
then even with infinite labeled data the error can be large (⩾ minu E[ℓc(u⊤zS,y)],
the approximation error using only the common features zS for prediction).
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Improving the Trade-off via Contrastive Regularization. The above analysis
provides some guidance on improving the trade-off, in particular, improving the
target prediction accuracy when given a pre-trained representation ϕ∗. It suggests
that whenϕ∗ is pre-trained on diverse data, one can update it by contrastive learning
on some unlabeled data from the target task, which can get better features and
better predictions. This is indeed the case for the illustrative example above. We
can show that updating ϕ∗ by contrastive learning on Dt can increase the weights β
on the task-specific features zPt , and thus improve the generalization error (formal
analysis in Appendix F.2.4).

In practice, typically one will learn the classifier and also fine-tune the repre-
sentation with a labeled dataset {(xi,yi)}mi=1 from the target task. We thus propose
contrastive regularization for fine-tuning: for each data point (x,y), generate con-
trastive pairs R = {(x̃, x̃+, x̃−)} by applying transformations, and add the contrastive
loss on these pairs as a regularization term to the classification loss:

ℓc(f(ϕ(x)),y) +
λ

|R|

∑
(x̃,x̃+,x̃−)∈R

ℓ
(
ϕ(x̃)⊤(ϕ(x̃+) − ϕ(x̃−))

)
. (8.9)

This method is simple and generally applicable to different models and algorithms.
Similar ideas have been used in graph learning (Ma et al., 2021), domain general-
ization (Kim et al., 2021) and semi-supervised learning (Lee et al., 2022), while
we use it in fine-tuning for learning predictors. Our experiments in Section 8.4.3
show that it can consistently improve the prediction performance compared to the
typical fine-tuning approach.

8.4 Experiments
We conduct experiments to answer the following questions. (Q1) Does the trade-
off between universality and label efficiency exist when training on real datasets?
(Q2) What factors lead to the trade-off? (Q3) How can we alleviate the trade-off,
particularly in large foundation models? Our experiments provide the following
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answers: (A1) The trade-off widely exists in different models and datasets when
pre-training on large-scale unlabeled data and adapting with small labeled data (see
Section 8.4.1). This justifies our study and aligns with our analysis. (A2) Different
datasets own many private invariant features leading to the trade-off, e.g., FaceScrub
and CIFAR-10 do not share many invariant features (see Section 8.4.2). It supports
our analysis in Section 8.3.2. (A3) Our proposed method, Finetune with Contrastive
Regularization, can improve the trade-off consistently (see Section 8.4.3).

8.4.1 Verifying the Existence of the Trade-off
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Figure 8.3: Trade-off between universality and label efficiency for MoCo v2. x-axis: in-
crementally add datasets for pre-training MoCo v2. (a) Pre-training data: CINIC-10
(C), SVHN (S), GTSRB (G), and ImageNet32 (I). E.g., “CS” on the x-axis means CINIC-
10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing on
all 4 datasets. Blue line: test accuracy on the target task. (b) EMNIST-Digits&Letters
(E), Fashion-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST. (c) FaceScrub (F),
CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013. Note that training does not
follow the online learning fashion, e.g., the model will pre-train from scratch (random
initialization) on the CSG datasets, rather than using the model pre-trained on the CS
datasets.

Evaluation & Methods. We first pre-train a ResNet18 backbone (He et al., 2016a)
with different contrastive learning methods and then do Linear Probing (LP, i.e.,
train a linear classifier on the feature extractor) with the labeled data from the
target task. We report the test accuracy on a specific target task and the average test
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(a) MoCo v3 (backbone ViT-S)
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Figure 8.4: Trade-off between universality and label efficiency on ImageNet. x-axis:
from left to right, incrementally add ImageNet-Bird (B), ImageNet-Vehicle (V), ImageNet-
Cat/Ball/Shop/Clothing/Fruit (+), and ImageNet (ALL) for pre-training (a) MoCo v3
with backbone ViT-S (b) SimSiam with backbone ResNet50. For example, “BV” means
ImageNet-Bird + ImageNet-Vehicle. Target: ImageNet-Bird.

accuracy on all pre-training datasets (i.e., using them as the downstream tasks).
Fig. 8.3 shows the results for the method MoCo v2. The size and diversity of pre-
training data are increased on the x-axis by incrementally adding unlabeled training
data from: (a) CINIC-10, SVHN, GTSRB, ImageNet32 (using only a 500k subset);
(b) EMNIST-Digits&Letters, Fashion-MNIST, GTSRB, ImageNet32; (c) FaceScrub,
CIFAR-10, SVHN, ImageNet32. We further perform larger-scale experiments on
ImageNet (see Fig. 8.4).

Results. The results show that when the pre-training data becomes more diverse,
the average test accuracy on all pre-training datasets increases (i.e., universality
improves), while the test accuracy on the specific target task decreases (i.e., label
efficiency drops). This shows a clear trade-off between universality and label
efficiency. It supports our claim that diverse pre-training data allow learning
diverse features for better universality, but can down-weight the features for a
specific task resulting in worse prediction. This validates our theoretical analysis
of the trade-off.



148

8.4.2 Inspecting the Trade-off: Feature Similarity
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Figure 8.5: Linear CKA similarity among Fer2013 features from MoCo v2 pre-trained on
different datasets. Left: each representation in the first four columns/rows is pre-trained on
a single dataset. “Union" indicates the model pre-trained on the union of the four disjoint
datasets. Right: from left column to right, from top row to bottom, we incrementally add
datasets for pre-training.

Here we compute the similarity of the features learned from different pre-
training datasets for a target task. For each pre-trained model, we extract a set of
features for the target task Fer2013 using the pre-trained representation function.
Then we compute the similarities between the extracted features based on different
pre-training dataset pairs using linear Centered Kernel Alignment (CKA) (Ko-
rnblith et al., 2019), a widely used tool for high-dimensional feature comparison.
Figure 8.5 reports the results (rows/columns are pre-training data; numbers/col-
ors show the similarity). The left figure shows that the features from different
pre-training datasets have low similarities. This is consistent with our setup in
Section 8.3.2 that different tasks only share some features and each owns many
private ones. The right figure shows a decreasing trend of similarity along each
row. This indicates that when gradually adding more diverse pre-training data, the
learned representation will encode more downstream-task-irrelevant features, and
become less similar to that prior to adding more pre-training data.
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(a) Linear Probing (b) Finetune (c) Ours

Figure 8.6: The t-SNE visualization (Van der Maaten and Hinton, 2008) for CIFAR-
10 training data normalized features from different evaluation methods, where the
model is pre-trained on (CSGI) defined in Fig. 8.3. FT and Ours are trained on the
20% CIFAR-10 training dataset. Different colors correspond to different classes.

8.4.3 Improving the Trade-off: Finetune with Contrastive
Regularization

Method Pre-training dataset
CINIC-10 +SVHN +GTSRB +ImageNet32

LP 88.41±0.01 85.18±0.01 82.07±0.01 75.64±0.03

FT 93.58±0.14 93.35±0.10 93.42±0.13 92.92±0.06

Ours 94.51±0.02 94.26±0.01 94.32±0.13 93.66±0.12

Table 8.1: Test accuracy on CIFAR-10 with different evaluation methods on MoCo v2
by using all CIFAR-10 training data. From left to right: incrementally add datasets for
pre-training.

Evaluation & Methods. We pre-train ResNet18 by MoCo v2 as in Section 8.4.1
and report the test accuracy on CIFAR-10 when the predictor is learned by: Linear
Probing (LP), Finetune (FT), and Finetune with Contrastive Regularization (Ours).
LP follows the training protocol in Section 8.4.1. FT and Ours learn a linear predictor
and update the representation, and use the same data augmentation for a fair
comparison. FT follows MAE (He et al., 2022), while Ours uses MoCo v2 contrastive
loss and regularization coefficient λ = 0.1.
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Results. Table 8.1 shows that our method can consistently outperform the other
baselines. In particular, it outperforms the typical fine-tuning method by about
0.7% – 1%, even when the latter also uses the same amount of data augmentation.
This confirms the benefit of contrastive regularization. To further support our claim,
Fig. 8.6 visualizes the features of different methods by t-SNE, showing that con-
trastive regularization can highlight the task-specific features and provide cleaner
clustering, and thus improve the generalization, as discussed in our theoretical
analysis.

Method CLIP MoCo v3 SimCSE
ImageNet SVHN GTSRB CIFAR-10 SVHN GTSRB IMDB AGNews

LP 77.84±0.02 63.44±0.01 86.56±0.01 95.82±0.01 61.92±0.01 75.37±0.01 86.49±0.16 87.76±0.66

FT 83.65±0.01 78.22±0.18 90.74±0.06 96.17±0.12 65.36±0.33 76.45±0.29 92.31±0.26 93.57±0.23

Ours 84.94±0.09 78.72±0.37 92.01±0.28 96.71±0.10 66.29±0.20 81.28±0.10 92.85±0.03 93.94±0.02

Table 8.2: Test accuracy for different evaluation methods on different datasets using
all training data and using foundation models from CLIP, MoCo v3, and SimCSE. Data
augmentation is not used for LP (Linear Probing). For FT (Finetune) and Ours (our
method), 10 augmentations to each training images are used for CLIP, MoCo v3, and
unique augmentation in each training step is used for SimCSE.

Larger Foundation Models. We further evaluate our method on several pop-
ular real-world large representation models (foundation models). On some of
these models, the user may be able to fine-tune the representation when learning
predictors. On very large foundation models, the user typically extracts feature
embeddings of their data from the models and then trains a small predictor, called
adapter (Hu et al., 2021; Sung et al., 2022), on these embeddings. We evaluate CLIP
(ViT-L (Dosovitskiy et al., 2020) as the representation backbone), MoCo v3 (ViT-B
backbone), and SimCSE (Gao et al., 2021) (BERT backbone). They are trained
on (image, text), (image, image), and (text, text) pairs, respectively, so cover a
good spectrum of methods. For CLIP and MoCo v3, the backbone is fixed. LP
uses a linear classifier, while FT and Ours insert a two-layer ReLU network as an
adapter between the backbone and the linear classification layer. Ours uses the
SimCLR contrastive loss on the output of the adapter. For SimCSE, all methods use
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linear classifiers. LP fixes the backbone, while FT and Ours train the classifier and
fine-tune the backbone simultaneously. Ours uses the SimCSE contrastive loss on
the backbone feature. We set the regularization coefficient λ = 1.0.

Table 8.2 again shows that our method can consistently improve the downstream
prediction performance for all three models by about 0.4% – 4.8%, and quite sig-
nificantly in some cases (e.g., 1.3% for CLIP on ImageNet, 4.8% for MoCo v3 on
GTSRB). This shows that our method is also useful for large foundation models,
even when the foundation models cannot be fine-tuned and only the extracted
embeddings can be adapted.

8.5 Conclusion and Future Work
In this chapter, we showed and analyzed the trade-off between universality and
label efficiency of representations in contrastive learning. Guided by our analysis,
we proposed a contrastive regularization method to improve the trade-off. We
validated our analysis and method empirically with systematic experiments using
real-world datasets and foundation models. Our analysis and experiments provided
insights on the conditions for this trade-off and how to effectively select the pre-
training tasks.

There are many interesting open questions for future work: (1) What features
does the model learn from specific pre-training and diverse pre-training datasets
beyond linear data? (2) Do the other self-supervised learning methods have a
similar trade-off? (3) Can we address the trade-off better to gain both properties at
the same time?
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9 adaptation with self-evaluation to improve selective
prediction in llms

Contribution statement. This chapter is joint work with Jinsung Yoon, Sayna
Ebrahimi, Sercan O Arik, Tomas Pfister, and Somesh Jha. The author Jiefeng Chen
proposed the method and completed all the experiments.

9.1 Introduction
Large Language Models (LLMs) have recently demonstrated impressive capabilities
in many natural language understanding, reasoning and generation tasks, such as
question answering (Jiang et al., 2021b; Singhal et al., 2023), summarization (Tang
et al., 2023; Zhang et al., 2023b), semantic classification, and code generation (Poesia
et al., 2022; Zhang et al., 2023a). As LLMs improve their remarkable performance,
they are being increasingly considered to replace humans to perform high-stakes
tasks. For example, LLMs can be used for medical QA to assist patients (Singhal
et al., 2022). However, LLMs are not guaranteed to be accurate for all queries, so it
is important to understand which queries they are reliable for. This information
can be used to direct human oversight to the queries with the lowest selection score.
Selective prediction (Geifman and El-Yaniv, 2017), broadly refers to the deployment
scenario for AI models where humans are involved to maintain overall accuracy
by reviewing AI-generated, low-confidence outputs. In this scenario, both human
and AI performance are considered together to minimize human involvement
cost. LLMs should be used in the real world with enhanced selective prediction
performance. They should be able to assess the accuracy of their predictions and
refrain from making wrong predictions. If an LLM detects that an answer might be
wrong for a question, it should be able to generate an answer with the sentiment of
"I don’t know!" (as shown in Fig. 9.1) or defer the answer to a human for manual
inspection. This will help to ensure that LLMs are used in a responsible and
trustworthy manner; especially in the high-stakes contexts.
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Which vitamin assists in 
blood clotting?

LLM

LLM

Without 
Selective 
Prediction

With 
Selective 
Prediction

Which vitamin assists in 
blood clotting?

Answer: Vitamin C 
Selection score: 0.1 

Answer: Vitamin C

Correct 
answer: 
Vitamin K

Correct 
answer: 
Vitamin K

Figure 9.1: A safety-critical question from the TriviaQA dataset: “Which vitamin helps
regulate blood clotting?” The OPT-2.7B model incorrectly answers “Vitamin C”, when the
correct answer is “Vitamin K”. Without selective prediction, LLMs will directly output the
wrong answer which in this case could lead users to take the wrong medicine, and thus
causing potential harm. With selective prediction, LLMs will output a low selection score
along with the wrong answer and can further output “I don’t know!” to warn users not to
trust it or verify it using other sources.

Selective prediction for LLMs is challenging because LLMs are just trained
to predict the next token given a context but are not guaranteed to always pre-
dict the correct next token. Also, since LLMs generate an output sequence in an
auto-regressive way, they don’t directly produce a confidence score for the output
sequence. Thus, obtaining selection scores from LLMs for their output sequences
is not straightforward. Although there is research on selective prediction for LLMs,
these studies have their own shortcomings. Kadavath et al. propose to use heuristic
prompts (e.g., adding prompts like “Is the proposed answer True or False?”) to
trigger self-evaluation of LLMs. However, those prompts may only work for the
LLM used in Kadavath et al. (2022) and may not generalize to other types of LLMs
(e.g., OPT and GPT2 models evaluated in our work). Some approaches proposed
using semantic entropy (Kuhn et al., 2023) or self-consistency (Wang et al., 2022)
as a measure of uncertainty for selection score. However, they usually require



154

generating multiple output sequences to obtain the uncertainty measure for an
input sequence, which introduces high computational cost and latency at test time.
Fine-tuning LLMs on training data from the target question answering task using
the standard LLM training loss can improve selective prediction performance. This
is because fine-tuning can improve the accuracy of the predictions and maximize
the likelihood of the ground-truth answer for a given question. However, maxi-
mizing the likelihood of the ground-truth answer is not the same as minimizing
the likelihood of the wrong answers, since LLMs generate output sequences in an
auto-regressive way. Even after fine-tuning, some wrong answers may still have
high likelihood and be generated by the LLM at test time. Therefore, distinguishing
correct and incorrect answers based on likelihood scores alone is a challenging task.

To address these challenges of self-evaluation and uncertainty estimation, we
propose a novel framework – Adaptation with Self-Evaluation to Improve Selective
Prediction in LLMs (ASPIRE). Unlike previous methods that rely on hand-crafted
heuristics or multiple output sequences, our framework learns to self-evaluate from
target-task data. We do this by training LLMs on a subset of the training data from
the question-answering tasks. This allows the LLMs to learn to distinguish between
correct and incorrect answers on their own. We then define a selection score that
combines the likelihood of the generated answer with the learned self-eval score
(see Eq. (9.10)) to make selective predictions. This makes our method much less
computationally expensive than solutions that require generating multiple output
sequences to obtain the uncertainty measure.

We conducted extensive experiments to evaluate our proposed framework,
ASPIRE. We show that ASPIRE achieves state-of-the-art selective prediction perfor-
mance on three question-answering datasets: CoQA, TriviaQA and SQuAD using
OPT and GPT-2 models. We also provide empirical analysis to delve deeper into
our proposed technique.
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9.2 Related Work
Selective Prediction for LLMs. Recently, LLMs (e.g., GPT-4 (OpenAI, 2023) and
PaLM (Chowdhery et al., 2022)) have achieved great success in solving various
kinds of Natural Language Generation (NLG) tasks. However, LLMs are still not
very reliable and may generate wrong outputs when solving NLG tasks. Due to this,
selective prediction (or sometimes called selective generation (Ren et al., 2022)) is
critical for safely deploying LLMs in the real-world. Different from selective pre-
diction for classification tasks (e.g., Natural Language Inference (NLI) tasks) (Xin
et al., 2021), selective prediction for LLMs in solving NLG tasks is fundamentally
different since the prediction is done auto-regressively over many steps and the
possible answer set has an infinite size. Recently, several work propose some un-
certainty measures for LLMs, which can be used for selective prediction (Si et al.,
2022; Kadavath et al., 2022; Varshney et al., 2022; Ren et al., 2022; Kuhn et al., 2023).
Some recent work studies selective prediction for solving question answering tasks
where questions are ambiguous (Cole et al., 2023; Yin et al., 2023). Different from
previous work, our work proposes to improve the selective prediction performance
of LLMs in solving question answering tasks by learning self-evaluation during
fine-tuning.

Parameter Efficient Fine-tuning. Fine-tuning pretrained LLMs on downstream
datasets can bring huge performance gains when compared to using the pretrained
LLMs out-of-the-box (e.g., k-shot inference). However, as LLMs get larger and
larger, full fine-tuning becomes very expensive in terms of computational cost and
memory requirements. In addition, massive models might not be data efficient
and overfitting issues might be observed, yielding suboptimal generalization. To
address these issues, Parameter-Efficient Fine-tuning (PEFT) approaches have
been proposed. PEFT approaches only fine-tune a small number of (extra) model
parameters while freezing most parameters of the pretrained LLMs, thereby greatly
decreasing the computational and storage costs. It has also been shown that PEFT
approaches are better than fine-tuning in the low-data regimes and generalize better
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to out-of-domain scenarios. Existing PEFT approaches include LoRA (Hu et al.,
2021), Prefix Tuning (Liu et al., 2021b), Soft Prompt Tuning (Lester et al., 2021) and
P-Tuning (Liu et al., 2021c). In this chapter, we propose using Soft Prompt Tuning
to learn self-evaluation to improve the selective prediction performance of LLMs.

9.3 Problem Setup
Suppose we have a pre-trained LLM f for an arbitrary generative modeling task
such as question answering. The output can be represented as a sequence of tokens
from the vocabulary V. Let V∗ be the space of sequences of tokens. Suppose the
logits of f on v ∈ V given x ∈ V∗ is f̄(v | x). The likelihood of the next token
following x being v is defined as:

f(v | x) := exp (f̄(v | x))∑
v ′∈V exp (f̄(v ′ | x))

, (9.1)

whereas the likelihood of generating ŷ ∈ V∗ given x is defined as:

f(ŷ | x) := Π
|ŷ|
i=1f(ŷi | x, ŷ[i−1]), (9.2)

where ŷ = (ŷ1, . . . , ŷ|ŷ|), |ŷ| is the length of ŷ, ŷ[i−1] = (ŷ1, . . . , ŷi−1) for i > 0 and
ŷ[0] = ∅. This likelihood can be very small when |ŷ| is very large. To address this
issue, we define the normalized likelihood as:

fnorm(ŷ | x) := f(ŷ | x)
1
|ŷ| (9.3)

We use f to generate the output sequence for the given input x by solving the
following objective:

ŷ∗ = arg max
ŷ

log f(ŷ | x) (9.4)
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It is impossible to solve this objective exactly since the output sequences can be
arbitrarily long. However, we can employ some decoding strategy like greedy
decoding or beam search to solve it.

To evaluate if the generated output ŷ is correct or not, we need a set of reference
outputs S and an evaluation metric M : V∗ × V∗ → [0, 1] that can evaluate the
similarity of the generated output ŷ compared to the reference output yr ∈ S.
With a threshold γ, we can determine the correctness of the generated output
– if maxyr∈SM(ŷ, yr) > γ, then the generated output is correct; otherwise, the
generated output is wrong. We discuss the specific choices of M and γ in Section 9.6.

In selective prediction, we need a rejection option, which is denoted by ⊥.
Given a training dataset Dtr = {(xi, yi)}ntri=1 randomly sampled from a target task
distribution, we aim to build a selective predictor fs : V∗ → V∗∪ {⊥} that can achieve
strong selective prediction performance on the test dataset Dte = {(xi,Si)}ntei=1,
where Si is the set of reference outputs for the input xi. The selective predictor fs is
composed of a predictor f̂ : V∗ → V∗ and a selection scoring function g : V∗ → R.
With f̂ and g, the selective predictor fs is proposed as:

fs(x; τ) =

f̂(x) if g(x) ⩾ τ,

⊥ if g(x) < τ
, (9.5)

where τ is a threshold. The accuracy of the selective predictor is defined as the
fraction of the accepted inputs where the predictions are correct. The coverage
of the selective predictor is defined as the fraction of the inputs that are accepted.
We can tune the threshold τ to achieve a certain coverage and there would be an
accuracy-coverage trade-off.

We use the area under the accuracy-coverage curve (AUACC) metric to measure
selective prediction performance and use the area under the receiver operator
characteristic curve (AUROC) metric to measure the quality of the selection score
estimation. AUROC is equivalent to the probability that a randomly chosen correct
output sequence has a higher selection score than a randomly chosen incorrect
output sequence.



158

9.4 ASPIRE Framework

Frozen LLM

Q: Which vitamin assists 
in blood clotting? A: 

Vitamin K

Adaptable 
parameters !!

Frozen LLM

Q: Which vitamin assists 
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Vitamin K
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Frozen LLM
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Correct Wrong
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Figure 9.2: In the proposed framework ASPIRE, we first perform task specific tuning
to train adaptable parameters θp while freezing the LLM. Then we use the LLM with
the learned θp to generate different answers for each training question to create a dataset
for self-evaluation learning. Finally, we train the adaptable parameters θs to learn self-
evaluation using the created dataset while freezing the LLM and the learned θp.

We propose that LLMs should have the self-evaluation ability such that they
should be able to distinguish whether their proposed answers for a given question
are correct or not. Although some previous work (Kadavath et al., 2022) show that
LLMs have good self-evaluation ability with specially designed prompts, those
prompts may not transfer to different kinds of LLMs (as shown by our experiments
and in Kuhn et al. (2023)) and hand-crafting prompts for different kinds of LLMs
can be expensive. A more effective approach is to collect some training data to em-
ploy self-evaluation. Towards this end, we propose a novel framework – Adaptation
with Self-Evaluation to Improve Selective Prediction in LLMs (ASPIRE). Fig. 9.2
illustrates the proposed framework and the details are explained next.

Given a training dataset for a generative task, we can fine-tune the pre-trained
LLM on the training data to improve its prediction performance. Towards this
end, parameter efficient tuning techniques (e.g., soft prompt tuning (Lester et al.,
2021) and LoRA (Hu et al., 2021)) might be employed to adapt the pre-trained
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LLM on the task, given their effectiveness in obtaining strong generalization with
small amount of target task data. Specifically, the model parameters θ of the LLM
are frozen and adaptable parameters θp are added for fine-tuning. Only θp are
updated to solve the following training objective:

min
θp

E(x,y)∼DtrL(x, y; θ, θp), (9.6)

where L is the LLM training loss (e.g. cross-entropy). Such fine-tuning can im-
prove selective prediction performance because it not only improves the prediction
accuracy, but also enhances the likelihood of correct output sequences.

To further improve selective prediction performance, we propose to fine-tune the
LLM to learn self-evaluation. We first use the LLM with the learned θp to generate
different answers for each example (x, y) ∈ Dtr. Suppose the decoding algorithm
used to generate output sequences for each input x is A. A would produce a list
of generated output sequences A(f, θp, x) = [ŷ1, . . . , ŷk], where k is the number of
output sequences generated. We aim to generate output sequences that have high
likelihood (i.e., f(ŷj | x; θp) is high). We use the metric M defined in Section 9.3
to determine if the generated output ŷj is correct or not. If M(ŷj, y) > γ̂, we label
ŷj as a correct output for x; otherwise, we label ŷj as a wrong output for x. Here,
the threshold γ̂ might be different from the threshold γ used for evaluation. We
choose a sufficiently large value of γ̂ (e.g., γ̂ = 0.9) so that the generated wrong
outputs wouldn’t be labeled as correct outputs. In Appendix G.4, we provide more
details and analyses on selection of γ̂.

After sampling high-likelihood outputs for each query, we add adaptable pa-
rameters θs and only tune θs for learning self-evaluation. Since the output sequence
generation only depends on θ and θp, freezing θ and the learned θp can avoid chang-
ing the prediction behaviors of the LLM when learning self-evaluation. Let zc and
zw be a pair of tokens that represent the words “correct” and “wrong” respectively.
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We can then optimize θs using the following training objective:

min
θs

E(x,y)∼Dtr Lc + Lw

Lc = Eŷ∼Sc(x,y) − log f(zc|x, ŷ; θp, θs)

Lw = Eŷ∼Sw(x,y) − log f(zw|x, ŷ; θp, θs)

(9.7)

where Sc(x, y) is a set of correct outputs containing the reference output y and kc cor-
rect outputs with highest likelihood from A(f, θp, x), and Sw(x, y) is a set of wrong
outputs containing kw wrong outputs with highest likelihood from A(f, θp, x). If
A(f, θp, x) has less than kc correct outputs (or has less than kw wrong outputs), we
include all its correct outputs (or all its wrong outputs) in Sc (or Sw). We ensure
that Sw contains at least one wrong output. If A(f, θp, x) doesn’t contain wrong
outputs, we add a default wrong output (e.g., the empty string) to Sw.

After training θp and θs, we obtain the prediction for the query x via solving
the following objective:

ŷ∗ = arg max
ŷ

log f(ŷ | x; θp). (9.8)

We use the beam search decoding method towards this. We define the likelihood
of the output ŷ∗ being correct for the query x as:

P(zc | x, ŷ∗) =
exp (f̄(zc | x, ŷ∗; θp, θs))∑

z∈{zc,zw} exp (f̄(z | x, ŷ∗; θp, θs))
(9.9)

This score P(zc | x, ŷ∗) is referred as the learned self-eval score. Overall, the selection
scoring function is proposed as:

g(x) = (1 − α) · log fnorm(ŷ∗ | x; θp) + α · log P(zc | x, ŷ∗). (9.10)

where α ∈ [0, 1] is a hyper-parameter.
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9.5 Implementation via Soft Prompt Tuning

Frozen LLM

!! "#$%#&
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Figure 9.3: Implementation of the proposed framework via soft prompt tuning. θp and
θs are learnable soft prompt embeddings. Qembed and Aembed are input embeddings for
the question and answer respectively. We first generate the answer and the likelihood of
the answer, and then compute the learned self-eval score. We can cache the states when
generating the answer and reuse those states when computing the learned self-eval score
to save computational costs.

In the proposed framework, θp and θs can be trained using parameter efficient
tuning approaches. In this chapter, we focus on Soft Prompt Tuning, as illustrated
in Fig. 9.3. The driving force behind this approach lies in the recognition that if we
can develop prompts that effectively stimulate self-evaluation, it should be possible
to discover these prompts through soft prompt tuning in conjunction with targeted
training objectives.

We first briefly introduce the soft prompt tuning method proposed by Lester
et al. (2021). We consider LLMs based on the Transformer architecture (Vaswani
et al., 2017). Given a query x = (x1, . . . , xmq

), Transformers first embed the tokens,
forming a matrix X ∈ Rmq×de , where de is the dimension of the embedding space.
The soft-prompts are represented as parameters θ̃ ∈ Rl×de , where l is the length
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of the prompt. The prompt is then concatenated to the embedded input forming
a single matrix [θ̃;X] ∈ R(mq+l)×de , which then flows through the transformer as
normal.

In the proposed framework, we need to train two portions of the prompts
θp ∈ Rl×de and θs ∈ Rl×de . Utilizing soft prompt tuning, the training objective (9.6)
is proposed as:

min
θp

E(x,y)∼Dtr
1
|y|

|y|∑
j=1

− log f(yj|[θp;X; Y[j−1]]), (9.11)

where X is the embedding of x and Y[j−1] is the embedding of y[j−1]. On the other
hand, the training objective (9.7) is proposed as:

min
θs

E(x,y)∼Dtr Lc + Lw

Lc = Eŷ∼Sc(x,y) − log f(zc|[θp;X; Ŷ; θs])

Lw = Eŷ∼Sw(x,y) − log f(zw|[θp;X; Ŷ; θs])

(9.12)

where Ŷ is the embedding of ŷ. The inference objective (9.8) in the framework
becomes:

ŷ∗ = arg max
ŷ

log f(ŷ | [θp;X]) (9.13)

The learned self-eval score P(zc | x, ŷ∗) becomes:

P(zc | x, ŷ∗) =
exp (f̄(zc | [θp;X; Ŷ∗; θs]))∑

z∈{zc,zw} exp (f̄(z | [θp;X; Ŷ∗; θs]))
(9.14)

where Ŷ∗ is the embedding of ŷ∗.
To generate the output sequence and obtain the selection score for a given input

sequence, we employ two stages: first, we obtain the generated output and the
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likelihood for the generated output and then, we obtain the learned self-eval score.
Since the query of the second stage is constructed by appending some additional
tokens to the query of the first stage, the second stage can reuse the states in the first
stage instead of recomputing them to save some computational cost (see Fig. 9.3).

Lastly, we note that the computational complexity of the proposed method at
test time is O(lmax) with lmax being the maximum length of the generated output
sequence. In Appendix G.2, we provide a more detailed analysis of the compu-
tational complexity of different methods. The predictive entropy and semantic
entropy methods have a complexity of O(m·lmax) where m is the number of output
sequences sampled for uncertainty estimation, which is much larger than that of
our method.

9.6 Experiments
Our experimental evaluation is focused on the following questions:

(Q1) Could a learning-based system using self-evaluation improve selective pre-
diction in LLMs compared to other post-hoc selective prediction alternatives?

(A1) By learning self-evaluation, we can significantly improve selective prediction
performance across different datasets and LLMs (see Table 9.2).

(Q2) What kinds of decoding algorithms could be used as A for the proposed
framework ASPIRE?

(A2) Using decoding algorithms that can sample different high-likelihood answers
as A (e.g., beam search) is important for ASPIRE to achieve good selective
prediction performance (see Table 9.4).

(Q3) What is the effect of the number of training samples for the proposed method
ASPIRE?
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(A3) More training samples lead to enhanced performance and with ∼2K samples,
ASPIRE can outperform the baselines without soft prompt tuning significantly
on different datasets (see Table 9.5).

9.6.1 Setup

Dataset. We focus on the free-form question answering tasks on the datasets
CoQA (Reddy et al., 2019), TriviaQA (Joshi et al., 2017) and SQuAD (Rajpurkar
et al., 2016). For CoQA and SQuAD, since each question is asked based on a context
paragraph, we evaluate the LLMs in the zero-shot setting. For TriviaQA, since the
LLMs have limited accuracy under the zero-shot setting, we evaluate the LLMs
in 5-shot setting. For each dataset, we use a subset of the original training set
containing 50K examples for adapting LLMs by default. The details of the datasets
are given in Appendix G.1.1.

LLMs. We use OPT (Zhang et al., 2022) and GPT-2 (Radford et al., 2019) models
of various sizes. For OPT, we consider OPT-350M, OPT-1.3B and OPT-2.7B. For
GPT-2, we consider GPT2-Medium, GPT2-Large and GPT2-XL. The details of these
models are given in Appendix G.1.2.

Baselines. For selective prediction, we need to get a predicted output sequence
ŷ∗ and a selection score g(x) for each input sequence x given a model f. The model
f can be a pre-trained LLM or an adapted LLM with θp trained using the training
objective (9.11). We use the beam-search decoding to obtain the predicted output
sequence ŷ∗ and consider the following baselines to compute the selection score
g(x): (1) Perplexity; (2) Predictive Entropy; (3) Semantic Entropy (Kuhn et al.,
2023); (4) Self-eval; (5) P(True) (Kadavath et al., 2022). More details can be found
in Appendix G.1.3.

Evaluation metrics. We use the Rouge-L (Lin and Och, 2004) as the evaluation
metric M to evaluate the similarity of the generated answer to the reference answers
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following Kuhn et al. (2023). For the threshold γ that is used to determine the
correctness of the generated answer, we consider relatively larger values of γ since
we focus on safety-critical applications where accepting a wrong answer is more
costly compared to rejecting a correct answer that is different from the reference
answers (refer to Appendix G.3 for the justifications of the choices of γ). Unless
specified, we use γ = 0.7 as default.

Training hyper-parameters. We have two stages of training: the first stage is to
train the soft prompt θp using the training objective (9.11) and the second stage is
to train the soft prompt θs using the training objective (9.12). For both stages, we
train the soft prompts for 10 epochs using AdamW optimizer with a batch size of 8,
a learning rate of 0.01 and cosine learning rate scheduling. More training details
can be found in Appendix G.1.4.

ASPIRE setup. We use the beam search as the decoding algorithm A. We set the
number of beams equal to k and use the k highest scoring beams as the answer list
A(f, θp, x). We set l = 50, γ̂ = 0.9, k = 10, kc = 2, kw = 10 and α = 0.25 by default.
We choose these hyper-parameters based on the performance on the validation set
from TriviaQA using the OPT-2.7B model. We then use the same hyper-parameters
for all datasets and models.

9.6.2 Results

Model CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-XL 46.27 11.80 7.41
Adapted GPT2-XL with θp 69.18 17.45 75.44
Pre-trained OPT-2.7B 60.68 21.38 35.95
Adapted OPT-2.7B with θp 80.45 29.21 83.27

Table 9.1: Results of evaluating the accuracy of different LLMs. All numbers are
percentages.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
GPT2-XL

Perplexity 55.93 62.05 22.60 72.88 7.68 51.90
Predictive Entropy 60.76 67.53 24.83 76.20 10.04 57.21
Semantic Entropy 63.03 70.50 24.37 75.33 10.38 59.17
Self-eval 46.67 50.83 9.30 42.75 7.32 49.56
P(True) 46.98 51.17 10.62 44.54 10.69 60.87

Adapted
GPT2-XL
with θp

Perplexity 83.27 72.79 36.49 79.92 88.73 75.08
Predictive Entropy 83.49 73.44 37.31 82.21 88.25 74.16
Semantic Entropy 84.40 75.16 36.68 81.40 88.62 75.26
Self-eval 69.91 51.90 14.39 43.33 74.26 49.13
P(True) 70.63 52.83 13.59 40.59 74.34 49.09
ASPIRE (ours) 85.65 78.32 38.06 83.23 89.86 78.35

Pre-
trained
OPT-2.7B

Perplexity 75.26 70.16 40.93 78.86 40.82 57.20
Predictive Entropy 75.29 69.16 41.20 78.92 47.18 62.85
Semantic Entropy 76.31 70.96 40.72 78.06 51.53 68.40
Self-eval 62.32 52.26 25.88 59.04 41.78 59.05
P(True) 62.16 51.80 24.88 56.89 34.77 49.42

Adapted
OPT-2.7B
with θp

Perplexity 90.80 74.23 53.56 81.74 92.86 75.72
Predictive Entropy 90.63 72.87 53.91 82.19 92.96 75.58
Semantic Entropy 91.23 74.61 53.58 81.55 93.21 76.53
Self-eval 81.30 50.76 32.98 56.03 86.34 56.99
P(True) 81.14 51.01 33.48 56.27 82.59 49.48
ASPIRE (ours) 92.63 80.25 55.06 84.44 94.73 82.60

Table 9.2: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. All numbers are percentages. Bold numbers
are superior results.

We first evaluate the accuracy of different LLMs. The results in Table 9.1 show
that after training θp via soft prompt tuning, the accuracy of LLMs is improved
significantly. We then evaluate different methods to compute the selection score
when the model’s predictions are fixed. The results in Table 9.2 show that the
proposed method ASPIRE significantly outperforms the baselines in terms of the
AUACC and AUROC metrics across different datasets and LLMs. The results also
show that after soft prompt tuning, the AUACC of different methods is significantly
improved due to the improvement of the accuracy and the perplexity becomes
more meaningful in separating correct and wrong answers. Additional results in
Appendix G.5 show that ASPIRE significantly outperforms the baselines across
OPT and GPT2 models of different sizes for different values of the Rouge threshold
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γ.

9.6.3 Empirical Analyses

Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Adapted
OPT-2.7B
with θp

ASPIRE (α = 0.0) 90.80 74.23 53.56 81.74 92.86 75.72
ASPIRE (α = 0.25) 92.63 80.25 55.06 84.44 94.73 82.60
ASPIRE (α = 0.5) 92.56 80.18 54.61 84.33 94.59 82.16
ASPIRE (α = 0.75) 92.05 78.37 52.71 81.52 94.28 80.98
ASPIRE (α = 1.0) 91.33 76.08 48.84 76.39 93.77 79.48

Table 9.3: Results of studying the effect of the hyper-parameter α in the proposed
selection score (Eq. (9.10)). All numbers are percentages. Bold numbers are
superior results.

Model Decoding Algorithm CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Adapted
GPT2-XL
with θp

Multinomial (T=0.1) 83.82 74.22 36.40 80.67 89.75 77.56
Multinomial (T=1.0) 84.96 76.15 37.03 81.41 90.12 78.71
Multinomial (T=2.0) 83.06 72.96 36.34 80.14 89.41 76.98
Beam search 85.65 78.32 38.06 83.23 89.86 78.35

Adapted
OPT-2.7B
with θp

Multinomial (T=0.1) 92.04 77.96 55.09 84.28 94.24 80.52
Multinomial (T=1.0) 92.60 79.86 55.15 84.29 94.57 82.08
Multinomial (T=2.0) 92.02 77.91 53.80 82.40 94.15 80.42
Beam search 92.63 80.25 55.06 84.44 94.73 82.60

Table 9.4: Results of comparing different decoding algorithms for answer sampling
in the proposed method. We denote the temperature as T . All numbers are per-
centages. Bold numbers are superior results.

