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Introduction

Foliar biochemistry varies through space and time and is linked to a number of important
ecosystem processes including primary productivity and nutrient cycling (de Bello et al. 2010).
Sometimes referred to as 'functional traits' or simply 'traits', they include properties related
photosynthesis, such as chlorophyll and nitrogen content, structure and decomposition, including
carbon and lignin content, and defense, like condensed tannins and phenolic compounds.
Characterizing the spatiotemporal variability in biochemical traits is important for accurately
parameterizing ecosystem process models (Reichstein et al. 2014). Most studies that have used
functional traits to assess patterns in community composition and ecological function generally
use mean trait values for species (Albert et al. 2011). However foliar biochemical traits are
known to show a significant amount of intra-specific variability that is scale dependent and
driven by both genetic and environmental factors (Albert et al. 2010; Messier et al. 2010;
Messier et al. 2017). Trait-based ecology has become increasingly common due the relative ease
with which traits can be measured compared to underlying physiologic processes they are related
to. However, in spite of this, there is a limit to the density of measurements, spatial extent and
temporal richness at which functional traits can be quantified using traditional field techniques
before efforts become prohibitively costly.

Over the past several decades, spectroscopy has emerged as a valuable technology for
expanding the scales at which foliar biochemical traits can be measured. Spectroscopic
estimation of foliar traits is predicated on the development of relationships between light
reflectance, absorbance and/or transmittance and a biochemical quantity. Driving these
relationships are the presence of spectral absorption features associated with electron transitions

and bending and stretching in chemical bonds (e.g., C-H, C-O, N-H and O-H) within compounds



that comprise plant materials (Curran 1989). Research in the 1950's and 60's in agronomy first
demonstrated to utility of spectroscopy for the retrieval of biochemical properties, where it
provided an alternative method for characterizing forage quality (Norris et al. 1976; Shenk 1979;
Shenk and Westerhaus 1994). Since then, the catalog of biochemical compounds estimated from
spectroscopic measurements has come to include minerals (Clark et al. 1987), trace elements
(Clark et al. 1989), carbohydrates (Ramirez et al. 2015), secondary metabolites (Smyth and
Cozzolino 2011; Couture et al. 2016) and pigments (Gitelson and Merzlyak and 1996).
Historically, spectroscopic estimation of foliar biochemistry has utilized dried and ground foliar
samples (Norris et al. 1976; Wessman et al. 1988a). However fresh leaf spectra can also be used
to estimate foliar biochemistry (Asner et al. 2008; Serbin et al. 2019). Unlike dry ground spectra,
fresh spectra can be collected nondestructively without removing leaves from a plant to allow for
repeat measurements. However, the presence of water in fresh leaves can obscure molecular
absorption features.

Despite the widespread use of chemometric models for estimating foliar biochemistry
from both fresh and dry spectra data, generalized models which can be used with confidence are
lacking. Models tend to be developed using a small number of species (Vazquez et al. 1995;
Ourcival et al. 1999) or at a single point in the growing season (Roelofsen et al. 2014; Serbin et
al. 2014). These perform well so long as the model is applied within the constraints of the data
used to generate it. Models that generalize well must be developed using data that cover the
range of plausible leaf characteristics and are thus able to leverage generalized features in the
spectrum.

While both dry and fresh spectral models provide rapid and reliable measurements of

foliar biochemistry, the scales on which they can be applied is limited. Early research in the



1980’s demonstrated the capability of imaging spectroscopy to map canopy-level biochemistry
including nitrogen and lignin (Wessman et al. 1988b), and further research by Martin and Aber
(1997) and Ollinger and Smith (2005) linked remotely sensed canopy biochemistry to ecosystem
processes, especially primary production. By developing relationships between canopy spectra
and field measured foliar traits, maps of these traits can be generated at large spatial scales, and
with repeat collections both seasonally and from year-to-year, temporal patterns can also be
observed. Despite the demonstrated value of imaging spectroscopy to map canopy biochemistry,
it has not become widely used largely due to the lack of availability of imagery and the
challenges of working with the high-dimensional data. With the exception of the satellite-borne
EO-1 Hyperion sensor (2001-2017), most available spectroscopy data until recently have been
from aircraft campaigns over specific targeted areas and collected in support of limited scientific
objectives. For the most part, ecosystem studies using multiple sites or years have focused on
characterizing mid-season (i.e., peak greenness) foliar characteristics (Martin et al. 2018, Singh
et al. 2015, Wang et al. 2020) at single time intervals. Other large-scale studies (Asner and
Martin 2009; Chadwick and Asner 2018) have been mostly concentrated in the tropics and only a
single study (Matson et al. 1994) has specifically targeted intra-seasonal utilization of imaging
spectroscopy for mapping canopy biochemistry.

Foliar traits vary not just horizontally, but also vertically within canopies (Niinemets et
al. 1997; Cavaleri et al. 2010; Coble et al. 2014), which may be important to how we utilize
mapped traits to parameterize photosynthetic function within models (Cavaleri et al. 2010; Coble
et al. 2014; Rogers et al. 2017). Although this variation has been noted in spectral studies (e.g.,
Serbin et al. 2014), and some studies have endeavored to characterize “whole canopy” traits such

as nitrogen (Smith et al. 2002; Martin et al. 2008), no published studies have explicitly addressed



within-canopy trait variation in mapping studies using imaging spectroscopy. The ability to
address variations in foliar traits has expanded beyond single “peak greenness” applications with
the availability of new data sets such as NEON’s Aerial Observation Platform (AOP).

In my dissertation, I address these gaps in the course of three chapters. In my first chapter
I developed generalized spectroscopic models to estimate 27 biochemical traits including
pigments, macro- and micronutrients, structural and defensive compounds using spectra from
both fresh leaf and dried and ground samples. Models were built using broadleaf and graminoid
samples collected across the entire growing season representing over 100 species. I also
investigated the extent to which known spectral features are associated with specific traits. In the
second chapter I combined extensive field data with coincident imaging spectroscopy and lidar
data to model and map the three-dimensional patterns in leaf mass per area (LMA) in a broadleaf
deciduous forest. In the third chapter of my dissertation, I used a time series of imaging
spectroscopy data collected over the course of a single growing season coupled with field data to
map intra-annual patterns in nine foliar biochemical traits. I used the resulting maps to
characterize the extent to which phenology, taxonomy and environment drive variation in foliar

biochemistry.



Chapter overviews

Chapter 1. Fresh vs. dry: A comparison of generalized spectroscopic models for estimating

broadleaf and graminoid biochemistry.

Chlus, A., Erker, T., Wang, Z., Kruger, E.L., & Townsend, P.A.

To be submitted to Methods in Ecology and Evolution.

Field spectroscopy has become increasingly prevalent for the rapid estimation of foliar
biochemistry (Asner and Martin 2008; Cheng et al. 20011; Nunes et al. 2017). In the past
spectral measurements of dry ground foliar samples have been the predominant method used in
lab-based near-infrared spectroscopy (NIRS) (Norris et al. 1976; Shenk 1979). While spectral
measurements on dried and ground samples can provide accurate estimates for numerous
biochemical properties, they also have limitations in that they require destructive sampling of
foliar tissue and transport of samples from the field, either of which can be infeasible. However,
fresh leaf reflectance using a leaf clip can be made rapidly in situ and often without detaching
foliage, allowing for repeat measurements. For some traits, especially those with absorption
features obscured by water absorption bands, dry spectra models outperform fresh spectra
models (Lacaze and Jofre 1994; Martin and Aber 1994; Jacquemoud et al. 1995), but for many
traits these differences have not been assessed. Regardless of measurement type (fresh leaf or
dried and ground), accurate, generalized spectroscopic models require data that are

representative of the range of conditions that drive the variability in foliar biochemistry,



including time (i.e., phenology), geography (i.e., environmental variation), ontogeny, plant
and/or leaf developmental stage and taxonomy/phylogeny (Yang et al 2016).

To develop generalized models and assess the relative merits of each approach, I
performed a comprehensive analysis in which I aggregated linked fresh and dry ground spectra,
and wet chemistry data for 27 foliar biochemical properties including pigments (chlorophylls,
carotenoids and xanthophylls), macronutrients (N, P, K, Ca, Mg and S), micronutrients (B, Cu,
Fe, Mn, Z), aluminum, carbohydrates, structural and defensive biochemical traits. This dataset
consisted of broadleaf and graminoid samples, totaled over 100 species and included samples
collected across the course of the growing season and throughout the continental United States. I
built paired PLSR models for each trait using both fresh leaf and dry ground spectra and
compared their performances and tested the impact of wavelength region on predictive ability.
Finally, to assess the relationships between spectra and traits I performed a correlation analysis
using a wavelet transform of the reflectance spectrum.

I found that Ca, N, cellulose, lignin, sugars and total phenolics were estimated with high
confidence using dry spectra (validation R?: > 0.6), while chlorophylls A and B and leaf mass per
area were estimated with high accuracy using fresh spectral measurements. Other biochemical
properties including B, K, P, Mg, flavonoids and carotenoid pigments were estimated with
moderate confidence (R?: > 0.4). With the exception of pigments, the top performing models for
each trait utilized the SWIR (1000-2500 nm) regions of the spectrum, while all pigment models
utilized the VNIR region (400-1000 nm). Generally, pairwise correlations between spectrally
derived traits retained the same directionality as pairwise correlations between laboratory derived
traits, but correlations increased in magnitude with spectral estimates, i.e., positive correlations

became more strongly positive and negative correlations more negative.



Using the wavelet transform to assess the relationships between spectra (fresh leaf or
dried and ground) and traits, I found that for N, phenolic compounds, carbohydrates and
chlorophyll, wavelengths associated with electron transitions or molecular bonds present in these
compounds were strongly correlated to laboratory measurements, but some features were
obscured by water absorption bands in the fresh leaf spectra. In contrast, other traits, including P
and K, which lack strong or known absorption features, were correlated at wavelengths with
absorption features attributed to proteins, carbohydrates or phenolics, indicating their retrieval
was a consequence of their correlation with these compounds, a result of their role in regulating
their production or transport.

The results of this chapter highlight that neither fresh nor dry spectral measurements are
optimal for estimating the full suite of traits, but together can be used in conjunction with
traditional analytical techniques (for validation) as a reasonable approach to estimate traits for

extensive sample data sets.

Chapter 2. Mapping three-dimensional variation in leaf mass per area with imaging

spectroscopy and lidar in a temperate broadleaf forest

Chlus, A., Kruger, E. L., & Townsend, P. A. (2020)

Remote Sensing of Environment, 250, 112043.

Increasingly, imaging spectroscopy data are used to characterize horizontal patterns in
foliar biochemical traits. However, in forest ecosystems foliar biochemical traits are also known

to vary vertically through the canopy, as well as horizontally. The need for vertically detailed



maps of canopy traits has been identified in recent research as important for more accurately
parameterizing ecological models (Cavaleri et al. 2010, Rogers et al. 2017). Multi-layer canopy
photosynthesis models, which incorporate variation in physiologically important traits
throughout the canopy, can provide more accurate estimates of assimilation rates than more
generalized methods like big-leaf models (Raulier et al. 1999). Luening et al. (1995) found that
the choice of canopy nitrogen profiles resulted in a 10% difference in assimilation rate among
models. However, these more complex models are difficult to apply due to the lack of sufficient
information to accurately parameterize vertical trait distributions. One of the most widely studied
and characterized biophysical properties in the context of within-canopy patterns is leaf mass per
area (LMA), the ratio between the projected leaf area and dry mass, which is largely comprised
of structural and nonstructural carbohydrates, proteins, lignin and minerals (Poorter et al., 2009).
LMA—or its inverse, specific leaf area (SLA)—is a central component of the leaf economic
spectrum (LES) representing the tradeoff between growth and defense (Wright et al. 2004;
Poorter et al., 2009).

LMA decreases with depth into the canopy, largely a result of attenuation of light and a
decrease in height-mediated hydraulic constraints (Cavaleri et al. 2010; Niinemets, 2015).
Environmental factors including temperature, wind exposure and humidity, which co-vary with
incident radiation and height, also influence within-canopy LMA (Niinemets 2001; Poorter et al.
2009; Petter et al. 2016; Wu et al. 2016). While numerous studies have explored within-canopy
patterns in LMA through individual tree canopies (Ellsworth and Reich 1993; Aranda et al.
2004), few studies have explored patterns of LMA in vertically heterogenous canopies where

both species composition and architecture vary within the vertical profile.



A lack of vertically explicit maps of canopy traits like LMA is largely due to the
limitations of passive optical sensors in seeing through a canopy surface. Although sub-canopy
elements contribute to the top-of-canopy signal, disentangling them is challenging. Active
sensors like LiDAR are able to detect reflected radiation within a canopy, which can then be
linked to a three-dimensional point distribution in space. However, these signals, while valuable
for reconstructing canopy structure and light environment, provide little information about
important spectral features that are correlated with foliar biochemistry as most LIDAR sensors
are monochromatic. Hyperspectral lidar has been proposed for addressing this shortcoming
(Martinez-Ramirez et al. 2012), and, although promising, the technology is still emerging with
current systems being ground-based and limited to measuring small samples (Hakala et al. 2012,
Nevalainen et al. 2014, Du et al. 2016). As such, traditional imaging spectroscopy provides the
most direct approach to foliar trait estimation, although it is primarily sensitive to top-of-canopy
characteristics. Hyperspectral imagery and lidar are complementary and have been fused in
previous studies (Clark et al. 2011, Puttonen et al., 2010), especially for species identification
(Jones et al. 2010; Dalponte et al. 2012; Naidoo et al. 2012). However, when used together, lidar
data have typically been “flattened” and incorporated as additional explanatory variables to
model a two-dimensional space (i.e. Thomas et al. 2008) rather than being used to extend
modeling to an additional dimension.

In this chapter, I used the demonstrated capabilities of hyperspectral remote sensing to
estimate top-of-canopy LMA and lidar to model canopy environmental conditions related to
variation in LMA (i.e., light transmittance and height) to extend LMA estimates through the
canopy. I collected field data in 2016 and 2017 in the broadleaf deciduous forests of northern

Wisconsin and the Upper Peninsula of Michigan. Plot-level field sampling involved the



10

collection of branches throughout the vertical extent of the canopy. I measured the height above
ground of all sampled branches and calculated the mean branch-level LMA. Field sampling was
coincident with overflights of NEON's Airborne Observation Platform (AOP) which collected
high resolution imaging spectroscopy and lidar data simultaneously.

To map three dimensional patterns in LMA I first used the imaging spectroscopy data
coupled with field measurements of LMA to estimate LMA at the top of the canopy using partial
least squares regression (PLSR). During PLSR model development I also tested how wavelength
range impacted model performance. I then used the lidar data to calculate several within-canopy
variables: absolute height, relative height and metrics of lidar transmittance. Next I tested a series
of models in a regression framework beginning with univariate models and sequentially
increasing model complexity by including additional predictors. These models included
combinations of top-of-canopy LMA, absolute height, relative height, a lidar transmittance
metric.

I found that top-of-canopy LMA was predicted with the highest accuracy using the
shortwave infrared region of the spectrum (2000-2450 nm) (R?: 0.57, RMSE 10.8 g m?) while
the model which included the full range (400-2450 nm) performed the poorest (R%: 0.39, RMSE
12.7 g m2). All three within canopy variables, absolute height, relative height and lidar
transmittance, were significantly correlated with within-canopy LMA (p <.01). The top
performing within-canopy LMA model used the top-of-canopy estimate of LMA as a starting
point for LMA and was decremented as a function of both a lidar transmittance metric and the
relative height within the canopy (R?: 0.78, RMSE 8.3 g m™2). The coupled models accurately
estimated LMA throughout the canopy without taking into account species composition (R?:

0.82, RMSE: 8.5 g m2). While previous work has demonstrated species-agnostic determination
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of top-of-canopy LMA using imaging spectroscopy data, the results here also demonstrate the
ability estimate within-canopy LMA despite vertical species-turnover where top-of-canopy
species differ from understory species.

As part of my analysis I also tested the impact of spatial window size on calculating the
lidar transmittance metric for each data point and subsequent effect on within-canopy model
performance. I found in dense canopies, like those of sugar maples, few lidar returns reached the
understory which in turn resulted in an underestimation of transmittance in the lower canopy.
This impact was reduced by increasing the window size to a diameter of 20 m, which increased

the number of returns in the lower canopy used to calculate lidar transmittance.

Chapter 3. Characterizing seasonal variation in foliar biochemistry in a temperate broadleaf

forest using imaging spectroscopy

Chlus A., Kruger E. L., & Townsend P. A.

To be submitted to Remote Sensing of Environment

Ecosystems are not static, especially those with strong seasonal patterns like temperate
deciduous forests. The functioning of these ecosystems varies during the course of a growing
season from leaf out to senescence (Wehr et al. 2016), but measurement of functional variation,
beyond greenness, especially using remote sensing, is uncommon. However, not accounting for
functional variation can result in biases in ecosystem models (Ito et al. 2006). Direct

measurements of ecosystem functions such as primarily productivity are logistically difficult to
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make and/or map, but foliar biochemical traits can serve as proxies for a number of important
ecosystem processes including growth and defense.

Studying intra-annual patterns in foliar biochemical traits at scales greater than the plot
level is challenging due to the extensive field sampling required to capture the temporal and
spatial variability of both explanatory and response variables. Remote sensing provides a means
to extend field level measurements to landscape and larger scales and characterize environmental
gradients with fine spatial resolution. Traditionally, remote sensing of phenology has been
studied within the context of greenness with the normalized difference vegetation index (NDVI),
a metric of vegetative vigor (Duchemin et al. 1999), and in this chapter I extend the study of
phenology to foliar functional traits.

Full range (400-2500 nm) imaging spectroscopy, with its high spectral resolution,
provides the ability to resolve narrowband absorption features associated with biochemical traits
not discernible from broadband sensors (Curran 1989). Past studies using imaging spectroscopy
to map foliar traits have largely focused on a single point in time, namely the peak of the
growing season, whereas foliar traits are known to vary throughout the course of the growing
season and are most dynamic during leaf out and senescence (Martin and Aber 1997; Asner et al.
2008; Asner et al. 2015; Singh et al. 2015). Only a single study to date (Matson et al. 1994) has
used airborne imaging spectroscopy data to map foliar biochemistry seasonally but was largely
limited to coniferous species and imagery was collected at coarse resolution (20 m) precluding
the assessment of species-specific patterns.

Recent research using leaf-level spectroscopy has indicated that relationships between
spectra and traits vary across the course of the growing season, and that predictive models built

at one point in the growing season may induce a bias when applied at a different phenological
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stage (Yang et al. 2016). This pattern is expected to transfer to canopy-level spectroscopy,
indicating that accurately mapping intra-seasonal patterns in foliar biochemistry will require
spectroscopic models built with data collected across the course of a growing season, something
not currently available.

The overarching goal of this chapter was to develop spectroscopic models to map foliar
biochemistry across the course of a growing season in a temperate broadleaf forest. As part of
this analysis, I also sought to test the influence on seasonality on model performance; that is, can
a model built using data collected in one time of the year accurately predict traits at another time
of year? Using the resulting maps coupled with maps of species composition and soil maps I then
characterized the sources of variation in biochemical traits and compared patterns in interannual
trait trajectories across species.

Between May and October of 2018, we collected high resolution (1 m) imaging
spectroscopy data over Blackhawk Island, Wisconsin, USA at eight time points during the
growing season. Coincident with overflights, I conducted fieldwork to collect top-of-canopy
foliage samples, which, along with fresh and dry spectroscopic models, were used to estimate
nine foliar traits related to ecophysiological function: chlorophyll content, leaf mass per area, and
concentrations of nitrogen, lignin, fiber, phenolics, calcium, phosphorus and potassium.
Combining spectra extracted from the imagery with field data, I developed predictive (PLSR)
models applicable to all dates to produce canopy-level trait maps. In addition to these full season
models, I also developed and tested models using seasonal subsets from the beginning, middle
and end of the growing season.

The accuracy of the full-season models varied across traits (R%: 0.55-0.93). Traits with

well-defined absorption features were retrieved with the highest accuracy, including chlorophyll
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(R%:0.93; %RMSE: 8.0) and total phenolics (R?: 0.86; %RMSE: 11.0). Despite the relatively
poor performance of some models, the mapped intra-annual patterns for all traits followed
patterns reported in literature and displayed expected species ordering. In testing models built
using seasonal subsets varied by traits, I found that some traits required data collected across the
entire growing season to develop general predictive models (e.g N, Ca), indicating that trait-
spectra relationships vary across the growing season and need to be considered when developing
broad applications.

In testing the primary drivers of trait variation, I found that phenology (date) explained
the greatest amount of variation for all traits except total phenolics, for which species explained
75% of the variation. Macronutrients (N, P and K) showed general trends of decreasing
concentration over the course of the year, reflecting dilution by carbon-rich compounds during
the growing season and resorption during senescence. Conversely, recalcitrant compounds
including lignin, fiber and calcium increased until late summer, after which they stabilized.
Except for phenolics, seasonal trait trajectories were generally consistent among species,

although the pace of accumulation (or resorption) differed.

Significance

The world’s ecosystems are rapidly changing, and as those ecosystems respond to new
environmental conditions, we need to better characterize how the functioning of those
ecosystems is responding. New techniques and datasets are necessary for measuring and
understanding the impacts of climate and other anthropogenic drivers, and to accurately model
future scenarios. Forest ecosystems provide multiple important benefits to society including

provisioning and regulating services that are related to functional trait diversity. Leveraging the
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power of remote sensing, and imaging spectroscopy in particular, can provide a comprehensive
understanding of the patterns and processes effecting those services and traits (Jetz et al. 2016;
Schimel at al. 2019).

