COMPUTATIONAL METHODS FOR DETAILING DNA BINDING AFFINITIES
AND DIFFERENCES AMONG RELATED PROTEINS

by

Devesh Bhimsaria

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Department of Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2016

Date of final oral examination: 09/28 /2016

The dissertation is approved by the following members of the Final Oral Committee:
Parameswaran Ramanathan, Professor, Department of Electrical and Computer
Engineering
Aseem Z. Ansari, Professor, Department of Biochemistry
Barry D. Vanveen, Professor, Department of Electrical and Computer Engineering
Mikko H. Lipasti, Professor, Department of Electrical and Computer Engineering
Sushmita Roy, Assistant Professor, Department of Biostatistics and Medical Infor-

matics



© Copyright by Devesh Bhimsaria 2016
All Rights Reserved



Dedication
I dedicate my dissertation work to my family—my mother
Urmila Bhimsaria, my wife Sakshi Bhimsaria and my

daughter Arika Bhimsaria.



Acknowledgments

Iwould like to thank Dr. Parmeswaran (Parmesh) Ramanathan & Dr. Aseem Ansari
for their constant support and guidance, especially for their precious time they gave
to me, even on the weekends, hours and hours. Special thanks to Professor Ansari
for developing my interest for research and science in me from my undergraduate
days. I am also very grateful to Professor Ramanathan for his amazing inputs to my
research, for keeping me focused, and providing me freedom to pursue my interest.
I want to thank both of them for making me feel comfortable in their labs, with
them I never felt away from home. I also thank other Keck Genome Foundry Group
members at UW Madison—Professor David Schwartz and Professor Jennifer Reed
for guiding me in Biochemistry and Chemical Engineering collaborative Projects.
I also thank all the committee members including Dr. Sushmita Roy, Dr. Barry
Vanveen and Dr. Mikko Lipasti for their support and guidance.

I thank Jacqui Mendez and Professor Jose A. Rodriguez-Martinez for providing
clones for nuclear receptors and HT-SELEX binding data for nuclear receptors
respectively. I also thank all the present and past members of Ramanathan lab and
Ansari lab for helping me in various projects, specially Prof. Jose A. Rodriguez-
Martinez, Graham Erwin, Clayton Carlson and Josh Tietjen for patiently teaching
me basics of their field, which helped me a lot in my interdisciplinary projects. 1
thank all the collaborators and their labs, helping me learn and pursue different
projects.

My studies and research all became possible because of countless sacrifices made by
my mother Urmila Bhimsaria. I thank her for being my first teacher, my inspiration
and ideal. Her overwhelming love gave me strength to pursue my research interest.
I also thank my wife Sakshi Bhimsaria for sacrificing her career for my research. Her
care for me motivated me to work harder.

T'would also like to thank the National Institutes of Health and University of Wiscon-
sin Madison for funding. I thank University of Wisconsin Madison, Department of
Biochemistry and Department of Electrical and Computer Engineering for accepting
me as a Khorana student earlier and then as a graduate student.

— DEevEsH BHIMSARIA

ii



Contents

Contents iii

List of Tables vi
List of Figures vii
Abstract 1

1 Introduction 2
1.1 Protein-DNA binding 3
1.2 Analysis of protein-DNA binding 5
1.3 Contribution 9

2 COSME & Diff-COSME to Elucidate Protein-DNA Binding 11
2.1 MinSegs to represent protein—-DNA binding 12
2.2 Modeling TF-DNA binding 12
2.3 Problem statement & strategy 14
2.4 Common binding 16
2.5 Diff-COSME to prune out differential binding 20
2.6 Results 22
2.7 Conclusion 24

3 MinSeqFind Discovers Complex Protein-DNA Binding Motifs 27
3.1 Problems associated with the HT-SELEX binding data 28
3.2 MinSeqs for HI-SELEX data 30
3.3 MinSeqFind: MinSeq extraction from HT-SELEX binding data 32
3.4 Scoring with MinSeqFind model 35
3.5 Weighted Enrichment 37
3.6 Step 5: Multivalued-reduction through orthogonal matching pursuit (OMP) 39
3.7 Results 40
3.8 Conclusion 56

iii



4 Summary & Future Directions 58

4.1 Summary 58
4.2  Future directions 59
4.3 Conclusion 60

Protein-DNA binding data and analysis 62
A.1 Types of binding data 62
A.2  Computational Methods for Protein-DNA binding analysis 63

Compressed Sensing Algorithms 66
B.1 Orthogonal Matching Pursuit (OMP) 66
B.2  Compressive Sampling Matched Pursuit (CoSaMP) 67

Experiments Performed 68

C.1 Cloning and Expression (performed by Jacqui Mendez) 68

C.2 Cognate Site Identification (CSI) by HT-SELEX (performed by Jose A. Rodriguez-
Martinez) 68

Sequence Specificity and Energy Landscapes of Nuclear Receptor DNA Bind-
ing 71

D.1 COUP/EAR (NR2Fs) family 73

D.2 Estrogen related receptor family (ESRRs or NR3Bs) 74

D.3 3-Ketosteroid receptors family (NR3Cs) 75

D.4 Peroxisome proliferator-activated receptor family (PPARs or NR1Cs) 76
D.5 Retinoic acid receptor family (RARs or NR1Bs) 77

D.6 Retinoid X receptor family (RXRs or NR2Bs) 78

D.7 Thyroid hormone receptor family (THRs or NR1As) 79

D.8 Vitamin D receptor-like family (NR1Is) 81

D.9 Others 82

Differential Energy Landscapes of Nuclear Receptor DNA Binding 84
E.1 COUP/EAR (NR2Fs) family 85

E.2 Retinoic acid receptor family (RARs or NR1Bs) 88

E.3 Retinoid X receptor family (RXRs or NR2Bs) 90

E.4 3-Ketosteroid receptors family (NR3Cs) 94

E.5 Peroxisome proliferator-activated receptor family (PPARs or NR1Cs) 95
E.6 Others 96

Nuclear Receptor In Vitro DNA Binding Compared to In Vivo Binding 98
F1 LoVo ESRRA100
F2 LoVo HNF4A101

iv



EF3

F4

F5

F.6

E7

E8

F9

F.10
F11
F12
F.13
F14
F15
F16
F17
F.18
F19
F.20
F21
F22
F.23
F24
F25
F.26
F.27
F.28
F.29
F.30
F.31
F.32
F.33
F.34
F.35
F.36
F.37
F.38

LoVo NR2F1102

LoVo NR2F2103

LoVo NR3C1104

LoVo RXRA105

LoVo ESR1106

LoVo RARG107

LoVo ESR1:RXRA108

LoVo ESRRA:RXRA109

LoVo HNF4A:RXRA110

LoVo NR2F1:RXRA111

LoVo NR2F2:RXRA112

LoVo NR3C1:RXRA113

LoVo RARG:RXRA114

Ab49 GR treatment:Dex 500pm115

Ab49 GR treatment:Dex 50nm116

Ab49 GR treatment:Dex 5nm117

Ab49 GR treatment:Dex 100nm118

ECC-1 ERRA treatment=BPA 100nM119
ECC-1 ERRA treatment=Estradiol 10nM120
ECC-1 ERRA treatment=Genistein 100nM121
ECC-1 GR treatment=DEX 100nM122
GM12878 RXRA123

H1-hESC RXRA124

HepG2 HNF4A (5C-8987)125

HepG2 RXRA126

K562 NR2F2 (5C-271940)127

T-47D ERRA treatment=BPA 100nM128
T-47D ERRA treatment=Genistein 100nM129
T-47D ERRA treatment=Estradiol 10nM130
HepG2 ERRA treatment=forskolin131
HepG2 HNF4G (SC-6558)132

GM12878 TR4133

Hel.a-53 TR4134

HepG2 HNF4A treatment=forskolin135
HepG2 TR4136

K562 TR4137

Bibliography138



List of Tables

A.1 Computational methods for protein-DNA binding data analysis-
A.1 Computational methods for protein-DNA binding data analysis-
A.1 Computational methods for protein-DNA binding data analysis-

Vi



List of Figures

1.1 Experimental methods to measure protein-DNA binding in vitro . . . . . .
1.2 Position weight matrix (PWM) logo representation and scoring . . . . . . . .
1.3 Complexity of protein-DNA binding . . . . . . ... ..............
14 Comparison of Lhx2 & Lhx4 DNA binding . . . ... ... ... .......

2.1 Construction of designmatrix H . . . ... ... ... .. .. ... ...,
2.2 Breakdown of PWMs and MinSegs for TFs having similar DNA binding . .
2.3 Finding differences in DNA binding of related TFs using Diff-COSME

24 COSME to estimate DNA binding intensity . . . . ... ... .........

vii

21
23

2.5 DNA binding of Lhx2 & Lhx4 captured as PWM and MinSeqs for Lhx2 & Lhx4 24

2.6 Differences in binding of protein of same family and different variants of

sameprotein . . . . ... .. L

3.1 MinSeqFind algorithm- Extraction of complex DNA binding patterns using
MinSeqs from HT-SELEX bindingdata . . . . ... ... .. .. ... ... ..
3.2 Enrichment calculation for MinSeq for DNA binding by HT-SELEX . . . . .
3.3 Normalization of possible binding to primer region flanking the random
20merregion . . .. ...
3.4 Multivalued-reduction through orthogonal matching pursuit (OMP) . . . .
3.5 Weighted enrichment, compression and ordering . . . . .. ... .......
3.6 Iterative process of PWM extraction from MinSeqs . . . . . .. ... ... ..
3.7 PAGLO model performance with different order of Markov model . . . . . .
3.8 Circular phylogeny tree of nuclear receptors for which binding motif was
observed using MinSeqFind algorithm . . . . ... ... ... ... ... ...
3.9 Different repeat preferences for NR as calculated by MinSeqs . . . . . . . ..
3.10 Gapped SEL uncovered hetero-dimer formation of COUP-TFA and RARA
protein withRXRA . . ... ... ... .. . .. o
3.11 Gapped SEL uncovered hetero-dimer formation of RORC and THR protein
withRXRA . . .o
3.12 PWMs derived from MinSeqFind discovers novel binding patterns of NRs .

50



viii

3.13 Multiple binding preferences of RXRA observed by MinSeqFind are found

INVIVO . ..o 53
3.14 Genomescape plot of DNA binding of HNF4A for MODY1 SNP associated

to Type I Diabetes (rs1893217) . . . . . . . ... ... .. ... . ... . ... 54
3.15 Predicted change in DNA binding of NRs due to SNPs linked to disease and

quantitative traits . . . . .. ... oo oo oo oo 55

3.16 Comparison of MinSeqFind to state of the art method DeepBind [2] in mod-
eling published in vitro protein-DNA binding of nuclear receptors . . . . . 56

C.1 HT-SELEX protocol . . .. ... ... ... . ... ... . . 70



Abstract

Transcription factors (TFs) are proteins that bind to specific sites in the genome to control
the flow of genetic information from DNA to mRNA. Identifying the preferred binding
sites of TFs can help in elucidating gene regulatory networks and in understanding
the genetic basis for many diseases [63]. Many experimental platforms and related
computational methods are successful in identifying high affinity binding sites for TFs,
but leave out medium- and low- binding affinity sites; recent studies show that the
medium and low affinity site also play important roles in gene regulation [68]. These
methods also fail to capture all the complexities of the protein-DNA binding, especially
when the proteins bind in cooperation with other proteins. This thesis develops a
novel representation to capture the full range of DNA binding affinity. The thesis
also integrates ideas from digital circuit optimization and compressed sensing field to
develop computational methods that capture the complexities of protein-DNA binding
and elucidate their detailed binding profiles [16,22].

Proposed algorithm, differential compressed sensing based motif extraction (Diff-
COSME) elucidates subtle binding differences that may explain different biological
functions of related proteins. The novel differences found between proteins of home-
odomain family show that even non-DNA contacting residues of proteins can affect
DNA binding; these subtleties are ignored by existing tools [69]. Another proposed
algorithm MinSeqFind target proteins exhibiting complex binding specially those which
bind DNA as dimers with multiple different orientations. MinSeqFind when applied
to thousands of published protein-DNA binding dataset found novel binding sites
verified in vivo [32]. MinSeqFind is also used on a newly collected DNA binding data
for vitamin-D receptor, thyroid hormone receptors, steroid hormone receptors and other
nuclear receptors (NRs). MinSeqFind discovers that several NRs dimerizes with RXRA
protein leading to new binding sites. The binding sites identified by MinSeqFind impli-
cates DNA binding of NRs to hundreds of genetic mutations associated with cancer,
diabetes, cardiovascular diseases and others. This information can further be used in

developing drugs targeting NRs, one of the most drug targeted family of proteins.



Chapter 1
Introduction

Transcription factors (TFs) are proteins that regulate gene expression by binding to
specific DNA sequences. Identification of DNA-binding of TFs is critical for understand-
ing how TFs decipher genomic information to regulate gene circuits that control cell
function. Different high-throughput experimental methods have been developed to
elucidate binding of thousands of TFs [9,12,17,31, 32,40, 52,63]. Most of the existing
computational tools to analyze high-throughput binding use only high-affinity binding
sequences leaving out medium- to low- affinity binding sequences. Thus, these tools do
not fully explore complexity of protein-DNA binding [3,4, 18,63, 68]. Such tools fail to
capture subtle binding differences of related TFs that can lead to different biological
functions [20]. Here we introduce MinSegs, a representation to capture the full range of
DNA binding affinity and develop algorithms suited to different complexity of DNA
binding to capture binding and differences in binding of related TFs in the form of
MinSegs.

In the following sections, we first discuss the protein-DNA interaction that governs
the binding affinity of a protein for different DNA sequences. Next, we briefly introduce
few experimental platforms developed to measure DNA bound by protein inside a
cellular environment (in vivo) and also when bound in cell-free environment (in vitro).
In further sections we explain the position weight matrix (PWM), a widely used method
to represent DNA binding specificity; we also describe its limitations in capturing
the complexity of DNA binding motifs, especially differences in TFs of same family.
Finally, we describe the contributions that we make in addressing these limitations by
capturing variety of binding patterns and differences which lead to the discovery of

new connections between many TFs and genetic variants associated with diseases.



1.1 Protein-DNA binding

A protein interacts with DNA through hydrogen bonds, van der Waals forces, water
mediated bonds and other forces, often to regulate different biological functions of DNA.
DNA binding can be either sequence specific or sequence non-specific or combination

of both. Two important aspects of such binding are -

1. Affinity - Binding affinity of a TF for sequence S is usually defined as the dissocia-
tion constant K4 — ratio of off-rate k,¢¢(rate of dissociation of TF-S complex) and

on-rate K, (rate of formation of the complex) [63].

TF+S ‘;: TE.S (1.1)
_ korr _ [TFI[S]
K=~ TS 1.2)

The square brackets represent the concentrations of those entities at equilibrium

2. Specificity - ‘Specificity’ refers to how well a protein can distinguish between
different sequences.

For a given TF, affinity of specific sequences are higher than others, thus when TF search

for DNA in genome it prefers the higher affinity sequences.

Measuring protein-DNA binding

Many experimental techniques have been developed to identify the DNA binding
preferences of proteins. The Electrophoretic mobility shift assay (EMSA) serves as
a standard technique to measure protein’s binding specificity to a handful of DNA
sequences [28,29], but due to the laborious nature, it proves to be impossible to measure
binding affinity for thousands of DNA sequences. With the emerging new technologies
there has been a considerable advancement in experimental platforms for both in vivo
and in vitro binding measurement.

In vivo binding- Experiments performed inside a living cell are termed in vivo.
Chromatin immunoprecipitation (ChIP) [47, 60] is used for assaying protein—-DNA
binding. In ChIP, antibodies corresponding to a protein of interest enrich fragments
of genomic DNA to which the protein is bound. These enriched fragments can be
analyzed by either high-density microarrays (ChIP-chip) or next-generation sequencing
(NGS) (ChIP-Seq — ChIP followed by DNA sequencing) [7,31,38,40,58]. ChIP captures
genomic regions bound by protein under the influence of all the cellular components
that are result of state and type of cell.
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Figure 1.1: Experimental methods to measure protein-DNA binding in vitro [63]. Array
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which protein binding is measured, bound proteins (shown by purple crescents for
PBM) is quantified with a fluorescent antibody. Sequencing based methods uses DNA
sequences obtained by sequencing DNA fragments bound by a given protein from a
random k-mer DNA library (SELEX-Seq or HT-SELEX).