The effect of α. We study the effect of the hyper-parameter α in the proposed
selection score (Eq. (9.10)). The results in Table 9.3 show that setting α = 0.25
leads to the best performance since it combines the normalized likelihood and the
learned self-eval score in a good way. Only using the normalized likelihood (i.e.,
α = 0) or only using the learned self-eval score (i.e., α = 1) leads to much worse
performance. In practice, the value of α can be chosen based on the performance
on the validation data.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
OPT-2.7B

Predictive Entropy 75.29 69.16 41.20 78.92 47.18 62.85
Semantic Entropy 76.31 70.96 40.72 78.06 51.53 68.40

Adapted
OPT-2.7B
with θp

ASPIRE (size=1k) 80.87 67.01 45.70 78.98 85.42 71.42
ASPIRE (size=2k) 85.71 73.72 46.64 79.24 88.27 75.74
ASPIRE (size=5k) 87.83 74.58 49.77 82.06 90.09 77.09
ASPIRE (size=10k) 90.46 78.29 51.88 83.13 92.48 79.46
ASPIRE (size=50k) 92.63 80.25 55.06 84.44 94.73 82.60

Table 9.5: Results of studying the effect of training set size for the proposed ASPIRE.
All numbers are percentages.

The choices of A. We compare two decoding algorithms – beam search and multi-
nomial sampling that can be used as A for answer sampling. For beam search,
we use the k highest scoring beams as the answer list. For multinomial sampling,
we consider temperature (denoted as T) in the set {0.1, 1.0, 2.0}. The results in
Table 9.4 show that using multinomial sampling with T = 2.0 or T = 0.1 leads
to worse performance compared to other decoding algorithms. If we set a high
temperature (T = 2.0) for multinomial sampling, then we sample some random
answers that might not have high-likelihood. If we set a low temperature (T = 0.1)
for multinomial sampling, then we repeatedly sample the same high-likelihood
answers. Thus, the results suggest that sampling different high-likelihood answers
is important for our method to achieve high accuracy and coverage in selective pre-
diction. The results also show that using beam search leads to similar performance
as using multinomial sampling with T = 1. So we can use either one in practice.

Training sample efficiency. We perform experiments to study the effect of the
number of training samples for ASPIRE. We fix the number of training steps to
be 50K while varying the size of the training dataset. The results in Table 9.5
show that more training samples lead to performance improvement and with
2K training samples, ASPIRE can outperform the baselines without soft prompt
tuning by a large margin across different datasets. This underlines that our method,
ASPIRE, can significantly improve selective prediction performance even with
limited number of training samples.
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9.7 Conclusion
In this chapter, we proposed a novel framework for adaptation with self-evaluation
to improve selective prediction in LLMs. We implemented the framework via soft
prompt tuning and demonstrated its superior performance over existing methods
through extensive experiments. In future work, one could explore implementing
our framework via other parameter efficient tuning approaches and applying our
method to larger LLMs.
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10 conclusion and future work

In this thesis, we have undertaken a comprehensive exploration of the challenges
presented by distribution shifts in deep learning and have proposed solutions across
three research directions: robust deep learning, reliable model deployment, and
foundation models. Our research findings and contributions have shed light on the
development of deep learning systems that are more robust and reliable, capable
of effectively addressing real-world scenarios.

In the first research direction, robust deep learning, our focus was on enhancing
the adversarial robustness of deep neural networks (DNNs). We introduced novel
defenses, such as transductive-learning based defenses and defenses based on
rejection, with the aim of mitigating the impact of adversarial attacks. Through the
formulation of these defenses and their evaluation using strong attack frameworks,
we have provided valuable insights into achieving robust predictions. Furthermore,
we extended our investigation beyond prediction and explored robustness in other
aspects of deep learning, including robust attribution and robust out-of-distribution
detection. Our research in this direction establishes a solid foundation for the
development of DNNs that can withstand various forms of attacks and maintain
their performance under distribution shifts.

The second research direction, reliable model deployment, addressed the chal-
lenge of deploying DNNs in real-world scenarios. We proposed a new framework
for estimating the generalization capabilities of DNNs during test time. Addition-
ally, we introduced the concept of active selective prediction, leveraging human
input to enhance the reliability of model deployment. By involving humans in
the decision-making process, we achieved better utilization of human expertise
and improved the overall reliability of the deployed models. Our research in this
direction contributes to ensuring the safe and trustworthy deployment of DNNs in
practical applications.

In the third research direction, foundation models, we provided new insights
into the training of foundation models. We discovered a trade-off between the
universality and label efficiency of model representations trained through con-
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trastive learning. These insights provide valuable guidance for training foundation
models that can generalize well across diverse tasks and adapt to distribution shifts.
Additionally, we proposed a novel framework for adaptation with self-evaluation
to improve the selective prediction performance of large language models (LLMs).

The research presented in this thesis underscores the importance of addressing
distribution shifts in deep learning systems. Through our investigation of robust
deep learning, reliable model deployment, and foundation models, we have made
significant contributions towards tackling these challenges. However, there are still
areas that require further exploration and improvement.

One such area is the development of more advanced defenses against adversarial
attacks. Although our proposed defenses have demonstrated promising adversarial
robustness against strong adaptive attacks, there remains significant potential for
further improvement. Additionally, the field of adversarial machine learning is
rapidly evolving, with new attack strategies emerging. One idea for improving
robustness is to leverage foundation models, which encode prior knowledge and
can be used to generate data for adversarial training. Therefore, continuous research
and development in this domain are necessary to ensure the ongoing effectiveness
of defenses.

Moreover, the involvement of humans in the decision-making process within
reliable model deployment remains an area of interest. Further investigation into ef-
fective strategies for integrating human expertise and feedback can lead to improved
model performance and increased trust in deployed systems. One potential ap-
proach is to utilize human feedback for fine-tuning LLMs, aligning their behaviors
with human expectations.

Lastly, ongoing research efforts are needed for the training and adaptation of
foundation models. As the landscape of downstream tasks and data distributions
continues to evolve, it becomes crucial to develop techniques that enable efficient
adaptation and generalization of foundation models. One idea is to explore new
training objectives for training and adapting foundation models, enabling them to
have an awareness of their capabilities and limitations.

In conclusion, this thesis has provided valuable insights and proposed solutions
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to address the challenges posed by distribution shifts in deep learning. Through
our focus on robust deep learning, reliable model deployment, and foundation
models, we have contributed to the development of more robust, reliable, and
adaptable deep learning systems. The findings and methodologies presented here
lay the groundwork for further advancements in the field, leading to more effective
and trustworthy deep learning systems in real-world applications. Continued
research and innovation in these areas will pave the way for future progress and
advancements in the field of deep learning.
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a appendix for chapter 3

A.1 Additional Theory and Proofs

A.1.1 Alternate Definition of Rrej
ϵ (f,α)

Proposition 8. For any ϵ ⩾ 0 and α ∈ [0, 1], the metric R
rej
ϵ (f,α) can be equivalently

defined as

Rrej
ϵ (f,α) = E

(x,y)∼D

[
max

x ′∈N(x,αϵ)
1
{
f(x ′) = ⊥

}
∨ max

x ′′∈N(x,ϵ)
1
{
f(x ′′) ̸∈ {y,⊥}

}]
. (A.1)

This definition allows us to interpret the metric R
rej
ϵ (f,α) as consisting of two types of

errors: 1) errors due to rejecting small perturbations within the αϵ-neighborhood and 2)
mis-classification errors within the ϵ-neighborhood.

Proof. Consider the original definition of Rrej
ϵ (f,α) in Eq. (3.5)

Rrej
ϵ (f,α) = E

(x,y)∼D

[
max

x ′∈N(x,αϵ)
1
{
f(x ′) ̸= y

}
∨ max

x ′′∈N(x,ϵ)
1
{
f(x ′′) ̸∈ {y,⊥}

}]
. (A.2)

The error in the first term inside the expectation can be split into the error due to
rejection and the error due to mis-classification, i.e.,

1
{
f(x ′) ̸= y

}
= 1

{
f(x ′) = ⊥

}
∨ 1

{
f(x ′) /∈ {y,⊥}

}
.

The maximum of this error over the αϵ-neighborhood can be expressed as

max
x ′∈N(x,αϵ)

1
{
f(x ′) ̸= y

}
= max

x ′∈N(x,αϵ)
1
{
f(x ′) = ⊥

}
∨ max

x ′∈N(x,αϵ)
1
{
f(x ′) /∈ {y,⊥}

}
,

which is easily verified for binary indicator functions. Substituting the above result
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into Eq. (A.2), we get

Rrej
ϵ (f,α) = E

(x,y)∼D

[
max

x ′∈N(x,αϵ)
1
{
f(x ′) = ⊥

}
∨ max

x ′∈N(x,αϵ)
1
{
f(x ′) /∈ {y,⊥}

}
∨ max

x ′′∈N(x,ϵ)
1
{
f(x ′′) ̸∈ {y,⊥}

}]
= E

(x,y)∼D

[
max

x ′∈N(x,αϵ)
1
{
f(x ′) = ⊥

}
∨ max

x ′′∈N(x,ϵ)
1
{
f(x ′′) ̸∈ {y,⊥}

}]
.

In the last step, we combined the second and third terms inside the expectation
using the observation that

max
x ′∈N(x,αϵ)

1
{
f(x ′) /∈ {y,⊥}

}
∨ max

x ′∈N(x,ϵ)
1
{
f(x ′) /∈ {y,⊥}

}
= max

x ′∈N(x,ϵ)
1
{
f(x ′) /∈ {y,⊥}

}
.

This shows the equivalence of the two definitions of Rrej
ϵ (f,α).

The definition in Eq. (A.1) serves as motivation for the first adaptive attack to
create adversarial examples x ′ within the neighborhood N(x,αϵ) that are rejected
by the defense method.

A.1.2 Proof of Lemma 3.3

We first prove a more general lemma in Lemma A.1, from which integration by parts
gives Lemma 3.3. Note that the step rejection loss and ramp rejection loss satisfy
the conditions in Lemma 3.3 which gives them a simpler expression to compute
the total robust loss.

Lemma A.1. Let s(α) := R
rej
ϵ (f,α) and assume it is right-semicontinuous. For any

monotonically non-increasing ℓrej : [0,∞)→ [0, 1], the total robust loss can be computed
by:

Lϵ(f; ℓrej) = Rrej
ϵ (f, 0) +

(
ℓrej(0) − 1

)
prej +

∫ 1

0
ℓrej(αϵ) ds(α), (A.3)
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where the integral is the Riemann–Stieltjes integral, and

prej := Pr
[
f(x) = ⊥ ∧

(
∀x ′ ∈ N(x, ϵ), f(x ′) ∈ {y,⊥}

)]
is the probability that the clean input (x,y) is rejected and no perturbations of x within the
ϵ-ball are misclassified.

Proof. Let W denote the event that there exists x ′ ∈ N(x, ϵ) such that x ′ is misclassi-
fied, i.e., f(x ′) ̸∈ {y,⊥}. Let C denote the event that the clean input x is rejected, i.e.,
f(x) = ⊥. Clearly, prej = Pr[C \ W] where \ is the set minus. Finally, let R denote
the event that there exists x ′ ∈ N(x, ϵ) such that x ′ is rejected.

We only consider W∪C∪R, since otherwise (x,y) contributes a loss 0 to Lϵ(f; ℓrej).
The union can be partitioned into three disjoint subsets.

• W : Such an (x,y) contributes a loss 1. Since R
rej
ϵ (f, 0) = Pr[W ∪ C], we have

Pr[W] = R
rej
ϵ (f, 0) − Pr[C \W] = R

rej
ϵ (f, 0) − prej. Then this subset contributes a

loss R
rej
ϵ (f, 0) − prej.

• C \ W : Such a data point contributes a loss ℓrej(0), given the assumption
that ℓrej is monotonically non-increasing. Then this subset contributes a loss
ℓrej(0)prej.

• R\ (W∪C) : That is, there exists no x ′ ∈ N(x, ϵ) that is misclassified, the clean
input x is accepted, but there exists some x ′ ∈ N(x, ϵ) that is rejected. Let L3

denote the loss contributed by this subset.

Now, it is sufficient to show that

L3 =

∫ 1

0
ℓrej(αϵ)ds(α).

For any positive integer t, let a0 = 0 ⩽ a1 ⩽ · · · ⩽ at−1 ⩽ at = 1 be an arbitrary
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sequence on [0, 1]. Let

Mi = sup{ℓrej(αϵ), ai−1 ⩽ α ⩽ ai},

mi = inf{ℓrej(αϵ), ai−1 ⩽ α ⩽ ai},

U(s, ℓrej) =

t∑
i=1

Mi (s(ai) − s(ai−1)),

L(s, ℓrej) =

t∑
i=1

mi (s(ai) − s(ai−1)).

Let Ri denote the event that there exists x ′ such that ai−1ϵ < d(x ′, x) ⩽ aiϵ and
x ′ is rejected. Then R = ∪ti=1Ri, and

s(ai) − s(ai−1) = Rrej
ϵ (f,ai) − Rrej

ϵ (f,ai−1)

= Pr
[
Ri \ (∪i−1

j=1Rj) \ (W ∪ C)
]
.

Since ℓrej is monotonically non-increasing, each data point in Ri \ (∪i−1
j=1Rj) \

(W ∪ C) should contribute a loss that is within [mi,Mi]. Therefore,

L(s, ℓrej) ⩽ L3 ⩽ U(s, ℓrej)

for any sequence {ai}
t
i=0. When s(α) is right-semicontinous, the Riemann–Stieltjes

integral exists, and L3 =
∫1

0 ℓ
rej(αϵ)ds(α). This completes the proof.

A.1.3 Proof of Theorem 3.4

Theorem A.2 (Restatement of Theorem 3.4). Consider binary classification. Let f∗(x)
be any classifier without a rejection option. For any δ ∈ [0, 1] and ϵ ⩾ 0, there exists a
selective classifier fδ, whose robust error curve is bounded by:

Rrej
ϵ (fδ,α) ⩽ Rϵ ′(f∗), ∀α ∈ [0, 1] (A.4)
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where ϵ ′ = max{(α + δ)ϵ, (1 − δ)ϵ}. Moreover, the bound is tight: for any α ∈ [0, 1],
there exist simple data distributions and f∗ such that any f must have Rrej

ϵ (f,α) ⩾ Rϵ ′(f∗).

Proof. For any r > 0, let N(f∗, r) denote the region within distance r to the decision
boundary of f∗:

N(f∗, r) := {x ∈ X : ∃x ′ ∈ N(x, r) and f∗(x ′) ̸= f∗(x)}.

Consider a parameter δ ∈ [0, 1] and construct a selective classifier fδ as follows:

fδ(x) :=

⊥ if x ∈ N(f∗, δϵ),

f∗(x) otherwise.
(A.5)

We will show that any sample (x,y) contributing error to R
rej
ϵ (fδ,α) must also

contribute error to Rϵ ′(f∗), where ϵ ′ = max{(α+ δ)ϵ, (1 − δ)ϵ}. This will prove that
R

rej
ϵ (fδ,α) ⩽ Rϵ ′(f∗).

Consider the following two cases:

• Consider the first type of error in R
rej
ϵ (fδ,α): maxx ′∈N(x,αϵ) 1 [fδ(x ′) ̸= y] = 1.

This implies that there exists x ′ ∈ N(x,αϵ) such that fδ(x ′) ̸= y. So there are
two subcases to consider:

(1) x ′ ∈ N(f∗, δϵ): in this case x ∈ N(f∗, (δ+ α)ϵ).

(2) f∗(x ′) ̸= y: in this case either f∗(x) ̸= y, or f∗(x) = y ̸= f∗(x ′) and thus
x ∈ N(f∗,αϵ).

In summary, either f∗(x) ̸= y or x ∈ N(f∗, (α+ δ)ϵ).

• Next consider the second type of error in R
rej
ϵ (fδ,α):

max
x ′′∈N(x,ϵ)

1 [fδ(x ′′) ̸∈ {y,⊥}] = 1.

This means there exists an x ′′ ∈ N(x, ϵ) such that fδ(x ′′) ̸∈ {y,⊥}, i.e., x ′′ ̸∈
N(f∗, δϵ) and f∗(x ′′) ̸= y. This implies that all z ∈ N(x ′′, δϵ) should have
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f∗(z) = f∗(x ′′) ̸= y. In particular, there exists z ∈ N(x ′′, δϵ) with d(z, x) ⩽

(1 − δ)ϵ and f∗(z) ̸= y. It can be verified that z = δx + (1 − δ)x ′′, which is a
point on the line joining x and x ′′, satisfies the above condition. In summary,
either f∗(x) ̸= y, or f∗(x) = y ̸= f∗(z) and thus x ∈ N(f∗, (1 − δ)ϵ).

Overall, a sample (x,y) contributing error to R
rej
ϵ (fδ,α) must satisfy either f∗(x) ̸=

y or x ∈ N(f∗, ϵ ′). Clearly, such a sample also contributes an error to Rϵ ′(f∗).
Therefore, we have

Rrej
ϵ (fδ,α) ⩽ Rϵ ′(f∗),∀α ∈ [0, 1]. (A.6)

To show that the bound is tight, consider the following data distribution. Let
x ∈ R and y ∈ {−1,+1}, α ∈ [0, 1], and let β ∈ (0, 1

2) be some constant. Let
the distribution be: (x,y) is (−4ϵ,−1) with probability 1−β

2 , (−αϵ4 ,−1) with prob-
ability β

2 , (αϵ4 ,+1) with probability β
2 , and (4ϵ,+1) with probability 1−β

2 . Let
δ = 1−α

2 , f∗(x) := sign(x + ϵ). It is clear that Rϵ ′(f∗) = R(1+α)ϵ/2(f
∗) = β

2 . It is also
clear that any f must have R

rej
ϵ (f,α) ⩾ β

2 since the points −αϵ4 and αϵ
4 have distance

only αϵ
2 but have different labels.

We note that the proof generalizes that of Theorem 5 in Tramèr (2021). In
particular, our theorem includes the latter as a special case (corresponding to α = 0
and δ = 1

2).

A.1.4 Comparing the Robustness Curves and Total Robust Losses
of fδ and f∗ in Theorem 3.4

Theorem 3.4 investigates the feasibility of a good selective classifier (w.r.t. the
robustness curve and the total robust loss), by constructing a classifier fδ. It is
meaningful to perform a fine-grained analysis into when fδ has a better total robust
loss than the classifier f∗ without rejection.

For simplicity, we assume f∗ has a 0 standard error on the clean data distribution.
The analysis for the case with a nonzero standard error is similar.
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Theorem A.3. Consider binary classification. Let f∗(x) be any classifier without a rejection
option that has 0 standard error on the data distribution. Suppose the data density for data
points with a distance of r to the decision boundary of f∗ is p(r). Consider the selective
classifier fδ defined in Theorem 3.4:

fδ(x) :=

⊥ if x ∈ N(f∗, δϵ),

f∗(x) otherwise.
(A.7)

Then for δ ∈ [0, 1
2 ], the total robust loss of fδ with respect to the rejection loss ℓrej can be

computed by:

Lϵ(fδ; ℓrej) =

∫ (1−δ)ϵ

0
p(r)dr+

∫ (1+δ)ϵ

(1−δ)ϵ
ℓrej(r− δϵ)p(r)dr. (A.8)

Also, the curve of robust error of fδ can be computed by:

Rrej
ϵ (fδ,α) =


∫(1−δ)ϵ

0 p(r)dr if α ∈ [0, 1 − 2δ],∫(α+δ)ϵ

0 p(r)dr if α ∈ (1 − 2δ, 1].
(A.9)

Proof. First consider the total robust loss. When 0 < r ⩽ (1 − δ)ϵ, the data point
will contribute a loss of 1 to the total robust loss. When (1 − δ)ϵ < r ⩽ (1 + δ)ϵ,
the data point will contribute a loss of ℓrej(r − δϵ) to the total robust loss. When
r > (1 + δ)ϵ, the data point will contribute 0 loss to the total robust loss. Thus, we
have Eq. (A.8).

For the curve of robust error, the data points with 0 < r ⩽ (1 − δ)ϵ will always
contribute a loss of 1. When α ∈ [0, 1 − 2δ], no data points with r ⩾ (1 − δ)ϵ can
contribute a loss, either by small perturbations to get a rejection or mis-classification,
or by large perturbations to get a mis-classification. When α ∈ (1 − 2δ, 1], data
points with r ∈ [(1− δ)ϵ, (α+ δ)ϵ] will contribute a loss of 1 by small perturbations
to get a rejection. Thus, we have Eq. (A.9).

Now we are ready to compare fδ to f∗.
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First consider the curve of robust error. It is easy to know that the curve of
robust error of f∗ is R

rej
ϵ (f∗,α) =

∫ϵ
0 p(r)dr for α ∈ [0, 1]. When α ∈ [0, 1 − δ], we

have R
rej
ϵ (f∗,α) ⩾ R

rej
ϵ (fδ,α); when α ∈ (1 − δ, 1], we have R

rej
ϵ (f∗,α) ⩽ R

rej
ϵ (fδ,α).

When α ∈ [0, 1 − 2δ], if
∫ϵ
(1−δ)ϵ p(r)dr is large, then fδ will have much lower robust

error with rejection than f∗, since R
rej
ϵ (f∗,α) − R

rej
ϵ (fδ,α) =

∫ϵ
(1−δ)ϵ p(r)dr; when

α ∈ (1 − 2δ, 1 − δ], if
∫ϵ
(α+δ)ϵ p(r)dr is large, then fδ will also have much lower

robust error with rejection than f∗, since R
rej
ϵ (f∗,α) − R

rej
ϵ (fδ,α) =

∫ϵ
(α+δ)ϵ p(r)dr.

Now consider the total robust loss. The total robust loss of f∗ is
∫ϵ

0 p(r)dr, which
is larger than that of fδ by

∫ϵ
(1−δ)ϵ p(r)dr−

∫(1+δ)ϵ
(1−δ)ϵ ℓ

rej(r−δϵ)p(r)dr. More precisely,
both f∗ and fδ will get mis-classification loss on some perturbations of points with
distance in the range [0, (1 − δ)ϵ] from the decision boundary of f∗. This is because
there always exist some large perturbations of these points crossing the boundary.
On the other hand, f∗ simply gets mis-classification loss from perturbations of the
points with distance in the range [(1−δ)ϵ, ϵ]. While for all points with distance larger
than (1 − δ)ϵ, fδ can correctly classify all their small perturbations of magnitude at
most (1 − 2δ)ϵ, and reject or correctly classify their larger perturbations. So it only
gets rejection loss for large magnitudes, which can then potentially lead to smaller
total robust losses than f∗ for monotonically non-increasing rejection losses.

Therefore, for some data distributions, there exists a fixed δ such that fδ can
get small total robust losses with respect to a wide range of reasonable rejection
losses. For example, consider the step rejection losses ℓrej(r) = 1{r ⩽ α0ϵ} with
parameter in the range α0 ∈ [0, ᾱ0] where ᾱ0 ∈ [0, 1]. If we set δ = 1−ᾱ0

2 , then
1 − 2δ = ᾱ0 and α ∈ [0, 1 − 2δ]. The total robust loss of fδ with respect to these
rejection losses is

∫ (1+ᾱ0)
2 ϵ

0 p(r)dr. In contrast, the total robust loss of f∗ is
∫ϵ

0 p(r)dr,
which can be significantly larger than that of fδ. The total robust loss of fδ is smaller
than that of f∗ by the amount

∫ϵ
(1+ᾱ0)

2 ϵ
p(r)dr. If the probability mass of points with

r ∈ [ (1+ᾱ0)
2 ϵ, ϵ] is large, then the improvement is significant.
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A.2 Calculating the Total Robust Loss
In this section, we discuss the calculation of the total robust loss for specific in-
stantiations of the rejection loss ℓrej. Given the curve of robust error {s(α) :=

R
rej
ϵ (f,α) : α ∈ [0, 1]} and a specific choice of rejection loss ℓrej(r) that is monotoni-

cally non-increasing, we can use Eq. (A.3) from Lemma A.1 to calculate the total
robust loss:

Lϵ(f; ℓrej) = Rrej
ϵ (f, 0) + (ℓrej(0) − 1)prej +

∫ 1

0
ℓrej(αϵ) ds(α). (A.10)

As discussed in Corollary 3.3, let us additionally choose the rejection loss to be
differentiable almost everywhere, and satisfy the conditions ℓrej(0) = 1 and ℓrej(ϵ) =

0. This is satisfied e.g., by the ramp and step rejection losses defined in Eqs. (3.4)
and (3.3). Applying the product rule (or integration by parts), the integral term in
the total robust loss can be expressed as∫ 1

0
ℓrej(αϵ) ds(α) = ℓrej(ϵ) s(1) − ℓrej(0) s(0) −

∫ 1

0
s(α) dℓrej(αϵ)

= − s(0) −

∫ 1

0
s(α) dℓrej(αϵ).

Substituting the above into Eq. (A.10), the total robust loss simplifies into

Lϵ(f; ℓrej) = −

∫ 1

0
s(α) dℓrej(αϵ). (A.11)

From the above expression, we next calculate the total robust loss for the ramp and
step rejection losses.
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A.2.1 Ramp Rejection loss

Recall that the ramp rejection loss is defined as

ℓrej(r) =
(

1 −
r

ϵ

)t
, r ∈ [0, ϵ]

for some t ⩾ 1. We have ℓrej(αϵ) = (1 − α)t and

dℓrej(αϵ) = −t (1 − α)t−1 dα.

Substituting the above into Eq. (A.11) gives the total robust loss

Lϵ(f; ℓrej) = t

∫ 1

0
s(α) (1 − α)t−1 dα.

For the special case t = 1, this reduces to the area under the robust error curve∫1
0 s(α)dα.

For the special case t = 2, this reduces to 2
∫1

0 s(α) (1 −α)dα (and so on for larger
t).
In our experiments, we calculate the total robust loss for t ∈ {1, 2, 3, 4}. Since we
calculate the robust error curve only for a finite set of α values, we approximate the
above integrals using the trapezoidal rule. We use finely-spaced α values in [0, 1]
with a spacing of 0.01, and use linear interpolation to obtain intermediate (missing)
values of the robust error curve.

A.2.2 Step Rejection loss

Recall that the step rejection loss is defined as

ℓrej(r) = 1{r ⩽ α0ϵ}, r ∈ [0, ϵ]

for some α0 ∈ [0, 1]. In this case, there are two ways to calculate the total robust
loss, both leading to the same result.
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Approach 1 For the step rejection loss, the derivative can be defined by appealing
to the Dirac delta function δ(x). Specifically, ℓrej(αϵ) = 1{α ⩽ α0} and

dℓrej(αϵ) = − δ(α− α0)dα,

where the negative sign arises because the step loss drops from 1 to 0 at α = α0.
Substituting the above into Eq. (A.11) gives the total robust loss

Lϵ(f; ℓrej) =

∫ 1

0
s(α) δ(α− α0)dα = s(α0) = Rrej

ϵ (f,α0).

Approach 2 We directly use the definition of the total robust loss in Eq. (A.10),
which for the step rejection loss is

Lϵ(f; ℓrej) = Rrej
ϵ (f, 0) +

∫ 1

0
1{α ⩽ α0} ds(α)

= s(0) +

∫α0

0
1 ds(α) = s(0) + s(α0) − s(0)

= s(α0) = Rrej
ϵ (f,α0).

For the step rejection loss, the total robust loss is equal to the value of the robust
error curve at the point α = α0.

A.3 Designing Adaptive Attacks
To compute the robust accuracy with rejection A

rej
ϵ (f,α) for a given ϵ > 0 and α ∈

[0, 1], we need to generate two adversarial examples x′ ∈ N(x,αϵ) and x ′′ ∈ N(x, ϵ)
for each clean input (x,y). We call the attack for generating x′ ∈ N(x,αϵ) the inner
attack, and the attack for generating x ′′ ∈ N(x, ϵ) the outer attack.

For both the inner attack and outer attack, we use an ensemble of attacks and
report the worst-case robustness. For the inner attack, if any of the attacks in the
inner-attack ensemble finds an adversarial example x′ ∈ N(x,αϵ) that is rejected by
the model, then we consider the inner attack to be successful on the clean input
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(x,y). For the outer attack, if any of the attacks in the outer-attack ensemble finds
an adversarial example x ′′ ∈ N(x, ϵ) that is accepted and misclassified by the model,
then we consider the outer attack to be successful on the clean input (x,y).

In this section, we design adaptive attacks to generate x′ and x ′′ for the different
methods using the same underlying principles to ensure fair comparison. The
following ideas are applied to design the attack loss functions for all the methods.
Whenever the attack objective is to maximize a probability (or a probability-like)
term p ∈ [0, 1], we use the loss function log(p) ∈ (−∞, 0]. Similarly, the loss function
− log(p) ∈ [0,∞) is used to minimize a probability (or a probability-like) term p.

We first introduce the attack objectives for all the methods below, and then
discuss how we solve the attack objectives.

A.3.1 Attack Objectives

In this section, we describe the attack objectives used to generate the adversarial
examples x′ ∈ N(x,αϵ) (i.e., the inner attack) and the adversarial examples x ′′ ∈
N(x, ϵ) (i.e., the outer attack) from a clean input (x,y) for the different methods
compared. The goal of the adversary to generate x′ is to make the defense method
reject x′. The goal of the adversary to generate x ′′ is to make the defense method
accept and incorrectly classify x ′′ into a class other than y. We next discuss the
inner and outer attack objectives for the different methods considered.

Confidence-based Rejection. The methods AT+CR, TRADES+CR and CCAT
use the classifier’s confidence (i.e., maximum softmax probability) as the score for
rejection. Suppose the softmax output of the classifier is

h(x ;θ) = [h1(x ;θ), · · · ,hk(x ;θ)],

then the score for acceptance is the confidence given by hmax(x ;θ) = maxj hj(x ;θ).
We use the log-sum-exp approximation of the max function to define a smooth
inner attack objective that minimizes the confidence score hmax(x ;θ). We use the
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fact that

1
τ

log
( k∑
i=1

eτsi
)
≈ max

i∈[k]
si (A.12)

where the approximation becomes better for larger values of the temperature con-
stant τ > 0. We would like to approximate the exact inner attack objective given
by

x′ = arg max
z∈N(x,αϵ)

− loghmax(z ;θ). (A.13)

This attack aims to find an adversarial input x ′ that minimizes the confidence, thus
causing the input to be rejected by methods using confidence-based rejection. Let
h̃(x ;θ) = [h̃1(x ;θ), · · · , h̃k(x ;θ)] denote the logits corresponding to the classifier
prediction, with h̃max(x ;θ) being the maximum logit. The attack objective (A.13)
can be approximated as

x′ = arg max
z∈N(x,αϵ)

− loghmax(z ;θ)

= arg max
z∈N(x,αϵ)

−h̃max(z ;θ) + log
( k∑
i=1

eh̃i(z ;θ)
)

≈ arg max
z∈N(x,αϵ)

−
1
τ

log
( k∑
i=1

eτh̃i(z ;θ)
)

+ log
( k∑
i=1

eh̃i(z ;θ)
)

. (A.14)

We name this attack with objective (A.14) Low Confidence Inner Attack (LCIA).
In our experiments, we set τ = 100.

For the outer attack, we use the multi-targeted PGD approach. Specifically, for
each target label j ̸= y, we generate an adversarial example x ′′

j ∈ N(x, ϵ) via the
following objective:

x ′′
j = arg max

z∈N(x,ϵ)
loghj(z ;θ). (A.15)
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Then we select the strongest adversarial example x ′′ via:

x ′′ = x ′′
j⋆ s.t. j⋆ = arg max

j∈[k]\{y}

loghj(x ′′
j ;θ). (A.16)

By solving this objective, the adversary attempts to find an adversarial example
that is misclassified with high confidence. The goal of the adversary is to make the
selective classifier accept and incorrectly classify the adversarial input. We name
this attack with objective (A.15) High Confidence Misclassification Outer Attack
(HCMOA). Note that this HCMOA attack is stronger than the PGD attack with
backtracking proposed in Stutz et al. (2020) for evaluating the robustness of CCAT.

RCD. The RCD method (Sheikholeslami et al., 2021) trains a (k+1)-way classifier
such that class k+ 1 is treated as the rejection class. Suppose the softmax output
of the classifier is h(x ;θ) = [h1(x ;θ), · · · ,hk+1(x ;θ)]. For the inner attack, we
generate the adversarial example x′ ∈ N(x,αϵ) using the following objective:

x′ = arg max
z∈N(x,αϵ)

loghk+1(z ;θ). (A.17)

The goal of the adversary is to make the method reject the adversarial input by push-
ing the probability of class k+1 close to 1. We name this attack with objective (A.17)
RCD Inner Attack (RCDIA).

For the outer attack, we use the multi-targeted PGD approach. Specifically, for
each target label j /∈ {y,k + 1}, we generate the adversarial example x ′′

j ∈ N(x, ϵ)
via the following objective:

x ′′
j = arg max

z∈N(x,ϵ)
loghj(z ;θ). (A.18)

Then we select the strongest adversarial example x ′′ via:

x ′′ = x ′′
j⋆ s.t. j⋆ = arg max

j/∈{y,k+1}
loghj(x ′′

j ;θ). (A.19)
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Here, the goal of the adversary is to make the selective classifier accept and incor-
rectly classify the adversarial input, and this objective achieves this by increasing
the probability of a class that is different from both the true class y and the rejection
class k+ 1 to be close to 1. We name this attack with objective (A.18) RCD Outer
Attack (RCDOA).

ATRR. The ATRR method (Pang et al., 2022) uses a rectified confidence score for
rejection. Suppose the softmax output of the classifier is

h(x ;θ) = [h1(x ;θ), · · · ,hk(x ;θ)]

and the auxiliary function is A(x;ϕ) ∈ [0, 1]. The rectified confidence is defined
by Pang et al. (2022) as the product of the auxiliary function and the classifier’s
confidence, i.e., A(x;ϕ)hmax(x ;θ). For the inner attack, we generate the adversarial
example x′ ∈ N(x,αϵ) using the following objective:

x′ = arg max
z∈N(x,αϵ)

− logA(z;ϕ) − loghmax(z ;θ)

≈ arg max
z∈N(x,αϵ)

− logA(z;ϕ) +
[

log
( k∑
i=1

eh̃i(z ;θ)
)
−

1
τ

log
( k∑
i=1

eτh̃i(z ;θ)
)]

.

(A.20)

Here, we use the log-sum-exp approximation of the max function hmax(z ;θ) =

maxj hj(z ;θ) and set τ = 100. The goal is to minimize the rectified confidence by
either minimizing the auxiliary function (first term) or the classifier’s confidence
by pushing its predictions to be close to uniform (second term). By minimizing
the rectified confidence score, the adversary attempts to make the ATRR method
reject the perturbed input x′. We name this attack with objective (A.20) ATRR Inner
Attack (ATRRIA).

For the outer attack, we use the multi-targeted PGD approach. Specifically, for
each target label j ̸= y, we generate the adversarial example x ′′

j ∈ N(x, ϵ) via the
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following objective:

x ′′
j = arg max

z∈N(x,ϵ)
log
[
A(z;ϕ)hj(z ;θ)

]
. (A.21)

Then we select the strongest adversarial example x ′′ via:

x ′′ = x ′′
j⋆ s.t. j⋆ = arg max

j∈[k]\{y}

log
[
A(x ′′

j ;ϕ)hj(x ′′
j ;θ)

]
. (A.22)

The goal of the adversary is to make the selective classifier accept and incorrectly
classify the adversarial input. The objective achieves this by pushing the rectified
confidence as well as the predicted probability of a class different from y close to 1.
This ensures that adversarial input is accepted as well as incorrectly classified. We
name this attack with objective (A.21) ATRR Outer Attack (ATRROA).

CPR (proposed defense). The goal of the inner attack for CPR is to find x′ ∈
N(x,αϵ) such that the base model has different predictions on x′ and T(x′), thus
ensuring rejection. We consider three adaptive inner attacks that can achieve this
goal. The first one is the Low-Confidence Inner Attack (LCIA) introduced in
Section 3.5.2. This attack aims to find x′ ∈ N(x,αϵ) where the base model has low
confidence. Recall that the mapping T(x′) attempts to minimize the base model’s
probability on the predicted class ŷ(x′). So, if the base model has low confidence
on x′, then it will very likely have even lower probability for ŷ(x′) on T(x′), and
thus have different predictions on T(x′) and x′.

The second inner attack is a variant of LCIA, named Consistent-Low-Confidence
Inner Attack (CLCIA), which attempts to find an adversarial example x′ by mini-
mizing the confidence of the base model on both x′ and T(x′). The CLCIA attack
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has the following objective:

x′ = arg max
z∈N(x,αϵ)

[
− loghmax(z ;θ) − loghmax(T(z) ;θ)

]
≈ arg max

z∈N(x,αϵ)

[
−

1
τ

log
( k∑
i=1

eτh̃i(z ;θ)
)

+ log
( k∑
i=1

eh̃i(z ;θ)
)

−
1
τ

log
( k∑
i=1

eτh̃i(T(z) ;θ)
)

+ log
( k∑
i=1

eh̃i(T(z) ;θ)
)]

. (A.23)

We have denoted the logits of the base classifier by

h̃(x ;θ) = [h̃1(x ;θ), · · · , h̃k(x ;θ)],

and we apply the log-sum-exp approximation to the max function (as before)
with τ = 100. We use the backward pass differentiable approximation (BPDA)
method (Athalye et al., 2018) to solve this objective since T(x) does not have a
closed-form expression and is not differentiable.