In the first chapter of my dissertation I developed and compared generalized PLSR
models using spectra both from fresh leaves and dried and ground samples to estimate 27 foliar
biochemical traits. The use of models to predict traits from fresh and dry spectra were essential
to this dissertation. While only a subset of foliar samples were measured using traditional wet
chemistry techniques, and generalized models like the ones developed here were critical for
estimating biochemistry on full set of field samples, which were then in turn used to develop
canopy level models from imagery reported in Chapters 2 and 3. Increasingly, such models are
essential in remote sensing beyond my study, as laboratory based measurements are impractical
to collect at broad spatial extents. I found the selection of measurement type -- fresh vs. dry
spectra -- as well as the wavelength range used in model development have a significant impacts
on the resulting predictive performance of the spectroscopic models. Using a wavelet transform
to assess trait spectra-relationships, I found that many biochemicals shared common spectral
features. This provides new, unique insights into the basis for our ability to predict traits for
which known absorption features either had not been reported or were not known to the remote
sensing community. One useful outcome of this effort is that I provide readers with an
assessment of each trait, its robustness of prediction, and the extent to which users of
spectroscopic trait models should consider estimate of a trait to be an index of other traits to
which it is correlated. I provide functional interpretations of prediction capacity, for instance that
spectroscopic prediction of potassium is based on its role in synthesis of other traits that are

detectable. The database of spectra and trait measurements collected here is unprecedented in its
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scope and consists of over 15,000 spectra which cover a multiple axes of trait variation including
taxonomy, phenology and environment. It will provide a foundational data set for the analysis of
foliar traits using spectra paired to laboratory measurements, across seasons and using a range of
instrumentation.

Next, I demonstrate a methodology to estimate within-canopy variation of leaf mass per
area (LMA) using top-of-canopy estimates from imaging spectroscopy and lidar representations
of within-canopy structure. As lidar data become more widely available, there is the potential to
link lidar and spectral data to develop whole-canopy (rather than sunlit-crown) estimates of
characteristics important to predicting ecosystem function. For example, current ecosystem
models do not represent within-canopy variation in foliar traits with any level of sophistication,
if at all. As modelers come to understand the new mapping capabilities and test the sensitivities
of models to within-canopy trait variation, work such as this may help provide motivation to
update approaches to canopy mapping with more detailed three-dimensional representation of
aboveground traits. This mapping of 3D patterns in LMA has the potential to be coupled with
modeled vertical LAI profiles and leaf area density using lidar as an basis for estimating full
canopy foliar biomass and nutrient content. Although LMA is likely the most significant trait
that varies vertically in canopies, my work can also be expanded to include traits other than
LMA. This will provide the basis to tackle a range of ecological questions beyond nutrient and
carbon cycling, for example links to trophic dynamics, relationships with arthropods and birds,
as well as disturbance processes. In summary, this work demonstrates the potential for global
mapping through the fusion of spaceborne imaging spectrometers and lidar, which can provide
opportunities to better quantify full-canopy ecological and physiological variation in ecosystems

that are not possible with in-situ measurements.
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Finally, I used an unprecedented dense time series of imaging spectroscopy data collected
during a single growing season to map intra-annual patterns in foliar biochemistry. Such work is
essential to how we characterize functional variation in ecosystems, including functional
diversity (which may vary spatially) and other processes that link to foliar traits. From a remote
sensing perspective, this is the first paper to investigate the seasonal variation in foliar traits in a
mixed temperate forest ecosystem using high-resolution hyperspectral imagery and expands on
the diversity of traits mapped seasonally. By coupling maps of foliar biochemistry with species
maps, | demonstrated that phenology was a significant driver of variation for most traits, but that
for others, like phenolics, variation is largely driven by taxonomic identity. Importantly, this
study demonstrates that seasonal trait variation is consistent neither by trait nor by species.

The research presented in this dissertation was largely conducted with an eye to towards
the future when high-fidelity, year-round, global imaging spectroscopy data will be collected by
spaceborne imagers. In a rapidly changing world these sensors will be critical to monitoring
ecosystem health. Specifically, the measurement and detection of changes in foliar biochemistry
will be an important component in monitoring ecosystem structure, diversity and functioning.
Despite the enormous potential of spaceborne imaging spectroscopy for global characterization
of foliar biochemistry, continued research is needed to fully realize it. My dissertation
contributes to this need by expanding on existing methodologies and demonstrating new

applications of imaging spectroscopy for mapping foliar biochemistry.
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1. Fresh vs. dry: A comparison of generalized spectroscopic models for estimating
broadleaf and graminoid biochemistry.

Contributors: Adam Chlus, Tedward Erker, Zhihui Wang, Eric L. Kruger & Philip A. Townsend

Abstract

The use of field spectroscopy has increased in prominence for the rapid estimation of
foliar biochemistry, especially in ecology. Historically, spectral measurements of dried and
ground foliar samples have been used in lab-based near-infrared spectroscopy (NIRS). While
spectral measurements on dry samples can provide accurate estimates for numerous biochemical
properties, they also have limitations in that they require destructive sampling of foliar tissue and
transport of samples from the field, either of which can be infeasible. Conversely, measurements
of fresh leaf reflectance using a leaf clip can be made rapidly in situ and often without detaching
foliage, allowing for repeat measurements. To assess the relative merits of each approach, we
performed a comprehensive analysis in which we aggregated linked fresh and dry spectra with
wet chemistry data for 27 foliar biochemical properties including pigments (chlorophylls,
carotenoids and xanthophylls), macronutrients (N, P, K, Ca, Mg and S), micronutrients (B, Cu,
Fe, Mn, Z), aluminum, carbohydrates, structural and defensive biochemical traits. We built
paired PLSR models for each trait using spectra on both fresh leaf and ground dry samples,
compared their performances and tested the impact of wavelength region on predictive ability.
Using spectral measurements on dried and ground samples, Ca, N, cellulose, lignin, sugars and
total phenolics could be estimated with high confidence (validation R? > 0.6), while chlorophylls
A and B and leaf mass per area were estimated with high accuracy using fresh spectral

measurements. Other biochemical properties including B, K, P, Mg, flavonoids and carotenoid
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pigments were estimated with moderate confidence (R? > 0.4). We also used a wavelet transform
to assess the relationships between spectra (fresh leaf and dry ground) and traits. We found that
for N, phenolic compounds, carbohydrates and chlorophyll, strong correlations emerged for
wavelengths associated with electron transitions or molecular bonds present in these compounds,
although some features were obscured by water absorption bands in the fresh leaf spectra. Other
traits, including P and K, which lack strong or known absorption features, were correlated at
wavelengths with absorption features attributed to proteins, carbohydrates or phenolics,
indicating their retrieval was a consequence of their correlation with these compounds, likely as
a result of their role in regulating their production or transport. Neither fresh nor dry spectral
measurements are optimal for estimating the full suite of traits, but together represent a
reasonable approach to estimate traits for extensive sample data sets, when used in conjunction

with traditional analytical techniques for validation.

Introduction

Rapid, reliable and repeatable measurements of foliar biochemistry are essential for a
number of disciplines including ecology, plant science, agriculture and geology. The chemical
composition of leaves affects decomposition (Melillo et al. 1982), plant-insect interactions
(Agrawal et al. 2009) and photosynthesis/photosynthetic capacity (Evans and Seeman 1989).
Foliar biochemistry can also be used to infer soil properties (Dunn 2011), detect the presence of
pollutants (Sager et al. 2005) and pathogens (Gold et al. 2020) and characterize crop status
(Blackmer and Scheper 1994; Waskom et al. 1994) and forage quality (Norris et al. 1976; Shenk
and Westerhaus 1994). Wet chemistry techniques like high performance liquid chromatography

(HPLC), mass spectrometry, combustion analysis and colorimetric assays are generally used to
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quantify the chemical composition of leaves (Dixon and Kuja 1995; Trotter et al. 2002; Da
Silveira et al. 1989; Ainsworth and Gillipsie 2007). While these methods can provide accurate
measurements of biochemical profiles, they are often costly in terms of both equipment and
materials, time consuming, require advanced training for operation and can produce hazardous
chemical waste. Beginning in the 1950's and 60's, the use of spectroscopy gained increasing
acceptance for measuring foliar biochemistry, particularly in the agricultural industry where it
provided an alternative method for characterizing forage quality, including the estimation of
protein, oil and fiber content (Norris et al. 1976; Shenk 1979; Shenk and Westerhaus 1985).
Since then, the catalog of biochemical compounds estimated from spectroscopic measurements
has come to include minerals (Clark et al. 1987), trace elements (Clark et al. 1989),
carbohydrates (Card et al. 1988; Ramirez et al. 2015), secondary metabolites (Smyth and
Cozzolino 2011; Couture et al. 2016) and pigments (Gitelson et al. 1996; Merzlyak et al. 2003)
Spectroscopic determination of foliar biochemistry is predicated on the development of a
relationship between spectra and the chemical trait of interest. Early research largely relied on
the use of stepwise linear regression in which a subset of the spectrum -- usually including fewer
than 10 wavelengths -- was selected to develop calibration equations (Norris et al. 1976; Shenk
1979; Wessman et al. 1989). However stepwise regression has largely fallen out of use in favor
of more advanced chemometric techniques like principal components regression (PCA) and
partial least squares regression (PLSR, Wold et al. 2001) due to the potential for identifying
spurious relationships (Grossman et al. 1996). Physics-based radiative transfer models (RTM)
including LIBERTY (Dawson et al. 1998) and PROSPECT (Jacquemond and Baret 1990) and
their descendants have also been used to derive estimates of foliar biochemistry by inverting leaf

spectra using absorption profiles of leaf constituents including pigments, proteins, water and
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structural compounds. However, RTMs are limited to inverting compounds with known and
well-defined absorption profiles, although recent versions of PROSPECT retrieve nitrogen and
leaf mass per area (LMA) using semi-empirical formulations (Wang et al. 2015; Feret et al.
2019). Underlying both empirically and physically based methods is the presence of spectral
absorption features associated with electron transitions and bending and stretching in chemical
bonds (C-H, C-O, N-H and O-H) within compounds that comprise plant materials (Curran 1989).
Other important chemistries, including many minerals, do not have spectral signatures in the
visible through shortwave infrared (400-2500 nm) (Workman and Weyer 2008), although
compounds in which these are present may have spectral features associated with other
molecular bonds within the compound. However, in general, the ability to estimate minerals
using reflectance spectroscopy is a result of correlations with other chemical constituents that do
possess spectral signatures (Clark et al. 1987; Ciavarella et al. 1998).

Historically, spectroscopic estimation of foliar biochemistry has utilized dried and ground
foliar samples (Norris et al. 1976; Wessman et al. 1988). Drying removes water which has major
absorption features in the infrared that obscure weaker absorptions of other foliar compounds,
while grinding homogenizes samples and exposes the inner leaf material. Increasingly, fresh leaf
spectra are used to estimate foliar biochemistry, which generally involves the use of a leaf clip or
integrating sphere to measure reflectance (Asner and Martin 2008; Nunes et al. 2017; Serbin et
al. 2019). Early work by Curran et al. (1992) demonstrated the ability to estimate chlorophyll,
sugars and water content using fresh leaf spectra, which has since been expanded to estimate
quantities of macro- and micronutrients, defensive compounds and carbohydrates (Martin and
Aber 1994; Yoder and Pettigrew 1995; Jacquemoud et al. 1996; Asner et al. 2011). Unlike dry

ground spectra, measurements of fresh spectra do not require subsequent sample processing, can
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be performed nondestructively without removing leaves from a plant to allow repeat
measurements and, with properly calibrated models, can provide near-instantaneous estimates of
biochemistry. For some traits, especially those with absorption features obscured by water
absorption bands, dry spectra models outperform fresh spectra models (Lacaze and Jofre 1994;
Martin and Aber 1994; Jacquemoud et al. 1995), but for many traits these differences have not
been assessed.

Regardless of measurement type (fresh leaf or dry ground) accurate, generalized
spectroscopic models require data that are representative of the range of conditions that drive the
variability in foliar biochemistry, including time (i.e., phenology), geography (i.e., environmental
variation), ontogeny, plant and/or leaf developmental stage and taxonomy/phylogeny. Many
applications of spectroscopy tend to predict chemical constituents using models specific to a
species or a small number of closely related species (Vazquez et al. 1995; Ourcival et al. 1999;
Yuan et al. 2016; Fernandez-Martinez et al. 2017). These perform well so long as the model is
applied within the constraints of the data used to generate it. However, this presents challenges
for estimating foliar chemistry on a novel species where it may be unknown whether the species
spectral and chemical profile is bounded by the data used to build the model. A further
complication is that seasonality — i.e. leaf phenology or developmental stage — also impacts
model performance (Yang et al. 2016), as the specific absorption features related to the chemical
compounds may change over the course of a season because both leaf structure and chemical
composition also evolve seasonally. For those studies that incorporate a large number of species,
sample collection is largely limited to peak of the growing season (Roelofsen et al. 2014; Serbin
et al. 2014). Accurate estimates of chemistry from reflectance spectroscopy require models

developed using data that cover the range of plausible leaf characteristics and are thus able to
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leverage generalized features in the spectrum, rather than features that may be expressed at
particular developmental stages. The alternative is to develop season- or species- specific
models, which may be more accurate, but are not generalizable to ecological studies spanning
species and ecosystem types.

In this study we linked spectral and biochemistry data from four datasets covering
specimens collected from a range of vegetation types (trees, shrubs, forbs, grasses), geographic
extents and leaf developmental (phenological) stages to generate spectroscopic models to
estimate 27 biochemical properties including pigments, carbohydrates, minerals, and phenolic
compounds, as well as leaf mass per area. For each foliar trait we developed and compared
predictive performance of models developed using both fresh and dry ground spectral models.
For each model type and trait, we also compared models built using different regions of the
spectrum. Finally, we performed a series of analyses to identify the relationships between spectra
and foliar biochemistry, specifically to assess the extent to which determination of chemistries
using spectra was a consequence of spectral features unique to a particular trait and how they

vary between fresh and dry spectra.

Methods

Data

The data used in this study was compiled from four datasets (Table 1.1), including data
specific to this study. The species sampled in these datasets cover a wide range vegetation types,
including trees, forbs and grasses, leaf developmental (phenological) stages and geographic

extent. See the individual studies for details on the dataset collection.
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Data unique to this study were collected in Madison, WI, USA on the campus of the
University of Wisconsin, in the adjacent university-owned Lakeshore Nature Preserve and at the
University of Wisconsin Arboretum (43.0766° N, 89.4125° W). Sampling occurred in 2016 and
2017 on a weekly basis, spanning June to November in 2016 and April and May in 2017.
Sampling followed a three-week cycle: during each week in the cycle we collected foliage from
a set of 20-25 broadleaf trees, 10-20 forbs and 3-5 graminoid species. This cycle was repeated
throughout the study period, such that the same set of species (except ephemerals or those that
had senesced) were sampled at least every three weeks. Over the course of the growing season, a
total of 211 unique species were sampled, including 89 tree species, 104 forbs and vines and 18
graminoid species. Sampled species included native, ornamental and invasive species. We
sampled two individuals of each species. For trees, we collected two sets of samples per
individual including one set from sun leaves and one from shade leaves. For tall trees we used
extendable pole pruners to collect branches at the top of the canopy. Between 10 — 20 leaves
were collected per sample set. For forb and graminoid species leaves came from multiple
individuals growing in close proximity to each other to ensure sufficient sample material (10 g
dry matter per sample). After collection leaves were placed in plastic bags with a damp paper
towel which were placed in a cooler on ice.

Samples were brought back to the lab within 1.5 hours for spectral and structural
measurements. At the lab petioles were removed from all leaves, any dirt, debris or moisture was
wiped off and each sample set was photographed. Six leaves were chosen from each sample for
leaf-level measurements and the remaining leaves were retained for bulk chemical analysis.
Individual leaf area was measured using a LI-3100 leaf area meter (LI-COR Biosciences,

Lincoln, NE, USA) and fresh weight was measured using a precision balance (0.0001 g).
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Spectral measurements were then made using two spectrometers: a PSR 3500+ spectrometer
(Spectral Evolution, Boston, MA, USA) and Fieldspec 3 spectrometer (Analytical Spectral
Devices, Boulder, CO, USA), hereafter referred to as PSR and ASD respectively. Each
spectrometer was equipped with a manufacturer-provided leaf clip and measurements were
referenced against a 99% Spectralon panel (Labsphere, North Sutton, NH, USA) to derive
relative reflectance. The six leaves were measured in the same order on all spectrometers to
enable comparison of individual leaf spectra. For homogeneously colored leaves, one spectrum
was collected per leaf, while, for heterogeneously colored leaves (e.g. those undergoing
senescence), between 2-6 spectra were averaged per leaf depending on leaf size and degree of
heterogeneity. Graminoid species for which individual leaf blades did not fill the field of view of
the leaf clip were aligned in parallel to create a non-overlapping mat using the six leaves, and six
measurements were then made of the mat. For all samples, the six leaves were stored in
individually labeled envelopes and placed in a paper bag with the remaining foliage (“bulk
sample”). The sampled leaves were then frozen in liquid nitrogen and stored in a -20° C freezer
until further processing. A subset of individual leaf samples (n = 279) from across the growing
season were selected for pigment content determination. Pigment content was measured using
HPLC as per Schweiger et al. (2020). Pigments measured included chlorophyll A and B, beta-
carotene, lutein, antheraxanthin, neoxanthin, violaxanthin and zeaxanthin.

With the exception of the subset of samples analyzed for pigment content, all samples
were freeze-dried in a lyophilizer (> 120 hr). Individual leaves measured for leaf area were
weighed on a precision balance (0.0001g). Leaf mass per area (LMA) was calculated by dividing
the leaf dry mass by fresh leaf area and was averaged for each sample set of 6 leaves. Samples

were then ground using a Wiley Mill equipped with a #20 mesh (1mm). A subset of ground
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samples was then measured for elemental concentration (N, P, K, Ca, Mg, Al, B, Zn, Mn, Cu) (n
= 195), sugars and starch (n =213), total phenolics (n = 115), flavonoids (n=115), cellulose and
acid detergent lignin (ADL) (n = 207). Nitrogen concentration was determined using combustion
analysis while all other elemental concentrations were measured using inductively coupled
plasma emission spectroscopy (Gavlak et al. 2004). Total phenolics concentration was
determined using the Folin-Ciocalteu method (Ainsworth and Gillepsie 2007) and flavonoids
were determined using aluminum chloride colorimetry (Baba and Malik 2015). Lignin and
cellulose concentrations were determined using a hot-acid detergent extraction (Couture et al.
2012) and sugar and starch concentrations were determined using a colorimetric quantification
(Lindroth et al. 2002). Dry spectral reflectance measurements were made on all samples using an
ASD Fieldspec 3 spectrometer equipped with a press to ensure consistent foreoptic position and
pressure following Serbin et al. (2014). Prior to measurements, ground samples were stored in a
drying oven (> 24 hr) to remove residual moisture collected during storage. Six spectra were

measured per dry sample and were averaged to produce a single spectrum per sample.

Spectral preprocessing

ASD spectra were 'jumped corrected' to align mismatches in reflectance between
detectors using the SWIR1 detector as the reference (Dorigo et al. 2006). For both the PSR and
ASD, we excluded reflectance data below 400 nm due to a low signal-to-noise ratio. Each
spectrum was vector normalized to minimize brightness differences between spectra (Xing et al.
2007).

With the exception of fresh spectra collected by Serbin et al. (2014), which used an ASD

spectrometer, all samples had spectral measurements made using a PSR. Because of differences
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in spectrometer design, including leaf clip geometry and internal optics, reflectance
measurements made on the same leaves do not match exactly (Figure 1.1). To match ASD fresh
spectra with PSR fresh spectra we used the method of Meireles et al. (2020) to develop a
response matrix to convert ASD to PSR spectra. Using over 11,000 paired ASD and PSR
individual leaf reflectance measurements made in this study we developed and validated a
response matrix using partial least-squares regression (PLSR, Wold et al. 2001). Because some
graminoid samples were made using mats and individual measurements between spectrometers
could not be linked (due to different view area in which one spectrometer may see multiple
leaves in a mat, and the other only one), they were excluded from development of the response
matrix. First, we divided the data randomly 50:50 into validation and calibration, and withheld
validation data from subsequent model development. The calibration data were then used to
select the optimal number of model components by minimizing the cross-validated predicted
residual sum of squares statistic (PRESS). A PLSR model was then developed for the calibration
data using the selected optimal number of components and applied to the validation dataset. To
compare improvement in agreement between the observed PSR spectra and predicted PSR
spectra from ASD (PSRasp), we calculated the difference between vector-normalized spectra
before and after the transform was applied to the validation dataset (Figure 1.1). Finally, we
applied the transform to the ASD fresh spectra collected by Serbin et al. (2014) for use in

subsequent analyses.

Spectroscopic model development
Predictive models to estimate foliar biochemistry from fresh and dry spectra were built

using PLSR. PLSR is a commonly used technique used for chemometric applications due to its
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ability to handle highly colinear, hyper-dimensional data, core characteristics of spectroscopic
reflectance data (Wold et al. 2001). Modeling was implemented using the Python library ‘scikit-
learn’ (Pedregosa et al. 2011). Other data-driven modeling frameworks have been used for
estimating foliar biochemistry from spectroscopic data including multiple linear regression (Min
et al. 2006), random forest regression (Abdel-Rahman et al. 2013), neural networks (Mutanga
and Skidmore 2004) and gaussian process models (Verrelst et al. 2012). However, we selected
PLSR due to its relatively low computational requirements, wide use and acceptance, and
interpretability of model coefficients.

For each trait, we developed spectroscopic models using both fresh leaf and dry ground
spectra, to ensure comparability between models we only used data points with paired fresh and
dry spectra for model development. With the exception of pigments, both fresh and dry spectra
were collected on multiple leaves per sample; we assumed that, for pigments, the single leaf
measured using HPLC was representative of the sample from which it was a subset of. To test
the impact of wavelength region on model performance, we built three models for each trait
using the entire spectrum (400-2500 nm), VNIR spectrum (400-1000 nm) and the SWIR (1000 -
2500 nm).

