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Abstract

Limiting free energy and scaling exponents for directed polymers with inho-
mogeneous parameters

We consider directed polymer models where a fluctuating path is coupled with a
random environment. Our focus is on the models with a random environment given by
inhomogeneous parameters. We study the limiting free energy of fairly general inhomo-
geneous models. First, we derive the existence and basic properties of the limiting free
energy for an asymptotically mean stationary model. Second, we apply our results to
the exactly solvable log-gamma polymer. We give a variational formula for the point to
point free energy in terms of the marginal distributions of the parameters. We identify
critical angles at which the free energy transitions from strictly concave to linear. We
also obtain explicit formulas for some special distributions of the parameters. Third, we
study the fluctuation of free energy around some limit shape. We give scaling exponents
for the log-gamma polymer. The KPZ exponent 1/3 appears in the concave sector and

the diffusive exponent 1/2 in the flat region.
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Chapter 1

Introduction

1.1 Directed polymer models

We study a model called directed polymer in a random environment where a fluctu-
ating path is coupled with a random environment (see [20, 21, 33] for related results
and notations). We consider directed paths in the nonnegative orthant Z< of the d-
dimensional integer lattice. Let x, = (X;)k>0 denote the directed path started at the
origin: x;, € Z%,x9 = 0, and xj, — x_1 € R = {ey,ey,...,€,} where e; (1 <i < d) are
the standard basis vectors of RY. Let TIP* be the set of admissible paths x, = (x;)o<i<n
that start at the origin. (Here p2l stands for “point to line”.) The path x, represents
the directed polymer. The environment w = {wy : x € Z%1} is a collection of real-valued
weights.

For a path segment x¢,, = (Xo,...,Xn), Hy(X0,) is the total weight collected by the
walk up to time n: H,(x,) = Hy(Xo,) = Y 1 Wx;- The quenched polymer distribution
on paths, in environment w and at inverse temperature 5 > 0, is the probability measure

defined by

Qi(x) = - explBHu(x0) (L1)

n



where

Z}:’ — Z eﬁHn(XO,n)

21
xoynEHfL

is a normalization factor (partition function). Our primary subjects are asymptotic
behavior of log Z¢ (free energy) and its fluctuation around the limiting value as n goes
to infinity. This model is for directed polymers with free endpoints. Another model
considered is the directed polymer with constrained endpoints. Relevant definitions are
as follows.

For u < v (coordinatewise inequality) in Zi let I, denote the set of admissible
lattice paths x, = (X;)o<i<n With n = |[v—ul; that satisfy xg = u, x;, —x;,_1 € R, x,, = V.

Define point-to-point polymer partition functions for u < v in Zi by

|v—ul1
Zuv =25, = Y exp{f Y we}= Y exp{BHy_u,(x)} (1.2)
x,Elly,v =1 X.EHu,v

and the polymer measure on the set of paths I, by

[v—ul1

exp{ Z Wy, }, X, €y (1.3)

=1

1
Zu,y

QU,V{X.} = Qﬁ,v{x.} =

The environment w is typically assumed to be i.i.d. random variables and subaddi-
tive ergodic theorem plays an essential role to prove the existence of limiting free energy.
In the present work, we focus on the environment driven by nonstationary distributions.
Our goal is to derive limit theorems similar to those of i.i.d. cases, in inhomogeneous
settings. However, there is no hope to derive limit theorems under arbitrary inhomoge-
neous distributions. Thus we require some sort of stationarity. Our results are based on
the asymptotically mean stationary setting in a sense made precise below.

Let (2, F) be a measurable space and T : 2 — € a measurable transformation. A

probability measure P is called asymptotically mean stationary (AMS) (relative to T'),



if there is a probability measure P on (€, F) such that

n—1
1 ) _
VB :lim — P(T™'B) = P(B). 1.4
€ 7 i o P(TB) = P(E) (1.4)

In this setting the measure P is stationary and it is therefore called the stationary mean
of P, see [24, 25] for details. The invariant o algebra Z is the set of all invariant events
(T7'B = B,VB € I). A probability measure P is said to be ergodic if P(B) = 0 or 1 for
B € Z. AMS measure is ergodic if and only if its stationary mean is (Lemma 7.13 [24]).

Examples of AMS measures are given in Chapters 2 and 3.

1.2 Background

Polymer models were first introduced by Huse and Henley in 1985 in statistical physics
context [26]. Since then rigorous mathematical research started [27]. When g = 0,
the polymer model becomes a simple random walk, more precisely, a rotated version of
SRW. The diagonal axis plays the role of the time axis. If 5 goes to oo, that is, if we take
the zero temperature limit, our model converges to the last-passage percolation model
or corner growth model. Our main interest is in the effect of random environment on
the behavior of the polymer at a positive temperature 0 < § < co. For d > 4 and small
B > 0, these models show diffusive behavior and converge to Brownian motion if suitably
scaled [8]. These results were obtained through the observation that W,, = Z,,/EZ, is a
martingale under i.i.d. random environment. The limit W, = lim W, is either almost
surely 0 or almost surely positive by a zero-one law. The case W,, > 0 is called weak
disorder. Note that § = 0 case gives W, = 1 and the disordered noise driven by random
environment has no effect on the behavior of polymer. The case W, = 0 is called strong

disorder since the disordered noise has a strong effect. It is known that there is a critical



value [, such that weak disorder appears for § < . and strong for 8 > (.. For d = 2
and d = 3, B. = 0 [12]. Since the [ parameter plays no role in the present work, we fix
its value at § = 1.

d = 2 cases have received active research attention regarding the KPZ (Kardar-Paris-
Zhang) universality class (see the survey [13] and references therein). Both polymer
model and corner growth model are believed to belong to the KPZ class. In many
cases, both models share similar properties and proof methodologies. KPZ class is
characterized by its statistics: the fluctuations around limiting quantities (limiting free
energy, time constant, etc.) are the order of n'/3 and appropriately rescaled random
variables converge to some Tracy-Widom distributions. These conjectured exponents
and limiting distributions are proved for some exactly solvable models where explicit
formulas are available for precise analysis. For corner growth models, not only i.i.d. cases
but also inhomogeneous cases are studied ([17, 22, 23]). Our application to a log-gamma
model in the later part of this paper is inspired by Emrah’s work [17]. We adapted some
notations and reasoning from [17]. In polymer models, most researches were carried out
with i.i.d. setting. Some inhomogeneous parameter models for a log-gamma model are
considered in [9, 14] in the course of deriving the results for i.i.d. cases. Their works
are useful if one studies the Tracy-Widom distributional limit of inhomogeneous models.
In this thesis, we consider the limiting free energy and fluctuation exponents of exactly

solvable log-gamma model under inhomogeneous settings.



1.3 Log-gamma polymer models

In this section, we introduce the inhomogeneous 2-dimensional log-gamma polymer
which can be explicitly solvable. The log-gamma polymer was first introduced in [33] and
exact formulas of limits are derived under i.i.d. assumptions. This model belongs to the
KPZ universality class and conjectured scaling exponents with limiting Tracy-Widom
distribution were derived in [9, 33].

We change the picture slightly. Our model lives in N?. Choose parameters A =
{Ai}2y and © = {6;}32,. (A, 0) is in Sy £ [ag, ar]™ X [bo, i)Y > ([ag, ay] x [bo, b1])™ for
some ag < a1 and by < by in R with ag + by > 0. Sy is equipped with the product Borel
o-algebra G, generated by coordinate projections. We give weight parameters at site
(i,7) € N> by pij = N + 6. Let p = {px}xenz. The distribution P? of w given p is a

product measure over x = (i,5) € N? with
e~ ~ Gammal(p; ), (1.5)

where the density of the Gamma(p; ;) is given in Table 1. We call the distribution of
—w(%, j) the log-gammal(p; ;) distribution. See A.2 for the properties of the log-gamma
distribution. We consider either deterministic or random parameters A and ©. In case
of random parameters, P? is the conditional distribution of w given (A,©) and the
(unconditional) distribution of w is denoted by P. Hence P = [ Pr(40) dQ(A, ©), where
Q is the distribution of (A, ©).

It turns out that, for some AMS choices of parameters, the log-gamma polymer
models have properties that allow precise analysis. In particular, we can compute the
limiting free energy and the scaling exponents for the fluctuation. As a simple example

of parameters, one can take i.i.d. sequences of A and ©. More detailed formulations of



the model and results can be found in Chapters 3 and 4.

1.4 Overview of the main results

This thesis consists of three main chapters. Each chapter includes more detailed in-
formation and results. In this section, we state some selected results of our work. A
summary of the organization of the results obtained in this thesis is as follows.

Chapter 2 considers general inhomogeneous polymer models. In Chapter 2 we show
the existence of the limiting free energy under a quite general AMS setting. For x € Ri,
a quantity, if exists,

1
lim —log Zg (1.6)

n—oo N o[nx|
is called the limiting point-to-point free energy. The limiting point-to-line free energy is
defined by

1
lim —log Z¥ (1.7)

n—oo 1,

if the limit exists.

Positive temperature polymer models were studied by several authors. In [19], large
deviations and law of large numbers for various polymer related quantities are derived
in general i.i.d. setting. They proved large deviations of free energy and quenched large
deviations for the exit point of the polymer chain. In this thesis we focus on law of large
numbers for the free energy of polymers with inhomogeneous parameters. The existence
of limiting free energy was proved in [19] using standard subadditive ergodic theorems.
We employ some ideas from [19] using a nonstationary subadditive ergodic theorem.
However the setting and argument are quite complicated due to nonstationarity. There

is a one difference between i.i.d. weights and AMS weights. For i.i.d. weights, the



limiting free energy is deterministic and continuous on R%. However, in general AMS
setting the limiting free energy is deterministic and continuous only on R%,. The limiting
free energy is random on the boundary (see Theorem 3.6).

In Section 2.1 precise assumptions on the distribution of weights are given, and main
results are stated. In Section 2.3 AMS measures are fully studied, and a nonstation-
ary subadditive ergodic theorem is established. A nonstationary subadditive ergodic
theorem is an essential tool to establish the existence of the limiting free energy with
inhomogeneous parameters. We devote Section 2.4 to technical results for the proof of
the main results.

In Chapter 3, we restrict our discussion to 2-dimensional polymers. For 2d-polymers,
we provide more natural and general weight assumptions to guarantee the existence of
limiting free energy (see Assumption 3.1). We apply these results to explicitly solvable
model, log-gamma polymer. Moreover, we show that the limiting point-to-point free

energy has a variational formula

1 w :
o(z,y) = lim EIOgZO,(\_nxJ,I_nyJ) = inf {zA(2) +yB(2)},

n—00 —ap<z<bg

where A and B are convex functions on the interval (—ag, by) defined by
A == [ Wl 4 Naldy)
(0,00)
By = [ (= 0) (as),
(0,00)

where Wq is the digamma function (see Table 1), and «, § are some distributions of
parameters. Based on this formula, we give more precise picture of limiting free energy.
Figure 1 shows a possible level curve of limiting free energy. As we can see, we have flat

regions 57 and S; near coordinate axes. We give conditions for the existence of these flat



regions in terms of A and B. In principle, we can obtain similar variational formulas for
general polymers. However precise information about A and B are not known in general,
it is hard to find conditions for these regions in terms of inhomogeneous parameter
distributions.

Emrah derived some explicit formulas for some inhomogeneous corner growth models
and identified some conditions for flat regions in [17]. We adapt the zero-temperature
argument of [17] to positive temperature polymers. In Section 3.4 the inhomogeneous

log-gamma model is analyzed, and certain formulas are derived.

Y
1.6 1 S].

1.4 +

1.0 +
0.8 +
0.6 +
0.4 +

0.2 T S2

T y y y y y y
T T T T T T T >

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 xr

Figure 1: A level curve of limiting free energy (red).

Chapter 4 is concerned about the fluctuation around the limiting free energy. We
restrict to a specific model, the log-gamma polymer. With slightly less restrictive as-
sumptions on the parameters, scaling exponents are derived. Indeed we only assume

some weak convergence conditions instead of much stronger AMS conditions. This



weakening is possible due to explicit formulas which enable precise analysis. We focus
on quenched (a fixed realization of parameters) fluctuation. Due to the inhomogeneity
of parameters, we study fluctuations around quenched shape ¢y, (see (4.19)) instead of
annealed shape ¢(z,y). The quenched shape itself converges to the annealed shape as
(m,n) grows along the direction (z,y). We show that the fluctuation of the free energy
around @, ,, is of order n'/3 in the region S, and of order n'/? in S; and S,. We will give
the precise meaning of fluctuation in Chapter 4 and derive various quantities to prove
this assertion. The key feature that enables precise analysis is the existence of stationary
processes, which have the Burke property that gives exact formulas for the expectation

and variance of free energy. We discuss these formulas at length in Chapter 4.

1.5 Notations and conventions

Some notations used in this paper are provided below.

Table 1: Notations

Notation Definition

N the set of natural numbers {1,2,3,...}
7, the set of nonnegative integers {0,1,2,...}
R, the set of nonnegative real numbers
R the set of positive real numbers

[n, m] the set {n,...,m}(n <m) for n,m € N

xVy max{z,y} for z, y € R

T Ay min{z,y} for z, y € R

Continued on next page
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Continuation of Table 1

Notation Definition
|z the largest integer less than or equal to z € R
[z] the least integer greater than or equal to z € R
1%, the /7 norm (1 < p < o) of x € R%. Equals (|21 |P 4 - - - + |z4[P) /P
%] 0 the £>° norm of x € R Equals maxj<;<q |z;]
Xy the inner product in R%. Equals z,y; + - - - + Z4¥q
0 the zero vector (0,...,0) in R?
1 the one vector (1,...,1) in R?
e; the i-th standard coordinate vector (0,...,1,...,0) of R?
X, a path x, = (xj)f_, in Z% with steps z = x;, — x4_1 € R = {e1,€s,..., €4}
|A| = card(A) the cardinality of a set A
L(p) the usual gamma function for p > 0. T'(p) = [~ a# e " du
Gamma(a,f3) the gamma distribution on R, with the density I'(a) 3% te=5% dx
Gamma(p) the gamma distribution Gamma(p,1)
Uy the digamma function I /T’
vy the trigamma function ¥y,
Vector notations: elements of R? and Z? are occasionally written as v = (v, v, ..., v4)

to emphasize v is a vector. We understand some vector operations and relations coor-

dinatewise. Here are examples. Inequalities are coordinatewise: x < y if x; < y; and

x <y if x; <y; for 1 <i < d. We also understand positive and negative parts and the
-

absolute value of vectors coordinatewise: x* = (z7,...,23), |x| = (|v1],..., |z4|). For

x € R4 |x| = (|21],..., |xq]) is a floor of x.
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Shift maps Ty act on suitably indexed configurations w = (wy) by (Tyw), = Wy x-

We employ compact expressions like T-invariant, T-ergodic, and T-AMS.
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Chapter 2

Directed polymers with

inhomogeneous parameters

2.1 Introduction

We present our results in this chapter and explain precise assumptions on the distribution
of weights. Refer to Section 1.1 for the definition of polymer models and free energy.
A natural nonstationary condition for weights would be independent but not identically
distributed weights. The distribution of weights is given by inhomogeneous parameters.
Let (S,S) be a measurable space. Let (€9, Gp) be the space of parameters where Qy =
SZ% and Gy the product o-algebra generated by coordinate projections. Let €2, = RZ%
be the space of weights with the product Borel o-algebra G;. To control errors of

estimations, we will assume, throughout this paper, the following:

Assumption 2.1. (a) There is a nonnegative random variable 1y which has a cumu-

lative distribution function (CDF) F with the property
/ (1 — F(x))"Ydz < cc. (2.1)
0

(b) A function Fy : S x R — [0, 1] is given. For fixed py € S, Fy(po,-) is a CDF. If a

random variable wy has the CDF Fy(po, ), then |wo| is stochastically dominated by



13

Mo (lwo| <sr 10)-
We consider the following weight distributions.

Definition 2.2. For given parameters p = {px : x € ZL} € Qy, define a distribution of

weights {wx : X € Zi} € Q1 by a product measure using Fy in Assumption 2.1 :
P? = Gz Falpes ). 2:2)

As explained in Introduction 1.1 we use the AMS setting to guarantee the existence
of limits. To apply the AMS setting to our models we need more definitions. Suppose
(Q, F) is a measurable space. Let T = {T, “}U€Zi be a semigroup of measurable transfor-
mations of € such that Ty = Id|g and Ty, 0 T, = Tyyy for all u,v € Zi. A probability
measure P on  is called stationary with respect to T' (or T-stationary) if P = P o T;;*
for each u € Z%. We say P is totally ergodic with respect to T (or T-totally ergodic)
if Z, C F, the invariant o-field of Ty, is trivial for each u € N¢ : P(A) € {0,1} for
A € T, u € N Note that this definition refers only to the bulk directions u > 0 and
do not require T—stationarity. To state assumptions of main results we give the following

definition.

Definition 2.3. Let Q and T be as above. A probability measure Q 1is called AMS with

respect to T (or T—AMS) if the following conditions are satisfied.

(a) There is a reference measure Qqy on ) such that Qq is stationary and totally ergodic

with respect to T.

(b) For each u € N, Q is AMS relative to T, with stationary mean Qy :

n—00 1, 4

VB e F: lim — nz Q((TW)"'B) = Qu(B). (2.3)
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We call Qy the stationary mean of Q. Q is also T-totally ergodic by Lemma 7.13 of
[24]. Note that we do not require that Q is AMS relative to T, if u ¢ N¢.

In this chapter we select a particular semigroup as follows: Let T, : Qy — €y be
a translation operator given by Tyu(p)(v) = p(v 4+ u) for p € Qg and u,v € Z%. Then
T = {Tu}uezd+ forms a semigroup. The following assumption is used for the main results

of this chapter.

Assumption 2.4. We consider either deterministic or random parameters p € ).
When px are random, we denote the distribution of {px : x € Zi} by Q. We assume
Q is T-AMS. When parameters pyx are chosen according to Q, the conditional law of

weights w = {wx : x € ZL} given p is given by (2.2): P(w € - | p) = P~.

Remark 2.5. Deterministic parameter also can be handled in this framework. Q is
gwen by the Dirac measure Q = 0,. The distribution of w on )y = RZ% s denoted by P.
Hence P = E°P?. Note that for deterministic parameters, P = P?. Under P (P?), the
expectation is denoted by E (EP). We write v to denote the joint distribution of (p,w)
on Qo x Q1. Hence P above is simply v. Q and P are marginal distributions of v. We

adopt this notation to remove confusion.

In this thesis, we are interested in the scaling limits of free energy. To obtain limit
theorems, we use a nonstationary subadditive ergodic theorem. A subadditive ergodic
theorem requires further restrictions on Q and F, since in general, the subadditive

ergodic theorem does not hold in the AMS setting. Therefore we add the following.

Assumption 2.6. The distribution of parameters Q and Fs satisfy one of the following

conditions.

(a) Q<< Qo.
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(b) We assume that S is equipped with a partial order <. (Typically S is a Polish
space with a closed ordering so that all intervals are measurable [29].) Give a co-
ordinatewise partial order on Qy. Now assume Q is stochastically smaller than Qg
on Qo, that is, [ gdQ < [ gdQy for all bounded monotonically increasing function
g : Qo — R. In this case, we assume that the function Fy in Assumption 2.1
is monotonically decreasing function in the first variable: Fy(si,z) > Fy(sq,x) if

S1 j So.

Remark 2.7. If two measurable maps p, p° : (0, P) — Qq satisfy px < p2 for allx € Z<,

then the distribution of p is stochastically smaller than the distribution of p°.
Here are some examples of Q and Q.

Example 2.8. (a) Let L € N be fized. Suppose p € Qg is deterministic and pxire, =
px for all x € Zi and e;, 1 =1,...,d. Then
1
Q=77 > ng
0<x<(L—1)1
is T-statz'ona,ry and ergodic. In this case, we take Q = d,. Hence periodic weights
belong to our model. Note that an i.1.d. environment w belongs to this example

with L = 1.

(b) Qy = a®Z% where o is a probability measures on S. Qyq is totally ergodic with
respect to T by Kolmogorov 0-1 law. For Q, choose any nonnegative function

f:Qo— R with E2f =1 and take dQ = fdQ,.

(c) Let S = R with the standard ordering. Fix N € N, ag € R and u € N, Let Q,

be any probability measure on [ao,oo)zi C Qo that is T—stationary and ergodic.
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Let p° : (,P) — Qo be a measurable map with the distribution Qy. Suppose a
measurable map p : Q — Qq satisfies px = p° for x > Nu and px < agy for other
X € Zi. Then Q, the distribution of p, is stochastically smaller than Qy. One can

easily show that Q is T-AMS with stationary mean Q.

(d) Assumption 2.6 (b) can be satisfied with deterministic parameters. If we combine
(a) and (c), we can construct an example: Let S = (0,00) with the standard
ordering. Fit N € N, b>a > 0inS. Set p) =b for all x € Zi. Set px = b for
all x > N1 and px = a for other points. Take Fy the cdf of log-gamma random
variables defined by Fy(r,x) = F(r,1,x) using (A.13) (r € S, x € R). Then the

distributions of p and p become an example.

2.2 Results

We begin by defining the concept of scaling limits. For a given function ¢ : Z¢ — R,
the scaling limit of ¢ is a function ¢ whose domain is a subset of Ri and defined by
P(x) = nh—g}o %qﬁ({nxj), provided the limit exists. The basic properties of scaling limits
are developed in Section 2.4. The limiting point-to-point free energy is a scaling limit
of the point-to-point free energy. Now we can state the main result of our work. First,
we show that limiting point-to-point free energy exists. Recall the definition of P? and

P in Remark 2.5.

Theorem 2.9. Suppose Assumptions 2. and 2.6 hold. Then, there exists a unique
deterministic function ¢ defined on Ri and an event Q) C €y such that the following

hold.
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(a) The limit nh—>Holo n~'log Zg 1nx) = O(x) for all x € RY, simultaneously if w € €.