The third inner attack is a multi-targeted attack, also based on BPDA, which
considers all possible target classes and attempts to find an x′ such that the base
model has high probability for the target class at x′ and a low probability for the
target class at T(x′) (thereby encouraging rejection). The attack objective is: for
each target class j = 1, . . . ,k,

x′
j = arg max

z∈N(x,αϵ)

[
loghj(z ;θ) − loghj(T(z) ;θ)

]
. (A.24)

Then we select the strongest adversarial example x′ via:

x′ = x′
j⋆ s.t. j⋆ = arg max

j∈[k]

[
loghj(x′

j ;θ) − loghj(T(x′
j) ;θ)

]
. (A.25)

We name this third inner attack Prediction-Disagreement Inner Attack (PDIA).
Given a clean input (x,y), the goal of the outer attack is to find x ′′ ∈ N(x, ϵ)

such that the base model has consistent wrong predictions on both x ′′ and T(x ′′).
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This ensures that x ′′ is accepted and mis-classified. We consider two adaptive outer
attacks that can achieve this goal. As discussed in Section 3.5.2, the first outer attack
is a multi-targeted attack based on BPDA with the following objective: for each
target class j ∈ [k] \ {y},

x ′′
j = arg max

z∈N(x,ϵ)

[
loghj(z ;θ) + loghj(T(z) ;θ)

]
. (A.26)

Then we select the strongest adversarial example x ′′ via:

x ′′ = x ′′
j⋆ s.t. j⋆ = arg max

j∈[k]\{y}

[
loghj(x ′′

j ;θ) + loghj(T(x ′′
j ) ;θ)

]
. (A.27)

We name this outer attack Consistent High Confidence Misclassification Outer
Attack (CHCMOA).

The second outer attack is the High Confidence Misclassification Outer Attack
(HCMOA) that was discussed earlier for the methods based on confidence-based
rejection. The attack objective is given in Eqns. (A.15) and (A.16). The intuition
for this attack is that if the base model has a high-confidence incorrect prediction
on x ′′, then it becomes hard for T to change the incorrect prediction.

A.3.2 Solving the Attack Objectives

We use the PGD with momentum to solve the attack objectives, and use the PGD
attack with multiple restarts for evaluating the robustness. Following Stutz et al.
(2020), we initialize the perturbation δ uniformly over directions and norm as
follows:

δ = uϵ
δ ′

∥δ ′∥∞ , δ ′ ∼ N(0, I), u ∼ U(0, 1) (A.28)

where δ ′ is sampled from the standard Gaussian and u ∈ [0, 1] is sampled from the
uniform distribution. We also include zero initialization, i.e., δ = 0 as a candidate.
We allocate one restart for zero initialization, and multiple restarts for the random
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initializations. We finally select the perturbation corresponding to the best objective
value obtained throughout the optimization.

When solving the inner attack objectives, we use a momentum factor of 0.9,
200 iterations, and 5 random restarts. The base learning rate (i.e., the attack step
size) is varied over the set {0.1, 0.01, 0.005} for experiments on MNIST, and over
the set {0.01, 0.005, 0.001} for experiments on SVHN and CIFAR-10. We report the
worst-case results: for each clean input x, if the PGD method with a particular base
learning rate can find an x′ that is rejected, then we will use this x′ as the generated
adversarial example and consider the inner attack to be successful.

When solving the outer attack objectives, we use a momentum factor of 0.9,
200 iterations, and 5 random restarts. The base learning rate (i.e., the attack step
size) is varied over the set {0.1, 0.01, 0.005} for experiments on MNIST, and over
the set {0.01, 0.005, 0.001} for experiments on SVHN and CIFAR-10. We report the
worst-case results: for each clean input x, if the PGD method with a particular base
learning rate can find an x ′′ that is accepted and misclassified, then we will use
this x ′′ as the generated adversarial example and consider the outer attack to be
successful.

BPDA approximation. Three of the adaptive attacks for CPR (namely CLCIA,
PDIA, and CHCMOA) depend on T(x), which does not have a closed-form expres-
sion and is not differentiable. Therefore, it is not possible to calculate the exact
gradient for these attack objectives. We will use the BPDA approach (Athalye et al.,
2018) to address this challenge, specifically using the straight-through estimator
for the gradient.

Recall that T(x) ≈ arg maxx̃∈N(x,ϵ̃) ℓCE(x̃, ŷ(x)), and it is computed using Algo-
rithm 3. For any of these attack objectives, let ℓ(T(x)) denote the terms dependent
on T(·). For instance, ℓ(T(x)) = loghj(T(x) ;θ) for the CHCMOA attack. Using the
chain rule, we can express the gradient of ℓ as follows:

∇xℓ(T(x)) = JT (x)t∇uℓ(u)
∣∣
u=T(x) (A.29)
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where JT (x)t is the transpose of the d× d Jacobian of T(x). For a small ϵ̃, we make
the approximation that T(x) ≈ x during the backward pass, which in turn makes
JT (x) approximately equal to the identity matrix. This gives the following gradient
estimate of the BPDA method, which we apply to solve the attack objectives of
CLCIA, PDIA, and CHCMOA:

∇xℓ(T(x)) = ∇uℓ(u)
∣∣
u=T(x) (A.30)

During the forward pass, we perform an exact computation of T(x) (using Algo-
rithm 3), but during the backward pass, we approximate the gradient of the attack
objectives using Eqn.(A.30). We note that these adaptive attacks are more expensive
to run because they require the computation of T(x) during each PGD step.

A.3.3 Attack Ensemble

As discussed earlier, for each defense method, we consider an ensemble of inner
and outer attacks and report the worst-case robustness with rejection under these
attacks. We list the specific attacks in the ensemble for each defense method below:

Confidence-based Rejection. The inner-attack ensemble only the includes Low
Confidence Inner Attack (LCIA). The outer-attack ensemble includes the AutoAt-
tack (Croce and Hein, 2020) and High Confidence Misclassification Outer Attack
(HCMOA).

RCD. The inner-attack ensemble only includes RCDIA. The outer-attack ensemble
includes AutoAttack and RCDOA.

ATRR. The inner-attack ensemble only includes ATRRIA. The outer-attack en-
semble includes AutoAttack and ATRROA.

CPR (proposed). The inner-attack ensemble includes LCIA, CLCIA, and PDIA.
The outer-attack ensemble includes AutoAttack, HCMOA and CHCMOA. By in-



193

cluding a number of strong attacks in the ensemble, we have attempted to perform
a thorough evaluation of CPR.

A.3.4 Evaluating Adaptive Attacks for CPR

In Section 3.6.2, we perform an ablation study to compare the strength of the
different adaptive inner and outer attacks for CPR. These results are in Table 3.2,
and here we discuss the choice of metrics for this evaluation. The outer attack only
affects Arej

ϵ (f, 0), while the inner attack affects Arej
ϵ (f,α) for α > 0. Therefore, for the

outer attacks we only need to compare A
rej
ϵ (f, 0). For the inner attacks we compare

A
rej
ϵ (f, 1), while fixing the outer attack to be the strongest ensemble outer attack.

This corresponds to the right end of the robustness curve, and gives a clear idea of
the strength of the inner attack.
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b appendix for chapter 4

B.1 Proofs

B.1.1 Additional definitions

Let P,Q be two distributions, a coupling M = (Z,Z ′) is a joint distribution, where,
if we marginalize M to the first component, Z, it is identically distributed as P, and
if we marginalize M to the second component, Z ′, it is identically distributed as Q.
Let

∏
(P,Q) be the set of all couplings of P and Q, and let c(·, ·) be a “cost” function

that maps (z, z ′) to a real value. Wasserstein distance between P and Q w.r.t. c is
defined as

Wc(P,Q) = inf
M∈

∏
(P,Q)

{
E

(z,z ′)∼M
[c(z, z ′)]

}
.

Intuitively, this is to find the “best transportation plan” (a coupling M) to minimize
the expected transportation cost (transporting z to z ′ where the cost is c(z, z ′)).

B.1.2 Integrated Gradients for an Intermediate Layer

In this section we show how to compute Integrated Gradients for an intermediate
layer of a neural network. Let h : Rd 7→ Rk be a function that computes a hidden
layer of a neural network, where we map a d-dimensional input vector to a k-
dimensional output vector. Given two points x and x ′ for computing attribution,
again we consider a parameterization (which is a mapping r : R 7→ Rd) such that
r(0) = x, and r(1) = x ′.

The key insight is to leverage the fact that Integrated Gradients is a curve integra-
tion. Therefore, given some hidden layer, one can then naturally view the previous
layers as inducing a curve h ◦ r which moves from h(x) to h(x ′), as we move from x
to x ′ along curve r. Viewed this way, we can thus naturally compute IG for h in a
way that leverages all layers of the network. Specifically, consider another curve
γ(t) : R 7→ Rk, defined as γ(t) = h(r(t)), to compute a curve integral. By definition
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we have f(x) = g(h(x)) and

f(x ′) − f(x) = g(h(x ′)) − g(h(x))

= g(γ(1)) − g(γ(0))

=

∫ 1

0

k∑
i=1

∂f(γ(t))

∂hi
γ ′
i(t)dt

=

k∑
i=1

∫ 1

0

∂f(γ(t))

∂hi
γ ′
i(t)dt

Therefore we can define the attribution of hi naturally as

IGfhi(x, x ′) =

∫ 1

0

∂f(γ(t))

∂hi
γ ′
i(t)dt

Let’s unpack this a little more:

∫ 1

0

∂f(γ(t))

∂hi
γ ′
i(t)dt =

∫ 1

0

∂f(h(r(t)))

∂hi

d∑
j=1

∂hi(r(t))

∂xj
r ′j(t)dt

=

∫ 1

0

∂f(h(r(t)))

∂hi

d∑
j=1

∂hi(r(t))

∂xj
r ′j(t)dt

=

d∑
j=1

{∫ 1

0

∂f(h(r(t)))

∂hi

∂hi(r(t))

∂xj
r ′j(t)dt

}

This thus gives the lemma:

Lemma B.1. Under curve r : R 7→ Rd where r(0) = x and r(1) = x ′, the attribution for
hi for a differentiable function f is

IGfhi(x, x ′, r) =
d∑
j=1

{∫ 1

0

∂f(h(r(t)))

∂hi

∂hi(r(t))

∂xj
r ′j(t)dt

}
(B.1)

Note that (6) nicely recovers attributions for input layer, in which case h is the
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identity function.

Summation approximation. Similarly, we can approximate the above Riemann
integral using a summation. Suppose we slice [0, 1] into m equal segments, then
(4.2) can be approximated as:

IGfhi(x, x ′) =
1
m

d∑
j=1

{
m−1∑
k=0

∂f(h(r(k/m)))

∂hi

∂hi(r(k/m))

∂xj
r ′j(k/m)

}
(B.2)

B.1.3 Proof of Proposition 1

If we put λ = 1 and let s(·) be the sum function (sum all components of a vector),
then for any curve r and any intermediate layer h, (4.4) becomes:

ρ(x,y; θ) = ℓ(x,y; θ) + max
x ′∈N(x,ε)

{sum(IGℓy(x, x ′; r))}

= ℓ(x,y; θ) + max
x ′∈N(x,ε)

{ℓ(x ′,y; θ) − ℓ(x,y; θ)}

= max
x ′∈N(x,ε)

ℓ(x ′,y; θ)

where the second equality is due to the Axiom of Completeness of IG.

B.1.4 Proof of Proposition 2

Input gradient regularization is an old idea proposed by Drucker and LeCun (1992),
and is recently used by Ross and Doshi-Velez (2018) in adversarial training setting.
Basically, for q ⩾ 1, they propose ρ(x,y; θ) = ℓ(x,y; θ) + λ∥∇xℓ(x,y; θ)∥qq, where
they want small gradient at x. To recover this objective from robust attribution
regularization, let us pick s(·) as the ∥ · ∥q1 function (1-norm to the q-th power), and
consider the simplest curve r(t) = x + t(x ′ − x). With the naïve summation approx-
imation of the integral IGℓyi we have IGℓyi (x, x ′; r) ≈ (x ′

i−xi)
m

∑m
k=1

∂ℓ(x+k−1
m (x ′−x),y;θ)
∂xi ,

where larger m is, more accurate we approximate the integral. Now, if we put
m = 1, which is the coarsest approximation, this becomes (x ′

i − xi)∂ℓ(x,y;θ)
∂xi , and we
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have IGℓy(x, x ′; θ) = (x ′ − x)⊙∇xℓ(x,y; θ). Therefore (4.4) becomes:

ρ(x,y; θ) =ℓ(x,y; θ) + λ max
x ′∈N(x,ε)

{∥ IGℓy(x, x ′; θ)∥q1 }

≈ℓ(x,y; θ) + λ max
x ′∈N(x,ε)

{∥(x ′ − x)⊙∇xℓ(x,y; θ)∥q1 }

Put the neighborhood as ∥x ′−x∥p ⩽ ε where p ∈ [1,∞] and 1
p
+ 1
q
= 1. By Hölder’s

inequality, ∥(x ′ − x)⊙∇xℓ(x,y; θ)∥q1 ⩽ ∥x ′ − x∥qp∥∇ℓ(x,y; θ)∥qq ⩽ εq∥∇ℓ(x,y; θ)∥qq
which means that max∥x ′−x∥p⩽ε{∥(x ′− x)⊙∇xℓ(x,y; θ)∥q1 } = εq∥∇ℓ(x,y; θ)∥qq. Thus
by putting λ = λ ′/εq, we recover gradient regularization with regularization pa-
rameter λ ′.

B.1.5 Proof of Proposition 3

Let us put s(·) = ∥ · ∥1, and h = ℓy (the output layer of loss function!), then we have

ρ(x,y; θ) =ℓy(x) + max
x ′∈N(x,ε)

{∥ IGℓyℓy(x, x ′; r)∥1}

=ℓy(x) + max
x ′∈N(x,ε)

{|ℓy(x ′) − ℓy(x)|}

where the second equality is because IGℓyℓy(x, x ′; r) = ℓy(x ′) − ℓy(x).

B.1.6 Proof of Proposition 4

Specifically, again, let s(·) be the summation function and λ = 1, then we have
EZ,Z ′[dIG(Z,Z ′)] = EZ,Z ′[sum(IGℓh(Z,Z ′))] = EZ,Z ′[ℓ(Z ′; θ) − ℓ(Z; θ)]. Because P
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and Z are identically distributed, thus the objective reduces to

sup
Q;M∈

∏
(P,Q)

{
E
Z,Z ′

[ℓ(Z; θ) + ℓ(Z ′; θ) − ℓ(Z; θ)]

s.t. E
Z,Z ′

[c(Z,Z ′)] ⩽ ρ
}

= sup
Q;M∈

∏
(P,Q)

{
E
Z ′
[ℓ(Z ′; θ)] s.t. E

Z,Z ′
[c(Z,Z ′)] ⩽ ρ

}
= sup
Q:Wc(P,Q)⩽ρ

{
E
Q
[ℓ(Q; θ)]

}
,

which is exactly Wasserstein prediction robustness objective.

B.1.7 Proof of Theorem 4.2

The proof largely follows that for Theorem 5 in Sinha et al. (2018), and we provide
it here for completeness. Since we have a joint supremum over Q and M ∈

∏
(P,Q)

we have that

sup
Q;M∈

∏
(P,Q)

{
E

M=(Z,Z ′)

[
dγIG(Z,Z ′)

]}
= sup
Q;M∈

∏
(P,Q)

∫
[dIG(z, z ′) − γc(z, z ′)]dM(z, z ′)

⩽
∫

sup
z ′

{dIG(z, z ′) − γc(z, z ′)}dP(z)

= E
z∼P

[
sup
z ′

{dγIG(z, z ′)}

]
.

We would like to show equality in the above.
Let Q denote the space of regular conditional probabilities from Z to Z ′. Then

sup
Q;M∈

∏
(P,Q)

∫
[dIG(z, z ′) − γc(z, z ′)]dM(z, z ′)

⩾ sup
Q∈Q

∫
[dIG(z, z ′) − γc(z, z ′)]dQ(z ′|z)dP(z).

Let Z ′ denote all measurable mappings z→ z ′(z) from Z to Z ′. Using the measura-
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bility result in Theorem 14.60 in Rockafellar and Wets (2009), we have

sup
z ′∈Z ′

∫
[dIG(z, z ′(z)) − γc(z, z ′(z))]dP(z) =

∫
sup
z ′

[dIG(z, z ′) − γc(z, z ′)]dP(z)

since γc− dIG is a normal integrand.
Let z ′(z) be any measurable function that is ϵ-close to attaining the supremum

above, and define the conditional distribution Q(z ′|z) to be supported on z ′(z).
Then

sup
Q;M∈

∏
(P,Q)

∫
[dIG(z, z ′) − γc(z, z ′)]dM(z, z ′)

⩾
∫
[dIG(z, z ′) − γc(z, z ′)]dQ(z ′|z)dP(z)

=

∫
[dIG(z, z ′(z)) − γc(z, z ′(z))]dP(z)

⩾
∫

sup
z ′

[dIG(z, z ′) − γc(z, z ′)]dP(z) − ϵ

⩾ sup
Q;M∈

∏
(P,Q)

∫
[dIG(z, z ′) − γc(z, z ′)]dM(z, z ′) − ϵ.

Since ϵ ⩾ 0 is arbitrary, this completes the proof.

B.1.8 Proof of Theorem 4.3: Connections Between the
Distributional Robustness Objectives

Let θ∗ denote an optimal solution of (4.5) and let θ ′ be any non-optimal solution.
Let γ(θ∗) denote the corresponding γ by Lemma B.2, and γ(θ ′) denote that for θ ′.
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Since γ(θ ′) achieves the infimum, we have

E
z∼P

[
ℓ(z; θ ′) + λ sup

z ′
{dIG(z, z ′) − γ(θ∗)c(z, z ′)}

]
(B.3)

⩾ E
z∼P

[
ℓ(z; θ ′) + λ sup

z ′
{dIG(z, z ′) − γ(θ ′)c(z, z ′)}

]
(B.4)

> E
z∼P

[
ℓ(z; θ∗) + λ sup

z ′
{dIG(z, z ′) − γ(θ∗)c(z, z ′)}

]
. (B.5)

So θ ′ is not optimal for (4.7). This then completes the proof.

Lemma B.2. Suppose c(z, z) = 0 and dIG(z, z) = 0 for any z, and suppose γc(z, z ′) −

dIG(z, z ′) is a normal integrand. For any ρ > 0, there exists γ ⩾ 0 such that

sup
Q;M∈

∏
(P,Q)

{
E

(Z,Z ′)∼M
[dIG(Z,Z ′)] s.t. E

(Z,Z ′)∼M
[c(Z,Z ′)] ⩽ ρ

}
(B.6)

= inf
ζ⩾0

E
z∼P

[
sup
z ′

{dIG(z, z ′) − ζc(z, z ′) + ζρ}

]
. (B.7)

Furthermore, there exists γ ⩾ 0 achieving the infimum.

This lemma generalizes Theorem 5 in Sinha et al. (2018) to a larger, but natural,
class of objectives.

Proof. For Q and M ∈ Π(P,Q), let

ΛIG(Q,M) := E
(Z,Z ′)∼M

[dIG(Z,Z ′)] (B.8)

Λc(Q,M) := E
(Z,Z ′)∼M

[c(Z,Z ′)] (B.9)

First, the pair (Q,M) forms a convex set, and ΛIG(Q,M) and Λc(Q,M) are linear
functionals over the convex set. Set Q = P and set M to the identity coupling (such
that (Z,Z ′) ∼ M always has Z = Z ′). Then Λc(Q,M) = 0 < ρ and thus the Slater’s
condition holds. Applying standard infinite dimensional duality results (Theorem
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8.6.1 in Luenberger (1997)) leads to

sup
Q;M∈

∏
(P,Q);Λc(Q,M)⩽ρ

ΛIG(Q,M) (B.10)

= sup
Q;M∈

∏
(P,Q)

inf
ζ⩾0

{ΛIG(Q,M) − ζΛc(Q,M) + ζρ} (B.11)

= inf
ζ⩾0

sup
Q;M∈

∏
(P,Q)

{ΛIG(Q,M) − ζΛc(Q,M) + ζρ} . (B.12)

Furthermore, there exists γ ⩾ 0 achieving the infimum in the last line.
Now, it suffices to show that

sup
Q;M∈

∏
(P,Q)

{ΛIG(Q,M) − γΛc(Q,M) + γρ} (B.13)

= E
z∼P

[
sup
z ′

{dIG(z, z ′) − γc(z, z ′) + γρ}

]
. (B.14)

This is exactly what Theorem 4.2 shows.

B.1.9 Proof of Theorem 4.4

Let us fix any one point x, and consider

g(−yi⟨w, x⟩) + λ max
x ′∈N(x,ε)

∥ IGℓyx (x, x ′; w)∥1.

Due to the special form of g, we know that:

IGℓyi (x, x ′; w) =
wi(x ′ − x)i
⟨w, x ′ − x⟩ ·

(
g(−y⟨w, x ′⟩) − g(−y⟨w, x⟩)

)
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Let ∆ = x ′ − x (which satisfies that ∥∆∥∞ ⩽ ε), therefore its absolute value (note
that we are taking 1-norm):∣∣g(−y⟨w, x⟩− y⟨w,∆⟩) − g(−y⟨w, x⟩)

∣∣)
|⟨w,∆⟩| · |wi∆i|

Let z = −y⟨w, x⟩ and δ = −y⟨w,∆⟩, this is further simplified as |g(z+δ)−g(z)|
|δ|

|δi|.
Because g is non-decreasing, so g ′ ⩾ 0, and so this is indeed g(z+δ)−g(z)

δ
, which is

the slope of the secant from (z,g(z)) to (z+ δ,g(z+ δ)). Because g is convex so the
secant slopes are non-decreasing, so we can simply pick ∆i = −y sgn(wi)ε, and so
δ = ∥w∥1ε, and so that ∥ IG ∥1 becomes

|g(z+ ε∥w∥1) − g(z)| ·
∑
i |wi∆i|

|δ|
= |g(z+ ε∥w∥1) − g(z)| ·

∑
i |wi|ε

∥w∥1ε

= |g(z+ ε∥w∥1) − g(z)|

= g(z+ ε∥w∥1) − g(z)

where the last equality follows because g is nondecreasing. Therefore the objective
simplifies to

∑m
i=1 g(−yi⟨w, xi⟩+ ε∥w∥1), which is exactly Madry et al.’s objective

under ℓ∞ perturbations.
Let us consider two examples:

Logistic Regression. Let g(z) = ln(1 + exp(z)). Then g(−y⟨w, x⟩) recovers the Neg-
ative Log-Likelihood loss for logistic regression. Clearly g is nondecreasing and
g ′ is also nondecreasing. As a result, adversarial training for logistic regression is
exactly “robustifying” attributions/explanations.
Softplus hinge loss. Alternatively, we can let g(z) = ln(1 + exp(1 + z)), and there-
fore g(−y⟨w, x⟩) = ln(1 + exp(1 − y⟨w, x⟩)) is the softplus version of the hinge
loss function. Clearly this g also satisfy our requirements, and therefore adver-
sarial training for softplus hinge loss function is also exactly about “robustifying”
attributions/explanations.
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c appendix for chapter 5

C.1 Theoretical Analysis
We consider the following data model to demonstrate how selecting informative
outliers can help. In the proof below, we will use C, c to denote some absolute
constants; their values can change from line to line.

1. The in-distribution PX is a Gaussian N(µ,σ2I) with mean µ ∈ Rd and variance
σ2.

2. The test OOD distribution can be any distribution largely supported outside
a ball around µ. More precisely, it can be any distribution from the family:

Q =

{
QX : Pr

x∼QX
[∥x− µ∥2 ⩽ τ] ⩽ ϵτ

}
where τ = σ

√
d + σγ + ϵ

√
d, γ ∈ (0,

√
d) is a parameter indicating some

margin between the in-distribution and OOD distributions, and ϵτ is a small
number bounding the probability mass the OOD distribution can have close
to the in-distribution.

3. The hypothesis class for detectors is

G =
{
Gu,r(x) : Gu,r(x) = 2 · I[∥x− u∥2 ⩽ r] − 1,u ∈ Rd, r ∈ R+

}
.

Recall that we consider ℓ∞ attack with adversarial budget ϵ > 0. For a detector
G and test OOD distribution family Q, we are interested in the False Negative Rate
FNR(G) and worst False Positive Rate supQX∈Q

FPR(G;QX,Ω∞,ϵ(x)) over QX ∈ Q

under ℓ∞ perturbations of magnitude ϵ. For simplicity, we denote them as FNR(G)

and FPR(G;Q) in our proofs.
We note that the data model is set up such that there exists a robust OOD

detector with good FPR and FNR (Proposition 9), while using only in-distrbution
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data to learn a good robust OOD detector one needs sufficiently amount of them,
i.e., Θ̃(d/γ2) (Propostion 10). (Therefore, we assume γ <

√
d to avoid the trivial

case.)

Proposition 9. The detector Gu,r(x) with u = µ and r = σ
√
d+ σγ satisfies:

FNR(Gu,r) ⩽ exp(−cγ2), (C.1)

FPR(Gu,r;Q) ⩽ ϵτ, (C.2)

for some absolute constant c > 0.

Proof. The first statement follows from the concentration of the norm of x− µ:

FNR(Gu,r(x)) = Ex∼PXI[∥x− u∥2 > r] (C.3)

= Pr
x∼N(0,I)

[∥x∥2 >
√
d+ γ] (C.4)

⩽ exp(−cγ2) (C.5)

the second statement follows from the definition of Q:

FPR(Gu,r;Q) = sup
QX∈Q

Ex∼QX max
∥δ∥∞⩽ϵ

I[∥x+ δ− u∥2 ⩽ r] (C.6)

⩽ sup
QX∈Q

Ex∼QXI[∥x− µ∥2 −
√
dϵ ⩽ σ

√
d+ σγ] (C.7)

= sup
QX∈Q

Pr
x∼QX

[∥x− µ∥2 ⩽ τ] ⩽ ϵτ. (C.8)
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C.1.1 Learning Without Auxiliary OOD Data

Given in-distribution data x1, x2, . . . , xn, we consider the detector Gu,r(x) with

u = x̄ =
1
n

n∑
i=1

xi (C.9)

r = (1 + γ/4
√
d)σ̂, where σ̂2 =

1
n

n∑
i=1

∥xi − x̄∥2
2. (C.10)

By concentration bounds, we can show that this leads to a good solution, if the
number of data points n is sufficiently large.

Proposition 10. If the number of in-distribution data points n ⩾ Cd
γ2 log 1

α
+ Cd
γ4 log 1

α
for

α ∈ (0, 1) and some sufficiently large constant C, then with probability at least 1 − α, the
detector Gu,r(x) with u = 1

n

∑n
i=1 xi and r = (1+γ/4

√
d)
√

1
n

∑n
i=1 ∥xi − u∥2

2 satisfies:

FNR(Gu,r) ⩽ exp(−cγ2), (C.11)

FPR(Gu,r;Q) ⩽ ϵτ, (C.12)

for some absolute constant c.

Proof. We will prove that u is close to µ and r is close to (1 + cγ/
√
d)σ
√
d.

First, consider u − µ. Let xi = µ + σgi where gi ∼ N(0, I), and ḡ = 1
n

∑n
j=1 gj.

Then u− µ = σ · 1
n

∑n
i=1 gi = σḡ. By the concentration of sub-gaussian variables,

with probability ⩾ 1 − α/2,

∥ḡ∥2 =

∥∥∥∥∥ 1
n

n∑
i=1

gi

∥∥∥∥∥
2

⩽ c

√
d

n
log 1

α
(C.13)

and thus

∥u− µ∥2 ⩽ cσ

√
d

n
log 1

α
⩽ cσγ. (C.14)
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Next, let σ̂2 := 1
n

∑n
i=1 ∥xi − u∥2

2. Then

σ̂2 =
σ2

n

n∑
i=1

∥gi − ḡ∥2
2 = σ2

(
1
n

n∑
i=1

∥gi∥2
2 − σ2 ∥ḡ∥2

2

)
. (C.15)

By sub-exponential concentration, we have with probability ⩾ 1 − α/2,∣∣∣∣∣ 1
n

n∑
i=1

∥gi∥2
2 − d

∣∣∣∣∣ ⩽ c

√
d

n
log 1

α
. (C.16)

Then

|σ̂2 − σ2d| ⩽ cσ2

√
d

n
log 1

α
⩽ cσ2γ2. (C.17)

Given

∥u− µ∥2 ⩽ cσγ, |σ̂− σ
√
d| ⩽

√
|σ̂2 − σ2d| ⩽ cσγ, (C.18)

for sufficiently small c < 1/16, we have (1 + γ/8
√
d)σ
√
d ⩽ r ⩽ (1 + γ/2

√
d)σ
√
d.

Then the statement follows.

C.1.2 Learning With Informative Auxiliary OOD Data

The informative auxiliary data will be a distribution around the boundary of the
in-distribution and the outlier distributions. Assume we have access to auxiliary
OOD data x from an ideal distribution UX where:

• UX is a distribution over the sphere {x : ∥x− µ∥2
2 = σ2

od} for some σo > σ, and
its density is at least η times that of the uniform distribution on the sphere for
some constant η > 0.

Given in-distribution data x1, . . . , xn from PX and auxiliary OOD data x̃1, . . . , x̃n ′

from UX, we now design a good detector which only requires a small number n
of in-distribution data. The radius r can be estimated using a small number of
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in-distribution data as above. The challenge is to learn a good u, ideally close to µ.
Given an outlier data point x̃, a natural idea frequently used in practice is then to
find a u so that not so many outliers (potentially with adversarial perturbations)
can be close to u, so that Gu,r will be able to detect the outliers. Furthermore, we
know that the µ is not far from x̄, so we only need to search u near x̄. We thus come
to the following learning rule:

σ̂2 =
1
n

n∑
i=1

∥xi − x̄∥2
2, where x̄ =

1
n

n∑
i=1

xi, (C.19)

r = (1 + γ/4
√
d)σ̂, (C.20)

u← arg min
p:∥p−x̄∥2⩽s

Lt(p) :=
1
n ′

n ′∑
i=1

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t] . (C.21)

where s and t are some hyper-parameters to be determined.

Lemma C.1. Suppose σ2γ2 > Cϵσod, and the number of in-distribution data points
n ⩾ Cd

γ4 log 1
α
+ Cσ2d

s2 log 1
α

and the number of auxiliary data n ′ ⩾ exp(Cs2/σ2
o)

η
log dσ

α
for

α ∈ (0, 1) and for some sufficiently large constant C, then there exists proper parameter
values t such that with probability at least 1 − α, the detector Gu,r(x) with r from (C.20)
and u from (C.21) satisfies:

FNR(Gu,r(x)) ⩽ exp(−cγ2), (C.22)

FPR(Gu,r;Q) ⩽ ϵτ, (C.23)

for some absolute constant c.

Proof. Set B = σγ/4, and set t to be any value such that σ2
od − B2 ⩽ t2 and

(t + ϵ
√
d)2 < σ2

od. (Note that σ2
od > B2, since σ2

od > σ2d and γ <
√
d. Further-

more, when σ2γ2 < Cϵσod for some sufficiently constant C, we have
√
σ2
od− B2 <

σo
√
d−ϵ
√
d, so we can select twithin this range which will satisfy our requirements

for t.)
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First, consider r and x̄. Similar to the proof of Proposition 10, when n ⩾ cd
γ4 log 1

α
,

we have with probability 1 − α/8,

(1 + γ/8
√
d)σ
√
d ⩽ r ⩽ (1 + γ/2

√
d)σ
√
d. (C.24)

Also for x̄, when n ⩾ cσ2d
s2 log 1

α
, we have with probability 1 − α/8,

∥µ− x̄∥2 ⩽ cσ

√
d

n
log 1

α
⩽ s. (C.25)

This ensures µ will be included in the feasible set of (C.21).
Now, consider u. Let P be the set of p with ∥p− x̄∥2 ⩽ s but ∥p− µ∥2 > B:

P := {p ∈ Rd : ∥p− x̄∥2 ⩽ s, ∥p− µ∥2 > B}. (C.26)

We will show that for any p ∈ P, with probability 1 − α/8, Lt(p) > Lt(µ) = 0, and
thus (C.21) finds an u with ∥u − µ∥2 ⩽ σγ/4, which then leads to the theorem
statements.

We begin by noting that

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t] ⩽ I
[
∥x̃i − p∥2 < t+ ϵ

√
d
]

. (C.27)

Since t+ ϵ
√
d < σo

√
d, we have Lt(µ) = 0.

We now consider a fixed p ∈ P.

E
{

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t]

}
⩾ E {I [∥x̃i − p∥2 < t]} = Pr [∥p− x̃i∥2 < t] .

(C.28)

Let ∆ = p− µ. Then since σ2
od− B2 ⩽ t2 and ∥∆∥2 ⩾ B, we have σ2

od− ∥∆∥2
2 ⩽ t2,

and thus any x̃i from UX whose projection onto the direction p − µ has distance
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larger than ∥∆∥2 from µ will satisfy ∥p− x̃i∥2 < t. Then

E
{

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t]

}
⩾ Pr

[
∥p− x̃i∥2 < t− ϵ

√
d
]

(C.29)

⩾
ηAd

(
1 − ∥∆∥2/(σo

√
d)
)

Ad

where Ad(v) is the area of the spherical cap of the unit hypersphere in dimension
d with height v, and Ad is the area of the whole unit hypersphere.

By the bound in Becker et al. (2016), we have

Ad(v)/Ad = dΘ(1)[1 − (1 − v)2]d/2. (C.30)

Since ∥∆∥2 ⩽ ∥p− x̄∥2 + ∥x̄− µ∥2 ⩽ 2s, we have

E
{

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t]

}
⩾

ηAd

(
1 − ∥∆∥2/(σo

√
d)
)

Ad
(C.31)

= ηdΘ(1)
[

1 −
4s2

σ2
od

]d/2

:= q.

Then when n ′ ⩾ c
q

log 1
α ′ ,

Pr[Lt(p) = 0] ⩽ (1 − q)n
′
⩽ e−qn

′
⩽ α ′/8. (C.32)

Then a net argument on P proves that for the given n ′, we have with probability
⩾ 1 − α/8, any p ∈ P has Lt(p) > 0. This completes the proof.

By setting s = σγ2 and assuming σ2
o = O(σ2), we have the following corollary.

Proposition 11. Suppose σ2γ2 ⩾ Cϵσod for some sufficiently constant C and σ2 < σ2
o <

C ′σ2 for some absolute constant C ′. For α ∈ (0, 1), if the number of in-distribution data
points n ⩾ Cd

γ4 log 1
α

and the number of auxiliary data n ′ ⩾ exp(Cγ4)
η

log dσ
α

, then there
exists proper parameter values s, t such that with probability at least 1 − α, the detector
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Gu,r(x) with r from (C.20) and u from (C.21) satisfies:

FNR(Gu,r(x)) ⩽ exp(−cγ2), (C.33)

FPR(Gu,r;Q) ⩽ ϵτ, (C.34)

for some absolute constant c.

Then we can see that this can reduce the sample size n by a factor of γ2. For
example, when γ = Θ(d1/8), we only need n = O(

√
d log(1/α)), while in the case

without auxiliary data, we need n = O(d3/4 log(1/α)).

C.1.3 Learning With Informative Outlier Mining

The above example shows the benefit of having auxiliary OOD data for training.
All the auxiliary OOD data given in the example are implicitly related to the ideal
parameter for the detector µ and thus are informative for learning the detector.
However, this may not be the case in practice: typically only part of the auxiliary
OOD data are informative, while the remaining are not very useful or even can
be harmful for the learning. Here we study such an example, and shows that
how outlier mining can help to identify informative data and improve the learning
performance.

The practical auxiliary data can have a lot of obvious outliers not on the boundary
and also quite a few in-distribution data mixed. We model the former data as
Qq = N(0,σ2

qI) where σq is large compared to ∥µ∥2, σ, and σo. The auxiliary data
distribution Umix is then a mixture of UX and Qq where Qq has a large weight.

• Umix = νUX + (1 − 2ν)Qq + νPX for a small ν ∈ (0, 1), where Qq = N(0,σ2
qI)

for some large σq.

That is, the distribution is defined by the following process: with probability ν sam-
ple the data from the informative part UX, and with probability 1− 2ν sample from
the uninformative part Qq, and with probability ν sample from the in-distribution.
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Then the previous simple method will not work, and a more sophisticated
method is needed. Below we show that outlier mining can remove most data
outside UX, and keep the data from UX, and the previous method can work after
outlier mining.

Suppose the algorithm gets n in-distribution data Sin = {x1, x2, . . . , xn} i.i.d. from
PX and n ′ auxiliary data Sau = {x̃1, x̃2, . . . , x̃n ′} from Umix for training. Specifically,
we first use in-distribution data to get an intermediate solution x̄ and r:

σ̂2 =
1
n

n∑
i=1

∥xi − x̄∥2
2, where x̄ =

1
n

n∑
i=1

xi, (C.35)

r = (1 + γ/4
√
d)σ̂. (C.36)

Then, we use a simple thresholding mechanism to only pick points close to the
decision boundary of the intermediate solution, which removes non-informative
outliers. Specifically, we only select outliers x̃ with mild “confidence scores” w.r.t.
the intermediate solution, i.e., the distances to x̄ fall in an interval [a,b]:

S := {i : ∥x̃i − x̄∥2 ∈ [a,b], 1 ⩽ i ⩽ n ′} (C.37)

The final solution u is then by:

uom ← arg min
p:∥p−x̄∥2⩽s

LS,t(p) :=
1
|S|

∑
i∈S

max
∥δ∥∞⩽ϵ

I [ ∥x̃i + δ− p∥2 < t] . (C.38)

We can prove the following:

Lemma C.2. Suppose σ2γ2 ⩾ Cϵσod and σo
√
d > σ

√
d + Cs for a sufficiently large

constant C, and σq
√
d > 2(σo

√
d + ∥µ∥2). For some absolute constant c and any

α ∈ (0, 1), if the number of in-distribution data n ⩾ Cd
γ4 log 1

α
+ Cσ2d

s2 log 1
α

and the
number of auxiliary data n ′ ⩾ exp(Cs2/σ2

o)

ν2η2 log dσ
α

, then there exists parameter values t,a,b
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such that with probability ⩾ 1 − α, the detector Guom,r computed above satisfies:

FNR(Guom,r) ⩽ exp(−cγ2), (C.39)

FPR(Gu,r;Q) ⩽ ϵτ. (C.40)

Proof. Following the proof as in Proposition 11, we have the same guarantees for r
and x̄, i.e., with probability 1 − α/4,

(1 + γ/8
√
d)σ
√
d ⩽ r ⩽ (1 + γ/2

√
d)σ
√
d, (C.41)

∥µ− x̄∥2 ⩽ cσ

√
d

n
log 1

α
⩽ s. (C.42)

This ensures µ will be included in the feasible set of (C.38).
Set B = σγ/4, and set t to be any value such that σ2

od−B2 ⩽ t2 and (t+ϵ
√
d)2 <

σ2
od. (As before, the assumptions make sure we can select such a t. We have

σ2
od > B2, since σ2

od > σ2d and γ <
√
d. Furthermore, when σ2γ2 < Cϵσod for

some sufficiently constant C, we have
√

σ2
od− B2 < σo

√
d− ϵ

√
d, so we can select

t within this range which will satisfy our requirements for t.)
Set a = σo

√
d − s, and b = σo

√
d + s. Let P be the set of p with ∥p − x̄∥2 ⩽ s

but ∥p− µ∥2 > B:

P := {p ∈ Rd : ∥p− x̄∥2 ⩽ s, ∥p− µ∥2 > B}. (C.43)

We will show that for any p ∈ P, with probability 1 − α/4, Lt(p) > Lt(µ) = 0,
and thus (C.38) finds a uom with ∥uom − µ∥2 ⩽ B = σγ/4, which then leads to the
theorem statements.