Prior to model development, we performed a Bonferroni corrected outlier test (p < 0.05)
to identify and remove influential data points (Cousineau and Chartier 2010). On average, across
all traits, 1% of data points were labeled outliers. After outlier removal, the data were randomly
split into calibration and validation (70:30). The optimal number of model components for PLSR
of each trait was identified by building PLSR models on the calibration dataset using up to 30
components and selecting the number of components that minimized the jackknifed PRESS

(Tarpey 2000). Next, using the calibration dataset a series of 500 models were built for each trait
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using a random 70% subset of the calibration data. These permuted models were applied to both
the fully withheld validation and the calibration datasets and the mean and standard deviation of
the 500 predictions were calculated to generate one predicted value (mean of 500) and its
uncertainty (standard deviation). We also calculated R?, root mean squared error (RMSE),
normalized RMSE (NRSME) and bias on the calibration and validation predictions. After
validation, final models, fresh and dry ground, for application were built, we used the validation
R? to select the optimum wavelength range for each model. Final models were built using all the
data using the same 500-model, 70% permutation approach used for developing the calibration
model. The models were then applied to the entire dataset, yielding fresh and dry ground

spectroscopic measurements for each trait.

Trait-spectra relationships

We used Pearson product-moment correlation to evaluate correlations among traits for
those samples having multiple trait measurements. We did this for trait measurements derived
both from laboratory assays as well as from spectrally predicted traits. For traits derived using
laboratory measurements, correlations were only calculated for paired traits with more than 10
samples; for spectrally derived traits, correlations were calculated using all paired samples used
in model development (n= 2,713).

To assess the relationships between spectra and foliar biochemistry, we utilized Pearson
product-moment correlation to identify wavelengths associated with each biochemical property.
Specifically, we calculated Pearson's r between trait values and a continuous wavelet transform
(CWT) of the reflectance spectrum on both the fresh and dry ground samples. CWT is a signal

processing technique used to decompose a signal into a series of subcomponents defined by a
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mother wavelet (Barache et al. 1997; Dinc and Baleanu 2008). A number of wavelet families
exist for performing signal decomposition; here we used the Mexican-hat wavelet which closely
approximates a gaussian response curve and has been used for characterizing spectral features
related to foliar nitrogen (Wang et al. 2016; Kalacska et al. 2015), water content (Cheng et al.
2011) and chlorophyll content (Liao et al. 2013). The wavelet transform is calculated by
convolving the selected wavelet with the original spectrum, the resulting coefficients provide a
measure of agreement between the wavelet and the localized spectrum (Kalacska et al. 2015).
The wavelet is defined by both a translation and scale that correspond to the wavelet center and
stretch. Transforms were calculated in Python using 'PyWavelets' (Lee et al. 2019). For each
scale and translation, we calculated Pearson’s r between the trait and the wavelet coefficient.
This resulted in a ¢ by s matrix of correlation coefficients, where ¢ is the number of translations
and s is the number scales. The number of translations was equal to the number of wavelengths
(2100) and 20 scales were computed per translation. Typically, wavelet coefficients, or
correlations, are displayed using a 2D matrix commonly referred to as a scalogram. To better
visualize the magnitude and locations of spectral features, the correlations were displayed along

single dimension, translation, and each scale was plotted as a separate line (Figure S1.1).

Results

The datasets used in this study consisted of between 171 and 2277 samples with
laboratory-derived biochemical traits or LMA and paired fresh and dry ground spectral
measurements (Table 1.2). With the exception of the pigment zeaxanthin, which was not
detectable in a majority of samples, each biochemistry had at least 300 samples representing 99 -

138 genera and 170 - 192 species. Sample collection dates were largely concentrated in the



35

middle of the growing season between day of year 150 and 250, but extended from April to

November (Figure 1.2).

Spectroscopic models

Models for estimating pigments, potassium and LMA had the best predictive
performance when developed using spectra on fresh green leaves (hereafter “fresh spectra” or
“fresh models™); for all other traits models built using spectra of dried and ground foliage (“dry
spectra/models”) exhibited stronger performances (Figure 1.3). The difference between fresh and
dry model performance varied by trait and was greatest for calcium, lignin and chlorophyll B.
Aluminum, copper, zinc, zeaxanthin and antheraxanthin all performed poorly regardless of
spectral measurement type (R? < 0.2). All R? values reported are for the withheld validation
samples.

Model performance varied across pigments and was dependent on the wavelength range
used, although chlorophyll A and B were estimated with the highest accuracy (Figure 1.4). The
top performing fresh spectral model for each pigment included the VNIR region of the spectrum,
either 400-1000 nm or 400 - 2400 nm, however the difference in performance between the two
wavelength ranges was generally small. Dry spectra models for pigments were generally poor
(R? < 0.5) and validated best for neoxanthin using the full spectrum (R?: 0.47, NRMSE 0.13).
Among foliar element concentrations, N and Ca were estimated with the highest accuracies using
dry spectra (R2: 0.9 and 0.8, NRMSE 0.06 and 0.1, respectively). All models of foliar elemental
concentration incorporated the SWIR region of the spectrum and, with the exception of nitrogen,
performed poorly when using only the VNIR (R? < 0.31). Among models of elements developed

using fresh spectra, N was estimated with the highest accuracy followed by K and Ca and, like
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the dry models, the best model for each included the SWIR region. Structural and defensive
compounds, including total phenolics, sugars, lignin, cellulose and LMA were all estimated with
high accuracy (R?: 0.74 - 0.93), each using either the full or SWIR region of the spectrum and

with the exception of LMA top performing models used the dry spectra for estimation.

Trait correlations

For spectrally derived traits, correlation patterns generally matched the relationships
derived from laboratory assays and correlations generally became stronger in spectrally derived
traits (i.e. negative correlations in the lab data became more negative in the spectral predictions
and vice versa; Figures 1.5 and 1.6).

From HPLC measurements, contents of beta-carotene, chlorophylls A and B, lutein and
neoxanthin were highly correlated (r: 0.83; p <.01) and moderately correlated with violaxanthin
(r: 0.57 - 0.65) (Figure 1.5). Similar patterns were observed with spectroscopically derived
pigments but with stronger correlations for all pigment pairs, correlations were highest between
chlorophyll A and chlorophyll B (r: 0.99) and lutein and neoxanthin (r: 0.99). For both
laboratory-measured and spectroscopically derived pigments, correlations with other traits were
weak. Macronutrients including N, P, K and S were all positively correlated whether derived
using laboratory assays (r: 0.45 - 0.55) or spectral models (r : 0.57 - 0.87) and were generally
negatively correlated with carbohydrates, lignin and LMA. Total phenolics and flavonoids were

both positively correlated with sugars using both laboratory-derived and spectral estimates.
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Wavelet correlations

In our interpretations of the correlations of wavelength-by-wavelength wavelet
transformations with foliar traits, we treat the observation of a negative correlation at a
wavelength as evidence of an absorption feature and thus these are our focus (Figure 1.7). In
addition, by comparing the wavelet correlations across all wavelengths between all pairs of traits,
we could identify those traits whose relationships with spectra leverage common absorption (or
reflectance) features (Figure S1.2). Specifically, in Figure S1.2 higher positive correlations
between traits indicate that the pair of traits share strong correlations with many common
absorption features, while strong negative correlations indicate that wavelengths with absorption
features for one trait in the pair being compared are matched by reflectance features in the other
trait. Combined, these analyses enable comparison with absorption features reported elsewhere
in the literature, as well as identifying those traits for whom reasonable spectroscopic predictions
may be a function of inter-trait correlations rather than the presence of known absorption features
(see Discussion).

All pigments with the exception of zeaxanthin and antheraxanthin, exhibited near
identical patterns in correlations using the wavelet transforms of both dry and fresh spectra, and
were highly correlated with each another (r: 0.76- 0.99) (Figure 1.7; Figure S1.2). For these
pigments, the strongest negative correlation (i.e. absorption feature) was observed at the red edge
near 710 nm. Correlations with the SWIR region of the spectrum were generally weak but
exhibited minima (i.e., negative wavelet correlation indicating a possible absorption feature) at
2050 nm and 2170 nm in both the fresh and dry spectra with slightly stronger correlations in the

dry spectra (Figure 1.8a). For zeaxanthin and antheraxanthin, which were poorly estimated using



38

PLSR models, wavelet correlations were weak across the entire spectrum (r < 0.3) (Figures S1.2
and S1.9).

Patterns in correlations for elements exhibited two general groupings, each of which
showed similar relationships between trait measurements and wavelet transforms (Figure 1.7).
The first group, including Cu, Fe, N, K, P and S, exhibited the strongest negative correlations
near 1520, 1980 and 2170 in the dry spectra, whereas correlations were weaker and less
consistent among traits in the fresh spectra (Figures 1.7 and 1.8). The second group, which
included Ca, B and Mg, showed nearly identical patterns across the spectrum. As well, wavelet
correlations across wavelengths were also highly correlated among the three minerals (r > 0.94 -
0.98; Figure S1.2), indicating that spectroscopic prediction for these traits likely leverages
common features; Ca, B and Mg are also highly correlated with each other in the laboratory
measurements (Figure 1.5, upper diagonal). For dry spectra the region 1910-2010 nm exhibited
the strongest correlations in all three traits however for the fresh spectra, correlations were weak
across the entire spectrum (Figures 1.7 and 1.8¢). Al and Z exhibited correlation patterns that
were uncorrelated with all other traits and were weak across the spectrum (Figures S1.10 and
S1.21). Manganese was unique in that unlike all other elemental traits, whose wavelet
correlations were strongly aligned across wavelengths, it was negatively correlated with other
elements, especially Mg and P (r <-0.81) (Figure S1.2). Notably, Mn was generally uncorrelated
with the other elements in the laboratory data (Figure 1.5).

Total phenolics and flavonoids were negatively correlated with dry spectra wavelet
features near 1130, 1470, 1660 and 2150 nm (Figure S1.28-1.29). However total phenolics
features at 1130 and 1470 nm were absent in the wavelet correlations with fresh spectra (Figure

1.8d). In both the fresh and dry spectra, cellulose was negatively correlated with features at 1240
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and 2260 nm. Lignin exhibited strong correlation with wavelet features in the dry spectra across
the spectrum, and was strongest at 510, 710, 1730, and 2150 nm, but for fresh spectra correlated
features were generally limited to the SWIR region (Figure S1.26). Sugars and starch displayed
similar patterns in correlations with wavelet features and had the strongest correlation near 1200,
1440 and 2140 nm. LMA was most strongly negatively correlated with dry and fresh wavelet
features at 1200, 1420 and 2150 nm, but also exhibited sharp peaks of positive correlation (i.e.,
with reflectance rather than absorption) in the fresh spectra at 950 and 1140 nm that were absent

in the correlations with dry spectra (Figure S1.27)

Discussion

In this study we developed models to estimate foliar biochemical traits from leaf
reflectance data from both fresh intact leaves and dried/ground samples. Our models were built
using a comprehensive dataset that included samples from over 100 species of tree, shrubs, forbs
and grass that were collected across the growing season, covered a wide geographic extent and
included both sun and shade leaves. We found that for pigments, LMA and K, models using
fresh spectra provided the most accurate estimates. Ca, Mg, N, P, K, S, defensive and structural
compounds were most accurately estimated using dry spectral models. However, Al, Cu, Fe, Z,
zeaxanthin and antheraxanthin were poorly estimated regardless of the measurement type used.

For both the fresh and dry models we found that choice of spectral range impacted the
model performance. For all traits with the exception of pigments, including the SWIR region
resulted in the best model performance. Conversely the VNIR region was important for
estimating pigments accurately. Generally, for traits that were well estimated (R? > 0.5) inclusion

of other regions beyond only marginally changed model performance, i.e. VNIR was sufficient
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for pigments and SWIR sufficient for the rest. There are some benefits to constraining the
spectral range for prediction, as it reduces the likelihood of introducing error due to confounding
features, and — in many cases — limits the predictions to wavelengths where known absorption
features exist (i.e., more physically realistic). Some of the traits have long been estimated using
reflectance spectroscopy, e.g. due to known absorption features at visible wavelengths for
pigments, or from decades-old research that is the foundation for using spectra to estimate
proteins (i.e., nitrogen), fiber and carbohydrates in forage. However, many of the traits that are
widely estimated from reflectance spectroscopy do not exhibit strong spectral absorbance
signatures to provide a basis for estimation (for example, many elements). Yet, estimations from
leaf spectral measurements have formed the basis for numerous studies (Asner and Martin 2008,
Asner et al. 2009, Doughty et al. 2011; Singh et al. 2015; Wang et al. 2019, 2020), especially
studies that link traits to remote sensing data for mapping, where laboratory chemistry needed to
calibrate such models is impractical at the scale of imagery. This begs the question whether the
retrieval of certain traits for leaf level estimates using data-driven chemometric methods such as
PLSR is a consequence of spurious correlations or trait-trait correlations where one trait has a
strong correlation feature that is leveraged to predict another, highly correlated trait. In our
discussion, we review the basis for estimating these traits from spectroscopy.

Among plant biochemicals pigments are the most well characterized spectrally due to
their role in converting sunlight into chemical energy used to fix carbon. Chlorophylls are the
primary light absorbing pigments found in plants. Other pigments, including carotenoids and
xanthophylls are also present, where they play a photoprotective role (Lambers et al. 1998).
Pigments absorb strongly in the visible spectrum (400-700nm), but it is worth noting that Clark

et. (1987) measured the NIR-SWIR spectrum of extracted chlorophyll and reported additional
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spectral features at 1768, 1850, 2304 and 2350 nm. For all pigments which were well estimated
with PLSR coefficients, wavelet correlations were strongest at the red edge (710 -720 nm) and a
similar pattern was displayed in the PLSR coefficients (Figures S1.3-S1.8). Correlations were
stronger in fresh versus dry spectra, which is expected due to the denaturing effects of oven
drying, but a negative correlation was still present at the red edge in dry spectra. The red edge is
commonly used to estimate chlorophyll content as saturation occurs at the chlorophyll absorption
maximum (660-680 nm) (Horler et al. 1983; Gitelson et al. 1996). The presence of this
correlation in non-chlorophyll pigments, which generally absorb light at wavelengths < 550nm,
indicates that the ability to estimate these pigments is largely driven their strong correlation with
chlorophyll content (Figure 1.5) and is demonstrated by similar PLSR coefficient structure for all
pigments (Figures S1.2-S1.8). Interestingly though, in the dry spectra, wavelet correlation
features associated with non-chlorophyll pigments become apparent near 440 and 470 nm
(Clementson and Wojtasiewicz 2019), suggesting differential levels of denaturing by different
pigments in response to oven drying. Cui et al. (2004) found that 70% of carotenoids were
retained after oven drying compared to 40% for chlorophylls. While correlations were strongest
in the visible region of spectrum, features in the SWIR associated with nitrogen at 2061 and
2172 nm were also correlated with pigment content, indicating a correlative relationship between
pigments and other N-containing compounds like proteins in the photosystems and light
harvesting complex.

In foliage, Ca is present in a number of forms including ionic Ca?*, in the middle lamella
in the form of calcium pectate and in various salts including calcium oxalate, calcium carbonate,
calcium sulfate and calcium citrate (Krieger et al. 2016). In its ionic form Ca is not known to

have absorption features in the infrared (Workman and Weyer 2008). However, calcium pectate



42

and calcium salts have infrared signatures (Titok et al. 2010; Applin et al. 2016). Petisco et al.
(2005) reported that for a mix of woody species, wavelengths in the 1900 nm region of the
spectrum were most important for estimating calcium, and others have reported similar results
with absorption features at wavelengths greater than 1800nm (Shenk et al. 1979; Valdes et al.
1985; Clark et al. 1987). Among its non-ionic forms, Ca is commonly found in the form of
calcium oxalate (CaOx), which can constitute up to 80% of the Ca in a leaf (Francesci and
Nakata 2005). Chandler (1937) found that foliar CaOx content was correlated with total foliar
calcium. CaOx serves multiple role in plants including storage of excess Ca, in the formation of
defensive structures and as a chelating agent (Franeschi and Horner 1980; Nakata 2003; Mazen
2004). CaOx exhibits sharps absorption peaks centered at 1957 and 2002 nm that are not present
in other calcium salts. These spectral features closely align with regions of maximum negative
correlation with wavelet transforms (Figure 1.9). Moreover, the coefficients of the dry spectra
PLSR model for Ca have large negative weights in those regions as well (Figure S1.13),
indicating a potential mechanism for the ability to estimate Ca concentration from reflectance
spectra. Of note, this feature is absent in the fresh spectra correlations, a possible result of
obscuration by water absorption (Figure 1.8c).

Nitrogen is a key plant nutrient that is closely tied with the photosynthetic apparatus,
where it is found largely in the form of proteins, including the enzyme RuBisCO which can
contain up to 30% of total leaf nitrogen. N is also present in amino acids, lipids, the cell wall and
in pigments (Evans and Seemann 1989; Makino 2003; Onoda et al. 2004). Spectral estimation of
nitrogen is often used as a surrogate for photosynthetic capacity and its detection is thus also the
basis for spectroscopic estimation of metabolic traits such as Vemax (Serbin et al. 2012; Dechant

et al. 2017). N and proteins and are generally well estimated from dry spectra due the absorption
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features in the SWIR resulting from N-H bonding (Curran 1989; Kokaly 2001). In our dataset
wavelengths with large negative dry ground wavelet correlations were all near absorption
features related to nitrogen including N-H bonds present proteins (1515, 1980, 2050 and 2170
nm) (Curran 1989; Osborne et al. 1993; Workman and Weyer 2008; Figure 1.8b). However, in
the fresh leaf PLSR model only features near 2050 and 2170 nm were leveraged, a possible
consequence of leaf water absorption in regions with N absorption features (Figure 1.8b).
Phosphorus is present in a number of compounds critical to plant growth including ATP
and DNA (Schachtman et al. 1998), and is involved in regulating enzymatic activity (Mills and
Jones 1996). Weak absorption features related to P are present in the SWIR regions of the
spectrum due to P-H (1891 and 1908 nm) and P-SH bonds (1970 and 1999 nm) (Workman and
Weyer 2008) but were not evident in our wavelet or PLSR coefficients. In both the wavelet
correlations and the PLSR model, positive coefficient maxima are observed at 1429 and 1438 nm
respectively (Figure S1.19). Robert and Cadet (1998) report a sharp absorption peak for
polysaccharides at 1437nm while Boulley et al. (2015) report a sugar absorption band at
1432nm. P is involved in starch metabolism (Qiu and Israel 1992), and Brahim et al. (1996)
found that P deficiency resulted in a decrease in foliar phosphorus concentration and increase in
foliar starch and glucose accumulation in pine seedings. Thus, the positive correlation peaks may
reflect the increasing accumulation of carbohydrates with decreasing concentrations of
phosphorus. Conversely wavelengths with negative correlation coefficients included those
associated with N-H bonds in proteins (1525 and 1990 nm). In our dataset phosphorus was most
strongly correlated with nitrogen (r = 0.55 in lab measurements and r = 0.73 from spectroscopic
determination). Likewise, PLSR coefficients for the P model leveraged nitrogen features at 2050

and 1985 nm and the starch feature at 1438 nm. We conclude that the estimation of P from
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reflectance spectroscopy leverages a range of absorption features associated with correlated N-
containing compounds and other chemistries (e.g., nonstructural carbohydrates) for which P
plays a role in metabolism. P can be reasonably estimated from spectroscopy but estimates from
reflectance spectroscopy should be interpreted with caution as its uncertainty (14%) is much
higher than N (6%). In any given data set, spectroscopic predictions of phosphorus should be
carefully compared to other constituents to determine whether its accurate estimation does not
simply track a correlation with foliar N.

Potassium plays a number of roles in plants including controlling opening of stomates via
osmoregulation, translocation of sugars and starch, and cellulose formation (Cochrane and
Cochrane 2009; Mills and Jones 1996). As with Ca, K has no known signature in the infrared in
its ionic form (Shenk et al. 1979). Ciavarella et al. (1998) noted that K concentration was closely
correlated with spectral regions related to sugars, starch and cellulose, indicating that the ability
to estimate potassium spectrally is related to its influence on other organic compounds with
known spectral signatures. Using dry spectra, spectral regions with strong negative wavelet
correlations with K included those associated within N bonds (1515 and 1985 nm) and proteins
(1690 nm) (Workman and Weyer 2008), which is unsurprising given the positive correlation of
K with N in the lab data (r = 0.51; r = 0.57 in the spectroscopic estimates). Spectral regions that
were positively correlated with K are associated with starches (1450 nm, 990 nm), which were
weakly negatively correlated with K in the lab data, and aromatic compounds (1670 and 2140
nm). The correlation with starch features is notable as symptoms of K deficiency include built up
of carbohydrates (Mills and Jones 1996). Lacking known absorptions feature, the spectroscopic
estimation of K clearly leverages correlated features related to non-K containing compounds, but

those correlated features are related to many compounds and spread throughout the spectrum,
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meaning that K predictions from spectroscopy may be reliable, but are based on the complex
interactions among multiple compounds influenced by K.

Magnesium acts a cofactor for enzymes and is found in chlorophyll (Mills and Jones
1996). In our dataset Mg was poorly correlated with chlorophyll content but was strongly
correlated with calcium using both laboratory and spectrally derived measurements (r > 0.7).
Correlations with wavelet features using both fresh and dry spectra revealed nearly identical
patterns when compared to those identified in calcium (r: 0.8 and 0.97). Shenk et al. (1979)
reported low predictability of Mg in dry forage while Nunes et al. (2017) estimated Mg using
fresh leaf spectra and reported similar results to our own fresh leaf models (R?: 0.40 here vs 0.49
in Nunes et al. 2017). Like other minerals it is not known to have a spectral signature in the near
infrared in its ionic form and its estimation likely a result of correlations with other compounds,
like Ca-containing complexes.

