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Abstract 

Bottom-up proteomics has emerged as a powerful technology for biological studies. The 

technique is used for a myriad of purposes, including among others protein identification, post-

translational modification identification, protein-protein interaction analysis, protein 

quantification analysis, and protein structure analysis. The data analysis approaches of bottom-up 

proteomics have evolved over the past two decades,  and many different algorithms and software 

programs have been developed for these varied purposes. In this thesis, I have focused on 

improving the database search strategies for the important special applications of bottom-up 

proteomics, including cross-linking mass spectrometry proteomics and O-glycoproteomics. 

In cross-linking mass spectrometry proteomics, a sample of proteins is treated with a 

chemical cross-linking reagent.  This causes peptides within the proteins to be cross-linked to one 

another, forming peptide doublets that are released by treatment of the sample with a protease such 

as trypsin.  The data analysis tools are designed to identify the cross-linked peptides. In O-

glycoproteomics, the peptides that are released by protease digestion of the protein sample can be 

modified with any of or even multiple distinct O-glycans, and the data analysis tools should be 

able to identify all of the glycans and the modification sites at which they are located. In both cases, 

traditional database searching strategies which try to match the experimental spectra to all potential 

theoretical spectra is not practical due to the large increases in search space. Researchers suffered 

from a lack of efficient data analysis tools for these two applications. Here we successfully devised 
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new search algorithms to address these problems, and impemented them in two new software 

modules in our laboratories’ bottom-up software engine MetaMorpheus (Crosslinking data 

analysis via MetaMorpheusXL and O-glycoproteomics data analysis via O-Pair Search).  

The new search strategies used in the software program are both based on ion-indexed open 

search, which was first developed for large scale proteomic studies in the programs MSFragger 

and Open-pFind. The ion-indexed open search was optimized for cross-linking mass spectrometry 

proteomics and O-glycoproteomics in this study, and combined with other algorithms. In O-

glycoproteomics, a graph-based algorithm is used to speed up the identification and localization 

of O-glycans. Other useful features have been added in the software program, such as enabling 

analysis of both cleavable cross-links and non-cleavable cross-links in the cross-link search 

module, and calculating localization probabilities in the O-glyco search module. Further 

optimizations including machine learning methods for false discovery rate (FDR) analysis, 

retention time prediction and spectral prediction could further improve the current best search 

approaches for cross-link proteomics and O-glycoproteomics data analysis.  

Chapter 1 provides an overview of bottom-up proteomics data analysis methods and 

outlines how ion-indexed open search could be useful for special bottom-up proteomics studies. 

Chapter 2 describes the development of a cross-linking mass spectrometry proteomics search 

module, resulting in efficiency improvements for both cleavable and non-cleavable cross-link 

proteomics data analysis. Chapter 3 describes the development of an O-glycoproteomics search 

module; by combining the ion-indexed open search algorithm with the graph-based localization 

algorithm, the O-pair Search is more than 2000 times faster than the currently widely used software 

program Byonic. In Chapter 4, a novel top-down data acquisition method  is described. Chapter 

5 provides conclusions and future directions. 
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Bottom-up proteomics1,2 uses mass spectrometry to analyze the sequence of peptides. First, 

proteins are extracted from biological samples, then proteins are digested with proteases to 

generate peptides which generally contain 5-60 amino acids, the peptides are fragmented and 

analyzed by mass spectrometry, and the data are analyzed by matching the experimental spectra 

with theoretical spectra.  

There are different types of data acquisition methods in proteomics research. Data 

dependent acquisition (DDA) is the major data acquisition method for discovery proteomics. In 

the mass spectrometer, the peptides are scanned to obtain their precursor masses in an MS1 

spectrum. The instrument then randomly selects the most abundant ions for fragmentation. For 

each selected precursor, it will produce product ions and generate an MS2 spectrum, which will 

be matched to a database3.  

The idea of database searching is to match experimental spectra with theoretical spectra3. 

For the traditional database searching algorithm, we generate theoretical spectra for all potential 

peptides from a protein library (Fig. 1). For each theoretical peptide, we obtain the theoretical mass 

and a spectrum containing its theoretical fragment ions. In the search process, we try to match each 

experimental spectrum with all theoretical spectra having the same precursor mass. The best match 

is selected from many theoretical spectrum matches for each experimental spectrum and will be 

considered as an identification.  

The traditional database searching strategy works well for general purpose peptide 

identification. However, if the search database is too large, this traditional database search strategy 

is not efficient and requires a excessively long time/large amount of computational power to 

analyze the data due to the increased number of comparisons between experimental spectra and 

theoretical spectra. In other words, the number of theoretical spectra to be considered as candidates 
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is increased when the size of the database is large. For cross-linking mass spectrometry proteomics, 

theoretical peptide doublets need to be created for execution of the traditional database search 

strategy, which will exponentially increase the peptide database size. O-glycoproteomics and other 

variable modification settings could also dramatically increase the database size (Details will be 

explained in Chapter 2 and Chapter 3). Researchers developed the ion-indexed open search 

strategy to address this large scale database problem, as implemented in MSFragger4, Open-pFind5 

and TagGraph6. 

In the ion-indexed open search, a lookup table is designed and peptide identifications are 

represented under each fragment mass (Fig. 2) from the original peptide database. By matching 

each peak in an MS2 experimental spectrum to the fragment ion-index, all peptides in the database 

are scored simultaneously. After the first-round matching, a fine scoring follows to find the best 

matched theoretical spectrum from the top candidates from the first-round match. The 

computational complexity of finding a list of peptide candidates is linearly proportional to the 

number of peaks in the spectrum.  

Ion-indexed open search improves the efficiency of database search for large scale studies 

or special studies where the size of database increases. We proposed that the ion-indexed open 

search strategy could be used for cross-link proteomics data analysis and O-Glycoproteomics 

software program development. The idea is to find peptide candidates from the first-round 

matching of ion-indexed open search, and then create and match real candidates (cross-linked 

peptides or O-glycopeptides). Other researchers also applied ion indexed open search for varied 

purposes7,8. 

In cross-linking mass spectrometry proteomics, the peptide candidates identified from the 

ion-indexed open search are paired with each other to form theoretical doublets (Fig. 3). The 
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experimental spectrum is matched with all the doublets that satisfy the precursor tolerance 

equation: mass of the precursor = mass of alpha peptide + mass of beta peptide + mass of the 

crosslinker. The best matched doublet will be considered the identified cross-linked peptides. We 

successfully developed MetaMorpheusXL9,10, which applied this algorithm and is one of the most 

efficient cross-linking mass spectrometry proteomics data analysis tools. It is also able to analyse 

both cleavable and non-cleavable crosslinks. 

In O-glycoproteomics, the peptide candidates identified from the ion-indexed open search 

are paired with glycans from a glycan database and form theoretical glycopeptides (Fig. 4). The 

experimental spectrum is matched with all theoretical glycopeptides. Then we apply an optimized 

graph-based algorithm for O-glycan localization analysis (Details will be explained in Chapter 4). 

By combining the ion-indexed open search strategy with graph-based localization, we developed 

the O-Pair Search software program module11, which is 2000 times faster than the current standard 

program Byonic12. Our software program is also the first to perform localization probability 

calculations for O-glycopeptides.  
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Figure 1. Traditional database search strategy. Theoretical spectra are generated based on the 

protein database. Each experimental MS2 spectrum will be used to match all potential theoretical 

spectra with the tolerated precursor mass. The best matched theoretical peptide is the target 

peptide. 
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Figure 2. Ion-indexed open search strategy. A peptide-fragment lookup table is created from the 

protein database. In one experimental spectrum, each peak is matched to the lookup table, and 

the peptide candidates will be obtained simultaneously.  
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Figure 3. Cross-link search with ion-indexed open search method. Peptide candidates are used to 

pair with each other and all those theoretical doublets that satisfy the precursor equation will be 

matched with the experimental spectrum.  
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Figure 4. O-Glycopeptide search with ion-indexed open search method. Each peptide candidates 

will be used to combine glycan candidates to form theoretical glycopeptides. These 

glycopeptides will be matched with the experimental spectrum and the best match will be 

selected for localization analysis.  
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Chapter 2 

 

Identification of MS-Cleavable and Non-Cleavable 

Chemically Crosslinked Peptides with MetaMorpheus 

 

 

 

 

 

Adapted from Lu, L., Millikin, R. J., Solntsev, S. K., Rolfs, Z., Scalf, M., Shortreed, M. R., & 

Smith, L. M. (2018). Identification of MS-cleavable and noncleavable chemically cross-linked 

peptides with MetaMorpheus. Journal of Proteome Research, 17(7), 2370-2376. 
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ABSTRACT 

Protein chemical crosslinking combined with mass spectrometry has become an important 

technique for the analysis of protein structure and protein-protein interactions. A variety of 

crosslinkers are well developed, but reliable, rapid, and user-friendly tools for large-scale analysis 

of crosslinked proteins are still in need. Here we report MetaMorpheusXL, a new search module 

within the MetaMorpheus software suite that identifies both MS-cleavable and non-cleavable 

crosslinked peptides in MS data. MetaMorpheusXL identifies MS-cleavable crosslinked peptides 

with an ion-indexing algorithm, which enables an efficient large database search. The 

identification does not require the presence of signature fragment ions, an advantage compared to 

similar programs such as XlinkX. One complication associated with the need for signature ions 

from cleavable crosslinkers such as DSSO (disuccinimidyl sulfoxide) is the requirement for 

multiple fragmentation types and energy combinations, which is not necessary for 

MetaMorpheusXL. The ability to perform proteome-wide analysis is another advantage of 

MetaMorpheusXl compared to such programs as MeroX and DXMSMS. MetaMorpheusXL is also 

faster than other currently available MS-cleavable crosslink search software programs. It is 

imbedded in MetaMorpheus, an open-source and freely available software suite that provides a 

reliable, fast, user-friendly graphical user interface that is readily accessible to researchers.  
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INTRODUCTION 

Crosslinking mass spectrometry (XL-MS) has been widely used to determine protein 

structure and identify protein-protein interactions.1–5 Protein chemical crosslinking uses a small-

molecule bridge to form a covalent bond between two proximal amino acids, with the crosslinker’s 

length determining the distance at which the crosslink can form. This bond-length restriction can 

be used to characterize protein structure or protein-protein interactions. Compared to other protein 

structure determination methods (X-ray crystallography, nuclear magnetic resonance and cryo-

electron microscopy) that depend on challenging sample preparation procedures, protein structure 

determination using chemical crosslinking is much more straightforward. Crosslinked proteins are 

enzymatically digested (e.g., with trypsin) into peptides and analyzed by LC-MS/MS. Wang et al. 

6 successfully employed XL-MS in conjunction with cryo-electron microscopy and computational 

modeling to fully resolve dynamic structures of the human 26S proteasome. In addition, they 

detected dynamic states of the proteasome subunits Rpn1, Rpn6 and Rpt6 and identified several 

new proteasome-interacting proteins. Chen et al. 7 used XL-MS to interpret the architecture of 

yeast RNA Polymerase-TFIIF complex (TFIIF is a transcription initiation factor). Despite these 

successes, the XL-MS search itself is still in need of significant improvement.  

One limitation of some crosslink search programs (e.g. X!Link8 and Xlink-Identifier9) is 

that they employ a database of all possible theoretical peptide dimers. The number of theoretical 

peptide-peptide combinations increases quadratically with database size; if a protein database 

contains n peptides, the possible number of peptide-peptide combinations is n(n+1)/2, which 

defines the search space.2 Generally, this type of search algorithm is inefficient and not feasible 

for large databases because of the significant time and computational power required, and the 

greater chance of incorrect false-positive identifications.10  
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MS-cleavable crosslinkers such as DSSO can make the job of peptide identification more 

straightforward compared to non-cleavable crosslinkers. When fragmented, MS-cleavable 

crosslinked peptides yield two pairs of signature ions (αS/βL and αL/βS, where α (alpha) and β 

(beta) refer to the two crosslinked peptides and S and L refer to the “short” and “long” pieces of 

the fragmented crosslinker molecule) (Figure 1a). These ion pairs have a signature mass 

difference between them, which is used to help identify crosslinked peptides. The signature ions 

allow the search algorithm to distinguish the ion series associated with each of the individual 

crosslinked peptides. 11 MS-cleavable crosslinked peptides also typically generate more fragment 

ions than peptides connected with a non-cleavable crosslinker, thereby improving identification.12  

Many programs have been designed for non-cleavable crosslink studies (for example 

xQuest3, Plink13, Protein Prospector14, xi15, ECL16 and Kojak17), which separately search the alpha 

and beta peptides by treating one of them as a modification on the other. These programs are 

limited, however, to non-cleavable crosslinkers. 

MeroX18 and DXMSMS19 were developed to be able to search cleavable crosslinks by 

searching theoretical dimers. MeroX avoids searching all theoretical dimers by using a DiBond 

algorithm18 to reduce the number of dimer candidates, but it is still limited to only be able to search 

small databases. In 2015, Liu et al. 4 developed a search strategy (XlinkX 1.0) that searches 

fragmentation spectra for these signature ion pairs. The XlinkX 1.0 algorithm first finds the masses 

of each of the two crosslinked peptides by identifying all four signature ion peaks, followed by a 

standard fragment-based search to determine their sequences. However, due to the lack of 

signature fragment ions in many experimental spectra, this strategy leaves many crosslinked 

peptides unidentified. In response to these difficulties, researchers have had to use complicated, 

optimized fragmentation methods to maximize the chances of observing all four signature ions. 
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Since then, the developers of XlinkX have improved their program to avoid requiring the presence 

of all four signature ions in a spectrum.12 However, the approach implemented in XlinkX 2.0 still 

relies on the detection of at least one signature ion of high intensity. Another problem with 

requiring the presence of signature ions is that some crosslinkers with bond strengths comparable 

to peptide amide bonds (such as DSBU, Disuccinimidyl Dibutyric Urea) make the generation of 

signature ions difficult. 

The present work describes a novel search program for the detection of both MS-cleavable 

and non-cleavable crosslinked peptides and it is the first software program reported with both 

capabilities. The search strategy has been implemented in the computer program MetaMorpheus20, 

which has a user-friendly graphical user interface (GUI). Novel crosslinker molecules are easily 

added if desired. A fragment-ion index scheme makes the search computationally efficient.17,20–22 

Additionally, the MetaMorpheus software suite contains multiple other functions useful to 

proteomics researchers such as traditional bottom-up search algorithms, mass calibration22, post-

translational modification (PTM) discovery22,23, and label-free quantification.20  
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METHODS 

Crosslink Search Algorithm 

 MetaMorpheusXL identifies alpha and beta crosslinked peptides with an ion-indexed open 

search algorithm (as outlined in Figure 1b). First, all fragment ions are indexed according to their 

m/z prior to searching in order to increase the speed of the search (see Supporting Information for 

a description of the indexing algorithm).20,21 Then fragmentation spectra are searched against a 

target and decoy database24 (decoys are generated by reversing sequences of each target protein) 

with an unlimited precursor mass tolerance (an “open-mass” search21) and all candidate peptides 

for each spectrum are held in memory. Second, all candidate peptides for each spectrum from the 

first step are paired in an attempt to find a combined mass (the two peptides plus the crosslinker 

mass) that matches the precursor ion mass. If such a mass match is found, that peptide pairing is 

considered a CSM (crosslinked peptide spectrum match) candidate. The next step is scoring these 

CSMs and that depends whether the crosslinker is MS-cleavable or not. If cleavable, the algorithm 

searches the spectrum for any signature fragment ions that could arise from the peptide pair. All 

possible crosslink site pairs for one CSM are considered during the generation of theoretical 

fragment ions; the pairing with the most fragment ion matches between theoretical and 

experimental is considered to emanate from correct crosslinking. This information thus informs 

the position of the crosslink within the pair. After attempting to match all theoretical ions from the 

peptide pair, the score of a CSM is the summed count of both peptides’ observed fragment ions, 

plus any signature fragment ions if the crosslinker was MS-cleavable. Next, the CSMs are ranked 

by score. The false-discovery rate (FDR) is estimated using the target-decoy strategy24 (see 

Supporting Information for a description of MetaMorpheusXL’s FDR estimation). Candidate 

CSMs that meet a suitable FDR threshold (e.g. 1%) are considered an identified pair of crosslinked 
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alpha and beta peptides. MetaMorpheusXL’s output is a tab-delimited text file, which is readable 

by Percolator17,25, a semi-supervised learning program, to potentially increase the number of target 

CSMs below a desired FDR. MetaMorpheusXL also formats its output into pepXML, enabling 

easy visualization of crosslink peptide search results with publicly available software such as 

ProXL26, Kojak Spectrum Viewer and TransProteomicPipeline (TPP).27  

Sample Preparation 

BSA (Bovine serum albumin; 1µg/µL; Sigma) was dissolved in PBS (phosphate-buffered 

saline) buffer. Ribosomes (13.3 µM; NEB) were diluted to 1 µg/µL with HEPES buffer. Freshly 

prepared 50 mM MS-cleavable crosslinker DSSO (disuccinimidyl sulfoxide, Thermo Scientific) 

dissolved in DMSO was added to a final concentration of 1 mM. After incubating at RT for 60 

min, the reaction was quenched by adding Tris Buffer to 40 mM. The samples were digested with 

a modified eFASP procedure as described.28 Briefly, the crosslink reaction samples were washed 

with 8 M Urea, 0.1% DCA using a 30 kDa cut-off Ultrafree filter (Millipore). The samples were 

reduced with 20 mM DTT for 30 min, alkylated with 20 mM iodoacetamide for 60 min, and 

digested with 1 µg trypsin per 40 µg protein overnight at 37 ℃. The peptide digests were dried in 

vacuo, resuspended in 0.1% TFA, and desalted with C18 OMIX ZipTip (Agilent). The final 

peptides were dissolved in 95:5 H2O/ACN with 0.2% formic acid.  

Mass Spectrometry 

Samples (~2 µg protein each injection) were analyzed via HPLC (NanoAcquity, Waters)-

ESI-MS/MS (Q Exactive HF, ThermoFisher Scientific). The HPLC separation employed a 15 cm 

* 365 µm fused silica capillary micro-column packed with 3 µm diameter, 100 Å pore size C18 

beads (Magic C18; Bruker), with an emitter tip pulled to approximately 2 µm using a laser puller 

(Sutter instruments). Peptides were loaded on-column at a flow-rate of 400 nL/min for 30 min, 
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then eluted over 120 min at a flow-rate of 300 nL/min with a gradient from 5% to 35% acetonitrile 

in 0.1% formic acid. The gradient is then ramped to 70% acetonitrile in 0.1% formic acid over 5 

min and held for 5 min, then reduced to 2% acetonitrile in 0.1% formic acid over 5 min and held 

for 15 min. Full-mass profile scans are performed in the Orbitrap between 375 and 1,500 m/z at a 

resolution of 120,000, followed by MS/MS HCD (higher energy collisional dissociation) scans of 

the ten highest intensity parent ions with z > 2 at 30 CE (relative collision energy) and 15,000 

resolution, with a mass range starting at 100 m/z. Dynamic exclusion was enabled with an 

exclusion window of 30 s.  

Analysis of MS/MS Spectra 

Single protein data of DSSO crosslinked BSA, DSSO crosslinked E. coli ribosome, and 

BS3 (bis(sulfosuccinimidyl)suberate, a non-cleavable crosslinker) crosslinked protein complex 

data of yeast Pol II (ProteomeXchange Dataset Identifier PXD004749) were analyzed.7 After data-

dependent acquisition, tandem mass spectral data were first calibrated using MetaMorpheus’ mass 

calibration function22 (see Supporting Information for a description of the calibration algorithm). 

The generated .mzML files were searched by MetaMorpheusXL (MetaMorpheus version 0.0.237). 