First, we show that LS,t(p) is large for any p ∈ P. The same proof as in Proposi-
tion 11 shows that for any p as described above, for an x̃i from UX, we have

E
{

max
∥δ∥∞⩽ϵ

I [∥x̃i + δ− p∥2 < t]

}
⩾ Pr [∥p− x̃i∥ < t] ⩾ ηdΘ(1)

[
1 −

4s2

σ2
od

]d/2

:= q.

(C.44)



213

We note that all points from UX will be in S for the given a and b. Then by the Cher-
noff’s inequality (for multiplicative factors), when n ′ ⩾ c

qν
log 1

α ′ , with probability
1 − α ′, we have

LS,t(p) >
qν

2 . (C.45)

Then a net argument on P proves that with the given n ′, we have with probability
⩾ 1 − α/8, any p ∈ P has LS,t(p) > qν/2.

Next, we will show that LS,t(µ) is small. We first note that since t+ϵ
√
d < σo

√
d,

all points from UX will contribute 0 to LS,t(µ). Furthermore, most points from PX

and Qq are filtered outside S.

Pr
x∼PX

[∥x− x̄∥2 ∈ [a,b]] ⩽ Pr
x∼PX

[∥x− x̄∥2 ⩾ a] (C.46)

⩽ Pr
x∼PX

[
∥x− µ∥2 ⩾ a− s = σo

√
d− 2s

]
(C.47)

⩽ e−c(σo
√
d−2s)2/σ2

:= q1, (C.48)

and

Pr
x∼Qq

[∥x− x̄∥2 ∈ [a,b]] ⩽ Pr
x∼Qq

[∥x− x̄∥2 ⩽ b] (C.49)

⩽ Pr
x∼Qq

[∥x∥2 ⩽ b+ s+ ∥µ∥2] (C.50)

⩽ e−c(σq
√
d−σo

√
d−2s−∥µ∥2)

2
:= q2. (C.51)

Then by Hoeffding’s inequality, when n ′ ⩾ c
q2ν2 log 1

α
, we have with probability

⩾ 1 − α/8,

LS,t(µ) < qv/4 + νq1 + (1 − ν)q2. (C.52)

Note that q ⩾ ηdΘ(1)e−cs
2/σ2

o . Then when σo
√
d > σ

√
d+ Cs, we have q1 ⩽ e−cd.

Since d is sufficiently large compared to s2/σ2
o, q1 ⩽ q/8. Similarly, when σq

√
d >

2(σo
√
d+∥µ∥2), we have σq

√
d−σo

√
d−2s−∥µ∥2 > σq

√
d/4, and thus q2 ⩽ νq/8.
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Therefore, LS,t(µ) < qν/2.
In summary, with probability ⩾ 1−α, LS,t(µ) < LS,t(p) for any p ∈ P. This then

completes the proof.

By setting s = σγ2 and assuming σ2
o = O(σ2), we have the following corollary.

Proposition 12 (Restatement of Proposition 5). (Error bound with outlier mining.)
Suppose σ2γ2 ⩾ Cϵσod and σ

√
d + Cσγ2 < σo

√
d < Cσ

√
d for a sufficiently large

constant C, and σq
√
d > 2(σo

√
d+∥µ∥2). For any α ∈ (0, 1) and some absolute constant

c, if the number of in-distribution data n ⩾ Cd
γ4 log 1

α
and the number of auxiliary data

n ′ ⩾ exp(Cγ4)
ν2η2 log dσ

α
, then there exist parameter values s, t,a,b such that with probability

⩾ 1 − α, the detector Guom,r computed above satisfies:

FNR(Guom,r) ⩽ exp(−cγ2),

FPR(Guom,r;Q) ⩽ ϵτ.

This means that even in the presence of a large amount of uninformative or even
harmful auxiliary data, we can successfully learn a good detector. Furthermore,
this can reduce the sample size n by a factor of γ2. For example, when γ = Θ(d1/8),
we only need n = O(

√
d log(1/α)), while in the case without auxiliary data, we

need n = O(d3/4 log(1/α)).

C.1.4 Learning with Ideal UX

Consider the same setting in the above Section C.1.3 but assume that the UX in the
mixture Umix is as ideal as a uniform distribution:

• UX is the uniform distribution over the sphere {x : ∥x − µ∥2
2 = σ2

od} where
σ2
o > σ2.

In this case we can do the outlier mining as above, but finally compute uom by
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averaging the auxiliary data points selected in S. That is:

σ̂2 =
1
n

n∑
i=1

∥xi − x̄∥2
2, where x̄ =

1
n

n∑
i=1

xi, (C.53)

r = (1 + γ/4
√
d)σ̂, (C.54)

S = {i : ∥x̃i − x̄∥2 ∈ [a,b], 1 ⩽ i ⩽ n ′}, (C.55)

uom =
1
|S|

∑
x̄∈S

x̄. (C.56)

Then we can prove essentially the same guarantees but with much fewer auxiliary
data:

Proposition 13. Suppose σ2γ2 ⩾ Cϵσod and σ
√
d + Cσγ2 < σo

√
d < Cσ

√
d for a

sufficiently large constant C, and σq
√
d > 2(σo

√
d+ ∥µ∥2). For any α ∈ (0, 1) and some

absolute constant c, if the number of in-distribution data n ⩾ Cd
γ4 log 1

α
and the number of

auxiliary data n ′ ⩾ Cd
γ2ν2 log d

α
and d ⩾ C log n ′

α
, then there exist parameter values a,b

such that with probability ⩾ 1 − α, the detector Guom,r computed above satisfies:

FNR(Guom,r) ⩽ exp(−cγ2),

FPR(Guom,r;Q) ⩽ ϵτ.

Proof. Following the same setting of a,b and the same proof as in Lemma C.2, we
can show that all points from UX will be included in S, and most points from PX

and Qq are filtered outside S:

Pr
x∼PX

[∥x− x̄∥2 ∈ [a,b]] ⩽ e−c(σo
√
d−2s)2/σ2

< e−c
′d, (C.57)

Pr
x∼Qq

[∥x− x̄∥2 ∈ [a,b]] ⩽ e−c(σq
√
d−σo

√
d−2s−∥µ∥2)

2
< e−c

′d, (C.58)

for some absolute constant c ′. Then with probability ⩾ 1 − n ′e−2c ′d, S is exactly
all the auxiliary points from UX. By the sub-gaussian concentration of the uniform
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distribution over sphere, we have with probability 1 − α/2,

∥uom − µ∥2 ⩽ cσo

√
d

|S|
log 1

α
. (C.59)

For the given n ′, we have the theorem.

C.2 Adversarial Attacks for OOD Detection Methods
We propose adversarial attack objectives for different OOD detection methods. We
consider a family of adversarial perturbations for the OOD inputs: (1) L∞-norm
bounded attack (white-box attack); (2) common image corruptions attack (black-
box attack); (3) compositional attack which combines common image corruptions
attack and L∞ norm bounded attack (white-box attack).

L∞ norm bounded attack. For data point x ∈ Rd, the L∞ norm bounded pertur-
bation is defined as

Ω∞,ϵ(x) = {δ ∈ Rd
∣∣ ∥δ∥∞ ⩽ ϵ∧ x+ δ is valid}, (C.60)

where ϵ is the adversarial budget. x+ δ is considered valid if the values of x+ δ

are in the image pixel value range.
For MSP, ODIN, OE, ACET, and CCU methods, we propose the following attack

objective to generate adversarial OOD example on a clean OOD input x:

x ′ = arg max
x ′∈Ω∞,ϵ(x)

−
1
K

K∑
i=1

log F(x ′)i (C.61)

where F(x) is the softmax output of the classifier network.
For Mahalanobis method, we propose the following attack objective to generate
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adverasrial OOD example on OOD input x:

x ′ = arg max
x ′∈Ω∞,ϵ(x)

− log 1
1 + e−(

∑
ℓαℓMℓ(x ′)+b)

, (C.62)

where Mℓ(x
′) is the Mahalanobis distance-based confidence score of x ′ from the

ℓ-th feature layer, {αℓ} and b are the parameters of the logistic regression model.
For SOFL method, we propose the following attack objective to generate adver-

sarial OOD example for an input x:

x ′ = arg max
x ′∈Ω∞,ϵ(x)

− log
K+R∑
i=K+1

F̄(x ′)i (C.63)

where F̄(x) is the softmax output of the whole neural network (including auxiliary
head) and R is the number of reject classes.

For ROWL and ATOM method, we propose the following attack objective to
generate adverasrial OOD example on OOD input x:

x ′ = arg max
x ′∈Ω∞,ϵ(x)

− log F̂(x ′)K+1 (C.64)

where F̂(x) is the softmax output of the (K+1)-way neural network.
Due to computational concerns, by default, we will use PGD with ϵ = 8/255,

the number of iterations of 40, the step size of 1/255 and random start to solve these
attack objectives.

Common Image Corruptions attack. We use common image corruptions intro-
duced in Hendrycks and Dietterich (2019). We apply 15 types of algorithmically
generated corruptions from noise, blur, weather, and digital categories to each
OOD image. Each type of corruption has five levels of severity, resulting in 75
distinct corruptions. Thus, for each OOD image, we generate 75 corrupted images
and then select the one with the lowest OOD score (or highest confidence score to
be in-distribution). Note that we only need the outputs of the OOD detectors to
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construct such adversarial OOD examples; thus it is a black-box attack.

Compositional Attack. For each OOD image, we first apply common image cor-
ruptions attack, and then apply the L∞-norm bounded attack to generate adversarial
OOD examples.
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d appendix for chapter 6

D.1 Complete Proofs and Discussions
We first present the proof for our main theorem, and then provide some more
discussion on the benefit of using ensembles.

D.1.1 Provable Guarantees of the Framework

We first prove a technical lemma for constructing R and then use it to prove the
theorem.

First recall the key notions.
Suppose on points where f is correct, the ensemble models are also approxi-

mately correct. Let ν denote the average probability of h ∼ T making error on the
test points where the pre-trained model f is correct:

ν := Pr
(x,yx)∼U,h∼T

[h(x) ̸= yx|f(x) = yx]. (D.1)

Suppose the ensemble training with regularization on the pseudo-labeled data
R will make the ensemble models disagree with f on RX. Let γ denote the average
probability of h ∼ T agreeing with f on the test points in RX:

γ := Pr
x∼RX,h∼T

{h(x) = f(x)}. (D.2)

Suppose GX is the points in WX \RX on which the ensemble agree with the true
label yx with more than 1 − ν probability, i.e.,

GX := {x ∈WX \ RX : Pr
h∼T

{h(x) = yx} ⩾ 1 − ν}. (D.3)

That is, GX are the points where the ensemble will have correct prediction with high
confidence. We would like the ensemble to have large diversity on the remaining
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points in WX \ RX. Define the diversity there to be

BX := WX \ (RX ∪GX), (D.4)

σ2 := E[σ2
x|x ∈ BX]. (D.5)

Lemma D.1. Define

Bη := min{σ2, 1 − ν2}. (D.6)

For any η ∈ (0,Bη), let τ =
√

1 − η, and

R ′
X :=

{
x ∈ UX : Pr

h∼T
{h(x) = f(x)} < τ

}
. (D.7)

Then we have

|R ′
X ∩ (UX \WX)| ⩽

ν

1 − τ
|UX \WX|, and

(1 −
γ

τ
)|RX| ⩽ |RX ∩ R ′

X|,GX ⊆ R ′
X, |R ′

X ∩ BX| ⩾
σ2 − η

1 − η
|BX|.

Proof. Consider x ∈ UX −WX. We have

Pr
(x,yx)∼U

{
Pr
h∼T

{h(x) = f(x)} < τ|f(x) = yx

}
(D.8)

= Pr
(x,yx)∼U

{
Pr
h∼T

{h(x) ̸= yx} ⩾ 1 − τ|f(x) = yx

}
(D.9)

⩽
ν

1 − τ
. (D.10)

So only ν
1−τ fraction of the data points in UX \WX will be put into RX, proving the

first statement.
Now, consider x ∈WX. For x ∈ RX, we have

Pr
x∼RX

{
Pr
h∼T

{h(x) = f(x)} ⩾ τ
}
⩽

γ

τ
. (D.11)
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so more than 1 − γ
τ

fraction of the data points in RX will be put into R ′
X.

For x ∈ GX, since η < 1 − ν2, we have ν < τ. Note that f(x) ̸= yx, thus x will be
put into R ′

X. In the following we consider x ∈ BX = WX \ (RX ∪GX).
We first show that a significant fraction of BX has variance larger than η. Since

σ2
x ∈ [0, 1],

σ2 = E[σ2
x|x ∈ BX] (D.12)

⩽ Pr{σ2
x ⩽ η|x ∈ BX} · η+ Pr{σ2

x > η|x ∈ BX} · 1 (D.13)

= (1 − Pr{σ2
x > η|x ∈ BX}) · η+ Pr{σ2

x > η|x ∈ BX} (D.14)

leading to

Pr{σ2
x > η|x ∈ BX} ⩾

σ2 − η

1 − η
. (D.15)

Now it is sufficient to show that any x ∈ WX with σ2
x > η will have a small

agreement rate Prh∼T{h(x) = f(x)}.

Pr
h∼T

[h(x) = f(x)] ⩽

√∑
y∈Y

( Pr
h∼T

[h(x) = y])2 (D.16)

=
√

Pr
h1,h2∼T

[h1(x) = h2(x)] (D.17)

=
√

1 − σ2
x (D.18)

< τ =
√

1 − η. (D.19)

So any point x ∈ BX with σ2
x > η will fall into R ′

X, completing the proof.

Using the above lemma, we arrive at our main theorem.

Theorem D.2 (Restatement of Theorem 6.4). Assume in each iteration of the framework,
τ =
√

1 − η for some η ∈ (0, 3Bη/4) where Bη := min{σ2, 1 − ν2}. Let σ2
L > 0 be a lower

bound on the diversity σ2, γ̃ be an upper bound on γ, and ν̃ be an upper bound on ν over all
iterations. Then for any δ ∈ (0,σ2

L/4), after at most ⌈1/δ⌉ iterations, we can get |UX\RX|

|UX|
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approximates the accuracy acc(f) and RX approximates the mis-classified points WX as
follows:

∣∣∣∣acc(f) − |UX \ RX|

|UX|

∣∣∣∣ ⩽ max{ ν̃

1 − τ
(1 − ef), ϵef}, where ϵ :=

γ̃
τ

(
1 + ν̃

1−τ
1−ef
ef

)
σ2
L

4 − δ+ γ̃
τ

,

(D.20)

|WX△RX| ⩽
ν̃

1 − τ
|UX \WX|+ ϵ|WX|. (D.21)

Proof. For each iteration, Lemma D.1 implies that the new constructed set R ′
X satis-

fies:

|R ′
X ∩ (UX \WX)| ⩽

ν

1 − τ
|UX \WX|, and

(1 −
γ

τ
)|RX| ⩽ |RX ∩ R ′

X|,GX ⊆ R ′
X, |R ′

X ∩ BX| ⩾
σ2 − η

1 − η
|BX|.

Since η ⩽ 3σ2/4,

σ2 − η

1 − η
⩾

σ2

4 . (D.22)

Therefore,

|R ′
X ∩ BX| ⩾

σ2

4 |BX|. (D.23)

Suppose t∗ is the first iteration when less than ϵ fraction of WX is outside RX.
Then in any iteration before t∗, the newly constructed pseudo-labeled set R ′

X loses
at most γ̃

τ
fraction of RX, and obtains at least σ

2
L

4 fraction of BX ∩ GX = WX \ RX.
Since more than ϵ fraction of WX is outside RX, it can then be verified that

σ2
L

4 |WX \ RX|−
γ̃

τ
|RX| > δ|WX \ RX|. (D.24)

Therefore, after each iteration, the framework adds more than δ fraction of |WX \RX|
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in RX. This can happen at most 1/δ iterations, so t∗ ⩽ ⌈1/δ⌉.
Now consider the last iteration, and apply Lemma D.1, then

|RX \WX| = |RX ∩ (UX \WX)| ⩽
ν

1 − τ
|UX \WX| ⩽

ν̃

1 − τ
|UX \WX|. (D.25)

Equation (D.25) together with the fact that there are less than ϵ fraction of WX

outside RX lead to the two statements in the theorem.

By setting the η = 7/16 and δ = 4γ̃/3, we have the following corollary as an
example.

Corollary D.3. Assume in each iteration of the framework, ν < 1/2,σ2 > 7/12, and
τ = 3/4 where Bη := min{σ2, 1 − ν2}. Let σ2

L > 0 be a lower bound on the diversity σ2, γ̃
be an upper bound on γ, and ν̃ be an upper bound on ν over all iterations. If σ2

L ⩾ 16γ̃
3 ,

then after at most ⌈3/(4γ̃)⌉ iterations, we can get |UX\RX|

|UX|
approximates the accuracy acc(f)

and RX approximates the mis-classified points WX as follows:∣∣∣∣acc(f) − |UX \ RX|

|UX|

∣∣∣∣ ⩽ max{4ν̃(1 − ef), ϵef}, where ϵ :=
16γ̃
3σ2
L

(
1 + 4ν̃1 − ef

ef

)
,

(D.26)

|WX△RX| ⩽ 4ν̃|UX \WX|+ ϵ|WX|. (D.27)

Proof. In Theorem 6.4, note that η = 7/16 leads to τ = 3/4. The bounds on ν, γ,
and σ2 comes from the requirement that 3Bη/4 > 7/16 so that there exists such an
η ∈ (7/16, 3Bη/4).

D.1.2 Discussion on Using Ensembles

Our analysis of the framework clearly relies on the effect of self-training. It also
shows the benefit of the ensemble: the diversity (combined with low errors of the
ensemble on points correctly classified by f) allows to identify mis-classified points.

Here we present more discussion on the approach of using ensembles to estimate
the accuracy and to provide further insight into their benefit compared to some other
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existing approaches. For simplicity, we analyze binary classification with Y = {0, 1}
in this section unless stated otherwise. We provide an exact characterization of
the estimation error (i.e., how far the agreement rate is from the actual accuracy).
It implies that to get a good estimation, one should use ensembles with small
prediction errors on the test points. More importantly, the estimation can be further
improved if the ensemble’s prediction has proper correlation with f, which then
shows the advantage of an ensemble of models instead of a single model.

Let eh,x be the indicator that h mis-classifies x, eT be the expected error of h on
U (over the distribution of h), and ef be the error of f:

eh,x := I[h(x) ̸= yx], eT := Eh,x[eh,x], ef := Ex[ef,x].

Let arx(f,T) be the agreement rate between f and h’s on a point x, and ar(f,T) be
that on the whole test set:

arx(f,T) := Pr
h∼T

{h(x) = f(x)},

ar(f,T) := Ex∈UX [arx(f,T)].

Recall that we are using ar(f,T) as an estimate of the accuracy of f on U.

Lemma D.4. For binary classification,

acc(f) − ar(f,T) = eT(1 − 2ef) − 2Cov(ef,x, eh,x) (D.28)

where Cov(ef,x, eh,x) is the covariance between ef,x and eh,x. For multi-class classification,

eT(1 − 2ef) − 2Cov(ef,x, eh,x) ⩽ acc(f) − ar(f,T) ⩽ eT(1 − ef) − Cov(ef,x, eh,x).
(D.29)
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Proof. We have

acc(f) − ar(f,T) = E{I[f(x) = yx]}− E{I[f(x) = h(x)]} (D.30)

= E {I[f(x) = yx] − I[f(x) = h(x)]} (D.31)

= E {I[f(x) ̸= h(x)] − I[f(x) ̸= yx]} . (D.32)

The first term can be decomposed into two parts:

I[f(x) ̸= h(x)] = I[f(x) ̸= h(x), f(x) = yx] + I[f(x) ̸= h(x), f(x) ̸= yx] (D.33)

and the two parts can be transformed as:

I[f(x) ̸= h(x), f(x) = yx] = I[h(x) ̸= yx, f(x) = yx] (D.34)

= eh,x(1 − ef,x), (D.35)

I[f(x) ̸= h(x), f(x) ̸= yx] = I[h(x) = yx, f(x) ̸= yx] (D.36)

= ef,x(1 − eh,x) (D.37)

where the second to last line follows from that in binary classification, f(x) ̸= h(x)

and f(x) ̸= yx is equivalent to h(x) = yx and f(x) ̸= yx. Therefore,

acc(f) − ar(f,T) = eT − 2E[eh,xef,x] (D.38)

= eT − 2(eTef + Cov(eh,x, ef,x)). (D.39)

Rearranging the terms completes the proof.
For multi-class, we can replace (D.36) by the bounds:

I[h(x) = yx, f(x) ̸= yx] ⩽ I[f(x) ̸= h(x), f(x) ̸= yx] ⩽ I[f(x) ̸= yx]. (D.40)

The bound suggests using T with a small prediction error eT. More importantly,
the estimation can be improved by a proper correlation between f and the ensemble



226

models: even when the ensemble models don’t have very small error eT, they can
still lead to a good estimation, as long as they have a proper covariance with f.
More precisely, typically ef < 1/2, so the covariance should not be negative, but
also should not be too positive. For example, when the ensemble models overly
agrees with f (e.g., in the extreme case h(x) = f(x) for all x ∈ UX and all h ∼ T), it
leads to over-estimation of the accuracy, and we should decrease the correlation
(more discussion in the next subsection).

It is also instructive to compare our method to some existing methods. (1) Our
analysis is more general and tighter than that for using a single model in Chuang
et al. (2020). The setting is a special case of ours. More important, our bound
is tighter and reveals that an ensemble with proper correlation can improve the
estimation, justifying the advantage of an ensemble over a single model. (2) Our
analysis is also more general than the classic notion of calibration. We show that if
the ensemble has perfect calibration then the agreement rate equals the accuracy
of the pre-trained model. On the other hand, our lemma shows that even without
calibration, proper ensembles can still give good estimation.

Detailed comparisons are presented below.

Comparison with Proxy Risk. Recall that the proxy risk method (Chuang et al.,
2020) is to use invariant representation domain adaptation methods to find the h

of maximum disagreement with f on UX. That is, it aims to get the h ∈ H such that
ar(f,h) is smallest where H is the set of hypotheses with small errors on the original
training data and small distances between the distributions of the representations
of the training and test data, i.e.,

H = {h ∈ P : error of h on the training data + αd(pϕS ,pϕT ) ⩽ ϵ} (D.41)

where P is the set of networks for domain adaptation, d(pϕS ,pϕT ) is some distance
between the distributions of the representations of the training and the test data,
and α, ϵ are hyperparameters.

The main idea behind the proxy risk method is Lemma 4 in their paper, which
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states (rephrased to our context):∣∣∣∣sup
h∈H

Ex∼UXI[f(x) ̸= h(x)] − ef

∣∣∣∣ ⩽ sup
h∈H

eh (D.42)

where eh is the error of h on the test set, i.e., eh = E(x,yx)∼U{I[h(x) ̸= yx]}.
Our bound is more general and tighter. We first show that their bound can be

recovered from ours. More precisely, the proxy risk method is equivalent to using
an ensemble method T that outputs the ĥ ∈ H of maximum disagreement with f.
Then the output distribution of T concentrates on ĥ ∈ H. Our bound then leads to:∣∣∣∣sup

h∈H

ExI[f(x) ̸= h(x)] − ef

∣∣∣∣ = ∣∣∣ExI[f(x) ̸= ĥ(x)] − ef

∣∣∣ (D.43)

=

∣∣∣∣acc(f) − Eh∼T[ar(f,h)]
∣∣∣∣ (D.44)

= |eT − 2E[ef,xeh,x]| (D.45)

= |eĥ − 2Ex[ef,xeh,x]|. (D.46)

Since ef,x and eh,x are in {0, 1}, it is easy to see that

0 ⩽ Ex[ef,xeh,x] ⩽ min{Ex[ef,x],Ex[eĥ,x]} = min{ef, eĥ}. (D.47)

Therefore, ∣∣∣∣sup
h∈H

ExI[f(x) ̸= h(x)] − ef

∣∣∣∣ = |eĥ − 2Ex[ef,xeh,x]| (D.48)

⩽ eĥ (D.49)

⩽ sup
h∈H

eh (D.50)

recovering the bound in the proxy risk paper.
The above calculation also shows that our bound is tighter. Their bound is only

for the case when only one check model ĥ is learned and also for the worst case.
First, it is challenging to find an ĥ with a small error in many practical scenarios. For
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example, the test data contains outlier inputs which are not similar to the training
data. It is then unlikely to find an ĥ with small errors on these data points since no
enough label information is available. However, it is still possible to have a good
estimation of the accuracy, since the outlier data are different from the training
data and thus can be detected, and we know that f is likely to make errors on them.
Second, the bound is also too pessimistic. In the experiments, we observed that
the proxy risk method can still achieve reasonable estimation (about 10% away
from the true accuracy), even when the error of ĥ is very large (e.g., > 60% while
suph∈H

eh is even larger).
Our lemma suggests that by allowing an ensemble h ∼ T with proper diversity,

we have more flexibility and can significantly improve the pessimistic bound. For
the example given above, the ensemble method can potentially handle the outlier
input data: for hypotheses agreeing with the training data, they are still likely
to have disagreement on the outlier data and this disagreement thus reveals the
potential error of f there, leading to an accurate estimation of the accuracy. We thus
propose to use an ensemble method for estimating the accuracy.

Comparison with Calibration. A classic notion for uncertainty estimation is cali-
bration of the machine learning model. It is well-known that if the pre-trained model
f outputs confidence scores for class labels and the confidence is well-calibrated,
then the average confidence approximates its accuracy. Unfortunately, it has been
observed that many machine learning systems, in particular modern neural net-
works, are poorly calibrated, especially on test data with distribution shift (Guo
et al., 2017; Ovadia et al., 2019) which is the most interesting case for accuracy
estimation.

On the other hand, one can hope to obtain an ensemble of models that is well
calibrated, such as the deep ensemble method (Lakshminarayanan et al., 2017).
Below we show that a notion of well-calibration of the ensemble implies the agree-
ment rate between the ensemble and the pre-trained model is a good estimation of
the accuracy of the pre-trained model. Formally, we consider the simplified setting
of perfect calibration defined as follows.
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Definition D.5 (Perfect Calibration). An ensemble T of classifiers has perfect calibration
on the dataset U = {(x,yx)} and function f, if for any class label k ∈ Y and any p ∈ [0, 1],

Pr
(x,yx)∼U

[yx = k|Ck(x) = p, f(x) = k] = p. (D.51)

where Ck(x) := Prh∼T[h(x) = k] is the confidence score of T for label k on the input x.

(The definition and the later analysis also applies to a classifier Ck(x) outputting
confidence scores, or replacing U with a data distribution.)

Proposition 14. If the ensemble T has perfect calibration, then ar(f,T) = acc(f).

Proof. By definition, we have

ar(f,T) = Pr
h,x

[h(x) = f(x)] (D.52)

= Ex
[
Pr
h
[h(x) = f(x)]

]
(D.53)

= Ex
[
Cf(x)(x)

]
(D.54)

= E
{
E
[
Cf(x)(x)|Ck(x) = p, f(x) = k

]}
(D.55)

= E {E [p|Ck(x) = p, f(x) = k]} (D.56)

= E {E {Pr [yx = k|Ck(x) = p, f(x) = k] |Ck(x) = p, f(x) = k}} (D.57)

= E {Pr [yx = k|Ck(x) = p, f(x) = k]} (D.58)

= Pr [yx = f(x)] (D.59)

= acc(f). (D.60)

The third line follows from the definition of Ck(x), the fourth line from the law of
total expectation, the sixth line from perfect calibration, and the eighth line from
the law of total expectation.

On the other hand, our Lemma D.4 is more general: it shows even if the ensemble
is not well calibrated, it is still possible for the agreement rate to be a good estimation
of the accuracy. For illustration, consider a simple example with 4 points in U, and
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x x−2 x−1 x+1 x+2
yx − − + +
f(x) − + − +
h(x) − + + −

Table D.1: An illustrative example showing even if the ensemble is not well calibrated, it is
still possible for the agreement rate to be a good estimation of the accuracy.

only one model h from T (if h(x) = k, we view it as Prh[h(x) = k] = 1). The
predictions of f and h are shown in Table D.1. It is easy to see that h is not well-
calibrated, e.g.,

Pr
h
[yx = +|C+(x) = 1] = Pr

h
[yx = +|h(x) = +] = 1/2≪ 1.

On the other hand, ar(f,T) = acc(f) = 1/2. From the perspective of Lemma D.4,
although the ensemble has a large error eT = 1/2, its predictions and those of f are
properly correlated, such that

acc(f) − ar(f,T) = eT − 2E[eh,xef,x] =
1
2 − 2 · 1

4 = 0

leading to an accurate estimation of the accuracy of f.
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e appendix for chapter 7

E.1 Baselines
We consider two selective classification baselines Softmax Response (SR) (Geifman
and El-Yaniv, 2017) and Deep Ensembles (DE) (Lakshminarayanan et al., 2017)
and combine them with active learning techniques. We describe them in detail
below.

E.1.1 Softmax Response

Suppose the neural network classifier is f where the last layer is a softmax. Let
f(x | k) be the soft response output for the k-th class. Then the classifier is defined
as f(x) = arg maxk∈Y

f(x | k) and the selection scoring function is defined as
g(x) = maxk∈Y f(x | k), which is also known as the Maximum Softmax Probability
(MSP) of the neural network. Recall that with f and g, the selective classifier is
defined in Eq (7.1). We use active learning to fine-tune the model f to improve
selective prediction performance of SR on the unlabeled test dataset UX. The
complete algorithm is presented in Algorithm 5. In our experiments, we always
set λ = 1. We use the joint training objective (E.9) to avoid over-fitting to the small
labeled test set ∪tl=1B̃l and prevent the model from forgetting the source training
knowledge. The algorithm can be combined with different kinds of acquisition
functions. We describe the acquisition functions considered for SR below.

Uniform. In the t-th round of active learning, we select [M
T
] data points as the

batch Bt from UX \ ∪t−1
l=0Bl via uniform random sampling. The corresponding

acquisition function is: a(B, ft−1,gt−1) = 1. When solving the objective (E.8), the
tie is broken randomly.
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Confidence. We define the confidence score of f on the input x as

Sconf(x; f) = max
k∈Y

f(x | k) (E.1)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1,gt−1) = −
∑
x∈B

Sconf(x; ft−1) (E.2)

That is we select those test examples with the lowest confidence scores for labeling.

Entropy. We define the entropy score of f on the input x as

Sentropy(x; f) =
∑
k∈Y

−f(x | k) · log f(x | k) (E.3)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1,gt−1) =
∑
x∈B

Sentropy(x; ft−1) (E.4)

That is we select those test examples with the highest entropy scores for labeling.

Margin. We define the margin score of f on the input x as

Smargin(x; f) = f(x | ŷ) − max
k∈Y\{ŷ}

f(x | k) (E.5)

s.t. ŷ = arg max
k∈Y

f(x | k) (E.6)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1,gt−1) = −
∑
x∈B

Smargin(x; ft−1) (E.7)

That is we select those test examples with lowest margin scores for labeling.
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kCG. We use the k-Center-Greedy algorithm proposed in Sener and Savarese
(2017) to select test examples for labeling in each round.

CLUE. We use the Clustering Uncertainty-weighted Embeddings (CLUE) pro-
posed in Prabhu et al. (2021) to select test examples for labeling in each round.
Following Prabhu et al. (2021), we set the hyper-parameter T = 0.1 on DomainNet
and set T = 1.0 on other datasets.

BADGE. We use the Diverse Gradient Embeddings (BADGE) proposed in Ash
et al. (2019) to select test examples for labeling in each round.

Algorithm 5 Softmax Response with Active Learning
Require: A training datasetDtr, an unlabeled test datasetUX, the number of rounds
T , the labeling budget M, a source-trained model f̄, an acquisition function a

and a hyper-parameter λ.
Let f0 = f̄.
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [M
T
] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1,gt−1) (E.8)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune the model ft−1 using the following training objective:

min
θ

E(x,y)∈∪tl=1B̃l
ℓCE(x,y; θ) + λ · E(x,y)∈Dtr ℓCE(x,y; θ) (E.9)

where θ is the model parameters of ft−1 and ℓCE is the cross-entropy loss
function.
Let ft = ft−1.

end for
Ensure: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).
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E.1.2 Deep Ensembles

It has been shown that deep ensembles can significantly improve selective prediction
performance (Lakshminarayanan et al., 2017), not only because deep ensembles
are more accurate than a single model, but also because deep ensembles yield more
calibrated confidence.

Suppose the ensemble model f contains N models f1, . . . , fN. Let fj(x | k) denote
the predicted probability of the model fj on the k-th class. We define the predicted
probability of the ensemble model f on the k-th class as:

f(x | k) =
1
N

N∑
j=1

fj(x | k). (E.10)

The classifier is defined as f(x) = arg maxk∈Y
f(x | k) and the selection scoring

function is defined as g(x) = maxk∈Y f(x | k). We use active learning to fine-tune
each model fj in the ensemble to improve selective prediction performance of the
ensemble on the unlabeled test dataset UX. Each model fj is first initialized by the
source-trained model f̄, and then fine-tuned independently via Stochastic Gradient
Decent (SGD) with different sources of randomness (e.g., different random order
of the training batches) on the training dataset Dtr and the selected labeled test data.
Note that this way to construct the ensembles is different from the standard Deep
Ensembles method, which trains the models from different random initialization.
We use this way to construct the ensemble due to the constraint in our problem
setting, which requires us to fine-tune a given source-trained model f̄. Training
the models from different random initialization might lead to an ensemble with
better performance, but it is much more expensive, especially when the training
dataset and the model are large (e.g., training foundation models). Thus, the
constraint in our problem setting is feasible in practice. The complete algorithm
is presented in Algorithm 6. In our experiments, we always set λ = 1, N = 5, and
ns = 1000. We also use joint training here and the reasons are the same as those
for the Softmax Response baseline. The algorithm can be combined with different
kinds of acquisition functions. We describe the acquisition functions considered
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below.

Uniform. In the t-th round of active learning, we select [M
T
] data points as the

batch Bt from UX \ ∪t−1
l=0Bl via uniform random sampling. The corresponding

acquisition function is: a(B, ft−1,gt−1) = 1. When solving the objective (E.17), the
tie is broken randomly.

Confidence. The confidence scoring function Sconf for the ensemble model f is the
same as that in Eq. (E.1) (f(x | k) for the ensemble model f is defined in Eq. (E.10)).
The acquisition function in the t-th round of active learning is defined as:

a(B, ft−1,gt−1) = −
∑
x∈B

Sconf(x; ft−1) (E.11)

That is we select those test examples with the lowest confidence scores for labeling.

Entropy. The entropy scoring function Sentropy for the ensemble model f is the
same as that in Eq. (E.3). The acquisition function in the t-th round of active
learning is defined as:

a(B, ft−1,gt−1) =
∑
x∈B

Sentropy(x; ft−1), (E.12)

That is we select those test examples with the highest entropy scores for labeling.

Margin. The margin scoring function Smargin for the ensemble model f is the same
as that in Eq. (E.5). The acquisition function in the t-th round of active learning is
defined as:

a(B, ft−1,gt−1) = −
∑
x∈B

Smargin(x; ft−1) (E.13)

That is we select those test examples with the lowest margin scores for labeling.
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Avg-KLD. The Average Kullback-Leibler Divergence (Avg-KLD) is proposed in
McCallum et al. (1998) as a disagreement measure for the model ensembles, which
can be used for sample selection in active learning. The Avg-KLD score of the
ensemble model f on the input x is defined as:

Skl(x; f) = 1
N

N∑
j=1

∑
k∈Y

fj(x | k) · log fj(x | k)

f(x | k)
. (E.14)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1,gt−1) =
∑
x∈B

Skl(x; ft−1), (E.15)

That is we select those test examples with the highest Avg-KLD scores for labeling.

CLUE. CLUE (Prabhu et al., 2021) is proposed for a single model. Here, we adapt
CLUE for the ensemble model, which requires a redefinition of the entropy function
H(Y | x) and the embedding function ϕ(x) used in the CLUE algorithm. We define
the entropy function as Eq. (E.3) with the ensemble model f. Suppose ϕj is the
embedding function for the model fj in the ensemble. Then, the embedding of the
ensemble model f on the input x is [ϕ1(x), . . . ,ϕN(x)], which is the concatenation
of the embeddings of the models f1, . . . , fN on x. Following Prabhu et al. (2021), we
set the hyper-parameter T = 0.1 on DomainNet and set T = 1.0 on other datasets.

BADGE. BADGE (Ash et al., 2019) is proposed for a single model. Here, we
adapt BADGE for the ensemble model, which requires a redefinition of the gradient
embedding gx in the BADGE algorithm. Towards this end, we propose the gradi-
ent embedding gx of the ensemble model f as the concatenation of the gradient
embeddings of the models f1, . . . , fN.
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Algorithm 6 Deep Ensembles with Active Learning
Require: A training dataset Dtr, An unlabeled test dataset UX, the number of

rounds T , the total labeling budget M, a source-trained model f̄, an acquisition
function a(B, f,g), the number of models in the ensemble N, the number of initial
training steps ns, and a hyper-parameter λ.
Let fj0 = f̄ for j = 1, . . . ,N.
Fine-tune each model fj0 in the ensemble via SGD for ns training steps indepen-
dently using the following training objective with different randomness:

min
θj

E(x,y)∈Dtr ℓCE(x,y; θj) (E.16)

where θj is the model parameters of fj0 and ℓCE is the cross-entropy loss function.

Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [M
T
] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1,gt−1) (E.17)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune each model fjt−1 in the ensemble via SGD independently using the
following training objective with different randomness:

min
θj

E(x,y)∈∪tl=1B̃l
ℓCE(x,y; θj) + λ · E(x,y)∈Dtr ℓCE(x,y; θj) (E.18)

where θj is the model parameters of fjt−1.
Let fjt = fjt−1 for j = 1, . . . ,N.

end for
Ensure: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).
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E.2 Details of Experimental Setup

E.2.1 Datasets

We describe the datasets used below. For all image datasets, we normalize the range
of pixel values to [0,1].

MNIST→SVHN. The source training dataset Dtr is MNIST (LeCun, 1998) while
the target test dataset UX is SVHN (Netzer et al., 2011). MNIST consists 28×28
grayscale images of handwritten digits, containing in total 5,500 training images
and 1,000 test images. We resize each image to be 32×32 resolution and change
them to be colored. We use the training set of MNIST as Dtr and the test set of
MNIST as the source validation dataset. SVHN consists 32×32 colored images of
digits obtained from house numbers in Google Street View images. The training set
has 73,257 images and the test set has 26,032 images. We use the test set of SVHN
as UX.

CIFAR-10→CINIC-10. The source training dataset Dtr is CIFAR-10 (Krizhevsky
et al., 2009) while the target test datasetUX is CINIC-10 (Darlow et al., 2018). CIFAR-
10 consists 32×32 colored images with ten classes (dogs, frogs, ships, trucks, etc.),
each consisting of 5,000 training images and 1,000 test images. We use the training
set of CIFAR-10 as Dtr and the test set of CIFAR-10 as the source validation dataset.
During training, we apply random horizontal flipping and random cropping with
padding data augmentations to the training images. CINIC-10 is an extension of
CIFAR-10 via the addition of downsampled ImageNet images. CINIC-10 has a total
of 270,000 images equally split into training, validation, and test. In each subset
(90,000 images) there are ten classes (identical to CIFAR-10 classes). There are 9,000
images per class per subset. We use a subset of the CINIC-10 test set containing
30,000 images as UX.

FMoW. We use the FMoW-WILDS dataset from Koh et al. (2021). FMoW-wilds
is based on the Functional Map of the World dataset (Christie et al., 2018), which
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collected and categorized high-resolution satellite images from over 200 countries
based on the functional purpose of the buildings or land in the image, over the
years 2002–2018. The task is multi-class classification, where the input x is an RGB
satellite image, the label y is one of 62 building or land use categories, and the
domain d represents both the year the image was taken as well as its geographical
region (Africa, the Americas, Oceania, Asia, or Europe). The training set contains
76,863 images from the years 2002-2013. The In-Distribution (ID) validation set
contains 11,483 images from the years 2002-2013. The OOD test set contains 22,108
images from the years 2016-2018. We resize each image to be 96×96 resolution
to save computational cost. We use the training set as Dtr and the ID validation
set as the source validation dataset. During training, we apply random horizontal
flipping and random cropping with padding data augmentations to the training
images. We use the OOD test set as UX.

Amazon Review. We use the Amazon Review WILDS dataset from Koh et al.
(2021). The dataset comprises 539,502 customer reviews on Amazon taken from
the Amazon Reviews dataset (Ni et al., 2019). The task is multi-class sentiment
classification, where the input x is the text of a review, the label y is a corresponding
star rating from 1 to 5, and the domain d is the identifier of the reviewer who wrote
the review. The training set contains 245,502 reviews from 1,252 reviewers. The
In-Distribution (ID) validation set contains 46,950 reviews from 626 of the 1,252
reviewers in the training set. The Out-Of-Distribution (OOD) test set contains
100,050 reviews from another set of 1,334 reviewers, distinct from those of the
training set. We use the training set as Dtr and the ID validation set as the source
validation dataset. We use a subset of the OOD test set containing 22,500 reviews
from 300 reviewers as UX.

DomainNet. DomainNet (Peng et al., 2019) is a dataset of common objects in six
different domains. All domains include 345 categories (classes) of objects such as
Bracelet, plane, bird, and cello. We use five domains from DomainNet including:
(1) Real: photos and real world images. The training set from the Real domain
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has 120,906 images while the test set has 52,041 images; (2) Clipart: a collection of
clipart images. The training set from the Clipart domain has 33,525 images while
the test set has 14,604 images; (3) Sketch: sketches of specific objects. The training
set from the Sketch has 48,212 images while the test set has 20,916 images; (4)
Painting: artistic depictions of objects in the form of paintings. The training set
from the Painting domain has 50,416 images while the test set has 21,850 images.
(5) Infograph: infographic images with specific objects. The training set from
the Infograph domain has 36,023 images while the test set has 15,582 images. We
resize each image from all domains to be 96×96 resolution to save computational
cost. We use the training set from the Real domain as Dtr and the test set from the
Real domain as the source validation dataset. During training, we apply random
horizontal flipping and random cropping with padding data augmentations to
the training images. We use the test sets from three domains Clipart, Sketch,
and Painting as three different UX for evaluation. So we evaluate three shifts:
Real→Clipart (R→C), Real→Sketch (R→S), and Real→Painting (R→P). We use
the remaining shift Real→Infograph (R→I) as a validation dataset for tuning the
hyper-parameters.

Otto. The Otto Group Product Classification Challenge (Benjamin Bossan, 2015)
is a tabular dataset hosted on Kaggle 1. The task is to classify each product with
93 features into 9 categories. Each target category represents one of the most
important product categories (like fashion, electronics, etc). It contains 61, 878
training data points. Since it only provides labels for the training data, we need
to create the training, validation and test set. To create a test set that is from
a different distribution than the training set, we apply the Local Outlier Factor
(LOF) (Breunig et al., 2000), which is an unsupervised outlier detection method,
on the Otto training data to identify a certain fraction (e.g., 0.2) of outliers as the
test set. Specifically, we apply the LocalOutlierFactor function provided by scikit-
learn (Pedregosa et al., 2011) on the training data with a contamination of 0.2
(contamination value determines the proportion of outliers in the data set) to

1https://kaggle.com/competitions/otto-group-product-classification-challenge

https://kaggle.com/competitions/otto-group-product-classification-challenge
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identify the outliers. We identify 12, 376 outlier data points and use them as the
test set UX. We then randomly split the remaining data into a training set Dtr with
43, 314 data points and a source validation set with 6, 188 data points. We show that
the test set indeed has a distribution shift compared to the source validation set,
which causes the model trained on the training set to have a drop in performance
(see Table E.1 in Appendix E.3.1).

E.2.2 Details on Model Architectures and Training on Source
Data

On all datasets, we use the following supervised training objective for training
models on the source training set Dtr:

min
θ

E(x,y)∈Dtr ℓCE(x,y; θ) (E.19)

where ℓCE is the cross-entropy loss and θ is the model parameters.
On MNIST→SVHN, we use the Convolutional Neural Network (CNN) (LeCun

et al., 1989) consisting of four convolutional layers followed by two fully connected
layers with batch normalization and dropout layers. We train the model on the
training set of MNIST for 20 epochs using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 10−3 and a batch size of 128.

On CIFAR-10→CINIC-10, we use the ResNet-20 network (He et al., 2016b).
We train the model on the training set of CIFAR-10 for 200 epochs using the SGD
optimizer with a learning rate of 0.1, a momentum of 0.9, and a batch size of 128.
The learning rate is multiplied by 0.1 at the 80, 120, and 160 epochs, respectively,
and is multiplied by 0.5 at the 180 epoch.

On the FMoW dataset, we use the DensetNet-121 network (Huang et al., 2017b)
pre-trained on ImageNet. We train the model further for 50 epochs using the Adam
optimizer with a learning rate of 10−4 and a batch size of 128.

On the Amazon Review dataset, we use the pre-trained RoBERTa model (Liu
et al., 2019) as the base model to extract the embedding of the input sentence for
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classification (i.e., RoBERTa’s output for the [CLS] token) and then build an eight-
layer fully connected neural network (also known as a multi-layer perceptron) with
batch normalization, dropout layers and L2 regularization on top of the embedding.
Note that we only update the parameters of the fully connected neural network
without updating the parameters of the pre-trained RoBERTa base model during
training (i.e., freeze the parameters of the RoBERTa base model during training).
We train the model for 200 epochs using the Adam optimizer with a learning rate
of 10−3 and a batch size of 128.

On the DomainNet dataset, we use the ResNet-50 network (He et al., 2016a)
pre-trained on ImageNet. We train the model further on the training set from the
Real domain for 50 epochs using the Adam optimizer with a learning rate of 10−4

and a batch size of 128.
On the Otto dataset, we use a six-layer fully connected neural network (also

known as a multi-layer perceptron) with batch normalization, dropout layers and
L2 regularization. We train the model on the created training set for 200 epochs
using the Adam optimizer with a learning rate of 10−3 and a batch size of 128.

E.2.3 Active learning hyper-parameters

During the active learning process, we fine-tune the model on the selected labeled
test data. During fine-tuning, we don’t apply any data augmentation to the test data.
We use the same fine-tuning hyper-parameters for different methods to ensure a
fair comparison. The optimizer used is the same as that in the source training stage
(described in Appendix E.2.2). On MNIST→SVHN, we use a learning rate of 10−3;
On CIFAR-10→CINIC-10, we use a learning rate of 5 × 10−3; On FMoW, we use
a learning rate of 10−4; On Amazon Review, we use a learning rate of 10−3; On
DomainNet, we use a learning rate of 10−4; On Otto, we use a learning rate of 10−3.
On all datasets, we fine-tune the model for at least 50 epochs and up to 200 epochs
with a batch size of 128 and early stopping using 10 patient epochs.
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E.3 Additional Experimental Results

E.3.1 Evaluate Source-Trained Models

In this section, we evaluate the accuracy of the source-trained models on the source
validation dataset and the target test dataset UX. The models are trained on the
source training set Dtr (refer to Appendix E.2.2 for the details of source training).
The source validation data are randomly sampled from the training data distribution
while the target test data are sampled from a different distribution than the training
data distribution. The results in Table E.1 show that the models trained on Dtr

always suffer a drop in accuracy when evaluating them on the target test dataset
UX.

Dataset Source Accuracy Target Accuracy
MNIST→SVHN 99.40 24.68
CIFAR-10→CINIC-10 90.46 71.05
FMoW 46.25 38.01
Amazon Review 65.39 61.40
DomainNet (R→C) 63.45 33.37
DomainNet (R→P) 63.45 26.29
DomainNet (R→S) 63.45 16.00
Otto 80.72 66.09

Table E.1: Results of evaluating the accuracy of the source-trained models on the source
validation dataset and the target test dataset UX. All numbers are percentages.

E.3.2 Complete Evaluation Results

We give complete experimental results for the baselines and the proposed method
ASPEST on all datasets in this section. We repeat each experiment three times
with different random seeds and report the mean and standard deviation (std)
values. These results are shown in Table E.2 (MNIST→SVHN), Table E.3 (CIFAR-
10→CINIC-10), Table E.4 (FMoW), Table E.5 (Amazon Review), Table E.6 (Do-
mainNet R→C), Table E.7 (DomainNet R→P), Table E.8 (DomainNet R→S) and
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Table E.9 (Otto). Our results show that the proposed method ASPEST consistently
outperforms the baselines across different image, text and structured datasets.

Dataset MNIST→SVHN
Metric cov|acc ⩾ 90% ↑ acc|cov ⩾ 90% ↑ AUC ↑
Labeling Budget 100 500 1000 100 500 1000 100 500 1000
SR+Uniform 0.00±0.0 51.46±3.7 75.57±0.9 58.03±1.5 76.69±1.2 84.39±0.2 74.08±1.5 88.80±0.8 93.57±0.2
SR+Confidence 0.00±0.0 55.32±5.1 82.22±1.3 47.66±3.4 79.02±0.7 87.19±0.4 64.14±2.8 89.93±0.6 94.62±0.2
SR+Entropy 0.00±0.0 0.00±0.0 75.08±2.4 47.93±7.0 77.09±1.0 84.81±0.7 65.88±4.7 88.19±0.8 93.37±0.5
SR+Margin 0.00±0.0 63.60±2.7 82.19±0.3 61.39±0.5 80.96±0.9 86.97±0.2 76.79±0.5 91.24±0.5 94.82±0.1
SR+kCG 2.52±1.3 23.04±0.3 38.97±2.6 34.57±4.4 52.76±1.1 64.34±4.8 48.83±7.2 73.65±1.0 83.16±2.0
SR+CLUE 0.00±0.0 62.03±2.4 81.29±1.1 57.35±1.9 79.55±0.8 86.28±0.5 72.72±1.9 90.98±0.5 94.99±0.2
SR+BADGE 0.00±0.0 62.55±4.4 82.39±2.8 59.82±1.7 79.49±1.6 86.96±0.9 76.06±1.6 91.09±0.9 95.16±0.6
DE+Uniform 24.71±5.6 68.98±1.6 83.67±0.1 63.22±1.7 81.67±0.4 87.32±0.1 79.36±1.7 92.47±0.2 95.48±0.0
DE+Entropy 6.24±8.8 63.30±6.5 84.62±1.5 56.61±0.6 80.16±2.0 88.05±0.5 72.51±1.5 91.21±1.4 95.45±0.5
DE+Confidence 14.92±5.1 67.87±1.4 89.41±0.3 61.11±2.9 81.80±0.5 89.75±0.1 75.85±3.0 92.16±0.2 96.19±0.1
DE+Margin 21.59±3.8 77.84±2.8 92.75±0.3 62.88±1.2 85.11±1.1 91.17±0.1 78.59±1.4 94.31±0.6 97.00±0.0
DE+Avg-KLD 10.98±4.6 61.45±3.4 88.06±2.2 54.80±1.6 78.21±1.6 89.23±0.9 71.67±2.2 90.92±0.8 96.23±0.4
DE+CLUE 22.34±1.4 69.23±1.9 82.80±1.0 59.47±1.3 81.05±0.9 86.78±0.4 76.88±1.0 92.70±0.5 95.56±0.2
DE+BADGE 22.02±4.5 72.31±1.2 88.23±0.4 61.23±1.9 82.69±0.5 89.15±0.2 77.65±1.9 93.38±0.2 96.51±0.1
ASPEST (ours) 52.10±4.0 89.22±0.9 98.70±0.4 76.10±1.5 89.62±0.4 93.92±0.3 88.84±1.0 96.62±0.2 98.06±0.1

Table E.2: Results of comparing ASPEST to the baselines on MNIST→SVHN. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.

E.3.3 Effect of combining selective prediction with active
learning

Selective prediction without active learning corresponds to the case where the
labeling budget M = 0 and the selected set B∗ = ∅. To make fair comparisons with
selective prediction methods without active learning, we define a new coverage
metric:

cov∗(fs, τ) = Ex∼UXI[g(x) ⩾ τ∧ x /∈ B∗] (E.20)

The range of cov∗(fs, τ) is [0, 1 − M
n
], where M = |B∗| and n = |UX|. If we use a

larger labeling budget M for active learning, then the upper bound of cov∗(fs, τ)
will be smaller. Thus, in order to beat selective classification methods without
active learning, active selective prediction methods need to use a small labeling
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Dataset CIFAR-10→CINIC-10
Metric cov|acc ⩾ 90% ↑ acc|cov ⩾ 90% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 57.43±0.2 57.15±0.6 58.37±0.7 75.67±0.2 75.69±0.1 76.11±0.3 89.77±0.0 89.81±0.1 90.09±0.2
SR+Confidence 57.96±0.6 57.05±0.7 61.11±1.1 76.49±0.2 76.87±0.2 78.77±0.4 90.00±0.2 89.92±0.2 90.91±0.3
SR+Entropy 57.78±0.7 57.07±1.4 61.07±0.4 76.57±0.3 76.71±0.5 78.85±0.2 90.01±0.2 89.94±0.3 90.88±0.0
SR+Margin 57.72±0.8 57.98±0.7 61.71±0.2 76.24±0.2 76.90±0.2 78.42±0.2 89.95±0.2 90.14±0.1 91.02±0.0
SR+kCG 57.90±0.5 57.81±0.7 60.36±0.3 75.59±0.1 75.73±0.2 76.68±0.2 89.78±0.1 89.79±0.2 90.41±0.2
SR+CLUE 57.29±0.5 58.89±0.5 62.28±0.2 75.74±0.2 76.68±0.3 78.10±0.2 89.67±0.2 90.15±0.1 91.03±0.1
SR+BADGE 58.58±0.6 58.63±0.3 61.95±0.4 76.33±0.5 76.58±0.1 78.26±0.2 90.05±0.2 90.16±0.1 90.99±0.0
DE+Uniform 58.06±0.3 58.72±0.1 59.54±0.3 76.65±0.1 77.06±0.2 77.46±0.1 90.26±0.1 90.45±0.1 90.73±0.1
DE+Entropy 58.91±0.6 60.96±0.2 63.85±0.2 77.66±0.1 79.14±0.1 80.82±0.2 90.55±0.1 91.16±0.1 91.89±0.0
DE+Confidence 58.53±0.3 61.03±0.6 64.42±0.2 77.73±0.2 79.00±0.1 80.87±0.0 90.53±0.0 91.11±0.1 91.96±0.0
DE+Margin 58.76±0.5 61.60±0.5 64.92±0.5 77.61±0.2 78.91±0.1 80.59±0.1 90.56±0.1 91.11±0.1 91.98±0.1
DE+Avg-KLD 59.99±0.6 62.05±0.3 65.02±0.5 77.84±0.1 79.15±0.0 81.04±0.1 90.74±0.1 91.30±0.1 92.10±0.1
DE+CLUE 59.27±0.1 61.16±0.4 64.42±0.0 77.19±0.1 78.37±0.2 79.44±0.1 90.44±0.1 91.03±0.1 91.74±0.0
DE+BADGE 59.37±0.4 61.61±0.1 64.53±0.4 77.13±0.1 78.33±0.2 79.44±0.3 90.49±0.1 91.12±0.0 91.78±0.1
ASPEST (ours) 60.38±0.3 63.34±0.2 66.81±0.3 78.23±0.1 79.49±0.1 81.25±0.1 90.95±0.0 91.60±0.0 92.33±0.1

Table E.3: Results of comparing ASPEST to the baselines on CIFAR-10→CINIC-10. The
mean and std of each metric over three random runs are reported (mean±std). All numbers
are percentages. Bold numbers are superior results.

budget to achieve significant accuracy and coverage improvement. We still use the
accuracy metric defined in (7.4). We then define a new maximum accuracy at a
target coverage tc as:

max
τ

acc(fs, τ), s.t. cov∗(fs, τ) ⩾ tc (E.21)

We denote this metric as acc|cov∗ ⩾ tc.
We define a new maximum coverage at a target accuracy ta metric as:

max
τ

cov∗(fs, τ), s.t. acc(fs, τ) ⩾ ta (E.22)

We denote this metric as cov∗|acc ⩾ ta.
The results under these new metrics are shown in Table 7.2 (MNIST→SVHN),

Table E.10 (CIFAR-10→CINIC-10 and Otto), Table E.11 (FMoW and Amazon Re-
view) and Table E.12 (DomainNet). The results show that combining selective
prediction with active learning can significantly improve the accuracy and coverage
metrics, even with small labeling budgets.
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Dataset FMoW
Metric cov|acc ⩾ 70% ↑ acc|cov ⩾ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 38.50±0.7 42.00±0.5 52.34±1.1 51.76±0.7 54.27±0.2 60.31±0.7 65.75±0.4 67.67±0.3 72.73±0.3
SR+Confidence 37.34±0.3 42.28±1.2 53.72±0.7 52.24±0.1 55.52±0.5 61.76±0.4 65.57±0.1 68.03±0.5 73.14±0.5
SR+Entropy 37.42±0.3 42.08±0.2 51.18±0.4 51.74±0.4 54.94±0.2 60.62±0.2 65.31±0.2 68.00±0.1 71.99±0.2
SR+Margin 38.40±1.4 44.67±0.7 55.68±1.5 52.88±0.3 56.66±0.4 62.98±0.7 66.11±0.6 69.12±0.4 73.86±0.5
SR+kCG 36.50±0.8 39.76±1.2 45.87±0.6 49.36±0.7 51.45±0.5 55.47±0.1 64.34±0.5 66.21±0.6 69.63±0.2
SR+CLUE 38.65±0.7 44.50±1.8 54.71±0.5 52.23±0.4 55.54±1.0 61.13±0.4 65.78±0.3 68.76±0.9 73.80±0.1
SR+BADGE 40.47±1.5 45.65±1.2 57.59±0.4 53.08±1.0 56.63±0.3 63.57±0.2 66.74±0.8 69.43±0.6 74.76±0.2
DE+Uniform 44.74±0.4 51.57±1.1 61.92±0.4 56.39±0.5 60.01±0.5 65.74±0.2 69.44±0.3 72.48±0.5 77.02±0.1
DE+Entropy 43.76±0.3 50.52±1.4 62.73±0.4 56.29±0.3 60.31±0.3 66.53±0.2 69.02±0.1 72.10±0.5 76.65±0.2
DE+Confidence 45.23±0.6 50.11±0.9 64.29±0.3 57.18±0.4 60.46±0.3 67.46±0.0 69.80±0.3 72.11±0.4 77.37±0.1
DE+Margin 46.35±0.6 54.79±1.3 69.70±0.8 57.84±0.3 62.43±0.5 69.87±0.4 70.18±0.3 73.62±0.3 78.88±0.4
DE+Avg-KLD 46.29±0.3 53.63±0.8 68.18±0.9 57.75±0.4 61.60±0.3 69.11±0.4 70.16±0.1 73.09±0.2 78.48±0.3
DE+CLUE 45.22±0.2 49.97±0.3 58.05±0.5 56.39±0.1 59.05±0.1 63.23±0.4 69.53±0.0 71.95±0.1 75.72±0.3
DE+BADGE 47.39±0.7 53.83±0.7 66.45±0.8 57.71±0.4 61.16±0.2 68.13±0.4 70.59±0.4 73.40±0.3 78.66±0.1
ASPEST (ours) 53.05±0.4 59.86±0.4 76.52±0.6 61.18±0.2 65.18±0.2 72.86±0.3 71.12±0.2 74.25±0.2 79.93±0.1

Table E.4: Results of comparing ASPEST to the baselines on FMoW. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages.
Bold numbers are superior results.

E.3.4 Empirical analysis for checkpoint ensemble

In this section, we analyze why the proposed checkpoint ensemble can improve
selective prediction performance. We postulate the rationales: (1) the checkpoint
ensemble can help with generalization; (2) the checkpoint ensemble can help with
reducing overconfident wrong predictions.

Regarding (1), when fine-tuning the model on the small set of selected labeled
test data, we hope that the fine-tuned model could generalize to remaining un-
labeled test data. However, since the selected test set is small, we might have an
overfitting issue. So possibly some intermediate checkpoints along the training
path achieve better generalization than the end checkpoint. By using checkpoint en-
semble, we might get an ensemble that achieves better generalization to remaining
unlabeled test data. Although standard techniques like cross-validation and early
stopping can also reduce overfitting, they are not suitable in the active selective
prediction setup since the amount of labeled test data is small.

Regarding (2), when fine-tuning the model on the small set of selected labeled
test data, the model can get increasingly confident on the test data. Since there exist
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Dataset Amazon Review
Metric cov|acc ⩾ 80% ↑ acc|cov ⩾ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 13.71±11.3 24.10±5.3 24.87±2.6 65.13±0.8 66.33±0.6 66.26±0.3 72.71±1.5 73.64±0.7 73.53±0.7
SR+Confidence 11.28±8.9 17.96±4.0 33.19±1.4 65.15±0.7 66.29±0.4 68.94±0.1 72.89±0.7 73.25±0.7 76.17±0.2
SR+Entropy 5.55±7.8 13.32±9.5 25.47±1.8 65.11±1.1 66.56±0.7 67.31±0.7 71.96±1.6 72.53±1.1 74.19±0.5
SR+Margin 14.48±10.9 22.61±4.2 28.35±6.1 65.75±0.5 66.31±0.4 68.15±0.4 73.25±1.0 73.65±0.5 75.17±0.8
SR+kCG 20.02±11.0 17.02±12.2 29.08±4.2 64.03±3.1 66.17±0.5 66.63±1.0 72.34±3.2 74.35±0.7 74.49±1.0
SR+CLUE 4.15±5.9 25.15±4.9 31.88±2.1 66.17±0.4 66.30±0.4 67.12±0.7 73.43±0.4 74.07±0.7 75.29±0.9
SR+BADGE 22.58±0.4 23.78±6.4 30.71±4.6 66.29±0.4 66.31±0.6 68.58±0.7 73.80±0.6 74.00±1.0 75.76±0.8
DE+Uniform 34.35±1.4 33.15±1.1 36.55±1.8 68.13±0.4 68.12±0.6 68.88±0.2 76.20±0.3 76.16±0.4 77.07±0.3
DE+Entropy 31.74±1.4 36.29±1.6 40.33±1.7 68.19±0.3 69.44±0.2 71.27±0.3 75.98±0.4 77.10±0.3 78.53±0.3
DE+Confidence 35.12±1.8 34.48±1.4 40.46±0.5 69.07±0.3 69.47±0.2 71.08±0.2 76.63±0.2 76.87±0.3 78.27±0.1
DE+Margin 33.42±1.3 35.03±1.3 41.20±0.4 68.45±0.3 69.30±0.2 70.88±0.1 76.18±0.2 76.91±0.3 78.31±0.1
DE+Avg-KLD 33.03±1.5 38.55±3.2 41.75±1.8 68.63±0.3 69.95±0.4 71.10±0.3 76.21±0.4 77.62±0.6 78.62±0.3
DE+CLUE 33.92±3.0 35.27±1.4 34.83±3.1 68.09±0.3 68.07±0.3 68.40±0.6 76.27±0.6 76.65±0.3 76.69±0.7
DE+BADGE 32.23±3.7 36.18±1.5 40.58±3.3 68.34±0.4 68.87±0.2 70.29±0.3 76.13±0.7 77.09±0.2 78.44±0.5
ASPEST (ours) 38.44±0.7 40.96±0.8 45.77±0.1 69.31±0.3 70.17±0.2 71.60±0.2 77.69±0.1 78.35±0.2 79.51±0.2

Table E.5: Results of comparing ASPEST to the baselines on Amazon Review. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.

high-confidence mis-classified test points, incorporating intermediate checkpoints
along the training path into the ensemble can reduce the average confidence of the
ensemble on those mis-classified test points. By using checkpoint ensemble, we
might get an ensemble that has better confidence estimation for selective prediction
on the test data.

We perform experiments on the image dataset MNIST→SVHN and the text
dataset Amazon Review to verify these two hypotheses. We employ one-round
active learning with a labeling budget of 100 samples. We use the margin sampling
method for sample selection and fine-tune a single model on the selected labeled
test data for 200 epochs. We first evaluate the median confidence of the model on
the correctly classified and mis-classified test data respectively when fine-tuning
the model on the selected labeled test data. In Figure E.1, we show that during fine-
tuning, the model gets increasingly confident not only on the correctly classified
test data, but also on the mis-classified test data.

We then evaluate the Accuracy, the area under the receiver operator characteristic
curve (AUROC) and the area under the accuracy-coverage curve (AUC) metrics
of the checkpoints during fine-tuning and the checkpoint ensemble constructed
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Dataset DomainNet R→C (easy)
Metric cov|acc ⩾ 80% ↑ acc|cov ⩾ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 25.56±0.6 27.68±0.8 29.86±0.0 43.63±0.4 45.57±0.3 47.27±0.4 63.31±0.4 65.11±0.5 66.70±0.2
SR+Confidence 25.96±0.2 27.80±1.2 32.51±1.3 44.90±0.8 47.26±0.4 52.04±0.8 64.20±0.6 65.88±0.6 69.70±0.7
SR+Entropy 25.44±1.0 27.79±0.4 33.51±1.1 44.46±0.7 46.96±0.3 52.25±0.5 63.52±0.6 65.72±0.2 70.03±0.5
SR+Margin 26.28±1.2 27.77±1.0 32.92±0.4 45.24±1.0 47.12±0.7 52.29±0.4 64.37±0.8 65.91±0.6 70.01±0.4
SR+kCG 21.12±0.3 21.79±0.4 23.43±0.5 39.19±0.1 40.59±0.4 41.11±0.3 58.88±0.0 60.11±0.4 60.89±0.1
SR+CLUE 27.17±0.8 29.78±0.8 34.82±0.6 44.57±0.7 46.79±0.1 49.70±0.3 64.38±0.6 66.47±0.3 69.59±0.1
SR+BADGE 27.78±0.8 30.78±0.6 36.00±0.6 45.36±0.6 48.43±0.6 53.00±0.4 64.90±0.5 67.56±0.4 71.39±0.4
DE+Uniform 30.82±0.8 33.05±0.4 36.80±0.2 48.19±0.3 50.09±0.3 52.98±0.5 67.60±0.4 69.31±0.3 71.64±0.4
DE+Entropy 29.13±0.9 34.07±0.3 40.82±0.3 48.67±0.4 51.66±0.2 57.81±0.2 67.48±0.3 70.05±0.2 74.64±0.2
DE+Confidence 29.90±0.8 33.73±0.2 40.80±0.2 48.60±0.3 52.03±0.3 58.43±0.1 67.45±0.3 70.19±0.2 74.80±0.1
DE+Margin 31.82±1.3 35.68±0.2 43.39±0.7 50.12±0.4 53.19±0.4 59.17±0.2 68.85±0.4 71.29±0.3 75.79±0.3
DE+Avg-KLD 32.23±0.2 36.09±0.6 44.00±0.5 49.81±0.3 53.38±0.3 58.93±0.1 68.73±0.2 71.40±0.2 75.73±0.2
DE+CLUE 30.80±0.3 33.04±0.4 35.52±0.2 48.56±0.3 49.91±0.3 51.40±0.2 67.82±0.2 69.10±0.2 70.62±0.2
DE+BADGE 30.16±1.3 36.18±0.3 43.34±0.3 49.78±0.3 53.26±0.1 58.65±0.4 68.46±0.3 71.35±0.2 75.37±0.3
ASPEST (ours) 37.38±0.1 39.98±0.3 48.29±1.0 54.56±0.3 56.95±0.1 62.69±0.2 71.61±0.2 73.27±0.2 77.40±0.4

Table E.6: Results of comparing ASPEST to the baselines on DomainNet R→C. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.
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Figure E.1: Evaluating the median confidence of the model on the correctly classified and
mis-classified test data respectively when fine-tuning the model on the selected labeled test
data.

after fine-tuning on the target test dataset. The AUROC metric is equivalent to the
probability that a randomly chosen correctly classified input has a higher confidence
score than a randomly chosen mis-classified input. Thus, the AUROC metric can
measure the quality of the confidence score for selective prediction. The results in
Figure E.2 show that in the fine-tuning path, different checkpoints have different
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Dataset DomainNet R→P (medium)
Metric cov|acc ⩾ 70% ↑ acc|cov ⩾ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 21.01±1.0 21.35±0.3 22.64±0.5 36.78±0.6 37.18±0.2 38.20±0.4 51.87±0.7 52.31±0.0 53.34±0.4
SR+Confidence 20.64±0.6 22.15±0.8 23.60±0.6 37.01±0.3 38.46±0.7 40.23±0.4 51.77±0.3 53.33±0.8 54.80±0.5
SR+Entropy 20.76±0.7 22.11±0.3 23.56±0.3 37.09±0.2 38.38±0.3 40.30±0.1 51.86±0.4 53.29±0.3 54.81±0.2
SR+Margin 21.43±0.4 23.29±0.3 24.70±1.0 37.21±0.2 39.15±0.4 40.81±0.4 52.33±0.1 54.09±0.3 55.70±0.4
SR+kCG 17.33±0.4 17.62±0.2 18.49±0.2 33.97±0.3 34.12±0.1 34.36±0.1 48.61±0.5 48.65±0.2 49.25±0.2
SR+CLUE 21.15±0.6 22.49±0.5 24.84±0.7 36.96±0.2 37.93±0.5 39.31±0.4 51.97±0.4 53.20±0.5 54.84±0.5
SR+BADGE 20.07±0.3 22.21±0.5 24.92±0.2 36.10±0.1 38.11±0.4 40.40±0.5 50.99±0.0 53.10±0.4 55.40±0.4
DE+Uniform 25.42±0.2 26.38±0.2 28.83±0.3 40.83±0.1 41.66±0.2 43.93±0.2 55.86±0.1 56.62±0.1 58.80±0.2
DE+Entropy 25.74±0.4 27.11±0.4 30.39±0.1 41.34±0.1 42.92±0.3 45.92±0.3 56.06±0.2 57.51±0.3 60.10±0.2
DE+Confidence 25.69±0.4 27.38±0.7 30.47±0.1 41.45±0.2 43.12±0.3 45.88±0.1 56.13±0.2 57.68±0.3 60.20±0.2
DE+Margin 25.78±0.3 27.88±0.5 31.03±0.4 41.26±0.2 43.13±0.3 46.23±0.4 56.23±0.2 57.90±0.3 60.49±0.3
DE+Avg-KLD 26.30±0.7 28.00±0.1 31.97±0.2 41.80±0.3 43.17±0.1 46.32±0.2 56.65±0.3 57.99±0.1 60.82±0.2
DE+CLUE 25.38±0.6 26.65±0.4 27.89±0.1 40.86±0.3 41.62±0.2 42.46±0.1 55.79±0.4 56.65±0.2 57.71±0.1
DE+BADGE 26.27±0.7 27.69±0.1 31.84±0.2 42.02±0.6 43.41±0.2 46.37±0.1 56.67±0.5 58.03±0.1 60.84±0.1
ASPEST (ours) 29.69±0.1 32.50±0.3 35.46±0.6 44.96±0.1 46.77±0.2 49.42±0.1 58.74±0.0 60.36±0.0 62.84±0.2

Table E.7: Results of comparing ASPEST to the baselines on DomainNet R→P. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.

target test accuracy and the end checkpoint may not have the optimal target test
accuracy. The checkpoint ensemble can have better target test accuracy than the
end checkpoint. Also, in the fine-tuning path, different checkpoints have different
confidence estimation (the quality of confidence estimation is measured by the
metric AUROC) on the target test data and the end checkpoint may not have the
optimal confidence estimation. The checkpoint ensemble can have better confidence
estimation than the end checkpoint. Furthermore, in the fine-tuning path, different
checkpoints have different selective prediction performance (measured by the
metric AUC) on the target test data and the end checkpoint may not have the
optimal selective prediction performance. The checkpoint ensemble can have better
selective prediction performance than the end checkpoint.

E.3.5 Empirical analysis for self-training

In this section, we analyze why the proposed self-training can improve selective
prediction performance. Our hypothesis is that after fine-tuning the models on the
selected labeled test data, the checkpoint ensemble constructed is less confident on



250

Dataset DomainNet R→S (hard)
Metric cov|acc ⩾ 70% ↑ acc|cov ⩾ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 12.12±0.7 12.42±0.4 15.88±0.2 27.01±0.6 27.74±0.3 31.29±0.3 41.12±0.8 41.89±0.2 46.17±0.3
SR+Confidence 11.06±1.1 11.48±0.5 14.49±1.5 26.53±1.4 27.98±0.2 31.31±0.7 40.26±1.6 41.65±0.2 45.46±1.1
SR+Entropy 10.91±0.3 12.45±0.6 14.65±0.6 26.84±0.5 28.72±0.5 31.07±0.6 40.47±0.6 42.61±0.8 45.31±0.4
SR+Margin 12.23±0.4 13.06±0.4 15.31±0.4 27.87±0.2 29.19±0.4 31.51±0.8 41.91±0.3 43.22±0.4 45.97±0.8
SR+kCG 9.03±0.2 9.76±0.2 11.41±0.2 23.32±0.4 24.06±0.4 25.68±0.4 36.63±0.3 37.57±0.4 39.80±0.3
SR+CLUE 12.39±0.3 14.17±1.0 15.80±0.8 27.82±0.4 29.68±0.4 30.62±0.8 42.00±0.4 44.19±0.7 45.58±0.9
SR+BADGE 12.18±0.9 13.13±1.0 15.83±0.7 27.68±1.0 28.96±0.7 32.00±0.4 41.72±1.1 43.28±0.9 46.60±0.6
DE+Uniform 15.91±0.5 17.55±0.4 21.33±0.3 31.37±0.5 32.57±0.4 36.12±0.2 46.28±0.5 47.79±0.4 51.64±0.2
DE+Entropy 13.70±0.3 16.31±0.5 19.58±0.4 30.38±0.4 32.45±0.2 36.18±0.2 44.79±0.5 47.15±0.2 50.87±0.3
DE+Confidence 13.73±0.2 16.21±0.2 19.22±0.4 30.55±0.3 33.02±0.1 36.29±0.5 45.05±0.3 47.59±0.0 50.84±0.4
DE+Margin 14.99±0.2 17.45±0.4 21.74±0.7 31.67±0.5 33.51±0.5 37.88±0.3 46.38±0.5 48.44±0.5 52.78±0.4
DE+Avg-KLD 15.75±0.5 18.14±0.7 22.15±0.3 31.36±0.2 33.79±0.2 37.96±0.2 46.29±0.1 48.77±0.3 53.02±0.3
DE+CLUE 14.76±0.5 17.38±0.1 19.75±0.4 31.05±0.4 32.58±0.2 34.61±0.4 45.80±0.3 47.74±0.1 50.09±0.2
DE+BADGE 14.97±0.1 17.49±0.3 21.71±0.3 31.35±0.2 33.46±0.1 37.35±0.3 46.03±0.1 48.31±0.1 52.33±0.2
ASPEST (ours) 17.86±0.4 20.42±0.4 25.87±0.4 35.17±0.1 37.28±0.3 41.46±0.2 49.62±0.1 51.61±0.4 55.90±0.2

Table E.8: Results of comparing ASPEST to the baselines on DomainNet R→S. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.

the test data UX compared to the deep ensemble (obtained by ensembling the end
checkpoints). Thus, using the softmax outputs of the checkpoint ensemble as soft
pseudo-labels for self-training can alleviate the overconfidence issue and improve
selective prediction performance.