Sulfur is a component of multiple amino acids that are building blocks for a number of
proteins; symptoms of S deficiency include decreases in chlorophyll and proteins, and increases
in starch (Droux 2004; Marschner 2011). Like P, a weak absorption feature is present in the
SWIR region of the spectrum associated with S-H bonding (1980 nm) (Workman and Weyer
2008). Wavelet correlation patters for S closely match those for N (r: 0.83) and align with known
features associated with proteins, indicating the ability to estimate S is likely a function of its
correlation with N (r: 0.51).

Micronutrients (B, Cu, Fe, Mn, Zn) are essential elements that are found in small
quantities in plant tissues that are important to the regulation of enzymatic activity, metabolism
and the production of structural and defensive compounds (Marschner 2011). Al is not known to

be an essential nutrient and is generally considered to be toxic to many plants (Bojorquez-
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Quintal et al. 2017), and its concentration in foliage is sometimes used as an indicator of soil
acidity. Few studies have attempted to estimate micronutrients or trace minerals from a diverse
group of species using either dry ground and or fresh leaf spectra. Using single species
calibrations, Clark et al. (1989) estimated aluminum with moderate accuracy (R?: 0.69-0.78) for
three forage types, but found that important wavelengths varied across species. Galvez-Sola et al.
(2015) developed PLSR equations for Citrus species and reported "moderate" accuracies for Zn
and Fe, but found that B, Cu and Mn were poorly estimated. Here, trace elements, with the
exception of B, were poorly estimated using fresh or dry spectra models. Moreover, the wavelet
correlation patterns in B were nearly identically followed those of Ca (r: 0.98). B and Ca are
known to be closely associated (Bolanos et al. 2004) and are similarly immobile within plants.
Cu and Fe were weakly to moderately positively correlated with N and exhibited common
patterns in wavelet correlation features that are associated with N and protein absorption bands.
Mn is known to be a cofactor for enzymes that produce lignin and phenolic compounds
(Marschner 2011) and was negatively correlated with wavelengths associated with phenolic
compounds (1130, 1450, 1660 and 2150 nm). In addition, lignin and Mn wavelet features
showed a strong correlation in both the fresh leaf and dry spectra (r: 0.92 and 0.87), indicating
that detection of Mn from spectra likely tracks its role in lignin synthesis.

Sugars and starch, products of photosynthesis, have well-characterized absorption
features in the infrared that are a result of C-H and O-H bonds present in these compounds
(Workman and Weyer 2008). Robert and Cadet (1998) found that that these spectral features are
generally shifted by 25-130 nm in polysaccharides (starches) compared to monosaccharides
(sugars), which may enable relative determination of starch vs. sugar concentration. In both the

wavelet correlations and the PLSR coefficients these features are evident near 1200 nm and 1450
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nm for starches (Figure S1.24). For sugars, the absorption feature at 1450 nm was present in the
wavelet correlations, but it was absent in the PLSR coefficients (Figure S1.23). Among the other
wavelet features correlated with sugars were 1668, 1148 and 2150 nm, which are wavelengths
associated with aromatics and phenolic compounds (Buback 1993; Workman and Weyer 2008),
but not specifically with sugars. Phenolic compounds are often found linked with glucose
(Harborne 1989). In our dataset sugars and starch were positively correlated with both total
phenolics and flavonoids (r > 0.46 in spectroscopic estimates), a positive relationship observed
elsewhere (Ibrahim et al. 2011) that indicates that the ability to measure sugars is may be driven
in part by its correlation with phenolic compounds. The independent validation R? for sugars was
high (R2: 0.65) supporting the use of reflectance spectroscopy for estimation of sugar
concentration, although validation of predictions of starch concentrations was much poorer (R?:
0.24; NRMSE 16%)), a possible consequence of a lower average concentration in foliage (3.3%)
compared to sugars (17.9%). We conclude that the estimation of nonstructural carbohydrates is
well supported by the presence of distinct spectral features, but that spectral estimation may also
leverage a range of features associated with compounds that correlate with sugars and starches.
Phenolics are a class of secondary metabolites including condensed tannins that are
generally associated with plant defense but also play a role in photoprotection and cold
acclimation (Appel et al. 2001; Close and McArthur 2002). Phenolic composition varies across
taxonomic groups, and individual species can produce of over 100 phenolic compounds
(Harborne 1989; Li and Seeram 2018). Due to their similar molecular structure consisting of an
aromatic ring, phenolic compounds share a number of absorption features in infrared region of
the spectrum (Workman and Weyer 2008). However, Couture et al. (2016) demonstrate that the

specific phenols present in closely related species will both share absorption features and exhibit
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unique features. Thus, the exact location of spectral features may be shifted as a function of the
presence of specific phenolics whose identities are species-dependent or whose absorption
features may shift in location in the presence of other compounds (Workman and Weyer 2008;
Kokaly and Skidmore 2015). For instance, in our dataset wavelet correlation features were
shifted to longer wavelengths (~10nm) in flavonoids compared to total phenolics (Figure 1.10).
However, large negative coefficients appeared around 1660 nm in both the wavelet correlations
and PLSR models for both total phenolics and flavonoids (Figure 1.8d and 1.10; Figures S1.27-
1.28), matching the presence of a major absorption feature at 1660 nm present in a number of
phenolic compounds including gallic acid and tannic acids (Kokaly and Skidmore 2015). Other
absorption features associated with phenolic compounds including 1132, 1460 and 2135 nm
were also evident in wavelet correlation plots and PLSR coefficients (Buback 1993; Workman
and Weyer 2008). The detection of phenolic compounds from reflectance spectroscopy is very
strongly supported by the presence of absorption features, but because the specific phenolic
compounds in species differ, caution should be exercised when making specific inference about
the roles that spectroscopically determined phenolics play in the functioning of any given
observation. Nevertheless, there is also evidence that diversity in phenolic compounds can also
be detected (Couture et al. 2016), but this requires careful laboratory discrimination of the
multitude of phenolics present, which may be impractical across a large number of species
having distinct phenolic profiles.

Cellulose and lignin are structural compounds that constitute the cell wall and provide
rigidity, increase tensile strength and waterproof the cell (Delmer and Amor 1995; Boerjan et al.
2003; Somerville 2006). Similar to nonstructural carbohydrates, cellulose and lignin are

composed of bonded C-H and O-H molecules and have well characterized absorption features in
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the near through shortwave infrared (Osborne et al. 1993; Workman and Weyer 2008). For
cellulose, O-H features at 1490 and 2270 nm were present in both the PLSR and wavelet
coefficients (Figure S1.25). Lignin, which consists of aromatic subunits, exhibited negative
wavelet correlations with features associated with aromatic rings including 1135 and 1670 nm.
Interestingly, lignin was also strongly correlated with wavelengths in the visible region of the
spectrum (Figure S1.26). However, lignin is not known to contain any absorption features in the
visible wavelengths and the relationship may be a result of correlation with pigments (Figure
1.5) or due to lignin autofluorescence (Donaldson 2020).

LMA is a composite measure of a plant's investment in biomass per unit area and is
widely used in ecology as a measure of resource allocation strategy because of its low cost and
ease of measurement. Spectroscopic estimates of LMA provide the additional benefits of rapid
and non-destructive measurement and multiple studies have shown that LMA can be measured
with high accuracy from fresh leaf spectra (Ourcival et al 1999; Asner et al. 2011; Serbin et al.
2019). Using both dry and fresh spectra, LMA was strongly correlated wavelet features in the
NIR regions at 1000, 1200 and 1450 nm (Figure S1.27). These regions are associated with
absorption by starch, sugars, cellulose and lignin, compounds which constitute a large proportion
of the leaf dry matter content that comprises LMA. The estimation of LMA from reflectance
spectroscopy is due to the relationship between the many carbon compounds associated with leaf
structure, and thus is entirely correlative in application. However, it is also the leaf trait that can
be most robustly estimated from reflectance spectroscopy (R? > 0.9, uncertainty < 5%), as was
demonstrated by Serbin et al. (2019) for species spanning the tropics to Arctic.

A limiting factor in developing highly reliable, generalizable spectroscopic models is the

accuracy of wet chemistry procedures. With the exception of LMA, which was measured
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directly, and lignin and cellulose, which were determined gravimetrically, no other traits were
directly quantified. There can be a considerable amount of uncertainty in wet chemistry analysis
that is dependent on the analytical technique, reagents, standards and exact methodology used
(Young et al. 1994; Appel et al. 2001; Thorsen and Hildebrandt 2003). Quentin et al. (2015)
found that measures of nonstructural carbohydrates were not comparable between different labs.
Similarly, Brinkman et al. (2002) found that measurements of lignin concentrations were
dependent on analytical method. In our own dataset we found that the same samples measured
for cellulose and lignin at different labs using the same analytical technique yielded inconsistent
results (Figure S1.30): measurements were either poorly correlated (lignin, R?: 0.31) or
contained significant outliers (cellulose, with outliers R?: 0.34, without outliers R?: 0.97). Even
gravimetric methods have limitations, namely the complete isolation of the compounds of
interest. For example, Brinkman et al. (2002) found and that acid detergent lignin (ADL), the
method used in this study, contained up to 18% bound proteins, resulting in an overestimation of
lignin compared to other methods.

The models developed here used data from plants in the United States and despite
containing a diverse collection species (native, invasive and cultivated) and phenological stages
do not represent the global diversity of plant types and spectral and biochemical profiles. For
example, we did not include conifer species, whose structure and chemical profiles vary
significantly from broadleaf species and graminoids. Conifers also present challenges for making
fresh spectra measurements due their small and narrow shapes (Daughtry et al. 1989). Although
numerous studies have advocated for approaches to sampling conifer needles, especially using
mats (Daughtry et al. 1989, but see also alternative method in Wang et al. 2020), work is still

needed to enable linkage of fresh spectra from broadleaf and conifers (e.g. Rautiainen et al.
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2018). Dry spectral measurements from conifers can be integrated with broadleaf data, but
incorporation of fresh spectra may be challenging due to differences in measurement techniques.
As an additional caveat, the integration of conifer with broadleaf samples for spectroscopic
determination does risk inflating accuracy of spectral models. Because conifers and broadleaf
species differ considerably in foliar chemistry and spectral characteristics, there is the risk of
developing predictive models that simply fit to clusters of much different spectra from conifer
vs. broadleaf species, when in fact these lack the ability to characterize within leaf-type variation
in foliar chemistry.

We note that our dataset included samples covering the range of phenological stages
(Figure 1.2). Addressing phenology has been demonstrated to be important to generation of
accurate models, including both leaf spectra (Yang et al. 2016) and image spectra (Chapter 3).
This necessitates adequately sampling across developmental stages to ensure that the range of
differing combinations of biochemical concentrations among traits is captured. As well, our
dataset included leaves from both sunlit and shaded canopy positions. Light environment
strongly influences leaf optical properties (Niinemets et al. 1998) and especially traits such as
LMA (Chapter 2) and pigments, and thus models should include samples that adequately
represent this dimension of variation. Finally, for completeness, factors such as the ontogeny of a
sample and other environmental controls such as soil fertility and climate should be considered
for their influence on different samples from common species. While not all of these factors can
be or need to be addressed for all species, an adequate representation across species whose traits
are being predicted using spectroscopy ensures more robust application to new samples. This is

especially important if these data are being used as a substitute for traditional measurements.



52

As such, continued work is needed to broaden the diversity of samples used in model
development. Creation of such a global database would allow for the development of truly global
models that can be applied with confidence irrespective of species and would also present the
opportunity to develop more localized models tailored to given species or spectral type
(Sinnaeve et al. 1994). Ultimately, the most accurate predictive models may be those that are
taxonomically (species, genus or family) specific, with generalized models utilized to predict for

additional samples lacking taxonomically constrained models.

Conclusion

Using an unprecedented dataset that covered multiple axes of variation driving variability
in foliar biochemistry, including taxonomy, phenology and geography, we developed empirical
models to estimate 27 foliar biochemical traits using both fresh leaf and dried and ground
spectra. We found that using dry spectral measurements Ca, N, cellulose, lignin, sugars and total
phenolics could be estimated with high confidence (R? > 0.6), while chlorophylls A and B and
LMA were estimated with high accuracy using fresh spectra. Other biochemical properties
including B, K, P, Mg, flavonoids and carotenoid pigments were estimated with moderate
confidence (R? > 0.4), but estimates should be treated with caution. Reviewing the literature, we
also explored the extent to which correlative patterns underlying trait-spectra relationships could
be explained by electron transitions and bending and stretching in chemical bonds (C-H, C-O, N-
H and O-H) of closely related compounds. Our results highlight the tradeoffs between using
spectra from intact leaves (fresh) versus dried and ground samples for estimating foliar traits and

that neither method on its own is optimal for estimating the full suite of traits measured here.
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Ideally a combination of the two methods should be used, coupled with traditional analytical

techniques for model validation.
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Table 1.2 Sample chemistry summary.

Trait Units Samples Mean Range Genera Species
Pigments Antheraxanthin pumol e m~ 476 3.53 0.34-15.95 118 189
Beta-Carotene umol e m~ 480 34.79 0.72-77.7 117 188
Chlorophyll A pumol e m~ 485 34297  1.52-909.83 118 189
Chlorophyll B pumol e m~ 483 106.54  0.75-289.89 118 189
Lutein pumol e m~ 488 59.77  3.14-153.78 117 189
Neoxanthin pumol e m~ 488 18.42 0.48 -51.19 117 189
Violaxanthin pumol e m~ 488 23.09 0.79 - 66.32 118 190
Zeaxanthin umol e m~ 171 7.98 0.88 - 28.25 65 108
Elements Aluminum ppm 347 51.85 4.4 -1410.0 109 175
Boron ppm 349 33.83 1.6-135.5 109 176
Calcium % dry mass 348 1.4 0.05-5.05 108 176
Copper ppm 348 7.23 1.0-22.0 109 177
Iron ppm 346 58.28 17.7-157.0 110 176
Magnesium % dry mass 348 0.32 0.08 - 1.06 109 176
Manganese ppm 345 241.9 4.8 -2040.0 110 177
Nitrogen % dry mass 513 2.5 0.48 - 5.06 109 183
Phosphorus % dry mass 350 0.24 0.03-0.72 110 178
Potassium % dry mass 348 1.23 0.16 -4.74 108 176
Sulfur % dry mass 344 0.19 0.04-0.6 108 176
Zinc ppm 344 31.51 3.5-196.0 110 178
Carbohydrates Sugars % dry mass 384 17.94 4.12 - 40.09 115 192
Starch % dry mass 386 33 0.34 - 10.65 115 192
Structure Cellulose % dry mass 396 15.42 4.44 -39.49 114 190
Lignin % dry mass 400 12.62 0.0-42.12 114 190
Leaf Mass per Area gem™ 2277 60.51 15.8 - 148.59 138 183
Phenolics Flavonoids % dry mass 319 6.67 0.67 - 26.01 99 170

Total phenolics % dry mass 323 7.22 1.26 - 25.65 101 173
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Figure 1.1 Results of ASD to PSR spectral transformation. Top: Average vector
normalized reflectance spectra of validation dataset (n > 5,000), the PSR spectrum is
displayed with transparency as not to obscure the transformed ASD spectrum
(PSRasp). Bottom: Average difference in vector normalized reflectance between
validation PSR spectra and ASD spectra before (ASD- PSR) and after (PSRasp -
PSR) the spectral transform was applied.
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Figure 1.2 Temporal distribution of samples used in this study.
Collection date of samples in last column is unknown
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Points in the green region indicate better performance using fresh spectra models
and those in the orange region indicate better predictive performance using dry
ground spectra
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Figure 1.4 Independent validation scatterplots for top performing model for each trait. Green points

indicate fresh leaf model and orange points indicate dry ground model. In each plot the wavelength
range used in model building is listed in the lower right corner. Grey dashed lines are 1:1 lines, red
dashed lines are linear fits between the predicted and observed values.
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Figure 1.5 Pairwise trait correlation (Pearson's r) matrix. Upper diagonal: correlations between
laboratory measured traits, only those pairs with greater than 10 common samples are shown.
Lower diagonal: correlations between spectroscopically derived traits, best performing model

for each trait was used for prediction (Figure 4). Labeled correlations indicate p <.01 and

absolute r > 0.4.
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Figure S1.2 Pairwise wavelet correlation (Pearson's r) matrix.

Upper diagonal: correlations between mean dry spectra wavelet correlations. Lower diagonal:
correlations between mean fresh spectra wavelet correlations. Diagonal displays correlation
between mean wet and dry wavelet correlations between each trait. Labeled correlations indicate
p <.01 and absolute r > 0.4. Higher correlations between traits indicate that the pair of traits
share common wavelengths whose wavelet transforms correlate with biochemical traits. Strong
negative correlations indicate that wavelengths with absorption features for one trait in the pair
are matched by reflectance features in the other trait. For example, chlorophyll A and
chlorophyll B correlate with nearly identical absorption and reflectance features in foliar spectra,
while absorption features in LMA tend to correspond with reflectance features in phosphorus
and vice versa.
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Figure S1.3 Antheraxanthin full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.4 Beta-carotene full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.5 Chlorophyll A full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.

79



80

Chlorophyll B

r ‘ Fresh '
300 | P A 300 TS b
(] P ) II
e Vs
o250 4 ‘s 250 1 S
- P L VYt ’
= 200 - e 200 4 ‘
2 )
€ 150 - 150 °
D 100 4 100 4
2 2 2
$ oo A R“:0.4 | R<:0.71
8 RMSE : 40.62 o RMSE : 28.1
E P n:144 01 S n: 144
2 Full : R4 Full
0 100 200 300 0 100 200 300
Predicted (pmol - m~?) Predicted (pmol - m~?)
E
S
$5
8%
=3
8
1000
9
x §
e 0
Qs
S
-1000 . - - -
500 1000 1500 2000 2500
Wavelength(nm)

Figure S1.6 Chlorophyll B full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.7 Lutein full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.8 Neoxanthin full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.



Violaxanthin

Dry a, Fresh b
° 7 7 ,’/
60 @0 /7" 60 ’
F (-] //,/’
£ 27
—_ ' './// 40 A
: o
2 °
3 20
g R2:0.29 ee R2: 0.36
8 RMSE : 10.5 RMSE : 9.97
n:146 ¢ - n: 146
Full Full
0 20 40 60 0 20 40 60
E
~ £
g
>3
B
o« 5
wv'o
- L=
%
8

500 1000 1500 2000 2500
Wavelength(nm)

Figure S1.9 Violaxanthin full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.10 Zeaxanthin full results

a) Validation scatterplot and metrics for top performing
scatterplot and metrics for top performing fresh spec

dry spectra PLSR model. b) Validation
tra PLSR model. c) Wavelet feature

correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates

higher water absorption. The correlation values plotted
in Figure 7. Wavelengths where the green and brown

on c) are the input to the summary plot
lines align indicate common spectral

features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.11 Aluminum full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.12 Boron full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.13 Calcium full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.14 Copper full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.15 Iron full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.16 Magnesium full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation

across all wavelet scales, transparent lines show individual wavelet scales. Blue shading

indicates the relative intensity of water absorption at each wavelength, darker blue indicates

higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral

features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the

lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature

associated with the trait is present.
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Figure S1.17 Manganese full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.18 Nitrogen full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.19 Phosphorus full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.20 Potassium full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.21 Sulfur full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.22 Zinc full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.23 Sugars full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.24 Starch full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.25 Cellulose full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.26 Lignin full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.27 LMA full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.28 Flavonoids full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Figure S1.29 Total phenolics full results

a) Validation scatterplot and metrics for top performing dry spectra PLSR model. b) Validation
scatterplot and metrics for top performing fresh spectra PLSR model. c) Wavelet feature
correlation plots for fresh (green) and dry spectra (brown), solid lines indicate mean correlation
across all wavelet scales, transparent lines show individual wavelet scales. Blue shading
indicates the relative intensity of water absorption at each wavelength, darker blue indicates
higher water absorption. The correlation values plotted on c¢) are the input to the summary plot
in Figure 7. Wavelengths where the green and brown lines align indicate common spectral
features identified in both fresh and dry spectra. The correlation between the y-axes (wavelet
correlations) among all traits (Figures S1.2-S1.28) is the basis for Figure S1.1, with dry spectra
(brown line across traits) in the upper diagonal and fresh spectra (green line across traits) in the
lower diagonal of S1.1 d) PLSR coefficients for top performing fresh (green) and dry spectra
(brown) models. PLSR coefficients cannot be directly compared to wavelet correlations because
the number of components (Table 3) strongly influences PLSR. However, ideally, negative
wavelet correlations should align with negative PLSR coefficients if an absorption feature
associated with the trait is present.
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Grey dashed line is 1:1 line.
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2. Mapping three-dimensional variation in leaf mass per area with imaging spectroscopy

and lidar in a temperate broadleaf forest

Contributors: Adam Chlus, Eric L. Kruger & Philip A. Townsend

Abstract

Imaging spectroscopy is a valuable tool for mapping canopy foliar traits in forested
ecosystems at landscape and larger scales. Most efforts to date have involved two-dimensional
mapping of traits, typically representing top-of-canopy conditions. However, traits and their
associated biological functions vary through the canopy vertical profile, such that incorporating
information about vertical patterns may improve modeling of ecosystem processes like primary
productivity. In 2016 and 2017, we collected extensive field data in forests in Domain 5 (Great
Lakes) of the National Ecological Observatory Network (NEON) to characterize the vertical
variation in leaf mass per area (LMA), an important foliar trait related to plant growth and
defense. Fieldwork was coincident with NEON Airborne Observation Platform (AOP)
overflights which collected imaging spectroscopy and lidar data. Using imaging spectroscopy to
map top-of-canopy LMA and lidar to model vertical gradients of transmittance, we developed a
method to map three-dimensional patterns in LMA in temperate broadleaf forests. Partial least
squares regression (PLSR) was used to estimate top-of-canopy LMA (R?: 0.57, RMSE 10.8 g m-
2), which, along with lidar-derived metrics of light transmittance and height, was used in a
multilevel regression to model within-canopy LMA (R2: 0.78, RMSE 8.3 g m™). The coupled
models accurately estimated LMA throughout the canopy without taking into account species

composition (R?: 0.82, RMSE: 8.5 g m™?).



