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Introduction  

 Foliar biochemistry varies through space and time and is linked to a number of important 

ecosystem processes including primary productivity and nutrient cycling (de Bello et al. 2010). 

Sometimes referred to as 'functional traits' or simply 'traits', they include properties related 

photosynthesis, such as chlorophyll and nitrogen content, structure and decomposition, including 

carbon and lignin content, and defense, like condensed tannins and phenolic compounds. 

Characterizing the spatiotemporal variability in biochemical traits is important for accurately 

parameterizing ecosystem process models (Reichstein et al. 2014). Most studies that have used 

functional traits to assess patterns in community composition and ecological function generally 

use mean trait values for species (Albert et al. 2011). However foliar biochemical traits are 

known to show a significant amount of intra-specific variability that is scale dependent and 

driven by both genetic and environmental factors (Albert et al. 2010; Messier et al. 2010; 

Messier et al. 2017). Trait-based ecology has become increasingly common due the relative ease 

with which traits can be measured compared to underlying physiologic processes they are related 

to. However, in spite of this, there is a limit to the density of measurements, spatial extent and 

temporal richness at which functional traits can be quantified using traditional field techniques 

before efforts become prohibitively costly.  

 Over the past several decades, spectroscopy has emerged as a valuable technology for 

expanding the scales at which foliar biochemical traits can be measured. Spectroscopic 

estimation of foliar traits is predicated on the development of relationships between light 

reflectance, absorbance and/or transmittance and a biochemical quantity. Driving these 

relationships are the presence of spectral absorption features associated with electron transitions 

and bending and stretching in chemical bonds (e.g., C-H, C-O, N-H and O-H) within compounds 
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that comprise plant materials (Curran 1989). Research in the 1950's and 60's in agronomy first 

demonstrated to utility of spectroscopy for the retrieval of biochemical properties, where it 

provided an alternative method for characterizing forage quality (Norris et al. 1976; Shenk 1979; 

Shenk and Westerhaus 1994). Since then, the catalog of biochemical compounds estimated from 

spectroscopic measurements has come to include minerals (Clark et al. 1987), trace elements 

(Clark et al. 1989), carbohydrates (Ramirez et al. 2015), secondary metabolites (Smyth and 

Cozzolino 2011; Couture et al. 2016) and pigments (Gitelson and Merzlyak and 1996). 

Historically, spectroscopic estimation of foliar biochemistry has utilized dried and ground foliar 

samples (Norris et al. 1976; Wessman et al. 1988a). However fresh leaf spectra can also be used 

to estimate foliar biochemistry (Asner et al. 2008; Serbin et al. 2019). Unlike dry ground spectra, 

fresh spectra can be collected nondestructively without removing leaves from a plant to allow for 

repeat measurements. However, the presence of water in fresh leaves can obscure molecular 

absorption features.  

 Despite the widespread use of chemometric models for estimating foliar biochemistry 

from both fresh and dry spectra data, generalized models which can be used with confidence are 

lacking. Models tend to be developed using a small number of species (Vazquez et al. 1995; 

Ourcival et al. 1999) or at a single point in the growing season (Roelofsen et al. 2014; Serbin et 

al. 2014). These perform well so long as the model is applied within the constraints of the data 

used to generate it. Models that generalize well must be developed using data that cover the 

range of plausible leaf characteristics and are thus able to leverage generalized features in the 

spectrum. 

 While both dry and fresh spectral models provide rapid and reliable measurements of 

foliar biochemistry, the scales on which they can be applied is limited. Early research in the 
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1980’s demonstrated the capability of imaging spectroscopy to map canopy-level biochemistry 

including nitrogen and lignin (Wessman et al. 1988b), and further research by Martin and Aber 

(1997) and Ollinger and Smith (2005) linked remotely sensed canopy biochemistry to ecosystem 

processes, especially primary production. By developing relationships between canopy spectra 

and field measured foliar traits, maps of these traits can be generated at large spatial scales, and 

with repeat collections both seasonally and from year-to-year, temporal patterns can also be 

observed. Despite the demonstrated value of imaging spectroscopy to map canopy biochemistry, 

it has not become widely used largely due to the lack of availability of imagery and the 

challenges of working with the high-dimensional data. With the exception of the satellite-borne 

EO-1 Hyperion sensor (2001-2017), most available spectroscopy data until recently have been 

from aircraft campaigns over specific targeted areas and collected in support of limited scientific 

objectives. For the most part, ecosystem studies using multiple sites or years have focused on 

characterizing mid-season (i.e., peak greenness) foliar characteristics (Martin et al. 2018, Singh 

et al. 2015, Wang et al. 2020) at single time intervals. Other large-scale studies (Asner and 

Martin 2009; Chadwick and Asner 2018) have been mostly concentrated in the tropics and only a 

single study (Matson et al. 1994) has specifically targeted intra-seasonal utilization of imaging 

spectroscopy for mapping canopy biochemistry.  

 Foliar traits vary not just horizontally, but also vertically within canopies (Niinemets et 

al. 1997; Cavaleri et al. 2010; Coble et al. 2014), which may be important to how we utilize 

mapped traits to parameterize photosynthetic function within models (Cavaleri et al. 2010; Coble 

et al. 2014; Rogers et al. 2017). Although this variation has been noted in spectral studies (e.g., 

Serbin et al. 2014), and some studies have endeavored to characterize “whole canopy” traits such 

as nitrogen (Smith et al. 2002; Martin et al. 2008), no published studies have explicitly addressed 
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within-canopy trait variation in mapping studies using imaging spectroscopy. The ability to 

address variations in foliar traits has expanded beyond single “peak greenness” applications with 

the availability of new data sets such as NEON’s Aerial Observation Platform (AOP).   

 In my dissertation, I address these gaps in the course of three chapters. In my first chapter 

I developed generalized spectroscopic models to estimate 27 biochemical traits including 

pigments, macro- and micronutrients, structural and defensive compounds using spectra from 

both fresh leaf and dried and ground samples. Models were built using broadleaf and graminoid 

samples collected across the entire growing season representing over 100 species. I also 

investigated the extent to which known spectral features are associated with specific traits. In the 

second chapter I combined extensive field data with coincident imaging spectroscopy and lidar 

data to model and map the three-dimensional patterns in leaf mass per area (LMA) in a broadleaf 

deciduous forest. In the third chapter of my dissertation, I used a time series of imaging 

spectroscopy data collected over the course of a single growing season coupled with field data to 

map intra-annual patterns in nine foliar biochemical traits. I used the resulting maps to 

characterize the extent to which phenology, taxonomy and environment drive variation in foliar 

biochemistry. 
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Chapter overviews 

Chapter 1. Fresh vs. dry: A comparison of generalized spectroscopic models for estimating 

broadleaf and graminoid biochemistry.  

 

Chlus, A., Erker, T., Wang, Z., Kruger, E.L., & Townsend, P.A.  

To be submitted to Methods in Ecology and Evolution. 

  

 Field spectroscopy has become increasingly prevalent for the rapid estimation of foliar 

biochemistry (Asner and Martin 2008; Cheng et al. 2001l; Nunes et al. 2017).  In the past 

spectral measurements of dry ground foliar samples have been the predominant method used in 

lab-based near-infrared spectroscopy (NIRS) (Norris et al. 1976; Shenk 1979). While spectral 

measurements on dried and ground samples can provide accurate estimates for numerous 

biochemical properties, they also have limitations in that they require destructive sampling of 

foliar tissue and transport of samples from the field, either of which can be infeasible. However, 

fresh leaf reflectance using a leaf clip can be made rapidly in situ and often without detaching 

foliage, allowing for repeat measurements. For some traits, especially those with absorption 

features obscured by water absorption bands, dry spectra models outperform fresh spectra 

models (Lacaze and Jofre 1994; Martin and Aber 1994; Jacquemoud et al. 1995), but for many 

traits these differences have not been assessed. Regardless of measurement type (fresh leaf or 

dried and ground), accurate, generalized spectroscopic models require data that are 

representative of the range of conditions that drive the variability in foliar biochemistry, 
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including time (i.e., phenology), geography (i.e., environmental variation), ontogeny, plant 

and/or leaf developmental stage and taxonomy/phylogeny (Yang et al 2016).  

 To develop generalized models and assess the relative merits of each approach, I 

performed a comprehensive analysis in which I aggregated linked fresh and dry ground spectra, 

and wet chemistry data for 27 foliar biochemical properties including pigments (chlorophylls, 

carotenoids and xanthophylls), macronutrients (N, P, K, Ca, Mg and S), micronutrients (B, Cu, 

Fe, Mn, Z), aluminum, carbohydrates, structural and defensive biochemical traits. This dataset 

consisted of broadleaf and graminoid samples, totaled over 100 species and included samples 

collected across the course of the growing season and throughout the continental United States. I 

built paired PLSR models for each trait using both fresh leaf and dry ground spectra and 

compared their performances and tested the impact of wavelength region on predictive ability. 

Finally, to assess the relationships between spectra and traits I performed a correlation analysis 

using a wavelet transform of the reflectance spectrum. 

  I found that Ca, N, cellulose, lignin, sugars and total phenolics were estimated with high 

confidence using dry spectra (validation R2: > 0.6), while chlorophylls A and B and leaf mass per 

area were estimated with high accuracy using fresh spectral measurements. Other biochemical 

properties including B, K, P, Mg, flavonoids and carotenoid pigments were estimated with 

moderate confidence (R2: > 0.4). With the exception of pigments, the top performing models for 

each trait utilized the SWIR (1000-2500 nm) regions of the spectrum, while all pigment models 

utilized the VNIR region (400-1000 nm). Generally, pairwise correlations between spectrally 

derived traits retained the same directionality as pairwise correlations between laboratory derived 

traits, but correlations increased in magnitude with spectral estimates, i.e., positive correlations 

became more strongly positive and negative correlations more negative.  
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 Using the wavelet transform to assess the relationships between spectra (fresh leaf or 

dried and ground) and traits, I found that for N, phenolic compounds, carbohydrates and 

chlorophyll, wavelengths associated with electron transitions or molecular bonds present in these 

compounds were strongly correlated to laboratory measurements, but some features were 

obscured by water absorption bands in the fresh leaf spectra. In contrast, other traits, including P 

and K, which lack strong or known absorption features, were correlated at wavelengths with 

absorption features attributed to proteins, carbohydrates or phenolics, indicating their retrieval 

was a consequence of their correlation with these compounds, a result of their role in regulating 

their production or transport.  

 The results of this chapter highlight that neither fresh nor dry spectral measurements are 

optimal for estimating the full suite of traits, but together can be used in conjunction with 

traditional analytical techniques (for validation) as a reasonable approach to estimate traits for 

extensive sample data sets.  

 

Chapter 2. Mapping three-dimensional variation in leaf mass per area with imaging 

spectroscopy and lidar in a temperate broadleaf forest 

 

Chlus, A., Kruger, E. L., & Townsend, P. A. (2020) 

Remote Sensing of Environment, 250, 112043. 

 

Increasingly, imaging spectroscopy data are used to characterize horizontal patterns in 

foliar biochemical traits. However, in forest ecosystems foliar biochemical traits are also known 

to vary vertically through the canopy, as well as horizontally. The need for vertically detailed 
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maps of canopy traits has been identified in recent research as important for more accurately 

parameterizing ecological models (Cavaleri et al. 2010, Rogers et al. 2017). Multi-layer canopy 

photosynthesis models, which incorporate variation in physiologically important traits 

throughout the canopy, can provide more accurate estimates of assimilation rates than more 

generalized methods like big-leaf models (Raulier et al. 1999). Luening et al. (1995) found that 

the choice of canopy nitrogen profiles resulted in a 10% difference in assimilation rate among 

models. However, these more complex models are difficult to apply due to the lack of sufficient 

information to accurately parameterize vertical trait distributions. One of the most widely studied 

and characterized biophysical properties in the context of within-canopy patterns is leaf mass per 

area (LMA), the ratio between the projected leaf area and dry mass, which is largely comprised 

of structural and nonstructural carbohydrates, proteins, lignin and minerals (Poorter et al., 2009). 

LMA—or its inverse, specific leaf area (SLA)—is a central component of the leaf economic 

spectrum (LES) representing the tradeoff between growth and defense (Wright et al. 2004; 

Poorter et al., 2009).  

 LMA decreases with depth into the canopy, largely a result of attenuation of light and a 

decrease in height-mediated hydraulic constraints (Cavaleri et al. 2010; Niinemets, 2015). 

Environmental factors including temperature, wind exposure and humidity, which co-vary with 

incident radiation and height, also influence within-canopy LMA (Niinemets 2001; Poorter et al. 

2009; Petter et al. 2016; Wu et al. 2016). While numerous studies have explored within-canopy 

patterns in LMA through individual tree canopies (Ellsworth and Reich 1993; Aranda et al. 

2004), few studies have explored patterns of LMA in vertically heterogenous canopies where 

both species composition and architecture vary within the vertical profile.  
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A lack of vertically explicit maps of canopy traits like LMA is largely due to the 

limitations of passive optical sensors in seeing through a canopy surface. Although sub-canopy 

elements contribute to the top-of-canopy signal, disentangling them is challenging. Active 

sensors like LiDAR are able to detect reflected radiation within a canopy, which can then be 

linked to a three-dimensional point distribution in space. However, these signals, while valuable 

for reconstructing canopy structure and light environment, provide little information about 

important spectral features that are correlated with foliar biochemistry as most LiDAR sensors 

are monochromatic. Hyperspectral lidar has been proposed for addressing this shortcoming 

(Martinez-Ramirez et al. 2012), and, although promising, the technology is still emerging with 

current systems being ground-based and limited to measuring small samples (Hakala et al. 2012, 

Nevalainen et al. 2014, Du et al. 2016). As such, traditional imaging spectroscopy provides the 

most direct approach to foliar trait estimation, although it is primarily sensitive to top-of-canopy 

characteristics.  Hyperspectral imagery and lidar are complementary and have been fused in 

previous studies (Clark et al. 2011, Puttonen et al., 2010), especially for species identification 

(Jones et al. 2010; Dalponte et al. 2012; Naidoo et al. 2012). However, when used together, lidar 

data have typically been “flattened” and incorporated as additional explanatory variables to 

model a two-dimensional space (i.e. Thomas et al. 2008) rather than being used to extend 

modeling to an additional dimension.  

In this chapter, I used the demonstrated capabilities of hyperspectral remote sensing to 

estimate top-of-canopy LMA and lidar to model canopy environmental conditions related to 

variation in LMA (i.e., light transmittance and height) to extend LMA estimates through the 

canopy. I collected field data in 2016 and 2017 in the broadleaf deciduous forests of northern 

Wisconsin and the Upper Peninsula of Michigan. Plot-level field sampling involved the 
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collection of branches throughout the vertical extent of the canopy. I measured the height above 

ground of all sampled branches and calculated the mean branch-level LMA. Field sampling was 

coincident with overflights of NEON's Airborne Observation Platform (AOP) which collected 

high resolution imaging spectroscopy and lidar data simultaneously.  

To map three dimensional patterns in LMA I first used the imaging spectroscopy data 

coupled with field measurements of LMA to estimate LMA at the top of the canopy using partial 

least squares regression (PLSR). During PLSR model development I also tested how wavelength 

range impacted model performance. I then used the lidar data to calculate several within-canopy 

variables: absolute height, relative height and metrics of lidar transmittance. Next I tested a series 

of models in a regression framework beginning with univariate models and sequentially 

increasing model complexity by including additional predictors. These models included 

combinations of top-of-canopy LMA, absolute height, relative height, a lidar transmittance 

metric. 

 I found that top-of-canopy LMA was predicted with the highest accuracy using the 

shortwave infrared region of the spectrum (2000-2450 nm) (R2: 0.57, RMSE 10.8 g m-2) while 

the model which included the full range (400-2450 nm) performed the poorest (R2: 0.39, RMSE 

12.7 g m-2). All three within canopy variables, absolute height, relative height and lidar 

transmittance, were significantly correlated with within-canopy LMA (p < .01). The top 

performing within-canopy LMA model used the top-of-canopy estimate of LMA as a starting 

point for LMA and was decremented as a function of both a lidar transmittance metric and the 

relative height within the canopy (R2: 0.78, RMSE 8.3 g m-2). The coupled models accurately 

estimated LMA throughout the canopy without taking into account species composition (R2 : 

0.82, RMSE: 8.5 g m-2). While previous work has demonstrated species-agnostic determination 
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of top-of-canopy LMA using imaging spectroscopy data, the results here also demonstrate the 

ability estimate within-canopy LMA despite vertical species-turnover where top-of-canopy 

species differ from understory species. 

As part of my analysis I also tested the impact of spatial window size on calculating the 

lidar transmittance metric for each data point and subsequent effect on within-canopy model 

performance. I found in dense canopies, like those of sugar maples, few lidar returns reached the 

understory which in turn resulted in an underestimation of transmittance in the lower canopy. 

This impact was reduced by increasing the window size to a diameter of 20 m, which increased 

the number of returns in the lower canopy used to calculate lidar transmittance. 

  

Chapter 3. Characterizing seasonal variation in foliar biochemistry in a temperate broadleaf 

forest using imaging spectroscopy  

 

Chlus A., Kruger E. L., & Townsend P. A.  

To be submitted to Remote Sensing of Environment 

 

Ecosystems are not static, especially those with strong seasonal patterns like temperate 

deciduous forests. The functioning of these ecosystems varies during the course of a growing 

season from leaf out to senescence (Wehr et al. 2016), but measurement of functional variation, 

beyond greenness, especially using remote sensing, is uncommon. However, not accounting for 

functional variation can result in biases in ecosystem models (Ito et al. 2006). Direct 

measurements of ecosystem functions such as primarily productivity are logistically difficult to 
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make and/or map, but foliar biochemical traits can serve as proxies for a number of important 

ecosystem processes including growth and defense.   

Studying intra-annual patterns in foliar biochemical traits at scales greater than the plot 

level is challenging due to the extensive field sampling required to capture the temporal and 

spatial variability of both explanatory and response variables. Remote sensing provides a means 

to extend field level measurements to landscape and larger scales and characterize environmental 

gradients with fine spatial resolution. Traditionally, remote sensing of phenology has been 

studied within the context of greenness with the normalized difference vegetation index (NDVI), 

a metric of vegetative vigor (Duchemin et al. 1999), and in this chapter I extend the study of 

phenology to foliar functional traits.  

Full range (400-2500 nm) imaging spectroscopy, with its high spectral resolution, 

provides the ability to resolve narrowband absorption features associated with biochemical traits 

not discernible from broadband sensors (Curran 1989). Past studies using imaging spectroscopy 

to map foliar traits have largely focused on a single point in time, namely the peak of the 

growing season, whereas foliar traits are known to vary throughout the course of the growing 

season and are most dynamic during leaf out and senescence (Martin and Aber 1997; Asner et al. 

2008; Asner et al. 2015; Singh et al. 2015). Only a single study to date (Matson et al. 1994) has 

used airborne imaging spectroscopy data to map foliar biochemistry seasonally but was largely 

limited to coniferous species and imagery was collected at coarse resolution (20 m) precluding 

the assessment of species-specific patterns.  

Recent research using leaf-level spectroscopy has indicated that relationships between 

spectra and traits vary across the course of the growing season, and that predictive models built 

at one point in the growing season may induce a bias when applied at a different phenological 
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stage (Yang et al. 2016). This pattern is expected to transfer to canopy-level spectroscopy, 

indicating that accurately mapping intra-seasonal patterns in foliar biochemistry will require 

spectroscopic models built with data collected across the course of a growing season, something 

not currently available.  

 The overarching goal of this chapter was to develop spectroscopic models to map foliar 

biochemistry across the course of a growing season in a temperate broadleaf forest. As part of 

this analysis, I also sought to test the influence on seasonality on model performance; that is, can 

a model built using data collected in one time of the year accurately predict traits at another time 

of year? Using the resulting maps coupled with maps of species composition and soil maps I then 

characterized the sources of variation in biochemical traits and compared patterns in interannual 

trait trajectories across species.  

 Between May and October of 2018, we collected high resolution (1 m) imaging 

spectroscopy data over Blackhawk Island, Wisconsin, USA at eight time points during the 

growing season. Coincident with overflights, I conducted fieldwork to collect top-of-canopy 

foliage samples, which, along with fresh and dry spectroscopic models, were used to estimate 

nine foliar traits related to ecophysiological function: chlorophyll content, leaf mass per area, and 

concentrations of nitrogen, lignin, fiber, phenolics, calcium, phosphorus and potassium. 

Combining spectra extracted from the imagery with field data, I developed predictive (PLSR) 

models applicable to all dates to produce canopy-level trait maps. In addition to these full season 

models, I also developed and tested models using seasonal subsets from the beginning, middle 

and end of the growing season. 

 The accuracy of the full-season models varied across traits (R2: 0.55-0.93). Traits with 

well-defined absorption features were retrieved with the highest accuracy, including chlorophyll 
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(R2: 0.93; %RMSE: 8.0) and total phenolics (R2: 0.86; %RMSE: 11.0). Despite the relatively 

poor performance of some models, the mapped intra-annual patterns for all traits followed 

patterns reported in literature and displayed expected species ordering. In testing models built 

using seasonal subsets varied by traits, I found that some traits required data collected across the 

entire growing season to develop general predictive models (e.g N, Ca), indicating that trait-

spectra relationships vary across the growing season and need to be considered when developing 

broad applications. 

 In testing the primary drivers of trait variation, I found that phenology (date) explained 

the greatest amount of variation for all traits except total phenolics, for which species explained 

75% of the variation. Macronutrients (N, P and K) showed general trends of decreasing 

concentration over the course of the year, reflecting dilution by carbon-rich compounds during 

the growing season and resorption during senescence. Conversely, recalcitrant compounds 

including lignin, fiber and calcium increased until late summer, after which they stabilized. 

Except for phenolics, seasonal trait trajectories were generally consistent among species, 

although the pace of accumulation (or resorption) differed. 

 

Significance 

 The world’s ecosystems are rapidly changing, and as those ecosystems respond to new 

environmental conditions, we need to better characterize how the functioning of those 

ecosystems is responding. New techniques and datasets are necessary for measuring and 

understanding the impacts of climate and other anthropogenic drivers, and to accurately model 

future scenarios. Forest ecosystems provide multiple important benefits to society including 

provisioning and regulating services that are related to functional trait diversity. Leveraging the 
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power of remote sensing, and imaging spectroscopy in particular, can provide a comprehensive 

understanding of the patterns and processes effecting those services and traits (Jetz et al. 2016; 

Schimel at al. 2019). 