In vitro binding- Experiments performed outside a living cell environment are
termed as in vitro. Cognate site identification-array (CSI-array) [17,30, 64, 66], protein
binding microarray (PBM) [9], HT-SELEX (high-throughput systematic evolution of
ligands by exponential enrichment) [32,33], SELEX-Seq (SELEX with massively par-
allel sequencing) [27,45,59] are among the several High-Throughput (HT) in vitro
binding methods developed to study individual protein’s affinity and specificity for
DNA binding. For example, CSI measures binding intensity of a given protein to all
8-mers, i.e. all permutation of A, C, G, T nucleotides of length 10 (more than 1 million
sequences) on a microarray (Figure 1.1b). Similarly, PBM measures biding intensity
to all 8-mers using 35bp long features (Figure 1.1a). The benefits of using array based
methods are a) the user gets to choose the sequences and thus can focus on binding of
sequence of interest, and b) the measured output is fluorescent intensity proportional to
protein—-DNA binding. In sequencing based methods (Figure 1.1c) DNA from various
binding experiments can be tagged using DNA barcodes and mixed together to analyze
multiple experiments in one sequencing run, making it easier and cheaper to measure

binding corresponding to 100s of TFs at a time.

1.2 Analysis of protein—-DNA binding

Many computational methods have been developed to study protein-DNA binding
data. Most of these methods reduce binding data into a matrix with a small number
of variables by displaying it in the format of position weight matrix (PWM) motif
[57,62], by using only highly preferred sequence for determining specificity, thus leaving
out the information about less preferred binding sequences for motif determination
[14,17,64]. In the PWM model a score is assigned to each possible base (nucleotide)
at each position in the binding site. The total binding score for a sequence is the
sum of values corresponding to each nucleotide of that sequence (Figure 1.2). Thus
the model can score all possible binding sites for the protein. The "logo” provides a
convenient graphical representation of PWM. PWMs are used for simplicity to visualize
and to remove experimental noise. In Figure 1.2 a PWM corresponding to a protein is
represented with GCGTGG as the best binding sequence, this PWM model would give
best binding score (negative of log normalized score) of 0 to sequence GCGTGG and
0.8 to GCGGGG. Height of each nucleotide in PWM logo represents the information
content, taller the nucleotide higher is the protein’s sequence specificity at that position.
The PWM model makes it easier to distinguish preferred over non-preferred sequences.
MEME (Multiple expectation maximization for motif elicitation) [4, 5] is extensively
used for a lot of the ChIP based experiments. Different computational methods have
been developed to analyze specific types of binding data obtained (section A.1). In
Table A.1, a few of the best tools to analyze TF binding affinity suited to different
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Figure 1.2: Position weight matrix (PWM) logo representation and scoring [63] (Repre-
sented -log(Normalized Score))

experiments are presented. A comparison between a few of them for PBM binding
data is also presented in Weirauch et al. [68]. In the following subsections we discuss
different aspects of protein—-DNA binding that are not completely modeled by current

computational methods.

Complexity of protein-DNA binding

TFs can have very complex DNA binding, some bind DNA as monomers!, homo-dimers,
hetero-dimers, and these dimers can have a gap of variable length between the binding
(Figure 1.3a). This leads to multiple binding patterns exhibited by one protein. For
example, NFAT protein binds DNA - a) just by itself to form NFAT monomer - GGAA,
b) as NFAT dimer by dimerizing with another NFAT molecule — binds DNA as GGAA-
2gap-TTCC and TTCC-2gap-GGAA, where TTCC is reverse complement of GGAA, c)
as a hetero-dimer by dimerizing with complex of two proteins Fos and Jun also known
as AP1 — binds DNA as GGAA-gaps-TGACTCA with different preferences of each
monomer (Figure 1.3b & 1.3b). A single PWM cannot capture these multiple complex
binding patterns. Most of the current computational methods focus on finding a single
PWM model or multiple PWM models to fit same best binding motif, leaving out the
lower affinity binding patterns (Figure 3.16a). Given the depth of current experimental
techniques, just using the best binding sequences is incomplete. There is a need to
further explore the complexity of such binding dataset.

mer’ represents a single protein molecule. Thus if a) single protein molecule binds DNA alone that is
called monomer binding, b) if binds DNA with another molecule of same protein known as homo-dimer
DNA binding, and c) if binds DNA with other protein molecules then known as hetero-dimer binding
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Figure 1.3: Complexity of protein—-DNA binding

Comparing DNA binding of proteins from the same family

TFs from the same family often have very similar preferences of binding to DNA,
although they may significantly differ in functional regulation. For example Lhx2 & Lhx4
protein from homeodomain protein family have similar structure and differs only in their
non-DNA contacting residues and they prefer similar DNA sequences, but still both are
functionally different, Lhx2 is responsible for blood cell development [51], whereas Lhx4
is involved in pituitary gland development. Figure 1.4a shows the interaction model
between DNA and proteins Lhx2 and Lhx4 and Figure 1.4b & 1.4c displays their DNA
binding preferences as PWM [9]. Figure 1.4d and 1.4e highlights sequences preferred
by Lhx2 and Lhx4 respectively. We were able to find these differences using our method
DiSEL (Difference Sequence Specificity Landscape) [11]. Thus a simple PWM model
(Figure 1.4b & 1.4c) is not enough to capture such differences.
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(a) Protein-DNA interaction of Lhx2 & Lhx4: On the left is double helix DNA, which is interacting
with protein on right side. Differences are shown in red (Lhx2) and green (Lhx4), rest of the

protein sequence is same.
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Figure 1.4: Comparison of Lhx2 & Lhx4 DNA binding [11]



1.3 Contribution

We make the following primary contributions to address the problems discussed above
pertaining to protein-DNA binding.

1. Introducing MinSeqs — Inspired by the notion of minterms and implicants and
the associated methods in digital circuit optimization, we develop a novel rep-
resentation to characterize the binding preference of a TF using a concept called
Weighted Minterm Sequences (or MinSeqs). The set of MinSeqs collectively cap-
ture the detailed binding profile of a TF from the information dense experimental
data. Various complex binding patterns with protein partners are captured in the
set of MinSegs. Different weights assigned to MinSeqs enable them to capture not
only the best affinity sites but also medium and low affinity sites, giving a full
binding profile [11,14,17,23,24,54, 64].

2. COSME to capture protein-DNA binding — By leveraging recent advances in
compressed sensing (CS) section of signal processing, we develop a method to
extract MinSeqs from microarray binding data, we term the method as compressed
sensing based motif extraction (COSME). COSME captures various high, medium
and low affinity binding sites in form of MinSeq set, which can then be used to
predict binding in genomic sites. COSME gives a better characterization of DNA
binding when compared to existing computational tools [3, 68].

3. Diff-COSME to explore binding differences in related proteins — To elucidate
binding differences among related proteins we develop differential-COSME (Diff-
COSME). By capturing the complete profile of binding, Diff-COSME is able to
discover subtle differences in binding of similar proteins missed by other compu-
tational methods. These subtle binding differences can lead to a change in the

gene network of the cell leading to phenotypic variations or diseases in humans.

4. MinSeqFind to capture complex DNA binding motifs with partners— We intro-
duce MinSeqFind, a novel method to capture complex DNA binding motifs from
HT-SELEX binding experiment. MinSeqFind explores longer binding patterns,
with and without gaps, and capture multiple partners of proteins in the form of
MinSeqs. MinSeqFind not only captures such complex motifs in the form of Min-
Segs, but it also filters out many platform related biases like bias introduced due
to the primer binding region and PCR bias, that were previously not addressed.
When applied to published datasets, MinSeqFind captures known as well as novel
secondary binding motifs missed by state of the art computational methods [2].

5. Effect of protein partners and ligands on nuclear receptor’s DNA binding— The
nuclear receptor (NRs) family of TFs is one of the most common classes of drug
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targets (13% of all FDA-approved drugs), which has been studied extensively
for decades. In the presence of ligands (drugs) or protein partners, a given NR
activates or represses transcription of certain genes. Disruption in NR function has
been implicated in several diseases, including allergies, asthma, obesity, several
forms of cancer and diabetes [25]. To elucidate the disruption in DNA binding of
NRs due to a protein partner and ligands, we measure their DNA binding with and
without ligands and partner proteins. From HT-SELEX binding measurements of
NRs, MinSeqFind captures many known binding patterns and at the same time
reveals novel binding patterns. MinSeqFind captures variation in binding due
to drugs or ligands, also finds multiple binding patterns of RXRA protein with
different binding protein partners. MinSeqFind also identifies genetic variants
that alter NR binding. In fact, we find more than 300 genetic variants associated
with disease that alter NR binding. These findings have direct implications on

mechanisms of diseases like cancer, diabetes and cardiovascular diseases.

MinSegs serves as a representation tool to capture the binding patterns of various
TFs as well as a tool to differentiate binding of TFs having subtle variation in their
binding. Such newly found patterns and differences can be used to assemble new
gene networks. In chapter 2 we first introduce MinSeqs and explain the COSME and
Diff-COSME algorithm and explore differences found by Diff-COSME. In chapter 3 we
extend our approach to find complex DNA binding motifs using MinSeqs for HT-SELEX
data for nuclear receptor proteins. In the last chapter we discuss the possibility of
extending MinSegs to in vivo binding data and using shape features for MinSegs.
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Chapter 2

COSME & Diff-COSME to Elucidate
Protein-DNA Binding

TFs have one or more DNA binding domain (DBD) which contains a structural unit that
recognizes DNA. Different parts of the DBD interacts with only specific nucleotides
making DNA binding as sequence specific. The DBD acts as an independent unit and
binds DNA and mostly one part of DBD get affected by DNA binding of other part and
thus their binding is dependent on each other. Until a decade ago due to lack of high-
throughput DNA binding platforms, it wasn't possible to study all such dependency
and thus, the PWM served as a great tool to capture DNA binding where each nucleotide
binding to DBD of protein is independent of each other [61,63]. With the advent of
many high-throughput DNA binding methods, we don't have to limit ourselves and we
can explore nucleotide dependencies as well. We develop weighted Minterm Sequences
or MinSeqs as a representation tool to capture such nucleotide dependencies, inspired
by the notion of minterms, implicants and the associated methods in digital circuit
optimization.

To extract MinSeqs from microarray DNA binding data, we use compressed sensing
(CS) — a recently developed signal processing technique [16] for efficiently acquiring
signal by finding solutions to underdetermined linear system. CS is a fast growing
tield and many applications of CS are being implemented in diverse disciplines. We
formulate our problem of capturing DNA binding of TF into an underdetermined linear
system by defining a linear model of binding. We further exploit CS algorithms like
compressive sampling matching pursuit (CoSaMP) for sparse solution of MinSeqs. The
solution provided here is applicable not just for comparing TF binding, but also finding
new information regarding a given TF as well. We develop the COSME algorithm that
focuses on fully characterizing DNA binding of TFs using MinSeqs and Diff-COSME
algorithm that finds differences in the binding preferences of TFs belonging to the same
family.
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2.1 MinSegqs to represent protein-DNA binding

A MinSeq is a k-mer comprised of sequence of A, C, G, T, and N, where N represents
any nucleotide A, C, G, or T. A gap is considered in the form of N as many proteins
like to bind DNA with gaps in middle. For example, the sequence ACGNTGA is a
7-mer-Minseq with ACG followed by single nucleotide gap (N), which is followed by
TGA. Each MinSeq has an associated binding intensity or weight to it, which is related
to the affinity of the TF for that sequence. Thus, a set of MinSeqs captures sequences of
different affinity without leaving out any medium- or low- affinity sequences.

2.2 Modeling TF-DNA binding

We model the binding preference of a TF as follows. Let us consider there are T TF to be
compared, which has similar PWM binding motif. Let y; denote the M, x 1 vector of
probe intensities obtained from a microarray after normalization of array based defects
for t'" TF. Thus, M, is the number of probes in the microarray corresponding to tth TE.
In the case of PBM data set, M is approximately 40,000.

Let B denote background for scale shifting and S denote the set of all variables
needed to characterize the probe intensities, such a set S is termed as MinSeq set or
set of MinSeqs. ‘MinSeq’ term is inspired by the notion of ‘minterms’ from digital
circuit optimization. For instance, for the TFs in the PBM data set, S may include all
possible k-mer MinSeqs for k = 4,5, ...,10. Many TFs bind as dimers and their binding
preferences may contain gaps, e.g., 4-mer, followed by two gaps, followed by another
4-mer, thus considering in the set S all possible sequences of length of 4 to 10 including a
certain number of gaps in the middle (gapped k-mer MinSeqs). Thus, the cardinality of
S may easily exceed 10 million. Let H; denote a sparse “mapping matrix” representing
the relationship between elements in S and probes. More formally, let (h)i; equal the
number of times element j € S occurs in i*" probe of microarray for t'" TF.

The mapping matrix H will have rows equal to the number of probes, and the num-
ber of columns corresponds to the possible MinSeqs in S. Thus, the column entries
corresponding to each 4-mer MinSeqs will be: AAAA, AAAC, ..., TTTT and similarly
5-mer, ..., 10mer. For example, in Figure 2.1 consider a 25mer probe AATGACATGACT-
GACATAAAAAACG. The mapping matrix will have non-zero entries for columns
corresponding to 4-mer MinSeqs AATG, ATGA, ..., AACG rest will be 0. Similar count-
ing is done for all 5-mer MinSeqs and so on as represented. If single gapped 4-mer
MinSegs are also considered in set S, then there will be non-zero entries corresponding
to ANTGA, AANGA, AATNA (derived from 1st 5-mer AATGA) and ANGAC, ATNAC,
ATGNC (derived from 2nd 5-mer ATGAC) and so on. Similar mapping is done for all
the probes.
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Figure 2.1: Construction of design matrix H - hy; = number of times MinSeq j € S occurs
in i*" probe of microarray

Let vector x, denote the N x 1 vector of estimated binding preferences of t'* TF
with the i'" element as MinSeq x;. representing binding preference for i*" MinSeq and
where N = [S]. We model the relationship between x; and y; as an underdetermined
linear system of the form -

Y = Hixe +1¢ (2.1)

where, n; is the estimation error.

For T TFs to be compared there are some binding preferences common to all the
TFs and some binding preferences that are characteristic of an individual TF. Thus,
after scaling and shifting y, to same scale, we divide x; into ¢ and d;. Where c is
binding preference common to all TFs and d; represents individual binding preference
corresponding to t'™ TF.

Yy =Hixq +1m1 =Hiec +Hidy +my
Yo = Hopxo +12 = Hye +Hpdy +12

(2.2)
Y = Hixe +1¢ = Hee + Hede +1¢
yr = Hrxt +n1 = Hre+ Hydr +n7
which can be represented in a combined form as-
Y1 H1 H1 0 0 m
Y2 H, 0 0 0 2
= et | di | et | [ dr | (2.3)
Y H 0 Hy ' 0 Nt
yr|  |Hr] | 0] | 0] | Hr N7
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y =Hc + Hyd; + -+ Hede + -+ Hydr +1 (2.4)

where y, H and n are concatenated matrix of y¢, H; and n, Vt respectively. H; is a
matrix corresponding to H¢ such that rest all entries are zero. Equation 2.4 is the first of
its kind in the literature to capture the similarity and differences between protein-DNA
binding.

2.3 Problem statement & strategy

Problem Statement

In equation 2.4 given y, H and l—it Vt, find the values c, d; Vt, minimizing the error
n.

Compressed-MinSeqs to capture protein-DNA binding

c and d; comes from set S, which spans to millions of MinSegs, but we don’t have so
many equations (which is equal to the number of probes), thus it is an underdetermined
system. Thus we need to compress our search space from S to a small number of MinSegs.
We use knowledge of protein-DNA binding and algorithms from compressed sensing
tield for such compression. We call the binding variables thus obtained compressed-
MinSeqs.

Solution strategy

Common part c can be extracted using different existing PWM based methods (like
BEEML, MatrixRECUCE) or k-mer based methods (like Annala et al. [3]). PWM is based
on the assumption that protein-DNA binding occurs in a way that each nucleotide
position independently contributes to the binding [63,65], but there are many cases that
are not captured by PWMs [17,33]. Thus PWMs can’t fully capture the common binding,
but PWMs are very easy to comprehend. k-mer based methods assume complete depen-
dence between each nucleotide position and are of the format k-mer and corresponding
intensity and need many such MinSeqs (of the order of thousands) to capture binding,
but they limit their search space to top few binding sequences only and also difficult to
comprehend. We chose to use PWM to capture the position-independent component,
and the rest MinSeqs from set S (MinSeqs). S has millions of MinSeqs (much more
that other k-mer based methods) and thus becomes underdetermined system, we use
compressed sensing to acquire a small subset of S which is significant for binding. In
order to apply CS we need to scale MinSeqs. Together PWM and MinSeqs define C,
which are easy to comprehend.
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Level 1

Level 2

Level 3

Figure 2.2: Breakdown of PWMs and MinSeqs for TFs having similar DNA binding

Currently there is no existing method to extract individual preferences d.. We use
compressed sensing to capture subset of S unique to t'™* TF, we assume that most of the
position-independent components are captured by the common PWM.