We perform experiments on the image dataset MNIST→SVHN and the text
dataset Amazon Review to verity this hypothesis. To see the effect of self-training
better, we only employ one-round active learning (i.e., only apply one-round self-
training) with a labeling budget of 100 samples. We visualize the histogram of the
confidence scores on the test data UX for the deep ensemble and the checkpoint
ensemble after fine-tuning. We also evaluate the receiver operator characteristic
curve (AUROC) and the area under the accuracy-coverage curve (AUC) metrics
of the checkpoint ensemble before and after the self-training. We use the AUROC
metric to measure the quality of the confidence score for selective prediction. The
results in Figure E.3 show that the checkpoint ensemble is less confident on the
test data UX compared to the deep ensemble. On the high-confidence region (i.e.,
confidence⩾ η. Recall that η is the confidence threshold used for constructing the
pseudo-labeled set R. We set η = 0.9 in our experiments), the checkpoint ensemble
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Dataset Otto
Metric cov|acc ⩾ 80% ↑ acc|cov ⩾ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 63.58±0.7 64.06±0.4 67.49±0.9 73.56±0.3 73.57±0.6 75.21±0.2 84.46±0.2 84.61±0.3 85.72±0.2
SR+Confidence 69.63±1.7 73.41±0.6 84.19±0.5 75.96±0.5 77.57±0.2 81.39±0.2 85.91±0.3 86.86±0.1 88.93±0.1
SR+Entropy 67.79±0.8 73.83±1.0 83.12±0.7 75.43±0.4 77.91±0.3 81.07±0.2 85.41±0.3 86.94±0.2 88.86±0.1
SR+Margin 68.10±0.1 74.10±0.4 82.53±0.2 75.52±0.0 77.66±0.1 80.93±0.1 85.56±0.1 86.99±0.1 88.83±0.1
SR+kCG 64.84±0.7 62.90±1.1 59.85±1.0 73.75±0.3 73.03±0.2 71.90±0.3 85.08±0.2 84.67±0.2 83.79±0.3
SR+CLUE 68.21±1.2 70.85±0.6 78.26±0.9 75.26±0.5 76.32±0.2 79.30±0.3 85.82±0.3 86.69±0.2 88.53±0.2
SR+BADGE 67.23±1.0 73.52±0.2 83.17±0.4 74.74±0.3 77.43±0.2 81.20±0.2 85.41±0.3 87.10±0.2 89.25±0.1
DE+Uniform 70.74±0.5 72.20±0.6 75.58±0.5 76.40±0.1 77.06±0.2 78.35±0.2 86.78±0.1 87.26±0.1 88.11±0.1
DE+Entropy 75.71±0.3 80.91±0.2 92.62±0.2 78.44±0.1 80.29±0.1 84.05±0.1 87.87±0.1 88.77±0.1 90.99±0.1
DE+Confidence 75.52±0.2 81.69±0.7 92.15±0.9 78.28±0.1 80.49±0.2 83.83±0.1 87.84±0.1 89.05±0.1 90.98±0.1
DE+Margin 75.49±0.8 81.36±0.8 92.49±0.4 78.41±0.3 80.50±0.2 84.06±0.2 87.89±0.2 89.10±0.2 90.95±0.2
DE+Avg-KLD 75.91±0.2 80.97±0.5 91.94±0.8 78.50±0.1 80.33±0.2 83.80±0.2 87.89±0.0 89.06±0.1 90.98±0.1
DE+CLUE 69.66±0.5 70.52±0.1 70.17±0.4 76.09±0.3 76.32±0.1 76.31±0.2 86.67±0.1 87.11±0.0 87.06±0.1
DE+BADGE 73.23±0.2 77.89±0.6 86.32±0.5 77.33±0.1 79.21±0.3 82.32±0.2 87.55±0.1 88.75±0.1 90.58±0.0
ASPEST (ours) 77.85±0.2 84.20±0.6 94.26±0.6 79.28±0.1 81.40±0.1 84.62±0.1 88.28±0.1 89.61±0.1 91.49±0.0

Table E.9: Results of comparing ASPEST to the baselines on Otto. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages.
Bold numbers are superior results.

Dataset CIFAR-10→CINIC-10 Otto
Metric cov∗|acc ⩾ 90% ↑ acc|cov∗ ⩾ 90% ↑ cov∗|acc ⩾ 80% ↑ acc|cov∗ ⩾ 80% ↑
SR (w/o active learning) 57.43±0.0 75.62±0.0 62.90±0.0 73.13±0.0
SR+Margin (M=500) 56.76±0.8 75.61±0.2 65.34±0.1 74.25±0.1
SR+Margin (M=1000) 56.04±0.7 75.70±0.1 68.11±0.4 74.99±0.2
DE (w/o active learning) 56.64±0.2 75.83±0.1 67.69±0.4 75.41±0.2
DE+Margin (M=500) 57.78±0.5 76.96±0.2 72.44±0.7 77.18±0.3
DE+Margin (M=1000) 59.55±0.5 77.59±0.1 74.78±0.7 78.19±0.2
ASPEST (M=500) 59.37±0.3 77.60±0.1 74.71±0.2 77.99±0.2
ASPEST (M=1000) 61.23±0.2 78.16±0.1 77.40±0.5 79.05±0.2

Table E.10: Results on CIFAR-10→CINIC-10 and Otto for studying the effect of combining
selective prediction with active learning. “w/o” means “without”. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages.
Bold numbers are superior results.

is also less confident than the deep ensemble. Besides, the results in Table E.13
show that after self-training, both AUROC and AUC metrics of the checkpoint
ensemble are improved significantly. Therefore, the self-training can alleviate the
overconfidence issue and improve selective prediction performance.
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Dataset FMoW Amazon Review
Metric cov∗|acc ⩾ 70% ↑ acc|cov∗ ⩾ 70% ↑ cov∗|acc ⩾ 80% ↑ acc|cov∗ ⩾ 80% ↑
SR (w/o active learning) 32.39±0.0 48.15±0.0 26.79±0.0 65.64±0.0
SR+Margin (M=500) 37.54±1.3 52.19±0.3 14.16±10.6 65.38±0.4
SR+Margin (M=1000) 42.65±0.7 55.30±0.5 21.60±4.0 65.68±0.4
DE (w/o active learning) 37.58±0.3 52.01±0.1 35.81±1.9 68.41±0.2
DE+Margin (M=500) 45.30±0.6 57.09±0.3 32.68±1.2 68.10±0.3
DE+Margin (M=1000) 52.32±1.2 60.96±0.4 33.47±1.2 68.54±0.2
ASPEST (M=500) 51.85±0.4 60.43±0.2 37.59±0.6 68.91±0.2
ASPEST (M=1000) 57.15±0.4 63.71±0.2 39.14±0.8 69.31±0.2

Table E.11: Results on FMoW and Amazon Review for studying the effect of combining
selective prediction with active learning. “w/o” means “without”. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages.
Bold numbers are superior results.

Dataset DomainNet R→C (easy) DomainNet R→P (medium) DomainNet R→S (hard)
Metric cov∗|acc ⩾ 80% ↑ acc|cov∗ ⩾ 80% ↑ cov∗|acc ⩾ 70% ↑ acc|cov∗ ⩾ 70% ↑ cov∗|acc ⩾ 70% ↑ acc|cov∗ ⩾ 70% ↑
SR (w/o active learning) 21.50±0.0 40.16±0.0 18.16±0.0 34.74±0.0 7.16±0.0 21.24±0.0
SR+Margin (M=500) 25.38±1.1 44.09±0.9 20.94±0.4 36.65±0.1 11.94±0.4 27.35±0.2
SR+Margin (M=1000) 25.87±1.0 44.70±0.7 22.22±0.3 37.91±0.4 12.43±0.4 28.19±0.4
DE (w/o active learning) 26.15±0.2 44.51±0.1 22.44±0.2 39.06±0.1 9.90±0.4 25.37±0.0
DE+Margin (M=500) 30.73±1.2 48.85±0.4 25.19±0.3 40.59±0.1 14.63±0.2 31.11±0.5
DE+Margin (M=1000) 33.24±0.2 50.46±0.4 26.60±0.5 41.73±0.3 16.62±0.4 32.30±0.5
ASPEST (M=500) 36.10±0.1 53.22±0.3 29.01±0.1 44.26±0.1 17.43±0.4 34.55±0.1
ASPEST (M=1000) 37.24±0.3 54.03±0.1 31.01±0.3 45.31±0.1 19.45±0.3 35.96±0.3

Table E.12: Results on DomainNet R→C, R→P and R→S for studying the effect of com-
bining selective prediction with active learning. “w/o” means “without”. The mean and
std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.

Dataset MNIST→SVHN Amazon Review
Metric AUROC↑ AUC↑ AUROC↑ AUC↑
Before self-training 73.92 66.75 67.44 76.24
After self-training 74.31 67.37 67.92 76.80

Table E.13: Evaluating the AUROC and AUC metrics of the checkpoint ensemble before
and after self-training. All numbers are percentages.

E.3.6 Training with unsupervised domain adaptation

In this section, we study whether incorporating Unsupervised Domain Adaptation
(UDA) techniques into training could improve the selective prediction performance.
UDA techniques are mainly proposed to adapt the representation learned on the
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Figure E.2: Evaluating the checkpoints during fine-tuning and the checkpoint ensemble
constructed after fine-tuning on the target test dataset.

labeled source domain data to the target domain with unlabeled data from the
target domain (Liu et al., 2022). We can easily incorporate those UDA techniques
into SR (Algorithm 5), DE (Algorithm 6), and the proposed ASPEST (Algorithm 4)
by adding unsupervised training losses into the training objectives.

We consider the method DE with UDA and the method ASPEST with UDA. The
algorithm for DE with UDA is presented in Algorithm 7 and the algorithm for
ASPEST with UDA is presented in Algorithm 8. We consider UDA techniques based
on representation matching where the goal is to minimize the distance between
the distribution of the representation on Dtr and that on UX. Suppose the model f
is a composition of a prediction function h and a representation function ϕ (i.e.,
f(x) = h(ϕ(x))). Then LUDA(D

tr,UX; θ) = d(pϕ
Dtr ,pϕUX), which is a representation

matching loss. We consider the representation matching losses from the state-of-
the-art UDA methods DANN (Ganin et al., 2016) and CDAN (Long et al., 2018).

We evaluate two instantiations of Algorithm 7 – DE with DANN and DE with
CDAN, and two instantiations of Algorithm 8 – ASPEST with DANN and ASPEST with
CDAN. The values of the hyper-parameters are the same as those described in Sec-
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Figure E.3: Plot the histogram of the confidence scores on the test data UX for the deep
ensemble and the checkpoint ensemble after fine-tuning.

tion 7.5.1 except that we set ns = 20. For DANN and CDAN, we set the hyper-
parameter between the source classifier and the domain discriminator to be 0.1. The
results are shown in Table E.14 (MNIST→SVHN), Table E.15 (CIFAR-10→CINIC-
10), Table E.16 (FMoW), Table E.17 (Amazon Review), Table E.18 (DomainNet
R→C), Table E.19 (DomainNet R→P), Table E.20 (DomainNet R→S) and Table E.21
(Otto).

From the results, we can see that ASPEST outperforms (or on par with) DE with
DANN and DE with CDAN across different datasets, although ASPEST doesn’t use
UDA techniques. We further show that by combining ASPEST with UDA, it might
achieve even better performance. For example, on MNIST→SVHN, ASPEST with
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DANN improves the mean AUC from 96.62% to 97.03% when the labeling budget is
500. However, in some cases, combining ASPEST with DANN or CDAN leads to
much worse results. For example, on MNIST→SVHN, when the labeling budget is
100, combining ASPEST with DANN or CDAN will reduce the mean AUC by over
4%. It might be because in those cases, DANN or CDAN fails to align the represen-
tations between the source and target domains. Existing work also show that UDA
methods may not have stable performance across different kinds of distribution
shifts and sometimes they can even yield accuracy degradation (Johansson et al.,
2019; Sagawa et al., 2021). So our findings align with those of existing work.

Dataset MNIST→SVHN
Metric cov|acc ⩾ 90% ↑ acc|cov ⩾ 90% ↑ AUC ↑
Labeling Budget 100 500 1000 100 500 1000 100 500 1000
DE with DANN + Uniform 27.27±1.8 72.78±2.0 87.05±0.5 63.95±1.4 82.99±0.8 88.64±0.2 80.37±0.7 93.25±0.4 96.05±0.1
DE with DANN + Entropy 11.33±8.2 74.04±2.2 91.06±1.4 58.28±2.1 83.64±0.9 90.41±0.5 74.62±1.6 93.45±0.5 96.47±0.2
DE with DANN + Confidence 15.68±6.3 76.34±3.1 93.96±1.2 61.32±3.0 85.02±0.9 91.64±0.4 76.43±3.0 93.85±0.6 96.97±0.3
DE with DANN + Margin 30.64±2.1 83.44±0.9 96.17±0.5 66.79±0.9 87.30±0.4 92.71±0.2 82.14±0.8 95.40±0.3 97.60±0.1
DE with DANN + Avg-KLD 22.30±3.0 78.13±2.1 93.42±1.0 63.22±2.0 85.40±0.8 91.47±0.5 78.88±1.6 94.25±0.5 97.02±0.2
DE with DANN + CLUE 16.42±13.6 72.27±2.8 86.71±0.4 61.79±2.7 82.72±1.1 88.46±0.2 77.47±3.4 93.33±0.5 96.21±0.0
DE with DANN + BADGE 25.41±10.9 78.83±1.2 90.94±1.1 63.93±4.4 85.27±0.5 90.45±0.5 79.82±4.1 94.58±0.3 96.89±0.1
DE with CDAN + Uniform 28.10±4.8 73.15±0.7 87.50±0.6 63.95±2.7 83.10±0.3 88.86±0.3 80.28±2.2 93.44±0.1 96.13±0.2
DE with CDAN + Entropy 6.94±9.8 74.38±1.5 90.77±1.3 59.90±2.3 84.14±0.4 90.32±0.6 76.04±2.0 93.48±0.3 96.38±0.2
DE with CDAN + Confidence 13.47±10.2 75.15±2.8 92.77±0.7 60.98±2.0 84.62±0.9 91.23±0.3 76.19±2.8 93.62±0.6 96.63±0.1
DE with CDAN + Margin 22.44±3.3 81.84±2.5 96.07±0.2 62.89±3.8 86.71±1.0 92.64±0.0 78.69±2.6 94.89±0.5 97.57±0.0
DE with CDAN + Avg-KLD 20.23±4.1 80.62±1.7 93.13±2.5 62.23±2.7 86.34±0.6 91.30±1.0 77.68±2.5 94.81±0.4 96.97±0.4
DE with CDAN + CLUE 7.47±6.4 72.61±2.9 87.22±0.2 57.82±2.9 82.50±1.3 88.62±0.1 73.33±2.3 93.38±0.7 96.31±0.0
DE with CDAN + BADGE 26.88±3.5 79.21±0.1 92.50±0.7 65.69±1.7 85.32±0.1 91.18±0.4 81.10±1.3 94.73±0.1 97.17±0.2
ASPEST (ours) 52.10±4.0 89.22±0.9 98.70±0.4 76.10±1.5 89.62±0.4 93.92±0.3 88.84±1.0 96.62±0.2 98.06±0.1
ASPEST with DANN (ours) 37.90±2.4 91.61±0.6 99.39±0.4 69.45±1.7 90.70±0.3 94.42±0.4 84.55±1.0 97.03±0.1 98.23±0.1
ASPEST with CDAN (ours) 30.97±11.7 91.39±0.6 99.50±0.3 67.58±3.2 90.60±0.3 94.46±0.2 82.20±3.3 96.95±0.1 98.26±0.1

Table E.14: Results of evaluating DE with UDA and ASPEST with UDA on MNIST→SVHN.
The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.
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Algorithm 7 DE with Unsupervised Domain Adaptation
Require: A training dataset Dtr, An unlabeled test dataset UX, the number of

rounds T , the total labeling budget M, a source-trained model f̄, an acquisition
function a(B, f,g), the number of models in the ensemble N, the number of initial
training epochs ns, and a hyper-parameter λ.
Let fj0 = f̄ for j = 1, . . . ,N.
Fine-tune each model fj0 in the ensemble via SGD for ns training epochs indepen-
dently using the following training objective with different randomness:

min
θj

E(x,y)∈Dtr ℓCE(x,y; θj) + LUDA(D
tr,UX; θj) (E.23)

where LUDA is a loss function for unsupervised domain adaptation.
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [M
T
] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1,gt−1) (E.24)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune each model fjt−1 in the ensemble via SGD independently using the
following training objective with different randomness:

min
θj

E(x,y)∈∪tl=1B̃l
ℓCE(x,y; θj) + λ · E(x,y)∈DtrℓCE(x,y; θj) + LUDA(D

tr,UX; θj)
(E.25)

where θj is the model parameters of fjt−1.
Let fjt = fjt−1.

end for
Ensure: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).
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Algorithm 8 ASPEST with Unsupervised Domain Adaptation
Require: A training set Dtr, a unlabeled test set UX, the number of rounds T ,

the labeling budget M, the number of models N, the number of initial training
epochs ns, a checkpoint epoch ce, a threshold η, a sub-sampling fraction p, and
a hyper-parameter λ.
Let fj0 = f̄ for j = 1, . . . ,N.
Set Ne = 0 and P = 0n×K.
Fine-tune each fj0 for ns training epochs using the following training objective:

min
θj

E(x,y)∈Dtr ℓCE(x,y; θj) + LUDA(D
tr,UX; θj), (E.26)

where LUDA is a loss function for unsupervised domain adaptation. During
fine-tuning, update P and Ne using Eq. (7.9) every ce training epochs.
for t = 1, · · · , T do

Select a batch Bt from UX for labeling using the sample selection objec-
tive (7.11).
Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Set Ne = 0 and P = 0n×K.
Fine-tune each fjt−1 using the following training objective:

min
θj

E(x,y)∈∪tl=1B̃l
ℓCE(x,y; θj) + λ · E(x,y)∈Dtr ℓCE(x,y; θj) (E.27)

+ LUDA(D
tr,UX; θj),

During fine-tuning, update P and Ne using Eq (7.9) every ce training epochs.
Let fjt = fjt−1.
Construct the pseudo-labeled set R via Eq (7.13) and create Rsub by randomly
sampling up to [p · n] data points from R.
Train each fjt further via SGD using the objective (7.14) and update P and Ne
using Eq (7.9) every ce training epochs.

end for
Ensure: The classifier f(xi) = arg maxk∈Y

Pi,k and the selection scoring function
g(xi) = maxk∈Y Pi,k.
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Dataset CIFAR-10→CINIC-10
Metric cov|acc ⩾ 90% ↑ acc|cov ⩾ 90% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 58.85±0.3 59.39±0.2 60.04±0.1 77.06±0.2 77.33±0.2 77.84±0.1 90.40±0.1 90.60±0.1 90.73±0.1
DE with DANN + Entropy 59.42±0.4 60.86±0.3 64.52±0.3 78.14±0.2 79.20±0.1 81.31±0.1 90.72±0.0 91.06±0.1 92.02±0.0
DE with DANN + Confidence 59.44±0.6 61.08±0.3 65.12±0.2 78.19±0.1 79.38±0.0 81.29±0.1 90.73±0.1 91.26±0.1 92.06±0.0
DE with DANN + Margin 59.81±0.3 62.26±0.4 65.58±0.4 78.15±0.0 79.25±0.1 81.05±0.1 90.76±0.1 91.30±0.1 92.11±0.0
DE with DANN + Avg-KLD 60.50±0.5 62.04±0.1 65.08±0.2 78.32±0.1 79.31±0.1 81.07±0.0 90.89±0.1 91.34±0.0 92.11±0.0
DE with DANN + CLUE 60.20±0.5 61.69±0.2 64.08±0.2 77.84±0.2 78.35±0.2 79.38±0.1 90.73±0.2 91.07±0.1 91.63±0.0
DE with DANN + BADGE 60.18±0.4 62.15±0.2 65.31±0.6 77.70±0.1 78.54±0.1 79.81±0.2 90.72±0.1 91.19±0.1 91.86±0.1
DE with CDAN + Uniform 58.72±0.2 59.49±0.5 60.28±0.2 77.16±0.0 77.52±0.1 77.90±0.1 90.45±0.1 90.65±0.0 90.78±0.1
DE with CDAN + Entropy 58.73±0.4 60.82±0.5 64.45±0.2 77.95±0.1 79.20±0.1 81.04±0.1 90.57±0.1 91.10±0.1 91.86±0.1
DE with CDAN + Confidence 59.10±0.6 61.03±0.6 64.60±0.2 77.92±0.0 79.26±0.2 81.07±0.0 90.59±0.0 91.10±0.2 91.96±0.0
DE with CDAN + Margin 59.88±0.5 61.57±0.9 64.82±0.4 78.09±0.3 79.02±0.2 80.82±0.1 90.73±0.1 91.17±0.2 91.98±0.1
DE with CDAN + Avg-KLD 60.51±0.1 61.71±0.5 65.03±0.3 78.20±0.2 79.29±0.2 81.15±0.1 90.85±0.0 91.19±0.1 92.07±0.1
DE with CDAN + CLUE 60.12±0.5 61.77±0.3 64.06±0.2 77.88±0.1 78.38±0.2 79.42±0.2 90.73±0.1 91.08±0.1 91.64±0.0
DE with CDAN + BADGE 60.28±0.7 61.84±0.2 65.29±0.3 77.68±0.2 78.53±0.1 79.84±0.2 90.73±0.1 91.17±0.0 91.95±0.1
ASPEST (ours) 60.38±0.3 63.34±0.2 66.81±0.3 78.23±0.1 79.49±0.1 81.25±0.1 90.95±0.0 91.60±0.0 92.33±0.1
ASPEST with DANN (ours) 61.69±0.2 63.58±0.4 66.81±0.4 78.68±0.1 79.68±0.1 81.42±0.1 91.16±0.1 91.66±0.1 92.37±0.1
ASPEST with CDAN (ours) 61.00±0.2 62.80±0.4 66.78±0.1 78.56±0.1 79.54±0.1 81.49±0.0 91.13±0.0 91.57±0.1 92.41±0.0

Table E.15: Results of evaluating DE with UDA and ASPEST with UDA on CIFAR-
10→CINIC-10. The mean and std of each metric over three random runs are reported
(mean±std). All numbers are percentages. Bold numbers are superior results.

Dataset FMoW
Metric cov|acc ⩾ 70% ↑ acc|cov ⩾ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 46.11±0.6 51.77±0.3 62.76±0.5 57.62±0.3 60.67±0.4 66.21±0.2 70.17±0.3 72.46±0.3 76.83±0.2
DE with DANN + Entropy 44.36±0.7 48.19±0.3 59.52±0.8 56.78±0.1 59.51±0.0 65.75±0.3 69.09±0.2 71.02±0.2 75.15±0.3
DE with DANN + Confidence 44.46±0.5 49.32±0.1 61.47±0.3 57.04±0.3 60.51±0.3 66.61±0.1 69.14±0.1 71.50±0.1 75.70±0.1
DE with DANN + Margin 48.09±0.4 54.35±0.5 70.11±0.4 59.07±0.2 62.79±0.2 70.02±0.1 70.76±0.1 73.29±0.2 78.25±0.1
DE with DANN + Avg-KLD 48.42±0.1 55.95±0.2 68.73±1.1 59.06±0.2 63.44±0.2 69.41±0.5 70.84±0.1 73.83±0.1 77.91±0.4
DE with DANN + CLUE 44.14±0.6 46.15±0.2 49.02±0.5 56.01±0.3 56.89±0.2 58.66±0.3 69.11±0.2 70.16±0.2 71.46±0.2
DE with DANN + BADGE 48.57±0.5 54.47±0.5 67.69±0.9 58.61±0.2 61.67±0.0 68.71±0.5 71.17±0.2 73.64±0.1 78.65±0.3
DE with CDAN + Uniform 46.08±0.7 51.92±0.8 62.87±0.2 57.45±0.1 60.73±0.4 66.19±0.2 69.93±0.3 72.57±0.4 76.87±0.1
DE with CDAN + Entropy 44.42±0.3 49.32±0.1 60.11±0.3 56.83±0.1 60.04±0.2 65.95±0.2 69.18±0.2 71.34±0.3 75.44±0.3
DE with CDAN + Confidence 44.75±0.1 49.34±0.1 62.80±1.0 57.09±0.1 60.50±0.2 66.94±0.4 69.27±0.1 71.60±0.2 76.14±0.3
DE with CDAN + Margin 47.48±0.7 54.48±0.7 70.25±0.9 58.98±0.4 62.98±0.3 70.10±0.4 70.55±0.3 73.46±0.2 78.39±0.3
DE with CDAN + Avg-KLD 48.43±0.2 54.37±0.4 68.93±0.6 59.36±0.2 62.71±0.2 69.54±0.2 71.12±0.2 73.35±0.2 77.97±0.2
DE with CDAN + CLUE 44.09±0.3 46.11±0.5 48.90±0.1 55.78±0.3 56.98±0.2 58.46±0.2 69.03±0.1 70.02±0.2 71.31±0.1
DE with CDAN + BADGE 47.93±0.2 54.61±0.2 67.01±0.5 58.16±0.1 61.81±0.1 68.36±0.2 70.91±0.2 73.63±0.1 78.52±0.2
ASPEST (ours) 53.05±0.4 59.86±0.4 76.52±0.6 61.18±0.2 65.18±0.2 72.86±0.3 71.12±0.2 74.25±0.2 79.93±0.1
ASPEST with DANN (ours) 51.02±0.9 58.63±1.1 72.97±0.9 61.10±0.5 64.98±0.4 71.21±0.4 71.03±0.3 73.79±0.4 77.84±0.3
ASPEST with CDAN (ours) 51.40±0.6 58.21±0.6 73.94±0.6 61.38±0.2 65.04±0.2 71.63±0.2 71.17±0.1 73.59±0.1 78.04±0.2

Table E.16: Results of evaluating DE with UDA and ASPEST with UDA on FMoW. The
mean and std of each metric over three random runs are reported (mean±std). All numbers
are percentages. Bold numbers are superior results.
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Dataset Amazon Review
Metric cov|acc ⩾ 80% ↑ acc|cov ⩾ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 38.55±3.3 37.25±1.8 39.21±1.9 69.06±0.6 68.94±0.1 69.41±0.2 77.52±0.7 77.03±0.4 77.70±0.2
DE with DANN + Entropy 38.22±2.3 41.85±0.8 41.57±1.3 69.48±0.3 70.71±0.3 71.55±0.2 77.49±0.5 78.39±0.2 78.58±0.1
DE with DANN + Confidence 38.01±1.0 38.36±2.5 38.89±1.3 69.45±0.1 70.16±0.3 71.44±0.2 77.54±0.2 77.58±0.5 78.48±0.3
DE with DANN + Margin 36.82±1.3 36.89±1.3 41.98±1.5 69.35±0.3 69.63±0.3 71.27±0.2 77.30±0.3 77.23±0.3 78.34±0.3
DE with DANN + Avg-KLD 37.15±2.9 38.21±1.3 42.46±1.4 69.38±0.4 69.79±0.2 71.21±0.2 77.25±0.6 77.72±0.3 78.68±0.3
DE with DANN + CLUE 40.23±4.0 34.71±1.8 31.38±0.9 68.95±0.7 68.07±0.2 67.44±0.3 77.62±1.0 76.27±0.6 75.60±0.2
DE with DANN + BADGE 37.51±1.8 37.00±0.9 41.62±2.3 68.98±0.4 69.27±0.1 70.20±0.4 77.20±0.4 77.21±0.1 78.31±0.5
DE with CDAN + Uniform 37.81±0.3 37.83±2.7 39.52±0.8 68.93±0.1 69.16±0.7 69.50±0.3 77.16±0.1 77.30±0.7 77.74±0.3
DE with CDAN + Entropy 37.99±0.8 37.68±1.1 42.55±0.9 69.54±0.3 70.01±0.2 71.52±0.2 77.52±0.2 77.61±0.1 78.63±0.1
DE with CDAN + Confidence 35.76±0.9 38.69±2.8 41.43±2.1 69.24±0.0 70.45±0.4 71.50±0.4 77.08±0.2 77.82±0.4 78.47±0.3
DE with CDAN + Margin 37.68±2.9 37.43±1.0 42.18±1.3 69.50±0.3 69.80±0.4 71.29±0.0 77.50±0.5 77.31±0.3 78.46±0.3
DE with CDAN + Avg-KLD 37.85±1.6 40.71±0.9 44.35±0.9 69.41±0.3 70.29±0.1 71.28±0.2 77.28±0.5 78.11±0.2 78.86±0.2
DE with CDAN + CLUE 34.85±2.7 34.03±1.3 30.70±0.4 68.70±0.3 67.84±0.1 67.12±0.3 76.95±0.7 76.23±0.4 75.36±0.4
DE with CDAN + BADGE 39.47±0.2 39.29±1.1 41.64±0.9 69.33±0.0 69.34±0.2 70.58±0.2 77.52±0.2 77.49±0.2 78.24±0.3
ASPEST (ours) 38.44±0.7 40.96±0.8 45.77±0.1 69.31±0.3 70.17±0.2 71.60±0.2 77.69±0.1 78.35±0.2 79.51±0.2
ASPEST with DANN (ours) 40.22±0.5 41.99±1.4 45.84±0.1 69.42±0.1 70.30±0.1 71.58±0.2 78.00±0.1 78.34±0.3 79.43±0.1
ASPEST with CDAN (ours) 40.02±0.5 42.46±0.6 44.95±0.4 69.50±0.1 70.37±0.2 71.42±0.0 77.80±0.1 78.57±0.1 79.25±0.0

Table E.17: Results of evaluating DE with UDA and ASPEST with UDA on Amazon Review.
The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.

Dataset DomainNet R→C (easy)
Metric cov|acc ⩾ 80% ↑ acc|cov ⩾ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 33.53±0.5 36.28±0.3 40.13±1.0 50.57±0.5 52.19±0.1 55.15±0.1 69.34±0.3 70.98±0.2 73.50±0.3
DE with DANN + Entropy 28.66±1.0 34.47±0.1 42.77±0.7 48.13±0.6 52.70±0.3 59.01±0.2 66.60±0.5 70.64±0.1 75.45±0.2
DE with DANN + Confidence 29.92±0.4 35.29±1.0 43.33±0.4 48.61±0.1 53.36±0.5 59.72±0.3 67.23±0.2 70.92±0.5 75.89±0.3
DE with DANN + Margin 35.19±0.3 39.63±0.2 46.51±0.5 52.29±0.3 55.60±0.2 60.97±0.4 70.70±0.1 73.41±0.1 77.24±0.3
DE with DANN + Avg-KLD 36.02±0.6 39.67±0.5 47.20±0.8 53.00±0.3 55.75±0.3 61.22±0.3 71.19±0.3 73.51±0.2 77.46±0.2
DE with DANN + CLUE 32.26±1.5 35.09±0.4 35.66±0.3 50.21±0.0 50.90±0.1 51.50±0.1 69.17±0.2 70.20±0.2 70.82±0.1
DE with DANN + BADGE 35.27±0.5 38.88±0.3 45.97±0.7 52.15±0.3 54.89±0.1 60.03±0.3 70.65±0.1 72.95±0.1 76.87±0.1
DE with CDAN + Uniform 33.49±0.6 36.01±0.7 39.93±0.2 50.46±0.2 51.89±0.1 55.23±0.2 69.32±0.3 70.86±0.3 73.55±0.2
DE with CDAN + Entropy 29.50±0.5 33.86±0.3 42.24±0.5 48.01±0.1 52.52±0.3 58.96±0.2 66.82±0.2 70.28±0.1 75.33±0.1
DE with CDAN + Confidence 29.21±1.0 34.92±0.6 43.36±0.4 48.48±0.4 52.85±0.4 59.88±0.4 66.82±0.5 70.61±0.4 75.93±0.3
DE with CDAN + Margin 35.87±0.7 38.37±0.4 46.42±0.6 52.58±0.1 55.28±0.2 61.20±0.2 70.95±0.2 72.95±0.2 77.26±0.1
DE with CDAN + Avg-KLD 36.21±0.6 40.08±0.3 47.62±0.4 52.95±0.3 55.93±0.1 61.56±0.2 71.29±0.3 73.60±0.1 77.58±0.2
DE with CDAN + CLUE 31.74±2.1 35.11±0.2 35.87±0.5 49.99±0.2 51.39±0.2 51.43±0.2 69.04±0.3 70.35±0.0 70.82±0.3
DE with CDAN + BADGE 34.74±0.5 38.68±0.7 45.87±1.0 51.80±0.3 54.75±0.2 60.22±0.1 70.38±0.1 72.90±0.2 76.85±0.2
ASPEST (ours) 37.38±0.1 39.98±0.3 48.29±1.0 54.56±0.3 56.95±0.1 62.69±0.2 71.61±0.2 73.27±0.2 77.40±0.4
ASPEST with DANN (ours) 37.41±0.8 42.45±1.0 49.74±0.6 55.60±0.1 58.29±0.2 63.64±0.2 71.88±0.2 74.18±0.4 78.09±0.0
ASPEST with CDAN (ours) 36.60±1.2 42.96±0.6 50.86±0.2 55.55±0.2 58.71±0.2 63.85±0.2 71.99±0.2 74.60±0.2 78.45±0.3

Table E.18: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet
R→C. The mean and std of each metric over three random runs are reported (mean±std).
All numbers are percentages. Bold numbers are superior results.
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Dataset DomainNet R→P (medium)
Metric cov|acc ⩾ 70% ↑ acc|cov ⩾ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 26.98±0.1 28.34±0.5 30.63±0.2 41.96±0.2 42.89±0.2 44.73±0.1 57.04±0.1 58.10±0.2 59.87±0.1
DE with DANN + Entropy 24.75±0.4 27.02±0.5 30.10±0.2 40.29±0.4 42.34±0.2 45.78±0.2 55.19±0.3 57.12±0.3 60.21±0.1
DE with DANN + Confidence 22.41±0.9 27.03±0.6 31.70±0.6 39.05±0.5 42.61±0.2 46.60±0.2 53.66±0.6 57.35±0.3 60.93±0.4
DE with DANN + Margin 29.16±0.1 30.58±0.3 33.64±0.6 43.78±0.2 45.17±0.2 47.69±0.4 58.76±0.1 59.94±0.0 62.19±0.4
DE with DANN + Avg-KLD 29.52±0.1 31.17±0.4 34.09±0.3 43.84±0.3 45.33±0.2 48.18±0.2 58.89±0.2 60.25±0.2 62.54±0.2
DE with DANN + CLUE 27.48±0.5 27.83±0.2 28.39±0.5 42.05±0.3 42.34±0.2 42.65±0.1 57.32±0.3 57.64±0.2 57.99±0.2
DE with DANN + BADGE 28.92±0.1 30.36±0.2 33.86±0.3 43.38±0.1 44.85±0.1 47.64±0.3 58.38±0.0 59.82±0.1 62.26±0.2
DE with CDAN + Uniform 26.96±0.4 28.33±0.2 29.98±0.4 41.77±0.3 42.85±0.2 44.23±0.4 56.86±0.4 58.01±0.0 59.42±0.4
DE with CDAN + Entropy 24.91±0.4 26.30±0.9 30.33±0.4 40.34±0.3 42.07±0.6 45.79±0.2 55.38±0.4 56.70±0.8 60.23±0.2
DE with CDAN + Confidence 24.58±0.7 27.11±0.5 31.07±0.5 40.32±0.2 42.64±0.3 46.25±0.3 55.14±0.3 57.40±0.3 60.63±0.3
DE with CDAN + Margin 28.33±0.1 30.17±0.3 33.54±0.4 43.44±0.4 44.77±0.1 47.56±0.2 58.31±0.2 59.65±0.1 62.17±0.2
DE with CDAN + Avg-KLD 28.69±0.2 30.99±0.9 34.30±0.2 43.64±0.2 45.34±0.2 48.22±0.1 58.60±0.1 60.15±0.4 62.67±0.1
DE with CDAN + CLUE 27.52±0.6 27.96±0.2 28.18±0.5 42.02±0.2 42.44±0.1 42.67±0.2 57.21±0.3 57.70±0.1 58.04±0.3
DE with CDAN + BADGE 28.79±0.1 30.28±0.1 33.77±0.4 43.45±0.0 44.73±0.3 47.84±0.2 58.47±0.1 59.64±0.2 62.37±0.2
ASPEST (ours) 29.69±0.1 32.50±0.3 35.46±0.6 44.96±0.1 46.77±0.2 49.42±0.1 58.74±0.0 60.36±0.0 62.84±0.2
ASPEST with DANN (ours) 31.75±0.4 33.58±0.3 36.96±0.2 46.16±0.1 47.64±0.2 50.37±0.3 59.63±0.2 61.06±0.1 63.75±0.1
ASPEST with CDAN (ours) 30.39±0.4 33.57±0.3 37.53±0.7 45.90±0.1 47.71±0.2 50.31±0.2 59.13±0.3 61.17±0.2 63.69±0.3

Table E.19: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet
R→P. The mean and std of each metric over three random runs are reported (mean±std).
All numbers are percentages. Bold numbers are superior results.