  In the first chapter of my dissertation I developed and compared generalized PLSR 

models using spectra both from fresh leaves and dried and ground samples to estimate 27 foliar 

biochemical traits. The use of models to predict traits from fresh and dry spectra were essential 

to this dissertation. While only a subset of foliar samples were measured using traditional wet 

chemistry techniques, and generalized models like the ones developed here were critical for 

estimating biochemistry on full set of field samples, which were then in turn used to develop 

canopy level models from imagery reported in Chapters 2 and 3. Increasingly, such models are 

essential in remote sensing beyond my study, as laboratory based measurements are impractical 

to collect at broad spatial extents. I found the selection of measurement type -- fresh vs. dry 

spectra -- as well as the wavelength range used in model development have a significant impacts 

on the resulting predictive performance of the spectroscopic models. Using a wavelet transform 

to assess trait spectra-relationships, I found that many biochemicals shared common spectral 

features. This provides new, unique insights into the basis for our ability to predict traits for 

which known absorption features either had not been reported or were not known to the remote 

sensing community. One useful outcome of this effort is that I provide readers with an 

assessment of each trait, its robustness of prediction, and the extent to which users of 

spectroscopic trait models should consider estimate of a trait to be an index of other traits to 

which it is correlated. I provide functional interpretations of prediction capacity, for instance that 

spectroscopic prediction of potassium is based on its role in synthesis of other traits that are 

detectable.  The database of spectra and trait measurements collected here is unprecedented in its 
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scope and consists of over 15,000 spectra which cover a multiple axes of trait variation including 

taxonomy, phenology and environment. It will provide a foundational data set for the analysis of 

foliar traits using spectra paired to laboratory measurements, across seasons and using a range of 

instrumentation.   

 Next, I demonstrate a methodology to estimate within-canopy variation of leaf mass per 

area (LMA) using top-of-canopy estimates from imaging spectroscopy and lidar representations 

of within-canopy structure. As lidar data become more widely available, there is the potential to 

link lidar and spectral data to develop whole-canopy (rather than sunlit-crown) estimates of 

characteristics important to predicting ecosystem function. For example, current ecosystem 

models do not represent within-canopy variation in foliar traits with any level of sophistication, 

if at all. As modelers come to understand the new mapping capabilities and test the sensitivities 

of models to within-canopy trait variation, work such as this may help provide motivation to 

update approaches to canopy mapping with more detailed three-dimensional representation of 

aboveground traits. This mapping of 3D patterns in LMA has the potential to be coupled with 

modeled vertical LAI profiles and leaf area density using lidar as an basis for estimating full 

canopy foliar biomass and nutrient content. Although LMA is likely the most significant trait 

that varies vertically in canopies, my work can also be expanded to include traits other than 

LMA. This will provide the basis to tackle a range of ecological questions beyond nutrient and 

carbon cycling, for example links to trophic dynamics, relationships with arthropods and birds, 

as well as disturbance processes. In summary, this work demonstrates the potential for global 

mapping through the fusion of spaceborne imaging spectrometers and lidar, which can provide 

opportunities to better quantify full-canopy ecological and physiological variation in ecosystems 

that are not possible with in-situ measurements.  
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 Finally, I used an unprecedented dense time series of imaging spectroscopy data collected 

during a single growing season to map intra-annual patterns in foliar biochemistry. Such work is 

essential to how we characterize functional variation in ecosystems, including functional 

diversity (which may vary spatially) and other processes that link to foliar traits. From a remote 

sensing perspective, this is the first paper to investigate the seasonal variation in foliar traits in a 

mixed temperate forest ecosystem using high-resolution hyperspectral imagery and expands on 

the diversity of traits mapped seasonally. By coupling maps of foliar biochemistry with species 

maps, I demonstrated that phenology was a significant driver of variation for most traits, but that 

for others, like phenolics, variation is largely driven by taxonomic identity. Importantly, this 

study demonstrates that seasonal trait variation is consistent neither by trait nor by species.  

 The research presented in this dissertation was largely conducted with an eye to towards 

the future when high-fidelity, year-round, global imaging spectroscopy data will be collected by 

spaceborne imagers. In a rapidly changing world these sensors will be critical to monitoring 

ecosystem health. Specifically, the measurement and detection of changes in foliar biochemistry 

will be an important component in monitoring ecosystem structure, diversity and functioning. 

Despite the enormous potential of spaceborne imaging spectroscopy for global characterization 

of foliar biochemistry, continued research is needed to fully realize it. My dissertation 

contributes to this need by expanding on existing methodologies and demonstrating new 

applications of imaging spectroscopy for mapping foliar biochemistry.   
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Abstract 

 The use of field spectroscopy has increased in prominence for the rapid estimation of 

foliar biochemistry, especially in ecology. Historically, spectral measurements of dried and 

ground foliar samples have been used in lab-based near-infrared spectroscopy (NIRS). While 

spectral measurements on dry samples can provide accurate estimates for numerous biochemical 

properties, they also have limitations in that they require destructive sampling of foliar tissue and 

transport of samples from the field, either of which can be infeasible. Conversely, measurements 

of fresh leaf reflectance using a leaf clip can be made rapidly in situ and often without detaching 

foliage, allowing for repeat measurements. To assess the relative merits of each approach, we 

performed a comprehensive analysis in which we aggregated linked fresh and dry spectra with 

wet chemistry data for 27 foliar biochemical properties including pigments (chlorophylls, 

carotenoids and xanthophylls), macronutrients (N, P, K, Ca, Mg and S), micronutrients (B, Cu, 

Fe, Mn, Z), aluminum, carbohydrates, structural and defensive biochemical traits. We built 

paired PLSR models for each trait using spectra on both fresh leaf and ground dry samples, 

compared their performances and tested the impact of wavelength region on predictive ability. 

Using spectral measurements on dried and ground samples, Ca, N, cellulose, lignin, sugars and 

total phenolics could be estimated with high confidence (validation R2 > 0.6), while chlorophylls 

A and B and leaf mass per area were estimated with high accuracy using fresh spectral 

measurements. Other biochemical properties including B, K, P, Mg, flavonoids and carotenoid 
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pigments were estimated with moderate confidence (R2 > 0.4). We also used a wavelet transform 

to assess the relationships between spectra (fresh leaf and dry ground) and traits. We found that 

for N, phenolic compounds, carbohydrates and chlorophyll, strong correlations emerged for 

wavelengths associated with electron transitions or molecular bonds present in these compounds, 

although some features were obscured by water absorption bands in the fresh leaf spectra. Other 

traits, including P and K, which lack strong or known absorption features, were correlated at 

wavelengths with absorption features attributed to proteins, carbohydrates or phenolics, 

indicating their retrieval was a consequence of their correlation with these compounds, likely as 

a result of their role in regulating their production or transport. Neither fresh nor dry spectral 

measurements are optimal for estimating the full suite of traits, but together represent a 

reasonable approach to estimate traits for extensive sample data sets, when used in conjunction 

with traditional analytical techniques for validation.  

 

Introduction  
 
 Rapid, reliable and repeatable measurements of foliar biochemistry are essential for a 

number of disciplines including ecology, plant science, agriculture and geology. The chemical 

composition of leaves affects decomposition (Melillo et al. 1982), plant-insect interactions 

(Agrawal et al. 2009) and photosynthesis/photosynthetic capacity (Evans and Seeman 1989). 

Foliar biochemistry can also be used to infer soil properties (Dunn 2011), detect the presence of 

pollutants (Sager et al. 2005) and pathogens (Gold et al. 2020) and characterize crop status 

(Blackmer and Scheper 1994; Waskom et al. 1994) and forage quality (Norris et al. 1976; Shenk 

and Westerhaus 1994). Wet chemistry techniques like high performance liquid chromatography 

(HPLC), mass spectrometry, combustion analysis and colorimetric assays are generally used to 



 
 

 

24 

quantify the chemical composition of leaves (Dixon and Kuja 1995; Trotter et al. 2002; Da 

Silveira et al. 1989; Ainsworth and Gillipsie 2007). While these methods can provide accurate 

measurements of biochemical profiles, they are often costly in terms of both equipment and 

materials, time consuming, require advanced training for operation and can produce hazardous 

chemical waste. Beginning in the 1950's and 60's, the use of spectroscopy gained increasing 

acceptance for measuring foliar biochemistry, particularly in the agricultural industry where it 

provided an alternative method for characterizing forage quality, including the estimation of 

protein, oil and fiber content (Norris et al. 1976; Shenk 1979; Shenk and Westerhaus 1985). 

Since then, the catalog of biochemical compounds estimated from spectroscopic measurements 

has come to include minerals (Clark et al. 1987), trace elements (Clark et al. 1989), 

carbohydrates (Card et al. 1988; Ramirez et al. 2015), secondary metabolites (Smyth and 

Cozzolino 2011; Couture et al. 2016) and pigments (Gitelson et al. 1996; Merzlyak et al. 2003) 

 Spectroscopic determination of foliar biochemistry is predicated on the development of a 

relationship between spectra and the chemical trait of interest. Early research largely relied on 

the use of stepwise linear regression in which a subset of the spectrum -- usually including fewer 

than 10 wavelengths -- was selected to develop calibration equations (Norris et al. 1976; Shenk 

1979; Wessman et al. 1989). However stepwise regression has largely fallen out of use in favor 

of more advanced chemometric techniques like principal components regression (PCA) and 

partial least squares regression (PLSR, Wold et al. 2001) due to the potential for identifying 

spurious relationships (Grossman et al. 1996). Physics-based radiative transfer models (RTM) 

including LIBERTY (Dawson et al. 1998) and PROSPECT (Jacquemond and Baret 1990) and 

their descendants have also been used to derive estimates of foliar biochemistry by inverting leaf 

spectra using absorption profiles of leaf constituents including pigments, proteins, water and 
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structural compounds. However, RTMs are limited to inverting compounds with known and 

well-defined absorption profiles, although recent versions of PROSPECT retrieve nitrogen and 

leaf mass per area (LMA) using semi-empirical formulations (Wang et al. 2015; Feret et al. 

2019). Underlying both empirically and physically based methods is the presence of spectral 

absorption features associated with electron transitions and bending and stretching in chemical 

bonds (C-H, C-O, N-H and O-H) within compounds that comprise plant materials (Curran 1989). 

Other important chemistries, including many minerals, do not have spectral signatures in the 

visible through shortwave infrared (400-2500 nm) (Workman and Weyer 2008), although 

compounds in which these are present may have spectral features associated with other 

molecular bonds within the compound. However, in general, the ability to estimate minerals 

using reflectance spectroscopy is a result of correlations with other chemical constituents that do 

possess spectral signatures (Clark et al. 1987; Ciavarella et al. 1998). 

 Historically, spectroscopic estimation of foliar biochemistry has utilized dried and ground 

foliar samples (Norris et al. 1976; Wessman et al. 1988). Drying removes water which has major 

absorption features in the infrared that obscure weaker absorptions of other foliar compounds, 

while grinding homogenizes samples and exposes the inner leaf material. Increasingly, fresh leaf 

spectra are used to estimate foliar biochemistry, which generally involves the use of a leaf clip or 

integrating sphere to measure reflectance (Asner and Martin 2008; Nunes et al. 2017; Serbin et 

al. 2019). Early work by Curran et al. (1992) demonstrated the ability to estimate chlorophyll, 

sugars and water content using fresh leaf spectra, which has since been expanded to estimate 

quantities of macro- and micronutrients, defensive compounds and carbohydrates (Martin and 

Aber 1994; Yoder and Pettigrew 1995; Jacquemoud et al. 1996; Asner et al. 2011). Unlike dry 

ground spectra, measurements of fresh spectra do not require subsequent sample processing, can 
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be performed nondestructively without removing leaves from a plant to allow repeat 

measurements and, with properly calibrated models, can provide near-instantaneous estimates of 

biochemistry. For some traits, especially those with absorption features obscured by water 

absorption bands, dry spectra models outperform fresh spectra models (Lacaze and Jofre 1994; 

Martin and Aber 1994; Jacquemoud et al. 1995), but for many traits these differences have not 

been assessed. 

 Regardless of measurement type (fresh leaf or dry ground) accurate, generalized 

spectroscopic models require data that are representative of the range of conditions that drive the 

variability in foliar biochemistry, including time (i.e., phenology), geography (i.e., environmental 

variation), ontogeny, plant and/or leaf developmental stage and taxonomy/phylogeny. Many 

applications of spectroscopy tend to predict chemical constituents using models specific to a 

species or a small number of closely related species (Vazquez et al. 1995; Ourcival et al. 1999; 

Yuan et al. 2016;  Fernàndez-Martínez et al. 2017). These perform well so long as the model is 

applied within the constraints of the data used to generate it. However, this presents challenges 

for estimating foliar chemistry on a novel species where it may be unknown whether the species 

spectral and chemical profile is bounded by the data used to build the model. A further 

complication is that seasonality – i.e. leaf phenology or developmental stage – also impacts 

model performance (Yang et al. 2016), as the specific absorption features related to the chemical 

compounds may change over the course of a season because both leaf structure and chemical 

composition also evolve seasonally. For those studies that incorporate a large number of species, 

sample collection is largely limited to peak of the growing season (Roelofsen et al. 2014; Serbin 

et al. 2014). Accurate estimates of chemistry from reflectance spectroscopy require models 

developed using data that cover the range of plausible leaf characteristics and are thus able to 
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leverage generalized features in the spectrum, rather than features that may be expressed at 

particular developmental stages. The alternative is to develop season- or species- specific 

models, which may be more accurate, but are not generalizable to ecological studies spanning 

species and ecosystem types.  

 In this study we linked spectral and biochemistry data from four datasets covering 

specimens collected from a range of vegetation types (trees, shrubs, forbs, grasses), geographic 

extents and leaf developmental (phenological) stages to generate spectroscopic models to 

estimate 27 biochemical properties including pigments, carbohydrates, minerals, and phenolic 

compounds, as well as leaf mass per area. For each foliar trait we developed and compared 

predictive performance of models developed using both fresh and dry ground spectral models. 

For each model type and trait, we also compared models built using different regions of the 

spectrum. Finally, we performed a series of analyses to identify the relationships between spectra 

and foliar biochemistry, specifically to assess the extent to which determination of chemistries 

using spectra was a consequence of spectral features unique to a particular trait and how they 

vary between fresh and dry spectra. 

 

Methods 
 
Data 
 
 The data used in this study was compiled from four datasets (Table 1.1), including data 

specific to this study. The species sampled in these datasets cover a wide range vegetation types, 

including trees, forbs and grasses, leaf developmental (phenological) stages and geographic 

extent. See the individual studies for details on the dataset collection.  
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Data unique to this study were collected in Madison, WI, USA on the campus of the 

University of Wisconsin, in the adjacent university-owned Lakeshore Nature Preserve and at the 

University of Wisconsin Arboretum (43.0766° N, 89.4125° W). Sampling occurred in 2016 and 

2017 on a weekly basis, spanning June to November in 2016 and April and May in 2017. 

Sampling followed a three-week cycle: during each week in the cycle we collected foliage from 

a set of 20-25 broadleaf trees, 10-20 forbs and 3-5 graminoid species. This cycle was repeated 

throughout the study period, such that the same set of species (except ephemerals or those that 

had senesced) were sampled at least every three weeks. Over the course of the growing season, a 

total of 211 unique species were sampled, including 89 tree species, 104 forbs and vines and 18 

graminoid species. Sampled species included native, ornamental and invasive species. We 

sampled two individuals of each species. For trees, we collected two sets of samples per 

individual including one set from sun leaves and one from shade leaves. For tall trees we used 

extendable pole pruners to collect branches at the top of the canopy. Between 10 – 20 leaves 

were collected per sample set. For forb and graminoid species leaves came from multiple 

individuals growing in close proximity to each other to ensure sufficient sample material (10 g 

dry matter per sample). After collection leaves were placed in plastic bags with a damp paper 

towel which were placed in a cooler on ice.  

Samples were brought back to the lab within 1.5 hours for spectral and structural 

measurements. At the lab petioles were removed from all leaves, any dirt, debris or moisture was 

wiped off and each sample set was photographed. Six leaves were chosen from each sample for 

leaf-level measurements and the remaining leaves were retained for bulk chemical analysis. 

Individual leaf area was measured using a LI-3100 leaf area meter (LI-COR Biosciences, 

Lincoln, NE, USA) and fresh weight was measured using a precision balance (0.0001 g). 
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Spectral measurements were then made using two spectrometers: a PSR 3500+ spectrometer 

(Spectral Evolution, Boston, MA, USA) and Fieldspec 3 spectrometer (Analytical Spectral 

Devices, Boulder, CO, USA), hereafter referred to as PSR and ASD respectively. Each 

spectrometer was equipped with a manufacturer-provided leaf clip and measurements were 

referenced against a 99% Spectralon panel (Labsphere, North Sutton, NH, USA) to derive 

relative reflectance.  The six leaves were measured in the same order on all spectrometers to 

enable comparison of individual leaf spectra. For homogeneously colored leaves, one spectrum 

was collected per leaf, while, for heterogeneously colored leaves (e.g. those undergoing 

senescence), between 2-6 spectra were averaged per leaf depending on leaf size and degree of 

heterogeneity. Graminoid species for which individual leaf blades did not fill the field of view of 

the leaf clip were aligned in parallel to create a non-overlapping mat using the six leaves, and six 

measurements were then made of the mat. For all samples, the six leaves were stored in 

individually labeled envelopes and placed in a paper bag with the remaining foliage (“bulk 

sample”). The sampled leaves were then frozen in liquid nitrogen and stored in a -20° C freezer 

until further processing. A subset of individual leaf samples (n = 279) from across the growing 

season were selected for pigment content determination. Pigment content was measured using 

HPLC as per Schweiger et al. (2020). Pigments measured included chlorophyll A and B, beta-

carotene, lutein, antheraxanthin, neoxanthin, violaxanthin and zeaxanthin. 

With the exception of the subset of samples analyzed for pigment content, all samples 

were freeze-dried in a lyophilizer (> 120 hr). Individual leaves measured for leaf area were 

weighed on a precision balance (0.0001g). Leaf mass per area (LMA) was calculated by dividing 

the leaf dry mass by fresh leaf area and was averaged for each sample set of 6 leaves. Samples 

were then ground using a Wiley Mill equipped with a #20 mesh (1mm). A subset of ground 
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samples was then measured for elemental concentration (N, P, K , Ca, Mg, Al, B, Zn, Mn, Cu) (n 

= 195), sugars and starch (n =213), total phenolics (n = 115), flavonoids (n=115), cellulose and 

acid detergent lignin (ADL) (n = 207). Nitrogen concentration was determined using combustion 

analysis while all other elemental concentrations were measured using inductively coupled 

plasma emission spectroscopy (Gavlak et al. 2004). Total phenolics concentration was 

determined using the Folin-Ciocalteu method (Ainsworth and Gillepsie 2007) and flavonoids 

were determined using aluminum chloride colorimetry (Baba and Malik 2015). Lignin and 

cellulose concentrations were determined using a hot-acid detergent extraction (Couture et al. 

2012) and sugar and starch concentrations were determined using a colorimetric quantification 

(Lindroth et al. 2002). Dry spectral reflectance measurements were made on all samples using an 

ASD Fieldspec 3 spectrometer equipped with a press to ensure consistent foreoptic position and 

pressure following Serbin et al. (2014). Prior to measurements, ground samples were stored in a 

drying oven (> 24 hr) to remove residual moisture collected during storage. Six spectra were 

measured per dry sample and were averaged to produce a single spectrum per sample.  

 

Spectral preprocessing 
 
 ASD spectra were 'jumped corrected' to align mismatches in reflectance between 

detectors using the SWIR1 detector as the reference (Dorigo et al. 2006). For both the PSR and 

ASD, we excluded reflectance data below 400 nm due to a low signal-to-noise ratio. Each 

spectrum was vector normalized to minimize brightness differences between spectra (Xing et al. 

2007).  

 With the exception of fresh spectra collected by Serbin et al. (2014), which used an ASD 

spectrometer, all samples had spectral measurements made using a PSR. Because of differences 
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in spectrometer design, including leaf clip geometry and internal optics, reflectance 

measurements made on the same leaves do not match exactly (Figure 1.1). To match ASD fresh 

spectra with PSR fresh spectra we used the method of Meireles et al. (2020) to develop a 

response matrix to convert ASD to PSR spectra. Using over 11,000 paired ASD and PSR 

individual leaf reflectance measurements made in this study we developed and validated a 

response matrix using partial least-squares regression (PLSR, Wold et al. 2001). Because some 

graminoid samples were made using mats and individual measurements between spectrometers 

could not be linked (due to different view area in which one spectrometer may see multiple 

leaves in a mat, and the other only one), they were excluded from development of the response 

matrix. First, we divided the data randomly 50:50 into validation and calibration, and withheld 

validation data from subsequent model development. The calibration data were then used to 

select the optimal number of model components by minimizing the cross-validated predicted 

residual sum of squares statistic (PRESS). A PLSR model was then developed for the calibration 

data using the selected optimal number of components and applied to the validation dataset. To 

compare improvement in agreement between the observed PSR spectra and predicted PSR 

spectra from ASD (PSRASD), we calculated the difference between vector-normalized spectra 

before and after the transform was applied to the validation dataset (Figure 1.1). Finally, we 

applied the transform to the ASD fresh spectra collected by Serbin et al. (2014) for use in 

subsequent analyses. 

 

Spectroscopic model development 
 

Predictive models to estimate foliar biochemistry from fresh and dry spectra were built 

using PLSR. PLSR is a commonly used technique used for chemometric applications due to its 
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ability to handle highly colinear, hyper-dimensional data, core characteristics of spectroscopic 

reflectance data (Wold et al. 2001). Modeling was implemented using the Python library ‘scikit-

learn’ (Pedregosa et al. 2011). Other data-driven modeling frameworks have been used for 

estimating foliar biochemistry from spectroscopic data including multiple linear regression (Min 

et al. 2006), random forest regression (Abdel-Rahman et al. 2013), neural networks (Mutanga 

and Skidmore 2004) and gaussian process models (Verrelst et al. 2012). However, we selected 

PLSR due to its relatively low computational requirements, wide use and acceptance, and 

interpretability of model coefficients.  

 For each trait, we developed spectroscopic models using both fresh leaf and dry ground 

spectra, to ensure comparability between models we only used data points with paired fresh and 

dry spectra for model development. With the exception of pigments, both fresh and dry spectra 

were collected on multiple leaves per sample; we assumed that, for pigments, the single leaf 

measured using HPLC was representative of the sample from which it was a subset of. To test 

the impact of wavelength region on model performance, we built three models for each trait 

using the entire spectrum (400-2500 nm), VNIR spectrum (400-1000 nm) and the SWIR (1000 - 

2500 nm). 

 Prior to model development, we performed a Bonferroni corrected outlier test (p < 0.05) 

to identify and remove influential data points (Cousineau and Chartier 2010). On average, across 

all traits, 1% of data points were labeled outliers. After outlier removal, the data were randomly 

split into calibration and validation (70:30). The optimal number of model components for PLSR 

of each trait was identified by building PLSR models on the calibration dataset using up to 30 

components and selecting the number of components that minimized the jackknifed PRESS 

(Tarpey 2000). Next, using the calibration dataset a series of 500 models were built for each trait 



 
 

 

33 

using a random 70% subset of the calibration data. These permuted models were applied to both 

the fully withheld validation and the calibration datasets and the mean and standard deviation of 

the 500 predictions were calculated to generate one predicted value (mean of 500) and its 

uncertainty (standard deviation). We also calculated R2, root mean squared error (RMSE), 

normalized RMSE (NRSME) and bias on the calibration and validation predictions. After 

validation, final models, fresh and dry ground, for application were built, we used the validation 

R2  to select the optimum wavelength range for each model. Final models were built using all the 

data using the same 500-model, 70% permutation approach used for developing the calibration 

model. The models were then applied to the entire dataset, yielding fresh and dry ground 

spectroscopic measurements for each trait. 