First we solve for c by considering d; Vt equal to zero from equation 2.4 and then
solve for d by using independent equation 2.2. Figure 2.2 displays the intended output
from the method. It shows breakdown for PWM and MinSeqs for TFs of same family
having similar DNA binding preferences. First two levels ¢ - PWM and family specific
MinSegs contain information about binding which is same for all the TFs, third level d,
contains information which is unique to each TF. This way we’ll have representation
of what is common and what is different in their DNA binding preferences. To find

characteristics of the individual TF we leave out the 3rd level d,.

Estimating DNA binding of TF for new set of sequences

Our aim here is to first solve for x; in equation 2.1 to get estimate Xy = ¢ + d,, and using

that, binding for a any new set of sequences can be predicted for TF t as follows-

Il
T
P

Ut

t

Hy

t

. (2.5)
+ H,d,

(@}

Where {j; is the predicted intensity and H; is mapping matrix for the new set of se-
quences. Thus, once a good estimate for X, is made, that information is sufficient for a
TF t to get binding to any new sequence. Until recently, PWMs were only used for this
estimation, which failed to identify differences between related TFs.
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24 Common binding

To solve for c, we first force d, Vt to 0 in equation 2.4, which reduces then to-
y=Hc+n (2.6)

Since we are calculating c ignoring effect of d., for a set of TFs above equation will give
us an initial estimate for c, which has to be improved iteratively with d., which will be
discussed in next section. But if the goal is to characterize only single TF binding and not
to compare (means no d.), in that equation 2.6 will provide a complete characterization
of binding.

Further c is divided into b and n to capture position independent binding by PWM

and k-mer dependent part respectively.

y=Hb+Hn+n (2.7)

PWM solution

Considering only PWM part, equation 2.7 reduces to
y=Hb+1 (2.8)

If we consider PWM of length 8 (for PBM) then 8-mer MinSegs in b contains non zeros
entries (in addition to background); rest are all zero (4-mer, 5mer etc, and all gapped
k-mers). Separating background B and PWM 8-mer from b (rest are zeros) and by
matrix operations above equation reduces to summation of binding affinity due to all

8-mers in a particular probe as-

L—L,+1

y, = Z I(probe(k:k+L, —1)) +B+mn; (2.9)

k=1

where y, is measured binding intensity of probe sequence i, L; is length of probe
sequence, L, is length of PWM matrix (in this case it is 8) and I(probe(k : k + L, — 1))
is PWM binding affinity for an 8mer sequence from k-th position to k + L, — 1. B
corresponds to shift for background normalization. PWM assumes each nucleotide
position has independent binding effect thus I(probe(k : k + L, — 1)) can be calculated
by following formula (similar to Figure 1.2) [26].

Ly

I(probe(k:k+L, —1)) =M HWL,‘probe(kJrjfl) (2.10)

1=1
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where M is scaling factor. A reference sequence S, is used for above PWM model,
which is taken as the best median 8-mer then, w;, is the multiplicative change corre-
sponding to free energy change due to mutation at l-th position to nucleotide base b.
Thus if base b is same as in S, Wi, will be equal to 1, and if whole 8-mer is S, then
I(S;er) = M. Thus the scaling factor M corresponds to binding intensity of S, (after
background shift B). So the PWM model can be represented using 3L,, variables (given
Sref), since at each nucleotide position wy ,, corresponding to S, is 1, rest 3 has to be
computed.

Thus equation 2.9 can be rewritten as-

Li—Lp+1 Ly

yi =M Z le,probe(k—l—j—l) + B + ni (211)

k=1 1=1

Now we can use the least square fit (MatrixREDUCE [26]) to above equation’ to get M,
F and w; ;, which provides solution to PWM part of equation 2.7. Other methods such
as BEEML-PBM [72] and DeepBind [2] can also be used for PWM solution for data from
microarrays.

The PWM is widely accepted as a standard to represent binding pattern as it captures
nucleotide position independent binding in a visually-intuitive display [57]. But as
stated earlier the PWM fails to capture many details, and thus it is not sufficient for
analyzing data from high-throughput methods. Thus, next we capture nucleotide

dependent binding.

COSME to capture protein—-DNA binding

Candes and Tao [15] [16] proved that given the knowledge about a signal’s sparsity, the
signal may be reconstructed with fewer samples than the Nyquist-Shannon theorem
requires. This idea is the basis of compressed sensing and we use this for solving the
second part of equation 2.7-

y=Hn+n (2.12)

Equation 2.12 is a linear underdetermined system, with H and n being sparse. Here we
assume sparsity of n using knowledge of protein-DNA binding.
Considering our signal to be sparse, we search for the sparsest signal n which yields

y within a given error limit 0-
A = arg |, [nll, s.t. [ly — Hnlj3 < 0 (2.13)

where |[n||, is [y norm of vector n and defined as the number of nonzero entries in n.

'Maximum binding intensity of sequence or it's reverse complement is used for PWM prediction for
equation 2.10 & 2.11.



18

Note that fi is a subset of S which needs to be determined. The solution to equation 2.13
is Ly norm minimization, which leads to NP-hard problem. Since the variable space is
large, that is not computationally feasible.

Effective solutions for this formulation can be obtained from recent research results
in the area of compressed sensing. Compressive sampling matching pursuit (CoSaMP)
[41] [22], which is an algorithm, came from CS and provides an approximate solution
to the problem. Since n contains information about different length MinSeqs (with and
without gaps), thus there is some inherent dependency (non-orthogonal vectors) like
TGAC, TGACA, TGACAT, will be affected by each other. We chose 2(Lengthofkmer) yyejoht
to counter that, which corresponds to minimum mean square error (discussed in next
chapter) and n is represented as n = Dp, where D is a diagonal matrix whose entries

are 2(Lengthofkmer) oqrregponding to each k-mer. Thus equation 2.12 becomes-

y =HDp +n
=Cp+n

(2.14)

where C = HD and ¢; ; = number of times j-th k-mer found in i-th probex2Lensth of kmer)
Since the MinSeqs are non-orthogonal, whenever one MinSeq is added or taken away

from the set it affects on all other MinSeqs. Thus we add one more step of recalculation

after pruning in CoSaMP to get modified CoSaMP, which is used to solve equation 2.14.

Algorithm 1 Modified CoSaMP - Compressed sensing based motif extraction (COSME)

Input: matrix H, diagonal matrix D, measurement vector y, sparsity K, max iteration

lmax
Output: K-sparse approximation p to true signal p
Initialize: pp =0,r=y,i1=0,C=HD
while (i < iax & supp(Pi—1) # supp(pi)) do
11+1
e + C'r {form residual signal estimate}
Q + supp(t(e, 2K)) {prune residual}
T+ QU supp(pi—1) {merge supports}
blr C%y, blrc < 0 {form signal estimate}
Ptemp < T(b, K) {prune signal using model}
T, < supp(Ptemp) {get support of pruned signal}
Pi Cfrzy,f)iszc + 0 {reestimate signal}
r + y — Cp; {update measurement residual}
end while
return i < p;/D

The proposed algorithm 1 (COSME) is for computing sparse non-orthogonal vari-
ables (MinSeqs) for our system, where (e, K) denotes a thresholding operator on e that
sets all but the K entries of e with the largest magnitudes to zero, and b|; denotes the
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restriction of b to the entries indexed by T. Here K is number of non-zero entries used
as input.

The algorithm starts with null set py and y as residual signal. At every iteration
new 2K MinSegs are selected by taking top 2K rows of C'r. These 2K MinSeqs are
merged with any MinSeqs carried from previous iteration, this set is estimated using y
intensity and C matrix using least square solution. Top K MinSeqs from those according
to magnitude are picked then re-estimated and kept for next iteration and residual
signal is calculated. Algorithm is terminated after maximum iteration is reached or
consecutive two iterations result in same support (set of MinSeqs) and the final set of
MinSeqs (compressed-MinSeqs) is used as estimated output. Here the set of indices
corresponding to the nonzero entries is denoted by support of 0 i.e. supp(0).

The benefit of such a solution space is that it is not restricted to 2 or 3 related sequences
as most of the PWM methods are, so it can capture completely different sequences and
sequences of variable length. Also it does not post any restriction based on absolute
intensity of single probe. By including the MinSeqs with gap, it covers further more
binding patterns. If there are more sequences which one wants to characterize, can
add to variable space accordingly. A lot of TFs bind DNA in a manner such that each
nucleotide position contribute independently to binding. Such binding is captured by
PWMs in lesser variables. COSME alone will take lot of MinSegs (K) to characterize such
binding. So the combination of both PWM and MinSegqs is needed, which is provided

in the next sub-section.

Hybrid of PWM & COSME to capture binding

In this section we present a hybrid model, which can capture independent nucleotide
binding using PWM - b and dependent ones using COSME - n. Algorithm 2 is the
proposed algorithm for estimating PWM and K MinSegqs iteratively. It starts with
estimating PWM from y (to get b) and get residual signal r;. Then fits K MinSeqs to
r; using algorithm 1 and estimates r, using these K MinSeqs, which is then used for
next iteration to re-estimate PWM. The algorithm terminates when maximum iteration
reached or correlation between consecutive calculated b is above a threshold. The
output from the algorithm also includes M, B since that provides a scaling and shift
between PWM and the variable values n. The proposed algorithm does not provide any
mathematical guarantee to converge, but according to our understanding of protein—
DNA binding behavior and different test data, it is expected to converge.

The proposed changes are that — some other PWM estimation method can be used
to replace the one used in this algorithm. Also if there are multiple binding sites,
accordingly more PWMs can be estimated instead of a single PWM. This combined
solution is ideal for capturing the benefits of both models.
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Algorithm 2 PWM + CoSaMP

Input: matrix H, diagonal matrix D, probe intensities y, sparsity K, max iteration for
combined algorithm i, qx, max iteration for COSME j, ox, maximum PWM difference
0
Output: PWM + K-sparse approximation p
Initialize: r, =y,i =0
while true do
1—1+1
{PWM,M, B} PWM_calculation(r;) {PWM estimate from residual signal}
b; « b_calculation(PWM,M,B)
I —y— Hb; {residual from i-th PWM}
fi; <~ COSME(H, D, 11, K, jmax) {K sparse solution from algorithm 1 }
r, < y — Hf\; {residual from i-th iteration of K MinSeqs}
if correlation(b;, b;_1) > 0 or i >= i,,4x then
break
end if
end while
return i < f; & {PWM,M, B}

2.5 Diff~-COSME to prune out differential binding

Many TFs belong to the same protein family, and have similar but not the same binding
preferences. Characterizing the differences in the binding preferences of TFs in the
same family is critical for understanding the differences in their function and their role
in genetic regulation. However, as mentioned earlier, none of the existing computational
technique for characterizing the DNA binding preferences of TFs focus on differences in
the binding of similar TFs. Instead, they mostly focus on the characterizing the primary
binding preferences, which in turn, may be identical for several TFs in the same family.
Thus, we develop a novel method to extract binding differences in related TFs.

Here we discuss estimation of common PWM and MinSeqs for multiple TFs—-DNA
binding data. In this section differences d. unique to t*" TF is calculated by extending
algorithm 2. The proposed algorithm Diff-COSME (Differential-COSME or Difference
by COSME) is described in Figure 2.3 as a flowchart to find differences between DNA
binding of similar T TFs. Here output is one PWM and K; MinSeqs fi common to all T
TFs and K, MinSegs d; corresponding to t'™ TF. Thus inputs to algorithm are — matrix
H, diagonal matrix D, array intensity y, sparsity K; & K, corresponding to MinSeqs
common to T TFs and individuals respectively, max iteration for combined algorithm
1max, max iteration for COSME j ., ax1 & jmax2, minimum correlation 0 to exit iteration.

Algorithm Diff-COSME starts with scaling by determining initial PWM y, by maxi-
mizing the sum of correlation corresponding to each protein-DNA binding data. This
is done so without using shift and scale information. Shift and scale for each array is
calculated using initial PWM fit to each array data and thus shift and scale to bring all
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of them to same distribution to get z. Using z, iteratively, first PWM, then common
K; MinSegs and then for each individual K, MinSeqs are estimated in a round robin
tfashion using the residual signal from last two signals. 1) While estimating PWM,
residual signal is calculated by subtracting common & individual MinSeqs estimate
fromz (r; + z—HA; — H,; ai,l —..—H, am —Hy cAli,T), 2) to estimate K; common MinSegs,
residual signal is calculated by subtracting individual MinSeqs and PWM estimate from
z (1, + z—Hb, — H, ai_m —...—H, ai_l,t —Hy ai_LT), 3) to estimate K, individual
MinSegs, residual signal is calculated for each TF by subtracting common MinSeqs and
PWM estimate from zi(rp+ < z¢ — H.b; — H.f;). Here am and fi; are i-th iteration
estimate of individual and common MinSeqs respectively. Algorithm terminates when
maximum iteration reached or correlation between two consecutive b is more than a
threshold. Note that output MinSeqs are scaled to M, because of initial scaling.

There are 3 outputs corresponding to each protein in this case. PWM and fi are
common to all which captures nucleotide independent and dependent binding which
are similar in all the proteins. And another set of MinSegs d corresponding to each

protein captures dependent binding for individual ones.

2.6 Results

We use MinSeqs extraction using COSME and Diff-COSME for DNA binding of different
proteins measured using protein binding microarray. First we apply COSME on data
from the challenge posted by DREAM (Dialogue for Reverse Engineering Assessments
and Methods) group [68] for PBM to compare performance to existing methods and then
Diff-COSME to find differences in proteins exhibiting similar binding profile. MinSeqs
not only found differences in similar proteins, but also in different variants of same

proteins.

DNA binding of proteins measured by PBM array

We consider PBM data from an online challenge DREAM [68]. In the challenge, there
were 2 set of arrays HK and ME for which PBM measurements were done. Both HK
and ME contains all 10mers on array following de-bruijn pattern, but with different
arrangements. For 20 TFs binding data was provided for both the arrays and for 66 TFs
binding data for only one array was provided and for the other it was to be estimated,
results from the estimations was used to evaluate different computational algorithms.
Normalized array data [3,68] was used for COSME algorithm 1 to get binding profile
of all 66 TFs in the form of MinSeqs. Correlation between estimated and measured
binding intensity of 66 TFs shows COSME captures binding information comparative

to existing computational tools [68] (Figure 2.4).
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Figure 2.4: COSME to estimate DNA binding intensity

Binding differences between proteins of same family

Diff-COSME (algorithm 2.3) discovers binding differences in two different proteins of the
homeodomain family- Lhx2 & Lhx4 [8]. Figure 2.5a shows the common PWM, whereas
Figure 2.5b displays common and differential MinSeqs. When two of selected MinSeqs
were plotted on a scatter plot with 8-mer binding score, differences became clearly
visible and are novel differences missed by previous methods (Figure 2.6a). Lhx2 and
Lhx4 differs only in non-DNA contacting residues, yet it still exhibits subtle difference
in DNA binding. This observation indicates that even non-DNA contacting residues can
play important role in determining DNA binding specificity. Our proposed method not
only captures novel differences, but also extracted common binding sequences which
PWM failed to capture.
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Figure 2.5: DNA binding of Lhx2 & Lhx4 captured as PWM and MinSegs for Lhx2 &
Lhx4

Exploring binding differences in variants of same protein

In a recent report on the DNA binding of different variants of proteins was studied [6].
We chose PAX4 protein and it’s variant protein PAX R192H. PAX4 protein is a member
of the paired box (PAX) family of transcription factors critical for fetal development
and cancer growth. Diff-COSME found novel binding differences, and couple of results
from analysis are plotted as scatter plot of 8mer binding data in Figure 2.6b. PAX4
protein prefers GHATTA whereas CDATTA preferred by PAX R192H (where D =A, G
orT&H=A,CorT).

