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abstract

Online social media have come to record an ever-increasing share of human
communication and social interaction, making available vast quantities of
data. This enables studies of individuals and society at large while presenting
numerous computational and statistical challenges throughout the process.
This dissertation introduces a set of spectral methods for social media data
analysis and provides their statistical justifications and theoretical performance
guarantees. These methods are motivated by the following questions that
emerged in social media data analysis:

Q1: How to obtain a targeted sample of accounts?

Q2: How to select the number of communities?

Q3: How to find the underlying community structure?

Q4: How to collect some topic-specific documents?

For Q1, we study personalized PageRank (PPR), a popular technique
that samples a small community from a massive network. Under the degree-
corrected stochastic block model, we provide a simple and interpretable form
for the PPR vector, highlighting its biases towards high degree nodes outside
of the target block. We examine a simple adjustment based on node degrees
and establish the consistency results for PPR clustering.

For Q2, we introduce a notion of cross-validated eigenvalues. Under a large
class of random graph models, we provide a simple estimation procedure, a
central limit theorem that gives a p-value for the statistical significance of each
sample eigenvector, and a proof of consistency for estimating the number of
communities in a network.

For Q3, we propose a new basis for sparse principal component analysis
which can be applied on a graph adjacency matrix to identify the community
structure. We provide evidence showing that for the same level of sparsity,
the proposed method is more stable and can explain more variance compared
to alternative methods.



xix

For Q4, we study a local word embedding technique that measures both
the frequency and exclusivity of words to a targeted topic. Under the popu-
lar latent Dirichlet allocation, we provide the statistical consistency for this
embedding.

Finally, we introduce the “murmuration” framework which integrates
the statistical methods and tracks the public political opinion expressions on
Twitter, demonstrating a new way of imagining and measuring opinions on
social media.



1

1 introduction

1.1 Background

Spectral methods hold a central place in statistical data analysis. In a nutshell,
spectral methods refer to a collection of algorithms built upon the eigenvec-
tors (resp. singular vectors) and eigenvalues (resp. singular values) of some
properly designed matrices of data. Classical spectral methods include princi-
pal components analysis (PCA), in which a low-dimensional subspace that
explains most of the variance in the data is sought (Pearson, 1901; Hotelling,
1933); Fisher’s discriminant analysis, which aims to determine a separating
hyperplane for data classification (Fisher, 1936); and multidimensional scal-
ing, used to realize metric embeddings of the data (Kruskal, 1964a,b). Recent
developments of spectral methods have highlighted its strengths on handling
large-scale, high-dimensional, and noisy data (Belabbas and Wolfe, 2009; Chen
et al., 2020b), including community detection in networks (McSherry, 2001;
Newman et al., 2006; Rohe et al., 2011; Abbe, 2017), sampling (Heckathorn
and Cameron, 2017; Rohe et al., 2019; Chen et al., 2020a), clustering (Ng et al.,
2001; Von Luxburg, 2007; Rohe and Zeng, 2020), dimensionality reduction
(Belkin and Niyogi, 2003; Chen and Rohe, 2020), low-rank matrix estimation
(Achlioptas and McSherry, 2007; Keshavan et al., 2010), among others. This
dissertation covers some of the methodological developments that are largely
motivated by social media data analysis.

As lots of human activities now taking place online (e.g., social media),
digital media have come to record an ever-increasing share of human commu-
nication and social interaction, making available vast quantities of big data, in
the forms of text, audio, and video (Gentzkow et al., 2019; Golder and Macy,
2014). Such rich and large-scale data offer an unprecedented opportunity for
social scientists to study individuals and society at large unobtrusively (Sal-
ganik, 2019). For example, Twitter have emerged as one key battleground of
public discourse, where people from different backgrounds actively comment
on current events and public issues, and strive to exert influence (Conway
et al., 2015; Tufekci, 2013; Kim et al., 2015). This leads to naturally occurring,
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temporally sensitive, and inherently social opinions (Anstead and O’Loughlin,
2014; Boyd, 2010; McGregor, 2019). Another key aspect of social media is the
various homogeneous networks that it is embedded in, where like-minded in-
dividuals interact with each other and reinforce opinions (Colleoni et al., 2014;
Conover et al., 2011; Barberá et al., 2015; Sunstein, 2018). More importantly,
blended into individual day-to-day practice and the social world (Becker et al.,
2010; Couldry, 2012; Tufekci and Wilson, 2012; McGregor, 2020), social media
are an important public opinion domain in and of itself.

Existing studies that leverage social media data have primarily use natural
language processing of text to identify patterns of communities of opinion
expressions, such as sentiments or topics (Bollen et al., 2011; Tumasjan et al.,
2011; Cody et al., 2015), and to compare the results with survey-based opinion
polls (O’Connor et al., 2010). However, as the conception of public opinion is
deeply intertwined with tools of opinion measurement (Herbst, 2001; Zaller,
1994), a blunt comparison between social media and survey-based opinion
polls can be misleading. Furthermore, the text-centric approach fails to take
full advantage of social media data to reveal the networks that opinions are
embedded in and the social and conversational aspects of public opinion
(Anstead and O’Loughlin, 2014), such as “Who talks about which events?” and
“How are they talking about these events?” The “who” and “how” questions
are especially important to address as a myriad of actors, ranging from social
movement activists to propagandists, use social media to influence public
opinion (Freelon et al., 2018; Tucker et al., 2018). Some studies have moved
beyond text to account for characteristics of social media users, which can be
detected with high accuracy (Pennacchiotti and Popescu, 2011; Kosinski et al.,
2013). For example, Twitter accounts have been selected as “computational
focus groups” based on hashtag use to map shared attention (Lin et al., 2014)
or classified into hierarchical groups based on Twitter lists to trace opinion
flow (Wu et al., 2011).
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1.2 Motivating questions

We introduce a framework called “murmuration” for the study of public
opinion on social media (Chapter 6). Given homophily driving friendship
formation (McPherson et al., 2001; De Choudhury, 2011) and abundant empir-
ical evidence for the effectiveness of social network structure (i.e., friendship
relations) in predicting individual characteristics (Pennacchiotti and Popescu,
2011; Al Zamal et al., 2012; Grabowicz et al., 2012; Barberá et al., 2015; Pan
et al., 2019), this framework uses social network structure to computationally
identifies focus groups, which we call “flocks” (drawing on the idiom “birds
of a feather flock together”). In this work, we consider the following series of
motivating questions emerged in the design of the “murmuration.”

Q1: How to obtain a targeted sample of accounts?

One of the key difficulties in studying social media is to gather subjects that
are relevant to the scientific objective. A motivating example is to sample
the Twitter friendship graph for accounts that report and discuss current
political events. For this task, Chapter 2 provides statistical theory and intuition
for Personalized PageRank (PPR), a popular technique that samples a small
community from a massive network. We study a setting where the entire
network is expensive to thoroughly obtain or maintain, but we can start from
a seed node of interest and “crawl” the network to find other nodes through
their connections. By crawling the graph in a designed way, the PPR vector
can be approximated without querying the entire massive graph, making it
an alternative to snowball sampling. Using the degree-corrected stochastic
block model, we study whether the PPR vector can select nodes that belong to
the same block as the seed node. We provide a simple and interpretable form
for the PPR vector, highlighting its biases towards high degree nodes outside
of the target block. We examine a simple adjustment based on node degrees
and establish consistency results for PPR clustering that allows for directed
graphs. These results are enabled by recent technical advances showing the
element-wise convergence of eigenvectors. We illustrate the method with the
massive Twitter friendship graph, which we crawl using the Twitter API. We
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find that (i) the adjusted and unadjusted PPR techniques are complementary
approaches, where the adjustment makes the results particularly localized
around the seed node and (ii) the bias adjustment greatly benefits from degree
regularization.

Q2: How to select the number of communities?

In applied multivariate statistics, estimating the number of latent dimensions k
is a fundamental and recurring problem. One common diagnostic is the scree
plot, which plots the largest sample eigenvalues in decreasing order; the user
searches this plot for a “gap” or “elbow” in the decaying eigenvalues. This
diagnostic has two key limitations. First, the eigenvalues often have multiple
gaps and elbows. Second, in statistical models with k true dimensions, bias
differentially effects the k and k+1 sample eigenvalues, and this bias blurs any
gap or elbow between them. A more general problem is that a useful theory
and methodology must confront the possibility that only some of the leading k
population eigenvectors are estimable. In this situation, the “correct” choice of
k is the number of statistically useful dimensions. To confront these problems,
Chapter 3 introduces a notion of cross-validated eigenvalues. Under a large
class of random graph models, we provide (1) a simple estimation procedure,
(2) a central limit theorem that gives a p-value for the statistical significance
of each sample eigenvector, and (3) a proof of consistency. This approach
can be used to estimate the number of statistically useful sample eigenvectors,
naturally adapting to the complexity of the estimation task. In simulations
and a data example, the proposed estimator compares favorably to alternative
approaches in both computational and statistical performance.

Q3: How to find the underlying community structure?

Spectral clustering applies PCA on a graph adjacency matrix (with or without
normalization) then runs the K-means algorithm on the loading coefficients
to obtain clusters (or communities). We consider a simplification by solely
using sparse PCA. Previous versions of sparse PCA have presumed that the
eigen-basis (a p×kmatrix) is approximately sparse. In Chapter 4, we propose
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a method that presumes the p× kmatrix becomes approximately sparse after
a k × k rotation. The simplest version of the algorithm initializes with the
leading k principal components. Then, the principal components are rotated
with an k × k orthogonal rotation to make them approximately sparse. Fi-
nally, soft-thresholding is applied to the rotated principal components. This
approach differs from prior approaches because it uses an orthogonal rota-
tion to approximate a sparse basis. One consequence of this rotation is that
a sparse component need not to be a leading eigenvector, but rather a mix-
ture of them. In this way, we propose a new (rotated) basis for sparse PCA,
which can be applied to a graph adjacency matrix to identify the underly-
ing community structure. In addition, our approach avoids “deflation” and
multiple tuning parameters required for that. Our sparse PCA framework
is versatile; for example, it extends naturally to a two-way analysis of a data
matrix for simultaneous dimensionality reduction of rows and columns. We
provide evidence showing that for the same level of sparsity, the proposed
sparse PCA method is more stable and can explain more variance compared
to alternative methods. Through three applications—sparse coding of images,
analysis of transcriptome sequencing data, and large-scale clustering of social
networks, we demonstrate the modern usefulness of sparse PCA in exploring
multivariate data.

Q4: How to collect some topic-specific documents?

In “text-as-data” research, the critical first step is to assemble a set of doc-
uments relevant to the topic of interest from a large corpus. In Chapter 5,
we address a setting where the entire corpus is computationally expensive
and time consuming to thoroughly examine, but it is cheaper to query docu-
ments by keyword search, where the inclusion of a document is determined by
whether it contains the keyword(s). To select keywords that can yield targeted
documents with high precision and relevance, we propose to an approach
called “WordPPR” that (1) constructs a word co-occurrence graph, in which
two words form an edge if they co-occur in one document; (2) ranks words in
the graph by the personalize PageRank (PPR) and its degree-adjusted version.
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We study WordPPR under the latent Dirichlet allocation and provide statis-
tical consistency results for the algorithm, highlighting that the PPR vector
and its degree-adjusted version measure words’ popularity and exclusivity to
the targeted topic respectively. These results are enabled by recent technical
advances showing the element-wise convergence of eigenvectors. We illustrate
the method with simulation studies and the assemblage of tweets related to
the “#MeToo” movement. We find that (i) WordPPR is robust to a wide choice
of the teleportation constant and (ii) WordPPR benefits from using the doc-
uments collected from searching the initial keywords, rather than a random
sample of documents.

1.3 The “murmuration”

As people tend to connect with like-minded others and express opinions in
response to current events on social media, their expression is naturally oc-
curring, temporally sensitive, and inherently social. Chapter 6 presents a new
way of imagining and measuring opinions that emerge from various homoge-
neous networks on social media. Our framework for large-scale measurement
of social media public opinion (1) samples targeted nodes from a large so-
cial graph, (2) identifies homogeneous, interactive, and stable networks of
accounts, which we call “flocks,” based on social network structure, and (3)
measures and (4) presents their opinions with flocks. We apply this framework
to Twitter and provide empirical evidence that the social network structure
encoded in flocks accurately and consistently predicts opinion expression. We
further show that this framework captures the intensity and temporal dynam-
ics of opinion expression by various flocks as well as their opinion contestation
in response to real-world events. Taken together, the results demonstrate one
way that social media can be leveraged to examine the social dynamics of
public opinion in the digital media environment.
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2 targeted sampling from massive block model graphs
with personalized pagerank

2.1 Introduction

Much of the literature on graph sampling has treated the entire graph, or all of
the people in it, as the target population. However, in many settings, the target
population is a small community in the massive graph. For example, a key
difficulty in studying social media is to gather data that is sufficiently relevant
for the scientific objective. A motivating example for this paper is to sample the
Twitter friendship graph for accounts that report and discuss current political
events.1 This corresponds to sampling and identifying multiple different
communities, each a potentially small part of the massive network. In such
an application, the graph is useful for two primary reasons. First, via link
tracing, we can find potential members of the target population. Second, the
graph connections are informative for identifying community membership.
Throughout, we presume that the sampling is initiated around a “seed node”
that belongs to the target community of interest.

Personalized PageRank (PPR) can be thought of as an alternative to snow-
ball sampling, a popular technique for gathering individuals close to the seed
node. For some d > 0, snowball sampling gathers all individuals who are d
friends away from the seed. This process has two competing flaws for our
application which are addressed by PPR. First, snowball sampling fails to
account for the density of common friendships. For example, perhaps i and j
are both one friend removed from the seed, but i has 10 friends in common
with the seed, while j only has 1 friend in common. It seems natural to suppose
that i is closer than j to the seed. Hence, the metric for snowball sampling can
be misleading. Second, the snowball sample size grows very quickly with d.
For example, under the “six degrees of separation” phenomenon (Watts and
Strogatz, 1998; Newman et al., 2006), snowballing gathers the entire graph if
d > 6.

1See our website http://murmuration.wisc.edu which does this.

http://murmuration.wisc.edu
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PPR gives a sample that is more localized around the seed node. The PPR
vector is defined as the stationary distribution of what we call a personalized
random walk (Page et al., 1998). At each step of the personalized random walk,
the random walker returns to the seed node with probability α, called the
teleportation constant, and with probability 1 − α, the random walker goes to
an adjacent node that is chosen uniformly at random. Consider the stationary
distribution of this process as giving the inclusion probability for a sample of
size 1. This is the PPR vector. PPR naturally leads to a clustering algorithm,
where the cluster is made up of the nodes with a large inclusion probability.
To quickly approximate the PPR vector, Berkhin (2006) proposed an algorithm
that only examines nodes with large inclusion probabilities (i.e. nodes near
the seed). As such, PPR is particularly useful for its computational efficiency –
the running time and the amount of data it requires is nearly linear in the size
of the output cluster, which is typically much smaller than that of the entire
graph. Due to the local nature of the algorithm, it can be used to study large
graphs such as Twitter where the entire graph is not available, but where one
can query to find the connections to any small set of nodes.

One way to conduct local clustering is by exploring and ranking the nearby
nodes of a seed node. (Andersen and Lang, 2006; Andersen and Peres, 2009;
Alamgir and von Luxburg, 2010; Gharan and Trevisan, 2012). Spielman and
Teng (2004) pioneered local clustering by defining nearness as the landing
probability of a random walk starting from the seed node. Their algorithm’s
guarantee was improved in follow-up work by Andersen et al. (2006) which
proposed using an approximate PPR vector. Local algorithms can be applied
recursively to solving more complicated problems such as graph partitions
(k-way partitions) (Spielman and Teng, 1996; Karypis and Kumar, 1998), and
has many fruitful applications (Jeh and Widom, 2003; Macropol et al., 2009;
Liao et al., 2009; Gupta et al., 2013; Gleich, 2015), particularly when it comes
to sampling and studying massive graphs.

Along with the widespread use of PPR, there has been recent work to
study its statistical estimation properties under a statistical model with latent
community structure. Beyond the scope of local clustering, Kloumann et al.
(2017) showed that the PPR vector is asymptotically equivalent to optimal
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linear discriminant analysis under the stochastic block model (SBM) (Holland
et al., 1983a), assuming a symmetry condition on the block structure. We
add to this statistical understanding of PPR by providing a simple and more
general representation for PPR vectors that allows for different block sizes,
more than two blocks, degree heterogeneity, and directed edges. In order to
understand the effects of heterogeneous node degrees, this paper uses the
degree-corrected stochastic block model (DC-SBM) (Karrer and Newman,
2011b) and examines when the PPR clustering recovers nodes within the same
block as the seed node (local cluster). Breaking the symmetry that is imposed
by Kloumann et al. (2017) reveals additional insight. In particular, given a seed
node in the first block, we show that PPR is likely to contain high degree nodes
outside of that block. We study an adjustment that was previously proposed in
Andersen et al. (2006). We show how this adjustment can correct for the bias.
We illustrate these ideas with examples from the Twitter friendship graph.

An illustrative example in social media

Local clustering using PPR is particularly well suited to studying current
political events on Twitter because (i) the accounts that discuss politics or
current events are a small part of the entire Twitter graph, (ii) it is reasonable
to believe that the accounts in our target population are well connected to one
another in the Twitter friendship graph, and (iii) while the entire Twitter graph
is not publicly available, the way that PPR (Algorithm 2.1 and 2.3) queries the
graph matches the Twitter API protocol which is the primary mode of access
for researchers.

While we do not suppose that the Twitter friendship graph is sampled from
a DC-SBM, Twitter does have all of the heterogeneities that our results identify
as important. The Twitter friendship graph is composed of users who can
freely follow others but will not necessarily be followed back, or friended. Such
asymmetry between following and friending forms a directed graph where
follower count indicates status – some popular/high-status nodes command
millions of followers while the majority of nodes are followed by far fewer.

The theoretical results in this paper suggest that such degree heterogeneities
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Table 2.1: Top 15 handles by PPR clustering. Column names represent seed
nodes, and the sampled nodes are ranked by PPR values, with teleportation
constant α = 0.15 uniformly.

@CNN @BreitbartNews @dailykos
1 CNN Breaking News Alex Marlow Hillary Clinton
2 CNN International AndrewBreitbart Stephen Colbert
3 Wolf Blitzer Big Hollywood Rachel Maddow MSNBC
4 Anderson Cooper Big Government Jake Tapper
5 Christiane Amanpour James O’Keefe Joy Reid
6 Pope Francis Sean Hannity Chris Hayes
7 Dr. Sanjay Gupta Raheem Emma Gonzlez
8 CNNMoney Joel B. Pollak Markos Moulitsas
9 Jake Tapper Ann Coulter Maggie Haberman
10 Brian Stelter Allum Bokhari Sarah Silverman
11 CNN Newsroom Ben Kew Lin-Manuel Miranda
12 Dana Bash Brandon Darby Elizabeth Warren
13 CNN Politics Noah Dulis Jon Favreau
14 BBC Breaking News Michelle Malkin Michelle Obama
15 Brooke Baldwin Nate Church Bill Clinton

Through the PPR vector, the top 15 handles returned to each of the three seed
nodes fit well with the characteristics of the seed nodes. They are popular/high-
status handles either directly related to the seed nodes or align with their political
leanings. This shows the effectiveness of clustering via the PPR vector. It also
shows the PPR vector’s preference for highly connected nodes.

will make the PPR vector biased for detecting block memberships (Theorem
2.4). We propose a way to adjust for this bias (Algorithm 2.2) and show that it
is a consistent estimator (Corollary 2.7). Not surprisingly, this section demon-
strates that PPR with and without the bias adjustment give fundamentally
different results on the Twitter graph. However, depending on the application,
the biases in the PPR vector might be advantageous. In this way, PPR with and
without the bias adjustment are complementary, not competing, approaches.

To illustrate, Table 2.1 displays the top 15 handles ranked by the PPR vector
(without adjustment) for three different seed nodes: @CNN, @BreitbartNews,
and @dailykos, the Twitter accounts of three different types of media outlets
that exhibit distinct political leanings (legacy broadcast news, online right-
wing and online left-wing). For @CNN, all top 15 handles ranked by the PPR
vector are its subsidiary accounts and its celebrity reporters and anchors (like
Wolf Blitzer and Anderson Cooper), except for one account, Pope Francis, who
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Table 2.2: Top 15 handles by adjusted PPR (with regularization) sampling.
Column names represent seed nodes, and the sampled nodes are ranked by
adjusted PPR values, with teleportation constant α = 0.15 uniformly.

@CNN @BreitbartNews @dailykos
1 PowerZ Robert Two Thanks
2 Elissa Weldon Lee Peace Catherine Daligga
3 Tess Eastment Wynn Marlow exmearden
4 Chris_Dawson Logan Churchwell Faith Gardner
5 carol kinstle Peter Schweizer Andrew Thornton
6 erinmclaughlin Breitbart Sports UnreasonableFridays
7 Taylor Ward Jon Fleischman DKos Top Comments
8 Jennifer Z. Deaton Nate Church 2016 relitigator
9 Pam Benson Daniel Nussbaum Daily Kos
10 amy entelis Noah Dulis Walter Einenkel
11 Grace Bohnhoff Jon David Kahn Candelaria Vargas
12 kate lazarus Breitbart California Mara Schechter
13 Newstron Ken Klukowski Emi Feldman
14 Becky Brittain pam key The Soulful Negress
15 CNN Ballot Bowl Auntie Hollywood Kim Soffen

After adjustment, PPR returns a more localized cluster. Instead of the
highly visible public faces of the three seed organizations, the individuals
in this table serve a central role to the internal organization (e.g. editors
and writers). Depending on the application, one might prefer the results
in Table 2.1 or Table 2.2.

enjoys an extremely larger following. The top 15 handles for @BreitbartNews
are a mixed bag of influential conservatives (like Sean Hannity and Ann
Coulter) and Breitbart’s editors/writers. However, the top 15 handles returned
to @dailykos by the PPR vector are all famous liberal personalities not directly
affiliated with Daily Kos, but one, its founder Markos Moulitsas. Those people
range from democratic politicians to liberal media personalities and journalists,
such as Hillary Clinton, Stephen Colbert, and Rachel Maddow. All the handles
align with the characteristics of their respective media outlets, attesting to
the clustering effectiveness. However, it is worth noting that the top handles
ranked by the PPR vector tend to be popular handles with millions of followers.
This shows that the PPR vector’s preference for high in-degree nodes.

In contrast, for each of the three seeds, adjusted PPR finds accounts that
are more central to the internal functioning of these organizations. Table 2.2
lists those accounts. The bias adjustment also greatly benefits from a degree
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regularization (Qin and Rohe, 2013). For @CNN, those handles include pri-
marily its own staff/producers/journalists (like Elissa Weldon, Chris_Dawson,
and Grace Bohnhoff), a freelance journalist (Tess Eastment). The pattern is
similar for @BreitbartNews and @dailykos, their top 15 handles including
their own journalists, editors as well as related writers/campaigners/activists.
The general pattern is that the adjustment returns editors, journalists and
staff working within each media outlet. As such, the adjustment is useful for
identifying a more localized cluster.

Main contributions

The main contributions of the paper are (a) a simple and interpretable form for
the PPR vector and (b) a statistical guarantee for clustering with the adjusted
PPR vector.

(a) This paper reveals a simple two-stage form of the PPR vector under the
population (expectation) DC-SBM. Consider the v-th element of the PPR
vector as the probability of sampling node v in a sample of size 1 from the
stationary distribution of the personalized random walk. This inclusion
probability is akin to stratified sampling:

The inclusion probability for node v is the product of two separate
probabilities. First, the probability that the personalized random walk
samples any node in v’s block. Second, the probability that the per-
sonalized random walk selects node v, conditional on sampling that
block.

Both of these probabilities have simple expressions. If there are K blocks
in the graph, then the block-wise probability comes from the PPR vector
of a graph with K vertices, with edge weights specified by the “block
connection matrix” in the DC-SBM. The second probability is proportional
to the degree of node v. In addition to the population results, Theorem 2.6
demonstrates that when the graph is random, the PPR vector concentrates
around its population (expectation) under certain conditions.
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(b) This paper identifies two sources of bias of using a PPR vector for local
clustering under the DC-SBM – the ancillary effects of heterogeneous
node degrees and block degrees. With this finding, the paper examines
a simple bias adjustment that remedies the two biases simultaneously
and suggests conditions when the adjusted PPR can be used to return the
correct local cluster. In other words,

PPR clustering with the adjustment achieves the precise identification
of the local cluster, provided the graph is sufficiently dense.

These results establish statistical performance (consistency) of PPR clus-
tering under the DC-SBM, in the sparse regime where the minimum
expected degree grows logarithmically with the number of nodes in the
network. Our results provide an element-wise perturbation bound for
PPR vectors, that allows the number of clusters to grow with the size of
graphs, and generalize to a directed graph setting as PageRank does.

The rest of the paper proceeds as follows. Section 2.2 formally introduces
the PPR method and some of the known results. Section 2.2 also introduces
the degree-corrected stochastic block model. Section 2.3 gives a population
analysis of the PPR clustering under directed block model graphs. Section 2.4
provides concentration results for the PPR vector when the graph is random
and provides a statistical guarantee on the PPR local clustering method. Section
2.5 presents several numerical results showing the effectiveness of the PPR
clustering. Section 2.6 illustrates the PPR clustering through the massive
Twitter friendship graph and demonstrates the benefits of a smoothing step in
the PPR adjustment.

2.2 Preliminaries

Throughout this paper, let G = (V ,E) denotes an unweighted and connected
graph, where E is the edge set and V is the set of vertices indexed by 1, ...,N.
When G is an undirected and unweighted graph, encode E into a binary
adjacency matrix A ∈ {0, 1}N×N with Auv = Avu = 1 if and only if edge (u, v)
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appears in E. Define a diagonal matrix D = diag (d1, ...,dN) and the graph
transition matrix P as follows:

du =
∑
v∈V

Auv and P = D−1A.

When G is a directed graph, the adjacency matrix A ∈ {0, 1}N×N accordingly
becomes asymmetric with Auv = 1 if and only if edge (u, v) ∈ E, and the
graph transition matrix is defined as

P = [Dout]−1A,

where Dout = diag
(
dout

1 , ...,dout
N

)
and dout

u =
∑
v∈V Auv is the number of

edges leaving from node u. In addition, define Din = diag
(
din

1 , ...,din
N

)
where

din
v =

∑
u∈V Auv is the number of edges pointing to node v.

Personalized PageRank and the local clustering algorithm

The personalized PageRank (PPR) is an extension of Google’s PageRank (Brin
and Page, 1998; Haveliwala, 2003). To illustrate, consider a personalized ran-
dom walk (or originally called “surfing”) on the graph G = (V ,E) with a seed
node v0 ∈ V . At each step, the random walker either restarts from the seed
node v0 with probability α (called the teleportation constant) or continues the
random walk from the current node to a neighbor uniformly at random. The
personalized PageRank vector p ∈ [0, 1]N is the stationary distribution of this
process, thus the solution to the equation

pT = απT + (1 − α)pTP, (2.1)

where P is the graph transition matrix, and π is the elementary unit vector
in the direction of seed node v0. Here p is a column vector normalized by a
positive scalar such that its elements sum to 1, and without loss of generality,
we set v0 = 1 and thus π = (1, 0, ..., 0)T.

In general, the preference vector π does not have to be an elementary unit vec-
tor, but any probability distribution onV . For example, whenπ = (1/N, ..., 1/N)T,
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PPR is equivalent to ordinary PageRank. Moreover, the PPR vector is a linear
function of the preference vector. That is, let p(π1) and p(π2) be two PPR
vectors corresponding to two preference vectors π1 and π2 respectively. Then,
for a new preference vector that is a convex combination of πi, the resulting
PPR vector is constructive of p(πi),

p(w1π1 +w2π2) = w1p(π1) +w2p(π2),

wherewi > 0 andw1 +w2 = 1. DefineΠ to be anN×Nmatrix with repeating
rows πT, and let Q = αΠ+ (1 − α)P, then Q is the Markov transition matrix
for the stochastic process and Equation (2.1) becomes pT = pTQ. Below are
some useful properties of the PageRank vector (also see Haveliwala (2003);
Jeh and Widom (2003) and Appendix A.1).

Proposition 2.1. For any fixed α ∈ (0, 1], the PPR vector p is

(a) the left leading eigenvector of Q, associated with the simple eigenvalue 1; and

(b) the infinite sum of landing probability {(Ps)T π}∞s=0 with weights φ = {α(1 −

α)s}∞s=0,

pT = α

∞∑
s=0

(1 − α)sπTPs. (2.2)

Berkhin (2006) gives an iterative algorithm based on Proposition 2.1 to
approximate the PPR vector (that scales to large graphs); each update requires
only neighborhood information of one visited vertex. A few lines of linear
algebra show that the PPR vector is equivalent to the solution to the linear
system

pT = α ′πT + (1 − α ′)pTW,

whereW = (I+ P)/2 is the lazy graph transition matrix and α ′ = α/(2 − α).
Using this fact, Algorithm 2.1 approximates the PPR vector in running time of
order O

( 1
εα

)
, by reaching at most 2

ε(1−α) vertices. The following proposition
gives a guarantee on the approximation error for this algorithm in terms of
the tolerance parameter and the degrees of visited nodes.
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Proposition 2.2 (Entrywise approximation error (Andersen et al., 2006)). Let
p be a PPR vector, and let pε ∈ [0, 1]N be an approximate PPR vector computed by
Algorithm 2.1 with a tolerance ε > 0. For any vertex u that is sampled in Algorithm
2.1,

|pu − pεu| 6 εdu.

Proposition 2.2 ensures that for any fixed graph, the approximate PPR
vector is arbitrarily close to the exact PPR vector, as long as the tolerance
ε > 0 is sufficiently small. Appendix A.1 contains a proof of this proposition
for completeness. Given a seed node in the graph, Algorithm 2.2 uses the
approximate PPR vector from Algorithm 2.1 and returns a set of nodes with
the largest corresponding values in the adjusted personalized PageRank (aPPR)
vector, which is defined as

p∗v =
pv

dv
, for v = 1, 2, ...,N.

The aPPR vector was previously proposed in Andersen et al. (2006). Algorithm
2.1 and 2.2 operate on undirected graphs. We will generalize them to directed
graphs in Section 2.3 thanks to a simplified and interpretable form for the PPR
vector.

Input: Undirected graph G, preference vector π, teleportation constant
α, and tolerance ε.

Procedure:
Initialize p← 0, r← π, α ′ ← α/(2 − α).
while ∃u ∈ V such that ru > εdu do

Uniformly sample a vertex u satisfying ru > εdu.
pu ← pu + α ′ru.
for v : (u, v) ∈ E do
rv ← rv + (1 − α ′)ru/(2du).

ru ← (1 − α ′)ru/2.
Output: ε-approximate PPR vector p.

Algorithm 2.1: Approximate PPR Vector (undirected) (Andersen et al.,
2006)
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Input: Undirected graph G, seed node v0, and the desired size of local
cluster n.

Procedure:
1. Calculate the approximate PPR vector p (Algorithm 2.1).
2. Adjust the PPR vector p by node degrees, p∗v ← pv/dv.
3. Rank all vertices according to the adjusted PPR vector p∗.

Output: Local cluster – n top-ranking nodes.
Algorithm 2.2: PPR Clustering (undirected)

Stochastic block model

In the stochastic block model (SBM), each node belongs to one of K blocks.
The presence of each edge corresponds to an independent Bernoulli random
variable, where the probability of an edge between any two nodes depends
only on the block memberships of two nodes (Holland et al., 1983a). The
formal definition is as follows.

Definition 2.3. For a vertex set V = {1, 2, ...,N}, let z : {1, 2, ...,N} → {1, 2, ...,K}
partition the N nodes into K blocks, so z(v) is the block membership of vertex v. Let
B be a K × K matrix with all entries range in [0, 1]. Under the SBM, the prob-
ability of an edge between u and v is Bz(u)z(v). That is, Auv | z(u), z(v) ind.

∼

Bernoulli
(
Bz(u)z(v)

)
, for any u, v ∈ {1, 2, ...,N}.

Under the ordinary SBM, nodes in the same block have the same expected
degree. One extension is the degree-corrected stochastic block model (DC-
SBM), which adds a series of parameters (θv > 0 for every vertex v) to create
more heterogeneous node degrees (Karrer and Newman, 2011b). Let B be
a K× K matrix with Bij > 0 for any i and j. Then the probability of an edge
between u and v is θuθvBz(u)z(v). That is,

Auv | z(u), z(v)
ind.
∼ Bernoulli

(
θuθvBz(u)z(v)

)
,

for u, v ∈ {1, 2, ...,N}. Since θv’s are arbitrary to a multiplicative constant which
can be absorbed into B, Karrer and Newman (2011b) suggest imposing the
constraint that the θv’s sum to 1 within each block. That is,

∑
v:z(v)=i θv = 1
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for all i = 1, 2, ..,K. With this constraint, Bij represents the expected number
of edges between block i and j if i 6= j, and twice of that if i = j. Throughout
this paper, we presume B is positive definite 2 and all blocks are connected
(we ignore any blocks that are isolated from the seed). The DC-SBM can
be generalized to directed graphs by giving each node two parameters, θin

v

and θout
v , controlling its in-degree and out-degree respectively (Zhu et al.,

2013). Then, the presence of an directed edge from u to v, given the block
memberships, corresponds to an independent Bernoulli random variable,

Auv | z(u), z(v)
ind.
∼ Bernoulli

(
θout
u θin

v Bz(u)z(v)
)

.

In order to make the model identifiable, we need to impose a structural con-
straint on θin’s and θout’s, that both of them sum up to 1 within each block,∑

v:z(v)=i

θin
v =

∑
v:z(v)=i

θout
v = 1, for any i = 1, 2, ...,K.

Because the off-diagonal elements of B can be interpreted as the expected
number of edges between blocks, we define the block in-degree and block
out-degree to be the total number of incoming edges and outgoing edges
respectively, that is, din

j =
∑K
i=1 Bij, and dout

i =
∑K
j=1 Bij.

2.3 Population analysis of PageRank

In this section, we analyze the PPR vector of the expected adjacency matrix
under the DC-SBM. This provides a simple representation of the PPR vector
that motivates (1) the bias adjustment and (2) the generalization of Algorithm
2.1 and 2.2 to directed graphs.

We use three distinct typefaces to denote three classes of objects. Calli-
graphic typeface is given to the population version of any observable quantities
in random graphs, such as graph adjacency matrix and node degrees (e.g.

2This prevents scenarios where edges are unlikely within blocks and more likely between
blocks. In such scenarios, local clustering needs to be reimagined cautiously. See Appendix A.2
for additional details about generalizations.



19

Equation (2.3)). Normal typeface is given to unobserved model parameters,
such as block membership and degree parameters θi. Bold face is given to all
block-level quantities and parameters like B and dout

i .
Define the population graph adjacency matrix,

A = E (A | z(1), z(2), ..., z(N)) , (2.3)

to be the expectation of random adjacency matrix A. Let Z ∈ {0, 1}N×K be
the block membership matrix with Zvi = 1 if and only if vertex v belongs to
block i, and define diagonal matrices Θin and Θout with entries θin’s and θout’s
respectively. Then, under the directed DC-SBM with K blocks and parameters
{B,Z,Θin,Θout}, A ∈ RK×K can be compactly expressed as

A = ΘoutZBZTΘin.

Accordingly, we define the population node degrees and the population
transition matrix, din

u =
∑
v∈V Auv, dout

v =
∑
u∈V Auv, and P = [Dout]

−1
A,

where Din and Dout are the diagonal matrices of the population node in-
degrees din

u ’s and out-degrees dout
v ’s respectively. Let p be the population

PPR vector (i.e., the solution to equation pT = απT + (1 − α)pTP) and let
p∗ =

[
Din]−1

p be the population aPPR vector.
In addition, define the block transition matrix P ∈ RK×K as

P =
[
Dout]−1 B, (2.4)

where Din ∈ RK×K and Dout ∈ RK×K are diagonal matrices of the block
in-degrees din

i ’s and out-degrees dout
i ’s.

A representation of PPR vectors

This section provides a simple and interpretable form for PPR vectors under
the population DC-SBM. To this end, we define the “block-wise” PPR vector
p ∈ RK to be the unique solution to linear system

pT = απT + (1 − α)pTP, (2.5)
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where π = ZTπ ∈ RK is the block-wise preference vector and P is the block
transition matrix in Equation (2.4). This treats the block connectivity matrix
B as a weighted adjacency matrix of blocks and the block of seed node as a
seed block. To build up the relationship between PPR and the block-wise PPR,
the next theorem gives an explicit form for PPR vectors which also reveals the
sources of bias for local clustering.

Theorem 2.4 (Explicit form of PPR vectors). Under the population directed DC-
SBM with K blocks and parameters

{
B,Z,Θin,Θout},

(a) the population PPR vector p ∈ RN has elements

pu = θin
upz(u)

where p is the block-wise PPR vector in Equation (2.5),

(b) and the population aPPR vector p∗ ∈ RN has elements

p∗u = p∗z(u) (2.6)

where p∗ =
[
Din]−1 p.

Theorem 2.4 demonstrates that the PPR vector p decomposes into block-
related information (p) and node specific information (Θ). Within each block,
the PPR values are proportional to the node degree parameters θv’s and sum up
to the block-wise PPR value of the block. The proof of Theorem 2.4 (Appendix
A.1) relies on a key observation (Appendix A.1) that the powers of population
transition matrix, Ps for s = 1, 2, . . . , have a similarly simple form and the
node specific information components (i.e., z(v) and θv) are invariant in s.

In order to justify the adjustment (Step 2.2) in Algorithm 2.2, we observe
that the seed always has the highest population aPPR score. This turns out
to be a key feature that facilitates the aPPR vector to recover a local cluster
correctly, so we state it in the following lemma.

Lemma 2.5 (The largest entry of aPPR vector). Under the population DC-SBM,
assume that the minimum expected degree is positive, that is, minv∈V dv > 0. Then,
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for any fixed α > 0, the population aPPR vector p∗ has the strictly largest entry
corresponding to the seed node,

p∗v0 > p∗v , for any v 6= v0.

On the other hand, this is not generally true for a PPR vector.

When α = 0 (i.e., no teleportation), the PPR vector becomes the limiting
distribution of a standard random walk and all entries of the aPPR vector are
equal (Appendix A.1). Lemma 2.5 (applied to block-wise PPR vectors) and
Theorem 2.4 together identify two sources of bias for PPR vectors and suggest
a justification for the degree adjustment, which we discuss in order:

(i) Both node degree heterogeneity (Θ) and block size imbalance (D) con-
found the identification of local cluster by the PPR vector. In particular,
suppose vertex v belongs to a block z(v) = i other than 1. PPR vector as-
signs it a score θvpi, where pi is the block-wise PPR of block i, and θv is
the parameter specifically controlling the degree of v. Then, node v may
rank at the top, if θv is large enough. Furthermore, Lemma 2.5 implies
that p1 is not necessarily the largest due to block degree heterogeneity.
Specifically, if block i has an exceedingly high block degree, it is likely
that p fails to down-rank node v vis-a-vis those nodes of block 1.

(ii) Adjusted personalized PageRank removes the node and the block degree
heterogeneity simultaneously, and perfectly recovers the local cluster.
To see this, note that p∗ is the adjusted version of block-wise PPR vector.
From Lemma 2.5, p∗1 is the largest entry of p∗. From Equation 2.6, the
aPPR vector assigns any vertex v a score p∗z(v). Hence, nodes with the
highest value of p∗ belong to block 1, which is precisely the desired local
cluster.

Note that the PPR vector can still be biased for local clustering even under
the classic SBM. To see this, set the matrix Θ to the identity matrix in Theorem
2.4. In this case, the heterogeneous block degrees still confound the PPR vector
(Section 2.5); there is generally no guarantee for p1 to appear on the top (due
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to Lemma 2.5), unless there are further symmetry conditions. Kloumann et al.
(2017) uses such one scenario. As a byproduct of our analysis, we extend their
results under the DC-SBM with the symmetric conditions (see Appendix A.3
to the paper).

Local clustering on directed graphs

In light of the clean form of PPR vectors under the DC-SBM, one can modify
Algorithm 2.1 and 2.2 to operate on a directed graph accordingly. To this
end, note that the transition matrix of a directed graph requires node out-
degrees, hence Algorithm 2.1 examines only the edges leaving visited nodes.
Consequently it suffices to replace du’s in Algorithm 2.1 by dout

u ’s (Algorithm
2.3). Proposition 2.2 applies to Algorithm 2.3 as well, and one can approximate
the PPR vector provided the out-degrees of visited nodes can be observed and
the tolerance parameter ε > 0 is sufficiently small.

To perform local clustering on a directed graph, Algorithm 2.4 adjusts the
approximate PPR vectors from Algorithm 2.3 by node in-degrees, that is,

p∗v =
pv

din
v

, for v = 1, 2, ...,N.

Another option is regularized adjustment, which produces the regularized PPR
(rPPR) vector,

pτv =
pv

din
v + τ

, for v = 1, 2, ...,N,

where τ > 0 is the regularization parameter. The regularized adjustment
greatly stabilize the PPR clustering in practice, by removing nodes with ex-
tremely low in-degrees (see Section 2.6 for more details). Adjusted PPR for
directed graphs is a local algorithm so long as din is available with a local
query, for example, the Twitter friendship graph.

2.4 Personalized PageRank in random graphs

This section establishes several concentration results for the local clustering
algorithm using the adjusted PPR vector (Algorithm 2.2 and 2.4) under the
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Input: Directed graph G, preference vector π, teleportation constant α,
and tolerance ε.

Procedure:
Initialize p← 0, r← π, α ′ ← α/(2 − α).
while ∃u ∈ V such that ru > εdout

u do
Sample a vertex u uniformly at random, satisfying ru > εdout

u .
pu ← pu + α ′ru.
for v : (u, v) ∈ E do
rv ← rv + (1 − α ′)ru/(2dout

u ).
ru ← (1 − α ′)ru/2.

Output: ε-approximate PPR vector p.
Algorithm 2.3: Approximate PPR Vector (directed)

Input: Directed graph G, seed node v0, the desired size of local cluster
n, and an optional regularization parameter τ.

Procedure:
1. Calculate the approximate PPR vector p (Algorithm 2.1).
2. Adjust the PPR vector p with:

Option (a): node in-degrees, p∗v ← pv/d
in
v ,

Option (b): regularized node in-degrees, pτv ← pv/(d
in
v + τ).

3. Rank all vertices according to the aPPR vector p∗ or pτ
Output: Local cluster – n top-ranking nodes.

Algorithm 2.4: PPR Clustering (directed)

DC-SBM. The results show that if the graph is generated from the DC-SBM,
then PPR clustering returns the desired local cluster with high probability.
Since in Algorithm 2.4, the calculation for PPR vectors only relies on node
out-degrees and the adjustment step solely utilizes node in-degrees, it is not
difficult to distinguish din and dout. Thus, we state the results in undirected
graphs for simplicity. One can draw the analogous conclusions for directed
graphs by tracing the proof step by step.

We first present a useful tool that controls the entrywise errors of a PPR
vector in random graphs. Recall that p is the stationary distribution of proba-
bility transition matrix Q = αΠ+ (1 − α)P. For any vector x ∈ Rn, define the
vector infinity norm as ‖x‖∞ = maxi |xi|. The following theorem bounds the
entrywise error of the stationary distribution of Q.
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Theorem 2.6 (Concentration of the PPR vectors). Let G = (V ,E) be a graph
of N vertices generated from the DC-SBM with K blocks and parameters {B,Z,Θ}.
Let p and p be the PPR vector corresponding to random transition matrix P and
its population version P respectively, with the same teleportation constant α. Let
p∗,p∗ ∈ [0, 1]N be the adjusted PPR vector of p and p. Let δ be the average expected
node degrees, that is, δ = 1

N

∑
v∈V dv. Assume that ρ = maxv∈V dv

minv∈V dv
is bounded by

some finite constant and that

δ > c0(1 − α)2 logN, (2.7)

for some sufficiently large constant c0 > 0. Then, with probability at least 1 −

O(N−5),

‖p−p‖∞
‖p‖∞ 6 c1(1 − α)

√
logN
δ

, and ‖p∗ −p∗‖∞
‖p∗‖∞ 6 c2(1 − α)

√
logN
δ

,

for some sufficiently large constant c1, c2 > 0.

The proof of Theorem 2.6 invokes the elementary eigenvector perturbation
bound for asymmetric matrices, an analog to the celebrated Davis-Kahan sinΘ
theorem (Davis and Kahan, 1970), and the novel leave-one-out technique due
to Chen et al. (2019). The detailed proof is given in Appendix A.1.

Theorem 2.6 demonstrates that if the expected average degree δ exceeds
(1 − α)2 logN to some sufficiently large extent, then with high probability, the
random aPPR vector concentrates around the population aPPR vector in terms
of all entries. In fact, the concentration statement holds for any valid preference
vector π. Hence, the classic PageRank vector and some other variants also
enjoy the entrywise error bounds, so long as they can be written as the solution
to the linear system (2.1).

Next, we introduce a separation measure of the DC-SBM. Recall that one
can conduct a local clustering task by selecting nodes ranked by the adjusted
PPR vector p∗. In the population version, it is equivalent to distinguishing
between p∗1 and p∗k, for all k = 2, 3, ...,K, which also characterizes the distance
from the desired local cluster (block 1) to its complement set (the other blocks).
Only if they are sufficiently separated, can the local cluster be identifiable in
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the sample. Due to Lemma 2.5, we assume without loss of generality that the
second block has the second highest value in the “block-wise” aPPR vector,
that is, p∗1 > p∗2 > p∗k for k = 3, 4, ...,K. Then, we define the separation measure
∆α ∈ (0, 1],

∆α =
p∗1 − p∗2

p∗1
,

which turns out to be crucial in determining the sample complexity required
to guarantee the exact recovery. We remark that ∆α is an increasing function
of the teleportation constant, hence the subscript α.

With Theorem 2.6 and the separation measure, we then give following
corollary that bounds the accuracy of Algorithm 2.2, in terms of graph edge
density.

Corollary 2.7 (Exact recovery by adjusted PPR vector). For any seed nodes, let
C ⊂ V be the local cluster of n nodes returned by Algorithm 2.2 with teleportation
constant α and tolerance ε, and C ⊂ V be the nodes in the seed node’s block. Assume
that ρ < c0, ε 6 c1(1 − α)p∗1

√
logN/δ, and that

δ > 16c2

(
1 − α

∆α

)2
logN, (2.8)

for some sufficiently large constants c0, c1, c2 > 0. If the desired size of the local
cluster n = |C|, then with probability at least 1 −O(N−5), we have C = C.

The proof of Corollary 2.7 is presented in Appendix A.1. We make a few
remarks:

(i) Corollary 2.7 demonstrates that Algorithm 2.2 works under a sparse
scenario, where the number of edges is exceedingly small in proportion
to the number of possible edges in the network. To reach the entrywise
control of the aPPR vector and the sufficient separation of local cluster
from others, the theorem calls for the expected node degree δ to grow
with only a fraction (for any fixed teleportation constant α) of the loga-
rithm of the size of the network, logN. In other words, Algorithm 2.2
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requires a sample complexity (the number of edges) of order(
1 − α

∆α

)2
N logN.

(ii) The results show that α leverages between the sampling complexity and
statistical performance of PPR clustering. To see this, rearrange condition
(2.8), (

1 − α

∆α

)2
<

c ′δ

logN ,

for some small enough constant c ′ > 0. As α increases, the left hand
side is decreasing to zero thus making the condition more likely to hold.
On the other hand, as α increases, the tolerance εmust decrease at rate
O(1 − α) in order to guarantee an entrywise control of pε analogous to
the form in Theorem 2.6 (Appendix A.1). More intuitively, if ε does
not decrease, then as α goes to one, Algorithm 2.1 may terminate early
without reaching all vertices in the desired local cluster. In sum, Algo-
rithm 2.1 and 2.3 need at least O

(
1

α(1−α)

)
queries (see Appendix A.2

for an example). This implies that one can approach the conditions
in Corollary 2.7 by setting the teleportation constant sufficiently large,
while the computational burden can increase as α→ 1.

2.5 Simulation studies

This section compares the PPR vector and the aPPR vector. The results show
the effectiveness and robustness of aPPR vector in detecting a local cluster.
Experiment 1 utilizes the DC-SBM with a power-law degree distribution and
investigates the effects of heterogeneous node degrees. Experiment 2 uses
the SBM with unequal block sizes to study the influences of heterogeneous
block degrees. Experiment 3 generates networks from the SBM with equal
block sizes and varying edge density to examine the efficacy of PPR methods
in sparse graphs.

In all simulations, we employee the block connectivity matrix B with homo-
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geneous diagonal elements, Bii = b1, and homogeneous off-diagonal elements,
Bij = b2 for any i 6= j. Define the signal-to-noise ratio (SNR) to be the expected
number of in-block edges divided by the expected number of out-block edges,
that is, b1/(b2(K− 1)), where K is the number of blocks. In particular, we set
the SNR to 1.5 and choose the teleportation constant of α = 0.15 throughout
the section. Additional simulation results (illustrating the Theorem 2.6) are
available in Appendix A.2.

Experiment 1

This experiment illustrates how node degree heterogeneity affects the discrim-
inant power in identifying local cluster using a PPR vector or an aPPR vector.
The results also illustrate the advantages of having multiple seed nodes. TheΘ
parameters from the DC-SBM are drawn from the power law distribution with
lower bound xmin = 1 and shape parameter β = 2.5. A random networks were
sampled from the DC-SBM with K = 3, N = 1500 and equal block sampling
proportions,

z(v)
i.i.d.
∼ Multinomial

(
1
3, 1

3 , 1
3

)
,

for vertex v = 1, 2, ...,N, whose expected average degree (δ) is set to 105. The
PPR vector is calculated with one or ten seeds randomly chosen from block
one.

Figure 2.1 plots PPR values (left two panels) and aPPR values (right
two panels) of a random graph generated from the DC-SBM, excluding seed
node(s). The upper two panels in Figure 2.1 contrast PPR and aPPR when
there is only one seed node and the bottom two panels compare two vectors
when ten seed nodes are used. The vertices from the local block in the SBM
are colored in blue and the others are in yellow. The nodes are ordered first by
block, then by node degree parameters θ (left is larger). A horizontal line is
drawn for each block indicating the median of the aPPR values within that
block.

With one seed node (upper two panels), the scatter plots has two clouds
within each block. The upper cloud contains the immediate neighbors of the
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Figure 2.1: Comparison of PPR (left two panels) and aPPR (right two panels)
under the DC-SBM with one seed node (upper two panels) and ten seed nodes
(bottom two panels). Local cluster is in blue and other clusters are colored
in yellow. Solid horizontal lines on right panels indicate the median of aPPR
values within each cluster.

seed node. This separation disappears when multiple seed nodes are used
(bottom two panels). To see the effect of node heterogeneity, the skewed
distribution of PPR values in each block demonstrates its bias towards high
degree node inside and outside of the seed nodes block in the SBM. In contrast,
aPPR values are evenly distributed within blocks, verifying that aPPR vector
removes the effects of node degree heterogeneity.
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Experiment 2

This experiment compares PPR and aPPR under the SBM with block degree
heterogeneity. A number of random networks were sampled from the SBM
with K = 3, N = 900, and geometric block sampling proportions,

z(v)
i.i.d.
∼ Multinomial

(
1,b,b2) , (2.9)

where b ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. When b is larger, the population of nodes
in each block becomes more unbalanced and thus inducing greater block de-
gree heterogeneity. The block connectivity matrix B is configured as described
in the beginning of this section. The expected average degree (δ) is set to 70.
For each sampled network, the size of the first block is assumed known to Al-
gorithm 2.2. The PPR vector is calculated exactly in place of the approximation
PPR vector (Step 1), with one seed randomly chosen from the first block.

The top panels of Figure 2.2 displays the PPR vector on an example network
with b = 1.4, demonstrating its preference toward the high degree block (the
third block) over local cluster. Given the size of the first block, we measure
the accuracy by the proportion of vertices belonging to the first block in the
returned cluster. The bottom left panel of Figure 2.2 shows the accuracy of PPR
and aPPR for six different values of b (i.e., the geometric ratio in distribution
(2.9)) where each point is the average of 100 sampled network. The comparison
demonstrates that the adjusted PPR vector corrects the bias of PPR caused
by block heterogeneity. Moreover, block degree heterogeneity degrades the
performance of both PPR and aPPR. Note that aPPR outperforms PPR even
when b = 1; this is likely due to the fact that even when nodes have equal
expected degrees in the SBM, the actual node degrees will be heterogeneous
due to the randomness in the sampled graph. In a finite graph, this variability
is enough to give aPPR an advantage over PPR. Asymptotically, this advantage
should fade away (Kloumann et al., 2017).
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Figure 2.2: (Top) Simulated network generated from the classic SBM of 3 blocks
with block degree heterogeneity. Three horizontal lines indicate the median
of PPR and aPPR values within each cluster. (Bottom Left) Comparison
of performance for PPR (triangles with solid line) and aPPR (circles with
dashed line) under the SBM with different levels of block degree heterogeneity.
(Bottom Right) Comparison of performance for PPR and aPPR under the four-
parameters SBM with different sparsity. Error bars are drawn using standard
deviation.

Experiment 3

This experiment investigates the performance of PPR and aPPR under the
SBM where there is no heterogeneity in the expected node degrees or block de-
grees. A number of random networks were sampled from the four-parameter
stochastic block model, SBM(K = 3,N = 900,b1 = 0.6,b2 = 0.2) (Rohe et al.,
2011). Under the four-parameter SBM, each of K blocks has equal size in
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expectation, N/K, and the probability of a connection between two nodes is
b2 if they are in two separate blocks, or b1 if in the same one. In addition, the
expected average degree varies, δ ∈ {15, 30, 45, 60, 75, 90}. For every setting,
the results are averaged over 100 samples of the network. The PPR vector is
calculated with one seeds randomly chosen from block one. The bottom right
panel of Figure 2.2 contrasts the accuracy of PPR and aPPR against six different
values of expected average degree, showing that when the sampled graph
has minimal degree heterogeneity, the adjusted PPR vector has only slightly
higher accuracy than the PPR vector.