 

Trait-spectra relationships 
 
 We used Pearson product-moment correlation to evaluate correlations among traits for 

those samples having multiple trait measurements. We did this for trait measurements derived 

both from laboratory assays as well as from spectrally predicted traits. For traits derived using 

laboratory measurements, correlations were only calculated for paired traits with more than 10 

samples; for spectrally derived traits, correlations were calculated using all paired samples used 

in model development (n= 2,713).  

To assess the relationships between spectra and foliar biochemistry, we utilized Pearson 

product-moment correlation to identify wavelengths associated with each biochemical property. 

Specifically, we calculated Pearson's r between trait values and a continuous wavelet transform 

(CWT) of the reflectance spectrum on both the fresh and dry ground samples. CWT is a signal 

processing technique used to decompose a signal into a series of subcomponents defined by a 
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mother wavelet (Barache et al. 1997; Dinc and Baleanu 2008). A number of wavelet families 

exist for performing signal decomposition; here we used the Mexican-hat wavelet which closely 

approximates a gaussian response curve and has been used for characterizing spectral features 

related to foliar nitrogen (Wang et al. 2016; Kalacska et al. 2015), water content (Cheng et al. 

2011) and chlorophyll content (Liao et al. 2013). The wavelet transform is calculated by 

convolving the selected wavelet with the original spectrum, the resulting coefficients provide a 

measure of agreement between the wavelet and the localized spectrum (Kalacska et al. 2015). 

The wavelet is defined by both a translation and scale that correspond to the wavelet center and 

stretch. Transforms were calculated in Python using 'PyWavelets' (Lee et al. 2019). For each 

scale and translation, we calculated Pearson’s r between the trait and the wavelet coefficient. 

This resulted in a t by s matrix of correlation coefficients, where t is the number of translations 

and s is the number scales. The number of translations was equal to the number of wavelengths 

(2100) and 20 scales were computed per translation. Typically, wavelet coefficients, or 

correlations, are displayed using a 2D matrix commonly referred to as a scalogram. To better 

visualize the magnitude and locations of spectral features, the correlations were displayed along 

single dimension, translation, and each scale was plotted as a separate line (Figure S1.1).  

 

Results 
 
 The datasets used in this study consisted of between 171 and 2277 samples with 

laboratory-derived biochemical traits or LMA and paired fresh and dry ground spectral 

measurements (Table 1.2). With the exception of the pigment zeaxanthin, which was not 

detectable in a majority of samples, each biochemistry had at least 300 samples representing 99 - 

138 genera and 170 - 192 species. Sample collection dates were largely concentrated in the 
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middle of the growing season between day of year 150 and 250, but extended from April to 

November (Figure 1.2). 

 

Spectroscopic models  
 
 Models for estimating pigments, potassium and LMA had the best predictive 

performance when developed using spectra on fresh green leaves (hereafter “fresh spectra” or 

“fresh models”); for all other traits models built using spectra of dried and ground foliage (“dry  

spectra/models”) exhibited stronger performances (Figure 1.3). The difference between fresh and 

dry model performance varied by trait and was greatest for calcium, lignin and chlorophyll B. 

Aluminum, copper, zinc, zeaxanthin and antheraxanthin all performed poorly regardless of 

spectral measurement type (R2 < 0.2). All R2 values reported are for the withheld validation 

samples.  

 Model performance varied across pigments and was dependent on the wavelength range 

used, although chlorophyll A and B were estimated with the highest accuracy (Figure 1.4). The 

top performing fresh spectral model for each pigment included the VNIR region of the spectrum, 

either 400-1000 nm or 400 - 2400 nm, however the difference in performance between the two 

wavelength ranges was generally small. Dry spectra models for pigments were generally poor 

(R2 < 0.5) and validated best for neoxanthin using the full spectrum (R2: 0.47, NRMSE 0.13). 

Among foliar element concentrations, N and Ca were estimated with the highest accuracies using 

dry spectra (R2: 0.9 and 0.8, NRMSE 0.06 and 0.1, respectively). All models of foliar elemental 

concentration incorporated the SWIR region of the spectrum and, with the exception of nitrogen, 

performed poorly when using only the VNIR (R2 ≤ 0.31). Among models of elements developed 

using fresh spectra, N was estimated with the highest accuracy followed by K and Ca and, like 
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the dry models, the best model for each included the SWIR region. Structural and defensive 

compounds, including total phenolics, sugars, lignin, cellulose and LMA were all estimated with 

high accuracy (R2: 0.74 - 0.93), each using either the full or SWIR region of the spectrum and 

with the exception of LMA top performing models used the dry spectra for estimation. 

 

 

Trait correlations 
 
 For spectrally derived traits, correlation patterns generally matched the relationships 

derived from laboratory assays and correlations generally became stronger in spectrally derived 

traits (i.e. negative correlations in the lab data became more negative in the spectral predictions 

and vice versa; Figures 1.5 and 1.6). 

 From HPLC measurements, contents of beta-carotene, chlorophylls A and B, lutein and 

neoxanthin were highly correlated (r: 0.83; p <.01) and moderately correlated with violaxanthin 

(r: 0.57 - 0.65) (Figure 1.5). Similar patterns were observed with spectroscopically derived 

pigments but with stronger correlations for all pigment pairs, correlations were highest between 

chlorophyll A and chlorophyll B (r: 0.99) and lutein and neoxanthin (r: 0.99). For both 

laboratory-measured and spectroscopically derived pigments, correlations with other traits were 

weak. Macronutrients including N, P, K and S were all positively correlated whether derived 

using laboratory assays (r: 0.45 - 0.55) or spectral models (r : 0.57 - 0.87) and were generally 

negatively correlated with carbohydrates, lignin and LMA. Total phenolics and flavonoids were 

both positively correlated with sugars using both laboratory-derived and spectral estimates. 
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Wavelet correlations 
 
 In our interpretations of the correlations of wavelength-by-wavelength wavelet 

transformations with foliar traits, we treat the observation of a negative correlation at a 

wavelength as evidence of an absorption feature and thus these are our focus (Figure 1.7). In 

addition, by comparing the wavelet correlations across all wavelengths between all pairs of traits, 

we could identify those traits whose relationships with spectra leverage common absorption (or 

reflectance) features (Figure S1.2). Specifically, in Figure S1.2 higher positive correlations 

between traits indicate that the pair of traits share strong correlations with many common 

absorption features, while strong negative correlations indicate that wavelengths with absorption 

features for one trait in the pair being compared are matched by reflectance features in the other 

trait. Combined, these analyses enable comparison with absorption features reported elsewhere 

in the literature, as well as identifying those traits for whom reasonable spectroscopic predictions 

may be a function of inter-trait correlations rather than the presence of known absorption features 

(see Discussion).  

All pigments with the exception of zeaxanthin and antheraxanthin, exhibited near 

identical patterns in correlations using the wavelet transforms of both dry and fresh spectra, and 

were highly correlated with each another (r: 0.76- 0.99) (Figure 1.7; Figure S1.2). For these 

pigments, the strongest negative correlation (i.e. absorption feature) was observed at the red edge 

near 710 nm. Correlations with the SWIR region of the spectrum were generally weak but 

exhibited minima (i.e., negative wavelet correlation indicating a possible absorption feature) at 

2050 nm and 2170 nm in both the fresh and dry spectra with slightly stronger correlations in the 

dry spectra (Figure 1.8a). For zeaxanthin and antheraxanthin, which were poorly estimated using 
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PLSR models, wavelet correlations were weak across the entire spectrum (r < 0.3) (Figures S1.2 

and S1.9). 

 Patterns in correlations for elements exhibited two general groupings, each of which 

showed similar relationships between trait measurements and wavelet transforms (Figure 1.7). 

The first group, including Cu, Fe, N, K, P and S, exhibited the strongest negative correlations 

near 1520, 1980 and 2170 in the dry spectra, whereas correlations were weaker and less 

consistent among traits in the fresh spectra (Figures 1.7 and 1.8). The second group, which 

included Ca, B and Mg, showed nearly identical patterns across the spectrum. As well, wavelet 

correlations across wavelengths were also highly correlated among the three minerals (r > 0.94 - 

0.98; Figure S1.2), indicating that spectroscopic prediction for these traits likely leverages 

common features; Ca, B and Mg are also highly correlated with each other in the laboratory 

measurements (Figure 1.5, upper diagonal). For dry spectra the region 1910-2010 nm exhibited 

the strongest correlations in all three traits however for the fresh spectra, correlations were weak 

across the entire spectrum (Figures 1.7 and 1.8c). Al and Z exhibited correlation patterns that 

were uncorrelated with all other traits and were weak across the spectrum (Figures S1.10 and 

S1.21). Manganese was unique in that unlike all other elemental traits, whose wavelet 

correlations were strongly aligned across wavelengths, it was negatively correlated with other 

elements, especially Mg and P (r < -0.81) (Figure S1.2). Notably, Mn was generally uncorrelated 

with the other elements in the laboratory data (Figure 1.5). 

 Total phenolics and flavonoids were negatively correlated with dry spectra wavelet 

features near 1130, 1470, 1660 and 2150 nm (Figure S1.28-1.29). However total phenolics 

features at 1130 and 1470 nm were absent in the wavelet correlations with fresh spectra (Figure 

1.8d). In both the fresh and dry spectra, cellulose was negatively correlated with features at 1240 



 
 

 

39 

and 2260 nm. Lignin exhibited strong correlation with wavelet features in the dry spectra across 

the spectrum, and was strongest at 510, 710, 1730, and 2150 nm, but for fresh spectra correlated 

features were generally limited to the SWIR region (Figure S1.26).  Sugars and starch displayed 

similar patterns in correlations with wavelet features and had the strongest correlation near 1200, 

1440 and 2140 nm. LMA was most strongly negatively correlated with dry and fresh wavelet 

features at 1200, 1420 and 2150 nm, but also exhibited sharp peaks of positive correlation (i.e., 

with reflectance rather than absorption) in the fresh spectra at 950 and 1140 nm that were absent 

in the correlations with dry spectra (Figure S1.27) 

 

Discussion 
 
 In this study we developed models to estimate foliar biochemical traits from leaf 

reflectance data from both fresh intact leaves and dried/ground samples. Our models were built 

using a comprehensive dataset that included samples from over 100 species of tree, shrubs, forbs 

and grass that were collected across the growing season, covered a wide geographic extent and 

included both sun and shade leaves. We found that for pigments, LMA and K, models using 

fresh spectra provided the most accurate estimates. Ca, Mg, N, P, K, S, defensive and structural 

compounds were most accurately estimated using dry spectral models. However, Al, Cu, Fe, Z, 

zeaxanthin and antheraxanthin were poorly estimated regardless of the measurement type used. 

 For both the fresh and dry models we found that choice of spectral range impacted the 

model performance. For all traits with the exception of pigments, including the SWIR region 

resulted in the best model performance. Conversely the VNIR region was important for 

estimating pigments accurately. Generally, for traits that were well estimated (R2 > 0.5) inclusion 

of other regions beyond only marginally changed model performance, i.e. VNIR was sufficient 
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for pigments and SWIR sufficient for the rest. There are some benefits to constraining the 

spectral range for prediction, as it reduces the likelihood of introducing error due to confounding 

features, and – in many cases – limits the predictions to wavelengths where known absorption 

features exist (i.e., more physically realistic). Some of the traits have long been estimated using 

reflectance spectroscopy, e.g. due to known absorption features at visible wavelengths for 

pigments, or from decades-old research that is the foundation for using spectra to estimate 

proteins (i.e., nitrogen), fiber and carbohydrates in forage.  However, many of the traits that are 

widely estimated from reflectance spectroscopy do not exhibit strong spectral absorbance 

signatures to provide a basis for estimation (for example, many elements). Yet, estimations from 

leaf spectral measurements have formed the basis for numerous studies (Asner and Martin 2008, 

Asner et al. 2009, Doughty et al. 2011; Singh et al. 2015; Wang et al. 2019, 2020), especially 

studies that link traits to remote sensing data for mapping, where laboratory chemistry needed to 

calibrate such models is impractical at the scale of imagery. This begs the question whether the 

retrieval of certain traits for leaf level estimates using data-driven chemometric methods such as 

PLSR is a consequence of spurious correlations or trait-trait correlations where one trait has a 

strong correlation feature that is leveraged to predict another, highly correlated trait.  In our 

discussion, we review the basis for estimating these traits from spectroscopy. 

 Among plant biochemicals pigments are the most well characterized spectrally due to 

their role in converting sunlight into chemical energy used to fix carbon. Chlorophylls are the 

primary light absorbing pigments found in plants. Other pigments, including carotenoids and 

xanthophylls are also present, where they play a photoprotective role (Lambers et al. 1998). 

Pigments absorb strongly in the visible spectrum (400-700nm), but it is worth noting that Clark 

et. (1987) measured the NIR-SWIR spectrum of extracted chlorophyll and reported additional 
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spectral features at 1768, 1850, 2304 and 2350 nm. For all pigments which were well estimated 

with PLSR coefficients, wavelet correlations were strongest at the red edge (710 -720 nm) and a 

similar pattern was displayed in the PLSR coefficients (Figures S1.3-S1.8). Correlations were 

stronger in fresh versus dry spectra, which is expected due to the denaturing effects of oven 

drying, but a negative correlation was still present at the red edge in dry spectra. The red edge is 

commonly used to estimate chlorophyll content as saturation occurs at the chlorophyll absorption 

maximum (660-680 nm) (Horler et al. 1983; Gitelson et al. 1996). The presence of this 

correlation in non-chlorophyll pigments, which generally absorb light at wavelengths < 550nm, 

indicates that the ability to estimate these pigments is largely driven their strong correlation with 

chlorophyll content (Figure 1.5) and is demonstrated by similar PLSR coefficient structure for all 

pigments (Figures S1.2-S1.8). Interestingly though, in the dry spectra, wavelet correlation 

features associated with non-chlorophyll pigments become apparent near 440 and 470 nm 

(Clementson and Wojtasiewicz 2019), suggesting differential levels of denaturing by different 

pigments in response to oven drying. Cui et al. (2004) found that 70% of carotenoids were 

retained after oven drying compared to 40% for chlorophylls. While correlations were strongest 

in the visible region of spectrum, features in the SWIR associated with nitrogen at 2061 and 

2172 nm were also correlated with pigment content, indicating a correlative relationship between 

pigments and other N-containing compounds like proteins in the photosystems and light 

harvesting complex.  

  In foliage, Ca is present in a number of forms including ionic Ca2+, in the middle lamella 

in the form of calcium pectate and in various salts including calcium oxalate, calcium carbonate, 

calcium sulfate and calcium citrate (Krieger et al. 2016). In its ionic form Ca is not known to 

have absorption features in the infrared (Workman and Weyer 2008). However, calcium pectate 
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and calcium salts have infrared signatures (Titok et al. 2010; Applin et al. 2016). Petisco et al. 

(2005) reported that for a mix of woody species, wavelengths in the 1900 nm region of the 

spectrum were most important for estimating calcium, and others have reported similar results 

with absorption features at wavelengths greater than 1800nm (Shenk et al. 1979; Valdes et al. 

1985; Clark et al. 1987). Among its non-ionic forms, Ca is commonly found in the form of 

calcium oxalate (CaOx), which can constitute up to 80% of the Ca in a leaf (Francesci and 

Nakata 2005). Chandler (1937) found that foliar CaOx content was correlated with total foliar 

calcium. CaOx serves multiple role in plants including storage of excess Ca, in the formation of 

defensive structures and as a chelating agent (Franeschi and Horner 1980; Nakata 2003; Mazen 

2004). CaOx exhibits sharps absorption peaks centered at 1957 and 2002 nm that are not present 

in other calcium salts. These spectral features closely align with regions of maximum negative 

correlation with wavelet transforms (Figure 1.9). Moreover, the coefficients of the dry spectra 

PLSR model for Ca have large negative weights in those regions as well (Figure S1.13), 

indicating a potential mechanism for the ability to estimate Ca concentration from reflectance 

spectra. Of note, this feature is absent in the fresh spectra correlations, a possible result of 

obscuration by water absorption (Figure 1.8c).  

 Nitrogen is a key plant nutrient that is closely tied with the photosynthetic apparatus,  

where it is found largely in the form of proteins, including the enzyme RuBisCO which can 

contain up to 30% of total leaf nitrogen. N is also present in amino acids, lipids, the cell wall and 

in pigments (Evans and Seemann 1989; Makino 2003; Onoda et al. 2004). Spectral estimation of 

nitrogen is often used as a surrogate for photosynthetic capacity and its detection is thus also the 

basis for spectroscopic estimation of metabolic traits such as Vcmax (Serbin et al. 2012; Dechant 

et al. 2017). N and proteins and are generally well estimated from dry spectra due the absorption 



 
 

 

43 

features in the SWIR resulting from N-H bonding (Curran 1989; Kokaly 2001). In our dataset 

wavelengths with large negative dry ground wavelet correlations were all near absorption 

features related to nitrogen including N-H bonds present proteins (1515, 1980, 2050 and 2170 

nm) (Curran 1989; Osborne et al. 1993; Workman and Weyer 2008; Figure 1.8b). However, in 

the fresh leaf PLSR model only features near 2050 and 2170 nm were leveraged, a possible 

consequence of leaf water absorption in regions with N absorption features (Figure 1.8b).  

 Phosphorus is present in a number of compounds critical to plant growth including ATP 

and DNA (Schachtman et al. 1998), and is involved in regulating enzymatic activity (Mills and 

Jones 1996). Weak absorption features related to P are present in the SWIR regions of the 

spectrum due to P-H (1891 and 1908 nm) and P-SH bonds (1970 and 1999 nm) (Workman and 

Weyer 2008) but were not evident in our wavelet or PLSR coefficients. In both the wavelet 

correlations and the PLSR model, positive coefficient maxima are observed at 1429 and 1438 nm 

respectively (Figure S1.19). Robert and Cadet (1998) report a sharp absorption peak for 

polysaccharides at 1437nm while Boulley et al. (2015) report a sugar absorption band at 

1432nm. P is involved in starch metabolism (Qiu and Israel 1992), and Brahim et al. (1996) 

found that P deficiency resulted in a decrease in foliar phosphorus concentration and increase in 

foliar starch and glucose accumulation in pine seedings. Thus, the positive correlation peaks may 

reflect the increasing accumulation of carbohydrates with decreasing concentrations of 

phosphorus. Conversely wavelengths with negative correlation coefficients included those 

associated with N-H bonds in proteins (1525 and 1990 nm). In our dataset phosphorus was most 

strongly correlated with nitrogen (r = 0.55 in lab measurements and r = 0.73 from spectroscopic 

determination). Likewise, PLSR coefficients for the P model leveraged nitrogen features at 2050 

and 1985 nm and the starch feature at 1438 nm. We conclude that the estimation of P from 
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reflectance spectroscopy leverages a range of absorption features associated with correlated N-

containing compounds and other chemistries (e.g., nonstructural carbohydrates) for which P 

plays a role in metabolism. P can be reasonably estimated from spectroscopy but estimates from 

reflectance spectroscopy should be interpreted with caution as its uncertainty (14%) is much 

higher than N (6%). In any given data set, spectroscopic predictions of phosphorus should be 

carefully compared to other constituents to determine whether its accurate estimation does not 

simply track a correlation with foliar N.  

 Potassium plays a number of roles in plants including controlling opening of stomates via 

osmoregulation, translocation of sugars and starch, and cellulose formation (Cochrane and 

Cochrane 2009; Mills and Jones 1996). As with Ca, K has no known signature in the infrared in 

its ionic form (Shenk et al. 1979). Ciavarella et al. (1998) noted that K concentration was closely 

correlated with spectral regions related to sugars, starch and cellulose, indicating that the ability 

to estimate potassium spectrally is related to its influence on other organic compounds with 

known spectral signatures. Using dry spectra, spectral regions with strong negative wavelet 

correlations with K included those associated within N bonds (1515 and 1985 nm) and proteins 

(1690 nm) (Workman and Weyer 2008), which is unsurprising given the positive correlation of 

K with N in the lab data (r = 0.51; r = 0.57 in the spectroscopic estimates). Spectral regions that 

were positively correlated with K are associated with starches (1450 nm, 990 nm), which were 

weakly negatively correlated with K in the lab data, and aromatic compounds (1670 and 2140 

nm). The correlation with starch features is notable as symptoms of K deficiency include built up 

of carbohydrates (Mills and Jones 1996). Lacking known absorptions feature, the spectroscopic 

estimation of K clearly leverages correlated features related to non-K containing compounds, but 

those correlated features are related to many compounds and spread throughout the spectrum, 
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meaning that K predictions from spectroscopy may be reliable, but are based on the complex 

interactions among multiple compounds influenced by K. 

 Magnesium acts a cofactor for enzymes and is found in chlorophyll (Mills and Jones 

1996). In our dataset Mg was poorly correlated with chlorophyll content but was strongly 

correlated with calcium using both laboratory and spectrally derived measurements (r ≥ 0.7). 

Correlations with wavelet features using both fresh and dry spectra revealed nearly identical 

patterns when compared to those identified in calcium (r: 0.8 and 0.97). Shenk et al. (1979) 

reported low predictability of Mg in dry forage while Nunes et al. (2017) estimated Mg using 

fresh leaf spectra and reported similar results to our own fresh leaf models (R2: 0.40 here vs 0.49 

in Nunes et al. 2017). Like other minerals it is not known to have a spectral signature in the near 

infrared in its ionic form and its estimation likely a result of correlations with other compounds, 

like Ca-containing complexes. 

 Sulfur is a component of multiple amino acids that are building blocks for a number of 

proteins; symptoms of S deficiency include decreases in chlorophyll and proteins, and increases 

in starch (Droux 2004; Marschner 2011). Like P, a weak absorption feature is present in the 

SWIR region of the spectrum associated with S-H bonding (1980 nm) (Workman and Weyer 

2008). Wavelet correlation patters for S closely match those for N (r: 0.83) and align with known 

features associated with proteins, indicating the ability to estimate S is likely a function of its 

correlation with N (r: 0.51).    

 Micronutrients (B, Cu, Fe, Mn, Zn) are essential elements that are found in small 

quantities in plant tissues that are important to the regulation of enzymatic activity, metabolism 

and the production of structural and defensive compounds (Marschner 2011). Al is not known to 

be an essential nutrient and is generally considered to be toxic to many plants (Bojorquez-
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Quintal et al. 2017), and its concentration in foliage is sometimes used as an indicator of soil 

acidity. Few studies have attempted to estimate micronutrients or trace minerals from a diverse 

group of species using either dry ground and or fresh leaf spectra. Using single species 

calibrations, Clark et al. (1989) estimated aluminum with moderate accuracy (R2: 0.69-0.78) for 

three forage types, but found that important wavelengths varied across species. Galvez-Sola et al. 