2.7 Conclusion

In this chapter we introduce a novel method to represent protein-DNA binding, called
MinSegs, that is a set of sequences with A, C, G, T or N and have corresponding binding
intensity assigned to them. We also develop compressed sensing based motif extraction
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Figure 2.6: Differences in binding of protein of same family and different variants of
same protein (8-mer E Score plotted)
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(COSME) as a tool to extract MinSeqs from protein-DNA binding data obtained from
microarray. To find differences in binding of proteins of the same family, we also develop
Differential-COSME or Diff-COSME. These algorithm captures protein-DNA binding
and differences in the form of MinSeqs, when applied to published array binding data we
find novel insights. The novel binding patterns and differences are the characteristics of
corresponding proteins, which can be reflected in the form of various cellular functions.
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Chapter 3

MinSeqFind Discovers Complex
Protein—-DNA Binding Motifs

DNA binding of proteins can be very complex. Many nuclear receptors (NRs) bind DNA
with multiple preferences of monomer, homo-dimer and hetero-dimer with different
gaps and orientations (Figure 1.3a) [19,21]. Microarray based experimental methods
like PBM and CSl-array fall short in terms of number of different DNA molecules for
which binding can be tested and thus cannot test binding corresponding to longer DNA
sequences. We use HT-SELEX (high-throughput systematic evolution of ligands by
exponential enrichment) [32,33] experimental method to capture complex binding of
such proteins. There are many platform specific issues associated with HT-SELEX data
as presented in next section. We introduce MinSeqFind, a novel method to deal with
complex binding data and such platform specific issues. MinSeqFind discovers DNA
binding from HT-SELEX data in form of MinSeqs (Figure 3.1). It explores complex
binding patterns and captures multiple partners of NRs previously unreported, and also
finds binding change to be linked to hundreds of disease associated genomic variants.
MinSeqFind uses steps of modeling and data normalization followed by a multivalued-

reduction through orthogonal matching pursuit (OMP) extensively used for compressed
sensing [22,48]. MinSeqFind (Figure 3.1) can be divided into multiple steps: 1) Reads for
protein binding are first counted for number of occurrence (counts) of 10mer to 16mer
with possible continuous stretch of gaps in middle represented by N. 2) A Markov
model for mock control is constructed called Position Associated Gapped LOcation-
specific (PAGLO) model. 3) PAGLO model is used to estimate occurrence of sequences
with counts for protein binding above a given threshold. 4) Fold enrichment is then
calculated using counts and estimated occurrence, which is number of times a sequence
occurred in protein binding data in comparison to mock control. 5) A multivalued-
reduction through orthogonal matching pursuit (OMP) is performed followed by a
thresholding to get a reduced set of sequences with enrichment. Such a reduced set is
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Figure 3.1: MinSeqFind algorithm- Extraction of complex DNA binding patterns using
MinSegs from HT-SELEX binding data: Sequences bound by protein from a 20 long
random DNA library are obtained in the form of sequence reads (number of occurrence
of each sequence) using HT-SELEX protocol. Shown by arrow are AGGTCA repeats
and reverse complement TGACCT as reverse arrow.

termed as selected MinSeq set. In the following sections first problems associated with
HT-SELEX experimental method are described and in further sections different steps of
MinSeqFind are explained.

3.1 Problems associated with the HT-SELEX binding
data

DNA binding measurement via HT-SELEX is preferred over microarray technology for
following two reason mainly — 1) hundreds of DNA binding experiments can sequenced
together by labeling them using DNA barcodes, and 2) to elucidate longer and more
complex DNA binding, which arrays fails to capture. These experiments can be easily
programmed to be performed by liquid handling robots makes them easier and faster
[33]. HT-SELEX has advantages over microarray methods, but also have many issues
associated with it.

HT-SELEX uses multiple rounds of DNA library selection using DNA binding protein
followed by polymerase chain reaction (PCR) for amplification (Figure 1.1c and Figure
C.1). After the final round, the recovered DNA is barcoded and sequenced. Out of more
than billions of DNA molecules obtained after PCR step, only a small fraction of DNA
is sequenced (<2 million DNA sequences) for each sample or experiment. Following
steps involved in HT-SELEX make replication of the results is difficult-

1. Probability of binding to DNA governs selection- Since, SELEX includes process

of selection of DNA using binding proteins in each round, this selection is based
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on probability which is governed by protein’s affinity for binding to various DNA
sequences, protein concentration and relative concentration of different DNA
sequences. Thus every repeat of the experiment would result in different set of

DNA sequences selected on the basis of this probability.

2. PCR contribution to variability- PCR exponentially enriches the DNA. The DNA
sequences that were isolated in the earlier PCR cycles will be continued to get

enriched at exponentially higher rate than other sequences.

3. Randomly picked small fraction gets sequenced- Only a small fraction is se-
quenced in the end, which again is randomly picked by the sequencing machine.
Thus even DNA from same experiment barcoded twice results in different output

sequences.

Extending the approach of COSME to prune MinSeqs from previous chapter to SELEX
based system is a challenge because of the following reasons-

1. Sequencing reads instead of intensity- Microarray intensities give a direct rep-
resentation of protein’s binding intensity, as however long is the probe sequence,
one can compare the 2 sequences on the basis of array intensities. However in
case of SELEX there are reads of k-mer sequence instead of intensities and most
of the time any k-mer sequence appears maximum once or twice in the sequenc-
ing reads. If the sequence is less specific for binding it may not even show up
in sequencing results. As explained above, only a small fraction gets randomly
picked and sequenced. Sequencing reads give only a small sample of binding
experiment and without grouping similar sequences together one can’t assume a
direct correlation between sequencing reads and binding affinity of sequences,
especially when the reads corresponding to k-mers is very low. It has a Poisson
distribution model for random picking of a k-mer, thus even if a k-mer appeared
1000 times there is a probability distribution corresponding to the protein binding

affinity towards the k-mer and an exact affinity can’t be assumed from that.

2. Not enough representation- If the total number of DNA reads are much larger in
number compared to all the possible DNA sequences, then the normalized reads
(normalized for library bias) can be used as intensities (with a probability distri-
bution, as explained above), for example 8mer DNA library has 32,896 different
DNA sequences and if sequencing outputs 100 million reads with at least 50 reads
corresponding to each 8mer, then there is distribution of all 8mers in reads. But if
reads are smaller in number then that can be misleading. For example a k-mer
appeared once in reads, can be due to random picking of a non-sequence specific
bound k-mer (low actual presence in the DNA pool) or due to real sequence spe-
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cific binding of the k-mer (higher presence in the DNA pool, but got picked only

once in sequencing).

3. Binding to flanking region- To sequence the selected DNA, the starting DNA
library has to be flanked with constant DNA sequence primers on both sides. This
region affects protein binding and should be taken into account.

4. Gapped binding- Many proteins bind DNA with gaps (any nucleotide in middle
represented as N) eg. if a protein likes to bind a sequence ACACGTNNNNNNNAC-
GATC, that means it binds to ACACGT and ACGATC with gap of 7 nucleotides.
Such binding preferences would show on k-mer reads with fixed ACACGT and
ACGATC, but varying nucleotides in the middle.

In addition to the above mentioned issues, there are three more factors that affect
output sequencing reads 1) the starting DNA library is not fully random and there is
a preference for certain sequences over the other, 2) PCR step has it’s own bias and
amplifies a certain set of sequences more than other, and 3) in some experiments the
protein of interest is bound to another kind of protein (for example Halo protein) that is
needed to capture the protein—-DNA complexes, and it has its own bias. These biases
have to be filtered out (normalization step) to show true binding.

In MinSeqFind, we start with sub-sequences of gapped 6émer to gapped 16mers,
such sub-sequences are called MinSeqs. We consider only those MinSeqs that appeared
at least 50 times in sequencing reads. We then filter MinSeqs for biases introduced
by initial DNA pool and PCR by normalizing MinSeq counts to expected counts from
mock-control experiment. The effect of binding to flanking region is also considered
for such normalization. After normalization and an additional weighting step, we use
an iterative step to compress MinSeqs that is inspired by orthogonal matching pursuit
(OMP). Compressed MinSeqs thus obtained are used for scoring to estimate protein
binding to a new set of query sequences. We find multiple PWMs in a similar iterative
manner to get a visual representation of binding. In the following sections we describe
each step of MinSeqFind for HT-SELEX.

3.2 MinSeqs for HT-SELEX data

Definition: A (k, g, 1)-MinSeq is a k-mer comprised of A, C, G, and T followed by a
sequence of g >= 0 Ns (N=any nucleotide A, C, G, or T), followed an I-mer comprised
A, C, G, and T. For example, the sequence AACGNNNGCTTA is a (4, 3, 5)-MinSeq
because a 4-mer AACG is followed by NNN which is in turn followed by a 5-mer
GCTTA. MinSegs are used to capture protein-DNA binding into sequence intensity

format, where sequences are of different length and exhibit gaps as well.
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Definition: A kl-mer is said to be left-contained in k2-mer if k1<=k2 and the
sequence corresponding to k1-mer is followed to the right by a sequence of A, C, G, and
T to obtain the k2-mer. Likewise, a k1-mer is said to be right-contained in k2-mer if k1
<= k2 and the sequence corresponding to k1-mer is preceded to the left by a sequence
of A, C, G, and T to obtain the k2-mer. For example, ACG is said to be left-contained in
ACGATT but right-contained in ATTACG.

Definition: A (k1, g1, 11)-MinSeq is said to be a direct subsequence of a (k2, g2,
12)-MinSeq if exactly one of the following five conditions hold.

1. The two MinSegs are identical OR

2. k1+1=k2, gl=g2,11=12, k1-mer is right-contained in k2-mer, and 11-mer is identical
to 12-mer OR

3. k1=k2, gl=g2, 11+1=12, I1-mer is left-contained in 12-mer, and k1-mer is identical
to k2-mer OR

4. k1+1=k2, gl-1=g2, 11=12, k1-mer is left-contained in k2-mer, and 11-mer is identical
to 12-mer OR

5. k1=k2, g1-1=g2, 11+1=12, 11-mer is right-contained in 12-mer and k1-mer is identical
to k2-mer.

Definition: A (k1, g1, 11)-MinSeq is said to be a subsequence of (k2, g2, 12)-MinSeq
if there is a sequence of MinSeqs m1, m2, ..., mp, such that (k1, g1, 11)-MinSeq is
a direct subsequence of m1, ml is a direct subsequence of m2, ..., mp-1 is a direct
subsequence of mp, and mp is a direct subsequence of (k2, g2, 12)-MinSeq. We use the
notation C to denote this relationship. Example CGTNNA is a subsequence of sequence
ACGTNNAAA, as CGTNNA is a direct subsequence of CGTNNAA, which is direct
subsequence of CGTNNAAA, which is direct subsequence of ACGTNNAAA.

Note that MinSegs (k, g, 1) with g=0 can fall into multiple category of MinSegs. Like
MinSeq (k, 0, 1) can also be written as MinSeq (k+1, 0, 1-1) example - MinSeq ACGTAAA
can regarded as MinSeq (4, 0, 3) - 4mer ACGT followed by no gap and a 3mer AAA,
and can also be assigned as MinSeq (3, 0, 4) - 3mer ACG followed by no gap and a 4mer
TAAAA. Thus MinSeq obtained in our analysis with no gap (g=0) are treated differently,
if we get a MinSeq with g=0, we convert all MinSeqs into a format such that 1=0, thus
for the case ACGTAAA we use it as MinSeq (7,0,0) with 7mer ACGTAAA followed by
no gap and a 0 length sequence. Further improvement in performance of MinSeqs can
be obtained by use of not only A, C, G, T and N, but also K (G/T), M (A/C), R (A/G), Y
(C/T),5(C/G),W(A/T),B(C/G/T),V(A/C/G),H(A/C/T),and D (A/G/T).
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3.3 MinSeqFind: MinSeq extraction from HT-SELEX
binding data

In this section we describe using MinSeqFind, how MinSeqs are obtained from HT-
SELEX sequencing reads and is normalized against DNA library and other bias. Let
us suppose the starting DNA library is of length M. Since DNA from different binding
experiments were attached to a barcode first and then mixed together for sequencing,
thus the first step is to de-multiplex the reads by matching DNA barcode corresponding
to each experiment and then the reads are truncated to obtain the M-mer derived from
the random DNA region (Figure C.1). Sequencing reads are obtained for a) just the
M-mer DNA library, b) enriched library with mock control, and c) the enriched library
with the TF.

First we study enrichment due to PCR and Halo-bead (mock control) by normalizing

against starting random library, in the following two steps.

1. Model the relative abundance of all possible sequences in the library <=M of form
MinSeq (k, g, 1).

2. From the reads of mock control, consider all possible MinSegs of (k, g, 1) format >=
count 50 and normalize against DNA library to analyze the binding of Halo-bead.

Second, we analyze the binding preferences of the TF. This analysis must account
for the biases introduced by the "not-perfectly-random" library, the binding preferences
of the Halo bead and bias introduced by PCR and other factors. After normalization of
counts for MinSeqs we call the value as enrichment for protein-DNA binding. Here we

characterize enrichment of TF compared to mock-control via the following two steps.

1. Model the relative abundance of all possible sequences in the mock-control <=M
of form MinSeq (k, g, 1).

2. Consider all possible MinSegs of (k, g, 1) format >= 50 and normalize against

mock-control to analyze the binding of TF.

Thus, the above analysis normalizes randomness in the starting library as well as
bias introduced by Halo-bead and PCR. The following sections explain how the sub-
sequences are counted for protein-DNA binding and how modeling and normalization

was done for a TF, against a mock-control (step 1 to step 4).

Step 1: Counting sub-sequences in protein-DNA binding data

From M-mer reads for the TF sample or protein-DNA binding data, MinSeqFind counts
the occurrence of every sequence of type (k, g, 1)- MinSeq with 5 <=k <=8,5 <=1<=
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8, and k+g+l <=M (Figure 3.2). Counts for sequence and its reverse complement are
merged together. If the count for a particular (k, g, I) sequence is below a minimum
threshold of 50, then that sequence is discarded. The counts for others are retained for

step 3.

Step 2: Position Associated Gapped LOcation-specific (PAGLO)

model to characterize mock-control

For a 20bp library there can be 4% =1 trillion different sequences in different concentra-
tions, to get relative abundance of all 20mers we need to get >100 trillion reads, which
is not feasible with current technology, and we get only a small portion or sample i.e.
1-2 million 20mer reads when 20bp library/sample is barcoded and sequenced. We
create a model for relative abundance of all sequences of length <=M from limited
reads obtained (for M-mer library). Even though a random M-mer library is used,
the library isn’t perfectly random. The probability of any nucleotide at a particular
position depends on the previous nucleotides. Thus to capture biases in the library,
binding of DNA sequences by the Halo-bead, and bias introduced by PCR, we construct
a Position Associated Gapped LOcation-specific (PAGLO) model. From the M-mer
reads of mock-control, we count the occurrence of every sequence of the form MinSeq
(kx, gx, Ix)- with 1 <= kx <=8, 0 <= Ix <= 8 such that, kx+gx+lx <= M and kx+Ix <=
8. Counts for sequence and its reverse complement are merged together. If the count
for a particular (kx, gx, Ix) sequence was below a minimum threshold of 50, then that
sequence was discarded. The counts for others are retained. In this study to characterize
binding of a TF or mock-control, we use sequence of form MinSeq (k, g, I) with 5 <=
k <=8,5 <=1<=8, and k+g+l <= M. Since all possible such sequences will not have
enough representation, we need an estimated abundance or counts for sequence (k, g,
1). The estimate is calculated using PAGLO model as shown in Figure 3.2. For a 8th
order PAGLO model, first Markov model of multiple smaller sequence (kx, gx, 1x) with
kx+1x =9 is used to estimate counts for longer sequence (k, g, 1). In case if counts for
sequence (kx, gx, Ix) is less than 50, those counts are estimated using further shorter
sequences with kx+Ix <9 for which count>=50 i.e. estimating counts for a higher order
Markov model (8th order) from a lower order Markov model [56]. Since the library is
constructed 3’ to 5 end of DNA, thus the model is created in 3’ to 5" direction. The
resulting model contains gaps, these gaps are location specific, means where the gap
in the sequence is located is also taken into account while creating the model. Thus
estimation for any sequence with a stretch of gap located anywhere with the sequence
can be made. Also the model is built such that there is a separate model associated to
different positions of a given sequence within an M-mer, means there will be different

model for sequence starting at position 1 of M-mer and same sequence starting from



20mer SELEX data for mock control
5’ - NNNNNNNNNNNNNNNNNNNN -3’

Create position specific probability matrix
(8th order PAGLO Model with no gap)

Model creation. Example- for sequences starting at position 1

example seq- ACGTACGTACGTACGTACGT
Counts of 8 mer (1-8) ACGTACGT
Prob 9th given 1-8 ACGTACGTA
Prob 10th given 2-9 CGTACGTAC
Prob 11th given 3-10 GTACGTACG
Prob 20th given 12-19 TACGTACGT