Furthermore, for Q-almost every choice of p, PP(€)) =

(b) QE(X) satisfies for x € Rio

1
¢(x) = lim E(—log Z, nxj) = lim — (E" log ZO,Lnxj) Qo(dp).

n—00 n—oo 1

(c) ¢ is continuous, positive-homogeneous, superadditive, concave on Ri :

FOTX,yERi,OSSSIandC>O,

P(cx) = co(x) (2.4)
o(x) + o(y) < d(x+y) (2.5)
sO(x) + (1 — 5)o(y) < d(sx + (1 — s)y). (2.6)

Note that in (a) and (b) we do not require the convergence occurs on the boundary
of R? even though ¢ is defined on RZ. Using this result, we obtain a limit theorem for

the point-to-line free energy.

Corollary 2.10. Under the same assumptions, the limit lim n~'log Z¥ exists if w € Q,
n—oo

and is given by lim n~'log Z¥ = sup ¢(x).
n—oo XZO
[x[1=1

Organization of Chapter 2. Before we prove the main results, we collect technical
results first. The crux of the proof of the main theorems is a combination of a nonsta-
tionary subadditive ergodic theorem and concentration inequalities. This proof strategy
is somewhat unusual. In Section 2.3, nonstationary subadditive ergodic theorems are
established. In Section 2.4, we collect useful concentration inequalities. We use con-

centration inequalities to show that deviation of free energy around its mean is small
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enough. And then a nonstationary subadditive ergodic theorem is used to show that (in-
homogeneous) mean of free energy, when normalized by scaling parameter n, converges.
Combination of these two results gives the proof of the main results. Theorem 2.9 and

Corollary 2.10 are proved in Section 2.4.

2.3 Nonstationary subadditive ergodic theorems

In this section, we investigate conditions that guarantee the existence of limiting free
energy. The main topic is asymptotically mean stationary (AMS) measures. After
we develop a nonstationary subadditive ergodic theorem, which is the most important
theorem in this section, we prove the main results in the next section. Let (2, F) be a
measurable space and T : {2 — ) a measurable transformation. Recall that a probability
measure P is AMS relative to T (T-AMS), if there is a probability measure P on (2, F)
such that

VB e F: lim - ZP P(B).

n—oo M
We say a process is AMS if its distribution is AMS. Here are some examples of nonsta-

tionary yet AMS measures [25, 30].

Example 2.11. (a) If u, n are probability measures such that n is stationary and

<L n, then pis AMS (see the next Theorem).

(b) A time homogeneous irreducible Markov chain with a stationary distribution 7 is

AMS for any initial distribution Fy.

(c) If u is stationary with respect to TN for some integer N (or N-periodic), then p

is AMS with respect to T with stationary mean i(F) = N=' SN u(T—F).
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Theorem 2.12. Let (2, F) be a measurable space and T : Q@ — Q a measurable trans-

formation. Let p, n be probability measures on (2, F).

(a) p is AMS if and only if for every bounded measurable f : Q — R, %Z?:_ol foT!
converges p-a.s. as n — oo. In that case, the ergodic theorem holds and the limit

is given by EF(f|T).

(b) If n is stationary and dominates p asymptotically, then u is AMS: n  dominate

asymptotically if B € F and n(B) = 0 implies that lim,,_,o, u(T""B) = 0.

(c) Let T = Nyp>oT "F be the tail o-field. If n is stationary, the following are equiva-

lent:

(1) n dominates pn asymptotically.
(2) If F € Z and n(F) =0, then u(F) = 0.

(3) If F €T and n(F) =0, then u(F) = 0.
Proof. See Theorems 1, 2, and 3 in [25]. O

From the above theorem, if y < n and 7 is stationary, p is AMS. One may be
tempted to conclude that 7 is the stationary mean of . However, we need ergodicity to

reach that conclusion as the following Corollary shows.

Corollary 2.13. If p < n and n is a stationary and ergodic probability measure on

(Q, F) relative to T', then p is AMS and its stationary mean is 7.

Proof. We show that 7 is the stationary mean of pu. If du = fdn for some nonnegative
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f:92 — R with E7f =1 then for A € F,
1 i 4)) =
Jn ) 2 m(A Jzﬁ.lonZ/leT &

1
1 T fdy= | (1 1aoT)fd (2.7)
ngﬁ.znZ/ a0 T')f dn /f;nz ) dn

= /n(A)f dn = n(A).

The equality in the last line comes from ergodic theorem and ergodicity of 7. O]

Lemma 2.14. Let (S,6) be a measurable space and 7 : S — S a measurable map. Let
v : S — Q be a measurable map and yo 1 =T o~. Suppose P and Py are probability
measures on (S,6) and Q = vx(P), Qo = v#(Fo) are pushforward measures on (£, F)

of P and Py under ~v. Then the following hold.
(a) If P < Py, then Q < Q.
(b) If Py is T-invariant, then Qo is T-invariant .

(¢) If P is T-AMS with stationary mean Py, then Q) is T-AMS with stationary mean

Qo-
(d) If Py is T-ergodic, then Qo is T-ergodic.

Proof. (a) If A € F and Qo(A) = 0 then Py(y'(A)) = Qo(A) = 0. Since P < Py we
have Q(A) = P(y1(A)) = 0.

(b) This is a direct consequence of the property
yoT =Ton. (28)

For A € F,
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VA€ F, lim — ZQ—l~wm Zp—l A)))

e e (2.9)
= lim — ZP (rHA) = Ry H(A) = Qo(A)
(d) ET-1(A)=A (A€ F), then
7 A) = T A) = 57 A),
Hence Qo(A) = Py(y1(A)) =0or 1.
[

Lemma 2.14 says AMS property is preserved under pushforwards of a measurable
map that intertwines translation maps. We have a similar result for stochastic kernels.
Let (S,8) be a measurable space and 7 : S — S a measurable map. A stochastic
kernel from S to  is a measurable map k : S — M;(Q), where M;(Q) is the set
of probability measures on 2 equipped with the o-algebra induced by the mappings
gt i u(B), B € F (Chapters 1 and 5 of [28]). Suppose that x intertwines 7 with
T : k(s,T"YB)) = r(7(s),B) for s € S, B € F. Then we have /Qg(T(w)) K(s,dw) =
/Qg(w) k(7(s),dw) for an integrable function g (g is x(7(s),)-integrable if and only

if g o T is K(s,-)-integrable). For a probability measure P on S, a measure ) = Pk

is defined by Q(B) = / k(s, B) P(ds). The integral of g : @ — R under @ is given

by /ng / (/ (s dw)> P(ds). We say that x is ergodic relative to T' if

k(s,A)=0or 1 for s € S and A € F with T~1(A) = A. Note that the value 0 or 1 may

depends on s.
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Lemma 2.15. For probability measures P and Py on S, consider Q = Pk and Qg = Pyk.

If Kk intertwines T with T then the following hold.
(a) If P < Py, then Q < Q.
(b) If Py is T-invariant, then Qo is T-invariant.

(c) If P is T-AMS with stationary mean Py, then Q is T-AMS with stationary mean
Qo-

(d) If Py is T-ergodic and k is T-ergodic, then Qo is T-ergodic.

Proof. The proof is almost similar to the proof of Lemma 2.14.

(a) If A € F and Qo(A) = 0 then x(s,A) = 0 for Py-a.s. s. Thus (s, A) = 0 for
P-a.s. s since P < Py and we have Q(A) = / k(s, A) P(ds) = 0.

(b) This comes immediately from the intejtwining property.

(c)
VA € F, JE&HZQ T —JEEWZ/(/“OT W) (s,dw))P(ds)

= lim %nz__; /S ( /Q La(w) ,@(Ti(s),dw)> P(ds) (210)

-/ (JH{; . igw'(s))) Plds) = [ 9(s) Fo(ds) = Qu(A),

where g(s) = / La(w) k(s,dw) = k(s, A) and the last line is from Theorem 2.12 (a).
Q
(d) If T-1(A) = A (A € F), then (s, A) = (s, T"*(A)) = k(r(s),A) for all s.
Therefore g(s) = k(s, A) is a T-invariant function. Since P is ergodic relative to 7, g is

a constant Py-a.s. g(s) can take only 0 or 1 since & is ergodic relative to 7. Hence g = 0

or 1 Py-a.s. Therefore Qy(A) = / gdPy=0or 1.
S
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For i.i.d. cases the subadditive ergodic theorem is used to prove the existence of var-
ious limits. Unlike the ergodic theorem, the subadditive ergodic theorem does not easily
generalize to AMS measures. For a counterexample, see Theorem 8.5 in [24]. However,
we have some partial results. A sequence of functions {f, : Q@ - R |n=1,2,...} satis-
fying the relation f,,4p > fon + fnoT™ for all m,n € Z, is called superadditive (fo = 0).
Define f(w) = limsup,_,, % f,(w) and f(w) = liminf, o  f,(w). We say a measurable
function g : Q — S is p-almost surely invariant if p(go T =g; k=1,2,...) =1 (see

Lemma 7.6 in [24]). An event F' is said to be p-almost invariant if 15 is.

Lemma 2.16. Let (0, F,u,T) be an AMS system with stationary mean fi and S a
standard Borel space (or nice space). If f : Q — S is p-almost surely invariant and
h : S — S is measurable, then h o [ is p-almost surely invariant. If f : Q — R is
p-almost surely invariant, then f is p-integrable if and only if f is fi-integrable. In that

case EFf = EPf.

Proof. The first statement is obvious from the definition of almost surely invariance.
For any p-almost surely invariant set F, u(F) = E#lp = EF(1p o T*) = u(T-*F). So
by the definition of i we have u(F) = ji(F). Therefore E¥f = EFf holds for indicator
functions of p-almost surely invariant sets and their linear combinations. For general

functions approximation by simple functions gives the result. Let f > 0 be a p-almost
22n—1

k
surely invariant function. Define f, by f, = Z on 1 ko< fkily Then f, 1T f and f,
k=0
is p-almost surely invariant from the first claim. Now monotone convergence theorem

gives

Ef = lim E"f, = lim E"f, = E"f.
n—oo n—oo
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For general f, write f = f™ — f~ and use the result of a nonnegative case. This proof
also shows that f is p integrable if and only if f is i integrable when f is p-almost

surely invariant. O

Theorem 2.17. Let (2, F,u,T) be an AMS system with stationary mean fi. Suppose
that {f, :n=1,2,...} is a superadditive sequence of i integrable random variables and

sup,, B* f,/n < 0o. Suppose one of the following conditions is satisfied :

(a) f is p-almost surely invariant.

(b) p< fi.

(c) Qis equipped with a partial order <. f,, are increasing functions (i.e., x =< y implies
[n(x) < fuly)). Finally, p is stochastically smaller than i, that is, [ gdp < [ gdp

for all bounded measurable increasing functions g.

Then there is an invariant function ¢ : @ — R and an event Qy C Q such that
lim,, o0 %fn(w) = ¢(w) (w € Qo), and u(Q) = @(Q) = 1. The function p(w) can

be chosen as

1
¢ =sup —E*(f,|T). (2.11)
n n
¢ satisfies
_ 1 1 -
Et¢ = E¥¢ =sup —E" f, = lim —E*f,. (2.12)
n N n—00 N

Proof. To prove the result under this condition, we first establish some general properties
of superadditive sequences. Let F,, = Z?:_Ol fioT". Then {F},},>1 is additive and f,, > F,
by superadditivity. Since the theorem holds for an additive sequence by Theorem 2.12 (a)

we only need to prove the assertion for f, — F,,. Hence we may assume that f, > 0.
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We show that f > ¢ holds p-a.s.. Fix m. For each i (0 <i < m) write n =i+ ml+r

(0 < r < m). By superadditivity and positivity of f,
fn > fz + fm o Tz + fm o Ti-‘rm + fm o Ti+2m N fm o Ti+(€—1)m + fr o Ti+€m

-1
> fi+fmoTi+fmoTi+m+fmoTi+2m+_..+fmoTi+(€fl)m _ f@+zfmoTl+jm
=0

Summing over ¢ gives
mié—1

m—1

i=0 =0
Dividing by mn and AMS ergodic theorem give f > %Eﬁ( fm|Z). Since this holds for
all m, we have f > f = ¢ p-a.s. Now we are in a position to prove the claim.

(a) Since f is p-almost surely invariant and ¢ is invariant, from Lemma 2.16,
Ef¢=EFf =E'f > E'f > E*¢ = EF¢ (2.13)

The first equality holds by the subadditive ergodic theorem for stationary measures.
Therefore we have u(f = f = ¢) = 1.

(c) Since f, are increasing functions, f and [ are also increasing.
Ef¢=FEFf > E'f > E'f > E'¢ = E¢ (2.14)

The first equality holds by the subadditive ergodic theorem for stationary measures and
the last equality comes from the invariance of ¢. In particular, we have F*f = E* f=
E*¢ which implies pu(f = f=¢)=1

(b) The conclusion follows immediately from the subadditive ergodic theorem for
stationary measures since g({f = f = ¢}) = 1.

Lemma 2.16 and the subadditive ergodic theorem for stationary measures give (2.12).

]
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2.4 Technical results and proof of main theorems

This section is devoted to the proof of the main results Theorem 2.9 and Corollary 2.10.

We develop some technicalities in section 2.4.1 used throughout the paper.

2.4.1 Preliminaries

In this section, we record results that are used throughout. First, we establish some
conventions. On a given measurable space we consider several probability measures
simultaneously. To reduce confusion and to ease proofs, we mainly use the following
conventions. Weights w, with the distribution in Definition 2.2 are realized as functions
of i.i.d. uniform random variables and coupling with 7 is used:

wy = F N Uy), ne=F1(Uy), xez¢ (2.15)

X

where {Uy : x € Z%} are i.i.d. Uniform(0,1) random variables, Fy the CDF of wy and
F7'(t)=inf{s € R: F(s) > t}, (0 <t < 1), the generalized inverse of F' [6].

In the remaining work, we use the following conventions. (2, F,P) is a probability
space where most random variables are defined. A generic element in €2 is denoted by
w. Recall that ; = R%% equipped with the o-algebra G; generated by the coordinate
projections is used for sets of configurations. In particular w, n, and U in (2.15) are
measurable maps from {2 to ;. Sometimes we use the notations w, 7, and U for
configurations in §2;. The context should indicate which one is meant: measurable map
from 2 to €; or element of ;.

For Assumption 2.4 we continue to use the couplings in (2.15) and assume p = {px :

x € Z1} : @ — Qq are independent of uniform random variables {Uy} in (2.15). Recall
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that for given parameters p = {px : x € Z%} we write P* for the conditional distribution
of w given p (see (2.2)). Note that E?(X oT,) = ET+# X holds for a given random variable
X : Q; — R, configuration of parameters p, and shift map 7T,. (Here we slightly abused
notation: The first Ty, is defined on Q; and the second T, is defined on €2.)

Next, basic properties of the free energy are considered; their connection to last
passage percolation and greedy lattice animals. For u < v in Z‘fr, the last-passage times
are defined by

Guv = Gy, = max Z Wy, 5 u<vinZzt. (2.16)
A finite path (x;)o<i<, in Il is a geodesic between u and v if it is the maximizing path
that realizes Gy,y, namely, G,y = Y. wx,. When paths start at the origin we drop u
from the notation;

HV == H()’V, Zu == Z07u, and GV == GO,V° (217)

For a finite subset & of Z2, the weight H () of £ is defined by H(£) = Zveg wy. A lattice
animal [31] is a finite connected subset of Z¢. Let A(n) be the set of lattice animals of
size n which contain the origin. A greedy lattice animal of size n is a connected subset
of size n containing the origin, whose weight is maximal among all such sets. Let N(n)

be this maximum weight. We have

N(n) = N¥(n) = gglAa()é) H(¢). (2.18)

It is convenient to construct the above objects as functions of coordinate variables.
Let B be a finite subset of Z¢ and A C {0,1}” be a subset of the power set of B or
collection of indicator functions supported on subsets of B. We may consider A as a

subset of RE. Here we regard R? as R™ with n = |B|. Let

A, = mzﬁdah, (1<p<o0) and |A|=card(A).
ac
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For a set B and a subset A of {0,1}7, define fg s : RP — R by

fea(X) =log Z e for X € R5. (2.19)

acA

Similarly define Gpa : R® — R by
GB,A(X):m%i(a-X for X € R, (2.20)
ac

Typical examples of A are formed from a set of paths: Let Il be a collection of paths in

B. Then a, = lyx, . x,} for m = x, = (X0, X1,...,%,). (Xo is excluded from a,.) A is

given by A= {aﬂ}WEH-
We customize these definitions to our models. For u < v in Zi, write

d
B =[u,v] =[]l v] CZ%, Hp=Tyuy={ax:x €y} CRE
i=1
Note the difference between Il , and Il ). The former is a set of paths, and the latter
is a set of indicator functions. For w € R%% write its restriction to B by wp € RB. We
write fp and Gp for fg o, Gpa when A = IIz. We also write f,, and G, for fpa, Gpa

when A = {a,} ;2. Under these conventions, we have the following representations

of free energy, last passage time, and weight of greedy lattice animal.

log Zy y = fruv] (W)
log Z; = Ju(wio ) (2.21)
Gav = Guv(@uy)
N¥(n) = Gg, im(ws,)
where B,, = [-n,n]? and A(n) = {1¢: £ € A(n)}.

We close this section with the following lemma.
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Lemma 2.18. Suppose A satisfies |A| < C’(‘)‘A”1 for some positive constant Cy. Then

the following hold.
(a) fp.a and Gpa are conver and nondecreasing functions on RE.
(b) Gea < fea <Gpa +log|A| < Gpa + ||A]l1log Co.
(c) |Gpa(X)] < Gpa(lX]) < JA[]2 - [X]2.
(d) |f5.aY) = fea(X)|V |[Gpa(Y) = Gpa(X)| < Gpa(]Y — X]).

(e) fea and Gpa are Lipschitz functions on RE with respect to the £? norm with the

Lipschitz constants < [|Alls < /|| All1-

Proof. (a) Since a > 0, fp a and Gp a are nondecreasing functions. G a is the maxi-

mum of linear functions so that it is convex. Let o, § > 0 and a + 3 = 1.

fe.a(aX) + 5X5) =log Z o2 (aX1+8X2)

acA
a B
<log <Z ea'X1> (Z ea'X2> (Holder’s ineqaulity)
acA acA

= alog Z e*X1 4 Blog Z er N2 = afpa(X1)+ Bfp.a(X2)

acA acA
(b) Trivial.

(c) From (a) G a is nondecreasing so that |Gpa(X)| < Gpa(|X]).

Gp.a(|X]) = maxa - |X| < max|als|X]2 < [[Allz - [ X]o.
acA acA
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(d) Since a > 0,

fea(Y) =log Z e*Y < log Z o X par (Y =X)*

acA acA

< log ( <Z 6a~x> Makaca a-(Y—X>+> (2.22)

acA
= fBa(X) +Gpal((Y —X)7) < fpa(X) +Gpa(lY — X]).
Changing the role of X, Y, we obtain |fpa(Y) — fea(X)| < Gpa(]Y — X]|). The
inequality for Gp a is proved similarly.
(e) This follows from (c) and (d). Note that for a € A, |al, = +/[a]; since ag ;) =

0,1. O

2.4.2 Concentration inequalities

In this subsection, we collect useful concentration inequalities.

Theorem 2.19. Let X = (X,...,X,) be a random variable with independent compo-
nents taking values in [0, R]. Let F : R — R be a convex L-Lipschitz function with

respect to the €% norm. Let MF be a median of F(X). Then for allt >0

P(|F(X) - MF\ > t) < 4€—t2/(4L2R2)
(2.23)
P(lF(X) - ]EF(X)‘ > t) < 66467152/(16[/21%2)

Proof. For the first inequality, see [10] Theorem 7.12. For the second, see the proof of

[31] Lemma 5.1. O

Theorem 2.20. There exists a universal constant co < oo which does not depends on
the distribution (but depends on d) such that if F' satisfies (2.1) and weights are F-i.i.d.

then there exists a deterministic N with

N(n)

n

— N almost surely and in L' () (2.24)
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as n — 0o, and

N <c¢ /00(1 — F(z))Y4dz. (2.25)
0
The same cy satisfies
sup EFW < ¢ /00(1 — F(x))Y4dx. (2.26)
n 0
Proof. See [31] Theorems 1.1 and 2.3. O

Theorem 2.21. Suppose F in (2.1) is supported on [0, R] and weights w has a distri-

bution P?. Then for allt >0, n € N, and u <v in Zi
P?(|log Z,, — B log Z,| > nt) < %"/ (G47%) (2.27)

and

P?(|10g Zuuny — BP10g Zyay| > nt) < Bt/ O v=ubh), (2.28)

Proof. These are direct consequences of Lemma 2.18 and Theorem 2.19. Note that wy
are supported on [—R, R]. Lipschitz constants are bounded by y/n and /n|v —ul;

respectively. O]

Concentration inequalities give the following theorems. Recall that at some places w
and 7 are considered as measurable maps from (€2, F, P) to €2; (see the paragraph below
(2.15)). Expectation under P is denoted by E.

For y > 0 consider the “y-truncated” weight w? given by

Wy = Wl (fuf<y) + Yliosy) = Yloncy): (2.29)

Theorem 2.22. For a fired L € N, suppose u,, < v, < Lnl for alln € N. Then PP-a.e.
w?

1 1 y
limsup —log Zy | = lim limsup —log Z (2.30)

Un,Vn
n—oo n Y—0 n—oo n ?
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and

1 1 v
liminf —log Z, , = lim liminf —log Zy . (2.31)

n—soo n ’ y—0oo n—oo N

The same identity holds for the last passage time G.

Proof. Note that |wyx — w¥| = (Jwx| — )" < ()x — y)™ (n in (2.15)) . Now the random
variables (nx — y)T, x € Z‘i, are i.i.d. and non-negative with distribution FY, where

F¥(t)=F(t+vy), t > 0. We have

k, & / (1 — FY(t)Vddt = / (1 — F(t)Y4at. (2.32)
0 y
From (2.21) and Lemma 2.18,

|log Z, . — log Z‘;;j,w\ viGge . —GY |

Un,Vnp Un,Vn

(2.33)
< G, (jw —w’|) < N7 (Ln + 1),

Divide both sides by n and take n — oo. Theorem 2.20 applied to the situation where

the distribution F'is replaced by FY and the bounded case give

log Zg . log Z’
n

lim sup | = | < Legk,
n

n—oo

PP-almost surely. By Lemma 2.18(a), the limits on the right-hand side of (2.30) and
(2.31) exist for any w. If we let y — oo along a countable sequence, P*-a.s. convergence

holds.