(2015) developed PLSR equations for Citrus species and reported "moderate" accuracies for Zn 

and Fe, but found that B, Cu and Mn were poorly estimated. Here, trace elements, with the 

exception of B, were poorly estimated using fresh or dry spectra models. Moreover, the wavelet 

correlation patterns in B were nearly identically followed those of Ca (r: 0.98). B and Ca are 

known to be closely associated (Bolanos et al. 2004) and are similarly immobile within plants.  

Cu and Fe were weakly to moderately positively correlated with N and exhibited common 

patterns in wavelet correlation features that are associated with N and protein absorption bands. 

Mn is known to be a cofactor for enzymes that produce lignin and phenolic compounds 

(Marschner 2011) and was negatively correlated with wavelengths associated with phenolic 

compounds (1130, 1450, 1660 and 2150 nm). In addition, lignin and Mn wavelet features 

showed a strong correlation in both the fresh leaf and dry spectra (r: 0.92 and 0.87), indicating 

that detection of Mn from spectra likely tracks its role in lignin synthesis.   

 Sugars and starch, products of photosynthesis, have well-characterized absorption 

features in the infrared that are a result of C-H and O-H bonds present in these compounds 

(Workman and Weyer 2008). Robert and Cadet (1998) found that that these spectral features are 

generally shifted by 25-130 nm in polysaccharides (starches) compared to monosaccharides 

(sugars), which may enable relative determination of starch vs. sugar concentration. In both the 

wavelet correlations and the PLSR coefficients these features are evident near 1200 nm and 1450 
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nm for starches (Figure S1.24). For sugars, the absorption feature at 1450 nm was present in the 

wavelet correlations, but it was absent in the PLSR coefficients (Figure S1.23). Among the other 

wavelet features correlated with sugars were 1668, 1148 and 2150 nm, which are wavelengths 

associated with aromatics and phenolic compounds (Buback 1993; Workman and Weyer 2008), 

but not specifically with sugars. Phenolic compounds are often found linked with glucose 

(Harborne 1989). In our dataset sugars and starch were positively correlated with both total 

phenolics and flavonoids (r ≥ 0.46 in spectroscopic estimates), a positive relationship observed 

elsewhere (Ibrahim et al. 2011) that indicates that the ability to measure sugars is may be driven 

in part by its correlation with phenolic compounds. The independent validation R2 for sugars was 

high (R2: 0.65)  supporting the use of reflectance spectroscopy for estimation of sugar 

concentration, although validation of predictions of starch concentrations was much poorer (R2: 

0.24; NRMSE 16%), a possible consequence of a lower average concentration in foliage (3.3%) 

compared to sugars (17.9%).  We conclude that the estimation of nonstructural carbohydrates is 

well supported by the presence of distinct spectral features, but that spectral estimation may also 

leverage a range of features associated with compounds that correlate with sugars and starches.   

 Phenolics are a class of secondary metabolites including condensed tannins that are 

generally associated with plant defense but also play a role in photoprotection and cold 

acclimation (Appel et al. 2001; Close and McArthur 2002). Phenolic composition varies across 

taxonomic groups, and individual species can produce of over 100 phenolic compounds 

(Harborne 1989; Li and Seeram 2018). Due to their similar molecular structure consisting of an 

aromatic ring, phenolic compounds share a number of absorption features in infrared region of 

the spectrum (Workman and Weyer 2008). However, Couture et al. (2016) demonstrate that the 

specific phenols present in closely related species will both share absorption features and exhibit 
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unique features. Thus, the exact location of spectral features may be shifted as a function of the 

presence of specific phenolics whose identities are species-dependent or whose absorption 

features may shift in location in the presence of other compounds (Workman and Weyer 2008; 

Kokaly and Skidmore 2015). For instance, in our dataset wavelet correlation features were 

shifted to longer wavelengths (~10nm) in flavonoids compared to total phenolics (Figure 1.10).  

However, large negative coefficients appeared around 1660 nm in both the wavelet correlations 

and PLSR models for both total phenolics and flavonoids (Figure 1.8d and 1.10; Figures S1.27-

1.28), matching the presence of a major absorption feature at 1660 nm present in a number of 

phenolic compounds including gallic acid and tannic acids (Kokaly and Skidmore 2015). Other 

absorption features associated with phenolic compounds including 1132, 1460 and 2135 nm 

were also evident in wavelet correlation plots and PLSR coefficients (Buback 1993; Workman 

and Weyer 2008). The detection of phenolic compounds from reflectance spectroscopy is very 

strongly supported by the presence of absorption features, but because the specific phenolic 

compounds in species differ, caution should be exercised when making specific inference about 

the roles that spectroscopically determined phenolics play in the functioning of any given 

observation. Nevertheless, there is also evidence that diversity in phenolic compounds can also 

be detected (Couture et al. 2016), but this requires careful laboratory discrimination of the 

multitude of phenolics present, which may be impractical across a large number of species 

having distinct phenolic profiles.  

 Cellulose and lignin are structural compounds that constitute the cell wall and provide 

rigidity, increase tensile strength and waterproof the cell (Delmer and Amor 1995; Boerjan et al. 

2003; Somerville 2006). Similar to nonstructural carbohydrates, cellulose and lignin are 

composed of bonded C-H and O-H molecules and have well characterized absorption features in 
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the near through shortwave infrared (Osborne et al. 1993; Workman and Weyer 2008). For 

cellulose, O-H features at 1490 and 2270 nm were present in both the PLSR and wavelet 

coefficients (Figure S1.25). Lignin, which consists of aromatic subunits, exhibited negative 

wavelet correlations with features associated with aromatic rings including 1135 and 1670 nm. 

Interestingly, lignin was also strongly correlated with wavelengths in the visible region of the 

spectrum (Figure S1.26). However, lignin is not known to contain any absorption features in the 

visible wavelengths and the relationship may be a result of correlation with pigments (Figure 

1.5) or due to lignin autofluorescence (Donaldson 2020).  

 LMA is a composite measure of a plant's investment in biomass per unit area and is 

widely used in ecology as a measure of resource allocation strategy because of its low cost and 

ease of measurement.  Spectroscopic estimates of LMA provide the additional benefits of rapid 

and non-destructive measurement and multiple studies have shown that LMA can be measured 

with high accuracy from fresh leaf spectra (Ourcival et al 1999; Asner et al. 2011; Serbin et al. 

2019).  Using both dry and fresh spectra, LMA was strongly correlated wavelet features in the 

NIR regions at 1000, 1200 and 1450 nm (Figure S1.27). These regions are associated with 

absorption by starch, sugars, cellulose and lignin, compounds which constitute a large proportion 

of the leaf dry matter content that comprises LMA. The estimation of LMA from reflectance 

spectroscopy is due to the relationship between the many carbon compounds associated with leaf 

structure, and thus is entirely correlative in application. However, it is also the leaf trait that can 

be most robustly estimated from reflectance spectroscopy (R2 > 0.9, uncertainty < 5%), as was 

demonstrated by Serbin et al. (2019) for species spanning the tropics to Arctic.  

 A limiting factor in developing highly reliable, generalizable spectroscopic models is the 

accuracy of wet chemistry procedures. With the exception of LMA, which was measured 
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directly, and lignin and cellulose, which were determined gravimetrically, no other traits were 

directly quantified. There can be a considerable amount of uncertainty in wet chemistry analysis 

that is dependent on the analytical technique, reagents, standards and exact methodology used 

(Young et al. 1994; Appel et al. 2001; Thorsen and Hildebrandt 2003). Quentin et al. (2015) 

found that measures of nonstructural carbohydrates were not comparable between different labs. 

Similarly, Brinkman et al. (2002) found that measurements of lignin concentrations were 

dependent on analytical method. In our own dataset we found that the same samples measured 

for cellulose and lignin at different labs using the same analytical technique yielded inconsistent 

results (Figure S1.30): measurements were either poorly correlated (lignin, R2: 0.31) or 

contained significant outliers (cellulose, with outliers R2: 0.34, without outliers R2: 0.97). Even 

gravimetric methods have limitations, namely the complete isolation of the compounds of 

interest. For example, Brinkman et al. (2002) found and that acid detergent lignin (ADL), the 

method used in this study, contained up to 18% bound proteins, resulting in an overestimation of 

lignin compared to other methods.  

 The models developed here used data from plants in the United States and despite 

containing a diverse collection species (native, invasive and cultivated) and phenological stages 

do not represent the global diversity of plant types and spectral and biochemical profiles. For 

example, we did not include conifer species, whose structure and chemical profiles vary 

significantly from broadleaf species and graminoids. Conifers also present challenges for making 

fresh spectra measurements due their small and narrow shapes (Daughtry et al. 1989). Although 

numerous studies have advocated for approaches to sampling conifer needles, especially using 

mats (Daughtry et al. 1989, but see also alternative method in Wang et al. 2020), work is still 

needed to enable linkage of fresh spectra from broadleaf and conifers (e.g. Rautiainen et al. 
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2018). Dry spectral measurements from conifers can be integrated with broadleaf data, but 

incorporation of fresh spectra may be challenging due to differences in measurement techniques. 

As an additional caveat, the integration of conifer with broadleaf samples for spectroscopic 

determination does risk inflating accuracy of spectral models. Because conifers and broadleaf 

species differ considerably in foliar chemistry and spectral characteristics, there is the risk of 

developing predictive models that simply fit to clusters of much different spectra from conifer 

vs. broadleaf species, when in fact these lack the ability to characterize within leaf-type variation 

in foliar chemistry. 

 We note that our dataset included samples covering the range of phenological stages 

(Figure 1.2). Addressing phenology has been demonstrated to be important to generation of 

accurate models, including both leaf spectra (Yang et al. 2016) and image spectra (Chapter 3). 

This necessitates adequately sampling across developmental stages to ensure that the range of 

differing combinations of biochemical concentrations among traits is captured. As well, our 

dataset included leaves from both sunlit and shaded canopy positions. Light environment 

strongly influences leaf optical properties (Niinemets et al. 1998) and especially traits such as 

LMA (Chapter 2) and pigments, and thus models should include samples that adequately 

represent this dimension of variation. Finally, for completeness, factors such as the ontogeny of a 

sample and other environmental controls such as soil fertility and climate should be considered 

for their influence on different samples from common species. While not all of these factors can 

be or need to be addressed for all species, an adequate representation across species whose traits 

are being predicted using spectroscopy ensures more robust application to new samples. This is 

especially important if these data are being used as a substitute for traditional measurements. 



 
 

 

52 

 As such, continued work is needed to broaden the diversity of samples used in model 

development. Creation of such a global database would allow for the development of truly global 

models that can be applied with confidence irrespective of species and would also present the 

opportunity to develop more localized models tailored to given species or spectral type 

(Sinnaeve et al. 1994). Ultimately, the most accurate predictive models may be those that are 

taxonomically (species, genus or family) specific, with generalized models utilized to predict for 

additional samples lacking taxonomically constrained models. 

 

Conclusion  
 
 Using an unprecedented dataset that covered multiple axes of variation driving variability 

in foliar biochemistry, including taxonomy, phenology and geography, we developed empirical 

models to estimate 27 foliar biochemical traits using both fresh leaf and dried and ground 

spectra. We found that using dry spectral measurements Ca, N, cellulose, lignin, sugars and total 

phenolics could be estimated with high confidence (R2 > 0.6), while chlorophylls A and B and 

LMA were estimated with high accuracy using fresh spectra. Other biochemical properties 

including B, K, P, Mg, flavonoids and carotenoid pigments were estimated with moderate 

confidence (R2 > 0.4), but estimates should be treated with caution. Reviewing the literature, we 

also explored the extent to which correlative patterns underlying trait-spectra relationships could 

be explained by electron transitions and bending and stretching in chemical bonds (C-H, C-O, N-

H and O-H) of closely related compounds. Our results highlight the tradeoffs between using 

spectra from intact leaves (fresh) versus dried and ground samples for estimating foliar traits and 

that neither method on its own is optimal for estimating the full suite of traits measured here. 
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Ideally a combination of the two methods should be used, coupled with traditional analytical 

techniques for model validation.  
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Table  1.2 Sample chemistry summary. 

 Trait Units Samples Mean Range Genera Species 
Pigments Antheraxanthin µmol • m-2 476 3.53 0.34 - 15.95 118 189 

 Beta-Carotene µmol • m-2 480 34.79 0.72 - 77.7 117 188 
 Chlorophyll A µmol • m-2 485 342.97 1.52 - 909.83 118 189 
 Chlorophyll B µmol • m-2 483 106.54 0.75 - 289.89 118 189 
 Lutein µmol • m-2 488 59.77 3.14 - 153.78 117 189 
 Neoxanthin µmol • m-2 488 18.42 0.48 - 51.19 117 189 
 Violaxanthin µmol • m-2 488 23.09 0.79 - 66.32 118 190 
 Zeaxanthin µmol • m-2 171 7.98 0.88 - 28.25 65 108 

Elements Aluminum ppm 347 51.85 4.4 - 1410.0 109 175 
 Boron ppm 349 33.83 1.6 - 135.5 109 176 
 Calcium % dry mass 348 1.4 0.05 - 5.05 108 176 
 Copper ppm 348 7.23 1.0 - 22.0 109 177 
 Iron ppm 346 58.28 17.7 - 157.0 110 176 
 Magnesium % dry mass 348 0.32 0.08 - 1.06 109 176 
 Manganese ppm 345 241.9 4.8 - 2040.0 110 177 
 Nitrogen % dry mass 513 2.5 0.48 - 5.06 109 183 
 Phosphorus % dry mass 350 0.24 0.03 - 0.72 110 178 
 Potassium % dry mass 348 1.23 0.16 - 4.74 108 176 
 Sulfur % dry mass 344 0.19 0.04 - 0.6 108 176 
 Zinc ppm 344 31.51 3.5 - 196.0 110 178 

Carbohydrates Sugars % dry mass 384 17.94 4.12 - 40.09 115 192 
 Starch % dry mass 386 3.3 0.34 - 10.65 115 192 

Structure Cellulose % dry mass 396 15.42 4.44 - 39.49 114 190 
 Lignin % dry mass 400 12.62 0.0 - 42.12 114 190 
 Leaf Mass per Area g • m-2 2277 60.51 15.8 - 148.59 138 183 

Phenolics Flavonoids % dry mass 319 6.67 0.67 - 26.01 99 170 
 Total phenolics % dry mass 323 7.22 1.26 - 25.65 101 173 
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Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Results of ASD to PSR spectral transformation. Top: Average vector 
normalized reflectance spectra of validation dataset (n > 5,000), the PSR spectrum is 

displayed with transparency as not to obscure the transformed ASD spectrum 
(PSRASD).  Bottom: Average difference in vector normalized reflectance between 
validation PSR spectra and ASD spectra before (ASD- PSR) and after (PSRASD - 

PSR) the spectral transform was applied. 
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Figure 1.2 Temporal distribution of samples used in this study. 
Collection date of samples in last column is unknown 
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Figure 1.3 Comparison of fresh, whole leaf and dried and ground spectroscopic 
model performances (R2). For each measurement type (fresh or dry) the model 

result from the top performing wavelength range (VNIR, SWIR or Full) is shown. 
Points in the green region indicate better performance using fresh spectra models 
and those in the orange region indicate better predictive performance using dry 

ground spectra 
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Figure 1.4 Independent validation scatterplots for top performing model for each trait. Green points 
indicate fresh leaf model and orange points indicate dry ground model. In each plot the wavelength 
range used in model building is listed in the lower right corner. Grey dashed lines are 1:1 lines, red 

dashed lines are linear fits between the predicted and observed values. 
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Figure 1.5 Pairwise trait correlation (Pearson's r) matrix. Upper diagonal: correlations between 
laboratory measured traits, only those pairs with greater than 10 common samples are shown. 
Lower diagonal: correlations between spectroscopically derived traits, best performing model 

for each trait was used for prediction (Figure 4). Labeled correlations indicate p <.01 and 
absolute r > 0.4. 
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Figure 1.6 . Scatter plot between pairwise laboratory and 
spectroscopic trait correlations. Gray line indicates 1:1 line. 
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Figure 1.7 Correlation matrix showing mean wavelet correlations across all scales for each trait 
and spectral measurement type. 
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Figure 1.8 Mean wavelet correlation plots for fresh and dry ground spectra for four traits, chlorophyll 
A, nitrogen, calcium and total phenolics. Blue shading indicates relative intensity of water absorption 

at each wavelength, darker blue indicates high water absorption. 
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Figure 1.9 . Correlation between dry spectra wavelet features and calcium concentration (red) and 
calcium oxalate reflectance (blue). Calcium oxalate reflectance spectrum derived from Cloutis (2015).  
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Figure 1.10 Comparison of mean wavelet correlation coefficients for total phenolics and 
flavonoids. Insets highlight the shift in wavelength of maximum correlation near 1130 nm (a) 

and 1660 nm (b), flavonoids are shifted approximately 10 nm towards longer wavelengths 
compared to total phenolics. 
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Supplemental materials  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1.1 Comparison of typical two-dimensional representation of wavelet correlations (top) 
against one dimensional plot used in this analysis (bottom). Each line in the bottom plot represents a 

single scale. 
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Figure S1.2 Pairwise wavelet correlation (Pearson's r) matrix.  

Upper diagonal: correlations between mean dry spectra wavelet correlations. Lower diagonal: 
correlations between mean fresh spectra wavelet correlations. Diagonal displays correlation 

between mean wet and dry wavelet correlations between each trait. Labeled correlations indicate 
p <.01 and absolute r > 0.4. Higher correlations between traits indicate that the pair of traits 

share common wavelengths whose wavelet transforms correlate with biochemical traits. Strong 
negative correlations indicate that wavelengths with absorption features for one trait in the pair 

are matched by reflectance features in the other trait. For example, chlorophyll A and 
chlorophyll B correlate with nearly identical absorption and reflectance features in foliar spectra, 

while absorption features in LMA tend to correspond with reflectance features in phosphorus 
and vice versa. 
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Figure S1.3 Antheraxanthin full results 
 
 a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 

scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 

across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 
indicates the relative intensity of water absorption at each wavelength, darker blue indicates 

higher water absorption. The correlation values plotted on c) are the input to the summary plot 
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 

features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.4 Beta-carotene full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.5 Chlorophyll A full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.6 Chlorophyll B full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.7 Lutein full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.8 Neoxanthin full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.9 Violaxanthin full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.10 Zeaxanthin full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.11 Aluminum full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.12 Boron full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.13 Calcium full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.14 Copper full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.15 Iron full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.16 Magnesium full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.17 Manganese full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.18 Nitrogen full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.19 Phosphorus full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.20 Potassium full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.21 Sulfur full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.22 Zinc full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.23 Sugars full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.24  Starch full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.25 Cellulose full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.26 Lignin full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.27 LMA full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.28 Flavonoids full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.29 Total phenolics full results 

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation 
scatterplot and metrics for top performing fresh spectra PLSR model.  c) Wavelet feature 

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation 
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading 

indicates the relative intensity of water absorption at each wavelength, darker blue indicates 
higher water absorption. The correlation values plotted on c) are the input to the summary plot 

in Figure 7. Wavelengths where the green and brown lines align indicate common spectral 
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet 

correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra 
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the 
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra 

(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because 
the number of components (Table 3) strongly influences PLSR. However, ideally, negative 
wavelet correlations should align with negative PLSR coefficients if an absorption feature 

associated with the trait is present. 
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Figure S1.30 Comparison of cellulose (left) and lignin (right) measurements 
from two separate labs on the same samples using acid detergent extraction. 

Grey dashed line is 1:1 line. 
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2. Mapping three-dimensional variation in leaf mass per area with imaging spectroscopy 

and lidar in a temperate broadleaf forest 

       
Contributors:  Adam Chlus, Eric L. Kruger & Philip A. Townsend  

 
 
Abstract 

Imaging spectroscopy is a valuable tool for mapping canopy foliar traits in forested 

ecosystems at landscape and larger scales. Most efforts to date have involved two-dimensional 

mapping of traits, typically representing top-of-canopy conditions. However, traits and their 

associated biological functions vary through the canopy vertical profile, such that incorporating 

information about vertical patterns may improve modeling of ecosystem processes like primary 

productivity. In 2016 and 2017, we collected extensive field data in forests in Domain 5 (Great 

Lakes) of the National Ecological Observatory Network (NEON) to characterize the vertical 

variation in leaf mass per area (LMA), an important foliar trait related to plant growth and 

defense. Fieldwork was coincident with NEON Airborne Observation Platform (AOP) 

overflights which collected imaging spectroscopy and lidar data. Using imaging spectroscopy to 

map top-of-canopy LMA and lidar to model vertical gradients of transmittance, we developed a 

method to map three-dimensional patterns in LMA in temperate broadleaf forests. Partial least 

squares regression (PLSR) was used to estimate top-of-canopy LMA (R2: 0.57, RMSE 10.8 g m-

2), which, along with lidar-derived metrics of light transmittance and height, was used in a 

multilevel regression to model within-canopy LMA (R2: 0.78, RMSE 8.3 g m-2). The coupled 

models accurately estimated LMA throughout the canopy without taking into account species 

composition (R2 : 0.82, RMSE: 8.5 g m-2).  
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Introduction  
 
 

The world’s forest ecosystems are changing rapidly, and extensive data is necessary to 

better understand corresponding implications for ecosystem function and to accurately model 

future scenarios. However, traditional field-scale sampling techniques may not provide 

information at scales sufficient for characterizing landscape and broader-scale variation needed 

for accurate modeling. Remote sensing has long offered the potential to extrapolate sparse field 

measurements to generate inputs needed to drive models, especially of two-dimensional patterns 

across the land surface (Roughgarden et al., 1991; Cohen and Goward, 2004). However, forest 

ecosystems are inherently three-dimensional (3D) and multiple studies have highlighted the need 

to accurately characterize vertical patterns in structural and biophysical properties for 

parametrizing ecosystem process and forecasting models (Cavaleri et al., 2010; Coble et al., 

2016; Rogers et al., 2017). For the most part, remote sensing products and ecosystem models 

ignore vertical variability in traits important to understanding forest processes.  

A number of ecologically important structural, morphological and chemical properties 

vary throughout the vertical extent of forest canopies, including leaf area density (LAD), leaf 

angle distribution (LAD) and foliar chemical composition (e.g., concentrations of lignin and 

phosphorus, and δ13C) (Vose et al., 1995; Niinemets, 2015; Leuning et al., 1991). Among the 

most widely studied and characterized biophysical properties in the context of within-canopy 

patterns is leaf mass per area (LMA), the ratio between the projected leaf area and dry mass, 

which is largely comprised of structural and nonstructural carbohydrates, proteins, lignin and 

minerals (Poorter et al., 2009). LMA—or its inverse, specific leaf area (SLA)—is a central 
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component of the leaf economic spectrum (LES) representing the tradeoff between growth and 

defense (Wright et al., 2004; Poorter et al., 2009). For example, relatively thin leaves with low 

LMA tend to have high rates of photosynthesis per unit mass compared to denser, thicker and 

more durable leaves with high LMA (Niinemets, 1999; Wright et al., 2004). The drivers of LMA 

variation differ across scales. Broadly, LMA variation is largely driven by taxonomy, while local 

environment and site conditions can explain a large proportion of LMA variation at finer scales 

(Messier et al., 2010; Messier et al., 2017).  