2.6 A sample of Twitter

In this section, we provide a more detailed case study to illustrate the properties
of different PPR vectors. We obtain a local cluster of nodes around the seed
node @NBCPolitics (NBC Politics) in the Twitter friendship graph. In the
Twitter graph, the nodes are called handles or accounts (e.g. @NBCPolitics)
and if Twitter handle i follows Twitter handle j, then we define this as a
directed edge (i, j) pointing from i to j. Affiliated with NBC news, NBC
Politics specializes in political news coverage and has over 470k followers on
Twitter (in-degree) and follows 145 handles (out-degree) as of December
2018. A brief look through @NBCPolitics’ following list reveals that it follows
a wide range of accounts, from TV programs, reporters and editors affiliated
with NBC, to media accounts and journalists of other news outlets as well as
politicians.

Data on following and handle profile information were collected through
the Standard Twitter Search API. We queried the Twitter friendship graph
starting from the seed node @NBCPolitics, using Algorithm 2.3 with teleporta-
tion constant α = 0.15 and termination parameter ε = 10−7, ending up with
5840 surrounding handles. Through this exercise, we intend to illustrate the
properties and applications of local clustering using PPR, aPPR and rPPR
vectors, where we set the regularization parameter τ to 100.

We first present the results of PPR. As Table 2.3 shows, the top 30 handles
(except @NBCPolitics) with the highest PPR values are a combination of (i)
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Table 2.3: Top 30 handles of PPR with seed node @NBCPolitics and the
teleportation constant α = 0.15 in December 2018.

Name Followers Description
1 Melania Trump 11242283 This account is run by the Office of First Lady Melania Trump...
2 The White House 17625630 Welcome to @WhiteHouse! Follow for the latest from President...
3 Chuck Todd 2032038 Moderator of @meetthepress and @nbcnews political director; ...
4 NBC News 6280551 The leading source of global news and info for more than 75 ...
5 NBC Nightly News 962290 Breaking news, in-depth reporting, context on news from ...
6 Andrea Mitchell 1737764 NBC News Chief Foreign Affairs Correspondent/anchor, Andrea ...
7 Savannah Guthrie 881669 Mom to Vale & Charley, TODAY Co-Anchor, Georgetown Law. ...
8 Joe Scarborough 2521215 With Malice Toward None
9 MSNBC 2261911 The place for in-depth analysis, political commentary and ...

10 Rachel Maddow MSNBC 9498076 I see political people...
11 Breaking News 9223158
12 NBC News First Read 53847 The first place for news and analysis from the @NBCNews Poli...
13 TODAY 4276453 America’s favorite morning show | Snapchat: todayshow
14 Meet the Press 566713 Meet the Press is the longest-running television show in history ...
15 The Wall Street Journal 16188842 Breaking news and features from the WSJ.
16 Pete Williams 70062 NBC News Justice Correspondent. Covers US Supreme Court, ...
17 Mark Murray 97571 Mark Murray is the senior political editor for NBC News, ...
18 POLITICO 3695835 Nobody knows politics like POLITICO. Got a news tip for us? ...
19 Katy Tur 587474 MSNBC anchor @2pm, NBC News correspondent, author of NYT ...
20 Bill Clinton 10697521 Founder, Clinton Foundation and 42nd President of the United...
21 Kasie Hunt 381704 @NBCNews Capitol Hill Correspondent. Host, @KasieDC, Sundays...
22 TIME 15584815 Breaking news and current events from around the globe. Host...
23 Kelly O’Donnell 195765 White House Correspondent @NBCNews Veteran of Cap Hill & ...
24 John McCain 3181773 Memorial account for U.S. Senator John McCain, 1936-2018. To...
25 Peter Alexander 283522 @NBCNews White House Correspondent / Weekend @TODAYshow ...
26 Hallie Jackson 359099 Chief White House Correspondent / @NBCNews / @MSNBC Anchor ...
27 Kristen Welker 182244 @NBCNews White House Correspondent. Links and retweets ...
28 Carrie Dann 37119 .@NBCNews / @NBCPolitics. RTs not endorsements.
29 Willie Geist 807536 Host @NBC #SundayTODAY, Co-Host @Morning_Joe, “Sunday ...
30 Morning Joe 563650 Live tweet during the show! Links to must-read op-eds ...

Through the PPR vector, the top 30 handles returned to @NBCPolitics include NBC’s news related programs
and celebrity reporters, comparable mainstream media outlets, as well as prominent political and public figures
and institutions. Such results line up with its status as a mainstream political news source, demonstrating
clustering effectiveness. Those Twitter handles tend to have millions of followers, showing the PPR vector’s bias
toward high in-degree.

NBC’s news related programs such as NBC News, TODAY and Meet the Press;
(ii) NBC’s political reporters, anchors and editors, from well-known figures
like Chuck Todd and Andrea Mitchell to less-known ones like Pete Williams
(justice correspondent) and Mark Murray (senior political editor); (iii) other
mainstream news outlets such as The Wall Street Journal, POLITICO, and
TIME; and (iv) prominent public figures and politicians like Melania Trump,
Bill Clinton and John McCain. In light of NBC’s status as a mainstream news



33

outlet and the political focus of @NBCPolitics, such results make sound sense.
It must also be noted that all the top 30 handles are direct friends of @NBCPol-
itics’s and have at least tens of thousands of followers. The median follower
count is 1.4 million, suggesting high in-degrees. In fact, the pattern observed
in the top 30 extends to the top 200 handles with the highest PPR values, which
include NBC’s own programs, journalists, editors and staff; fellow mainstream
media outlets and their staff; and prominent public figures, politicians and
government institutions (see Appendix A.4). The median in-degree of top
200 handles is around 184k, though there are four handles with less than
one thousand followers. One important thing to notice is that among the
top 200 handles, the first 139 are all directly followed by @NBCPolitics, with
handles having high in-degrees generally ranked higher than those having
low in-degrees (although @NBCPolitics follows 145 handles, 6 of them might
have privacy protection that has prevented us from accessing their informa-
tion). The remaining handles on the list, although not directly followed by
@NBCPolitics, include five handles associated with NBC, from its news anchor
Lester Holt to its News International President. However, the majority of
those indirectly followed by @NBCPolitics are mainly high profile political and
public figures (like President Trump, Vice President Pence, Hillary Clinton,
and Stephen Colbert), government organizations (like WhiteHouse Office of
Cabinet Affairs and National Security Council), and mainstream news outlets
(like New York Times, CNN and AP) and well-known journalists (like John
Dickerson and Anderson Cooper). We can thus conclude that the PPR vector
is biased toward popular accounts followed directly by the seed node or indi-
rectly by its friends, reflecting the popular Twitter handles followed by them.
This property of the PPR vector can be harnessed by researchers interested in
identifying the upstream of a handle, i.e., those Twitter elites who are followed
by and might influence the seed node and by extension its followers.

In contrast, the aPPR vector up-weights handles that are much less popular
(i.e., those with low in-degrees). As shown in Table 2, the 30 handles with
the highest aPPR values include NBC’s reporters, writers, editors, producers,
and programs, all of whom have a few hundred to a few thousand followers.
The 30 handles also include those unaffiliated with NBC, such as director of
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Table 2.4: Top 30 handles of aPPR with seed node @NBCPolitics and the
teleportation constant α = 0.15 in December 2018.

Name Followers Description
1 Stephanie Palla 198 Enroll America National Regional Director...
2 Jennifer Sizemore 386
3 Alissa Swango 441 Director of Digital Programming at @natgeo. All things ...
4 Making a Difference 670 @NBCNightlyNews’ popular feature profiles ordinary ...
5 Ron Whittemore 1
6 Svante Stockselius 3
7 Greg Martin 1161 Political Booking Producer at @nbcnews @todayshow
8 Area Man 1 I am Area Man. I pwn your news feed.
9 CELESTIA ROBINSON 2

10 NBC Field Notes 1390 NBC News correspondents and http://t.co/1eSopOQt8s ...
11 rob adams 2
12 JL 2
13 David Kelsey 1
14 Hank Morris 1
15 Jesse Marks 1
16 Brayden Rainey 1
17 child of the tiger 3 yet another activist twitter, fighting all those fun...
18 Julie Swango 4
19 Author Dianne Kube 7 Dianne Kube is an Author with a passion, for family,...
20 Consider the Source 7
21 Adam Edelman 2341 Political reporter @nbcnews. Wisconsin native, ...
22 Phil McCausland 2519 @NBCNews Digital reporter focused on the rural-urban...
23 Corky Siemaszko 2538 Senior Writer at NBC News Digital (former NY Daily ...
24 Sam Petulla 2588 Editor @cnnpolitics • Usually looking for datasets. ...
25 Ken Strickland 2693 NBC News Washington Bureau Chief
26 Mike Mullen 7
27 Elyse PG 2697 White House producer @nbcnews |@USCAnnenberg alum ...
28 A. Johnson 2 Change your thoughts & you change your world. -Normal...
29 Steve Fenton 4
30 Dobe Pitty Mami 13

Through the aPPR vector, the top 30 handles returned to @NBCPolitics include some relevant
handles (NBC’s news team and their counterparts in other mainstream news organizations) and
many obscure ones (handles with few followers and no profile descriptions). This results from the
aPPR vector’s bias toward extreme low degree and introduces noise to the clustering results.

a non-profit (Enroll America), director of digital programming at National
Geographic, and @CNNPolitics’ editor. All of them are professionally related
to the seed node. This testifies to the applicability of aPPR for locating an
idiosyncratic local cluster around a seed node. However, more than half (17)
of the 30 handles are obscure and not directly followed by @NBCPolitics. The
reason they appear on the list is probably that they have just one and at most
a dozen followers (recall that aPPR divides by in-degree). In fact, 160 of the
top 200 handles are not direct friends of @NBCPolitics; the median in-degree
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Table 2.5: Top 30 handles of rPPR with seed node @NBCPolitics and the
teleportation constant α = 0.15 in December 2018.

Name Followers Description
1 Stephanie Palla 198 Enroll America National Regional Director http://t.co/X6jJIE...
2 Jennifer Sizemore 386
3 Alissa Swango 441 Director of Digital Programming at @natgeo. All things food....
4 Making a Difference 670 @NBCNightlyNews’ popular feature profiles ordinary people do...
5 Greg Martin 1161 Political Booking Producer at @nbcnews @todayshow
6 NBC Field Notes 1390 NBC News correspondents and http://t.co/1eSopOQt8s reporters...
7 Adam Edelman 2341 Political reporter @nbcnews. Wisconsin native, Bestchester ...
8 Phil McCausland 2519 @NBCNews Digital reporter focused on the rural-urban divide....
9 Corky Siemaszko 2538 Senior Writer at NBC News Digital (former NY Daily News ...

10 Sam Petulla 2588 Editor @cnnpolitics • Usually looking for datasets. You can ...
11 Ken Strickland 2693 NBC News Washington Bureau Chief
12 Elyse PG 2697 White House producer @nbcnews |@USCAnnenberg alum | LA kid ...
13 Hasani Gittens 3002 Level 29 Mage. Senior News Ed. @NBCNews. Sheriff of Nattahna...
14 Scott Foster 3464 Senior Producer, Washington @NBCNEWS @TODAYshow
15 Zach Haberman 3693 Lead Breaking News Editor, @NBCNews. Previously had other jobs...
16 Emmanuelle Saliba 4004 Head of Social Media Strategy @Euronews | Launched #THECUBE ...
17 Alex Johnson 4371 News, data and analysis for @NBCNews; data geek; ...
18 Savannah Sellers 4637 News junkie. Host of NBC’s "Stay Tuned" on Snapchat. Storyte...
19 NYC Clothing Bank 154 We distribute new, never-worn clothing and merchandise...
20 Shaquille Brewster 5362 @NBCNews Producer/Politics | @HowardU Alum| Journalist | Pol...
21 Joey Scarborough 6277 NBC News Social Media Editor. New York Daily News Alum. RTs ...
22 Jane C. Timm 6478 @nbcnews political reporter and fact checker. More fun than ...
23 Anthony Terrell 6827 Emmy Award winning journalist. Political observer. Covered ...
24 NBC News Videos 7838 The latest video from http://t.co/xPyvMOTEF6
25 Libby Leist 7946 Executive Producer @todayshow
26 Voices United 310 Voices United is a non profit educational organization ...
27 Social Headlines 344 Daily roundup of top social media and networking stories.
28 James Miklaszewski 337 Writer, Photographer, Editor, Director, Producer, Newshound ...
29 Courtney Kube 9494 NBC News National Security & Military Reporter...
30 Bob Corker 10042 Serving Tennesseans in the U.S. Senate

Through the rPPR vector, the top 30 handles returned to @NBCPolitics include much fewer low in-
degree and obscure ones and many more moderately connected nodes that are relevant to @NBCPolitics,
including its reporters and editors and media professionals from other organizations.

of the top 200 handles is merely 8 (Appendix A.4). Those handles might have
ended up on the list due to a combination of luck and, more importantly, their
extremely low in-degrees. In this regard, “noise” can be introduced by the
aPPR vector because it prioritizes handles with extremely low in-degrees that
are possibly several degrees separated from the seed node.

To reduce noise, we applied a regularization step to the aPPR vector to
remove those “distant” and small nodes while preserving the close and rel-
evant ones. In Table 3, the majority of the top 30 handles with the highest
regularized aPPR (i.e., rPPR) values have three- or four-digit numbers of
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followers. Similar to the aPPR results, they include NBC’s news crew. But
the difference is that the overwhelming majority (18) of the top 30 handles
work at NBC. Some handles who work for other news organizations (e.g., Sam
Petulla at @cnnpolitics and Emmanuelle Saliba at @Euronews) might have
previously worked at NBC or have close connection with its news team. Even
the four handles that are not directly followed by @NBCPolitics are interesting
– they are non-profit organizations (NYC Clothing Bank and Voices United)
and news-related individual or organization (James Miklaszewski and Social
Headlines). This pattern can also be observed in the top 200 handles, 72 of
whom are directly followed by @NBCPolitics. The overwhelming majority of
those directly followed by it are affiliated with NBC, comprising its day-to-day
news team, who enjoy much less publicity than the celebrity reporters. The re-
maining 128 of them, who are not directly followed by @NBCPolitics, actually
also include 20 NBC’s journalists and staff, such as Ray Farmer (NBC News
photographer) and Jim Miklaszewski (chief Pentagon correspondent for NBC
News). Others are non-profits like Vets Helping Heroes and professionals
from other news organizations or companies such as WSJ, NFL Network, and
Microsoft, who might have worked for NBC or have close connection with
it. Although there still appear to be obscure handles with few followers, they
decrease significantly in number – the median in-degree of the top 200 handles
is 340 (Appendix A.4), a precipitous drop from that of the top PPR handles
yet not too small as compared to that of the top aPPR handles. We thus con-
clude that the regularized aPPR vector returns a local cluster with little noise,
reflecting a seed node’s close circles, either directly or indirectly related.

In order to evaluate the influence of the desired cluster size n on the results
based on different PPR vectors, we compare the local clusters of PPR, aPPR,
and rPPR by varying sample size. Define the in-and-out ratio of local cluster
C ⊂ V as the proportion of edges inside C among all edges connected to C,

2×
∑
u,v∈CAuv∑

u∈C d
in
u + dout

u

.

A higher in-and-out ratio indicates a more internally connected sample. Figure
2.3 (Right) shows the effectiveness of aPPR and rPPR in producing a compact
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local cluster. When the sample size is bigger than 100, the connectedness of the
local cluster produced by rPPR stabilizes; the greater the sample size, the more
densely connected a cluster aPPR would produce. However, PPR is easily
susceptible to the inclusion of popular nodes. In this case, a sharp drop of
in-and-out ratio for PPR when the sample size reaches around 140 is caused
by inclusions of highly popular accounts @POTUS (President Trump) and
@realDonaldTrump (Donald J. Trump).

The PPR clustering is fairly robust to the choice of teleportation constant,
despite the size of local cluster. To illustrate this, we also performed the same
pipeline of analysis with the seed @NBCPolitics while varying the value of
α (e.g., 0.05, 0.25, and 1/3) in parallel. We observed that those local clusters
returned by Algorithm 2.4 all share a great portion of members in common. For
example, there are 280 (93.3%) overlapping members between two targeted
samples of size n = 300, using α = 0.15 and 0.25 respectively. These suggest a
low sensitivity to the teleportation constant (see Appendix A.2).

The left panel of Figure 2.3 depicts the behaviors of PPR, aPPR and rPPR.
Each handle queried in this sampling is displayed as a dot, with y-axis rep-
resenting the PPR value and x-axis the number of followers (i.e., in-degree).
Top handles with the highest PPR values are above blue dashed line, which
tend to concentrate on the right end of the x-axis and thus are biased toward
high in-degrees. Top handles with highest aPPR values are dots to the left of
the yellow dotdash line, which gather on the left end of the x-axis and thus
in favor of low in-degrees. Regularized aPPR, by purple dots, excludes the
very low degree nodes and very high degree nodes. As the empirical results
show, these three vectors can be thought of as lenses through which we view
the local structure of a given Twitter handle with varying foci, rendering high,
moderate, and low in-degree blocks and serving different needs and purposes.

2.7 Discussion

This paper studies the PPR vector under the degree-corrected stochastic block
model and PPR clustering in massive block model graphs. We establish some
consistency results for this method, and examine its performance through
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Figure 2.3: Left: an illustration of 5840 Twitter handles examined by Algorithm
2.3 and three samples of size 200 by PPR, aPPR, and rPPR. Each dot represents
a user in Twitter. The blue dashed line delimits the top 200 handles by PPR
vector; vertices above the line are PPR’s sample. Similarly, the yellow dotdash
line determines the sample returned by Algorithm 2.4 given n = 200; vertices
above this boundary correspond to aPPR’s sample. In particular, dots in purple
stand for the sample of rPPR; the purple solid line shows the boundary of this
sample. Right: The in-and-out ratio of local clusters identified by PPR, aPPR,
and rPPR, as the sample sizes vary. A higher in-and-out ratio indicates a more
internally connected cluster.

analysis of Twitter friendship graph. As shown in the results, the PPR vectors
with and without adjustment have distinct properties and can be used to
effectively sample a massive graph for various purposes. However, there are
limitations worthy of future investigations.

In Section 2.3, we provide a representation of the PPR vector under the
DC-SBM and its extension into directed graphs. The result does not impose ex-
tra structural restrictions on the model parameters, except that B corresponds
to a strongly connected “block-wise” graph. We consider a positive definite
connectivity matrix particularly so that it is intuitive to conceive the notion of
local cluster. In practice (and many of our experiments, see Appendix A.2),
however, a PPR-type algorithm appears to continue working for a broader
range of B (e.g., singular or indefinite), provided that the teleportation con-
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stant is sufficiently large (e.g. α > 0.1). It is unclear yet what is the minimum
constraint needed on B in order for the PPR clustering to function. In addi-
tion, DC-SBM does have its limits. For example, the model fails to capture
either mixed block membership or popularity features which are potentially
informative in real world networks. The behavior of a PPR vector under other
extensions of stochastic block model, such as mixed membership stochastic
block model and popularity-adjusted block model, remains unknown (Airoldi
et al., 2008; Sengupta and Chen, 2018). Future studies on the PPR vector under
these models could shed further light on the PPR clustering and offer more
practical guidelines on their application.

In Section 2.4, we proved the consistency of the PPR clustering, requiring
the average expected node degree to grow in order of logN, which hits the
boundary between the theoretical guarantees and the realistic observation.
In contrast, scale-free networks such as the preferential attachment model
(Barabási and Albert, 1999) have finite expected node degrees. Future inves-
tigations into variants of PPR that could possibly overcome this limitation
yet ensure a fine local cluster discovery would be particularly interesting and
useful.

In Section 2.6, we introduce the regularized version of adjusted PPR (rPPR)
vector, with a series of empirical evidence showing its efficacy in targeted
sampling. While the results appear promising, theoretical guarantees for this
technique remain unexplored. In order for some mathematical analyses, one
may resort to the techniques used in Le et al. (2016). It is previously shown
that the regularized graph Laplacian (or transition matrix) enjoys “nice” finite
sample properties, which facilitate the consistency of many regularized spectral
methods. It thus is reasonable conjecture that rPPR vectors are also suitable
for local clustering.

An R implementation of the PPR clustering is available at author’s GitHub
(https://github.com/RoheLab/aPPR).

https://github.com/RoheLab/aPPR
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3 estimating graph dimension with cross-validated
eigenvalues

3.1 Introduction

In network analysis, many recent community detection methods assume the
number k of communities as known a priori (Karrer and Newman, 2011a;
Rohe et al., 2011; Zhao et al., 2011; Amini et al., 2013; Gao et al., 2018; Xu
et al., 2020). However, k is rarely available in the data. As such, the user is
required to choose k. (the performance of these approaches are fundamentally
associated with how well we select k.) This paper proposes a way to estimate
k for a large-scale network (or graph).

We model the network to have independent random edges and have rank k
expectation. Several named distributions for random graphs have the same as-
sumptions, including Erdős-Rényi (Erdős and Rényi, 1960), Chung Lu (Chung
and Lu, 2006), Stochastic Blockmodels (SBM) (Holland et al., 1983b), Degree-
Corrected SBM (Karrer and Newman, 2011a), and Mixed Membership SBM
(Airoldi et al., 2008). Under these random graph models, numerous methods
have been proposed to estimate k (Bordenave et al., 2015; Bickel and Sarkar,
2016; Lei, 2016; Wang and Bickel, 2017; Chen and Lei, 2018; Ma et al., 2019; Le
and Levina, 2019; Liu et al., 2019; Li et al., 2020; Jin et al., 2020). These methods
roughly fall into one of the three categories: spectral, cross-validation, and
(penalized) likelihood based approaches.

Methods based on likelihood or cross-validation are actively researched,
yet the majority of them are commonly restrained by the scale of networks.
Among the likelihood based approach, Wang and Bickel (2017) proposed to
estimate k by solving a BIC type optimization problem, where the objective
function sums the log-likelihood and the model complexity. The computation
is not feasible because the likelihood contains exponentially many terms. In
Ma et al. (2019), a pseudo-likelihood ratio is used to compare goodness-of-fit
of models with differing ks that have been estimated using spectral clustering
with regularization (Rohe et al., 2011; Qin and Rohe, 2013; Joseph and Yu, 2016;
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Su et al., 2019), speeding up the computation. However, the two methods allow
little node degree heterogeneity. Related to the goodness-of-fit technique, Jin
et al. (2020) presents a stepwise testing based on the number of quadrilaterals
in the networks. The statistic (or the counting) requires at least n2 times
of multiplication operations, regardless of the sparsity of the graph, thus
is infeasible when n scales (here, n is the number of nodes in the graph).
More recently, cross-validation (Picard and Cook, 1984; Arlot and Celisse,
2010) has also been adapted in the context of choosing k. For example, in
Chen and Lei (2018), a block-wise node-pair splitting technique is introduced.
In each fold, a block of rows of the adjacency matrix are held out from the
SBM fitting (including the community memberships), then the left-out rows
are used to calculated a predictive loss. In Li et al. (2020), they propose
to hold out a random fraction of node-pairs, instead of nodes (thus all the
incidental node-pairs). In addition, they suggest using a general low-rank
matrix completion (e.g., a singular value thresholding approach (Chatterjee,
2015)) to calculate the loss on the left-out node-pairs. Theoretical conditions
for not under-estimating k were established in both cross-validation based
methods (Chen and Lei, 2018; Li et al., 2020). Due to the need of calculating
loss on either held-out rows or scatters in the adjacency matrix regardless of
sparsity, each fold requires about O(n2) computations thus is also intractable
for large networks.

Spectral methods are highly scalable for estimating k in large networks,
although their rigorous analyses require delicate, highly technical random ma-
trix arguments (Ajanki et al., 2017; Benaych-Georges et al., 2019; Chakrabarty
et al., 2020; Dumitriu and Zhu, 2019; Benaych-Georges et al., 2020; Hwang
et al., 2020). In Bickel and Sarkar (2016); Lei (2016), hypothesis tests using the
top eigenvalue or singular value of a properly normalized adjacency matrix
are proposed, based on edge universality and other related results for general
Wigner ensembles (Tracy and Widom, 1994; Soshnikov, 1999; Erdős et al.,
2012, 2013; Alex et al., 2014). The analyses of these hypothesis tests assume
dense graphs. In Liu et al. (2019), a version of the “elbow in the scree plot”
approach (see, e.g., Zhu and Ghodsi (2006) for a discussion of this approach)
is analyzed rigorously under the Degree-Corrected SBM, also in the dense
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case. For sparser graphs, the spectral properties of other matrices associated
to graphs have been used to estimate k, including the non-backtracking ma-
trix (Krzakala et al., 2013; Bordenave et al., 2015; Le and Levina, 2019) and
the Bethe-Hessian matrix (Le and Levina, 2019). However, their theoretical
analysis allow little node degree heterogeneity in the very sparse case.

One way to conceptualize the analytical challenges of estimating k on a
more intuitive level is that sample eigenvectors (and singular vectors) are
likely to “overfit” to the noise in large-scale graphs and this overfitting makes
the scree plot biased. Estimators overfit when they corresponds too closely to
a particular set of data in a way that does not generalize to future observations.
In practice, cross-validation addresses this problem; first, compute an estimator
on “fitting data,” then examine the estimators performance on “testing data.”
For example, in ordinary least squares regression, the regression coefficients
are estimated by computing the coefficients that minimize the mean squared
error (MSE) on the training data. On independent testing data, the MSE for
these coefficients will likely be larger. In particular, larger models tend to have
a larger difference. Examining the validation MSE helps to correct the bias that
is presented in the training MSE. In spectral analysis, analogously, we hope
the sample eigenvectors to correlate well with a secondary, independent graph
sampled from the same probability distribution as the currently observed
graph. Because of the noise in real data, especially when n� k, the (k+ 1)th
sample eigenvalue is often greater than 0, which blurs the “elbow” in the
scree plot. Interestingly, there is no analogue to the “validation” estimate for
eigenvalue estimation, which predicts how well sample eigenvectors correlate
with a secondary graph’s eigenspace.

In this paper, we exploit a notion of cross-validated eigenvalues as a new
approach to estimating k. We demonstrate that unlike sample eigenvalues, the
cross-validated eigenvalues could avoid “overfitting” the data. Under a large
class of random graph models, we provide a simple procedure to compute
cross-validated eigenvalues. The estimation of cross-validation eigenvalues
is made possible by a simple edge splitting idea (Abbe and Sandon, 2015;
Abbe et al., 2016). Basically, edges are bipartitioned at random; one set of
edges is used to perform spectral analysis, and the other set of edges is for
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“cross-validation.” This holdout approach was previously explored in the
econometrics literature (Abadir et al., 2014; Lam, 2016), although the emphasis
was on estimating sample covariance matrices rather than hypothesis testing
of graphs. For cross-validated eigenvalues, we provide an intuitive central
limit theorem, which leads to a p-value for the statistical significance of each
sample eigenvector. This can be used to estimate the number of statistically
useful sample eigenvectors, thus the number k of communities in a graph.
In addition, we provide the consistency results for the proposed estimation,
allowing weighted and very sparse graphs. Finally, through simulations and
real data applications, we show that this estimator compares favorably to
alternative approaches in both computational and statistical performance.

Further related work Rank estimation has also been studied in the context
of certain Poisson reduced-rank models (Jentsch et al., 2020). There is also
related work on bootstrapping (Snijders and Borgatti, 1999; Thompson et al.,
2016; Green and Shalizi, 2017; Levin and Levina, 2019; Lin et al., 2020a), jack-
knife resampling (Lin et al., 2020b) and subsampling (Bhattacharyya and
Bickel, 2015; Lunde and Sarkar, 2019; Naulet et al., 2021) in network anal-
ysis. In particular, in (Lunde and Sarkar, 2019), subsampling schemes are
applied to the nonzero eigenvalues of the adjacency matrix under low-rank
graphon models. Weak convergence results are established under some techni-
cal conditions, including sufficient edge density (i.e., average degree growing
asymptotically faster than

√
n); simulation results also indicate that sparsity

leads to poor performance for the estimators considered, especially in the case
of the eigenvalues closer to the bulk.

3.2 Sample and cross-validated eigenvalues

We consider a connected multigraph G = (V ,E) consisting of the set of nodes
V = {1, . . . ,n} and edges E, where we allow multiple edges and self-loops. The
adjacency matrix A ∈ Nn×n records the number of edges between i and j in
element Aij. We presume that A is symmetric (i.e., edges are undirected) for
simplicity. In this paper, we focus on the following random graph model.
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Definition 3.1 (Poisson graph). We consider random graph models where the ele-
ments of A are independent Poisson random variables and

E(A) = UΛUT (3.1)

for U ∈ Rn×k with orthogonal columns u1, . . . ,uk ∈ Rn, and diagonal matrix
Λ ∈ Rk×k with positive elements down the diagonal in non-increasing order.

Like the model above, many other models have independent edges and
low-rank expectation. For example, when the edges are Bernoulli random
variables, this model class has been referred to as the eigenmodel and the
random dot product graph model (Hoff, 2008; Cai et al., 2016; Athreya et al.,
2017). We study Poisson edges for their convenience. In the sparse graph
setting, the Poisson graph can be tightly coupled to Bernoulli edge graphs (see
Rohe et al. (2018) for a further discussion of these points).

In population (or expectation), define λ1, . . . , λd ∈ R to be the eigenvalues
of P = E(A). In (3.1), the diagonal of Λ contains the leading k eigenvalues
and their corresponding eigenvectors are in the columns of U. Moreover, for
j > k, λj = 0. So, P has exactly k non-zero eigenvalues. Thus, we can estimate
k by estimating the number of non-zero eigenvalues.

Sample eigenvalues: a poor diagnostic

The symmetric matrixA ∈ Nn×n has eigenvectors x̂1, . . . , x̂n ∈ Rn that are the
solution to

x̂j = argmax
x∈Ŝj

xTAx, (3.2)

where Ŝj = {x ∈ Rn : ‖x‖2 = 1 and xTx̂` = 0 for ` = 1, . . . , j − 1}. The
eigenvalues λ̂j for j = 1, . . . ,n are defined as

λ̂j = x̂
T
jAx̂j.
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Note that the quadratic form in Equation (3.2) that defines the eigenvectors
and eigenvalues is equivalent to

xTAx = tr(xTAx) = tr(AxxT) = 〈A, xxT〉.

If the elements of A and xxT were centered to have mean zero and scaled to
have standard deviation one, then 〈A, xxT〉would be the correlation between
the elements in the two matrices. As such, the maximization problem in
Equation (3.2) boils down to finding a rank one matrix that has maximum
“correlation” with A and the value of that “correlation” is the eigenvalue.

The most common approach to estimating the eigenvalues of P is to use
a plug-in approach, i.e., estimating the population eigenvalues of P with the
sample eigenvalues of A. The eigenvalues of A, λ̂1, λ̂2, λ̂3, . . . , are often plotted
against their index 1, 2, 3, . . . . This is called a scree plot and it is often used
as a diagnostic to estimate k. In this scree plot, there might be a “gap" or an
“elbow" at the kth eigenvalue.

However, there is a fundamental problem with the plug-in estimator for
the population eigenvalues which can make the “gap” or “elbow” in the scree
plot more difficult to observe. The leading eigenvalue estimates λ̂1, . . . , λ̂k are
asymptotically unbiased, so long as their corresponding population eigenval-
ues λ1, . . . , λk are large enough (see, e.g., Chakrabarty et al. (2020) for related
results). However, when n is much larger than k, λ̂k+1 is a biased estimate of
λk+1 = 0, with E(λ̂k+1) > λk+1 = 0 (see, e.g., Benaych-Georges et al. (2020)
for related results). So, if λk is not large enough, then this bias diminishes the
appearance of a “gap” or “elbow” between λ̂k and λ̂k+1 in the scree plot. For
example, due to the bias, it could happen that λ̂k+1 > λk.

Cross-validated eigenvalues: the signal strength of sample
eigenvectors

Even if an oracle were to tell us that the population eigenvector xj has popu-
lation eigenvalue λj 6= 0, we should only use x̂j for statistical inference if x̂j
has estimated some signal. In the realistic setting where the signal is not over-
whelming for every sample eigenvector x̂j for j < k, the following quantity is
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more methodologically useful for statistical inference. We measure the signal
strength of a sample eigenvector x̂j as

λP(x̂j) = x̂
T
j Px̂j = 〈P, x̂jx̂T

j 〉.

While this quantity is unknown, it can be estimated via cross-validation. The
cross-validated estimator is unbiased and asymptotically normal with an es-
timable variance.

For population eigenvector xj, λP(xj) is the corresponding population
eigenvalue λj. As such, if sample eigenvector x̂j is close to its population
counterpart, then λP(x̂j) is close to the population eigenvalue. However, if x̂j
is nearly orthogonal to the eigenvectors of P that have non-zero eigenvalues,
then λP(x̂j) ≈ 0. Notably, and most importantly, this can happen even if
x̂j’s corresponding population eigenvector xj has a non-zero eigenvalue. For
example, this happens when the estimation problem is too difficult. The next
proposition, proved in Section B.1, makes this intuition more rigorous.

Proposition 3.2 (Lam (2016)). Let X̂ ∈ Rn×q contain the leading q sample eigen-
vectors x̂1, . . . , x̂q in its columns. The solution to

min
Γ is diagonal

‖P − X̂Γ X̂T‖F

contains λP(x̂1), . . . , λP(x̂q) down the diagonal.

The notion of λP(x̂j) was originally proposed and studied in Abadir et al.
(2014); Lam (2016) for optimal estimation of eigenvalue shrinkage. In this
section, we develop a statistical testing procedure for the null hypothesis

H0 : λP(x̂j) = 0 (3.3)

conditionally on x̂j.
The “plug-in” estimator for λP(x̂j) = x̂T

j Px̂j replaces P with A; x̂T
jAx̂j = λ̂j.

The difficulty of studying this quantity is that x̂j is determined by A. This
dependence makes λ̂j and its distributional relationship to λP or λj difficult
to study. The rest of this section shows how we can estimate this quantity
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via cross validation instead; we will split the graph into two so that we can
create an independent test adjacency matrix Atest. The proposed estimator is
unbiased and satisfies a central limit theorem with an estimable variance. As
such, we can test the null hypothesis (3.3).

Edge splitting and a central limit theorem

Input: Adjacency matrix A ∈ Nn×n and edge splitting probability
ε ∈ (0, 1).

Procedure ES(A, ε):
1. Convert A into G = (V ,E), where {i, j} is repeated in the edge set
E potentially more than once if Aij > 1.

2. Initiate Ẽtest and Ẽ, two empty edge sets on V .
3. for each copy of edge {i, j} ∈ E do

assign it to Ẽtest with probability ε. Otherwise, assign it to Ẽ.
4. Convert (V , Ẽtest) into an adjacency matrix Ãtest ∈ Nn×n and
(V , Ẽ) into an adjacency matrix Ã ∈ Nn×n

Output: Ã and Ãtest.
Algorithm 3.1: Edge splitting

Algorithm 3.1 splits the edges of a graph into two graphs and outputs the
two adjacency matrices Ã and Ãtest. The splitting is administered by the edge
splitting probability ε ∈ (0, 1). Under the Poisson random graph model, the
matrices Ã and Ãtest are conveniently independent and the spectral properties
of P = E(A), E(Ã) and E(Ãtest) are closely related. These key observations,
which are spelled out in the next proposition proved in Appendix B.1, will
enable the estimation of λP.

Proposition 3.3. If A ∈ Nn×n is generated from the Poisson random graph model
and Ã and Ãtest are generated from splittingAwith the probability ε as defined above,
then

1. Ã and Ãtest are independent Poisson random graphs.

2. The population eigenvectors of A, Ã, and Ãtest are identical.
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3. If λj is a population eigenvalue of A, then (1 − ε)λj is a population eigenvalue
of Ã and ελj is a population eigenvalue of Ãtest.

Because Ã and Ãtest are independent, we can compute an eigenvector x̂j
on Ã and test its signal strength on Ãtest via

λtest(x̂j) = x̂
T
j Ãtestx̂j.

Conditionally on x̂j, we then get

Eλtest(x̂j) = x̂
T
jE(Ãtest)x̂j = εx̂

T
j Px̂j = ελP(x̂j).

Most importantly, if λP(x̂j) = 0, then Eλtest(x̂j) = 0. Not only is λtest(x̂j)/ε an
unbiased estimator of λP(x̂j), the following central limit theorem (CLT) shows
that it is also asymptotically normal, with an easy to estimate standard error.

To state the theorem formally, we consider a sequence of random adjacency
matrices B(n) ∈ Nn×n from Poisson random graphs with mean matrixQ(n) ∈
Rn×n satisfying maxijQ(n)

ij 6 1, and a sequence of unit vectors x(n) ∈ Rn.
To simplify the notation, we suppress the explicit dependence on n. We will
impose the following delocalization condition on x:

‖x‖2∞ = o(σ), (3.4)

where
σ2 = (x2)TQ(x2),

with x2 being the vector xwith entries squared. Similarly, we also define

σ̂2 = (x2)TB(x2).

In the next section, we will apply the theorem to B := Ãtest, Q := εP and x an
eigenvector of Ã.

Theorem 3.4 (CLT for cross-validated eigenvalue). Let B, Q, σ and σ̂ be as
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above. Assume that x satisfies Condition (3.4). Then,

λB(x) − λQ(x)

σ̂
⇒ N(0, 1). (3.5)

The proof of Theorem 3.4 is in Appendix B.1.

Remark 3.5. The theorem assumes a Poisson graph. In fact, we can similarly con-
sider the case when edges are unweighted. In fact, suppose the edges are Bernoulli
instead of Poisson, then so long as the graph is sparse, the formulas for σ2 and σ̂2

can still be used. However, Ã and Ãtest are no longer perfectly independent; the rea-
son is that if edge (i, j) appears in A, then only Ã or Ãtest can inherit the edge. In
simulations, the procedure still appears to perform well.

Remark 3.6. Regarding the delocalization condition (3.4), when all entries of Q
are of the same order ρ = o(1), then σ = Θ(ρ1/2) and the condition boils down to
‖x‖∞ = o(ρ1/4). In Appendix B.1 (Corollary B.2), we discuss a sufficient condition
for ‖x‖2∞ = o(σ) to hold in terms ofm and the expected number of edges in B.

3.3 Cross-validated eigenvalue estimation

In this section, we use Theorem 3.4 to test the null hypothesis H0 : λ(x̂j) = 0,
where x̂j is an eigenvector of A.

The algorithm

We propose an eigenvalue cross-validation algorithm to estimate whether each
eigenvector of A is correlated with the population eigenspace. The algorithm
reports a p-value for each eigenvector, which can then be used to determine k.
For input, in addition to the splitting probability ε, the algorithm takes two
more parameters: (i) the maximum number kmax of eigenvectors to consider
and (ii) the significance level α. We describe the algorithm for an undirected
unweighted graph with the adjacency matrix A ∈ {0, 1}n×n in Algorithm 3.2;
the algorithms for directed or Poisson graphs can be devised analogously.

A few remarks on the theory and the implementation are in order.
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Input: Adjacency matrix A ∈ Nn×n, edge splitting probability
ε ∈ (0, 1), and significance level α ∈ (0, 1)

Procedure EigCV(A, ε,kmax):
1. Obtain Ã, Ãtest ←ES(A, ε) from splitting A. // Algorithm 3.1
2. (Optional) Substitute A, Ã and Ãtest by their regularized
symmetric Laplacians as follows. For a symmetric adjacency
matrixM ∈ {0, 1}n×n, the regularized symmetric Laplacian
L ∈ Rn×n is define with

Lij =
Mij√

(di + τ)(dj + τ)
,

where di =
∑
jMij and τ =

∑
i di/n, for i, j = 1, 2, ...,n.

3. for k = 2, . . . ,kmax do
compute the test statistic

Tk =
λ̃test(x̃k)

σ̃k
,

where λ̃test(x) = x
TÃtestx, and σ̃k =

√
ε(x̃2

k)
TAx̃2

k is the
standard error evaluated using the full graph. Here, x̃2

k ∈ Rn
is the vector x̃k with each element squared.

4. Compute the one-sided p-value pk = 1 −Φ(Tk), where Φ is the
cumulative distribution function of the standard normal
distribution.

Output: The graph dimensionality estimate:
argmink6kmax

{pk > α}− 1.
Algorithm 3.2: Eigenvalue cross-validation
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Remark 3.7. We further study, in Appendix B.2, the appropriate range of ε in order
to satisfy given type I and II error of the test. We use a Bonferroni correction for
the kmax tests and perform a power calculation for a Stochastic Blockmodel near the
reconstruction threshold (Mossel et al., 2015). As with any power calculation, a
user may specify different inputs and find a different value of ε. Throughout the
simulations and data applications, we default ε to 0.05 for simplicity.

Remark 3.8. In practice, we recommend to use the regularized Laplacian (Step 2),
which helps reduces localization of eigenvectors (Le et al., 2017; Zhang and Rohe,
2018). Our theory focuses on the direct use of A. In this case, it is necessary to
check the delocalization of eigenvectors (see Section 3.3 below). In addition, we allow
repeats of Step 1-4 (e.g., for 10 times) and take the average of Tk across the repli-
cates, which helps to reduce the randomness caused by the edge splitting. Across our
limited experiments, we found that these algorithmic options lead to more accurate
estimations of graph dimensionality.

Remark 3.9. If the p-values pk are used to select eigenvectors, then only the eigen-
vectors x̃k should be used (not x̂k). This is because the p-value pk is only associated
with the eigenvector x̃k. It is tempting to compute the eigenvectors of A or L with
all of the edges and then give jth eigenvector x̂k the p-values pk. However, when the
left-out edges are also used to compute the eigenvectors, this alters the eigenvectors.
In addition to slightly changing the elements of the eigenvectors, it is common for
the order of the eigenvectors to also change. Or, for the new eigenvectors to be a more
general rotation of the subsampled eigenvectors. It is an area for future research to un-
derstand if and how the p-values can be extended. By making ε small we can ensure
that the subsampled eigenvectors x̃k are nearly as good as x̂k.

Statistical consistency

This section states a consistency result for a modified version of the algorithm
stated in Appendix B.1. The main modification is the addition of a delocaliza-
tion test.

We will make some further assumptions. Let P = ρnP
0, where 0 < ρn < 1

controls the sparsity of the network, and P0 = UΛ0UT is a matrix of rank kwith
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P0
ij 6 1 for all i, j. Here, Λ0 = diag(λ0

1, · · · , λ0
k) is the diagonal matrix of its

non-increasing eigenvalues, and U = (u1, · · · ,uk) contains the corresponding
eigenvectors. We first consider the signal strength in the population adjacency
matrix. The magnitude of the leading eigenvalues characterize the useful
signal in the data; only if they are sufficiently large is it possible to identify
them from a finite graph sample. As such, the first assumption requires that the
leading eigenvalues of the population graph are of sufficient and comparable
magnitude. We also include necessary assumptions on the sparsity of the
graph.

Assumption 3.10 (Signal strength and sparsity). We assume that there exist
positive constants ψ1,ψ ′1 such that

κ := λ0
1/λ

0
K ∈ (0,ψ1), λ0

1 > ψ ′1n.

In addition, we assume that P0
ij 6 1 for all i, j and that the network sparsity satisfies

c0
logξ0 n
n 6 ρn 6 c ′0n

−ξ1 , for some constants ξ0 > 2, ξ1 ∈ (0, 1), c0, c ′0 > 0.

Observe that Assumption 3.10 implies in particular that ψ−1
1 ψ ′1nρn 6

λK 6 λ1 6 nρn since λ1 6 tr(P) 6 nρn. Assumption 3.10 is less strict than the
assumptions in Li et al. (2020). This is because we do not require a minimum
gap between distinct eigenvalues, which is hard to satisfy in reality.

Next, we consider a property of the population eigenvectors. The notion of
coherence was previously introduced by Candés & Recht (Candès and Recht,
2009). Under the parametrization of Assumption 3.10, the coherence of U is
defined as

µ(U) = max
i∈[n]

n

K
‖UTei‖2 =

n

K
‖U‖2

2,∞.

A lower coherence indicates that the population eigenvectors are more spread-
out—that is, they are not concentrated on a few coordinates.

Assumption 3.11 (Coherence). We assume µ(U) 6 µ0, for some constant µ0 > 1.
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Our main theoretical result asserts the consistency of our cross-validated
eigenvalue estimator for estimating K. The proof of Theorem 3.12 is in Ap-
pendix B.1.

Theorem 3.12 (Consistency). Suppose A ∈ Rn×n is a Poisson graph satisfying
Assumptions 3.10 and 3.11. Let K be the true latent space dimension, and let K̂ be the
output of Algorithm B.1 (see Appendix B.1) with edge splitting probability ε. Then

P
(
K̂ = K

)
→ 1 as n→∞.

3.4 Simulation and real data application

This section compares the proposed method (EigCV) with some existing
graph dimensionality estimators using both simulated and real graph data.
For this, we selected (1) BHMC, a spectral method based on the Bethe-Hessian
matrix with correction (Le and Levina, 2019); (2) LR, a likelihood ratio method
adapting a Bayesian information criterion (Wang and Bickel, 2017); (3) ECV,
an edge cross-validation method with an area under the curve criterion (Li
et al., 2020); (4) NCV, a node cross-validation using an binomial deviance
criterion (Chen and Lei, 2018); and (5) StGoF (with α = 0.05), a stepwise
goodness-of-fit estimate (Jin et al., 2020). We performed all computations in R.
For (1)-(4), we invoked the R package randnet, and for (5), we implemented
the original Matlab code (shared by the authors) in R.1

Numerical experiments

This section presents several simulation studies that compare our method
with other approaches to graph dimensionality. We set the graph splitting
probability ε to 0.05 and set the significance level cut-off at α = 0.05. We
sampled random graphs with n = 2, 000 nodes and k = 10 blocks from
the degree-corrected stochastic block model (DCSBM). Specifically, for any

1We provide an R package that contains the proposed method, eigcv, and an implementa-
tion of StGoF, stgof. The source code is is available at https://github.com/RoheLab/gdim.

https://github.com/RoheLab/gdim
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i, j = 1, 2, ...,n,
Aij

ind.
∼ Bernoulli

(
θiθjBz(i)z(j)

)
,

where z(i) ∈ {1, 2, ...,k} is the block membership of node i, and B ∈ Rk×k is the
block connectivity matrix, with Bii = 0.28 and Bij = 0.08 for i, j = 1, 2, ...,k,
and θi > 0 is the degree parameters of node i. We investigated the effects of
degree heterogeneity by drawing θi’s from three distribution (before scaling to
unit sum): (i) a point mass distribution, (ii) an Exponential distribution with
rate 5, (iii) a Pareto distribution with location parameter 0.5 and dispersion
parameter 5. From (i) to (iii), the node degrees become more heterogeneous.
Finally, to examine the effects of sparsity, we chose the expected average node
degree in {25, 30, ..., 60}. For each simulation setting, we evaluated all methods
100 times.

Figure 3.1 displays the accuracy of all graph dimensionality methods. Here,
the accuracy is the fraction of times an estimator successfully identified the
true underlying graph dimensionality (which is 10).2 From the results, both
BHMC and ECV offered satisfactory estimation when the graph is degree-
homogeneous and the average degree becomes sufficiently large, while they
were affected drastically by the existence of degree heterogeneity. The LR
estimate was affected by degree heterogeneity as well (although less than
BHMC or ECV) and also required a relatively large average node degree to
estimate the graph dimensionality. The NCV methods failed to estimate the
graph dimensionality under most settings. The StGoF estimate worked better
for degree-heterogeneous graphs but required a larger average node degree
for accuracy. It is also worth pointing out that, the LR and StGoF methods
tended to over-estimate the graph dimensionality when the average degree is
large, especially for the power-law graphs (see supporting Figure B.2). Finally,
our method provided a much more accurate dimensionality estimate overall,
requiring smaller average node degree and allowing degree heterogeneity.
In addition, our testing approach also enjoys a strong advantage of reduced
computational cost. To show this, Figure 3.2 depicts the average runtime

2Besides comparison of accuracy, we also compared the deviation of the estimation by each
method, for which similar results hold consistently (see supporting Figure B.2).
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Figure 3.1: Comparison of accuracy for different graph dimensionality esti-
mates under the DCSBM. The panel strips on the top indicate the node degree
distribution used. Within each panel, each colored line depicts the relative
error of each estimation method as the average node degree increases. Each
point on the lines are averaged across 100 repeated experiments.

for each method. It can be seen that the proposed method and BHMC are
faster than competing methods by several magnitudes. The computational
complexity of each StGoF iteration (or test) is at least O(n2), regardless of
whether the graph is sparse or not. Consequently, StGoF requires the longest
runtime.

Email network

A real data network was generated using email data within a large European
research institution, with each node representing one of the 1005 core members
(Leskovec et al., 2007). There is an edge from node i to node j, if i sent at
least one email to j. The dataset also contains 42 “ground-truth” community
memberships of the nodes. That is, each individual belongs to exactly one
of 42 departments at the research institute. For simplicity, we removed the
14 small departments that consist of less than 10 members (see supporting
Table B.1 for similar results without the filter). This resulted in a directed and
unweighted network with a total of 936 nodes from 28 communities.

We applied the graph dimensionality methods to estimate the number of
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Figure 3.2: Comparison of runtime for the different graph dimensionality
methods. Each colored bar indicates the runtime of applying each method
on a DCSBM graph with 2000 nodes and 10 blocks. The maximum graph
dimensionality is set to 15 for all methods. The runtime was averaged across
100 repeated experiments.

clusters in the network. For the randomized methods (including ECV, NCV,
and our proposed method), we ran them 25 times and report the mean and
standard deviation of the estimates. For the methods that report a p-value
(including StGoF and our proposed method), we use a significance level of
α = 0.01, followed by a multiplicity correction using the procedure of Ben-
jamini & Hochberg (Benjamini and Hochberg, 1995). We set kmax = 50. Finally,
we chose the splitting probability to be 0.05, as the network is sparse with
an average node degree being 23.5. Table 3.1 lists the inferences made by
each method. As shown, our method provided an estimate that is close to
the true number of departments within the institute. BHMC, LR, NCV, and
ECV all estimated small numbers of clusters, while StGoF went significant
larger (> 50). These observations were consistent with the simulation results
(see supporting Figure B.2). Among all the others, only the proposed method
provided a close estimate (≈ 28) to the true number of departments. Simi-
larly to the simulation results, the BHMC method and our method are more
computationally efficient, with much shorter runtime than the others.
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Table 3.1: Comparison of graph dimensionality estimates using the email net-
work among members in a large European research institution. Each members
belongs to one of 28 departments.

Method Estimate (mean) Runtime (second)
EigCV 28.3 0.68
BHMC 14 0.02
LR 17 85.19
NCV 6.5 204.97
ECV 16.5 41.07
StGoF > 50 397.47

3.5 Discussion

In this paper, we proposed a concept of cross-validated eigenvalues to estimate
the number k of communities in a graph. Through edge splitting and thanks to
a simple central limit theorem, the estimation of cross-validated eigenvalues is
efficient for very large graph. The paper also provides theoretical justification
showing that the estimator is consistent in finite graphs. Our simulations and
empirical data application validate the theory and further demonstrate the
efficacy of the proposed method.

The problem of estimating k is also related to selecting the number of
factors (resp. components) in factor analysis (resp. principal component
analysis), although usually studied under different statistical models, such
as the factor model (resp. the spiked covariance model) (Donoho et al., 2018;
Rohe and Zeng, 2020). Rank estimation has also been studied in the context
of certain Poisson reduced-rank models (Jentsch et al., 2020). Besides the
popular parallel analysis of Horn’s (Horn, 1965), there are some encouraging
methodological developments recently (Dobriban, 2020; Dobriban and Owen,
2019; Hong et al., 2020). It is of future interest to investigate whether the intro-
duced cross-validation eigenvalue estimator can be adapted under alternative
models.
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4 a new basis for sparse principal component analysis

4.1 Introduction

Principal component analysis (PCA), introduced in the early 20th century
(Pearson, 1901; Hotelling, 1933), is one of the most prevalent tools in ex-
ploratory multivariate data analysis. PCA projects higher-dimensional data
into a lower-dimensional space that is spanned by some uncorrelated principal
components (PCs), with the vast majority of the variance in the data kept. It is,
however, commonly conceived that PCs are difficult to interpret (e.g., Jeffers,
1967), as each PC is a linear combination of many, if not all, original variables.
To remedy such disadvantage, sparse PCA estimates “sparse” PCs, each of
which consists of a small subset of original variables (Zou and Xue, 2018).

Sparse PCA is originally formulated as an optimization problem over the
loading coefficients with a cardinality constraint. Such non-convex constraint
results in an NP-hard problem in the strong sense (Tillmann and Pfetsch, 2014).
In order to circumvent the obstacle, various methods have been proposed, such
as the iconic regression-based approach by Zou et al. (2006), a convex relax-
ation to semidefinite programming (d’Aspremont et al., 2007), the penalized
matrix decomposition framework of Witten et al. (2009), and the generalized
power method due to Journée et al. (2010). More recently, theoretical develop-
ments of sparse PCA have covered the consistency (Johnstone and Lu, 2009;
Shen et al., 2013), variable selection properties (Amini and Wainwright, 2009),
rates of convergence, the minimaxity over some Gaussian or sub-Gaussian
classes (Vu and Lei, 2013; Cai et al., 2013), and the statistical-computational
trade-offs under the restricted covariance concentration condition (Berthet
and Rigollet, 2013; Wang et al., 2016).

Despite the extensive literature of sparse PCA, there are two enigmas.
First, sparse PCA often explains far less variance in the data than PCA does
(Figure 4.1). While this may appear to be a trade-off for sparsity, our results
show that a substantial improvement is possible. Second, the most common
formulations of sparse PCA only estimate a single component at a time and
thus rely on a matrix deflation after estimating each component. This deflation
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By allowing for a rotated basis, sparse PCA can explain
nearly as much variance as PCA
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Figure 4.1: Comparison of the explanatory power of sparse PCA methods.
Each bar shows the proportion of variance explained (PVE) by 16 PCs. For
two sparse PCA methods, an error bar (based on the three-sigma rule) depicts
the variation of PVE over 30 replicates. More details about the simulated data
and settings (e.g., sparsity constraints) are described in Section 4.4.

entails complications of multiple tuning parameters, non-orthogonality, and
sub-optimality (Mackey, 2008). Identifiability and consistency present more
subtle issues; there is no reason to assume a priori distinct eigenvalues or that
the gaps between the eigenvalues are small (Vu et al., 2013). Estimating the
subspace spanned by multiple sparse PCs at once overcomes this dilemma
(Vu et al., 2013).