Theorem 2.23. We have for PP-a.e. w,

. JdogZzy Eflog Z,
lim ( —

n— 00 n n

) =0. (2.34)
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Proof. If |wy| is bounded by y > 0 for all x € Z% , Borel-Cantelli lemma and Theorem 2.21

give the result. For general weights, consider w? in (2.29).

From (2.21) and Lemma 2.18,
|log Z7 — E”log Z,| = | fu(w) — Efn(w)|
< ’fn(w) o fn(wy)l + ‘fn(wy) - Efn(wy” + ‘Efn(wy) o Efn(w)’

<Gn(lw — )] + [ fu(w?) = Efu(w?)] + EGn(jw — w’])

(2.35)

< N (04 1) + | fu(w?) — Efyp(w?)| + ENO9" (0 +1).
Divide both sides by n and take n — oo. Theorem 2.20 applied to the situation where

the distribution F'is replaced by FY and the bounded case give

lim sup | | < 2¢oky

n—oo

log Z¢  Eflog Z,
n n

almost surely. y — oo along a countable sequence proves (2.34).

O

Corollary 2.24. Suppose the distribution of p is Q and the conditional law of w given

p is P?. Denote the joint distribution of (p,w) by v. Then for v-a.e. p and w,

. JogZy  Eflog Z,
lim ( —

n—00 n n

) =0. (2.36)

Proof. Let A € Gy ® G1 be an event

ot P

n—o0 n n

)= 0)

and its section

log Z¥  [Erlog Z,
Ap:{weﬂlzlim(Og L °8

n—00 n n

) =0}

Then for Q-a.e. p, P?(A,) = 1 by Theorem 2.23. Therefore

v(4) = / P?(4,) Q(dp) = 1.
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Theorem 2.25. Let L € N and p be fivred. Then PP-a.e. w, we have

lim l max{‘log Zy, —Eflog Zu7v’ cu<v<Lnl in Zi} = 0. (2.37)

n—oo N

Proof. Suppose wy, x € Z% are bounded by y > 0. Then by (2.28) for ¢ > 0,
P?(|log Zy; , — EPlog Zy | > nt) < eBtent/ (B4 L)
Therefore, counting u and v, we have
p? (H&%X {|log Zg , — B log Zuv|} > nt) < (Ln + 1)%ebem?/(647L)

Borel-Cantelli lemma gives (2.37).
For more general weights, consider y-truncated weights as in (2.29). From (2.21) and

Lemma 2.18
| log Zf;v — Eflog Zy |

<|log Z;, —log Zyp | + |log Zy, — B’ log Z | + [E”log Zy;, — B log Zy, |

<Guy(lw —w]) + max|log Z' | — B’ log Zg ), | + B Gu(lw — o) >
<NO=9"(Ln+1) 4 max |log Z2, —Eflog Z3) , | + E’ N9 (Ln + 1),
Therefore from Theorem 2.20, for PP-a.e. w,
lim sup = max |log Z, , — Elog Z, v| < 2Lcoky, (2.39)

n—oo T WV
where k, is as in (2.32). If we let y — oo along a countable sequence, then we have

(2.37). 0

The following corollary is one of the key elements for the main results. The a.s.

. . d
convergence happens simultaneously for all x <y in R{.
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Corollary 2.26. Let p be fized, for PP-a.e. w, we have for all x <y in ]Rﬂlr

lim (2 Zloxbtny) _ E7108 Zpucyiny)

=0. 2.40
Corollary 2.27. Suppose the distribution of p is Q and the conditional law of w given
p is P?. Denote the joint distribution of (p,w) by v. Then for v-a.e. p and w, we have

for allx <y in R

]'Og anx n EP ]- Z nx n
n—oo n n
Proof. The proof is the same as in Corollary 2.24. O

Remark 2.28. These Theorems also hold for the last-passage times G, because we

only used general concentration inequalities applicable also to last-passage times in the

Proof.

2.4.3 Properties of limits

We develop some general theory of the scaling limit. Let ¢ : Zi — R be a function.

- - 1

¢: Dy CRL) — (—o00,00] is defined as ¢(x) = lim —¢(|nx|) provided the limit exists
n—oo 1

and D, denotes the set of all points in R?, where the limit exists. We call ¢ the scaling

limit of ¢. Note that oo is allowed as a limit.

Proposition 2.29. Suppose ¢ is nondecreasing (u < v = ¢(u) < ¢(v)) and N* C D,,.

Then the following hold -

(a) x € Dy, a >0 = ax € Dy, d(ax) = ad(x). ¢ is nonnegative and nondecreasing

on Dgy.
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(b) Dy = Rio-
1 _
(c) If nh_)nolo X, /n =X, (X, € Z%,x € R%)) then nh_)nolo ﬁqb(xn) = ¢(x).

(d) If ¢ attains oo at some point in R%,, ¢ = oo on RY,

(e) If ¢ is finite then ¢ is continuous. ¢ extends continuously to Ri. If we compute ¢
on the boundary of RY directly from ¢ we have & < the continuous extension of ¢

on the boundary.

Proof. (a) Since | |na]x| < [nax] < |[na]x]| we obtain

ap(x) = lim inf [na] ¢([Inalx)] < liminf M
n—00 n LnaJ - n—oo n
< limsup M < timsup (Zaw “*?ZZ} 9 _ i,

Clearly ¢ is nondecreasing. Hence for 0 < r < 1, ¢(x) > é(rx) = r¢(x) and letting
r ] 0 proves nonnegativeness.

(b) From (a) and N C D, Q¢, C D,. Let x € R%,. Choose sequences {x;} of Q%
with x; 1 x and € | 0 such that x(1 —¢;) < x; < x(14¢€;). This is possible since x > 0

and Q% is dense. We obtain x;/(1 + €;) < x < x;/(1 — €), from which

() < lminf - o(|nx)) < limsup ~o(|nx]) < 5

! O(x)
.

Since ¢(x;) is nondecreasing letting k — oo gives lim,,_, %gb([nxj) = limy_y00 O(Xz).
(¢) Fix 0 < a < 1 < b. For all sufficiently large n, |nax| < x, < [bnx|. Hence (a)
and (b) give

ad(x) < liminf ~p(x,) < limsup ~9(x,) < bi(x).

n—oo 1 n—00

a,b — 1 proves (c).
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(d) Suppose ¢(xq) = co. Given x, considering a ray connecting the origin and x,

choose y on the ray with x; < y. Since ¢ is nondecreasing and homogeneous we have

é(x) = (’X\l/‘}"l)é(}’) = 00.

(e) Let x € R%, and ¢ > 0. Consider an open box centered at x, B, = {y € R, :
x(1-¢) <y < x(1+6)}. supp,é— infs, & = dx(1+ ) — dx(1 - ¢)) = 2ed(x).
e | 0 implies the continuity of ¢ at x. Define [¢](x) = inf{é(y) : y > x} for x € RZ.
Then [¢] = ¢ on R%, by continuity and monotonicity of ¢. [¢] is nondecreasing and

positive-homogeneous on R%. For x € OR? let
Co={yeRi:x(1—¢) <y<x+el}
where 1 = (1,...,1) € Ri. Since [¢] is nondecreasing and positive-homogeneous,

sup[¢] — inf[¢] = [9](x + €1) — [¢](x(1 — €)) = P(x + €1) — [3](x) + €[] (x).

C. Ce

Let € | 0 and use the definition of [¢] to get continuity at x.

The second assertion is obvious.

We extend this result to the superadditive case.
Proposition 2.30. Suppose a doubly indezxed real sequence ., (U0 < v € Zi) satisfies:

(a) x is superadditive.

xO,u—I—v Z xO,u + xu,u+V7 (242)
(b) There is a linear function ¢ : R* — R such that zyuiv > (V) foru, v € Z4.

Define ¢p(u) = xow. Then the following hold.
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(1) ¢ — 1 is nondecreasing.

(2) If N4 C D, then ¢ satisfies the properties of Proposition 2.29 except the mono-
tonicity. (But ¢ — 1) is nondecreasing and ¢ > 1).)

(8) Moreover if ¢ is superadditive on N¢: (p(u + v) > ¢(u) + ¢(v)), then ¢ is

superadditive, concave on RZ,.

Proof. (1) We prove ¢ — 9 is nondecreasing. From (b) we have

(P(u+v) —v(u+v)) = (¢(u) = ¥(u)) = (¢(u+v) — ¢(u) — (Y(u+v) — ¥(u))
> Tyurv — Y(v) 20
Therefore it follows that ¢ — 1 is nondecreasing,
(2) This part is an immediate consequence of (1) and Proposition 2.29. For part (3),

from continuity and homogeneity of ¢, we have

B(x+y) = lim ~@(|nx] + [ny))

n—oo N

> lim ©o((nx)) + lim Sa((ny)) = 6(x) + 6(y) on Rl (243

n—oo N

Superadditivity and positive-homogeneity give concavity. O

2.4.4 Proofs of the main results

We apply the previous development to prove Theorem 2.9 and Corollary 2.10. The
conditional law of w conditioned on p defines a stochastic kernel from €y to €2y by
k(p) = P?. k is an ergodic kernel relative to Ty, for all u > 0 in fo_ by the Kolmogorov
0-1 law. Therefore by Lemma 2.15, IP is totally ergodic with respect to T and P has
stationary mean Py = Qyx under Assumption 2.4. Hence we may apply Theorem 2.17 to

P to prove limit theorems under Assumption 2.6. However we do not take this approach
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because to establish simultaneous limit theorems for uncountably many directions is
more difficult in this setting and, more importantly, we cannot use this approach if Q
does not satisfy Assumptions 2.4 and 2.6 (see Theorem 3.17). Therefore first we prove
limit theorems for parameters p using the nonstationary subadditive ergodic theorem and
then combine this with results from concentration inequalities to obtain limit theorems

for w.

Theorem 2.31. Suppose Assumptions 2.4 and 2.6 hold. Define Yyv(p) = E°log Zy
foru<v inZ% and p € Qy. Then Q-a.s. the scaling limit of ¢y (u) = Yo, (u € Z%)
exists for all x € RY,, and is deterministic. The scaling limit oy satisfies

by (x) = lim lEQO (Yo, nx)) = lim lEQ(YO,WJ).

n—oo 1 n—oo N,

This limit function ¢yis continuous, positive-homogeneous, superadditive, concave on

R<, and extends continuously to R%.

Proof. For fixed u € N* define X, (w) = log Zg,, (w € Q). Then this sequence is

superadditive:
Xn+m(W) = log Z(L)U,(ner)u > IOg Z((;),mu + log ZTL:Lu,(m+n)u = Xm(w) + XH(TITW) (244)

Averaging this sequence with respect to P? (p € Q) we obtain Y, (p) = E*X,,. The new

sequence is also superadditive :
Yorm(p) = Yiu(p) + Ya(T3'p) (2.45)

Since we assumed that |wy| are stochastically bounded by 7y (see the condition (b) below

(2.1)), Lemma 2.18(b) and (2.21) give

— EFN(n|u|; + 1) < Y,(p) < njulilogd + EX N(n|u|, + 1), (2.46)
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where F' is the CDF of 7y and E¥ refers to F€%%. By Theorem 2.20, Y, (p)/n is bounded
below with lower bound —C'ul; for some constant C' and bounded above with upper
bound (C + logd)|u|;. Q is AMS with stationary mean Q, relative to T, by Assump-
tion 2.4. We can apply Theorem 2.17 to p and T,. Note that in the case of Assump-
tion 2.6(b), Yuv(p) is a monotone increasing function of p by Lemma 2.18(a). Therefore
Q(A) = 1 where A = {p € Qo : n"'E’log Zp nu converges for all u € N?}. Since Q,
is assumed to be totally ergodic with respect to T, these limits are deterministic and
satisty
o] 1 ol
¢y(u) = lim F 0(—Y0,nu) = lim —Yp,u = lim £ (—Yo,nu)

n n

n—oo n—oo M, n—oo

for u € N¢ Q-a.s. by Theorem 2.17. The last equality comes from the dominated
convergence theorem. Note that ¢y is superadditive on N since its formula is given by
a T-stationary measure Qy. Therefore we can use Proposition 2.30 since Q-a.s., for all
u, v, Y,y are bounded below by —C|v — u|; (by the same reasoning as in (2.46)). This

yields the stated properties for ¢y O]

Proof of Theorem 2.9. Define Xy, (w) =log Zg, and ¢(u) = Xoy for u < v in Z$ and

w € Q. In Corollary 2.27 we showed that for v-a.e. (p,w), for all x <y in R?

n— 00 n n
and in Theorem 2.31 we showed Q-a.s. and hence v-a.s.,
Eflog Z§ . _
lim ——— 2 g (x). (2.48)
n—oo n

for a deterministic function ¢y and x > 0 in R?. Therefore ¢ as claimed in Theorem 2.9
exists v-a.s. for all x > 0 and agrees with ¢y. The properties of ¢ are given in

Theorem 2.31. O
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Proof of Corollary 2.10. Let € be a positive rational number. Then choose rational
points {vi,vs,..., vy} on the hyperplane |x|; = 1 + ¢ and {uj,us,...,uy} on the
hyperplane |x|; = 1 — € so that |v; — w;|; = 2¢ and boxes [u;, v;] cover the hyperplane
|x|; = 1 in the first orthant (0 < u; < vy, v; > 0). Then {[nu;,nv;|} cover the hy-
perplane |x|; = n. For points x € Z% in [nu;, nv;] we have [nu;| < x < [nv;] and
log Zg . <log Z§ |,y + G‘g@‘uiJ’an.

Therefore

log Zy =log > Zg, <log((n+1)" L  Zg)
x€ZY:|x|1=n

xGZi:|x\1:n (249)

w |w]
<dlog(n+1)+ max, 108 Z4 |y + max, Gl ) v

Divide by n, and take n — oco to conclude that v-a.s.,

|l

l ZUJ ]'Og Zw nv; nu; nv;
lim sup 98 Zn < max lim 2 0] + max lim s.upM
00 n 1<i<M n—oo n 1<i<M pyoo
< v 1 2.50
< IISI?;ESD& o(vy) + 12%2)1%4 cok|vi — w;lq ( )
<(1+¢e) I‘nlax P(x) + 2ecok
x:|x|[1=1
where
k= / (1 — F(t))Y4dt.
0
The inequality limsup n_lG‘f:l ‘ul Linve) S cok|v; — w;|y is justified as follows. From the
n—00 e
coupling (2.15) we have G'f; lui nvi] < Gl vy and
|w] G" Ia F
lim Sup L ’LJ7L ZJ S llm ( L 'LJ’L ZJ _ L ’LJ7L ZJ) _"_ llm O’L ZJ L ZJ .
n—so0 n N—00 n n Nn—00 n

(2.51)

Corollary 2.27 applied to 1, G, and F' (see Remark 2.28) with Theorem 2.20 gives the

result.
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For the lower bound note that for x € R¢ with |x|; = 1,
IOg ZSJ, [nx] + IOg Z([Jnxj,u < 1Og ZYO:

where u € Z% and |nx] < u < [nx| with |u|; = n. Hence we have

10 Zw nx I Vied EFG nx|—|nx
lim w < liminf 98 Zn + lim 0,[nx] ~ ]

n— o0 n n—00 n n—00 n

v-a.s. The second term comes as in (2.51). Therefore

1
¢(x) < liminf —log Z;/.

n—oo 1

: : : .1 -
and, since x is arbitrary we have lim —log Z = max ¢(x) v-a.s. O
n—0o00 1 x|x[1=1
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Chapter 3

Limiting free energy for

two-dimensional polymers

3.1 Introduction

In this chapter, we focus on 2-dimensional directed polymers. We give a more precise
picture of the limit shape ¢ and show the existence of limiting free energy for some
special types of models. In two dimension, we have conditions to guarantee the existence
of limiting free energy which are more natural and useful than Assumption 2.6.

For a random variable X with the distribution Fy(r,-), let Fy(r), r € S, be the
expectation of X:

Fy(r)=FEX :/xFQ(r, dx). (3.1)

Assumption 3.1. Let Q be the distribution of parameters p = {p; ;} € Qp = S% and

F5 be as in Assumption 2.1. For Q-a.e. p, the limits

n—1 n—1
! !
Jim -~ ;:0 Fy(pix),  lim — g:o E5(pr.j) (3.2)

exist for all v, j € Z, and satisfy

n—1 n—1
1 1
lim — F5(p; 1) <limsup lim — Fs(pm 3.3
Jim % 2(Pik) msup lim - % 2 (Do) (3.3)
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and
1n71 1n71
lim — F N <l lim — F m 3.4
Y 22 Falong) < limoup i ) Fa(prn) (3.4

forallv and j € Z .

Remark 3.2. A subadditive ergodic theorem is applicable to these models as we will see
soon. In Definition 2.3, Q is Ty-AMS only for u > 0 with a common stationary mean
Qo. (3.2) imposes some sort of AMS properties for u = e, and es. These conditions are
quite natural since if Q 1is stationary, these conditions are satisfied not only for Fy but

also for any bounded function f:S — R.

We give some models that satisfy Assumptions 2.4 and 3.1. We change the picture
slightly. Our model lives in N?. Choose parameters A = {)\;}32; and © = {6;}52,.
(A, ©) is in Sy = [ag, a1]N x [bo, b1 ~ ([ag, a1] x [bo, b1])Y for some ag < a; and by < by
in R. Sy is equipped with the product Borel o-algebra G, generated by coordinate
projections. We introduce notations to fit this example into our general setting. Shift
maps 7g; : So — Sp act on Sp for k, I € Zy by ({Ni}21,{0;1521) = ({Nigw}i2es 1051152)-

Then 7 = {7x}xez2 is a semigroup.

Assumption 3.3. We consider parameters (A, 0) € Sy. We denote the distribution of
(A,0) by Q. Q and the conditional law of weights w = {wx : x € N?} given (A, O)

satisfy the following:

(a) Q is AMS with respect to T (see Definition 2.3). We denote the stationary mean

of Q by Qp.

(b) The weight parameters p = {px : x € N2} € RN are determined by (A, ©): The

weight parameter at site (i,7) € N* is p; ; = v(\;, 0;), where 7 : [ag, a1] x [by, by] —
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R is a fixed function. We assume that 7y is a continuous function that monotonically

increases in each coordinate (x <y implies vy(z, 2) < y(y, z) and y(z,z) < v(z,y)).
The conditional law of w given (A, ©) is given by (2.2):

P(w S | @,A) =P = ®xeN2FQ(pX, )

F, in part (c) satisfies the following. F, : R x R — [0,1] is a monotonically
increasing function in the first variable. Let v and [ denote the distributions of
A1 and 6 under Q, respectively. We assume ay = inf supp a and by = inf supp .
Here, for a probability measure P, supp P is the support of P. If a({ag}) = 0 then
we require that \; > ag for all 4, Q-a.s. Similarly if ({by}) = 0 then we require

that 6; > by for all j, Q-a.s.

Alternatively, F5 is a monotonically decreasing function in the first variable, and
we assume a; = supsupp « and b; = supsupp . We have similar conditions on

boundary points as (d).

We give more details of how this procedure connects our main results and these

two-dimensional models in Section 3.3. Here are some examples of Qg and Q.

Example 3.4 (Examples of AMS measures and their stationary means). (a) Let

QO — Oz®N ® ﬁ®N

where o and [ are probability measures on [ag,ai] and [by, b] respectively. Qy
is totally ergodic with respect to 7 by Kolmogorov 0-1 law. For Q, choose any

nonnegative function f : Sy — R with EL f =1 and take dQ = fdQ,.
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Suppose (A, ©) is deterministic and L-periodic: L € N and
TL70(A, @) = 7'07L(A, @) = (A, @)

Then

1
Q&)==z§' j{: O7.1(A,0)

0<k,I<L

is stationary and totally ergodic with respect to 7. In this case take Q = d(z @)

Note that an i.i.d. environment w belongs to this example with L = 1.

Consider independent time homogeneous irreducible, aperiodic Markov chains X,
on a countable set Sy C [ag, a1] and Y, on a countable set Sy C [by, b1] with tran-
sition probabilities p and q respectively (n > 1). Assume p and q have stationary
distributions wx, my and initial distributions of X,,, Y, are wx, my respectively. Let
Zn = (X, Yy,) then Z, is a Markov chain on Sy x Ss with the transition probability
p((z1,11), (T2, 92)) = p(x1,22)q(y1,Y2). D has a stationary distribution m = mx Qmy
Let Qq be the distribution of ({Xn}n>1,{Yn}tn>1) =~ Zn. Then clearly Qq is sta-
tionary. We claim that Qq is ergodic with respect to T, for any u = (uy,us) > 0.
The proof is similar to that given in Example 7.1.7 [16].

Let F, = o(X1, ., Xowuy, Yis ooy Youy)- Let W = (Xouys Yo, ). Wi is a Markov
chain on Sy x Sy with respect to F, and its transition probability is given by
pw ((z1,11), (22,92)) = p“(x1,22)q"2 (Y1, y2). Then W, is wrreducible since X,
Y, are aperiodic. And pw has a stationary distribution 7. (See the proof of Theo-
rem 6.6.4.[16]) If A € T,,, 1Lao7) = 14. So the shift invariance of 14, independence

of X,, and Y, and the Markov property imply

EP(14]F,) = E™(14 0 M F,) = h(W,,)
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where h(x) = E*14, x € S1 X So, and P is the distribution of Z, started at x.
(Note that we do not use the distribution of W,,.) Lévy’s 0-1 law gives that the left-
hand side converges to 14 as n — oo. (Here we used u > 0.) On the other hand
since W, s irreducible and recurrent Qq-a.s., for any y € S1 x Ss the right-hand
side of the above equation is h(y) i.0., so either h(x) =0 or h(x) = 1, and Qy(A) =
0 or 1. In this case, we may take Q as the distribution of ({X,}n>1, {Yn}n>1) for

any wnitial distributions.

(d) Take Qg as in preceding examples. For ay > ay, by > by and N > 0 take any
probability measure Q1 on ([ay, as] x [by,be])Y. Let Q = Q1 ® Qy. Note that Q is

not absolutely continuous with respect to Qg but it is stochastically larger than Q.

3.2 Results

In this section, we present our results: First, the existence of the limiting free energy
for models introduced in the previous section. Second, boundary values of limiting free
energy. Finally, examples of log-gamma polymer with a variational characterization of
the shape of the limiting free energy. At the end of this section, we briefly explain how
and where these results are proved.