Dataset DomainNet R→S (hard)
Metric cov|acc ⩾ 70% ↑ acc|cov ⩾ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 17.55±0.4 19.82±0.3 23.57±0.4 32.61±0.5 34.56±0.3 37.73±0.2 47.60±0.5 49.92±0.4 53.52±0.1
DE with DANN + Entropy 10.77±0.8 15.38±0.5 20.11±0.5 27.78±0.7 31.09±0.2 36.39±0.3 41.69±0.7 45.62±0.3 51.05±0.4
DE with DANN + Confidence 10.64±1.2 15.22±0.4 20.25±0.5 28.09±1.0 31.76±0.3 36.86±0.8 41.94±1.3 46.19±0.3 51.48±0.7
DE with DANN + Margin 17.90±0.7 20.44±0.6 25.52±0.4 33.61±0.1 35.79±0.5 40.29±0.3 48.67±0.1 51.03±0.6 55.64±0.4
DE with DANN + Avg-KLD 18.02±1.0 21.22±0.2 25.46±0.2 34.00±0.2 36.51±0.2 40.72±0.2 49.05±0.2 51.79±0.2 55.95±0.2
DE with DANN + CLUE 15.77±0.3 18.14±0.7 19.49±0.4 32.10±0.1 33.42±0.3 34.50±0.3 47.18±0.2 48.63±0.3 50.03±0.3
DE with DANN + BADGE 16.84±0.9 20.88±0.3 25.11±0.3 33.97±0.1 36.20±0.2 40.01±0.3 48.87±0.2 51.46±0.2 55.33±0.2
DE with CDAN + Uniform 17.33±0.5 19.79±0.1 22.99±0.5 32.47±0.5 34.59±0.3 37.88±0.2 47.49±0.5 50.02±0.2 53.51±0.3
DE with CDAN + Entropy 12.48±0.8 15.19±0.8 20.23±0.0 28.83±0.1 32.41±0.4 36.57±0.1 42.93±0.5 47.00±0.3 51.24±0.2
DE with CDAN + Confidence 11.23±0.6 13.93±0.1 18.45±1.3 28.67±0.3 31.35±0.4 35.56±0.8 42.87±0.5 45.40±0.7 49.80±1.0
DE with CDAN + Margin 18.06±0.7 20.39±0.3 25.05±0.3 33.98±0.2 35.76±0.2 40.11±0.1 49.15±0.1 50.92±0.1 55.27±0.1
DE with CDAN + Avg-KLD 18.63±1.0 20.80±0.3 25.49±0.9 34.19±0.4 36.41±0.2 40.53±0.5 49.45±0.5 51.58±0.1 55.74±0.5
DE with CDAN + CLUE 16.51±0.3 18.82±0.1 19.47±0.1 32.23±0.2 33.83±0.4 34.72±0.3 47.40±0.2 49.11±0.2 49.98±0.3
DE with CDAN + BADGE 17.52±0.8 21.48±0.5 25.35±0.4 33.53±0.5 36.19±0.4 40.31±0.3 48.67±0.5 51.65±0.3 55.62±0.3
ASPEST (ours) 17.86±0.4 20.42±0.4 25.87±0.4 35.17±0.1 37.28±0.3 41.46±0.2 49.62±0.1 51.61±0.4 55.90±0.2
ASPEST with DANN (ours) 16.35±1.2 23.18±0.4 28.00±0.1 36.56±0.2 39.40±0.4 42.94±0.1 50.58±0.4 53.73±0.3 57.25±0.1
ASPEST with CDAN (ours) 18.81±1.1 22.95±0.8 28.17±0.2 36.85±0.3 39.10±0.2 43.25±0.3 51.14±0.3 53.47±0.2 57.26±0.2

Table E.20: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet
R→S. The mean and std of each metric over three random runs are reported (mean±std).
All numbers are percentages. Bold numbers are superior results.
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Dataset Otto
Metric cov|acc ⩾ 80% ↑ acc|cov ⩾ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 70.35±0.5 72.42±0.4 75.63±0.7 76.12±0.3 77.04±0.1 78.25±0.1 86.67±0.1 87.16±0.1 88.09±0.1
DE with DANN + Entropy 75.27±0.3 81.25±0.1 92.23±0.3 78.14±0.1 80.45±0.0 83.73±0.1 87.73±0.1 88.91±0.0 90.90±0.1
DE with DANN + Confidence 74.66±0.3 81.62±0.1 92.57±0.6 78.05±0.2 80.50±0.0 83.67±0.2 87.51±0.1 89.06±0.1 90.94±0.1
DE with DANN + Margin 75.47±0.4 82.56±0.7 91.86±0.9 78.26±0.1 80.79±0.2 83.61±0.3 87.87±0.1 89.08±0.0 90.88±0.1
DE with DANN + Avg-KLD 76.02±0.6 81.78±0.4 91.82±0.3 78.53±0.0 80.70±0.1 83.88±0.0 87.99±0.0 89.17±0.0 90.90±0.1
DE with DANN + CLUE 69.68±0.4 68.07±0.3 62.70±0.6 75.81±0.3 75.44±0.0 73.49±0.3 86.68±0.2 86.31±0.1 84.89±0.2
DE with DANN + BADGE 74.69±0.5 79.04±0.6 87.63±0.4 77.97±0.1 79.57±0.3 82.99±0.1 87.82±0.1 88.92±0.1 90.67±0.1
DE with CDAN + Uniform 70.25±0.9 72.43±0.4 75.21±0.7 76.09±0.3 76.94±0.1 78.13±0.1 86.56±0.3 87.14±0.2 87.90±0.1
DE with CDAN + Entropy 74.73±0.6 81.60±0.8 92.58±0.2 77.97±0.2 80.59±0.3 83.81±0.2 87.47±0.1 88.93±0.1 90.84±0.1
DE with CDAN + Confidence 74.88±0.6 81.30±0.8 92.53±0.9 78.06±0.2 80.51±0.3 83.85±0.3 87.43±0.2 88.99±0.1 90.95±0.1
DE with CDAN + Margin 76.68±1.0 81.57±0.4 92.20±0.5 78.74±0.5 80.62±0.2 84.01±0.2 88.08±0.2 88.85±0.2 91.09±0.0
DE with CDAN + Avg-KLD 75.88±0.4 81.82±0.8 91.43±1.1 78.45±0.1 80.72±0.3 83.72±0.3 87.92±0.2 89.12±0.2 90.91±0.2
DE with CDAN + CLUE 69.86±0.5 67.79±0.2 63.46±0.9 76.09±0.2 75.42±0.3 73.66±0.3 86.81±0.1 86.25±0.1 85.00±0.1
DE with CDAN + BADGE 74.68±0.4 79.46±0.3 87.57±0.4 77.89±0.1 79.78±0.1 82.85±0.1 87.78±0.1 88.90±0.1 90.72±0.1
ASPEST (ours) 77.85±0.2 84.20±0.6 94.26±0.6 79.28±0.1 81.40±0.1 84.62±0.1 88.28±0.1 89.61±0.1 91.49±0.0
ASPEST with DANN (ours) 78.14±0.4 83.33±0.5 93.61±0.0 79.33±0.1 81.23±0.1 84.21±0.1 88.36±0.2 89.32±0.1 91.26±0.0
ASPEST with CDAN (ours) 77.75±0.3 83.68±0.5 94.44±0.3 79.27±0.0 81.30±0.2 84.76±0.1 88.35±0.1 89.59±0.0 91.41±0.0

Table E.21: Results of evaluating DE with UDA and ASPEST with UDA on Otto. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.
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f appendix for chapter 8

F.1 Proofs for Section 8.3.1
Theorem F.1 (Restatement of Theorem 8.1). If ℓ(t) = −t, then the contrastive loss is
equivalent to the PCA objective on ϕzR :

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
= −E

[
∥ϕzR − ϕ0∥2] . (F.1)

If additionally ϕ(x) is linear in x, then the contrastive loss is equivalent to the linear PCA
objective on data from the distribution px̄ of x̄ = EzU [x]:

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
= −E

[
∥ϕ(x̄) − ϕ0∥2] . (F.2)

Proof. We first present some preliminaries for the proof. Recall that in our hid-
den representation data model x = g(z). The learned representation is ϕ(x) =

ϕ(g(z)) = ϕ ◦ g(z). For brevity, let us define ϕ(x) = ϕ ◦ g(z) := h(z). Also, the
hidden representations corresponding to (x, x+, x−) are given by (z, z+, z−), where

z = [zR ; zU], z+ = [zR ; z+U], z− = [z−R ; z−U],

where zR and z−R are sampled independently from the distribution DR; and zU, z+U,
and z−U are sampled independently from the distribution DU. The expectation of
an arbitrary function f(z, z+, z−) can be simplified as follows:

E(z,z+,z−) [f(z, z+, z−)] = E(zR,z−R ,zU,z+U,z−U) [f(z, z+, z−)]

= E(zR,z−R )

[
E(zU,z+U,z−U) [f(z, z+, z−) | zR, z−R ]

]
.

The second step follows the law of iterated expectations.
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The negative expected contrastive loss is

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

) ]
(F.3)

= −E(z,z+,z−)

[
ℓ
(
ϕ(g(z))⊤[ϕ(g(z+)) − ϕ(g(z−))]

) ]
(F.4)

= E(z,z+,z−)

[
h(z)⊤[h(z+) − h(z−)]

]
(F.5)

= E(zR,z−R )
[
E
[
h(z)⊤[h(z+) − h(z−)] | zR, z−R

] ]
(F.6)

= E(zR,z−R )

[
E [h(z) | zR]

⊤ (E [h(z+) | zR] − E [h(z−) | z−R ])
]

(F.7)

= E(zR,z−R )

[
E [ϕ(x) | zR]

⊤ (E [ϕ(x+) | zR] − E [ϕ(x−) | z−R ])
]

(F.8)

= E(zR,z−R )

[
ϕ⊤
zR

(
ϕzR − ϕz−R

)]
. (F.9)

The second equality follows from the choice of loss ℓ(t) = −t, and the fourth
equality follows from the fact that zU, z+U, and z−U are sampled independently from
the distribution DU. Also, we have defined ϕzR := E [ϕ(x) | zR].

Denote the centered representation as ϕ̄zR = ϕzR − ϕ0. Then we have

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.10)

= E(zR,z−R )

[
ϕ⊤
zR

(
ϕzR − ϕz−R

)]
(F.11)

= E(zR,z−R )

[
(ϕ̄zR + ϕ0)

⊤
(
ϕ̄zR + ϕ0 − ϕ̄z−R − ϕ0

)]
(F.12)

= E(zR,z−R )

[
(ϕ̄zR + ϕ0)

⊤
(
ϕ̄zR − ϕ̄z−R

)]
(F.13)

= E(zR,z−R )

[
ϕ̄⊤
zR
ϕ̄zR − ϕ̄⊤

zR
ϕ̄z−R

]
+ E(zR,z−R )

[
ϕ⊤

0

(
ϕ̄zR − ϕ̄z−R

)]
. (F.14)

Since ϕ̄zR and ϕ̄z−R are independent with mean 0, we have E(zR,z−R )[ϕ̄
⊤
zR
ϕ̄z−R ] =

0, E(zR,z−R )[ϕ
⊤
0 ϕ̄zR] = 0, and E(zR,z−R )[ϕ

⊤
0 ϕ̄z−R ] = 0. Therefore,

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.15)

= EzR
[
ϕ̄⊤
zR
ϕ̄zR
]

(F.16)

= EzR
[
∥ϕ̄zR∥2] (F.17)

= EzR
[
∥ϕzR − ϕ0∥2] , (F.18)
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which is the PCA objective on the mean representation ϕzR .
If additionally ϕ(x) is linear in x, then

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.19)

= EzR
[
∥ϕzR − ϕ0∥2] (F.20)

= Ex̄
[
∥ϕ(x̄) − ϕ(x0)∥2] (F.21)

which is the linear PCA objective on the data from the distribution of x̄ = E[x|zR].

Theorem F.2 (Restatement of Theorem 8.2). Under Assumptions (A1)(A2)(A3):

(1) The optimal representation ϕ∗ does not encode zU: ϕ∗ ◦ g(z) is independent of zU.

(2) For any invariant feature i ∈ R, there exists Bi > 0 such that as long as the repre-
sentations’ norm Br ⩾ Bi, the optimal representation encodes zi. Furthermore, if zR
is discrete, then Bi is monotonically decreasing in Pr[zR\{i} = z−R\{i}, zi ̸= z−i ], the
probability that in zR and z−R , the i-th feature varies while the others remain the same.

Proof. (1) Recall that

ϕzR = E[ϕ ◦ g(z) | zR], ϕ0 = Ez[ϕ ◦ g(z)] = EzR[ϕzR]. (F.22)

Then the contrastive loss at pre-training is:

E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

) ]
(F.23)

= E(z,z+,z−)

[
ℓ
(
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+) − ϕ ◦ g(z−))

) ]
(F.24)

= E(zR,z−R )
[
E
[
ℓ
(
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+) − ϕ ◦ g(z−))

)
| zR, z−R

] ]
(F.25)

⩾ E(zR,z−R )
[
ℓ
(
E
[
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+) − ϕ ◦ g(z−)) | zR, z−R

] ) ]
(F.26)

= E(zR,z−R )
[
ℓ
(
E[ϕ ◦ g(z) | zR]⊤

(
E[ϕ ◦ g(z+) | zR] − E[ϕ ◦ g(z−) | z−R ]

) ) ]
(F.27)

= E(zR,z−R )

[
ℓ
(
ϕ⊤
zR
ϕzR − ϕ⊤

zR
ϕz−R

)]
, (F.28)
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where the inequality comes from the convexity of ℓ(z) and Jensen’s inequality
applied to the inner expectation. The inequality becomes equality when the repre-
sentation function ϕ is invariant to the spurious features zU, i.e., with probability 1
over the distribution, ϕ ◦ g(z) = ϕzR . Therefore, the spurious features zU are not
encoded in the optimal representation, proving the first part.

(2) First consider the case when z has discrete values from a finite set. When
the generative function g(z) is not independent of zi, we assume for contradiction
that the optimal representation ϕ is independent of zi. From (1), we know that it
is independent of zU. So there exists an f such that ϕ ◦ g(z) = f(zR\{i}). Without
loss of generality, suppose U = ∅, then ϕ ◦ g(z) = f(z−i).

Since the generative function g(z) is not independent of zi, there exist z and z−,
such that z−i = z−−i, zi ̸= z−i , g(z) ̸= g(z−), and z, z− have non-zero probabilities.
So Pr[z−i = z−−i, zi ̸= z−i ] > 0.

Now construct a new representation function ϕ̄ ∈ Rk+n,n = |Z| such that
ϕ̄ ◦ g(z) = h(z) as follows :

h(z) =
[√

1 − α2f(z−i), α∥f(z−i)∥Iz
]

(F.29)

where Iz is the one-hot encoding of the value z. Note that ϕ̄ still satisfies that norm
bound since ∥ϕ̄(x)∥ = ∥h(z)∥ = ∥f(z−i)∥. We next show that the contrastive loss of
ϕ̄ can be smaller than that of ϕ, leading to a contradiction and finishing the proof.

The contrastive loss of ϕ̄ (using the fact that z+ = z when U = ∅) is

E(z,z−)

[
ℓ
(
h(z)⊤h(z) − h(z)⊤h(z−)

)]
(F.30)

= E(z,z−)

[
ℓ
(
h(z)⊤h(z) − h(z)⊤h(z−)

)
| z ̸= z−

]
Pr[z ̸= z−] (F.31)

+ Ez,z− [ℓ(0)]Pr[z = z−].



266

We only need to consider the first term.

E(z,z−)

[
ℓ
(
h(z)⊤h(z) − h(z)⊤h(z−)

)
| z ̸= z−

]
Pr[z ̸= z−] (F.32)

= E(z,z−)

[
ℓ
(
∥f(z−i)∥2 − (1 − α2)f(z−i)

⊤f(z−−i)
)︸ ︷︷ ︸

T1

| z−i ̸= z−−i
]

Pr[z−i ̸= z−−i]

(F.33)

+ E(z,z−)

[
ℓ
(
α2∥f(z−i)∥2)︸ ︷︷ ︸

T2

| z−i = z−−i, zi ̸= z−i
]

Pr[z−i = z−−i, zi ̸= z−i ].

When α = 0, the above reduces to the corresponding terms for ϕ, so we would like
to show that there exists non-zero α that leads to smaller loss values.

Recall that ℓ(·) is decreasing by property (A3). Let α =
√

1/2/Br, where
Br = ∥f(z−i)∥. Then when switching from ϕ to ϕ̄, T2 goes from ℓ(0) to ℓ(1/2), a con-
stant reduction. For T1, if f(z−i)⊤f(z−−i) is positive, then T1 decreases; if f(z−i)⊤f(z−−i)
is negative, then T1 increases from ℓ(B2

r − f(z−i)
⊤f(z−−i)) to ℓ(B2

r − f(z−i)
⊤f(z−−i) +

α2f(z−i)
⊤f(z−−i)). Note that |α2f(z−i)

⊤f(z−−i)| ⩽ 1 (by the Cauchy-Schwarz inequal-
ity); so the increase in T1 diminishes when Br grows, by the property (A3) of ℓ. Then
when Br is large enough, the increase in T1 is smaller than the decrease in T2. So
from ϕ to ϕ̄, the contrastive loss decreases, contradicting that ϕ is optimal. Finally,
since the reduction in (F.34) is smaller when Pr[z−i = z−−i, zi ̸= z−i ] is smaller, then
Bi needs to be larger. So Bi is monotonically decreasing in Pr[z−i = z−−i, zi ̸= z−i ].

Now consider the general case when z may not be from a finite set. For any
ϵ0 > 0, there exists a ℓ2 ball B of bounded radius such that the probability of z
outside the ball is at most ϵ0. Since ϕ ◦ g’s are regular by assumption, there exists
a partition Z ∩B into finitely many subsets such that in each subset and for each
ϕ ◦ g, the function value varies by at most ϵ0. Construct a new distribution D ′

z

for z: select a representative point in each subset, and put a probability mass to
it equal to that of the original distribution Dz in this subset, and normalize the
probabilities over the subsets. The new distribution is over a finite set so the above
argument holds. Furthermore, the difference in the T1 term for D ′

z and Dz can be
made arbitrarily small by choosing sufficiently small ϵ0; similarly for T2. Then the
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argument also holds for Dz, which completes the proof for the general case.

F.1.1 Inductive Biases are Needed for Analyzing Prediction
Success

We have analyzed what features are encoded in the representation. However, encod-
ing the information does not equate to good prediction performance, in particular,
with linear predictors. Recently, Saunshi et al. demonstrated that existing analyses
that ignore the inductive biases of the model and algorithm cannot adequately
explain the prediction success, and provided examples where such analysis can lead
to vacuous bounds. One may wonder if our hidden representation data model can
provide inductive biases that avoid such vacuous bounds. Unfortunately, similar
issues as in Saunshi et al. (2022) remain.

To illustrate that inductive biases are still needed in our data model, consider
the following simple example. Suppose zR ∈ {−1, 1}2 and can be recovered from
x; the label y is simply the first coordinate in zR. Suppose the representation
satisfies ϕ(x) ∈ R2, ∥ϕ(x)∥ = 1, and contrastive learning uses the logistic loss ℓ(z).
Let ϕ(x) be such that ϕ ◦ g(z) = h(zR), and h((−1,−1)) = (−1, 0),h((−1, 1)) =

(1, 0),h((1,−1)) = (0,−1),h((1, 1)) = (0, 1). It can be verified that this ϕ is optimal
for the contrastive loss. However, on the representation ϕ, the classification is an
XOR-problem (Fig. F.1), for which there is no non-trivial error bound for linear
predictors. This contradicts the success of linear probing in practice.

Furthermore, some restrictions on the data distributions are also needed. Sup-
pose all optimal representations are linearly separable with certain inductive biases
on the representation function class. Suppose the label y depends on zR. Without
restrictions on the labeling function, one can consider a random y ∈ {−1,+1} over
any zR. Then for any linear predictor on any optimal representation, in expectation
the error is 1/2, so there is always a labeling function for which no non-trivial error
can be achieved. Our analysis thus requires restrictions on the dependence of the
label on zR (in particular, we will assume linear dependence).
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Figure F.1: A two-dim example of XOR structure in the space of ϕ.

F.2 Proofs and More Analysis for Section 8.3.2

F.2.1 Lemmas for a more general setting

We will prove the results in a more general setting, where the mixture can be
uneven and the variances of different types of features can be different. The results
in Section 8.3.2 then follow from these lemmas.

In the more general setting, the diverse pre-training data is a mixture of data
from T different tasks Dt’s, while the target task is one of the tasks. In the mixture,
the task Dt has weight wt > 0 and

∑T
t=1 wt = 1. All tasks share a public feature

set S of size s, and each task Dt additionally owns a private disjoint feature set Pt
of size r − s, i.e., Pt ∩ S = ∅ for t ∈ [T ] and Pt1 ∩ Pt2 = ∅ for t1 ̸= t2. The invariant
features for Dt are then Rt = S ∪ Pt. All invariant features are ∪Tt=1Rt ⊆ R, k := |R|,
and spurious features are U = [d] \ R. In task Dt, the positive pairs (x, x+) are
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generated as follows:

zS ∼ N(0,σ2
S,tI), zPt ∼ N(0,σ2

R,tI), zR\Rt = 0, (F.34)

zU ∼ N(0,σ2
U,tI), z = [zR; zU], x = g(z), (F.35)

z+U ∼ N(0,σ2
U,tI), z+ = [zR; z+U], x+ = g(z+), (F.36)

and x− is simply an i.i.d. copy from the same distribution as x. In practice, multiple
independent negative examples are used, and thus we consider the following
contrastive loss

min
ϕ∈Φ

E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
(F.37)

to pre-train a representation ϕ. Then, when using ϕ for prediction in the target
task Dt, the predictor class should contain a predictor matching the ground-truth
label, so consider the class:

Fϕ,t = {f(z) = u⊤
t z : ut ∈ Rk, ∥ut∥ ⩽ Bϕ,t} (F.38)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x)

on Dt.
Recall that we assume a linear data model and linear representation functions

ϕ:

• x is linear in z: x = g(z) = Mz where M ∈ Rd×d is an orthonormal dictionary.
The label in task Dt is linear in its invariant features y = (u∗

t)
⊤zRt for some

u∗
t ∈ Rr.

• The representations are linear functions with weights of bounded spectral
and Frobenius norms:

Φ = {ϕ(x) = Wx : W∈Rk×d, ∥W∥⩽1, ∥W∥F⩽
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recov-
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ering the invariant features in the target task, i.e., there exists ϕ ∈ Φ such that
ϕ(x) = [zRt ; 0].

Lemma F.3. Consider the above setting. Let α,αt(t ∈ [T ]) be the optimizer for

min
α̃,α̃1,...,α̃T

T∑
t=1

wtE
[
ℓ
(
α̃σ2

S,tZ+ α̃tσ
2
R,tZt

)]
, (F.39)

subject to α̃s+

T∑
t=1

α̃t(r− s) ⩽ r, (F.40)

α̃, α̃t ∈ [0, 1], (F.41)

where Z ∼ χ2
s and Zt ∼ χ2

r−s.
Then the optimal representation ϕ∗(x) the loss (F.37) in contrastive learning satisfies

ϕ∗(x) = W∗x with any W∗ of the form:

W∗ = [QA∗, 0]M−1 (F.42)

where Q ∈ Rk×k is any orthonormal matrices, A∗ is a k× k diagonal matrix with

A∗
jj =


√
α if j ∈ S,
√
αt if j ∈ Pt,

0 otherwise,

(F.43)

and the matrix of zeros has size k× (d− k).
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Proof. For each Dt,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − Ex−ϕ(x−)]

)]
(F.44)

= E(z,z+)

[
ℓ
(
(WMz)⊤(WMz+ − Ez−[WMz−])

)]
(F.45)

= E(z,z+)

[
ℓ
(
z⊤(M⊤W⊤WM)(z+ − Ez−[z−])

)]
(F.46)

⩾ EzR
[
ℓ
(
(EzU [z])

⊤M⊤W⊤WM(Ez+U [z
+] − Ez−[z−])

)]
(F.47)

= EzR
[
ℓ
(
[zR; 0]⊤M⊤W⊤WM([zR; 0] − 0)

)]
(F.48)

= EzR
[
ℓ
(
∥WM[zR; 0]∥2)] (F.49)

where the inequality comes from the convexity of ℓ(t) and Jensen’s inequality.
Similar to Theorem 8.2, the equality holds if and only if WMz does not depend on
zU and WMz+ does not depend on z+U, so the optimal solution should satisfy this
condition.

LetWM = [AR,AU]whereAR ∈ Rk×k,AU ∈ Rk×(d−k). By rotational invariance
of zS, and zPt , without loss of generality, we can assume AR = QA where A is
a diagonal matrix with diagonal entries ajj’s and Q is any orthonormal matrix.
Furthermore, AU = 0 in the optimal solution since it does not affect the loss but
only decreases the norm bound on AR. So on data from the task Dt,

EDt

[
ℓ
(
∥WM[zR; 0]∥2)] = EzRt

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
. (F.50)
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Then on the mixture,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − Ex−ϕ(x−)]

)]
(F.51)

⩾
T∑
t=1

wtE{zj}

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
(F.52)

=

T∑
t=1

wtE{z̃j∼N(0,1)}

[
ℓ

(∑
j∈S

a2
jjσ

2
S,tz̃

2
j +

∑
j∈Pt

a2
jjσ

2
R,tz̃

2
j

)]
(F.53)

:=g({ajj}), (F.54)

where each z̃j is a random variable drawn from standard Gaussian.
Now consider the minimum of the function g({ajj}) on the right hand side,

under the constraints that |ajj| ⩽ 1 and
∑
j a

2
jj ⩽ r. Before finishing the proof of

Lemma F.3, we have the following claim for this optimization.

Claim F.4. There exist α,αt satisfying 0 ⩽ α,αt ⩽ 1 and αs +
∑T
t=1 αt(r − s) =∑

j a
2
jj ⩽ r, such that the minimum of the above optimization (F.54) is achieved when

a2
jj = α for any j ∈ S, and a2

jj = αt for any j ∈ Pt and t ∈ [T ].

Proof. We need to prove that to achieve the minimum,

(1) a2
ℓℓ = a2

ℓ ′ℓ ′ for any ℓ ̸= ℓ ′ ∈ S;

(2) a2
ℓℓ = a2

ℓ ′ℓ ′ for any ℓ ̸= ℓ ′ ∈ Pt and any t ∈ [T ];
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For (1): By symmetry of zj’s and the convexity of ℓ(·), for any t ∈ [T ],

E

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
(F.55)

=
1
2E

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j + a2

ℓℓz
2
ℓ + a2

ℓ ′ℓ ′z
2
ℓ ′ +

∑
j∈Pt

a2
jjz

2
j

 (F.56)

+
1
2E

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j + a2

ℓℓz
2
ℓ ′ + a2

ℓ ′ℓ ′z
2
ℓ +

∑
j∈Pt

a2
jjz

2
j

 (F.57)

⩾ E

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j +

a2
ℓℓ + a2

ℓ ′ℓ ′

2 z2
ℓ ′ +

a2
ℓℓ + a2

ℓ ′ℓ ′

2 z2
ℓ +

∑
j∈Pt

a2
jjz

2
j

 . (F.58)

Then

g({ajj}) (F.59)

⩾
T∑
t=1

wtE

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j +

a2
ℓℓ + a2

ℓ ′ℓ ′

2 z2
ℓ ′ +

a2
ℓℓ + a2

ℓ ′ℓ ′

2 z2
ℓ +

∑
j∈Pt

a2
jjz

2
j

 .

Therefore, the minimum is achieved when a2
ℓℓ = a2

ℓ ′ℓ ′ .
A similar argument as above proves statement (2).

These statements mean that, for any t ∈ [T ], the minimum is achieved when
a2
jj = α for j ∈ S, and a2

jj = αt for j ∈ Pt, for some values α,αt ⩾ 0. Let Z =∑
j∈S z̃

2
j ,Zt =

∑
j∈Pt z̃

2
j . Then Z ∼ χ2

s and Zt ∼ χ2
r−s, and we have:

g({ajj}) =

T∑
t=1

wtE

[
ℓ

(∑
j∈S

ασ2
S,tz̃

2
j +

∑
j∈Pt

αtσ
2
R,tz̃

2
j

)]
(F.60)

=

T∑
t=1

wtE
[
ℓ
(
ασ2

S,tZ+ αtσ
2
R,tZt

)]
. (F.61)

Given the constraint αs+
∑T
t=1 αt(r− s) =

∑
j a

2
jj ⩽ r, 0 ⩽ α,αt ⩽ 1, we complete
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the proof of Lemma F.3.

Given this result we can now analyze the generalization error when predicting
on the target task Dt.

Lemma F.5. Consider any t ∈ [T ]. Let vt,1 =
∑
j∈S(u

∗
t)

2
j and vt,2 =

∑
j∈Pt(u

∗
t)

2
j .

Suppose in ϕ∗ (calculated in Lemma F.3), α,αt > 0. Suppose the prediction loss ℓc is
L-Lipschitz.

Then the Empirical Risk Minimizer ût ∈ Fϕ∗,t on ϕ∗ using m labeled data points from
Dt has risk

E(x,y)∼Dt
[ℓc(ût

⊤ϕ∗(x),y)] ⩽ 8
√

2 ln(4/δ)
m

+ 4L

√
1
m

(
vt,1

α
+

vt,2

αt

)

·

(√
sασ2

S,t + (r− s)αtσ2
R,t +O

(√
max{ασ2

S,t,αtσ2
R,t}

2r

sασ2
S,t + (r− s)αtσ2

R,t

))
.

Proof. For any t ∈ [T ], we only need to bound the Rademacher complexityRm(Fϕ∗,t)

of Fϕ∗,t; the statement then follows from standard generalization bounds,

E(x,y)∼Dt
[ℓc(ût

⊤ϕ∗(x),y)] ⩽ 4LRm(Fϕ∗,t) + 8
√

2 ln(4/δ)
m

.

Given the representation ϕ∗ in Lemma F.3, to ensure there exists a predictor
in Fϕ∗,t matching the ground-truth label, f(ϕ∗(x)) = u⊤

t ϕ
∗(x) = y = (u∗

t)
⊤zRt ,

predictor ut should satisfy

EDt
[(ŷ− y)2] = 0⇔∀zRt , ut

⊤[QA∗, 0]M−1M[zRt ; 0; zU] = u∗
t
⊤zRt (F.62)

⇔∀zRt , ut
⊤QA∗[zRt ; 0] = u∗

t
⊤zRt (F.63)

(∗)⇔A∗
1:r,1:r(Q

⊤)1:r,1:kut = u∗
t (F.64)

⇔∀v ∈ Rr, ut = Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t +Q1:k,r+1:kv. (F.65)

The (∗) is from non-zero variance for zRt . ut = Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t is the least-norm

optimal solution, so we have Bϕ∗,t = ∥Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t∥ =

√
vt,1
α

+
vt,2
αt

. So the
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predictor class should be

Fϕ∗,t =

{
f(ϕ∗) = u⊤

t ϕ
∗ : ut ∈ Rk, ∥ut∥ ⩽ Bϕ∗,t =

√
vt,1

α
+

vt,2

αt

}
. (F.66)

The empirical Rademacher complexity and Rademacher complexity of Fϕ∗,t

with m samples are

R̂m(Fϕ∗,t) =
1
m

Eσ

[
sup

fu,ϕ∈Fϕ∗ ,t

m∑
i=1

σifu,ϕ(x
(i))

]
(F.67)

=
1
m

Eσ

[
sup

∥u∥⩽Bϕ∗ ,t

m∑
i=1

σiut
⊤QA∗[z

(i)
Rt

; 0]
]

(F.68)

=
1
m

Eσ

[
sup

∥u∥⩽Bϕ∗ ,t

ut
⊤
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

]
(F.69)

=
Bϕ∗,t

m
Eσ

[∥∥∥∥∥
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

∥∥∥∥∥
]

, (F.70)

Rm(Fϕ∗,t) =EzR,zU

[
R̂m(Fϕ∗,t)

]
(F.71)

=
Bϕ∗,t

m
E
z
(i)
Rt

[
Eσ

[∥∥∥∥∥
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

∥∥∥∥∥
]]

(F.72)

=
Bϕ∗,t

m
E
z
(i)
Rt

[∥∥∥∥∥A∗
1:r,1:r

m∑
i=1

z
(i)
Rt

∥∥∥∥∥
]

. (F.73)

For any t ∈ [T ], define Xt := A∗
1:r,1:r

∑m
i=1 z

(i)
Rt

. Note that for j ∈ S, Xt,j = α
∑m
i=1 z

(i)
j

is a Gaussian of mean zero and variance

E[X2
t,j] = αE

( m∑
i=1

z
(i)
j

)2
 = αE

[
m∑
i=1

(
z
(i)
j

)2
]
= mασ2

S,t. (F.74)

Similarly, for j ∈ Pt, Xt,j = αt
∑m
i=1 z

(i)
j is a Gaussian of mean zero and variance
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E[X2
t,j] = mαtσ

2
R,t. Since Xt,j is sub-gaussian, X2

t,j − mασ2
S,t for j ∈ S and X2

t,j −

mαtσ
2
R,t for j ∈ Pt are sub-exponential and more precisely

∥X2
t,j −mασ2

S,t∥ψ1 ⩽ C1∥X2
t,j∥ψ1 = C1∥Xt,j∥2

ψ2
⩽ C2mασ2

S,t, j ∈ S, (F.75)

∥X2
t,j −mαtσ

2
R,t∥ψ1 ⩽ C1∥X2

t,j∥ψ1 = C1∥Xt,j∥2
ψ2

⩽ C2mαtσ
2
R,t, j ∈ Pt, (F.76)

where C1,C2 are absolute constants and C2 > 1. Let

K = max(C2mασ2
S,t,C2mαtσ

2
R,t) = C2mmax{ασ2

S,t,αtσ2
R,t}

and

µ := m(sασ2
S,t + (r− s)αtσ

2
R,t).

By Bernstein’s inequality, we have for every γ ⩾ 0 that

P
{∣∣∣∣1r (∥Xt∥2 − µ)

∣∣∣∣ ⩾ γ

}
⩽ 2 exp

[
−cmin

(
γ2

K2 , γ
K

)
r

]
(F.77)

⇒P
{∣∣∣∣∥Xt∥2

µ
− 1
∣∣∣∣ ⩾ rγ

µ

}
(F.78)

⩽ 2 exp
[
−

c

C2
2

min
(

γ2

m2 max{ασ2
S,t,αtσ2

R,t}
2 , γ

mmax{ασ2
S,t,αtσ2

R,t}

)
r

]
, (F.79)

where c is an absolute constant. For all numbers z ⩾ 0, we have |z − 1| ⩾ δ ⇒
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|z2 − 1| ⩾ max(δ, δ2). Thus, for any δ ⩾ 0, we have

P
{∣∣∣∣∥Xt∥√µ − 1

∣∣∣∣ ⩾ δ

}
(F.80)

⩽P
{∣∣∣∣∥Xt∥2

2
µ

− 1
∣∣∣∣ ⩾ max(δ, δ2)

}
(F.81)

⩽2 exp
[
−

c

C2
2

min
((

µmax(δ, δ2)

mmax{ασ2
S,t,αtσ2

R,t}r

)2

, µmax(δ, δ2)

mmax{ασ2
S,t,αtσ2

R,t}r

)
r

]
(F.82)

⩽2 exp
[
−

c

C2
2

(
µ

mmax{ασ2
S,t,αtσ2

R,t}r

)2

min
((

max(δ, δ2)
)2, max(δ, δ2)

)
r

]
(F.83)

=2 exp
[
−

c

C2
2

µ2

m2 max{ασ2
S,t,αtσ2

R,t}
2r
δ2
]

, (F.84)

where the last inequality is from

µ = m(sασ2
S,t + (r− s)αtσ

2
R,t) ⩽ mmax{ασ2

S,t,αtσ2
R,t}r.

Changing variables to θ = δ
√
µ, we obtain the desired sub-gaussian tail

P {|∥Xt∥−
√
µ| ⩾ θ} ⩽2 exp

[
−

c

C2
2

µ

m2 max{ασ2
S,t,αtσ2

R,t}
2r
θ2
]

. (F.85)

By generalization of integral identity, we have

|E [∥Xt∥−
√
µ]| =

∣∣∣∣∫∞
0
P{∥Xt∥−

√
µ > θ}dθ−

∫ 0

−∞ P{∥Xt∥−
√
µ < θ}dθ

∣∣∣∣ (F.86)

⩽2
∫∞

0
P{|∥Xt∥−

√
µ| > θ}dθ (F.87)
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∫∞

0
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−
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C2
2
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dθ (F.88)
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√
µ

, (F.89)
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where C3 is an absolute constant. Thus, we have∣∣∣∣∣Rm(Fϕ∗,t) −

√
1
m

(
vt,1

α
+

vt,2

αt

)
(sασ2

S,t + (r− s)αtσ2
R,t)

∣∣∣∣∣ (F.90)

=
Bϕ∗,t

m
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F.2.2 Proofs of Proposition 6 and Proposition 7

Given the lemmas for the general case, we are now ready to prove the results in
Proposition 6 and Proposition 7.

Proposition 15 (Restatement of Proposition 6). Suppose σS,t = σR,t = σU,t = 1 for
any t ∈ [T ]. The representation ϕ∗ obtained on an even mixture of data from all the tasks
{Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some

α ∈ [0, 1], β = min
(

1, r−αs
T(r−s)

)
, where ej’s are the basis vectors and Q is any orthonormal

matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has
risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x),y)]

⩽4L

√
1
m

(
vt,1

α
+

vt,2

β

)(√
sα+ (r− s)β+O

(√
r

sα+ (r− s)β

))
+ 8
√

2 ln(4/δ)
m

.

Proof. This follows from Lemma F.3, and considering the optimal α,αt for the
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following:

g({α,αt}) =
T∑
t=1

wtE
[
ℓ
(
ασ2

S,tZ+ αtσ
2
R,tZt

)]
(F.93)

=
1
T

T∑
t=1

E [ℓ (αZ+ αtZ1)] (F.94)

⩾ E

[
ℓ

(
αZ+ Z1

T∑
t=1

1
T
αt

)]
. (F.95)

The second equation is from that Zt’s follow the same distribution by the symmetry
of z̃j’s. The inequality comes from the convexity of ℓ(t) and Jensen’s inequality. So
the minimum is achieved when αt := β for any t ∈ [T ], leading to

g({α,αt}) = E [ℓ (αZ+ βZ1)] (F.96)

subject to the constraints αs + Tβ(r − s) ⩽ r, 0 ⩽ α,β ⩽ 1. Then we get ϕ∗ ◦
g(z) = W∗Mz = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α ∈ [0, 1], β =

min
(

1, r−αs
T(r−s)

)
, where ej’s are the basis vectors and Q is any orthonormal matrix.

Finally, the generalization bound follows from Lemma F.5, and that

O

(√
max{α,β}2r
sα+ (r− s)β

)
= O

(√
r

sα+ (r− s)β

)
. (F.97)

This completes the proof.

Proposition 16 (Restatement of Proposition 7). Suppose σS,t = σR,t = σU,t = 1. The
representation ϕ∗

t obtained on data from Dt satisfies ϕ∗
t ◦ g(z) = Q

(∑
j∈Rt zjej

)
where

ej’s are the basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗

t ,t on ϕ∗
t using m labeled data points from Dt has
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risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗
t(x),y)] ⩽ 4L

√
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m
∥u∗
t∥+ 8

√
2 ln(4/δ)

m
.

While on task Di(i ̸= t), any linear predictor on ϕ∗
t has error at least

min
u

EDi
[ℓc(u

⊤zS,y)].

Proof. Following Lemma F.3 (with r = s), we get ϕ∗
t ◦g(z) = Q

(∑
j∈Rt zjej

)
, where

ej’s are the basis vectors and Q is any orthonormal matrix. Following the same
argument as in the proof of Lemma F.5, we get

Rm(Fϕ∗,t) =
∥u∗
t∥

m
E
z
(i)
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[∥∥∥∥∥
m∑
i=1

z
(i)
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]
⩽

√
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m
∥u∗
t∥, (F.98)

where the last inequality comes from the property of chi-squared distribution
expectation.