The small database used for DSSO crosslinked E. coli ribosome contained the 52 known protein 

sequences of ribosomal complex and another 41 protein sequences for proteins known to interact 

with the E. coli ribosome. We also searched the ribosome data against the complete E. coli 

proteome database which contains 4443 proteins. The search took ~6.5 min and resulted in 35% 

fewer CSMs below 1% FDR than the CMSs identified from searching against the small database 

containing 93 proteins. Detailed results are shown in Supplementary Figures S-2 (b). The database 

used for BS3 crosslinked yeast Pol II contained the 12 protein sequences of the Pol II complex. 

The DSSO data were also searched with XlinkX 2.0 and the BS3 data with Kojak 1.5 for 
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comparison. The distances between each lysine-lysine pair of identified crosslinked peptides from 

E. coli ribosome and yeast Pol II were further validated by mapping to known structures with a 

custom python script. 

RESULTS AND DISCUSSION 

MetaMorpheusXL does not require the observation of signature ions 

MetaMorpheusXL identifies alpha and beta peptides based on peptide fragment ions in an 

“open-mass” search; the observation of signature ions is not required for its MS-cleavable 

crosslink search. This is an advantage of MetaMorpheusXL over XlinkX, which requires high-

intensity signature ions to be present in the spectrum. Other software programs such as MeroX and 

DXMSMS also do not require the observation of signature ions, but these programs lack the ability 

to search large databases. 

To evaluate MetaMorpheusXL’s performance for MS-cleavable crosslink searches, we 

first analyzed DSSO crosslinked BSA data. At 1% FDR, 513 CSMs were identified by 

MetaMorpheusXL, which correspond to 108 unique crosslinked peptide pairs; XlinkX 2.0 

identified 104 CSMs with 39 unique crosslinked peptide pairs, 35 of which had also been found in 

MetaMorpheusXL (Figure 2a). MetaMorpheusXL found 5 times as many CSMs (3 times as many 

unique crosslinked peptide pairs) as XlinkX 2.0 in 1/10th the computational time (SI Figure S-

2a). 

Of the 513 CSMs identified by MetaMorpheusXL, 34 contained all 4 signature ions; 85 

contained 3 signature ions, 170 contained 2 signature ions, 139 contained 1 signature ion and 85 

contained no signature ions (Figure 2b). A majority of CSMs thus had fewer than four signature 

ions. CSMs containing zero signature ions were not detected by XlinkX 2.0, but many were 

detected by MetaMorpheusXL, as the peptide fragment ions provided sufficient information for 
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characterization.  

We also examined the intensity distribution of the signature ions. XlinkX 2.0 requires one 

signature ion to be among the most intense fragment peaks for each CSM. However, the intensities 

of signature ions depend on the type of crosslinker, MS instrumentation, and acquisition 

parameters. With the MS method we used for DSSO crosslinked BSA (HCD with 30 CE), we 

found that although roughly 50% of the most intense signature ions are among the top 15 most 

intense peaks in a spectrum, about 25% are not in the top 30 peaks, and 2.5% are not in the top 

100 (Figure 2c). Because MetaMorpheusXL is not dependent on matching signature ions first, it 

provides a wider variety of choices for crosslinkers and acquisition parameters compared to other 

algorithms. 

DSSO crosslinked ribosome analysis 

We also generated DSSO crosslinked E. coli ribosomal complex data to further validate 

that MetaMorpheusXL could be used for protein complexes. The E. coli ribosome contains 52 

proteins, and a wealth of detailed structural data exists to assist in validating the search results. 

Experimental replications were not performed here. In addition, no sample enrichments or 

prefractionation steps were employed. 

At 1% FDR, MetaMorpheusXL found 262 CSMs including 46 inter- and 216 intra-CSMs 

(inter: crosslinked peptides from different proteis; intra: crosslinked peptides from a single 

protein); XlinkX 2.0 identified 49 CSMs including 28 inter-and 21 intra-CSMs. The pepXML 

output of the ribosome crosslinks were visualized by ProXL26 (SI Figure S-3). MetaMorpheusXL 

detected 5 times more CSMs than XlinkX 2.0, similar to the results for DSSO crosslinked BSA 

data. In total, MetaMorpheusXL identified 77 unique crosslinked peptide pairs, while XlinkX 2.0 

identified 31 (Figure 3a). 
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We further investigated the results by mapping the identified crosslink residues to the 

known structure of the ribosomal complex. Distances between the Cα carbon of crosslinked 

residues were expected to be within 30 Å based upon the crosslinker spacer arm length and 

structural flexibility considerations. In total, 171 of the 262 CSMs identified by MetaMorpheusXL 

could be mapped to the E. coli ribosome structure (PDB: 3jcd). 4 unique crosslinked peptide pairs 

(from 11 CSMs) had distances greater than the 30 Å restriction; the distances of the rest of the 

CSMs fell within the expected 30 Å (Figure 3b, Figure 4). Of the 4 unique crosslinked peptide 

pairs, two of them (32.7 Å and 33.9 Å) were very close to 30 Å. The other two contained an intra-

crosslink with distance of 40.1 Å, and an inter-crosslink with distance of 38.2 Å. The structure 

suggested that these four crosslinks may occur due to flexibility in the protein structure (Figure 

4). Additionally, because they were identified multiple times and shared crosslinked residues with 

other crosslinked peptides, they are likely to be true crosslinked peptides. For the results produced 

by XlinkX 2.0, 21 of the 31 unique crosslinked peptide pairs could be mapped to the ribosome 

structure, 2 had distances larger than the 30 Å restriction, and the large distances 56.9 Å and 139 

Å are not likely to be transient crosslinks. More intra-CSMs could be detected than inter-CSMs, 

consistent with the known structure of the ribosome (the 52 proteins of the ribosome being 

dispersed around the ribosomal RNA).  

We further analyzed the distribution of number of signature ions observed from identified 

CSMs and the relationship between the number of CMSs and intensity ranks of the most intense 

signature ions from the MetaMorpheusXL results. Similar to the intensity distribution of signature 

ions for BSA, the majority of CSMs lack 2 or 3 signature ions and about 5% of CSMs have no 

signature ion matches (Figure 5a). The rank distribution of the most intense signature ions also 

followed a similar pattern to that obtained for BSA: 75% of the most intense signature ions found 
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in the most intense 30 peaks of a spectrum (Figure 5b). 

Because MetaMorpheusXL uses fragment-ion indexing prior to searching, it was faster 

than XlinkX 2.0 for both the BSA data and the ribosomal complex data (SI Figure S-2a).  

Non-cleavable crosslink search with MetaMorpheusXL 

MetaMorpheusXL can also be used for identification of peptides with non-cleavable 

crosslinkers. A high-quality dataset of yeast Pol II complex acquired by Chen et al. was used for 

this study.7 The dataset contains 4 raw files from peptide digests of the 12 subunits of yeast Pol II 

(523 kDa) crosslinked with crosslinker BS3.  

MetaMorpheusXL identified five types of PSMs in this dataset: intra-protein crosslinks, 

inter-protein crosslinks, loop-links, dead-end-links and single peptide PSMs. MetaMorpheusXL 

identified 2075 PSMs (peptide spectrum matches) with ~1% FDR from the yeast Pol II data. About 

76% of the PSMs were single peptide PSMs, which is consistent with other crosslinking studies, 

and about 11% of the PSMs were loop-links (crosslinked residues are in the same peptide) or dead-

end-links (crosslinker reacted with one residue). In total 277 CSMs were identified (168 intra-

CSMs and 109 inter-CSMs), including 97 unique crosslinked peptide pairs.  

The search speed of MetaMorpheusXL for non-cleavable crosslinks was also assessed. 

Kojak is one of the most efficient software tools for crosslink studies. The algorithms of Kojak 

and MetaMorpheusXL yielded comparable search times (data not shown).  

To assess the crosslinks identified with MetaMorpheusXL, we analyzed the yeast Pol II 

data in parallel with Kojak, and compared with the original result from the paper which used a 

program named Xi.7 Kojak identified 315 CSMs (109 unique crosslinked peptide pairs) at 1% 

FDR, the paper reported 287 CSMs (105 unique crosslinked peptide pairs) with high confidence, 

and MetaMorpheusXL identified 277 CSMs (97 unique crosslinked peptide pairs). Among the 
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unique crosslinked peptide pairs identified by all three programs, 60 were common to all three 

analyses (Figure 6a). 

We then validated the crosslinked residues by comparison with the published crystal 

structure data (PDB: 1wcm, Figure 6b). In the MetaMorpheusXL result, 227 of all identified 

CSMs fell in regions consistent with the published structure, while 5 (2.2%) were not within the 

30 Å cutoff. The level of structural agreement was better than for Kojak (13 of 284, 4.6% not 

within cutoff) or Xi (11 of 214, 5.1% were not within cutoff). 

CONCLUSIONS 

MetaMorpheusXL is a new search algorithm designed for large scale studies of chemically 

crosslinked peptides. The approach increases the number of identified MS-cleavable crosslinked 

peptides compared to existing software. The algorithm is readily compatible with any crosslinker 

and will benefit developers and researchers who want to test the performance of different 

crosslinkers. MetaMorpheusXL has publicly available source code (https://github.com/smith-

chem-wisc/MetaMorpheus). The software is user friendly and the search results can easily be 

pipelined to downstream software (e.g. Percolator et al.). 
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FIGURES 

1) 

 

Figure 1. MetaMorpheusXL for MS-cleavable crosslink search. (a) Four signature fragment ions 

are generated from DSSO crosslinked peptides (α and β peptides) using CID/HCD (CID: 

collisional induced dissociation). If the crosslinker is cleaved at the left of the sulfoxide moiety, it 

will generate the αS and βL fragments; if crosslinker is cleaved at the right, it will generate the αL 

and βS fragments. The signature mass difference (∆m) between αL and αS, βL and βS is the same; 

∆m is 31.97 Da for DSSO. (b) Workflow of MetaMorpheusXL (detailed explanation in Methods 
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Section). In the ‘Find Loop’, the candidate PSMs are matched pairwise to attempt to satisfy the 

equation: M precursor = M alpha + M beta + M crosslinker. (‘M’ - mass. ‘x’ - crosslinker)  

 

2) 

 

Figure 2. MS-cleavable crosslink search of BSA. (a) Comparison of identified unique crosslinked 

peptide pairs of BSA by MetaMorpheusXL and XlinkX 2.0. (b) The distribution of number of 

signature ions observed in the MS2 spectra from identified CSMs. (c) The relationship between 

number of CSMs and the most intense signature ions’ intensity ranks. 
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3) 

 

Figure 3. Analysis of DSSO crosslinked Ribosome. (a) Comparison of identified unique 

crosslinked peptide pairs of E. coli ribosome by MetaMorpheusXL and XlinkX 2.0. (b) Cα-Cα 

distance distribution for experimentally observed lysine-lysine pairs from MetaMorpheusXL, 

XlinkX 2.0 and a random distribution. The blue lines denote the 30 Å cutoff. 
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4) 

 

Figure 4. Structure of DSSO crosslinked E. coli ribosome (PDB: 3jcd) with crosslinked lysine 

residues and distances shown. Crosslinks are identified using MetaMorpheusXL at a 1% FDR 

cutoff. The whole E. coli ribosome structure is shown in the middle, red lines indicate Cα-Cα 

distances between the crosslinked lysine (marked as red spheres). Four crosslink outliers are also 

shown; at left panel with an inter-crosslink with Cα-Cα distance of 40.1 Å on P0A7V0(36) and 

P0A7V0(58), an intra-crosslink with Cα-Cα distance of 33.9 Å on P0A7V0(36) and P0A7W7(69).; 

at right panel with an intra-crosslink with Cα-Cα distance of 38.2 Å on P0A7L0(141) and 

P0A7N9(58), and another intra-crosslink with Cα-Cα distance of 32.7 Å on P0A7L0(141) and 

P0A7N9(9). 
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5) 

 

Figure 5. Validation of signature ions from DSSO crosslinked E. coli ribosome. (a) The 

distribution of number of signature ions observed in the MS2 spectra from identified CSMs. (b) 

The relationship between number of CSMs and the most intense signature ions’ intensity ranks.  
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6)  

 

Figure 6. Analysis of non-cleavable crosslinked yeast Pol II complex results. (a) Comparison of 

identified unique crosslinked peptide pairs of yeast Pol II complex by Kojak, Xi and 

MetaMorpheusXL. (b) Cα-Cα distance distribution for experimentally observed lysine-lysine pairs 

from MetaMorpheusXL, Kojak and Xi. The blue lines denote the 30 Å cutoff. 
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Supplemental Information 

Supplementary Methods 

1. Ion-indexing: An “open-mass” search (i.e., when the precursor mass does not limit the space 

of theoretical peptides for fragment matching) with an ion-indexing strategy is used in 

MetaMorpheusXL. In this algorithm, the protein database is digested in silico and the digestion 

products (theoretical peptides) are written to a peptide index with each unique peptide being 

identified by an integer value (“ID”). The peptides are ordered by mass and each is fragmented in 

silico. For each theoretical fragment, its peptide’s ID is stored in a lookup table according to the 

fragment mass (rounded to the nearest mDa). Experimental fragments are matched to theoretical 

peptides by finding the experimental fragment’s mass in the lookup table. The peptide IDs in the 

fragment mass bin are filtered by the desired precursor mass tolerance (for completely open-mass 

searches, this tolerance is infinity and all peptides in the bin are counted as having matched to that 

experimental fragment ion). 

2. Calibration: The mass accuracy of MS1 and MS2 spectra gathered during a proteomics 

experiment can vary significantly over the course of a single run and over the course of several 

runs. Systematic drift, random noise, and changes in temperature and other environmental 

conditions can contribute to this variation. Therefore, spectral mass calibration prior to the final 

analysis can improve peptide identification accuracy. MetaMorpheus uses a machine-learning 

algorithm to calibrate both MS1 and MS2 spectra. The process begins with a preliminary search 

of the uncalibrated file to identify a set of confident peptide spectral matches. Mass spectral peaks 

of confident PSMs are the calibration points, accompanied by several additional values, including: 

the difference between observed m/z and theoretical m/z (the “m/z error”), the absolute m/z, the 
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retention time, the total ion current, and the ion injection time. All of these values serve as input 

to a random forest machine-learning algorithm that performs a regression analysis to model the 

m/z error as a function of the above explanatory variables. This function is used to shift the m/z of 

all peaks in all scans in the run.  The calibrated spectra file is then used for a complete proteomics 

analysis. 

3. FDR estimation: The q-value for each CSM is determined by calculating the ratio of the count 

of CSMs assigned to target by the count of CSMs assigned to decoy with scores greater than or 

equal to the current CSM (q-value = (target count)/(decoy count)). In MetaMorpheusXL, a CSM 

is assigned as a target only when both peptides of the crosslink pair are present in the target 

database. When either member or both of a crosslink pair are present in the decoy database, the 

CSM is assigned as a decoy. This results in an imbalance in the total number of target and decoy 

pairs, which makes it more likely for a CSM to be assigned as a decoy than a target compared to a 

typical target-decoy search. Therefore, it is possible for the q-value to exceed 1. 

4. Example explanation of MetaMorpheusXL’s workflow: SI Figure S-1 An illustration of the 

algorithm used by MetaMorpheusXL to identify a peptide crosslink. This example uses a high-

quality MS2 spectrum from a BSA sample crosslinked with DSS. The MS2 spectrum was obtained 

from a precursor species with a mass of 2293.105 Da. MetaMorpheusXL first finds all candidate 

peptides by matching primary fragment ions using an indexed-ion open search method (see the 

Ion-Indexing section of this supplement). All possible peptide matches are then paired with each 

other to generate candidates for crosslink pairs. A candidate pair is valid if the summed mass of 

the two peptides and the crosslink molecule matches the precursor mass. For example, PSM 1 and 

PSM 3 in the top panel of SI Figure S-1 are considered a valid candidate pair because the summed 

mass of the two peptides and the crosslinker (1165.486 Da + 989.551 Da + 138.068 Da) are within 
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the tolerance of precursor mass (2293.105 Da ± 10 ppm). Theoretical ions containing crosslinker-

specific modifications are then generated for each crosslink candidate pair and matched to the 

spectrum; the highest-scoring (the CSM with the most matching fragments) is retained.  
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SI Figure S-1. Example of a crosslinked peptide identified by MetaMorpheusXL. The MS2 

spectrum’s precursor mass is 2293.105 Da. Preliminary peptide matches are generated with an 

open-mass search. The candidate PSM masses are paired, with a valid pair satisfying the equation 

M precursor = M alpha + M beta + M crosslinker. The highest-scoring pair that satisfies this constraint was 

PSM 1 (CCTKPESER) paired with PSM 3 (EKVLTSSAR). Fragment ions containing peptide 

crosslinks are discovered during an additional processing and the CSM score is increased by one 

for each additional fragment ion matches.  
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SI Figure S-2. Computation time comparison between MetaMorpheusXL and XlinkX 2.0. (a) 

Computation time comparison for searching BSA and ribosome data using small theoretical 

databases. (b) Computation times and numbers of CSMs identified when searching ribosome data 

against the entire E. coli proteome database, which contains 4443 proteins. MetaMorpheusXL took 

6.4 min when restricted to the top 500 peptide matches per MS2 spectrum and identified 173 inter- 

and intra-CSMs combined, 35% less than the 262 inter- and intra-CSMs identified using the 

restricted database. Only 3 identified proteins were not ribosomal or ribosome-related. XlinkX 2.0 

took 6.5 min and identified 66 CSMs, among which 21 proteins were not ribosomal or ribosome-

related. Searches with MeroX and DXMSMS using the whole E. coli proteome database took too 

long to evaluate the results. 
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SI Figure S-3. Circle plot from ProXL displaying crosslinks of DSSO-crosslinked ribosome 

proteins. The bars represent proteins, lines represent crosslinks and dashed lines represent dead-

ends.  
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SI Figure S-4. Examples of annotated spectra from E. coli ribosome data with different numbers 

of identified signature ions (4 to 0) and from different score ranges (high to low). The “PepS” or 

“PepL” annotations indicate signature ions containing the short or long pieces of the fragmented 

MS-cleavable crosslinker molecule. “PepS2” indicates a doubly-charged signature ion with a short 

crosslinker piece. The “lb4” and “sb4” refer to b4 ions with long or short cleavage products, 

respectively. (a) This CSM contains 4 signature ions with a high score. (b) This CSM contains 3 

signature ions. (c) This CSM contains 2 signature ions, both of which are from the alpha peptide. 

(d) This CSM contains 1 signature ion from its alpha peptide. (e) This CSM contains no signature 

ions. (f) This CSM contains no signature ions and is low-scoring. 



38 
 

 



39 
 

 

  



40 
 

SI Figure S-5. Identification of intra-protein crosslinks composed of consecutive sequences. (a) 

Intra-crosslinks composed of consecutive sequences (left) have the same precursor mass as the 

dead-end missed-cleavage product modified with hydrolyzed crosslinker (right). (b) 

MetaMorpheusXL assigns a crosslink composed of consecutive sequences as an intra-crosslink 

only if the matched fragment ions could differentiate it from the dead-end crosslink. From the 

ribosome data, an intra-crosslink composed of consecutive sequences ‘EAFKLAAAK’ and 

‘LPIKTTFVTK’ of protein P0ADY7 are shown as an example here. The spectral matches 

containing indicative fragment ions (e.g., the y2 ion of ‘EAFKLAAAK’) support that the pair is 

an intra-crosslink instead of dead-end missed-cleavage product. 
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SI Table-1. Parameters used in this work for searches of crosslinked data with MetaMorpheusXL, 

XLinkX 2.0 and Kojak 1.5. 

MetaMorpheusXL parameters 

Crosslinker type: The crosslinker molecule used in the sample; can be user defined. 

Search top matches: if selected, MetaMorpheusXL will only consider N top-scoring peptides for 

peptide pairing.  