For models satisfying Assumption 3.1, a subadditive ergodic theorem can be used

without Assumption 2.6.

Theorem 3.5. Suppose Assumptions 2.4 and 3.1 holds. Then the conclusion of Theo-

rem 2.9 holds.

Theorem 3.6. Suppose Assumption 3.3 holds. Then the conclusion of Theorem 2.9
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holds. Furthermore, the continuous extension of ¢ satisfies the boundary condition in

terms of essential supremums under Qg in Assumption 3.5:

5(1,0) = B-ess sup / B(7(\,01)) a(d) (3.5)
01
and
$(0,1) = a-ess sup/FQ('y()\l,H)) B(dO) (3.6)
A1

where a and [ are distributions of \1 and 61 under Q.
Finally, we give results for the inhomogeneous log-gamma polymer.

Theorem 3.7. Consider the log-gamma polymer introduced in Section 1.3. Suppose Q,
the distribution of (A, ©), is 7-AMS and we also have boundary conditions on ay and
by as explained in Assumption 3.3(d). Then Theorem 3.6 is applicable. Furthermore, a

variational formula holds

.1 » - .
lim E log Z(l,l),(I_na:J,\_nyJ) = ¢($, y) = inf {ZL’A(Z) + yB(Z)} (37)

n—o00 —ap<z<bg

for any x, y > 0. A(z) and B(z) are defined on (—ag,by) and

Az) = —/ Uo(z 4+ A) a(dA)
(0,00)
(3.8)

B(z) = —/ Wo(—= + ) B(dB).
(0,00)
From these explicit formulas, we obtain a more precise picture of limiting shape.
Especially, we have some moment conditions for the existence of flat regions S; and Ss.
We borrow notations from [17].

Let S denote the sector of the first quadrant (R2,) on which

— B/(—ao)/A,(—ao) < Jf/y < —B,<b0)/A/(b0) (39)
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holds, Note that A and B are infinitely many differentiable functions. Let S; and S
denote the sectors defined by the inequalities x/y < —B'(—ag)/A'(—ap) and z/y >
—B'(by) /A (by), respectively. We have R?, = 51 U S, U S. Possibly, S; = 0 or S, = 0.

The following Corollary is analogous to Corollary 2.3 of [17].

Corollary 3.8. ¢ extends to R?2 and the following hold.
(a) ¢(z,y) = vA(~ao) + yB(—ao) for (x,y) € Si.
(b) ¢(z,y) = 2A(bo) +yB(bo) for (z,y) € Sa.

(¢) ¢(car + (1 —c)wg, cyn + (1 —c)ya) > co(xr,y1) + (1 —c)p(aa, y2) for 0 < c < 1 and

(x1,y1), (z2,92) € S that are nonparallel.
(d) For (xz,y) € S, there is a unique minimizer ¢ € (—ag,by) in (3.7). ¢ depends on
x/y and given by the inverse function of —B'(z)/A'(z) > 0 for z € (—ag, bo):

B(efy) o 510

(e) ¢ is continuously differentiable.

(1) 517&@@/ el < . 527&@)«:/ el CORES

For certain choices of a and 3, more tractable formulas are possible. One can derive
the following formulas from (3.10). First, we introduce some generalized polygamma

functions to represent our formulas. Define

U_(x) =logl(z), V_,(x)= ! ) /ﬁ(:c — )" 2log['(t) dt for n > 2.

(n—2)!J,
These functions are called negapolygamma functions [1] and satisfy ¥/ = U, ,; for all

n € Z. See A.1 for more properties of polygamma functions. Using integration by parts,



50

we have
1 [E
A(n,L,y) = —%/ 2" Wo(z +y) dr
0
(=1)"(n + 1)! G
=1
and
1 [E
ALy 2 = [ e+ da
0
- <)L(n—+1)\1;n(y) + (n+1)! kz mquﬂ(y +1L)
—1

for y, L > 0 and n > 0.

Example 3.9. [Explicit formulas] Some level curves are illustrated in Figure 2 and
Figure 3. In Figure 3, the level curve of (a) is strictly convezr but not tangential
to the axes, and the level curve of (b) is strictly convex only in the middle sector

S and flat on the edges.

(a) o= =0, for some ¢ > 0.

Pz, y) = —2Wo(C(r/y) + ) — yWo(—C(x/y) + ©),

where (. is the inverse function of the map z — %, |z| < ¢. Note that this

model is for the i.i.d. environment with a parameter p = 2c. This formula is given

in (2.16) of [33].

(b) « and 5 are uniform measures on the interval [c,c+ L] for some ¢, L > 0.

Hoy) = xlogF(Co(x/y) +c+ Lz —1og T'(Go(2/y) + ¢)

log I'(—Co(x/y) + ¢+ L) —logT(—Co(x/y) + ¢)
i 7
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\DQ(—Z +c+ L) — \Ifo(—Z + C)
\IIQ(Z+C+L) —\110(2+C) ’
|z| < c. Note that when L — 0 we obtain the result in (a).

where (o is the inverse function of the map z —

(c) Forn>1,a= 8= (n+1)(z—c)"/L"™ dx on the interval [c,c + L] for some c,

L>0.

¢(x7y) = xAn(Cn(x/y)) + yAn(_<n<x/y>) on S,

where A,(z) = A(n,L,c + 2z) and (, is the inverse function of the map z
A'(n,L,c— z)
A(n,L,c+ z)

Lzl <e. . Forn> 2,85y, Sy are nonempty.

1.6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 T

Figure 2: The level curve ¢ = 2 (blue) with ¢ = 0.3 and level curve ¢ = 2 (red) with ¢ = 0.3,
L = 0.2 (Uniform measure) in Example 3.9 (a) and (b).

Organization of Chapter 3. Theorems 3.5 and 3.6 are proved in Section 3.3. We show
that a nonstationary subadditive ergodic theorem is applicable under assumptions in this
chapter. In Section 3.4 we prove Theorem 3.7 and Corollary 3.8. Explicit formulas are
derived by precise analysis of stationary process with boundary conditions and coupling

with these processes are used.
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1.6
1.4
1.2
1.0
0.8
0.6
0.4

0.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 T 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 T

(8) c=02,L=04n=1 (b)c=02 L=04,n=2.

Figure 3: The level curves ¢ = 2 (red) with various a and 3
in Example 3.9 (c).

3.3 The existence of the limiting free energy

In this section, we prove Theorem 3.5 and Theorem 3.6. The difficult part when we apply
a nonstationary subadditive ergodic theorem is that not every superadditive sequence
is almost surely invariant. Hence we used conditions (b) and (c) in Theorem 2.17 when
we proved Theorem 2.9. For 2-dimensional polymers, it is much easier to prove that
the superadditive sequence obtained from free energy is almost surely invariant under
weaker assumptions like Assumption 3.1. The key observation is that free energy formed
by bulk weights is not much different from the free energy formed by weights including
boundary weights as Lemma 3.10 shows.

Let x, = (x3)k>0 be a directed path in Z2. We consider x, as a Markov chain
with transition probability p(x,x + €;) = p(x,x + e2) = 1/2 for x € Z2. Denote the
distribution of x. by P. We write P* for P if P(xy = x) = 1.

For a path segment X,,., = (Xp,...,X,), let H(Xp.n) = Zm<k§nw(xk). Let
Hyn(x) = HXm:.n). If x <y and there exists a unique directed path connecting

two points, we denote that path by x — y. Concatenation of x - y and y — z is
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denoted by x — y — z.

With this convention, we have, for u < v € Zi,

Zuy =2"""E" [I{Xp—m = V}exp(Hon-m(x.))]
(3.11)
=2"""EO [1{x,, = u, x, = v} exp(H,, »(x.))]

where m = |u|; and n = |v|;.
Let Zu,v = uyv/Q“’_“h. log 7 is also superadditive like log Z : foru <v <w € Zi,

log Zuy + log Zv,w < log Zu,w- For fixed m,n € N, define stopping times 7, and T™ by
T =inf{k >0:x, = (m,r) forsome reZ,} (3.12)

and

T" =inf{k > 0:xt = (r,n) for some r € Z;}. (3.13)
Lemma 3.10. Let u <v <w € Z% and v = (my,n1), w = (m,n). Then we have

1Og Zu,w < log Zv,w + |V - u|1 10g2

; m (3.14)
+ | (Cuomimy = Y W) V (Cummy = Y @inn) | 5
j=ni1+1 i=mi1+1

where G is the last-passage time (2.16).

Proof. Without loss of generality, we may assume u = 0. Let T' = T,,, VT™. Let

y = (mq,n) if xp = (mq,r) and y = (m, ny) otherwise. By strong Markov property,
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ZO,W = EO [eXp(HO,T + HT,m+n)1{Xm+n == W}]

= EO eXp(H07T>ZxT7W

- E° -exp(HQT — log waT) exp(log Zv,xT + log ZXT,W)]

: (3.15)
< E° lexp(Hor + H(xp = y) — log Zyx, — H(xp — y)) exp(log Zv,w)]
< ZywE [exp(Goy — H(v — y))]
< Zyw - exp(the second line of (3.14)).
Take the log then we obtain (3.14). O
Consider empirical measures on S forn € N, ¢, j € Zy and p;; € S
1 n—1 1 n—1
Qp,j = ﬁ Z 6pi,j7 6n,i = ﬁ Z 5Pi,j' (316>
i=0 j=0
For convenience let o ; = 3 ; = 0. For any bounded measurable function f : S — R,
write
1 n—1
a;(p, f) = Jim [ f(r)on;(dr) = lim — Z f(pis) (3.17)
and
1 n—1
ﬁi(pu f) = nh_)m f(?“) B z(dr) = nhm E f(pi,j) (3'18)
j=0
provided these limits exist.
For y > 0 and r € S, let
FY(r) = / W Fy(r, dw), (3.19)
R

where w? is the y-truncated weight in (2.29). Then from Assumption 2.1

Y (r) — Fofr)| < / WL{w] > y} Fa(r, dw) < h(y)

for some nonincreasing function h with lim,_,., h(y) = 0.
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Lemma 3.11. Suppose (3.17) and (3.18) hold for Fy. If w has the distribution P? in

(2.2), then for (mg,ng) < (mq,n1) € Z2 we have

N
S =G ) mamy = | 102X Si(p, F3) (3.20)
and
N S
nlbl_rpoo E (mo,no),(m,n1) — ngj?g(m Oéj(/), FQ) (321)

Pr-a.s. and in L'(P?).

Proof. Without loss of generality, we may assume (mg,ng) = (0,0). For fixed i < my,

from the law of large numbers or Corollary 2.26 with shifting the origin, we have
1 n—1
tion 23— Pl 0.
j:

Our assumption that F, satisfies (3.18) gives

n—oo

n—1

o1

lim - Z Fy(pij) = Bi(p, F2).
7=0

Therefore we have

n n—1

P o1 1

lim inf _GO,(ml,n) > lim — lei,j = lim - ZOFQ(pm-) = Bi(p, )
J: J:

n—oo T n—oo M, n—00

P?-a.s. and hence,

1
lim inf —G{ > max fi(p, Fa).

nsoe q O(min) 0<i<mi
Consider w? for some fixed y > 0. Then by Theorem 2.19, there exists positive

constants C1(y) and Cs(y) such that for any path x. in g (m, n),

P? [H,(x,) > E’H,(x.) + ne] < Cye~ "<



o6

where H,(x,) = H*'(x.). Since there are at most (n + 1)™*! paths

P |Gy )y > maxE7H,(x,) +ne| < Ci(n+ 1)mtlg=Cone®, (3.22)

,(ma,n

Therefore from Borel-Cantelli lemma, P? a.s.,

1 1
lim sup —G’:)Jy(m1 ny < limsup — max{E’H,(x,) : X, € o (m;n)}-
n 7 ?

N—00 n—oo TN

Any path in Ilg (s, n) can be decomposed into a disjoint union of paths from (i, J;) to

(i, Jiv1), 1 =0,1,...,mq, where j; € Z, for each i and
O:J()SJlS"'SJml_H:TL. (323)

Note that Fy(r) is bounded by some constant M > 0 from Assumptions 2.1. For N € N

define

(V) = max supd| [ Falr) fualdr) ~ Bilp, F)| - n > N}

0<i<my

Then from the assumption that F; satisfies (3.18), we have limy_, €(/NV) = 0. Note that
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J-€(J) <2NM +n-e(N) for any J < n and N. Since |F§(r) — F5(r)| < h(y), we have

Fy(po 0) + EPH (X)

m1 Jit1
_ZZprzJ
=0 j=J;
m1 Jit1
<(n+mi+Dh(y)+ > Y Fapiy)
=0 j=J;

=(n+my + 1)h(y)

+Z [ (14 Jis1) / Fo(r) Bry g aldr) — J; / Fy(r) Bji,i(dr)]

<(n+mi+ 1Dh(y)+ (m +1)M

+ Z Jiv1 — i) Bi(p, o) + Jigre(Jiy1) + Jie(Ji)]

<n- max B;i(p, F2) + (n+mq + 1)h(y)

0<i<my

+ (my + )M 4 2n(my + 1)e(N) + 4(my + 1) N M.

Therefore

lim sup — ! maxE’H,(x,) < max f;(p, F2) +2(my + 1)e(N) + h(y).

n—oo n X, O<’L mi

Letting N — oo, we have PP-a.s.,

lim sup — G“’Jm1 n) < max Bi(p, F2) + h(y).

n—00 0<i<m

For general weights, from Theorem 2.22,

1
lim sup — GO (m1ny = lim lim sup — ~GY"

,(m1,n)
n—o00 Y= n—oo

< max Bip, ).

0<i<mg

(3.24)

(3.25)
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Therefore (3.20) holds P?-a.s. Since G is dominated by weights of greedy lattice animal,
from Theorem 2.20 and dominated convergence theorem, L'(P?) convergence also holds.

(3.21) is proved similarly. ]

Proof of Theorem 3.5. Note that when we proved Theorem 2.9, we used Assumption 2.6
in Theorem 2.31 to invoke Theorem 2.17(b) or (c), a nonstationary subadditive ergodic
theorem. Therefore it is enough to show that the sequence f,(p) = E”log Zg nu for fixed
u = (u, us) € N? satisfies the condition (a) in Theorem 2.17.

For any m € Z., from superadditivity of f,, we have f > f o T™, where T = T,.
Hence we need to show that f < f o T™ for any m, Q-a.s. Suppose that for some

(my,ny) € Z3

max 6Z(p) FQ) = /6m1 (p7 FQ) and max aj(pa FQ) = Op, (p7 FQ) (326)

0<i<mg 0<j<nm

Then for m and n with mu < (mq,n;) < nu, from Lemma 3.10,

log ZO,ml S IOg Z(m1,n1),nu + (ml + nl) log 2

nu nui
(GO,(m1,nu2) - Z w(mhj)) N (GO,(nul,nl) - Z w(i,nl))]

j=ni+1 i=mi1+1

+

(3.27)
< log Zmu,nu - 108; Zmu,(m1,n1) + (ml + nl) log 2

nuz nui
(GO,(m1,nuz) - Z W(mlJ)) v (GO,(nu1,n1) - Z w(i,nl))] .

j=n1+1 i=m1+1

_|_

Hence from (3.2) and Lemma 3.11,

1 1
lim sup —E” log Zg pu < limsup —E”log Z,u nu-

n—oo 1 n—oo TN

Therefore f(p) < foT™(p) for this m and p. Thus if we can show that for Q-a.e. p,

there exists a sequence {(my(k),nq(k)}32, such that my(k),ni(k) — oo and (3.26) is
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satisfied, then f is Q-almost surely invariant and this completes the proof. However we

can find such a sequence from (3.3) and (3.4). O

Proof of Theorem 3.6. Define T' : Sy — Qy = RN+ by pi; = T'(A,©);; = v(\,6;) for
i, 7 € N, where « is as in Assumption 3.3(b). Then I' intertwines translation maps:
Forgy =Tp 0l Let @ =T4(Q) and Q) = '+(Qy) be pushforward measures on g
of Q and Qy, respectively. By Lemma 2.14, Q' and Qj satisfy Assumption 2.4.

Let ¢, and g¢» denote the coordinate projections from RN x RN onto RN defined by
q1(A,©) = A and ¢2(A\, ©) = O, respectively. Let 7 : RN — RN be the shift map defined
by 7(x)r = Xp41 for k € N. Let f: RY — R be a bounded measurable map. Since Qj is

T1,1-ergodic, we have

R _ .1 _
Jim 5307 or W) = fim 23 fomordiA.0) = E¥lfoal (29

lim — Zf o 1(@) = lim — Zf 00T (A,©)=E¥[fog] Qas (3.29)

n—oo N

Therefore A and © are separately ergodic. If we write Q1 and Qs for the distributions
of A and © under Qy, respectively, then we conclude that A and © are 7-AMS with
stationary means with Q; and Q,, respectively.

Now suppose Assumption 3.3(d)” holds. Then Fy(r) is a nondecreasing function. Let

By = {s: F5(y(\, s)) is not continuous at s} and

B = J{Br:a({\}) > 0}.

Then B is countable. Therefore for Q-a.e. A, from (3.28)

lim — ZF2 Ak, S) / Fy(y(\, 8)) a(dN) (3.30)

n—oo M,
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for all s € B" = (Q N [by,b1]) U {bo, b1} U B. Let € be an event that (3.30) holds
and Q(€) = 1. If (A, ©) is a random variable taking values in B’, then we have for
(A, ©) € Q,

lim — ZF2 ) /Fm(m)) a(d\)

n—oo N

For general 6, let 6,1 = n™ Ln@J and 0,5 =n"'[nd]. Then 6, <0 < 0,,. We have

hmsup—ZFg )\k,é))§/Fg(7()\,9n72))a(d)\)

m
m—00 1

and

1 m
liminf — Ey(v( Mg, 0)) > | Fo(v(M, 06, d\
mint 37 F0 0k 0) > [ RGO @y
if (A,0) € Qf. Suppose 0 ¢ B'. Then by letting n — oo, from the definition of B’,

1 m
hmsup—ZFg (Mg, 0)) —liminf—ZFg(v(/\k,é’))
moe e T A (3.31)

< [ B00)+) - BOOO-)aldn =0
Therefore for Q-a.e. A and ©,

aj(p, Fy) = lim —ZF2 /\k,H)):/Fg(v()\ﬁj))a(d/\). (3.32)

m—oo 1M

Similarly,

5<p,FQ>—hm—ZFQ (b)) = [ RGOS, (339

m—oo 17

From (3.32), if ({b1}) = 0, then «o;(p, F>) < limyw, [ Fo(y(A, b)) a(d)). We claim
that

i sup i, F2) = lim / Fy(y(\, b)) a(d).

m—r0o0

Let f = 1, —cp,) be an indicator function for € > 0. Since © is AMS with stationary

mean (s,

lim Zf 60 = [ Lur-6) B(a8) > 0

n—oo M,
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Hence 0; > b; — € infinitely often and the claim is justified. Therefore

a;(p, F») < limsup o, (p, F5)

m—o0

If B({b:1}) > 0, considering f = 15,3, we have the same result. Similarly, we have

Bi(p, F2) < limsup By, (p, F3).

m—0oQ0
Therefore Q' and Q) satisfy Assumption 3.1. The boundary conditions of ¢ are proved

in the following Lemma. O

Lemma 3.12. Let € > 0. There exists 6 > 0 such that if 0 < x < ¢, then

}&(x, 1) — a-ess sup/Fg('y()\l,G)) ﬁ(d@)} <€ (3.34)
A1
and
‘&(1, x) — [B-ess sup/Fg(’y()\, 61)) a(d)\)‘ < €. (3.35)
01

Proof. Since the scaling limit ¢ is completely determined by Qp, we assume Q = Q.

The proof is similar to that of Lemma 3.11. Let u = (uy,us) € N2. We have

nug nuy

w
log Z7 1 4 pu = E wi,; + E Wiy -
j=1 i=1

Hence Qq-a.s.,

.1 "
O(ur, uz) = lim —log 274y = u2bi(p, F2) — Muy = Uz/Fz(’Y()\b@)) B(d0) — Mux,

n—o0

where M is an upper bound of Fy(r). Since ¢ is a deterministic function,

B(ur /1) > a-ess sup / Fa(v(M,)) B(d0) — Mus fus.

A1

Since ¢ is continuous, for all z > 0,

o(z,1) > a-ess sup/Fg(w()\l, 0)) 5(df) — Mx. (3.36)
A1
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Let K,, = |H1,1+uu|. By comparing fln log z dx and log(n!), one has
n+m
log ( o ) < (n+m)(—plogp — qlogq) +log(n + m)
where p = n/(n+m) and ¢ = m/(n + m). Hence with p = wuy/(uy + us),
log Ky, < n(uy + uz)(—plogp — (1 = p)log(1 — p)) + log(nus + nus)

By considering paths in Iy 14,4 and y-truncated weights, we have

P? {log Z$Y on — log K,y > max BV H, (x,) + RE}
) (3.37)
<Pp? lGT,leruu > maXEpHy(X_> + n€:| < ClKneszn(eruz)ez

(see (3.22)).
If uy/ug is sufficiently small, say < 4, then the upper bound in (3.37) is summable

over n. Therefore from Borel-Cantelli lemma, if u; /uy < 9,

1 W
lim - log Z7'1 1 pu < (u1 + ug)(—plogp — (1 — p)log(1 — p))

. (3.38)
+limsup — max{E H,(x,) : X, € 11 11nu} + €

n—oo T

By choosing smaller §, we have

1 y _ 1
lim —log 271 |, <limsup —max{E’H,(x,) : x, € [l 14nu}
e novee T (3.39)

+ (Ul + uo + 1)6
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if uy /us < 6. Using notations in (3.24), if A\ = maxi<;<pu, A (We use Assumption 3.3(d”)),

Fy(p[) 0) + EPH (X)

nui Jit1
—ZZFy pzj
i=1 j=J;
nuy Jit1
S(nul—i—nug—i— +ZZF2 )\“9
i=1 j=J;
nuy Jit+1 (340)
<(nuy + nug + 1)h +ZZF2
i=1 j=J;

<(nuy + nug + 1)h(y )+Mnu1+ZF2 (A, 05))

7=1
nus

S(nul—i-nuz—i—l)h( )+MTLU1+ZF2 b2,9 )),

7j=1

where by = by if a({b1}) > 0 and by = b;— otherwise. For the latter case, Fy(y(b1—,0)) =

limpe, Fo(y(b,0)). By ergodic theorem, we have

lim sup — ! max B H,(x,) < us - /Fg('y(bg, 0)) 5(dO) + Muy + (uy +uz)h(y). (3.41)

n—oo T X
Note that

a-ess sup [ Fo(2(0.0)) 5(d8) = [ Faor(b2.6) B(a0).