(a) PAGLO model for mock-control without

&aps

20mer SELEX data for protein/TF binding

counting all 10-16mers
without gaps

Counting in TF sample. Example- 10mer ACGTACGTAC

NNNNNNNNNNNNNNNNNNNN Counts
ACGTACGTAC 102
ACGTACGTAC 123
ACGTACGTAC 115
ACGTACGTAC 118
ACGTACGTAC 125

A=Total counts of ACGTACGTAC in TF data= 1277

Expected counts in mock control

20mer SELEX data for mock control
5’ - NNNNNNNNNNNNNNNNNNNN -3’

Create gapped position specific probability matrix for
(8th order PAGLO Model with gaps)

Model creation. Example- for sequences starting at position 1

example seq-(gapat6 &7) ACGTACGTACGTACGTACGT
Counts 8 mer (1-5 + 8-10) ACGTA__TAC

Prob 11th given 1-5+8-10  ACGTA _TACG

Prob 12th given 2-5 + 8-11 CGTA__ TACGT

Prob 13th given 3-5 + 8-12 GTA__TACGTA

Prob 20th given 12-19 TACGTACGT

(b) PAGLO model for mock-control with

&aps

20mer SELEX data for protein/TF binding

counting all 10-16mers
with gaps

Counting in TF sample. Example- 10mer ACGTA__ TACGT
NNNNNNNNNNNNNNNNNNNN Counts

ACGTA__TACGT 102
ACGTA__TACGT 123
ACGTA__TACGT 15
ACGTA__TACGT 118
ACGTA__TACGT 125

A=Total counts of ACGTACGTAC in TF data= 1012

Expected counts in mock control

starting at position 2

starting at position 2

NNNNNNNNNNNNNNNNNNNN Expected counts NNNNNNNNNNNNNNNNNNNN Expected counts
starting at position 1 starting at position 1
ACGTACGTAC =70%0.22%0.27=4.16 ACGTA__TACGT =70%0.22*0.27=4.16
ACGTACGT 70 ACGTA__TAC 70
ACGTACGTA 0.22 ACGTA__TACG 0.22

CGTACGTAC 0.26 CGTA__TACGT 0.26
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ACGTACGTAC =86%0.28%0.23=6.50 ACGTA__ TACGT =86%0.28*0.23=6.50
ACGTACGT 86 ACGTA__TAC 86
ACGTACGTA 0.28 ACGTA__TACG 0.28
CGTACGTAC 0.23 CGTA__TACGT 023
ACGTACGTAC ACGTACGTAC
ACGTACGTAC ACGTACGTAC
ACGTACGTAC ACGTACGTAC

B=Total Expected counts of ACGTACGTAC in mock control = 57.23 B=Total Expected counts of ACGTACGTAC in mock control = 46.22

C=Total 20mer counts in TF data= 500,0000 C=Total 20mer counts in TF data= 500,0000

D=Total 20mer counts in TF data in mock control = 2,000,000 D=Total 20mer counts in TF data in mock control = 2,000,000

Then, Then,

Enrichment= (A/B)/(C/D) Enrichment= (A/B)/(C/D)
=(1277/57.23)/(500,000/2,000,000)=89.25 =(1012/46.22)/(500,000/2,000,000)=87.58

if A<50 assign NA (Not available) if A<50 assign NA (Not available)

(c) Enrichment for 10-16mer without gaps  (d) Enrichment for 10-16mer with gaps

Figure 3.2: Enrichment calculation for MinSeq for DNA binding by HT-SELEX. a,b)
Position specific PAGLO model is shown in the Figure (a- without gaps, b-with gaps).
Means in the model, probability of A at position 9 given nucleotides at position 1-8
will be different from probability of A at 10 given same nucleotides at 2-9. In example
PAGLO model starting from position 1 is shown. In purple is the 8mer for which counts
and probabilities are calculated. c¢,d) First sub-sequences of length 10-16 with no gaps
(d-with gaps) are counted for TF+Halo+Bead (TF sample) and then expected count for
the same sequence are calculated for Halo+Bead (mock control) using PAGLO model
and enrichment is calculated by dividing the two numbers.
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position 2 of M-mer (Figure 3.2). This is done to normalize any possible binding to
flanking primer region. Together the model is position associated, it can tolerate stretch
of gaps in the middle and the gaps are location-specific.

Step 3: Calculating expected counts in mock-control

To normalize the counts of retained sequences from step 1 against the mock-control, first
the expected counts of those sequences are calculated in mock-control using the PAGLO
model as shown in Figure 3.2. Expected count is calculated for each retained sequence
starting at different positions in the M-mer and then added to get total expected count
for that sequence in mock-control.

Step 4: Enrichment calculation by normalizing against mock-control

The counts of retained sequences from protein-DNA binding are divided by total
number of M-mer reads in protein—-DNA binding data to obtain number of sequence
occurrence per read in sample. Similarly, the total expected counts of those sequences
from mock-control are divided by total number of M-mer reads in mock-control data
to obtain estimated occurrence per read in mock-control. These numbers are then
divided to get final enrichment values, which is number of times a sequence is enriched
relative to the mock-control (Figure 3.2). Note that, TF or mock-control can bind to
region flanking the random N-mer region partly or even completely. Since we consider a
position associated model, such binding is normalized by the analysis pipeline described
above (Figure 3.3).

3.4 Scoring with MinSeqFind model

Consider an l-mer, 1 large, and a set of sequence of type (k, g, 1) MinSeq (maximum
length M, equal to the length of random region), each with a weight. A moving window
of length M is used to score a sequence of length 1, resulting in I-M+1 sub-sequences. In
algorithm 3 we describe procedure for scoring the I-mer.

Algorithm 3 Scoring with MinSeqFind model

Fori=1tol-M+1do
Forj=0toMdo
Fork=0toMdo
Find sequences matching sub-seq i+j-th to i+k-th
Endfor
Endfor
For M-mer starting at i-th position, assign max score from matching MinSegs.
Endfor




20mer SELEX data for protein/TF binding

5’ - CTGATCCTACCATCCGTGCTNNNNNNNNNNNNNNNNNNNNCACAGCTTCGTACCGAGCGG -3’

counting all 10-16mers
without gaps (counts>=20)

including flanking primer region
Counting in TF sample. Example- 10mer CTACGTACGTAC
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ETACGTACGTAC
ETACCTACGTAC

CTGATCCTACCATCCGTGCTNNNNNNNNNNNNNNNNNNNNCACAGCTTCGTACCGAGCGG

CTACGTACGTAC
ETACGTACGTAC
CTACGTACGTAC
CTACGTACGTAC
CTACGTACGTAC
CTACGTACGTAC

CTACGTACGTAC
CTACGTACGTAC
ETACGTACGTAC

Counts

1820

102
123
115
118

125
523

A= Total counts of ACGTACGTAC in TF data= 3620

Expected counts in mock control

ETACGTACGTAC

ETACGTACGTAC

CTGATCCTACCATCCGTGCTNNNNNNNNNNNNNNNNNNNNCACAGCTTCGTACCGAGCGG

CTACGTACGTAC
ACGTACGTAC
ACGTACGT
ACGTACGTA

CGTACGTAC

ETACGTACGTAC

CTACGTACGTAC

CTACGTACGTAC
CTACGTACGTA

CTACGTACGTAC

Expected counts

0

0

=66.70
=1123%0.22*0.27=66.70
1123

0.22

0.26

0

4.16

=17.28
=17.28

B= Total Expected counts of ACGTACGTAC in mock control = 141.21

C=Total 20mer counts in TF data= 500,0000

D=Total 20mer counts in TF data in mock control= 2,000,000

Then,

Enrichment= (A/B)/(C/D)
=(3620/141.21)/(500,000/2,000,000)=102.54

Figure 3.3: Normalization of possible binding to primer region flanking the random
20mer region. In example shown is a 10mer sequence CTACGTACGTAC without
gap. It is aligned to match different regions of 60mer input DNA library and counted.
Nucleotides are crossed if sequence can never appear at that position because of mis-
matched nucleotides. If a sequence like CTACGTACGTAC is bound by protein then it
will have higher counts closer to primer A region because it matches partially to the
primer region (CT).
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We display such intensity data for I-N+1 sub-sequences of length M as colored bar
plots and call them Genomescapes for genomic sequences, i.e. plot from the predicted
binding to each sub-sequence in the genome. The maximum score over all the I-M+1

sub-sequences is used as binding score for the full I-mer.

3.5 Weighted Enrichment

In a MinSeq (k, g, 1), k and 1 part of the sequence consists of nucleotides A, C, Gor T,
whereas g (gap) part consists of Ns. Number of different MinSeqs that can exhibit same
(k, g, 1) pattern, i.e. a k-length sequence followed by g-length stretch of Ns, followed
by l-length sequence, thus is 4*D as there can be one out of 4 nucleotides at each
position on k and 1 part. In a random situation, the probability of occurrence of MinSeq
(k1, g1,11) in a sequence of length L>=(k1+g1+11) is thus (4**V)*(L-k1-g1-11+1). Unlike
k-mers, MinSegs are thus not equally likely to present, probability ratio of MinSeq (k1,
g1, 11) and MinSeq (k2, g2, 12) is thus, (4%*12-(H1Dy*([, k1-g1-11+1) /(L-k2-g2-12+1).

Why MinSeq weighting?

Ordering MinSeqs on the basis of their descending value of enrichment points out the
best enrichment values and best binding sequence/MinSeqs possible, but if the k+1
value (part of sequence containing A/C/G/T) for the best MinSeq is higher, then it
is less likely to occur in a random case as well as in the genome and will carry lesser
information. Thus there has to be a trade-off between desired higher-enrichment value
and desired lower k+1 value for a MinSeq.

This trade-off is the most important part in defining the value of a particular MinSeq
in capturing the binding. We use minimum mean square error (MMSE) as the criteria,
i.e. prefer/rank MinSeq (k1, g1, 11) over MinSeq (k2, g2, 12) if former gives a lesser MSE
in predicting back the data (from which MinSeqs are derived) in comparison to the
later.

Comparison of MinSeq1 (k1, 0, 11) & MinSeq2 (k1, 0, 12) with
k1+11=k2+12

Lemma 1: In predicting back the data, if k1=k2, MinSeq1 (k1, 0, 0) gives lower MSE
when compared to MinSeq2 (k2, 0, 0) if Eq, 0,0 > Eqe, 0,0), where E ¢ 1) is enrichment of
MinSeq (k, g, I).

Proof: Considering enrichment for sequences of length k. MinSeq1 with enrichment
a and MinSeq2 with b. Since there will not be any other k-mer sequence matching

these two MinSeqs. MSE in estimation can be minimized by minimizing MSE just for
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the two sequences matching MinSeq, MSE = ((a-a’)? + (b-b")?)/2, where a’ is estimated
enrichment for a. Thus choosing MinSeq1 will give MSE b? /2 whereas choosing Min-
Seq2 will give error a?/2. Choose MinSeql over MinSeq_2, if MSE for MinSeq] is less
i.e. b?/2<a?/2, which implies a>b (enrichment values are non-negative) or Ey,0,0) >
Eq2,0,0), hence proved the Lemma 1.

The proof can be extended to a case where k1+11=k2+I12. MMSE is achieved by

ranking according to the higher enrichment (similar to k-mer enrichment).

Comparison of MinSeq1 (k1, g1, 11) & MinSeq2 (k1, g1, 11)

Lemma 2: In predicting back the data, MinSeq (k1, g1, 11) gives lower MSE when
compared to MinSeq (k2, g2, 12) if Eq, g1,11)*2 "> Eo, g2, 12)*2° %12, where E 1) is
enrichment of MinSeq (k, g, I).

Proof: Consider two MinSeqs 1- (k1, g1, 11) and 2- (k2, g2, 12), such that (k1, g1, 11) is
direct subsequence of (k2, g2, 12), such that k1+1=k2, gl=g2, 11=12.

Let us consider gl=g2=11=12=0, i.e. the two sequence doesn’t contain any gap and aim
is to minimize MSE for a k-mer binding data k=k2 in a context of a much longer genomic
sequence L»k. Example MinSeq1=ACTA and MinSeq2=ACTAT, thus k1=4, k2=5 and
trying to minimize MSE for a 5-mer binding data. MinSeq1 can be left contained sub-
sequence of 4 different 5-mer sequences ACTAA, ACTAC, ACTAG and ACTAT, whereas
MinSeq?2 is a sub-sequence of only ACTAT. Note, although MinSeq1 is right contained
sub-sequence of 4 other 5-mers- AACTA, CACTA, GACTA and TACTA, but we don't
use those for MSE estimation as in a longer context (L»k), sequences ACTAA, ACTAC,
ACTAG and ACTAT covers all possibilities in AACTA, CACTA, GACTA and TACTA,
example in AAAACTAAAAA - underlined sequence ACTAA is a 5-mer which has left
contained sub-sequence ACTA, this also captures AACTA, which has ACTA as right
contained sub-sequence.

Now, let us assume enrichment for ACTA, ACTAA, ACTAC, ACTAG and ACTAT is
m, a, ¢, g and t respectively. Further assumption made for simplification, a=c=g and
t>a. Given these details, we need to choose 1 MinSeq ACTA (m) or ACTAT (t) which
minimizes MSE in estimating a, ¢, g and t. MSE in estimation = ((a-a’)* + (c-¢’)* + (g-g")* +
(t-t')?)/4, where (2" is estimated enrichment for a). Since enrichment of ACTA is average
of enrichment of ACTAA, ACTAC, ACTAG and ACTAT -> 4m=a+c+g+t, this can be
written as 4m=3a+t.

If m was picked as preferred MinSeq - a’=m, ¢’=m, g’=m, t'=m. Thus MSE in
estimation = ((a-m)? + (c-m)? + (g-m)? + (t-m)?)/4 = (3(a-m)? + (t-m)?) /4. If t was picked-
a’=0, ¢’=0, g’=0, t'=t. Thus MSE in estimation = ((a-0)* + (c-0)* + (g-0)* + (t-t)*)/4 = 3a?/4.

Choose t over m if-
=> 3a%/4 < (3(a-m)*+(t-m)?) /4, put t=4m-3a
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=>4m? - 8am + 3a? >0

=>2m<a OR 2m > 3a

=> 2m+t<0 (not possible as enrichment has to be positive only) OR 2m<t
=> t>2m

Thus choose ACTAT (t) over ACTA (m) if t>2m to minimize MSE. Similarly can
prove if t<2m choose m over t for MMSE.

A general case thus, select MinSeq (k1, g1, 11) over MinSeq (k2, g2, 12), where
(k1, g1, 11) is direct subsequence of (k2, g2, 12), such that k1+1=k2, gl=g2=11=12=0, if
Eq, g1,11)"2*"> B, 2,122 01D, And select MinSeq (k2, g2, 12) over MinSeq (k3, g3, 13) if
E(o, g2, 1220 )> B3 3,132 1*2). This implies select MinSeq (k1, g1, 11) over MinSeq
(k3, g3,13) if B, g1,11)*2 "> Es, 3,13 *2"*1*?). This can be extended thus select MinSeq
(k1, g1, 11) over MinSeq (k2, g2, 12), where (k1, g1, 11) is a subsequence of (k2, g2, 12),
such that g1=g2=11=12=0 if E, ¢, 12)*2"'> B0, g2, 1n)*2?. With similar analogy constraint
gl=g2=11=12=0 can be relaxed.

We used (k1, g1, 11) is a subsequence of (k2, g2, 12), this constraint is removed given
Lemma 1. Thus, MinSeq (k1, g1, 11) gives lower MSE when compared to MinSeq (k2,
82,12) if B, g1,11)* 2 > E 1o, 02, 12)*2°6**12). Till now we considered case where k1<=k2,
but same equation holds for k1>=k2 as well. Hence proved the Lemma 2.

Thus the weighted enrichment of MinSeq (k, g, 1) = F ¢ )= E ¢ 1)*2" ™ gives a better
perspective when comparing MinSegs of different length (k+1). Weighted enrichment
ranks MinSeqs on the basis of their importance/predictive-capability in minimizing
MSE.

3.6 Step 5: Multivalued-reduction through orthogonal
matching pursuit (OMP)

Since MinSeq can be all k mer - g gap - | mer sequences with varying k, g and 1, there is
a lot of redundancy, for example if a protein prefers to bind only one 4mer sequence
ACGA, then highest ranked MinSeq will be ACGA according to weighted enrichment,
but there will be MinSeqgs like ACGAA, ACGAC, .... as well in the list, all those which
crossed the threshold of minimum counts. Thus, there is a a need to remove all 5mer and
longer sequences in this example case. Given the binding is to ACGA, other sequences
doesn’t carry any additional information. Thus a multi-valued reduction is performed
on enrichment of (k, g, 1) sequences or MinSeqs obtained from step 4.