There are two distinct notions of subspace sparsity: row sparsity and col-
umn sparsity (Vu and Lei, 2013). Contemporary approaches to sparse PCA
primarily focus on row sparsity, which implies that the eigenvectors of the
covariance matrix themselves are sparse (e.g., Moghaddam et al., 2006). The
second notion, column sparsity, is an alternative. A column sparse subspace
“is one which has some orthogonal basis consisting of sparse vectors. This means that
the choice of basis is crucial; the existence of a sparse basis is an implicit assumption
behind the frequent use of rotation techniques by practitioners to help interpret prin-
cipal components” (Vu and Lei, 2013). Row sparsity is the most prevalent notion
of sparsity used in contemporary sparse PCA, yet it does not appear to de-
scribe many contemporary parametric multivariate models; conversely, many
contemporary parametric models in multivariate statistics can be estimated
with the sparse PCA approaches that can identify column sparsity (Rohe and
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Zeng, 2020).
In high-dimensional regression, sparse penalties such as the Lasso resolve

an invariance; there is an entire space of solutions b which exactly interpolate
the data Y = Xb and presuming that the solution b is sparse can make the
solution unique. Interestingly, there is no analogue to “sparsity resolving an
invariance” for the estimation of row sparse subspace, but there is a very clear
analogue in estimating column sparse subspace; the basis is determined by
the one that provides the most sparse representation of data.

Our contributions

In this work, we propose a new method, sparse component analysis (SCA), to
estimate multiple PCs that are column sparse. The column sparsity is achieved
by allowing an orthogonal rotation to PCs prior to imposing any sparsity
constraints. The algorithm is motivated by two facts. First, an orthogonal
rotation does not affect the total variance explained by a given set of PCs.
Second, by choosing the orthogonal rotation carefully, PCs can be aligned
closely with the coordinate axes, making them approximately sparse (Figure
4.2). This technique has been commonly adapted in factor analysis, a close
cousin of PCA (Thurstone, 1931; Kaiser, 1960; Jolliffe, 1995). For example, the
varimax rotation (Kaiser, 1958) is a popular choice in the psychology literature.
SCA incorporates the orthogonal rotation and sparsity constraints to find the
sparse and orthogonal basis in a subspace (i.e., column sparse PCs). We show
in Proposition 4.2 that

column sparse PCs can explain more variance in the data than row sparse
PCs.

We validated this with numerical experiments. Additionally, the simulations
suggest that SCA is more stable and robust across tuning parameters than
existing sparse PCA methods. Our framework of SCA generalizes naturally to
a two-way analysis of a data matrix for simultaneous row and column dimen-
sionality reductions. For this, we introduce a low-rank matrix approximation
method called sparse matrix approximation (SMA). The SMA builds on the
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The same data in seven dimensions, before and after rotation. After the
sparse rotation, each PC uses only a small subset of the original variables.

rotation
no

yes

PC1

PC8

PC10

PC11

PC15

PC22

PC18

Figure 4.2: Loadings of seven principal components (PCs) from a large scale
social network matrix. Each (off-diagonal) panel shows the loadings of two
PCs on the original variables (displayed as points). The lower-triangular
panels (yellow) depict the PCs before a rotation. The upper-triangular panels
(blue) display the PCs after an orthogonal rotation. The PCs before and after
the rotation have no special or corresponding relationship. In each panel, two
perpendicular dotted lines (grey) indicate the coordinate axes. See Section 4.5
for details about the data analyzed.
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penalized matrix decomposition previously proposed by Witten et al. (2009).
Furthermore, the SMA provides a unified view of sparse PCA and other mod-
ern multivariate data analysis, including sparse independent component anal-
ysis (see, e.g., Comon, 1994). Finally, we demonstrate our sparse PCA methods
with various high-dimensional data applications, including sparse coding of
images, blind source separation, analysis of single-cell transcriptome data, and
large-scale clustering of social networks. We find compelling evidence for the
usefulness of our approach, despite concerns about the consistency of PCA in
high-dimensions.

Organization

The rest of this paper goes as follows. Section 4.2 describes the methods. Sec-
tion 4.3 compares SCA to existing methods. Section 4.4 compares different
sparse PCA methods using simulated data. Section 4.5 applies SCA to sev-
eral high-dimensional datasets. Section 4.6 concludes the paper with some
discussions.

Notations

In this paper, we discuss the entrywise matrix norm only. For any matrix A ∈
Rm×n, its entrywise `p-norm is defined as ‖A‖p,p = (

∑m
i=1
∑n
j=1
∣∣Aij∣∣p)1/p.

For simplicity, we also use the notation ‖A‖p for entrywise norm, rather than
the norm induced by a vector norm. In particular, the Frobenius norm (or
the Hilbert-Schmidt norm) is then an alias of entrywise `2-norm, ‖A‖F =√∑m

i=1
∑n
j=1A

2
ij = ‖A‖2. Throughout, the following sets of matrices are

frequently considered. U(n) = {U ∈ Rn×n | UTU = UUT = In} denotes
all orthogonal (unitary) matrices in Rn. V(n,k) = {V ∈ Rn×k | VTV = Ik}

represents the Stiefel manifold in Rn, and B(n,k) = {V ∈ Rn×k | VTV � Ik}
is its convex hull (Gallivan and Absil, 2010).
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4.2 The methods

Consider the data matrix X ∈ Rn×p of n observations (or samples) on p
variables. Without loss of generality, we assume that each column of X is
centered (i.e. mean-zero) unless otherwise noted. PCA finds some (say k)
uncorrelated linear transformations of the original variables such that after
the linear transformations, the most variance is kept. That is,

maximize
Y

‖XY‖F subject to Y ∈V(p,k), (4.1)

where the feasible set is the Stiefel manifold, V(p,k) = {Y ∈ Rp×k | YTY = Ik}.
The jth PC is the linear combination of original variables whose coefficients are
in the jth columns of Y. The coefficients are often called loadings (or loading
coefficients). Note that loadings are usually non-zero (i.e., Y is usually not
sparse). The transformed data S = XY ∈ Rn×k contains the scores. That is, Sij
is the score of the ith sample on the jth PC.

In PCA, PCs are often defined sequentially. That is, in order to find the kth
PCs, we fix the previous k− 1 PCs and solve (4.1); repeat this for k = 1, 2, ...
in order. Such definition ensures the first k PCs together always explain the
most variance in the data. By contrast, for sparse PCA, we reason in the
following that it is sufficient to solve the optimization problem for all PCs at
once. Note first that the solution to (4.1) is a subspace, because if Y∗ is an
optimizer of (4.1), then for any orthogonal matrix R ∈ U(k), Y∗R is also an
optimizer. The solution to (4.1) being a rotation-invariant subspace is desirable
because it allows a sparsity-enabling orthogonal rotation to any given solution.
Importantly, such rotation exists under the assumption of column sparsity (see
Section 4.2 and Vu and Lei, 2013). We thereby propose a new method for
sparse PCA.
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Sparse component analysis

For sparse PCA, we impose an `1-norm constraint1 on the loadings and formu-
late the following minimization of matrix reconstruction error:

minimize
Z,B,Y

∥∥X− ZBYT∥∥
F (4.2)

subject to Z ∈V(n,k), Y ∈V(p,k), ‖Y‖1 6 γ,

where γ > 0 is the sparsity controlling parameter, and the columns of Y are
PC loadings. ZBYT is an approximation of X.

The fundamental difference between formulation (4.2) and previous sparse
PCA formulations is that the middle B matrix is not necessarily diagonal.
Compared to the diagonal B case, this added flexibility has two merits—(i) it
allows PCs to be column sparse and (ii) it allows sparse PCs to explain more
variance in the data.

Column sparsity

Our formulation (4.2) presumes the PCs are column sparse. That is, given the
subspace of PCs, there exists a orthogonal rotation, such that after the rotation,
the PCs are approximately sparse.

LetUDVT be the low-rank singular value decomposition (SVD) ofX, where
U ∈ V(n,k) and V ∈ V(p,k) contain singular vectors, and D ∈ Rk×k is
a diagonal matrix with the diagonal entries in decreasing order, and k 6

min{n,p} is the rank. For any two orthogonal matrices O,R ∈ U(k), define
Z = UO, B = OTDR, and Y = VR. With these definitions,

X ≈ UDVT = (UO)(OTDR)(VR)T = ZBYT.

As such, ZBYT approximates X as well as UDVT. In particular, the middle B
matrix is not diagonal because it absorbs the orthogonal matrices (O and R).
Z and Y are orthogonally rotated from U and V , and both matrices still have
orthogonal columns. Hence, by imposing an `1-norm constraint on Y to make

1The `1-norm constraint could be replaced by other sparsity constraints, e.g., the `0-norm
analogue.
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it approximately sparse, we presume that there exists at least one orthogonal
basis for the column space of V (i.e., the eigenvectors’ subspace), which is not
necessarily the original coordinate basis, such that the PCs are sparse under
that basis.

Remark 4.1. The formulation of SCA does not implicitly order sparse PCs. This is
because permuting the columns of Y, which can be absorbed by the orthogonal matrix
R, does not change the approximation of ZBYT. As such, the solution to (4.2) is not
unique. In practice (see Section 4.4), we sort sparse PCs by the explained variance
(EV) of individual PCs, which is defined as ‖Xy‖2

2, where y ∈ Rp contains the
loadings of a PC.

Explained variance in the data

A non-diagonal middle Bmatrix facilitates the more general formulation of
column sparse PCA. Specially, if B is restricted to diagonal, the formulation
reduces to row sparse PCA.2 Row sparse PCA presumes that given the sub-
space of PCs (i.e., the subspace spanned by some singular vectors of X), the
PC loadings are approximately sparse by themselves (i.e., the singular vectors
align closely with the natural coordinate axes). The next proposition compares
column and row sparse PCA in terms of the matrix reconstruction error (the
proof is provided in Appendix C.1).

Proposition 4.2 (Comparison of row and column sparsity). Let X ∈ Rn×p be
any matrix. Suppose SZ ⊆ Rn×k and SY ⊆ Rp×k are the feasible sets for Z and
Y respectively, where k 6 min(n,p). Then, subject to Z ∈ SZ, Y ∈ SY , and D is
diagonal, it holds that

min
Z,B,Y

∥∥X− ZBYT∥∥
F 6 min

Z,D,Y

∥∥X− ZDYT∥∥
F.

Proposition 4.2 says that the solution to column sparse PCA has smaller
reconstruction error of the data matrix than row sparse PCA. Since the squared
matrix reconstruction error here is the unexplained variance in the data, it

2This restricted formulation is essentially a low-rank SVD with an additional sparsity
constraint on the right singular vectors.



66

follows that the solution to column sparse PCA can capture more variance in
the data than row sparse PCA.

Remark 4.3. From a parametric perspective, SCA explains more variance because it
uses k2 −kmore parameters in the Bmatrix. Relative to the total number of parame-
ters, this is typically a small increase; the Z and Y matrices contain roughly (n+p)k

parameters, and typically k is much smaller than n + p. Whether these additional
parameters in B are statistically justified must be addressed in a case-by-case basis.
In our limited experience with these techniques, the additional parameters are easily
justified because the proportion of variance explained dramatically increases (see Sec-
tion 4.4); the output becomes more stable across initializations, perturbations, and
tuning parameters (see Section 4.4); and the estimated factors are easily interpretable
(see Section 4.5 and 4.5).

An algorithm for SCA

To solve SCA, the following lemma translates (4.2) into an equivalent and
more convenient form (the proof can be found in Appendix C.1).

Lemma 4.4 (Bilinear form of SCA). Solving the minimization in (4.2) is equiva-
lent to solving the following maximization problem,

maximize
Z,Y

∥∥ZTXY
∥∥

F (4.3)

subject to Z ∈V(n,k), Y ∈V(p,k), ‖Y‖1 6 γ.

In particular, for the optimizer in (4.2), B = ZTXY.

Due to the non-convexity of `2-equality constraints (Z ∈ V(n,k) and
Y ∈ V(p,k)), the feasible set in (4.3) is not convex in general. We replace
the feasible set with its convex hull using some `2-inequality constraints for
simplicity,

maximize
Z,Y

∥∥ZTXY
∥∥

F (4.4)

subject to Z ∈B(n,k), Y ∈B(p,k), ‖Y‖1 6 γ.
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Due to the Karush-Kuhn-Tucker conditions (see, e.g., Nocedal and Wright,
2006), one could expect the solution to fall on the boundary (i.e., Z ∈V(n,k),
Y ∈ V(p,k), and ‖Y‖1 = γ) so long as the sparsity parameters are chosen
such that k 6 γ 6 k

√
p.3 As such, local optima are not necessarily global

optima. We discuss a data-driven method of tuning the sparsity parameters
in Appendix C.2.

Next, we describe an algorithm that computes sparse PCs as formulated in
(4.4). The input includes a data matrix X, the desired number of sparse PCs
k, and optionally the sparsity controlling parameters γ. In our experiences, a
default value of γ =

√
pk appears to generate robust and interpretable sparse

PCs (see, e.g., Section 4.4). The algorithm outputs the loadings of k sparse
PCs. The SCA algorithm initializes Z ∈ V(n,k) and Y ∈ V(p,k) with the
top k left and right singular vectors of X respectively. Once initialized, the
algorithm alternatively updates Z and Y; fixing one and optimizing the other
until convergence. The iteration is because the objective function is bilinear in
Z and Y, allowing for fast updates. Specifically, with Y fixed, (4.4) takes the
form

maximize
Z

∥∥ZTXY
∥∥

F subject to Z ∈B(n,k). (4.5)

With Z fixed, (4.4) takes the form

maximize
Y

∥∥ZTXY
∥∥

F subject to Y ∈B(p,k), ‖Y‖1 6 γ. (4.6)

Update Z fixing Y

The update of Z fixing Y in (4.5) is algebraic. The following lemma provides a
set of solutions to (4.5), which is extended from Theorem 7.3.2 in Horn and
Johnson (1985) (the proof is included in Appendix C.1 for completeness).

Lemma 4.5 (Maximization without sparsity constraint). Given a full-rank ma-
trix X ∈ Rn×p, with p 6 n, let the singular values of X be σi for i = 1, 2, ...,p.

3This is for the set {Y ∈ Rp×k | ‖Y‖1 = γ} to intersect with the Stiefel manifold V(p,k).
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Then,

max
Y∈V(n,p)

∥∥XTY
∥∥

F =

p∑
i=1

σi

with the maximizer Y∗ = polar(X), up to any orthogonal rotation from the right.
Here, polar(X) = X(XTX)−1/2 is the polar of X.

Due to Lemma 4.5, the SCA algorithm updates Z with the polar of XY,
Ẑ = polar(XY), which can be computed in O(nk) time (Journée et al., 2010).

Update Y fixing Z

To update Y fixing Z, we start by solving the non-sparse version of (4.6) (i.e.,
remove the sparsity constraint ‖Y‖1 6 γ),

maximize
Y

∥∥ZTXY
∥∥

F subject to Y ∈B(p,k). (4.7)

Let Ỹ = polar(XTZ). Then, Ỹ is one element in the subspace of the solutions
to (4.7). Before imposing the sparsity constraint, we look for an orthogonal
rotation R to Ỹ to minimize ‖ỸR‖1. However, ‖Y‖1 is not a smooth function of Y
if it contains at least one zero entry, entailing the complications of defining sub-
gradients. Alternatively, the SCA algorithm minimizes a smoother criterion
based on the `4/3 norm:

minimize
R

∥∥ỸR∥∥ 4
3

subject to R ∈ U(k). (4.8)

This sub-problem leads to the varimax rotation (see Section 4.2) that is widely
applied in factor analysis (Kaiser, 1958). We denote Y∗ = ỸR∗ to be the
orthogonally rotated solution to (4.7), where R∗ is the solution to (4.8). Finally,
considering the `1-norm sparsity constraint, we apply the element-wise soft-
thresholding of Y∗ with the sparsity parameter γ, which is defined as (Donoho,
1995; Tibshirani, 1996)

[Tγ(Y
∗)]ij = sign(Y∗ij) ·

(
|Y∗ij|− t

)
+

, (4.9)
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where t > 0 is the threshold determined by the equation ‖Tγ(Y∗)‖1 = γ, and
x+ equals x if x > 0 or 0 otherwise. We discuss several properties of soft-
thresholding in Appendix C.3. In summary, the update of Y given Z consists
of three steps that we call “Polar-Rotate-Shrink” (PRS, Algorithm 4.1)—first,
compute a solution to the unconstrained problem (4.7); second, rotate with
varimax; third, soft-threshold all of the elements. Algorithm 4.2 summarizes
the algorithm of SCA.

Input: A ∈ Rp×k,
sparsity parameter γ (optional, default to

√
pk) // Section C.2

Procedure PRS(A):
Ỹ ← left singular vectors of A
Y∗ ← rotate Ỹ with varimax // Section 4.2
Ŷ ← soft-threshold Y∗ with parameter γ // Appendix C.3

Output: Ŷ
Algorithm 4.1: Polar-Rotate-Shrink (PRS)

Input: Data matrix X and a number of components k
Procedure SCA (X,k):

Initialize Ẑ and Ŷ with the top k left and right singular vectors of X
repeat
Ŷ ← PRS(XTẐ) // Algorithm 4.1
Ẑ← polar(XŶ) // Lemma 4.5

until convergence
Output: Sparse loadings Ŷ

Algorithm 4.2: Sparse Component Analysis (SCA)

The varimax rotation

For any matrixA ∈ Rp×k, the varimax criterion is defined as the sum of column
(sample) variance of squared elements (A2

ij) (Kaiser, 1958):

Cvarimax(A) =
k∑
j=1

 1
p

p∑
i=1

A4
ij −

1
p2

(
p∑
i=1

A2
ij

)2
 .
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For a fixed matrix Y ∈ Rp×k, the varimax rotation seeks an orthogonal rotation
R ∈ Rk×k to maximize the varimax criterion evaluated at YR,

maximize
R

Cvarimax(YR) subject to R ∈ U(k). (4.10)

It is commonly used in factor analysis for producing nearly sparse and inter-
pretable loadings of PCs, especially in the psychology literature. The varimax
rotation is easy to compute; for example, the base function varimax in R im-
plements a gradient projection algorithm of it (Bernaards and Jennrich, 2005).
Jennrich (2001) showed that the gradient projection algorithm converges to
a local optimum from any starting point and enjoys geometric (or linear)
convergence rate.

The varimax criterion naturally links to the `4/3-norm objective function in
(4.8). Since Y ∈V(p,k), the columns of Y have unit length. Hence,

∑p
i=1 Y

2
ij =

1, and the varimax criterion reduces to a simpler form (also known as the
quartimax criterion as introduced by Carroll (1953)) up to an additive constant:

Cquartimax(Y) =

p∑
i=1

k∑
j=1

Y4
ij = ‖Y‖

4
4,

which is the `4-norm of Y to the power of 4. Next, by the Hölder’s inequality
(using the Hölder conjugates 4/3 and 4) and the power mean inequality (and
that ‖Y‖F =

√
k),

‖Y‖ 4
3
‖Y‖4 > ‖Y‖1 > ‖Y‖F =

√
k.

This implies that maximizing the varimax criterion is the dual problem of
minimizing the `4/3-norm objective. Hence, to update Y in the algorithm of
SCA, we invoke the varimax rotation in (4.10) as a proxy of (4.8).

Remark 4.6. Besides varimax, we experimented the orthogonal rotation that directly
minimizes the `1 norm, which we call the “absmin” rotation:

minimize
R

‖YR‖1 subject to R ∈ U(k). (4.11)

However, the objective function is not smooth at thoseRwhere YR contains at least one
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zero element; this posts challenges to solving (4.11). For example, we tried a gradient
projection algorithm using the gradient direction YT sign(YR), where sign(·) is the
element-wise sign function, yet the algorithm hardly converges. It is worth noting
that in our limited experiments, where we used the absmin rotation but only allowed
fifteen iterations of this gradient projection algorithm, we obtained marginally better
solutions, in terms of explained variance, than using the varimax rotation (see Section
4.4). It is of future interest to investigate alternative orthogonal rotations that are easy
to compute and can generate approximately sparse structure.

Sparse matrix approximation

In the SCA algorithm above, a sparsity constraint can also be applied to Z, in
addition to Y. We call this sparse matrix approximation (SMA). We define
SMA as the solution to a matrix reconstruction error minimization problem:

minimize
Z,B,Y

∥∥X− ZBYT∥∥
F (4.12)

subject to Z ∈B(n,k), P1(Z) 6 γz,

Y ∈B(p,k), P2(Y) 6 γy,

where γz > 0 and γy > 0 are the sparsity controlling parameters, and P1

and P2 are some penalty functions that promote sparsity. If γZ is so large that
P1(Z) 6 γz is always satisfied, then (4.12) is equivalent to SCA. Similar to
Lemma 4.4, we transform (4.12) into an equivalent and more convenient form
(the proof is almost identical to that of Lemma 4.4 thus is omitted),

maximize
Z,Y

∥∥ZTXY
∥∥

F (4.13)

subject to Z ∈B(n,k), P1(Z) 6 γz,

Y ∈B(p,k), P2(Y) 6 γy.

The two criteria in (4.12) and (4.13) are equivalent if and only if B = ZTXY.
We interpret B as the “score” of SMA, since the solution to (4.12) maximizes
the sum of squares of its elements,

∑
i,j B

2
ij. It is also worth noting that the

squared matrix reconstruction error equals to ‖X‖2
F − ‖B‖2

F (see the proof of
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Lemma 4.4).
Since SMA is a simple extension from SCA, we extend Algorithm 4.2 for

SMA in Algorithm 4.3, where we apply PRS to Z in addition to Y. The output
includes the estimated Z, B, and Y.

Input: data matrix X ∈ Rn×p and the approximation rank k
Procedure SMA (X,k):

Initialize Ẑ and Ŷ with the top k left and right singular vectors of X
repeat
Ẑ← PRS(XŶ) // Algorithm 4.1
Ŷ ← PRS(XTẐ) // Algorithm 4.1

until convergence
B̂← ẐTXŶ

Output: Ẑ, B̂, and Ŷ
Algorithm 4.3: Sparse Matrix Approximation (SMA) with P1 (A) =
P2 (A) = ‖A‖1.

We highlight that SMA generalizes the popular penalized matrix decom-
position (PMD) proposed by Witten et al. (2009), which is also similar to the
method of Shen and Huang (2008). The PMD also approximates a data matrix
X ∈ Rn×p by the product of three matrices, ZDYT, where Z ∈ V(n,k) and
Y ∈V(p,k) are presumed sparse, and D ∈ Rk×k is a diagonal matrix whose
diagonal entries are in decreasing order, and k is the rank of the matrix ap-
proximation. For sparsity, PMD applies penalty functions to Z and Y, leading
to the matrix reconstruction error minimization formulation of PMD:4

minimize
U,D,V

∥∥X− ZDYT∥∥
F

subject to Z ∈B(n,k), P1(Z) 6 γz,

Y ∈B(p,k), P2(Y) 6 γy,

D is diagonal,

where γz,γy > 0 are parameters that control the sparsity of Z and Y, and P1

4The paper originally considers the PMD with k = 1. The PMD finds multiple factors
sequentially using a deflation technique.
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and P2 are some convex penalty function (e.g. `1-norm).
The single difference between SMA and PMD is the the diagonal constraint

on the middle matrix. In this way, SMA generalizes PMD, because, SMA esti-
mates k2 − kmore parameters in B than PMD (see Remark 4.3). Proposition
4.2 suggests that the reconstruction error of SMA is less or equal to that of
PMD (see also Remark C.1 in Appendix C.1). Algorithmically, in order to com-
pute PMD, Witten et al. (2009) proposed to find the solution by sequentially
maximizing Bii for i = 1, 2, ..., k (recall that B = ZTXY). By contrast, solving
the SMA in (4.13) amounts to maximizing the entirety of the score matrix,
that is, ‖B‖F.

4.3 Connections to existing methods

In this section, we compare SCA with several existing methods of sparse PCA
and discuss two variants and one extension of SCA.

Existing sparse PCA methods

The formulation of SCA is akin to multiple existing sparse PCA formulations.
However, the possibility of orthogonal rotations has not been explored thor-
oughly, despite the plethora of available methods. In this section, we elucidate
these connections and point to some differences.

SPCA (Zou et al., 2006) SPCA is motivated to maximize the explained vari-
ance in the data (Jolliffe et al., 2003). The formulation of SPCA minimizes
a “residual sum of squares plus penalties” type of criterion,

minimize
U,V

∥∥X− XVUT∥∥2
F + λ1‖V‖2

F + λ2‖V‖1

subject to U ∈V(p,k),

where V ∈ Rp×k is the sparse loadings of interest, and λ1 and λ2 are
tuning parameters. We note that the first term in the objective function
is also invariant to any orthogonal rotation applied to U and V , because∥∥X− XVUT∥∥2

=
∥∥X− X(VR)(UR)T∥∥2 for any R ∈ U(k). However, the
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algorithm of SPCA for U and V does not use orthogonal rotations to
search over the solution space, as it is adapted from the elastic net (Zou
and Hastie, 2005). Explicitly searching for a sparsity-enabling rotation R
could help to find a smaller objective value in SPCA.

SPC (Witten et al., 2009) SPC finds one sparse PC at a time,

maximize
u,v

uT
iXvi (4.14)

subject to ‖ui‖2 = 1, ‖vi‖2 = 1, ‖vi‖1 6 γ,

where vi ∈ Rp contains the loadings of the ith sparse PC, for 1 6 i 6 k.
When k = 1, our formulation of SCA in (4.3) takes the same form as the
SPC formulation, where an orthogonal rotation is unnecessary. When
k > 1, however, SPC searches for sparse PCs sequentially and does not
rotate PCs, unlike SCA, which computes k sparse PCs simultaneously.
SPC is similar to the rSVD proposed by Shen and Huang (2008) and the
TPower proposed by Yuan and Zhang (2013) in that all the three methods
rely on a deflation technique for multiple PCs. This technique entails
complications of, for example, non-orthogonality and sub-optimality
(Mackey, 2008). More generally, these methods can each be viewed as a
special case of the following GPower formulation.

GPower (Journée et al., 2010) GPower has a “block version” that computes
multiple sparse PCs simultaneously by considering a linear combination
of individual sparse PCA (as formulated in SPC),

maximize
U,V

k∑
j=1

µju
T
jXvj −

∑
j

λj
∥∥vj∥∥1

subject to U ∈B(n,k), V ∈V(p,k),

where V contains the PC loadings, and uj and vj are the jth column of
U and V respectively, and µj is the weight for the jth sparse PC, and λj
is the sparsity tuning parameter for the jth sparse PC. The algorithm
of GPower fundamentally deals with sparse PCs individually, which
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prohibits orthogonal rotations (on V).

SPCArt (Hu et al., 2016) SPCArt is the first (to our knowledge) sparse PCA
method that concerns orthogonal rotations in its formulation. It searches
for sparse PCs by directly approximating the singular vectors (as op-
posed to minimizing the reconstruction error or maximizing the ex-
plained variance),

minimize
Y,R

‖V − YR‖2
F + λ‖Y‖1

subject to Y ∈V(p,k), R ∈ U(k),

where V ∈ V(p,k) contains the top k singular vectors of X, and Y con-
tains the sparse loadings. Conceptually, introducing an orthogonal rota-
tion (R) allows a larger searching space for Y. However, the algorithm
of SPCArt does not specifically update R to promote sparsity (e.g., mini-
mize ‖Y‖1 as in SCA); instead, SPCArt simply computes R so as to align
the polar of V and Y (i.e., R̂ = polar(YTV)). As such, the performance of
SPCArt could be sensitive to the initialization of Y. Empirically, SPCArt
yields results that are nearly comparable to the GPower based method,
as concluded by the authors.

Sparse coding and independent component analysis

Sparse coding concerns low-rank representations of individual samples. We
view it as a variant of PCA, where we presume the component scores to
be sparse. Recall that the scores are the representations of individual data
points in Rk, where k is the number of PCs. In particular, presuming sparse
scores implies that each data point is correlated with only a small subset of
PCs. Sparse coding is useful to generate simple representations of individual
date points, and the basis of such representations (i.e., PCs) usually provide
scientific insights. For example, sparse coding of natural images recovers
the common understanding of how the primary visual cortex in mammalian
perceives scenes (see Section 4.5 for an example).



76

The SCA algorithm can be used to solve sparse coding. This is because,
similar to SCA, sparse coding can be viewed as a special case of the SMA
problem. To see this, simply omit the sparsity constraint on Y in (4.12),

minimize
Z,B,Y

∥∥X− ZBYT∥∥
F

subject to Z ∈B(n,k), Y ∈B(p,k), P1(Z) 6 γz

Here, Z contains the sparse scores, and BYT contains the basis of sparse coding.
To solve sparse coding, we apply the SCA algorithm (Algorithm 4.2) to the
transposed data matrix, XT. In doing this, the output of the algorithm is
actually an estimate of sparse component scores for the original data matrix.

More broadly, independent component analysis (ICA) is widely applied
for sparse coding in the signal processing literature. Despite the different
motivations, sparse PCA on a transposed data matrix appears to perform very
similarly to sparse ICA on the original data. We elaborate on this in Appendix
C.4 and apply SCA to blind source separation of images.

4.4 Simulation studies

In this section, we compare several sparse PCA methods using simulated
data. Specifically, we focused on (1) their ability of explaining variance in
the data, (2) the robustness against varying sparsity parameters, and (3)
the computational speed. We selected SPCA, SPC, GPower, the SPCAvRP
method recently proposed by Gataric et al. (2020), SCA, and another variant
of SCA which deploys the absmin rotation (SCA-absmin, see Remark 4.6
of Section 4.2). For SCA and SCA-absmin, we implemented the algorithms
in R.5 For SPCA, SPC, and SPCAvRP, we invoked the original R packages
elasticnet, PMA, and SPCAvRP respectively. The implementation of GPower
(in MATLAB) was obtained from the authors’ website. For all the iterative
methods, we specified maximum number of iterations to 1,000 and the stopping

5We provide an R package epca, for exploratory principal component analysis, which
implements SCA and SMA with various algorithmic options. The package is available from
CRAN (https://CRAN.R-project.org/package=epca).

https://CRAN.R-project.org/package=epca
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(convergence) criterion to 10−5. Overall, our numerical experiments showed
that the SCA algorithm converges faster and produces more robust sparse PCs
that capture a larger amount of variance in the data.

Proportion of variance explained

In this simulation, we compared the abilities of sparse PCA methods in ex-
plaining variance in the data. To this end, we simulated 30 data matrices with
n = 100 observations and p = 100 variables from the following low-rank
generative model:

X = SYT + E,

where S ∈ R100×16 contains the component scores, and Y ∈ R100×16 contains
the loadings of sparse PCs, and E ∈ R100×100 is some noise. To generate S, we
randomly sampled U ∈V(100, 16) and V ∈ U(16) and set S = UΣVT, where
Σ is a diagonal matrix with the diagonals σl = 10 −

√
l for l = 1, 2, ..., 16. To

simulate a sparse Y, we took a random element from V(100, 16), then soft-
threshold its elements with sparsity parameter γ = 20 (i.e., T20 as defined
in Equation (4.9)). Note that, it is unnecessary to re-scale the columns of
loadings to unit length, because the column of S can absorb these scalars. Lastly,
the elements in E were drawn independently from the normal distribution,
Eij∼N(0, 0.12).

We applied the six sparse PCA methods to each simulated data matrix X
with k = 2, 4, 6, ..., 16. For each k, we imposed the same `1-norm constraint on
the sparse loadings for all methods. Specifically, for SCA, and SPC, we directly
configured the sparsity controlling parameters to 2.5k. As for SPCA, GPower
and SPCAvRP, to ensure a fair comparison, we tuned the parameters such that
the returned loadings all have the same `1 norm of 2.5k. To evaluate sparse PCs,
we define the cumulative proportion of variance explained (PVE) by the first
k sparse PCs as ‖XY‖2

F, where XY = XY(YTY)−1YT (Shen and Huang, 2008).
Note that the PVE by sparse PCs is upper bounded by that of traditional PCs
(no sparsity constraint). Therefore, we also applied PCA to X for comparison.
Figure 4.3 displays the mean PVE for different PCA methods, varying the
requested number of PCs from 2 to 16. It can be seen that SPCAvRP and SPCA
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Figure 4.3: Comparisons of sparse PCA methods using simulated data. The
proportion of variance explained (PVE) by sparse principal components (PCs)
with the number of targeted PCs varying from 2 to 16.

explained less than half of the PVE by PCA, and that GPower and SPC both
exhibited some improvements over SPCA. For GPower, we tested both the
single-unit and the block versions, but the block version often converged to a
defective solution with some columns decaying to all zeros. This happened
when the number of targeted PCs went above 5 in this simulation. Overall,
SCA performed the best among sparse PCA methods and were the closest to
PCA. In addition, the SCA algorithm converged with fewer iterations than the
other sparse PCA methods (see Table 4.1 for a comparison when k = 16). We
also observed that using the varimax rotation (SCA), the algorithm was more
computationally efficient than using the absmin rotation (SCA-absmin).

Robustness against tuning parameters

This simulation study investigates the robustness of sparse PCA to the choice
of sparsity parameters. For this, we applied sparse PCA to detect communities
in networks (or graph partitioning) (see, e.g., Fortunato, 2010), using the
graph adjacency matrix (see the definition below) as input. This application is
possible thanks to the recent consistency results (Rohe and Zeng, 2020) show-
ing that under the stochastic block model (SBM, see for example Holland et al.,
1983a), the support of each sparse PC estimates the membership (indicator)
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Method # of iterations Mean run time (s) Environment
SCA 10 ∼ 65 (all PCs) 0.96 R
SPC 25 ∼ 1,000 (each PC) 1.21 R

GPower 30 ∼ 150 (each PC) 0.19 MATLAB
SPCA 470 ∼ 920 (all PCs) 56.30 R

SPCAvRP / 28.67 R
SCA-absmin / 23.5 R

Table 4.1: Comparison of the computational efficiency of sparse PCA methods.
Each method is tasked to find 16 PCs on a single CPU (2.50GHz). SPCAvRPs
is not iterative (yet is parallelizable), hence the number of iterations is not
applicable. The absmin rotation is less efficient, so we halted the algorithm of
SCA-absmin after the 15th iteration.

of one community. Hence, we could evaluate sparse PCs by examining their
support.

We simulated 30 undirected graphs with n = 900 nodes and four equally
sized blocks from the SBM. Under the SBM, the edge between node i and j
is sampled from the Bernoulli distribution, Bernoulli(Bz(i),z(j)), where z(i) ∈
{1, 2, 3, 4} is the membership of node i, and

B = 0.05×


0.6 0.2 0.1 0.1
0.2 0.7 0.05 0.05
0.1 0.05 0.6 0.25
0.1 0.05 0.25 0.6


is the block connectivity matrix. Under this setting, the expected number of
edges connected to each node is 45. For each simulated graph, we defined
the adjacency matrix A ∈ {0, 1}n×n with Aij = 1 if and only if i and j are
connected.

We applied SCA, SPC, and GPower6 to each of the 30 simulated adjacency
matrices with k = 4. We varied the sparsity parameter γ to take value in
{18, 24, 36, 48, 60, 66}. For SPC, we required each of the four PCs to have `1
norm γ/4. As for GPower, we tuned its parameters such that the returned

6Since SPCA and SPCAvRP performs worse than SPC and GPower (Zou and Xue, 2018),
we excluded the two methods in this simulation for simplicity.
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loading matrix has the `1 norm of γ. Figure 4.4 depicts the estimated loadings
returned by SCA and SPC. On the left two columns of panels (γ = 48 and 36),
the supports of the four sparse PCs were well separated and indicated block
memberships. This suggested that we could use the loadings to cluster nodes
and quantitatively assessed the quality of sparse PCA methods. Specifically,
we assigned node i to cluster j if Yij is the largest absolute value in the ith
row of Y, that is, |Yij| > |Yil| for all l 6= j. In the case of ties or all-zero rows,
the cluster label is randomly assigned. For each estimate, let C ∈ {1, 2, 3, 4}n

contain the assigned cluster labels and C∗ ∈ {1, 2, 3, 4}n contain the true labels.
Define the accuracy as

Accuracy(C,C∗) = max
π∈P(4)

{
1
n

n∑
i=1

1 (π (Ci) = C
∗
i )

}
,

where P(4) contains all the possible permutation functions of the set {1, 2, 3, 4},
and 1(x) is the indicator function of x. We used the accuracy to assess the
quality of the sparse PCA solutions. Figure 4.5 depicts the accuracy of the three
methods with varying sparsity parameters. It can be seen that the performance
of GPower and SCA were less affected by the changing of sparsity parameter,
while SPC was profoundly influenced. As γ became smaller, SPC quickly lost
its power in community detection, suggesting that SPC is more sensitive to
the choices of tuning parameter. Although less sensitive to the change in γ,
GPower produced poorer estimation of sparse PCs, with the accuracy slightly
better than random guesses (accuracy = 0.25). Overall, SCA yielded higher
accuracy with smaller deviation compared to the others, suggesting that SCA
is less dependent on the choice of sparsity parameters.

In this example, SCA outperforms SPC because it finds a better optimiza-
tion solution. This comparison could be made difficult by the fact that they
have different objective functions. However, in this case, even though SCA is
optimizing a different objective function, it outperforms SPC at optimizing the
SPC objective function. Table 4.2 lists the objective values of SPC (Equations
(4.14)) evaluated using the solutions of the SCA and SPC algorithms with
various γ. When γ ∈ {36, 48, 60, 66}, the SCA algorithm outputs a solution that
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γ = 18 γ = 24 γ = 36 γ = 48 γ = 60 γ = 66
Using SCA sol. 191.47 323.36 1135.03 1906.25 2554.86 2783.73
Using SPC sol. 544.81 705.01 1029.04 1195.91 1334.67 1423.95

Table 4.2: Comparison of the SPC objective values,
∑4
i=1(u

T
iAvi)

2 (see Equa-
tion (4.14)), evaluated using the output of the SCA and SPC algorithms with
various sparsity parameter (γ).

γ = 48 γ = 36 γ = 24

S
C

A
S

P
C

0.01

0.05

0.10

abs. value

Figure 4.4: Comparisons of SCA and SPC using simulated network data. Heat
maps of the loadings (900 × 4 matrices) returned by SCA and SPC using
three different sparsity parameters (γ = 24, 36, 48). In each heat map, rows
correspond to nodes, which are grouped by the true community membership,
and each column corresponds to one sparse PC. The color shade indicates the
absolute of loadings.

achieves a higher value of the SPC objective, suggesting that the SPC algorithm
is likely to return local optima.
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Figure 4.5: Comparisons of sparse PCA methods using simulated network data.
The accuracy of SCA, GPower, and SPC in community detection using various
sparsity parameters (γ). Each point indicates the mean accuracy across 30
replicates, and the error bar indicates the standard deviation of the evaluated
accuracy.

4.5 Applications

In this section, we applied SCA to real data. The first application is the sparse
coding of natural images. It illustrates the utility of sparse PCA as independent
component analysis. Appendix C.4 contains another application of SCA to
blind source separation of images. Next, we demonstrate the ability of SCA in
handling high-dimensional problems (i.e., p > n) through a transcriptome
sequencing dataset and a targeted sample of Twitter friendship network. These
datasets are of large scale. To our knowledge, no other current implementations
of sparse PCA can efficiently handle a large matrix at the scale. As such, we
will restrict our discussion to SCA.

Sparse coding of images

Low-level visual layers, such as retina, the lateral geniculate nucleus, and the
primary visual cortex (V1) are shared processing components in mammalian.
The receptive fields in the V1 can be characterized as being spatially localized,
oriented and bandpass (i.e., selective to structure at different spatial scales).
To understand V1, one line of research focuses on finding sparse and linearly
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independent codes for natural images, which provides an efficient represen-
tation for later stages of processing (Field, 1994; Olshausen and Field, 1996;
Bell and Sejnowski, 1997). This type of research is based on the hypothesis of
sparse coding, that is, any perceived scenes can be synthesized via the linear
combination of some small subsets of basis images (Lee et al., 2006; Gregor
and LeCun, 2010)). In this application, we show that sparse PCA produces a
set of bases for natural images that resembles those found in Olshausen and
Field (1996).

We utilized ten natural images from Olshausen and Field (1996), each of
which contains 512× 512 pixels. We followed the same whitening process as
described by the authors. Next, we randomly sampled a total of 12, 000 small
image patches the ten images, where each patch contains 16× 16 pixels. This
was followed by a centering step that subtracts each pixel by the mean of all
256 pixels. We vectorized each patch of image and put them into the rows of a
data matrix, X ∈ Rn×p, where n = 12, 000 and p = 256. Finally, we applied
SCA to the transposed data matrix, XT, to find 49 sparse PCs (k = 49) with
the default sparsity parameter, γ =

√
pk (Note that this is sparse coding). In

particular, for the varimax rotation, we normalized the rows to unit length
rescaled them afterward, as recommended by Kaiser (1958). In the output
of SCA, the estimated scores S ∈ Rp×k contains the basis images, and the
estimated sparse loadings Y ∈ Rn×k encodes how the basis images are linearly
combined to form each image patch (i.e., Y contains the linear coefficients).

Figure 4.6 displays the 49 image bases returned by PCA and SCA, where
each image represents one column of S (transformed into a 16× 16 array). For
SCA, all of the basis images appeared to exhibit simple patterns, such as lines
and edges. As for PCA, the oriented structure in the first few basis images
does not arise as a result of the oriented structures in natural images, yet more
likely because of the existence of those components with low spatial frequency
(Field, 1987).
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PCA SCA

Figure 4.6: Sparse image encoding using PCA (left) and SCA (right). For both
method, shown are the 49 image bases (i.e., component scores) extracted from
natural images. Each image basis is in 16× 16 pixel.

Analysis of single-cell gene expression data

Single-cell transcriptome sequencing (scRNA-seq) provides high-throughput
transcriptome expression quantification at individual cell level. It has been
widely used across biological disciplines. For example, patterns of gene ex-
pression can be identified through clustering analysis. This helps uncover the
existence of rare cell types within a cell population that have never been seen
(Plasschaert et al., 2018; Montoro et al., 2018). In this application, we aimed to
use SCA to extract the sparse PCs of genes that characterize some known cell
types.

For this application, we used the human pancreatic islet cell data from
Baron et al. (2016). We removed the genes that do not exhibit variation across
all cells (i.e., zero standard deviation) and removed the cell types that contain
fewer than 100 cells. This resulted in a data matrix X ∈ Rn×p of n = 8, 451
cells across nine cell types and p = 17, 499 genes, with Xij measuring the
expression level of gene j in cell i. X is sparse; it contains 10.8% non-zero
elements. We applied SCA on X to find k = 9 sparse gene PCs. We set the
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PC # of genes Gene name(s)
1 1 INS
2 1 SST
3 1 GCG
4 8 CTRB2, REG1A, REG1B, REG3A, SPINK1 ...
5 15 CELA3A, CPA1, CTRB1, PRSS1, PRSS2 ...
6 1 IAPP
7 1 PPY
8 3 CLU, GNAS, TTR
9 61 ACTG1, EEF1A1, FTH1, FTL, TMSB4X ...

Table 4.3: Sparse gene PCs estimated by SCA. For each gene PC, the number
of genes (i.e., the number of non-zeros in the loadings) and the top 5 genes
according to the absolute loadings are reported.

sparsity parameter to γ = log(pk) ≈ 12, as we aimed for particularly sparse
PCs (i.e., each PC is consist of a small number of genes). The algorithm took
about 5 minutes (24 iterations) to complete on a single processor (3.3GHz).
As a result, each column of the loading matrix contains a small number of
non-zero elements, suggesting that most of the gene PCs consist of one or a
few genes. Table 4.3 lists the names of these genes for each PCs. For example,
the PC 2 consists of only one gene, SST. Despite the simple structure of PCs,
these PCs picked up informative gene markers for individual cell types. To
see this, we calculated the scores for each cell using the 9 PCs (That is, each
cell gets 9 scores, each of which corresponds to one of the nine PCs). Figure
4.7 displays the box plots of the scores stratified by cell type. For example,
the expression of the SST gene (which solely composes the 2nd PC) identifies
the “delta” cells. This result highlights the power of scRNA-seq in capturing
cell-type specific information and suggests the applicability of our methods to
high-dimensional biological data.

Clustering of Twitter friendship network

This application serves in a grand efforts of ours to study political communi-
cation on social media, like Twitter. The information on Twitter is organized
so that users primarily read the tweets of their “friends.” In order to select
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Figure 4.7: Scores of sparse gene principal components (PCs) stratified by cell
types. Each panel displays one of nine cell types with the names of cell types
and the number of cells reported on the top strips. For each cell type, a box
depicts the component scores for nine sparse gene PCs.

content, a user can freely “follow” (and “unfollow”) any other accounts, and
we call these other accounts the friends of it. Thanks to this design, the com-
munication on Twitter can be contextualized by the friendship network. As
such, we hypothesize that user’s community membership in the network of-
fers the context of user’s opinion expression on social media (Zhang et al.,
2021). To study the hypothesis, a key step is to cluster Twitter accounts using
their friendship network. In this section, we demonstrate large-scale network
clustering using sparse PCA.

For this application, we collected a targeted sample from the Twitter friend-
ship network in August 2018 (Chen et al., 2020a). In this sample, there are
n = 193, 120 Twitter accounts who follow a total of p = 1, 310, 051 accounts,
after filtering out the accounts with few followers or followings. We defined
the graph adjacency matrix A ∈ {0, 1}n×p with Aij = 1 if and only if account i
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follows account j.7 This resulted in a sparse A with about 0.02% entries being
1. We applied SMA to Awith k = 100 and default sparsity parameters. This
analysis was computationally tractable; one iteration of the SMA algorithm
took about 54 minutes on a single processor (2.5GHz), thanks to the efficient
algorithm that computes the sparse SVD (Baglama and Reichel, 2005). Figure
4.2 displays seven example columns of Y. Using the output Z ∈ Rn×k and
Y ∈ Rp×k from SMA, the clusters of Twitter accounts were determined as
follows (same as in Section 4.4): the ith row account of A was assigned to the
lth row cluster if Zil was the greatest in the ith row of Z, that is, |Zil| > |Zil ′ |

for all l ′ = 1, 2, ..., k, and the jth column account of Awas assigned to the lth
column cluster if Yjl was the greatest in the jth row of Y, |Yjl| > |Yjl ′ | for all
l ′ = 1, 2, ...,k. Upon detailed evaluation of these clusters, we showed that our
clustering of Twitter accounts formed homogeneous, connected, and stable
social groups (Zhang et al., 2021). For example, we found that a user is more
likely to retweet the content that originated from another member in the same
clusters (p-value < 10−16 in a χ2 test). More interestingly, the estimated row
clusters and column clusters are matched (Rohe et al., 2016), that is, the kth
row cluster tends to follow the accounts in the kth column cluster. To illustrate
this, we quantified the number of followings from the row clusters to the
corresponding column clusters. Figure 4.8 displays the results for 50 selected
clusters that are related to U.S. politics. It can be seen that the number of
followings between each paired row and column clusters (i.e., the diagonals
in Figure 4.8) showed marked enrichment. These results suggest the efficacy
of our methods for analysis of social network data.

4.6 Discussion

In this paper, we introduced SCA, a new method for sparse PCA, and SMA, an
extension for two-way matrix analysis. SCA differs from the existing sparse

7The columns of A are not centered nor scaled. One alternative is to use the normalized
version of A. For example, define the regularized graph Laplacian as L ∈ Rn×p with Lij =
Aij/

√
(ri + r̄)(cj + c̄), where ri =

∑
jAij is the sum of the ith row ofA, cj =

∑
iAij is the sum

the jth column of A. Here, r̄ and c̄ are the means of ri’s and cj’s respectively. (Zhang and Rohe,
2018).



88

liberals conservatives media issue−centric pop culture other

liberals
conservatives

m
edia

issue−
centric

pop culture
other

B
er

ni
e 

B
ro

s
ne

w
s 

ju
nk

ie
s

th
e 

re
si

st
an

ce
#u

ni
te

bl
ue

C
hr

is
tia

n 
co

ns
tit

ut
io

na
lis

ts
C

ru
zC

re
w

H
uc

kb
ee

 s
up

po
rt

er
s

na
tio

na
lis

ts
re

ac
tio

na
rie

s
Te

am
 T

ru
m

p
#t

gd
n

th
e 

Tr
um

p 
tr

ai
n

w
hi

te
 n

at
io

na
lis

ts
co

ns
er

va
tiv

e 
m

ed
ia

/p
un

di
ts

cu
ltu

ra
l e

lit
es

da
ta

 jo
ur

na
lis

ts
di

gi
ta

l p
riv

ac
y/

se
cu

rit
y

m
ai

ns
tr

ea
m

 m
ed

ia
na

tio
na

l p
ol

iti
ca

l j
ou

rn
al

is
ts

pr
og

re
ss

iv
e 

m
ed

ia
sp

or
ts

 jo
ur

na
lis

ts
A

fr
ik

an
er

s
bl

ac
k 

LG
B

T
Q

#b
la

ck
liv

es
m

at
te

r
B

re
xi

t
cl

im
at

e 
ch

an
ge

ed
uc

at
io

n
fir

ea
rm

s 
an

d 
gu

ns
LG

B
T

Q
m

en
's

 s
el

f h
el

p 
(d

ar
k 

w
eb

)
M

id
dl

e 
E

as
t c

or
re

sp
on

de
nt

s
P

al
es

tin
e 

re
la

te
d

P
ar

kl
an

d 
ac

tiv
is

ts
pu

bl
ic

 h
ea

lth
bl

ac
k 

H
ol

ly
w

oo
d

co
m

ed
y

H
ol

ly
w

oo
d 

an
im

at
io

n
po

p 
m

us
ic

th
e 

lit
er

ar
y 

w
or

ld
Yo

ut
ub

er
s

C
at

ho
lic

 c
hu

rc
h

ec
on

om
ic

s
N

F
L

pa
st

or
s

po
lit

ic
al

 s
ci

en
ce

ra
ce

 a
nd

 g
en

de
r

te
nn

is
th

eo
lo

gy
U

S
 c

on
gr

es
s 

&
 s

en
at

or
s

W
is

co
ns

in

#uniteblue
the resistance
news junkies
Bernie Bros

white nationalists
the Trump train

#tgdn
Team Trump
reactionaries

nationalists
Huckbee supporters

CruzCrew
Christian constitutionalists

sports journalists
progressive media

national political journalists
mainstream media

digital privacy/security
data journalists

cultural elites
conservative media/pundits

public health
Parkland activists
Palestine related

Middle East correspondents
men's self help (dark web)

LGBTQ
firearms and guns

education
climate change

Brexit
#blacklivesmatter

black LGBTQ
Afrikaners

Youtubers
the literary world

pop music
Hollywood animation

comedy
black Hollywood

Wisconsin
US congress & senators

theology
tennis

race and gender
political science

pastors
NFL

economics
Catholic church

250

500

750

# of following
(square root)

Figure 4.8: Heat map of friend counts between row and column clusters of
Twitter accounts. Each row and column corresponds to a cluster. The row and
column panels indicate cluster category, with the category names shown in the
top and right strips. The color shades indicate the number of followings from
the row cluster to the column cluster, after the square root transformation.
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PCA methods in that it estimates column sparse PCs, that is PCs that are sparse
in an orthogonally rotated basis. This is particularly useful when the singular
vectors of a data matrix (or the eigenvectors of the covariance matrix) are not
readily sparse. We demonstrated that it explains more variance in the data than
the state-of-the-art methods of sparse PCA. In addition, the algorithm is also
stable and robust against a wide choices of tuning parameters. In practice, SCA
is advantageous when multiple PCs are desired because it does not require
the deflation.
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5 local word embedding for targeted document
assembling

5.1 Introduction

As lots of human activities now taking place online, digital media have come
to record an ever-increasing share of human communication and social inter-
action, making available vast quantities of big data, in the forms of text, audio
and video (Gentzkow et al., 2019; Golder and Macy, 2014). Such rich data
offers an unprecedented opportunity for social scientists to study individuals
and society at large unobtrusively (Salganik, 2019). Particularly, recent years
have seen an explosion of “text-as-data” research in almost every discipline
of social science (Grimmer and Stewart, 2013). Given that text data from
digital media like social media platforms are not custom-made for research
and often stored in vast databases (e.g., Twitter’s global stream of tweets), the
first order of business for a social scientist researching on a topic of interest
(e.g., a political issue or a news event) is to assemble a comprehensive and
relevant subset of documents by querying the database. And this can be an
early-stage challenge for research using big data.

In an ideal situation, the research topic is accurately characterized by at-
tributes of documents, such as a given group of authors and a specific journal
venue in bibliometric research. In this case, some basic database queries
would be sufficient to produce a consistent assembling of documents effi-
ciently, thanks to matured data management technologies. However, in most
cases, social scientists have to collect or assemble a relevant subset of data for
their research subjects from a particular vast database that stores digital media
big data. The targeted assembling of documents is critical for “text-as-data”
research, because the assembled documents can greatly influence the research
results. Any mistakes made at this initial stage will propagate into the rest
of the research (Kim et al., 2016). And these mistakes are often difficult to
identify after the fact.

Example: Querying a Twitter archive. The School of Journalism and
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Mass Communication maintains a massive archive of tweets from Twit-
ter. Twitter is a social networking and microblogging service, enabling
registered users to read and post short messages called tweets. The vast
majority (88%) of tweets are shorter than 140 characters and only 2%
of them are longer than 190 characters (Rosen, 2017; Boot et al., 2019).
Despite the length of tweets being short, the amount of tweet text is ar-
guably tremendous. As of 2021, Twitter has on average 187 million daily
active users (80% are outside the US) sending around 500 million tweets
every day (Aslam, 2021). The database (using the Hadoop architecture)
streams in 1% of the tweets daily; each day contributes about 5 million
additional tweets to the Twitter archive. The enormous database provides
an unprecedented opportunity for studies on civic culture, politics, social
media, and mass communication, while bringing up multiple statistical
challenges in collecting and analyzing vast amount of text-as-data. For
example, to study the discourse centered around #MeToo on Twitter in
the first four months of the movement, we can query the database using
“#metoo” as keyword. This query returns a set of tweets within the time
frame that contains the keyword at least once. The downstream analysis
and the conclusions of the study will be based on this sample of tweets.

Targeted document assembling is to estimate the topical distribution of
documents. In particular, the key is to decide for each document whether it
covers the targeted topic or it covers other topics. There are multiple avail-
able methods to classify a text document by topics, varying in levels of time
intensity. (i) The most expensive option is to read and manually label each
document as targeted or not, based upon some criteria or human judgment.
(ii) An unsupervised approaches is topic modeling by, for example, fitting the
latent Dirichlet allocation (LDA) (Blei et al., 2003). This approach entitles a
complication of matching the targeted topic to one of the topics identified from
LDA. (iii) Supervised LDA has the potential to align the topics with the target
documents (Mcauliffe and Blei, 2008), which then requires a labeled sample
of documents. However, this approach requires continuous labors of labeling
documents, because the database itself is growing constantly. The emerging of
new topics and new usage of words presents more indefinite issues, because
the targeted topics of interest often appear as new social phenomena/events
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or new linguistic interpretations/developments. More importantly, both (ii)
and (iii) compute with the full set of text, which is fundamentally infeasible in
application to a large corpus. By contrast, (iv) the keyword search approach
can be think of as a semi-supervised method and is more commonly used due
to its simplicity.