Search top Num: used together with ‘Search top matches’; this defines the N top peptide 

candidates. 

Trim MS/MS peaks: only match the most intense peaks in an MS2 spectrum. Used together with 

‘Top N peaks’ (i.e., N most intense peaks) and ‘Minimum ratio’ (peaks must be this intense 

compared to the base peak). 

Minimum Score allowed: the lowest peptide score after the ‘first pass’ that will be considered.  

parameters Cleavable Non-cleavable 

Precursor Mass tolerance 10 ppm 10 ppm 

Crosslinker type DSSO DSS 

Search top matches - ✓ 

Search top Num - 300 

Use Provided Precursor ✓ ✓ 

Deconvolute Precursor ✓ ✓ 

Trim MS1 Peaks - - 

Trim MS/MS Peaks ✓ ✓ 

Top N Peaks 200 500 

Minimum ratio 0.01 0.005 

Generate decoy proteins ✓ ✓ 

Max missed cleavages 2 2 

protease trypsin trypsin 

Initiator methionine Variable Variable 

Max modification isoforms 4096 4096 

Min peptide length 5 5 

Product mass tolerance 20 ppm 20 ppm 

Ions to search B ions, Y ions B ions, Y  ions 

Minimum Score allowed 5 2 

Fixed modification Carbamidomethyl of C Carbamidomethyl of C 
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Parameters used in XlinkX2.0 
XlinkX 2.0 was used as a node in Thermo Scientific Proteome Discoverer 2.2. Parameters used 

in XlinkX 2.0 are listed below. 

XlinkX 2.0 Detection 

Acquisition strategy: MS2 

Crosslink Modification: DSSO / + 158.004 Da (K) 

Minimum S/N: 1.5 

Enable protein N-terminus linkage: false 

Xlinkx Filter 

Select: Crosslinks 

Xlinkx Search 

Retain FASTA file indexes: True 

Enzyme Name: Trypsin(full) 

Maximum Missed Cleavages: 2 

Maximum Peptides Considered: 10 

Minimum Peptide Length: 5 

Maximum Number Modifications: 3 

Minimum Peptide Mass: 300 

Maximum Peptide Mass: 7000 

Precursor Mass Tolerance :10 ppm 

FTMS Fragment Mass Tolerance: 20 ppm 

Static Modification: Carbamidomethyl / + 57.021 Da (C) 

Dynamic Modification: Oxidation /+ 15.995 Da (M) 

FDR threshold: 0.01 

FDR strategy: Percolator 

3.3 Parameter used in Kojak1.5 

percolator_version = 3.0 

enrichment = 0        

instrument = 0        

MS1_centroid = 1        

MS2_centroid = 1        

MS1_resolution  = 100000    

MS2_resolution  = 7500         

cross_link = nK nK 138.0680742 DSS 

mono_link = nK 156.0786 

Variable modification Oxidation of M Oxidation of M 

Localize all modification ✓ ✓ 

Output for Percolator - ✓ 

Output for Crosslink ✓ ✓ 
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fixed_modification = C 57.02146 

fixed_modification_protC = 0 

fixed_modification_protN = 0 

modification = M 15.9949 

modification_protC = 0 

modification_protN = 0 

diff_mods_on_xl = 0 

max_mods_per_peptide = 2 

mono_links_on_xl = 0 

enzyme = [KR]|{P} 

fragment_bin_offset = 0.0     

fragment_bin_size = 0.03   

ion_series_A = 0 

ion_series_B = 1 

ion_series_C = 0 

ion_series_X = 0 

ion_series_Y = 1 

ion_series_Z = 0   

decoy_filter = DECOY    

isotope_error = 1        

max_miscleavages = 2        

max_peptide_mass = 8000.0   

min_peptide_mass = 500.0    

max_spectrum_peaks = 0        

ppm_tolerance_pre = 10.0     

prefer_precursor_pred = 2       

spectrum_processing = 0        

top_count = 300      

truncate_prot_names = 0        

turbo_button = 1        
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MetaMorpheusXL User Manual 

1. Download the current version of MetaMorpheus from https://github.com/smith-chem-

wisc/MetaMorpheus/releases. MetaMorpheusInstaller.msi is suggested for Windows 

users.  

2. Double-click the .msi file to install MetaMorpheus. Open MetaMorpheus after installation.  

3. Click the ‘New XL Task’. This will open a window to set the parameters for a new crosslink 

search. Parameters are described in this document, below. After choosing your parameters, 

click ‘Add the XLSearch Task’. 

 

Crosslink Search panel: 

▪ ‘Crosslink Precursor mass tolerance’: Sets precursor mass tolerance, in Daltons 

(Da) or parts per million (ppm). 

▪ ‘Crosslinker Type’: choose the crosslinker used in your sample. If ‘UserDefined’ 

is chosen, additional crosslinker information must be specified. 

▪ ‘Search Top matches’: this option can help speed up searches. This option defines 

the number of peptides from the open search to pair. 

Search Parameters panel: 

▪ ‘Ions to search’: Ion types should be specified to match the fragmentation method 

(e.g., b and y ions for HCD data). 

▪ When searching a whole proteome database, selecting ‘Search Top matches’ is 

recommended, along with setting the number of database partitions to ~4-8. 

 

https://github.com/smith-chem-wisc/MetaMorpheus/releases
https://github.com/smith-chem-wisc/MetaMorpheus/releases
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4. Drag your database and spectra files into MetaMorpheus and click ‘Run All tasks’. The 

results will be in the same folder as the data files.  

5. If you have any problems, support is available by reading the wiki (Help -> Open Wiki 

page), opening an issue on GitHub (Help -> Submit an issue on GitHub), or by emailing 

the MetaMorpheus development team at mm_support@chem.wisc.edu . 

  

mailto:mm_support@chem.wisc.edu
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Chapter 4 

 

O-Pair Search with MetaMorpheus for O-glycopeptide 

Characterization 

 

 

 

 

 

 

 

Adapted from Lu. L.*,  Riley, N.M.*, Shortreed, M.R., Bertozzi, C.R. & Smith, L.M. (2020). O-

Pair Search with MetaMorpheus for O-glycopeptide Characterization. Nature Methods (Accepted 

In Principle) 
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Abstract 

We report O-Pair Search, a new approach to identify O-glycopeptides and localize O-

glycosites. Using paired collision- and electron-based dissociation spectra, O-Pair Search 

identifies O-glycopeptides using an ion-indexed open modification search and localizes O-

glycosites using graph theory and probability-based localization. O-Pair Search reduces search 

times more than 2,000-fold compared to current O-glycopeptide processing software, while 

defining O-glycosite localization confidence levels and generating more O-glycopeptide 

identifications. O-Pair Search is freely available: https://github.com/smith-chem-

wisc/MetaMorpheus. 

 

 

  

https://github.com/smith-chem-wisc/MetaMorpheus
https://github.com/smith-chem-wisc/MetaMorpheus
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Main Text  

Mass spectrometry (MS) is the gold standard for interrogating the glycoproteome, enabling 

the localization of glycans to specific glycosites.1–3 Recent applications of electron-driven 

dissociation methods have shown promise in localizing modified O-glycosites even in multiply 

glycosylated peptides4. Yet, standard approaches for interpreting tandem MS spectra are ill-suited 

for the heterogeneity of O-glycopeptides. Perhaps the most challenging problem for O-

glycopeptide analysis is mucin-type O-glycosylation, which is abundant on many extracellular and 

secreted proteins and is a crucial mediator of immune function, microbiome interaction, and 

biophysical forces imposed on cells, among others5. Mucin-type O-glycans are linked to serine 

and threonine residues through an initiating N-acetylgalactosamine (GalNAc) sugar, which can be 

further elaborated into four major core structures (cores 1-4) or remain truncated as terminal 

GalNAc (Tn) and sialyl-Tn antigens6. These O-glycosites occur most frequently in long 

serine/threonine rich sequences (Supplementary Fig. 1), such as PTS mucin tandem repeat 

domains, which exist with macroheterogeneity defined by the occurrence of O-glycosylation and 

with microheterogeneity defined by a large number of potential O-glycans7–11. The number of 

serine and threonine residues present in glycopeptides derived from mucin-type O-glycoproteins, 

combined with the consideration of dozens of potential O-glycans at each site, leads to a 

combinatorial explosion when generating databases of theoretical O-glycopeptides to consider for 

each tandem MS/MS spectrum (Supplementary Note 1).  

Current O-glycoproteomic analysis pipelines are unable to search for multiply O-glycosylated 

peptides within reasonable time frames even for simple mixtures of O-glycoproteins, much less 

for proteome-scale experiments. Recent efforts to combat this search time issue have forgone site 

localization for the more expedient option of identifying only the total glycan mass on a peptide 
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backbone12. While effective at lowering time costs, this sacrifices valuable information about site-

specific modifications – which is often the goal of intact glycopeptide analysis in the first place. 

Such an approach also fails to report the number and composition of individual glycans for 

multiply glycosylated O-glycopeptides, where multiple smaller oligosaccharides may represent 

the same mass as a larger single glycan or a combination of different oligosaccharides. Open 

modification searches and combinations of peptide database searching with de novo glycan 

sequencing have also recently been reported, but neither address the time issues that challenge 

analysis of highly modified O-glycopeptides.13,14 Moreover, electron-driven dissociation methods 

are required to localize O-glycosites8–11,15, yet current software tools fail to capitalize on 

combinations of collision-based and electron-based fragmentation spectra that are acquired for the 

same precursor ion. This is coupled with a general lack of ability to confidently localize glycosites 

within multiply glycosylated O-glycopeptides. 

Here, we describe the O-Pair Search strategy implemented in the MetaMorpheus platform16 

to provide a pipeline for rapid identification of O-glycopeptides and subsequent localization of O-

glycosites using paired collision- and electron-based dissociation spectra collected for the same 

precursor ion (Fig. 1a). O-Pair Search first uses an ion-indexed open search17 of higher energy 

collisional dissociation (HCD) spectra to rapidly identify combinations of peptide sequences and 

total O-glycan masses, which are generated through combinations of entries in an O-glycan 

database. Graph-theoretical localization18–21 then defines site-specific O-glycan localizations using 

ions present in EThcD spectra (electron transfer dissociation with HCD supplemental activation) 

(Fig. 1b). Peptide backbone fragments (b/y-type ions) rarely retain glycan mass during HCD 

fragmentation, making them good candidates for an ion-indexed search, while retention of intact 

glycans on c/z dot-fragments in EThcD spectra enable confident localization,15 as exemplified in 
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the paired HCD-EThcD spectra for the quadruply glycosylated peptide in Fig. 1c. Localization is 

followed by localization probability calculations using an extension of the phosphoRS22 algorithm 

used for phosphosite localization (max score of 1), in addition to scoring of fine scoring (which 

includes calculation of Y-type ions) and false discovery rate calculations performed separately for 

O-glycosylated and non-modified peptides.  

We also introduce here the concept of Localization Levels, which is the culmination of the 

O-Pair Search (Fig. 1d). Inspired by early adoption of class levels for phosphopeptide 

localizations23 and more recently for proteoforms24, we developed this classification system to 

more accurately describe the quality and confidence of glycopeptide and glycosite identifications. 

Level 1 glycopeptide identifications indicate that all glycans identified in the total glycan mass 

modification are localized to specific serine and threonine residues with a localization probability 

> 0.75. Glycopeptides with glycosite assignments with localization probabilities < 0.75 are 

assigned as Level 1b, even though they are still identified as localized by the graph theory 

approach. Level 1b assignments also occur when a glycosite is assigned without the presence of 

sufficient spectral evidence (e.g., fragments cannot explain a glycosite, but the sequence contains 

only one serine or threonine). We currently borrow the 0.75 cutoff from phosphopeptide 

precedents23, empirical determination of localization cutoffs will likely need to be determined in 

future work using libraries of synthetic glycopeptide standards, as has been done with 

phosphopeptides25. That said, such libraries are currently difficult to generate. Level 2 assignments 

occur when at least one glycosite is assigned a glycan based on spectral evidence, but not all 

glycans can be assigned unambiguously. Level 3 identifications represent a confident match of 

glycopeptide and total glycan mass, but no glycosites can be assigned unambiguously.  Indeed, 

Level 3 glycopeptides (such as those reported in HCD-only methods by default12) are still useful 
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to note the presence of glycosylated residues somewhere in a given sequence. Overall, our 

classification system provides a straightforward approach to qualify glycoproteomic datasets 

without having to exclude confident identifications that have no site-specific information.  

In addition to Localization Level assignments, O-Pair Search also reports matched peptide 

and glycan fragment ion series and their intensities for each of the paired spectra, the presence of 

N-glycosylation sequons to identify potentially confounding assignments, and localization 

probabilities for all sites, both localized and not. As with all glycopeptide-centric workflows, O-

Pair Search reports compositions with limited ability to comment on topology of glycans. That 

said, oxonium ions can help distinguish between certain glycans, such as the ratio of 138.055 m/z 

and 144.0655 m/z to differentiate HexNAc residues as GlcNAc or GalNAc.26 O-Pair Search 

reports this ratio by default to aid with interpretation. For example, 95.7% of identifications with 

localized H1N1 glycans have a 138/144 ratio less than 2, suggesting GalNAc-Gal rather than Man-

GlcNAc for H1N1 identity. Furthermore, during the review process for this manuscript, another 

approach using fragment ion-indexed open searching of glycopeptide spectra (but without 

localization as discussed here) was reported from Nesvizhskii and co-workers27, the group who 

developed the highly efficient ion-indexed strategy. Comparisons between MSFragger-Glyco and 

O-Pair Search are discussed in Supplementary Note 2. 

We first compared O-Pair Search to Byonic, the most commonly used O-glycopeptide 

identification software28. Byonic, which uses a look-up peaks approach to speed up search times 

relative to traditional database searching29, can also search HCD and EThcD spectra, although it 

is agnostic of paired spectra originating from the same precursor. To benchmark performance, we 

used a recently published dataset15 of O-glycopeptides from mucin glycoproteins using a 

combination of trypsin and the mucin-specific protease StcE, which cleaves only in glycosylated 
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mucin domains30. This data originates from sequential digestion of four recombinant mucin 

standards (CD43, MUC16, PSGL-1, and Gp1ba), using StcE to cleave mucin domains followed 

by N-glycan removal with PNGaseF and tryptic digestion. We initially searched a file with HCD 

and EThcD paired spectra from this dataset, using a protein sequence file of the four mucins (to 

minimize Byonic search times) and a glycan database of 12 common O-glycans presented in Fig. 

1a12. The number of compositions considered in each search is not simply 12, however, but 

instead is a combination of possible compositions determined by the number of glycans allowed 

per glycopeptide. When four glycans are allowed per peptide, this actually represents 439 different 

mass offset values, i.e., the number of unique masses present in 1819 different glycan 

combinations (Supplementary Note 1). O-Pair Search identified more localized (Fig. 2a) and 

total (Fig. 2b) O-glycopeptide spectral matches (GlycoPSMs) than Byonic when allowing either 

2 or 3 glycans per peptide (Supplementary Fig. 2 and Fig. 2, respectively). This holds true even 

when relaxing the scoring thresholds used to obtain confident Byonic identifications 

(Supplementary Fig. 3). Note, all O-Pair Search identifications represent two spectra from an 

HCD-EThcD spectral pair. Conversely, Byonic is agnostic to paired scans, meaning identifications 

can come from HCD and EThcD spectra that were collected for the same precursor (pair) or from 

spectra identified separately from their paired counterpart. 

Importantly, O-Pair Search dramatically decreased search times, with ~45-fold and ~2,100-

fold faster searches than Byonic when considering 2 or 3 glycans per peptide, respectively (Fig. 

2c). O-Pair Search required approximately 30 seconds to complete a search considering 4 glycans 

per peptide, while the Byonic search was terminated after the search failed to complete in over 

33,000 minutes (~3.5 weeks). Improvements in search speed are accompanied by ~2-3-fold 

increases in the number of localized glycosites identified. In addition to more than doubling the 
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number of total identified spectra, O-Pair Search identified the majority of spectra that Byonic 

returned as GlycoPSMs for both HCD (Fig. 2d) and EThcD (Fig. 2e) scans, and the overwhelming 

majority (~95%) of the shared identified scans mapped to the same glycopeptide (Fig. 2f). These 

searches were completed using a FASTA file containing sequences only for the four mucin 

standards, which highlights the impracticality of O-glycopeptide searches in Byonic for complex 

mixtures. Moreover, O-Pair Search performed localization calculations and reported Localization 

Levels within the reported search time while Byonic spectra had to be further processed after the 

search to obtain localization information (see Methods). Supplementary Fig. 4 compares 

microheterogeneity seen at localized glycosites between O-Pair Search and Byonic searches. 

The ability to rapidly search O-glycopeptide data allowed us to vary the number of O-glycans 

to consider per peptide for easy evaluation of optimal search conditions. Fig. 2g shows that search 

times remain less than a minute when considering 5 glycans per peptide, while up to 8 glycans can 

be considered per peptide in searches requiring less than 20 minutes. Allowing for more glycans 

per peptide does not change the spectral assignments to various glycopeptides (Supplementary 

Fig. 5), indicating the robustness of O-Pair Search identifications. The number of non-modified 

identifications remained similarly constant (Supplementary Fig. 6). Similarly, different glycan 

databases can be searched within reasonable timeframes (Supplementary Fig. 7).  

Evaluating retention time rules further supports O-Pair Search identifications, where 

glycopeptide identifications containing 0, 1, and 2 sialic acids on the same peptide backbone have 

predictable elution time shifts (Supplementary Fig. 8)31,32. O-Pair Search localization of different 

glycosites also enabled visualization of chromatographically resolved glycopeptide positional 

isomers (Supplementary Fig. 9). That said, glycan isomers (i.e., same composition, different 

connectivity) remain a challenge that currently requires manual interpretation.9,10 Interestingly, 
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processing of this published dataset to evaluate the best fragmentation conditions for O-

glycopeptides generated the same overall conclusions as the previously reported Byonic searches, 

although the differences between different supplemental activation energies for EThcD appear 

more subtle than before (Supplementary Fig. 10). Sequences with up to five localized glycosites 

were identified, but the majority of Level 1 identifications had 1, 2, or 3 localized glycosites 

(Supplementary Fig. 11). Note, these searches were completed using 16 cores, but similar 

performance can also be achieved on most standard computing systems using fewer cores 

(Supplementary Fig. 12). Overall, this method enabled characterization of dozens of glycosites 

on each glycoprotein in the mixture (Supplementary Fig. 13). It is important to note that O-Pair 

Search can process HCD and stepped collision energy HCD spectra collected in both product-

dependent and standard acquisition modes, too (Supplementary Fig. 14). The vast majority of 

these identifications are Level 3, however, because collision-based fragmentation largely does not 

support glycosite localization. 

We also evaluated O-Pair Search search times and false discovery rates using several 

entrapment protein databases with varying complexity (Fig. 2h). A description of the databases 

used for benchmarking is provided in Supplemental Note 2; briefly, databases were designed to 

represent different proteome backgrounds not present in the sample (true negatives), with the four 

mucin standard target sequences (true positives) appended. Entrapment backgrounds ranged from 

20 canonical human mucins to the entire E. coli and yeast proteomes. Search times for the mucin, 

FBS, cell surface glycoprotein, and E. coli entrapment databases (all with < 1,000 entries) 

remained under ~20 minutes when using 16 cores, while the yeast entrapment proteome took ~3.4 

hours. Still, this is approximately one fourth the time Byonic required for a far less complex search 

(Fig. 2c). Sensitivity, as measured by the number of O-glycopeptide identifications, varied with 
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the entrapment backgrounds, which was also evident for non-modified peptide identifications 

(Supplementary Fig. 6). This highlights the known issue of proper database size selection in 

glycoproteomics33, which can be more thoroughly explored for O-glycoproteomics now that O-

Pair Search enables reasonable search times. Importantly, Level 1 peptides were the least affected, 

supporting their high confidence assignments. O-Pair Search maintained acceptable false 

discovery rates (0-3%) even when challenged with these entrapment databases (Fig. 2i), 

performing well compared to Byonic (Supplemental Fig 15) and to previous reports34,35. 