In an ideal case with limited binding patterns and no experimental variation a
reduction is feasible with complete retrieval. Figure 3.4 is an example of such a reduction
where there are eight different sequences with corresponding enrichment values of 5
or 8 as shown on the left. Except positions 5 and 6 all these sequences match exactly,
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ACGTgCGAT

Multivalued reduction through Orthogonal Matching Pursuit (OMP)

ACGTNCGAT=8 Dea . Ziiiigiii
ACGTACGAT=8 =A/G/ RS v 30

= .--.AT...
ACGTCCGAT=8 N=A/C/G/T

8
ACGTGCGAT=8 CGT 5 ®accr ‘
ACGTTCGAT=8 A[5[8]5 5\ MinSeq Set
Cc 8 Reduction ACGTADGAT=5
ACGTAAGAT=5 >
through OMP =
ACGTAGGAT=5" S {8l T ="p | ACGTNCGAT-8

ACGTATGAT=5

K-map
123456789

Estimation

Figure 3.4: Multivalued-reduction through orthogonal matching pursuit (OMP)

nucleotides at these positions are used to create a two-dimensional K-map. A reduction
step is performed through orthogonal matching pursuit (OMP) to obtain a selected
MinSeq set. Given just the sequences of starting set, their corresponding enrichment
values can be exactly estimated from this selected MinSeq set, thus it completely captures
the starting set of sequences with enrichment.

In a realistic case there is no limit on number of binding patterns and there can be
some experimental variation or noise and thus a complete retrieval isn't always needed
or isn’t always possible. Thus, instead of full reduction through OMP, compression
is done through OMP by selecting one MinSeq at a time and putting a threshold on
number of total MinSeqs. Given the information about MinSeq ranked 1, the information
left in all other sequences changes. Thus to capture binding information in a smaller
number of MinSeqs we need to remove such redundancies. We use compressed sensing
(CS) based methods from signal processing for such pruning. We use a modified
approach of orthogonal matching pursuit (OMP) [22,37,48] to retrieve K best sequences
or MinSegs, such a set in termed as selected MinSeq set. From a binding data- given
are sequence of type (k, g, 1) with their corresponding weighted enrichment Fy 1), and
p = maximum number of final selected MinSeqs to be used, then algorithm 4 defines
the extraction/compression using approach inspired by orthogonal matching pursuit
(OMP) (Figure 3.5).

3.7 Results

We display binding as extracted by MinSeqFind using two different formats: gapped
SELs (see appendix) and position weight matrix (PWM). PWM gives a neat visualization
of binding and is used extensively, thus we use weighted MinSeqs and extract PWMs
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Algorithm 4 MinSeqs compression for HI-SELEX binding data inspired by orthogonal
matching pursuit (OMP) [48]

Initialize: Sequences (k, g, 1), corresponding weighted enrichment F (as calculated
in previous section), i=0, residual weighted enrichment R=F, set S={}, p = maximum

MinSeqs

while i<p do

i=i+1

Choose MinSeq (ki, gi, li) with maximum residual weighted enrichment R.

Add it to set Si.e. S={S, MinSeq (ki, gi, li)}
Use enrichment for set S to score all given MinSeqs= N
Subtract to get residual R = F-N

end while

Set S defines the final MinSegs.

Arrangments Enrichment

10 ACGTAACGTA 10.1
16 ACGTACGTACGTACGT 350.1
5-1N-5 =11 ACGTANACGTA 22.0
5-10N-5=20 |ACGTANNNNNNNNNNACGTA 11.2
5-2N-8=15 ACGTANNACGTACGT 50.2
5-7N-8=20 ACGTANNNNNNNACGTACGT 43.7
8-1N-8=17 |ACGTACGTNACGTACGT 202.1
8-4N-8=20 ACGTACGTNNNNACGTACGT 300.2
Weighting
Weighted Enrichment
ACGTAACGTA 10.1/2~10 = 9.8e-3
ACGTACGTACGTACGT 350.1/2716 = 5.3e-3
ACGTANACGTA 22.0/2~10 =21.4e-3
ACGTANNNNNNNNNNACGTA 11.2/2710 =10.9e-3
ACGTANNACGTACGT 50.2/2713 = 6.1le-3
ACGTANNNNNNNACGTACGT 43.7/2713 = 5.3e-3
ACGTACGTNACGTACGT 202.1/2~16 = 3.0e-3
ACGTACGTNNNNACGTACGT 300.2/2416 = 4.5e-3
Multivalued reduction by
OMP and Compression
MinSeg Table
ACGTANACGTA =21.4e-3
ACGTANNNNNNNNNNACGTA=10.9e-3
ACGTAACGTA = 9.8e-3
ACGTANNACGTACGT = 6.1le-3
ACGTACGTACGTACGT = 5.3e-3

Figure 3.5: Weighted enrichment, compression and ordering. First enrichment of all
MinSegs (10-16mer with or without gap) is combined together in a list. Then enrichment
is weighted by multiplying by 2number of nucleotides excluding N -~ Oply some sequences are
selected and carried forward to get MinSeq table by compression and then ordered
according to their weighted enrichment.
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for binding. PWM is constructed using the best weighted MinSeq and residual signal is
obtained as residual MinSeqs by subtracting out PWM'’s predictions (similar to OMP).
By iterating this, multiple PWMs are obtained defining binding patterns (Figure 3.6).
In following subsections we present results when MinSeqFind is applied on newly
generated nuclear receptors DNA binding data and published protein-DNA binding
data.

PAGLO model analysis

PAGLO modelis a key component of MinSeqFind analysis. It consists of multiple Markov
models. Figure 3.7a shows the maximum enrichment predicted by the PAGLO model
when PAGLO model is trained on a mock control data and then normalized against mock
control, different order Markov model were used for that in PAGLO model. Plotted
is the enrichment, maximum out of all 6mer to 16mer sequences with any possible
number of gaps in the mock control data, lower is better, ideal maximum enrichment
should be 1. Plot thus captures the sensitivity of model in predicting the outcome of
mock-control. The plot saturates at 4th and 5th order to maximum enrichment of 1.33.
Thus, in worst case there can only be maximum of 33% possible error in prediction of
mock control using a 5th order PAGLO model. Increasing order beyond that didn't give
any improvement. Figure 3.7b and 3.7c shows the two PWM motifs obtained using zero
order Markov model in PAGLO, in ideal condition we should not see any binding motif.
It can be seen the PWM motifs are up to length 6 (with high information positions),
which can be normalized using a 5th order Markov chain model, that is the reason of
higher performance of 4th and 5th order Markov model in PAGLO model.

High throughput DNA binding for nuclear receptors

Nuclear receptors (NRs) are a family of transcription factors (TFs) that regulate many
key cellular functions including steroid sensing, maintaining hormonal balance and
embryonic development and thus they are target of over 13% of FDA approved drugs [46].
Drugs targeting NRs are used to effectively combat several diseases like receptor-induced
cancers, asthma, hormonal imbalances, obesity and many other diseases [25]. A better
understanding of the DNA binding preferences of NRs is crucial for devising new
targeted drug therapies. Furtherer, in the presence of specific ligands (drugs) and/or
other TF partner especially RXRA (Retinoid X receptor alpha), NRs get activated to
up-regulate or down-regulate different genes [25].

We measure high-throughput (HT) DNA binding of all the full length human NRs.
We use cognate site identification (CSI) by high-throughput systematic evolution of
ligands by exponential enrichment (HT-SELEX) [32,64] to examine DNA binding pref-
erence of NRs in cell-extract. A DNA library spanning the entire sequence space of
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MinSeq Table
ACGTANACGTA =21.4e-3
ACGTANNNNNNNNNNACGTA=10.9e-3 ‘
ACGTAACGTA = 9.8e-3
ACGTANNACGTACGT = 6.le-3
ACGTACGTACGTACGT = 5.3e-3
Select top
MinSeq
PWM Seed
ACGTAnACGTA

Find enrichment for all 1 mismatch sequences
NNNNNNACGTAnACGTANNNNNN

NNNNNAACGTAnACGTANNNNNN
NNNNNCACGTAnACGTANNNNNN
NNNNNGACGTAnACGTANNNNNN
NNNNNTACGTAnACGTANNNNNN

NNNNNNCCGTAnACGTANNNNNN
NNNNNNGCGTAnACGTANNNNNN
NNNNNNTCGTAnACGTANNNNNN

NNNNNNAAGTAnACGTANNNNNN
NNNNNNAGGTAnACGTANNNNNN
NNNNNNATGTAnACGTANNNNNN

Score all MinSeqs by PWM and
Subtract out PWM prediction

NNNNNNACGTAAACGTANNNNNN
NNNNNNACGTACACGTANNNNNN
NNNNNNACGTAGACGTANNNNNN
NNNNNNACGTATACGTANNNNNN

NNNNNNACGTAnACGTCNNNNNN
NNNNNNACGTAnACGTGNNNNNN
NNNNNNACGTAnACGTTNNNNNN

Figure 3.6: Iterative process of PWM extraction from MinSeqs: Top MinSeq is selected
as the seed to get PWM. Seed is then extended by 3-6bp on each side by adding "N’ to
consider flanking binding. Enrichment corresponding to seed and sequences exhibiting
1 mismatch to the seed are used to construct PWM using standard methods. Then from
the calculated enrichment, the prediction made by PWM for all MinSeqs is subtracted
out and the next top MinSeq from the weighted residual enrichment is chosen for next
PWM and so on.



44

Maximum enrichment

PAGLO model order

(a) Maximum enrichment obtained using different order PAGLO model

ISk

(b) Mock control first PWM using 0 order (c) Mock control second PWM using 0 order
PAGLO model PAGLO model

Figure 3.7: PAGLO model performance with different order of Markov model. Results
are shown when PAGLO model is trained on a mock control and then normalized
against itself.
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Figure 3.8: Circular phylogeny tree of nuclear receptors for which binding motif was
observed using MinSeqFind algorithm. Ligands corresponding to each nuclear receptor
for which binding motif was observed are also shown with their structure.

a 20-mer (10" different sequence permutations) was independently incubated with
all 48 members of human NR family. In combination we also use different ligands
corresponding to each protein and RXRA as partner to study change in DNA binding
preferences due to ligands and protein partners.

From sequence reads of CSI by HT-SELEX MinSeqFind discovers binding motifs of
various lengths, dimers with various orientation and gaps. Out of all human (48) NRs
tested in presence or absence of partner and/or ligand, using MinSeqFind we observe a
binding motif in- 40(83%), 2(4%) (DAX1 & SHP1) doesn’t have DNA binding domain
and 6(13%) did not give any motif. A circular phylogeny tree of nuclear receptors for
which binding motif was observed using MinSeqFind algorithm is shown in Figure 3.8,

with corresponding ligands labeled around the tree.
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Novel DNA targets for Nuclear Receptors

Figure 3.9 gives a comprehensive analysis of the preference of binding for NRs for
different repeats and orientations of monomers, including NRs with protein partners
and/or ligands. The proteins are arranged phylogenetically, with proteins with similar
amino acid sequence shown together. As shown in the Figure 3.9, a single insertion
or deletion can cause a change in the gap between the monomers causing a different
NR to bind, resulting in alteration in transcription causing disease. For example - a
DNA sequence binding to Vitamin D receptor or VDR (DR3- direct repeats of monomer
with 3 gap) can convert to preferred binding of THRB (DR4) if there is a single insertion
between monomers, whereas to RARA:RXRA (RARA (retinoic acid receptor-alpha)
binding in presence of RXRA partner protein) binding (DR5) by another insertion,
popularly known as DR-3,4,5 rule [25].

In Figure 3.10 & 3.11, we display DNA binding in the form of newly developed
gapped sequence energy landscapes (gapped-SELs). To plot them, first a seed sequence
is chosen as combination of two monomers from top ranked MinSeqs or PWMs. The
monomers are combined with multiple orientations (DR-direct repeat of monomers, IR-
inverted repeat, ER-everted repeat as shown by arrows in Figure 3.9), and different gaps
are placed between monomers. All sequences corresponding to gap=g are arranged
along X-axis with Y coordinate=g. The same order of sequences is followed for all gaps
along X-axis, example "AAGGTCANNAGGTCAT" and "AAGGTCANNNAGGTCAT"
are sequences with direct repeats of AGGTCA with gap 2 (DR2) and 3 (DR3) respectively
will have same x-coordinate, but have y=2 and y=3 Y-coordinate respectively. After

deciding X and Y coordinate, the enrichment or binding intensity is plotted at that
coordinate with height and color coded peak. Binding intensity of all the sequences for
gapped-SELs is obtained using MinSeqs.

MinSeqFind discovers many novel binding patterns and binding differences, which

are previously unreported [19]. Major findings are listed below.

1. MinSeqFind for HNF4G (Hepatocyte Nuclear Factor 4- gamma) protein, which is
critical for liver development, identified two very similar looking binding motifs
but had subtle difference as shown in Figure 3.12a, first motif is GGTCAAAGGTCA
which is a known motif of HNF4G and new motif GGTCAAAGTCCA. Novel motifs
tor HNF4G leads to finding new genomic targets and genes regulated by it in

connection with liver development.

2. Liver X receptor (LXR) class of proteins is an important regulator of cholesterol,
fatty acid, and glucose homeostasis. LXRA member of it gave binding motif as
dimer of RGGTTAC & MGGTCA (where M=(C/A)) with a gap of 3 (Figure 3.12b),
which is new finding as LXRA is supposed to bind as dimers of RGKTCA (where,
R=(G/A) & K=(G/T)). Further MinSeqFind also discovers that LXRB, which is
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Figure 3.9: Different repeat preferences for NR as calculated by MinSeqs. With direct
repeats, inverted repeats & everted repeats of gap 0 to 8, enrichment is displayed in
form of color coded squares for different repeat preference, with maximum enrichment
normalized to same value for each sample or experiment represented by single row. All
the samples are ordered on the basis of phylogeny tree of NR family. If multiple NRs or
ligands are used in binding experiment, then for naming each one is separated by colon

().
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Figure 3.10: Gapped SEL uncovered hetero-dimer formation of COUP-TFA and RARA
protein with RXRA
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Figure 3.11: Gapped SEL uncovered hetero-dimer formation of RORC and THR protein
with RXRA
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another protein of same sub-family binds TAACCY-RGGTCA (where Y=(C,T)) in
presence of RXRA, i.e. inverted repeats of dimers TGGTTA & RGGTCA with gap
of 1 (IR1). Finding such motifs changes the way regulation of cholesterol, fatty

acid, and glucose is interpreted.

. Peroxisome proliferator-activated receptors (PPARs) play essential roles in the
regulation of cellular differentiation, development, and metabolism. DNA binding
of PPARD a memeber of PPAR family changes from direct repeated dimer of
RGGTCA & RGGTCA to dimer of TGTACA & RGGTCA, both with gap of 1 in
presence of RXRA partner and TA1 ligand (Figure 3.12c). This finding emphasizes
role of ligands in DNA binding, thus TA1 can change specificity of PPARD in

presence of RXRA, leading to activation/repression of different genes.

. ESRRA and other members of ESRR sub-family showed a new motif that resembles
the overlap of two dimers in presence of RXRA specially (Figure 3.12d). Itis a
dimer of AGGTCA & TGACCT i.e inverted repeat of AGGTCA with gap of -3 i.e.
IR-3 to give motif like AGGT(C/G)ACCT.

. Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) play
critical roles in the development of organisms. From gapped-SELs of COUP-TFB &
COUP-TFB (members of COUP-TF family) with RXRA (Figure 3.10a), it is evident
that COUP-TFB hetero-dimerizes with RXRA to bind DNA as DR1 of RGKTCR
and prefers that over it’s homo-dimer binding of IR0 and DR2. Thus, in presence
of RXRA COUP-TFs target different genomic regions and thus RXRA is affecting
their gene regulation. This was true for all the members of that sub-family.

. Similar to COUP-TFs, members of retinoic acid receptor (RAR) sub-family like
RARA prefers DR1, DR5 and IR0 of RGGTCR as hetero-dimer (Figure 3.10b).

. RORC (RAR-related orphan receptor-gamma) protein which plays critical role in
lymph node development and immune response, with RXRA it likes to bind ERO
of RGKTCR (Figure 3.11a).