A1

Therefore we have, PP-a.s.,

1
lim sup — Z1 1 ina <Ug - a-ess sup/Fg(v(M,@))ﬁ(d@)

n—00 A1 (342)
+ Muy + (ur + u2)h(y) + (ur +uz + 1)e.
For general weights, from Theorem 2.22,
. 1, 1
limsup =27, ,, = lim limsup — Z1 1+nu
n—oo 77 Y=X0 n—oco
7 7 (3.43)

<usy - - €ess sup / Fy(v(A1,0)) B(dO) + (M + 2€)u; + 2€us.
A1
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Hence if u; /us < ¢ then

¢(ur/uz, 1) < a-ess SUP/FQ(V(M,@)) B(d0) + (M + 2€)u fus + 2e.

A1

From continuity of ¢ we have

P(r,1) < a-ess Sup/Fg('y()\l, 0)) 5(df) + (M + 2¢)x + 2e. (3.44)
A1
for all 0 < x < 4. (3.36) and (3.44) prove (3.34). We omit the proof of (3.35). O

3.4 The log-gamma polymer model

3.4.1 Definitions and Conventions

In this section, we study an explicitly solvable log-gamma polymer model and mostly
use results and conventions from previous work. Our model lives in N2.
First, we describe the CDF of our model precisely. Let G5 : RxR — R be a function

1 x
defined by Gy(r,z) = m/ exp[ry — €’]dy for x € R and r > 0. Gsy(r,-) is the

CDF of a log-gamma(r) random variable (see (A.13)). We write G.(x) for Gy(r,z).

H(r,u) = G- '(u) = (0 < u < 1) is the inverse of Gy(r,-) and increasing in r by (A.19)

r

and (A.22). If —w is a log-gamma(r) random variable, the CDF of w is given by

1 x
F.(x) = Fy(r,z) = ) /oo exp[—ry — e Y] dy (3.45)
and F7'(u) = —H(r,1 —u). F '(u) is decreasing in r. Note that Fy(r) = —EX =

T

—Wy(r), where X is a log-gamma(r) random variable.

Now we explain how this model can be handled in the framework we developed.
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Proof of Theorem 3.7. We provide functions in Assumption 3.3 for this model. ~ in
(b) is given by v(\,0) = A + 0. We showed that F, is increasing function in the first
variable (we restrict the domain of Fy to R-g). Therefore F, satisfies (d). The weights
in (1.5) are precisely as explained in (c¢). One only need to show that F» satisfies
Assumption 2.1. One can easily construct F' in (2.1). See Remark 3.14. Therefore we

can apply Theorem 3.6. For the boundary values of ¢, we have

5(1,0) = f-ess sup / “Wo(A + 01) a(dA) = Abo) (3.46)
01
and
$(0,1) = a-ess sup/—llfo()\l +0) 5(df) = B(—ayp), (3.47)
A1
where A and B are functions in (3.8) O

To prove the variational formula (3.7) and to obtain some explicit formulas, we
utilize stationary processes with boundary conditions and couple these processes with
our original process without boundary conditions. The precise setting is as follows. To
couple these stationary processes with the original model, we need to extend sites. Let
So = RN x RN, O = RV and Q) = R%. These spaces are equipped with the product

o-algebras. We extend weight parameters p to sites in Z2 \ N?. For —ag < z < by,
pio=X+2z, po;=0;—=z

for boundary points (¢, j € N). We set pgo = 0. We write p, for these weight parameters.

Original parameters on N? is denoted by p

Definition 3.13 (Inhomogeneous log-gamma polymer). Assume —ay < z < by. All

polymer models are defined on L. = N? or Z2. For given parameters p € R", PP is
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given by (2.2) (we use L instead of Z2.) with Fy in (3.45). Q satisfies conditions in

Theorem 35.7.

(1) Let (A,©) be fized. The (A,©)-polymer is the up-right directed polymer model

started at (1,1) € N?: L = N? and the distribution of w is P”.

(2) The (A, ©, z)-stationary polymer is a polymer started at the origin: L = Z3 and
the distribution of w is PP=. Note that the bulk weights are the same as in part (1)

but we give z-dependent weights for boundaries.

(3) The Q-polymer is a polymer started at (1,1) € N*: L = N2. The distribution for
parameters (A, ©) is Q. The conditional law of the weights w given the parameters

(A, ©) is PP,

(4) (Q, z)-stationary polymer is a polymer model started at the origin: L = Z2. The
distribution for parameters (A, ©) is Q. The conditional law of the weights w given

the parameters (A, ©) is PP=.

Remark 3.14. As in (2.15) we use couplings to realize various weights simultaneously.
U = {Ux}xezz are i.t.d. Uniform-(0,1) random variables. (A, ©) is independent of U.

wyx = F; 1(Uy) for x € L. By monotonicity of F,~" in r we have
Fp o, (Ux) S we < Figy (Ux)

(ao+2)A(bo—2)

forx € Z2\ {(0,0)}. Let F* be the CDF of

max{|F, L, (Uo)l; [Fgyszn(bo—s) o)l 1}

We write F' for F°. F* has an exponential tail. In particular

k& / (1 — F*(t)?dt < 0.
0
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n variables are given by nx = (F*)~Y(Uy) for x € Z%.

Remark 3.15 (Notations). E* is used to denote the expectation for a general probability
measure . (2, F,P) is a generic probability space that is not part of the polymer model
(see Section 2.4.1).

The distribution of w is denoted by PP in (1) and P in (3), respectively. For z-
stationary models, the distribution is denoted by P?* in (2) and P* in (4), respectively.
Note that marginals of P?* and P* on Q are P? and P, respectively.

Under P the expectation of X is EX and variance Var(X). Overline means centering:
X = X —EX. Q¥ is the quenched polymer measure. The annealed measure is P(-) =
EQ“(-) with expectation E. Under P? or P?* we use similar conventions. For example,

the expectation of X is EPX or EP*X.

3.4.2 Stationary processes with boundary conditions

In this section we consider the inhomogeneous log-gamma polymer with boundary con-
ditions, processes in a stationary ([21], not to be confused with T-stationarity in this
paper) situation as explained below. Working with these models is crucial for explicit
computations. Note that stationary polymers are defined by altering the distribution of
the weights on the boundaries of Z2 , maintaining the same distribution on the bulk.

A remarkable feature of the stationary processes is that the horizontal and vertical
increments of the free energy (or the ratio of partition functions) are stationary. Recall

the convention in (2.17). Variables indexed by a single point do not have the parentheses,
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for example, Zm,n = Z(mm) = Z(O,O),(m,n)- Define

Iyn =log Zp —log Zy_1, form>1andn >0

(3.48)
Jmm =108 Zpyy —log Z,, n—1 for m >0 and n > 1.
The partition function satisfies
Zyn = € (Zim-10 + Zmp-1) for (m,n) € N? (3.49)
and one can verify that for (m,n) € N?
-I 4
- —wmn e m,n
e Im,n = e ’ eflmynf1 + e*Jmfl’n
(3.50)

e*Jm—l,n
e_Jm,n — e_wm,n

eflm,nfl _|_ emefl,n ’
The following Proposition is a key to explicit computations and explains why we call

stationary polymers stationary.

Proposition 3.16. Consider the (A, ©, z)-stationary polymer and the (Q, z)-stationary

polymer in Definition 3.13 for —ag < z < by. Let k,l € Z.
(a) I;; has the same distribution as w; for any i € N.
(b) Ji,; has the same distribution as wy; for any j € N.

(c) For the (A, ©, z)-stationary polymer we have that for any fized | € 7., the random
variables {I;; : i € N} are independent, and for any fized k € Z,, the variables

{Jr; : j € N} are independent.

(d) For the (Q, z)-stationary polymer, part (c) holds if Q is given by a product measure

on Sy.
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Proof. For an i.i.d. environment in the bulk (A\; = X, 6; = 0 are constants) this is proved
in Theorem 3.3 [33] with slightly different formulations. Reversibility or Burke property
is given in Lemma 3.2 [33] where a special property of the Gamma distribution is used
for the proof, and then by induction argument (a), (b), and (c) are proved. For the
(A, ©, z)-stationary polymer, we have the same proof so we omit it. See [33] for details.

For the (Q, z)-stationary polymer, the conditional law of I(7,1) conditioned on (A, ©)
is Fy,+.(-) by the result for the (A, ©, z)-stationary polymer. In particular, the condi-
tional distributions do not depend on ©. Therefore the distribution of I;; does not
depend on [. This observation also indicates that {/;; : i € N} are independent if Q is

a product measure. Same proof holds for Jj ;. O

Recall definitions of A and B in (3.8). We can compute the limiting free energy of

z-stationary polymers. For —ag < z < by, let ¢, denote the function

¢:(w,y) = vA(z) + yB(z). (3.51)
Theorem 3.17. We have
log Z\ _
lim W = ¢.(x,y) forallz,y>0inR (3.52)
n—oo

for the following cases.

(a) For the (A, O, z)-stationary polymer (3.52) holds P?*-a.s. if empirical measures

1 n 1 n
— Z dy, and — Z dg; converge weakly to o and 3, respectively.
[ Ct

(b) For the (Q, z)-stationary polymer (3.52) holds P*-a.s.

Proof. We prove this theorem for x, y > 0. The cases * = 0 and y = 0 can be handled
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in the same way. From (3.48), we have

log Z% LWJ Lny

LnrJ lny] _
: ZLH thnm
Averaging with respect to P?*, from Proposition 3.16 we have
[nz] LnyJ

71 an n
08 Z|na,| yl _ Z\Ijo (z+\) Z\IIO —2+0; ) (3.53)

n

(a) Since ¥y is continuous and

\I/()(Z + (lo) S \110(2 + )\z) S \I/()(Z + Cbl)

(3.54)
\Ifo(—Z + bo) < \1’0(—2 + 93) < \Il()(—Z + bl)
we have for any z, y
| el
— =) Wo(z+ i) = zA(2)
n
i=1
| b (3.55)
- Z Uo(—2+0;) = yB(z)
j=1

from the weak convergence. Corollary 2.26 gives the convergence in (3.52) for P**-a.s.
w.

(b) Note that for fixed z and y, (3.55) holds for Q-a.e. (A,©) by (3.28) and (3.29).
Therefore (3.54) and Proposition 2.30 give simultaneous convergence in (3.55) for all

and y, Q-a.s. Finally, Corollary 2.27 implies the convergence in (3.52) for P*-a.s. w. O

Theorem 3.18.

Q_sz(lv 1) = Sup {ng(l —t, O) + &(ta 1)} V' sup {Q_Sz(oa 1- t) + 92_5(1’ t)} (356)

0<t<1 0<t<1
This theorem is stated and proved for some inhomogeneous corner growth models
in Proposition 4.4 [17] and for i.i.d. log-gamma polymers in Lemma 4.1 [21]. In the

following proof we adapt their argument.
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Proof. Note the inequality

P(z,y) < ¢.(z,y) (3.57)

for any x, y > 0. This follows from the inequality

log Z(o,o),(1,1) + log Z(l,l),(m,n) < log Z(o,o),(m,n)

and from P being the projection of P* onto §2). Since ¢, is linear,

952(17 1) = Q;Z(l —t, O) + &Z(tv 1) > 952(1 —t, 0) + (E(u 1)
0=(1,1) = 6.(1 = 1,0) + ¢.(1, 1) > 6.(0,1 — 1) + ¢(1,1)
for any 0 <t < 1. Taking the supremum of the right-hand sides over ¢ gives (3.56) with
> in place of =.
We can decompose the partition function Z,,, according to the exit point of the
path from the boundary:
n 4
Z:r-;,n = Z exXp szo k ,1),(m,n) Z(exp<z wO,j)) ’ Z(Dl,f),(m,n) (358>
k=1 =1 j=1

where ZEU is the partition function including the weight of the starting point:
gy = € Zuy. (3.59)

Proof for the < half of (3.56) is similar to that of Corollary 2.10. Take m = n to
compute ¢.(1,1). Let L € N, u; = |in/L] for 0 < i < L and consider n > L large
enough to ensure that u; < u;y 1. For any 1 < k < n there exists some 0 < ¢ < L such

that u; < k < w;41. A summand in (3.58) satisfies

log Z}; + log Z(D,€71)7(n7n) <log Z; , +log Z(M 0).(us42.0)

(3.60)
‘W| w
108 200, 1) fuier 1) 1108 Z(11),(n,m)-
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It follows that

w w w
IOg Zn,n = 10g<4n) + OrgixL{log Zui,(] + log Z(1+ui,1),(n,n)}\/

|| |l
Or£11§l<XL{10g Z(ui,o),(uiﬂ,o) +log Z(uivl)v(ui-‘rl?l)}\/

- (3.61)
max {log 2w, +log Zﬁ,uui),(n,n)}\/

0<i<L

+ log Z!

|w]
max {lOgZ (1,ui),(1,uz‘+1)}'

0<i<L (0,4),(0,ui+1)
Since we already established the existence of limits we only need to identify the limits.
All limit formulas are completely determined by the expectations under Q. Hence we

may assume Q = Qg and so our model is stationary relative to shift maps. We have the

following equalities in distribution under P.

Za+ui71)v(n7n) - Zﬁvl)r(nfuirn)

Zzu171+ui)v(n7n) - Zﬁvl)v(nvn_ui) ’

which imply

I o
- log Z{ 4, 1),y — A1 —i/L, 1) (3.6

%log ZE 1y nmy — G(1,1— /L)
in probability as n — oo. Hence these limits are a.s. if n tends to co along suitable
subsequences.

Divide through by n in (3.61), let n — oo along suitable subsequences and consider

the limit of each term. By Theorem 3.17, (3.62), and ergodic theorem for error terms

¢.(1,1) < max max{¢.(i/L,0) + ¢(1 —i/L, 1),

$.(0,i/L) + ¢(1,1 —i/L)} + w
< sup max{g:(t,0) + §(1 — 1, 1),
Cle) + D(z)

$.(0,1) + (1,1 — )} + 7
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where C(z) = E. (lw1,0| 4 |w1,1]) and D(z) = E. (Jwo1| + |wi1]). Finally, let L — co. O

To complete the proof of Theorem 3.7, we state an analytic theorem. Suppose A(z),
B(z) are real valued functions defined on (—ag, by). We assume that A and B are C?
functions and A”, B” > 0 on (—ag, by). We also assume that A’ < 0 and B’ > 0 on

(—ag, by). For —ag < z < by, g. is a linear function on R? given by
9:(x,y) = vA(z) + yB(2). (3.63)
Let g : Ri — R be a continuous, concave, and positive homogeneous function.

Theorem 3.19. Suppose the identity

9:(1,1) = sup {max{g(t,1) + g:(1 = £,0), g(1,¢) + g.(0,1 — )} } (3.64)

0<t<1

holds for all —ay < z < by and assume

9(1,0) = i A() £ A), 9(0.1) = limm B(z) £ B(-ao).  (3.65)
Then
o(e.g) = inf | {wA(z) +yB(=)} (3.66)

for all z, y > 0.

Proof. This theorem is implied in the proof of Proposition 4.4 [17]. From (3.64) and
linearity of g, we have 0 = sup{g(z,y) — g:(z,y) : |(z,y)| = 1, (z,y) € R%}. Since g
and g, are continuous this supremum is achieved at some point (xg, o). By (3.65) and

strict monotonicity of A and B, (zg,yo) must be in the interior of R2. We claim that

0 =sup{g(t,1) — g.(t,1) : 0 <t < o0}
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for all —ag < z < by. For t > 0 let ¢; = |(£,1)|oo. Then from positive homogeneity of g,
we get g(t,1) — g.(t,1) = i (g(t/ce, 1/cr) — g-(t/cr, 1)) < 0. If yo = 1 take ¢ = ¢ and
we are done. Suppose o = 1 and 0 < yg < 1. In this case take t = z(/yo and we are

done. It follows immediately that

B(z) = sup {—tA(z)+g(t,1)}.

0<t<o0o
Define h: R — R U {oo} by h(t) = —g(t,1) for t > 0 and h(t) = oo for t < 0. Then
h is lower semi-continuous and proper convex on R. Let k& be the function defined on

(—A(—ap), —A(by)) and given by k(z) = Bo A~'(—z). Hence

k(x) = sup {tx — h(z)} (3.67)

0<t<oo

for any x € (—A(—ap), —A(by)). Let h* denote the convex conjugate of h, that is,

h*(z) = sup{tz — h(t)} = sup{tx — h(t)} (3.68)

teR >0
for z € R. Comparison of (3.67) and (3.68) shows that h* agrees with k& on (—A(—ag), —A(by)).
Now we compute h* on the complement of (—A(—ap), —A(bp)). From the second equal-
ity of (3.68), h* is nondecreasing and is bounded below by —h(0) = ¢(0,1) = B(—ay).

Since k is strictly increasing function,

hW(=A(—ap)) < lim A*(z)= lim k(z

(FA(=a) ™ wl—A(-ao) (@) = A(=ao) (@) (3.60)
= i Bo A Y—z)= lim B(z) = B(—ayp).

mi—ilr(riao) ° ( 33) Zﬁl{r}lo <Z) ( ao)

Hence h*(z) = B(—ay) for x < —A(—ap). On the other hand, if x > —A(by) = —g(1,0)

then h*(x) = oo since

lim tx — h(t) = tlim t(x+g(1,1/t)) = 0.
—00

t—o00
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For x = —A(by), note that h* is lower semi-continuous and nondecreasing. Therefore

W(=Ab) =l h(z) = lim k) = B(b)

and h* is continuous on (—oo, —A(by)].
Since h is a lower semi-continuous and proper convex function, by the Fenchel-Moreau

theorem, h equals the convex conjugate of h*, hence,

h(t) = sup{tz — h*(x)} (3.70)

z€eR
for all t € R. We claim that, for ¢ > 0, the supremum could be taken over the in-
terval (—A(—ag), —A(by)). For t > 0, the function = — tx — h*(x) is nondecreasing

on (—oo, —A(—ap)] and is —oo for & > —A(by). Hence, from the continuity of h* on

(—o0, —A(bo)];
h(t) = sup {tx — h*(z)}
me[fA(fao),fA(bo)]
= sup {tx — h*(z)}
z€(—A(—ao),—A(bo)) (3.71)
— s {—tA() - B()
ZG(*A(*CLQ),*A(Z)O))
=— inf tA(z) + B(z
ZE(*A(*GO):*A(bo)){ (=) ()}
which implies (3.66) from the positive homogeneity of g. ]

Corollary 3.20. Recall the definition of the sectors S, Si, and Sy in (3.9) and below.

We have the following.

(a) g(z,y) = vA(—ap) +yB(—ay) for (z,y) € Si.

(b) g(z,y) = xA(bo) + yB(bo) for (z,y) € Ss.
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() glews + (1= )z cyr + (1)) > eglar, ) + (1 — €)glwz, 1) for 0 < ¢ < 1 and

(x1,11), (T2,y2) € S that are nonparallel.
(d) g is continuously differentiable.
(e) St 7é 0 < A/(—CL()) < 00, S 7£ )< B/<bo) < 00.

Proof. This corollary is proved in Corollary 2.3 [17] with specific forms of A and B. Our
proof is exactly same therein but for completeness we give details. Since A" and B’ are
increasing, for any fixed x, y > 0, the derivative z — zA’'(z) + yB’(2) is also increasing

and continuous. If (z,y) € S,
rA'(2) +yB'(2) > 2A (—ay) + yB'(—ag) >0
so that the infimum of ¢g(z,y) is achieved at z = —aqg. If (z,y) € Ss,
xA'(z) +yB'(z) < 2A(bo) + yB'(bo) < 0

and hence (b) follows.

If (z,y) € S, the derivative has a unique zero. Suppose
9(x,y) = xA(z) + yB(2) (3.72)
where —ay < z < by is the unique solution of the equation

- _— (3.73)

Since —B’/A’ is increasing and continuous, it has a strictly increasing and continuous

inverse ¢ defined on {r > 0: (r,1) € S}. Also —B’/A’ is continuously differentiable with
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derivative (A”B’ — A’B")/(A’)?> > 0. Hence by the inverse function theorem, ¢ is C' as

well. Hence, for (z,y) € S,

9(x,y) = zA(((x/y)) + yB(((x/y)) (3.74)

and using (3.73), (3.74), we compute the gradient of g on S as

Vy(z,y) = (A(C(z/y)), B(((x/y))). (3.75)

This gradient tends to (A(—ag), B(—ap)) as (z,y) approaches S; and to (A(by), B(b))
as (x,y) approaches Sy. Hence we have (d).
If (x1,11), (22,y2) € S are nonparallel then ((x1/y1) # ((x2/y2), which gives the

strict inequality

g1, y1) + g(xa, y2) = 21 A(C(71/y1)) + 1 B(C(21/y1))
+ 22 A(C(22/y2)) + Y2 B(C(72/12)) (3.76)
< (21 + 22)A(2) + (Y1 + y2) B(2)

for any —ag < z < by. Setting z = (((x1 + x2)/(y1 + v2)) gives g(x1 + x2, 41 + y2) >
g(x1, 1) + g(xa,y2), and (c) is proved from this and positive homogeneity of g. (e) is

immediate from computations above. O

Proof of Theorem 3.7 completed. Note that A and B are infinitely differentiable and the
derivatives are given by
dk
LAG) = —/ Uy(z + A) ald))
(©:00) (3.77)

dk
— B(z) = (—=1)F! (=2 +6) B(do
B = 0 [ s s
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for any k > 1. In particular, A is a strictly decreasing convex function and B is a strictly
increasing convex function. The variational formula for the log-gamma polymer is im-
mediate from Theorem 3.18 and Theorem 3.19. Note that condition (3.65) is satisfied

by (3.46) and (3.47). O

Proof of Corollary 3.8. We obtain the result except for part (f) by Corollary 3.20. Since
S1 # 0 if and only if —B'(—ag)/A’ (—ag) > 0, we need to estimate B'(—ag) and A'(—ayp).
From (3.77) and (A.2), we have B’(—ag) > 0. Therefore S; # () if and only if A'(—ag) <
00, and this is equivalent to [ m a(d)\) < oo from (A.6). The condition for Sy can

be derived similarly. O]
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Chapter 4

Scaling exponents for the

log-gamma polymer

4.1 Introduction

This chapter continues to study the log-gamma polymer with emphasis on the fluctuation
exponents with slightly different weight assumptions. Recall that our parameters satisfy
(1.5) and

(on) S >\7, S aq and bo S 6’j S bl (41)

for e > 1 and j > 1. We refer the reader to Section 3.4 for the definitions of various
polymer models (Definition 3.13) and notation conventions (Remark 3.15).