F.2.3 Implication for the trade-off

The propositions then imply the trade-off between universality and label efficiency.
Below we formalize the example discussed in Section 8.3.2.

Proposition 17 (A specific version of Proposition 6). Suppose σS,t = σR,t = σU,t = 1
for any t ∈ [T ] and r = 2s. The representation ϕ∗ obtained on an even mixture of data from
all the tasks {Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S zjej +

∑
j∈R\S

√
1
T
zjej

)
,

where ej’s are the basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has
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risk

E(x,y)∼Dt
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⊤ϕ∗(x),y)] ⩽
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Proof. This follows from Proposition 6, and noting that when r = 2s, α = 1 and
β = 1/T are the optimal for:

g({α,β}) = E [ℓ (αZ+ βZ1)] (F.99)

= E
[
ℓ

(
αZ+

r− αs

T(r− s)
Z1

)]
(F.100)

= E
[
ℓ

(
αZ+

2 − α

T
Z1

)]
(F.101)

subject to the constraints αs + Tβ(r − s) ⩽ r, 0 ⩽ α,β ⩽ 1. To see this, note
that Z ∼ χ2

s and Z1 ∼ χ2
r−s = χ2

s follow the same distribution, so αZ + 2−α
T

Z1 for
α = 1 will stochastically dominate its value for other α ∈ [0, 1). The optimal is then
achieved when α = 1 and β = 2−α

T
= 1
T

.

F.2.4 Improving the Trade-off by Contrastive Regularization

The above analysis shows that contrastive learning a representation on unlabeled
data from the target task can help in prediction on this target task. This suggests
that given a representation ϕ∗ pre-trained on diverse data, one can fine-tune it
by contrastive learning on some unlabeled data from the target task to get a rep-
resentation that can lead to better prediction on the target task. In the following,
we will formally show that this is indeed the case for the illustrative example in
Section 8.3.2.

Recall that in this example, σS,t = σR,t = σU,t = 1, r = 2s, and vt,1 = vt,2.
The representation ϕ∗ obtained on an even mixture of data from all the tasks
{Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
, where
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ej’s are the basis vectors and Q is any orthonormal matrix, and α = 1,β = 1
T

.
Now, suppose we are given unlabeled data from Dt, and we use them to fine-

tune ϕ∗(x) = W∗x by contrastive learning on these unlabeled data. That is, we find
W near W∗ to minimize the contrastive loss on the unlabeled data from Dt:

min
ϕ(x)=Wx

E
[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
(F.102)

subject to ∥W −W∗∥F ⩽ γ, ∥W∥ ⩽ 1. (F.103)

for some small γ > 0.

Proposition 18. For (F.102), ϕ∗
CR,t satisfying the following on x from Dt is an optimal

representation:

ϕ∗
CR,t ◦ g(z) = Q

(∑
j∈S

√
αzjej +

∑
j∈Pt

√
βzjej

)

where
√
α = 1,

√
β = min

(
1,
√

1
T
+ γ√

s

)
.

Proof. Following the argument in Lemma F.3, we still have that ϕ∗
CR,t(x) = Wx

where W = Q2[A2; 0]M−1 for any orthonormal matrix Q2 and some diagonal matrix
A2 = diagonal(ajj), with ajj =

√
α for j ∈ S and ajj =

√
β for j ∈ Pt for some

α,β ∈ [0, 1]. And the contrastive loss is:

E
[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
= E

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
(F.104)

= E

[
ℓ

(
α
∑
j∈S

z2
j + β

∑
j∈Pt

z2
j

)]
. (F.105)

Recall that ϕ∗(x) = W∗x with W = Q[A; 0]M−1 for any orthonormal matrix Q

and some diagonal matrix A, with Ajj = 1 for j ∈ S and Ajj =
√

1/T for j ∈ Ri \ S
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for any i ∈ [T ]. Then

∥W −W∗∥F = ∥Q2[A2; 0]M−1 −Q[A; 0]M−1∥F (F.106)

= ∥Q2A2 −QA∥F (F.107)

= ∥A2 −Q−1
2 QA∥F. (F.108)

Since Q−1
2 Q is a rotation and A,A2 are diagonal, we can always set Q2 = Q without

increasing ∥W −W∗∥F. Then

∥W −W∗∥2
F = ∥A2 −A∥2

F (F.109)

= s(
√
α− 1)2 + s(

√
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√
1/T)2 +

∑
j∈Pi,i ̸=t

((A2)jj −
√

1/T)2. (F.110)

To minimize the contrastive loss, we need α,β to be as large as possible, subject
to ∥W −W∗∥2

F ⩽ γ2, and α,β, (A2)
2
jj ∈ [0, 1]. The optimal is then achieved when

α = 1,
√
β = min

(
1,
√

1
T
+ γ√

s

)
, and (A2)jj =

√
1/T for j ∈ Pi, i ̸= t.

Now, recall that by Proposition 6, the ERM has risk:
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With the fine-tuning using contrastive learning, in the representation learned, α
remains to be 1, while β increases from 1/T to (

√
1/T + γ/

√
s)2. Then the error

bound decreases. This shows that fine-tuning with contrastive learning on unla-
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beled data from the target task can emphasize the task-specific features zPt , which
then leads to better prediction performance.
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g appendix for chapter 9

G.1 Details of Experimental Setup

G.1.1 Datasets

We use three question answering datasets: CoQA (Reddy et al., 2019), Trivi-
aQA (Joshi et al., 2017) and SQuAD (Rajpurkar et al., 2016) for experiments. The
details about these datasets are given below.

CoQA. CoQA is a large-scale dataset for building Conversational Question An-
swering systems. The goal of the CoQA challenge is to measure the ability of ma-
chines to understand a text passage and answer a series of interconnected questions
that appear in a conversation. CoQA contains 127,000+ questions with answers
collected from 8,000+ conversations. The training set contains 108,647 question
queries while the test set contains 7,983 question queries. We use the following
template to construct question queries:

[The provided context paragraph]
[additional question-answer pairs]
Q: [Provided question]
A:

where additional question-answer pairs are preceding turns of the conversation
about the paragraph consisting of questions and reference answers.

TriviaQA. TriviaQA is a reading comprehension dataset containing over 650K
question-answer-evidence triples. TriviaQA includes 95K question-answer pairs
authored by trivia enthusiasts and independently gathered evidence documents, six
per question on average, that provide high quality distant supervision for answering
the questions. We use TriviaQA as a closed-book QA problem (in which the model
must answer a question without access to a supporting paragraph). The training
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set contains 138,384 question queries while the test set contains 17,944 question
queries. We split the original test set into a new test set containing 8,000 question
queries and a validation set containing 9,944 question queries. We use the new test
set for evaluation and use the validation set for hyper-parameter selection. We use
the following template with a 5-shot prompt to construct question queries:

Q: In which decade did Billboard magazine first publish and American
hit chart? A: 30s. Q: What is Bruce Willis’ real first name? A:
Walter. Q: Which city does David Soul come from? A: Chicago. Q: Which
William wrote the novel Lord Of The Flies? A: Golding. Q: Where in
England was Dame Judi Dench born? A: York. Q: [Provided question] A:

SQuAD. Stanford Question Answering Dataset (SQuAD) is a reading comprehen-
sion dataset, consisting of questions posed by crowd-workers on a set of Wikipedia
articles, where the answer to every question is a segment of text, or span, from
the corresponding reading passage. We use the SQuAD 1.1 version, containing
100,000+ question-answer pairs on 500+ articles. The training set contains 86,821
question queries while the test set contains 5,928 question queries. We use the
following template to construct question queries:

[The provided context paragraph]
Q: [Provided question]
A:

G.1.2 LLMs

We perform experiments with OPT (Zhang et al., 2022) and GPT-2 (Radford et al.,
2019) models, which are based on Transformer architecture. For Transformer
architecture, there is a limit to the lengths of the sequences we can pass the models.
The OPT models can handle sequences of up to 2,048 tokens while the GPT-2 models
can handle sequences of up to 1,024 tokens. If the sequence length of an input is
larger than the maximum sequence length that is allowed, we force the model to
output an empty sequence with a −∞ selection score.
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G.1.3 Baselines

For selective prediction, we need to get a predicted output sequence ŷ∗ and a
selection score g(x) for each input sequence x given a model f. The model f can
be a pre-trained LLM or a LLM adapted via soft prompt tuning using training
objective (9.11). We use the beam-search decoding, where the number of beams is
equal to 5, to obtain the predicted output sequence ŷ∗. We consider the following
baselines to compute the selection score g(x):

Perplexity. Perplexity is defined as the exponentiated average negative log-
likelihood of a sequence. The perplexity of the generated output sequence ŷ∗ is
computed as:

perp(ŷ∗ | x; f) = fnorm(ŷ∗ | x)−1 (G.1)

Predictive Entropy. Predictive entropy is a widely used measure of uncertainty.
We use the multinomial sampling with a temperature of 0.5 to obtain an answer list
[ŷ1, . . . , ŷm] for each input sequence x. The predictive entropy is computed as:

pe(x; f) =
m∑
j=1

1
m

log fnorm(ŷj|x) (G.2)

We set m = 10. This is the same as the length-normalised predictive entropy
baseline in Kuhn et al. (2023).

Semantic Entropy. Semantic entropy is an entropy-based uncertainty measure
which uses a bi-directional entailment algorithm for marginalising over semantically
equivalent samples (Kuhn et al., 2023). We follow the settings in Kuhn et al. (2023).
Specifically, we use the multinomial sampling with a temperature of 0.5 to obtain
an answer list of size 10 for each input sequence for uncertainty estimation. We use
the Deberta-large model (He et al., 2020b) that is fine-tuned on the NLI data set,
MNLI (Williams et al., 2018) for the bidirectional entailment clustering algorithm.
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Self-eval. Self-eval is a simple baseline that obtains a selection score from the
LLM by asking whether the proposed answer ŷ∗ is correct or not. Suppose zs is
a series of tokens representing the self-evaluation trigger string “The answer is ”.
Suppose zc and zw are the tokens that represent the words “correct” and “wrong”
respectively. Recall that the logits of the model f on v given x is f̄(v | x). Then, the
self-eval score is computed as:

P(zc | x, ŷ∗) =
exp (f̄(zc | x, ŷ∗, zs))∑

z∈{zc,zw} exp (f̄(z | x, ŷ∗, zs))
(G.3)

P(True). P(True) proposed by Kadavath et al. (2022) is a way to estimate the
probability that a model’s generation is correct by “asking” the model if its answer
is correct. It samples m answers and constructs a new natural language question
using these possible answers as context before asking whether the proposed answer
ŷ∗ is correct and measures the probability of the completion being True. We set
m = 4 and use the multinomial sampling with a temperature of 1.0 to sample the
answers. The format of the prompt is:

Question: Who was the third president of the United States?
Here are some brainstormed ideas: James Monroe
Thomas Jefferson
John Adams
Benjamin Harrison
George Washington
Possible Answer: James Monroe
Is the possible answer: (A) True (B) False.
The possible answer is:

where the “brainstormed answers” are from the set of sampled answers and P(True)
(i.e., the likelihood of the next token being True) is taken as the uncertainty measure.
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G.1.4 Training Details

We have two stage training: the first stage is to train the soft prompt θp using the
training objective (9.11) and the second stage is to train the soft prompt θs using
the training objective (9.12). For both stages, we train the soft prompt for 10 epochs
using AdamW optimizer with a batch size of 8, a learning rate of 0.01 and cosine
learning rate schedule. We remove those data points (x, y) where |x| + |y| > 700
from the training set Dtr to reduce GPU memory usage during training. Here, |x| is
the length of the sequence x. This only removes a very small portion of data points
from the training set for each dataset (remove 4.02% training data points in CoQA,
0% training data points in TriviaQA and 0.04% training data points in SQuAD).
During training θp or θs, we always use 20% training data as validation data for
selecting the best model among all checkpoints after each training epoch. When
training θp, we select the best model based on the loss on the validation data. When
training θs, we select the best model based on the AUROC on the validation data.

G.2 Computational Complexity Analysis
The proposed method ASPIRE needs to train two soft prompts θp and θs. The
complexity of training θp using the training objective (9.11) is the same as the
complexity of the standard soft prompt tuning. When training θs using the training
objective (9.12), the number of training steps is the same as that of training θp. In
each training step of training θs, we compute gradients for one correct output and
two wrong outputs while in each training step of training θp, we compute gradients
for one reference output. Thus, the complexity of training θs is the same as that
of training θp. Therefore, the complexity of the proposed method ASPIRE in the
training time is the same as that of the standard soft prompt tuning.

We analyze the computational complexity of different methods in the test time
in terms of the number of forward passes for the LLM. Since the LLM generates
the output sequence in an auto-regressive way, the number of forward passes
needed depends on the length of the generated output sequence. Suppose the
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maximum length of the generated output sequence is lmax. To generate an output
sequence given an input sequence, we need one forward pass to encode the input
sequence and at most lmax forward passes to obtain the output sequence. Thus, for
generating the output sequence, the maximum number of forward passes is 1+lmax

and the complexity is O(lmax). For the perplexity method, the computational
complexity is O(lmax) since we only need additional one forward pass to obtain the
perplexity score. For the predictive entropy method, the computational complexity
is O(m · lmax) since we need to additionally generate m answers and compute
the likelihood of those m answers. For the semantic entropy method, we omit
the computational complexity of the bidirectional entailment clustering algorithm
since its computational cost is much smaller than that of the generation of the LLM
as stated in Kuhn et al. (2023). Thus, the computational complexity for semantic
entropy is O(m · lmax). For the self-eval method, the computational complexity
is O(lmax) since we only need additional one forward pass to obtain the self-eval
score. For the P(True) method, the computational complexity is O(m · lmax) since
we need to additionally generate m answers and need one forward pass to compute
the P(True) score. For the proposed method ASPIRE, the computational complexity
is O(lmax) since we only need additional one forward pass to obtain the learned
self-eval score. Table G.1 summarizes the computational complexity of different
methods in the test time.

Method Complexity
Perplexity O(lmax)
Predictive Entropy O(m · lmax)
Semantic Entropy O(m · lmax)
Self-eval O(lmax)
P(True) O(m · lmax)
ASPIRE (ours) O(lmax)

Table G.1: Computational complexity of different methods in the test time.
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G.3 Rouge Threshold for Evaluation
We use the Rouge-L (Lin and Och, 2004) metric to evaluate if the predicted answer
is correct or not. The Rouge-L metric produces a score in [0, 1]. We need a threshold
γ to determine whether the predicted answer is correct or not. If the Rouge-L score
is larger than the threshold γ, then the predicted answer is correct; otherwise, the
predicted answer is wrong. The choice of γ depends on the applications. Low
values of γ may lead to labeling some wrong answers as correct answers while
large values of γ may lead to labeling some correct answers as wrong answers. If
we regard the wrong answer as the positive class, then we can use the precision
and recall metrics to evaluate the choice of γ. To compute the precision and recall
metrics, we need ground-truth labels for determining the correctness of predicted
answers, which requires manual labeling. If the Rouge-L score is equal to 0 (or 1),
then it is mostly sure that the predicted answer is wrong (or correct). Thus, we
only need to label those samples whose Rouge-L scores are in (0, 1). To compare
different values of γ, we compute the precision and recall metrics after manually
label 200 samples whose Rouge-L scores are in the range of (0, 1). The results in
Table G.2 show that larger values of γ lead to higher recall but lower precision while
the lower values of γ lead to higher precision but lower recall. In this work, we
focus on the safety-critical applications where accepting a wrong answer is more
costly compared to rejecting a correct answer that is different from the reference
answers. Thus, we prefer high recall than high precision. In our experiments, we
evaluate different methods under the Rouge-L metric with γ ∈ {0.7, 0.8, 0, 9} to
ensure that the recall is at least 90%.

G.4 Rouge Threshold for the Proposed Framework
In the proposed framework ASPIRE, we need the Rouge threshold γ̂ to determine
if the generated answer is correct or not. We want to set a large enough value of
γ̂ so that the generated wrong answers won’t be labeled as correct answers. To
determine the value of γ̂, we manually label the correctness of the 10 generated
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γ
CoQA TriviaQA SQuAD

Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑
0.1 100.00 0.00 100.00 0.62 100.00 7.91
0.2 100.00 10.00 100.00 2.50 100.00 34.53
0.3 100.00 22.50 100.00 11.88 98.55 48.92
0.4 100.00 45.62 97.01 40.62 93.58 73.38
0.5 97.98 60.62 97.09 62.50 85.94 79.14
0.6 97.41 70.62 96.19 63.12 84.73 79.86
0.7 93.51 90.00 86.81 98.75 76.16 94.24
0.8 86.59 96.88 81.22 100.00 73.66 98.56
0.9 80.71 99.38 80.00 100.00 69.85 100.00

Table G.2: Results of comparing different choices of the Rouge threshold γ. The
wrong answer is regarded as the positive class. We use the OPT-2.7B model. We
manually label 200 samples with Rouge-L scores in the range of (0, 1) in each
dataset and then compute the precision and recall. All numbers are percentages.

answers for 50 training examples from each dataset (we have three datasets CoQA,
TriviaQA and SQuAD). The answers are generated using the OPT-2.7B model. We
find that if we set γ̂ = 0.9, then no wrong answers will be labeled as correct answers.
Thus, we set γ̂ = 0.9 for the proposed framework.

G.5 Complete Results
In this section, we present the complete results for OPT and GPT2 models of
different sizes and different Rouge threshold γ. We first evaluate the accuracy of
different LLMs. The results are in Table G.3 (set γ = 0.7), Table G.4 (set γ = 0.8)
and Table G.5 (set γ = 0.9). The results show that after training θp via soft prompt
tuning, the accuracy of LLMs is improved significantly. We then evaluate different
approaches to compute the selection score when the model’s predictions are fixed.
The results are in Table G.6 (use GPT2 models and set γ = 0.7), Table G.7 (use
GPT2 models and set γ = 0.8), Table G.8 (use GPT2 models and set γ = 0.9),
Table G.9 (use OPT models and set γ = 0.7), Table G.10 (use OPT models and set
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γ = 0.8) and Table G.11 (use OPT models and set γ = 0.9). The results show that
the proposed method ASPIRE significantly outperforms the baselines in terms of
AUACC and AUROC across different datasets and LLMs for different values of the
Rouge threshold γ.

Model CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-Medium 35.12 5.44 4.42
Adapted GPT2-Medium with θp 57.90 9.04 66.63
Pre-trained GPT2-Large 41.21 8.16 6.09
Adapted GPT2-Large with θp 63.89 12.50 71.34
Pre-trained GPT2-XL 46.27 11.80 7.41
Adapted GPT2-XL with θp 69.18 17.45 75.44
Pre-trained OPT-350M 28.76 4.35 13.65
Adapted OPT-350M with θp 59.46 8.25 64.74
Pre-trained OPT-1.3B 54.13 15.80 30.23
Adapted OPT-1.3B with θp 76.85 21.73 80.94
Pre-trained OPT-2.7B 60.68 21.38 35.95
Adapted OPT-2.7B with θp 80.45 29.21 83.27

Table G.3: Results of evaluating the accuracy of different LLMs when the Rouge
threshold γ = 0.7. All numbers are percentages.
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Model CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-Medium 32.12 5.00 2.85
Adapted GPT2-Medium with θp 55.12 8.71 62.92
Pre-trained GPT2-Large 38.16 7.64 3.98
Adapted GPT2-Large with θp 61.04 12.14 67.56
Pre-trained GPT2-XL 42.67 11.10 5.21
Adapted GPT2-XL with θp 66.49 16.96 71.17
Pre-trained OPT-350M 27.38 4.25 11.15
Adapted OPT-350M with θp 57.02 8.05 61.29
Pre-trained OPT-1.3B 51.35 15.35 25.73
Adapted OPT-1.3B with θp 74.46 21.26 77.28
Pre-trained OPT-2.7B 57.72 20.71 30.94
Adapted OPT-2.7B with θp 77.97 28.55 80.04

Table G.4: Results of evaluating the accuracy of different LLMs when the Rouge
threshold γ = 0.8. All numbers are percentages.

Model CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-Medium 30.49 4.88 1.99
Adapted GPT2-Medium with θp 53.11 8.53 60.51
Pre-trained GPT2-Large 36.20 7.41 3.00
Adapted GPT2-Large with θp 59.04 11.85 64.98
Pre-trained GPT2-XL 40.32 10.82 4.12
Adapted GPT2-XL with θp 64.59 16.70 68.83
Pre-trained OPT-350M 26.81 4.20 9.62
Adapted OPT-350M with θp 55.33 8.00 59.35
Pre-trained OPT-1.3B 49.78 15.24 22.79
Adapted OPT-1.3B with θp 72.78 21.07 74.97
Pre-trained OPT-2.7B 56.06 20.55 27.41
Adapted OPT-2.7B with θp 76.45 28.26 78.12

Table G.5: Results of evaluating the accuracy of different LLMs when the Rouge
threshold γ = 0.9. All numbers are percentages.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
GPT2-
Medium

Perplexity 38.92 55.77 7.67 60.52 4.58 55.35
Predictive Entropy 45.91 62.89 10.02 67.66 5.99 57.07
Semantic Entropy 48.35 66.30 10.28 68.54 6.18 57.36
Self-eval 36.16 51.14 6.26 56.74 3.70 43.44
P(True) 34.08 48.21 8.24 60.62 5.41 54.33

Adapted
GPT2-
Medium
with θp

Perplexity 72.03 67.89 18.02 72.17 81.91 72.38
Predictive Entropy 72.59 69.42 20.07 77.48 82.00 73.09
Semantic Entropy 73.95 71.54 19.86 77.62 82.35 73.66
Self-eval 57.94 50.43 9.94 54.68 64.79 46.99
P(True) 56.71 48.76 13.55 60.79 65.94 49.13
ASPIRE (ours) 76.32 75.30 20.65 79.41 84.15 77.59

Pre-
trained
GPT2-
Large

Perplexity 48.57 59.82 13.74 66.51 6.39 53.96
Predictive Entropy 55.04 66.68 16.25 70.46 8.25 57.03
Semantic Entropy 57.13 69.57 16.02 70.06 8.81 59.24
Self-eval 42.24 51.72 9.78 54.74 5.07 46.79
P(True) 36.73 45.69 8.60 48.62 6.83 55.62

Adapted
GPT2-
Large
with θp

Perplexity 77.15 68.15 26.83 77.06 86.26 75.34
Predictive Entropy 77.45 69.76 27.83 80.02 86.32 75.65
Semantic Entropy 78.85 71.97 27.61 79.88 86.53 75.90
Self-eval 64.28 50.61 14.26 54.34 70.86 50.81
P(True) 58.97 45.55 12.38 47.61 70.73 50.09
ASPIRE (ours) 81.30 76.38 29.13 82.14 87.83 79.22

Pre-
trained
GPT2-XL

Perplexity 55.93 62.05 22.60 72.88 7.68 51.90
Predictive Entropy 60.76 67.53 24.83 76.20 10.04 57.21
Semantic Entropy 63.03 70.50 24.37 75.33 10.38 59.17
Self-eval 46.67 50.83 9.30 42.75 7.32 49.56
P(True) 46.98 51.17 10.62 44.54 10.69 60.87

Adapted
GPT2-XL
with θp

Perplexity 83.27 72.79 36.49 79.92 88.73 75.08
Predictive Entropy 83.49 73.44 37.31 82.21 88.25 74.16
Semantic Entropy 84.40 75.16 36.68 81.40 88.62 75.26
Self-eval 69.91 51.90 14.39 43.33 74.26 49.13
P(True) 70.63 52.83 13.59 40.59 74.34 49.09
ASPIRE (ours) 85.65 78.32 38.06 83.23 89.86 78.35

Table G.6: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. We use the GPT2 models and set the Rouge
threshold γ = 0.7. All numbers are percentages. Bold numbers are superior results.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
GPT2-
Medium

Perplexity 35.24 54.28 7.03 59.54 2.82 53.29
Predictive Entropy 42.43 62.42 9.23 66.62 3.86 58.15
Semantic Entropy 45.53 66.84 9.52 67.83 4.02 58.53
Self-eval 32.97 51.13 5.95 57.98 2.06 40.62
P(True) 31.05 48.10 7.81 61.51 3.73 55.72

Adapted
GPT2-
Medium
with θp

Perplexity 69.36 67.21 17.42 71.77 79.26 72.25
Predictive Entropy 69.74 68.58 19.38 77.26 79.18 72.70
Semantic Entropy 71.35 71.10 19.22 77.55 79.61 73.53
Self-eval 55.04 50.31 9.75 55.26 61.43 47.61
P(True) 53.95 48.66 13.32 61.55 62.07 49.06
ASPIRE (ours) 73.97 75.05 20.12 79.59 82.02 78.02

Pre-
trained
GPT2-
Large

Perplexity 44.95 58.70 13.06 66.47 4.06 51.95
Predictive Entropy 51.57 66.32 15.43 70.33 5.61 57.34
Semantic Entropy 54.39 70.24 15.25 70.08 6.25 61.09
Self-eval 39.66 52.36 9.21 54.62 3.15 45.40
P(True) 33.73 45.72 8.20 49.18 4.68 57.51

Adapted
GPT2-
Large
with θp

Perplexity 74.64 67.40 26.20 76.89 83.61 74.57
Predictive Entropy 74.96 69.07 27.22 80.01 83.57 74.67
Semantic Entropy 76.65 71.82 27.06 79.99 83.81 75.10
Self-eval 61.88 50.99 13.83 54.15 67.28 51.20
P(True) 56.35 45.90 11.95 47.55 67.13 50.52
ASPIRE (ours) 79.39 76.49 28.43 82.01 85.71 79.27

Pre-
trained
GPT2-XL

Perplexity 52.07 61.15 21.54 72.72 5.30 49.81
Predictive Entropy 56.83 66.90 23.65 76.15 7.27 56.53
Semantic Entropy 59.74 70.83 23.23 75.38 7.59 58.85
Self-eval 43.34 51.14 8.81 42.76 5.45 51.47
P(True) 43.24 51.09 9.81 43.94 8.54 65.61

Adapted
GPT2-XL
with θp

Perplexity 81.05 71.85 35.61 79.69 86.08 74.71
Predictive Entropy 81.23 72.42 36.42 82.01 85.53 73.62
Semantic Entropy 82.38 74.62 35.84 81.31 85.93 74.84
Self-eval 67.35 51.89 14.05 43.45 70.30 49.21
P(True) 68.02 52.83 13.21 40.48 69.47 48.32
ASPIRE (ours) 83.91 78.09 37.26 83.18 87.76 78.82

Table G.7: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. We use the GPT2 models and set the Rouge
threshold γ = 0.8. All numbers are percentages. Bold numbers are superior results.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
GPT2-
Medium

Perplexity 33.09 53.03 6.72 58.75 1.74 47.52
Predictive Entropy 40.52 62.05 8.90 66.11 2.61 56.43
Semantic Entropy 44.11 67.38 9.26 67.57 2.85 57.36
Self-eval 31.46 51.29 5.88 58.50 1.17 35.24
P(True) 29.24 47.97 7.73 62.30 2.78 58.35

Adapted
GPT2-
Medium
with θp

Perplexity 67.42 66.51 17.06 71.50 77.63 72.22
Predictive Entropy 67.89 68.15 19.06 77.30 77.49 72.55
Semantic Entropy 69.77 71.20 18.94 77.75 78.07 73.77
Self-eval 53.15 50.51 9.67 55.80 58.95 47.61
P(True) 51.95 48.59 13.21 62.06 59.55 48.95
ASPIRE (ours) 72.39 74.96 19.81 79.64 80.68 78.49

Pre-
trained
GPT2-
Large

Perplexity 42.74 57.93 12.56 65.85 2.78 46.87
Predictive Entropy 49.68 66.44 14.89 69.76 3.94 54.80
Semantic Entropy 52.90 71.07 14.76 69.63 4.53 59.75
Self-eval 38.08 52.84 8.97 54.45 2.42 45.97
P(True) 31.71 45.48 8.06 49.66 3.84 60.48

Adapted
GPT2-
Large
with θp

Perplexity 72.97 66.96 25.67 76.60 81.77 74.01
Predictive Entropy 73.34 68.78 26.69 79.84 81.80 74.31
Semantic Entropy 75.24 71.99 26.59 79.96 82.29 75.36
Self-eval 60.35 51.58 13.44 53.82 64.89 51.42
P(True) 54.34 45.68 11.65 47.57 64.77 50.75
ASPIRE (ours) 78.08 76.61 27.97 81.99 84.24 79.37

Pre-
trained
GPT2-XL

Perplexity 49.71 60.59 20.96 72.31 4.04 46.28
Predictive Entropy 54.74 67.05 23.10 75.93 5.78 55.59
Semantic Entropy 58.07 71.83 22.76 75.33 6.18 59.20
Self-eval 41.19 51.46 8.67 42.97 4.61 53.48
P(True) 40.37 50.77 9.46 43.58 7.30 69.47

Adapted
GPT2-XL
with θp

Perplexity 79.60 71.40 35.11 79.47 84.69 74.62
Predictive Entropy 79.86 72.25 35.93 81.85 84.23 73.81
Semantic Entropy 81.25 74.87 35.39 81.19 84.74 75.38
Self-eval 65.61 52.08 13.87 43.51 68.10 49.56
P(True) 65.90 52.61 12.95 40.31 67.37 48.74
ASPIRE (ours) 82.77 78.11 36.81 83.09 86.57 79.06

Table G.8: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. We use the GPT2 models and set the Rouge
threshold γ = 0.9. All numbers are percentages. Bold numbers are superior results.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
OPT-
350M

Perplexity 35.37 59.39 6.81 67.09 13.07 50.34
Predictive Entropy 36.55 60.31 7.20 65.04 17.86 59.33
Semantic Entropy 38.80 64.38 7.31 65.15 19.08 61.66
Self-eval 30.02 52.69 5.98 61.17 14.00 51.41
P(True) 28.70 50.60 5.29 55.69 17.76 59.55

Adapted
OPT-
350M
with θp

Perplexity 74.50 70.21 18.13 75.86 80.64 73.76
Predictive Entropy 74.14 68.88 18.73 76.83 80.79 73.46
Semantic Entropy 74.94 70.14 18.46 76.91 81.10 73.98
Self-eval 60.86 51.67 10.29 57.89 65.48 50.70
P(True) 59.20 50.04 8.71 52.05 64.55 50.29
ASPIRE (ours) 75.55 72.37 19.00 78.54 82.59 77.18

Pre-
trained
OPT-1.3B

Perplexity 69.51 69.32 29.78 74.77 32.43 54.65
Predictive Entropy 69.46 68.48 31.01 75.21 41.06 62.96
Semantic Entropy 70.42 70.46 30.63 74.74 43.33 66.30
Self-eval 56.38 52.86 15.06 49.96 30.74 51.50
P(True) 57.21 53.19 16.83 51.19 28.88 46.75

Adapted
OPT-1.3B
with θp

Perplexity 88.50 73.64 42.46 79.96 91.45 74.47
Predictive Entropy 88.24 72.38 43.03 80.46 91.46 74.38
Semantic Entropy 88.91 74.02 42.70 80.02 91.72 75.44
Self-eval 78.52 53.08 20.65 49.24 81.05 51.52
P(True) 79.07 52.76 22.20 50.34 81.58 50.77
ASPIRE (ours) 90.76 79.26 44.03 83.06 93.41 81.17

Pre-
trained
OPT-2.7B

Perplexity 75.26 70.16 40.93 78.86 40.82 57.20
Predictive Entropy 75.29 69.16 41.20 78.92 47.18 62.85
Semantic Entropy 76.31 70.96 40.72 78.06 51.53 68.40
Self-eval 62.32 52.26 25.88 59.04 41.78 59.05
P(True) 62.16 51.80 24.88 56.89 34.77 49.42

Adapted
OPT-2.7B
with θp

Perplexity 90.80 74.23 53.56 81.74 92.86 75.72
Predictive Entropy 90.63 72.87 53.91 82.19 92.96 75.58
Semantic Entropy 91.23 74.61 53.58 81.55 93.21 76.53
Self-eval 81.30 50.76 32.98 56.03 86.34 56.99
P(True) 81.14 51.01 33.48 56.27 82.59 49.48
ASPIRE (ours) 92.63 80.25 55.06 84.44 94.73 82.60

Table G.9: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. We use the OPT models and set the Rouge
threshold γ = 0.7. All numbers are percentages. Bold numbers are superior results.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
OPT-
350M

Perplexity 33.50 58.50 6.64 66.73 10.50 49.05
Predictive Entropy 34.88 59.82 7.03 64.84 14.59 58.98
Semantic Entropy 37.51 64.67 7.17 65.20 15.74 61.85
Self-eval 28.73 52.91 5.93 61.83 11.33 50.71
P(True) 27.10 50.36 5.25 56.28 15.38 61.06

Adapted
OPT-
350M
with θp

Perplexity 72.04 69.26 17.76 75.70 77.72 72.95
Predictive Entropy 71.77 68.12 18.30 76.51 77.91 72.76
Semantic Entropy 72.80 69.90 18.06 76.67 78.35 73.57
Self-eval 58.65 52.06 10.03 57.87 61.83 50.32
P(True) 56.82 50.17 8.58 52.27 61.13 50.18
ASPIRE (ours) 73.56 72.05 18.63 78.42 80.33 77.29

Pre-
trained
OPT-1.3B

Perplexity 66.09 67.76 29.01 74.46 27.67 53.61
Predictive Entropy 66.34 67.36 30.21 74.92 35.65 62.44
Semantic Entropy 67.64 70.02 29.91 74.61 38.00 66.50
Self-eval 53.87 53.23 14.73 50.12 26.42 51.63
P(True) 54.07 52.70 16.44 51.38 23.69 45.44

Adapted
OPT-1.3B
with θp

Perplexity 86.67 72.53 41.59 79.61 89.00 73.48
Predictive Entropy 86.41 71.33 42.18 80.15 89.02 73.35
Semantic Entropy 87.27 73.41 41.89 79.75 89.42 74.81
Self-eval 76.49 53.45 20.23 49.20 77.85 52.25
P(True) 76.79 52.52 21.65 50.25 77.86 50.71
ASPIRE (ours) 89.48 79.05 43.23 82.84 91.86 81.44

Pre-
trained
OPT-2.7B

Perplexity 72.00 68.49 39.79 78.43 35.76 56.78
Predictive Entropy 72.23 67.89 40.05 78.49 41.18 61.98
Semantic Entropy 73.64 70.43 39.67 77.81 45.83 68.35
Self-eval 59.51 52.24 25.10 59.02 36.71 59.36
P(True) 58.81 51.26 24.13 56.80 29.13 48.41

Adapted
OPT-2.7B
with θp

Perplexity 89.10 73.16 52.64 81.56 91.04 74.96
Predictive Entropy 88.95 72.00 52.97 82.00 91.16 74.86
Semantic Entropy 89.80 74.53 52.71 81.47 91.46 75.91
Self-eval 79.12 51.00 32.28 56.03 83.28 56.52
P(True) 78.74 50.89 32.95 56.42 79.05 49.26
ASPIRE (ours) 91.49 80.12 54.15 84.28 93.37 82.33

Table G.10: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. We use the OPT models and set the Rouge
threshold γ = 0.8. All numbers are percentages. Bold numbers are superior results.
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Model Method CoQA TriviaQA SQuAD
AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-
trained
OPT-
350M

Perplexity 32.58 57.88 6.50 66.50 8.63 46.42
Predictive Entropy 34.13 59.61 6.91 64.62 12.56 58.33
Semantic Entropy 36.97 64.81 7.06 65.06 13.82 61.99
Self-eval 27.98 52.97 5.90 62.10 10.08 51.66
P(True) 26.41 50.23 5.21 56.37 14.01 62.76

Adapted
OPT-
350M
with θp

Perplexity 70.07 68.20 17.67 75.63 76.12 72.40
Predictive Entropy 69.97 67.41 18.22 76.47 76.44 72.48
Semantic Entropy 71.38 69.93 17.98 76.65 77.11 73.81
Self-eval 57.05 52.30 9.96 57.81 59.96 50.56
P(True) 55.10 50.32 8.53 52.22 59.05 50.03
ASPIRE (ours) 71.94 71.41 18.54 78.39 79.12 77.38

Pre-
trained
OPT-1.3B

Perplexity 64.03 66.70 28.77 74.31 24.05 51.41
Predictive Entropy 64.59 66.80 29.98 74.81 31.35 60.95
Semantic Entropy 66.29 70.03 29.72 74.56 34.05 66.05
Self-eval 52.35 53.37 14.64 50.14 24.12 52.63
P(True) 52.51 52.64 16.27 51.38 20.92 45.41

Adapted
OPT-1.3B
with θp

Perplexity 85.21 71.30 41.21 79.43 87.71 73.17
Predictive Entropy 85.05 70.44 41.81 80.00 87.81 73.34
Semantic Entropy 86.23 73.38 41.55 79.66 88.24 74.81
Self-eval 75.09 53.72 20.07 49.23 75.80 52.60
P(True) 75.16 52.38 21.44 50.22 75.83 51.10
ASPIRE (ours) 88.49 78.52 42.88 82.70 90.79 81.34

Pre-
trained
OPT-2.7B

Perplexity 70.07 67.37 39.42 78.23 31.18 54.43
Predictive Entropy 70.44 67.03 39.69 78.34 36.14 60.36
Semantic Entropy 72.29 70.35 39.34 77.68 40.96 67.71
Self-eval 57.76 52.07 24.85 58.93 32.56 59.52
P(True) 57.06 50.98 23.96 56.74 25.64 48.02

Adapted
OPT-2.7B
with θp

Perplexity 88.06 72.44 52.12 81.33 90.01 74.59
Predictive Entropy 87.95 71.48 52.48 81.81 90.17 74.71
Semantic Entropy 88.96 74.50 52.28 81.35 90.47 75.75
Self-eval 77.71 51.04 31.90 55.89 81.27 56.36
P(True) 77.16 50.54 32.62 56.33 76.89 48.85
ASPIRE (ours) 90.76 79.94 53.68 84.10 92.52 82.04

Table G.11: Results of evaluating different methods to compute the selection score
when the model’s predictions are fixed. We use the OPT models and set the Rouge
threshold γ = 0.9. All numbers are percentages. Bold numbers are superior results.
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