. Thyroid hormone receptors (THRs) regulate metabolism and heart rate as well as
play critical roles in the development of organisms. A member of THRs sub-family,
THRA likes to bind ER4 of RGGTCR, by hetero-dimerizing with RXRA (Figure
3.11b).

. Although THRA (thyroid hormone receptor- alpha) and THRB (thyroid hormone
receptor- beta) have exactly the same DNA binding helix and known to bind similar
DNA sequences [19], still THRA preferred inverted repeat of RGGTCR with no gap
(IR0), whereas THRB binds direct repeat of RGGTCR with gap of 4 nucleotides
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(DR4), which can be due to allosteric effects of non-DNA contacting residues

and/or different preferences of dimerization as homo-dimer and hetero-dimer.

RXRA heterodimerizes with other NRs giving rise to multiple binding motifs

RXRA has a unique property that it hetero-dimerizes with many NRs and binding
motif varies according to the partner protein. In the experimental design of the CSI
experiments employed, each nuclear receptor was overexpressed in a human cell line,
and the extract is used to perform CSI. Thus, it is possible that the nuclear receptor of
interest can dimerize with protein partners found in the extract. To determine whether
this occurs, we search for different binding motifs adjacent to the RXRA motif. In Figure
3.13a various PWM motifs are shown for RXRA. To validate MinSeqFind discoveries, we
score published in vivo binding peaks using results from MinSeqFind. Bound regions
are used as positive and two random permutations of each peak are used as negative
and are scored using PWMs to plot receiver operating characteristics (ROC) curve. In
Figure 3.13b top 500 ChIP-Seq peaks in Hlhesc cell line for RXRA protein [10] are
scored using PWMs obtained from PWMs from MinSeqFind for HT-SELEX binding
data for RXRA with 9cra ligand. Each peak was assigned a score S equal to maximum of
TPR/(TPR+FPR) where it was first detected as positive peak in ROC (TPR-true positive
rate & FPR- false positive rate). A heatmap was then generated on the basis of these
results, clustered according to their score. Figure 3.13b shows multiple motifs IR0,
DR1-6 make prediction of different in vivo peaks which were not found in published
results of RXRA binding [33].

SNPs associated with diseases related to NR binding

Most single nucleotide polymorphism (SNPs) associated with disease occur in non-
coding regions, making their function unclear. To determine if any of these SNPs would
alter the binding of NRs, we studied a compendium of 5076 carefully curated SNPs sites
associated with diseases and quantitative traits [39] and predicted change (gain/loss) in
binding of NRs at these SNPs. MinSeqFind scores 20 bp region around reference allele
(hg19) and alternate allele of these SNPs using MinSeqFind and calculated fold change
in predicted binding of NRs. As shown in Figure 3.14 via genomescapes, MinSeqFind
detect that at MODY1 (maturity onset diabetes of the young-1) SNP rs1893217 which is
associated with Type I diabetes, change from nucleotide adenine (reference allele hg19)
to guanine (alternate allele) removes the best binding site for HNF4A in a region of
5000 bp around that SNP. Thus, a strong contributor to the Type I diabetes caused by
that SNP and is consistent with what was discovered by earlier studies [39]. In all there
are a total 353 SNPs (out of 5076 [39]) predicted to cause two fold or more change in

binding of at least one NR and are displayed in Figure 3.15 in a heatmap as columns,
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(b) In vivo binding as predicted by different motifs of RXRA using MinSeqFind Vs published
(rows are top 500 ChIP peaks and columns are different motifs, heat-map shows different peaks
predicted by different motifs with red as predicted, green as not predicted).

Figure 3.13: Multiple binding preferences of RXRA observed by MinSeqFind are found
in vivo
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Figure 3.14: Genomescape plot of DNA binding of HNF4A for MODY1 SNP associated
to Type I Diabetes (rs1893217)

with rows corresponding to different NRs. Out of these more than 300 were previously
not annotated to NR binding (RegulomeDB [13]).

Published HT-SELEX binding data

We use available HT-SELEX data used by the authors in paper Jolma et al. [33]. Since
authors of Jolma et al. didn’t use any mock control thus we use here previous round
data or round 0 data to normalize against the provided round data of the TF to get
enriched MinSeqs and PWMs using MinSeqFind. Due to this reason MinSeqFind will
capture not only DNA binding due to transcription factors, but also unintended bias
introduced by factors like PCR and magnetic beads, which could have been resolved
had authors used mock control instead.

Figure 3.16a compares PWM motifs extracted by MinSeqFind from HT-SELEX bind-
ing data to those from DeepBind [2], which is the best published computational method.
DeepBind captured DNA binding for nuclear receptor as direct repeat of RGGTCA
(R=A/G) with gap of 1 (DR1) and failed to capture inverted repeat of same with gap 0
(IR0) which is a known RXRG binding motif. MinSeqFind discovered both the binding
preferences for RXRG — DR1 and IR0 of RGGTCA from the same data. Figure 3.16b
compares MinSeqFind to DeepBind using area under receiver operating characteristic
(AUROC) metric for nuclear receptor proteins. In vivo bound ChIP peaks are used as
true positive and two random permutations as true negatives and peaks are scored
using corresponding protein’s in vitro DNA binding as measured by HT-SELEX and
modeled by MinSeqFind and DeepBind algorithms. Figure 3.16b clearly shows the
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Autoimmune disease

Cancer
Cardiovascular
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Hematological parameters
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Figure 3.15: Predicted change in DNA binding of NRs due to SNPs linked to disease
and quantitative traits. Columns are different NRs with partner and/or ligands and
rows are SNPS that confer two-fold change in binding by at least one NR. SNPs are
arranged by corresponding associated disease class or trait class. Heatmap plots log2
fold change in DNA binding of NRs as predicted by MinSeqFind, red displays loss in
DNA binding of NRs whereas blue gain in binding at these SNPs.
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(b) Area under receiver operating characteristic (AUROC) as obtained by MinSeqFind and
DeepBind model of HT-SELEX binding data on ChIP peaks

Figure 3.16: Comparison of MinSeqFind to state of the art method DeepBind [2] in
modeling published in vitro protein-DNA binding of nuclear receptors

greater performance of MinSeqFind in comparison to DeepBind in modeling DNA

binding with gaps as exhibited by most of the nuclear receptor proteins.

3.8 Conclusion

MinSeq is a novel way of representing multiple complex binding patterns, from monomer
to dimer with gaps and multiple orientations. MinSeqFind presented here not only
captures such complex motifs in form of MinSeqs, but also filters out many platform
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related biases. Our analysis of NR DNA binding using MinSeqFind is a novel study
providing HT in vitro DNA binding for NRs. MinSeqFind captures many similarities
and differences among NRs of same sub-family, which cannot be predicted just on the
basis of their amino-acid sequence homology [69]. Many repeat preferences of NRs
has been reported in previous studies [19], but not the relative binding of these repeats.
MinSeqFind discovers novel binding patterns and those which don’t fall in the category
of monomer or perfect dimers reported earlier. RXRA is well known to dimerize with
other NR to cause change in their activation/repression function. MinSeqFind discovers
that by dimerizing with RXRA NRs change DNA binding and thus RXRA exhibits mul-
tiple binding patterns which are also found in vivo. Evaluation of 5076 disease linked
SNPs [39] using MinSeqFind resulted in mapping of 353 SNPs responsible for change
in DNA binding of NRs. This repertoire of NR DNA binding data using MinSeqFind
provides a useful resource for several genomic targets of NR and diseases caused by
them, which will prove to be of immense help in development of drugs targeting NR
DNA binding.
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Chapter 4

Summary & Future Directions

4.1 Summary

DNA binding proteins are responsible for multiple cellular functions. Most DNA-
binding proteins bind to DNA and control gene expression. Such proteins are known as
transcription factors (TFs). DNA binding of TFs can be very complex as shown for the
case of nuclear receptor proteins, for example RXRA binds to DNA as a dimer of itself
or other nuclear receptors in many different patterns. Such multiple complex patterns
are required for a better study of protein-DNA binding and gene-regulatory networks.
Existing methods do not fully comprehend the complexity of protein-DNA binding.
We propose MinSeqs as novel way to capture such multiple complex binding, each
MinSeq is a stretch of nucleotide sequence containing DNA binding information in the
form of weighted MinSeq score.

In Chapter 2 we use compressed sensing algorithms like compressive sampling
matching pursuit (CoSaMP) for sparse solution and develop Compressed sensing based
motif extraction (COSME) as a tool to extract MinSeqs from protein-DNA binding data
obtained from microarray. To find differences in binding of proteins of same family,
we also develop Differential COSME or Diff-COSME. Diff-COSME not only captures
complex DNA binding, but also facilitates as tool to differentiate binding of multiple
TFs having similar binding profile. State of the art of methods fail to capture such subtle
differences especially among the proteins of same family and different alleles of the
same protein. Such differences becomes key when proteins with similar binding profile
compete for same genomic location inside a cell and is deciding factor for which protein
will bind to activate /repress gene expression leading to any genotypic or phenotypic
change.

Proteins like nuclear receptors exhibit complex DNA binding as explained earlier,
such binding measurement cannot be accommodated in a microarray. Thus, to study
complex binding patterns we use HI-SELEX binding data and develop MinSeqFind
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to extract such binding patterns. MinSeqFind solves many platform-related issues
of HT-SELEX data, like pseudo-random library, protein bias for binding to primer
region and PCR. MinSeqFind uses a novel way to weight binding for sequences of
different lengths and use orthogonal matching pursuit (OMP) based approach to get
compressed MinSeqs providing normalized enrichment values of binding. MinSeqFind
when applied to members of nuclear receptor protein family yields amazing new find-
ings. MinSeqFind capture multiple complex binding patterns and finds differences
due to RXRA hetero-dimerization and ligand addition. These new patterns discovered
made better prediction of protein binding in vivo (Figure 3.13b). MinSeqFind identifies
more than 300 new diseases and quantitative traits related SNPs linked to NRs, which
were previously unannotated to NR binding. Such novel and comprehensive study of
DNA binding serves as a great resource by capturing many published and new motifs
for NRs. In this study we focus mostly on NRs as it is one of the most drug targeted
protein family and serves as a good example of complex DNA binding, but MinSeqs
and MinSeqFind are versatile tools. We can extend these approaches to thousands of
other proteins for which HT DNA binding data is available.

4.2 Future directions

DNA Binding in HT-SELEX using replicate data

Unlike microarray binding data, HT-SELEX has ability to capture longer and more com-
plex DNA binding and it also provides an experimental protocol to multiplex hundreds
of experiments together. But with these additional benefits there are many problems
associated with HT-SELEX data as presented in previous chapter. In microarray binding
experiments, different DNA probes can be used in the binding experiment independent
to other probes and thus part of the binding data can be used to train model and part
of it to reject over-fitting in form of cross-validation. Since the same random N-mer
sequence was used for HT-SELEX binding thus dividing the data into different parts
and modeling will not help to reject over-fitting, as they don’t serve the purpose of
independent experiment like probes in a microarray.

Due to above limitations any model for HT-SELEX can face the problem of over-
titting. The two proposed solutions are a) using experimental replicates of HI-SELEX
data- replicates are used a lot in the field, but haven’t been used to get a better DNA
binding model for HT-SELEX data, and b) new experimental design- using more than
one DNA library in same experiment and after sequencing, separate data from these
libraries. In both cases we can use one part for training and other to reject over-fitting.
We expect computational methods like MinSeqFind can take advantage of such strategy

and can build a better binding model free from over-fitting.
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Additional parameters for DNA binding

Protein-DNA binding can also be affected by other factors like shape of DNA sequence
and DNA methylation. a) DNA Shape — Although most of the genomic DNA is double
stranded helix, it doesn’t follow the same shape pattern. The shape of even free DNA
also depends on the nucleotide sequence and each DNA sequence exhibit specific three-
dimensional shape. In recent studies the shape of DNA sequences has been evaluated
using multiple DNA structures [55]. DNA binding of proteins get affected by such
shape features, particularly like stretches of A or T nucleotides example AAAAA or
TTTTT [17]. Modeling these shape based effects will give another dimension to MinSeqs
other than A, C, G and T nucleotides and can capture protein—-DNA binding better
especially for the shape affected. b) DNA methylation — A methyl group attaches to
different nucleotides of DNA, most commonly to cytosine, and in many cases alters
DNA binding. Each methylated base has to be treated as a new nucleotide beyond the
unmodified four bases [67].

In vivo protein-DNA binding

Till now we used MinSegs to capture in vitro DNA binding motifs and use them for
prediction of in vivo bound peaks for comparison. Computational approaches can be
developed to extract information from in vivo binding in the form of MinSeqs. Multiple
factors has to be accounted for, including a) genomic DNA is wrapped around histones
and thus not all of it is accessible to proteins, thus a model of histone binding and
accessible DNA region is required, b) cell-type and cell-state specific factors — there
are many proteins in different concentrations at different time points in different cell
types, making binding very specific to that particular cellular environment. Thus, there
can be millions of factors that can contribute to unusual binding and errors. Also,
reproducibility of in vivo data has always been an big issue. When modified for in vivo
data, we expect to discover multiple binding partners and co-factors of proteins in form
of MinSeqs similar to discovery of RXRA partners in this study. Identifying co-factors
and partners in different cellular environment can help in distinguishing cell-specific

behavior, and cell-specific gene-network and metabolic-network.

4.3 Conclusion

Here we address data extraction and compression techniques for protein-DNA binding
affinity data. MinSeqs introduced here serves as a novel way to characterize binding.
Computational tools like Diff-COSME and MinSeqFind developed to extract MinSegqs,
gave novel insights to DNA binding of proteins exhibiting simple as well as those having
complex binding patterns. Diff-COSME and MinSeqFind found binding differences
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among closely related family members crucial for differentiating them. A detailed study
of DNA binding of members of nuclear receptor protein family using MinSeqs has been
provided here. MinSeqFind found RXRA dimerizes with different nuclear receptor
proteins to bind DNA in multiple orientations and with different gaps in middle, which
are also found in vivo. Many novel patterns and motifs extracted by MinSeqFind
predicted hundreds of disease associated SNPs affected by NR DNA binding, which
were never earlier mapped to NR. Use of MinSeqs can be further extended to in vivo
binding as well to study DNA binding with multiple partner proteins and in effect of

cellular environment.
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Appendix A

Protein—-DNA binding data and analysis

A.1 Types of binding data

There are following different types of datasets that is obtained from various experimental
methods for studying protein-DNA binding-

Type 1: Complete k-mer intensity
Output data where all permutations of k-mer DNA sequences are there with
corresponding binding intensities for array data, are considered in this category.
CSI array (Figure 1.1b) yield data of such kind, 4'° sequences and corresponding

binding intensities are obtained after experiment and normalization.

Type 2: Complete k-mer count data

In this category we consider sequencing based methods for which corresponding
to each k-mer DNA sequence there is a ‘count’ that represents how many times that
particular sequence has appeared in sequencing reads. This category is valid when
there is enough representation of all k-mer sequences, so that computational tools
can be applied here similar to previous category. HT-SELEX for 10mers [63,71]
is a sequencing based method with 10 base pair random DNA sequence. The
protein binding DNA strands were sequenced deeply that there were enough
representation for each 10bp sequence.

Type 3: Limited k-mer intensity data
Array data with not all possible k-mers represented on the array, comes under
this category eg. ChIP-chip and PBM (Figure 1.1a). In PBM array all 10bp DNA
sequences are arranged on limited number of separate array features 35bp long
using de-bruijn based method [8]. Note that this is not equivalent to first category
where separate independent intensity for each 10mer is available. Thus in PBM
arrays finally 8bp sequence intensity data is used after processing 35bp data.
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Normalized 8-mer intensity data thus obtained can used as "Complete k-mer
intensity" data for some methods.

Type 4: Limited k-mer count data
All other sequencing based methods fall in this category. In this case there is not
enough representation of k-mer data. For example- ChIP-Seq [31,40], HT-SELEX
[32,33] (Figure 1.1c), SELEX-Seq [59] and Bacterial 1 Hybrid system [43,44]. In
such datasets not all k-mer have counts mainly because k is too large or sequenced
with less reads.

Type 5: Best Binders or Peak format
Most of the ChIP-Seq data is converted to peaks in the genome and then best of
those are used to get binding motif [10]. All the other data formats can be easily
converted to best binding sequence by putting a threshold to binding intensity or
counts and rejecting all peaks below that.

A.2 Computational Methods for Protein-DNA binding

analysis

Table A.1: Computational methods for protein-DNA binding data analysis-

Method Publication | Algorithm description and usage
Year
MEME [4, 5] 1995 Based on expectation maximization, it is a

tool for discovering motifs in sets of protein
or DNA sequences. It can search for multi-
ple motifs of different lengths. Used gener-
ally for ChIP peaks (type-5).