In previous chapters, we imposed the AMS conditions to the parameters (A, ©) and
expressed the limiting free energy in terms of marginal distributions of \; and #; under
the stationary mean Qy. See Theorem 3.7 and Corollary 3.8. In this chapter, we leave
the restrictive AMS settings but give weaker conditions to obtain the same results for
the law of large numbers. Detailed analysis of stationary polymer models gives results
for the scaling exponents also.

We assume the following. Suppose a and  are supported on |ag,a;] and [bg, by],
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respectively. Suppose « and [ satisfy
ap = infsupp o and by = inf supp f. (4.2)
Consider the empirical measures for m, n € N
1 m 1 n
Ay = — Ox, = — . 4.
m Z Ais 5 n Z (59J ( 3)
=1 7j=1
where ¢, is a Dirac measure at the point z € R.

Assumption 4.1. Parameters A, © satisfy the following conditions for measures o and

s.
(a) (Deterministic case) oy, and [3, converge weakly to o and B, respectively.

(b) (Random case) The distribution of (A,©) is Q. For a.e. realization of (A, O),

condition (a) is achieved.

The fluctuation of log Z is governed by the extremal statistics of parameters \; and
¢;. In particular, the case of linear sector Sy (see (3.9) and the paragraph there) needs a

careful analysis of these statistics. In this chapter, we assume that S; is nonempty. We

introduce the following notations. For m,n > 1, rearrange the parameters Ai,..., A,
and #; ...,60, into a nondecreasing sequences
Tm:1 S Tm:2 S e S T:m (44)
and
Yn: S Yn:2 S e S Yn:n - (45>
Set
Ty = Tppel = lrgrilgr}n Ai and Yy, = Ypa1 = lglgn g;. (4.6)
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The behavior of log Z in S; is diffusive. To get concrete results, we further impose
assumptions. We only state assumptions for the case S; # (). One can easily obtain
a similar result in the case Sy # 0. Note that we have fma(d)\) < oo from

Corollary 3.8.

Assumption 4.2. We add the following conditions to Assumption 4.1. There are pos-
itive constants py, q1, di with 2 < p; < 3 and dy < (p1 — 2)q1/3 for which the following

hold.

(a) (Convergence condition)

. 1 1

(b) (Separability condition) There are constants Cy, > 0 and Dy > 0 such that

q1
mal

(xm:l - aO) S

form >1 and

Tm:1 — Qo D,

T2 — Qo md

for all sufficiently large m.

(c) In the case of Assumption 4.1 (b), conditions (a) and (b) with random constants

Cy., D1 are satisfied for a.e. realization of (A, ©).

Note that condition (a) enforces \; > ag for all sufficiently large i. Hence we assume
A > ag for all 7. If \;s are chosen randomly according to o and « satisfies appropriate
moment conditions, condition (a) is achieved a.s. Condition (b) is also satisfied for
a wide class of distributions. See conditions above Theorem 1 of [23] and Section 6

therein.
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4.2 Results

In this section, we present our results. In Theorem 3.7, the limiting free energy is given
by

¢(r,y) = inf  {zA(2) +yB(2)},

—ao <Z<b()
where A and B are defined by (3.8). Recall that S denotes the sector of the first quadrant
on which

B/ (—a0) /A (~a5) < x/y < —B'(bo) /A'(bo)

and S7, Sy denote the sectors defined by the inequalities z/y < —B'(—ag)/A’(—ag) and
x/y > —B'(by)/A'(by), respectively. The boundary of S consists of two lines. Write

S1 NS and S, N S by lines

_ . Bl=a) _ . _  B(k)
r/y=s = A Cay) and x/y= sy = —

(4.7)

respectively. For (z,y) € S, there exists a unique minimizer ¢ € (—ag,by) given by
(3.10). ( satisfies

cA'(Q) +yB'(() = 0.

The statements of our results involve discrete version of quantities A, B and ( computed
with «a,, and 3, in place of a and 3, respectively.
We focus on (A, ©)-polymer and (A, O, z)-polymer. In the following we understand

(A, ©) are given and fixed. For a probability measure u on [a,b] define
Az) = —/\IJO(A +2)pu(dA) for z > —a (4.8)

and B,(z) = A,(—z) for z < a. A,(z) and B,(z) are monotone functions because

polygamma functions are monotone (see (A.1)). Note that A(z) = A,(2) and B(z) =
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Bs(z). We write A,,(z) = Aa,,(2) and B, (z) = Bg, () for a,,, and §,. Therefore

An(2) = /\Ifo()\—i—z) A (dN) = ——Z\I’O i+ 2) (4.9)

and
Bn(z):—/\lfo( — 2) Bn(df) _——quoe — 2). (4.10)

We interpret Ag(z) = 0. Note that
Al (2)<0,A”(2) >0 and B (z)>0,B/!(z)>0. (4.11)

For fixed m, n, A,, and B,, are defined for —z,, < z < y,, where z,, and ¥, are given

by (4.6). Note that (—ag,by) C (—Zm, yn) and this inclusion could be proper. Define
Gmn(z) = mAn(2) + nBy(z) (4.12)

and

Myn(2) = mA] (z) + nB,(z) > 0. (4.13)

From Proposition 3.16 we have
Gmn(z) =E*log Z,, 0 (4.14)

and
)

d
Mpn(z) = FEM log Z, (4.15)

when we consider E”* log Z,,,, as a function of z. Recall our notation conventions in
Remark 3.15. Here p refers to the bulk parameters and z to boundary parameters.
For m, n > 1,

lim mA,,(s) +nB,(s) = o (4.16)

S—Yn
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and

lim mA! (s) +nB.(s) = —o0. (4.17)

S—>—Tym,

Therefore there exists a unique (ppn € (—Zm, yn) With

since Gy,,n(2) is a smooth convex function of z. Hence (,,, is the unique minimizer of
Gmn(z). Note that since it is possible to get x,, > ap, we may have (. € (=2, —ao)-

Theorem 4.4 below will give conditions for the range of (,, . Define

Gmn = Inf  {mA,(2) + nB,(2)} = Gmn(Gnn) (4.19)

—Tm<z2<Yn

and
Omn = (Mm,n(Cmm))l/g . (420)

We will show that Eflog Z(1 1) (mn) is close to ¢, , and fluctuation of log Z(; 1), (m.n)
around ¢,, , is controlled by o,,,. It turns out that o,,, grows in the order of N 1/3 i
S and N'/2 in S;, where N = m 4 n. We obtain these results first for some stationary
polymer models and then, by coupling these models with the original model, for the

(A, ©)-polymer. Note that ¢y,,, = E~Smnlog Z,, .

Theorem 4.3. For given m,n > 1, consider the (A, O, (nn)-stationary polymer in

Definition 3.153. Then there exist positive constants Cy, C' and Ny such that
Var”mn (log Zm.n) < C(am,n)2 (4.21)

for all N > 1 and

VarrSmn (log Z.n) > Co (am,n)2 (4.22)

for all N > Ny.
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The constants Cy, C' and Ny do not depend on m, n. They only depend on ag + by
and a; + b;. We have explicit formulas for these constants. See (4.117) for C'. We can
take Cy = e~ ¢* and Ny = C2. See Lemma 4.28. This theorem reveals scaling exponents
in the KPZ universality class. A key point in KPZ class is that the fluctuation exponents
should be connected to curvature. This is explicit in the bounds (4.21) and (4.22) with
(4.15) and in particular the quadratic provides the 2/3 exponent.

This theorem does not use Assumptions 4.1 and 4.2. If we use Assumptions 4.1 and
4.2, then we can quantify o,,, and find a connection to Theorem 3.7 and Corollary 3.8.
In the remainder of this section, all constants implicitly depend on ag, by and aq, b;. Also
under Assumptions 4.1 and 4.2, these constants depend on the convergence rate of «,
and 3, to a and 3, respectively. If we give some conditions for the rate of convergence
in terms of Wasserstein distance W in (4.60), we can obtain explicit formulas. However,
we do not pursue such details.

For the (A, ©, z)-stationary polymer, characteristic direction is v(z) = (v1(2), v2(2)) =
(B'(2),—A(2))/(B'(z) — A'(2)). For (A, ©)-polymer without boundary, we say ((z/y)
is the characteristic value of (z,y) if (z,y) € S. Let N = m + n denote the scaling
parameter we take to co. Fix (z,y) € R%, with 2 + y = 1. We take (m,n) along the
direction (x,y). More precisely we assume that the coordinates (m,n) of the endpoint
of the polymer satisfy

|m — Nz|V|n— Ny| < K (4.23)

for some fixed constant K > 0. In light of Theorem 3.7 and Corollary 3.8, we expect

that (., is close to the characteristic value ((z/y) for (z,y) € S and —ay for (z,y) € Si.

Theorem 4.4. Suppose Assumptions 4.1 and 4.2 hold. Let (x,y) € R2, withz +y =1
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and € > 0 be given. Assume (m,n) satisfy (4.23). Let s = x/y. There exist positive
constants Ny(s, K, €), Co(s), Ci(s) and Cy(s) such that whenever N > Ny the following

hold.

(1) For (xz,y) € S, that is, s; < s < S,

CINY3 < gy < CoNY3 (4.24)

and
G — C(8)] < e (4.25)

(2) For (xz,y) € Sy and s < sq,

O1NY2 < gy < CoNY2 (4.26)

and

C

(G + Ton| < —= (4.27)

NG

We also have
lm |G+ a0l =0,  lm /m|Gnn + ao] = 0. (4.28)
m—00 m—00

(8) We have

lim Ormun
N—o0 N

= o(z,y). (4.29)
The constants in the above Theorem continuously depend on s. Part (3) shows that
the quenched shape converges to the annealed shape as N grows.

Next, we study the model without boundaries. First, we state a general fluctuation

result. Define
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and

- ACm,n(am,n)?) o ACm,n<0m,n)3

K. = = 4.31
A )] B (G (4.31)

Theorem 4.5. Consider the (A, ©)-polymer. Then there exist constants C, Cy and Ny

that depend on ag+bg and ay+ by such that whenever m—+n > Ny, we have the following.

P° {‘lOg Z(l,l),(m,n) - ¢m,n| > 2fo’m,n}

c (0 <t < (AlnnOmn)?/4)

$29

IN

C (% A exp [_Km,n\/ﬂ) , (AlmnOmn)?/4) <t < 4(a; + b + l)zofnm (4.32)

| C exp[—1], (t > 4(ay + by + 1)%07, )

4 1
< — .
_t2<1v(ﬁhmﬁ>

If we use Assumptions 4.1 and 4.2, by estimating [, ,,, then we obtain the following

results. Here we have a result for the limiting point-to-point free energy of the polymer

without boundary.

Theorem 4.6. Consider the (A, ©)-polymer. Suppose Assumptions 4.1 and 4.2 hold

and let z, y > 0. Then we have the same result as in Theorem 3.7.

hm Lil log Zﬁvl)r(LLxLLLyJ) — gﬁ(l’, y) (433)

L—oo

For the fluctuation results, we have the following.

Theorem 4.7. Consider the (A, ©)-polymer. Let (x,y) € S withx+y = 1. Let s = z/y.
If Assumption 4.1(a) holds then there exist positive constants Ly, Co, Cy, and Cy that

depend on s such that, fort >0 and L > Ly,

Co
P* (|10g Z1,1).(\La). | Ly)) — @lLal,izy)| = LLY?] < 20 (4.34)
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and

Ep|10gZ1 1),(|Lz],| Ly]) QSLLQSJ LLyJ| < 01L2/3 logL (435)

For the lower bound, we have

Co L' < BP|log Z(1 1) (11w}, L)) — PlLaliiLyl| (4.36)

Therefore in the region S, the expected KPZ behavior is proved. (4.34) and (4.35)
are our improvement compared to Theorem 2.4 of [33]. There, they proved similar
probability bounds with C/t3/2. Next theorem shows that the fluctuation in S is of

order LY/2.

Theorem 4.8. Consider the (A, ©)-polymer. Let (x,y) € S; with x +y = 1. Suppose
s =ua/y < s1. If Assumptions 4.1 and 4.2 hold then there exist positive constants Ly,

Co, C1, and Cy that depend on s such that, fort >0 and L > Ly,
P? [|log Zv1)(( el Ly)) — Olzelizyl| 2 tLY?] < Coexp[-C1VH]. (4.37)

For the lower bound, we have

CyL'? < EP|log Z11) (\La), Ly)) — DlLal Ly (4.38)

The behavior of the free energy on the boundary of S is subtle to analysis. We do
not have precise scaling exponent. We only prove the following Theorem, which shows

that the fluctuation is at least subdiffusive.

Theorem 4.9. Consider the (A, ©)-polymer. Suppose Assumptions 4.1 and 4.2 hold
and let z/y = s1. Then we have

log Z(11),(1L2),|Ly)) — P|La),|Ly)

VL

— 0 (4.39)

wn probability under P?.
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Organization of Chapter 4. Before we prove the main results in Section 4.3, we collect
basic properties of the model. From the Burke-type property, we obtain a formula for
the variance of stationary polymers. The upper and lower bounds of Theorem 4.3 are
proved in Sections 4.4 and 4.6. Theorem 4.4 is proved in Section 4.7. The results for
the polymer without boundary conditions are proved in Section 4.8. Theorem 4.5 is the
most important result. It is obtained by coupling the original polymer model with an
appropriate stationary polymer. Then the remaining theorems are easily proved from

these results.

4.3 Basic properties and technical results

We follow [33] for notations and quote some theorems therein. Sometimes it is convenient

to use multiplicative weights: Y, ; = e?@I) (i, 4) € Z2. Then the partition function is

given by
m—+n
Zmn=>_ [] Yo (4.40)
X.Ellm,n k=1
where II,,,, denotes the set of admissible lattice paths x, = (X;)o<i<min that satisfy

xg = (0,0), x; —x;_1 € {(1,0), (0,1}, Xpp4n = (m,n). Symbols U and V will denote

weights on the horizontal and vertical boundaries:
Uo=Yo and Vy; =Yy, fori,j €N (4.41)

The partition function that includes the weight at the starting point is written as
k—itl—j
Zipwn = > 11 Yoo =YiiZosen (4.42)

X.E€lGi 5, k1) =0

where Il jy ) is the set of up-right paths x. = (X;)o<r<k—iti—; from xo = (i,7) to

Xk—itl—j = (kal)
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Recall definitions of I,,,,, and J,,,, in (3.48). Define for (i, j) € N

Zi i Zi s

Uj= - =¢ij, Vij= " =e¢j

Zi1 ’ Zi i1 ’
» (4.43)

d X L + L
aln i—1i—1 — .
bt Uij-1 Vici
The partition function satisfies

Zm = Yma(Zm-im + Zmn-1) and (m,n) € N2, (4.44)

Lemma 4.10 (Lemma 3.1 of [33]). Consider two sets of positive initial values {U; o, V5 ;, Yi ; :

i,j S N} and {UZ‘70, %,jayi,j . ’L,j S N} and Satisfy Uz”() Z Uz”(), ‘/()J' S f/(),j; and }/i,j = ?i,j'

Then U ; > Ui ;, Vij < Vi for all (i, j) € N2,

Proposition 4.11 (Theorem 3.3 of [33] and Proposition 3.16). Consider the (A, ©, z)-
stationary polymer. Let (m,n) € N2, The variables {U; ,, Vi js Xp—10-1 = 1 < i,k <

m,1 < j,1 < n} are mutually independent with marginal distributions

Ui ~ Gamma(\; + 2), V,, & ~ Gamma(0; — 2),
(4.45)
and X, ', ~ Gamma(A, + 0;).
Let 0 : N — N be a finite permutation that o (i) # i for only finitely many i. Consider

a sequence A = (A, Ao, ...) € RY and empirical measures associated with this sequence

1 n
oy = — E dx,- o acts naturally on parameters A and a,, that is, (cA); = Ay(;) and
n
i=1

1 n
(ca), = - Z 5,\6“.).
i=1

R, : Z+_—> Z is a reflection defined by R,(i) = n+1—ifor 1 <1i < n and
R,(i) =i for i = 0 and ¢ > n. The restriction of R, onto N is also denoted by R,.

Define R,, ,, : Zi — Zi by

B (i, 5) = (B (7), Bn(5)) (4.46)
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for (i,5) € Z%. Ry, acts naturally on w € R by
(Rm,nw)i,j = WRp n(i,5)

For a fixed rectangle B, , = {0,...,m} x{0,...,n}, we define the reversed environ-
ment by

& = Ry nw. (4.47)

We have the following lemma whose proof is elementary.

Lemma 4.12. [fw defines a (A, ©, z)-stationary polymer, then @ defines a (R, A\, R,0, z)-

w d w .
stationary polymer and Z- (1 1) (o) = Z(D1 1), (mon) Therefore Z(1 ), (mam) = Z(Dl’,l)Q,(m,n) if wy
and wo are constructed by (A, ©) and (R, A, R,0), respectively.

Let
& =max{k>0:x; = (7,0) for 0 <i <k} (4.48)
and
& =max{k>0:2; =(0,j) for 0 <j <k} (4.49)

denote the exit points of a path from the z- and y-axes. Recall that the annealed
measure is P7*(-) = E#*Q“(-) with expectation E#*(-) (see Remark 3.15). The function
L(r,z) in the following Theorem is introduced in (A.18). We refer to Lemma A.2 for

the properties of L.

Theorem 4.13 (Theorem 3.7 of [33]). Consider (A,©, z)-stationary polymer. For

m,n € Z, we have these identities:

Var”*[log Zy, ] = Z\Ife—z Z LN+ 2) + 2E87,
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and

n m

Var”*[log Z,,.n]| = — (0; —z)+ Wi (A + 2) +2EP*
s J m,n

j=1 i=1

When & = 0 or §, = 0 the sum is interpreted as 0.

Proof. We follow [33] with appropriate modifications. We prove (4.50). Let us abbreviate

temporarily, according to the compass directions of the rectangle B,, ,,
Sy =log Zy,,, —log Zy n, Ss =10g Zp, 0, Se¢ =10g Zy, n — 10g Zy 0, Sy = log Zy ..

Then
Var??[log Z, n] = Var”?(Sy + Sy) = Var®*(Sy) + Var”*(Sy) + 2 Cov”*(Sw, Sy)
= Var”*(Sy) + Var”*(Sy) + 2Cov”*(Ss + Se¢ — Snr, Sn)
= Var”*(Syy) — Var”*(Syr) + 2 Cov”*(Ss, Sy).
(4.52)
The last equality is from Proposition 4.11. By assumption Var”*(Sy) = > 7, W1 (0;—2),
and Var”*(Sy) = >_i", U1(\; + z) by Proposition 4.11.
It remains to work on Cov”*(Ss, Syr). Now consider a system with two independent

parameters A and 6 with weight distributions (for i, € N, A > —ag, 0 > —by)
—w; o ~ log-gamma(\; + ), —wp; ~ log-gamma(6; + 0)

and

—w; j ~ log-gamma(\; + 6;).

We show that

. 0
Cov?*(Ss, Sy) = _aEAﬂ(SN)‘(A,B):(z,—z)' (4.53)
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The joint p.d.f. of {—w;;}is (z = {x;;})

| N 1 -
g =11 TOw+ N exp[(A; + A)zio — €] - H T(6; + 6) exp|(0; + 0)zo,; — "]

Jj=1

1 e
H m exp[()\z + Qj)xw — € ’ ]

J

1<i<m

1<j<n
- ﬁ (A 1+ ) ﬁ r(9-1+ g P Zm: i)

i=1 ¢ j=1 J i=1
exp(é’Zmoj) G(A, 0, 1)
j=1
. . M@ p(dx)
Therefore if we only focus on A, we can write gy ¢(z)dx = a0 where T'(z) =

>oimy Tio, p(dr) = exp(0Y 7 x0;) - G(A,©,x)dz, and A()) is a normalizing factor.
Hence we can apply Lemma A.1 (3). Since z;; = —w; j, we have ' = —Ss and (4.53)
follows.

Next, we calculate (9/ON)EM (Sy). We also utilize a direct functional dependence on
Ain Z,, , by realizing the weights w; ¢ as functions of uniform random variables. Then if
n= (M,...,Mm) is a vector of Uniform(0,1) random variables, w; o = —Hj,+(7;) where

H is a function introduced in (A.16) . Note that

o) o) o) o)
a—AEW (Sy) = 51@%9(@ T — Sw) = 51@%9 10g Zppn = EM 5, 108 Znn- (4.54)

We justify the last equality soon. First, we compute % log Z,,.n- A quenched measure

can be written as
eyw (x')Mc(dX.)

4.55
T (4.55)

Q°(dx) =

where (i, is the counting measure on II,, ,, and

m-4n I m4n

HW(X-) = Z Wxy, = Z<_H/\i+/\<7h‘)) + Z Wxyo s (456>

i=1 k=&, +1
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Zinin = Zma(N) = Y 0, (4.57)

X.EHm,n

Recall that Zfil is interpreted as 0 when &, = 0. Lemma A.1 and (A.19) give

9 o 7, = BT ——EQ“iL(A-+AH (n:)) (4.58)
a)\ 0g m,n a)\ - - 7 y LI x40 7i) ) - .

Taking expectation, we obtain (4.50). Finally, we justify the interchange of expectation
and differentiation in (4.54). Using (A.22) and strict monotonicity of H(r,n) in the first
coordinate, we can invoke the dominated convergence theorem.