Keyword search

The keyword search approach represents a class of techniques for targeted
document assembling. In keyword search, a list of keywords is determined
through some process, then any documents that contain at least one keyword
are included as part of the assembled documents for analysis. This approach
is a popular technique for identifying which document to include, for example,
in the systematic review of literature (O’Mara-Eves et al., 2015). The simple
design of keyword search enjoys three obvious advantages. (i) It is very
fast thanks to efficient database queries. (ii) This approach does not require
topical labeling of documents in the database, thus avoiding the ambiguity of
interpreting topics. (iii) In social sciences, it is usually easy for researchers to
identify an initial set of “good” keywords (see below) for the targeted topic
(although the set may not necessarily be complete). It is worth noting that in
practice, the use of keyword search is usually coupled with other filters on the
known attributes of documents, such as authors or languages. In this paper,
we presume these filters to be fixed.

The quality of keywords fundamentally determines the quality of targeted
document assembling. The goal of keyword search is to assemble as much
targeted documents as possible while including as few other documents as pos-
sible. Qualitatively, the objective implies two characters of keywords (Airoldi
and Bischof, 2016):

Frequency The keyword is widely used in the targeted topic discussion.1 For
any document that belongs to the targeted topic, the probability that it
contains the keyword is higher than most other words. As such, when

1The “frequency” is also referred to as semantic “coherence” in Roberts et al. (2019).
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searching with the keyword, most targeted documents are included
likely. This is akin to the “recall” in classification.

Exclusivity The keyword is used specifically in discussing the targeted topic
and less in the other topics. Any document that contains the keyword has
a higher probability belonging to the targeted topic others. Hence, when
searching with the keyword, most assembled documents are targeted.
This is akin to the “precision” in classification.

The trade-off between these two strategies of prioritization (over words within
a topic versus over the same word across topics) has been discussed in the
statistical literature, such as Mosteller and Wallace (1984); Canny (2004);
Airoldi and Bischof (2016); Roberts et al. (2019).

Prior studies of the keyword searching approach are extensive and mostly
empirical. For example, O’Mara-Eves et al. (2015) performed a systematic
review of literature reviews that used keyword searches. However, few statisti-
cal results are available for this technique; the choices of keywords are largely
subjective to social scientists. In particular, (i) there is no statistical foundation
for including or excluding a certain keyword in terms of the above frequency
and exclusivity criteria. (ii) More importantly, the initial set of keywords is
usually incomplete and needs expansion or trimming in order to satisfy the
above two criteria for tageted document assembling. While the expansion
can be done manually or heuristically, there are many reasons to introduce a
computational method to assist the process. For example, if efficient, a com-
putational helper allows the modification of keyword sets to be iterative and
more robust.

Our contributions

This paper focuses on finding additional keywords for targeted document
assembling. To this end, we study a network-based method to prioritize words.
In the network of words, two words are connected if and only if they co-
occur in at least one document. On the network of words, we propose to rank
words using personalized PageRank (PPR) (Berkhin, 2006; Lofgren et al., 2016)
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and its degree-adjusted version to measure words’ frequency and exclusivity
to the targeted topic respectively. We call this method WordPPR, for word
personalized PageRank. WordPPR is computationally efficient because it only
requires the partially assembled sample of documents and does not examined
the entire text database. The paper also provides statistical guarantees for
WordPPR using the LDA. We argue that under the LDA, word frequency and
exclusivity to a topic can be characterized by the per-topic word distribution
and the per-word topic distribution respectively. With that,

the word PPR vector ranks words consistently by their the frequency in
the targeted topic, and the adjusted word PPR vector ranks words consis-
tently by their exclusivity to the targeted topic, provided sufficient sample
documents.

Hence, the two versions of word PPR vectors can be use to evaluate keywords
to be added or deleted. We also conducted simulation studies that validate
the theoretical results. Finally, through assembling tweets of the “#metoo”
movement, we demonstrate that WordPPR’s efficacy in modern social science
researches.

5.2 WordPPR: a network approach

Personalized PageRank

PPR is a variance of Google’s PageRank (Page et al., 1998). It ranks the nodes in
a network by their “closeness” to a given seed node. The PPR vector quantifies
such closeness for every node and is define to be the stationary distribution of
the following personalized random walk. The random walk starts at a given
seed node. At any step, the random walker teleports to the seed node with
probability τ, or randomly goes to one of the adjacent nodes to the current
node with probability 1− τ. Here, τ is called the teleportation constant. If τ = 0,
PPR reduces to a random walk on the graph (Pearson, 1905).

Consider a connected graph of n nodes, G = (V ,E), where V is the vertex
set, and E is the edge set. Define the adjacency matrix A ∈ {0, 1}n×n with



95

Input: Graph adjacency matrix A, a set S of n0 seed nodes,
teleportation constant τ.

Procedure PPR(A,S, τ):
1. Define π ∈ Rn with πi = 1/n0 if i ∈ S and πi = 0 otherwise.
2. Initialize p = π.
3. while not converged do
p← τπ+ (1 − τ)PTp, where P is the transition matrix of the
graph.

Output: p
Algorithm 5.1: Compute the PPR vector.

Aij = 1 if and only if there is an edge between node i and node j. In addition,
define the transition matrix P ∈ Rn×nwith Pij = Aij/di, wheredi =

∑n
i=1Aij

is the ith row sum of A. For PPR, we assume without loss of generality that
node 1 is the seed. Then, the PPR vector x ∈ Rn is the solution to the eigenvalue
problem:

xT = τπT + (1 − τ)xTP, (5.1)

where τ ∈ (0, 1] is the teleportation constant, and π ∈ Rn is the preference
vector with π1 = 1 and πi = 0 for i = 2, 3, ...,n. Let Π ∈ {0, 1}n×n with
Πij = 1 if and only if j = 1 and let Q = τΠ + (1 − τ)P. From (5.1), the
PPR vector is the unique left singular eigenvector of Q and is associated with
the simple eigenvalue 1 and can be solved by the iterative power method
(or the Richardson method), which enjoys geometric convergence property
(Haveliwala, 2003; Jeh and Widom, 2003; Gleich, 2015). Algorithm 5.1 outlines
the procedure that computes the PPR vector.

PPR can be defined with multiple seed nodes. The calculation of a PPR
vector with multiple seeds is due to the linearity property of PPR. That is, let
p(π1) and p(π2) be two PPR vectors corresponding to two preference vectors
π1 and π2 respectively. Then, for a new preference vector that is a convex
combination of πi, the resulting PPR vector is constructive of p(πi),

p(w1π1 +w2π2) = w1p(π1) +w2p(π2),

where wi > 0 and w1 +w2 = 1. As such, to get the vector, first compute the
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PPR vectors for individual seeds separately, then calculate the element-wise
average of PPR vectors.

PPR can also be defined in weighted graphs. Suppose the adjacency matrix
contains non-negative values,Aij > 0. On a weighted graph, the interpretation
of a personalized random walk is slightly generalized. That is, conditional on
the random walker continues its walk (this happens with probability 1 − α),
it goes to any adjacent node with probability proportional to Pij (instead of
uniformly at random as in an unweighted graph).

The following proposition is useful (the proof is included in Appendix D.1
for completeness).

Proposition 5.1. Let p be the PPR vector of graphG with the teleportation constant
τ ∈ (0, 1] and the preference vectorπ = (1, 0, · · · , 0). Denoted∗ = (d1,d2, ...,dn)/

∑n
i=1 di

the distribution of word degrees. Then,

(a) p is a continuous function of τ, and

p
τ→0−→ d∗ and p

τ→1−→ π.

(b) p is the infinite sum of landing probability {(Ps)T π}∞s=0 with weights {τ(1 −

τ)s}∞s=0,

pT =

∞∑
s=0

τ(1 − τ)sπTPs. (5.2)

The WordPPR algorithm

The algorithm of WordPPR applies PPR to the co-occurrence graph of words,
which is undirected and weighted. Throughout the paper, we assume the
graphs are connected. The idea of using word graphs was previously motivated
by the fact that the distribution of both nodes in a graph and words in a corpus
follow a power law (e.g., Perozzi et al., 2014). In addition, the network of words
contains rich information of how words are used in context, which is believed
to define the meaning of word (Firth, 1957) In order to rank candidate words
for targeted document assembling, we apply the PPR vector to the word graph.
PPR ranks the nodes in a network by their “closeness” to the seed. As such, if
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the initial keywords enjoys frequency and exclusivity properties, we expect the
other words that are close to the seed to also share the properties. In addition,
the expansion of keywords can be think of as a targeted sampling from some
word graphs, for which PPR has been shown to provide a consistent estimate
under the stochastic block model (SBM, Karrer and Newman, 2011b; Chen
et al., 2020a). Although the SMB does not necessarily characterize a graph of
words, we reason the similar results under the LDA model (see Section 5.3).

To construct the word graph, we use a set ofm documents that is obtained
using an initial keyword search. Let X ∈ Rm×n be the document-term matrix
where Xiw is the number of word w in document i, and n is the number of
unique words in all documents. We define the adjacency matrix A ∈ Rn×n of
word co-occurrence graph as

A = XTX. (5.3)

Here, Awv is the number of documents in which word w and v co-occur.
To use PPR, we treat the initial n0 keywords as the seeds and define the

preference vector π ∈ Rn with πw = 1/n0 if word w is a keyword or 0 other-
wise. Let p be the PPR vector as defined in (5.1). To assess the frequency and
exclusivity, define the following two quantities x,y ∈ Rn:

xw =
pw − τπw

1 − τ
, and yw =

xw

dw
, (5.4)

where dw =
∑
vAwv is the degree of word i. For any word w that is not an

initial keyword, xw is equals to pw. y simply adjusts it by word degrees.
Algorithm 5.2 summarizes the procedure of WordPPR. The algorithm uses

a random sample of documents to construct the co-occurrence graph of words.
This is usually a much smaller subset of the corpus and can be repeatedly
use for multiple runs of Algorithm 5.2. The output includes two empirical
cumulative distribution functions (ECDFs) applied to the values of x and
y. To leverage the frequency and exclusivity of words, for example, Airoldi
and Bischof (2016) adopted the harmonic mean to of the word’s rank in the
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Input:
A set S of n0 keywords, teleportation constant τ, and a sample of
documents.

Procedure:
1. Construct the word co-occurrence matrix A as defined in (5.3)
2. Compute the PPR vector p← PPR(A,S, τ). // Algorithm 5.1
3. Compute two vectors x and y as defined in (5.4).

Output:
The frequency and exclusivity measure x and y.

Algorithm 5.2: WordPPR for finding additional keywords

distribution of x and y:

FREX(w) =
(

1 − a

ECDFx(xw)
+

a

ECDFy(yw)

)−1
, (5.5)

where a is the weight for exclusivity (which is default to 0.5).

5.3 The consistency of WordPPR

Topic model

The Latent Dirichlet Allocation (LDA) is a popular generative model for text
analysis or natural language processing (Blei et al., 2003; Hand and Adams,
2014). In particular, this model is widely adapted for studying document clas-
sification algorithm (Jain, 2010). LDA models the number of times that each
word appears in a document (i.e., the document-term matrix), disregarding
the order of words. The key idea for LDA is that there are multiple underlying
topics. Each document has a probability distribution over topics, and each
topic has a probability distribution over word occurrences.

Suppose there are m documents covering k > 1 topics and containing n
unique words. Each topic t has a word distribution φt ∈ Rn (that is, φt has
non-negative elements which sum to one). Under the LDA, φt is sampled
from the Dirichlet distribution with some sparse parameter β ∈ Rn. In this
paper, we consider the entirety of Φ = (φ1, · · · ,φT

k)
T ∈ Rk×n as the fixed
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parameter. To sample one word for document i, first sample the topic z(i)
that this document belongs to from the multinomial distribution, z(i) i.i.d.

∼

Multinomial(α), then sample the word from the multinomial distribution,
Multinomial(φz(i)). We denote Z ∈ {0, 1}m×k with Zit = 1 if and only if
z(i) = t for notation simplicity. Blei et al. (2003) proposes that the number of
words in each document could be distributed as Poisson(λ), where λ is the
expected length of each document.

Remark 5.2. In this section, we do not presume the prior z(i) i.i.d.
∼ Dirichlet(α) in

LDA, but instead suppose z(i) is sampled from a Multinomial distribution. This will
simplify the definition of “true class” that is required for defining targeted document.
In addition, Chierichetti et al. (2018) showed the equivalence of identifying latent
topics under the two settings. After this initial work, it is of interest to extend to the
Dirichlet prior on z(i) and explore alternative definitions of “true class,” such as the
maximum likelihood or any likelihood larger than some threshold.

The LDA provides some simple quantification of word popularity and
exclusivity. For example, suppose we want to study how well we can capture
all documents of topic “regression”, which is indexed as the first topic. For
simplicity, suppose that we only have one keyword “linear”, and it is indexed
as the first word. Then, the probability of including document i is simply the
probability that document i contains “linear”. Due to the Poisson-Multinomial
relationship, the number of occurrences of “linear” in the document is Poisson
with rate parameter λ [ZΦ]i1.

Frequency: The probability of failing to include a targeted document,

P(no occurrences of “linear” | z(i) = 1) = exp(−λΦ11).

Here,Φ11 is the probability mass assigned to the word “linear” in topic
“regression.” To minimized such error probability, we can rank keywords
using the word distribution of the targeted topic, φ1 (i.e., the first row of
Φ), and prioritize the most frequent words.
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Exclusivity: The probability that other non-targeted documents (i.e., z(i) 6= 1)
are mistakenly included is

P(“linear” occurs | z(i) 6= 1) =
k∑
t=2

αt

1 − α1
(1−exp(−λΦt1)) ≈

λ

1 − α1

k∑
t=2

αtΦt1.

Here, we use the approximation 1 − e−x ≈ x. Note that λ
∑k
t=1 αtΦt1

is the expected number of occurrences of “linear”, averaged across all
topics. Then, minimizing the above error probability is equivalent to
maximizing Γ11. Here, Γ ∈ Rk×n is the per-word topic distribution, in
which Γtw is the probability that wordw occurs in a document of topic t,

Γtw =
αtΦtw∑k
s=1 αsΦsw

.

For exclusivity, we could prioritize keywords using the first row of Γ .

In WordPPR, we use Xiw to indicate whether document i contains at least
one word w. In this paper, we assume that Xiw follows a Poisson distribution,

Xiw | Z,Φ ind.
∼ Poisson(λΦz(i)w). (5.6)

In the following subsections, we show the statistical consistency of WordPPR
under the LDA. That is, the PPR vector estimates the per-topic word distribu-
tion at the targeted topic (φ1), and the aPPR vector estimates the per-word
topic distribution at the targeted topic (γ1). Throughout the discussion, we use
three distinct typefaces to denote three classes of objects. Calligraphic typeface
is given to the population version of any observable quantities in random
graphs (e.g., Equation (5.7)). Normal typeface is given to unobserved model
parameters, such as per-topic word distribution (Φ). Bold face is given to all
topic-level quantities and parameters like the topic-level adjacency matrix.
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A population result

Define the population (expectation) word adjacency matrix

A = E(A | α,Φ), (5.7)

and let the diagonal matrix D = diag(dw) contain the population word
degrees, where dw =

∑n
v=1 Awv. Then, the population word transition

matrix is P = D−1A. Similarly at the topic-level, define the population
adjacency matrix A ∈ Rk×k with Ats =

∑n
w=1 dwΓtwΓsw being the expected

number of common words in the documents of topic t and s. Let the diagonal
matrix D ∈ Rk×k contain the row sums of A, and define P ∈ Rk×k to be the
population transition matrix, P = D−1A. The following lemma writes the
above population adjacency and transition matrices compactly (the proof is
included in Appendix D.1).

Lemma 5.3. Under the LDA as defined in (5.6),

(a) let A and P be the population word adjacency and transition matrices, then

A = ΦTDΦ and P = ΓTΦ.

(b) Let A and P be the population topic-level adjacency and transition matrices, then

A = ΓDΓT and P = ΦΓT.

Lemma 5.3 reveals the simple factorization of A and A. The population
word adjacency matrix is the outer product of per-topic word distribution (Φ)
weighted by the expected topic sizes (D), while the population topic adjacency
matrix is the outer product of per-word topic distribution (Γ) weighted by the
expected word degrees (D). In addition, Lemma 5.3 implies a simple form of
powers of the population word transition matrix, that is, Ps = ΓTPs−1Φ for
s = 1, 2, · · · This leads to the relationship between the word PPR vector and
the topic-level PPR vector, which we state in the following proposition (the
proof is in Appendix D.1).
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Lemma 5.4. Under the population LDA with k topics, topic distribution α, and per-
topic word distribution Φ, let p and p be the PPR vectors of the population word
and topic-level adjacency matrices, A and A, respectively with the same teleportation
constant 0 < τ < 1 and the first word or topic as the seed. Assume that Γ11 = 1, then

p = τπ+ (1 − τ)ΦTp.

Lemme 5.4 shows that x = (p− τπ)/(1 − τ) serves to estimateΦTp. Then,
by Proposition 5.1, there exists a sufficiently large τ 6 1 such that p1 > 1 − ε

for any ε > 0. Hence, ΦTp = φ1 +O(ε) is approximately proportional to the
population word distribution of the target topic (i.e., the first row ofΦ). If ε is
sufficiently small, then ranking words by x is consistent with the frequency
criterion under the population LDA. Next, since dw = mλ2∑k

t=1 αtΦtw (see
the proof of Lemma 5.3), adjusting x by the population word degrees yields
an approximation of γ1 (i.e., the first row of Γ),

yw =
xw

dw
=

Γ1w
mλ2α1

+O(ε).

Hence, under the population LDA, y evaluates words precisely by the per-
word topic distribution at the first direction (i.e., γ1 up to a positive constant),
provided that ε is sufficiently small.

WordPPR on a random corpus

This section demonstrates the consistency of WordPPR. This result is based
on the concentration of the word PPR vectors under the LDA. Specifically, if
the corpus is generated from the LDA (more precisely, Equation (5.6)), then
WordPPR (Algorithm 5.2) ranks words by the target-topic word distribution
and the per-word target-topic distribution with high probability. To this end,
we first present a useful tool that controls the entrywise errors of a PPR vector
in random graphs. Recall that p is the stationary distribution of probability
transition matrix Q = τΠ + (1 − τ)P. For any vector x ∈ Rn, define the
vector infinity norm as ‖x‖∞ = maxi |xi|. The following theorem bounds the
entrywise error of the stationary distribution of Q (the proof is included in



103

Appendix D.1).

Theorem 5.5 (Concentration of the PPR vectors). Let P be the word transition
matrix of n unique words in m sample documents generated from LDA (Equation
(5.6)), where the average expected document length is λ. Define P to be the pop-
ulation version of P. Let p and p be the PPR vector corresponding to P and P

respectively, with the some sufficiently large teleportation constant τ. Assume that
ρ =

max16w6ndw
min16w6ndw

is bounded by some finite constant and that m > c0n logn/λ2,
for some sufficiently large constant c0 > 0. Then, with probability at least 1−O(n−5),

‖p−p‖∞
‖p‖∞ 6 c1

√
n logn
mλ2 ,

for some sufficiently large constant c1 > 0.

Theorem 5.5 demonstrates that if the number of sample documents m
exceeds n logn/λ2 to some sufficiently large extent, then with high probabil-
ity, the random PPR vector concentrates around the population PPR vector
entrywisely. The theorem also require the ratio between the most word occur-
rence and the least word occurrence is sufficiently large. This is achievable
because in practice, we often pre-process the unique words by filtering out
extremely common and extremely rare words. For example, Grinberg et al.
(2019) suggest to ignore those words that occur in (i) fewer than 0.02% or (ii)
more than 90% of the sample documents.

Next, we give the exact recovery of top frequent words; one can draw the
exact recovery result of top exclusive words analogously. Specifically, suppose
we select the topwwords (1 < w < n) with the largest x values defined in 5.4.
Then, with high probability, these wwords are exactly the top wwords with
the largest values inφ1 ∈ Rn. Without loss of generality, assume the words are
ordered by φ1 in non-increasing order. A key challenge is to distinguish the
wth and the (w+ 1)th words, as the difference in the two word characterizes
the distance between the first n1 words and the others. Only if the two words
are sufficiently separated (in φ1), can the exact recovery be possible using a
finite sample algorithm. For this, we introduce a separation measure ∆w ∈ (0, 1]
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of words (1 < w < n) under the population LDA as

∆w =
pw −pw+1

pmax
.

This turns out to be crucial in determining the sample complexity required to
guarantee the exact recovery. With Theorem 5.5 and the separation measure,
we then give following corollary that bounds the accuracy of Algorithm 5.2,
in terms of graph edge density (the proof is included in Appendix D.1).

Corollary 5.6 (Exact recovery of frequent words). Suppose the corpus is gen-
erated from the LDA (or from Equation (5.6) of document-term matrix) with m
documents and n unique words. Let S be the topw words in the targeted-topic word
distribution φ1. Let S be the top w words in x as computed in Algorithm 5.2 with a
sufficiently large teleportation constant τ < 1 and a seed keyword w0 ∈ S exclusive
to the targeted topic. Assume that ρ < c0 and that

m >
4c1n logn
λ2∆2

w

, (5.8)

for some sufficiently large constants c0, c1 > 0. Then, S = S with probability at least
1 −O(n−5).

5.4 Simulation studies

We assess the accuracy of WordPPR in identifying the top frequent and exclu-
sive words, given a seed word and a sample of documents simulated from the
LDA.

We sampled document-term matrix from the LDA with 10 underlying top-
ics and 500 unique words. Specifically, we set up equally distributed topic, α =

(0.1, · · · , 0.1). The per-topic word distribution φt is generated from the Dirich-
let distribution, φt

ind.
∼ Dirichlet(β) for t = 1, 2, · · · , 10, where the elements in

β ∈ R500 are sample from the exponential distribution, Exponential(10). To
investigate the effects of the sample size and expected document length, we
experimented the parameter grids with m ∈ {1000, 2000, 5000, 10000, 20000}
and λ ∈ {5, 10, 20}. In addition, we study the effect of teleportation constant
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with τ ∈ {0.25, 0.5, 0.75}. For each combination of parameters, we simulated
the document-term matrix for 30 times and evaluated the WordPPR algorithm
(Algorithm 5.2) independently.

To evaluate the word frequency and exclusivity measurements of WordPPR,
we examined the top words ranked by x and y (Equation (5.5)) respectively.
Specifically, let S(x,n2) to be the set of top-n2 words (or indices) in x. Then, the
accuracy of frequency measure over the n2th most frequent words is defined
as

Accuracy(x,φ1,n2) =
1
n2

|S(x,n2) ∩ S(φ1,n2)| .

Similarly, the accuracy of exclusivity measure over the n2th most exclusive
words is defined as Accuracy(y,γ1,n2) = 1

n2
|S(y,n2) ∩ S(γ1,n2)|. In this

simulation, we set n2 = 25.
Figure 5.1 displays the accuracy of WordPPR’s frequency and exclusivity

estimates, for five different document sample sizes, three different expected
document lengths, and three different teleportation constants. The results
show that WordPPR can identify both frequent and exclusive words. Moreover,
both the increase of number of sample documents (m) and the increase of
expected document length (“lambda”) help the accuracy of WordPPR. In
addition, the choice of teleportation constant (“tau”) appears to have little
effect on the accuracy of WordPPR, except in the top left panel. This agree
with the fact that Corollary 5.6 only requires τ to be sufficiently large in a finite
graph. Asymptotically (i.e., as n grows), this requirement on τ should reduce.

5.5 Targeted tweet assembling of the #MeToo
movement

We collected a random 5% sample of all tweets from the random 1% Twitter
archive within the four months since the start of #MeToo on Twitter. This
resulted in 4,491,833 tweets that might cover all topics on Twitter during
that time frame. After removing punctuations, numbers, stop words, we
constructed a word graph, where nodes are either hashtags or bigrams in text
and edges represent the co-occurrence of nodes in a tweet. The WordPPR
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Figure 5.1: Accuracy of frequency and exclusivity measures of WordPPR. Col-
umn panels compares the effect of different teleportation constant (tau). Row
panels compare different word prioritization (method). The different colors
indicate different expected document length (lambda) used for generating the
document samples. Each point depicts the average accuracy of including the
top 25 words. The error bars indicates two times of the standard deviation of
accuracy across 30 repeated experiments.

method applied to this word graph yields two sets of results: a list of terms
(i.e., unigrams and bigrams) ranked by frequency and another list ranked
by exclusivity. Table 5.1 displays the top 20 terms ranked by frequency and
exclusivity.

Both lists seem to suggest highly relevant terms about the #MeToo move-
ment on Twitter. Some terms concern the issues taht this movement seeks to
address, like “sexual assault,” “sexual harassment,” “sexual abuse,” “sexually
assault,” “sexual predator,” and “sexual misconduct.” Some other terms are
related to victims speaking up by sharing their own stories (“share story”)
and Times’s Person of the year that honored people who came forward to
report sexual violence (“person year”). These terms seem highly promising as
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the seed terms for targeted data collection. Other terms include more generic
terms like “#rt,” “#follow,” “#goldenglobes” and “#women” as well as names
of accused public figures, like “harvey weinstein” (the accusations of whom
inspired people coming forward to expose similar behaviors), “donald trump,”
“roy moore,” and “bill clinton.” Such terms might not be ideal as search terms
for targeted document assembling because they might be used in other con-
texts and thus bring much irrelevant tweets/documents. Going down the lists,
the terms become increasingly generic. Therefore, for such results, researchers
might want to focus on the top 20-30 results.

Also, it can be seen that “exclusity” tends to uprank terms that are specific
to the movement more than “frequency” does, though the top 5 terms on the
two lists are exactly the same. On the “frequency” list, generic terms like “#rt,”
“#follow,” “#goldenglobes,” and “social medium” are ranked 6th to 10th, while
on the “exclusivity” list, the generic terms like “#goldenglobes”(6th), “golden
globe”(12th), “#follow”(14th), “social medium”(15th), and “#rt”(16th) are
ranked lower.

To compare the results obtained through the random sample, we collected
a targeted/“metoo” sample from the same archive using the seed keyword
“metoo,” ending up with 38,177 tweets from October 15, 2017 to February
15, 2017. Then we applied the same text procedures as above and WordPPR.
Results are shown in Table 5.2.

The difference between the two lists is similar to the difference above. The
top 4 terms ranked by frequency are “#metoo,”“#timesup,” “sexual harass-
ment,” and “sexual assault.” These terms are relevant to the #Metoo movement
and the #Timesup movement it inspired, as well as to the underlying issues that
these movements seek to expose and address. In a similar vein, the other top
terms are salient hashtags representing similar movements in other parts of the
world, like “#abusefreeindia” (India), “#balancetonporc” (France), “#withyou”
(Korea), and terms that concern the substantive issues, like “sexual abuse”
and “share story.” These terms can reasonably be used as keywords to collect
more tweets in the next round of data collection. However, as the above re-
sults, this list also contains noise. The fifth to the seventh most frequent nodes,
“#follow,” “#change,” and “#howto,” might reasonably be used by users to
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frequency exclusivity
1 #metoo #metoo
2 sexual assault share story
3 sexual harassment sexual harassment
4 share story person year
5 person year sexual abuse
6 #rt sexual assault
7 #follow sexually assault
8 #goldenglobes #goldenglobes
9 social medium golden globe

10 sexual abuse speak truth
11 sexually assault sexual predator
12 black woman sexual misconduct
13 year ago #women
14 donald trump white woman
15 #women harvey weinstein
16 sexual predator black woman
17 sexual misconduct donald trump’s
18 #maga spend year
19 golden globe locker room
20 roy moore bill clinton

Table 5.1: Top 20 word ranked by WordPPR with τ = 0.75 using a random
sample of tweets.

support victims of sexual assault and abuse by following them and expressing
the determination to change or push for change. However, they lack specificity
and can also be widely used in a wide range of other settings. This also applies
to terms like “#ifb” (ranked 9th), “pm report” (15th), “#goldenglobes” (16th)
that also ranked high among the top 20 terms. Other terms down the list
display a similar mixture of specific terms and generic terms.

Among the top 20 terms on the list ranked by exclusivity, the majority of
terms are specific to the “#Metoo” discourse. Besides “#metoo,”“#timesup,”
“#withyou” (Korea), “#balancetonporc” (France), they include additional hash-
tags representing the international “#Metoo” movements, “#wetoo” (Japan),
“#yotambi”/“#yotambien” (the Spanish-speaking world), and “#moiaussi”(France).
Many other terms are the same with those appearing among the top 20
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ranked by frequency, like “sexual harassment” and “sexual assault.” However,
terms that might bring noise if used to collect more data are ranked much
lower: “#goldenglobes” (12th), “social medium”(14th), “#oscars”(16th),
“#svpol”(17th) and “golden globe”(20th).

A comparison of results across the two samples shows that “frequency”
and “exclusivity” prioritize different terms. In practice, they can both be
helpful for researchers to determine the keywords that can be used for data
query. However, understanding their distinct qualities can help researchers
make better decision.

It is also noteworthy that the results based on the random sample contain
fewer relevant terms than the results based on the “metoo” sample do. Going
further down the two lists produced by the “metoo” sample, a lot of terms
still seem to be promising candidates for the next round of data collection. For
example, “#silencebreakers,” “#fightforshiori” (the Japanese journalist who
spoke out about her abuse), “#believewomen,” and “#himthough”(asking
men to share the responsibility for fixing the issue) all appear beyond the
top 100 terms. In contrast, the terms after the top 50 in the random sample
results become largely irrelevant to the #MeToo movement. Those country-
specific hashtags like “#withyou” and “#balancetonporc” are not present in
such results. This suggests that the targeted/“metoo” sample might yield
more relevant terms for further search than the random sample does.

5.6 Discussion

In this paper, we present the WordPPR, a new method to rank words in terms
of their popularity (or frequency) and exclusivity to a given targeted topic.
We show that under the LDA, the WordPPR estimates is consistent, provided
that the sample documents is sufficient. WordPPR is computationally efficient
and can be used to find additional keywords. It can also be used to validate
and diagnose existing keywords.

While the LDA offers a simple and interpretable test bed for the method,
it does not capture several features that are unique to the text data in online
social media like Twitter. For example, tweets are short, which means fewer
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frequency exclusivity
1 #metoo #withyou
2 #timesup #metoo
3 sexual harassment #balancetonporc
4 sexual assault #wetoo
5 #follow #timesup
6 #change sexual harassment
7 #how to share story
8 #abusefreeindia #yotambi
9 #ifb harvey weinstein

10 share story sexual assault
11 #stopabuse #yotambien
12 #balancetonporc #goldenglobes
13 #withyou sexually assault
14 person year social medium
15 pm report sexual abuse
16 #goldenglobes #oscars
17 sexual abuse #svpol
18 sexually harass #moiaussi
19 sexually assault #sexualharassment
20 #sexualassault golden globe

Table 5.2: Top 20 word ranked by WordPPR with τ = 0.75 using tweets that
contain “metoo.”

(sparser) word occurrences (data) than longer documents. In addition, due
to “retweeting”, many tweets appear multiple times, sometimes thousands of
times, in the corpus, which means documents (samples) are not independent.
Last but not least, many tweets have extremely simple word distribution, such
as “cat cat cat cat” which repeats a single word, which means the occurrence
of individual words in a document are not independent. These facts are not
hardly represented by the LDA. As such, it is of future interest to investigate
WordPPR under alternative, more sophisticated models.
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6 social media public opinion as flocks in a
murmuration

6.1 Introduction

As the cornerstone of democracy, public opinion has been predominantly
treated as mass opinion–an aggregate of individual opinions gathered by
survey-based public opinion polls (Gallup and Rae, 1940). Though a powerful
measure of the pulse of the public, this approach tends to yield a snapshot
of private preferences that are prompted by pollsters and contingent on the
artificial context of polling, thus overlooking the social context and the uneven
influence of opinion expression (Blumer, 1948; Lin et al., 2013; Zaller et al.,
1992). The drawbacks of survey-based polls are amplified by increasing non-
response rates (Groves and Peytcheva, 2008) due to factors like changing
patterns of technology use and public distrust in polling.

Social media platforms like Twitter have emerged as one key battleground
of public discourse, where people from different backgrounds actively com-
ment on current events and public issues, and strive to exert influence (Conway
et al., 2015; Tufekci, 2013; Kim et al., 2015). This leads to naturally occurring,
temporally sensitive, and inherently social opinions (Anstead and O’Loughlin,
2014; Boyd, 2010; McGregor, 2019), which are drastically different from those
gathered by survey-based opinion polls. Another key aspect of social media
public opinion is the various homogeneous networks that it is embedded in,
where like-minded individuals interact with each other and reinforce opinions
(Colleoni et al., 2014; Conover et al., 2011; Barberá et al., 2015; Sunstein, 2018).
Although social media users are not representative of the general public (Bar-
berá and Rivero, 2015; Wojcik and Hughes, 2019), those actively engaged in
opinion expression on social media can shape public opinion (Dubois and
Gaffney, 2014; Lasorsa et al., 2012). More importantly, blended into individual
day-to-day practice and the social world (Becker et al., 2010; Couldry, 2012;
McGregor, 2020; Tufekci and Wilson, 2012), social media are an important
public opinion domain in and of itself.
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Existing studies that leverage social media to studying public opinion
have primarily used natural language processing of text to identify patterns
of expressions, such as sentiments or topics (Bollen et al., 2011; Cody et al.,
2015; Tumasjan et al., 2011), and to compare the results with survey-based
opinion polls (O’Connor et al., 2010). However, as the conception of public
opinion is deeply intertwined with tools of opinion measurement (Herbst,
2001; Zaller, 1994), a blunt comparison between social media and survey-
based opinion polls can be misleading. Furthermore, the text-centric approach
fails to take full advantage of social media data to reveal the networks that
opinions are embedded in and the social and conversational aspects of public
opinion (Anstead and O’Loughlin, 2014), such as “Who talks about which
events?” and “How are they talking about these events?” The “who” and
“how” questions are especially important to address as a myriad of actors,
ranging from social movement activists to propagandists, use social media to
influence public opinion (Freelon et al., 2018; Tucker et al., 2018). Some studies
have moved beyond text to account for characteristics of social media users,
which can be detected with high accuracy (Kosinski et al., 2013; Pennacchiotti
and Popescu, 2011). For example, Twitter accounts have been selected as
“computational focus groups” based on hashtag use to map shared attention
(Lin et al., 2014) or classified into hierarchical groups based on Twitter lists to
trace opinion flow (Wu et al., 2011).

Here, we introduce a framework called “murmuration” for the study of
public opinion on social media. Given homophily driving friendship forma-
tion (McPherson et al., 2001; De Choudhury, 2011) and abundant empirical
evidence for the effectiveness of social network structure (i.e., friendship rela-
tions) in predicting individual characteristics (Al Zamal et al., 2012; Barberá
et al., 2015; Grabowicz et al., 2012; Pan et al., 2019; Pennacchiotti and Popescu,
2011), this framework uses social network structure to computationally iden-
tifies focus groups, which we call “flocks” (drawing on the idiom “birds of
a feather flock together”). We expect social media public opinion to exhibit
homogeneity within a given flock or similar flocks and heterogeneity across
different flocks. Therefore, the unfolding of the opinions of various flocks
on social media in response to external events is akin to a murmuration of
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starlings whose formation changes fluidly. A conceptual illustration of the
framework is shown in Fig. 6.1, which includes network sampling of targeted
accounts, identification of flocks, analysis, and presentation of flock opinions
over time.

We apply this framework to the case of political opinion leaders on Twitter,
a unique social media platform featuring political commentary and debate
and boasting instantaneous response to external events (Hu et al., 2012). As
information on Twitter primarily flows from elites to average accounts (Wu
et al., 2011), even within echo chambers (Min et al., 2019), opinion leader flocks
in the Twitter sphere is essential for understanding general opinion climate
on Twitter. By analyzing social network structure and opinion expression,
we provide empirical evidence for (1) flocks being homogeneous, interactive,
and stable networks on Twitter and (2) flocks predicting opinion expression.
Using three distinct news events, we demonstrate the power of our approach in
capturing (a) the intensity and (b) temporal dynamics of opinion expression by
flocks and (c) the opinion contestation among them. These results demonstrate
how the murmuration framework can reveal the social dynamics of public
opinion and increase our understanding of social media as the battleground
of public discourse.

6.2 Results

The murmuration framework

Our framework for large-scale measurement of social media public opinion
contains three analytic modules and one presentation module, the four of
which form a cyclic working system (Fig. 6.1). The first two modules are
executed infrequently, and the last two modules are performed on a daily
basis.

The first module—targeted sampling (Fig. 6.1a)—samples from a targeted
population using seed accounts known to be highly influential in the popula-
tion. We apply personalized PageRank (PPR) sampling to obtain a targeted
subset of the massive Twitter friendship network (Materials and Methods).
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Figure 6.1: An overview of the murmuration framework. (a) Targeted sam-
pling: the first module uses a set of seed nodes, queries the massive Twitter
friendship network, and returns a targeted subset of Twitter accounts. (b)
Flock identification: based on the friendship network, the second module iden-
tifies flocks among sampled Twitter accounts. (c) Public opinion extraction:
the third module analyzes public opinion at the flock level. (d) Murmuration
demonstration: the fourth module presents analytical results on a website.
Over time, we identify newly emerged seed nodes and update the targeted
sampling.
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Under the degree-corrected stochastic block model (DCSBM), PPR sampling
can consistently locate members of a targeted population (Chen et al., 2020a).
This excludes low influence accounts such as bots and spammers, establishing
a solid foundation for downstream analysis. The second module—flock identi-
fication (Fig. 6.1b)—detects the underlying community (or “flock”) of Twitter
accounts based on their following relationships. We apply a spectral method
called vintage sparse principal component analysis (VSP) (Rohe and Zeng,
2020; Chen and Rohe, 2020), which can effectively cluster millions of Twitter
accounts in less than an hour (Materials and Methods). Under the DCSBM
(a variant of the mixed-membership stochastic block model), VSP provides a
consistent estimate of community memberships (Rohe and Zeng, 2020). We
interpret each flock based on the profile descriptions of their members and
then treat flocks as the unit of analysis in downstream analysis. The third
module—opinion extraction (Fig. 6.1c)—analyzes daily opinions from the
sample. Given the Twitter flocks identified in the previous module, we collect
tweets from each, identify trending news events as observed in tweets, and an-
alyze if and how different flocks respond to the events. This module presents
a timely digest of flock opinions, and over time it offers a unique window into
public opinion dynamics. The fourth module—murmuration demonstration
(Figure 6.1d)—presents social media public opinion by flock in response to
major news events. Analytical results are updated daily and made available
on a website.

Flocks are homogeneous, interactive and stable networks

In this section, we provide empirical evidence for flocks detected via follow-
ing relationships as homogeneous, interactive, and stable networks. For the
reasons discussed above, we focus on political opinion leaders on Twitter. In
August 2018, we performed network sampling of political opinion leaders
using a curated list of Twitter accounts including activists, pundits, journalists,
and media outlets spanning the whole political spectrum in the United States
(supporting Table E.1). We obtained a total of 193,120 Twitter accounts, which
followed a total of 1,310,051 accounts (after filtering, Materials and Methods).
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Figure 6.2: Shared followers and retweeting are concentrated within flocks.
(a) Heat map of the number of shared followers among flocks. Each row and
column corresponds to one flock in the same order (i.e., the shown matrix is
symmetric). Rows and columns are grouped into panels by flock category,
with strips on the top and right indicating the categories. The shade of color is
determined by the number of shared followers between pairs of flocks. (b)
Box plots showing the distribution of in-flock retweeting percentages (i.e., for
each member of a flock, the percentage of retweeting that he/she initiated
of tweets from another flock member was calculated). The box plots align
horizontally with the rows in (a).
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Based on the observed social network, we then identified 100 flocks (i.e., com-
munities of accounts followed by the political-related accounts), which cover
various social, cultural, political and geographical entities (supporting Table
E.2). We excluded most regional flocks and selected 50 flocks of interest for
downstream analysis, including media flocks, partisan flocks, issue flocks and
non-political flocks (supporting Table E.2). In addition, we considered the
1000 most central accounts from each flock (Materials and Methods) to con-
trol for the effect sizes of individual flocks. We evaluated the effectiveness of
flock identification through (i) shared followers, (ii) retweeting network, (iii)
stability and fidelity of flock membership. Taken together, evidence indicates
that our approach to flock identification discovers meaningful networks with
high accuracy and resolution.

First, member accounts of a flock demonstrate homogeneity because they
have more shared followers than do accounts from different flocks. As follow-
ers of a Twitter account constitute its imagined audience with whom in mind it
crafts messages (Litt, 2012), similar accounts should attract similar audiences.
Aggregating the number of shared followers between any pairs of accounts,
as observed in our sample, we found marked more followers were shared by
members of the same flock (Fig. 6.2a). In addition, flocks of the same category
(supporting Table E.2) also shared more followers (e.g., “mainstream media”
and “national political journalists” under the “media” category), revealing
inter-flock structure. To quantify this pattern, we calculated an “in-and-out
ratio” to measure the average number of shared followers by two accounts
within a flock over the average number of shared followers by one from the
flock and one outside it (Materials and Methods). Overall, we observed an
average in-and-out ratio of 15.628 across 50 selected flocks, with a minimum of
5.52. Notably, an account of the “#uniteblue” flock shared on average 35.2 fold
more followers with accounts within the flock than with accounts outside the
flock; similar results hold for the “Christian constitutionalists” and “national
political journalists” flocks with 31.4 and 20.2 folds respectively.

Second, interaction in the form of retweeting is concentrated among mem-
ber accounts of a flock, showing the similarity between flocks and offline social
networks where interactions are localized (Grabowicz et al., 2012). We con-
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structed a random sample of tweets, quantified the proportion of retweeting
that occurred between accounts within each flock (Materials and Methods)
and found that the retweeting network was consistent with the flock structure.
Among the 7,379,555 retweeting relationships between all accounts in the
50 flocks, on average 44.1% were between accounts within a flock, with the
“Brexit” flock having as high as 80.8% of within-flock retweeting (Fig. 6.2b). In
fact, we found strong statistical evidence in the correlation between an account
retweeting other accounts in the 50 flocks and the retweeted post originating
from other accounts within its own flock: p-value< 2.2× 10−16 in χ2 test, after
multiplicity correction with Benjamini-Hochberg (BH) procedure. For the
flocks with low levels of within-flock retweeting, we found that they retweeted
a large number of tweets from flocks of the same category. For example, 50.6%
of retweeting by “#uniteblue” was of accounts in similar flocks, i.e., flocks
under the “liberals” category; and 52.1% of retweeting by “Christian constitu-
tionalists” was of accounts under the “conservatives” category (supporting
Figure E.1). Given that retweeting reflects existing ties or is conducive to new
tie formation (Golder and Yardi, 2010), such evidence might further suggest
redundant friendship ties between flock members.

Third, the flock structure we identified is stable and consistent even after
one year. Unlike fluid networks organized by communication (Bennett and
Segerberg, 2013), flocks, based on the following relationships, should be rel-
atively stable. This means that despite Twitter users’ ability to freely follow
additional accounts or unfollow existing ones, flock members should exhibit
relative consistency in accounts they follow, which we investigate here. To this
end, we ran murmuration modules 1 and 2 (Fig. 6.1ab) in August of 2018 and
2019 separately; then we compared the flock identification results, based on
the 100 flocks from 2018 and 2019. Specifically, we evaluated each of the 100
flocks on its (i) stability: the percentage of flock members that remained in
the sample after one year and (ii) fidelity: the percentage of recurring flock
members that fell into a similar flock. We first observed that flocks exhibit
stability. On average, 60.3% (median 71.6%) member accounts across the 100
flocks of 2018 recurred among the 100 flocks of 2019 (Fig. 6.3a). Particularly,
68 flocks in 2018 saw more than half of their members reappear after one
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Figure 6.3: The percentage of flock members that recurred and recovered after
one year. (a) Histogram of the percentages of flock members in the 2018 flocks
that remained in the new sample in 2019. (b) Histogram of the percentages of
recovered accounts in the 2018 flocks, i.e., accounts reappearing in a similar
flock in 2019. In both panels, the 100 flocks are stratified by whether they
belong to the 50 flocks that we selected for downstream analysis in 2018.
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year and only 18 flocks less than 30%. The fidelity of flocks provides further
assurance for flock stability. Among the 2018 accounts that reappeared in
2019, on average 75.9% fell into a similar flock (Materials and Methods). In
particular, as many as 60 flocks in 2018 matched a new flock of 2019 (with
more than 90% shared account) (Fig. 6.3b).

Flocks predict opinion expression

As shown above, member accounts of a flock are similar, interactive, and
embedded in a stable social network structure, suggesting that a flock is a
meaningful network organized on social media. Situated in such a group con-
text, accounts within a flock are expected to share topical emphases in opinion
expression, which we examine in this section. For this analysis, we again relied
on our random sample of tweets. Given that hashtags are semantic markers of
full tweets, we focused on the pattern of hashtags used across the 50 flocks.
The most frequently used hashtags were grouped into 6 categories and their
occurrences in tweets were computed by flock (Materials and Methods). For
illustration, we present the use of selected hashtags in Fig. 6.4. Overall, we
found a high level of correspondence between hashtags and flocks that used
them, suggesting the predictability of opinion expression by flock membership.
Hashtags presumably used by liberals appeared most frequently in liberal
flocks’ tweets. Similarly, hashtags often used by conservatives to indicate
conservative values, or by Trump supporters to show their allegiance, or by
conspiracy believers, appeared most frequently in conservative flocks’ tweets.
So were the issue- and topic-specific hashtags: #syria and #iran were over-
whelmingly used by “Middle East correspondents.” Hashtags even validated
the distinction between similar flocks: #bernie2020 and #notmeus were nearly
exclusively used by the “Bernie Bros” flock on the liberal side. These results are
consistent with previous research showing the similarity between friendship
ties and tweets (Aiello et al., 2012). However, some seemingly discriminative
hashtags failed to neatly align with their corresponding flocks. For example,
the use of #maga, a hashtag presumably indicating support of Trump’s presi-
dential campaign, was split among liberal, conservative and Trump supporter
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Figure 6.4: Heat map of 53 hashtags frequently used by 50 flocks. Each col-
umn corresponds to one flock, with column panels indicating flock category
and column strips on the bottom indicating the category name. Each row
corresponds to one hashtag, with row panels indicating the hashtag category
and row strips on the left indicating the category name. The shade of color
indicates the percentage of active accounts in the flock that utilized the hashtag.
The bar plot above the heat map reports the number of daily tweets from each
flock; the bar plot on the right reports the number of hashtags observed per
million tweets collected.
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flocks. Similarly, #resistance and #resist, used to express opposition toward the
Trump presidency, also appeared saliently in tweets from “the Trump train”
flock. Such idiosyncratic hashtags being used by heterogeneous flocks might
be explained by hashjacking, a practice of infiltrating into opponents’ networks
(Bode et al., 2015). This suggests that the nuance that cannot be picked up by
patterns of hashtag use can be revealed through the social network structure
encoded in flocks. In addition, we fit a topic model, treating all of an account’s
tweets as a single document. A similar pattern was observed between the
actual topics of tweets and flocks: topics were generally consistent with flock
membership (Appendix E.2).

Measuring social media public opinion with flocks

This section presents an example of social media public opinion in response to
news events with flocks, focusing on the intensity, temporal dynamics, and
difference of opinion expression by flocks. To illustrate, we chose 10 flocks
from different rungs in the influence hierarchy, including more influential
media flocks and less influential activist flocks (Table 6.1), and collected tweets
corresponding to three news events for analysis (Materials and Methods). Our
website www.murmuration.wisc.edu updates every day to summarize how
flocks discussed yesterday’s events.

The three news events were selected to balance liberal and conservative
political issues: (1) the concluding phase of the Mueller investigation (March
1, 2019 to July 31, 2019), (2) the passing of anti-abortion laws by several states
(March 1, 2019 to May 31, 2019) and (3) the killing of the Washington Post
journalist Jamal Khashoggi (November 1, 2018 to December 31, 2018).

We first investigated the intensity of opinion expression by all 10 flocks
in response to the three events (Fig. 6.5ab). Though in general “the Trump
train” and “Christian conservatives” on the conservative side and the “#unite-
blue” and “the resistance” on the liberal side were the most active, the pattern
of the 10 flocks’ expression intensity varied across events. For the Mueller
investigation, the three conservative flocks and the three liberal flocks were
nearly equally engaged in talking about the investigation, accounting for 45.6%

www.murmuration.wisc.edu
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Figure 6.5: Opinions of 10 flocks about three news events. Throughout, each
column panel corresponds to one event, and each color corresponds to one
flock. (a) The percentage of tweets contributed by each flock. The top strips
show the names of events and the brackets the total number of tweets collected.
(b) Box plots of the opinion expression of account, as measured by the number
of tweets per thousand event tweets (TPK, Materials and Methods). Each
account’s TPK is averaged across all days in the event period. The widths
of boxes indicate the number of accounts that expressed opinions. (c) The
opinion expression of account (in TPK) averaged across individual flocks as a
function of days during the three events, stratified by flock category. Right-
hand side strips indicate the flock category. (d) Weighted average sentiment
observed in opinions on each event by each flock. Each vertical line represents
one flock.
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Table 6.1: Ten exemplary flocks of political relevance, as of August 2018.

Category Name Description

“the Trump train” Vowing clear and strong support for
Donald Trump

conservatives “Christian constitutionalists” Showing firm conservative beliefs yet
do not explicitly express solidarity with
a specific political figure

“white nationalists” Espousing beliefs in ethnocentrism and
nationalism

“Bernie Bros” Alleging support for Bernie Sanders

liberals “#uniteblue” Promoting progressive causes and val-
ues

“the resistance” Opposed to the Trump presidency

“conservative media/pundits” Appealing to conservative partisan au-
dience, e.g., Stephen Miller, Ben Shapiro,
and National Review

media “progressive media” Appealing to progressive partisan audi-
ence, e.g., Jacobin and Splinter News

“national political journalists” Covering US national politics

“Middle East correspondents” Covering or commenting on Middle
East affairs
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and 42.8% respectively of the conversations. In “the Trump train,” member
accounts have on average 97.1 relevant tweets per month (TPM) and in “the
resistance,” about 70.4 TPM. However, the passing of abortion laws was pri-
marily a conservative issue: “the Trump train” alone accounted for 46.5% of
total tweets (with 50.3 TPM), and the three conservative flocks combined
tweeted 60.2% of relevant content. This pattern of activity contrasts with that
surrounding the killing of Khashoggi, which caught mostly the attention of
“Middle East correspondents” and the three liberal flocks.

Besides the level of expression intensity, the temporal pattern of expres-
sion diverges across events (Fig. 6.5c). For the Mueller investigation, all 10
flocks were relatively in sync in terms of tweets per day, suggesting that opin-
ion expression about the Mueller investigation was driven by key moments.
However, the passing of anti-abortion laws witnessed a completely different
temporal pattern. The conservative flocks, spearheaded by “the Trump train,”
had remained agitated on the abortion ban, as evidenced in their constant
hyperactivity. However, the liberal flocks did not join the conversations en
masse much later, when the Alabama governor signed the most extreme abor-
tion ban. A different pattern can be observed in the killing of Khashoggi. His
disappearance first and foremost concerned “Middle East correspondents,”
spreading next to “national political journalists” and liberal flocks. Conserva-
tives flocks, unlike their response in the other two events, reacted to this event
later than other flocks.

The drastically different words used by flocks in their opinions toward
each event (supporting Table E.4, Materials and Methods) demonstrate how
opinion expression was tied to the flock context. For the Mueller report, con-
servative flocks saw it as a vindication of Trump (suggested by keywords
like “#maga,” “trump2020”) and shifted the target to Democrats (“democrats”
“witch,” “hunt,” “obama,” “hillary”). However, liberals saw it as evidence for
“obstruction” of “justice” and reason for “impeachment” of Trump. They also
called upon the public to “read” the “report” and the Department of Justice
to release the full report. Responding to the anti-abortion laws, conservative
flocks emphasized the sanctity of life and liberal flocks women’s rights. Conser-
vatives and media invoked pro-life tropes, characterized by terms like “babies,”
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“heartbeat,” “life,” “murder” and “infanticide,” whereas liberals and other me-
dia couched their language in legal and activism terms, like “access,” “rights,”
“ban,” “#stopthebans.” For the Khashoggi event, while “Middle east correspon-
dents” and “national political journalists” mainly focused on the event itself,
the three liberal networks and the three conservative networks politicized this
event. The liberal flocks tied it to Trump’s and Kushner’s relationships with
the Saudis, while the conservatives focused on Khashoggi’s alleged tie with
Muslim brotherhood and on Obama’s “mistreatment” of western journalists,
and tried to channel the attention back to the Benghazi attack.

6.3 Methods

Targeted sampling from Twitter friendship network

In August 2018, we sampled elite Twitter accounts who actively expressed
political opinions in the Twitter friendship network using personalized PageR-
ank (PPR) sampling (Chen et al., 2020a). The PPR sampling evaluates nodes
in the network with an approximate PPR vector and samples those nodes
with the highest scores. The PPR vector is defined as the stationary proba-
bility distribution of which we call a personalized random walk (Page et al.,
1998). At each step of the random walk, the walker returns to the seed node
with probability α, and, with probability 1 − α, the random walker goes to
an adjacent node chosen uniformly at random. The details of the algorithm
and implementation are described in Appendix E.1. We chose 59 Twitter ac-
counts as seed nodes (supporting Table E.1) and implemented the method
(https://github.com/RoheLab/aPPR) to collect following network data. We
obtained a total of 267,117 Twitter accounts, with a total of 10,174,291 friends
that they followed. Given that an account who follows or is followed by few
accounts is difficult to classify, we removed any accounts who follow fewer
than 2 friends and those followed by fewer than 5 accounts. This resulted in
the reported sample of the following network in the main text. In August 2019,
a year after we first performed the targeted sampling, we updated the seed
nodes by removing inactive seeds (such as @RealAlexJones and @RichardB-

https://github.com/RoheLab/aPPR
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Spencer), and added new seeds that emerged in the 2018 data. This resulted
in a total of 75 seed nodes for the PPR sampling in 2019 (supporting Table
E.1).