LMA decreases with depth into the canopy, owing primarily to the attenuation of light 

and a decrease in height-mediated hydraulic constraints (Cavaleri et al., 2010; Niinemets, 2015). 

Microclimatic variables including temperature, wind exposure and humidity, which co-vary with 

incident radiation and height, also influence within-canopy LMA (Niinemets, 2001; Poorter et al. 

2009; Petter et al., 2016; Wu et al., 2016). The degree to which within-canopy gradients in LMA 

are driven by irradiance or height is not universal and can vary as a function of species, local 

environmental conditions and seasonality (Koch et al., 2004; Coble and Cavaleri 2014; Coble et 

al. 2016). While numerous studies have explored within-canopy patterns in LMA through 

individual tree canopies (Ellsworth and Reich, 1993; Aranda et al., 2004), few studies have 

explored patterns of LMA in vertically heterogenous canopies where both species composition 

and architecture vary within the vertical profile. The ability to understand these patterns in three 

dimensions may provide insights into spatial patterns of forest responses to change, ranging from 

successional responses to disturbances at local scales to landscape-level responses to broad-scale 

stresses such as drought or the cumulative impacts of climate change. As well, 3D profiles of 

canopy traits may also enable more accurate parameterization of landscape- and larger-scale 
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process models that do not typically represent spatial variation of the vertical distribution of 

canopy traits.  

Here we present a remote sensing approach that utilizes imaging spectroscopy and lidar 

to characterize the 3D variation in LMA in broadleaf canopies (Figure 2.1). Our approach is 

based on the large body of research that has demonstrated that LMA decreases through the 

canopy from top to bottom and that decrease is largely driven by incident irradiance and/or 

height mediated hydraulics constraints (Ellsworth and Reich 1993; Koch et al. 2001; Poorter et 

al. 2009). We posit that if we are able to estimate LMA at the top of the canopy and model the 

within-canopy environmental gradients that are known to drive top-down decreases in LMA, we 

should be able estimate within-canopy (top-down) patterns in LMA. Our method uses airborne 

imaging spectroscopy to estimate LMA at the top of the canopy and lidar to model within-

canopy environmental gradients driving top down patterns in LMA.  Imaging spectroscopy 

provides the most direct approach to foliar trait estimation at large scales, including LMA (Asner 

et al., 2015; Singh et al., 2015; Chadwick and Asner, 2016; Wang et al., 2019, 2020). While lidar 

provides the ability to penetrate the canopy and enables characterization of the 3D light 

environment (Lefsky et al., 2002; Todd et al. 2003; Olpenda et al. 2018). Our method builds on 

the work of Parker et al. (2001) who demonstrated that estimates of vertical light transmittance 

derived from lidar follow vertical patterns in photosynthetically active radiation (PAR) and Fleck 

et al. (2004) who found with-canopy LMA tracked with-canopy irradiance estimated using 

terrestrial lidar. We demonstrate this approach with airborne imaging spectroscopy and lidar data 

from the U.S. National Ecological Observatory Network (NEON) coupled with coincidence field 

measurements that we use to parameterize our model. 

 



 
 

 

109 

Methods 
 
Study area 

Our study area consisted of hardwood-dominated forests in northern Wisconsin and 

Michigan's Upper Peninsula (89.5 W, 46.0 N). The area is characterized by a mix of managed 

and unmanaged stands of various age classes, species composition and structure. Common 

broadleaf deciduous species include trembling and bigtooth aspen (Populus tremuloides and P. 

grandidentata), sugar and red maple (Acer saccharum and A. rubrum), red oak (Quercus rubra), 

black and white ash (Fraxinus nigra and F. americana), basswood (Tilia americana) and paper 

and yellow birch (Betula papyrifera and B. alleghaniensis). Fieldwork was conducted in sites 

within the Great Lakes ecoregion of the National Ecological Observatory Network. NEON is a 

continental scale network of long-term monitoring sites distributed across ecoregions within the 

United States. Each ecoregion contains multiple sites that are the focus of environmental 

monitoring activities including plant and animal surveys, soil characterization and airborne 

remote sensing data collection. Sampling took place within three NEON sites in the ecoregion: 

UNDE, CHEQ, and STEI (Figure 2.2). Sites range in size from 40-200 km2 and comprise a mix 

of private, municipal, state and federally-owned land.  

 
Remote sensing data 
 

Remote sensing data were collected between September 2-12, 2016 and September 1-12, 

2017 by NEON's Airborne Observatory Platform (AOP). AOP is a multi-sensor system which 

includes an imaging spectrometer, lidar sensor and a high resolution RGB camera. The imaging 

spectrometer is an AVIRIS-NG-like sensor built by NASA's Jet Propulsion Laboratory that 

measures radiation from 380-2510 nm in 420 bands, with a spectral sampling width of 

approximately 6 nm (Kampe et al., 2010; Kampe et al., 2011). Lidar data were collected using an 
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Optech ALTM 3500 Gemini, which is a dual sensor instrument consisting of a full waveform 

digitizer and discrete return sensor transmitting at 1064 nm. The instrument was operated at a 

pulse frequency of 100 Hz and recorded up to four returns. The AOP system was flown on a 

DeHavilland DHC-6 Twin Otter at 1000 m above ground level (a.g.l.), resulting in 1 m 

resolution imaging spectroscopy data and a discrete return density of ~4 pts m-2. The full 

waveform lidar and RGB camera data were not used in this study.  

Orthorectification of the imaging spectroscopy data and co-location with the lidar data 

was performed by NEON using a ray tracing algorithm coupled with measurements from an 

onboard inertial measurement unit (IMU) and GPS (Kampe et al. 2016). Surface reflectance was 

generated using ATCOR 4 (ReSe, Wil, Switzerland), which approximates atmospheric 

conditions including water vapor and aerosol content using the MODTRAN radiative transfer 

code (Richter and Schläpfer, 2015). The surface reflectance imagery exhibited strong cross-track 

gradients in brightness due to varying viewing and solar geometry. To remove the brightness 

gradients, we applied a semi-empirical bidirectional reflectance distribution function (BRDF) 

correction employing the widely used Ross-Li kernel combination to model the volumetric, 

geometric and isometric scattering components (Colgan et al., 2012; Schläpfer et al., 2015). A 

single set of BRDF correction coefficients was generated for each site and date by randomly 

sampling 10% of the pixels from each flightline and pooling the sampled data before fitting the 

BRDF correction model. Because scattering properties are dependent on surface type, we limited 

the BRDF correction model to vegetated pixels using an NDVI threshold of 0.6. Following the 

BRDF correction, all images were resampled to an interval of 5 nm (ex. 400 nm, 405 nm, …) 

using a Gaussian approximation of the spectral response function. Resampling was performed to 

harmonize interannual images which had different wavelength centers due to annual radiometric 
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calibrations. Before analyses, water absorption features (1330-1430 nm and 1800-1960 nm) and 

spectrum tails (< 400 nm and > 2450 nm) were removed from the imagery due to low signal to 

noise. 

Discrete lidar data were normalized against a 1 m digital elevation model (DEM) to 

derive height above ground for each return. The DEM was created by NEON from the discrete 

return lidar data using a triangulated irregular network of ground returns interpolated to a surface 

(Goulden, 2019). 

 

Field sampling 
 

Field sampling occurred within 10 days of AOP overflights in 2016 and 2017 and 

involved plot-level collection of leaves throughout the vertical profile of the canopy. Plot 

locations were manually chosen to capture the range of forest types within the ecoregion and 

were distributed throughout the study area. Prior to sampling, a comprehensive survey of each 

plot was conducted. Species, diameter at breast height (DBH), crown class (dominant, 

codominant or suppressed) and location within the plot were recorded for all trees with DBH 

greater than 5 cm that had foliage within the plot. Trees were labeled dominant or codominant if 

their crowns were in the exposed upper canopy, that is they were visible from above, had sunlit 

foliage and were not completely obstructed by other trees, while all other trees were designated 

suppressed. Because GPS positions are known to have large errors under closed canopy 

conditions, all plots were revisited to survey the plot center coordinates during the fall of the 

sampling year once the trees had dropped their leaves (Sigrist et al., 1999). GPS measurements 

were made using a Geo7x with an external Zephyr 2 antenna (Trimble Inc., Sunnyvale, CA, 
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USA) mounted on a 2 m range pole and were differentially corrected after collection to an 

accuracy of < 2m. 

Following the plot survey, branches were sampled throughout the vertical profile of the 

canopy, independent of species or individual tree. The number of branches within the canopy 

that were sampled depended on the number of species present in the plot and structural 

complexity of the canopy. Branches were sampled using a variety of tools depending their 

location in the canopy. Branches less than 15 m a.g.l. were collected using extendable pole 

pruners. Between 15 m and the top of the canopy, a Big Shot throw weight launcher (Sherrill 

Tree, Greensboro, NC, USA) was used to launch a line into the canopy, from which a custom-

built cutting device (à la Poulter et al., 1991) was raised to retrieve branches. For sun exposed 

branches (i.e., top-of-canopy) greater than 15 m, either a shotgun or a second custom cutter 

(Supplemental Figure S2.1) was used to retrieve the top-of-canopy branch. Whenever possible, 

we attempted to sample every tree with foliage in the plot at multiple heights. In some plots, 

whether due to the number of trees within the plot or inaccessibility, not every tree was sampled.  

The height (a.g.l.) of all branches, except those collected using a shotgun, were measured 

directly using a measuring tape that was attached to the cutting device. For branches sampled 

with a shotgun, the branch height was either measured using a laser hypsometer (Haglöf, 

Sweden), measuring tape, or, in a select few cases, was estimated from the lidar data. For each 

sampled branch, we calculated its relative height in the canopy, which was defined as the ratio 

between the field-measured branch height and maximum lidar return height within the plot. 

The only differences in sampling between years were: 1) in 2016, 5-m diameter circular 

plots were used versus 5 x 5 m square plots in 2017, and 2) 3 and 10 leaves per height were 

sampled in 2016 and 2017, respectively. Plot shape was changed between years to increase plot 
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size and to simplify sampling. The number of leaves collected per height was increased to better 

capture within branch variability in LMA.  

After leaves were collected, reflectance measurements were made using a full-range (350 

– 2500 nm) field spectrometer equipped with a leaf clip to estimate LMA using spectroscopic 

models. Leaf measurements were referenced against a measurement on a 99% white Spectralon 

panel (Labsphere, North Sutton, NH, USA) to derive relative reflectance. Measurements were 

typically taken immediately after collection; when that was not possible, leaves were placed in a 

plastic bag with a damp paper towel and stored in a cooler on ice until measurements could be 

made, within 2 hr. Reflectance spectra were measured in 2016 with a Fieldspec 3 spectrometer 

(Analytical Spectral Devices, Boulder, CO, USA) and in 2017 with a PSR 3500+ spectrometer 

(Spectral Evolution, Boston, MA, USA). After reflectance measurements were complete, leaf 

samples were stored in a cooler until leaf area measurements were made later the same day. Leaf 

area was measured on three leaves per branch using a LI-3100 leaf area meter (LI-COR 

Biosciences, Lincoln, NE, USA), after which samples were frozen and stored for further 

analysis. Once the samples were returned to the lab, they were dried to constant mass in a freeze 

dryer (> 120 hours) and weighed. Dry weights were divided by the projected fresh leaf area to 

calculate LMA. 

LMA has shown to be robustly measurable from fresh leaf spectroscopy across a wide 

range of leaf types using spectrometers from multiple manufacturers (Serbin et al., 2019). As 

such, LMA was estimated for leaves that were not directly measured using spectroscopic models. 

Models were developed using partial least squares regression (PLSR), a common chemometric 

technique (Wold et al., 2001), in Python using the package 'scikit-learn' (Pedregosa et al., 2011). 

Spectroscopic models were built using linked reflectance and LMA measurements made during 
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this study, and separate models were generated for each year to account for spectrometer-specific 

differences in reflectance measurements. Prior to model development, we removed spurious data 

points using a Bonferroni-corrected outlier detection test (Dupuis and Hamilton, 2000), less than 

1% of data points were identified as outliers. Following outlier removal, the dataset was split 

randomly 50:50 into calibration and validation datasets. Using the calibration data, we then 

computed the optimal number of model components using the cross-validated predicted residual 

sum of squares (PRESS) statistic using the adjusted Wold's R as a selection criterion (p=0.05) 

(Li et al., 2002). The calibration dataset was used to build a series of 500 models, each model 

was built using a random 70 percent split of the calibration dataset. The 500 models were applied 

to the validation dataset and the mean predictions were compared to observed LMA values and 

model performance was assessed using the root mean squared error (RMSE), coefficient of 

determination (R2) and bias. Following the accuracy assessment, 500 new permuted models were 

built using the entire dataset and were applied to the spectra of unmeasured leaves to estimate 

leaf-level LMA. Branch-level LMA was calculated as the average leaf-level LMA of the 3 or 10 

leaves from each branch. 

 

Top-of-canopy LMA  
 

Branch-level LMA was scaled to the canopy level by averaging LMA from all sunlit 

branches from each plot. Predictive models linking field-measured canopy-level LMA and 

imaging spectroscopy data were developed using the same modeling approach, PLSR, that was 

used for developing leaf-level spectroscopic models. Plot spectra were extracted from a 7 x 7 

pixel window around each plot center, which was a slightly larger window than the field plot 

area, to account for GPS and image registration error. All pixels within the 7 x 7 window were 
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averaged, not discriminating between sunlit and shaded pixels, resulting in a single spectrum per 

plot. This approach makes our method more transferable to spaceborne imagers with larger pixel 

sizes in which shaded and sunlit portions of tree crowns will be mixed in pixels. When a plot was 

covered by multiples lines owing to flightline overlap, we averaged pixels from all flightlines to 

produce a single reflectance spectrum. 

A range of regions of the reflectance spectrum have been used to develop predictive 

models for LMA from spectroscopy data in the literature. At the leaf level, the full spectrum 

(Yang et al., 2016), spectral region subsets (Ourcival et al., 1999; Serbin et al., 2014) and 

variable selection techniques (Le Maire et al., 2008; Zhao et al., 2013) have been employed. At 

the canopy level, the full spectrum (400-2500 nm) is generally used (Singh et al., 2015; 

Chadwick and Asner, 2016; Wang et al., 2019). However Ali et al. (2016) found that the SWIR 

region from 1500-2500 nm exhibited the strongest correlation with canopy-level LMA, which is 

consistent with research showing that the shortwave infrared (SWIR) contains a number of 

absorption features related to dry matter content (Peterson el al. 1988; Curran et al. 1989;  

Jacquemoud et al., 1996). To assess the impact of spectral region selection on estimating top-of-

canopy LMA, we compared the results of models built using four spectral regions moving to 

progressively longer wavelengths: 1) full spectrum (400-2450 nm), 2) NIR and SWIR (800-2450 

nm), 3) the full SWIR (1600-2450 nm), and 4) far SWIR (2000-2450 nm). 

Prior to model development, we performed a Bonferroni-corrected outlier test and 

identified a single plot as a significant outlier, which was removed from further analysis. The 

optimal number of PLSR model components was selected by minimizing the cross-validated 

PRESS statistic using the adjusted Wold's R as a selection criterion (p = 0.05). 
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Transmittance 
 

Lidar transmittance was calculated following the same form used by Parker et al. (2001) 

to model photosynthetically active radiation (PAR) transmittance from full-waveform lidar: 

𝜏(ℎ) = 1 −	 !!"
!#$#%&

   (2.1) 

where t is the lidar transmittance metric at height h above ground, N³h  is the number of returns 

at or above height h and Ntotal is the total number of returns within the plot window. The fraction 

in equation 1 is equivalent to the interception/reflection rate of pulses above a given height. All 

returns were used when calculating transmittance metrics. Transmittance metrics were calculated 

at 1 m intervals throughout the canopy and were interpolated using a linear function to estimate 

transmittance at sampled branch heights in each plot. 

Shallow lidar pulse penetration is a common issue in dense canopies where pulse energy 

may not reach the lower canopy, understory and ground (Figure 2.3). A lack of returns from 

within the canopy can result in an underestimation of transmittance. We compared a range of 

window sizes from 5-100 m and found that, with increasing window size, model performance 

rapidly increased up until 20 m, after which the model performance stabilized, followed by a 

rapid decline with window sizes greater than 50 m (Supplemental Figure S2.2). Based on these 

results we used a 20 m wide window around each plot to extract lidar returns for calculating 

transmittance. 

 
Within-canopy LMA 
 

Vertical  gradients in LMA were modeled using multilevel linear regression (MLR). 

MLR was used to account for the hierarchical structure of the dataset in which variables could be 
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divided into two levels: group (top-of-canopy LMA) and individual (transmittance and absolute 

and relative heights), where individual-level variables are nested within groups. MLR models 

present a compromise between complete and no-pooling of data within groups and result in 

lower standard errors compared to traditional linear regression modeling (Gelman and Hill, 

2007). In addition, MLR models can be formulated such that coefficients, intercepts and slopes 

are modeled as a function of group-level predictors. Models were fit in R using the package 

'lmer' (Bates et al., 2015), group- and individual-level predictors were fit as fixed effects, and 

plot ID was treated as a random effect. We compared a range of models, beginning with 

univariate models and sequentially increasing model complexity by including additional 

individual-level predictors and a group-level predictor along with interaction terms. Note that we 

reverse the values of relative height and transmittance such that values range from 0 at the top of 

the canopy to 1 at ground level, this has benefits for fitting no-intercept regression models based 

on top-of-canopy LMA; that is, LMA predicted at a the top of the canopy where both relative 

height and transmittance are equal to zero will be simply the prediction of top-of-canopy LMA 

derived from imaging spectroscopy because any modifiers in our model based on these two 

metrics will be multiplied by zero. 

 

Model evaluation 
 

The performance of both top-of-canopy LMA and within-canopy LMA models were 

assessed using a 5 by 5-fold repeated cross-validation. Data splits were performed at the plot 

level to ensure that test and training datasets were independent. For each training-test split, the 

training data were first used to develop a PLSR model to predict top-of-canopy LMA on the 

training dataset. These top-of-canopy LMA estimates were then used as inputs to the within-
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canopy MLR model along with the within-canopy training data. The derived top-of-canopy and 

within-canopy models were then applied to the test dataset in the same fashion, keeping the same 

test and training sets separate for each iteration. We report R2, RMSE and %RMSE for both the 

training and test datasets.  

 

Full-canopy LMA mapping 
 

Following top-of-canopy and within-canopy model evaluation, we developed 3D maps of 

LMA across the entire study area using the best performing combination of models as 

determined by the out-of-sample performance metrics. The final model for implementation was 

generated using a permutation based approach whereby we generated 500 models each built 

using a random 70% of the data, we recorded the mean estimate predicted from the 500 models. 

Models were applied on 5 x 5 m horizontal pixel scale corresponding to the scale of field 

sampling and at 1 m intervals vertically. Downscaling of the imaging spectroscopy data utilized 

5 x 5 pixel aggregation and averaging. Transmittance metrics were calculated at 1 m intervals 

using the 5 m pixel center for determining the neighborhood window center.  

 

Results 
 

Our dataset consisted of 59 plots, 18 sampled in 2016 and 41 in 2017. Fewer branches 

were sampled on average per plot in 2017 vs 2016 (12 vs 18 branches) to increase the number of 

plots sampled. A total of 14 broadleaf species were sampled during the study, 12 of which were 

present in the top of the canopy in at least one plot. Sugar maple (A. saccharum) was the most 

commonly sampled species accounting for 37% of the branches. Sugar maple is shade tolerant 
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and is a ubiquitous understory species in the study area (Table 2.1). On average, 5.9 trees were 

sampled per plot and 84% of those had branches sampled at multiple heights with the canopy. 

Independent validation of leaf-level spectroscopic models exhibited high accuracies for 

estimating LMA from fresh spectra for both years of measurements (ASD 2016: R2: 0.98, 

RMSE: 2.9 g m-2; PSR 2017: R2: 0.96, RMSE 4.5 g m-2, Supplemental Figures S2.3, S2.4). 

Branch-level LMA ranged from 20.2 - 120.7 g m-2, while sampled branch heights ranged from 

0.25 - 27.7 m a.g.l. (Figure 2.4). The number of species in each plot varied from 1-7, with a 

mean of 2.5; multiple species were sampled in 44 of 59 plots.  

 
Top-of-canopy LMA 
 

Cross-validated results of PLSR models for top-of-canopy LMA from imaging 

spectroscopy data varied in performance depending on spectral interval (Table 2.2). Model 

performance increased with narrower spectral ranges from full spectrum (400 - 2450 nm: R2: 

0.39, RMSE 12.7 g m-2) to the far SWIR (2000 - 2450 nm: R2: 0.57, RMSE 10.7 g m-2) (Figure 

2.5). We used the top performing model, far SWIR, for the remainder of the analysis. 

 

Within-canopy LMA 
 

Within-canopy variables—height, relative height and lidar transmittance—all correlated 

positively with LMA (Figure 2.6). Univariate models which considered only within-canopy 

variables ranged widely in predictive performances: transmittance (R2: 0.61, RMSE: 10.9 g m-2) 

was the best performing, followed by relative height (R2: 0.43, RMSE 13.2 g m-2) and height (R2: 

0.14, RMSE 16.3 g m-2). 

Among the model forms tested, we found Eq. 2.2 exhibited the best results based on 

metrics of model performance, parsimony and interpretability (R2: 0.78, RMSE 8.3 g m-2, Figure 
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2.7), using a no-intercept model as described above. (See supplemental Table S2.1. for results of 

all tested models). 

 

																								𝐿𝑀𝐴(ℎ) = 	𝐿𝑀𝐴!"# +	𝜏$%&!"#(ℎ) ∙ (𝛽' +	𝐿𝑀𝐴!"# ∙ 𝛽( +	𝑟ℎ$%&(ℎ) ∙ 𝛽))																									(2.2) 

where 

ℎ = ℎ𝑒𝑖𝑔ℎ𝑡	𝑎𝑏𝑜𝑣𝑒	𝑔𝑟𝑜𝑢𝑛𝑑	(𝑚) 

𝐿𝑀𝐴"#$ = 𝑇𝑜𝑝	𝑜𝑓	𝑐𝑎𝑛𝑜𝑝𝑦	𝐿𝑀𝐴 

	𝜏%&''() = 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒	𝑜𝑓	𝑤𝑖𝑛𝑑𝑜𝑤	𝑤𝑖𝑑𝑡ℎ	20	𝑚	𝑎𝑡	ℎ𝑒𝑖𝑔ℎ𝑡	ℎ 

𝑟ℎ%&' = 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	ℎ𝑒𝑖𝑔ℎ𝑡	𝑎𝑡	ℎ𝑒𝑖𝑔ℎ𝑡	ℎ 

 

Functionally, this model estimates LMA within a canopy as a function of top-of-canopy LMA, 

relative position in the canopy and transmittance. Regression coefficients modify the slope of 

transmittance as a function of relative height and top-of-canopy LMA. 