106

Introduction

The world’s forest ecosystems are changing rapidly, and extensive data is necessary to
better understand corresponding implications for ecosystem function and to accurately model
future scenarios. However, traditional field-scale sampling techniques may not provide
information at scales sufficient for characterizing landscape and broader-scale variation needed
for accurate modeling. Remote sensing has long offered the potential to extrapolate sparse field
measurements to generate inputs needed to drive models, especially of two-dimensional patterns
across the land surface (Roughgarden et al., 1991; Cohen and Goward, 2004). However, forest
ecosystems are inherently three-dimensional (3D) and multiple studies have highlighted the need
to accurately characterize vertical patterns in structural and biophysical properties for
parametrizing ecosystem process and forecasting models (Cavaleri et al., 2010; Coble et al.,
2016; Rogers et al., 2017). For the most part, remote sensing products and ecosystem models

ignore vertical variability in traits important to understanding forest processes.

A number of ecologically important structural, morphological and chemical properties
vary throughout the vertical extent of forest canopies, including leaf area density (LAD), leaf
angle distribution (LAD) and foliar chemical composition (e.g., concentrations of lignin and
phosphorus, and 6'°C) (Vose et al., 1995; Niinemets, 2015; Leuning et al., 1991). Among the
most widely studied and characterized biophysical properties in the context of within-canopy
patterns is leaf mass per area (LMA), the ratio between the projected leaf area and dry mass,
which is largely comprised of structural and nonstructural carbohydrates, proteins, lignin and

minerals (Poorter et al., 2009). LMA—or its inverse, specific leaf area (SLA)—is a central
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component of the leaf economic spectrum (LES) representing the tradeoff between growth and
defense (Wright et al., 2004; Poorter et al., 2009). For example, relatively thin leaves with low
LMA tend to have high rates of photosynthesis per unit mass compared to denser, thicker and
more durable leaves with high LMA (Niinemets, 1999; Wright et al., 2004). The drivers of LMA
variation differ across scales. Broadly, LMA variation is largely driven by taxonomy, while local
environment and site conditions can explain a large proportion of LMA variation at finer scales

(Messier et al., 2010; Messier et al., 2017).

LMA decreases with depth into the canopy, owing primarily to the attenuation of light
and a decrease in height-mediated hydraulic constraints (Cavaleri et al., 2010; Niinemets, 2015).
Microclimatic variables including temperature, wind exposure and humidity, which co-vary with
incident radiation and height, also influence within-canopy LMA (Niinemets, 2001; Poorter et al.
2009; Petter et al., 2016; Wu et al., 2016). The degree to which within-canopy gradients in LMA
are driven by irradiance or height is not universal and can vary as a function of species, local
environmental conditions and seasonality (Koch et al., 2004; Coble and Cavaleri 2014; Coble et
al. 2016). While numerous studies have explored within-canopy patterns in LMA through
individual tree canopies (Ellsworth and Reich, 1993; Aranda et al., 2004), few studies have
explored patterns of LMA in vertically heterogenous canopies where both species composition
and architecture vary within the vertical profile. The ability to understand these patterns in three
dimensions may provide insights into spatial patterns of forest responses to change, ranging from
successional responses to disturbances at local scales to landscape-level responses to broad-scale
stresses such as drought or the cumulative impacts of climate change. As well, 3D profiles of

canopy traits may also enable more accurate parameterization of landscape- and larger-scale
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process models that do not typically represent spatial variation of the vertical distribution of
canopy traits.

Here we present a remote sensing approach that utilizes imaging spectroscopy and lidar
to characterize the 3D variation in LMA in broadleaf canopies (Figure 2.1). Our approach is
based on the large body of research that has demonstrated that LMA decreases through the
canopy from top to bottom and that decrease is largely driven by incident irradiance and/or
height mediated hydraulics constraints (Ellsworth and Reich 1993; Koch et al. 2001; Poorter et
al. 2009). We posit that if we are able to estimate LMA at the top of the canopy and model the
within-canopy environmental gradients that are known to drive top-down decreases in LMA, we
should be able estimate within-canopy (top-down) patterns in LMA. Our method uses airborne
imaging spectroscopy to estimate LMA at the top of the canopy and lidar to model within-
canopy environmental gradients driving top down patterns in LMA. Imaging spectroscopy
provides the most direct approach to foliar trait estimation at large scales, including LMA (Asner
et al., 2015; Singh et al., 2015; Chadwick and Asner, 2016; Wang et al., 2019, 2020). While lidar
provides the ability to penetrate the canopy and enables characterization of the 3D light
environment (Lefsky et al., 2002; Todd et al. 2003; Olpenda et al. 2018). Our method builds on
the work of Parker et al. (2001) who demonstrated that estimates of vertical light transmittance
derived from lidar follow vertical patterns in photosynthetically active radiation (PAR) and Fleck
et al. (2004) who found with-canopy LMA tracked with-canopy irradiance estimated using
terrestrial lidar. We demonstrate this approach with airborne imaging spectroscopy and lidar data
from the U.S. National Ecological Observatory Network (NEON) coupled with coincidence field

measurements that we use to parameterize our model.
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Methods

Study area
Our study area consisted of hardwood-dominated forests in northern Wisconsin and

Michigan's Upper Peninsula (89.5 W, 46.0 N). The area is characterized by a mix of managed
and unmanaged stands of various age classes, species composition and structure. Common
broadleaf deciduous species include trembling and bigtooth aspen (Populus tremuloides and P.
grandidentata), sugar and red maple (Acer saccharum and A. rubrum), red oak (Quercus rubra),
black and white ash (Fraxinus nigra and F. americana), basswood (Tilia americana) and paper
and yellow birch (Betula papyrifera and B. alleghaniensis). Fieldwork was conducted in sites
within the Great Lakes ecoregion of the National Ecological Observatory Network. NEON is a
continental scale network of long-term monitoring sites distributed across ecoregions within the
United States. Each ecoregion contains multiple sites that are the focus of environmental
monitoring activities including plant and animal surveys, soil characterization and airborne
remote sensing data collection. Sampling took place within three NEON sites in the ecoregion:

UNDE, CHEQ, and STEI (Figure 2.2). Sites range in size from 40-200 km? and comprise a mix

of private, municipal, state and federally-owned land.

Remote sensing data

Remote sensing data were collected between September 2-12, 2016 and September 1-12,
2017 by NEON's Airborne Observatory Platform (AOP). AOP is a multi-sensor system which
includes an imaging spectrometer, lidar sensor and a high resolution RGB camera. The imaging
spectrometer is an AVIRIS-NG-like sensor built by NASA's Jet Propulsion Laboratory that
measures radiation from 380-2510 nm in 420 bands, with a spectral sampling width of

approximately 6 nm (Kampe et al., 2010; Kampe et al., 2011). Lidar data were collected using an
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Optech ALTM 3500 Gemini, which is a dual sensor instrument consisting of a full waveform
digitizer and discrete return sensor transmitting at 1064 nm. The instrument was operated at a
pulse frequency of 100 Hz and recorded up to four returns. The AOP system was flown on a
DeHavilland DHC-6 Twin Otter at 1000 m above ground level (a.g.l.), resulting in 1 m
resolution imaging spectroscopy data and a discrete return density of ~4 pts m2. The full
waveform lidar and RGB camera data were not used in this study.

Orthorectification of the imaging spectroscopy data and co-location with the lidar data
was performed by NEON using a ray tracing algorithm coupled with measurements from an
onboard inertial measurement unit (IMU) and GPS (Kampe et al. 2016). Surface reflectance was
generated using ATCOR 4 (ReSe, Wil, Switzerland), which approximates atmospheric
conditions including water vapor and aerosol content using the MODTRAN radiative transfer
code (Richter and Schlédpfer, 2015). The surface reflectance imagery exhibited strong cross-track
gradients in brightness due to varying viewing and solar geometry. To remove the brightness
gradients, we applied a semi-empirical bidirectional reflectance distribution function (BRDF)
correction employing the widely used Ross-Li kernel combination to model the volumetric,
geometric and isometric scattering components (Colgan et al., 2012; Schlédpfer et al., 2015). A
single set of BRDF correction coefficients was generated for each site and date by randomly
sampling 10% of the pixels from each flightline and pooling the sampled data before fitting the
BRDF correction model. Because scattering properties are dependent on surface type, we limited
the BRDF correction model to vegetated pixels using an NDVI threshold of 0.6. Following the
BRDF correction, all images were resampled to an interval of 5 nm (ex. 400 nm, 405 nm, ...)
using a Gaussian approximation of the spectral response function. Resampling was performed to

harmonize interannual images which had different wavelength centers due to annual radiometric
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calibrations. Before analyses, water absorption features (1330-1430 nm and 1800-1960 nm) and
spectrum tails (< 400 nm and > 2450 nm) were removed from the imagery due to low signal to
noise.

Discrete lidar data were normalized against a 1 m digital elevation model (DEM) to
derive height above ground for each return. The DEM was created by NEON from the discrete
return lidar data using a triangulated irregular network of ground returns interpolated to a surface

(Goulden, 2019).

Field sampling

Field sampling occurred within 10 days of AOP overflights in 2016 and 2017 and
involved plot-level collection of leaves throughout the vertical profile of the canopy. Plot
locations were manually chosen to capture the range of forest types within the ecoregion and
were distributed throughout the study area. Prior to sampling, a comprehensive survey of each
plot was conducted. Species, diameter at breast height (DBH), crown class (dominant,
codominant or suppressed) and location within the plot were recorded for all trees with DBH
greater than 5 cm that had foliage within the plot. Trees were labeled dominant or codominant if
their crowns were in the exposed upper canopy, that is they were visible from above, had sunlit
foliage and were not completely obstructed by other trees, while all other trees were designated
suppressed. Because GPS positions are known to have large errors under closed canopy
conditions, all plots were revisited to survey the plot center coordinates during the fall of the
sampling year once the trees had dropped their leaves (Sigrist et al., 1999). GPS measurements

were made using a Geo7x with an external Zephyr 2 antenna (Trimble Inc., Sunnyvale, CA,
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USA) mounted on a 2 m range pole and were differentially corrected after collection to an
accuracy of < 2m.

Following the plot survey, branches were sampled throughout the vertical profile of the
canopy, independent of species or individual tree. The number of branches within the canopy
that were sampled depended on the number of species present in the plot and structural
complexity of the canopy. Branches were sampled using a variety of tools depending their
location in the canopy. Branches less than 15 m a.g.l. were collected using extendable pole
pruners. Between 15 m and the top of the canopy, a Big Shot throw weight launcher (Sherrill
Tree, Greensboro, NC, USA) was used to launch a line into the canopy, from which a custom-
built cutting device (a la Poulter et al., 1991) was raised to retrieve branches. For sun exposed
branches (i.e., top-of-canopy) greater than 15 m, either a shotgun or a second custom cutter
(Supplemental Figure S2.1) was used to retrieve the top-of-canopy branch. Whenever possible,
we attempted to sample every tree with foliage in the plot at multiple heights. In some plots,
whether due to the number of trees within the plot or inaccessibility, not every tree was sampled.

The height (a.g.1.) of all branches, except those collected using a shotgun, were measured
directly using a measuring tape that was attached to the cutting device. For branches sampled
with a shotgun, the branch height was either measured using a laser hypsometer (Haglof,
Sweden), measuring tape, or, in a select few cases, was estimated from the lidar data. For each
sampled branch, we calculated its relative height in the canopy, which was defined as the ratio
between the field-measured branch height and maximum lidar return height within the plot.

The only differences in sampling between years were: 1) in 2016, 5-m diameter circular
plots were used versus 5 x 5 m square plots in 2017, and 2) 3 and 10 leaves per height were

sampled in 2016 and 2017, respectively. Plot shape was changed between years to increase plot
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size and to simplify sampling. The number of leaves collected per height was increased to better
capture within branch variability in LMA.

After leaves were collected, reflectance measurements were made using a full-range (350
— 2500 nm) field spectrometer equipped with a leaf clip to estimate LMA using spectroscopic
models. Leaf measurements were referenced against a measurement on a 99% white Spectralon
panel (Labsphere, North Sutton, NH, USA) to derive relative reflectance. Measurements were
typically taken immediately after collection; when that was not possible, leaves were placed in a
plastic bag with a damp paper towel and stored in a cooler on ice until measurements could be
made, within 2 hr. Reflectance spectra were measured in 2016 with a Fieldspec 3 spectrometer
(Analytical Spectral Devices, Boulder, CO, USA) and in 2017 with a PSR 3500+ spectrometer
(Spectral Evolution, Boston, MA, USA). After reflectance measurements were complete, leaf
samples were stored in a cooler until leaf area measurements were made later the same day. Leaf
area was measured on three leaves per branch using a LI-3100 leaf area meter (LI-COR
Biosciences, Lincoln, NE, USA), after which samples were frozen and stored for further
analysis. Once the samples were returned to the lab, they were dried to constant mass in a freeze
dryer (> 120 hours) and weighed. Dry weights were divided by the projected fresh leaf area to
calculate LMA.

LMA has shown to be robustly measurable from fresh leaf spectroscopy across a wide
range of leaf types using spectrometers from multiple manufacturers (Serbin et al., 2019). As
such, LMA was estimated for leaves that were not directly measured using spectroscopic models.
Models were developed using partial least squares regression (PLSR), a common chemometric
technique (Wold et al., 2001), in Python using the package 'scikit-learn' (Pedregosa et al., 2011).

Spectroscopic models were built using linked reflectance and LMA measurements made during
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this study, and separate models were generated for each year to account for spectrometer-specific
differences in reflectance measurements. Prior to model development, we removed spurious data
points using a Bonferroni-corrected outlier detection test (Dupuis and Hamilton, 2000), less than
1% of data points were identified as outliers. Following outlier removal, the dataset was split
randomly 50:50 into calibration and validation datasets. Using the calibration data, we then
computed the optimal number of model components using the cross-validated predicted residual
sum of squares (PRESS) statistic using the adjusted Wold's R as a selection criterion (p=0.05)
(Li et al., 2002). The calibration dataset was used to build a series of 500 models, each model
was built using a random 70 percent split of the calibration dataset. The 500 models were applied
to the validation dataset and the mean predictions were compared to observed LMA values and
model performance was assessed using the root mean squared error (RMSE), coefficient of
determination (R?) and bias. Following the accuracy assessment, 500 new permuted models were
built using the entire dataset and were applied to the spectra of unmeasured leaves to estimate
leaf-level LMA. Branch-level LMA was calculated as the average leaf-level LMA of the 3 or 10

leaves from each branch.

Top-of-canopy LMA

Branch-level LMA was scaled to the canopy level by averaging LMA from all sunlit
branches from each plot. Predictive models linking field-measured canopy-level LMA and
imaging spectroscopy data were developed using the same modeling approach, PLSR, that was
used for developing leaf-level spectroscopic models. Plot spectra were extracted from a 7 x 7
pixel window around each plot center, which was a slightly larger window than the field plot

area, to account for GPS and image registration error. All pixels within the 7 x 7 window were
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averaged, not discriminating between sunlit and shaded pixels, resulting in a single spectrum per
plot. This approach makes our method more transferable to spaceborne imagers with larger pixel
sizes in which shaded and sunlit portions of tree crowns will be mixed in pixels. When a plot was
covered by multiples lines owing to flightline overlap, we averaged pixels from all flightlines to
produce a single reflectance spectrum.

A range of regions of the reflectance spectrum have been used to develop predictive
models for LMA from spectroscopy data in the literature. At the leaf level, the full spectrum
(Yang et al., 2016), spectral region subsets (Ourcival et al., 1999; Serbin et al., 2014) and
variable selection techniques (Le Maire et al., 2008; Zhao et al., 2013) have been employed. At
the canopy level, the full spectrum (400-2500 nm) is generally used (Singh et al., 2015;
Chadwick and Asner, 2016; Wang et al., 2019). However Ali et al. (2016) found that the SWIR
region from 1500-2500 nm exhibited the strongest correlation with canopy-level LMA, which is
consistent with research showing that the shortwave infrared (SWIR) contains a number of
absorption features related to dry matter content (Peterson el al. 1988; Curran et al. 1989;
Jacquemoud et al., 1996). To assess the impact of spectral region selection on estimating top-of-
canopy LMA, we compared the results of models built using four spectral regions moving to
progressively longer wavelengths: 1) full spectrum (400-2450 nm), 2) NIR and SWIR (800-2450
nm), 3) the full SWIR (1600-2450 nm), and 4) far SWIR (2000-2450 nm).

Prior to model development, we performed a Bonferroni-corrected outlier test and
identified a single plot as a significant outlier, which was removed from further analysis. The
optimal number of PLSR model components was selected by minimizing the cross-validated

PRESS statistic using the adjusted Wold's R as a selection criterion (p = 0.05).
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Transmittance
Lidar transmittance was calculated following the same form used by Parker et al. (2001)

to model photosynthetically active radiation (PAR) transmittance from full-waveform lidar:

t(h) =1- 22 (2.1)

Ntotal
where 7 is the lidar transmittance metric at height 4 above ground, Nxn is the number of returns
at or above height 4 and N is the total number of returns within the plot window. The fraction
in equation 1 is equivalent to the interception/reflection rate of pulses above a given height. All
returns were used when calculating transmittance metrics. Transmittance metrics were calculated
at 1 m intervals throughout the canopy and were interpolated using a linear function to estimate
transmittance at sampled branch heights in each plot.

Shallow lidar pulse penetration is a common issue in dense canopies where pulse energy
may not reach the lower canopy, understory and ground (Figure 2.3). A lack of returns from
within the canopy can result in an underestimation of transmittance. We compared a range of
window sizes from 5-100 m and found that, with increasing window size, model performance
rapidly increased up until 20 m, after which the model performance stabilized, followed by a
rapid decline with window sizes greater than 50 m (Supplemental Figure S2.2). Based on these
results we used a 20 m wide window around each plot to extract lidar returns for calculating

transmittance.

Within-canopy LMA
Vertical gradients in LMA were modeled using multilevel linear regression (MLR).

MLR was used to account for the hierarchical structure of the dataset in which variables could be
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divided into two levels: group (top-of-canopy LMA) and individual (transmittance and absolute
and relative heights), where individual-level variables are nested within groups. MLR models
present a compromise between complete and no-pooling of data within groups and result in
lower standard errors compared to traditional linear regression modeling (Gelman and Hill,
2007). In addition, MLR models can be formulated such that coefficients, intercepts and slopes
are modeled as a function of group-level predictors. Models were fit in R using the package
'Imer' (Bates et al., 2015), group- and individual-level predictors were fit as fixed effects, and
plot ID was treated as a random effect. We compared a range of models, beginning with
univariate models and sequentially increasing model complexity by including additional
individual-level predictors and a group-level predictor along with interaction terms. Note that we
reverse the values of relative height and transmittance such that values range from 0 at the top of
the canopy to 1 at ground level, this has benefits for fitting no-intercept regression models based
on top-of-canopy LMA; that is, LMA predicted at a the top of the canopy where both relative
height and transmittance are equal to zero will be simply the prediction of top-of-canopy LMA
derived from imaging spectroscopy because any modifiers in our model based on these two

metrics will be multiplied by zero.

Model evaluation

The performance of both top-of-canopy LMA and within-canopy LMA models were
assessed using a 5 by 5-fold repeated cross-validation. Data splits were performed at the plot
level to ensure that test and training datasets were independent. For each training-test split, the
training data were first used to develop a PLSR model to predict top-of-canopy LMA on the

training dataset. These top-of-canopy LMA estimates were then used as inputs to the within-
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canopy MLR model along with the within-canopy training data. The derived top-of-canopy and
within-canopy models were then applied to the test dataset in the same fashion, keeping the same
test and training sets separate for each iteration. We report R2, RMSE and %RMSE for both the

training and test datasets.

Full-canopy LMA mapping

Following top-of-canopy and within-canopy model evaluation, we developed 3D maps of
LMA across the entire study area using the best performing combination of models as
determined by the out-of-sample performance metrics. The final model for implementation was
generated using a permutation based approach whereby we generated 500 models each built
using a random 70% of the data, we recorded the mean estimate predicted from the 500 models.
Models were applied on 5 x 5 m horizontal pixel scale corresponding to the scale of field
sampling and at 1 m intervals vertically. Downscaling of the imaging spectroscopy data utilized
5 x 5 pixel aggregation and averaging. Transmittance metrics were calculated at 1 m intervals

using the 5 m pixel center for determining the neighborhood window center.

Results

Our dataset consisted of 59 plots, 18 sampled in 2016 and 41 in 2017. Fewer branches
were sampled on average per plot in 2017 vs 2016 (12 vs 18 branches) to increase the number of
plots sampled. A total of 14 broadleaf species were sampled during the study, 12 of which were
present in the top of the canopy in at least one plot. Sugar maple (4. saccharum) was the most

commonly sampled species accounting for 37% of the branches. Sugar maple is shade tolerant
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and is a ubiquitous understory species in the study area (Table 2.1). On average, 5.9 trees were
sampled per plot and 84% of those had branches sampled at multiple heights with the canopy.
Independent validation of leaf-level spectroscopic models exhibited high accuracies for
estimating LMA from fresh spectra for both years of measurements (ASD 2016: R?: 0.98,
RMSE: 2.9 g m2; PSR 2017: R%: 0.96, RMSE 4.5 g m™, Supplemental Figures S2.3, S2.4).
Branch-level LMA ranged from 20.2 - 120.7 g m2, while sampled branch heights ranged from
0.25 - 27.7 m a.g.l. (Figure 2.4). The number of species in each plot varied from 1-7, with a

mean of 2.5; multiple species were sampled in 44 of 59 plots.