Flock identification

Through PPR sampling, we obtained a bipartite network consisting of follow-
ers and accounts followed by them, from the Twitter friendship network. To
identify flocks, we employed an spectral method called vintage sparse princi-
pal component analysis (VSP) to detect community structure in the observed
friendship network. VSP is a simple algorithm for sparse principal compo-
nent analysis (SPCA), where the loadings of principal components (PCs) are
sparse (Zou and Xue, 2018; Rohe and Zeng, 2020; Chen and Rohe, 2020). The
coefficients of sparse PCs (also known as loadings) estimate the (mixed) com-
munity membership for each account (Rohe and Zeng, 2020). In particular,
we applied the two-way version of VSP to detect 100 communities among the
followers as well as the followed accounts. The estimated communities of
follower and followed accounts are matched (Rohe et al., 2016), that is, the
k-th follower community tends to follow members in the k-th community of
followed accounts (supporting Figure E.2). Additional details about VSP and
a schema of the algorithm are provided in Appendix E.1. For downstream
analysis, we focused on communities of followed accounts, which we refer to
as flocks. Such choice is based on the assumption that these communities are
prominent Twitter opinion leaders as they are followed by the political-related
accounts that we sampled. In our analysis of the 2018 Twitter sample, the size
(number of member accounts) of 100 flocks is 13,101 on average, with only four
flocks smaller than 1,000 and the largest being 56,943. We compared the 100
flocks identified in the 2018 sampling and 2019 sampling to assess the stability
and fidelity of flocks. For this, we defined a matching between two sets of 100
flocks by maximizing the total number of shared accounts between pairs of
matched flocks, whose solution was computed with the Hungarian algorithm
(Kuhn, 1955). Such matching was then used to calculate the percentage of
recovered accounts in each flock.
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Computation-assisted interpretation of flocks

The flocks were interpreted based on the profile descriptions of flock members.
Since each flock has 1000 members, this process was assisted by a compu-
tational approach that identifies the keywords of each flock using the best
feature function (BFF), a feature selection method. A detailed description of
BFF is provided in Appendix E.1. BFF takes tokenized unigrams present in
the profile descriptions of all accounts and extracts unigrams that are most
unique to one flock as compared to all other flocks. Based on the best unigrams
associated with each flock, validated by the authors based on the actual profile
descriptions, we interpreted and named each flock. The full list of 100 flocks
and their inter-relationship are provided in supporting Table E.3. We selected
50 flocks of interest for the downstream analysis and demonstrate 24 on our
website.

Event detection and tweet classification

Our extraction of public opinion is event-based. Basically, we collect tweets on
a daily basis and perform a two-stage text analysis: (i) identify news events
across the whole corpus of tweets and (ii) designate the relevant tweets to
individual news events. This pipeline is a data-driven mechanism informed
by human input. For example, while the labeling of each news event relies
on the cluster of words and short phrases, it was validated with news reports
from mainstream outlets. Additional details about text pre-processing, news
event identification, and tweet classification are provided in Appendix E.1

Evaluation of flocks by shared followers

To estimate the pattern of shared followers among flocks, we utilized the
friendship information of the accounts who followed accounts in at least one
flock. Specifically, we counted the number of shared followers between any
pair of accounts in the 50 selected flocks, that is, a total of 50× 1000 accounts.
We then aggregated these individual counts into flock’s shared follower counts:
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for each follower, if it follows ni member accounts of flock i and nj of flock j,
then we add ninj × 10−6 to the shared follower counter between flock i and j.

Sampling of tweets and three news event tweets

To validate flocks with retweeting relationships and tweet text, we constructed
a random sample containing all tweets on Mondays from October 1, 2018 to
October 1, 2019. Span the sampling across a whole year strategy serves to
prevent the peculiarity of a certain time period from skewing general patterns.
This yielded 30,028,074 tweets with 15,846,255 being retweets, which were
used to analyze hashtag usage and perform topic modeling of text contents
(Appendix E.2). Among our sample of retweets, 7,379,555 (46.6%) were
originally posted by accounts in the 50 flocks, which is then used to examine
the retweeting relationship among flocks. To obtain a low-noise set of tweets
about each news event, we applied restrictive search strings to retrieve content.
For the concluding phase of the Mueller investigation, any tweet containing
“mueller” or“russia probe” (case insensitive) or any tweet quoting another
tweet containing the same terms was included, resulting in a total of 1,160,120
tweets. For the passing of anti-abortion laws, we collected a total of 261,205
tweets using the search term “abortion.” Lastly, for the killing of Khashoggi,
“khashoggi” yielded 151,478 tweets.

Frequently used hashtags

For the analysis of hashtag usage, we included a total of 129 hashtags that
appeared over 4000 times in our tweet sample. These hashtags were grouped
into 6 categories. For example, hashtags presumably used by progressive
accounts, like #voteblue and #bluewave, were labeled “liberal.” Likewise,
hashtags often used by conservative accounts, such as #tcot and #votered,
were categorized as “conservative.” The “Trump campaign” category included
hashtags like #maga and #trumptrain presumably used by Trump supporters to
rally around Trump. “QAnon” hashtags, like #qanon and #thegreatawakening,
were presumably used by people holding conspiracy beliefs that “deepstate”
traitors were scheming to thwart the Trump presidency. The “issue/topic”
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category included miscellaneous hashtags concerning political issues or topics.
The remaining hashtags, mainly pop culture related, fell under the “other”
category. The distribution of each hashtag use across all 50 flocks is presented
in supporting Figure E.3. A subset of hashtags was selected to represent the
range of patterns observed in all hashtags in Fig. E.3.

Activity, keywords, and sentiment of flocks in response to news
events

We define a measure to assess the daily activity level of opinion expression
of a Twitter account in response to a news event: the number of tweets per
thousand event tweets (TPK). The measure of TPK normalizes for the total of
event tweets thus is comparable across different news events. Given a set of
Twitter accounts and their event tweets, TPK is computed in two steps. First,
calculate the “per thousand event tweet scaling factor”, which is defined as
the average number of daily event tweets divided by 1,000. Second, divide
the event tweet counts of individual accounts by the event scaling factor. This
quantity is averaged over all days across news event period in Fig. E.5b and is
averaged over individual flocks in Fig. E.5c. We identified the keywords in
each flock’s tweets using BFF, the same procedure used to find keywords in
each flock’s profile descriptions. We conducted sentiment analysis using the
AFINN lexicon (Nielsen, 2011). Specifically, given a set of tweets (e.g., tweets
grouped by flock), the average of all words’ sentiment scores, weighted by the
square root of their frequency, is treated as the overall sentiment. Here, the
square root was taken for variance stabilization under the Poisson rate model
(Bartlett, 1947).

6.4 Discussion

In this paper, we introduce “murmuration,” a framework for the large-scale
measurement of opinions on social media. It treats flocks, which encode social
network structure, as the unit of analysis of social media public opinion. Over-
all, our results speak to the effectiveness of the murmuration framework in
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capturing the temporal and social dynamics of public opinion on social media.
In particular, we demonstrate that flocks are a homogeneous and stable struc-
ture that predicts opinion expression. We further show that the murmuration
framework identifies public opinion with distinct patterns of opinion inten-
sity, temporality, and contestation. The patterns from our case study suggest
that networks on Twitter who talk politics exhibit shared attention, though at
varying levels of intensity, to events that might not align with their views; and
they attempt to frame those events from different angles in line with their own
values and identities. Flocks might engage in such practice not so much to
convince the outside world as to invoke their core beliefs or “ideological priors”
to defend their egos against any ideologically disruptive evidence (Katz, 1960).
Alternatively, they might seize the opportunities that those high-profile events
afford them to jostle for power by advancing ideological definitions of issues
and shaping the corresponding public response (Entman, 1993; Jungherr et al.,
2019).

Methodically, this study offers one way to study public opinion that is dif-
ferent than survey-based public opinion polls and the text-centric approach to
mining social media opinions. Our results suggest that to analyze social media
opinions, researchers should combine the dominant text-as-data approach and
the social network approach. This synthetic approach helps discover patterns
of expression and interaction that can be traced back to social actors and the
networks they are part of. As a result, we can better take advantage of social
media data to understand public opinion as a form of social interaction and to
reveal underlying social dynamics.

We must note that the opinions that we measure in this paper belong to
the elite layer of public opinion, though the murmuration framework can
be applied in various contexts and for different purposes. However, we see
this more as a feature than a limitation. Given previous studies showing the
two-step flow of opinions, understanding this stratum of opinion leaders is
essential. Moreover, since these opinion leaders on social media might interact
with mass media, this project in its next phase will examine how social media
public opinion, in terms of both intensity and content, interacts with news
media attention and coverage.
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a appendix for chapter 2

A.1 Technical proofs

Proof of Proposition 2.1

Proof. We apply Perron-Frobenius theorem for the first part (Perron, 1907;
Frobenius et al., 1912), and complete the proof by construction.

(a) First, notice thatQ is a Markov transition matrix by modifying G = (V ,E)
a little. To this end, (i) shrink the weights of every existing edge by factor
1 − α, and (ii) add an edge weighted α between seed node v0 and all
nodes in the graph. Then Q represents the new graph G ′(V ,E ′), which is
strongly connected by construction. Hence Q is irreducible.

The PPR vector p is all-positive. To see this, note that the equation pT =

pTQ implies that p is a stationary distribution for the standard random
walk on G ′. Since G ′ is strongly connected, it follows that the stationary
distribution must be all-positive.

From the Perron-Frobenius theorem, the only all-positive eigenvector of a
non-negative irreducible matrix is associated with the leading eigenvalue,
which is 1 in our case. Since the leading eigenvalue of non-negative
irreducible matrix is simple, we conclude that p is unique.

(b) We finish the proof by constructing an explicit form of the PPR vector. Let
Rα = α

∑∞
s=0(1 − α)sPs. The infinite sum converges for α ∈ (0, 1]. Then,

p = RT
απ satisfies the definition of personalized PageRank vector,

απT + (1 − α)πTRαP = απT + (1 − α)πT

(
α

∞∑
s=0

(1 − α)sPs

)
P

= απT + α

∞∑
s=1

(1 − α)sπTPs

= πTRα.

Since the solution is unique, we have p = RT
απ.
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Proof of Proposition 2.2

Proof. Algorithm 2.1 maintains two vectors, pε and r, by transporting prob-
ability mass from r to pε at each updating step. Note that the termination
criterion implies that ru < εdu for any u sampled, thus it suffices to prove that

|pu − pεu| 6 ru.

For a fixed α, let p(x) be the PPR vector with preference vector x ∈ RN

satisfying xi > 0 and ‖x‖1 6 1. Then p(π) is the exact PPR vector as in Equation
(2.2). Since p(x)TP = p(xTP), we have (Jeh and Widom, 2003)

p(x) = αx+ (1 − α)p(PTx). (A.1)

We argue that pε+p(r) is invariant in updating steps. To see this, suppose
(pε) ′ and r ′ are the results of performing one update on pε and r after sampling
node u. We have

(pε) ′ = pε + αrueu,

r ′ = r− rueu + (1 − α)ruP
Teu.

where eu is the unit vector on the direction of u. Then,

p(r) = p(r− rueu) + p(rueu)
(i)
= p(r− rueu) + αrueu + (1 − α)p

(
ruP

Teu
)

(ii)
= p

(
r− rueu + (1 − α)ruP

Teu
)
+ αrueu

= p(r ′) + (pε) ′ − pε,

where (i) is applying Equation (A.1) at x = rueu and (ii) comes from the
linearity of PPR vector in the preference vector.

The desired result follows from recognizing thatpε+p(r) is initially~0+p(π)
and that when the algorithm terminates, [p(r)]u 6 ru for any sampled u.

Remark. If εd1 > 1, Algorithm 2.1 terminates after the first round and
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simply output p = ~0. Under this circumstance, Proposition 2.2 still holds,
because |pu − pεu| 6 |pu|+ |pεu| 6 1.

Lemmas for the DC-SBM

Lemma A.1 (Properties of the DC-SBM). Under the population directed DC-SBM
with K blocks and parameters

{
B,Z,Θin,Θout},

(a) Din = ZTDinZ, and Dout = ZTDoutZ , and

(b) din
v = θin

v din
z(v), and dout

v = θout
v dout

z(v).

Proof. a is an alternative way of writing the definition. For b, we prove the
first equation. Recall that for any i,

∑
u:z(u)=i θ

out
u = 1, then by definition,

din
v =

∑
u

θout
u θin

v Bz(u)z(v) = θ
in
v

K∑
j=1

Bjz(v)
∑

u:z(u)=j

θout
u

 = θin
v din
z(v).

Remark. Since ZTΘinZ = IK, a implies
[
Din]−1

ΘinZ = Z
[
Din]−1.

Lemma A.2 (Explicit form of P and its powers). Under the population directed
DC-SBM withK blocks and parameters

{
B,Z,Θin,Θout}, the population graph tran-

sition is the product
P = ZPZTΘin.

and its matrix powers are
Pk = ZPkZTΘin.

Proof. By definition and Lemma A.1b, for any u, v ∈ V ,

Puv =
(
θout
u dout

z(u)

)−1
θout
u θin

v Bz(u)z(v) = θin
v Bz(u)z(v)/dout

z(u) = θ
in
v Pz(u)z(v).

For the powers of P, noticing that ZTΘinZ = IK,

P2 = ZPZTΘinZPZTΘin = ZP2ZTΘin.
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The desired result follows from the principle of induction on k-th power.

Proof of Theorem 2.4

Proof. By Proposition 2.1 and Lemma A.2, we have

p = α

∞∑
s=0

(1 − α)s (Ps)T π

= α

∞∑
s=0

(1 − α)sΘinZ (Ps)T ZTπ

= ΘinZ

(
α

∞∑
s=0

(1 − α)s (Ps)T π

)
= ΘinZp.

In addition, it follows from Lemma A.1a that

p∗ =
[
Din]−1

p =
[
Din]−1

ΘinZp = Z
[
Din]−1 p = Zp∗.

This completes the proof.

Proof of Lemma 2.5

Proof. For any α > 0, the PPR vector with seed node v0 = 1 is the solution
to the equation pT = pTQ, where Q = αΠ+ (1 − α)P. Define a sequence of
probability distribution ps ∈ RN such that ps = (Qs)T

p0, where p0 is an
arbitrary initial probability distribution. Then, lims→∞ps = p. For simplicity,
we assume p0 is close to p, that is, for any ε > 0 and s > 0,

‖ps −p‖∞ < ε/2. (A.2)

This can be achieved by finding an integer S(ε) large enough and setting
p0 = pS.
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We first claim that

max
u6=1

ps+1
u

du
6 (1 − α)max

u∈V

psu
du

. (A.3)

In fact, for any u 6= 1,

ps+1
u = α1{u=1} + (1 − α)

∑
v∈V

Avu

dv
psv

6 (1 − α)

(∑
v∈V

Avu

)
max
v∈V

psv
dv

= (1 − α)dumax
v∈V

psv
dv

.

We then show ps1
d1
>

psv
dv

for any v 6= 1 by contradiction. Suppose otherwise
that ps1

d1
6 maxu6=1

psu
du

, then Equation (A.2) implies for any s ′,

ps
′

1
d1

6
ps1 + ε

d1
6 max
u6=1

psu
du

+
ε

d1
6 max
u 6=1

ps
′
u + ε

du
+
ε

d1
6 max
u6=1

ps
′
u

du
+

2ε
dmin

,

where dmin = minv∈V dv. Hence, maxu∈V ps
′
u

du
6 maxu6=1

ps
′
u

du
+ 2ε

dmin
. In

addition, applying Equation (A.3) recursively we have

max
u∈V

psu
du

= max
u6=1

psu
du

6 (1 − α)max
u∈V

ps−1
u

du

6 (1 − α)

(
max
u6=1

ps−1
u

du
+

2ε
dmin

)
6 (1 − α)smax

u∈V

p0
u

du
+

2ε
dmin

s−1∑
t=1

(1 − α)t.

The inequality means that if dmin > 0 is fixed, psu can be arbitrarily small
when s → ∞, which contradicts the fact that p is a probability distribution.
This completes the proof.

Remark. When the teleportation constant is zero, the PPR vector becomes
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the stationary probability distribution of a standard random walk,(
d1∑
idi

, d2∑
idi

, ..., dN∑
idi

)
.

After adjusting by node degrees, every entry becomes identical (1/
∑
idi).

The lemma is intuitive, recognizing that the teleportation introduces a particu-
lar favor of the seed node.

Remark. When the edges are weighted (non-negative), the stationary
distribution of a random walk is still proportional to node degrees, if one
defines the degree as sum of edge weights incident to the node (Lovász, 1993).
Note also that the stationary distribution of a random walk in a directed graph
is characterized by the in-degree of nodes (Ghoshal and Barabási, 2011; Lu
et al., 2013). The conclusion and a modified proof apply to directed or weighted
graphs.

Proof of Theorem 2.6

We start with a few lemmas to prepare for the proof of Theorem 2.6. Specifically,
we introduce a few notations used in Lemma A.5 and list a few properties of
vector norm and matrix norm (Brémaud, 2013). For completeness, Section A.1
lists a few inequalities that are used throughout the proofs.

For any strictly positive probability distribution vector p ∈ RN, the inner
product space indexed by p is a real vector space RN endowed with the inner
product

〈x,y〉p =

N∑
v=1

pvxvyv.

The corresponding vector norm and the induced matrix norm are defined
respectively as

‖x‖p =
√
〈x, x〉p and ‖A‖p = sup

‖x‖p=1
‖ATx‖p.

Lemma A.3. If 0 6 pmin 6 pv 6 pmax for all v = 1, 2, ...,N, then the following
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inequalities hold

√
pmin‖x‖2 6 ‖x‖p 6

√
pmax‖x‖2 and

√
pmin
pmax

‖A‖2 6 ‖A‖p 6

√
pmax
pmin

‖A‖2.

The following lemma provides concentration of the node degrees in a
graph generated from the DC-SBM.

Lemma A.4 (Degree concentration). Let G = (V ,E) be a graph of N vertices
generated from the DC-SBM with K blocks and parameters {B,Z,Θ}. Let dmin and
dmax be the smallest and the largest node degree observed. Let δ be the average expected
node degree, and define ρ = dmax/dmin. If δ > c0(1−α) logN for some sufficiently
large constant c0 > 0, then with probability at least 1 −O(N−10), it holds that

δ

2ρ 6 dmin 6 dmax 6
3ρδ

2 . (A.4)

Proof. Note that the definition of ρ immediately implies that

δ

ρ
6 dmin 6 dmax 6 δρ.

The lemma follows from the standard Chernoff’s bound, hence is omitted.

The following useful lemma concerns the eigenvector perturbation for
probability transition matrices, promoted from the celebrated Davis-Kahan
sinΘ Theorem (Davis and Kahan, 1970).

Lemma A.5 (Eigenvector perturbation). Suppose thatQ, Q̂, andQ are probability
transition matrices with stationary distributions p, p̂, and p respectively. Assume
that Q represents a reversible Markov chain. Then,

‖p− p̂‖p 6
‖(Q− Q̂)Tp‖p

1 − max{λ2(Q),−λN(Q)}− ‖Q̂−Q‖p
.

The proof the Lemma A.5 can be found in Chen et al. (2019) Section 3, thus
omitted.



139

Proof. The proof processes as follows. We first bound the entrywise error rate
of p,

‖p−p‖∞
‖p‖∞ 6 c0

√
logN
δ

,

by invoking the novel leave-one-out techniques (Chen et al., 2019), The entry-
wise error bounds of p∗ follows immediately.

Recall that both p and p are stationary distribution, which means

p = QTp and p = QTp.

Due to this, for any w = 1, 2, ...,N, we can decompose

pw −pw = QT
·wp−QT

·wp

= (Q·w −Q·w)
Tp︸ ︷︷ ︸

:=Iw1

+QT
·w(p−p)︸ ︷︷ ︸

:=Iw2

,

where Q·w denotes the w-th column of Q.

(a) We start with the first term Iw1 . Note that

Iw1 = (1 − α)

N∑
v=1

[
Avw

dv
−

Avw

dv

]
pv

= (1 − α)

N∑
v=1

[
(Avw −Avw)

1
dv

]
pv︸ ︷︷ ︸

:=Iw11

+(1 − α)

N∑
v=1

Avw

(
1
dv

−
1
dv

)
pv︸ ︷︷ ︸

:=Iw12

.

Recall that Avw’s correspond to independent Bernoulli random variables,
we can easily bound the first term using Bernstein’s inequality (Lemma
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A.8), with probability at least 1 −O(N−8),

|Iw11| 6 (1 − α)

∣∣∣∣∣
N∑
v=1

(Avw −Avw)

∣∣∣∣∣ ‖p‖∞δ
6 (1 − α)


√√√√16 logN

N∑
v=1

Avw +
16 logN

3

 ‖p‖∞
δ

(i)
6 (1 − α)

(
4
√
ρ logN
δ

+
16 logN

3δ

)
‖p‖∞,

where (i) follows from the fact that ρδ 6 dmax.

Note that the second term is

Iw12 = (1 − α)

N∑
v=1

1(v,w)∈E

(
1
dv

−
1
dv

)
pv,

to which we can apply the Hoeffding’s inequality (Lemma A.6) and obtain

P

(
|Iw12| 6 ρ(1 − α)

√
ρ logN
δ
‖p‖∞

)
> 1 − 2N−8.

In sums, we have high probability event

|Iw1 | 6 (1 − α)

(
(4 + ρ)

√
ρ+ 3

√
logN
δ

)√
logN
δ
‖p‖∞. (A.5)

(b) The statistical dependency between p and Q introduces difficulty in
sharply bounding Iw2 . Nevertheless, we can invoke the leave-one-out
techniques to decouple the dependency. To this end, we define, for each
w = 1, 2, ...,N, a new transition matrix Q(w) = αΠ + (1 − α)P(w) that
bridges between Q and Q. P(w) has almost the same entries as P except
for replacing those in w-th row or column by their expectations; that is,
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for any u 6= v,

P
(w)
uv =

{
Puv, u 6= w and v 6= w,
Puv, u = w or v = w,

and for any u = 1, 2, ...,N,

P
(w)
uu = 1 −

∑
v:v 6=u

P
(w)
uv ,

in order to ensure that P(w) andQ(w) are transition matrices. In addition,
define p(w) to be the stationary distribution corresponding to Q(w). As
demonstrated in Chen et al. (2019), p(w) helps us well approximate p, yet
it is statistically independent of Q·w.

Now we decompose Iw2 as follows:

Iw2 =

N∑
v=1

Qvw(pv −pv)

=

N∑
v=1

Qvw

(
pv − p

(w)
v

)
︸ ︷︷ ︸

:=Iw21

+

N∑
v=1

Qvw

(
p
(w)
v −pv

)
︸ ︷︷ ︸

:=Iw22

.

(c) In this part, we focus on the first term Iw21, where we would need another
intermediate quantity to facilitate our estimation. To be specific, consider
the leave-one-out version of Q conditioning on the graph G = (V ,E),
Q(w,G) = αΠ+ (1 − α)P(w,G), which is almost the same as Q except for
replacing the non-zero entries inw-th row or column by their expectations.
Concretely, for and u 6= v,

P
(w,G)
uv =

{
Puv, u 6= w and v 6= w,
1(u,v)∈EPuv, u = w or v = w,
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and for any u = 1, 2, ...,N, define

P
(w,G)
uu = 1 −

∑
v:v 6=u

P
(w,G)
uv ,

so that P(w,G) is a probability transition matrix.

WithQ(w,G) in mind, we now apply Cauchy-Schwarz inequality on Iw21 to
reach

|Iw21| =

∣∣∣∣∣
N∑
v=1

Qvw

(
pv − p

(w)
v

)∣∣∣∣∣
6

(
N∑
v=1

Q2
vw

) 1
2 ∥∥∥p− p(w)

∥∥∥
2

(i)
6

√
α+

1
dmin

√
pmax
pmin

∥∥∥p− p(w)
∥∥∥
p

(ii)
6

√
α+

1
dmin

√
pmax
pmin

1
γ

∥∥∥∥(Q−Q(w)
)T
p(w)

∥∥∥∥
2

(iii)
w.h.p.
6

√
α+

2ρ
δ

√
κ

γ

∥∥∥(Q−Q(w,G))Tp(w)
∥∥∥

2︸ ︷︷ ︸
:=Iw211

+
∥∥∥(Q(w,G) −Q(w))Tp(w)

∥∥∥
2︸ ︷︷ ︸

:=Iw212

 .

where (i) follows from Lemma A.3 and the fact that Pvw 6 1
dmin

, (ii)
comes from Lemma A.5, and (iii) results from Lemma A.4 and the triangle
inequality, and recognizing κ = pmax/pmin (from the proof of Proposition
2.1, it is bounded), and “w.h.p.” is short for “with high probability”. Note
that Π adds at most 1 to the rank of Q, and because we presume B is
positive definite P has exactly K positive eigenvalues among other zeros
(Section A.2). Here, γ = 1 − max{λ2(Q),−λN(Q)} − ‖Q(w,G) − Q‖p is
the spectral gap and is lower bounded by some positive constant (due to
Khanna et al. (2017)). Then, it boils down to controlling Iw211 and Iw212.
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For Iw211, the w-th entry inside the vector norm is[(
Q−Q(w,G)

)T
p(w)

]
w

=
[
(Q−Q)T p(w)

]
w

= (1 − α)

N∑
v=1

(Pvw −Pvw)p
(w)
v .

Note that p(w)
v is statistically independent of P·w. Then, by Hoeffding’s

inequality (Lemma A.6) and Lemma A.4, we have with probability at
least 1 − 2N−8,[(

Q−Q(w,G)
)T
p(w)

]
w

6 4ρ(1 − α)

√
ρ logN
δ

∥∥∥p(w)
∥∥∥∞ . (A.6)

As for any u 6= w, applying Hoeffding’s inequality again yields

[(
Q−Q(w,G)

)
p(w)

]
u

= (1 − α)

N∑
v=1

(Pvu −Pvu)p
(w)
v

= (1 − α)
(
Puu − P

(w,G)
uu

)
p
(w)
u

+(1 − α)
(
Puw − P

(w,G)
uw

)
p
(w)
w

= −(1 − α)
(
Puw − P

(w,G)
uw

)
p
(w)
u

+(1 − α)
(
Puw − P

(w,G)
uw

)
p
(w)
w .

Recognizing that

∣∣∣Puw − P
(w,G)
uw

∣∣∣ =

{
Auwd

−1
uu −Auwd

−1
uu, (u,w) ∈ E,

0, (u,w) /∈ E,

we apply again the Hoeffding’s inequality (Lemma A.6) together with
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(A.4), and obtain with probability at least 1 −O
(
N−8),

∣∣∣∣[(Q−Q(w,G)
)T
p(w)

]
u

∣∣∣∣ 6
{

4ρ(1 − α)

√
logN
δ

∥∥p(w)
∥∥∞ , (u,w) ∈ E,

0, (u,w) /∈ E.
(A.7)

Combining (A.6) and (A.7) yields

Iw211 6 4ρ(1 − α)

1 +

√ ∑
u:u6=w

1(u,w)∈E

√ρ logN
δ

∥∥∥p(w)
∥∥∥∞

(i)
w.h.p.
6 8ρ2√ρ(1 − α)

√
logN
δ

∥∥∥p(w)
∥∥∥∞ ,

where (i) follows from the high probability event that dmax 6 3ρδ/2.

Regarding Iw212, since (Q(w,G) −Q(w))p = ~0, we can rewrite this as

Iw212 =

∥∥∥∥(Q(w,G) −Q(w)
)T (

p(w) −p
)∥∥∥∥

2
.

Similarly, note that P(w)
vw − P

(w,G)
vw = Avw

dv
1(w,v)/∈E, we apply Bernstein’s

inequality on w-th term inside the vector norm to obtain that with proba-
bility at least 1 − 2N−8,[(

Q(w,G) −Q(w)
)(
p(w) −p

)]
w

= (1 − α)

N∑
v=1

(
P
(w,G)
vw − P

(w)
vw

)(
p
(w)
v −pv

)
= (1 − α)

N∑
v=1

1
dv

(
p
(w)
v −pv

)
1(w,v)/∈E

w.h.p.
6 (1 − α)

(
4ρ
√
ρ logN
δ

+
16
3

logN
δ

)∥∥∥p(w) −p

∥∥∥∞ .
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For any u 6= w, the u-th term inside vector norm is[(
Q(w,G) −Q(w)

)(
p(w) −p

)]
u

= (1 − α)

N∑
v=1

(
P
(w,G)
vu − P

(w)
vu

)(
p
(w)
v −pv

)
= (1 − α)

(
P
(w,G)
vv − P

(w)
uu

)(
p
(w)
u −pu

)
+(1 − α)

(
P
(w,G)
vw − P

(w)
uw

)(
p
(w)
w −pw

)
= −(1 − α)

(
P
(w,G)
vw − P

(w)
uw

)(
p
(w)
u −pu

)
+(1 − α)

(
P
(w,G)
vw − P

(w)
uw

)(
p
(w)
w −pw

)
.

Recognizing that

P
(w)
uw − P

(w,G)
uw = Auwd

−1
u 1(u,w)/∈E,

we have from (A.4) that∣∣∣∣[(Q(w,G) −Q(w)
)T (

p(w) −p
)]
u

∣∣∣∣ 6 2Auwd−1
u 1(u,w)/∈E(1−α)

∥∥∥p(w) −p

∥∥∥∞ .

Hence, we have with probability at least 1 −O
(
N−8),

Iw212 6 (1 − α)

4ρ√ρ
√

logN
δ

+
16
3

logN
δ

+ 2

√√√√ ∑
u:u 6=w

1(u,w)/∈E

D2
uu

∥∥∥p(w) −p

∥∥∥∞
(i)
6 (1 − α)

(
4ρ√ρ

√
logN
δ

+
16
3

logN
δ

+ 2ρ
√
ρ

δ

)∥∥∥p(w) −p

∥∥∥∞ ,

where (i) follows from the high probability event that dmax 6 3ρδ/2.
Combining the above two bounds, we have with probability at least 1 −
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O
(
N−8) that

Iw21 6

√
α+

2ρ
δ

√
κ

γ
(Iw211 + I

w
212)

(i)
6 8cρ2(1 − α)

√
ρ logN
δ
‖p‖∞

+c(1 − α)

(
8ρ2
√
ρ logN
δ

+ 2ρ
√
ρ

δ
+ 4
√
ρ logN
δ

+
16
3

logN
δ

)
‖p(w) −p‖∞

(ii)
6 8cρ2(1 − α)

√
ρ logN
δ
‖p‖∞ +

c

2‖p
(w) −p‖∞

(iii)
6 16cρ2(1 − α)

√
ρ logN
δ
‖p‖∞ + c‖p−p‖∞.

where c =
√
α+ 2ρ

δ

√
κ
γ , and (i) follows from the triangle inequality∥∥p(w)

∥∥∞ 6
∥∥p(w) −p

∥∥∞ + ‖p‖∞, and (ii) holds as long as δ > c0(1 −

α)2 logN for some c0 > 0 sufficiently large, and (iii) comes from the
triangle inequality

∥∥p(w) −p
∥∥∞ 6

∥∥p(w) − p
∥∥

2 + ‖p−p‖∞.

(d) Now it is left to estimate the last item Iw22. Note that

Iw22 =

N∑
v=1

1(v,w)∈EQvw

(
p
(w)
v −pv

)
=

N∑
v=1

[
α1{w=1} + (1 − α)

1
dv
1(v,w)∈E

](
p
(w)
v −pv

)
= α

N∑
v=1

1{w=1}

(
p
(w)
v −pv

)
︸ ︷︷ ︸

:=Iw221

+(1 − α)

N∑
v=1

1(v,w)∈E

dv

(
p
(w)
v −pv

)
︸ ︷︷ ︸

:=Iw222

+(1 − α)

N∑
v=1

(
1
dv

−
1
dv

)
1(v,w)∈E

(
p
(w)
v −pv

)
︸ ︷︷ ︸

:=Iw223

.

Since both p(w) and p are distribution vector, Iw221 = 0. Then, due to
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Hoeffding’s inequality (Lemma A.6),

|Iw222| 6 4ρ(1 − α)

√
ρ logN
δ

∥∥∥p(w) −p

∥∥∥∞ ,

|Iw223| 6 2ρ(1 − α)

√
ρ logN
δ

∥∥∥p(w) −p

∥∥∥∞ ,

with probability at least 1 −O
(
N−8). Thus, we reach the high probability

event

|Iw22| 6 6ρ(1 − α)

√
ρ logN
δ

∥∥∥p(w) −p

∥∥∥∞ .

In sums, we reach with probability at least 1 −O
(
N−8),

|Iw2 | 6 16ρ2(1 − α)

√
κρ

γ

√
α+

2ρ
δ

√
logN
δ
‖p‖∞

+

(√
κ

γ

√
α+

2ρ
δ

+ 6ρ(1 − α)

√
ρ logN
δ

)
‖p−p‖∞.(A.8)

(e) Collecting the preceding bounds (A.5) and (A.8) together, we conclude
that with high probability

‖p−p‖∞ = max
w

|pw −pw|

6 c2(1 − α)

√
logN
δ
‖p‖∞ + c3‖p−p‖∞,

as long as δ/[(1 − α) logN] is sufficiently large, which controls the entry-
wise error of p,

‖p−p‖∞
‖p‖∞ 6 c1(1 − α)

√
logN
δ

, (A.9)

for some sufficiently large constant c1, c2, c3 > 0.

Remark. c2 and c3 are controlled by constants ρ,κ,γ, which are thereby
driven from the model parameters B, Θ, K, and Z.
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(f) Finally, we accomplish the proof by observing that

‖p∗ −p∗‖∞
‖p∗‖∞ 6

2 max
(
d−1

min,d−1
min
)

d−1
min

‖p−p‖∞
‖p‖∞

6
4‖p−p‖∞
‖p‖∞ .

Above observation together with the inequality (A.9) allow us to control the
entrywise error of p∗ as claimed, with probability at least 1 −O

(
N−5),

‖p∗ −p∗‖∞
‖p∗‖∞ 6 c2(1 − α)

√
logN
δ

,

for some sufficiently large constant c2 > 0.

Proof of Corollary 2.7

Proof. The algorithm ranks all vertices according to pε∗, and the population
local cluster can be explicitly written as

C = {v ∈ V : p∗v = p∗1 }.

It suffices to show that

pεv
∗ > pεu

∗, for ∀v ∈ C,u ∈ V\C,

where pε∗v = pεv/dv. To this end, we apply triangle inequality and get

pεv
∗ − pεu

∗

‖p∗‖∞ >
p∗v −p∗u
‖p∗‖∞ −

|p∗v −p∗v |

‖p∗‖∞ −
|p∗u −p∗u|

‖p∗‖∞ −
|pεu
∗ − p∗u|

‖p∗‖∞ −
|pεv
∗ − p∗v|

‖p∗‖∞
> ∆−

2‖p∗ −p∗‖∞
‖p∗‖∞ −

2‖pε∗ − p∗‖∞
‖p∗‖∞ .

Since∆α 6 1, assumption (2.8) contains condition (2.7) in Theorem 2.6, which
together with Proposition 2.2 implies that

‖p∗ −p∗‖∞
‖p∗‖∞ <

1
4∆, ‖pε∗ − p∗‖∞

‖p∗‖∞ <
1
4∆,
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if ∆2δ/ logN is large enough. These collectively imply p∗v > p∗u as desired.

Concentration inequalities

The following is a standard concentration inequality used throughout the
paper.

Lemma A.6 (Hoeffding’s inequality). Let {Xi}16i6n be a sequence of independent
random variables where Xi ∈ [ai,bi] for each 1 6 i 6 n, and Sn =

∑n
i=1 Xi. Then,

P(|Sn − ESn| > t) 6 2 exp
{
−

t2∑n
i=1(bi − ai)

2

}
.

The next lemma is a special case of Chernoff’s bound.

Lemma A.7 (Chernoff’s bounds). Let {Xi}16i6n be a sequence of independent
random variables, whose sum is Sn, each having probability pi of being equal to ai,
otherwise 0. Define µ =

∑
i piai. Then, for any ε > 0,

P (Xi > (1 + ε)µ) 6 (1 + ε)−εµ,

P (Xi 6 (1 − ε)µ) 6 (1 − ε)εµ.

For the use of this paper, we only invoke a simpler version of Bernstein
inequality.

Lemma A.8 (Bernstein’s inequality). Let {Xi}16i6n be a sequence of independent
random variables with |Xi| 6 B for each 1 6 i 6 n, and Sn =

∑n
i=1 Xi and

Tn =
∑n
i=1 X

2
i. Then, with probability at least 1 − 2n−a,

|Sn − E[Sn]| 6
√

2a lognE[Tn] +
2a
3 B logn

for any a > 2.

The proofs of Lemma A.6, A.7, and A.8 can be found in Boucheron et al.
(2013b), hence are omitted.
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A.2 Additional information on model parameters

Block connectivity matrix B

In the paper, we assume that the block connectivity matrix B corresponds
to a strongly connected graph at block level and is positive definite. These
assumptions asserts the efficacy of PPR clustering and is primarily a technical
assumption sufficient for our theoretical results. In fact, we require B to repre-
sent to a strongly connected graph because this enables the block-wise PPR
vector to have the largest value corresponding to the block of seed(s) (Lemma
2.5 in the paper). On the other hand, we impose the positive definiteness on B
because this allows us to intuitively define the notion of local cluster, yet our
statistical theory (i.e., the entrywise control of sample PPR vector) does not
explicitly rely on such positive-definiteness per se. It is not clear yet whether
these constraints are necessary in order for PPR clustering to function; possible
generalizations of them are of research interest.

We list a few concrete examples showing that (i) if we break the strongly-
connectivity assumption, the PPR clustering can fail, despite a reasonable
teleportation constant, α = 0.15, but (ii) PPR clustering often works as hoped
even when B is not positive-definite. Throughout, we assume that the first
block is targeted and consider directed graphs with three underlying blocks
(K = 3). The first two instances of B demonstrates the necessity of the strongly-
connectivity constraint, which ensures the block-wise aPPR vector to possess
the largest first element. The third and forth instances, on the other hand,
indicate that B need not to be positive definite.

Violating the strongly-connective assumption

Hierarchy case. Let the block connectivity matrix

B =

p p p

0 p p

0 0 p


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for some constant p > 0. Bij is the number (or the probability) of edges
from the i-th block to the j-th block in population. Then, the directed graph
represented by B is not strongly connected, as block 3 has no path to the first
block. In fact, this graph (specified by upper triangular B) has a hierarchical
structure, where the third block is in the center (or the highest hierarchy) of
the graph, and the member of first block are essentially satellite from outside.
Particularly, edges only come from outsiders to insiders.

We now perform the PPR clustering on the first cluster. The block-wise
transition matrix is

P =

1/3 1/3 1/3
0 1/2 1/2
0 0 1

 .

Then, both B and P are positive definite, with eigenvalues of (p,p,p) and
(1, 1/2, 1/3) respectively. To ease the calculation, we set p = 3. Then the
block-wise PPR vector is approximately

p = (0.209, 0.103, 0.688),

and the block-wise aPPR vector is approximately (after adjusting by column
sums of B)

p∗ = (0.0698, 0.0172, 0.0764).

As shown, neither block-wise PPR vector nor aPPR vector properly recognize
the local cluster 1.

Adding a small amount of circulation. If we add a small quantity to the
left bottom element of above B matrix, then the block connectivity matrix
corresponds to a connected graph. To illustrate, we assign a small value to it,
B31 = 0.1, then the new block connectivity matrix becomes

B ′ =

 p p p

0 p p

0.1 0 p

 .
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To explore the PPR vector, we set p = 3 once again. In this case, B ′ has one
real eigenvalue (≈ 4.069) and two imaginary eigenvalues. The block-wise PPR
vector is approximately

p = (0.235, 0.115, 0.650),

and the block-wise aPPR vector is approximately (after adjusting by column
sums of B ′)

p∗ = (0.0755, 0.0192, 0.0723).

In this case, the PPR clustering works like a charm.

Violating the positive-definite assumption

Consider again the K = 3 design with equally distributed block size. We
present two examples breaking the positive-definite assumption on B, where
the PPR cluster still operates properly.

Indefinite case. Given some constants r > p > 0, define

B =

p r r

r p r

r r p

 .

In this case, the random graphs generated from such configuration of B
have a unique characteristic: two vertices with different block memberships
are more likely to connect than those pairs belonging to the same block. Note
that the three eigenvalues of B are p + 2r, p − r, and p − r. Hence, B is an
indefinite matrix (so does the block-wise transition matrix P).

Interestingly, the PPR clustering continues working under this circum-
stance. For simplicity, setting p = 3 and r = 9, and we articulate the block-wise
PPR vector and aPPR vector. In fact, the block-wise PPR vector is approximately

p = (0.386, 0.306, 0.306).
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Since B has homogeneous column sums, it follows that the first element in the
block-wise aPPR vector is also the largest, suggesting the effectiveness of PPR
clustering. The same conclusion hold when we set p = 3 and r = 99 (or 999).

Singular case. Suppose p > 0 and let

B =

0 p 0
p 0 p

0 p 0

 .

In this case, nodes in block 1 only connect with those nodes in block 2, and
the nodes in block 3 only have edges with block 2’s members. Note that B is
singular because three of its eigenvalues are 1, -1, and 0. So does the block-wise
transition matrix. However, the PPR clustering remain effective. In fact, the
block-wise PPR vector and aPPR vector are

p = (0.345, 0.459, 0.195) and p∗ = 1
p
(0.345, 0.230, 0.195).

In both cases (when B is not positive-definite), the block-wise aPPR vec-
tor correctly assigns the largest value to the first element and thus is still
effective for targeted sampling. These examples suggest a potentially greater
applicability of the PPR clustering under the block model graph.

Comments

Putting together above demonstrations, we briefly comment on B and the PPR
clustering. (i) The strongly-connectivity assumption is essential for the PPR
clustering to be consistent. (ii) The efficacy of PPR clustering is conditioning
on the fact that teleportation constant is sufficiently large. If we assign an
extremely small to it, e.g. α = 0.001, the PPR clustering collapses. (iii) Beyond
community-like graphs (where B is positive-definite), the PPR clustering has
potential for working on a more general block model graphs.



154

Spectral analysis on graph transition P

In this section, we present a spectral analysis of graph transition matrix, which
demonstrates that (1) under the population DC-SBM, a graph transition matrix
P has exactly K positive eigenvalues, and N− K zero eigenvalues, and (2) in
a random graph generated from the DC-SBM, the graph transition matrix P is
close to its population, with respect to spectral norm.

Lemma A.9 (Eigen-decomposition for P and P). Under the population DC-
SBM with K blocks and parameters {B,Z,Θ}, let P ∈ RN×N be the population
graph transition matrix and P ∈ RK×K be the block-wise transition matrix. Then,
P and P have the same K positive eigenvalues. The remaining N − K eigenvalues
of P are all zeros. Denote the K positive eigenvalues of both matrices as λ1 > λ2 >

· · · ...λK > 0, and let X ∈ RN×K and Y ∈ RK×K contain the left eigenvector of
P and P respectively, corresponding to λi in their i-th column. Then, there exists a
orthogonal matrix U ∈ RK×K, such that

(a) XT = D−1/2Θ1/2ZU; and

(b) YT = D−1/2U.

Proof. We follow the proof of Lemma 3.3 in Qin and Rohe (2013). Define
L = D−1/2BD−1/2, then P = D−1/2LD1/2. By model assumption, P � 0.

Define the graph Laplacian L = D−1/2AD−1/2, then by Lemma A.1b,

Luv =
Auv√
dudv

=
θuθvBz(u)z(v)√

dudv
=

Bz(u)z(v)
√
θuθv√

dz(u)dz(v)
= [L]z(u)z(v)

√
θuθv,

or equivalently,
L = Θ1/2ZLZTΘ1/2.

Then

XTΛX ′ = D−1/2Θ1/2ZUΛUTZTΘ1/2D1/2 = D−1/2LD1/2 = D−1A = P,

and
YTΛY ′ = D−1/2UΛUTD1/2 = D−1/2LD1/2 = P,
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where X ′ = UTZTΘ1/2D1/2 and Y ′ = UTD1/2 are right eigenvectors if P and
P respectively. Recognizing that XTX ′ =YTY ′ = IK completes the proof.

Lemma A.10. Let L be a symmetric matrix, let D be a diagonal matrix, and let
P = D−1/2LD1/2. If x is an eigenvector of L corresponding to eigenvalue λ, then

(a) D−1/2x is a right eigenvector of P with eigenvalue λ,

(b) ‖PTP‖ = ‖L‖2.

Proof. Let y = D−1/2x, then

Py = D−1/2LD1/2y = D−1/2Lx = λD−1/2x = λy.

Part a of the lemma follows. To see b, observe that y is also an eigenvector of
PTP with eigenvalue λ2.

Lemma A.10 implies that P has the same spectral norm of graph Laplacian
L. Since L concentrates to L (see for example Qin and Rohe (2013) for a
proof), we have under a random graph generated from the DC-SBM, the
graph transition matrix P concentrates to its population P with respect to
spectral norm.

Teleportation constant α

In the paper, we state that a sufficiently large teleportation constant α enables
the entrywise control of sample PPR vector, thus facilitating the PPR clustering
in a random graph. Here, from a practical perspective, we further illustrate
the sensitivity of PPR clustering to α, with the Twitter friendship network. To
this end, we investigate the targeted sampling returned by four configurations
of the teleportation constant, α ∈ {0.1, 0.15, 0.25, 1/3}, where NBC Politics
(@NBCPolitics) is the seed. The tolerance parameter is fixed, ε = 10−7, in four
targeted sampling.

Table A.1 lists the number of Twitter users we examined and the total
number of users we “reached” (as of August 2019) in four attempts. Here, we
examine a user by retrieving its friend list (after which it gets a positive pu
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Table A.1: Number of nodes examined/reached by Algorithm 2.3 with seed
node @NBCPolitics and different teleportation constants, and a fixed tolerance
parameter ε = 10−7, as in August 2019.

α Examined Reached
0.1 7,445 342,454
0.15 5,919 272,985
0.25 4,860 228,561
1/3 3,984 193,848

value in Algorithm 2.3), and reach a user once it appears in a user’s friend list
(at which point, it possesses a positive rv value in Algorithm 2.3). Given the
same tolerance parameter, varying the teleportation constant largely affects
the number of nodes examined/reached. This demonstrates the role of tele-
portation constant in leveraging between the seed preference and the standard
random walk.

Despite the fact that different α’s result in substantial difference in network
coverage, when the algorithm stops, the estimated local clusters appear to
share a vast majority in common. To demonstrate this immediately, we inspect
the local clusters of size n = 300 returned by Algorithm 2.4 with four α’s and
quantify to what degree do they overlap each other. Table A.2 shows the per-
centage of common members between each pair of four returned local clusters.
As shown, most pairs have about 90% overlapping members, indicating that
PPR clustering is fairly robust against the teleportation constant.

The stability of PPR clustering continues to show when we vary the cluster
size, n = 100, 150, ..., 700. Figure A.1 shows the proportion of common mem-
bers across all four local clusters, returned by PPR, aPPR, and rPPR (with the
regularizer τ = 10). Overall, the PPR clustering produces a fairly consistent
local cluster, with around 80% of members overlapping across four different
strengths of teleportation (see Supplementary Materials).

We conclude that in practice, PPR clustering (i) is mainly influential to the
number of nodes examined in the targeted sampling and (ii) has fairly robust
performance with respect to the choice of teleportation constant.
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Table A.2: Percentage of pairwise overlapping among three local clus-
ters around @NBCPolitics with different teleportation constants, α ∈
{0.1, 0.15, 0.25, 1/3}, as in August 2019.

α 0.1 0.15 0.25 1/3
0.1 100% 92.7% 89.3% 87.7%
0.15 100% 93.3% 90%
0.25 100% 92%
1/3 100%
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Figure A.1: Sensitivity to the teleportation constant, α = {0.1, 0.15, 0.25, 1/3}.
Shown are the percentage (left) and number (right) of common members
across all four local clusters returned by three PPR clustering methods. The
targeted sample size increases from 100 to 700 with the increment of 50.

The graph size N

In the paper, we provide an entrywise error control for the PPR vector and the
aPPR vector (Theorem 2.6), assuming the edge density is sufficiently large (i.e.,
inequality (2.7) in the main paper). Simulation 3 in Section 4.4 demonstrates
the relationship between the expected degree (δ) and the error rate of PPR
clustering, as promised by the theorem. Here, we provide another simulation
to illustrate Theorem 2.6. Specifically, we further investigate the affect of graph
size (N) on the relative entrywise error (REE) of the PPR vector (‖p−p‖∞

‖p‖∞ ),
given some edge density (δ).

We generate 30 replicates of networks of sizeN = ex, where x ∈ {6.5, 7, 7.5, 8, 8.5, 9},
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Figure A.2: Entrywise error rate versus the graph sizes. Shown are relative
entrywise error (REE) corresponding to different underlying graph sizes,
averaged over 30 replicates. For each dot, an error bar indicates the standard
error. The RER for aPPR vector is scaled down by a factor of 240 to improve
visualization. The ticks in x-axis are transformed through logarithm with the
natural base.

from the four-parameter stochastic block model, SBM(K = 3,N,b1 = 9,b2 = 3).
The average expect degree is set to δ = 125. Both PPR vectors and aPPR vectors
are calculated for every network, with teleportation constant α = 0.15 and 10
seeds randomly selected from the first block. Figure A.2 depict the REE with
respect to different graph sizes (scaled by a logarithm transformation with the
natural base). As shown, with δ fixed (not growing at the rate of logN), the
REE increases as the graph expands, so does the variance of REE for both PPR
and aPPR vectors, matching the results in Theorem 2.6.

A.3 Connection to linear discriminant analysis

In this section, we give another representation of PPR vectors in the landing
probability space, which builds upon Kloumann et al. (2017). This assorts
PPR to a greater functional regime. Then, we extend the previous result that
links the PPR vectors with linear discriminant functions under the DC-SBM. In
particular, when every block has the same degree (volume), where D becomes
a scalar matrix, the PPR vector is asymptotically equivalent to the optimal
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linear discriminant function.
First, we briefly introduce linear discriminant analysis in landing proba-

bility space, which the PPR vector also lives in. Consider a random walk on
the graph starting from a seed node. Define the landing probability rvs to be the
probability that the random walk ends up at v ∈ V after exactly s steps. The
landing probability space is the space of landing probability of any nodes.

A linear discriminant (LD) analysis keeps the first S landing probability
on each node, rv = (rv0 , rv1 , ..., rvS) ∈ RS, and divides vertices into two sets by
thresholding on the linear discriminant score vector l ∈ RN, whose v-th entry
is defined to be inner product

lv = 〈ω, rv〉

with some weights ω ∈ RS. For example, let ω = rv1 − rv2 , where v1, v2 are
empirical centroids of two node sets. Then lv increases as v slides from v1 to
v2, and thresholding (‖v1‖2 − ‖v2‖2)/2 allocates vertices to nearest centroid.

Remark. The landing probability of the s-th step, rs =
(
r1
s, r2
s, ..., rNs

)
∈ RN,

is defined as (Ps)T π. It follows from proposition 2.1 that PPR vector p =∑∞
s=0φsrs with φs = α(1 − α)s. Keeping the first S terms yields an LD score

vector with the weightsωPPR = (φ0,φ1, ...,φS−1).
We then perform population (expectation) analysis for PPR in the landing

probability space. Define the population block landing probability Wk
s to be the

probability that a random walk from v0 ends up in block k after exactly s
steps, where k = 1, 2, ...,K and s = 0, 1, ...,S − 1. Given that v0 is in block 1,
W·0 = (1, 0, ..., 0)T. Using the first S steps block landing probabilities, the next
lemma gives an explicit form of LD vectors.

Lemma A.11 (Explicit form of LD vectors). Under the population DC-SBM with
K blocks and parameters {B,Z,Θ}, assume all blocks have the same degrees. Let l(k)
be the linear discriminant score vector between block 1 and block k. Then,

(a) W·s = PTW·s−1, s = 1, 2, ...,S− 1; and

(b) l(k) = ΘZl(k), k = 2, ...,K, where l(k) = WWT(e1 − ek).
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Here, ek is the elementary unit vector on the direction of k-th block.

Proof. We prove a using following quantities. Let Eks be the number of paths
from v0 to block kwith exact length s, and let Eks be the expected number of
paths from v0 to block kwith exact length s. Recall from 2.3 that Bij represents
the expected number of edges between block i and j if i 6= j, or twice of that if
i = j. Then,

Eks =

K∑
j=1

BkjEjs−1.

To see W·s = PTW·s−1, observe that

Wk
s =

Eks∑K
i=1E

i
s

=

∑K
j=1 BkjEjs−1∑K

i=1
∑K
j=1 BijEjs−1

=

∑K
j=1 BkjEjs−1∑K
j=1 djEjs−1

=

K∑
j=1

PkjWk
s−1.

The last equality comes from the assumption that all blocks have the same
degrees, which means di is constant.

Now, we prove part b of the lemma. Let R ∈ RN×S collect all landing
probabilities rvs of the first S steps, where v = 1, 2, ...,N and s = 0, 1, ...,S− 1.
Without loss of generality, assume the seed node corresponds to the first row.
Define R = E(R) ∈ [0, 1]N×S to be the population version of R. Then the
population landing probability is explicitly

Rvs =
dv

dz(v)
Wz(v)
s = θvWz(v)

s ,

or compactly,
R = ΘZW.

In linear discriminant, the weights vector ω is the geometric difference
between centroid of block 1 and k, which can be written as ∑
v:z(v)=1

Rv1 −
∑

v:z(v)=k

Rv1 ,
∑

v:z(v)=1
Rv2 −

∑
v:z(v)=k

Rv2 , ...,
∑

v:z(v)=1
RvS −

∑
v:z(v)=k

RvS

 ,
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or compactly
ω = RTZ(e1 − ek).

By Lemma A.1, the linear discriminant score vector reads

〈R ·ω〉 = RRTZ(e1 − ek)

= ΘZWWT(e1 − ek),

for k = 2, ...,K. Setting l(k) = WWT(e1 − ek) completes the proof.

Recall from Theorem 2.4 that p = ΘZp. The LD score vector l has a
similarly simple form that separates the block-related information (W) and
the node specific information (Θ and Z). Lemma A.11 provides a population
(expectation) representation of PPR in the landing probability space. To
facilitate its application in random graphs, the next lemma provides a control
of the landing probabilities on a random block model graph.