Cross validation metrics varied across species (R2: 0.35 – 0.9; RMSE: 5.6 – 11.1  g m-2 ; 

Table 2.4). With the exception of Ostrya virginiana, which displayed little variation in LMA 

(23.5 - 36.3 g m-2), the within-canopy model was able to explain at least 50% of the variation in 

within-canopy LMA and at least 70% for 8 of the 14 species sampled. Normalized RMSE was 

less than or equal to 15% for all but 4 species (O. virginiana, C. cornuta, P. tremuloides, Prunus 

spp.). In an analysis of residuals, means for sugar maple, river birch, ironwood, red oak and 

bigtooth and trembling aspen showed small but significant differences from 0 (p < 0.01, Figure 

2.8a). The mean and median residuals for all species were within +/- 7 g m-2, which is lower than 

the RMSE of the top-of-canopy LMA model. Likewise, the residuals for canopy dominant trees 

differed from 0 (p < 0.01), but by less than 4 g m-2 on average (Figure 2.8b).  
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Three-dimensional LMA mapping 
 

Three-dimensional maps of LMA were generated using the combination of the  

far SWIR PLSR model to estimate top-of-canopy LMA and Eq 2.2. to estimate within-canopy 

LMA. Overall accuracy of the coupled model considering both top-of-canopy LMA and within-

canopy LMA estimates was high (R2 = 0.82; RMSE: 8.5 g m-2). 

 We applied the model to entire study area and highlight a subset of the CHEQ site in 

three different visualizations of the 3D patterns in LMA: a horizontal map (Figure 2.9a), a profile 

view across a transect (Figure 2.9b) and vertical profiles for several forest types along the 

transect (Figure 2.9d).  

The horizontal map displays LMA at three heights: top-of-canopy, 5 m into the canopy 

and 10 m into the canopy, in the red, blue and green channels, respectively. Areas with relatively 

high LMA throughout the canopy are colored white, and include an open-grown oak stand (Oo) 

and aspen stand (Ta) annotated on the map. Purple regions, like the thinned oak stand (To), 

indicate relatively high LMA in the lower canopy, while the darkly colored maroon regions 

indicate relatively low LMA throughout the canopy and are generally representative of sugar 

maple stands (Sm). 

 

Discussion  
 

Here we demonstrate a novel method using imaging spectroscopy to estimate top-of-

canopy LMA and lidar-derived metrics of within-canopy environmental gradients to map 3D 

profiles of within-canopy LMA. Our model works within northern temperate broadleaf forests 

and is independent of information on horizontal or vertical species composition. Prior studies 
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have used imaging spectroscopy to map top-of-canopy LMA or scaled whole-canopy LMA, but 

this study is the first of its kind to map LMA at discrete intervals throughout the canopy. 

The straightforward and computationally efficient lidar transmittance metric we used 

captured a large portion of the variation in within-canopy LMA. From a technical perspective, 

our comparison of transmittance window sizes highlights the importance of sufficient lidar beam 

penetration to accurately characterize understory conditions through the depth of the canopy. In 

addition to increasing the number of lower canopy returns increasing the window size also 

accounts for the neighboring canopy structure which impacts the local light environment. For our 

dataset a window size of 20 m enabled measurement of enough discrete lidar returns to 

accurately represent 3D variation in canopy structure as it controls vertical distribution in LMA. 

We found increasing window beyond 20 m provided no benefit to modeling within-canopy LMA 

because of decreasing spatial autocorrelation in canopy structure, thus providing less horizontal 

detail in the vertical structure of canopies. For data collected under different sensor 

configurations this may differ as the ability of a lidar sensor adequately characterize canopy 

structure is not only a function of characteristics of the canopy itself, but also the lidar sensor 

properties, including wavelength, beam power, divergence and return density (Lim et al. 2003; 

Morsdorf 2009; Jakubowski et al. 2013). 

Other methods exist for estimating transmittance from discrete return lidar, but usually 

require a priori knowledge of species composition and age classes to define light extinction 

coefficients (Parker et al., 2002). We developed our method explicitly to operate independent of 

species composition information, which potentially makes it more flexible for application in new 

study areas lacking such information. Full waveform lidar offers the potential to provide greater 

detail on structural characteristics of forest canopies driving within-canopy radiation regimes 
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compared to discrete return lidar, but was not used in this study due to a sensor malfunction. 

Waveform processing methods such as deconvolution and decomposition offer the ability to 

extract a greater number of returns (Zhou et al., 2017) or estimate backscattering cross sections 

(Wagner et al., 2006), that may relate more specifically to leaf/plant area. 

Our modeling results highlight the importance of an accurate estimate of top-of-canopy 

LMA to characterize within-canopy vertical variation in LMA. We found that restricting the 

wavelength region to the far SWIR (2000 – 2450 nm) resulted in the best performing model, this 

region of the spectrum is known to contain absorption features related to dry matter content 

including proteins, starch, sugars and cellulose (Curran 1989; Jacquemoud et al., 1996). 

Conversely models built using the full VNIR-SWIR range performed poorly, possibly a result of 

overfitting to pigment absorption features or canopy structure induced effects that are not 

generalizable across the entire dataset. Inclusion of top-of-canopy LMA as a predictor improved 

within-canopy model performance compared to models using only height and transmittance 

metrics as predictors (R2: 0.69 vs. 0.78; Supplemental Table S2.1). The top-of-canopy LMA 

serves two roles in the 3D model: first, it acts as a starting point for the within-canopy gradient 

of decreasing LMA and, second, it defines the slope of the relationship between LMA and 

transmittance, as plots with higher top-of-canopy LMA show steeper LMA declines within the 

canopy—i.e., larger values for the 𝜏%&''()(ℎ) ∙ (𝛽( +	𝐿𝑀𝐴"#$ ∙ 𝛽) +	𝑟ℎ%&'(ℎ) ∙ 𝛽*) term in 

Equation 1 (see b coefficients in Table 2.3). The interaction terms in Eq. 2.2 modify the 

transmittance slope to account for the fact that LMA largely converges to a small range of values 

at the bottom of the canopy (~20-40 g m-2) irrespective of the value at the top of the canopy, 

where the range of LMA is large (~50-120 g m-2). Interestingly, our results suggest a generalized 

relationship describing within-canopy decreases in LMA in these temperate broadleaf deciduous 
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forests, independent of either canopy species or subcanopy species identity (Figures 2.6b and 

2.6c). Our field data demonstrate that in multi-species plots, where species vary through the 

vertical profile, trends in LMA generally follow a continuous pattern regardless of species 

turnover (illustrated for individual plots in Fig. S2.6). Moreover not only do we see LMA decline 

within a given tree of a species, there is also vertical species-turnover that corresponds to shade 

tolerance, and these shade tolerant species also have lower LMA as well. The fact that these 

patterns can be modeled using remote sensing may enable testing the generality of the 

relationship across a range of broadleaf forest types.  

Our model used relative rather than absolute height above ground as an independent 

variable, and moreover we show that absolute height had a weaker explanatory power than 

relative height (Supplemental Table S2.1). While others have shown a strong relationship 

between LMA and absolute height (Koch et al., 2004; Cavaleri et al., 2010), these studies have 

focused on much taller trees than in our study area. We expect that hydraulic constraints may 

play a weaker role in regulating LMA through the canopy in these northern temperate forests, 

and expect that a similar model may need to leverage absolute height for taller forests in which 

absolute height plays a more significant hydraulic role on leaf development. It is not clear what 

physiological process relative height captures in our model, although it may simply be 

compensating for limitations in characterizing lower canopy vertical structure due to lidar beam 

attenuation or covarying with other environmental conditions driving LMA variation like 

temperature, humidity or windspeed. 

Ultimately, the utility in our new approach will be the generation of voxels to represent 

3D trait variation, potentially applicable for modeling canopy processes. However, our 2-

dimensional maps of 3D patterns in LMA reveal unique patterns not visible from the visible 
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imagery (Figure 2.9a,c). In particular, the maps highlight the legacies of logging, selective 

logging and other disturbances. This results in highly variable, but spatially coherent patterns in 

within-canopy LMA that is otherwise obscured by relatively dense stands. Of note are the 

variable patterns seen in the three oak stands highlighted in Figure 2.9, a thinned oak stand (To), 

a closed canopy oak stand (Co) and an open-grown oak stand (Oo). At the top of the canopy the 

thinned and closed stands show similar values in LMA, 104 and 105 g m-2, respectively, while 

the open-grown stand is much higher at 119 g m-2. This difference may be a result of site-specific 

differences in local microclimate and/or soil moisture in the open-grown site relative to the 

closed and thinned sites, resulting in higher LMA (Potter et al., 2001; Abrams et al., 1994). 

However, when comparing within-canopy gradients in LMA the closed and thinned sites quickly 

diverge. The closed stand shows a sharp decline in LMA through the canopy while the within-

canopy gradient of LMA in the thinned stand is shallower owing to increased light penetration, a 

pattern that is consistent with experimental treatments (Chiang and Brown, 2010). A key insight 

from this effort is not only that canopy structure is spatially heterogeneous and hence so is full-

canopy LMA, but that this variation may be significant to our understanding of within-canopy 

processes. This also important for understanding patterns of forest function, as the majority of 

temperate forests in this region have undergone some level of stand management or disturbance 

that is not apparent in passive imaging. 

While this study focused on within-canopy patterns of LMA, other physiologically and 

ecologically relevant foliar traits also vary along canopy environmental gradients, including 

concentrations of total non-structural carbohydrates (Niinemets 1997) and phosphorus (Leuning 

et al., 1991), and chlorophyll to nitrogen ratios (Koike et al., 2001). Although not included in this 

study due to a lack of validation data, we also estimated a suite of traits using fresh-leaf and dry-
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ground spectroscopic models and found significant within-canopy patterns in several traits 

correlated with lidar transmittance including sugar concentration, chlorophyll A content and 

xanthophyll cycle pigment content (violaxanthin, antheraxanthin and zeaxanthin (VAZ)) 

(Supplemental Figure S2.5).  VAZ, which play a photoprotective role in leaves and are known to 

correlate positively with light levels/transmittance, showed the strongest relationship with 

transmittance among the traits estimated (R2 = 0.49)  (Niyogi 1997; Hansen et al., 2002). 

Here we focused on a single period of the growing season, but LMA is known to vary 

through the course of the growing season (Reich 1991; Yang et al. 2016). In addition to seasonal 

variation in absolute values of LMA, there may also be phenological variations in the 

relationship between top-of-canopy LMA and within-canopy LMA as it relates to forest vertical 

structure. For example, Coble et al. (2016) found that drivers of within-canopy variability in 

LMA in sugar maples varied during the growing season, driven by height early in the growing 

season and light environment later in the growing season. This suggests future directions of 

research in both ecological and remote sensing research testing the extent to which the 

relationships we describe are generalizable throughout the course of the growing season. This 

may also necessitate further testing the extent to which species identity conditions temporal 

patterns in 3D LMA.  

As well, this study is specific to northern temperate broadleaf forests, and was not tested 

on similar species in other biomes, nor on physiognomically or physiologically different tree 

types such as conifers and evergreen broadleaves. We expect that different forest types will 

exhibit a generalizable pattern, a decrease in LMA with depth into the canopy, but due to 

differences in resource allocation strategies and canopy structure, the shapes of the relationships 
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will differ. Future testing of the generality of our model could apply the model to different forest 

types to identify how model coefficients change by taxa.  

Our mapping of 3D patterns in LMA has the potential to be coupled with recent efforts to 

model vertical LAI profiles and leaf area density using lidar (Tang et al., 2012; Kamoske et al., 

2019) as a basis to estimate full canopy foliar biomass and nutrient content for use as inputs into 

fire (Perry et al., 2004), nutrient cycling (Grimm et al., 2003) and carbon accounting models 

(Hudiburg et al., 2009). Extensive airborne and spaceborne lidar (e.g., GEDI) combined with 

imaging spectroscopy may enable better characterization of the distribution of within-canopy 

processes, even if wall-to-wall mapping is not yet possible. Multi-layer canopy photosynthesis 

models that incorporate expected variation in physiologically important traits throughout the 

canopy can provide more accurate estimates of assimilation rates than more generalized methods 

like big-leaf models (Raulier et al.,1999). However, at present, most models do not explicitly 

include 3D variation in foliar traits.  

 

Conclusion  
 

This study is the first to employ imaging spectroscopy and lidar together to map 3D 

patterns in LMA, an important canopy functional trait that is widely used to characterize 

photosynthetic capacity of forests. Our method accurately estimated horizontal and vertical 

variation in LMA in broadleaf forests without taking into account species composition (R2 = 

0.82; RMSE: 8.5 g m-2). Our work is an initial step, with further research into the generality of 

the relationships needed across different sensors, ecosystems and through time. As well, the 

integration of these data products into ecosystem process models requires testing. Critical to this 

research was the availability of coincident free and open high-resolution leaf-on lidar and 
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imaging spectroscopy data, which until the NEON AOP was deployed was rare. Separately, each 

technology addresses different needs, but the true value of imaging spectroscopy and lidar may 

be in their combined, complementary use.  Finally, new or planned spaceborne hyperspectral (ie. 

PRISMA, HISUI, CHIME and SBG) and lidar systems (GEDI) will provide opportunities to 

build on our work and quantify full-canopy physiological variation on a global scale. 
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Tables 
 

 

 

Table  2.1 Field sampling summary 

 
Species 

 
Plots 

 

 
Branches 

Top-of-canopy 
branches 

Mean 
Branch  

LMA (g m-2) 

Range 
Branch  

LMA (g m-2) 
Acer rubrum 10 33 2 52.6 33.0 - 86.1 

Acer saccharum 39 301 22 40.5 23.2 - 94.9 
Betula alleghaniensis 4 24 1 41.5 25.0 - 90.1 

Betula papyrifera 7 30 4 51.5 29.7 - 102.6 
Corylus cornuta 9 12 0 35.9 26.1 - 49.8 

Fraxinus americana 8 24 7 61.2 20.2 - 102.8 
Fraxinus nigra 7 51 7 51.8 26.2 - 100.4 

Ostrya virginiana 8 17 0 28.5 23.5 - 36.3 
Populus grandidentata 7 44 8 72 49.4 - 102.0 
Populus tremuloides 13 64 21 74.1 52.9 - 102.1 

Prunus spp. 6 13 2 56.4 36.6 - 88.6 
Quercus rubra 18 144 21 71.7 32.2 - 120.7 
Tilia americana 9 43 6 49.1 20.2 - 87.4 

Ulmus americana 1 11 1 43.5 25.3 - 68.9 
 

 

 
 

 

Table  2.2 Cross-validated PLSR top-of-canopy LMA results 

  Training Test 
Wavelengths 

(nm) 
Components R2 RMSE %RMSE R2 RMSE %RMSE 

400 - 2450 7 0.71 8.75 12.6 0.39 12.68 18.27 
800 - 2450 6 0.7 8.84 12.74 0.46 11.91 17.15 
1600 - 2450 6 0.73 8.49 12.24 0.54 10.99 15.83 
2000 - 2450 6 0.73 8.39 12.08 0.57 10.67 15.37 
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Table  2.3 Within-canopy mean permuted model coefficients 

 

 

 

 

 

 

Table  2.4 Within-canopy LMA cross-validation metrics by species 

Species R2 RMSE NRMSE 
Acer rubrum 0.69 8.13 0.15 

Acer saccharum 0.5 7.02 0.13 
Betula alleghaniensis 0.8 8.53 0.13 

Betula papyrifera 0.86 5.62 0.09 
Corylus cornuta 0.7 5.72 0.24 

Fraxinus americana 0.78 9.37 0.11 
Fraxinus nigra 0.63 8.37 0.14 

Ostrya virginiana 0.35 6.08 0.47 
Populus grandidentata 0.84 6.38 0.15 
Populus tremuloides 0.5 8.6 0.3 

Prunus spp. 0.51 9.71 0.27 
Quercus rubra 0.77 11.14 0.13 
Tilia americana 0.75 7.33 0.13 

Ulmus americana 0.91 6.5 0.15 
 

 

Coefficient Estimate 
b0 40.19 
b1 -0.80 
b2 -34.83 
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Figures 
 

 

 
Figure 2.1 Three-dimensional LMA modeling workflow. 
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Figure 2.2 Flight boxes and sampling boundaries for the three sites 
within the NEON Great Lakes ecoregion. 
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Figure 2.3 Example of varying lidar penetration depth from two plots: a 
trembling aspen stand (a,c) and sugar maple stand (b,d); a-b) profile view of all 

returns; c-d) upward looking field photos from each plot. Both plots have a large 
number of returns from the upper canopy and few to no returns from the middle 
of the canopy. In the aspen stand the lack of returns from the middle canopy is 
consistent with branching structure seen in the field photos, while the lack of 

returns in the maple stand is the result of near complete beam attenuation in the 
upper canopy. 
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Figure 2.4 Distribution of sampled branches as a function of height and 
relative height. Note: some branches have relative heights slightly greater 
than 1 as a result of an underestimation of maximum canopy height by the 

lidar sensor. 
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Figure 2.5 Out-of-sample validation results for the top preforming top-of-canopy PLSR 
model using wavelengths 2000-2450 nm. a) Mean predicted versus observed; b) residuals; c) 

PLSR model coefficients; X-axis error bars on a and b indicate +/- 1 standard deviation of 
out-sample LMA estimates across five cross-validation iterations; Y-axis error bars indicate 
+/- 1 standard deviation of within-branch field measured LMA. Dot colors indicate top-of-

canopy species composition. 
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Figure 2.6 Comparison of field-measured within-canopy LMA against 
the three within-canopy covariates: a) height, b) transmittance and c) 

relative height. 
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Figure 2.7 Out-of-sample results for best-performing within-canopy LMA model. a) 
Predicted versus observed scatter plot; b) Residual plot; X-axis error bars indicate +/- 1 

standard deviation of out-of-sample LMA estimates across 5 cross-validation iterations; Y-
axis error bars indicate +/- 1 standard deviation of within-sample field measured LMA 
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Figure 2.8 Distribution of within-canopy residuals grouped by a) species and b) crown class. 
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Figure 2.9 Results of three-dimensional LMA model applied to CHEQ (90.069 °W, 45.795° N). a) 
Two-dimensional RGB representation of three-dimensional patterns in LMA, R: Top-of-canopy LMA, 

G: LMA 5m into canopy, B: LMA 10m into canopy. b) Profile view of LMA transect; c) True color 
RGB image d) Height versus LMA for a set of individual 5 m pixels from forest types located on 
transect. Forest types: Thinned oak (To), Sugar maple (Sa), Trembling aspen (Ta), Young mixed 

deciduous (Yd), Closed canopy oak (Co), Open- grown oak (Oo). 
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Supplemental materials 

 
 
 
 

175

70

Top-of-canopy sampler
Materials: 12.7mm (0.5 in) red oak, 3.175mm (0.125 im) steel
Notes: Steel sheet sandwiched between two pieces of oak
adhered with epoxy and fastened with screws
Units : mm
By: A. Chlus

Line tie point

No screw

Line tie point

No screw

1:2

1:2
1:1

Sharpened

Figure S2.1 Top-of-canopy sampling device schematic 
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Figure S2.2 Comparison of lidar transmittance window width and performance metrics 
RMSE and R2 for within-canopy LMA model (Eq. 2); (�) In-sample metric, (�) out-of-

sample metric. 
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Figure S2.3 Leaf-level spectroscopic model calibration results for 2016 data 
collected with an ASD Field Spec 3 
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Figure S2.4 Leaf-level spectroscopic model calibration results for 2016 data 
collected with a Spectral Evolution PSR-3500+ 
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 Figure S2.5 Linear regressions between within-canopy variables height (left column) 
and transmittance (right column) and fresh-leaf and dry-ground spectroscopic trait 

estimates. 
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3. Characterizing seasonal variation in foliar biochemistry in a temperate broadleaf forest 
using imaging spectroscopy  

 
 
Contributors:  Adam Chlus, Eric L. Kruger & Philip A. Townsend  

 
Abstract 

 Foliar biochemical traits are important indicators of ecosystem functioning and health 

that are difficult to characterize at large spatial and temporal scales using traditional 

measurements. However, comprehensive inventories of foliar traits are important to 

understanding ecosystem responses to anthropogenic and natural disturbances, as inputs into 

ecosystem process models, and for quantifying spatial variation in functional diversity. Imaging 

spectroscopy has been demonstrated as a valuable tool for developing maps of ecologically 

important foliar traits at large scales, but its application to mapping foliar traits over the course of 

the growing season has been limited. We collected high-resolution imaging spectroscopy data 

over Blackhawk Island, Wisconsin, USA at eight time points during the 2018 growing season 

(May - October). Using partial least squares regression (PLSR) we developed predictive models 

applicable to all dates to produce canopy-level maps of nine traits related to ecophysiological 

function: chlorophyll content, leaf mass per area and concentrations of nitrogen, lignin, fiber, 

phenolics, calcium, phosphorus and potassium. The accuracy of our models varied across traits 

(R2: 0.55-0.93), traits with well-defined absorption features were retrieved with the highest 

accuracy including chlorophyll (R2: 0.93; %RMSE: 8.0) and total phenolics (R2: 0.86; %RMSE: 

11.0). We tested the primary drivers of trait variation and found that phenology (date) explained 

the greatest amount of variation for all traits with the exception of total phenolics for which 

species explained 75% of the variation. Macronutrients (N, P and K) showed general trends of 
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decreasing concentration over the course of the year, reflecting dilution by carbon-rich 

compounds during the growing season and resorption during senescence. Conversely, 

recalcitrant compounds including lignin, fiber and calcium increased until late summer, after 

which they stabilized. Using this data-driven approach, some traits required data collected across 

the entire growing season to develop general predictive models, indicating that trait-spectra 

relationships may vary across the growing season. These results demonstrate the potential of 

current and proposed spaceborne imaging spectroscopy missions for mapping seasonal foliar 

biochemistry at a global scale. 

 
 
Introduction  

Foliar biochemical traits are dynamic properties of plants that vary through space and 

time and are linked to a multiple ecosystem processes, including primary productivity and 

nutrient cycling (de Bello et al. 2010). Foliar traits include biochemical properties related to 

photosynthesis, such as chlorophyll and nitrogen, structure and decomposition, including fiber 

and lignin, and defense, like condensed tannins and other phenolic compounds. Understanding 

how these functional traits vary through space and time is important for developing accurate 

ecosystem process models, for predicting ecosystem response to change and understanding 

patterns in community assembly (Ito et al. 2006; Reichstein et al. 2014). In general, studies that 

use functional traits to assess patterns in community composition and ecological function make 

use of mean trait values for species (Albert et al. 2011). However, variability in functional traits 

is known to be scale dependent and driven by both taxonomic and environmental factors (Albert 

et al. 2010; Messier et al. 2010, 2017). Moreover, ecosystems with strong seasonal patterns, like 

temperate deciduous forests, display significant variation in foliar traits as leaves develop and 



 
 

 

152 

senesce; this variation in turn drives intra-annual patterns in ecosystem processes (Reich et al. 