Explanations for the few false hits that were reported include 1) candidates with similar sequence 

components such as the yeast peptide TNNFFLPSEDESGPVQSSVK (an observed false hit) and 

the CD43 peptide GASGPQVSSVK, 2) errors in monoisotopic mass assignment due to incorrectly 

assigned nitrogen deamidation (a known problem in glycoproteomics), or 3) inflated precursor 

candidate list sizes with larger databases that exclude true peptide candidates from consideration. 

Future work will continue to investigate methods to improve the sensitivity and precision of the 

search, such as enhanced indexing scoring, appropriate candidate list sizes, an additional fine 

scoring step to look for additional fragment types (e.g., [c-1]●, [z+1], w-type ions used by Byonic 

and Protein Prospector), or use of re-scoring algorithms, e.g., Percolator36. We also searched using 

proteomes from expression systems of these recombinant mucins (CHO and NS0 cells) 

(Supplemental Fig. 16), which are prohibitively large databases for analogous Byonic searches. 

Finally, we applied O-Pair Search to a large dataset of urinary O-glycopeptides, which has 

been analyzed in a number of studies8–10,37. The raw data for this dataset represents glycopeptides 

purified from urine from four donors using affinity chromatography with wheat germ agglutinin 

and is available through the MassIVE repository (MSV000083070).8 Pap et al. provide 

identifications from Protein Prospector and Byonic for EThcD scans from Fraction 1 (the 
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"shoulder fraction”, three raw data files available) and Fraction 2 (the “GlcNAc fraction”, two raw 

data files available). In that dataset, searching was somewhat restricted, presumably due to 

complexity issues discussed above: only EThcD scans filtered for the presence of sialic acid 

oxonium ions were searched, with a 4-glycan database and 2 variable modifications considered 

per peptide. We searched Fraction 1 with O-Pair Search using the entire human proteome database 

(~20,300 entries) with 2 glycans considered per peptide from the 12 common O-glycan database 

used above, and we compared the results to the reported identifications for the other two search 

engines (Fig. 2j). Because this dataset had the potential to harbor N-glycopeptides as well, we 

filtered out all identifications that included an N-sequon from our O-Pair Search results. Even so, 

O-Pair Search nearly doubled the total number of GlycoPSMs from either search engine. Of the 

382 spectra identified by both Protein Prospector and Byonic, O-Pair Search identified ~90% of 

them (342 spectra) while providing an additional 506 GlycoPSMs not reported by either. Of the 

total 1,287 spectra identified as GlycoPSMs, O-Pair Search identified ~85% of them (1,098 

spectra). The original study reported a predominance of sialylated glycopeptides, which is 

recapitulated by O-Pair Search with >97.5% of GlycoPSMs (1,071 of 1,098) containing a sialic 

acid. When comparing identifications from the 342 scans identified in all three search algorithms, 

all return the same glycopeptide sequence. Protein Prospector reports a Site Localization In Peptide 

(SLIP) score38 for modification sites that we used to convert identifications to our Localization 

Level scheme (Fig. 2k). O-Pair Search reports more Level 1 and 1b O-glycopeptide identifications 

than the total number of Protein Prospector GlycoPSMs, and the proportion of localized and 

partially localized identifications (Levels 1-2) is more favorable with O-Pair Search.  Similar 

trends hold for Fraction 2 (Supplementary Fig. 17). 
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We expanded our analysis of this dataset to explore the use of a larger glycan database (32 

glycans vs 12) and the effect of searching with more glycans allowed per peptide (5 vs 2). Fig. 2l 

compares results from these different search parameters for Fraction 1, Fraction 2, and all 10 files 

available for download from the urinary O-glycoproteome dataset. In Fraction 1, The larger O-

glycan database boosted identifications for Fraction 1, but lowered identifications in Fraction 2 

and the entire dataset as a whole. This indicates that Fraction 1 likely harbored glycopeptides with 

more diverse glycans while the majority of the dataset did not. Also, according to the original 

study, Fraction 2 contained more multiply modified O-glycopeptides, which may produce less 

efficient peptide backbone fragments sufficient for reliable identification. Conversely, considering 

more glycans per peptide provided slight benefits in all cases. By requiring only a few hours to 

perform a whole proteome-search with a variety of glycopeptide possibilities, O-Pair Search 

provides a flexible platform to explore O-glycoproteomics data. When considering only Level 1 

and 1b GlycoPSMs, our results represent 447 unique O-glycopeptides with localized O-glycosites, 

and O-Pair Search identified 354 localized O-glycosites in total when allowing 5 glycans per 

peptide from the 12-glycan database. 

In all, we show that O-Pair Search can reduce O-glycopeptide search times by >2000x over 

the most widely used commercial glycopeptide search tool, Byonic. Additionally, O-Pair Search 

identifies more O-glycopeptides than Byonic and provides O-glycosite localizations using graph 

theory and localization probabilities. O-Pair Search also introduces a novel classification scheme 

to unify data reporting across the glycoproteomic community. These Localization Levels are 

automatically calculated by O-Pair Search to indicate if all (Level 1), at least one (Level 2), or 

none (Level 3) of the O-glycosites are confidently localized. We further demonstrate the utility of 

O-Pair Search by searching a large published dataset of urinary O-glycopeptides, significantly 
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increasing the number of glycopeptides identified and providing site-specific localization for >350 

O-glycosites. We also note that O-Pair Search allows user-specified glycan databases to enable 

unbiased searches of a variety of O-glycosylation classes, including O-fucose, O-mannose, and O-

glucose. That said, these O-glycans often lack monosaccharides that generate the most commonly 

used oxonium ions for product-dependent methods, so more method development may be needed 

to optimize data acquisition. A report published while this wok was under review also described 

the classification of mucin-type O-glycans using B- and Y-type; we will seek to incorporate this 

into our workflow.39 Current limitations include the reliance on HCD to generate good peptide 

fragmentation for the open-search step. Others have shown that starting with EThcD data may be 

a viable option37, although this also brings several inherent challenges. This may be alleviated in 

our approach by indexing both HCD and EThcD spectra for open searching. Even so, true peptides 

may still rank low among all the peptide candidates. Scoring refinement could improve all open-

search approaches (including ours), especially in complex datasets where many precursor 

candidates must be considered. Also, it remains difficult for any glycoproteomics software to 

identify glycan isomers (i.e., same composition, different connectivity), a challenge not addressed 

here. Perhaps better automation of this could be achieved as more studies are published with O-

glycopeptides modified with defined glycan structures.  Regardless, O-Pair Search can process 

both product-dependent and standard acquisition methods with a variety of O-glycan databases, 

making it a flexible tool for a variety of O-glycoproteomics applications. 

Conclusions 

In all, we show that O-Pair Search can reduce O-glycopeptide search times by >2000x over 

the most widely used commercial glycopeptide search tool, Byonic. Additionally, O-Pair Search 

identifies more O-glycopeptides than Byonic and provides O-glycosite localizations using graph 
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theory and localization probabilities. O-Pair Search also introduces a novel classification scheme 

to unify data reporting across the glycoproteomic community. These Localization Levels are 

automatically calculated by O-Pair Search to indicate if all (Level 1), at least one (Level 2), or 

none (Level 3) of the O-glycosites are confidently localized. We further demonstrate the utility of 

O-Pair Search by searching a large published dataset of urinary O-glycopeptides, significantly 

increasing the number of glycopeptides identified and providing site-specific localization for >350 

O-glycosites. We also note that O-Pair Search allows user-specified glycan databases to enable 

unbiased searches of a variety of O-glycosylation classes, including O-fucose, O-mannose, and O-

glucose. That said, these O-glycans often lack monosaccharides that generate the most commonly 

used oxonium ions for product-dependent methods, so more method development may be needed 

to optimize data acquisition. A report published while this wok was under review also described 

the classification of mucin-type O-glycans using B- and Y-type; we will seek to incorporate this 

into our workflow.39 Current limitations include the reliance on HCD to generate good peptide 

fragmentation for the open-search step. Others have shown that starting with EThcD data may be 

a viable option37, although this also brings several inherent challenges. This may be alleviated in 

our approach by indexing both HCD and EThcD spectra for open searching. Even so, true peptides 

may still rank low among all the peptide candidates. Scoring refinement could improve all open-

search approaches (including ours), especially in complex datasets where many precursor 

candidates must be considered. Also, it remains difficult for any glycoproteomics software to 

identify glycan isomers (i.e., same composition, different connectivity), a challenge not addressed 

here. Perhaps better automation of this could be achieved as more studies are published with O-

glycopeptides modified with defined glycan structures.  Regardless, O-Pair Search can process 

both product-dependent and standard acquisition methods with a variety of O-glycan databases, 
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making it a flexible tool for a variety of O-glycoproteomics applications. 

METHODS 

O-Pair Search Algorithm 

O-Pair Search has been implemented in MetaMorpheus16, an open-source search software 

useful for a variety of different applications including: bottom-up, top-down, PTM discovery, 

crosslink analysis and label free quantification. O-Pair is optimally designed for identifying O-

glycopeptides from tethered collision- and electron-based dissociation spectra collected from the 

same precursor ion. However, it is also capable of identifying O-glycopeptides from spectra 

obtained using other fragmentation schemes and modalities. Before the beginning of the open 

search, MetaMorpheus tracks precursors available from the data and also calculates precursors for 

potential coisolated peptides.16 O-Pair Search occurs in three stages: (Fig. 1a) 1) identification of 

peptide candidates using an ion-indexed open search; 2) localization of O-glycosites with a graph-

based localization algorithm; and 3) calculation of site-specific localization probabilities. Upon 

completion of these stages, the O-glycopeptide localization levels (Fig. 1d) are determined and 

reported along with the false discovery rates (FDR), which are presently estimated using the target-

decoy strategy. 

1. Ion-indexed open search. O-Pair Search uses ion-indexed open search17 to quickly 

identify peptide candidates for each spectrum. O-glycosylation is a labile modification and O-

glycopeptides under collision-based dissociation in mass spectrometry generate peptide backbone 

fragment ions rarely retaining the glycans. Thus, even though an O-glycopeptide can be modified 

with multiple O-glycans, an O-glycopeptide HCD spectrum could be searched to determine the 

amino acid backbone without considering the O-glycans.  
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In an ion-indexed open search, a lookup table is created that includes a complete set of 

theoretical target and decoy fragment masses from the entire protein database, each labeled with 

the peptide from which it is derived. A collection of all peptides with fragments matching any peak 

in a given MS2 spectrum is assembled. The peptide candidates are then chosen from those peptides 

with the most matching fragments.   

For each peptide candidate retained from the open search, the mass difference between the 

unmodified peptide backbone and the experimental precursor mass is computed. The mass 

difference is hypothesized to be the sum of all glycan masses on the peptide. We refer to the 

collection of glycans on a given peptides as the glycan group: mass of glycan group = precursor 

mass - peptide mass. All glycan groups whose mass equals the mass difference within the specified 

mass tolerance are considered as glycan group candidates for glycosite localization. 

2. Graph-based localization. The graph algorithm is specially optimized for O-glycosite 

localization. A directed acyclic graph is constructed to represent all possible O-glycan modified 

forms of a peptide candidate and each of its corresponding glycan group candidates. If a peptide 

candidate corresponds to several different glycan group candidates within the mass tolerance 

limitation, several graphs are constructed. 

The graph is constructed from left to right, beginning with a ‘Start’ node at the N-terminal 

side of the peptide and ending with an ‘End’ node at the C-terminal side. Nodes, vertically aligned, 

are added to the graph for each corresponding serine or threonine because these amino acids are 

the only two allowed for O-glycosite occupancy. One vertical node designates the site as 

unoccupied and is labeled with ‘N’. Vertical nodes are then added, one for each potential glycan 

at the current position. These are labelled ‘A’, ‘B’ and so on. Additional vertical nodes are added 

representing combinations of glycans that may have occurred for the portion of the peptide 
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represented by that vertical column of the graph. Combination nodes are labelled, for example. 

‘A+B’. These nodes and labels are repeated at each serine and threonine. Next, adjacent nodes are 

connected by edges representing the accumulation of glycans across the peptide backbone. Nodes 

that are not possible given the constraints of the total peptide mass, which stipulate the number 

and kinds of glycans on the peptide remain disconnected. This process culminates in a graph 

representing all possible glycopeptides, where each individual continuous path from Start to End 

represents one unique glycopeptide. 

Next, we associate theoretical fragment ions with each node. Here we need to make clear 

which amino acids and glycans from the peptide are included. Beginning at the N-terminus, the 

node represents the peptide up to AND INCLUDING the amino acid listed for the node. Beginning 

at the C-terminus, the node represents the peptide up to BUT NOT INCLUDING the amino acid 

listed for the node. The two portions of a peptide associated with a node are complementary to 

each other and do not cross over. Each node has associated with it all possible theoretical peptide 

fragment masses whose accumulated mass can be uniquely attributed to the glycopeptide segment 

containing the amino acids up to that point. The MetaMorpheus score for the entire peptide is the 

count of matching fragments from all nodes in the path plus the fraction of spectrum intensity 

attributable to the matched fragments. The glycopeptide with the highest MetaMorpheus score can 

be extracted with dynamic programming and is designated as the match and reported in the results.  

We provide the hypothetical example illustrated in Fig.1b to aid understanding of the graph 

theoretical model. The example O-glycopeptide contains 8 O-glycosites. The glycan group 

consists of two glycans ‘A’ and ‘B’. Either of the two glycans can occupy any one of the eight 

positions subject to the following requirements: a maximum of two glycans can be on the peptide, 

only one glycan is allowed per position; and each glycan can appear only once on a given peptide. 
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For this example, there are 56 total (Supplementary Table 2) different modified forms in the 

graph. The weight of nodes vertically aligned is determined by the number of associated theoretical 

fragment ions. In the example, the nodes associated with amino acid S9 can be matched to 

theoretical fragments c9, c10, c11, z9, z10, z11. The path highlighted in orange represents that the 

peptide is modified on S9 with glycan A and S12 with glycan B.  

3. Site-Specific Localization Probability. We use an iterative method to track the 

localization scores from all the potential paths of the graph to calculate site specific localization 

probability of a glycoPSM. These scores are integrated with a random event-based localization 

method similar to a method described previously in PhosphoRS22. The integer part of the 

localization is the MetaMorpheus score, k, which is the total number of matched peaks. This is 

applied to a cumulative binomial distribution for calculating probability P as follows: 

∑ (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘

𝑛

𝑘

 

In the formula, n is the number of theoretical fragment ions; p is the probability of randomly 

matching a single theoretical fragment ion given specified tolerances. 

One significant difference from PhosphoRS is that the extracted peak depth is not optimized 

to achieve maximal differentiation. Finally, localization level is assigned by considering the 

ambiguity of paths, the matched fragment ions corresponding to each localized O-glycosite and 

the site-specific probabilities. 

Data Analysis 

All searches were performed on a PC running Windows 10 Education (version 1909), with 

two 2.20 GHz Intel Xeon Silver 4114 CPU processors with 64 GB of installed RAM. Up to 40 

virtual processors were available to use for searching. Generally, 16 cores were used per search, 

but variations were used as described in the text. An O-glycan database of 12 common O-glycans 
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was used for all searches12, except for the 32-glycan database used for the urinary O-glycopeptide 

dataset as described in Fig. 2l, which was compiled using literature sources.9,40 Both glycan 

databases are provided as supplementary data. Data from these analyses are available in the 

Supplementary Information. A FASTA database of the four standard mucins used in the literature 

data (CD43, MUC16, PSGL-1, and Gp1ba) were used for all searches unless otherwise noted, and 

known signaling peptide sequences were removed from the FASTA entries. 

Byonic Searching.  

The standalone Byonic28 environment (v 3.7.4, Protein Metrics) was used for all searches of 

the mucin O-glycopeptide dataset15, where the maximum allowed cores is 16. O-glycan 

modification from the 12 O-glycan database was set to common2, common3, or common4, as 

indicated in the text (meaning they could occur 2, 3, or 4 times, respectively, on the same 

glycopeptide). The total common max value was set to match the value used for O-glycans, and 

the total rare max was set to 1. Other modifications were: carbamidomethyl at cysteine 

(+57,021644, fixed), oxidation at methionine (+15.994915, common2), and deamidation at 

asparagine (+0.984016, rare1). A FASTA file of the four mucin standards was used as the protein 

database, with reverse sequences appended as decoys by Byonic. See Supplementary Note 2 for 

more discussion about databases. Cleavage specificity was set as fully semi-specific for C-terminal 

to R and K residues (i.e., semi-tryptic) with two missed cleavages allowed. Precursor mass 

tolerance was set to 10 ppm with fragment mass tolerance(s) set to 20 ppm. Fragmentation was set 

to HCD & EThcD for appropriate raw files, and protein FDR was set to 1%. Byonic results were 

processed as described in ref 15. Briefly, following each search, peptide spectral match (PSM) lists 

were exported as .csv files from the Byonic viewer using all columns. Filtering Byonic search 

results is necessary to retain only high-quality identifications and minimize false positives35; here, 
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filtering metrics included a Byonic score greater than or equal to 200, a logProb value greater than 

or equal to 2, and peptide length greater than 4 residues. Localization was calculated using 

fragments present in identified spectra as reported in reference 15. The relaxed filtering metrics 

(Supplementary Fig. 3) used a score filter of 50 or higher and a required logProb value greater 

than or equal to 1. 

O-Pair Search.  

O-Pair Search was performed in MetaMorpheus (0.0.307), which is available at 

https://github.com/smith-chem-wisc/MetaMorpheus. O-Pair Search is designed to be used with 

high-resolution data41. The “Glyco Search” option was selected, where the O-glycopeptide search 

feature was enabled and the Oglycan.gdb glycan database was selected, representing the same 12 

common O-glycan database used above. The “Keep top N candidates” feature was set to 50, and 

Data Type was set as HCD with Child Scan Dissociation set as EThcD. The “Maximum OGlycan 

Allowed” setting was varied as discussed in the text, where this number represents both the 

maximum number of O-glycan modifications that could occur on a glycopeptide candidate and the 

number of times each O-glycan could occur per peptide. For the majority of searches following 

the results obtained in Fig. 2g, the Maximum Oglycan Allowed” was set to 5 unless otherwise 

noted. Under Search Parameters, both “Use Provided Precursor” and “Deconvolute Precursors” 

were checked. Peak trimming was not enabled and Top N peaks and minimum ratio were set to 

1000 and 0.01, respectively. In-Silico Digestion Parameters were set to generate decoy proteins 

using reversed sequences, and the initiator methionine feature was set to “Variable”. The 

maximum modification isoforms allowed was 1024, and the minimum and maximum peptide 

length values were set to 5 and 60 respectively. The protease was set to semi-trypsin with 2 missed 

cleavages allowed, unless otherwise noted (Supplementary Fig. 4). The number of database 
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partitions was set to 1 unless noted below. Precursor and product mass tolerances were 10 and 20 

ppm, respectively, and the minimum score allowed was 3. The maximum number of threads, i.e., 

cores, was varied as described in the text, with 16 cores being the default used in this study unless 

otherwise noted. Modifications were set as Carbamidomethyl on C as fixed, and Oxidation on M 

and Deamidation on N as variable.  