Lemma A.12 (Concentration of landing probabilities). Let G = (V ,E) be
a graph of N vertices generated from the DC-SBM with K blocks and parameters
{B,Z,Θ}. Let R·s ∈ [0, 1]N be the landing probabilities of the k-th step, and R·s =

E(R) be its expectation. Then, for any ε > 0 and any vertex u = 1, 2, ...,N,

P (Rus > (1 + ε)Rus ) 6 (1 + ε)−εNr,

P (Rus > (1 − ε)Rus ) 6 (1 − ε)εNr,

where r = minv∈V θuθvPz(u)z(v)W
z(v)
s−1 .

Proof. Note that Rus =
∑
v∈V Xuv, where

Xuv =
Wz(v)
s−1

dz(v)
1{Auv=1}

are independent random variables having probability θuθvBz(u)z(v) of being
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equal to Wz(v)
s−1 /Dz(v)z(v). Then,

E [Rus ] =
∑
v∈V

Wz(v)
s−1

dz(v)
θuθvBz(u)z(v) = θu

K∑
k=1

Pz(u)kWk
s−1 = Rus .

We can apply Chernoff’s bounds (Lemma A.7) on Rus and obtain bounds for
any fixed u,

P (Rus > (1 + ε)Rus ) 6 (1 + ε)−εR
u
s ,

and
P (Rus 6 (1 − ε)Rus ) 6 (1 − ε)εR

u
s .

Recognizing that Rus > Nr completes the proof.

Lemma A.12 provides an entrywise concentration bound for landing proba-
bilities. The next theorem equates PPR and LD vectors when blocks are equally
distributed. Together, they asserts the asymptotically equivalence between
PPR and LD vectors, in symmetric block model graphs.

Theorem A.13 (Equivalence between PPR and LD vectors). Under the popu-
lation DC-SBM with K blocks and parameters {B,Z,Θ}, assume Bii = b1 for all i,
and Bij = b2 for i 6= j (b1 > b2 > 0). Let λ2 the second largest eigenvalue of P.
Let p be the personalized PageRank vector, and let l(k) be the linear discriminant
score vector between block 1 and block k, k = 2, ...,K. If the teleportation constant
α = 1 − λ2, then

p ∝ l(k).

Proof. From Section A.2 and Lemma A.11a, the block landing probability is
precisely

Wk
s =

K∑
j=1

λsjUkjU1j,

where λk is the k-th eigenvalues of P and U is the orthogonal matrix used in
Lemma A.2.

Note that B has eigenvalues λ1 = 1 and λ2 = b1−b2
b1+b2

, with complexity
indices 1 and k− 1 respectively. In addition, we know the orthogonal matrix



163

above precisely as well,

U =



1√
N

1√
2

1√
2 · · · 1√

2
1√
N

− 1√
2 0 · · · 0

1√
N

0 − 1√
2 · · · 0

...
...

...
...

1√
N

0 0 · · · − 1√
2


.

Then it follows from Lemma A.11b that the LD weight vector is

ωLD = RTZ(e1 − ek)

= WT(e1 − ek)

= W1
· − Wk

·

=

K∑
j=1

λsj (U1j −Ukj)U1j

=
K

2



1
λ2

λ2
2
...

λS−1
2


.

On the other hand, the weight vector of PPR on landing probability space
isωPPR = (φ0,φ1, ...), where φs = α(1 −α)s. Hence, setting the teleportation
constant α = 1 − λ2 asymptotically equates approximate PPR and LD vectors,
up to a scalar factor.

Remark. First, a positive factor that differentiates PPR and LD vectors does
not change the relative ranking of the nodes, because the ranking via p or cp
is equivalent. Hence, Theorem A.13 shows that the PPR vector is equivalent
to an optimal LD score vector under described population DC-SBM. Second,
Theorem A.13 is an extension of Kloumann et al. (2017). Combining Theorem
A.13 and Lemma A.12 gives the asymptotic equivalence between PPR and LD
vectors under the particular DC-SBM stated.
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A.4 Lists of top 200 handles

In this section, we supply three lists of handles resulting from sampling using
PPR, aPPR, and rPPR vectors with @NBCPolitics as the seed, as of December
2018. We conceal handles with followers count fewer than 200 for privacy
considerations. The biographical descriptions are trimmed for unifying dis-
plays. In addition, we annotate handles with whether or not they are followed
(“Followed”) by the seed node.

A PPR’s sample of 200

Table A.3: Top (selected) handles returned by PPR.

Name Followed Followers Description

1 Melania Trump Yes 11242283 This account is run by the Office of First Lady Melania Trum...
2 The White House Yes 17625630 Welcome to @WhiteHouse! Follow for the latest from President...
3 Chuck Todd Yes 2032038 Moderator of @meetthepress and @nbcnews political director; ...
4 NBC News Yes 6280551 The leading source of global news and info for more than 75 ...
5 NBC Nightly News Yes 962290 Breaking news, in-depth reporting, context on news from arou...
6 Andrea Mitchell Yes 1737764 NBC News Chief Foreign Affairs Correspondent/anchor, Andrea ...
7 Savannah Guthrie Yes 881669 Mom to Vale & Charley, TODAY Co-Anchor, Georgetown Law...
8 Joe Scarborough Yes 2521215 With Malice Toward None
9 MSNBC Yes 2261911 The place for in-depth analysis, political commentary and in...

10 Rachel Maddow MSNBC Yes 9498076 I see political people... (Retweets do not imply endorsement...
11 Breaking News Yes 9223158
12 NBC News First Read Yes 53847 The first place for news and analysis from the @NBCNews Poli...
13 TODAY Yes 4276453 America’s favorite morning show | Snapchat: todayshow
14 Meet the Press Yes 566713 Meet the Press is the longest-running television show in his...
15 The Wall Street Journal Yes 16188842 Breaking news and features from the WSJ.
16 Pete Williams Yes 70062 NBC News Justice Correspondent. Covers US Supreme Court, ...
17 Mark Murray Yes 97571 Mark Murray is the senior political editor for NBC News, as ...
18 POLITICO Yes 3695835 Nobody knows politics like POLITICO. Got a news tip for us? ...
19 Katy Tur Yes 587474 MSNBC anchor @2pm, NBC News correspondent, author of NYT ...
20 Bill Clinton Yes 10697521 Founder, Clinton Foundation and 42nd President of the United ...
21 Kasie Hunt Yes 381704 @NBCNews Capitol Hill Correspondent. Host, @KasieDC, Sundays...
22 TIME Yes 15584815 Breaking news and current events from around the globe. Host...
23 Kelly O’Donnell Yes 195765 White House Correspondent @NBCNews Veteran of Cap Hill ...
24 John McCain Yes 3181773 Memorial account for U.S. Senator John McCain, 1936-2018. To...
25 Peter Alexander Yes 283522 @NBCNews White House Correspondent / Weekend @TODAYshow ...
26 Hallie Jackson Yes 359099 Chief White House Correspondent / @NBCNews / @MSNBC ...
27 Kristen Welker Yes 182244 @NBCNews White House Correspondent. Links and retweets ...
28 Carrie Dann Yes 37119 .@NBCNews / @NBCPolitics. RTs not endorsements.
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…continued

Name Followed Followers Description

29 Willie Geist Yes 807536 Host @NBC #SundayTODAY, Co-Host @Morning_Joe, “Sunday ...
30 Morning Joe Yes 563650 Live tweet during the show! Links to must-read op-eds and ...
31 Frank Thorp V Yes 58152 Producer & Off-Air Reporter covering Congress at @NBCNews ...
32 Mark Knoller Yes 318923 CBS News White House Correspondent
33 Tom Brokaw Yes 308276 Special correspondent, @NBCNews
34 Mika Brzezinski Yes 868124 "Bipartisanship helps to avoid extremes and imbalances. It ...
35 Chris Jansing Yes 72375 @msnbc Senior National Correspondent, intrepid traveler and ...
36 John Harwood Yes 251246 a Dad who covers Washington, the economy and national politi...
37 Nicolle Wallace Yes 413153 Author of 18 Acres series, mom, dog walker, wife, gardener. ...
38 NBC News Signal Yes 83715 A new streaming news channel from @NBCNews. Catch us Thursda...
39 Sam Stein Yes 392003 Daily Beast/MSNBC newsletter: https://t.co/DVURxntWdL Emai...
40 Chris Matthews Yes 882434 Host of @hardball M-F at 7PM ET on @MSNBC and author of "Bob...
41 Carol Lee Yes 51240 Reporter for NBC News, former WSJ & POLITICO, Hudson’s mom, ...
42 Ali Vitali Yes 78839 @NBCnews Political Reporter. Covered Trump campaign, WH + ...
43 Ken Dilanian Yes 124635 Intelligence and national security reporter for the NBC News...
44 Jim Miklaszewski Yes 14196 Jim Miklaszewski is Chief Pentagon Correspondent for NBC New...
45 John Heilemann Yes 247616 @SHO_TheCircus host/ep; NBCNews/@MSNBC natl affairs analyst;...
46 Stephanie Ruhle Yes 352895 Mom, MSNBC LIVE Anchor 9AM M-F, VELSHI & RUHLE 1 PM ...
47 Nick Confessore Yes 172359 Reporter for @NYTimes, writer-at-large for @NYTmag, MSNBC ...
48 Talking Points Memo Yes 275692 Breaking news and analysis from the TPM team. “I’ll leave ...
49 Tom Costello Yes 17268 NBC News Correspondent covering Aviation, Transportation, Ec...
50 Post Politics Yes 384611 The latest political news and analysis from The Washington P...
51 Alex Moe Yes 28245 @NBCNews Capitol Hill Producer + Off-Air Reporter; ’12 & ’16...
52 Benjy Sarlin Yes 100896 Political reporter for @NBCNews. I cover elections and their...
53 Preet Bharara Yes 945030 Patriotic American & proud immigrant. Movie buff. @Springste...
54 Matthew Miller Yes 229867 Partner at Vianovo. MSNBC Justice & Security Analyst. Recove...
55 Leigh Ann Caldwell Yes 20714 NBC Capitol Hill reporter. Formerly at CNN and public radio....
56 Ken Strickland Yes 2693 NBC News Washington Bureau Chief
57 Ron Fournier Yes 64356 President: Truscott Rossman. Best-seller https://t.co/09CdTN...
58 Mike Memoli Yes 39693 National Political Reporter @nbcnews; @latimes alum mike dot...
59 Miguel Almaguer Yes 14082 Prolific coffee drinker. Chronic under sleeper. Raging road ...
60 Courtney Kube Yes 9494 NBC News National Security & Military Reporter. Links and ...
61 NBC News World Yes 279165 A dynamic look at world events from @NBCNews.
62 Jonathan Martin Yes 241690 Nat’l Political Correspondent, NY Times. Husband of the ...
63 Steve Schmidt Yes 498812 "Patriotism means to stand by the country. It does not mean ...
64 Jenna Bush Hager Yes 207106 Mama to M and P, NBC News correspondent, Editor-at-Large ...
65 Sean Spicer Yes 406957 President of RigWil, Sr Advisor @AmericaFirstPAC check out ...
66 Roll Call Yes 356374 Breaking news, reporter tweets and analysis from the Source ...
67 POLITICO 45 Yes 88470 A daily diary of the 45th president of the United States.
68 Scott Foster Yes 3464 Senior Producer, Washington @NBCNEWS @TODAYshow
69 Domenico Montanaro Yes 83999 "Congress shall make no law respecting an est. of religion, ...
70 Tom Winter Yes 40777 NBC News Investigations reporter based in New York focusing ...
71 Kailani Koenig Yes 11416 Producer with @MSNBC & @NBCNews. Team @MeetThePress ...
72 Capital Journal Yes 131212 WSJ’s home for politics, policy and national security news. ...
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…continued

Name Followed Followers Description

73 NBC News Videos Yes 7838 The latest video from http://t.co/xPyvMOTEF6
74 Diane Sawyer Yes 876906 I like my news 24/7, my food spicy, my drinks caffeinated, ...
75 Jane C. Timm Yes 6478 @nbcnews political reporter and fact checker. More fun than ...
76 Elyse PG Yes 2697 White House producer @nbcnews |@USCAnnenberg alum | LA kid ...
77 Libby Leist Yes 7946 Executive Producer @todayshow
78 Mike Barnicle Yes 116588 Mike Barnicle is an award-winning print and broadcast journa...
79 Reuters Politics Yes 259106 U.S. political coverage, breaking news and special investiga...
80 Beth Fouhy Yes 13684 Senior editor, politics, NBC News and MSNBC
81 HuffPost Yes 11401771 Know what’s real.
82 Joey Scarborough Yes 6277 NBC News Social Media Editor. New York Daily News Alum. RTs ...
83 Marianna Sotomayor Yes 11965 Running around Capitol Hill for @NBCNews. Covers politics ...
84 Shaquille Brewster Yes 5362 @NBCNews Producer/Politics | @HowardU Alum| Journalist ...
85 Joyce Alene Yes 185116 U of Alabama Law Professor|@MSNBC Contributor|Obama US ...
86 Garrett Haake Yes 40714 Correspondent @msnbc • Taller than I look on TV • Long-suffe...
87 Andrew Rafferty Yes 16567 Senior political editor for @newsy Before that @NBCNews ...
88 Jacob Soboroff Yes 144153 @MSNBC correspondent. Instagram & Snapchat: jacobsoboroff
89 Perry Bacon Jr. Yes 26853 I write about government (mostly federal, often state, ...
90 Alex Witt Yes 28126 Weekend host on @MSNBC (9am, noon & 1pm). Tigger’s mom ...
91 Mark Halperin Yes 332564 New York, New York
92 Heidi Przybyla Yes 66489 NBC News, n’tl political reporter "Prezbella" Heidi.Przyb...
93 Morgan Radford Yes 20967 @NBCnews Correspondent: @TODAYShow/@NBCNightlyNews .
94 Savannah Sellers Yes 4637 News junkie. Host of NBC’s "Stay Tuned" on Snapchat. Storyte...
95 Marist Poll Yes 16030 Founded in 1978, MIPO is home to the Marist Poll and regular...
96 Jill Wine-Banks Yes 158753 @NBCNews & @MSNBC Contributor. Speaker. Watergate prosecutor...
97 NBC Field Notes Yes 1390 NBC News correspondents and http://t.co/1eSopOQt8s reporters...
98 Olivia Nuzzi Yes 190919 Washington Correspondent, New York Magazine
99 NBC News THINK Yes 12017 THINK is NBC News’ home for fresh opinion, sharp analysis ...

100 Making a Difference Yes 670 @NBCNightlyNews’ popular feature profiles ordinary people do...
101 adam nagourney Yes 25307 LA Bureau Chief for The New York Times. Story ideas welcome ...
102 Phil McCausland Yes 2519 @NBCNews Digital reporter focused on the rural-urban divide....
103 Katie Couric Yes 1746116 Journalist, podcaster, @SU2C founder, doc filmmaker of @FedU...
104 Monica Alba Yes 30034 @NBCNews White House team. Covered Hillary Clinton on the ...
105 Vicente Fox Quesada Yes 1244017 Presidente de México de 2000 a 2006 y ahora trabajando po...
106 Alex Johnson Yes 4371 News, data and analysis for @NBCNews; data geek; non-celebri...
108 Alex Seitz-Wald Yes 50168 Political reporter for @NBCNews covering Democrats | Tips, ...
109 Anthony Terrell Yes 6827 Emmy Award winning journalist. Political observer. Covered ...
110 Sam Petulla Yes 2588 Editor @cnnpolitics • Usually looking for datasets. You can ...
111 Debra Messing Yes 532941 Actor. Mama. Global Ambassador for HIV/AIDS for PSI. Activis...
112 Corky Siemaszko Yes 2538 Senior Writer at NBC News Digital (former NY Daily News rewr...
114 Zach Haberman Yes 3693 Lead Breaking News Editor, @NBCNews. Previously had other jobs ...
115 NBC Latino Yes 67920 Elevating the conversation around Latino news in the United ...
116 Vivian Salama Yes 16020 White House reporter for @WSJ. Formerly AP Baghdad bureau ...
117 Zeke Miller Yes 215054 White House Reporter @AP. Email: zekejmiller@gmail.com Links...
118 Vaughn Hillyard Yes 31464 On the Road, Meeting Good Folk | NBC News | Arizonan | IG: @...
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…continued

Name Followed Followers Description

119 Jonathan Allen Yes 44477 political reporter, @NBCNews Digital | co-author, NYT bestse...
121 HuffPost Politics Yes 1428870 The latest political news from HuffPost’s politics team.
122 Nick Akerman Yes 14949 Partner in the AmLaw 100 law firm of Dorsey & Whitney, Water...
123 CSPAN Yes 1915821 Capitol Hill. The White House. National Politics.
124 John McCormack Yes 30688 Senior writer at The Weekly Standard.
125 Jo Ling Kent Yes 32957 NBC News Correspondent @NBCNightlyNews, @TODAYshow ...
126 PolitiFact Yes 628659 Home of the Truth-O-Meter and independent fact-checking ...
127 Bob Corker Yes 10042 Serving Tennesseans in the U.S. Senate
128 Elise Jordan Yes 58884 Co-host of @WMM_podcast podcast. @MSNBC/@NBCNews political...
129 Greg Martin Yes 1161 Political Booking Producer at @nbcnews @todayshow
130 Education Nation Yes 276468 Hosted by @NBCNews. Creator of Parent Toolkit & moderator of...
131 Micah Grimes Yes 25948 Head of Social, @NBCNews & @MSNBC – Foreign and domestic ...
132 Jill Lawrence Yes 17282 Commentary editor and columnist @USATODAY. Author of The Art...
133 McKay Coppins Yes 131623 Staff writer at @TheAtlantic. Author of THE WILDERNESS. ’Sor...
134 Emmanuelle Saliba Yes 4004 Head of Social Media Strategy @Euronews | Launched #THECUBE ...
135 Hasani Gittens Yes 3002 Level 29 Mage. Senior News Ed. @NBCNews. Sheriff of Nattahna...
136 Rebecca Sinderbrand Yes 18691 Now: @NBCNews Senior Washington Editor, visiting lecturer @Y...
137 BuzzFeed Politics Yes 121646 News and updates from the politics team @BuzzFeedNews.
138 Adam Edelman Yes 2341 Political reporter @nbcnews. Wisconsin native, Bestchester r...
139 Ethan Klapper Yes 18292 Journalist (@YahooNews) and #avgeek.
140 President Trump No 24593638 45th President of the United States of America, @realDonaldT...
141 Vice President Mike ... No 6795022 Vice President Mike Pence. Husband, father, & honored to ...
142 Donald J. Trump No 56050499 45th President of the United States of America
143 Karen Pence No 403315 Educator, mom, wife of @VP Pence. Passionate about art thera...
144 Sarah Sanders No 3522219 @WhiteHouse Press Secretary. Proudly representing @POTUS ...
145 Kellyanne Conway No 2506546 Mom. Patriot. Catholic. Counselor.
146 DRUDGE REPORT No 1408129 The DRUDGE REPORT is a U.S. based news aggregation website ...
147 White House History No 104010 The White House Historical Association is a non-profit organ...
148 The New York Times No 42412491 Where the conversation begins. Follow for breaking news, ...
149 White House Archived No 13379715 This is an archive of an Obama Administration account mainta...
150 Dan Scavino Jr. No 324561 Assistant to President @realDonaldTrump, Director of Social ...
151 Drudge Buzz No 104111 Tracking the buzz made by Americas #1 newsmaker Matt Drudge....
152 David Gregory No 1749373 CNN, Georgetown U
153 Hillary Clinton No 23643522 2016 Democratic Nominee, SecState, Senator, hair icon. Mom, ...
154 CNN Breaking News No 54476034 Breaking news from CNN Digital. Now 54M strong. Check @cnn ...
155 The Cabinet No 123597 The @WhiteHouse Office of Cabinet Affairs. Tweets may be arc...
156 Lester Holt No 501427 Anchor @NBCNightlyNews and @datelinenbc, reporting on the to...
157 John Dickerson No 48122 Co-host CBS This Morning. This account @johndickerson is mos...
158 CNN No 40854429 It’s our job to #GoThere & tell the most difficult stories. ...
159 J Earnest (Archived) No 1182091 WH Press Secretary. This is an archive of an Obama Administr...
160 The Washington Post No 13117609 Breaking news, analysis, and opinion. Founded in 1877. Our ...
161 Adam Liptak No 61589 Supreme Court reporter for The New York Times
162 NSC No 35905 National Security Council | Tweets may be archived ...
163 MSNBC video No 40669 Favorite video highlights from @msnbc.
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Name Followed Followers Description

164 Gorsuch Facts No 39143 Judge Gorsuch will be fair to all regardless of their backgr...
165 Greg Stohr No 11651 Supreme Court reporter for Bloomberg News. Baseball dad ...
166 OMB Press No 11182 Office of Management and Budget | Tweets may be archived: ...
167 Richard Engel No 288066 @NBCNews Chief Foreign Correspondent
168 Norah O’Donnell No 195549 Wife, mother of 3, Co-Host @cbsthismorning, #1 fan of @chefg...
169 Robert Barnes No 37361 Robert Barnes covers the Supreme Court for The Washington Po...
170 Luke Russert No 253495 Sometimes nothing can be a real cool hand. STA’04/BC’08
171 Stephen Colbert No 18269222 the guy on CBS
172 Mark Sherman No 6336
173 U.S. Attorney EDVA No 5709 Led by U.S. Attorney G. Zachary Terwilliger. 130+ attorneys ...
174 The Associated Press No 13051963 News from The Associated Press, and a taste of the great jou...
175 Joe Palazzolo No 10938 WSJ reporter covering legal issues. joe.palazzolo@wsj.com. ...
176 Natalie Morales No 443991 @TODAYshow Anchor and @AccessOnline Anchor, Author, mom ...
177 Brent Kendall No 5451 WSJ legal affairs reporter in Washington. Native Tar Heel, ...
178 Joan Biskupic No 11021 CNN legal analyst & Supreme Court biographer; Chicago native...
179 Keith Olbermann No 1097676 Dogs. And sports. And whales (Tom Jumbo-Grumbo on BoJack ...
180 Brian Williams No 230947
181 Pope Francis No 17791867 Welcome to the official Twitter page of His Holiness Pope Fr...
182 Ezra Klein No 2500383 Founder and editor-at-large, https://t.co/5gESirESRH. Why ...
183 Anderson Cooper No 9967099 tweets by Anderson Cooper. Anchor @AC360 and correspondent...
184 BBC News (World) No 24153838 News, features and analysis from the World’s newsroom. Break...
185 Reince Priebus No 935431 President @MichaelBestLaw; Exclusive Speaker @WashSpeakers; ...
186 Joe Biden No 3111675 Represented Delaware in the Senate for 36 years, 47th Vice P...
187 Department of State No 5149607 Welcome to the official U.S. Department of State Twitter acc...
188 Jim Miklaszewski No 1956 Chief Pentagon Correspondent for NBC News
189 Tony Mauro No 20310 Supreme Court correspondent, https://t.co/571ZdQnzo2 and The...
190 David Axelrod No 1113850 Director, UChicago Institute of Politics. Senior Political ...
191 Nate Silver No 3176243 Editor-in-Chief, @FiveThirtyEight. Author, The Signal and ...
192 George Bush No 356042 A tribute site to the 41st President of the United States of...
193 CBS News No 6537991 Your source for original reporting and trusted news.
194 Jonathan Karl No 206986 ABC News Chief White House Correspondent. insta @jonkarl ...
195 BBC Breaking News No 38539186 Breaking news alerts and updates from the BBC. For news, ...
196 Mitt Romney No 1977201 Senator-elect from Utah.
197 ABC News No 13985606 All the news and information you need to see, curated by the...
198 Deborah Turness No 10389 President of NBC News International
199 The Hill No 3162118 The Hill is the premier source for policy and political news...
200 Ann Curry No 1536122 Journalism is an act of faith in the future.
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An aPPR’s sample of 200

Table A.4: Top (selected) handles returned by aPPR. The handles with fewer
than 200 followers are hidden for privacy considerations.

Name Followed Followers Description

1 Yes 198 Enroll America National Regional Director http://t.co/X6jJIE...
2 Jennifer Sizemore Yes 386
3 Alissa Swango Yes 441 Director of Digital Programming at @natgeo. All things food....
4 Making a Difference Yes 670 @NBCNightlyNews’ popular feature profiles ordinary people do...
5 No 1
6 No 3
7 Greg Martin Yes 1161 Political Booking Producer at @nbcnews @todayshow
8 No 1 I am Area Man. I pwn your news feed.
9 No 2

10 NBC Field Notes Yes 1390 NBC News correspondents and http://t.co/1eSopOQt8s reporters...
11 No 2
12 No 2
13 No 1
14 No 1
15 No 1
16 No 1
17 No 3 yet another activist twitter, fighting all those fun -isms ...
18 No 4
19 No 7 Dianne Kube is an Author with a passion, for family, holiday...
20 No 7
21 Adam Edelman Yes 2341 Political reporter @nbcnews. Wisconsin native, Bestchester ...
22 Phil McCausland Yes 2519 @NBCNews Digital reporter focused on the rural-urban divide....
23 Corky Siemaszko Yes 2538 Senior Writer at NBC News Digital (former NY Daily News rewr...
24 Sam Petulla Yes 2588 Editor @cnnpolitics • Usually looking for datasets. You can ...
25 Ken Strickland Yes 2693 NBC News Washington Bureau Chief
26 No 7
27 Elyse PG Yes 2697 White House producer @nbcnews |@USCAnnenberg alum | LA kid ...
28 No 2 Change your thoughts & you change your world. -Norman Vincen...
29 No 4
30 No 13
31 No 6
32 No 154 We distribute new, never-worn clothing and merchandise to ...
33 No 10
34 Hasani Gittens Yes 3002 Level 29 Mage. Senior News Ed. @NBCNews. Sheriff of Nattahna...
35 No 1
36 Scott Foster Yes 3464 Senior Producer, Washington @NBCNEWS @TODAYshow
37 No 2
38 No 13
39 No 5
40 Zach Haberman Yes 3693 Lead Breaking News Editor, @NBCNews. Previously had other jobs...
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Name Followed Followers Description

41 No 3 just like to stay in the know :) just like to stay in the ...
42 No 2
43 No 5
44 No 7
45 No 1
46 Emmanuelle Saliba Yes 4004 Head of Social Media Strategy @Euronews | Launched #THECUBE ...
47 No 2
48 Alex Johnson Yes 4371 News, data and analysis for @NBCNews; data geek; non-celebri...
49 No 8
50 Savannah Sellers Yes 4637 News junkie. Host of NBC’s "Stay Tuned" on Snapchat. Storyte...
51 No 21
52 No 6 Anti-money laundering professional with federal law enforcem...
53 No 15
54 Shaquille Brewster Yes 5362 @NBCNews Producer/Politics | @HowardU Alum| Journalist | Pol...
55 No 2 Just another DIY, punk kid from the black land dirt of NEPA’...
56 No 18 Cdr Bob Mehal, Public Affairs Office, Office of the Secretar...
57 No 5
58 No 4
59 No 8
60 No 10
61 No 2
62 Joey Scarborough Yes 6277 NBC News Social Media Editor. New York Daily News Alum. RTs ...
63 No 5
64 No 1
65 Voices United No 310 Voices United is a non profit educational organization for ...
66 Jane C. Timm Yes 6478 @nbcnews political reporter and fact checker. More fun than ...
67 Social Headlines No 344 Daily roundup of top social media and networking stories.
68 James Miklaszewski No 337 Writer, Photographer, Editor, Director, Producer, Newshound ...
69 No 12
70 Anthony Terrell Yes 6827 Emmy Award winning journalist. Political observer. Covered ...
71 No 10
72 No 8
73 No 8 I’m the real Charlie Sheen. If you are a Winner, stick aroun...
74 No 9 Quotes from a nice jewish mom who’s just tryna get some nice...
75 No 2
76 No 4
77 No 6 "Rawr!"
78 NBC News Videos Yes 7838 The latest video from http://t.co/xPyvMOTEF6
79 No 9
80 No 4
81 Libby Leist Yes 7946 Executive Producer @todayshow
82 No 8
83 No 2 I’m running for President of the United States of America.
84 No 35
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Name Followed Followers Description

85 No 8
86 No 2
87 No 2
88 No 16
89 No 4
90 No 5 Happy princess
91 No 1
92 No 4
93 Courtney Kube Yes 9494 NBC News National Security & Military Reporter. Links and ...
94 No 5
95 No 5
96 No 169
97 No 5
98 No 2
99 Vets Helping Heroes No 449 Raising funds to sponsor the training of assistance dogs for...

100 No 12
101 No 4
102 No 8
103 Bob Corker Yes 10042 Serving Tennesseans in the U.S. Senate
104 No 4
105 No 2
106 No 11 Spécialiste développement produit et marketing des produits ...
107 No 4
108 No 8 Not your average Grandma
109 No 29
110 No 2
111 No 6
112 Kailani Koenig Yes 11416 Producer with @MSNBC & @NBCNews. Team @MeetThePress alum. 20...
113 No 13
114 No 14
115 Gloria Turkin No 204 I am honest and straight to the point. Retired Civilian Fed...
116 No 7
117 No 28 An unconventional appreciation account for @DeadlineWH host,...
118 No 6
119 No 10 Live like Bones
120 No 2
121 Marianna Sotomayor Yes 11965 Running around Capitol Hill for @NBCNews. Covers politics ...
122 NBC News THINK Yes 12017 THINK is NBC News’ home for fresh opinion, sharp analysis ...
123 No 1
124 No 15
125 No 2
126 No 3 Photographer, artist, newsletter editor, designer, writer...
127 No 18
128 No 5
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Name Followed Followers Description

129 No 5 The Quest for the Denim Jacket
130 No 9
131 No 15
132 No 16 Author of A Traumatic History: A Unique Look at PTSD and ...
133 No 5
134 No 7
135 No 5
136 No 7
137 No 7
138 Beth Fouhy Yes 13684 Senior editor, politics, NBC News and MSNBC
139 Jim Miklaszewski Yes 14196 Jim Miklaszewski is Chief Pentagon Correspondent for NBC New...
140 Miguel Almaguer Yes 14082 Prolific coffee drinker. Chronic under sleeper. Raging road ...
141 No 16
142 No 4
143 No 3
144 No 19 The Northeast Tennessee Victory program will create a grassr...
145 No 17
146 No 14 Just a dude with a crappy job.
147 No 5
148 Nick Akerman Yes 14949 Partner in the AmLaw 100 law firm of Dorsey & Whitney, Water...
149 No 5
150 No 59
151 No 8
152 No 8
153 No 4 Grad student at JHU
154 No 6
155 Marist Poll Yes 16030 Founded in 1978, MIPO is home to the Marist Poll and regular...
156 No 10 Sharing the best news from the e-Discovery world. Tweets by ...
157 No 7
158 No 4
159 No 11 Workforce and Economic Development Consultant; Employment ...
160 No 7 We’re the workers of the @villagevoice, trying to get a fair...
161 Vivian Salama Yes 16020 White House reporter for @WSJ. Formerly AP Baghdad bureau ...
162 No 8
163 No 24
164 No 19 I should be the real trix rabbit
165 No 4
166 No 24 Curious food lover always looking for the best food everywhe...
167 Andrew Rafferty Yes 16567 Senior political editor for @newsy Before that @NBCNews. And...
168 No 5
169 No 36
170 Tom Costello Yes 17268 NBC News Correspondent covering Aviation, Transportation, ...
171 No 68 Wanderlust journalist ... A man is but the product of ...
172 No 6 Bibliophile, Animal lover, Realtor, Volunteer,
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Name Followed Followers Description

173 No 25
174 No 70 Director or Product Marketing @ Microsoft. My tweets. My li...
175 No 3 Experienced (and successful) grantwriter, author, wife, moth...
176 No 5
177 Jill Lawrence Yes 17282 Commentary editor and columnist @USATODAY. Author of The Art...
178 No 8 Howard McKinnon is Town Manager of Havana, Florida.
179 No 136
180 No 59
181 No 8
182 No 12
183 No 7
184 No 8
185 No 8
186 No 15 Old and getting older.
187 No 15
188 No 15 Married
189 No 4
190 No 2 Director of the Essex, Connecticut Public Library aka "Your ...
191 Ethan Klapper Yes 18292 Journalist (@YahooNews) and #avgeek.
192 No 38
193 No 5
194 Rebecca Sinderbrand Yes 18691 Now: @NBCNews Senior Washington Editor, visiting lecturer ...
195 No 3
196 No 11 Tireless trend researcher.
197 No 5
198 No 5
199 No 11
200 No 3
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An rPPR’s sample of 200

Table A.5: Top (selected) handles returned by rPPR. The handles with fewer
than 200 followers are hidden for privacy considerations.

Name Followed Followers Description

1 Yes 198 Enroll America National Regional Director http://t.co/X6jJIE...
2 Jennifer Sizemore Yes 386
3 Alissa Swango Yes 441 Director of Digital Programming at @natgeo. All things food....
4 Making a Difference Yes 670 @NBCNightlyNews’ popular feature profiles ordinary people do...
5 Greg Martin Yes 1161 Political Booking Producer at @nbcnews @todayshow
6 NBC Field Notes Yes 1390 NBC News correspondents and http://t.co/1eSopOQt8s reporters...
7 Adam Edelman Yes 2341 Political reporter @nbcnews. Wisconsin native, Bestchester ...
8 Phil McCausland Yes 2519 @NBCNews Digital reporter focused on the rural-urban divide....
9 Corky Siemaszko Yes 2538 Senior Writer at NBC News Digital (former NY Daily News ...

10 Sam Petulla Yes 2588 Editor @cnnpolitics • Usually looking for datasets. You can ...
11 Ken Strickland Yes 2693 NBC News Washington Bureau Chief
12 Elyse PG Yes 2697 White House producer @nbcnews |@USCAnnenberg alum | LA kid ...
13 Hasani Gittens Yes 3002 Level 29 Mage. Senior News Ed. @NBCNews. Sheriff of Nattahna...
14 Scott Foster Yes 3464 Senior Producer, Washington @NBCNEWS @TODAYshow
15 Zach Haberman Yes 3693 Lead Breaking News Editor, @NBCNews. Previously had other jobs ...
16 Emmanuelle Saliba Yes 4004 Head of Social Media Strategy @Euronews | Launched #THECUBE ...
17 Alex Johnson Yes 4371 News, data and analysis for @NBCNews; data geek; non-celebri...
18 Savannah Sellers Yes 4637 News junkie. Host of NBC’s "Stay Tuned" on Snapchat. Storyte...
19 No 154 We distribute new, never-worn clothing and merchandise to ...
20 Shaquille Brewster Yes 5362 @NBCNews Producer/Politics | @HowardU Alum| Journalist | Pol...
21 Joey Scarborough Yes 6277 NBC News Social Media Editor. New York Daily News Alum. RTs ...
22 Jane C. Timm Yes 6478 @nbcnews political reporter and fact checker. More fun than ...
23 Anthony Terrell Yes 6827 Emmy Award winning journalist. Political observer. Covered ...
24 NBC News Videos Yes 7838 The latest video from http://t.co/xPyvMOTEF6
25 Libby Leist Yes 7946 Executive Producer @todayshow
26 Voices United No 310 Voices United is a non profit educational organization for ...
27 Social Headlines No 344 Daily roundup of top social media and networking stories.
28 James Miklaszewski No 337 Writer, Photographer, Editor, Director, Producer, Newshound ...
29 Courtney Kube Yes 9494 NBC News National Security & Military Reporter. Links and ...
30 Bob Corker Yes 10042 Serving Tennesseans in the U.S. Senate
31 Kailani Koenig Yes 11416 Producer with @MSNBC & @NBCNews. Team @MeetThePress alum...
32 Vets Helping Heroes No 449 Raising funds to sponsor the training of assistance dogs for...
33 Marianna Sotomayor Yes 11965 Running around Capitol Hill for @NBCNews. Covers politics ...
34 NBC News THINK Yes 12017 THINK is NBC News’ home for fresh opinion, sharp analysis ...
35 Beth Fouhy Yes 13684 Senior editor, politics, NBC News and MSNBC
36 Jim Miklaszewski Yes 14196 Jim Miklaszewski is Chief Pentagon Correspondent for NBC New...
37 Miguel Almaguer Yes 14082 Prolific coffee drinker. Chronic under sleeper. Raging road ...
38 No 169
39 Nick Akerman Yes 14949 Partner in the AmLaw 100 law firm of Dorsey & Whitney, Water...
40 Marist Poll Yes 16030 Founded in 1978, MIPO is home to the Marist Poll and regular...
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Name Followed Followers Description

41 Vivian Salama Yes 16020 White House reporter for @WSJ. Formerly AP Baghdad bureau ...
42 Andrew Rafferty Yes 16567 Senior political editor for @newsy Before that @NBCNews. And...
43 Tom Costello Yes 17268 NBC News Correspondent covering Aviation, Transportation, ...
44 Gloria Turkin No 204 I am honest and straight to the point. Retired Civilian Fed...
45 Jill Lawrence Yes 17282 Commentary editor and columnist @USATODAY. Author of The Art...
46 Ethan Klapper Yes 18292 Journalist (@YahooNews) and #avgeek.
47 Rebecca Sinderbrand Yes 18691 Now: @NBCNews Senior Washington Editor, visiting lecturer ...
48 Leigh Ann Caldwell Yes 20714 NBC Capitol Hill reporter. Formerly at CNN and public radio....
49 Morgan Radford Yes 20967 @NBCnews Correspondent: @TODAYShow/@NBCNightlyNews/...
50 GuardAnglSolPet No 927 Supporting the Military, our Veterans and their Beloved Pets...
51 adam nagourney Yes 25307 LA Bureau Chief for The New York Times. Story ideas welcome ...
52 No 13
53 Micah Grimes Yes 25948 Head of Social, @NBCNews & @MSNBC – Foreign and domestic ...
54 Perry Bacon Jr. Yes 26853 I write about government (mostly federal, often state, occas...
55 No 21
56 Alex Moe Yes 28245 @NBCNews Capitol Hill Producer + Off-Air Reporter; ’12 & ’16...
57 Ray Farmer No 603 NBC News staff photographer. Colorado based
58 Alex Witt Yes 28126 Weekend host on @MSNBC (9am, noon & 1pm). Tigger’s mom + ...
59 Monica Alba Yes 30034 @NBCNews White House team. Covered Hillary Clinton on the ...
60 Jim Miklaszewski No 1956 Chief Pentagon Correspondent for NBC News
61 No 13
62 John McCormack Yes 30688 Senior writer at The Weekly Standard.
63 No 136
64 Vaughn Hillyard Yes 31464 On the Road, Meeting Good Folk | NBC News | Arizonan | IG...
65 No 35
66 Madelyn Monteath No 257 NFL Network, wife, mother.. not necessarily in that order.
67 Thomas DeFrank No 593 Veteran White House correspondent (every prez since LBJ) and...
68 Jo Ling Kent Yes 32957 NBC News Correspondent @NBCNightlyNews, @TODAYshow...
69 No 10
70 Carrie Dann Yes 37119 .@NBCNews / @NBCPolitics. RTs not endorsements.
71 No 3
72 No 7 Dianne Kube is an Author with a passion, for family, holiday...
73 No 18 Cdr Bob Mehal, Public Affairs Office, Office of the Secretar...
74 No 7
75 Mike Memoli Yes 39693 National Political Reporter @nbcnews; @latimes alum mike dot...
76 John Boxley No 1201 NBC News Producer...Living life one day at a time.
77 No 15
78 Tom Winter Yes 40777 NBC News Investigations reporter based in New York focusing ...
79 No 7
80 Garrett Haake Yes 40714 Correspondent @msnbc • Taller than I look on TV • Long-suffe...
81 No 59
82 No 70 Director or Product Marketing @ Microsoft. My tweets. My li...
83 No 68 Wanderlust journalist ... A man is but the product of ...
84 No 158 Marketing nerd at Cornerstone OnDemand.
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…continued

Name Followed Followers Description

85 Jonathan Allen Yes 44477 political reporter, @NBCNews Digital | co-author, NYT bestse...
86 NBC News First Read Yes 53847 The first place for news and analysis from the @NBCNews Poli...
87 No 92 Smokin Meat & Raising Kids That Raise Hell. Live Every Day ...
88 Sam Singal No 1016 Executive Producer, @nbcnightlynews
89 No 29
90 No 59
91 Carol Lee Yes 51240 Reporter for NBC News, former WSJ & POLITICO, Hudson’s mom, ...
92 Alex Seitz-Wald Yes 50168 Political reporter for @NBCNews covering Democrats | Tips, ...
93 No 28 An unconventional appreciation account for @DeadlineWH host,...
94 No 188 I am a Senior Video Producer at NBCNews.com, as well a few ...
95 HailYeah63 No 483 #RedskinsTweetTeam #HTTR
96 Eva’s Heroes No 2067 To enrich the lives of individuals with intellectual special...
97 No 6
98 Chi Omega No 278 Chi Omega Chapter at CU Boulder
99 Aarne Heikkila No 1210 Coordinating Producer for @JacobSoboroff @MSNBC & @NBCNews, ...

100 Dani No 447 only here to talk shit & complain
101 Frank Thorp V Yes 58152 Producer & Off-Air Reporter covering Congress at @NBCNews. ...
102 Youcef No 228
103 No 76 Pentagon correspondent http://t.co/Qo0w3AnYOb
104 project c.u.r.e. No 2260 delivering donated medical supplies and equipment to develop...
105 No 117
106 No 4
107 Elise Jordan Yes 58884 Co-host of @WMM_podcast podcast. @MSNBC/@NBCNews political ...
108 Patrick Burkey No 2313 Executive Producer, @NBCNews, @MSNBC. Former EP, @NBCNightly...
109 bill hartnett No 2500 Stripmining the internets for remarkable ephemera Social Mus...
110 No 7
111 No 8
112 No 16
113 No 36
114 Ron Fournier Yes 64356 President: Truscott Rossman. Best-seller https://t.co/09CdTN...
115 No 12
116 Pete Williams Yes 70062 NBC News Justice Correspondent. Covers US Supreme Court, ...
117 No 65 Wife, Mother. Litigation Specialist. Designer. Activist for ...
118 No 10
119 Heidi Przybyla Yes 66489 NBC News, n’tl political reporter "Prezbella" Heidi.Przyb...
120 NBC Latino Yes 67920 Elevating the conversation around Latino news in the United ...
121 No 189
122 No 38
123 Chris Jansing Yes 72375 @msnbc Senior National Correspondent, intrepid traveler and ...
124 No 1
125 Brent Kendall No 5451 WSJ legal affairs reporter in Washington. Native Tar Heel, ...
126 No 2
127 U.S. Attorney EDVA No 5709 Led by U.S. Attorney G. Zachary Terwilliger. 130+ attorneys ...
128 No 74 Life long learner Paralegal Arts & Culture Black Community ...
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…continued

Name Followed Followers Description

129 No 2
130 No 2
131 Tammy Fine No 1584 Corporate Communications by day. Teen Negotiator by night...
132 Bonnie Optekman No 2242 Digital media strategist. Voice over artist. News junkie, ...
133 No 3 yet another activist twitter, fighting all those fun -isms ...
134 No 109 Communicator through an eclectic lens of #healthcare #hospit...
135 No 88 Earth and Physical Science Teacher, Mom of 2, Self-declared ...
136 Amy Lynn-Cramer No 1590 Mommy to 2 amazing kiddos, Wife to @tecramer AND Corporate ...
137 No 5
138 prodjay No 304 NBC News producer
139 No 109
140 No 10
141 Meghann Ludemann No 216 Stay Tuned Associate Producer @NBCNews on @Snapchat
142 No 4
143 Ali Vitali Yes 78839 @NBCnews Political Reporter. Covered Trump campaign, WH + ...
144 Doug Adams No 1902 NBC Sr. Political desk editor; Father; Baseball fan; Lover ...
145 No 99
146 Mark Sherman No 6336
147 Robin Gradison No 272 NBC News DC Deputy Bureau Chief, politics junkie, road run...
148 NBC News Signal Yes 83715 A new streaming news channel from @NBCNews. Catch us Thursda...
149 No 45 Professor at Columbia Journaism School.
150 No 8
151 No 18
152 Stacey Klein No 914 @NBCNews White House Producer, Born and raised in BalDimore ...
153 No 97
154 Rich Latour No 1883 From Broadcast News to Digital Storytelling. Dad of 3 Boys ...
155 Domenico Montanaro Yes 83999 "Congress shall make no law respecting an est. of religion, ...
156 No 5
157 No 6 Anti-money laundering professional with federal law enforcem...
158 No 24
159 No 24 Curious food lover always looking for the best food everywhe...
160 No 25
161 No 161 1 of 12 U.S.-led PRTs. Improving Panjshir’s stability, incre...
162 Anna Matthews No 230
163 No 46
164 POLITICO 45 Yes 88470 A daily diary of the 45th president of the United States.
165 No 9 Quotes from a nice jewish mom who’s just tryna get some nice...
166 No 19 The Northeast Tennessee Victory program will create a grassr...
167 No 130 @NBCNews Producer in London, Links & retweets aren’t endorse...
168 samgo No 1161 Executive Producer, @MSNBC Digital
169 Megan Stark No 263 over served Coloradan
170 No 70
171 Katie Yu No 484 NBC News Senior Producer / formerly @Nightline, @NBCNightlyN...
172 Mark Murray Yes 97571 Mark Murray is the senior political editor for NBC News, as ...
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…continued

Name Followed Followers Description

173 Kevin Thurm No 1946 Chief Executive Officer @ClintonFdn. Dad, sports fan & trivi...
174 No 122 Mom, wife, grandma, Airedale Terrier lover
175 No 173 Providing conservatives with breaking news, opinion, blogs ...
176 No 14
177 No 12
178 No 137 Celebrate the simple loveliness of every day things, scarves...
179 No 15
180 No 8
181 No 16 Author of A Traumatic History: A Unique Look at PTSD and ...
182 No 9
183 No 8 I’m the real Charlie Sheen. If you are a Winner, stick aroun...
184 David Espo No 1308 Dad, AP Special Correspondent, Dad, Red Sox fan, Dad.
185 No 40
186 matt toder No 253 supervising producer, documentaries/verticals at NBC News ...
187 No 13
188 Benjy Sarlin Yes 100896 Political reporter for @NBCNews. I cover elections and their...
189 No 15
190 No 29
191 No 17
192 No 28 Director of the Marist Poll, poll obsessed, epistemophilic,...
193 No 16
194 No 144 Vice President, Standards @NBCNews
195 No 108 trey.daly@gmail.com
196 Daniella Mayer No 314 DON’T forget the A. I think everything about North Korea is ...
197 Bill Hatfield No 635 Washington news producer for NBC News TODAY; politics/histor...
198 No 19 I should be the real trix rabbit
199 No 50
200 Phil Griffin No 231
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b appendix for chapter 3

B.1 Technical proofs

Proof of central limit theorem and other results from Section 3.2

Proof of Proposition 3.2

Proof. Using the symmetry of P and the cyclic property of the trace, we obtain

‖P − X̂Γ X̂T‖2
F = tr(P2) + tr(X̂Γ 2X̂T) − 2 tr(PX̂ΓX̂T)

= tr(P2) + tr(Γ 2) − 2 tr(X̂TPX̂Γ).

Taking a derivative with respect to the diagonal of Γ and setting equal to zero
gives

Γ = diag(X̂TPX̂)

which contains λP(x̂1), . . . , λP(x̂q) down the diagonal.

Proof of Proposition 3.3

Proof. Suppose that E(A) = UΛUT. It follows that E(Ã) = (1 − ε)UΛUT

and E(Ãtest) = εUΛUT. This shows that they have the same eigenvectors
and the simple relationship between their eigenvalues in the statement. The
independence of Ã and Ãtest follows from the next lemma, often referred to as
thinning (see, e.g., Durrett (2019, Section 3.7.2)).

Lemma B.1. Define X ∼ Poi(λ) and conditionally on X, define Y ∼ Bin(X,p) and
Z = X − Y. Unconditionally on X, the random variables Y and Z are independent
Poisson random variables and, further, Y ∼ Poi(pλ), Z ∼ Poi((1 − p)λ).

To apply the lemma, take p = ε, define Aij as X, and let Y,Z be the (i, j)-th
elements of Ã and Ãtest respectively.
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Proof of Theorem 3.4

Proof. We will use Lyapunov’s CLT for triangular arrays with fourth moment
condition (see, e.g., Durrett (2019, Exercise 3.4.12)). Recall that Bij is Poisson
with meanQij. Its mean and variance areQij while its central fourth moment
is Qij(1 + 3Qij) 6 4Qij under the assumption Qij 6 1. Note that σ2 =∑
ij(xixj)

2Qij. To use Lyapunov’s CLT, we show that the following ratio
converges to zero:∑

ij E |xixjBij − xixjQij|
4

σ4 6

∑
ij(xixj)

4(4Qij)
σ4 (B.1)

6
4‖x‖4∞∑ij(xixj)2Qij

σ4

=
4‖x‖4∞
σ2

= o(1),

where we used the bound on the fourth moment on the first line and the
delocalization condition on the last line. This shows that

λB(x) − λQ(x)

σ2 ⇒ N(0, 1). (B.2)

Via Slutsky’s Lemma, we can multiply the ratio in Equation (B.2) by any
sequence that converges to one in probability and the result still holds. The
proof is then concluded by showing that σ/σ̂ converges to one in probability.
Indeed, we have

Var
(
σ̂2

σ2

)
=

Var[(x2)TBx2]

σ4

=

∑
ij(xixj)

4Qij

σ4 ,

which is Equation (B.1) up to a factor of 4 and thus o(1). So, by Cheby-
shev’s inequality, σ̂2/σ2 converges in probability to its expectation. Note that
E(σ̂2/σ2) = 1 and that taking the inverse and the square root is continuous
transformation. So, the ratio σ/σ̂ converges in probability to one.
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Corollary B.2

The following corollary gives a sufficient condition for ‖x‖2∞ = o(σ) to hold in
terms ofm and the expected number of edges in B.

Corollary B.2. Using the setting of Theorem 3.4, let π ∈ Rn be a probability distri-
bution on the nodes with πi proportional to a node’s expected degree. Define 〈π, x2〉
be the expected value of x2

I for I drawn from π and define m = 2−1∑
i di as the

expected total number of edges. If Q is positive semi-definite and

‖x‖2∞
〈π, x2〉

= o
(√
m
)

,

then the CLT in Equation (3.5) holds.

Proof. The proof of Corollary B.2 follows directly from the next lemma.

Lemma B.3. Suppose Q ∈ Rn×n is positive semi-definite. Define d = Q1n ∈ Rn

to be the expected degrees of the nodes 1, . . . ,n, where 1n ∈ Rn is a vector of 1’s.
Then,

σ2 = (x2)TQx2 >
〈d, x2〉2∑
i di

.

Proof. Define y = x2, θ = d1/2,Θ = diag(θ) ∈ Rn×n,yθ = Θy, and L =

Θ−1QΘ−1. Because the elements of θ are non-negative, L is non-negative
definite.

The first part of the proof is to show that Lθ = θ. This is because Θ−2Q is
a Markov transition matrix. So,

Θ−2Q1n = 1n =⇒ Θ−1QΘ−1Θ1n = Θ1n

and this implies that Lθ = θ. So, by the Perron-Frobenius Theorem, θ is the
leading eigenvector of L with eigenvalue 1.

LetL have eigenvectors and eigenvalues (φ1, λ1), . . . , (φn, λn), whereφ1 =

θ/‖θ‖2, λ1 = 1 and 0 6 λj 6 1 for j 6= 1. Then,

yTQy = yT
θLyθ =

n∑
`=1

λ`〈φ`,yθ〉2.
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Keeping only the first order term on the right-hand side, we have

yTQy > λ1〈φ1,yθ〉2 =
〈d, x2〉2∑
i di

.

The desired result follows.

Applying the bound in the lemma to the delocalization condition and
rearranging gives the claim.

Proof of consistency

This section details the proof of Theorem 3.12.

Notation We use the notation [n] to refer to {1, 2, ...,n}. For any real numbers
a,b ∈ R, we denote a∨b = max{a,b} and a∧b = min{a,b}. For non-negative
an and bn that depend on n, we write an . bn to mean an 6 Cbn for
some constant C > 0, and similarly for an & bn. The matrix spectral norm
is ‖M‖ = max‖x‖2=1 ‖Mx‖2, the matrix max-norm is ‖M‖max = maxi,j |Mij|,
and the matrix 2→∞ norm is ‖M‖2,∞ = maxi ‖Mi,·‖2.

Modified algorithm

Algorithm B.1 is used in the consistency result.

Useful concentration bounds

We will need several concentration bounds for Poisson random variables. We
derive them from standard results.

We begin with a simple moment growth bound.

Lemma B.4 (Poisson moment growth). Let Z be a Poisson random variable with
mean µ 6 1. There exists a universal constantC > 0 such that, for all integers p > 2,

E[|Z− µ|p] 6 Cµ
p!
2

(e
2

)p−2
.
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Input: Adjacency matrix A ∈ Nn×n, edge splitting probability
ε ∈ (0, 1)

Procedure EigCV’(A, ε,kmax):
1. Obtain Ã, Ãtest ←ES(A, ε) from splitting A and set S = ∅.
// Algorithm 3.1

2. for k = 2, . . . ,kmax do
a - compute λ̃test(x̃k) = x̃

T
kÃtestx̃k and σ̃k =

√
ε

1−ε(x̃
2
k)

TÃx̃2
k

b - if

‖x̃k‖2∞ 6 min
{

σ̃2
k

log2 n
, logn
n

}
,

add k to S and compute

Tk =
λ̃test(x̃k)

σ̃k
.

Output: The graph dimensionality estimate:
K̂ = |{Tk >

√
n logn : k ∈ S}|.

Algorithm B.1: Modified eigenvalue cross-validation

Proof. We show that
E[|Z− µ|p] 6 C ′µ

(p
2

)p
. (B.3)

for some constant C ′ > 0. The claim then follows from Stirling’s formula in
the form √

2πpp+1/2e−p 6 p!, ∀p > 1.

By the definition of the Poisson distribution and using the fact that 0 6 µ 6 1
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by assumption, we have

E[|Z− µ|p] =
∑
z>0

|z− µ|pe−µ
µz

z!

= |µ|pe−µ + |1 − µ|pe−µµ+
∑
z>2

|z− µ|pe−µ
µz

z!

6 2µ+ µ2e

∑
z>0

zp
e−1

z!

 .

The term in curly brackets on the last line is the p-th moment of a Poisson
random variable with mean 1, which is 6 C ′′

(
p
2
)p for some constant C ′′ > 0

by Ahle (2021, Theorem 1). Equation (B.3) follows.