1991; Salminen et al. 2004; Noda et al. 2015).  

Studies dating to the early 20th century have reported on the seasonal variation in foliar 

biochemical traits and demonstrated that interannual patterns vary between species, within 

species, and across locations (McHargue and Roy 1932; Alway et al. 1934; Sampson and 

Samisch 1935; Chandler 1939). In a review of more than 20 studies, Turner et al. (1977) found 

that the direction of intra-annual trends (increasing, decreasing or stable) in foliar nutrient 

concentrations was not universal. In general, with elemental concentrations, calcium and 

manganese increase during the growing season, while nitrogen, phosphorus and potassium 

decrease, and boron, copper and magnesium (Mg) are stable throughout the year. Other studies 

have reported on seasonal patterns in more complex compounds including pigments (Schertz 

1929; Sanger 1971), phenolics (Schultz et al. 1982; Salminen et al. 2004; Zehnder et al. 2009), 

nonstructural carbohydrates (McLaughlin et al. 1980; Flower 2007) and lignin (Martin and Aber 

1997; Zehnder et al. 2009). 

 Trait-based ecology has emerged due the relative ease with which functional traits can be 

measured compared to their underlying physiological processes. This has led to the development 

of trait databases such as TRY (Kattge et al. 2020), which have enabled global-scale analyses of 

the variation in and drivers of ecosystem function (Díaz et al. 2016). Despite their relative ease 

of measurement, there are limits to the density of measurements, spatial extent and temporal 

richness at which functional traits can be quantified using in-situ sampling and laboratory 

analysis before efforts become prohibitively costly. Leaf-level spectroscopy represents a viable 

alternative for rapidly and nondestructively measuring foliar functional traits (Asner and Martin 

2011; Serbin et al. 2014, 2019; Couture et al. 2016), which in turn has vastly increased the 
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amount of data available to characterize evolutionary, taxonomic and environmental sources of 

trait variation (Asner et al. 2014; Nunes et al. 2017; Mereiles et al. 2020). Imaging spectroscopy 

has now also emerged as a valuable technology for further expanding the scale at which foliar 

functional traits can be measured. By developing relationships between canopy spectra and field 

measured leaf traits, maps of these traits can be generated at large spatial scales. These maps 

have been used characterize relationships between canopy traits and precipitation (Asner et al. 

2005), geomorphology (Chadwick and Asner 2016), soil chemistry (Chadwick and Asner 2018), 

and land use (Swinfield et al. 2020). However most studies using imaging spectroscopy to map 

foliar traits have largely focused on a single point in time, namely the peak of the growing season 

(Martin and Aber 1997; Asner et al. 2008; Asner et al. 2015; Singh et al. 2015; Wang et al. 

2020), whereas foliar traits are known to vary throughout the course of the growing season and 

are most dynamic during shoulder seasons following leaf out and over the course of senescence 

(Reich et al. 1991; Yang et al. 2016). 

Remote sensing of phenology has historically been studied within the context of 

greenness using the normalized difference vegetation index (NDVI), or similar indices like the 

enhanced vegetation index (EVI), as metrics of vegetative vigor (Duchemin et al. 1999). 

Greenness indices are valuable for representing large-scale phenological patterns due their ease 

of computation and compatibility with a wide variety of remote sensing platforms (e.g. Landsat, 

MODIS, Sentinel). However, these indices are largely capturing variation in pigment content and 

leaf/canopy structure, whereas other ecologically relevant foliar traits may not exhibit the same 

temporal patterns (Wu et al. 2009). With its high spectral resolution, full-range (400-2500 nm) 

imaging spectroscopy provides the ability to resolve narrowband absorption features associated 

with biochemical traits not discernible from broadband sensors (Curran 1989). Few studies have 
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used imaging spectroscopy to study phenological patterns of foliar biochemistry of natural 

ecosystems (Matson et al. 1994), mostly due to lack of data. At the leaf level, trait-spectra 

relationships vary across the course of the growing season, and predictive models developed 

using leaves from on time point and introduce biases in prediction on leaves from a different 

point in the growing season (Yang et. al. 2016). This is expected to transfer to the canopy level, 

but the magnitude of the effect remains untested.  

In this paper, we demonstrate the application of imaging spectroscopy to track changes in 

foliar biochemistry across a growing season in the temperate deciduous forest on Blackhawk 

Island, Wisconsin. Using data from eight airborne imaging spectroscopy acquisitions in 2018 

combined with field data, we map variation in nine canopy traits related to growth (chlorophyll, 

nitrogen), structure (fiber, LMA, lignin), defense (total phenolics) and mineral acquisition 

(calcium, phosphorus and potassium). We also test the temporal sensitivity of our data-driven 

trait mapping algorithms to time of year. Finally, we apply our model to the entire time series of 

imagery and characterize the spatiotemporal patterns in canopy biochemistry across the course of 

the growing season.  

 

Methods 

Study area 
 

Blackhawk Island is a 73-ha island located in the Wisconsin River near Wisconsin Dells, 

WI, USA (43.65° N, 89.79° W). Blackhawk Island has a long history of ecological research, 

including some of the earliest studies linking decomposition processes, species composition and 

primary productivity (Pastor et al. 1984). The island has variable topography, with steep slopes 

along the river edge and relatively flat terrain in the center of the island, at its highest point it 
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rises 33 m above the river. Five soil orders are present on the island, including Alfisols, Entisols, 

Incepticols, Histosols and Spodosols (Pastor et al. 1984). Forest community composition on 

Blackhawk Island is closely related to soil properties (Pastor et al. 1982). Canopy dominant 

species are primarily oaks (Quercus alba and Q. rubra), pines (Pinus resinosa and P. strobus), 

and maples (Acer rubrum and A. saccharum), with seven other species present to a lesser extent 

as canopy dominants (Figure 3.6).  Aboveground production is driven by soil texture and N 

mineralization, with mineralization rates a function of N and P return to the soil in leaf litter and 

litter quality variation due to species (Pastor et al. 1984, 1982). As a consequence of these and 

other studies, Blackhawk Island has also been the site of numerous studies that have used 

imaging spectroscopy to map canopy biochemistry (Martin and Aber 1997; Singh et al. 2015), 

and is the site where Wessman and colleagues first demonstrated the potential for hyperspectral 

imagery to map ecosystem-relevant foliar traits (Wessman et al. 1988), especially as drivers of 

decomposition processes. 

 

Remote sensing data 
 

Imaging spectroscopy data was collected using a HySpex airborne imaging system 

(Norsk Elektro Optikk As, Skedsmokorset, Norway). The system consists of two cameras, a 

VNIR-1800 camera, which measures radiation between 400-997 nm across 186 channels with a 

spectral sampling interval of 3.26 nm, and a SWIR-384 camera, which covers 975-2500 nm and 

measures radiation at 288 channels with a spectral sampling interval of 5.45 nm. The cameras 

were mounted on a vibration-dampening platform with an iTraceRT F400-E GPS/IMU (iMAR 

Navigation GmbH, St. Ingbert, Germany). The imaging system was flown aboard a Cessna 180 

at a nominal altitude of 700 m above ground level, resulting in a spatial resolution of 0.5 m for 



 
 

 

156 

the VNIR camera and 1.0 m for the SWIR camera. Each overflight consisted of nine flightlines 

with 60% sidelap. A total of eight overflights were flown between 16 May and 17 October, 2018, 

and all flights were conducted +/- 2 hours of solar noon (Table 3.1).  

Raw image data were converted to radiance using manufacturer-provided calibration 

coefficients. A spectral calibration was performed using a feature-matching algorithm to correct 

wavelength shifts (Gao et al. 2004). Camera alignment and geometric registration were 

performed using PARGE 6.0 orthorectification software (RESE, Wil SG, Switzerland). 

Calculation of apparent surface reflectance from at-sensor radiance was performed using an 

inverse algebraic atmospheric correction algorithm with the ‘libRadtran’ radiative transfer code 

(Emde et al. 2016) based on the method of Adler-Golden et al. (1999). Total column water vapor 

was estimated by flightline using the depth of the water vapor feature at 940 nm (Carrere and 

Conel 1993). Visibility, which was high during all overflights, was set to a constant of 50 km. 

Following atmospheric correction, a bidirectional reflectance distribution function (BRDF) 

correction was applied to remove brightness gradients resulting from varying sun and sensor 

geometry using the approach described in Chlus et al. (2020). Briefly, using sensor and sun 

geometry, we modeled the volumetric, geometric and isometric scattering components using the 

Ross-Li scattering kernel (Colgan et al. 2012; Schläpfer et al. 2014). For each date we pooled 

data across all flightlines and generated a single set of BRDF correction coefficients by 

regressing the resulting kernels against the uncorrected reflectance data for each wavelength. The 

VNIR imagery was aggregated and averaged to 1 m to match the spatial resolution of the SWIR 

camera. Image data from both cameras were combined at 980 nm to create a single full range 

(400-2500 nm) image for each flightline. Spectrum tails (<450 nm and >2300 nm) and water 

absorption bands were excluded from analysis due to low signal-to-noise ratios. Individual 
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flightlines were merged to create a mosaic of the island for each date; in overlapping regions the 

pixel with the smallest viewing zenith angle (i.e. closest to nadir) was selected (Figure 3.2). 

  

Foliar sampling 
 
 Within eight days of each overflight we collected foliage from 7-11 trees. To ensure that 

our field-derived foliar measurements were from trees identifiable in the imagery we sampled 

trees that had crowns greater than 5 m in diameter. From each tree we sampled two large (~1 m) 

branches from the sun exposed top of the canopy. Branches were sampled using either 

extendable pole pruners or a custom-built cutting device (described in Chlus et al. 2020). From 

each branch we measured the reflectance of 20 leaves with a PSR 3500+ spectrometer (Spectral 

Evolution, Boston, MA, USA) equipped with a leaf clip to estimate leaf-level foliar traits using 

spectroscopic models. Of those 20 leaves, we measured the one-sided area of three leaves using a 

flatbed scanner to calculate leaf mass per area (LMA) and retained a single leaf for pigment 

analysis to validate the spectral models. We combined the remaining 16 leaves with an additional 

20-30 leaves from each branch for bulk chemical analyses. All foliar samples were stored in 

plastic bags with a damp paper towel in coolers with ice until the end of each day when they 

were frozen in liquid nitrogen and stored in a -20° C freezer until further processing. In addition 

to foliar sampling, we also recorded the species, diameter at breast height (DBH), crown shape of 

each tree sampled and made a general site characterization. We recorded tree locations with a 

differentially corrected GeoXM or Geo7x GPS receiver (Trimble Inc., Sunnyvale, CA, USA). 

Over the course of the study period, a total of 80 trees were sampled representing 11 broadleaf 

species (Table S3.1).   
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Sample processing 
 

Bulk foliar samples were dried in a lyophilizer (> 120 hr) and ground using a Wiley Mill 

(Thomas Scientific, Swedesboro, NJ, USA) equipped with a #20 mesh (0.841 mm). Spectral 

measurements were then made on the dried and ground samples with an ASD Fieldspec 3 

spectrometer (Analytical Spectral Devices, Boulder, CO, USA) following Serbin et al. (2014). A 

subset of ground samples was analyzed for concentraations of elements (N, P, K, Ca) (n=27), 

total phenolics (n=48) and acid-digested lignin, cellulose and fiber (n=27). Elemental 

concentration was determined using combustion analysis (N) and inductively coupled plasma 

emission spectroscopy (Ca, K, P) (Gavlak et al. 2004). Total phenolics concentration was 

determined using the Folin-Ciocalteu method (Ainsworth and Gillepsie 2007), and fiber and 

lignin concentrations were determined using a hot-acid detergent extraction (Couture et al. 

2012). Leaves measured for leaf area were dried for >72 hr in a 68° C oven and weighed on a 

precision balance (0.0001 g) to determine dry mass. LMA was calculated by dividing measured 

dry mass by leaf area. Chlorophyll A content was measured on a subset of samples (n= 61) using 

high performance liquid chromatography (HPLC) following Schweiger et al. (2018).   

Spectroscopic models were then used to estimate foliar biochemistry for all samples. 

Estimation of foliar traits from reflectance spectra is a well-established method for rapidly and 

accurately estimating foliar biochemical properties (Asner et al. 2008; Serbin et al. 2014; Yang et 

al. 2016). Fresh leaf-level reflectance spectra were used to estimate LMA and chlorophyll A 

content, while spectra of dried and ground samples were used for the estimation all other traits. 

Models were built using partial least squares regression (PLSR) using ‘scikit-learn’ in Python 

(Pedrogosa et al. 2011). PLSR models were calibrated with data from three independent datasets: 

Serbin et al. (2014), Wang et al. (2020) and Chlus et al. (Chapter 1: Chlus et al. 2020) and 
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validated against the subset of samples from Blackhawk Island described above that were 

measured using laboratory techniques. Models for all traits were built using the SWIR region of 

the spectrum (1200-2500 nm), with the exception of chlorophyll A models that used the VNIR 

(400-800 nm). Prior to model building, each spectrum was normalized to its mean to remove 

brightness differences, similar to normalization used in other studies (Feilhauer et al. 2010; Kim 

et al. 2013). The optimal number of model components was determined by minimizing the cross-

validated predicted residual sum of squares (PRESS). A series of 500 calibration models was 

generated, each built using a random 70 percent of the calibration data. These models were then 

applied to the independent (fully withheld) validation dataset and the mean trait value across the 

500 models was calculated for each sample and compared against the observed trait value. 

Model performance was assessed using the coefficient of determination (R2), root mean squared 

error (RMSE) and normalized RMSE (NRMSE) (Table S3.2). Following the accuracy 

assessment, 500 new permuted models were built using the entire dataset and were applied to all 

fresh and ground spectra. Any negative trait predictions were truncated to zero. 

 

Canopy trait mapping 
 

Trait maps were generated using PLSR, predicting canopy-level traits as a function of 

HySpex imaging spectroscopy. Canopy-level traits were derived by simple averaging of all leaf-

level trait estimates from each crown. Canopy spectra of sampled trees were extracted from the 

imagery using manually digitized crown polygons and averaged, resulting in a single spectrum 

per tree. We used all pixels from a crown, including both sunlit and shaded components, as this 

is more representative of canopy spectra than using sun-facing pixels exclusively, and also better 
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facilitates comparison with coarser-resolution data expected from forthcoming satellite missions. 

Similar to the leaf-level models we mean-normalized the canopy spectra prior to analysis.  

To test the impact of phenology on the predictive ability of our models, we split the 

growing season into three periods: early (May 16 - July 25), middle (June 29-Sept 10) and end of 

season (Aug 13 - Oct 17). We chose overlapping periods to ensure sufficient sample size for 

calibration and so that each period had approximately the same number of samples. We kept 

track of the percent overlap in trait values between each seasonal period to use as a diagnostic of 

cross-season PLSR model performance. For each period we developed a PLSR model using data 

from the within-period dates and applied the model to the out-of-period dates, we then calculated 

the R2, RMSE and NRMSE of the predicted values. The optimal number of model components 

was determined by minimizing the cross-validated PRESS statistic calculated on the calibration 

dataset. This analysis was conducted to evaluate whether trait/spectra relationships change 

through time, and to assess the consequences of using trait models built using data from a season 

that differs from the season of the imagery.   

Finally, we built a model using data from all dates by randomly dividing the data 70:30 

into calibration and validation and repeated the same model building steps used for generating 

permuted leaf-level models. The resulting permuted models were applied to all images in the 

time series and the mean trait estimates and their standard deviations were calculated for each 

pixel. For analysis, we masked pixels whose values were outside +/-15% of the range of field 

measured traits. 

All image models were built using the SWIR region of the of the spectrum (1200-2300 

nm), with the exception of chlorophyll A (450 - 750 nm; Gitelson and Merzylyak 1996) for 

which we aimed to exploit pigment absorption features, and total phenolics (1600-1700 nm), in 
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which we aimed to exploit a 1660 nm phenolics feature (Kokaly and Skidmore 2015). The 

remaining traits were predicted using only the SWIR spectrum because the primary absorption 

features associated with those traits are located in the SWIR (Curran 1989), but also to reduce 

confounding influence of pigment-related spectral features in the visible that may correlate with 

non-pigment traits and to limit the influence of canopy structure in the NIR wavelengths. 

 

Species classification 
 
 Species classification was performed using an object-oriented (segmentation) 

classification approach, in which both spatial context and spectral signatures are used to 

delineate trees. Image segmentation was performed using the Shepherd segmentation algorithm 

(Shepherd et al. 2019) implemented using the Python library ‘RSGISLib’ (Bunting et al. 2014). 

Shepherd segmentation uses an iterative process of grouping spectrally similar regions of pixels 

until all regions reach a user-defined minimum mapping size, which we established as 25 pixels 

(25 m2) to correspond to the minimum crown size sampled. The segmentation was performed on 

a five band composite of principal component (PC) images from three dates 16 May (PC bands: 

2, 4, 5), 04 June (PC band: 4) and 29 June (PC band: 4). We used multiple dates to exploit 

phenological and spectral differences among canopy trees. The PC transformation was 

performed to reduce the dimensionality of the data, thus improving processing time and limiting 

data redundancy. We visually inspected the PCs and chose for segmentation those that showed 

the greatest amount of contrast between neighboring crowns. Late season images were not used 

as testing demonstrated that they provided no improvement in segmentation results. 

After segmentation, species classification was performed using a random forest classifier 

built with 100 trees using the ‘scikit-learn’ library in Python (Pedrogosa et al. 2011). For each 
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segment we calculated the mean value of all contained pixels for each band across seven dates, 

this resulted in 2821 features per segment (403 bands x 7 dates). Imagery from October 17 was 

excluded due to irregular senescence of deciduous species across the island. To reduce the 

dimensionality of the data we applied a PC transformation and retained as predictor variables the 

first 99 components, which explained 99.99% of the variance in the data. Species labels for 

training and testing of the classifier were derived from a combination of field data collected in 

2018 and 2019 and photointerpretation, yielding a total of 347 individual trees representing 13 

species. We excluded species for which there were less than three individuals found on the 

island, including yellow birch (Betula alleghaniensis), cottonwood (Populus deltoides) and elm 

(Ulmus sp.). We used the crown center locations associated with the identified trees to select the 

corresponding image segments. The data were then split 50:50 into training and testing data, 

stratified by species. A classification model was built with the training dataset and used to label 

the testing dataset, on which we calculated accuracy metrics. After accuracy assessment the 

classifier was rebuilt using all of the data and applied to all image segments to make a map to 

intersect with the trait maps. We retained the classification probability of each segment to use in 

subsequent analyses to filter data based on confidence of its species label.  

 

Variance partitioning 
 

We performed a variance component analysis to identify sources of variation in foliar 

traits derived from the imaging spectroscopy data. Variance components were extracted using a 

linear mixed-effects model fit in R using the package ‘lme4’ (Bates et al. 2018) as follows: 

 

T = µ  + Species/Segment + Date + Soil type  + e 
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where T is the observed trait value, µ is the trait mean, Species, Segment, Date, Soil are random 

effects and e  is the unexplained variance which also includes within-segment variance. Segment 

refers to the unique crown or crown element mapped during the species classification and 

includes numerous pixels of which trait estimates that are classified as a single species. The 

nested effects Species/Segment account for interspecific and intraspecific variance. Soil refers to 

soil type derived from a soils map of Blackhawk Island by Pastor et al. (1982). The soil map was 

manually digitized using a combination of a hig- resolution (1 m) lidar DEM collected in 2010 

and historical aerial photography (See Figure S3.1). Date refers to each image acquisition date 

for which traits are estimated (Table 3.1). Image segments were used to extract pixel-wise foliar 

trait estimates from trait maps. We excluded edge pixels between segments to reduce edge-effect 

mixing of pixels from neighboring trees (Figure S3.2). To reduce computational complexity, ten 

pixels were randomly selected from each segment. To reduce uncertainty in the variance 

partitioning, only segments whose species classification probability was greater than 0.5 in the 

random forest classification were used. Here we treat segments as individual tree crowns. 

However, we note that in many cases large individual trees were divided into multiple segments 

in the object-oriented portion of the classification, and are therefore best described as crown 

elements.  
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Results 

Canopy trait models 
 

The results of the full-season PLSR model validation exhibited strong predictive 

performances for most traits (R2: 0.47-0.93), and, with the exception of fiber, the NRMSE was 

less than or equal to 20% (Figure 3.3; Table 3.2; see Table S3.2 for detailed metrics).  

Performance of models developed for one season and applied to different seasons varied 

across traits (Table 3.2). Total phenolics was estimated with high accuracy regardless of the date 

(R2: 0.8-0.9, NRMSE < 15%), whereas nitrogen models calibrated using data from seasonal 

subsets all performed poorly (R2 ≤ 0.07). In contrast, the full-season nitrogen model performed 

considerably better (R2 : 0.79). Structural traits including fiber, LMA and lignin exhibited 

generally similar patterns in model performances and showed the highest accuracies when 

calibrated with mid-season data (R2: 0.64-0.7). Conversely, chlorophyll A model performance 

was best for the early and end of the season models where values spanned 80-100% of the range 

of the validation data, compared to mid-summer where chlorophyll content values were captured 

only 50% of the range. Calcium, phosphorus and potassium showed inconsistent patterns across 

the season, but all three improved substantially with the full-season model, especially calcium. 

Across all traits, model performance metrics (NRMSE and R2) did not correlate with percent of 

overlap in trait values between the time periods being compared (p > 0.5). For example, the data 

range of LMA for the early time period (16 May- 25 July) overlaps 77% with the other two time 

periods (i.e., LMA generally lower earlier and higher later in the growing season), but the fact 

that the data ranges were unequal was unrelated to the relatively poor performance of the early 

season LMA model on mid- and late-season data (R2: 0.02) (Table 3.2).  
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Species classification 
 
 The accuracy of the classifier was high (Overall accuracy: 87.9%; Cohen’s kappa: 0.86; 

see Table S3.3 for details). All of the most common species on Blackhawk Island were 

accurately classified (both producer’s and user’s accuracy), while uncommon species such as 

white ash and silver maple had lower accuracies. Red oak (Q. rubra) was the most common tree 

species on Blackhawk Island (43% cover), followed by white pine (P. strobus) (18%) and sugar 

maple (A. saccharum) (13%), with all other species having less than 10% cover. 

 

Variance partitioning 
 

Species and date (i.e., phenology) were the primary drivers of differences among the 10 

mapped traits (Figure 3.4), but the relative importance of each among traits was highly variable. 