 O-Pair Search produces two separate PSM files, one for non-glycopeptides and one for 

glycopeptides. The numbers of non-glycopeptide identifications were calculated by filtering the 

single_psm file to include only target PSMs (T) with q-values less than 0.01. The same target and 

q-value filterings were used for O-glycopeptide identifications in the glyco_psm file. Localization 

Level assignments were calculated using the provided outputs following target and q-value 

filtering, and all were confirmed manually for data represented in Fig. 2a-f. The UpSet plot in 

Supplementary Fig. 5 was made using https://asntech.shinyapps.io/intervene/42. 

 Entrapment databases used for Fig. 2h and 2i were compiled from several different sources. 

The canonical mucin database (20 entries) was compiled using annotated mucins available at 

http://www.medkem.gu.se/mucinbiology/databases43. The FBS database (86 entries) was 

generated from data provided from Shin et al44. The database of CD markers, i.e., cluster of 

differentiation markers known to be cell surface molecules, was downloaded from the Human 

Protein Atlas (https://www.proteinatlas.org/)45. The E. coli, yeast, and mouse proteome databases 

were retrieved from the Uniprot Consortium46. The CHO secretome was downloaded from Park et 

al.47 Sequences for the four mucin standards in the mixture that was analyzed were appended to 

each. See Supplementary Note 3 for more discussion about the databases used. For searches 

performed with each of these databases, the Number of Database Partitions was set to 16, and 16 

cores were also used for each search. The false discovery rate was calculated after filtering for 
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target hits and q-value < 0.01 in the glyco_psms file, by taking the ratio of the total number of 

GlycoPSMs that did not originate from the four mucin standard proteins (false positives) to the 

total number of GlycoPSMs. This was performed when filtering based on Localization Levels as 

indicated in the text.  

Analysis of Urinary O-glycopeptide Dataset.  

Raw data is available for download from MassIVE (identifier MSV000083070) as provided in ref 

9, and processed data for part of this dataset (Fraction 1 and Fraction 2) is available in ref 8. As 

described in the Supplemental Material in ref 31, raw files 170919_11.raw, 170921_06.raw, and 

170922_04.raw correspond to Fraction 1. Raw files 170919_08.raw and 170921_03.raw are the 

only two files available for download from MassIVE that are from Fraction 2. We processed those 

sets of three and two files as Fraction 1 and Fraction 2, respectively, and then processed all ten 

files available for download from MassIVE, as indicated in Fig. 2l. Identifications from Protein 

Prospector and Byonic provided in the supplemental material from ref 8 were used from all three 

search conditions provided (described in detail in ref 8), with duplicate identifications between the 

searches removed. To convert Protein Prospector identifications to our Localization Levels 

scheme, all identifications containing “@” but not “|” were classified as Level 1 or 1b, because 

“@” indicates a modification assigned at a specific residue while “|” indicates an ambiguous 

assignment. Level 2 identifications were then added by included GlycoPSMs that included an “@”, 

whether or not other characters indicating ambiguity were present because “@” meant at least one 

modification was localized.  
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Figure 1. O-Pair Search through MetaMorpheus for fast and confident identification of O-

glycopeptides. a) The workflow describes processing steps in the O-Pair Search strategy, which generates 

a fragment ion index [1, 2] and O-glycan groups [3, 4] from user defined protein and O-glycan databases, 

respectively. Using an ultrafast, fragment-index-enabled open modification search [5] paired with a match 

of delta masses to aggregate glycan mass combinations [6] enables identification of O-glycopeptide 

candidates from HCD spectra [7]. Paired EThcD spectra are then used for graph theory-based localization 

calculations to rapidly assign modification sites for all glycans comprising the O-glycan group [8]. Finally, 

more detailed re-scoring of spectra, localization probability calculations, and false discovery rate 

corrections are performed before returning identifications to the user [9]. b) A demonstration of graph 

theory-based localization using a hypothetical example of an O-glycopeptide 

TTGSLEPSSGASGPQVSSVK from human mucin-type O-glycoprotein CD43 (leukosialin), which has 8 
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potential O-glycosites. Here we consider how graph theory determines O-glycosites using c/zdot fragments 

present in EThcD spectra when two glycans (termed A and B for the sake of demonstration) are presented 

as modifications. c) An example of paired HCD and EThcD spectra for quadruply-O-glycosylated 

TTGSLEPSSGASGPQVSSVK, showing a Level 1 identification where all calculated glycan mass shifts 

can be confidently localized to discrete residues. Note, no fragments in the HCD spectrum retain any glycan 

masses. Rather, the thorough peptide backbone fragmentation without glycan retention shows how the 

sequence was confidently retrieved with a defined mass shift matching a combination of O-glycans. The 

subsequent EThcD spectrum then enables localization of all 4 O-glycosites (gold) even with the presence 

of 4 other unmodified potential sites. D) O-Pair Search defines levels of localization for each GlycoPSM. 

A Level 1 assignment indicates that all glycans can be unambiguously localized to single S or T residues 

using spectral evidence, while Level 1b also indicates localization in instances when spectral evidence is 

lacking (e.g., only one possible modification site). Level 2 localizations have at least one glycan, but not 

all, localized to a single S or T. Level 3 GlycoPSMs include the remaining pool of identifications, where 

peptide sequence and glycan aggregate mass are confidently assigned, but no individual glycan can be 

localized to a specific residue. Note, “H”, “N”, and “A” represent hexose, HexNAc, and Neu5Ac, 

respectively. 
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Figure 2. Performance of O-Pair Search for O-glycopeptide characterization. Comparing the number 

of a) localized and b) total glycopeptide spectral matches (GlycoPSMs) returned from Byonic and from O-

Pair Search for HCD-pd-EThcD data collected from StcE digestions of four recombinant mucin standards. 

Note, only Level 1 and 1b identifications are considered for the localized O-Pair Search data, and 3 glycans 

per peptide were allowed for both searches. Byonic identifications are grouped into HCD-EThcD pairs 

(where paired scans identified the same O-glycopeptide), HCD alone, and EThcD alone. The latter two 

cases are where an identification came only from an HCD scan or EThcD scan, but the other spectrum in 
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the pair did not return a hit.  O-Pair Search improves the number of localized and total identifications by 

46% and 66% over Byonic, respectively. c) The table compares the search times required for Byonic and 

O-Pair Search when considering 2, 3, and 4 glycans per peptide. Note, the 4 glycans per peptide for Byonic 

was canceled after approximately 33,000 minutes of search time (~3.5 weeks) because it had not advanced 

in reported search progress for over one week. The number of localized glycosites identified by the searches 

is also provided for comparison, which correspond to the GlycoPSMs in panel a and Supplemental Fig. 3. 

In addition to more than doubling the number of total identified spectra, O-Pair Search identified the 

majority of scans that Byonic returned as GlycoPSMs for both d) HCD and e) EThcD scans, and f) the 

overwhelming majority (~95%) of the shared identified scans mapped to the same glycopeptide. g) O-Pair 

Search enabled consideration of more glycans per peptide while keeping search times reasonable. h) O-Pair 

Search also allowed the use of several different protein database backgrounds much larger in size without 

untenable search time increases. Here, “Total” indicates all identifications, i.e., the sum of all Localization 

Level identifications. i) Use of entrapment databases with proteins not present in the sample did not inflate 

false discovery rates above approximately 1-3%. j) O-Pair Search was used to process files from a published 

urinary O-glycopeptide study that previously reported Protein Prospector (Prot. Pros.) and Byonic results. 

O-Pair Search nearly doubled the total number of GlycoPSMs from either search engine, identifying ~90% 

of spectra shared by the two search algorithms while providing an additional 506 GlycoPSMs not reported 

by either. k) Protein Prospector reports localized glycosites, which we converted into our Localization 

Level system and compared with O-Pair results. l) Results from several O-Pair searches of Fraction 1 (three 

files), Fraction 2 (two files), and all ten files available from the urinary O-glycopeptide study. 
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SUPPLEMENTARY INFORMATION 

 

This Supplementary Information includes Supplementary Figs. 1-18, Supplementary Notes 1-4, 

and Supplementary Tables 1-3: 

Supplementary Fig. 1: Potential glycosites per theoretical peptide digested from standard mucin 

proteins in this study 

Supplementary Fig. 2: Comparing Byonic and O-Pair Search when allowing 2 glycans per 

peptide 

Supplementary Fig. 3: Comparing Byonic and O-Pair Search when relaxing Byonic filtering 

metrics for a 3-glycans-per-peptide search 

Supplementary Fig. 4. Comparing glycosite heterogeneity between O-Pair Search and Byonic 

Supplementary Fig. 5: Overlap of identifications when allowing for more glycans per peptide 

Supplementary Fig. 6: Non-modified peptide identifications 

Supplementary Fig. 7: Searching with various glycan databases 

Supplementary Fig. 8: Elution times correlate for related glycoforms of the same peptide 

sequence 

Supplementary Fig. 9: Visualizing eluting isoforms of localized glycopeptides 

Supplementary Fig. 10: Re-evaluating ETD and EThcD fragmentation data using O-Pair Search 

Supplementary Fig. 11: Number of localized glycosites per peptide 

Supplementary Fig. 12: Search speed benefits with O-Pair Search remain even with fewer cores 

Supplementary Fig. 13: Identification of O-glycosites in four standard mucins 

Supplementary Fig. 14: Processing HCD and stepped collision energy HCD data with O-Pair 

Search 

Supplementary Fig. 15: Entrapment FDR with Byonic and O-Pair Search 
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Supplementary Fig. 16: O-Pair Searches using expression system background proteomes 

Supplementary Fig. 17: Comparing O-Pair Search with Byonic and Protein Prospector for 

Fraction 2 of the urinary O-glycopeptide dataset. 

Supplementary Fig. 18: Comparing computational complexity (in Supplementary Note 1) 

 

Supplementary Note 1: Computational complexity analysis 

Supplementary Note 2: Discussion of MSFragger-Glyco and glycan database size 

Supplementary Note 3: Entrapment database generation 

Supplementary Note 4: Glycan databases, mucin protein sequences, and data files used 

 

Supplementary Table 1: Computational complexity analysis (in Supplementary Note 1) 

Supplementary Table 2: Average number of glycan groups (in Supplementary Note 1) 

Supplementary Table 3: Comparing computational complexity (in Supplementary Note 1) 
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Supplementary Figure 1. Potential glycosites per theoretical peptide digested from standard 

mucin proteins in this study. On average, peptides derived from mucins can have approximately 

6 serine/threonine residues. 

 

 

 

  



79 
 

 

 

Supplementary Figure 2. Comparing Byonic and O-Pair Search when allowing 2 glycans per 

peptide. a) O-Pair searching identifies more localized and total (all) GlycoPSMs when allowing 

for 2 glycans per peptide from a 12-glycan database. Byonic identifications are grouped into HCD-

EThcD pairs (where paired scans identified the same O-glycopeptide), HCD alone, and EThcD 

alone. The latter two cases are where an identification came only from an HCD scan or EThcD 

scan, but the other spectrum in the pair did not return a hit. O-Pair Search identified the majority 

of scans that Byonic returned as GlycoPSMs for both b) HCD and c) EThcD scans, and d) the 

overwhelming majority (~95%) of the shared identified scans mapped to the same glycopeptide. 
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Supplementary Figure 3. Comparing Byonic and O-Pair Search when relaxing Byonic 

filtering metrics for a 3-glycans-per-peptide search. a) O-Pair searching identifies more 

localized and total (all) GlycoPSMs when allowing for 3 glycans per peptide from a 12-glycan 

database. Byonic identifications were filtered for scores > 50 and logProb values > 1 (compared 

to 200 and 2, respectively, as presented in the main text Fig. 2). are grouped into HCD-EThcD 

pairs (where paired scans identified the same O-glycopeptide), HCD alone, and EThcD alone. The 

latter two cases are where an identification came only from an HCD scan or EThcD scan, but the 

other spectrum in the pair did not return a hit. O-Pair Search identified the majority of scans that 

Byonic returned as GlycoPSMs for both b) HCD and c) EThcD scans, and d) the overwhelming 
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majority (~95%) of the shared identified scans mapped to the same glycopeptide. The majority of 

additional HCD identifications from the relaxed Byonic filtering are not those that overlap with 

O-Pair Search identifications, while the overlapping identifications increased more than non-

overlapping identifications for EThcD scans. This further supports previous findings that EThcD 

scans are underscored relative to HCD scans in Byonic, with HCD scans having a greater 

likelihood of being assigned to less confident identifications. This observation also further 

highlights the benefits of using HCD and EThcD spectral pairs when assigning identifications, as 

O-Pair Search does. 
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Supplementary Figure 4. Comparing glycosite heterogeneity between O-Pair Search and 

Byonic. Localized glycosites from GlycoPSMs from a) Gpb1a, b) CD43, c) MUC16, and d) 

PSGL-1 are shown as reported by Byonic and O-Pair Search, where 3 glycans were allowed per 

glycosite (Fig. 2a). The number of unique glycan compositions at each site is reported for Byonic 
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(yellow) and O-Pair Search (teal). Note, the difference in glycosites reported here and data in 

Supplementary Fig. 13 is the difference between searching with 3 and 5 glycans per peptide 

allowed with O-Pair Search.  
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Supplementary Figure 5. Overlap of identifications when allowing for more glycans per 

peptide. The UpSet plot, which functions as a multi-dimensional Venn diagram depicting 

intersection size between different group as the top bar graph, shows that the core number of 

identifications stays the same between searches that allow for more glycans per peptide, with 

additional identifications remaining in the intersection of searches with progressively more glycans 

allowed. The total identifications count (Level1 and 1b) for each search are shown as “set size” in 

the bar graph in the bottom left corner. 
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Supplementary Figure 6. Non-modified peptide identifications. O-Pair Search also returns 

identifications for non-modified peptides, i.e., standard peptide spectral matches (PSMs) that 

include oxidized methionine variable modifications. The number of non-modified PSMs are 

shown for a) the searches for the variable number of O-glycans allowed per peptide and b) the 

searches with six entrapment databases (with the database of 4 standard mucins provided as a 

reference in aqua). The size/complexity of the entrapment database caused fewer identifications 

for non-modified peptides, similar to O-glycopeptide identification (Fig. 2h).  

 

 

  



86 
 

 

Supplementary Figure 7. Searching with various glycan databases. Identifications were made 

with O-Pair Search using glycan databases (DBs) of 12 (yellow), 28 (navy), and 32 (teal) glycans 

and protein database with the 4 mucin sequences. The number of total glycoPSMs and the search 

times for each search are provided in the table at the top. Bar graphs compare numbers of 

identifications from Level 1 and 1b, Level 2, and Level 3 classifications. Venn diagrams on the 
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left for each level indicate how many identifications in the three different searches had the same 

glycopeptide assigned to the same spectral pair. Spectral pairs that returned identifications unique 

to one condition were also compared by looking at overlap in their spectrum numbers to determine 

how many spectra are assigned different identifications under glycan database search conditions 

(Venn diagrams on the right). Here, an overlap of 3 between conditions shows that three spectral 

pairs were identified as different glycopeptides between the two searches. Note, Venn diagrams 

on the right are not to-scale with those on the left. These data demonstrate that larger glycan 

databases can still be searched in reasonable time frames with O-Pair Search and return similar 

number of identifications. Interestingly, Level 1, 1b, and Level 2 identifications were highest with 

the 28-glycan database, but Level 3 identifications increased with glycan database size. This 

indicates that the “right” glycan database size exists for a given dataset and that identifications do 

not simply increase with the more glycans considered, except perhaps for Level 3 identifications 

where peptide and glycan mass combinations could increase as the combinatorial space inflates. 

The high degree of overlap in Level 1 identifications between search conditions confirms their 

high quality. Indeed, the one spectral pair that was assigned to different sequences for the 28-

glycan and 32-glycan searches showed very similar identifications: 

TLTLNFTISNLQYSPDMGKGS (28 glycan) and TLTLNFTISNLQYSPDMGKG (32 glycan). 

As expected, overlap gets worse amongst all searches as the identifications get less confident 

(Level 2 and Level 3). The lack of overlap between the 12-glycan database and the other two 

searches suggests that the combinatorial space considered for a glycan search can alter the 

sequences assigned. Even so, the Venn diagrams to the right show that the lack of overlap is not 

because the same spectra are assigned different identifications (a relatively rare occurrence), but 

rather that different pools of spectra are identified when considering different glycan combinatorial 
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space. The ability to search O-glycopeptide data with large glycan databases like this has been 

largely unexplored due to the computational complexities addressed in this manuscript. O-Pair 

Search now makes these comparisons more feasible and will enable new investigations into 

relationships between protein database, glycan database, and spectral scoring metrics. 
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Supplementary Figure 8. Elution times correlate for related glycoforms of the same peptide 

sequence. The peptide “GLFIPFSVSSVTHK” from PSGL-1 was identified multiple times with 

different glycan compositions. The retention times cluster with the feature of glycans. The 

glycopeptides are grouped by the number of sialic acids. Glycans that contain more sialic acids 

elute later (between different groups); glycans that contain more neutral sugars tend to elute earlier 

(within one group). 
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Supplementary Figure 9. Visualizing eluting isoforms of localized glycopeptides. Two 

glycopeptides, both with the aggregate mass of “GLFIPFSVSSVTHK-(H1N1A1)”, are positional 

isoforms identified with O-Pair Search. The presence of two different elution profiles supports the 

presence of the two different glycoforms localized by O-Pair Search. The extracted ion current for 

the mass is shown for the four most abundant isotopic peaks for each glycoform.  
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Supplementary Figure 10. Re-evaluating ETD and EThcD fragmentation data using O-Pair 

Search. Comparisons of electron-driven dissociation methods investigated in Main Text ref 11 are 

shown using O-Pair Search with Localization Level information. GlycoPSMs are shown in a), 

including the combined Level 1 and 1b identifications, the total number of identifications, and the 

number of non-modified peptides detected per method. Unsurprisingly, ETD has a much higher 

proportion of Level 3 identifications relative to Level 1 than the EThcD methods, because non-

dissociative electron transfer prevents the generation of peptide backbone fragments that are 

needed to localize glycosites. Even though EThcD15 generates the most total GlycoPSMs, 

EThcD25 has the advantage for fully localized (Level 1) identifications. b) The advantage in 

localized GlycoPSMs afforded by EThcD25 provides a slight gain in the number of localized 

glycosites, although the difference is minimal compared to previous analyses with Byonic. The 

mid-range supplemental activation energies (EThcD15 and EThcD25) provide the most localized 

glycosites and the most glycoforms, i.e., the combination of glycosites and the different glycans 

observed on them.  
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Supplementary Figure 11. Number of localized glycosites per peptide. Identifications from the 

three EThcD25 datasets were pooled and filtered for Level 1 identifications only. This pie graph 

shows the distribution of the 447 total Level 1 identifications that had 1-5 localized glycosites. 
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Supplementary Figure 12. Search speed benefits with O-Pair Search remain even with fewer 

cores. Here, the time needed to complete a full analysis of a raw file analogous to that shown in 

Fig. 2c and Fig. 2g is shown for 2, 4, 8, and 16 cores when allowing for 5 glycans per peptide with 

a glycan database of 12 glycans. O-Pair Search speed translates to any computer used for 

searching, not just hyperthreaded computers.  

 

 

  



94 
 

 

 

Supplementary Figure 13. Identification of O-glycosites in the four standard mucins. 