The moment growth bound implies concentration for linear combinations
of independent Poisson random variables.

Lemma B.5 (General Bernstein for Poisson variables). Let Z1, . . . ,Zm be inde-
pendent Poisson random variables with respective means µ1, . . . ,µm 6 1. For any
α = (α1, . . . ,αm) ∈ Rm and t > 0,

P

[
m∑
i=1

αi(Zi − µi) > t

]
6 exp

(
−

t2

C ′µmax‖α‖2
2 + C

′′‖α‖∞t
)

where µmax = maxi µi and C ′,C ′′ > 0 are universal constants.

Proof. We use Boucheron et al. (2013a, Corollary 2.11). Observe that

m∑
i=1

E[αi(Zi − µi)2] =
m∑
i=1

α2
iµi 6 µmax‖α‖2

2.
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Moreover, by Lemma B.4 and Stirling’s formula,

m∑
i=1

E[αpi (Zi − µi)
p
+] 6

m∑
i=1

α
p
i Cµi

p!
2

(e
2

)p−2

6 Cµmax‖α‖2
2
p!
2

(e
2‖α‖∞

)p−2

6
p!
2 v
(e

2‖α‖∞
)p−2

,

where we define
v := max {1,C}µmax‖α‖2

2.

The claim then follows from Boucheron et al. (2013a, Corollary 2.11).

The moment growth bound also implies spectral norm concentration.

Lemma B.6 (Spectral norm of Poisson graph). Suppose B ∈ Rn×n is the adja-
cency matrix of a Poisson graph with mean matrix Q satisfying Qij 6 1 for all i, j.
Let qmax = maxijQij and assume that nqmax > c0 logξ0 n for some ξ0 > 2. Then,
for any δ > 0, there exists a constant C ′′′ > 0 such that

‖B−Q‖ 6 C ′′′
√
nqmax logn

with probability at least 1 − n−δ.

Proof. We use Tropp (2012, Theorem 6.2). We first rewrite the matrix as a
finite sum of independent symmetric random matrices,

B−Q =

n∑
i=1

n∑
j=i

(Bij −Qij)E
i,j

where Ei,j ∈ Rn×n with Ei,jij = Ei,jji = 1 and 0 elsewhere.
Observe that, for i 6= j,

(Ei,j)p =

{
Ei,i + Ej,j if p = 2, 4, . . .
Ei,j if p = 3, 5, . . .
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while, if i = j,

(Ei,i)p = Ei,i, p > 2.

Let Xi,j := (Bij − Qij)E
i,j. Then EXi,j = 0. Moreover, for i 6= j and

p = 2, 4, . . ., we have

E(Xi,j)p = E(Bij −Qij)p (Ei,i + Ej,j) � Cqmax
p!
2

(e
2

)p−2
(Ei,i + Ej,j),

by Lemma B.4. Similarly, for i 6= j and p = 3, 5, . . .,

E(Xi,j)p = E(Bij −Qij)p Ei,j � Cqmax
p!
2

(e
2

)p−2
(Ei,i + Ej,j),

where we used the fact that the matrix ( 1 α
α 1 ) has eigenvalues 1 + α, 1 − α > 0

when |α| 6 1. When i = j,

E(Xi,i)p = E(Bii −Qii)p Ei,i � Cqmax
p!
2

(e
2

)p−2
(2Ei,i).

Define
(Σ2)i,j := Cqmax(E

i,i + Ej,j).

and

σ2 =

∥∥∥∥∥∥
n∑
i=1

n∑
j=i

(Σ2)i,j

∥∥∥∥∥∥ =

∥∥∥∥∥∥Cqmax

n∑
i=1

n∑
j=i

(Ei,i + Ej,j)

∥∥∥∥∥∥ 6 2Cqmaxn,

where the inequality holds since
∑n
i=1
∑n
j=i(E

i,i + Ej,j) is a diagonal matrix
with maximum entry 2n. Then, by Tropp (2012, Theorem 6.2),

P [‖B−Q‖ > t] = P

∥∥∥∥∥∥
n∑
i=1

n∑
j=i

Xi,j

∥∥∥∥∥∥ > t


6 n exp

(
−t2/2

σ2 + (e/2)t

)
6 n exp

(
−t2/2

2Cqmaxn+ (e/2)t

)
.
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Taking t = C ′′′
√
nqmax logn and using the fact that nqmax > c0 logξ0 n, ξ0 >

2, gives the result.

Key properties of sample eigenvectors

Consider the adjacency matrixA of a Poisson graph satisfying Assumptions 3.10
and 3.11. Fixing ε ∈ (0, 1), let Ã and Ãtest be as in Section 3.2. Let P = ρnP

0 =

EA =
∑K
j=1 λjx

T
j xj with λ1 > λ2 > · · · > λK > 0. Let {x̃l}kmax

l=1 be the collec-
tion of eigenvectors associated with eigenvalues {λ̃l}

kmax
l=1 of Ã. Without loss

of generality, we assume λ̃1 > λ̃2 > · · · > λ̃kmax . Define Û = (x̃1, · · · , x̃K) and
U = (x1, · · · , xK) ∈ Rn×K. We will need the following event:

E0 =
{∥∥Ã− (1 − ε)P

∥∥ 6 C ′′′
√
nρn logn

}
.

Applying Lemma B.6 with B := Ã andQ := (1− ε)P shows thatE0 holds with
high probability.

Concentration of signal eigenspace First, we use a version of the Davis-
Kahan theorem to show that the signal sample eigenvectors are close to the
signal population eigenspace.

Lemma B.7 (Signal eigenspace). Under event E0, there exists an orthonormal
matrix O ∈ RK×K such that, for all k ∈ [K],

‖ỹk − xk‖2 = O

(√
logn
nρn

)
, ‖x̃k − yk‖2 = O

(√
logn
nρn

)
,

where

ỹl =
(
ÛO
)
·l
=

(
K∑
i=1

(x̃i)jOil

)n
j=1

, yl =
(
UOT)

·l =

(
K∑
i=1

(xi)jOli

)n
j=1

.

Moreover, for all k ∈ [K], s ∈ [K], and t ∈ [kmax] \ [K],

〈xs,yk〉 = Oks, 〈x̃t, ỹk〉 = 0.
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Proof. We use the variant of the Davis-Kahan theorem in Yu et al. (2015, The-
orem 2). Under E0,

∥∥Ã− (1 − ε)P
∥∥ = O(

√
nρn logn). By Yu et al. (2015,

Theorem 2), there exists an orthonormal matrix O ∈ RK×K such that, for all
l ∈ [K],

‖ỹl − xl‖2 6 ‖ÛO−U‖F = O

(
‖Ã− (1 − ε)P‖

λK

)
= O

(√
logn
nρn

)
,

and

‖x̃l − yl‖2 6 ‖Û−UOT‖F = ‖(ÛO−U)OT‖F = ‖ÛO−U‖F = O

(√
logn
nρn

)
,

where we used λK > ψ−1
1 ψ ′1nρn, which holds under Assumption 3.10.

By the orthonormality of {xl}l and {x̃l}l, we have for s ∈ [K],

〈xs,yk〉 =
n∑
l=1

(xs)l

(
K∑
i=1

(xi)lOki

)
=

K∑
i=1

(
n∑
l=1

(xs)l(xi)l

)
Oki = Oks,

and for t ∈ [kmax] \ [K],

〈x̃t, ỹk〉 =
n∑
l=1

(x̃t)l

(
K∑
i=1

(x̃i)lOik

)
=

K∑
i=1

Oik

(
n∑
l=1

(x̃t)l(x̃i)l

)
=

K∑
i=1

Oik1{i=t} = 0.

Bounds on population quantities The previous lemma implies bounds on
the population quantity of interest, λP(x̃l).

Lemma B.8 (Bounding λP(x̃l)). Under event E0,

x̃T
lPx̃l = Ω(nρn), ∀l ∈ [K],

x̃T
lPx̃l = O(logn), ∀l ∈ [kmax] \ [K].

Proof. For s ∈ [K], expanding x̃s over an orthonormal basis including {xl}l∈K,



189

we get

x̃T
sPx̃s =

K∑
k=1

λk〈x̃s, xk〉2

=

K∑
k=1

λk
[
〈xk,ys〉2 − 〈xk,ys − x̃s〉〈xk, x̃s + ys〉

]
>

K∑
k=1

λkO
2
sk −

K∑
k=1

λk‖ys − x̃s‖2‖xk‖2
2 (‖x̃s‖2 + ‖ys‖2) (B.4)

> ψ−1
1 ψ ′1nρn −O

(
2Knρn

√
logn
nρn

)
(B.5)

= Ω (nρn)

where inequality (B.4) follows from Cauchy–Schwarz, the triangle inequality
and 〈xk,ys〉2 = Osk by Lemma B.7. Inequality (B.5) holds since

∑K
k=1O

2
sk =

1, ψ−1
1 ψ ′1nρn 6 λk 6 nρn by Assumption 3.10, ‖x̃s − ys‖2 = O

(√
logn
nρn

)
by

Lemma B.7 and ‖x̃k‖2 = ‖xk‖2 = ‖ys‖2 = 1.
For t ∈ [kmax] \ [K],

x̃T
tPx̃t =

K∑
k=1

λk〈x̃t, xk〉2

=

K∑
k=1

λk〈x̃t, xk − ỹk + ỹk〉2

=

K∑
k=1

λk [〈x̃t, xk − ỹk〉+ 〈x̃t, ỹk〉]2

=

K∑
k=1

λk〈x̃t, xk − ỹk〉2 (B.6)

6 Kλ1 max
k∈[K]

‖xk − ỹk‖2
2 = O(logn) (B.7)

where equality (B.6) follows from 〈x̃t, ỹk〉 = 0 by Lemma B.7. Equation (B.7)
holds since ‖ỹk − xk‖2 = O

(√
logn/nρn

)
by Lemma B.7 and λk 6 λ1 6 nρn
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by Assumption 3.10.

Delocalization of signal eigenvectors To establish concentration of the esti-
mate λ̃test(x̃l) around ελP(x̃l) for l ∈ [K], we first need to show that x̃l is delocal-
ized. That result essentially follows from an entrywise version of Lemma B.7.

Lemma B.9 (Delocalization of signal sample eigenvectors). There exist con-
stants δ1 > 0, C1 > 0 such that the event

E1 =

{
‖x̃l‖∞ 6 C1

√
µ0
n

, ∀ l ∈ [K]

}
holds with probability at least 1 − 3n−δ1 .

Proof. We use Abbe et al. (2020, Theorem 2.1) on Ã, which requires four
conditions. We check these conditions next. First, let Ã∗ = (1 − ε)P, ∆∗ = λK,

κ =
λ1
λK

6 ψ1, (B.8)

where the inequality follows from Assumption 3.10,

ϕ(x) =
1

32ψ1
min{

√
nx, 1},

and

γ = C ′′′ψ1(ψ
′
1)

−1

√
logn
nρn

&

√
logn
n1−ξ1

, (B.9)

where C ′′′ is the constant in Lemma B.6 and ψ1,ψ ′1 > 0, ξ1 ∈ (0, 1) are the
constants in Assumption 3.10.

(A1) (Incoherence) By Abbe et al. (2020, Equation (2.4)) and the remarks that
follow it, the incoherence condition is satisfied provided

µ(U) :=
n

K
‖U‖2

2,∞ 6
nγ2

Kκ2 .

Under Assumption 3.11, µ(U) 6 µ0 while (B.9) implies nγ2 = Ω(logn)
and (B.8) implies κ = O(1). Hence the condition is satisfied.
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(A2) (Row and columnwise independence) By Proposition 3.3, Ã is the adjacency
matrix of a Poisson graph with independent entries. In particular, {Ãij :
i = m or j = m} are independent of {Ãij; i 6= m, j 6= m}.

(A3) (Spectral norm concentration) As observed previously, applying Lemma B.6
with B := Ã, Q := (1 − ε)P and δ > 0 shows that the event

E0 =
{∥∥Ã− (1 − ε)P

∥∥ 6 C ′′′
√
nρn logn

}
,

holds with probability 1 − n−δ. Moreover, by the remark after Assump-
tion 3.10,

γ∆∗ = C ′′′ψ1(ψ
′
1)

−1

√
logn
nρn

λK > C ′′′
√
nρn logn.

Hence,
P
[∥∥Ã− Ã∗

∥∥ 6 γ∆∗
]
> 1 − n−δ.

Note further that, under Assumption 3.10, γ = o(1), which implies

32κmax{γ,ϕ(γ)} 6 32κmax
{
γ, 1

32ψ1

}
6 1,

for n large enough, as required in Abbe et al. (2020, Assumption (A3)).

(A4) (Row concentration) As required in Abbe et al. (2020, Assumption (A4)),
the function ϕ is continuous and non-decreasing on R+ with ϕ(0) = 0
and ϕ(x)/x nonincreasing on R+. Let W ∈ Rn×K. By standard norm
bounds

1√
n

6
‖W‖F√
n‖W‖2,∞ 6 1.

As result, by definition of ϕ,

ϕ

(
‖W‖F√
n‖W‖2,∞

)
=

1
32ψ1

.
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Let

g = ∆∗‖W‖2,∞ϕ
(

‖W‖F√
n‖W‖2,∞

)
=

1
32ψ1

λK‖W‖2,∞.

Fixm ∈ [n] and r ∈ [K]. Applying Lemma B.5 on Ãm·with maxij EÃij 6
(1 − ε)ρn, there exist c2 > 0, c ′2 > 1 such that

P

∣∣∣∣∣∣
∑
i∈[n]

(Ãmi − Q̃mi)Wir

∣∣∣∣∣∣ > g/√K


6 2 exp
(
−

g2/K

C ′(1 − ε)ρn‖W·r‖2
2 + C

′′‖W·r‖∞g/√K
)

= 2 exp
(
−

λ2
K‖W‖

2
2,∞

322ψ2
1KC

′(1 − ε)ρn‖W·r‖2
2 + 32ψ1

√
KC ′′‖W·r‖∞λK‖W‖2,∞

)

6 2 exp
(
−

λ2
K

322ψ2
1KC

′(1 − ε)nρn + 32ψ1
√
KC ′′λK

)
6 2 exp(−c2nρn)

6 n−c ′2 ,

where C ′ and C ′′ are the constants in Lemma B.5 and we used again
that, by the remark after Assumption 3.10, λK > ψ−1

1 ψ ′1nρn. In the final
inequality, we use that nρn > c0 logξ0 n, ξ0 > 2 under Assumption 3.10.
Since

∥∥(Ã− Q̃)m·W
∥∥

2 6
√
K sup

r

∣∣∣∣∣∣
∑
i∈[n]

(Ãmi − Q̃mi)Wir

∣∣∣∣∣∣ ,
a union bound over r implies

P
[∥∥(Ã− Q̃)m·W

∥∥
2 6 g

]
> 1 − Kn−c ′2 .

Applying Abbe et al. (2020, Theorem 2.1) and using Abbe et al. (2020,
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Equation (2.4)) again, there exists C̃ > 0 such that

max
l∈[K]

‖x̃l‖∞ 6
∥∥∥Û∥∥∥

2,∞
6 C̃(2κ+ϕ(1))‖U‖2,∞
6 C̃

(
2ψ1 +

1
32ψ1

)√
K

√
µ0
n

,

with probability 1 − n−δ − 2n−(c ′2−1), where we used Assumption 3.11 on the
last line. Taking C1 = C̃(2ψ1 +

1
32ψ1

)
√
K and δ1 = min{δ, c ′2 − 1} > 0 gives the

claim.

Concentration of quadratic forms Next, we show that λ̃test(x̃l) is concen-
trated around ελP(x̃l).

Lemma B.10 (Concentration of λ̃test(x)). Let x ∈ Rn be a unit vector such that

‖x‖2∞ 6
logn
n

, (B.10)

for some constant C2 > 0. Then there exists δ2 > 0 such that

P

∣∣∣∣∣∣
∑
i,j
xixj(Ãtest − εP)ij

∣∣∣∣∣∣ 6√ρn logn

 > 1 − n−δ2 .

Proof. We use Lemma B.5. Using that ‖x‖2 = 1, we get

P

∣∣∣∣∣∣
∑
i,j
xixj(Ãtest − εP)ij

∣∣∣∣∣∣ >√ρn logn


6 2 exp

(
−

(
√
ρn logn)2/2

C ′ερn
∑
i,j(xixj)

2 + C ′′maxij |xixj|
√
ρn logn

)

6 2 exp
(
−

ρn logn/2
C ′ερn + C ′′‖x‖2∞√ρn logn

)
.

By Assumption 3.10, ρn � logn
n while

√
ρn logn = o(1). By (B.10), the
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denominator on the last line is . ρn and the claim follows.

We also bound the variance estimate for the signal eigenvectors.

Lemma B.11 (Bound on the variance estimate). Under event E0 ∩E1, for all
l ∈ [K]

σ̃2
l :=

ε

1 − ε
(x̃2
l)

TÃx̃2
l = Θ(ρn).

Proof. Let Q̃ = (1 − ε)P. Under E0, σ̃2
l can be controlled through (x̃2

l)
TQ̃x̃2

l.
Indeed observe that for each l ∈ [K]

∣∣(x̃2
l)

TÃx̃2
l − (x̃2

l)
TQ̃x̃2

l

∣∣ = |(x̃2
l)

T(Ã− Q̃)x̃2
l |

6
∥∥Ã− Q̃

∥∥∥∥x̃2
l

∥∥2
2

6
∥∥Ã− Q̃

∥∥‖x̃l‖2∞‖x̃l‖2
2

= O

(√
nρn logn · 1

n

)
= O

(√
ρn logn
n

)

where we used that
∥∥Ã− Q̃

∥∥ = O(
√
nρn logn) under event E0 and

∥∥x̃2
l

∥∥∞ =

‖x̃l‖2∞ = O( 1
n) under E1. Moreover, observe that

√
ρn logn/n � ρn since

nρn > c0 logξ0 n under Assumption 3.10. So

∣∣(x̃2
l)

TÃx̃2
l − (x̃2

l)
TQ̃x̃2

l

∣∣ � ρn. (B.11)

To get an upper bound on σ̃2
l, note that

(x̃2
l)

TPx̃2
l 6 λ1‖x̃2

l‖2
2

6 λ1 · ‖x̃l‖2∞ · ‖x̃l‖2
2

= O

(
nρn ·

1
n
· 1
)

= O(ρn),
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where we used λ1 6 nρn by Assumption 3.10. Hence, we get

σ̃2
l =

ε

1 − ε
(x̃2
l)

TÃx̃2
l

6
ε

1 − ε
|(x̃2
l)

TÃx̃2
l − (x̃2

l)
TQ̃x̃2

l |+
ε

1 − ε
(x̃2
l)

TQ̃x̃2
l

6
ε

1 − ε
|(x̃2
l)

TÃx̃2
l − (x̃2

l)
TQ̃x̃2

l |+ ε(x̃
2
l)

TPx̃2
l

= O(ρn),

by (B.11).
In the other direction, by Cauchy-Schwarz,

(x̃2
l)

TPx̃2
l >

(
x̃T
lPx̃l

)2∑
ij Pij

&
(nρn)

2

n2ρn
& ρn,

where the middle inequality follows from Lemma B.8. Combining with (B.11),
we have

σ̃2
l =

ε

1 − ε
(x̃2
l)

TÃx̃2
l

>
ε

1 − ε
(x̃2
l)

TQ̃x̃2
l −

ε

1 − ε
|(x̃2
l)

TÃx̃2
l − (x̃2

l)
TQ̃x̃2

l |

> ε(x̃2
l)

TPx̃2
l −

ε

1 − ε
|(x̃2
l)

TÃx̃2
l − (x̃2

l)
TQ̃x̃2

l |

& ρn.

That concludes the proof.

Proof of Theorem 3.12

Now, we are ready to prove Theorem 3.12.

Proof of Theorem 3.12. By Lemmas B.6 and B.9, the event E0 ∩E1 holds with
probability 1 − 4n−δ1 . UnderE0 ∩E1, which depends only on Ã, the claims in
Lemmas B.7, B.8 and B.11 also hold. For the rest of the proof, we condition on
E0 ∩E1 and use the fact that Ãtest is independent of Ã by Proposition 3.3.
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Let x̃l, l ∈ [kmax], be the top kmax unit eigenvectors of Ã and let

σ̃2
l =

ε

1 − ε
(x̃2
l)

TÃx̃2
l.

Define

S =

{
l ∈ [kmax] : ‖x̃l‖2∞ 6 min

{
σ̃2
l

log2 n
, logn
n

}}
,

to be the subset of [kmax] corresponding to sufficiently delocalized eigenvectors.
Recall that the test statistic associated to x̃l is

Tl =
x̃T
l Ãtestx̃l
σ̃l

.

We say that l is rejected if

l ∈ S and |Tl| >
√
n logn =: τn.

No under-estimation We show that the test statistic associated with the K
leading eigenvectors of Ã will reject the null hypothesis with high probability,
that is,

• [K] ⊂ S; and

• |Tl| > τn, ∀l ∈ [K].

Fix s ∈ [K]. First, we check that s ∈ S. Under E1,
∥∥x̃2
s

∥∥∞ = O(1/n) �
logn/n. We need to check that

∥∥x̃2
s

∥∥∞ 6 σ̃2
s/ log2 n, for n sufficiently large.

This follows from the fact that σ̃2
s = Θ(ρn) by Lemma B.11 and ρn > c0n

−1 logξ0 n

with ξ0 > 2 under Assumption 3.10.
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Next, we bound |Ts| from below. We have, with probability 1 − n−δ1 ,

|Ts| =

∣∣∣∣ x̃T
sÃtestx̃s
σ̃s

∣∣∣∣
>

ε
∣∣x̃T
sPx̃s

∣∣− ∣∣x̃T
s(Ãtest − εP)x̃s

∣∣
σ̃s

&
εnρn −

√
ρn logn

√
ρn

& n
√
ρn

�
√
n logn, (B.12)

where the dominating term is controlled through |x̃T
sPx̃s| & nρn � logn

by Lemma B.8, the term |x̃T
s(Ãtest − εP)x̃s| is bounded above by

√
ρn logn�

logn from Lemma B.10 and the denominator satisfies σ̃2
s = Θ(ρn) by Lemma B.11.

The final bound follows from Assumption 3.10. By a union bound, (B.12) holds
simultaneously for s ∈ [K] with probability 1 − Kn−δ1 .

No over-estimation Then, we show that the noise eigenvectors of Ã will
either be too localized or the test statistic associated with them will fail to reject
the null hypothesis. In other words, we show that for any s ∈ S \ [K], it holds
that |Ts| < τn with high probability.

Let t ∈ S \ [K]. We bound |Tt| from above as follows

|Tt| =

∣∣∣∣ x̃T
tÃtestx̃t
σ̃t

∣∣∣∣
6

ε
∣∣x̃T
tPx̃t

∣∣+ ∣∣x̃T
t(Ãtest − εP)x̃t

∣∣
σ̃t

(B.13)

= O

(√
n

log2 n
· (logn+

√
ρn logn)

)
= O

(√
n
)

(B.14)

The first term in the numerator of (B.13) satisfies
∣∣xT
tPxt

∣∣ = O(logn) by
Lemma B.8 while the term |x̃T

t(Ãtest − εP)x̃t| in (B.13) is bounded above by√
ρn logn� logn from Lemma B.10. For the denominator σ̃t, t ∈ S implies
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that ‖x̃2
t‖∞ 6 σ̃2

t/ log2 n, thus

σ̃2
t > log2 n · ‖x̃2

t‖∞ >
log2 n

n
· n‖x̃2

t‖∞ >
log2 n

n
· ‖x̃t‖2

2 =
log2 n

n
.

Consistency Therefore, it follows that the algorithm outputs K̂ = K with
probability tending to 1.

B.2 Choosing the splitting probability

This section discusses how to select ε, the probability that an edge is placed
in the testing graph. This quantity controls the number of edges used to
compute the test statistics Tj. For simplicity, this section assumes the true
graph dimensionality is k = 2 and focuses on the second test statistics T2.

Upper bound: Reconstruction threshold

The upper bound ensures that the eigenvectors of Ã, x̃2, could possibly estimate
the eigenvector of P = E(A), x2. Note that the eigenvalues of E(Ã) = (1 − ε)P

are proportional to those of P by a factor of 1 − ε. Hence, we need ε to be
sufficiently small.

Two-block graphs

This subsection considers a simplified case where the graph is generated from
the Stochastic Block Model (SBM). Suppose that A is generated from an SBM
with two blocks, where the in-block probabilities are a/n and the out-of-
block probabilities are b/n, for a,b > 0. Its expectation P has two non-zero
eigenvalues of λ1 = (a+ b)/2 (with eigenvector ~1n/

√
n) and λ2 = (a− b)/2

(with eigenvector x2 ∈ Rn taking the values 1/
√
n on the nodes in the first

block and −1/
√
n on the nodes in the second).

Define the critical value for P as c(P) =
λ2

2
λ1

=
(a−b)2

2(a+b) . In fact, c = 1
characterizes the boundary of the reconstruction threshold of two-block graph
(Mossel et al., 2015). Only above or on this reconstruction threshold (i.e.
c > 1), x̃2 could possibly recovered a signal of block membership.
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Let P̃ = E(Ã) be the expectation of the splitting graph Ã. Since P̃ = (1−ε)P,
we have c(P̃) = (1 − ε)c(P). In order for the splitting graph to be above or on
the reconstruction threshold, c(P̃) must be greater or equal to 1. That yields
an upper bound on ε,

ε 6 1 −
1
c(P)

.

Lower bound: Power calculation

The lower bound ensures that we put sufficiently many edges into the test
graph Ãtest in order to control the type I and type II error. For this, we perform
the following power calculation. The power calculation relates µ2, the desired
level of the test α (i.e., type I error rate), and the desired power of the test
1 − β (here, β is the type II error rate).

Under the alternative hypothesis, T2 ∼ N(µ2, 1), where

µ2 =
x̃T

2 (εP)x̃2√
(x̃2

2)
T(εP)x̃2

2

, (B.15)

and x̃2 is the second eigenvector of Ã. Note that the ε in the numerator and
denominator in (B.15) follows from Proposition 3.3.

Type I error. To control the type I error rates across the kmax tests, we will use
the Bonferroni correction. So, we will choose a cut off value t such that under
the null hypothesis where T2 ∼ N(0, 1), P(|T2| > t) 6 α/kmax. To compute t,
use the tail bound P(|T2| > t) 6 2 exp(−t2/2) and set the right hand side equal
to α/kmax. This yields

t =
√

2 log(2kmax/α). (B.16)

Type II error. Next, we will find a lower bound on µ2 so that P(|T2| < t) 6 β

under the alternative hypothesis (i.e., T2 ∼ N(µ2, 1)). We imagine that µ2 > t,
it follows that

P(|T2| < t) 6 P(T2 < t) = P(T2 − µ2 < t− µ2) < exp(−(t− µ2)
2/2).
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Setting the right hand side to β and solve for µ2, we have a lower bound on µ2,

µ2 > t+
√

2 log(1/β).

Square both sides and substitute t by (B.16), then we want to ensure that

µ2 >
√

2 log(2kmax/α) +
√

2 log(1/β) (B.17)

Finally, combining (B.15) and (B.17), we find a lower bound for ε,

ε
(
x̃T

2Px̃2
)2

(x̃2
2)

TPx̃2
2

>

(√
2 log(2kmax/α) +

√
2 log(1/β)

)2
.

Note that such lower bound is implicit because x̃2 depends on ε.

Two-block graphs

We again consider the two-block graph case. Suppose that x̃2 is sufficiently
close to x2. Then, x̃2 is approximately orthogonal to ~1, and the numerator in
(B.15) is

√
εx̃T

2Px̃2 &
√
ελ2(x

T
2 x̃2)

2. In addition, the denominator is√
(x̃2

2)
TP(x̃2

2)
T 6

√
‖x̃2

2‖2
2λ1 ≈

√
λ1/n.

1 Putting together, we have

µ2 &
√
cεn(xT

2 x̃2)
2,

where c = λ2
2/λ1, and λ1 and λ2 are the leading two eigenvalues of P. Finally,

combined with (B.17), we find a implicit lower bound on ε,

√
cnε(xT

2 x̃2)
2 >

√
2 log(2kmax/α) +

√
2 log(1/β).

1Since x2 is not localized under this two-block SBM (with elements being either 1/
√
n or

−1/
√
n), the approximation ‖x̃2

2‖2
2 ≈ 1/n introduces a 1/n overhead in the denominator. For

other (more general) graphs, such overhead will be different.
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Figure B.1: Statistical power of the test on graphs simulated from the SBM
with two equally sized blocks. Each graph contains n nodes (x-axis). The
in-block edge probability is a/n, and the out-block edge probability is b/n,
with the critical quantity c = (a − b)2/[2(a + b)] set to 2. Each dot depicts
the statistical power of T2 subtracted by that of T3, averaged across 5 repeated
experiments (y-axis). The colors indicate the value of nε. The dot/line shapes
indicate the value of expected average node degrees.

If x̃2 is sufficiently close to x2 (i.e., (xT
2 x̃2)

2 ≈ 1), then the lower bound on ε
suggests that for a target statistical power and c, it suffices to ensure that nε
is above some threshold. Figure B.1 shows that indeed, the testing power is
determined by nε and is invariant in average node degrees, when we fix c.

Remark B.12 (Simplify Equation (B.17)). Note that(√
2 log(2kmax/α) +

√
2 log(1/β)

)2

= 2 log(2kmax/β) + 2 log(1/β) + 2
√

4 log(2kmax/β) log(1/β)

= 2 log(2kmax) + 4 log(1/β) + 4 log(1/β)
√

1 + log(2kmax)/ log(1/β)

= 2 log(2kmax) + 4 log(1/β)(1 +
√

1 + log(2kmax)/ log(1/β)).
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We set α and β to 1/ log2 n. So long as n > 1000 and kmax 6 100, it holds that
1 +

√
1 + log(2kmax)/ log(1/β) 6 2.5. So, if

µ2
2 > 2 log(2kmax/α) + 10 log(1/β), (B.18)

then µ2 will satisfy (B.17) and thus be large enough for the test to have level α and
power 1 − β. Furthermore, substituting µ2 =

√
cεn into Equation (B.18) yields

ε >
1
cn

(2 log(2kmax) + 20 log(logn)) .

To have a sense for the scale of this ε, define d̄ to be the average node degree. If ε is set
to the lower bound on the reconstruction threshold boundary (i.e., c = 1), then the ex-
pected number of edges placed into the the test set isnε d̄ = d̄ (2 log(2kmax) + 20 log(logn)).
This is a very small quantity, thus revealing the power of the test statistics T2. For
a fixed d̄, it grows with n at the rate log logn and it grows with kmax at the rate
log kmax. With d̄, it grows linearly.

B.3 Supporting figures and tables

In Figure 3.1, we evaluated the accuracy of each method when requiring the
exact recovery of k. In order to illustrate how each method either under-
estimates or over-estimates k, Figure B.2 displays the results in Figure 3.1 by
the relative error for each estimate k̂, which is defined as

relative error = k̂− k∗

k∗
,

where k∗ = 10 is the true k. From the simulation results, we observed that most
methods under-estimate k when the average degree of the graph is smaller
(i.e., sparser), except for StGoF which over-estimates it. In addition, from the
standard deviation of the relative error, we observe that EigCV provides a
more accurate and less variable estimation of k as the graph sparsity varies.

In Section 3.4, we removed the 14 small departments that consist of less
than 10 members. Among these, two departments have only one members,
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Figure B.2: Comparison of relative error for different graph dimensionality
estimators under the DCSBM. The panel strips on the top indicate the node
degree distribution used. Within each panel, each colored line depicts the
relative error of each estimation method as the average node degree increases.
Each point on the lines are averaged across 100 repeated experiments. For
each point, an error bar indicates the sample standard deviation of relative
errors.

Table B.1: Comparison of graph dimensionality estimates using the email net-
work among members in a large European research institution. Each members
belongs to one of 42 departments.

Method Estimate (mean) Runtime (second)
EigCV 30.56 0.81
BHMC 14.00 0.04
LR 13.00 128.17
NCV 6.96 271.15
ECV 20.08 60.13
StGoF > 50 544.66

and eight departments have less than five members. Table B.1 compares six
methods using this email network without filtering. We observed similarly
that EigCV provided a closer estimate of k than other methods.
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c appendix for chapter 4

C.1 Technical proofs

Proof. of Proposition 4.2 We show that for any fixed Z and Y, the inequality
holds for the minimization over B on the left-hand-side and the diagonal D
on the right-hand-side,

min
B

∥∥X− ZBYT∥∥2
F 6 min

D

∥∥X− ZDYT∥∥2
F.

In fact, the maximizer of the left-hand-side is B∗ =
(
ZTZ

)−1
ZTXY

(
YTY

)−1 if
Z and Y are full-rank, or B∗ =

(
ZTZ

)+
ZTXY

(
YTY

)+ if either Z or Y is singular,
where A+ is the Moore–Penrose inverse of matrix A. Since B∗ is not diagonal
in general, the inequality follows.

Proof. of Lemma 4.4 We rewrite the objective function:

∥∥X− ZBYT∥∥2
F = tr

[(
X− ZBYT)T (

X− ZBYT)]
= ‖X‖2

F − 2 tr
(
XTZBYT)+ tr

(
BTB

)
= ‖X‖2

F − tr
[
BT (2ZTXY − B

)]
.

For fixed Z and Y, take the derivative of B and set it to zero. We have the
optimizer B∗ = ZTXY and the squared optimal value is ‖X‖2

F −
∥∥ZTXY

∥∥2
F.

Recognizing that ‖X‖2
F is determined, the desired formulation (4.13) follows.

Remark C.1 (Minimal matrix reconstruction error of PMD). If B is constrained
to a diagonal matrix in (4.12), then the squared minimal value is ‖X‖2

F −
∑k
i=1 d

2
i,

where di =
[
ZTXY

]
ii

for i = 1, 2, ..., k.

Proof. From the proof of Lemma 4.4, we have

∥∥X− ZDYT∥∥2
F = ‖X‖2

F − tr
[
DT (2ZTXY −D

)]
.
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Then, take the derivative of D and set it to zero. This yields the solution
D̂ = diag(di), where di =

[
UTXV

]
ii

. Finally, plugging-in the maximizer D̂
gives the claimed optimal value. Note that

∑k
i=1 d

2
i 6

∥∥UTXV
∥∥2

F.

Proof. of Lemma 4.5 Suppose the low-rank SVD of C ∈ Rp×k isUDVT, where
U ∈V(p,k), V ∈ U(k), and D ∈ Rk×k is diagonal. Then,

∥∥CTX
∥∥2

F = tr
(
XTCCTX

)
= tr

(
XTUD2UTX

)
.

The trace quadratic form is maximized at X∗ = UR, for any orthogonal matrix
R ∈ U(k). In particular, when R = V , X∗ = polar(C).

C.2 Choosing the sparsity parameter

The sparsity controlling parameters in SCA and SMA—γ, γy, and γz—are
meaningful if they take values from a certain range, depending on the choice
of `p-norm constraint. In this section, we discuss the sparsity constraint on Y;
the constraint on Z is similar. First, consider the `1-norm constraint ‖Y‖1 6 γ.
The sparsity parameter should satisfy k 6 γ 6 k

√
p. This is for the set

{Y ∈ Rp×k | ‖Y‖1 = γ} to intersect with V(p,k). On the right hand side, if
γ > k

√
p, any element in V(p,k) satisfies ‖Y‖1 < γ, so the sparsity constraint

is ineffective (Figure C.1: left panel). On the left hand side, if γ < k, none of
the elements in V(p,k) satisfies ‖Y‖1 6 γ, so the solution to (4.4) does not
fall on V(p,k). Similarly, for the `4/3-norm sparsity constraint ‖Y‖4/3 6 γ, the
sparsity controlling parameter should take value within k3/4 6 γ 6 p1/4k3/4

(Figure C.1: right panel).
In Algorithm 4.2, the sparsity parameter is optional. If absent, the algorithm

uses a default value of γ =
√
pk (or γz =

√
nk and γy =

√
pk in SMA). This

is supported by our simulation results showing that the SCA algorithm is
robust against various choices of γ (Section 4.4). In addition, we observed
that the default settings generally yielded meaningful estimates in real data
applications.

The sparsity parameter can also be tuned based on the data. We provide a
schema for cross-validate the parameters of SCA and SMA (e.g., the approxi-
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Figure C.1: Comparison of the `p norms. Left (lasso): Two `1-norm contours
(brown) of 1 and

√
2 and the `2-norm contour (grey) of 1. Right (smooth):

`4/3-norm contours (green) of 1 and 21/4 and the `2-norm contour (grey) of 1.

mation rank k and the sparsity parameter γ). To assess a candidate parameter,
we adapt a K-fold cross-validation framework (K often takes the value 10) as
previously introduced by Wold (1978):

Step 1) Given the input data X ∈ Rn×p, we first construct K leave-out data
matrices X(1), X(2), ..., X(K) ∈ Rn×p, each of which has one-Kth dis-
joint portion of elements being randomly sampled and removed (i.e.,
set to zero). Let C(k) collects the indices of those left-out elements in
X(k), for k = 1, 2, ...,K.

Step 2) Next, we apply SCA (or the SMA) to every new matrix X(k) with the
candidate tuning parameters and obtain its low-rank approximation
X̂(k). That is, for SCA, X̂(k) = X(K)Ŷ(k)[Ŷ(k)]T, and for SMA, X̂(k) =

Ẑ(k)B̂(k)[Ŷ(k)]T

Step 3) Finally, calculate the mean square error (MSE) of X̂(k) over those
left-out elements C(k), defined as

MSE(k) =
∑

(i,j)∈C(k)

(
X̂
(k)
ij − Xij

)2
,k = 1, 2, ...,K.
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We then evaluate the “goodness” of a candidate parameter by the
average MSE across K leave-out data matrices.

Upon the construction of leave-out data matrices, the left-out elements are
randomly sampled; this typically removes scattered entries of X, rather than
trunks of adjacent ones. For example, if X is the adjacency matrix of a graph,
then this procedure is akin to the edge cross-validation studied by Li et al.
(2020). Setting the left-out elements to zero eliminates all terms in

∥∥ZTXY
∥∥

F
that related to them. Our low-rank estimation for the missing entries is closely
related to the SVD-based methods in data imputation literature (Troyanskaya
et al., 2001).

C.3 Properties of soft-thresholding

In the PRS update, the last step uses a shrinkage operator to project the rotated
matrices onto the feasible set. Shrinkage operators are widely used for creating
sparse structure, as it is easy to implement. The threshold value t can be found
in O(log2(1/ε)) time through a binary search, where ε is the convergence
tolerance.

For the `1-norm constraint (or penalty), we show that a soft-thresholding
shrinkage is “appropriate.” Let Y ∈ V(p,k) and Ŷ ∈ B(p,k) be the two
matrices before and after a shrinkage operation respectively. A direct calcula-
tion shows that given a constraint ‖Ŷ‖1 6 γ, the soft-thresholding shrinkage,
Ŷ = Tγ(Y), minimizes ‖Ŷ − Y‖F. After the shrinkage, the objective value in
(4.4) (i.e., explained variance) decreases by at most ‖ZTX‖F‖Ŷ − Y‖F. Note
that we update Y fixing Z (and X).

We provide theoretical properties for the soft-thresholding, regarding
preservation of orthogonality and the explained variance. Let Y ∈V(p,k) and
let Ŷ = Tγ(Y) be the result of soft-thresholding Y as defined in (4.9).

First, we denote the included angles between any two columns of Ŷ and Y
as θij, for i, j = 1, 2, ..., k. When it is clear, we also write θii as θi for simplicity.
We define the deviation between Ŷ and Y as

∑k
i=1 sin2(θi). The following

proposition bounds the sum of deviations.
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Proposition C.2 (Deviation due to soft-thresholding). If t is sufficiently small,
then

k∑
j=1

sin2(θj) 6
∥∥∥Ŷ − Y

∥∥∥2

F
.

Proof. Let ŷi and yi be the ith column of Ŷ and Y respectively. For the included
angle θi,

cos(θi) = ŷT
iyi/‖ŷ‖2

= ‖ŷi‖2 + ŷ
T
i (yi − ŷi)/‖ŷ‖2

> ‖ŷi‖2.

The last inequality results from the definition of soft-thresholding. Then, by
the Pythagorean trigonometric identity, we have

sin2(θi) = 1 − cos2(θi)

< 1 − ‖ŷi‖2
2

6 ‖ŷi − yi‖2
2.

The last inequality is due to the triangular inequality. Finally, summing over
the columns yields the desired result.

Proposition C.2 controls the deviation with the Frobenius norm of Y − Ŷ.
Since the columns of Y are mutually orthogonal, for any two columns of Ŷ, we
have ∣∣ŷT

i ŷj
∣∣ 6 sin

(
θj + θl

)
‖ŷi‖2

∥∥ŷj∥∥2

assuming θi + θj 6 π/2. Hence, a small deviation indicates that the orthogo-
nality of Ŷ is conserved after soft-thresholding.

Next, we investigate the change in explained variation due to soft-thresholding.
Define the explained variance (EV) of a data matrix X by the loading matrix Y
as EV(Y) = ‖XY‖F. The following proposition bounds the EV for Ŷ and is due
to the Theorem 13 in Hu et al. (2016).
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Proposition C.3 (Explained variance after soft-thresholding). If for all 1 6 i 6

k, θi = θ and
∑k
j=1 cos(θij) 6 1, then(

cos2 θ−
√
k− 1 sin 2θ

)
EV(Y) 6 EV(Ŷ)

for any data matrix X.

Proposition C.3 implies that if the deviation between Y and Ŷ is small, then
the EV of Ŷ is close to that of Y,

(
cos2 θ−O(θ)

)
EV(Y) 6 EV(Ŷ).

C.4 Independent component analysis

In this section, we demonstrate the connection between sparse PCA (specifi-
cally, our SCA formulation) and independent component analysis (ICA).

ICA is motivated by blind-source (or blind-signal) separation in signal
processing (see, e.g., Georgiev et al., 2005; Comon and Jutten, 2010), where
we observe a series of multivariate signals Xi· ∈ Rp for i = 1, 2, ...,n, where
n is the number of observations. In ICA, there exist k independent, non-
Gaussian and unobserved source signals underlying each observation,Zi· ∈ Rk

for i = 1, 2, ...,n, and each observation is a linear mixture of these source
signals, this is, X = ZMT (or Xi· = Zi·M for i = 1, 2, ...,n), whereM ∈ Rp×k

is the mixing matrix. ICA aims to “un-mix” the observed X and extract Z
from it. In particular, since the k source signals are independent, it is often
assumed that Z’s columns have unit length and are orthogonal to each other
(i.e., Z ∈V(n,k)). The ICA literature is rich in theoretical results (Hyvärinen
and Oja, 2000; Chen and Bickel, 2006; Samworth and Yuan, 2012; Miettinen et al.,
2015), and most methods for ICA (e.g. fastICA) identifies both platykurtic-
and leptokurtic-sourced signals.

We consider a sparse version of ICA, sparse ICA, where Z is sparse (or the
columns of Z follow leptokurtic distributions). We show that sparse ICA and
sparse PCA are unified by the SMA. To see this, recall from Section 4.2 that
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the SMA of a data matrix is ZBYT, where Z and Y are both sparse but B. We
interpret the SMA for the two modern multivariate data analysis:

Sparse PCA For sparse PCA, we treat Y as the sparse loadings, and ZB to-
gether as the component scores.

Sparse ICA For sparse ICA, the sparse source signals (or the independent
components) are the columns of Z, the mixing matrix is BYT.

It can be seen that both sparse PCA and sparse ICA seek a sparse component
in the data: sparse PCA extracts them for the column space (Y), while ICA the
row space (Z). Hence, performing sparse PCA to the transposed input data
matrix actually accomplishes sparse ICA to the original data. This highlights
the similarities between sparse PCA and sparse ICA.

Example: Blind source separation with SCA

We apply SCA to the blind source separation of image data (Comon and Jutten,
2010). For example, suppose the source signals are individual images, and a
sensor senses several mixed images, each an linear mixture of the sources. The
objective is then to identify the source images from the observed ones (i.e., to
decipher the linear coefficients).

We selected three 512 × 512-pixels pictures of diverse genres from the
internet (Figure C.2, the first row). The sample excess kurtosis of the images
are 1.53, 3.32, and -0.45 respectively. Next, we generated three (n = 3) mixtures
of the original images, with the linear coefficients randomly drawn from the
uniform distribution, Unif(0,1). The three mixed images are displayed in the
second row of Figure C.2. For sparse PCA, we vectorize the mixed images
(that is 5122-pixels) and put them in a shallow matrix X ∈ Rn×p, where
p = 262, 144. This matrix is then input to SCA (Algorithm 4.2) for three
sparse PCs (k = 3), with the sparsity parameter γ set to

√
nk. The resulting

sparse loadings Y ∈ Rp×k contains the three separated source images and the
scores S ∈ Rn×k decodes the mixing coefficients. The third row in Figure C.2
displays the three separated images (i.e., the three rows of Y.) The clean-cut
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Figure C.2: Blind image signal separation using SCA. The three panel rows
display three source images, three linear mixtures of the source images, and
the three separated images using SCA.

identification of the source images suggests that sparse PCA is capable of
extracting sparse and independent components from the data.

Algorithmic comparisons

Another insight for sparse PCA and sparse ICA can be gleaned from their algo-
rithms. In this section, we demonstrate that the fastICA algorithm (Hyvarinen,
1999) and our SCA algorithm are both closely related to kurtosis (Mardia,
1970).

The fastICA algorithm finds Z in two steps. The first step is to pre-process
X. The pre-processing of centering and whitening (see, e.g., Comon (1994))
results in the leading k left singular vectors Û ∈ V(n,k). The second steps
searches for an orthogonal rotation that maximize the non-gaussianity of ÛR,
as measured by the approximation of negentropy,

maximize
R

∑k
j=1

{
G([ÛR]·j) −G(ν)

}2
subject to R ∈ U(k), (C.1)
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where G(x) is a non-quadratic function for x ∈ Rn, and ν ∼ N(0, In) is the
multivariate standard Gaussian vector. Finally, ÛR̂ is the fastICA estimate
for Z, where R̂ is the solution to (C.1). Hyvarinen (1999) noted that setting
G(x) = ‖x‖4

4/n, the optimization in (C.1) takes the form1

maximize
R

∑k
j=1 kurt2([UR]·j) subject to R ∈ U(k), (C.2)

where kurt(x) is the sample excess kurtosis of x ∈ Rn and is defined as
kurt(x) = n

∑n
i=1(xi − x̄)

4/
(∑n

i=1(xi − x̄)
2)2

− 3, where x̄ =
∑n
i=1 xi/n is

the mean. It can be seen from (C.2) that fastICA produces either leptokurtic
(kurt(x) > 0) or platykurtic (kurt(x) < 0) estimation for the columns of Z, be-
cause of the squared kurtosis in the objective function. This primarily explains
that fastICA allows both platykurtic- and leptokurtic-sourced signals.

As for SCA, the algorithm uses the varimax rotation to find the orthogonal
rotation. Suppose Y ∈ V(n,k). Since the sum of squares of Y’s columns
are constant,

∑k
j=1 Y

2
ij = 1, maximizing the varimax rotation is equivalent to

maximizing the sum of sample kurtosis of Y’s columns,

Cvarimax(Y) =
k∑
j=1

kurt(Y·j) + constant.

This suggests that the varimax rotation in SCA promotes some leptokurtic
columns in the loading Y of sparse PCs. Note that any sparse distribution is
leptokurtic (see Theorem 2.1 of Rohe and Zeng (2020)). Hence, SCA generates
specifically sparse PCs.

In many applications of ICA, the number of independent components and
the number of observed variables are the same (i.e., p = k), in which case,
the mixing matrix is square. The p = k regime is generally challenging. As
such, many theoretical results presume no or very little noise in X, in order for
estimating guarantees. By contrast, sparse PCA typically presumes the data
to comprise noise and the statistical model usually contain a noise term. In
addition, it is showed that sparse PCA is consistent even when the observed

1The authors also suggested different forms of G(x).
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data is high-dimensional (i.e., p grows at the same rate as n) or sparse by
itself (i.e. contains many zeros) (Rohe and Zeng, 2020), while it is unclear yet
whether ICA is consistent or not under these settings.
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d appendix for chapter 5

D.1 Technical proofs

Proof of Proposition 5.1

Proof. For (a), when the teleportation constant is zero, the PPR vector becomes
the stationary probability distribution of a standard random walk (Lovász,
1993), which is proportional to the node degree distribution d∗. The second
part of (a) is intuitive, recognizing that the teleportation introduces a particular
favor of the seed node.

We prove (b) by constructing an explicit form of the PPR vector. Let
Rτ = τ

∑∞
s=0(1 − τ)sPs. The infinite sum converges for τ ∈ (0, 1]. Then,

τπT + (1 − τ)πTRτP = τπT + (1 − τ)πT

(
τ

∞∑
s=0

(1 − τ)sPs

)
P

= τπT + τ

∞∑
s=1

(1 − τ)sπTPs

= πTRτ.

Hence, p = RT
τπ satisfies the definition of personalized PageRank vector.

Proof of Lemma 5.3

Proof. For part (a), since Xiw | Z,Φ ind.
∼ Bernoulli(λΦz(i)w), it follows from

the law of expectation that

A = E
(
E
(
XTX | Z

)
| α, λ,Φ

)
= ΦT (λ2 E

(
ZTZ | α

))
Φ = ΦTDΦ,

where D = mλ2 diag(α). Then,

dw =

n∑
v=1

Awv =

k∑
t=1

dtΦtw = mλ2
k∑
t=1

αtΦtw,
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and
P = D−1ΦTDΦ = ΓTΦ,

where Γ = DΦD−1. For part (b), since A = ΓDΓT by definition,

P = D−1A = D−1ΓDΓT = ΦΓT.

Remark. It can be seen that P2 = ΓT(ΦΓT)Φ = ΓTPΦ.

Proof of Lemma 5.4

Proof. From Lemma 5.3, we have Ps = ΓTPs−1Φ for any integer s > 1. Then,
from Proposition 5.1(b), we have

pT =

∞∑
s=0

τ(1 − τ)sπTPs

= τπT + (1 − τ)

( ∞∑
s=0

τ(1 − τ)s(Γπ)TPs
)
Φ

= τπT + (1 − τ)pTΦ.

In the second equation, Γπ = (1, 0, · · · , 0) by the assumption.

Proof of Theorem 5.5

The proof of Theorem 5.5 follows directly from Theorem 1 of Chen et al.
(2020a), recognizing that the average expected node degrees δ is

1
n

n∑
w=1

dw =
mλ2

n
.

Proof of Corollary 5.6

Proof. For frequency, the algorithm ranks words by x = p− τπ. It suffices to
show that with high probability, xw > xv for two words w ∈ S and v /∈ S that
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are not seed keywords. To this end, we apply triangle inequality and get

xw − xv
‖x‖∞ >

pw − pv
‖p‖∞

>
pw −pv

‖p‖∞ −
|pw −pw|

‖p‖∞ −
|pv −pv|

‖p‖∞
> ∆w −

2‖p−p‖∞
‖p‖∞ .

Since ∆w 6 1, assumption (5.8) contains the condition mλ2/n > c0 logn in
Theorem 5.5, which implies that

‖p−p‖∞
‖p‖∞ <

∆w

2 ,

ifmλ2∆2
w/n logn is large enough. These collectively imply xw > xv as desired.
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e appendix for chapter 6

E.1 Supporting materials and methods

Targeted sampling with Personalized PageRank

We performed a target sampling from the Twitter friendship network with
personalized PageRank (PPR) (Chen et al., 2020a). Consider the Twitter friend-
ship network (or graph) of n accounts,G = (V ,E), where V = {1, 2, ...,n} is the
list of accounts, and E is the edge list representing friendships (or followings).
For example, if account u follows account v, then (u, v) ∈ E. Note that G is
a directed graph, that is, (u, v) ∈ E does not imply that (v,u) ∈ E. Graph G
can be represented by an adjacency matrix, A ∈ {0, 1}n×n, where Auv = 1 if
(u, v) ∈ E and 0 otherwise. For account u, define du =

∑
v∈V Auv to be the

number of u’s friends (or followings). We consider those accounts that have
at least one friend (i.e., du > 0).

The PPR vector x ∈ Rn is defined as the stationary distribution of which
we call a personalized random walk (Page et al., 1998) on G. The random walk
starts at a seed account u ∈ V of interest. At each step, the walker returns to u
with probability τ, called the teleportation constant, and with probability 1 − τ,
the random walker randomly goes to a friend of the current account. For any
account v, its corresponding value in the PPR vector, xv, is the probability that
the random walker lands on it. xv quantifies the “closeness” of account v to
the seed account (the larger the closer). We used the PPR vector to determine
the inclusion of Twitter accounts to our sample. The PPR vector has a simple
and useful algebraic representation. Define the preference vector π ∈ Rn with
πu = 1 and πv = 0 for all v 6= u. Then, the PPR vector x is the solution to a
linear system:

x = τπ+ (1 − τ)Px,

where P ∈ Rn×n is the graph transition matrix with Pvu = Auv/du.
For a massive graph like the Twitter friendship network (large n), it is

computationally intractable to calculate the exact PPR vector. We utilized an
approximate algorithm to estimate the PPR vector, which examines only the
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friendship information of accounts nearby the seed account. Algorithm E.1,
which extends the algorithm in Andersen et al. (2006), outlines this procedure.
The PPR sampling takes as input the preference vector, the teleportation con-
stant, and a tolerance controlling parameter ε ∈ R. The algorithm maintains
two vectors: the approximate PPR vector p ∈ Rn and the probability mass
residual r ∈ Rn, where p is initialized to be a vector of zeros and r is initialized
as π. Once initialized, Algorithm 2.3 is an iterative procedure. At each iteration,
the algorithm randomly samples one account that is “sufficiently close” to
the seed using the criterion ru/du > ε. Here, we used a heap to store the
non-zero elements of r, which allows fast query of an eligible u. Then, the
algorithm sends a Twitter application programming interface (API) request
for u’s friend list. Twitter API returns the basic information of du accounts that
u follows, including the number dv of their friends. Next, the probability mass
at ru is divided into three parts proportional to (i) τ, (ii) (1 − τ)/2, and (iii)
(1 − τ)/2 and updated as follows. Part (i) is moved to pu. Part (ii) is evenly
distributed to rv’s, where v’s are the accounts followed by u. Finally, part (iii)
stays at ru. When the iteration terminates, p becomes an approximate PPR
vector. Algorithm 2.3 then includes any account v that has sufficiently large
pv (> ε) to the output sample. In some rare occasions where an account’s
friendship information is unavailable (e.g. private account), we excluded the
node and put any non-zero values in p and r to ru (the seed account).