Top-of-canopy LMA

Cross-validated results of PLSR models for top-of-canopy LMA from imaging
spectroscopy data varied in performance depending on spectral interval (Table 2.2). Model
performance increased with narrower spectral ranges from full spectrum (400 - 2450 nm: R?:
0.39, RMSE 12.7 g m™) to the far SWIR (2000 - 2450 nm: R?: 0.57, RMSE 10.7 g m?) (Figure

2.5). We used the top performing model, far SWIR, for the remainder of the analysis.

Within-canopy LMA

Within-canopy variables—height, relative height and lidar transmittance—all correlated
positively with LMA (Figure 2.6). Univariate models which considered only within-canopy
variables ranged widely in predictive performances: transmittance (R%: 0.61, RMSE: 10.9 g m?)
was the best performing, followed by relative height (R?: 0.43, RMSE 13.2 g m) and height (R%:
0.14, RMSE 16.3 g m?).

Among the model forms tested, we found Eq. 2.2 exhibited the best results based on

metrics of model performance, parsimony and interpretability (R?: 0.78, RMSE 8.3 g m™2, Figure
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2.7), using a no-intercept model as described above. (See supplemental Table S2.1. for results of

all tested models).

LMA(h) = LMA¢oc + Tinvyg,, (R) - (Bo + LMA¢oc * 1 + Thiny(h) - B2) (2.2)
where
h = height above ground (m)
LMA;,. = Top of canopy LMA

Tinvy,, = INVerted transmittance of window width 20 m at height h
m

rhin, = Inverted relative height at height h

Functionally, this model estimates LM A within a canopy as a function of top-of-canopy LMA,
relative position in the canopy and transmittance. Regression coefficients modify the slope of
transmittance as a function of relative height and top-of-canopy LMA.

Cross validation metrics varied across species (R?: 0.35—-0.9; RMSE: 5.6 —11.1 gm™;
Table 2.4). With the exception of Ostrya virginiana, which displayed little variation in LMA
(23.5 - 36.3 g m2), the within-canopy model was able to explain at least 50% of the variation in
within-canopy LMA and at least 70% for 8 of the 14 species sampled. Normalized RMSE was
less than or equal to 15% for all but 4 species (O. virginiana, C. cornuta, P. tremuloides, Prunus
spp.). In an analysis of residuals, means for sugar maple, river birch, ironwood, red oak and
bigtooth and trembling aspen showed small but significant differences from 0 (p < 0.01, Figure
2.8a). The mean and median residuals for all species were within +/- 7 g m2, which is lower than
the RMSE of the top-of-canopy LMA model. Likewise, the residuals for canopy dominant trees

differed from 0 (p < 0.01), but by less than 4 g m on average (Figure 2.8b).
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Three-dimensional LMA mapping

Three-dimensional maps of LMA were generated using the combination of the
far SWIR PLSR model to estimate top-of-canopy LMA and Eq 2.2. to estimate within-canopy
LMA. Overall accuracy of the coupled model considering both top-of-canopy LMA and within-
canopy LMA estimates was high (R?>= 0.82; RMSE: 8.5 g m?).

We applied the model to entire study area and highlight a subset of the CHEQ site in
three different visualizations of the 3D patterns in LMA: a horizontal map (Figure 2.9a), a profile
view across a transect (Figure 2.9b) and vertical profiles for several forest types along the
transect (Figure 2.9d).

The horizontal map displays LMA at three heights: top-of-canopy, 5 m into the canopy
and 10 m into the canopy, in the red, blue and green channels, respectively. Areas with relatively
high LMA throughout the canopy are colored white, and include an open-grown oak stand (Oo)
and aspen stand (Ta) annotated on the map. Purple regions, like the thinned oak stand (To),
indicate relatively high LMA in the lower canopy, while the darkly colored maroon regions
indicate relatively low LMA throughout the canopy and are generally representative of sugar

maple stands (Sm).

Discussion

Here we demonstrate a novel method using imaging spectroscopy to estimate top-of-
canopy LMA and lidar-derived metrics of within-canopy environmental gradients to map 3D
profiles of within-canopy LMA. Our model works within northern temperate broadleaf forests

and is independent of information on horizontal or vertical species composition. Prior studies
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have used imaging spectroscopy to map top-of-canopy LMA or scaled whole-canopy LMA, but
this study is the first of its kind to map LMA at discrete intervals throughout the canopy.

The straightforward and computationally efficient lidar transmittance metric we used
captured a large portion of the variation in within-canopy LMA. From a technical perspective,
our comparison of transmittance window sizes highlights the importance of sufficient lidar beam
penetration to accurately characterize understory conditions through the depth of the canopy. In
addition to increasing the number of lower canopy returns increasing the window size also
accounts for the neighboring canopy structure which impacts the local light environment. For our
dataset a window size of 20 m enabled measurement of enough discrete lidar returns to
accurately represent 3D variation in canopy structure as it controls vertical distribution in LMA.
We found increasing window beyond 20 m provided no benefit to modeling within-canopy LMA
because of decreasing spatial autocorrelation in canopy structure, thus providing less horizontal
detail in the vertical structure of canopies. For data collected under different sensor
configurations this may differ as the ability of a lidar sensor adequately characterize canopy
structure is not only a function of characteristics of the canopy itself, but also the lidar sensor
properties, including wavelength, beam power, divergence and return density (Lim et al. 2003;
Morsdorf 2009; Jakubowski et al. 2013).

Other methods exist for estimating transmittance from discrete return lidar, but usually
require a priori knowledge of species composition and age classes to define light extinction
coefficients (Parker et al., 2002). We developed our method explicitly to operate independent of
species composition information, which potentially makes it more flexible for application in new
study areas lacking such information. Full waveform lidar offers the potential to provide greater

detail on structural characteristics of forest canopies driving within-canopy radiation regimes
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compared to discrete return lidar, but was not used in this study due to a sensor malfunction.
Waveform processing methods such as deconvolution and decomposition offer the ability to
extract a greater number of returns (Zhou et al., 2017) or estimate backscattering cross sections
(Wagner et al., 2006), that may relate more specifically to leaf/plant area.

Our modeling results highlight the importance of an accurate estimate of top-of-canopy
LMA to characterize within-canopy vertical variation in LMA. We found that restricting the
wavelength region to the far SWIR (2000 — 2450 nm) resulted in the best performing model, this
region of the spectrum is known to contain absorption features related to dry matter content
including proteins, starch, sugars and cellulose (Curran 1989; Jacquemoud et al., 1996).
Conversely models built using the full VNIR-SWIR range performed poorly, possibly a result of
overfitting to pigment absorption features or canopy structure induced effects that are not
generalizable across the entire dataset. Inclusion of top-of-canopy LMA as a predictor improved
within-canopy model performance compared to models using only height and transmittance
metrics as predictors (R?: 0.69 vs. 0.78; Supplemental Table S2.1). The top-of-canopy LMA
serves two roles in the 3D model: first, it acts as a starting point for the within-canopy gradient
of decreasing LMA and, second, it defines the slope of the relationship between LMA and
transmittance, as plots with higher top-of-canopy LMA show steeper LMA declines within the
canopy—i.e., larger values for the 7;,,, (h) - (Bg + LMA¢c - 1 + Thin,(h) - B;) term in
Equation 1 (see [ coefficients in Table 2.3). The interaction terms in Eq. 2.2 modify the
transmittance slope to account for the fact that LMA largely converges to a small range of values
at the bottom of the canopy (~20-40 g m™) irrespective of the value at the top of the canopy,
where the range of LMA is large (~50-120 g m™). Interestingly, our results suggest a generalized

relationship describing within-canopy decreases in LMA in these temperate broadleaf deciduous
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forests, independent of either canopy species or subcanopy species identity (Figures 2.6b and
2.6¢). Our field data demonstrate that in multi-species plots, where species vary through the
vertical profile, trends in LMA generally follow a continuous pattern regardless of species
turnover (illustrated for individual plots in Fig. S2.6). Moreover not only do we see LMA decline
within a given tree of a species, there is also vertical species-turnover that corresponds to shade
tolerance, and these shade tolerant species also have lower LMA as well. The fact that these
patterns can be modeled using remote sensing may enable testing the generality of the
relationship across a range of broadleaf forest types.

Our model used relative rather than absolute height above ground as an independent
variable, and moreover we show that absolute height had a weaker explanatory power than
relative height (Supplemental Table S2.1). While others have shown a strong relationship
between LMA and absolute height (Koch et al., 2004; Cavaleri et al., 2010), these studies have
focused on much taller trees than in our study area. We expect that hydraulic constraints may
play a weaker role in regulating LMA through the canopy in these northern temperate forests,
and expect that a similar model may need to leverage absolute height for taller forests in which
absolute height plays a more significant hydraulic role on leaf development. It is not clear what
physiological process relative height captures in our model, although it may simply be
compensating for limitations in characterizing lower canopy vertical structure due to lidar beam
attenuation or covarying with other environmental conditions driving LMA variation like
temperature, humidity or windspeed.

Ultimately, the utility in our new approach will be the generation of voxels to represent
3D trait variation, potentially applicable for modeling canopy processes. However, our 2-

dimensional maps of 3D patterns in LMA reveal unique patterns not visible from the visible
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imagery (Figure 2.9a,c). In particular, the maps highlight the legacies of logging, selective
logging and other disturbances. This results in highly variable, but spatially coherent patterns in
within-canopy LMA that is otherwise obscured by relatively dense stands. Of note are the
variable patterns seen in the three oak stands highlighted in Figure 2.9, a thinned oak stand (To),
a closed canopy oak stand (Co) and an open-grown oak stand (Oo). At the top of the canopy the
thinned and closed stands show similar values in LMA, 104 and 105 g m™, respectively, while
the open-grown stand is much higher at 119 g m2. This difference may be a result of site-specific
differences in local microclimate and/or soil moisture in the open-grown site relative to the
closed and thinned sites, resulting in higher LMA (Potter et al., 2001; Abrams et al., 1994).
However, when comparing within-canopy gradients in LMA the closed and thinned sites quickly
diverge. The closed stand shows a sharp decline in LMA through the canopy while the within-
canopy gradient of LMA in the thinned stand is shallower owing to increased light penetration, a
pattern that is consistent with experimental treatments (Chiang and Brown, 2010). A key insight
from this effort is not only that canopy structure is spatially heterogeneous and hence so is full-
canopy LMA, but that this variation may be significant to our understanding of within-canopy
processes. This also important for understanding patterns of forest function, as the majority of
temperate forests in this region have undergone some level of stand management or disturbance
that is not apparent in passive imaging.

While this study focused on within-canopy patterns of LMA, other physiologically and
ecologically relevant foliar traits also vary along canopy environmental gradients, including
concentrations of total non-structural carbohydrates (Niinemets 1997) and phosphorus (Leuning
et al., 1991), and chlorophyll to nitrogen ratios (Koike et al., 2001). Although not included in this

study due to a lack of validation data, we also estimated a suite of traits using fresh-leaf and dry-
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ground spectroscopic models and found significant within-canopy patterns in several traits
correlated with lidar transmittance including sugar concentration, chlorophyll A content and
xanthophyll cycle pigment content (violaxanthin, antheraxanthin and zeaxanthin (VAZ))
(Supplemental Figure S2.5). VAZ, which play a photoprotective role in leaves and are known to
correlate positively with light levels/transmittance, showed the strongest relationship with
transmittance among the traits estimated (R>= 0.49) (Niyogi 1997; Hansen et al., 2002).

Here we focused on a single period of the growing season, but LMA is known to vary
through the course of the growing season (Reich 1991; Yang et al. 2016). In addition to seasonal
variation in absolute values of LMA, there may also be phenological variations in the
relationship between top-of-canopy LMA and within-canopy LMA as it relates to forest vertical
structure. For example, Coble et al. (2016) found that drivers of within-canopy variability in
LMA in sugar maples varied during the growing season, driven by height early in the growing
season and light environment later in the growing season. This suggests future directions of
research in both ecological and remote sensing research testing the extent to which the
relationships we describe are generalizable throughout the course of the growing season. This
may also necessitate further testing the extent to which species identity conditions temporal
patterns in 3D LMA.

As well, this study is specific to northern temperate broadleaf forests, and was not tested
on similar species in other biomes, nor on physiognomically or physiologically different tree
types such as conifers and evergreen broadleaves. We expect that different forest types will
exhibit a generalizable pattern, a decrease in LMA with depth into the canopy, but due to

differences in resource allocation strategies and canopy structure, the shapes of the relationships
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will differ. Future testing of the generality of our model could apply the model to different forest
types to identify how model coefficients change by taxa.

Our mapping of 3D patterns in LMA has the potential to be coupled with recent efforts to
model vertical LAI profiles and leaf area density using lidar (Tang et al., 2012; Kamoske et al.,
2019) as a basis to estimate full canopy foliar biomass and nutrient content for use as inputs into
fire (Perry et al., 2004), nutrient cycling (Grimm et al., 2003) and carbon accounting models
(Hudiburg et al., 2009). Extensive airborne and spaceborne lidar (e.g., GEDI) combined with
imaging spectroscopy may enable better characterization of the distribution of within-canopy
processes, even if wall-to-wall mapping is not yet possible. Multi-layer canopy photosynthesis
models that incorporate expected variation in physiologically important traits throughout the
canopy can provide more accurate estimates of assimilation rates than more generalized methods
like big-leaf models (Raulier et al.,1999). However, at present, most models do not explicitly

include 3D variation in foliar traits.

Conclusion

This study is the first to employ imaging spectroscopy and lidar together to map 3D
patterns in LMA, an important canopy functional trait that is widely used to characterize
photosynthetic capacity of forests. Our method accurately estimated horizontal and vertical
variation in LMA in broadleaf forests without taking into account species composition (R?=
0.82; RMSE: 8.5 g m2). Our work is an initial step, with further research into the generality of
the relationships needed across different sensors, ecosystems and through time. As well, the
integration of these data products into ecosystem process models requires testing. Critical to this

research was the availability of coincident free and open high-resolution leaf-on lidar and
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imaging spectroscopy data, which until the NEON AOP was deployed was rare. Separately, each
technology addresses different needs, but the true value of imaging spectroscopy and lidar may
be in their combined, complementary use. Finally, new or planned spaceborne hyperspectral (ie.
PRISMA, HISUI, CHIME and SBG) and lidar systems (GEDI) will provide opportunities to

build on our work and quantify full-canopy physiological variation on a global scale.
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Tables
Table 2.1 Field sampling summary
Top-of-canopy Mean Range
Species Plots  Branches branches Branch Branch
LMA (g m?) LMA (g m?)
Acer rubrum 10 33 2 52.6 33.0-86.1
Acer saccharum 39 301 22 40.5 23.2-94.9
Betula alleghaniensis 4 24 1 41.5 25.0-90.1
Betula papyrifera 7 30 4 51.5 29.7-102.6
Corylus cornuta 9 12 0 35.9 26.1-49.8
Fraxinus americana 8 24 7 61.2 20.2-102.8
Fraxinus nigra 7 51 7 51.8 26.2 - 100.4
Ostrya virginiana 8 17 0 28.5 23.5-36.3
Populus grandidentata 7 44 8 72 49.4 - 102.0
Populus tremuloides 13 64 21 74.1 52.9-102.1
Prunus spp. 6 13 2 56.4 36.6 - 88.6
Quercus rubra 18 144 21 71.7 32.2-120.7
Tilia americana 9 43 6 49.1 20.2-87.4
Ulmus americana 1 11 1 43.5 25.3-68.9

Table 2.2 Cross-validated PLSR top-of-canopy LMA results

Training Test
Wavelengths Components R?* RMSE %RMSE R? RMSE %RMSE
(nm)
400 - 2450 7 0.71 8.75 12.6 0.39 12.68 18.27
800 - 2450 6 0.7 8.84 12.74 0.46 11.91 17.15
1600 - 2450 6 0.73 8.49 12.24 0.54 10.99 15.83
2000 - 2450 6 0.73 8.39 12.08 0.57 10.67 15.37




Table 2.3 Within-canopy mean permuted model coefficients

Coefficient Estimate
Bo 40.19
B1 -0.80
B2 -34.83

Table 2.4 Within-canopy LMA cross-validation metrics by species

Species R? RMSE NRMSE
Acer rubrum 0.69 8.13 0.15
Acer saccharum 0.5 7.02 0.13
Betula alleghaniensis 0.8 8.53 0.13
Betula papyrifera 0.86 5.62 0.09
Corylus cornuta 0.7 5.72 0.24
Fraxinus americana 0.78 9.37 0.11
Fraxinus nigra 0.63 8.37 0.14
Ostrya virginiana 0.35 6.08 0.47
Populus grandidentata  0.84 6.38 0.15
Populus tremuloides 0.5 8.6 0.3
Prunus spp. 0.51 9.71 0.27
Quercus rubra 0.77 11.14 0.13
Tilia americana 0.75 7.33 0.13

Ulmus americana 091 6.5 0.15
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Figure 2.1 Three-dimensional LMA modeling workflow.
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Figure 2.3 Example of varying lidar penetration depth from two plots: a
trembling aspen stand (a,c) and sugar maple stand (b,d); a-b) profile view of all
returns; c-d) upward looking field photos from each plot. Both plots have a large
number of returns from the upper canopy and few to no returns from the middle
of the canopy. In the aspen stand the lack of returns from the middle canopy is
consistent with branching structure seen in the field photos, while the lack of
returns in the maple stand is the result of near complete beam attenuation in the
upper canopy.
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Figure 2.5 Out-of-sample validation results for the top preforming top-of-canopy PLSR
model using wavelengths 2000-2450 nm. a) Mean predicted versus observed; b) residuals; c)
PLSR model coefficients; X-axis error bars on a and b indicate +/- 1 standard deviation of
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canopy species composition.
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Figure 2.9 Results of three-dimensional LMA model applied to CHEQ (90.069 °W, 45.795° N). a)
Two-dimensional RGB representation of three-dimensional patterns in LMA, R: Top-of-canopy LMA,
G: LMA 5m into canopy, B: LMA 10m into canopy. b) Profile view of LMA transect; ¢) True color
RGB image d) Height versus LMA for a set of individual 5 m pixels from forest types located on
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3. Characterizing seasonal variation in foliar biochemistry in a temperate broadleaf forest
using imaging spectroscopy

Contributors: Adam Chlus, Eric L. Kruger & Philip A. Townsend

Abstract

Foliar biochemical traits are important indicators of ecosystem functioning and health
that are difficult to characterize at large spatial and temporal scales using traditional
measurements. However, comprehensive inventories of foliar traits are important to
understanding ecosystem responses to anthropogenic and natural disturbances, as inputs into
ecosystem process models, and for quantifying spatial variation in functional diversity. Imaging
spectroscopy has been demonstrated as a valuable tool for developing maps of ecologically
important foliar traits at large scales, but its application to mapping foliar traits over the course of
the growing season has been limited. We collected high-resolution imaging spectroscopy data
over Blackhawk Island, Wisconsin, USA at eight time points during the 2018 growing season
(May - October). Using partial least squares regression (PLSR) we developed predictive models
applicable to all dates to produce canopy-level maps of nine traits related to ecophysiological
function: chlorophyll content, leaf mass per area and concentrations of nitrogen, lignin, fiber,
phenolics, calcium, phosphorus and potassium. The accuracy of our models varied across traits
(R%: 0.55-0.93), traits with well-defined absorption features were retrieved with the highest
accuracy including chlorophyll (R?: 0.93; %RMSE: 8.0) and total phenolics (R?: 0.86; %RMSE:
11.0). We tested the primary drivers of trait variation and found that phenology (date) explained
the greatest amount of variation for all traits with the exception of total phenolics for which

species explained 75% of the variation. Macronutrients (N, P and K) showed general trends of
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decreasing concentration over the course of the year, reflecting dilution by carbon-rich
compounds during the growing season and resorption during senescence. Conversely,
recalcitrant compounds including lignin, fiber and calcium increased until late summer, after
which they stabilized. Using this data-driven approach, some traits required data collected across
the entire growing season to develop general predictive models, indicating that trait-spectra
relationships may vary across the growing season. These results demonstrate the potential of
current and proposed spaceborne imaging spectroscopy missions for mapping seasonal foliar

biochemistry at a global scale.

Introduction

Foliar biochemical traits are dynamic properties of plants that vary through space and
time and are linked to a multiple ecosystem processes, including primary productivity and
nutrient cycling (de Bello et al. 2010). Foliar traits include biochemical properties related to
photosynthesis, such as chlorophyll and nitrogen, structure and decomposition, including fiber
and lignin, and defense, like condensed tannins and other phenolic compounds. Understanding
how these functional traits vary through space and time is important for developing accurate
ecosystem process models, for predicting ecosystem response to change and understanding
patterns in community assembly (Ito et al. 2006; Reichstein et al. 2014). In general, studies that
use functional traits to assess patterns in community composition and ecological function make
use of mean trait values for species (Albert et al. 2011). However, variability in functional traits
is known to be scale dependent and driven by both taxonomic and environmental factors (Albert
et al. 2010; Messier et al. 2010, 2017). Moreover, ecosystems with strong seasonal patterns, like

temperate deciduous forests, display significant variation in foliar traits as leaves develop and
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senesce; this variation in turn drives intra-annual patterns in ecosystem processes (Reich et al.
1991; Salminen et al. 2004; Noda et al. 2015).