We finish the proof by recording some useful identities. We replace the weights
on the y-axis with functions of uniform random variables. Let ' = (n},...,7,) be a
vector of Uniform(0,1) random variables independent of 1 and the bulk weights w. Let
woj = —Hg,1o(n)). Write EP for the expectation over the uniform variables n, 1/ and

the bulk weights {w; ; : 4,j > 1}. Then we have

B | D0 L+ 2, —wip) | = —B7(BY a;i Moo=
- : (4.59)
B Y w an
EL jzl L(0; — z, —wo,j)_ = - (E® 90 >| (AO)=(2,—2)"
[

In the remainder of this section, we collect facts for the Wasserstein distance Wj.
For the proofs, we refer the reader to [7, 15]. Given a separable metric space (E,d), let
Z(F,d) denote the space of all Borel probability measures o on E. For p > 1, denote by

Z,(E,d), or just Z,(E) the collection of all probability measures p in Z(E,d) such that

/Ed(a:',xo)p p(dr) < oo
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for some, or equivalently all, o € E. The Wasserstein distance W, between two proba-

bility measures pu, v on E is defined by

W, = (inf { [E )€ dy) € € Mg m}) " (4.60)

where M (u,v) is the set of all probability measures on E x E with marginals p and v.

Note that for p < ¢, we have W, < W,.

Theorem 4.14 (Convergence in W),). Let 1 < p < oco. Given p € Zy,(E,d) and a

sequence {pn} i Z,(E,d), the following properties are equivalent:
(1) Wy(pin, t) = 0 as n — oo.

(2) pn — p weakly and for some, or equivalently all xy € E,

lim [ d(z,x0)P p,(dz) = /Ed(x,xo)p p(dx).

n—oo E

The Lipschitz semi-norm for suitable real-valued functions f on FE is defined by

£l Lip = Sup{%

Theorem 4.15 (Kantorovich-Rubinstein). Given a separable metric space (E,d), for

/udu /udu

where the supremum is taken over all Lipschitz functions v : E — R with Lipschitz

cx#yin B}

all pyv € Zy(E,d),

Wl (M? = sup

llullLip<1

semi-norm ||u|| L, < 1.

We apply these Theorems to our model. For a given constant 2 < p; < 3, let
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Let & denotes the distribution of (A — ag) ™' under a.. Then from Assumptions 4.1, 4.2

and Theorem 4.14, we have

lim W (a,, o) = ILm Wi(Bn,B) =0 (4.62)

n—o0

and

lim Wi (6, &) = 0. (4.63)

n—0o0

For k > 1 and a > 0, define a function ¢y, : (0,00) — R by
Ora(r) = Upa + z7 P, (4.64)
Then from (A.6) we have

|¢;€a(x)| :(1/p1)‘x_1_1/p1‘11k+1(a +$_l/m)’ < (1/1?1){x_l_l/mq’kﬂ(x_l/m)’

|
< [(h o Dl g g,
1

In particular, for z > b > 0,

1
|01a()| < l@10(2)] < Fa(b) = - [26%/71 71 4 Bt (4.65)

If p; = 3, we have

a0 < eholw)] < malt) = 2 [B+579]. (1.66)

Recall definition (4.8) for a probability measure p on [a,b] and z > —a. Note that

the k-th derivative of A, is well-defined and given by
AP (z) = — / WA+ z) pu(d). (4.67)
Since polygamma functions are monotonic, A,(f) are also monotonic. Let

AL’“)(—@) = Zlir_rz Al(f)(z). (4.68)
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Lemma 4.16. For k > 1, A,@(z) satisfies the following.

(1) If —a <z < z9 and ¢ = (a + z1)/(a + 23), then

49| < o140 )]
and
max{|AP (2)|: 21 <2 < m} < — CW | AP (25)].
(2) |41 (-

a)| < oo if and only if [ mu(d/\) < 00

(3) Let 1 <p<k+1. Iff(/\;,u(d)\)<oo then

1AW (2)] < (Z+5)!k+l—p {/ (A—la)p M(d,\)+pi1 / o —1a)P—1 wu(d\)| .

(4) Under Assumption j.1(a), for z > —ay,

m

|AP (2) — AP (2)| < | V1 (a0 + 2) Wi (am, @)

and for z < by

BW(2) = B (2)] < [Wep(bo — 2)|Wa(Bas B):

(5) Under Assumption /.2, for z > —ay,

|A;n(z) — A/<Z)’ g pll [2((11 - ao)p1_2 + (al - ao)pl_l] Wl(@m, d)

(6) Under Assumption 4.2, if p1 = 3, then for z > —ay,

A (2) = A"(2)] <

OJII\D

3+ (a1 — ao) ] Wi(um, &).
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Proof. (1) From (A.7) we have
|AD (z1)| = |AP (—a + (22 + a))|
_ /}\Ifk((/\ )+ ez + )| uldN) < /\\yk(cu Ca) ezt )| u(dN) (4.69)
g%/m(u — )+ (22 + ) | () = 7|40 (=)

Monotonicity of polygamma functions (see (A.1)) gives the proof of the second part.
(2) follows from (A.6).

(3) Note that for A > a and z > —a from (A.5)

> ! = k!
|\I’k()\+z>| 22(/\—}-2—}-2')]“'1 _;(A+Z+i)k+l_p(/\+2+i)p

7=

k! - 1
4.70
Slas oo ; D—atiy (4.70)

< k! 1 n 1
Tt [(A=a)p  (p=DA—apt ]
Therefore (4.67) and (4.70) give the proof of part (3).

(4) From Theorem 4.15 we have

|AP (2) — AW (2)| = \/\Ifk(wrz) U (dN) — /\I’k()\-i-z) a(d))|
S‘\I/k_i_l(a/O‘i_Z)‘Wl(Q{m,a)

since

sup{| W, (A + 2)| : A > ao} = |Wryi(ao + 2)|.

Note that a,, is supported on [ag, 00) since \; > ag by assumption (4.1). Proof for B,

is similar.
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(5) From (4.65) and Theorem 4.15 we have
AL (2) — A(z)] = }/ L+ 2) () — /\111(/\+z)oz(d/\)]
| [ 13 (@) = [ o1 a2

S/ﬁ((al — CLU) pl)Wl(d d

since \ > (ay — ap)~P1.

(6) From (4.66) and Theorem 4.15 we have
|AV (z) — A"(2)] = \/ Wy(\ + 2) gy (dN) — /\IJQ(A + 2) a(dN)|
| / 20100 N) G (dA) — / 2100 (V) )]

<ko((ar — ag) PV )W (Gom, &).

4.4 Upper bound for the fluctuation

As in the proof of Theorem 4.13 we replace weights on the z- and y-axes with functions
of uniform random variables: —w; ; = H(r;;,u; ;) with appropriate parameter r; ; and
uniform random variable u; ;. Recall that H is defined by (A.16). See the comments
above (4.59) for more details. In particular, [E? refers to the expectation over uniform

random variables and bulk weights. Hence
Er*X = EPX(2) (4.71)

if a random variable X is suitably realized by X (z). For the annealed measure, we write
EﬁwX (z) for E£% X . In the remainder of this paper, we continue to use this realization

of weights. Recall that z,,, = mini<;<,, A; and y,, = min;<;<, 0;.
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Lemma 4.17 (Lemma 4.1 of [33]). Consider the (A, ©, z)-stationary polymer. For all

m, n and all z € (=T, yn), we have

2

‘di Var*?[log Zm )| <Ci - (mA},(2) + nBj(z)) = C - (j sEP*log Z, n) . (4.72)
2
where

Cy =2+ 20e*(1 +ay + by). (4.73)
The last equality is from (4.15).

Proof. Identity (4.59) is convenient. Recall the definition of H* in (4.56). Temporarily
assume we can exchange expectation and differentiation. This will be justified later. By

the chain rule and Lemma A.1 we have
i =~ Qw an

wi?’Hw
— Q
dZ[_EpE 1)) ‘ =(z, Z)] = —B— dz [E |(>\9 =(z, Z)}
~ 0 _wOHY 0 _wOH”
_ QvYt Y 1~Q
N Ep[aAE ox 00 ”(w) (2,-2) @
w OPHY " a’Hw OHY :
— _TRP[Rp@ Q
o E [E a)\2 +COV ( a)\ ) a)\ )
w52’H“’ w an an
_ @ _ Q o
B g5ax ~ " Cax e o6
Similarly
d 1 oo O . OM
@ — Q
E[_EPE W‘(/\’(’F(Z—Z)} ~Er— dz [E |()\0 =(z, z)}
_ o per T 0 g
o\ 00 00 00 11\ 0)=(z,—z) (4.75)
~ wa He " 8Hw an .
— _TwP[Rp@ Q
=B 55 T (g o)
w82'Hw o OHY OH®
_ @ _ Q
b 002 Cov=( 00 7 00 )]l(w)—(z —2)
Since
m—+n
wal + waj + Z
k=ExVEy+1

(4.76)

m+n

= _ZHA (1) ZHeﬁe M+ ) Wk

k=&, VEy+1
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we have, from (A.19),

w Ew
ﬁHa)Ef.) _ ZL()\i + A\, Hy,1a(n;))  and
Z:l (4.77)
OHY (z,) - !
50 =~ D L6 + 60, Hy (1)),

J=1

Since £,&, = 0 and L(p, x) > 0, from (4.77), we have

OH and
oNdO
w OHY OH® w [(OHY OH® w OHY w OHY
Q — E9 — ([ E9 E<
Cov™ (5320 (8)\ ae) ( m)( ae)
w OH® w OHY
_ Q Q
() (522 g
Therefore, from (4.50), (4.59), and (4.74), we have
d Z
- Var’*[log Zy, ] < Z% (6; — 2) ZI\IIQ()\i—i—z)
w OPHY (4.78)
_EP<EQ IN2 )‘(/\,9) (2,—2)
" " n W82,Hw
=mAl(z) + nBj(z) — E*(E¢ Y )‘ o)
and from (4.51), (4.59), and (4.75),
d ; n m
aVar”’ [lOg me] > ; \112(9]' — Z) + ; ‘I’g()\z + Z)
et (4.79)

+E(E W) ‘(A,G):(z,—z)
w OPHY
mA},(z) = nBj(z) + B (B 902 >|(,\,9):(z,—z)'

To complete the proof, we have to estimate [E#(E?°ZX")| and |Er(EQ 21|
From (4.77) and (A.20)

O?HY(x,) _

gz
ON2 _ZLl(Al_‘_)‘?HAH-)\(nl))

=1
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From (A.27) we obtain

~ w OPHY LU
(B (B9 50 < D EALr Ho (),
=1
< (1+20e%(1 +ay +01)) D [a(Ai + )] (4.80)
=1

= (1+20€*(1 + a1 + b1))mAL(N).

We have a similar inequality for [E°(EQ* 22|,

Hence (4.78), (4.79) and (4.80) give

- Var (108 Zyal| < (24 206°(1 + a1 + b)) (mAL() +nBY(=). (48D

Therefore it remains to justify the first equalities of (4.74) and (4.75). The integrands
of the last expressions of (4.74) and (4.75) can be written in terms of L, Ly, A;s, 0;s and
w. As in the proof of Theorem 4.13, (A.22), (A.23), and monotonicity of H(r,n) in r
are used to show that these integrands are dominated by some z-independent integrable

functions. O

Corollary 4.18. Consider the (A, ©, z)-stationary polymer. For allm, n and all z; < zy

in (—Zm, Yn), we have

|Var®*[log Zu,,] — Var”* [log Z,, )|
(4.82)

<C; - |(mA:n(22) + nB;(zQ)) - (mA;n(zl) + nB;L(zl)) ,

where C is given by (4.73).
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Proof. We have
|Var”*[log Zy, ] — Var’* [log Zp, )|
2 ] -
:‘/Zl %Var *[log Zm n] dz‘
gCl/ mA, (z) + nB](z)dz
=CY - |(mA;n(zg) +nB)(22)) — (mA],(21) + nBj(21)) ‘
]

We prove the upper bound of Theorem 4.3. We fix m, n and consider z € (—x,,, yy)-

For —z,, < z < y,, 0 <k <m, and 0 <[ <n define

k

fo(k) = k| AL(2)] = Wi (A + 2)

i1

. (4.83)
and ¢.(l) =1Bj(z Z\Ifl 0, —2)
j=1
Note that f, and g, are strictly increasing functions in £ and [, respectively.
Lemma 4.19. For any c¢; > 0 we have the following.
Ea 975
EP® L\ + 2z, —w; SEV &) taEN e+ — | gt 1|, (484
A o s Ee) ramna+ T | 2 op L asy

&y

Z L(QJ — Z, _(JJOJ)

j=1

275 2
mngz(fy) + 1 p’yngy + ? {m + 1] . (485)

1

P52
Em,n

Proof. This lemma is a generalization of Lemma 4.2 in [33] which is proved for the
homogeneous model. We give details for (4.84) to get a precise bound. Define L; =

L()\i + z, —wi,o), I_Ji = L; —EP?L; and S}, = Zf:l [_/i-

5{1) x fz
En, Z L;| = E, ZEW L; + EfZ, Z L;
1=1 ] =1

& m
= E0Z Y BPLi4 > B (Q {6 =
=1 k=1

k}Si] .
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The first term can be computed using (A.24):
o 2B L= BiL ) Wi+ 2) = BRG] AL ()]

= E57 1(&).
For the second term, we have
> B (Q {8 = KYSK] < alBYL G + ) EP[1{S > ik} Sy
— k=1

and

P Sy
~ (ek)?

for all £ > 2. The last bound comes from (A.54). Taking ¢ = 5, we obtain the result. [

EP? [1{S), > c1k}Si] = c1kPP#(S), > 1k / (S, > t)dt
< -

—(1+ ——) = 2 2 _
E -1 -t | (x4 2)%

Theorem 4.13 and Lemma 4.19 say that the variance is controlled by the behavior of

exit points. So we need to estimate Ef,(£,) and E&,.

Lemma 4.20. Let X (z,,w) > 0 be a random variable defined on Il,,,, x Q. For s >0
let g2 = Q, (X > s). Suppose there are random variables Wy(w) and functions f(s),
g(s) such that logqs < W, ErW, < f(s) <0 fors > s3>0, and Var’ W, < g(s) for

s1 < s < s9. Then we have

~ o o .
Ef X =FBPEYnX < s + / (ef(s)/2 " f?(@ s
’ S

N / <6f(8)/2 +P{W, - BPW, > 1 (s)}) ds.

52

S1
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Proof.
B oo o) 1 N
E’f;mX:/ E”qsds:/ / PP(qs > t) dtds
’ 0 o Jo
e’} 1 5 [e’s) 1 5
Ssl—F/ / IP’p(qSZt)dtds§81+/ / PPV > t)dt ds
S1 0 S1 0
. eI ()2 1 ~
=5 +/ [/ PP(e™s > t)dt +/ PP (e > t) dt] ds
1 0 ef(s)/2
< 51 —I—/ [/ /2 4+ Pr(W, — EPW, > —1f(s))] ds.
Now apply Chebyshev inequality for s; < s < s5. O]

For —z,, < A < z <y, and u € [1,m] NN, we have

elle > uy = ﬁ ST 1{E > ude? )

X,

&

=1

< Z(2) - exp [Z (H,\iﬂ(??i) — H/\i+z(77i))]

i=1
where Z = Z,,, , (see (4.57)) and u € {1,2,...,m}. This is from

&
Ho(x) =HMx)+ Y (Hyoa(n) — Hyv(n:))

i=1

for £, > 0 and the fact that H,(n) is increasing in r. Now we estimate Ef;? h(£,) where
h : N — R is a positive increasing function. We take h(k) = f.(k) and h(k) = k. For
5 >0 let

v(s) =inf{k € N: h(k) > s}. (4.87)
We interpret inf () = co. For our h(k) = f.(k) > kUy(a; + b1) or h(k) =k, v(s) < oo for

all s > 0. Note that for all s > 0, h(v(s)) > s and

mn{l(&a) 2 s} = Qi {& = v(s)}.
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If h(k) = f.(k), then f,(v(s)) = h(v(s)) > s. If h(k) = k, then v(s) = [s] > s and
fo(v(9)) = v[A,(2)] 2 v(s)¥i(ar + by) = sWi(ar + by).

Therefore we have
f:(v(s)) > cs (4.88)
for ¢ = 1 if h(k) = f.(k) and for ¢ = Uy (a; + by) if h(k) = k.
Now we start to prove the upper bound of variance. Recall definitions of A,, and B,

(see (4.8)). For m,n > 1 and (,,, define

Az} = (T + ) /2. (4.89)

m,n
For simplicity of notation, we set
20 = Cmon- (4.90)
For u >1and 2 — Az, , <A<z < 2, let

Yi.(\) = (log Zmn(A) + Z H,\Z.Jr,\(m)) - (log Zmn(z) + Z H,\i+z(77i)> . (4.91)

i=1
From (4.86), we have log Q7% {§, > u} < Y, .(\). Note that this inequality also holds
for u > m (log0 = —o0). Here we consider not only z = 2z, but also z < z; for later use

in Lemma 4.25. By Proposition 4.11 and (4.71),

E’log Z(\) = — Zm: Uo(A; +A) — z”: Uy(0; — X) = mA,,(N) +nB,(N). (4.92)
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Hence by Taylor’s theorem, for some A < z1, 25 < 2,

E’Y,.(\) = (mAm()\) +nB,(\) + z“: Uo(\; + /\)>

_ (mAm(z) +nB,(z) + Zu: Wo(N\; + z))
=(mAn(A\) +nB,(A) —uA,(N) — (mA,(2) + nB,(2) — uAu(z))
=m[Ap(A) = An(2)] + n[B(A) — Bp(2)] — u[Au(A) — Au(2)] (4.93)

(A —2)*
2

:(mA;n(z) + nB;(z)) (A=2)+ (mA;;L(zl) + nBZ(zl)) .
—uA! () (A= 2)

=—Az- [u|A;(z2)| + (mA;n(z) + nB;l(z))
~ %(mA’T'n(zl) +nB(=)]
where Az =2 — A < (2 — 20) + Az, .-
From Lemma 4.16 part (1), with ¢ = 1/2, 29 = 2z , a = z,,, and monotonicity of B,gl)
we have

AP o)l < 27140 ()] and B ()] < B} (20)] (4.94)

for any Ao € [z — Az, ., %0]. In particular for [ = 2 we have

Suppose Az and u satisfy

u‘A’ (zo)‘
Ay < w1 4.
=T 16M, (4.96)
where

M, = af’n’n = My (Cnm) = mAL (20) + B (2) (4.97)

is given by (4.20), and

ul A, (20)| > 4|mA, () + nB,(2)]. (4.98)



Then from (4.93), (4.95) and monotonicity of A,(z) in (4.11) we have
EPY,.(\) = — Az- [%U!AL(@H
+ )] + () () + Bl (2)
+ iu‘A;(zg)‘ — %(mﬁ%(zl) + nBii(zl))]
<— Az [yul o) ]
Az S ul AL (0)] — 4] A (=) + 0By ()]

— Az - i[u‘A;(zo)‘ - 16Az]\/[0]

< Azu‘A;;ZO)‘ _ _Azf202(u)’

where f, is as defined in (4.83).

For given s > 0, we select u and Az by v = u(s) = v(s) and

Jzo(u) 1
Az < 2~ 2 — A .
z < 16 0/\(z 20 + zm,n)

108

(4.99)

(4.100)

So Az depends on s. Below u = u(s) throughout. Suppose (4.98) is satisfied. Then we



have

P

From (4.94), we have

and
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o dh(€) = s} > eXp[_%mz]}

05562 ) 2 el 202

V() — BV, () = w}

:‘1og Z(\) — B log Z(V)| > %6)&] (4.101)
Jlog Z(2) — B log 2(2)]| = %}

IS o\ fao (W) Az
ZHAI-H(?%) - EPZHA#,\(m) > %
Li=1

i=1

- - fo(u)Az

ZH}”’J“Z(T]@') - EPZHAZ-+2(772‘) < —%
i=1

i=1

Var'[3° Hapa(m)] = ul 44(2)] < 40l 4, (z0)]

i=1

Var' [y Hyooa(m)] = ul A, ()] < 4ul 4, (20)]-

i=1

Apply Corollary A.5 part (3) with A = 4‘14;(20)‘ and rg = Az}, ,

16 32f.,(u) 4 213
Hence we have
g - o (u)Az
P’ ;HMH(?%) - Ep;H&H(m) > % +
[ g foo(w)Az
Pr Hy  .(n;)—E”° Hy1.(ni) < —————
Z-Zl i+ (77) ZZ1 i+ (77) 16
2
< 2e—h(m) _ 26Xp[— (Az) fZO (u)]

213
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Therefore for s > 0, u = u(s) with (4.98) and Az < 208 A (2 — 20 + Az] ), we have
B |03 (16 2 o) 2 expl- 2202
<P [YW(A) —EY,.(A) > %}
< Pr “log Z(\) —Erlog Z(\)| > %{f“} (4.102)
+Pr [|10g Z(z) —Elog Z(2)| > %G)AZ]

Recall that our goal is to estimate Ef;*0h(&,) and to do that we use Lemma 4.20 with

appropriate choices of Wy. Suppose that, for some ¢ > 0, v(s) satisfies f,,(v(s)) > cs

for all s > 0. h(k) = f.,(k) and h(k) = k satisfy this condition by (4.88). Let

s = QU¥{h(&) > s}, Az(s) = 160]?40 ANAZ (4.103)
and
W= Vi), f(s) = -2l (1104)

We have EPTV, < f(s) < 0 by (4.99). Note that (4.98) is satisfied for any s > 0 in the
case z = z9. We will estimate probabilities in (4.102) with z = zy by dividing the range
of s. Let

sy = 16Az,, , My/c.

Case 1. s > s,.
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In this case Az = Az}, , and f(s) < —cAz,, ,5/2. Therefore from (4.102) we have

/ SOP LB, — BOW, > —Lf(s)) ds

52

4 214

<

T Azl + c(Az%m)2
16 - _ _ .

= [EmogZ) B log Z(A)| + B¢ [log Z(z0) — EplogZ(zo)” (4.105)
CAZ

m,n

[1+\/Var log Z(z —i—\/Var log Z (A }
cAz

16

Al [1+3\/m|A’ 20)| + 3/ nB! (%) +A T ]

The last line comes from the fact that log Z(\) = X + Y where X and Y are sums of

independent random variables with Var”(X) = |mA!,(\)| and Var’(Y) = nB.(\). We

used (4.94) to bound |A] ()] and B],(A) in terms of z.

Case 2. 51 < s < sy for s; = TMS/?) with » > 0 to be determined later.

In this case Az = 13- and f(s) < 322M Now we compute the variance of Wi.