In the murmuration 2018, we performed the PPR sampling (https://
github.com/RoheLab/aPPR) for 59 seed accounts (Appendix Table E.1) with
the teleportation constant τ = 0.1 and tolerance ε = 10−8. Such parameter
settings leveraged satisfactory approximation rate within reasonable computa-
tional time. The sampling procedure was terminated when the sample size
reached roughly 2× 104. We recorded the friends (followings) and followers
of all examined Twitter accounts along the PPR sampling. Collectively, the
PPR sampling retried friendship information of 267,117 Twitter accounts who
follow a total of 10,174,291 accounts. We then removed those accounts who
follow fewer than 2 friends or are followed by fewer than 5 accounts, which
resulted in a total of n ′ = 193, 120 Twitter accounts who follow a total of
n ′′ = 1, 310, 051 accounts. Finally, we represented the PPR sampling results

https://github.com/RoheLab/aPPR
https://github.com/RoheLab/aPPR
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Input: Preference vector π, teleportation constant τ, and tolerance ε
Procedure:

Initialize p← 0, r← π, α ′ ← α/(2 − α).
while ∃u ∈ V such that ru > εdu do

Send a Twitter API request for account u’s friend list
Add τru to pu // part (i)
for all nodes v that u follows do

Add (1 − τ)ru/(2du) to rv // part (ii)
Replace ru by (1 − τ)ru/2 // part (iii)

Output: A set of accounts that satisfy pv > ε.
Algorithm E.1: PPR sampling using the Twitter API

with matrix A ′ ∈ {0, 1}n ′′×n ′′ with A ′uv = 1 if and only if account u follows
account v and performed community detection on A ′.

Vintage sparse PCA for flock identification

In this section, we explain the algorithm of vintage sparse PCA (VSP) in the
context of Twitter friendship network. VSP is analogous to a simple form
of factor analysis and estimates sparse components of the input data matrix
(Chen and Rohe, 2020). To identify flocks with the sparse components, we
applied VSP to the Twitter friendship network returned by PPR sampling.
Let A ∈ {0, 1}n×m be the observed friendship matrix with Aij = 1 if account
i follows account j and 0 otherwise, where n = 193, 120 is the number of
accounts examined in PPR sampling, and m = 1, 310, 051 is the number of
account followed by some of the n accounts. We focus on identifying flocks
among the 1,310,051 Twitter accounts (columns ofA), on which we performed
the downstream analysis.

Define the regularized Laplacian L ∈ Rn×m as

Lij =
Aij√

ri + τr
√
cj + τc

, for i = 1, 2, …,n, j = 1, 2, …,m,

where ri =
∑m
j=1Aij and cj =

∑n
i=1Aij are the row and column sums of

A, and τr =
∑
i ri/n and τc =

∑
j cj/m are row- and column-regularizer
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respectively. Given L, Algorithm E.2 implements VSP and computes k sparse
components in two main steps. The first step is to calculate a low-rank approx-
imation using the singular value decomposition (SVD) of L,

L ≈ ÛΛ̂V̂T,

where Û ∈ Rn×k and V̂ ∈ Rm×k have orthogonal columns and contain the
leading left and right singular vectors, and Λ̂ ∈ Rk×k is a diagonal matrix
diag(λ1, λ2, ..., λk) where λi > λi+1 for all i = 1, 2, ...,k − 1. The second step
applies a varimax rotation to V̂ from its right. The varimax rotation maximizes
the varimax criterion (Kaiser, 1958),

maximize
k∑
j=1

 1
n

n∑
i=1

Y4
ij −

(
1
n

n∑
i=1

Y2
ij

)2
 , (E.1)

subject to Y = V̂O, OTO = Ik, O ∈ Rk×k.

Varimax maximizes the fourth sample moment of the rotated components
ÛO.1 By maximizing this “kurtosis,” varimax promotes sparsity in the rotated
components. Finally, Algorithm E.2 outputs the rotated components Y = V̂Ô,
where Ô is the orthogonal matrix that maximizes the objective in (E.1). Each of
the k columns corresponds to a different community.2 VSP is computationally
feasible and suitable for Twitter friendship network. (Rohe and Zeng, 2020)
showed that under the degree corrected mixed-membership stochastic block
model, VSP offers a consistent estimate of the underlying block membership,
provided the network is sufficiently large and dense.3

In the murmuration 2018, we identified k = 100 communities among the
1,310,051 Twitter accounts. We assigned each account a community member-

1Equation (E.1) is a simplified statement of varimax; because we do not use the row
normalization step proposed in Kaiser (1958), the additional term

(∑∑
Z2
ij

)2 is constant inO.
2In our implementation of Algorithm E.2, we configure the signs of O’s columns such that

every rotated singular vector is positively skewed (i.e., the sums of third moments of elements
are positive,

∑
i Y

3
ij > 0). This is valid because the optimal value in Equation (E.1) is invariant

in sign flips of O’s columns.
3This result requires an additional centering step which we find is unnecessary for our

analysis.
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Input: The regularized Laplacian L and number of communities k.
Procedure VSP(L,k):

SVD. Calculate the SVD of L and let V̂ contain the top-k right
singular vectors.

Varimax. Find orthogonal matrices Ô that maximizes the varimax
criterion in Equation (E.1).

Output: k sparse components in the columns of Y = V̂Ô

Algorithm E.2: Vintage Sparse PCA (VSP)

ship according to the rows of Y as returned from Algorithm E.2. Specifically,
the i-th account was assigned to the l-th flock if Yil is greater than other flock
loadings of account i,

Yil > Yil ′ , for l ′ = 1, 2, ..., l− 1, l+ 1, ...,k.

For the downstream analysis, we investigated the “leading members” of each
flock, as measured by size of the elements in Y. In particular, for flock jwith
nj member accounts, we focused on the top 1,000 member accounts that have
the largest flock loadings, Yi ′j, where i ′ is the member accounts of flock j.
The selected 50 flocks presented in the murmuration 2018 all have more than
1,000 members (nj > 1, 000, Appendix Table E.2). For those flocks with no
more than 1,000 members (nj 6 1, 000), we included their entirety for the
downstream analysis.

Best feature function for keywords extraction in profile descriptions

Provided the member accounts of flocks, we analyzed the profile descriptions
of Twitter accounts in order to label individual flocks. Consider the profile
descriptions of m accounts that belong to the same flock. We treated each
description as a text document and tokenized the words (terms) in it, followed
by stop word removal. Then, we represent them descriptions with a document-
term matrix X ∈ Rm×w, where Xij is the number of times that word j occurs
in document i, and w is the total number of distinct words (terms).

We applied a “best feature function” (BFF) technique that helped us extract
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keywords from profile descriptions. BFF is complementary to VSP. For each
flock (i.e., each component in VSP), BFF assigns each word (or term) a feature
score. The feature score Fij ∈ R of word i for flock j is the average of word
frequency in each profile, weighted by flock loadings Y·j,

Fij =

m∑
l=1

XliYlj.

For variance stabilization, we applied a square root transformation on Fij. The
feature score Fij measures the importance of term j to the i-th flock. To inter-
pret each flock, we inspected the most representative 15 keywords suggested
by BFF while also relying on skimming through the actual profile descriptions.
BFF effectively reduces the work load from domain experts; once the top terms
are cross-validated by examining several representative accounts, a clear inter-
pretation would surface. For example, the top scored terms for the “national
political journalists” flock, such as “reporter,” “political”, “correspondent,”,
“white house”, and “political reporter,”, suggest that this flock consists of
reporters/correspondents stationed in Washington DC covering the White
House (Appendix Table E.3). An examination of profile descriptions of the
top accounts validates this interpretation.

Text analysis for news event identification

This section describes the first stage of our daily workflow that identifies
ongoing news events from tweets. After pre-processing of text (e.g., stop word
removal, white space removal, emoji removal, tokenization), we transform
all the tweets into a document-term matrix, where a document is a tweet and
a term is a word. Given a set of current tweets (from one day), we measure
the distinctive usage for each terms by contrasting its frequency to that in a
historical corpus. Here, we define the historical corpus as the collection of
previous tweets spanning the preceding two months. For any terms i in a
corpus ofwwords, let c̃i be the count of its occurrence in the historical corpus,
and let ci be its frequency in the current corpus. We define the contrast of
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word i as

ĉi =

√
wci∑
i ci

−

√
wc̃i∑
i c̃i

, (E.2)

where a larger value suggests a more distinctive usage. In particular, we add
a smoothing constant to c̃i’s, which is set to 10 (Manning et al., 2008). We
collect terms with big contrast of the day for downstream analysis. In our
experience, proceeding with top 50 terms (in contrast measure, ĉ) generally
offers a satisfactory coverage of news events reported by the mainstream media.

We cluster the selected terms based on their co-occurrence in tweets. Specif-
ically, the similarity of two terms, i and j is measured by the number of co-
occurrences, normalized by the total number of times they appear in the
current day’s corpus. This is calculated with the document-term matrix X of
the current day’s corpus, where Xki is the number of times that term i appears
in document j. The similarity between i and j is defined as

Sij =

∑
k XkiXkj√∑

k Xki
√∑

k Xkj
.

The similarity measure does not normalize for popularity of individual terms,
that is, some terms co-occur broadly with many other terms and some terms
only co-occur with a few specific terms. To account for this, we further normal-
ize similarity matrix by its row sums, Σij = Sij/(τ ·

∑
j Sij), where τ = 1.02 is

a regularization constant (assuming 50 terms are selected previously). Next,
we apply Ward’s hierarchical clustering (Murtagh and Legendre, 2014) to
the matrix ΣΣ ◦ Σ, where ◦ is element-wise matrix multiplication and obtain
clusters of terms. Each cluster of terms are related to a news event and the
terms are used to initiate the downstream searching for related tweets about
the event.

Forward searching for tweet classification

In the second stage of the daily text analysis, we assign relevant tweets into
events. To this end, we define inclusion terms for each event so that any tweets
that contain at least one of the inclusion words are treated as pertaining to the
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Input: An initial set of inclusion terms I and the desired number of
inclusion terms n

Procedure FS-Keywords(I,n):
Initialize the set of searched inclusion terms S = I.
while set S contains less than n terms do

1. Update X with the document-term matrix of tweets currently
included by the terms in S.

2. Calculate normalized word count ĉ as defined in Equation
(E.2) with X.

3. Find the term i outside Swith the greatest word contrast
measure, i.e., ĉi > ĉj for ∀j /∈ S.

4. Add term i to the set of inclusion terms, S← S ∪ {i}.
Output: The final set of inclusion terms S

Algorithm E.3: Forward searching for inclusion keywords

event. The initial set of inclusion terms for an event are the terms identified in
the previous step. To expand the set of inclusion terms, we devised a forward
searching algorithm (Algorithm E.3) that adds one inclusion term at a time.
Algorithm E.3 includes each term that is the most “representative” in the
already included tweets, as measured by Equation (E.2). In particular, we
have a specialist who adjudicates whether the suggested inclusion terms are
valid and exclude those that are inappropriate based on their understanding
of the news events. Finally, given the lists of inclusion terms for all events, we
identify event tweets that include any one of the inclusion terms.

E.2 Supporting discussions

Comparing social-network-based and text-based contextualization

Apart from identifying flocks by social network structure, an alternative is
to reply on text to do so. Here we present a comparison between text-based
contextualization and social-network-based approach.

The social-network-based approach was elaborated in previous sections
(Appendix Table E.2). For text-based approach, we first aggregated tweets by
account and performed topic modeling by adapting Latent Dirichlet allocation
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(LDA), which yielded estimation of the probability of each account’s tweets
belonging to a certain topic. Specifically, we fit the LDA model with 50 topics
by invoking the Gibbs Sampling (Phan et al., 2008) (with the default settings
implemented in R package topicmodels). Appendix Table E.5 lists the top 20
terms for each topic estimated by LDA. Then, we aggregated the probabilities
by flock. Appendix Figure E.4 displays the relations between flocks and the
50 topics. The overall results show that each flock tended to be uniquely
associated with a certain topic, suggesting similar effectiveness between a
social-network-based approach and a text-based approach.

However, we did find subtle differences. We computed entropy of the two
estimations at individual accounts level. Specifically, for LDA, we computed
the entropy of topical distribution for each aggregated document (i.e. each
account’s tweets), and for VSP, we calculated the entropy of row-normalized
loadings (Y) for each account. Comparing the two approaches, we observed
that the social-network-based approach yields a lower entropy for a vast ma-
jority of clusters, indicating less uncertainty in classification (Appendix Figure
E.5ab). This could potentially be attributed to the fact that a flock may express
opinion on a wide range of topics over time, whereas their social context may
stay relatively stable. As a result, finding flocks based on the topics they dis-
cussed in their tweets introduces a greater level of uncertainty. This suggests
that that our method is better suited for finding finer-grained communities
than the approach based only on text.
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E.3 Supporting figures
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Figure E.1: Box plot of proportions of same-category retweeting. For each
account, the percentage of its retweets that originated from other accounts of
the same flock category was computed. Each box corresponds to one flock,
with the panels indicating flock category.
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Figure E.2: Heat map of friend counts among flocks. Each row and column
corresponds to a flock, in the same order. The row and column panels indicate
flock categories, with the category names shown in the top and right strips.
The color shades indicate the number of followings from the row flock to the
column flock, with the square root transformation.
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Figure E.3: The usage of 129 frequently used hashtags by 50 flocks. Each row
corresponds to one hashtag, with row panels on the right indicating the topical
category. Each column represents one flocks with column panels on the top
indicating the flock category. The darkness in color shows the percentage of
active accounts in the flock who used the hashtag.
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Figure E.5: Comparison of the entropy in LDA and VSP estimations. For each
account in the 50 flocks, the entropy of its social context estimation by LDA
(brown) and VSP (green) is shown, (a) stratified by 50 matching clusters, (b)
across all accounts examined.
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E.4 Supporting tables

Table E.1: Seed nodes used for PPR sampling in 2018 and 2019. Handles
belongs to one of two types – “individuals” or “media”. The category of seed
nodes is also reported.

Twitter handle Type Category In 2018 In 2019
1 @anamariecox individuals liberal Yes Yes
2 @andersoncooper individuals liberal Yes Yes
3 @GStephanopoulos individuals liberal Yes Yes
4 @chucktodd individuals liberal Yes Yes
5 @maddow individuals liberal Yes Yes
6 @ezraklein individuals liberal Yes Yes
7 @NateSilver538 individuals liberal Yes Yes
8 @ggreenwald individuals liberal Yes No
9 @deray individuals blacktwitter Yes Yes
10 @nhannahjones individuals blacktwitter Yes Yes
11 @MHarrisPerry individuals liberal Yes No
12 @Moore_Darnell individuals blacktwitter Yes Yes
13 @WesleyLowery individuals blacktwitter Yes Yes
14 @FeministaJones individuals blacktwitter Yes Yes
15 @glennbeck individuals conservative Yes Yes
16 @GovMikeHuckabee individuals conservative Yes No
17 @seanhannity individuals conservative Yes No
18 @benshapiro individuals conservative Yes Yes
19 @DineshDSouza individuals conservative Yes Yes
20 @AnnCoulter individuals conservative Yes Yes
21 @RealAlexJones individuals alt-light Yes No
22 @StefanMolyneux individuals alt-light Yes Yes
23 @PrisonPlanet individuals alt-light Yes Yes
24 @Cernovich individuals alt-light Yes Yes
25 @gatewaypundit individuals alt-light Yes Yes
26 @RichardBSpencer individuals alt-right Yes Yes
27 @dailykos media liberal Yes Yes
28 @politicususa media liberal Yes Yes
29 @thinkprogress media liberal Yes Yes
30 @voxdotcom media liberal Yes Yes
31 @mmfa media liberal Yes Yes
32 @PolitiFact media liberal Yes Yes
33 @Salon media liberal Yes Yes
34 @thenation media liberal Yes Yes
35 @HuffPost media liberal Yes Yes
36 @MSNBC media liberal Yes Yes
37 @washingtonpost media mainstream Yes Yes
38 @nytimes media mainstream Yes Yes
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Table E.1: Seed nodes used for PPR sampling in 2018 and 2019 (continued).

Twitter handle Type Category In 2018 In 2019
39 @CNN media mainstream Yes Yes
40 @AP_Politics media mainstream Yes Yes
41 @CBSPolitics media mainstream Yes Yes
42 @NBCPolitics media mainstream Yes Yes
43 @ABCPolitics media mainstream Yes Yes
44 @politico media mainstream Yes Yes
45 @USATODAY media mainstream Yes Yes
46 @WSJ media mainstream Yes Yes
47 @FoxNews media mainstream Yes Yes
48 @theblaze media conservative Yes Yes
49 @dcexaminer media conservative Yes Yes
50 @DailyCaller media conservative Yes Yes
51 @conserv_tribune media conservative Yes Yes
52 @BreitbartNews media conservative Yes Yes
53 @infowars media conservative Yes No
54 @instapundit media conservative Yes No
55 @townhallcom media conservative Yes Yes
56 @RedState media conservative Yes Yes
57 @NRO media conservative Yes Yes
58 @TheRoot media blackmedia Yes Yes
59 @EBONYMag media blackmedia Yes Yes
60 @davidaxelrod individuals liberal No Yes
61 @maggieNYT individuals liberal No Yes
62 @jonfavs individuals liberal No Yes
63 @TuckerCarlson individuals conservative No Yes
64 @BretBaier individuals conservative No Yes
65 @brithume individuals conservative No Yes
66 @greggutfeld individuals conservative No Yes
67 @IngrahamAngle individuals conservative No Yes
68 @RealJamesWoods individuals conservative No Yes
69 @DrDavidDuke individuals alt-light No Yes
70 @JackPosobiec individuals alt-right No Yes
71 @Blklivesmatter individuals blacktwitter No Yes
72 @Nettaaaaaaaa individuals blacktwitter No Yes
73 @BreeNewsome individuals blacktwitter No Yes
74 @paulkrugman individuals liberal No Yes
75 @BuzzFeedBen individuals liberal No Yes
76 @TPM media liberal No Yes
77 @WestJournalism media conservative No Yes
78 @FreeBeacon media conservative No Yes
79 @Colorlines media blackmedia No Yes
80 @thehill media liberal No Yes
81 @theintercept media liberal No Yes
82 @jacobinmag media liberal No Yes
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Table E.2: The 100 flocks of 2018. For each flock, the total number of its member
accounts and the median ratio of members’ followers over followings ratios
(FFR) are reported. The 50 selected flocks are marked as “Yes” in the last
column.

Category Name # of members FFR Selected
1 conservatives Christian constitutionalists 27835 1.07 Yes
2 conservatives CruzCrew 7524 0.82 Yes
3 conservatives Huckbee supporters 20023 0.98 Yes
4 conservatives nationalists 2861 2.11 Yes
5 conservatives reactionaries 6815 2.00 Yes
6 conservatives Team Trump 20770 1.23 Yes
7 conservatives #tgdn 16561 0.98 Yes
8 conservatives the Trump train 46918 1.05 Yes
9 conservatives white nationalists 6626 1.53 Yes
10 foreign Australia 8393 8.32 No
11 foreign Brazil 4925 150.59 No
12 foreign Canada 17308 7.71 No
13 foreign France 5712 10.01 No
14 foreign Germany 4311 7.66 No
15 foreign Israel 5779 16.49 No
16 foreign South Africa 15509 30.90 No
17 foreign Sweden 2625 5.21 No
18 foreign UK 26853 20.42 No
19 issue-centric Afrikaners 2237 6.74 Yes
20 issue-centric black LGBTQ 12929 2.68 Yes
21 issue-centric #blacklivesmatter 10706 1.52 Yes
22 issue-centric Brexit 9832 7.73 Yes
23 issue-centric climate change 20259 4.70 Yes
24 issue-centric education 14813 3.89 Yes
25 issue-centric firearms and guns 4880 12.38 Yes
26 issue-centric LGBTQ 27263 4.84 Yes
27 issue-centric men’s self help (dark web) 7052 11.13 Yes
28 issue-centric Middle East correspondents 18549 15.17 Yes
29 issue-centric Palestine related 11265 7.30 Yes
30 issue-centric Parkland activists 2846 1.75 Yes
31 issue-centric public health 14882 6.54 Yes
32 liberals Bernie Bros 12173 1.30 Yes
33 liberals news junkies 19035 0.98 Yes
34 liberals the resistance 32604 1.07 Yes
35 liberals #uniteblue 13708 1.00 Yes
36 media conservative media/pundits 17828 12.68 Yes
37 media cultural elites 17041 9.53 Yes
38 media data journalists 13910 2.93 Yes
39 media digital privacy/security 19384 10.43 Yes
40 media mainstream media 11151 9.51 Yes
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Table E.2: The 100 flocks of 2018 (continued).

Category Name # of members FFR Selected
41 media national political journalists 9619 11.78 Yes
42 media progressive media 8217 8.71 Yes
43 media sports journalists 17658 35.22 Yes
44 other arts and culture 16006 14.04 No
45 other bitcoin 6820 28.81 No
46 other black women 12906 3.18 No
47 other chess 1431 10.09 No
48 other culinary circle 14409 13.09 No
49 other fashion 20122 262.37 No
50 other Kardashians 994 29.40 No
51 other life (entertainment) 177 33.88 No
52 other life (entertainment) 864 242.04 No
53 other NASA 9072 51.89 No
54 other social media marketers 41841 1.09 No
55 other social media marketers 56944 1.22 No
56 other tech & vc 28714 23.90 No
57 other US law enforcement agencies 586 10.81 No
58 other video games 5703 0.94 No
59 other video games 18356 65.68 No
60 other Catholic church 8240 7.51 Yes
61 other economics 15054 15.44 Yes
62 other NFL 18117 70.95 Yes
63 other pastors 13323 42.78 Yes
64 other political science 7564 1.50 Yes
65 other race and gender 19048 2.28 Yes
66 other tennis 2881 36.04 Yes
67 other theology 9908 2.19 Yes
68 other US congress & senators 9466 21.85 Yes
69 other Wisconsin 7277 2.25 Yes
70 other black Hollywood 24585 81.59 Yes
71 other comedy 17718 25.51 Yes
72 other Hollywood animation 3670 23.22 Yes
73 other pop music 25133 93.76 Yes
74 other the literary world 23117 4.54 Yes
75 other Youtubers 6784 5.50 Yes
76 regional Arkansas 3421 1.57 No
77 regional Baltimore 8646 3.03 No
78 regional Boise 3125 1.72 No
79 regional Boston 15224 4.70 No
80 regional Chicago 11752 2.89 No
81 regional Colorado 17168 3.84 No
82 regional Florida 6740 2.08 No
83 regional Florida 17134 3.27 No
84 regional Iowa 6685 2.06 No
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Table E.2: The 100 flocks of 2018 (continued).

Category Name # of members FFR Selected
85 regional Louisiana 8932 2.70 No
86 regional Michigan 9881 2.42 No
87 regional Minnesota 8975 3.35 No
88 regional Nashville 26254 280.59 No
89 regional New Jersey 7948 2.09 No
90 regional North Carolina 9583 2.32 No
91 regional NYC 14543 4.83 No
92 regional Ohio 12148 2.91 No
93 regional Philly 12084 2.99 No
94 regional Portland 11985 2.68 No
95 regional South Carolina 6456 2.16 No
96 regional St. Louis 10887 2.88 No
97 regional Texas 14937 2.87 No
98 regional Utah 4155 3.12 No
99 regional Wake Forest University 2127 1.39 No

100 regional Washington, DC 15242 3.50 No
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Table E.3: Keywords in member accounts’ profiles of the 50 selected flocks as
determined by BFF.

Name Keywords in member’s profile
1 Christian constitutionalists conservative, maga, christian, patriot, tcot, god, prolife, nra, con-

stitution, pjnet, cruzcrew, constitutional, ccot, deplorable, usa
2 CruzCrew cruzcrew, conservative, cruz, christian, ted, constitutional, con-

stitution, nevertrump, prolife, pjnet, tedcruz, god, country, ccot,
liberty

3 Huckbee supporters conservative, tcot, huckabee, prolife, mike, teaparty, christian,
sgp,republican, grassroots, liberty, constitution, american, free-
dom, president

4 nationalists frogtwitter, nice, respecter, nationalism, trad, racc, orthodox,
priv, paulhead, illuminati, screws, iq, normantwitter, loose,
anime

5 reactionaries nrx, reactionary, catholic, traditionalist, neoreactionary, patri-
archy, srx, evolution, neoreaction, philosophy, monarchist, civi-
lization, enemies, hitler, menciian

6 Team Trump trump, maga, donald, makeamericagreatagain, america, pres-
ident, americafirst, supporter, trumptrain, support, american,
kag, buildthewall, god, potus

7 #tgdn tgdn, conservative, tcot, nra, libertarian, maga, christian, lgod,
liberty, country, patriot, constitution, vet

8 the Trump train maga, kag, trump, fb, nra, military, buildthewall, americafirst,
patriot,vets, wwgwga, trumptrain, prolife, god, conservative

9 white nationalists nationalist, identitarian, white, european, altright, traditional-
ist, identity, american, nationalism, proeuropean, liftwaffe, alt-
media, racist, whitegenocide, antiwhite

10 Afrikaners en, south, die, afrikaans, van, vir, sa, afriforum, african, op, africa,
wat,nuus, ons, pretoria

11 black LGBTQ ig, gay, black, i_—Èm, actor, instagram, lgbt, hiv, snapchat, bitch,
model,gaymer, atl, morehouse, hivaids

12 #blacklivesmatter louis, st, ferguson, stl, justice, black, blacklivesmatter, ac-
tivist,organizer, liberation, postdispatch, people, mo, freedom,
fighter

13 Brexit mp, parliament, brexit, email, minister, conservative, casework,
bbc, editor, uk,secretary, labour, mep, queries, constituency

14 climate change climate, energy, environment, change, environmental, science,
clean, global, transition, renewable, solutions, defense, earth,
sustainable, solar

15 education education, schools, ed, school, students, policy, teacher, educa-
tors, public, educational, astronaut, teachers, nonprofit, charter,
college

16 firearms and guns firearms, shooting, hunting, gun, gear, outdoor, guns, manufac-
turer, accessories, tactical, shooters, worlds, industry, rifles, rifle
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Table E.3: Keywords in member accounts’ profiles of the 50 selected flocks
(continued).

Name Keywords in member’s profile
17 LGBTQ trans, lgbtq, reproductive, rights, justice, lgbt, queer, gender, les-

bian, women, people, transgender, gay, feminist, community
18 men’s self help (dark web) entrepreneur, emails, daily, masculinity, money, philosophy, on-

line, fitness, coach, teach, sign, dating, psychology, copywriter,
author

19 Middle East correspondents middle, east, fellow, syria, correspondent, senior, endorsement,
iraq, egypt, mena, foreign, security, analyst, beirut, views

20 Palestine related palestine, palestinian, rights, bds, middle, east, gaza, boycott, hu-
man, israeli, israel, journalist, occupation, solidarity, apartheid

21 Parkland activists msd, msdstrong, neveragain, march, douglasstrong, eagle,
marchforourlives, lives, douglas, activist, oliver, joaquin, ucf,
change, guac

22 public health health, policy, care, economist, professor, medical, economics,
healthcare, medicine, medicaid, kaiser, senior, researcher, medi-
care, reporter

23 Bernie Bros bernie, feelthebern, sanders, revolution, ourrevolution,
berniesanders, progressive, grassroots, presidential, vote,
progressives, medicareforall, campaign, support, affiliated

24 news junkies liberal, progressive, resist, theresistance, democrat, notmypres-
ident, obama, junkie, connecttheleft, atheist, retired, rwnj, left,
stillwithher, lgbt

25 the resistance theresistance, fbr, resist, bluewave, resistance, trumprussia, not-
mypresident, blm, geeksresist, trump, blocked, impeach, im-
peachtrump, fbpe, wearethepatriots

26 #uniteblue uniteblue, resist, liberal, theresistance, progressive, fbr, demo-
crat, notmypresident, obama, resistance, lgbt, impeachtrump,
equality, rwnjs, blue

27 conservative media/pundits contributor, host, columnist, editor, author, conservative, best-
selling, review, examiner, fox, cohost, contributing, fellow, syn-
dicated, senior

28 cultural elites editor, writer, critic, senior, culture, dot, book, york, times, maga-
zine, reporter, staff, cohost, buzzfeed, film

29 data journalists data, graphics, editor, design, journalism, visualization, previ-
ously, code, york, visual, product, visuals, times, designer, com-
putational

30 digital privacy/security security, privacy, law, pgp, technology, liberties, tech, hacker,
aclu, civil, cto, surveillance, author, professor, lawyer

31 mainstream media news, cnn, correspondent, breaking, anchor, emergencies,
weather, monitored, official, police, dial, cbs, nbc, twitter, depart-
ment

32 national political journalists correspondent, political, reporter, cnn, washington, white, poli-
tics, chief, politico, national, senior, covering, alum, bureau, ana-
lyst
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Table E.3: Keywords in member accounts’ profiles of the 50 selected flocks
(continued).

Name Keywords in member’s profile
33 progressive media bylines, writer, cohost, hire, deadspin, gmail, dot, jokes, genious,

podcast, dsa, boy, polygon, album, stone
34 sports journalists nba, espn, writer, sports, baseball, mlb, nfl, senior, insider, bas-

ketball, network, podcast, athletic, analyst, columnist
35 Catholic church catholic, prolife, diocese, faith, archdiocese, vatican, catholics,

abortion, life, priest, bishop, church, archbishop, roman, religion
36 economics economics, economist, economic, policy, bloomberg, professor,

health, reserve,markets, financial, macro, ft, wall, research, bank
37 NFL nfl, football, miami, espn, sports, college, hurricanes, analyst,

coach, network, insider, ig, university, national, draft
38 pastors pastor, church, jesus, husband, author, christ, hillsong, god, chris-

tian, apologetics, father, baptist, faith, president, gospel
39 political science political, professor, science, scientist, university, prof, politics, as-

sistant, associate, study, behavior, elections, american, methods,
data

40 race and gender black, professor, historian, studies, author, african, race, prof,
feminist, american, scholar, phd, history, sociologist, justice

41 tennis tennis, player, professional, instagram, atp, tour, pro, wta, play,
champion, cup, grand, slam, world, official

42 theology religion, author, pastor, faith, church, preacher, professor, jus-
tice, theological, theologian, historian, theology, black, seminary,
speaker

43 US congress & senators district, congressional, proudly, representing, congressman, rep-
resent, congress, house, serving, chairman, committee, subcom-
mittee, representatives, serve, honored

44 Wisconsin wisconsin, milwaukee, assembly, wisconsins, wi, journal, madi-
son, representative, district, sentinel, news, senator, racine, sen-
ate, counties

45 black Hollywood black, producer, actress, actor, bookings, booking, grammy, ig,
host, instagram, award, infocom, entertainment, tv, activist

46 comedy comedian, comedy, netflix, writer, standup, podcast, itunes, spe-
cial, watch, snl,central, streaming, actor, late, album

47 Hollywood animation animator, artist, animation, storyboard, icon, draw, creator, nsfw,
voice, contact, actor, illustrator, yotta, game, cartoon

48 pop music booking, bookings, grammy, music, album, infocom, mgmt, dj,
inquiries, ig, contact, beats, hop, tde, bookingscom

49 the literary world literary, fiction, books, poetry, nonfiction, book, publisher, litera-
ture, bookstore, magazine, publishing, writing, independent, au-
thor, writers

50 Youtubers youtube, youtuber, videos, egalitarian, channel, im, creator, shit,
gamer, patreon, internet, atheist, poisoning, twitch, merch
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Table E.4: Top 30 keywords in tweets of 10 flocks. The keywords are extracted
using the BFF technique.

Flock MUELLER ABORTION KHASHOGGI
the Trump
train

mueller, collusion,
democrats, dems, report,
investigation, #maga, fbi,
obama,#patriotsawakened,
trump, russia, president,
time, #muellerreport,
robert, years, #trump2020,
fake, #mueller, hillary,
dossier, media,
#wwg1wga, hunt, witch,
#factsmatter, flynn, fisa,
clinton

abortion, babies, life, baby,
murder,
#abortionismurder,
abortions, heartbeat,
matters, choose,
democrats, planned,
#prolife, parenthood,
dems, killing, #chooselife,
bill, born, infanticide, kill,
unborn, birth, god, alive,
term, democrat, support,
#abortionisnothealthcare,
innocent

brotherhood, muslim,
msm, laden,
#patriotsunited, osama,
obama, benghazi,
#benghazi, terrorist,
media, outrage, citizen,
#votered, connected,
#fakenews,
#fakenewsmedia, visa,
russiagate, alqaeda,
#voteredtosaveamerica,
illegal, american, #maga,
libya, holder, brennan,
card, truthleaks,
#osamabinladen

Christian
constitution-
alists

#aag, #maga, democrats,
collusion, #tcot, obama,
hillary, #tlot, strzok,
clinton, #the200, media,
hoax, dossier, fbi,
#trump2020, #uniteblue,
flatlined, comey, jw,
#pjnet, brennan, mass,
weissmann, #news,
#nahbabynah, #teaparty,
#bbc, hunt, witch

#aag, lifenews, #ccot,
#homeposts, #abortion,
#tcot, babies, #pjnet,
#state, parenthood,
#national, planned,
democrats,
#unbornlivesmatter, baby,
proabortion, democrat,
born, abortions, #maga,
prolife, alive, unborn,
survive,
#praytoendabortion,
abortion, theblaze,
infanticide, black,
newsbusters

#keepamericagreat,
thinker, hebdo, charlie,
#kag, contempt, foley,
#saudikillsja-
malkhashoggi, treated,
james, paris, slain, obama,
#maga, #charliehebdo,
#jamesfoley, #aag,muslim,
brotherhood, #tcot,
disguised, tw403,
democrat, tw395, tw520,
breathless, american,
#yahoo, soldiers, #ccot
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white na-
tionalists

#aag, mcfeels, #ftn, ftn,
pilpul, israel,
#golanheights, blrompf,
miga,prn, changedand,
workrelease, deflating,
boomer, gay, boomers,
#collegecheatingscandal,
asimov, #editorial,
repudiates, dylan, #wallst,
avenattis, sambei,
chicanery, promueller,
hunger, ralliers, songbook,
probation

#aag, whites, kushner,
jewish, casual, wypipo,
invaded, soulsucking,
childrearing, $22t,
monogamy,
multiculturalism, mcfeels,
expression,
miscegenation, endless,
tiddies, hoes, cancelled,
degeneracy, antiwhite,
nationalists, logically,
prostitutes, atheist, cartel,
mutual, subs, riddance,
certificates

confusing, raghead, israel,
mindless, posturing,
overhyped,abortion, #aag,
poison, surprising,
carlson, myths, buchanan,
privilege, countless,
snowden, routine,
introducing, class, frenzy,
starved, tucker, injected,
bombed, nails, undercut,
symptom, pitiful, acted,
desired

conservative
media/pun-
dits

#aag, gp, #ampfw,
flatlined, #wallst, podcast,
milking, episode,
#faultlines, #bft, journos,
themccarthyreport,
#twtfrontpage, brackets,
#allyourdreamsaredead,
pimps, #leftunhinged,
madnesscom, #frontpage,
#a1, pouncing, journo,
melanin, rowling, joins,
cohenprague, peters,
column, oversold,
#teamtrump

#aag, #homeposts, gp,
conservatism, gosnell,
opinion, #state, filmed,
abortionrights, argument,
#national, bulwark, editor,
debate, #ncpol, episode,
media, croatia,
unrepresentative, uncivil,
boli, #ncga, proabortion,
jedi, modified,civilly,
pounce, arguments,
rareness, noting

islamist, #aag,
#keepamericagreat,
thinker, charlie, hebdo,
proiran, chamber, echo,
#saudikillsja-
malkhashoggi, caper,
contempt, treated,
irresponsible, #kag,
abattoir, usiran, chicoms,
foley, cudgel, disaffected,
floats, axis, #frontpage,
#a1, #twtfrontpage, assad,
iranbacked, turkishqatari,
rick

progressive
media

#aag, maturity, flatlined,
#wallst, cursor, dms,
tracey, astute, habit,
milking, krassensteins,
bonuses, pimps, blinking,
tattoo, laptop, tl,
krassenstein, neocons,
hipster, staring,
pornographic, salads,
denialists, #bbc, gaming,
undisguised, vra,
amounting, dipshits

dsa, donate, donation,
bowlathon, #bowl19,
receipt, raising, upton,
fund, doggo, scoping,
swag, comrades, lipinski,
fundraising, teams,
#abortionsolidarity,
#homeposts,
#pissedoffpeaches,
comics, dccc, raised,
funds, hotdogs, #aag,
matched, otto, fred,
fundraiser,
#fundabortionbuildpower

podesta, iming, qanon,
strainer, bulldozing,
pulverizing, towns, wears,
nonsensical,
wictor,friedman, retweets,
subscribers, shia, careless,
impression, village, swipe,
province, federalist,
unbelievably, endorsing,
censored, davis,
blockbuster, heaven,
bernie, junior, fuckin, lol
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national
political
journalists

#mtpdaily, #mtp,
#nhpolitics, aides, hse,
#ifitssunday, cmte, ap,
cillizza, stakeout, hrng,
spox, arrives, #amrstaff,
collinson, #fitn, sxm,
negotiations,spotted,
nbcwsj, nonmueller,
gillibrand, caphill, nh,
mbrs, palm, #cnnstakeout,
longerterm, adds, #ap

#mtp, shifting, #mtpdaily,
postalabama, lifenews,
#nhpolitics, mccarthy,
#lagov, dga,nh, #lalege,
primary, #fitn, suburban,
alito, mostall,
recennservative,
scrapped, localities,
weighs, emerging, spate,
phenomenon,
competitive, erupt,
foreshadows, #valeg,
broader, breyer, reports

#mtp, ryan, fred,
publisher, scoop, tells,
#powerup, pence, #amr,
pres, editorial, statement,
sen, adds, #mtpdaily, ap,
asked, column, deception,
longestablished, answers,
hill, colleague,
disparaged,
#podsavetheworld,
capitol, tonight,
recommending, reporters,
antiterror

Middle East
correspon-
dents

#trumpwatch, kayla,
kotkin, #mog, rapport,
captors, yazidi, #world,
sayyaf, jailer, baghdadi,
foley, peskov, #isis, quil,
congr, tre, #trumprussia,
stasi, headfirst, graf, bibi,
lawenforcement,
husbands, #wallst,
iracontrolled, gulf,
parliament, gg,
#factchecker

arab, societies,
islamophobia, gp, koreas,
objecting, excerpt,
philippines, conspired,
commentators,
summarize, resolution,
#globalgagrule, #trumps,
#mog, stoning, lesbian,
sultans, discomfort,
amputation, deprived,
extramarital, greenhouse,
romania, bomb, charities,
briefings, uk, brunei, #us

saudi, khashoggi,
consulate, #saudi,
#khashoggi, jamal,
#jamalkhashoggi,
istanbul, turkish,
disappearance, mbs, case,
turkey, #turkey, killing,
erdogan, riyadh,
investigation,murder,
officials, official, affair,
arabia, prince, latest,
#mbs, arab, authorities,
piece, #saudiarabia

Bernie Bros #readthemuellerrepor,
bribed, russiagate,
steadfastly, corp,
#bernie2020, gopnazi,
#trumpresign, kleptocrats,
bribing, #dailykos, fellow,
hacks, jokes, resignation,
bernie, dt, puppets,
#tulsi2020, corporate,
vips, #tulsiforpresident,
#russiagate, oligarchs,
#bernie, theory, #biden,
assange, #tulsigabbard,
pass

#bernie2020, biden,
bernie, birmingham,
constitutional, upton, joe,
iraq, womans, lipinski,
extremist, medicare,
sanders, dccc, fred, rights,
comprehensive, anita,
campaigned, sole, donate,
#pissedoffpeaches,
guaranteeing, access,
#medicareforall,
pathological,
desegregation,
berniesanders, #dailykos,
compromise

yemen, #wikileaks,
#freejulian, #yemen,
yemeni, saudi, rt, arabia,
saudiled, united, bernie,
julian, children, states,
bombing, reevaluate,
humanitarian, support,
sanders, corporate,
starving, genocide,
#jamalkhashoggi,
theyoungturks, assange,
largest, theintercept,
regime, dictatorship,
unequivocal
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#uniteblue mueller, trump, report,
barr, congress, read,
president, public, house,
justice, american,
obstruction, full, trumps,
evidence, people,
attorney, release, general,
impeachment, muellers,
clear, letter, summary,
donald, robert,
republicans, mcconnell,
criminal, #muellerreport

women, alabama, ban,
bans, republicans,
georgia, gop, pregnant,
trump, ohio, republican,
abortion, politicians,
health, conservatives,
#alabamaabortionban,
rape, law, safe,
#abortionisawomansright,
access, rights, state,
lawmakers, raped, fight,
antiabortion, states, legal,
missouri

trump, khashoggi, saudi,
jamal, murder, prince,
crown, kushner, arabia,
murdered, saudis,
journalist, cia, trumps,
house, jared, president,
cover, dismembered, #p2,
bone, breaking, america,
knew, white, money, lied,
mohammed, tortured,
salman

the resis-
tance

report, mueller, trump,
barr, congress, #re-
leasethefullmuellerreport,
house, public, read, full,
justice, trumps,
impeachment, people,
obstruction, president,
release, #muellerreport,
#releasethereport,
summary, attorney,
muellers, american, gop,
mcconnell, donald, letter,
clear, democracy, call

women, #stopthebans,
gop, access, ban, bans,
alabama, rights,
antiabortion, safe, rape,
#womensrightsarehuman-
rights,
#abortionisawomansright,
passed, state, republicans,
fight, missouri,
reproductive, laws,
pregnant, health,
#waronwomen,
antichoice, legal,
alabamas, mortality, roe,
unconstitutional,
#abortionishealthcare

trump, khashoggi, saudi,
murder, jamal, prince,
saudis, crown, arabia,
journalist, kushner, cia,
mbs, khashoggis, house,
cover, trumps, ordered,
president, jared,
murdered, #khashoggi,
resident, white,
#justiceforkhashoggi,
money, donald, killing,
coverup, body
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Table E.5: Top terms of 50 topics by LDA. For each topic, 20 terms with the
highest term-topic probability are listed. The sum of topical probability over
all documents (Volumn) is also reported. We fitted 50 topics in order to match
the number of flocks for comparative purpose.

Topic Volumn Top terms
1 1.45% bernie, sanders, people, #bernie2020, trump, biden, support, vote, campaign,

warren, candidate, party, democratic, time, medicare, progressive, corporate,
money, hillary, 2020

2 1.66% trump, president, house, news, trumps, report, white, 2020, democrats, donald,
mueller, fox, border, watch, cnn, calls, rep, biden, gop, democratic

3 1.26% vote, trump, time, make, people, follow, election, house, day, call, love, #vote-
blue, voting, support, women, #trumpresign, gop, today, state, senate

4 3.02% trump, president, white, people, mueller, donald, trumps, america, house, gop,
republicans, country, time, russia, american, racist, report, russian, vote, repub-
lican

5 2.57% trump, democrats, president, obama, america, illegal, people, democrat, border,
media, american, left, americans, dems, country, hillary, clinton, party, black,
time

6 1.57% vote, trump, democrats, border, people, caravan, #maga, president, america,
kavanaugh, red, florida, democrat, election, voting, republican, country, time,
american, make

7 0.71% #maga, #tcot, #trump, latest, daily, #pjnet, #p2, #news, american, #gop,
#foxnews, #resist, #ccot, #cnn, #trump2020, news, #kag, trump, #democrats,
#uniteblue

8 0.90% canada, france, #cdnpoli, paris, trudeau, 2019, canadian, #flowerreport, french,
pr, st, german, germany, years, europe, 2018, 15, cest, 20, fran

9 3.31% people, good, point, political, thread, problem, policy, things, work, interesting,
social, question, read, time, politics, great, evidence, wrong, lot, thing

10 1.86% president, trump, great, people, america, country, democrats, border, news,
years, american, media, fake, united, time, good, china, back, today, states

11 1.07% trump, #qanon, fbi, media, clinton, state, epstein, news, #wwg1wga, mueller,
people, obama, video, watch, time, truth, russia, deep, hillary, cia

12 1.52% trump, president, america, god, people, #maga, good, country, patriots, great,
love, time, day, back, american, bless, dems, democrats, vote, #trump2020

13 1.95% white, people, world, america, country, american, jews, jewish, left, black, hate,
whites, immigration, children, women, media, israel, europe, race, years

14 2.22% media, people, twitter, left, news, trump, story, video, political, tweet, racist,
jews, american, kids, conservative, white, women, hate, antisemitism, speech

15 2.09% movie, film, #gameofthrones, show, episode, season, #oscars, watch, tv, series,
movies, star, night, love, thrones, king, years, oscar, films, john

16 2.05% data, news, facebook, tech, work, media, google, internet, security, digital, on-
line, privacy, social, journalism, companies, company, content, technology, in-
formation, users

17 2.34% court, law, house, case, report, public, federal, state, today, government, presi-
dent, investigation, story, judge, legal, told, justice, committee, officials, office



243

Table E.5: Top terms of 50 topics by LDA (continued).

Topic Proportion Top terms
18 2.18% police, people, killed, shooting, woman, city, fire, years, school, found,

live,california, home, shot, death, arrested, video, family, died, dead
19 2.14% vote, voters, election, trump, 2020, state, campaign, house, democrats, senate,

democratic, gop, president, candidates, republicans, candidate, party, voting,
republican, dems

20 4.72% good, people, time, thing, ve, lot, great, things, love, bad, make, tweet, feel,story,
work, yeah, pretty, years, ll, back

21 1.36% game, baseball, season, team, year, games, sox, today, series, red, back, league,
time, mlb, top, players, home, day, yankees, hit, teams

22 1.08% south, nie, vir, africa, anc, cape, #sabcnews, #statecaptureinquiry, ek, jou, jy,
african, oor, minister, 2019, sy, land, zuma, ramaphosa, gauteng

23 3.14% lol, love, shit, good, ass, lmao, time, people, black, ve, fuck, back, yall, bitch,
girl, ain, gonna, wanna, damn, day

24 0.75% political, media, rich, people, corporate, american, white, nation, americans,
democracy, corp, owned, support, racist, economic, real, wealthy, progressive,
power, time

25 2.11% brexit, uk, deal, party, vote, labour, people, leave, mps, government,
#brexit,british, parliament, referendum, boris, pm, britain, tory, remain, elec-
tion

26 1.97% climate, change, energy, world, global, water, power, #climatechange, action,
emissions, oil, gas, report, carbon, solar, future, coal, science, environmental,
clean

27 2.66% students, school, schools, education, student, teachers, learn, research, college,
work, public, learning, read, teacher, program, kids, great, high, year, commu-
nity

28 1.55% gun, military, veterans, service, army, day, national, guns, honor, veteran, train-
ing, air, force, american, great, navy, shooting, today, 2019, defense

29 0.82% published, news, 2019, gay, march, december, january, meghan, february, fresh,
october, entertainment, star, #politics, april, harry, today, #hollywood, ||, reveals

30 2.78% people, life, make, time, things, women, work, good, day, world, feel, money,
love, learn, find, give, start, mind, real, change

31 2.33% israel, israeli, iran, saudi, palestinian, syria, military, gaza, palestinians, forces,
rights, killed, regime, state, world, attack, foreign, international, government,
security

32 0.77% support, pa, share, retweet, ser, za, gracias, great, good, ve, visit, music, #go-
fundme, hoy, espa, #tenisxespn, books, ideas, #crowdfund, #crowdfunding

33 0.92% follow, rt, patriots, retweet, back, ride, great, train, #maga, patriot, followers,
trump, dm, twitter, love, retweeted, awesome, god, fb, ifb

34 1.81% health, abortion, patients, medical, cancer, drug, women, research, study, peo-
ple, learn, risk, treatment, disease, healthcare, dr, hiv, patient, doctors, hospital

35 4.14% today, week, great, day, live, join, watch, tonight, love, happy, tomorrow, show,
morning, time, check, monday, listen, good, amazing, year

36 3.03% day, good, love, time, happy, home, morning, life, back, food, today, beauti-
ful,night, baby, eat, years, make, house, sweet, cat
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Table E.5: Top terms of 50 topics by LDA (continued).

Topic Proportion Top terms
37 3.54% shit, fuck, good, lol, fucking, yeah, game, time, gonna, people, make, video,

guy, bad, made, dude, guys, thing, lmao, cool
38 1.90% music, album, video, song, watch, listen, love, show, back, live, songs, years,

rap, 2019, tour, time, #grammys, playlist, favorite, birthday
39 2.56% book, read, books, reading, writing, story, history, review, work, world, author,

love, american, poetry, writers, art, piece, write, life, 2019
40 3.22% people, good, time, make, stop, back, twitter, thing, lol, shit, hate, wrong,

stupid, love, money, give, person, bad, tweet, true
41 2.48% god, church, jesus, life, lord, catholic, love, christ, pray, faith, st, christian, world,

today, pope, prayer, holy, day, bible, people
42 1.91% china, trade, market, tax, year, economy, economic, growth, global, business,

billion, chinese, fed, bank, markets, financial, deal, years, world, oil
43 2.57% game, season, team, nfl, week, football, play, coach, win, nba, players, year,

games, back, teams, player, big, bowl, top, time
44 0.97% number, dm, hear, message, confirmation, team, flight, link, happy, share, di-

rect, twitter, travel, check, email, send, assist, assistance, apologize, time
45 0.61% thread, unroll, read, gp, find, good, day, asked, support, share, talk, interest-

ing, enjoy, #democrats, #demswork4usa, #winblue, #progressives, #healthcare,
#yeswecan, tweets

46 2.49% black, people, white, women, folks, trans, racism, work, racist, woman, his-
tory,community, violence, police, support, color, justice, years, rights, today

47 1.23% match, tennis, set, win, round, open, 64, top, 63, title, world, beat, 1st, final,
back, cup, court, 62, play, 2019

48 0.69% read, click, history, black, story, school, people, free, learned, happened, militia,
mind, book, made, knew, world, artists, written, 2a, painted

49 2.95% people, today, rights, women, work, families, make, workers, support, health,
country, state, children, violence, act, fight, time, congress, join, working

50 1.08% wisconsin, road, traffic, county, weather, morning, vehicle, milwaukee, lane,
crash, closed, drive, today, area, north, left, snow, rain, channel, update
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47(3):1653–1676.

———. 2020. Spectral radii of sparse random matrices. Annales de l’Institut Henri
Poincaré, Probabilités et Statistiques 56(3):2141–2161.

Benjamini, Yoav, and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57(1):289–300.

Bennett, W Lance, and Alexandra Segerberg. 2013. The logic of connective action:
Digital media and the personalization of contentious politics. Cambridge University Press.

https://www.pnas.org/content/106/2/369.full.pdf


248

Berkhin, Pavel. 2006. Bookmark-coloring algorithm for personalized PageRank
computing. Internet Mathematics 3(1):41–62.

Bernaards, Coen A, and Robert I Jennrich. 2005. Gradient projection algorithms and
software for arbitrary rotation criteria in factor analysis. Educational and Psychological
Measurement 65(5):676–696.

Berthet, Quentin, and Philippe Rigollet. 2013. Optimal detection of sparse principal
components in high dimension. The Annals of Statistics 41(4):1780–1815.

Bhattacharyya, Sharmodeep, and Peter J. Bickel. 2015. Subsampling bootstrap of
count features of networks. The Annals of Statistics 43(6):2384–2411.

Bickel, Peter J., and Purnamrita Sarkar. 2016. Hypothesis testing for automated
community detection in networks. Journal of the Royal Statistical Society. Series B
(Statistical Methodology) 78(1):253–273.

Blei, David M, Andrew Y Ng, and Michael I Jordan. 2003. Latent Dirichlet allocation.
Journal of Machine Learning Research 3(Jan):993–1022.

Blumer, Herbert. 1948. Public opinion and public opinion polling. American Sociolog-
ical Review 13(5):542–549.

Bode, Leticia, Alexander Hanna, Junghwan Yang, and Dhavan V Shah. 2015. Can-
didate networks, citizen clusters, and political expression: Strategic hashtag use in
the 2010 midterms. The Annals of the American Academy of Political and Social Science
659(1):149–165.

Bollen, Johan, Huina Mao, and Alberto Pepe. 2011. Modeling public mood and
emotion: Twitter sentiment and socio-economic phenomena. In Fifth International
AAAI Conference on Weblogs and Social Media.

Boot, Arnout B, Erik Tjong Kim Sang, Katinka Dijkstra, and Rolf A Zwaan. 2019.
How character limit affects language usage in tweets. Palgrave Communications 5(1):
1–13.

Bordenave, C., M. Lelarge, and L. Massoulié. 2015. Non-backtracking Spectrum of
Random Graphs: Community Detection and Non-regular Ramanujan Graphs. In
56th Annual Symposium on Foundations of Computer Science, 1347–1357.

Boucheron, S., G. Lugosi, and P. Massart. 2013a. Concentration Inequalities: A
Nonasymptotic Theory of Independence. OUP Oxford.



249

Boucheron, Stéphane, Gábor Lugosi, and Pascal Massart. 2013b. Concentration in-
equalities: A nonasymptotic theory of independence. Oxford university press.

Boyd, Danah. 2010. Social network sites as networked publics: Affordances, dynam-
ics, and implications. In A Networked Self, 47–66. Routledge.

Brémaud, Pierre. 2013. Markov chains: Gibbs fields, Monte Carlo simulation, and queues,
vol. 31. Springer Science & Business Media.

Brin, Sergey, and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems 30(1-7):107–117.

Cai, Diana, Trevor Campbell, and Tamara Broderick. 2016. Edge-exchangeable graphs
and sparsity. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, 4249–4257.

Cai, T Tony, Zongming Ma, and Yihong Wu. 2013. Sparse PCA: Optimal rates and
adaptive estimation. The Annals of Statistics 41(6):3074–3110.

Candès, Emmanuel J, and Benjamin Recht. 2009. Exact matrix completion via convex
optimization. Foundations of Computational mathematics 9(6):717.

Canny, John. 2004. GaP: a factor model for discrete data. In Proceedings of the 27th
annual international acm sigir conference on research and development in information
retrieval, 122–129.

Carroll, John B. 1953. An analytical solution for approximating simple structure in
factor analysis. Psychometrika 18(1):23–38.

Chakrabarty, Arijit, Sukrit Chakraborty, and Rajat Subhra Hazra. 2020. Eigenval-
ues Outside the Bulk of Inhomogeneous Erdős–Rényi Random Graphs. Journal of
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