Searching with 5 glycans allowed from a 12 O-glycan database identifies 153 O-glycosites, with 

each protein extensively modified. Here, blue horizontal bars represent the protein sequences with 

N- and C-terminal residues numerically labeled, and green vertical bars indicate O-glycosites 
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(residue numbers provided) localized with O-Pair Search. For comparison (but not depicted in the 

figure), a Byonic search with 3 glycans allowed identified 96 total O-glycosites with evidence for 

41 of them as localized: 4 localized of 7 identified O-glycosites in Gp1ba, 19 localized of 37 

identified O-glycosites in CD43, 12 localized of 17 identified O-glycosites in PSGL-1, and 6 

localized of 35 identified O-glycosites in MUC16, Note, signal peptides were removed from the 

protein sequences prior to searching. 
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Supplementary Figure 14. Processing HCD and stepped collision energy HCD (sceHCD) 

data with O-Pair Search. Even though optimal searching conditions use paired HCD and EThcD 

scans to facilitate glycosite localization, HCD and sceHCD can also be searched. Here, searches 

were performed on published data from the same digestion of mucin standard proteins used in the 

main text, but run with scouting HCD scans followed by triggered HCD or sceHCD scans of with 

different collision energy settings1. a) O-Pair Search assigns glycoPSMs from an open search but 

is unable to use graph theory for glycosite localization because peptide backbone fragments largely 

fail to retain the glycan mass under HCD fragmentation. Values are averages of triplicate injections 

(3 separate files), and error bars show one standard deviation. b) Approximately 1% of 

identifications are classified as Level 1b because only one plausible glycoform exists, but the vast 

majority are Level 3 identifications, meaning no glycosite information can be discerned. 

Regardless, this makes the rapid searching provided by O-Pair Search a viable option for HCD-
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only studies, as well. Although not shown here, O-Pair Search can also process traditional data 

acquisition regimes, i.e., data-dependent acquisition without the scouting HCD scans. 
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Supplementary Figure 15. Entrapment FDR with Byonic and O-Pair Search. Three of the 

entrapment background databases used to test O-Pair Search were also used to test Byonic. These 

were selected because they could be completed with reasonable search times with Byonic when 

allowing for 2 glycans per peptide. Three levels of Byonic filtering are shown: no filtering, which 

would be the equivalent of Byonic’s standard FDR calculation (yellow), filters to keep only 

glycoPSMs with Byonic Scores > 50 and logProb values > 1 (teal), and filters to keep glycoPSMs 

with Byonic Scores > 200 and logProb values > 2 (gray). This comparison shows how necessary 

post-Byonic-search filtering is to assure quality glycoPSMs. O-Pair Search data (navy) is the same 

as reported in Fig. 2i (All) and is the result of filtering glycoPSM q-values to 0.01. 
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Supplementary Figure 16. O-Pair Searches using expression system background proteomes. 

Both CHO cells and NS0 murine cells were used as expression systems for the recombinant mucins 

used in the dataset searched here. These searches were analogous to approach used with 

background proteomes used for entrapment FDR calculations: the four mucin standard sequences 

were appended either a CHO secretome protein database (2,370 entries)2 and the entire mouse 

proteome (17,030 entires). Five glycans per peptide were allowed from a 12-glycan database. The 

searches took ~57 minutes and ~463 minutes for CHO and mouse backgrounds, respectively. The 

bar graph on the left shows the number of identifications delinated by Localization Level from the 

standard protein file (4 recombinant mucins) and the two searches with expression system 

backgrounds. Lists show the proteins identified in the two searches as O-glycopeptides and non-
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modified peptides. Identifications are shown in black or gray for either the recombinant mucins or 

proteins from the background proteomes, respectively. 

 

 

 

Supplementary Figure 17. Comparing O-Pair Search with Byonic and Protein Prospector 

for Fraction 2 of the urinary O-glycopeptide dataset. O-Pair Search has a high degree of overlap 

in identified spectra with the other two search algorithms while returning a greater number of 

unique identifications (left). We converted Protein Prospector to our Localization Level 

classification and compared to O-Pair Search (right). 
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SUPPLEMENTARY NOTE 1 

Computational 

complexity of searching 

one MS2 experimental 

spectrum 

localization non localization 

Traditional narrow 

search 

O ( 𝑛 ∗

∑
( 𝑠 )!

( 𝑠−𝑖 )!∗𝑖!
∗ 𝑔𝑖 

𝑚

𝑖=0
) 

 

O ( 𝑛 ∗ ∑
( (𝑔−1 ) + 𝑖 )!

( 𝑔−1 )!∗𝑖!
 

𝑚

𝑖=0
) 

 

ion-indexed open 

search 

brute force localization  

O ( 𝑥 + 𝑘 ∗ 𝑟 ∗
𝑠!

(𝑠−𝑚)!
) 

O ( 𝑥 + 𝑘) 

 graph-based 

localization  

O ( 𝑥 + 𝑘 ∗ 𝑟 ∗  𝑑) 

 

Supplementary Table 1. Computation complexity analysis 

n is the average number of theoretical peptides within the specified precursor mass tolerance. 

m is the maximum number of glycan allowed on a single peptide. 

s is the number of S/T amino acids within a single peptide. 

g is the number of glycan types. 

k is the count of top peptide candidates. In general, k is always much smaller than n. 

r is the number of glycan groups with the same mass. (Supplementary Table 2.) 

x is the number of peaks in an MS2 experimental spectrum, which is used to represent the constant 

ion indexing time and can be ignored in general. 

d is the depth of the graph. 𝑑 =  ∑
( 𝑚 )!

( 𝑚−𝑖 )!∗𝑖!
=  2𝑚 

𝑚

𝑖=0
. 

 

Maximum number of 

glycan allowed per peptide 

Total 

Combinations 

Number 

of unique 

mass 

Average number of 

glycan groups with same 

mass (r) 

2 90 60 1.5 

3 454 184 2.5 

4 1819 439 4.1 

5 6187 895 6.9 

6 18563 1637 11.3 

7 50387 2765 18.2 

8 125969 4394 28.7 

 

Supplementary Table 2. Average number of glycan groups of the 12 glycan database.  
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Computational complexity analysis 

We observed a great reduction in search time for O-Pair Search compared against the 

commercial software program Byonic for similarly configured O-glycopeptide searches. This 

prompted us to perform an analysis of the computational complexity of the O-Pair Search 

algorithm and other related methods to determine the source of this time savings.  

To simplify the analysis, we treat each theoretical-experimental spectrum comparison as one-

unit of computation to calculate the associated computational complexity.  

1) Traditional database search (narrow) 

The traditional database search for O-glycopeptide identification requires the construction of 

a complete O-glycopeptide database prior to the matching process. The O-glycopeptide database 

is built using O-glycans as variable modifications. In the variable modification scenario, each 

peptide yields a combinatorial number of glycopeptides based the number of modifiable sites 

within the peptide and the number of different glycans that can occupy those sites1. The 

computational complexity (Supplementary Table 1) of traditional glycopeptide search is: 

O ( 𝑛 ∗ ∑ (𝑠
𝑖
)𝑔𝑖  

𝑚

𝑖=0
) 

2) Ion-Indexed Open Search with localization 

The O-Pair Search algorithm, described in detail in the Methods Section, consists of an ion-

indexed open search to ascertain the amino acid sequence of the peptide backbone and a graph-

theoretical approach to determining the positions of glycans adorning the peptide. We analyze 

below the theoretical complexity of each stage separately. 

2.1) Ion Indexing 

Ion-indexed open search strategies have been used for bottom-up peptide identification and 

post-translational modification discovery2. Ion-indexed open searches are particularly 
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advantageous for the latter because there is no need to select theoretical peptides based on the 

experimental precursor mass, which would have required construction of all theoretically modified 

forms. Ion indexes are generally constructed from theoretical fragments of the unmodified peptide 

backbone for each peptide in the database. In the case of O-pair Search, the use of an ion-indexed 

open search for the first stage means that there is no need to consider all the possible different 

glycopeptide forms that could be constructed for each peptide. A theoretical peptide database 

containing all possible glycans would be massive. Peptide candidates only are identified in the ion-

indexed open search during the first stage. Possible glycans are considered in the next. The ion 

indexing process in MetaMorpheus has been heavily optimized for high speed. The computational 

complexity (Supplementary Table 1) for ion indexing is related to the number of peaks in the MS2 

spectrum, which can be considered as a small constant:  

O (𝑥) 

2.2) Brute force localization 

MetaMorpheus O-pair Search does not perform a brute force localization. However, we 

provide here an analysis of the brute force localization approach as a point of reference for the 

reader to understand it in relation to the computational complexity of the graph-based localization 

described immediately after. Glycan group candidates are determined after obtaining peptide 

candidates from the ion-indexed open search. The brute force approach to localization consists of 

matching each glycan group to each different peptide candidate (combinatorial), including all 

possible localization isomers. This process yields  
𝑠!

(𝑠−𝑚)!
  glycopeptides for consideration. The 

overall computational complexity (Supplementary Table 1) for ion-indexed open search with brute 

force localization is: 

O ( 𝑥 + 𝑘 ∗ 𝑟 ∗
𝑠!

(𝑠−𝑚)!
) 
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2.3) Graph-based Localization 

The graph-based localization was described in detail in the methods section. Here we provide 

additional details to compute the computational complexity. There are two sets of theoretical 

fragment ions associated with glycopeptides in a graph. One set of theoretical fragments are shared 

between multiple glycopeptides and the other set of fragments is unique to a single glycopeptide. 

The shared fragments are predominant.  The graph-based localization saves time in constructing 

all possible glycopeptide forms and simultaneously enables the matching of fragments without 

redundancy, taking advantage of the knowledge of shared fragments. 

The computational complexity is proportional to the depth  𝑑 = 2𝑚 of the graph, which is a 

function of the number of possible glycan modifications m. For O-glycopeptides in general, m is 

not a large number. The overall computational complexity (Supplementary Table 1) for ion-

indexed open search with graph-based localization is: 

O ( 𝑥 + 𝑘 ∗ 𝑟 ∗  𝑑) 

3) Comparison 

To compare the computational complexity, we ignore the values n, x and k and focus on 

analyzing how the numbers of glycan types and glycosites influence the computational complexity.  

For example, using g = 12 glycans, s = 8 glycosites and m = 2 glycans (as in Fig 1b), the 

computational complexity (Supplementary Table 1) is as follows: 

in traditional search ∑
( 𝑠 )!

( 𝑠−𝑖 )!∗𝑖!
∗ 𝑔𝑖  

𝑚

𝑖=0
=  4291 

in ion-indexed open search with brute force localization  𝑟 ∗
𝑠!

(𝑠−𝑚)!
= 1.5 ∗ 56 = 84 

in ion-indexed open search with graph-based localization 𝑟 ∗ 𝑚2 = 1.5 ∗ 4 = 6 
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Next, we look at how these numbers evolve as a function of m. We set g = 12 and s = 8 and 

find that the computational complexity changes dramatically for traditional narrow search and 

brute force methods (Supplementary Figure 14, Supplementary Table 2). 

Using the ion-indexed open search and graph-based localization, O-Pair Search avoids the 

‘combinatorial explosion’ that happens in for traditional searches of O-glycopeptide 

characterization. O-Pair Search in this way could use a large sized glycan database and expands 

the potential for O-glycopeptide characterization.  

 

 
Supplementary Figure 12. Comparing the computational complexity in traditional narrow search, 

ion-indexed open search with brute force localization and graph-based localization. Note, the y-

axis is on a log2 scale. 

m graph brute 

force 

traditional 

1 8 32 97 

2 16 224 4129 

3 32 1344 100897 

4 64 6720 1552417 

5 128 26880 1.55E+07 

6 256 80640 9.91E+07 
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7 512 161280 3.86E+08 

8 1024 161280 8.16E+08 

Supplementary Table 3. Comparing the computational complexity in traditional narrow search, 

ion-indexed open search with brute force localization and graph-based localization. The number 

of glycan types is set to g = 12, the number of glycosites is set to s = 8, the number of glycan 

groups with the same mass r is about 4,  and m is the maximum number of glycosylation allowed 

on a single peptide. 
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SUPPLEMENTARY NOTE 2 

 

During the review process for this manuscript, another approach using fragment ion indexed 

open searching of glycopeptide spectra was reported from Nesvizhskii and co-workers, the group 

who developed the highly efficient ion-indexed strategy.5 The MSFragger-Glyco manuscript re-

analyzes data from Zhang et al., which used the O-glycoprotease OpeRATOR to generate O-

glycopeptides and exclusively relies on HCD fragmentation.6 Without electron-based dissociation, 

localization of the glycosite via spectral evidence is largely impossible, which is one of the reasons 

we elected not to analyze this dataset. Regardless, MSFragger-Glyco reported impressive boosts 

in identifications over the published dataset using a database of 110 glycan compositions. 

MSFragger-Glyco also reduced search times, as O-Pair Search does. 

An important distinction between the two algorithms is the incorporation of O-glycosite 

localization with O-Pair Search versus no such calculation with MSFragger-Glyco. The most 

obvious importance here is the ability of O-Pair Search data to provide site-specific glycosylation, 

arguably the most biologically relevant information. But even more so, assigning glycan structures 

to specific sites is much more computationally challenging than only assigning a total glycan 

aggregate mass to a peptide sequence. This was first addressed in the main script with discussion 

of the O-Search algorithm from Mao et al,3 where static glycan aggregate mass combinations are 

searched with no regard for O-glycosite localization. To be sure, MSFragger-Glyco improves the 

speed at which this type of search can be done, but it does not extend the concept beyond 

identification of total glycan mass plus peptide sequence with no glycosite localization. This 

sacrifices site assignment in addition to the number and composition of individual glycans. This 

type of search is possible when using O-Pair Search for data that relies exclusively collisional 

dissociation (Supplemental Figure 5), but it falls short of the goals that inspired the development 
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of O-Pair Search in the first place. Instead, O-Pair Search provides the ability to not only identify 

a glycosylated sequence but also offers site assignment that can identify individual glycans that 

comprise a larger total glycan aggregate mass. 

Thus, the number of glycan compositions considered by O-Pair Search is not merely the size 

of the O-glycan database used for the search (12 glycans in default search), but is also the 

combination of all the possible glycan compositions derived from that database. For example, an 

O-Pair Search that uses 12 glycans with a maximum of 4 glycans allowed per peptide actually 

evaluates 439 single mass offsets, i.e., the number of unique masses present in 1819 different 

glycan combinations. See Supplemental Note 1 above for discussion of how these combinations 

are generated. Considering this, it is clear that O-Pair Search handles glycan composition lists just 

as big, if not significantly larger, than what was reported by MSFragger-Glyco,5 and it maintains 

the rapid performance expected of ion-indexed searches. Furthermore, a key component to this 

performance is the graph theoretical localization performed by O-Pair Search. Brute force 

localization approaches come with a significant time cost (Supplemental Note 1), so the 

incorporation of graph theory-based O-glycosite localization into the total processing time reported 

represents a distinct advantage for O-Pair Search. 

Finally, an important aspect of the MSFragger-Glyco work is extension of glyco-searches to 

include other PTMs, i.e., phosphorylation crosstalk analysis. The crosstalk examples from 

MSFragger-Glyco will likely inspire future work of glycosylation PTM crosstalk, which is 

commendable in and of itself.  
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SUPPLEMENTARY NOTE 3 

 

Several entrapment databases were constructed to evaluate O-Pair Search performance, both 

for the time it takes to complete searches with progressively larger databases and for false 

discovery rate calculations. The goal was to create background proteomes that not only varied in 

size and complexity, but also established different degrees of relevance to the four mucin standard 

proteins that were actually present in the sample: CD43, PSGL-1, MUC16, and Gp1ba. 

First, we appended the four true positive mucins to 20 canonical human mucin sequences7. 

Here, we create a “high mucin” background, where the false positives are very similar to the target 

proteins in sequence composition and proclivity for O-glycosylation. This also represents a close 

approximation of real-world scenarios where digested mucin O-glycopeptides would be screened 

from pools of several mucins with the need to accurately identify which glycopeptides match to 

which proteins. This entrapment database also represents an algorithmic challenge, where there 

are a multitude of O-glycopeptide candidates generated with a high number of O-glycosites. 

The second entrapment database comprised the four true mucin standard sequences combined 

with common fetal bovine serum (FBS) proteins8, many of which are glycosylated. This database 

represents a “high glycoprotein, mammalian but not human” background, where the majority of 

glycoproteins in the database have the capacity to be glycosylated in actuality but there should be 

virtually no peptides mapping to bovine sequences considering the human mucin standard protein 

source. This also represents a situation many researchers may encounter where FBS proteins are 

present due to preparation conditions and may need to be accounted for. Computationally, this is 

moderately more entries than the mucin background above, but with fewer overall mucin-type 

proteins to produce large quantities of high S/T density glycopeptide candidates. 
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Human cluster of differentiation (CD) markers, which are known cell surface proteins, were 

downloaded from the Human Protein Atlas9 and used for the third entrapment database. This set 

of proteins represents a “high glycoprotein, human” background, as the majority of CD markers 

are known to be glycosylated. Several CD markers are classified as mucins, so this database 

challenges the accuracy of assignment using proteins that could potentially have real O-

glycopeptide assignments while also increasing the number of entries ~5-10 fold over the first two 

databases. 

In principle, proteins from these first three entrapment databases could have the type of O-

glycosylation also seen on the true positive mucin standards. Choosing entrapment databases of 

the entire proteomes of E. coli and S. cerevisiae removes this constraint, as neither species should 

contain the glycans in the O-glycan database or peptides sequences that map to mammalian 

proteins. They represent “non-glycoprotein, non-species related” backgrounds that should have 

little in common with the true positive mucin standard proteins. They also represent significant 

increases in database size to ~900 and ~6700 protein entries, respectively. Thus, these two 

databases serve to challenge the accuracy of O-Pair Search and the search speed when considering 

proteome-scale data. 

Finally, we searched a subset of the CHO proteome2 and the entire mouse proteome as these 

are both expression systems for the recombinant mucins in this study. These data further support 

the need for appropriately sized databases for glycoproteomics searches10. While there were some 

peptides from contaminating proteins from the expression systems, they were in the significant 

minority. Thus, inclusion of unnecessarily large background proteomes can hurt sensitivity, as is 

seen with the decrease in identifications in Supplementary Fig. 16. That said, the majority of 

identification losses were in Level 2 and 3 identifications, which are less confident. Level 1 and 
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1b identifications showed significantly fewer losses relative to the other Localization Levels, 

indicating that high confidence identifications are the least affected by database size (as was seen 

with the entrapment database searches). 

Together, these experiments tested the speed and accuracy of O-Pair Search, both when the 

background looks similar to the known mucin standards and when it looks entirely different to the 

mucins of interest. 
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SUPPLEMENTARY NOTE 4 

 

Glycan databases, mucin standard protein sequences, and raw files used for different data 

throughout the paper are provided here. 

 

1. The 12 O-glycan database: 

Glycan Mass (Da) 

(N) 203.0794 

(N(H)) 365.1322 

(N(A)) 494.1748 

(N(H)(N)) 568.2116 

(N(H(A))) 656.2276 

(N(H)(N(H))) 730.2644 

(N(H(A))(N)) 859.307 

(N(H(A))(A)) 947.323 

(N(H(A))(N(H))) 1021.3598 

(N(H)(N(H(A))(F))) 1167.4177 

(N(H(A))(N(H(A)))) 1312.4552 

(N(H(A))(N(H(A))(F))) 1458.5131 

 

* N: HexNAc, H: Hexose, A: NeuAc, F: Fucose. 