For chlorophyll, fiber, lignin, LMA, phosphorus and potassium, phenology accounted for the 

greatest proportion of variance (55% on average). Species accounted for the majority of variance 

in total phenolics (76%), while for all other traits it accounted for less than 32% of the total 

variance, although species did account for the largest amount of explained variance in calcium, 

and nitrogen. A majority of the variance was unexplained for nitrogen (53%). The amount of 

variance explained by soil type was low for all traits (mean: 0.43%) and was highest for 

potassium (1.03%) and lowest for total phenolics (0.0%). Similarly, within-species effects 

accounted for a small proportion of the total variance (mean: 3.1%) with calcium having the 

largest proportion (4.6%). Interestingly, across all traits the amount of unexplained variance was 

positively correlated with the number latent vectors used in building the PLSR model (r: 0.85, p 

< .01). Models with a larger number of components, despite validating similarly or better than 
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lower-component models, resulted in noisier trait maps. This noise resulted in an increase in 

within-canopy variability which is captured in the residual variance. 

 

Seasonal patterns 
 

Species-averaged trait trajectories varied across the course of the growing season (Figure 

3.5). Traits associated with leaf structure, including LMA, lignin and fiber, displayed similar 

species ordering from low to high values on all dates, and followed a generally similar trend of 

increasing values until leveling off in the late summer. Calcium displayed a similar trend, but 

species ordering differed from LMA, lignin and fiber, with T. americana and C. cordiformis 

accumulating calcium at the fastest rate among the five broadleaf species. Chlorophyll A content 

trajectories showed the greatest dynamic range among all traits with a two-fold increase and 

decrease across the growing season. All species had similar seasonal trends but showed 

differences in phenological timing. Nitrogen, potassium and phosphorus decreased in 

concentration as the season progressed, but rates of decrease varied among traits and species. 

After full leaf expansion, nitrogen concentration was stable during the peak of the growing 

season before declining in late September, while phosphorus and potassium exhibited a gradual 

and continuous decline across the growing season. Seasonal trajectories of phenolics varied most 

widely across species in both magnitude and direction. A. rubrum had the highest phenolics 

concentration among the common species on Blackhawk Island, and gradually increased until 

mid-summer after which it exhibited a gradual decrease. Non-Acer species displayed a U-shaped 

seasonal pattern, with the highest concentrations of phenolics early and late in the season. 

We visualized the trait maps by generating three band composite images across four dates 

in the growing season and summarized the species-average patterns in the six most common 
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broadleaf species on the island (Figure 3.6). We displayed total phenolics, LMA and potassium 

in the red, green and blue bands, respectively, as these traits have different seasonal trajectories 

and show distinct patterns in species sorting (Figure 3.5). For visualization, each trait value was 

first normalized to 5-95 percentile range across all four dates, then for each date and pixel, traits 

values were normalized to their sum. On 16 May broadleaf species are characterized by 

relatively high concentrations of total phenolics and potassium and low LMA.  Beginning on 04 

June, non-maple species exhibit a relative decrease in total phenolics content captured by the 

shift in color from purple to blue. As the season progressed, LMA increased across all species 

resulting in an island-wide shift towards green on the map. In both the July and September 

composite images there are distinct groupings in tri-variate trait space of species: those with high 

LMA, low phenolics and low potassium (red and white oak), those with low LMA, high 

phenolics and low potassium (red and sugar maple) and species with low LMA, low phenolics 

and high potassium (basswood and bitternut hickory). 

 

Discussion 

  Using a time series of imaging spectroscopy data over a single growing season, we 

developed maps of canopy foliar traits to characterize phenological variation in a temperate 

broadleaf forest. We demonstrate that accurate maps of canopy traits can be derived using a 

single cross-seasonal model per trait and that these models accurately characterize interspecific 

trait trajectories (Figure 3.5). The performance of the full-season models closely matches the 

"peak-season" models of Wang et al. (2020), who used imaging spectroscopy to map canopy 

traits in biomes across the eastern United States. Models that performed best included those with 

strong absorption features in the VSWIR spectrum (400-2500 nm), including chlorophyll (R2: 
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0.93) and total phenolics (R2: 0.86). Other traits, like calcium, despite performing comparatively 

poorly (R2: 0.55), still accurately captured interannual trends and species ordering as reported in 

the literature (Chandler 1939; Chandler 1941; Insley et al. 1981; Cote and Fyles 1994).  

 We tested the sensitivity of canopy-level PLSR models to seasonality and found that the 

influence of seasonality on relationships between spectra and traits is not universal across traits. 

For example, models for estimating total phenolics performed well at other times of year 

regardless of the time of year for which the model was built, in contrast to nitrogen which 

performed poorly except when built using data from the entire growing season. We also found 

that model performance was not correlated with the amount of variation represented in the data 

used for model calibration. We performed this analysis under the assumption that trait data from 

one time of the season may not be representative of the trait data range for other parts of the 

season. This suggests that seasonal variation in the trait data range does not drive model 

performance, but rather that for some traits there is a seasonally dependent trait-spectra 

relationship that is not directly related to the range of trait measurements. Specifically, other 

factors – presumably unmeasured – confound the predictive relationship unless they are captured 

in the dataset. Unlike leaf-level spectroscopy, which allows for the collection reflectance 

measurements under controlled conditions (i.e. leaf clip or integrating sphere), imaging 

spectroscopy presents a number of external factors that introduce errors and biases in canopy 

reflectance retrievals. These include radiometric calibration, atmospheric correction and BRDF 

correction (Weyermann et al. 2013; Thompson et al. 2018), as well as other factors such as the 

crown architecture and the presence and relative density of understory vegetation. These impacts 

can be seen in our data where on certain dates trait retrievals appear systematically biased across 
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all species, however, these biases are not universal across traits and are likely a function of 

model wavelength weightings (Figure 3.5).  

 Coupling our trait maps with species composition and soil type maps, we were able to 

characterize the sources of variation in foliar traits. Past studies use field measurements to 

examine the variance structure of foliar traits, while our study is the first to our knowledge to 

demonstrate the utility of imaging spectroscopy for variance partitioning of foliar traits 

seasonally. Variance component analysis showed that the dominant source of variation for most 

traits was phenology. An exception was total phenolics, for which species explained 75% of the 

variation, compared to just 5% for phenology. This illustrates that phenolics are strongly 

phylogenetically controlled, in contrast to seasonal variation being more prominent in the other 

traits we studied. We found that soil class explained little to no variance in canopy traits. This 

result does not indicate that soils do not impact canopy traits but that relative to other drivers like 

taxonomy and phenology, the effect was small on Blackhawk Island. Moreover, the lack 

variation may be a result of the coarse nature of the soil maps, which do not capture fine-scale 

variation in soil properties that may exist within soil classes that may affect individual trees. We 

expect that soils would likely have a greater impact with finer detail and over greater spatial 

scales. Nevertheless, data-driven approaches require adequately capturing the expected range of 

trait variability, including sampling through time and across species, as was shown for leaf level 

studies by Yang et al. (2016). 

  The trends in mapped chlorophyll content reflect the well documented phenological 

patterns of green-up and senescence observed from spaceborne platforms (Melaas et al. 2013; Li 

et al. 2019). However, with the high spatial resolution of the HySpex airborne sensor, we also 

detected variation in phenological phenomena among species, which can be seen in basswood (T. 
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americana) (Figure 3.5). After an early peak, on 29 June chlorophyll content decreased in 

basswood as a result of the formation of yellow-green bracts during the flowering phase which 

obscured green foliage (See Figure S3.3). These bracts act as wings aiding in seed dispersal 

(Scholtz 1958) and detach at the end of the fruiting stage, after which chlorophyll content once 

again increased (Figure 3.5). Our maps also captured the variability in phenological timing 

between species, most notably the delayed development of bitternut hickory and early 

senescence of sugar maple. 

 Phenological patterns in total phenolics closely matched those reported in the literature 

for the same or similar species. Rossiter et al. (1988) and Louis et al. (2009) both observed that 

phenolic concentrations in Quercus species were highest immediately following leaf emergence 

and stabilized at low levels after full leaf expansion, mirroring the patterns observed in Quercus 

species at Blackhawk Island. High concentrations of phenolics early in the growing season may 

inhibit herbivory before the development of unpalatable structural compounds like lignin 

(Lambers and Poorter 1992). Similar to our results, Shultz et al. (1982) found that sugar maple 

reached a maximum level of total phenolics in June and remained relatively steady through the 

growing season. While phenolic compounds are generally studied within the context of plant-

herbivore interactions, the analytical method we used to measure total phenolics is sensitive to a 

broad range of phenolic compounds that differ in identity both among species and within a 

species during a single growing season (Nicol 1997; Appel et al. 2001). As such, it is difficult to 

interpret the causation underlying intra-annual patterns or interspecific differences; however 

beyond their role in plant-herbivore interactions phenolics are also associated with 

photoprotection, nutrient stress, cold acclimation and litter decomposition rates (Dixon and Paiva 

1995; Close and MacArthur 2002; Pennycooke et al. 2006; Hattenschwiler and Jorgensen 2010) 
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 Nutrients related to growth, including nitrogen, potassium and phosphorus, all decreased 

in concentration during the course of the growing season, as a consequence of dilution by 

increased content of carbon-rich structural compounds as leaves develop (Chapin 1980), and 

resorption at the end of the growing season (Killingbeck 1996). In contrast, calcium, which plays 

an important role in cell wall formation, increased as the growing season progressed, but is not 

resorbed due to its low mobility in phloem (Guha and Mitchell 1966; Zipkin 1973; Day and 

Monk 1977). Similar patterns were observed in fiber, lignin and LMA, which increase in 

concentration during the season, reflecting an investment in structural compounds as leaves 

develop (Groenevel et al. 1998; Poorter et al. 2009).  

 Our results demonstrate that imaging spectroscopy can be used to accurately map a suite 

of foliar biochemicals traits across the course of the growing season. While our study site was 

small, maps over larger areas with more significant gradients in soils, topography and climate 

may provide clearer insights into drivers of variation in foliar biochemistry than field 

measurements alone. These maps can also provide a framework to understand the impacts of 

phenology on estimates of functional diversity and its contribution to a range of ecological 

functions (Duran et al. 2019). Moreover, seasonal maps of traits may act as inputs into the next 

generation of vegetation models that are able to take advantage of rich information provided by 

imaging spectroscopy beyond basic plant functional types (Berzaghi et al. 2020). 

 In this study we focused on broadleaved deciduous species, and continued work is needed 

to assess the ability of imaging spectroscopy to characterize seasonal variation across a range of 

species and ecosystems. For example, needleleaf species also display seasonal variation in 

canopy biochemistry associated with the development of new needles and remobilization of 

nutrients into existing foliage (Wyttenbach and Tobler 1988; Billow et al. 1994). As well, foliar 



 
 

 

172 

traits can vary significantly in grasslands, for example where species relative dominance changes 

over the course of the growing season such as from C3 to C4 and back to C3 species (Dickinson 

and Dodd 1976). Outside of temperate ecosystems, there is also considerable seasonal variability 

in tropical systems. For example, species in dry deciduous systems would be expected to show 

variability in traits related to leaf structure and water conservation (Ishida et al., 2006; Kenzo et 

al. 2016). Moist tropical systems also exhibit variability, since leaf turnover occurs year-round 

(Hikosaka 2005) and seasonality in Mediterranean systems is likewise variable due to climate 

drivers (Sperlich et al. 2015).  

 Our work focused on a single growing season, but foliar biochemistry also varies from 

year-to-year (Mitchell 1936; Taylor and Parkinson 1987). Plant phenology is known to be driven 

by climatic variation, which thus affects allocation of resources at the leaf level (Shen et al. 

2011; Liu et al. 2016). For instance, long-term trends of increasing temperatures are associated 

with earlier spring green-up (Cleland et al. 2007; Dai et al. 2019), for which imaging 

spectroscopy could provide an approach to document resulting impacts on foliar traits. 

Numerous other factors likewise alter phenological timing and could be expressed in foliar traits, 

including biotic forcings, such as herbivory (Lemoine et al. 2017) as well as plant development 

stage and ontogeny (Augspurger and Bartlett 2003; Grassi et al. 2005). However, our 

understanding of patterns and drivers interannual variation in seasonal dynamics of foliar 

biochemistry is limited to few species or localized areas, largely due to the challenges of making 

in-situ measurements. Continued long-term imaging with airborne and future spaceborne 

spectroscopy missions will provide a better understanding of the role of climate, environment 

and ontogeny in driving intra-annual variability in foliar biochemistry and subsequent impacts on 

ecological processes.   
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The launch of future spaceborne imaging spectroscopy missions will provide the 

opportunity to map seasonal variation in foliar biochemistry on a global scale. However 

continued research is needed into the impacts of spatial resolution on biochemistry retrievals. For 

example, the high spatial resolution of our imagery allowed us to develop and apply our models 

on individual trees and mask non vegetated areas. The lower spatial resolution (20-30m) pixels 

of current and future spaceborne imagers will be composed of species mixes, as well as canopy 

gaps (possibly with understory vegetation present), shadows and non-vegetated areas in addition 

to vegetation. In particular, the presence of multiple species in a single pixel may make 

interpretation of spatiotemporal patterns in foliar biochemistry and functional diversity 

challenging. 

 Our study site had relatively low species diversity (< 15 broadleaf species), whereas 

highly diverse ecosystems like tropical forests can have hundreds of species in a comparable area 

(Keil and Chase 2019).  Globally, there are over 300,000 vascular plant species (Christenhusz 

and Byng 2016) and over 60,000 tree species (Beech et al. 2017), which has been a strong 

justification for utilizing a trait- rather than species-based approach to characterizing ecosystems 

and their function. However, given the diversity of plants on Earth, further investigation is 

needed into the feasibility of a developing global, cross-seasonal predictive models to map foliar 

traits or whether locally-optimized models are more appropriate. Models for some traits like 

chlorophyll and total phenolics, which have relatively well characterized absorption features, 

may be well suited for a global model approach. In contrast, traits like calcium, for which the 

underlying relationship between trait and spectra remains unclear, may require ecosystem-

specific modeling. Moreover, the choice of predictive algorithm on seasonal trait retrievals 

warrants further investigation. We chose PLSR, a data-driven approach, for developing our 
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mapping algorithms. However, other empirical methods have also been used mapping foliar 

traits from imaging spectroscopy including Gaussian process models (Verrelst et al. 2012; Wang 

et al. 2019) and neural networks (Mutanga and Skidmore 2004). Radiative transfer models 

(RTM), like 4SAIL (Verhoef et al., 2007) and INFORM (Atzberger 2000), provide an alternative 

method for trait retrieval using a physically-based approach to model light transmission as a 

function of canopy and leaf properties (Schlerf and Atzberger 2006). RTMs also have been used 

to estimate traits across the growing season at the leaf level (Gara et al. 2019), however the 

catalog of biochemical traits retrieved using RTMs is limited to those with well-defined 

absorbance properties. 

 

Conclusion  

In this study we used imaging spectroscopy to characterize the variation in foliar 

biochemistry in nine traits across the course a growing season in a temperate broadleaf deciduous 

forest. Our method used a single cross-seasonal model to map foliar biochemistry at eight time 

points from May to October, but we also tested the consequences of using models from one part 

of the growing season to map traits in another. We demonstrate that seasonal patterns in foliar 

traits are highly variable, both spatially and temporally, and highlight that date of image 

collection can significantly impact inferences made about ecosystem processes. Our research 

illustrates that when using data-driven methods to map canopy traits, models will generally need 

to be developed using data representing all of the seasons being mapped. Our analyses show that 

phenology (date of acquisition) accounted for the greatest proportion of variation in foliar traits 

at Blackhawk Island, followed by taxonomy (species). Continued work is needed to assess this 

approach across a broader range of ecosystems and with other ecologically relevant biochemical 
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traits, as well as at the scale of spaceborne imaging spectroscopy. This work demonstrates the 

potential for future spaceborne imaging spectrometers to map ecologically important seasonal 

variations in foliar biochemistry. Trait maps from imaging spectroscopy which will provide 

spatial context to both inform and complement databases of field measurements (e.g. Kattge et 

al. 2020) and modeled predictions of global traits (e.g. Butler et al. 2017, Moreno-Martinez et al. 

2018), while potentially also providing inputs to drive and/or validate earth system models.  
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Tables 
 
 

 

Table  3.1 Imaging spectrometer collection summary. 

Overflight date Mean local 
acquisition time 

Local 
solar noon 

Mean solar zenith 
angle 

May 16 2018 12:22 12:55 25° 
June 04 2018 11:19 12:57 29° 
June 29 2018 12:18 13:02 22° 
July 25 2018 13:38 13:05 25° 

August 13 2018 14:26 13:03 34° 
September 10 2018 12:18 12:56 39° 
September 26 2018 12:40 12:50 45° 

October 17 2018 12:22 12:44 53° 
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Table  3.2 PLSR model seasonal sensitivity metrics. Early: May 16 - Jul 25; Middle: June 29 - 
Sept 10; End: Aug 13 - Oct. 17; Full: May 16 - Oct 17. Overlap indicates the percent the 
calibration dataset trait values overlap the validation dataset values. R2 values in parentheses are 
calibration metrics. 

   Time period 
Trait Units Metrics Early Middle End Full 

Calcium % mass R2 0.23 (0.7) 0.0 (0.6) 0.01 (0.55) 0.55 (0.69) 
  NRMSE 43.99 60.96 39.27 17 
  Overlap 0.62 1 0.86 1 
  Components 7 5 5 7 

Chlorophyll A µmol •m2 R2 0.9 (0.91) 0.57 (0.7) 0.91 (0.91) 0.93 (0.91) 
  NRMSE 15.66 23.58 12.85 8 
   Overlap 0.8 0.5 1 1 
  Components 3 2 3 4 

Fiber % mass R2 0.59 (0.76) 0.65 (0.64) 0.55 (0.69) 0.47 (0.76) 
  NRMSE 16.17 16.02 20.23 23 
   Overlap 0.92 0.77 0.79 0.77 
  Components 5 5 4 5 

Lignin % mass R2 0.45 (0.77) 0.7 (0.58) 0.29 (0.72) 0.56 (0.74) 
  NRMSE 18.5 13.94 24.81 20 
  Overlap 0.96 0.77 0.79 0.73 
  Components 5 5 5 5 

LMA g •m2 R2 0.02 (0.78) 0.64 (0.66) 0.38 (0.57) 0.77 (0.8) 
  NRMSE 37.88 16.55 19.4 11 
  Overlap 0.82 0.58 0.86 1 
  Components 3 5 3 6 

Nitrogen % mass R2 0.06 (0.6) 0.07 (0.56) 0.0 (0.79) 0.79 (0.95) 
  NRMSE 42.79 36.16 38.22 12 
  Overlap 0.7 0.66 0.93 1 
  Components 4 3 4 12 

Phosphorus % mass R2 0.12 (0.88) 0.29 (0.54) 0.19 (0.61) 0.72 (0.94) 
  NRMSE 26.04 30.0 22.02 16 
  Overlap 0.95 0.96 0.71 0.8 
  Components 7 3 4 10 

Potassium % mass R2 0.24 (0.9) 0.4 (0.89) 0.71 (0.85) 0.82 (0.89) 
  NRMSE 26.58 28.47 19.19 12 
  Overlap 0.94 0.95 0.73 0.8 
  Components 8 9 8 9 

Total phenolics % mass R2 0.9 (0.9) 0.8 (0.92) 0.89 (0.91) 0.86 (0.91) 
  NRMSE 9.57 12.09 9.74 11 
  Overlap 1 0.95 0.86 0.92 
  Components 3 3 4 3 

 
 
 
 
 
 
 
 
 
 



 
 

 

183 

Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Map of Blackhawk Island with locations of sampled trees. 
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Figure 3.2 True color RGB mosaics of HySpex imaging spectroscopy data for each overflight 
date. 
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Figure 3.3 Canopy-level PLSR independent validation results, predicted versus observed 
scatterplots. Note: Validation and calibration splits were repeated for each trait, as such species 

makeup varies across trait validation data. 
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Figure 3.3 Variance partitioning results 
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Figure 3.4 Species-wise average foliar traits trajectories derived from imaging spectroscopy 
for five broadleaf species on Blackhawk Island. Trajectories were fit using 2nd (LMA, total 

phenolics), 3rd (nitrogen, phosphorus, potassium) and 4th (chlorophyll A) order polynomials or 
a spherical model (calcium, fiber, lignin).  Sugar and red maple (A. saccharum, A. rubrum) 
and basswood (T. americana) are not shown for October as nearly all trees had dropped all 

their leaves. Bitternut hickory (C. cordiformis) was not shown for May as most trees had not 
leafed out. 
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Figure 3.5 Top two rows: RGB composite images of total phenolics (red), LMA 
(green) and potassium (blue) at four time points during the growing season. For each 

date the species wise averages of the six most common broadleaf species are shown on 
the ternary legend. Bottom left: species map, only trees with 30% classification 

probability are shown, to exclude canopy gaps, shadows and low growing vegetation. 
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Supplemental materials 
  

 

 

 

 

 

 

 

 
Figure S3.1 Soil map delineation datasets: a) Georeferenced soil map from Pastor et al. 1982; b) 
Lidar hillshade model; c) Digitized soil map; d) Panchromatic aerial image collected in 1938. We 
subdivided soil class 4 into two soil classes given the distinct topographic difference on the west 
side of the island, while the aerial image from 1938 was used to delineate the boundaries of soil 

class 8. 
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Figure S3.2 Example of segment erosion, top, original 
segmentation results, bottom, segments after one pixel erosion 
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Leaves (dark green) 
 

Bracts (yellow) 
 

Figure S3.3 Examples of bract formation on basswood (Tilia 
americana) trees. Top: Photo of a basswood tree on a residential street in 
Madison, Wisconsin, USA demonstrating an extreme example of bract 
coverage on a canopy. Bottom: Branch collected from a basswood tree 

in this study. 



 
 

 

192 

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

Table S3.1 Summary of sampled species 

 
Species 

 
Code 

May 
16 

Jun 
04 

Jun 
29 

Jul 
25 

Aug 
13 

Sep 
10 

Sep 
26 

Oct 
17 Total 

Acer rubrum ACRU 0 2 1 2 0 2 1 0 8 
Acer saccharum ACSA 2 1 1 2 3 1 1 1 12 

Acer saccharinum ACSN 1 0 0 0 1 0 0 0 2 
Betula alleghaniensis BEAL 0 0 0 0 0 1 1 0 2 

Betula nigra BENI 1 0 1 0 0 1 0 0 3 
Carya cordiformis CACO 0 1 1 0 1 1 0 1 5 

Fraxinus americana FRAM 0 1 1 1 1 1 1 1 7 
Populus grandidentata POGR 0 1 0 1 0 1 0 1 4 

Quercus alba QUAL 1 2 2 2 2 1 1 1 12 
Quercus rubra QURU 2 2 2 2 2 1 1 2 13 
Tilia americana TIAM 1 1 1 1 0 1 1 0 6 

Total  8 11 10 11 10 11 7 7 80 
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