Studies dating to the early 20th century have reported on the seasonal variation in foliar
biochemical traits and demonstrated that interannual patterns vary between species, within
species, and across locations (McHargue and Roy 1932; Alway et al. 1934; Sampson and
Samisch 1935; Chandler 1939). In a review of more than 20 studies, Turner et al. (1977) found
that the direction of intra-annual trends (increasing, decreasing or stable) in foliar nutrient
concentrations was not universal. In general, with elemental concentrations, calcium and
manganese increase during the growing season, while nitrogen, phosphorus and potassium
decrease, and boron, copper and magnesium (Mg) are stable throughout the year. Other studies
have reported on seasonal patterns in more complex compounds including pigments (Schertz
1929; Sanger 1971), phenolics (Schultz et al. 1982; Salminen et al. 2004; Zehnder et al. 2009),
nonstructural carbohydrates (McLaughlin et al. 1980; Flower 2007) and lignin (Martin and Aber
1997; Zehnder et al. 2009).

Trait-based ecology has emerged due the relative ease with which functional traits can be
measured compared to their underlying physiological processes. This has led to the development
of trait databases such as TRY (Kattge et al. 2020), which have enabled global-scale analyses of
the variation in and drivers of ecosystem function (Diaz et al. 2016). Despite their relative ease
of measurement, there are limits to the density of measurements, spatial extent and temporal
richness at which functional traits can be quantified using in-situ sampling and laboratory
analysis before efforts become prohibitively costly. Leaf-level spectroscopy represents a viable
alternative for rapidly and nondestructively measuring foliar functional traits (Asner and Martin

2011; Serbin et al. 2014, 2019; Couture et al. 2016), which in turn has vastly increased the
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amount of data available to characterize evolutionary, taxonomic and environmental sources of
trait variation (Asner et al. 2014; Nunes et al. 2017; Mereiles et al. 2020). Imaging spectroscopy
has now also emerged as a valuable technology for further expanding the scale at which foliar
functional traits can be measured. By developing relationships between canopy spectra and field
measured leaf traits, maps of these traits can be generated at large spatial scales. These maps
have been used characterize relationships between canopy traits and precipitation (Asner et al.
2005), geomorphology (Chadwick and Asner 2016), soil chemistry (Chadwick and Asner 2018),
and land use (Swinfield et al. 2020). However most studies using imaging spectroscopy to map
foliar traits have largely focused on a single point in time, namely the peak of the growing season
(Martin and Aber 1997; Asner et al. 2008; Asner et al. 2015; Singh et al. 2015; Wang et al.
2020), whereas foliar traits are known to vary throughout the course of the growing season and
are most dynamic during shoulder seasons following leaf out and over the course of senescence
(Reich et al. 1991; Yang et al. 2016).

Remote sensing of phenology has historically been studied within the context of
greenness using the normalized difference vegetation index (NDVI), or similar indices like the
enhanced vegetation index (EVI), as metrics of vegetative vigor (Duchemin et al. 1999).
Greenness indices are valuable for representing large-scale phenological patterns due their ease
of computation and compatibility with a wide variety of remote sensing platforms (e.g. Landsat,
MODIS, Sentinel). However, these indices are largely capturing variation in pigment content and
leaf/canopy structure, whereas other ecologically relevant foliar traits may not exhibit the same
temporal patterns (Wu et al. 2009). With its high spectral resolution, full-range (400-2500 nm)
imaging spectroscopy provides the ability to resolve narrowband absorption features associated

with biochemical traits not discernible from broadband sensors (Curran 1989). Few studies have
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used imaging spectroscopy to study phenological patterns of foliar biochemistry of natural
ecosystems (Matson et al. 1994), mostly due to lack of data. At the leaf level, trait-spectra
relationships vary across the course of the growing season, and predictive models developed
using leaves from on time point and introduce biases in prediction on leaves from a different
point in the growing season (Yang et. al. 2016). This is expected to transfer to the canopy level,
but the magnitude of the effect remains untested.

In this paper, we demonstrate the application of imaging spectroscopy to track changes in
foliar biochemistry across a growing season in the temperate deciduous forest on Blackhawk
Island, Wisconsin. Using data from eight airborne imaging spectroscopy acquisitions in 2018
combined with field data, we map variation in nine canopy traits related to growth (chlorophyll,
nitrogen), structure (fiber, LMA, lignin), defense (total phenolics) and mineral acquisition
(calcium, phosphorus and potassium). We also test the temporal sensitivity of our data-driven
trait mapping algorithms to time of year. Finally, we apply our model to the entire time series of
imagery and characterize the spatiotemporal patterns in canopy biochemistry across the course of

the growing season.

Methods
Study area

Blackhawk Island is a 73-ha island located in the Wisconsin River near Wisconsin Dells,
WI, USA (43.65° N, 89.79° W). Blackhawk Island has a long history of ecological research,
including some of the earliest studies linking decomposition processes, species composition and
primary productivity (Pastor et al. 1984). The island has variable topography, with steep slopes

along the river edge and relatively flat terrain in the center of the island, at its highest point it
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rises 33 m above the river. Five soil orders are present on the island, including Alfisols, Entisols,
Incepticols, Histosols and Spodosols (Pastor et al. 1984). Forest community composition on
Blackhawk Island is closely related to soil properties (Pastor et al. 1982). Canopy dominant
species are primarily oaks (Quercus alba and Q. rubra), pines (Pinus resinosa and P. strobus),
and maples (Acer rubrum and A. saccharum), with seven other species present to a lesser extent
as canopy dominants (Figure 3.6). Aboveground production is driven by soil texture and N
mineralization, with mineralization rates a function of N and P return to the soil in leaf litter and
litter quality variation due to species (Pastor et al. 1984, 1982). As a consequence of these and
other studies, Blackhawk Island has also been the site of numerous studies that have used
imaging spectroscopy to map canopy biochemistry (Martin and Aber 1997; Singh et al. 2015),
and is the site where Wessman and colleagues first demonstrated the potential for hyperspectral
imagery to map ecosystem-relevant foliar traits (Wessman et al. 1988), especially as drivers of

decomposition processes.

Remote sensing data

Imaging spectroscopy data was collected using a HySpex airborne imaging system
(Norsk Elektro Optikk As, Skedsmokorset, Norway). The system consists of two cameras, a
VNIR-1800 camera, which measures radiation between 400-997 nm across 186 channels with a
spectral sampling interval of 3.26 nm, and a SWIR-384 camera, which covers 975-2500 nm and
measures radiation at 288 channels with a spectral sampling interval of 5.45 nm. The cameras
were mounted on a vibration-dampening platform with an iTraceRT F400-E GPS/IMU (iMAR
Navigation GmbH, St. Ingbert, Germany). The imaging system was flown aboard a Cessna 180

at a nominal altitude of 700 m above ground level, resulting in a spatial resolution of 0.5 m for
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the VNIR camera and 1.0 m for the SWIR camera. Each overflight consisted of nine flightlines
with 60% sidelap. A total of eight overflights were flown between 16 May and 17 October, 2018,
and all flights were conducted +/- 2 hours of solar noon (Table 3.1).

Raw image data were converted to radiance using manufacturer-provided calibration
coefficients. A spectral calibration was performed using a feature-matching algorithm to correct
wavelength shifts (Gao et al. 2004). Camera alignment and geometric registration were
performed using PARGE 6.0 orthorectification software (RESE, Wil SG, Switzerland).
Calculation of apparent surface reflectance from at-sensor radiance was performed using an
inverse algebraic atmospheric correction algorithm with the ‘libRadtran’ radiative transfer code
(Emde et al. 2016) based on the method of Adler-Golden et al. (1999). Total column water vapor
was estimated by flightline using the depth of the water vapor feature at 940 nm (Carrere and
Conel 1993). Visibility, which was high during all overflights, was set to a constant of 50 km.
Following atmospheric correction, a bidirectional reflectance distribution function (BRDF)
correction was applied to remove brightness gradients resulting from varying sun and sensor
geometry using the approach described in Chlus et al. (2020). Briefly, using sensor and sun
geometry, we modeled the volumetric, geometric and isometric scattering components using the
Ross-Li scattering kernel (Colgan et al. 2012; Schlédpfer et al. 2014). For each date we pooled
data across all flightlines and generated a single set of BRDF correction coefficients by
regressing the resulting kernels against the uncorrected reflectance data for each wavelength. The
VNIR imagery was aggregated and averaged to 1 m to match the spatial resolution of the SWIR
camera. Image data from both cameras were combined at 980 nm to create a single full range
(400-2500 nm) image for each flightline. Spectrum tails (<450 nm and >2300 nm) and water

absorption bands were excluded from analysis due to low signal-to-noise ratios. Individual
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flightlines were merged to create a mosaic of the island for each date; in overlapping regions the

pixel with the smallest viewing zenith angle (i.e. closest to nadir) was selected (Figure 3.2).

Foliar sampling

Within eight days of each overflight we collected foliage from 7-11 trees. To ensure that
our field-derived foliar measurements were from trees identifiable in the imagery we sampled
trees that had crowns greater than 5 m in diameter. From each tree we sampled two large (~1 m)
branches from the sun exposed top of the canopy. Branches were sampled using either
extendable pole pruners or a custom-built cutting device (described in Chlus et al. 2020). From
each branch we measured the reflectance of 20 leaves with a PSR 3500+ spectrometer (Spectral
Evolution, Boston, MA, USA) equipped with a leaf clip to estimate leaf-level foliar traits using
spectroscopic models. Of those 20 leaves, we measured the one-sided area of three leaves using a
flatbed scanner to calculate leaf mass per area (LMA) and retained a single leaf for pigment
analysis to validate the spectral models. We combined the remaining 16 leaves with an additional
20-30 leaves from each branch for bulk chemical analyses. All foliar samples were stored in
plastic bags with a damp paper towel in coolers with ice until the end of each day when they
were frozen in liquid nitrogen and stored in a -20° C freezer until further processing. In addition
to foliar sampling, we also recorded the species, diameter at breast height (DBH), crown shape of
each tree sampled and made a general site characterization. We recorded tree locations with a
differentially corrected GeoXM or Geo7x GPS receiver (Trimble Inc., Sunnyvale, CA, USA).
Over the course of the study period, a total of 80 trees were sampled representing 11 broadleaf

species (Table S3.1).
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Sample processing

Bulk foliar samples were dried in a lyophilizer (> 120 hr) and ground using a Wiley Mill
(Thomas Scientific, Swedesboro, NJ, USA) equipped with a #20 mesh (0.841 mm). Spectral
measurements were then made on the dried and ground samples with an ASD Fieldspec 3
spectrometer (Analytical Spectral Devices, Boulder, CO, USA) following Serbin et al. (2014). A
subset of ground samples was analyzed for concentraations of elements (N, P, K, Ca) (n=27),
total phenolics (n=48) and acid-digested lignin, cellulose and fiber (n=27). Elemental
concentration was determined using combustion analysis (N) and inductively coupled plasma
emission spectroscopy (Ca, K, P) (Gavlak et al. 2004). Total phenolics concentration was
determined using the Folin-Ciocalteu method (Ainsworth and Gillepsie 2007), and fiber and
lignin concentrations were determined using a hot-acid detergent extraction (Couture et al.
2012). Leaves measured for leaf area were dried for >72 hr in a 68° C oven and weighed on a
precision balance (0.0001 g) to determine dry mass. LMA was calculated by dividing measured
dry mass by leaf area. Chlorophyll A content was measured on a subset of samples (n= 61) using
high performance liquid chromatography (HPLC) following Schweiger et al. (2018).

Spectroscopic models were then used to estimate foliar biochemistry for all samples.
Estimation of foliar traits from reflectance spectra is a well-established method for rapidly and
accurately estimating foliar biochemical properties (Asner et al. 2008; Serbin et al. 2014; Yang et
al. 2016). Fresh leaf-level reflectance spectra were used to estimate LMA and chlorophyll A
content, while spectra of dried and ground samples were used for the estimation all other traits.
Models were built using partial least squares regression (PLSR) using ‘scikit-learn’ in Python
(Pedrogosa et al. 2011). PLSR models were calibrated with data from three independent datasets:

Serbin et al. (2014), Wang et al. (2020) and Chlus et al. (Chapter 1: Chlus et al. 2020) and
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validated against the subset of samples from Blackhawk Island described above that were
measured using laboratory techniques. Models for all traits were built using the SWIR region of
the spectrum (1200-2500 nm), with the exception of chlorophyll A models that used the VNIR
(400-800 nm). Prior to model building, each spectrum was normalized to its mean to remove
brightness differences, similar to normalization used in other studies (Feilhauer et al. 2010; Kim
et al. 2013). The optimal number of model components was determined by minimizing the cross-
validated predicted residual sum of squares (PRESS). A series of 500 calibration models was
generated, each built using a random 70 percent of the calibration data. These models were then
applied to the independent (fully withheld) validation dataset and the mean trait value across the
500 models was calculated for each sample and compared against the observed trait value.
Model performance was assessed using the coefficient of determination (R?), root mean squared
error (RMSE) and normalized RMSE (NRMSE) (Table S3.2). Following the accuracy
assessment, 500 new permuted models were built using the entire dataset and were applied to all

fresh and ground spectra. Any negative trait predictions were truncated to zero.

Canopy trait mapping

Trait maps were generated using PLSR, predicting canopy-level traits as a function of
HySpex imaging spectroscopy. Canopy-level traits were derived by simple averaging of all leaf-
level trait estimates from each crown. Canopy spectra of sampled trees were extracted from the
imagery using manually digitized crown polygons and averaged, resulting in a single spectrum
per tree. We used all pixels from a crown, including both sunlit and shaded components, as this

is more representative of canopy spectra than using sun-facing pixels exclusively, and also better
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facilitates comparison with coarser-resolution data expected from forthcoming satellite missions.
Similar to the leaf-level models we mean-normalized the canopy spectra prior to analysis.

To test the impact of phenology on the predictive ability of our models, we split the
growing season into three periods: early (May 16 - July 25), middle (June 29-Sept 10) and end of
season (Aug 13 - Oct 17). We chose overlapping periods to ensure sufficient sample size for
calibration and so that each period had approximately the same number of samples. We kept
track of the percent overlap in trait values between each seasonal period to use as a diagnostic of
cross-season PLSR model performance. For each period we developed a PLSR model using data
from the within-period dates and applied the model to the out-of-period dates, we then calculated
the R2, RMSE and NRMSE of the predicted values. The optimal number of model components
was determined by minimizing the cross-validated PRESS statistic calculated on the calibration
dataset. This analysis was conducted to evaluate whether trait/spectra relationships change
through time, and to assess the consequences of using trait models built using data from a season
that differs from the season of the imagery.

Finally, we built a model using data from all dates by randomly dividing the data 70:30
into calibration and validation and repeated the same model building steps used for generating
permuted leaf-level models. The resulting permuted models were applied to all images in the
time series and the mean trait estimates and their standard deviations were calculated for each
pixel. For analysis, we masked pixels whose values were outside +/-15% of the range of field
measured traits.

All image models were built using the SWIR region of the of the spectrum (1200-2300
nm), with the exception of chlorophyll A (450 - 750 nm; Gitelson and Merzylyak 1996) for

which we aimed to exploit pigment absorption features, and total phenolics (1600-1700 nm), in
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which we aimed to exploit a 1660 nm phenolics feature (Kokaly and Skidmore 2015). The
remaining traits were predicted using only the SWIR spectrum because the primary absorption
features associated with those traits are located in the SWIR (Curran 1989), but also to reduce
confounding influence of pigment-related spectral features in the visible that may correlate with

non-pigment traits and to limit the influence of canopy structure in the NIR wavelengths.

Species classification

Species classification was performed using an object-oriented (segmentation)
classification approach, in which both spatial context and spectral signatures are used to
delineate trees. Image segmentation was performed using the Shepherd segmentation algorithm
(Shepherd et al. 2019) implemented using the Python library ‘RSGISLib’ (Bunting et al. 2014).
Shepherd segmentation uses an iterative process of grouping spectrally similar regions of pixels
until all regions reach a user-defined minimum mapping size, which we established as 25 pixels
(25 m?) to correspond to the minimum crown size sampled. The segmentation was performed on
a five band composite of principal component (PC) images from three dates 16 May (PC bands:
2,4,5), 04 June (PC band: 4) and 29 June (PC band: 4). We used multiple dates to exploit
phenological and spectral differences among canopy trees. The PC transformation was
performed to reduce the dimensionality of the data, thus improving processing time and limiting
data redundancy. We visually inspected the PCs and chose for segmentation those that showed
the greatest amount of contrast between neighboring crowns. Late season images were not used
as testing demonstrated that they provided no improvement in segmentation results.

After segmentation, species classification was performed using a random forest classifier

built with 100 trees using the ‘scikit-learn’ library in Python (Pedrogosa et al. 2011). For each
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segment we calculated the mean value of all contained pixels for each band across seven dates,
this resulted in 2821 features per segment (403 bands x 7 dates). Imagery from October 17 was
excluded due to irregular senescence of deciduous species across the island. To reduce the
dimensionality of the data we applied a PC transformation and retained as predictor variables the
first 99 components, which explained 99.99% of the variance in the data. Species labels for
training and testing of the classifier were derived from a combination of field data collected in
2018 and 2019 and photointerpretation, yielding a total of 347 individual trees representing 13
species. We excluded species for which there were less than three individuals found on the
island, including yellow birch (Betula alleghaniensis), cottonwood (Populus deltoides) and elm
(Ulmus sp.). We used the crown center locations associated with the identified trees to select the
corresponding image segments. The data were then split 50:50 into training and testing data,
stratified by species. A classification model was built with the training dataset and used to label
the testing dataset, on which we calculated accuracy metrics. After accuracy assessment the
classifier was rebuilt using all of the data and applied to all image segments to make a map to
intersect with the trait maps. We retained the classification probability of each segment to use in

subsequent analyses to filter data based on confidence of its species label.

Variance partitioning
We performed a variance component analysis to identify sources of variation in foliar
traits derived from the imaging spectroscopy data. Variance components were extracted using a

linear mixed-effects model fit in R using the package ‘Ime4’ (Bates et al. 2018) as follows:

T = + Species/Segment + Date + Soil type + ¢
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where 7 is the observed trait value, y is the trait mean, Species, Segment, Date, Soil are random
effects and ¢ is the unexplained variance which also includes within-segment variance. Segment
refers to the unique crown or crown element mapped during the species classification and
includes numerous pixels of which trait estimates that are classified as a single species. The
nested effects Species/Segment account for interspecific and intraspecific variance. Soil refers to
soil type derived from a soils map of Blackhawk Island by Pastor et al. (1982). The soil map was
manually digitized using a combination of a hig- resolution (1 m) lidar DEM collected in 2010
and historical aerial photography (See Figure S3.1). Date refers to each image acquisition date
for which traits are estimated (Table 3.1). Image segments were used to extract pixel-wise foliar
trait estimates from trait maps. We excluded edge pixels between segments to reduce edge-effect
mixing of pixels from neighboring trees (Figure S3.2). To reduce computational complexity, ten
pixels were randomly selected from each segment. To reduce uncertainty in the variance
partitioning, only segments whose species classification probability was greater than 0.5 in the
random forest classification were used. Here we treat segments as individual tree crowns.
However, we note that in many cases large individual trees were divided into multiple segments
in the object-oriented portion of the classification, and are therefore best described as crown

elements.
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Results

Canopy trait models

The results of the full-season PLSR model validation exhibited strong predictive
performances for most traits (R%: 0.47-0.93), and, with the exception of fiber, the NRMSE was
less than or equal to 20% (Figure 3.3; Table 3.2; see Table S3.2 for detailed metrics).

Performance of models developed for one season and applied to different seasons varied
across traits (Table 3.2). Total phenolics was estimated with high accuracy regardless of the date
(R%: 0.8-0.9, NRMSE < 15%), whereas nitrogen models calibrated using data from seasonal
subsets all performed poorly (R? < 0.07). In contrast, the full-season nitrogen model performed
considerably better (R? : 0.79). Structural traits including fiber, LMA and lignin exhibited
generally similar patterns in model performances and showed the highest accuracies when
calibrated with mid-season data (R?: 0.64-0.7). Conversely, chlorophyll A model performance
was best for the early and end of the season models where values spanned 80-100% of the range
of the validation data, compared to mid-summer where chlorophyll content values were captured
only 50% of the range. Calcium, phosphorus and potassium showed inconsistent patterns across
the season, but all three improved substantially with the full-season model, especially calcium.
Across all traits, model performance metrics (NRMSE and R?) did not correlate with percent of
overlap in trait values between the time periods being compared (p > 0.5). For example, the data
range of LMA for the early time period (16 May- 25 July) overlaps 77% with the other two time
periods (i.e., LMA generally lower earlier and higher later in the growing season), but the fact
that the data ranges were unequal was unrelated to the relatively poor performance of the early

season LMA model on mid- and late-season data (R?: 0.02) (Table 3.2).
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Species classification

The accuracy of the classifier was high (Overall accuracy: 87.9%; Cohen’s kappa: 0.86;
see Table S3.3 for details). All of the most common species on Blackhawk Island were
accurately classified (both producer’s and user’s accuracy), while uncommon species such as
white ash and silver maple had lower accuracies. Red oak (Q. rubra) was the most common tree
species on Blackhawk Island (43% cover), followed by white pine (P. strobus) (18%) and sugar

maple (4. saccharum) (13%), with all other species having less than 10% cover.