Weeder [49] [50] 2001 Uses best binding sequence and consid-
ers fixed number of mutations to that and
search among the mutated sequences to get
the best sequence motif (type-5).
BioProspector [35] 2001 Uses Gibbs sampling strategy to search for
motif. In addition it uses 0 to 3rd order
Markov model for background. It accounts
for multiple motif length and gaps between
them. Used for co-expressed genes mainly

(type-5).
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Table A.1: Computational methods for protein-DNA binding data analysis-

Method

Publication
Year

Algorithm description and usage

MDScan [36]

Seed-and-Wobble [9]

MatrixREDUCE [26]

RankMotif++ [18]

CSI-Tree [34]

BEEML [71]

SSL [17]

BEEML-PBM [72]

Annala et al. [3]

2002

2006

2006

2007

2008

2009

2010

2011

2011

Start with searching motif from highly en-
riched ChIP Peaks and then update and re-
fine (type-5).

Uses E-scores of best 8-mer and its single
mismatch variants to construct PWM motif
(type-3).

Performs a least square fit of data to affin-
ity logo (biophysical model defined in [61])
(type-3).

Maximizes the likelihood of set of binding
preference on the basis of the rank of k-mers
(type-3).

Since normal PWM is a compressed version
of all the data, CSI-Tree uses regression tree
based approach to divide PWM into set of
PWMs which are not compressed (type-1).
Finds maximum likelihood estimate of pa-
rameters to a biophysical PWM or dinu-
cleotide model, including the TF’s chemical
potential, nonspecific binding affinity (type-
2).

Sequence specificity landscape is a visual-
ization of all k-mer based binding data ar-
ranged in form of concentric circles around
a seed motif (type-1 & 2).

BEEML modified for PBM data which
also includes probe position-specific effects
(type-3).

For PBM constructed an indexing matrix of
contiguous k-mers (size 4-8) on each 35bp
probe. Applied conjugate gradient method
to fit intensity to k-mers. They include top
few 7mers and 8mers to reduce number of
variables (type-3).
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Table A.1: Computational methods for protein-DNA binding data analysis-

Method Publication | Algorithm description and usage
Year
AutoSeed [33] 2013 Semi-automatic method for HT-
SELEX/SELEX-Seq data, it starts with
a seed sequence and builds a PWM from all
sequences with 1 mismatch (type-4).
FeatureREDUCE [53] | 2015 Combines a biophysical free energy model
(PWM or dinucleotide) with a contiguous
k-mer background model (type-3).
DeepBind [2] 2015 Uses deep learning based approach to get

upto 16 PWMs motif with different weights.
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Appendix B

Compressed Sensing Algorithms

Following are two algorithms to solve a linear under-determined system represented by

equation B.1 (similar to equation 2.12), given the knowledge of sparsity of the system.

y=Hx+n (B.1)

B.1 Orthogonal Matching Pursuit (OMP)

Taken from [48] [22]

Algorithm 5 Orthogonal Matching Pursuit

Input: CS matrix H, measurement vector y
Output: Sparse representation %
Initialize: 8 = 0,71 =y,Q =0,1=0
while halting criterion false do
11+1
b + H'r {form residual signal estimate}
Q + QU supp(t(b,1)) {update support with residual}
Xilo HI)y,fq\ ac + 0 {update signal estimate}
T <=y — HX; {update measurement residual}
end while
return X < X;
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B.2 Compressive Sampling Matched Pursuit (CoSaMP)

Taken from [41] [22]

Algorithm 6 Compressive Sampling Matched Pursuit

Input: CS matrix H, measurement vector y, sparsity K
Output: K-sparse approximation X to true signal x
Initialize: 8 =0,r=y,Q=0,i=0
while halting criterion false do
11+1
e + H'r {form residual signal estimate}
Q + supp(t(e, 2K)) {prune residual}
T+ QU supp(Xi_1) {merge supports}
blr « H%y, blrc < 0 {form signal estimate}
% < t(b, K) {prune signal using model}
T <y — HX; {update measurement residual}
end while
return X < X;
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Appendix C
Experiments Performed

Here different experimental procedure for Nuclear Receptor Cloning and CSI by HT-
SELEX is explained -

C.1 Cloning and Expression (performed by Jacqui
Mendez)

Plasmids containing N-terminus Halolag fusions of human nuclear receptors were
obtained from Kazusa DNA Research Institute (Kisarazu, Chiba, Japan). HEK293T cells
were grown in DMEM media supplemented with 10% FBS at 37 Celsius in an atmosphere
of 5% CO2. Cells were transiently transfected using FuGENE HD Transfection Reagent
(Promega, Madison, WI, USA) following the manufacturer’s protocol. After 24-48 hr at
37 Celsius and 5% CQO2, cells were washed with ice cold PBS, scraped and collected in a
conical centrifuge tube. Cells were lysed in Mammalian Lysis Buffer (50 mM Tris-HCI
pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% sodium deoxycholate) supplemented with
protease inhibitors. Cell lysates were centrifuged, the clear supernatant was transfer to
a clean microcentrifuge tube, flash frozen in N(l), and stored at -80 Celsius. Expression
of the HaloTag fusions was confirmed by SDS-PAGE.

C.2 Cognate Site Identification (CSI) by HT-SELEX
(performed by Jose A. Rodriguez-Martinez)

Cognate binding sites for HaloTag-human nuclear receptor (HaloTag-hNR) transcription
factors were determined by HT-SELEX. A DNA library with a 20 bp random region
flanked by constant sequences to allow PCR amplification was used. In vitro selections
were performed by incubating the DNA library (100 nM in 20 pL) with cell lysate
overexpressing a HaloTag-hNR in binding buffer (25 mM HEPES (pH 7.4), 80 mM KCl,
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0.2 mM EDTA, 1 mM MgCl2, 0.1 mM ZnSO4, 2.5 mM DTT, 50 ng/ul poly dI-dC, 0.1%
BSA) for 1 hr at room temperature. HaloTag-hNR bound DNA was enriched using
Magne HaloTag magnetic particles (Promega) following manufacturers specifications.
After immobilization on the magnetic particles, three quick washes with 100uL of ice-
cold binding buffer were performed to remove unbound DNA. The magnetic beads were
resuspended in a PCR master mix (Econolaq PLUS 2X Master Mix, Lucigen) and the
DNA was amplified for 18 cycles. Amplified DNA was purified (QIAGEN), quantified
by UV absorbance at 260 nm, and used for subsequent binding rounds. A total of 3
rounds of selection were performed. After selection, an additional PCR was done to
incorporate a 6 bp ‘barcode’ and Illumina sequencing adapters. The starting library
(Round 0) was also barcoded. Samples were combined and sequenced in an Illumina

HiSeq 2000 instrument.
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Figure C.1: HT-SELEX protocol [32,59,64]- Experiment performed by Jose A. Rodriguez-
Martinez
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Appendix D

Sequence Specificity and Energy
Landscapes of Nuclear Receptor DNA
Binding

Specificity and energy landscapes (SELs) provides three dimensional display of high-
throughput protein-DNA (or protein-RNA) binding data through series of concentric
rings [14,17,64]. The height of each color-coded peak corresponds to the binding
intensity, which can be measured by different experimental platforms. SEL for binding
of all k-mers is built around a seed sequence or motif as reference, relative to which
sequences are arranged on SEL. The seed sequence is derived from top scored MinSeqs
or PWM. Sequences are arranged in such a way that similar sequences appear together

and no sequence is repeated.

Gapped Sequence Specificity and Energy Landscapes (gapped-SELSs)
We develop gapped SELs to display DNA binding of proteins which binds to sequences

with multiple gaps like nuclear receptors in this study-

1. First a seed sequence is chosen as combination of two monomers. Monomers
are chosen from top ranked MinSeqs or PWMs. The monomers are combined
with multiple orientations and different gaps to construct multiple seeds. For
example we take RGGTCR (R=A/G) as our starting monomer for RXRA. By
adding multiple gaps between 2 such monomers with Ns surrounding those (a
single N was added on opposite sides in this case) we get - NRGGTCRRGGTCRN,
NRGGTCRXRGGTCRN, NRGGTCRxxRGGTCRN, ...as seed for direct repeats of
GGTCA with gap 0, 1 and 2. Similarly NRGGTCRYGACYN, NRGGTCRxYGACYN,
NRGGTCRxxYGACYN, ...as seeds for inverted repeats of GGTCA with gap 0, 1,
and 2 (Y=C/T). Gaps in gapped-SELs is represented by x.
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2. All the sequences matching the seeds are then obtained by replacing N and other
nucleotides (excluding gap which is represented by x) with degenerate nucleotides
A,C,GandT, for example Nwith A,C, Gand T, Rwith A and G, Y withCand T. In
the above example, each seed will give rise to total 24*4% = 256 different matching
sequences.

3. A 3D plot for the matching sequences is made. All the sequences corresponding to
gap=g are arranged along X-axis with Y coordinate=g. The sequences along X-axis
are plotted in order with preference to degenerate nucleotides from the monomer,
and then to the flanking bases (Ns) i.e. in NRGGTCRRGGTCRN, preference is
given to what is replacing R (by A or )G over what is replacing N (by A, C, Gor T).
The sequences are ordered in the order of first A, then C, G and T. The same order
of sequences is followed for all gaps along X-axis, example AAGGTCAAGGTCAT
and AAGGTCAxAGGTCAT will have same x-coordinate, but have y=0 and y=1 Y-
coordinate respectively. After deciding X and Y coordinate, the enrichment then is
plotted at that coordinate with height and color representative of it. Enrichment of
all the sequences for gapped-SELs is obtained using MinSeqFind for NRs. Gapped-
SELs for the NRs are displayed in following sections, the corresponding monomer
seed that is used as reference to build gapped-SELs is also shown at the top.



D.1 COUP/EAR (NR2Fs) family

Monomer seed: RGKTCR

Protein (with partner | Enrichment of | Enrichment of | Enrichment of
and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.2 Estrogen related receptor family (ESRRs or NR3Bs)

Monomer seed: RGGTCR

Protein (with partner

Enrichment of

Enrichment of
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and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.3 3-Ketosteroid receptors family (NR3Cs)

Monomer seed: GNACR

Protein (with partner | Enrichment of | Enrichment of | Enrichment of
and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.4 Peroxisome proliferator-activated receptor family

(PPARs or NR1Cs)
Monomer seed: RGGTCR

Protein (with partner | Enrichment of | Enrichment of | Enrichment of
and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.5 Retinoic acid receptor family (RARs or NR1Bs)

Monomer seed: RGGTCR

Protein (with partner

and/or ligand)

Enrichment of

Direct repeats

Enrichment of
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D.6 Retinoid X receptor family (RXRs or NR2Bs)

Monomer seed: RGGTCR

Protein (with partner

Enrichment of

Enrichment of

Enrichment of

and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.7 Thyroid hormone receptor family (THRs or NR1As)

Monomer seed: RGGTCR

Protein (with partner | Enrichment of | Enrichment of | Enrichment of
and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.8 Vitamin D receptor-like family (NR1Is)

Monomer seed: RGKTCR

Protein (with partner | Enrichment of | Enrichment of | Enrichment of
and/or ligand) Direct repeats Inverted repeats | Everted repeats
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D.9 Others

Monomer seed: RGKTCR

Protein (with partner

Enrichment of
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and/or ligand) Direct repeats Inverted repeats | Everted repeats
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Appendix E

Differential Energy Landscapes of
Nuclear Receptor DNA Binding

Similar to gapped-SELs we bring a new visualization to compare binding to two different
proteins, gapped differential sequence specificity and energy Landscapes (gapped-
DiSELs). For each NR sample we first normalize maximum enrichment to 1 by dividing
the enrichment values for all sequences in gapped-SEL by highest enrichment and then
subtract such normalized enrichment of one sample from the other and plot as gapped-
SEL to call gapped-DiSEL. Following sections present few of the DiSEL comparisons
between different samples. DiSELs are plotted to compare DNA binding of NR with
and without ligand, with and without RXRA and also two different NRs of sample
family.

First is the scatter plot between enrichment of the two samples. All the sequences
that are plotted on Gapped-SEL are used for scatter plot, with pearson correlation
between their enrichment values on top right corner. Then are the gapped-SELs for both
the samples and then corresponding gapped-DiSEL X (first) over Y (second) and Y over
X, representing sequences preferred by first sample over second sample and vice-versa.



E.1 COUP/EAR (NR2Fs) family
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E.2 Retinoic acid receptor family (RARs or NR1Bs)
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E.3 Retinoid X receptor family (RXRs or NR2Bs)
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RXRB Vs RXRG
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RXRA:9-cis-retinoicacid Vs RXRB:9-cis-retinoicacid
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RXRB:9-cis-retinoicacid Vs RXRG:9-cis-retinoicacid
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E.4 3-Ketosteroid receptors family (NR3Cs)
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E.5 Peroxisome proliferator-activated receptor family
(PPARs or NR1Cs)
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E.6 Others
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Appendix F

Nuclear Receptor In Vitro DNA
Binding Compared to In Vivo Binding

Different labs have tested NR’s binding in vivo using ChIP-chip and ChIP-Seq techniques.
Here we use ChIP-Seq peak data from ENCODE consortium [10] and LoVo cell line [70].
The genomic sequence underlying ChIP-Seq peaks are then used to generate ROC curves.
In this analysis, ChIP-Seq peaks are taken as positives and two random permutations
(moving positions of DNA bases) of each peak are used as known negatives. Each peak
(all positives and negatives) is then scored using MinSeqFind. An ROC curve between
talse positive rate (FPR) and true positive rate (TPR) is plotted by varying a moving
threshold, positive peaks scored above that threshold (true positives) are used to get
TPR (true positives over total positives) and negative peaks scored above threshold (false
positives) are used to get FPR (false positives over total negatives). Area under ROC
(AUROC) curve is used to analyze how well in vitro data correlates to a set of ChIP-Seq
peaks. Where AUROC=1 means complete prediction and AUROC=0.5 means random
prediction. AUROC is used to do a first level of comparison between two different sets
of data in predicting set of ChIP-Seq peaks. For deeper peak-by-peak comparison, we
assigned a score S to each peak. S for a peak is defined as maximum value of TPR/ (TPR
+ FPR) at which a true positive peak is detected as positive peak (similar to precision
TP/ (TP+FP)). Score S represents predictability of each peak using a given DNA binding
data as opposed to randomized region when considering all the ChIP-Seq peak. The
scale varies from the 1 (highest predictability i.e. peaks detected as positive at FPR=0)
to 0.5 (lowest predictability, peaks detected as positive at FPR=TPR). The S score for a
given set of ChIP-Seq peaks is represented as a heatmap in MATLAB. In case of random
prediction i.e. a diagonal ROC curve (AUC-ROC=0.5), there will not be a single peak
that will be assigned as positive detected even at 0.6 S score (this is what is intended),
if we choose FPR cutoff as our metric we will get 10% peaks detected positive at FPR
cutoff 0.1 (which is considered as better prediction). Thus we used newly developed S
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score instead of FPR cutoff.

In the following section multiple cell line ChIP peaks (all peaks and top 500 peaks)
are scored using MinSeqFind for NR binding. Clustergram of a protein is plotted
between it’s ChIP peaks in a particular cell line and condition, and different samples of
NR binding with same protein. Green to red represent no prediction to best prediction
of peaks using MinSeqFind. If there exist only one sample of NR against ChIP peaks
are present in vivo, then ROC is plotted instead of clustergram with corresponding
AUC-ROC displayed on top right corner.

Naming of section is as follows- example "A549 GR treatment:Dex 50nm" represents
ChIP peaks for GR protein in A549 cell line with Dex 50nm treatment. In few cases an
intersection of peaks is used, example "LoVo ESR1:RXRA" represents peaks present in
both for ESR1 protein and RXRA protein in LoVo cell line. ChIP peak intersection is
done use bedops tool [42]. A common coloring scheme is used for all the plots shown

below-
TPR/

(TPR+FPR)

0.5
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F.33 HepG2 HNF4G (SC-6558)
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F.34 GM12878 TR4
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F.35 HeLa-S3 TR4

Predicted by in vitro DNA binding of TR4
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F.36 HepG2 HNF4A treatment=forskolin

Predicted by in vitro DNA binding of HNF4A
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F.37 HepG2 TR4

Predicted by in vitro DNA binding of TR4
All peaks
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F.38 K562 TR4

Predicted by in vitro DNA binding of TR4
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