 

2. The 28 O-glycan database: 

Glycan Mass 

HexNAc(1) 203.0794 

HexNAc(1)Hex(1) 365.1322 

HexNAc(2) 406.1588 

HexNAc(1)NeuAc(1) 494.1748 

HexNAc(1)Hex(1)Fuc(1) 511.1901 

HexNAc(1)Hex(2) 527.185 

HexNAc(2)Hex(1) 568.2116 

HexNAc(1)Hex(1)NeuAc(1) 656.2276 
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HexNAc(1)Hex(2)Fuc(1) 673.2429 

HexNAc(2)Hex(1)Fuc(1) 714.2695 

HexNAc(2)Hex(2) 730.2644 

HexNAc(1)Hex(1)Fuc(1)NeuAc(1) 802.2855 

HexNAc(1)Hex(2)NeuAc(1) 818.2804 

HexNAc(2)Hex(1)NeuAc(1) 859.307 

HexNAc(2)Hex(1)Fuc(2) 860.3274 

HexNAc(2)Hex(2)Fuc(1) 876.3223 

HexNAc(1)Hex(1)NeuAc(2) 947.323 

HexNAc(1)Hex(2)Fuc(1)NeuAc(1) 964.3383 

HexNAc(2)Hex(1)Fuc(1)NeuAc(1) 1005.365 

HexNac(2)Hex(2)NeuAc(1) 1021.36 

HexNAc(2)Hex(2)Fuc(2) 1022.38 

HexNAc(1)Hex(2)NeuAc(2) 1109.376 

HexNAc(2)Hex(2)Fuc(1)NeuAc(1) 1167.418 

HexNAc(1)Hex(1)NeuAc(3) 1238.418 

HexNac(2)Hex(2)NeuAc(2) 1312.455 

HexNAc(2)Hex(2)Fuc(2)NeuAc(1) 1313.476 

HexNAc(2)Hex(1)NeuAc(3) 1441.498 

HexNAc(2)Hex(2)Fuc(1)NeuAc(2) 1458.513 

 

3. The 32 O-glycan database: 

Glycan Mass (Da) 

HexNAc(1) 203.0794 

HexNAc(1)Hex(1) 365.1322 

HexNAc(2) 406.1588 

HexNAc(1)NeuAc(1) 494.1748 

HexNAc(1)Hex(1)Fuc(1) 511.1901 

HexNAc(1)Hex(2) 527.185 

HexNAc(2)Hex(1) 568.2116 
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HexNAc(1)Hex(1)NeuAc(1) 656.2276 

HexNAc(1)Hex(2)Fuc(1) 673.2429 

HexNAc(2)Hex(1)Fuc(1) 714.2695 

HexNAc(2)Hex(2) 730.2644 

HexNAc(1)Hex(1)Fuc(1)NeuAc(1) 802.2855 

HexNAc(1)Hex(2)NeuAc(1) 818.2804 

HexNAc(2)Hex(1)NeuAc(1) 859.307 

HexNAc(2)Hex(1)Fuc(2) 860.3274 

HexNAc(2)Hex(2)Fuc(1) 876.3223 

HexNAc(1)Hex(1)NeuAc(2) 947.323 

HexNAc(1)Hex(2)Fuc(1)NeuAc(1) 964.3383 

HexNAc(2)Hex(1)Fuc(1)NeuAc(1) 1005.3649 

HexNAc(2)Hex(2)NeuAc(1) 1021.3598 

HexNAc(2)Hex(2)Fuc(2) 1022.3802 

HexNAc(3)Hex(3) 1095.3966 

HexNAc(1)Hex(2)NeuAc(2) 1109.3758 

HexNAc(2)Hex(2)Fuc(1)NeuAc(1) 1167.4177 

HexNAc(1)Hex(1)NeuAc(3) 1238.4184 

HexNAc(3)Hex(3)Fuc(1) 1241.4545 

HexNAc(2)Hex(2)NeuAc(2) 1312.4552 

HexNAc(2)Hex(2)Fuc(2)NeuAc(1) 1313.4756 

HexNAc(3)Hex(3)NeuAc(1) 1386.492 

HexNAc(3)Hex(3)Fuc(2) 1387.5124 

HexNAc(2)Hex(1)NeuAc(3) 1441.4978 

HexNAc(2)Hex(2)Fuc(1)NeuAc(2) 1458.5131 

 

4. The four mucin standard sequences: 

>sp|P07359|GP1BA_HUMAN Platelet glycoprotein Ib alpha chain OS=Homo sapiens OX=9606 

GN=GP1BA PE=1 SV=2 
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HPICEVSKVASHLEVNCDKRNLTALPPDLPKDTTILHLSENLLYTFSLATLMPYTRLTQL

NLDRCELTKLQVDGTLPVLGTLDLSHNQLQSLPLLGQTLPALTVLDVSFNRLTSLPLGAL

RGLGELQELYLKGNELKTLPPGLLTPTPKLEKLSLANNNLTELPAGLLNGLENLDTLLLQ

ENSLYTIPKGFFGSHLLPFAFLHGNPWLCNCEILYFRRWLQDNAENVYVWKQGVDVKA

MTSNVASVQCDNSDKFPVYKYPGKGCPTLGDEGDTDLYDYYPEEDTEGDKVRATRTV

VKFPTKAHTTPWGLFYSWSTASLDSQMPSSLHPTQESTKEQTTFPPRWTPNFTLHMESIT

FSKTPKSTTEPTPSPTTSEPVPEPAPNMTTLEPTPSPTTPEPTSEPAPSPTTPEPTSEPAPSPT

TPEPTSEPAPSPTTPEPTPIPTIATSPTILVSATSLITPKSTFLTTTKPVSLLESTKKTIPELDQP

PKLRGVLQGHLESSRNDPFLHPDFCCLLPLGFYVLGLFWLLFASVVLILLLSWVGHVKP

QALDSGQGAALTTATQTTHLELQRGRQVTVPRAWLLFLRGSLPTFRSSLFLWVRPNGR

VGPLVAGRRPSALSQGRGQDLLSTVSIRYSGHSL 

 

>sp|P16150|LEUK_HUMAN Leukosialin OS=Homo sapiens GN=SPN PE=1 SV=1 

STTAVQTPTSGEPLVSTSEPLSSKMYTTSITSDPKADSTGDQTSALPPSTSINEGSPLWTSI

GASTGSPLPEPTTYQEVSIKMSSVPQETPHATSHPAVPITANSLGSHTVTGGTITTNSPETS

SRTSGAPVTTAASSLETSRGTSGPPLTMATVSLETSKGTSGPPVTMATDSLETSTGTTGPP

VTMTTGSLEPSSGASGPQVSSVKLSTMMSPTTSTNASTVPFRNPDENSRGMLPVAVLVA

LLAVIVLVALLLLWRRRQKRRTGALVLSRGGKRNGVVDAWAGPAQVPEEGAVTVTVG

GSGGDKGSGFPDGEGSSRRPTLTTFFGRRKSRQGSLAMEELKSGSGPSLKGEEEPLVASE

DGAVDAPAPDEPEGGDGAAP 

 

>sp|Q8WXI7.3|MUC16_HUMAN Mucin-16 segment OS=Homo sapiens OX=9606 GN=MUC16 

PE=1 SV=3 

MPLFKNTSVSSLYSGCRLTLLRPEKDGAATRVDAVCTHRPDPKSPGLDRERLYWKLSQL

THGITELGPYTLDRHSLYVNGFTHQSSMTTTRTPDTSTMHLATSRTPASLSGPTTASPLL

VLFTINFTITNLRYEENMHHPGSRKFNTTERVLQGLLRPVFKNTSVGPLYSGCRLTLLRP

KKDGAATKVDAICTYRPDPKSPGLDREQLYWELSQLTHSITELGPYTLDRDSLYVNGFT

QRSSVPTTSIPGTPTVDLGTSGTPVSKPGPSAASPLLVLFTLNFTITNLRYEENMQHPGSR

KFNTTERVLQGLLRSLFKSTSVGPLYSGCRLTLLRPEKDGTATGVDAICTHHPDPKSPRL

DREQLYWELSQLTHNITELGPYALDNDSLFVNGFTHRSSVSTTSTPGTPTVYLGASKTPA

SIFGPSAASHLLILFTLNFTITNLRYEENMWPGSRKFNTTERVLQGLLRPLFKNTSVGPLY

SGCRLTLLRPEKDGEATGVDAICTHRPDPTGPGLDREQLYLELSQLTHSITELGPYTLDR

DSLYVNGFTHRSSVPTTSTGVVSEEPFTLNFTINNLRYMADMGQPGSLKFNITDNVMKH

LLSPLFQRSSLGARYTGCRVIALRSVKNGAETRVDLLCTYLQPLSGPGLPIKQVFHELSQ

QTHGITRLGPYSLDKDSLYLNGYNEPGPDEPPTTPKPATTFLPPLSEATTAMGYHLKTLT

LNFTISNLQYSPDMGKGSATFNSTEGVLQHLLRPLFQKSSMGPFYLGCQLISLRPEKDGA

ATGVDTTCTYHPDPVGPGLDIQQLYWELSQLTHGVTQLGFYVLDRDSLFINGYAPQNLS

IRGEYQINFHIVNWNLSNPDPTSSEYITLLRDIQDKVTTLYKGSQLHDTFRFCLVTNLTMD

SVLVTVKALFSSNLDPSLVEQVFLDKTLNASFHWLGSTYQLVDIHVTEMESSVYQPTSSS

STQHFYLNFTITNLPYSQDKAQPGTTNYQHHHHHH 

 

>sp|Q14242|SELPL_HUMAN P-selectin glycoprotein ligand 1 OS=Homo sapiens GN=SELPLG 

PE=1 SV=1 

QLWDTWADEAEKALGPLLARDRRQATEYEYLDYDFLPETEPPEMLRNSTDTTPLTGPG

TPESTTVEPAARRSTGLDAGGAVTELTTELANMGNLSTDSAAMEIQTTQPAATEAQTTQ

PVPTEAQTTPLAATEAQTTRLTATEAQTTPLAATEAQTTPPAATEAQTTQPTGLEAQTTA
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PAAMEAQTTAPAAMEAQTTPPAAMEAQTTQTTAMEAQTTAPEATEAQTTQPTATEAQT

TPLAAMEALSTEPSATEALSMEPTTKRGLFIPFSVSSVTHKGIPMAASNLSVNYPVGAPD

HISVK 

 

5. Data files used for this study 

 

A. Data file used for entrapment searches  

 2019_09_16_StcEmix_35trig_EThcD25_rep1.raw PXD017646 

B. Data file used for different glycan numbers and glycan databases  

 2019_09_16_StcEmix_35trig_EThcD25_rep1.raw PXD017646 

C. Data files used for fragmentation analysis and other searches  

 2019_09_16_StcEmix_35trig_ETD_rep1.raw 

2019_09_16_StcEmix_35trig_ETD_rep2.raw 

2019_09_16_StcEmix_35trig_ETD_rep3.raw 

2019_09_16_StcEmix_35trig_EThcD15_rep1.raw 

2019_09_16_StcEmix_35trig_EthcD15_rep2.raw 

2019_09_16_StcEmix_35trig_EthcD15_rep3.raw 

2019_09_16_StcEmix_35trig_EthcD25_rep1.raw 

2019_09_16_StcEmix_35trig_EthcD25_rep2.raw 

2019_09_16_StcEmix_35trig_EthcD25_rep3.raw 

2019_09_16_StcEmix_35trig_EthcD35_rep1.raw 

2019_09_16_StcEmix_35trig_EthcD35_rep2.raw 

2019_09_16_StcEmix_35trig_EthcD35_rep3.raw 

PXD017646 

D. Data files used for HCD/stepped HCD data analysis PXD017646 

 2019_09_16_StcEmix_35trig_HCD25.raw 

2019_09_16_StcEmix_35trig_HCD25_rep2.raw 

2019_09_16_StcEmix_35trig_HCD25_rep3.raw 

2019_09_16_StcEmix_35trig_HCD30.raw 

2019_09_16_StcEmix_35trig_HCD30_rep2.raw 

2019_09_16_StcEmix_35trig_HCD30_rep3.raw 

2019_09_16_StcEmix_35trig_HCD35.raw 

2019_09_16_StcEmix_35trig_HCD35_rep2.raw 

2019_09_16_StcEmix_35trig_HCD35_rep3.raw 
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2019_09_16_StcEmix_35trig_HCD40.raw 

2019_09_16_StcEmix_35trig_HCD40_rep2.raw 

2019_09_16_StcEmix_35trig_HCD40_rep3.raw 

2019_09_16_StcEmix_35trig_sceHCD30step10.raw 

2019_09_16_StcEmix_35trig_sceHCD30step10_rep2.raw 

2019_09_16_StcEmix_35trig_sceHCD30step10_rep3.raw 

2019_09_16_StcEmix_35trig_sceHCD30step18.raw 

2019_09_16_StcEmix_35trig_sceHCD30step18_rep2.raw 

2019_09_16_StcEmix_35trig_sceHCD30step18_rep3.raw 

2019_09_16_StcEmix_35trig_sceHCD30step15.raw 

2019_09_16_StcEmix_35trig_sceHCD30step15_rep2.raw 

2019_09_16_StcEmix_35trig_sceHCD30step15_rep3.raw 

2019_09_16_StcEmix_35trig_sceHCD30step5.raw 

2019_09_16_StcEmix_35trig_sceHCD30step5_rep2.raw 

2019_09_16_StcEmix_35trig_sceHCD30step5_rep3.raw 

E. Data files used for urinary O-glycopeptides fraction 1 searches   

 170919_11.raw 

170921_06.raw 

170922_04.raw 

MSV000083070 

F.  Data files used for urinary O-glycopeptides fraction 2 searches  

 170919_08.raw 

170922_01.raw 

MSV000083070 

G. other urinary data files used  

 171025_06.raw 

171027_06.raw 

171027_05.raw 

180417_07.raw 

180417_05.raw 

MSV000083070 
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Chapter 4 

 

Fragmentation Mesh improves fragmentation 

efficiency for Top-down proteomics 

 

 

 

 

 

 

 

 

 

Adapted from Lei Lu, Mark Scalf, Michael R. Shortreed, Lloyd M. Smith* (2020). Fragmentation 

Mesh improves fragmentation efficiency for Top-down proteomics. (to be submitted)  
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ABSTRACT 

Top-down proteomics is a major mass spectrometry technology for comprehensive analysis 

of proteoforms. Different from peptides, proteoforms appear in multiple charge states and isotopic 

forms in full MS scans. The current data dependent acquisition (DDA) method randomly selects 

from amongst the abundant precursors (one charge state of a proteoform) for fragmentation. 

Fragmentation efficiency could differs substantially between different charge states and NCEs 

(normalized collision energies). In this study we proved that stepped HCD (high collision energy 

dissociation) and a ‘Mesh’  strategy could improve fragmentation efficiency and improve 

identification rate. Mesh fragmentation reduces the possibility of getting low quality fragmentation 

from single charge state. The new strategy can perform real time deconvolution to keep track of 

all proteoform charge states. Fragmentation multiple charge states with multiple NCEs is 

ferformed within an the open source instrument control software program called MetaDrive. 
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INTRODUCTION 

The  interest in top-down proteomics has dramatically increased in the recent decade for 

targeted protein analysis or protein post-translational modification analysis.1,2 As a useful 

technology to analyze proteoforms without digestion, top-down proteomics subjects intact proteins 

to fragmenation and retains protein level information.3,4  

The technologies for top-down proteomics improved greatly in recent years. Thousands of 

proteoforms can be identified in large scale studies.5–7 Limitations still exist for the current 

fragmentation methods used for top-down proteomics. In top-down proteomics, ESI (electrospray 

ionization) generates proteoforms with multiple high charge states across the m/z range of a typical 

full MS spectrum. The data dependent acquisition (DDA) method mainly used for current top-

down proteomics is directly adopted from bottom-up proteomics with minor changes of the 

instrument parameters, ignoring the multiple charge states of proteoforms presented.1 DDA is 

generally coupled with HCD (higher energy collisional dissociation), which is one of the most 

commonly used fragmenation methods in top-down proteomics.1,6,7  

Previous studies showed that the fragmentation efficiencies are different for the different 

charge states of one proteoform under the same NCE, or for the same charge states of one 

proteoform under different NCE.8,9 DDA randomly select one abundant percursor for each MS/MS 

scan. Thus it is by luck if one happens to get suitable fragmentation conditions sufficient for 

proteoform identification. Proteoforms can range from a few kDa to tens of kDa and differnt 

substantially in composition (e.g. hydrophicity or ionizability). This makes it challenging to select 

optimal fragmentation conditions that suitably cover this diversity of proteoforms. There is an 

opportunity to improve the current process of charge state selection and choice of NCE for top-

down proteomics. 
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Advanced precursor ion selection algorithms have been applied for bottom-up and top-

down proteomics.10,11 In 2014, Durbin et al. developed Autopilot to improve data acquistion for 

top-down proteomics.11 Autopilot performs intelligent data collection with online mass dectection, 

real-time searching to guide precursor selection and fragmentation. Their results showed an 

improvement to the overall fragmentation coverage of many proteins. The authors demonstrated 

that the intelligent data acquisition could increase unique protein identifications when coupled with 

advanced instruments. In Autopilot, charge state selection and NCE sequentially adjusted 

whenever fragmentation yields unconfident identification.  

In this study,  we demontrate that stepped HCD could greatly improve fragmentation 

efficiency, with each collision energy provides differential fragmentation of correspondingly labile 

peptide bonds algong protein sequence.12,13 We also developed a new fragmentation method called 

Fragmentation Mesh, which combines several charge states of one proteoform for fragmentation 

under multiple NCEs. The new method improves fragmentation efficiency and the identification 

rate for top-down proteomics.  

METHODS 

Sample Preparation 

Ubiquitin from bovine (UniProt Accession P0CG53), Cytochrome C from horse (UniProt 

Accession L7MRG1), and myoglobin from horse (UniProt Accession P68082) were purchased as 

standards from Sigma. All samples were resuspended at ∼10 pmol/μL in 49.9:49.9:0.2 

acetonitrile/water/formic acid prior to infusions. 

Yeast cells were grown to a density of ∼106 cells/mL at which time they were washed, 

pelleted, snap-frozen in liquid nitrogen, and stored at −80 °C until use. Yeast cells were lysed 

separately, and proteins were reduced and alkylated. Proteins were then precipitated with acetone 

before being resuspended in separation buffer. The proteins were separated based on molecular 
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weight (MW) using a GELFrEE system (Expedeon),5 and approximately 400 μg of protein were 

collected into 11 fractions. Two of the fractions were selected for the top-down analysis. Prior to 

mass spectrometric analysis, sodium dodecyl sulfate was removed from the fractions via 

methanol−chloroform precipitation and proteins were reconstituted with 5% acetonitrile (ACN) 

and 0.2% formic acid in water.  

Mass Spectrometry 

Standard proteins were infused directly by electrospray into the mass spectrometer for top-

down analysis. Full-mass profile scans are performed in the Orbitrap between 375 and 1,500 m/z 

at a resolution of 120,000, followed by MS/MS HCD scans at a resolution of 60,000 and a mass 

range of 400-2000 m/z, where the parent ion selection was controlled by MetaDrive. Four different 

types of MetaDrive controlled fragmentation schemes were performed separately, including: Top 

method (a single charge state and a single NCE), Line method (multiple charge states and a single 

NCE), stepped HCD method (a single charge state and multiple NCE) and Mesh method (multiple 

charge states and multiple NCEs).  

Top-down proteomics analysis of yeast samples (~2 µg protein each injection) were 

performed using HPLC (NanoAcquity, Waters)-ESI-MS/MS (Q Exactive HF, ThermoFisher 

Scientific). Four different types of MetaDrive controlled fragmentation schemes were performed 

separately as described before. For all fragmentation schemes, the full-mass profile scans were 

performed in the Orbitrap between 375 and 1,500 m/z at a resolution of 120,000, followed by 

MS/MS HCD scans of the top two highest intensity parent ions and 60,000 resolution, with a mass 

range of 400-2000 m/z. Dynamic exclusion was enabled with an exclusion window of 30 s.  

Instrument control software program 
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We developed a new software program, MetaDrive, that performs real-time isotope and 

deconvolution followed by new methods for precursor selection and fragmentation. The 

deconvolution algorithm is adopted from MS-Deconv.14 MetaDrive controls an Orbitrap Q-

Exactive through Thermo IAPI (Instrument Application Programming Interface) software.15 We 

use MetaDrive to speed up the optimization of protein fragmentation parameters. MetaDrive 

combines multiple charge states of one proteomform for fragmentation with multiple collisional 

energies, yielding better sequence coverage and improved identification rate. MetaDrive is written 

in C# and is publicly available to the community as open-source code at https://github.com/smith-

chem-wisc/MetaDrive.  