Variance partitioning

Species and date (i.e., phenology) were the primary drivers of differences among the 10
mapped traits (Figure 3.4), but the relative importance of each among traits was highly variable.
For chlorophyll, fiber, lignin, LMA, phosphorus and potassium, phenology accounted for the
greatest proportion of variance (55% on average). Species accounted for the majority of variance
in total phenolics (76%), while for all other traits it accounted for less than 32% of the total
variance, although species did account for the largest amount of explained variance in calcium,
and nitrogen. A majority of the variance was unexplained for nitrogen (53%). The amount of
variance explained by soil type was low for all traits (mean: 0.43%) and was highest for
potassium (1.03%) and lowest for total phenolics (0.0%). Similarly, within-species effects
accounted for a small proportion of the total variance (mean: 3.1%) with calcium having the
largest proportion (4.6%). Interestingly, across all traits the amount of unexplained variance was
positively correlated with the number latent vectors used in building the PLSR model (r: 0.85, p

<.01). Models with a larger number of components, despite validating similarly or better than
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lower-component models, resulted in noisier trait maps. This noise resulted in an increase in

within-canopy variability which is captured in the residual variance.

Seasonal patterns

Species-averaged trait trajectories varied across the course of the growing season (Figure
3.5). Traits associated with leaf structure, including LMA, lignin and fiber, displayed similar
species ordering from low to high values on all dates, and followed a generally similar trend of
increasing values until leveling off in the late summer. Calcium displayed a similar trend, but
species ordering differed from LMA, lignin and fiber, with 7. americana and C. cordiformis
accumulating calcium at the fastest rate among the five broadleaf species. Chlorophyll A content
trajectories showed the greatest dynamic range among all traits with a two-fold increase and
decrease across the growing season. All species had similar seasonal trends but showed
differences in phenological timing. Nitrogen, potassium and phosphorus decreased in
concentration as the season progressed, but rates of decrease varied among traits and species.
After full leaf expansion, nitrogen concentration was stable during the peak of the growing
season before declining in late September, while phosphorus and potassium exhibited a gradual
and continuous decline across the growing season. Seasonal trajectories of phenolics varied most
widely across species in both magnitude and direction. 4. rubrum had the highest phenolics
concentration among the common species on Blackhawk Island, and gradually increased until
mid-summer after which it exhibited a gradual decrease. Non-Acer species displayed a U-shaped
seasonal pattern, with the highest concentrations of phenolics early and late in the season.

We visualized the trait maps by generating three band composite images across four dates

in the growing season and summarized the species-average patterns in the six most common
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broadleaf species on the island (Figure 3.6). We displayed total phenolics, LMA and potassium
in the red, green and blue bands, respectively, as these traits have different seasonal trajectories
and show distinct patterns in species sorting (Figure 3.5). For visualization, each trait value was
first normalized to 5-95 percentile range across all four dates, then for each date and pixel, traits
values were normalized to their sum. On 16 May broadleaf species are characterized by
relatively high concentrations of total phenolics and potassium and low LMA. Beginning on 04
June, non-maple species exhibit a relative decrease in total phenolics content captured by the
shift in color from purple to blue. As the season progressed, LMA increased across all species
resulting in an island-wide shift towards green on the map. In both the July and September
composite images there are distinct groupings in tri-variate trait space of species: those with high
LMA, low phenolics and low potassium (red and white oak), those with low LMA, high
phenolics and low potassium (red and sugar maple) and species with low LMA, low phenolics

and high potassium (basswood and bitternut hickory).

Discussion

Using a time series of imaging spectroscopy data over a single growing season, we
developed maps of canopy foliar traits to characterize phenological variation in a temperate
broadleaf forest. We demonstrate that accurate maps of canopy traits can be derived using a
single cross-seasonal model per trait and that these models accurately characterize interspecific
trait trajectories (Figure 3.5). The performance of the full-season models closely matches the
"peak-season" models of Wang et al. (2020), who used imaging spectroscopy to map canopy
traits in biomes across the eastern United States. Models that performed best included those with

strong absorption features in the VSWIR spectrum (400-2500 nm), including chlorophyll (R?:
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0.93) and total phenolics (R?: 0.86). Other traits, like calcium, despite performing comparatively
poorly (R%: 0.55), still accurately captured interannual trends and species ordering as reported in
the literature (Chandler 1939; Chandler 1941; Insley et al. 1981; Cote and Fyles 1994).

We tested the sensitivity of canopy-level PLSR models to seasonality and found that the
influence of seasonality on relationships between spectra and traits is not universal across traits.
For example, models for estimating total phenolics performed well at other times of year
regardless of the time of year for which the model was built, in contrast to nitrogen which
performed poorly except when built using data from the entire growing season. We also found
that model performance was not correlated with the amount of variation represented in the data
used for model calibration. We performed this analysis under the assumption that trait data from
one time of the season may not be representative of the trait data range for other parts of the
season. This suggests that seasonal variation in the trait data range does not drive model
performance, but rather that for some traits there is a seasonally dependent trait-spectra
relationship that is not directly related to the range of trait measurements. Specifically, other
factors — presumably unmeasured — confound the predictive relationship unless they are captured
in the dataset. Unlike leaf-level spectroscopy, which allows for the collection reflectance
measurements under controlled conditions (i.e. leaf clip or integrating sphere), imaging
spectroscopy presents a number of external factors that introduce errors and biases in canopy
reflectance retrievals. These include radiometric calibration, atmospheric correction and BRDF
correction (Weyermann et al. 2013; Thompson et al. 2018), as well as other factors such as the
crown architecture and the presence and relative density of understory vegetation. These impacts

can be seen in our data where on certain dates trait retrievals appear systematically biased across
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all species, however, these biases are not universal across traits and are likely a function of
model wavelength weightings (Figure 3.5).

Coupling our trait maps with species composition and soil type maps, we were able to
characterize the sources of variation in foliar traits. Past studies use field measurements to
examine the variance structure of foliar traits, while our study is the first to our knowledge to
demonstrate the utility of imaging spectroscopy for variance partitioning of foliar traits
seasonally. Variance component analysis showed that the dominant source of variation for most
traits was phenology. An exception was total phenolics, for which species explained 75% of the
variation, compared to just 5% for phenology. This illustrates that phenolics are strongly
phylogenetically controlled, in contrast to seasonal variation being more prominent in the other
traits we studied. We found that soil class explained little to no variance in canopy traits. This
result does not indicate that soils do not impact canopy traits but that relative to other drivers like
taxonomy and phenology, the effect was small on Blackhawk Island. Moreover, the lack
variation may be a result of the coarse nature of the soil maps, which do not capture fine-scale
variation in soil properties that may exist within soil classes that may affect individual trees. We
expect that soils would likely have a greater impact with finer detail and over greater spatial
scales. Nevertheless, data-driven approaches require adequately capturing the expected range of
trait variability, including sampling through time and across species, as was shown for leaf level
studies by Yang et al. (2016).

The trends in mapped chlorophyll content reflect the well documented phenological
patterns of green-up and senescence observed from spaceborne platforms (Melaas et al. 2013; Li
et al. 2019). However, with the high spatial resolution of the HySpex airborne sensor, we also

detected variation in phenological phenomena among species, which can be seen in basswood (7.
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americana) (Figure 3.5). After an early peak, on 29 June chlorophyll content decreased in
basswood as a result of the formation of yellow-green bracts during the flowering phase which
obscured green foliage (See Figure S3.3). These bracts act as wings aiding in seed dispersal
(Scholtz 1958) and detach at the end of the fruiting stage, after which chlorophyll content once
again increased (Figure 3.5). Our maps also captured the variability in phenological timing
between species, most notably the delayed development of bitternut hickory and early
senescence of sugar maple.

Phenological patterns in total phenolics closely matched those reported in the literature
for the same or similar species. Rossiter et al. (1988) and Louis et al. (2009) both observed that
phenolic concentrations in Quercus species were highest immediately following leaf emergence
and stabilized at low levels after full leaf expansion, mirroring the patterns observed in Quercus
species at Blackhawk Island. High concentrations of phenolics early in the growing season may
inhibit herbivory before the development of unpalatable structural compounds like lignin
(Lambers and Poorter 1992). Similar to our results, Shultz et al. (1982) found that sugar maple
reached a maximum level of total phenolics in June and remained relatively steady through the
growing season. While phenolic compounds are generally studied within the context of plant-
herbivore interactions, the analytical method we used to measure total phenolics is sensitive to a
broad range of phenolic compounds that differ in identity both among species and within a
species during a single growing season (Nicol 1997; Appel et al. 2001). As such, it is difficult to
interpret the causation underlying intra-annual patterns or interspecific differences; however
beyond their role in plant-herbivore interactions phenolics are also associated with
photoprotection, nutrient stress, cold acclimation and litter decomposition rates (Dixon and Paiva

1995; Close and MacArthur 2002; Pennycooke et al. 2006; Hattenschwiler and Jorgensen 2010)
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Nutrients related to growth, including nitrogen, potassium and phosphorus, all decreased
in concentration during the course of the growing season, as a consequence of dilution by
increased content of carbon-rich structural compounds as leaves develop (Chapin 1980), and
resorption at the end of the growing season (Killingbeck 1996). In contrast, calcium, which plays
an important role in cell wall formation, increased as the growing season progressed, but is not
resorbed due to its low mobility in phloem (Guha and Mitchell 1966; Zipkin 1973; Day and
Monk 1977). Similar patterns were observed in fiber, lignin and LMA, which increase in
concentration during the season, reflecting an investment in structural compounds as leaves
develop (Groenevel et al. 1998; Poorter et al. 2009).

Our results demonstrate that imaging spectroscopy can be used to accurately map a suite
of foliar biochemicals traits across the course of the growing season. While our study site was
small, maps over larger areas with more significant gradients in soils, topography and climate
may provide clearer insights into drivers of variation in foliar biochemistry than field
measurements alone. These maps can also provide a framework to understand the impacts of
phenology on estimates of functional diversity and its contribution to a range of ecological
functions (Duran et al. 2019). Moreover, seasonal maps of traits may act as inputs into the next
generation of vegetation models that are able to take advantage of rich information provided by
imaging spectroscopy beyond basic plant functional types (Berzaghi et al. 2020).

In this study we focused on broadleaved deciduous species, and continued work is needed
to assess the ability of imaging spectroscopy to characterize seasonal variation across a range of
species and ecosystems. For example, needleleaf species also display seasonal variation in
canopy biochemistry associated with the development of new needles and remobilization of

nutrients into existing foliage (Wyttenbach and Tobler 1988; Billow et al. 1994). As well, foliar
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traits can vary significantly in grasslands, for example where species relative dominance changes
over the course of the growing season such as from C3 to C4 and back to Cs species (Dickinson
and Dodd 1976). Outside of temperate ecosystems, there is also considerable seasonal variability
in tropical systems. For example, species in dry deciduous systems would be expected to show
variability in traits related to leaf structure and water conservation (Ishida et al., 2006; Kenzo et
al. 2016). Moist tropical systems also exhibit variability, since leaf turnover occurs year-round
(Hikosaka 2005) and seasonality in Mediterranean systems is likewise variable due to climate
drivers (Sperlich et al. 2015).

Our work focused on a single growing season, but foliar biochemistry also varies from
year-to-year (Mitchell 1936; Taylor and Parkinson 1987). Plant phenology is known to be driven
by climatic variation, which thus affects allocation of resources at the leaf level (Shen et al.
2011; Liu et al. 2016). For instance, long-term trends of increasing temperatures are associated
with earlier spring green-up (Cleland et al. 2007; Dai et al. 2019), for which imaging
spectroscopy could provide an approach to document resulting impacts on foliar traits.
Numerous other factors likewise alter phenological timing and could be expressed in foliar traits,
including biotic forcings, such as herbivory (Lemoine et al. 2017) as well as plant development
stage and ontogeny (Augspurger and Bartlett 2003; Grassi et al. 2005). However, our
understanding of patterns and drivers interannual variation in seasonal dynamics of foliar
biochemistry is limited to few species or localized areas, largely due to the challenges of making
in-situ measurements. Continued long-term imaging with airborne and future spaceborne
spectroscopy missions will provide a better understanding of the role of climate, environment
and ontogeny in driving intra-annual variability in foliar biochemistry and subsequent impacts on

ecological processes.
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The launch of future spaceborne imaging spectroscopy missions will provide the
opportunity to map seasonal variation in foliar biochemistry on a global scale. However
continued research is needed into the impacts of spatial resolution on biochemistry retrievals. For
example, the high spatial resolution of our imagery allowed us to develop and apply our models
on individual trees and mask non vegetated areas. The lower spatial resolution (20-30m) pixels
of current and future spaceborne imagers will be composed of species mixes, as well as canopy
gaps (possibly with understory vegetation present), shadows and non-vegetated areas in addition
to vegetation. In particular, the presence of multiple species in a single pixel may make
interpretation of spatiotemporal patterns in foliar biochemistry and functional diversity
challenging.

Our study site had relatively low species diversity (< 15 broadleaf species), whereas
highly diverse ecosystems like tropical forests can have hundreds of species in a comparable area
(Keil and Chase 2019). Globally, there are over 300,000 vascular plant species (Christenhusz
and Byng 2016) and over 60,000 tree species (Beech et al. 2017), which has been a strong
justification for utilizing a trait- rather than species-based approach to characterizing ecosystems
and their function. However, given the diversity of plants on Earth, further investigation is
needed into the feasibility of a developing global, cross-seasonal predictive models to map foliar
traits or whether locally-optimized models are more appropriate. Models for some traits like
chlorophyll and total phenolics, which have relatively well characterized absorption features,
may be well suited for a global model approach. In contrast, traits like calcium, for which the
underlying relationship between trait and spectra remains unclear, may require ecosystem-
specific modeling. Moreover, the choice of predictive algorithm on seasonal trait retrievals

warrants further investigation. We chose PLSR, a data-driven approach, for developing our
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mapping algorithms. However, other empirical methods have also been used mapping foliar
traits from imaging spectroscopy including Gaussian process models (Verrelst et al. 2012; Wang
et al. 2019) and neural networks (Mutanga and Skidmore 2004). Radiative transfer models
(RTM), like 4SAIL (Verhoef et al., 2007) and INFORM (Atzberger 2000), provide an alternative
method for trait retrieval using a physically-based approach to model light transmission as a
function of canopy and leaf properties (Schlerf and Atzberger 2006). RTMs also have been used
to estimate traits across the growing season at the leaf level (Gara et al. 2019), however the
catalog of biochemical traits retrieved using RTMs is limited to those with well-defined

absorbance properties.

Conclusion

In this study we used imaging spectroscopy to characterize the variation in foliar
biochemistry in nine traits across the course a growing season in a temperate broadleaf deciduous
forest. Our method used a single cross-seasonal model to map foliar biochemistry at eight time
points from May to October, but we also tested the consequences of using models from one part
of the growing season to map traits in another. We demonstrate that seasonal patterns in foliar
traits are highly variable, both spatially and temporally, and highlight that date of image
collection can significantly impact inferences made about ecosystem processes. Our research
illustrates that when using data-driven methods to map canopy traits, models will generally need
to be developed using data representing all of the seasons being mapped. Our analyses show that
phenology (date of acquisition) accounted for the greatest proportion of variation in foliar traits
at Blackhawk Island, followed by taxonomy (species). Continued work is needed to assess this

approach across a broader range of ecosystems and with other ecologically relevant biochemical
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traits, as well as at the scale of spaceborne imaging spectroscopy. This work demonstrates the
potential for future spaceborne imaging spectrometers to map ecologically important seasonal
variations in foliar biochemistry. Trait maps from imaging spectroscopy which will provide
spatial context to both inform and complement databases of field measurements (e.g. Kattge et
al. 2020) and modeled predictions of global traits (e.g. Butler et al. 2017, Moreno-Martinez et al.

2018), while potentially also providing inputs to drive and/or validate earth system models.
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Tables
Table 3.1 Imaging spectrometer collection summary.
Overflight date M?a.n. loca.l Local Mean solar zenith
acquisition time solar noon angle

May 16 2018 12:22 12:55 25°
June 04 2018 11:19 12:57 29°
June 29 2018 12:18 13:02 22°
July 25 2018 13:38 13:05 25°
August 13 2018 14:26 13:03 34°
September 10 2018 12:18 12:56 39°
September 26 2018 12:40 12:50 45°

October 17 2018 12:22 12:44 53¢
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Table 3.2 PLSR model seasonal sensitivity metrics. Early: May 16 - Jul 25; Middle: June 29 -
Sept 10; End: Aug 13 - Oct. 17; Full: May 16 - Oct 17. Overlap indicates the percent the
calibration dataset trait values overlap the validation dataset values. R? values in parentheses are
calibration metrics.

Time period

Trait Units Metrics Early Middle End Full
Calcium % mass R? 0.23 (0.7) 0.0 (0.6) 0.01 (0.55) 0.55 (0.69)
NRMSE 43.99 60.96 39.27 17
Overlap 0.62 1 0.86 1
Components 7 5 7
Chlorophyll A pumol em? R? 0.9 (0.91) 0.57 (0.7) 0.91 (0.91) 0.93 (0.91)
NRMSE 15.66 23.58 12.85 8
Overlap 0.8 0.5 1 1
Components 3 2 3 4
Fiber % mass R? 0.59 (0.76) 0.65 (0.64) 0.55 (0.69) 0.47 (0.76)
NRMSE 16.17 16.02 20.23 23
Overlap 0.92 0.77 0.79 0.77
Components 5 5 4 5
Lignin % mass R? 0.45 (0.77) 0.7 (0.58) 0.29 (0.72) 0.56 (0.74)
NRMSE 18.5 13.94 24.81 20
Overlap 0.96 0.77 0.79 0.73
Components 5 5 5 5
LMA g em’ R? 0.02 (0.78) 0.64 (0.66) 0.38 (0.57) 0.77 (0.8)
NRMSE 37.88 16.55 19.4 11
Overlap 0.82 0.58 0.86 1
Components 3 5 3 6
Nitrogen % mass R? 0.06 (0.6) 0.07 (0.56) 0.0 (0.79) 0.79 (0.95)
NRMSE 42.79 36.16 38.22 12
Overlap 0.7 0.66 0.93 1
Components 4 3 4 12
Phosphorus % mass R? 0.12 (0.88) 0.29 (0.54) 0.19 (0.61) 0.72 (0.94)
NRMSE 26.04 30.0 22.02 16
Overlap 0.95 0.96 0.71 0.8
Components 7 3 4 10
Potassium % mass R? 0.24 (0.9) 0.4 (0.89) 0.71 (0.85) 0.82 (0.89)
NRMSE 26.58 28.47 19.19 12
Overlap 0.94 0.95 0.73 0.8
Components 8 9 8 9
Total phenolics % mass R? 0.9 (0.9) 0.8 (0.92) 0.89 (0.91) 0.86 (0.91)
NRMSE 9.57 12.09 9.74 11
Overlap 1 0.95 0.86 0.92
Components 3 3 4 3
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Figures

200 m
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Figure 3.1 Map of Blackhawk Island with locations of sampled trees.
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Figure 3.2 True color RGB mosaics of HySpex imaging spectroscopy data for each overflight
date.
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Figure 3.3 Canopy-level PLSR independent validation results, predicted versus observed
scatterplots. Note: Validation and calibration splits were repeated for each trait, as such species

makeup varies across trait validation data.
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Figure 3.3 Variance partitioning results
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Figure 3.4 Species-wise average foliar traits trajectories derived from imaging spectroscopy
for five broadleaf species on Blackhawk Island. Trajectories were fit using 2" (LMA, total
phenolics), 3™ (nitrogen, phosphorus, potassium) and 4™ (chlorophyll A) order polynomials or
a spherical model (calcium, fiber, lignin). Sugar and red maple (A. saccharum, A. rubrum)
and basswood (T. americana) are not shown for October as nearly all trees had dropped all
their leaves. Bitternut hickory (C. cordiformis) was not shown for May as most trees had not
leafed out.



Species

Phenolics Potassium

Acer rubrum Pinus strobus

Acer saccharinum Populus grandidentata
Acer saccharum Quercus alba

Betula nigra Quercus rubra

Carya cordiformis Tilia americana
Fraxinus americana ® Tsuga canadensis
Pinus resinosa

Figure 3.5 Top two rows: RGB composite images of total phenolics (red), LMA
(green) and potassium (blue) at four time points during the growing season. For each
date the species wise averages of the six most common broadleaf species are shown on
the ternary legend. Bottom left: species map, only trees with 30% classification
probability are shown, to exclude canopy gaps, shadows and low growing vegetation.
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Supplemental materials

Figure S3.1 Soil map delineation datasets: a) Georeferenced soil map from Pastor et al. 1982; b)
Lidar hillshade model; c) Digitized soil map; d) Panchromatic aerial image collected in 1938. We
subdivided soil class 4 into two soil classes given the distinct topographic difference on the west
side of the island, while the aerial image from 1938 was used to delineate the boundaries of soil
class 8.
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Figure S3.2 Example of segment erosion, top, original

segments after one pixel erosion

bottom,

b

segmentation results



Figure S3.3 Examples of bract formation on basswood (7ilia
americana) trees. Top: Photo of a basswood tree on a residential street in
Madison, Wisconsin, USA demonstrating an extreme example of bract
coverage on a canopy. Bottom: Branch collected from a basswood tree

in this study.
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Table S3.1 Summary of sampled species

May Jun Jun Jul

Aug Sep Sep Oct

Species Code 16 04 29 25 13 10 26 17 | '°wl

Acer rubrum ACRU 0 2 1 2 0 2 1 0 8
Acer saccharum ACSA 2 1 1 2 3 1 1 1 12
Acer saccharinum ACSN 1 0 0 0 1 0 0 0 2
Betula alleghaniensis ~ BEAL 0 0 0 0 0 1 1 0 2
Betula nigra BENI 1 0 1 0 0 1 0 0 3
Carya cordiformis CACO 0 1 1 0 1 1 0 1 5
Fraxinus americana ~ FRAM 0 1 1 1 1 1 1 1 7
Populus grandidentata  POGR 0 1 0 1 0 1 0 1 4
Quercus alba QUAL 1 2 2 2 2 1 1 1 12
Quercus rubra QURU 2 2 2 2 2 1 1 2 13
Tilia americana TIAM 1 1 1 1 0 1 1 0 6
Total 8 11 10 11 10 11 7 7 80
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