Data analysis 

The pTop2 software program (http://pfind.ict.ac.cn/software.html) was used to perform the 

top-down analysis of the raw files.16 This software reported the number of matched fragments 

generated for each spectrum. Most of the default parameter settings were used, except that the max 

charge was changed to 50, mixture spectra was not checked, and variable modifications including 

Oxidation[M], dehydro[C] and Acetyl[ProteinN-term] were added. Detailed parameter settings 

used in pTop2 are described in Supplementary Table 1. A FASTA file of the standard proteins and 

yeast (2019.09) from UniProt database were used.  

 

RESULTS AND DISCUSSION 

Charge state and NCE 

Proteoforms appear in multiple charge states in top-down full MS spectra. The current 

DDA scheme randomly select one charge state each time, not gurrentteeing an optimal 

fragmentation for the selected proteoform.1,11 For the specific charge state of one proteoform, an 

alternate NCE could also lead to different fragmentation efficiency.8,9 

https://github.com/smith-chem-wisc/MetaDrive
https://github.com/smith-chem-wisc/MetaDrive
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We first evaluated the fragmentation efficiency for the same proteoform with different 

charge states and different NCEs. Three standard proteins including ubiquitin, cytochrome C and 

myoglobin, which generates different charge states distributions, were used for the experiment. 

(Fig. 1a) To simplify the evaluation, we only considered the number of matched b and y-ions from 

each MS/MS spectrum identified by pTop, which agrees with the scheme of commonly used 

software programs.16,17   

Different charge states of the same proteoform yeiled significantly different number of 

matched fragment ions. (Fig. 1b) For each proteoform, our results showed that the charge state 

with the highest intensity didn’t always yeild the highest number of matched fragment ions, an 

observation that agree with previous studies.9,18 Note, this phenomenon could be unique to HCD. 

Further evaluation with alternate modes of fragmentation is needed. The best  fragmentation for 

each of the protein is from a low charge state, but not necessarily the lowest charge state for the 

protein, depending on the NCE. While in the current DDA scheme, the most abundant peaks are 

more likely to be selected for fragmentation, which is not optimal for fragmentation.  

A NCE found to work well for one proteoform frequently does not works well for all others. 

In our stduy, we showed that NCE 20 could generate more matched fragment ions overall. Still 

NCE 20 doesn’t always generate the best, for example for myoglobin charge state 21. (Fig. 1b)  

Fragmentation Mesh 

It is inefficient to iterate through several charge states of a proteoform and NCEs for each 

proteoform to obtain good fragmentation of complex sample. We hypothesized that it might be 

possible to improve sequence coverage by fragmenting several different charge states together 

while also emplying multiple NCEs. We implemented a corresponding new data acquistion method 

in MetaDrive (Fig. 2), which is a software program that can control the QE-HF via IAPI. Each 
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time MetaDrive receive a full MS scan from the instrument, it will perform a real-time 

deconvolution. MetaDrive could perform four different type of fragmentation schemes based on 

the deconvolution results, including: Top method (a single charge state and a single NCE), Line 

method (multiple charge states and a single NCE), Stepped HCD method (a single charge state and 

multiple NCEs) and Mesh method (multiple charge states and multiple NCEs). Compared with the 

traditional fragmentation scheme (the Top method), the other three methods increased the 

probability of good fragmentation. 

We compared the fragmentation methods using the three standard proteins. (Fig. 3) The 

charge state with the highest intensity is selected for each proteoform in the Point method. For the 

Line and Fragmentation Mesh methods, we enforce MetaDrive to select charge states around the 

highest intensity one and use NCE 25, which was commonly used in previous studies.6,19 For the 

Stepted HCD and Fragmentation Mesh methods, we applied NCE 15-25-35. For all three standard 

proteins, Stepped HCD and Fragmentation Mesh always generate more matched fragment ions. 

(Fig. 3) Fragmenting multiple charge states could also improve the fragmentation in general. For 

ubiqutin and myoglobin, we could observe obvious improvement, especially for myglobin, the 

number of matched fragment ions doubled for fragmenting charge states 17, 21 and 25 together 

than just fragmenting charge state 21 under stepped HCD. Except for cytochrome C, there is 

limited improvement from multiple charge states under one NCE; the matched fragment ions from 

multiple charge states even decrease under stepped HCD. The process used to select the multiple 

charge states for each proteoform could also be important, as the best charge state for HCD always 

is lower than the one with the highest intensity. Further studies for better selection of charge states 

are needed. The improvement from the multiple NCE is obvious for all three standard proteins. 

For cytochrome C and myoglobin, use the multiple energies doubled the number of matched 
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fragment ions.  

Yeast sample 

We applied the four fragmentaion schemes to complex proteoform samples from size-

seperated (GELFrEE) yeast cell lysates.5 Two different fractionations were selected to perform the 

four fragmentation schemes. All methods follow the top 2 strategy and keep the same mass range 

for the full MS scan. Based on the results from standard protein experiments, we designed 

MetaDrive to use stepped HCD with NCE 15-20-25 and to select three lower charge states of each 

proteoform. 

Ultimately, we observed an increase of identification rate in top-down MS due to multiple 

charge states and multiple collision energies for both fractions. (Fig. 4) The identification rate is 

calulated as the number of identified spectra divided by the number of total MS2 scans. The usage 

of multiple energies contributed most of the improvement. (Fig. 4) We observe that Mesh has 

slightly better identification rate than stepped HCD. However, we didn’t find clear evidence that 

the improvement was due to improved fragmentation efficiency. (S Fig.1) Fragmentation Mesh 

may not guarantee to get the best fragmentation for a proteoform, but could reduce the possibility 

of getting low quality fragmentation of certain charge state. It is also possible that the improvement 

of the Mesh method may be depressed for the following reasons. First, it is possible to select 

multiple precursors from different proteoforms due to deconvolution error. A deconvolution 

algorithm with high accuracy is required. Second, selecting multiple charge states of one 

proteoform could also increase the possibility of coisolation. Stepped HCD could be applied with 

the vender’s control program and it could be used as an alternative method of Fragmentation Mesh 

for top-down proteomics.  

Conclusions 
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We proved that stepped HCD could improve the fragmentation efficiency and described a 

novel ‘Mesh’ method for top-down proteomics. The current DDA method randomly selects one 

charge state of a proteoform but does not often generate a high yield of matched fragment ions. 

The Mesh fragmentation implemented in MetaDrive could fragment multiple charge states of one 

proteoform, which could also be applied to other dissociation methods in the future. Our results 

showed an increased identification and improved sequence coverage of stepped HCD and the Mesh 

fragmentation method for complicated protein samples.  

  



129 
 

FIGURES 

 

Figure 1. Fragmentation efficiency of different charge states and different NCE. Three 
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standard proteins (ubiquitin, cytochrome C and myoglobin in sequential) are used to study the 

effect of charge state and CE on fragmentation efficiency. The number of matched fragment ions 

changed with charge states and energies. No unique condition works for every standard protein.  

 

 

Figure 2. Workflow of Fragmentation Mesh with MetaDrive. The instrument control software 

program MetaDrive performed real-time deconvolution of each new full MS spectrum. The 

deconvolution results contain unknown proteoforms with defined charge states. MetaDrive could 

choose a proteoform and apply a Fragmentation Mesh. The Fragmentation Mesh contains multiple 

selected charge states (marked x, y and z) of the proteoform and stepped HCD with different 

energies (marked a, b and c).   
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Figure 3. Fragmentation efficiency between different fragmentation schemes. Three standard 

proteins (ubiquitin, cytochrome C and myoglobin) are used to test how the different fragmentation 

schemes improve the number of matched peaks. For each protein, the charge state with the highest 

intensity is selected for the Point method, and multiple charge states near it are selected for the 

Line and Fragmentation Mesh methods. Charge states are labeled on each column. Single NCEs 

are represented with green columns and multiple NCEs are represented with orange columns.  

 

Figure 4. Identification rate of different fragmentation schemes. Two yeast Gel-Free fractions 

are used to test how the different fragmentation schemes improve identification rate. For each 

method, three technical replicates were performed.  
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SUPPORTING INFORMATION 

 



136 
 

S Figure 1. Comparison spectra of myoglobin from four different fragmentation methods. The 

spectra are exported from the pTOP2 software program. Compared with the Top method, the Line 

and Stepped HCD methods increased the number of matched peaks and the Mesh method produced 

the most matched fragment peaks.     
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S Figure 2. Comparison of fragmentation efficiency for the four fragmentation methods of shared 

proteoforms. The proteoforms are identified in all three replicates of the 4 fragmentation methods 

for the two yeast GEL-Free fractions.The  stepped-HCD and the Mesh methods produced more 

matched peaks. The difference between stepped-HCD and Mesh methods is not obvious.  
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SI Table 1. Parameters used of pTop2 

 pTop2 

Isolation Width 15 

Mixture Spectra Unchecked 

Maximum Charge  50 

M/Z tolerance 20 

Maximum Mass 50000 

S/N Ratio 1.5 

Precursor Tolerance 5.2 Da 

Fragment Tolerance 15 ppm 

Max Truncated Mass 20000 Da 

Search Mode Tag-Indexed 

Second Search Checked 

Max PTM Positions 3 

Max Mod Mass 500 Da 

Unexpected PTMs 0 

Fixed Modification  null 

Variable modification Oxidation[M] 
Dehydro[C] 
Acetyl[Protein N-term] 

FDR 1% 

Separate Filtering Checked 

Quantification null 
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Supplementary Note. Real-time Instrument Control Improves Feature Detection with Dynamic 

BoxCar 

Here we present another possible instrument control application. Proteoforms often appear 

in multiple charge states in intact or top-down MS1 spectra and MS1 spectrum is always dominated 

by a few proteomforms, which results in low abundant proteoforms be suppressed or the high 

abundant proteoforms being selected multiple times for fragmentation in top-down. The major 

downside to this redundancy is that many lower abundance proteoforms will never be detected in 

MS1 spectra or selected for fragmentation. We created a new open source software program, 

MetaDrive, that performs online deconvolution of MS1 spectra, which permitting simultaneous 

determination the m/z ranges being suppressed and proteoforms available for fragmentation. The 

software then generates extra MS1 spectrum by dynamic selection of the suppressed m/z ranges 

(Dynamic BoxCar) or controls selection for fragmentation, which substantially increases feature 

detections and precursor selection efficiency and increases the number of unique proteoform 

identifications. 
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Figure 1. Workflow of Dynamic BoxCar in MetaDrive. MetaDrive performs on-the-fly isotope 

and charge state deconvolution followed by Dynamic BoxCar or ‘smart’ precursor selection. 

MetaDrive controls an Orbitrap Q-Exactive through Thermo IAPI (Instrument Application 

Programming Interface). For intact/top-down MS, the software could perform Dynamic BoxCar 

to increase the feature detection. For top-down MS, MetaDrive uses a deconvoluted precursor 

mass, rather than m/z, exclusion methodology where all corresponding charge and isotope states 

for a given mass are excluded from re-selection, which eliminates the repeated selection of 

abundant proteoforms. MetaDrive is written by C# and will be made publicly available to the 

community as open-source code. 
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Figure 2. Example shows that blocking the high abundant proteoform with Dynamic BoxCar 

strategy could improve S/N, and improve the chances to get good signals for low abundant 

proteoforms.  
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Figure 3. Example shows that proteoforms are still detectable with deconvolution algorithm with 

Dynamic BoxCar, where the whole spectrum has low S/N.  
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Chapter 5 

 

Conclusions and Future directions 
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Conclusions 

This dissertation describes the development of data analysis software modules for cross-

link proteomics and O-glycoproteomics, which provide robust and efficient tools for the research 

community1,2.  Software programs for executing these tasks existed prior to the development of 

our tools, which used traditional database search algorithms.  

The prior algorithms and software for cross-link peptide identification were not able to 

efficiently analyze some types of proteomics data nor could they accommodate data from both 

cleavable and non-cleavable cross-links. The research described in this dissertation addressed 

these limitations by applying an efficient ion-indexed open search strategy1 (Chapter 2). Our 

software module is faster for non-cleavable cross-links than the commonly used XlinkX3.  

The prior algorithms and software for O-glycopeptide identification were not able to 

efficiently localize glycosites using a high complexity glycan database. We developed the 

currently most efficient O-Glycopeptide identification software program O-Pair Search using the 

ion-indexed open search and introduced the use of graph-based localization for O-

glycoproteomics2,4 (Chapter 3). O-Pair search can reduce O-glycopeptide search times by >2000x 

over the most widely used commercial glycopeptide search tool, Byonic2,5. Additionally, O-Pair 

Search identifies more O-glycopeptides than Byonic and provides O-glycosite localizations using 

graph theory and localization probabilities. We also introduced a novel classification scheme to 

unify data reporting across the glycoproteomic community. 

The software program modules described in this thesis are widely applicable and freely 

available through the open-source software program MetaMorpheus6. In this chapter, I will discuss 

some of the challenges and future ideas in cross-linking mass spectrometry proteomics and 

glycoproteomics data analysis.  
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Sensitivity for cross-link search 

The sensitivity of MetaMorpheus for non-cleavable cross-link search is not high based on 

our own observations as well as reported by a paper published by another group a year after our 

publication7. The sensitivity is used to represent the false negatives, a 100% sensitivity which 

means 0 false negatives is the goal for identifications. For non-cleavable cross-link search, the 

paper reported 70% sensitivity of MetaMorpheus using a stimulated dataset and reported even 

lower sensitivity for entrapment experiments, where unrelated large-scale databases are 

incorporated in the search process. We improved the workflow of our search program and the 

sensitivity increased to about 85% using the stimulated data. The sensitivity is not as high as 

pLink2, which is another cross-link mass spectrometry proteomics software program reported to 

have the highest sensitivity (> 95%). It is similar to the popular software program Kojak8, which 

is the second best regarding the sensitivity. 

A few strategies we could use to improve the sensitivity include: 1. Improve the scoring 

function. The current Morpheus Score used in MetaMorpheus which mainly counts the number of 

matched peaks does not take into account peak intensity. In cross-link search, the beta peptide of 

a cross-linked doublet sometimes does not fragment well and generates only a small number of 

matched peaks. Due to the easy mismatch of beta peptides, the sensitivity becomes low. 2. Apply 

machine learning methods to further filter the identifications. The Kojak and pLink2 both utilized 

machine learning methods to increase identifications. Kojak pipelined with Percolator9, which is 

a software program for peptide identification applied semi-supervised machine method, to do so. 

The pLink2 optimized a support vector machine method. We recently started to test a decision tree 

method. Note that optimization of the machine learning method requires selection of useful 

training features. 3. Improve the deconvolution of precursors. Incorrect precursor masses easily 
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result in wrong identifications for cross-link search and better deconvolution functions could yield 

higher quality precursor masses. The current deconvolution algorithm could be improved by 

considering peak information from neighbor scans. 4. Recently, peptide spectral prediction10–12 

became available for single peptides or modified peptides with the development of deep learning 

algorithms. We presume that cross-linked peptides could be similarly predicted and that the 

resultant cross-linked peptide spectra could be employed to match experimental spectra similarly 

to how spectral libraries are searched.  

Protein structure analysis for cross-link search 

Researchers spend a majority of manual efforts to interpret the cross-link identifications 

for protein structure analysis. Such applications include combining cross-link analysis with 

CryoEM or X-Ray data to solve labile protein complex structures13,14. However, successful use of 

cross-link proteomics for protein structure analysis is not as common one might expect. One reason 

is the lack of software support for such integrated analysis. To automate the protein structure 

analysis process,  software program pipelines have been developed to correlate cross-link 

identifications with protein structure predictions15. Such development has been limited to a few 

labs with experience in both software program development, and in proteomics & protein structure 

analysis. However, the current software program pipelines require significant effort to master 

different pieces of programs. Also, there is a lack of interactive software programs to help people 

alter the protein structure based on cross-links. To make cross-link proteomics more useful for 

general researchers, it is important to develop protein structure and protein-protein interaction 

analysis software pipelines with easy access. The candidate software platforms to enable the 

successful development of such pipeline include: pLink, Kojak, and MetaMorpheus for cross-link 

proteomics analysis; and Pymol16 and Rossetta17 for protein structure analysis.  
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N-glycoproteomics data analysis 

N-glycosylation is an abundant and complex post-translational modification. One of the 

complexities is from the highly dynamic nature of the glycan structures and compositions, which 

generates tremendous site-specific heterogeneity or micro-heterogeneity. N-glycan heterogeneity 

has been reported to affect binding specificities, enzyme activity and functionality. Analysis of 

intact N-glycopeptides vis mass spectrometry is widely used to preserve site-specific N-glycan 

heterogeneity information.  

Before we developed O-Pair Search for O-glycoproteomics data analysis, we developed a 

software module for N-glycopeptide identification using an algorithm similar to that of O-Pair 

Search. N-glycopeptides and O-glycopeptides generate different schema of fragment ions. 

Specially, N-glycopeptides generally contain one large glycan which generates more sugar-related 

fragments, while O-glycans are more labile and can occur on multiple sites. The software module 

is tuned separately for the two types of glycosylation based on the differences between their 

fragment ions.  

Our software module is faster than Byonic5 regarding N-glycopeptide identification. It is 

also compatible with data from different fragmentation schemes, which makes it a useful candidate 

for most researchers. Still there are some limitations of the software module for N-glycopeptide 

identifications. Compared with pGlyco218, our development of N-glycopeptide identification is 

currently limited by its N-glycan FDR analysis. To address this limitation, we could apply the 

glycan FDR analysis algorithm used by pGlyco2/Glycresoft19. Machine learning methods could 

also be used for improving N-glycan FDR analysis. A noticeable feature of N-glycopeptides is 

their highly conserved retention times19,20. Researchers have applied retention time analysis for N-

glycopeptides to reveal correctness of identification or to infer glyco-peptidoform families, in 
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which some of the glycopeptides are not even fragmented. Such a method could also be applied to 

our module to further improve the N-glycosylation characterization.  

Integrated O-glycopeptide and N-glycopeptide identification 

O-glycosylation and N-glycosylation could occur on the same proteins or in the same 

sample. Some of the current enrichment methods used for glycoproteomics cannot separate the 

two different types of glycosylated peptides. However, the previous software programs are unable 

to identify both at the same time, leading to a new category of false identification. Glycans are 

composed of a variety of different monosaccharides, thus multiple smaller oligosaccharides may 

have the same mass as a larger single glycan or a combination of different oligosaccharides. In the 

case where N-glycopeptides coexist with O-glycopeptides, a N-glycopeptide with one large N-

glycan is highly likely to be misidentified as an O-glycopeptide with multiple O-glycans in an O-

glyco search only software program.  

To reduce such possible misidentifications, we integrated our N-glycopeptide and O-

glycopeptide software modules to enable the identification of both types at the same time. We 

tested the integrated software module and found that in three datasets, all of them contained 

significant amounts of both N-glycopeptides and O-glycopeptides. The three datasets are from 

either N-glycoproteomics analysis or O-glycoproteomics. Accordingly, we propose that some of 

the published glycopeptide datasets should be reanalyzed and possible misidentifications should 

be reported.  

The current differentiation between N-glycopeptide and O-glycopeptide identification of 

the same spectra is based on the Morpheus Score of the matched theoretical fragment ions. The 

method requires high quality fragmentation of the selected glycopeptides. We propose that 
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machine learning methods such as support vector machines or decision trees could help to 

differentiate some of the more confusing cases.  

Future developments for glycoproteomics data analysis include improving sensitivity using 

the method described in ‘Sensitivity for cross-link search’ section and quantification analysis using 

FlashLFQ21.  
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