Var’ W, < 2Var” [Z Hyix(0i) — Hy20(mi)] + 2 Var’ [log Z(X) — log Z(2)].

i=1
The first term is < 4u(|AL(N)|+]A] (20)]) < 20f,,(u) by (4.94). For the second term,
apply (4.72) and (4.95) with C; = 2+ 20€?(1 + a; + by): For some \* € [\, z],
Var” [log Z(\) — log Z(2)] < 2 Var”log Z(\) + 2 Var” log Z(z)
< 4Var’log Z(z9) + 2C1 (mA” (X*) + nB"(\*))Az
< 4Var’log Z(z) + 16C, MyAz
= 4Var’ log Z(zy) + ¢Cis.

Therefore

Var’ W, < g(s) = 40f., (u(s)) + 8 Var” log Z(z) + 2¢Cys.
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and
4g(s) _ 640 L 2°Mg Var”log Z (z) | 28CiMg
f(s)? 7 (Az)*fx (uls)) cts 3
- leMg i 215Mg Varp 10g Z(ZO) i 21301Mg (4.106)
c3s3 ctst c3s3
< 215 M2 Var” log Z (z0) n 214C M2
- st s

We use Lemma 4.20 with (4.106) to compute Ef%h(E,).

Ef0h(E,) < rMg’® + (4.105)

/52 215 M2 Var” log Z () N 2110 ME

[exp(—c®s*/(64]My)) + | ds

e/ ctst c3s3

210
Sng/g' A {1+3\/m|A’ (20)| + 3v/nB!(20) +A

mn

32]\43/3 9 24,1/3 s Var’log Z(z) 15 C1M, 2/3
2 exp(—cr M,'"/64) 4 2 e +2 037’2 :
(4.107)
Take r = 25/c. Then we obtain
; Var’ log Z(zo) 2/3
CEPROR(E,) < 3—2 + (64 +20) M2 +1/128
" (4.108)

2
+A T 1+3\/m|A’ 20)| + 3v/nB! (20) +A T

Combining (4.50), (4.84) with ¢; = U(ay + by) and (4.108) gives the upper variance



113

bound for the free energy:

Var’[log Zyn(20)] < 1+ (2°+16Cy) - My?

210 28 219
Al (z0)| + /Bl (z0)) + +
(VImA;, (20)] + v/nB;(2)) T+ 20 (Tm + 20)2

Tm + 20
277
+ +1
(Uy(ay + b1))4 {(mm + 20)10 ]
(29 + 160 ) 2/3 + 279 |: 2 I 1:|
! (1 N \Ijl(al + bl))4 (.Tm -+ Zo)lo
210
oo VImd o)l + VnB, (20)).
(4.109)
Using (4.51) we also have a upper bound :
~ 279 )
Var’[log Zu,.,. (= 29 4160, 2/3 + [ " 1]
[ g Lm, ( 0)] ( ) (1 A\If1(a1 +b1))4 (yn _ zo)m
210
o (VImALGo)l + VB ().
(4.110)

For 2y > (by — ag)/2, we have (x,, + z9) > (ag + by)/2 and for zg < (by — ag)/2, we have

(Yn — 20) > (ag + bo)/2. Therefore we have

) 279 211
Var’[log Zmn(20)] < (2° + 16C, 2/3 + [ ! 1}
108 Zyn,n(20)] < ( VM TR (a5 b)) | (a0 Bo) (4.111)

211
+
ag + bo

(VImA;, (z0)] + v/nBj(20)).

Note that from (A.6)

“ 1 1
A 3/4 ey 3/4 <
imAL (2)] Z + 20)) Z o t O

& 1
<Al a+ b)) T S Al e ) )
i=1 !

§2(1 + a1 + b1)5/4M0.
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A similar calculation for nB/ (zy) shows that

VImAL (zo)| + V/nB(z0) < 4(1 + ay + b)) M. (4.112)

From (4.111) and (4.112) we have

@arp[log Zmn(20)] < CQM02/3 + (s, (4.113)

where

213(1 b
Cy =20 +3206%(1 + ay + by) + (L+atb) (4.114)
Qo + b(]
and
79 4 H

Cy=2"(1 b —+1]. 4.115
3 (14 ay + b1) {(ao—i-bo)md'— ] ( )

Since My > |Wa(A; + 20)| > 1/(1 + a1 + by)3, from (4.113), (4.114) and (4.115) we have
Var’[log Zmn(z0)] < CMZ?, (4.116)

where
1

C =21 b)) | ———— + 1.
( +a; + 1) {(a0+b0)10+ ]

(4.117)

This completes the proof of (4.21).

4.5 Useful estimates

In this section, we collect technical lemmas for the remaining sections. All polymer
models are (A, ©, z)-stationary polymers. Weights on the axes are given by functions
of uniform random variables as in section 4.4. z-dependence of models is achieved by

the function H(p,n) in (A.16). See the first paragraph in Section 4.4. Thus we use
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the notation P?(X(z) € -) instead of P#*(X € -) for a random variable X. Recall the
definitions of x,, and y, in (4.6). z satisfies —x,, < z < Y.
Recall definitions of A,, and B, in (4.9) and (4.10). For fixed m, n > 1, let
M(2) = My, n(2) = mAl (z) + nB)(z)

m n 4.118
= > (A ) = (- 2) > 0 e

be as in (4.13). Suppose —x,, < 27 < 21 < 25 < 25 < y,. Let
Ml = M(Zl) and M2 = M(ZQ).

Since B(z) = [W3(0 — z) B,(df) > 0, Bl!(z) < Bl(z2). By Lemma 4.16 part (1),

3 A\ 3
0< A (21) < A (29) - <M> . Hence we have M; /M, < <M> . In a similar way,

Tm+21 Tm+2]

A3
we obtain My /M, < (;%) . Therefore we have

%2

T + 25\ ° —zr\°
(m 1) §M2/M1§<y" 1) . (4.119)

*
Tm + 25 Yn — 25

Since

Tm+2<N+2<a;+b and y,—2<6;—2<a +10, (4.120)

we have, from (A.6),

2 2 1
M(2) > [Ua(@m + 2)| + [Ta(y, — 2)| > CRESE + e > e (4.121)

where

Azin = (Tm + 2) A (Y — 2). (4.122)

Throughout this section, we assume the following. Recall the definitions of (,,, in
(4.18), Oy in (4.20), Ay in (4.30) and K, , in (4.31). As in the previous section,

for simplicity of notations, we sometimes write

3
ZO - gm,*m MO - O-m’n



(see (4.90) and (4.97)).
Let

Az,%w = (Tm + Gnn)/2, Az

Note that M, and K,,,, only depend on Ay, ...,

symmetric functions of these parameters. Hence

116

= (U = Cnn) /2. (4.123)

Am and 04, ...,0,. My and K,,,, are

MO<)\17 s 7)\m7 017 c e aen) = MO(xmsla o Tmemy Ynels - - 7yn:n) (4124)
and
Km,n<)\17 ceey >\m7 91, e ,Hn) = Km,n(xmzla vy Tems yn:h e 7yn:n>7 (4125)
where Tp.1, .+, Toamy Ynils - - - » Ynon are rearranged parameters in (4.4) and (4.5). From
(A.8),
" 1 -
A ZO — )\ + ZO
m :
2 - 1 2
< = U(\ < Al :
Similarly, B/ (zp) < %MB;(zO). Hence we have
Kpn < 4. (4.126)
We consider parameters z with
G — D2, < 2 < G + AZ2, . (4.127)

Lemma 4.21. Suppose z satisfies (4.127). Let C' be the constant in (4.117). Then we

have the following.
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(1) Fort >0,
Pr Ulog Zmn(z) — E° log Zm7n(z)| > t}
- exp[_ 2 ] vexp[_w] (4.128)
< 128147, G| 16 1)
(2) Fort >0,
P’ [‘log Zmn(z) — E” log Zmyn(z)‘ > t]
20Ca2,
< = (4.129)
t? (Almn)t
2 - _A85ma)t )
i (eXp[ 32lmA! (2) + nB;L(z)ﬂ vexp[ =]
We interpret 1/0 = oo.
(3) Suppose |mA,,(2) + nBj(z)| < ro?,,. Fort>0,
Pr [’log Zmn(z) — E” log Zmn(z)‘ > tom,n]
e (4.130)
< + 2 (exp [—t?/(32r)] V exp[—t/16]) .
(4) For fizted 0 < ¢ <2, if t > cAlnnOmn, then
Pr [‘log Zmn(z) — E* log Zm,n(z)‘ > tamyn}
{ K ] (4.131)
< 4dexp|— |,
128

Proof. Part (1). Write 2o = (i and Mo = o), .

Recall that

m n

108 Zinn(2) = > Li0(2) + Y Jmj(2) = Xm(2) + Vi (2).

i=1 j=1
We apply (A.53) and Lemma 4.16(1). Since Var’ X (z) = m|A,,(2)| < 4m|A7,(2)] and

Var’ Y (2) = nB.(z) < 4nB'(z) and \; + z > Azl we have

pr [\Xm(z) —BPX,,(2)] > t] <2 (exp[—m] \/exp[—@]) . (4.132)
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Similarly,

P? [‘Yn(z) - INE”Yn(z)} > t] <2 (exp[—%#;zo)] Y exp[—w]) .

Since |mA! (z9)| = nBn(20), substituting ¢/2 into above inequalities, we get (4.128).
Part (2).

First, we assume mA/ (z) +nB/(z) < 0. Hence z < z since mA,,(2) + nB,(z) is a

smooth convex function of z. Define
g(k,z) = kAL (2) +nB](z) for 0 <k <m.

Then ¢(0,2z) > 0 and g(m, z) < 0. Note that g is strictly decreasing in k for fixed z (see

(4.11)). Define

u=u(z) =min{k : g(k,2) <0} (4.133)

Note that u > 1. Write log Z,,, (%) as

m

10g Zynn(2) =108 Zun(2) + Y Tin(2).

i=u+1

Then

108 Zun(2) = 1, 2) = glu— 1,2) — Wiy +2)
z

and |g(u, z)| < ¥1(A,+2). Let A be the unique constant such that wA!,(Xo)+nB,(Xo) =
0. Since mA! (z9) + nB!(z) = 0, we have uA!(z) + nB}(z) > 0. Hence we have

2z < Ao < 2. From Theorem 4.3 and (4.82),

Var”log Z, . (2) < Cilg(u, 2)| + C [uA”(Xo) + nB(A)]"* .
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From (A.6) and (A.7)

4 4
< Uy (A, < 4Pq(A, <
‘g(uv’z>‘ —= 1( _'_Z)— 1( +ZO) <<)\u+zo)2+)\u+z0>

2 1 )]2/3

< 8(1 b Vv
<8(l+a;+by) [(Au‘f‘zo)‘g O + 20)?

< 8(1+aj + by)|Wa( A, + 20)|7? < OMT2.
From Lemma 4.16(1) we also have
uA”(No) +nBl(No) < 8uA!(2) + 8nB(2) < 8M(z).
Therefore we have
Var” log Zyn(z) < 5C’M§/3. (4.134)

Chebyshev’s inequality with ¢/2 gives the first term of bound (4.129).

Now we consider

Z Ii,n(z)
i=u+1
We have, since g(u, z) <0,
Var” Z Lin(2) = — [mA! (2) + nB.(2)] + [uA! (2) + nB. ()]

i=u+1
<|mA,,(2) + nB(z)|.

From (A.53),

Pr [| ij L (2) —F° Z Lin(z >t/2]

i=ut1 i=u+1 (4.135)
12 0
= (e"p[ 32]mA’m(z)—|—nB;l(z)]] ¢

Collecting all the results we have (4.129).

If mA,, (z) +nB/(z) > 0, then write log Z,,, »(z) as

log Zn(2) = log Zm (2 Z Im i (=

j=v+1
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. The same reasoning as above can be employed to prove (4.129).
Part (3). This is a consequence of (4.129). Note that we used (4.121) so that
Um,nACm,n > 1.

Part (4). This is a consequence of (4.128). Here we also used (4.126) and (4.121). [
Next lemma estimates the distance between z and G, .

Lemma 4.22. Suppose |mA,, (z)+nB(2)| < cAzy,M(2)/8 for some 0 < ¢ < 1, where

Az, s given by (4.122). Then

(1+ ¢)’|mA],(2) + nB, ()|

|2 = G| < (€AzZpn) A

We also have

C
‘Z — Cm,n’ S 1——CAZ21’n

Proof. Let z; = z — cAzy,, and 29 = z + cAz,, ,. Note that

m 1 n -
Ty + 2 > and Y 21
Tmt+2z2  1+c Yn — 2

<l+e

Then for some z* with z; < 2* < z, from (4.119) with 2 = 2z; and 25 = z,

[m A (21) + 1B (21)] — [mA;,(2) + 1B, (2)]
(4.136)

= — Az [mAL (2*) + nBl(2*)] < —cAzp M(2)/(1 + ¢)®.

Hence mA), (21) + nB,,(z1) < 0 since |mAL, () +nBj(z)| < ¢Azy,,M(2)/8. Similarly,
mA! (z2) + nBl(z2) > 0. Therefore z; < (n < 29. Since for some z** between z and

Gmon

() + nBL )] = |2 = Gl lm (o) 4 B 2 B,
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we have

(1+¢)®|mA! (2) +nB.(2)] ‘

Since |z — Gun| < Az, we have
2= A2y < G < 2+ Az .
Hence
(I—c)(xm+2) <Tpm+2—cAZmn < T+ Gun
and
(1 - C)(yn - Z) < Yn — 2 — CAZm,n < Yn — Cm,n-
Therefore Ay, > (1 — ¢)Azy,, so that

|Z_Cm,n‘ < |Z_Cm,n| < c .
Alnn — (1=0)Azp, ~ 1—c

[]

Lemma 4.23. Suppose z satisfies (4.127). Let C be the constant in (4.117). Write

2 = Conn = /Oy then
P(z) = P?* {|log Zpn — B 10g Zyp| > |EP710g Zpy — EP7 108 Zin | 4}
and
P(Cnn) = PPemn {|log Zyp — BP0 10g Ziy | > [EP? log Zyy — B 10g Zi | /4}
satisfy the following.

(1) ForO<r S ACm,nO-m,n/27

217

P(Z> \ P(Cm,n> <
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and for AGnnOmn/2 <r < Azfn’namﬁn

219(C Kon
P(z) V P(Cnn) < = A <4exp [— 222’ r}) :

(2) For —AGmn0mn/2 <r <0,

217C

rd

P(z)V P(Gmn) <

and for —Az,ﬁmam’n <7 < —=AGnnOmn/2

219¢ K, .
P(z2) V P(Cnn) < = A (4exp [— 222’ r}) .

Proof. We do the case r > 0. Write 2y = (;,, and My = af'n’n as before. Let
f(2) = EPlog Zmn(20) — EPlog Zy p(2). (4.137)
We estimate f(z). From (4.119),
M(z) < 8M, (4.138)

for 2o < 2z < 2o+ Az, and

M, (4.139)

for zp < 2z < 2o + Alnn/2.

Let Az = z — zy5. For some z; with zp < 21 < z,

f(z) = [mAn(20) + nBp(z0)] — [mAnL(z) + nB(2)]
(Az)?

= — Azfmd, (%) + 0B (x0)] —

_ (AQZ) [mA” (z1) + nB(z)].

Suppose ’Az‘ < AGnn/2. Then from (4.119), we have

[mA (1) + nB,(21)]

(o) < _(Az)2M0 7_7“2M01/3
“ = 6 16
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Since f(z) is concave and f(zp) = 0 we also have

[z + Az, ,/2)

< A
f(Z) — AZ?nyn/z z
__ AZSWMOAZ _ _Az%nMg/gr - _rMol/3
- 32 32 - 32

for Az > Ay /2. The last inequality is from (4.121).

Therefore we have

2 s1/3 Almn 1 71/3
My, (0 < < Blmn /3

f(z) < (4.140)

1/3 Almn 3 r1/3 2 1/3
_SLZ 0o > ( 2 MO S r S AZm,n‘]\40 )

Also note that, from (4.138),
ImA!,(2) + nB,(z)| < 8Mp|Az| < 87“M02/3.
Therefore for 1/2 <r < %Mé/g, from (4.130) with ¢ = 72/2% we have

P(2)V P(z)

20 - 212C
—a 2 (exp [—r?/2%°] V exp[—r?/2"]) (4.141)
20 - 212C Loy 5e2MC 28 9l

< T—4+2€Xp[—r/2 ]S - +7"_4§ "

Note that this inequality holds also for 0 < r < 1/2 since our C' is sufficiently large. For

%Mol/g <r< AzsmM&/g, from (4.130) with ¢t = /27 we have

P(2) V P(2)
20 - 2M1C

< S T2 (exp [-r/27] v exp[—r/2"]) (4.142)
20 - 21C ooy 20-2MC 2% 219(C
= — a2 +2exp [—1/2%] < —2 + = < R

For this range, from (4.131) with ¢ = 1/2% and t = r/2"7 we also have

P(z) V P(2)

7} (4.143)

K.
< 4dexp [— 27;271
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Collecting all the results, we complete the proof of part (1). The case r < 0 is handled

similarly. O

Lemma 4.24. Suppose z satisfies (4.127). Let C be the constant in (4.117). Write

2= Cmn =71/Omm. If m+n > (128(ay + by) log 2)3 then we have the following.

(1) For 0 <1 < AGnnOmn/2,

218C

ré

~ 1
PP[ e, 5 0) > 5} <

and for AlmnOmn/2 <7 < A2 Omn

~ o 1 2200 Kmn
P”[ mn{€e > 0} > 5} <A (8exp {— 55 rD

(2) For —AGmnomn/2 <r <0,

_ 1
B Qe > 01 > 5 <

and for —Az}n’namm <7 < =AGnnOmn/2

- 17 2¥C
P’ |: n;,n{éy > O} > §:| < r2

Kmn
A (8exp [— 222’ 7“:|> .

Proof. We do the case r > 0. Write 2y = (,,,, and M, = af;% as before. Note that

1/2 < Alnnomn/2 by (4.121). Since our constant C' is sufficiently large, the first
inequality in Part (1) is trivially satisfied for 0 < r < 1/2. Therefore we may assume

r > 1/2. From the definition of the quenched measure and (4.56), we have

2w me(ZQ)
Q& > 0} < Zor(s)
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Let f(z) be as in (4.137). Suppose f(z) < —2log2. Then we have

: qo
PP | Q*“{& > 0} > 5] < PP [log Zinn(20) —10g Zimn(2) 2 —log2]

< P [log Zunn(20) — 10g Zina(2) = f(2)] 2 _T()]
: (4.144)
< Pr |log Zmn(20) — E’ log Zm7n(z0)| > |fiz)|}

and, from Lemma 4.23(1), we have bounds in part (1).
Now we seek conditions for f(z) < —2log2. From (4.140), for r > 1/2, we have
f(z) < —M5/3/64. If Mol/3 > 1281og 2, we have f(z) < —2log2. From (A.6),

1

My > (m+n)|Wa(ay + by)| > (m+n)m.

Hence under our assumption m 4 n > (128(a; + by) log 2)®, we have
M > 12810g 2 (4.145)

and f(z) < —2log2 for r > 1/2. This completes the proof of part (1). The case r < 0

is handled similarly. O

Lemma 4.25. Consider z with
Cmn — Azim/Q <2 < (o + Azil7n/2

and write 2 — (pn = 1/0mn. Let C be the constant in (4.117). Then we have the

following.

(1) Suppose z < (pp. For2|r| <t < 4AGnnOmn

s t20mn 222C
B/ | @il e (&) 2 107} = expl——22]| < = (4.146)
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and for t > (A0 mnomn) V (2]7]),

P’ [ ol femn (&) > tofrm} > exp[— tgm,n]:|

16
(4.147)
218¢ Ko
< 2 A | 10exp | — 515 tl .
(2) Suppose z > (pp. For2|r| <t < 4AGy n0mn
5 20, n 2220
B Q30 6) = 102} 2 ool 0] < 2 (1.145)
and for t > (AA mnomn) V (2]7]),
~ tOmn
B Qi (€)= 1030} = expl- 722
(4.149)

218C Kom
< 2 Al 10exp |— 219t )

Proof. We prove part (1). Part (2) can be proven similarly. Write zy = (., and
My = o}, ,, as before. We use (4.86) and (4.102) with h(k) = f.,(k). Since f.,(u(s)) > s

by (4.88), if conditions for (4.102) are satisfied, then we have

) A

B { ol Fal€) 2 5} = exp[—%]}

sAz

%]
sAz
%]

< Pr [\bg Z(\) —Erlog Z(N\)| >
(4.150)

+Pr {|log Z(z) — Eflog Z(z)| >

Az)?s
213 ]’

where Az =z — XA > 0 and Az satisfies (4.100). To use (4.102), we need to check if u(s)

+ 2 exp|— (

satisfies (4.98). Since
ImAL(2) + B, (2)] = (20 — 2) M (2")
for some z < z* < 2y, from (4.119), we have

mAL, (2) +nB(2)| < 8|r|M°, (4.151)
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Therefore if s > 2|r|M;’", then
ul Al (20)| = folu(s)) > s > |mA (2) + nB,(z)] /4

and (4.98) is satisfied. Hence we can use (4.150) for s > 2|7’|M§/3. Substitute s = iE.Mg/3
into (4.150).
For 2|r| < t < 4A(,nM, 1/3 (if this range is nonempty), set Az = s/(16My). Then

for some A* € [A, 29| we have
ImAL (A) 4+ nB, (N = (20 — M) < 8(t+ |r|)MZ* < 16¢M7°. (4.152)

From (4.130) with ¢2/2%, (4.150), (4.151), and (4.152) we have

g 2w 2/3 tQMé/g

B | @ FalEe) > 1M} > expl - 5]

40 - 21°C ¢t t?
_t—+2 exp[ 224| ’]\/e p[ 212]

¢ 2 3

+ 2 <6Xp[—m] V exp[—ﬁ}) + QGXP[_ﬁ]

40 - 2'5¢C 3 t? ¢
St—‘l +4 (exp[ 225] V exp|— 212]) + 2exp[—ﬁ]

222(C
[— t4 .

For t > <4A(mn 1/3) V (2|r]), set Az = AGnn/4. Then for some \* € [\, 2] we

have

Im AL (A) + B (A)] = (20 — A)M (A7)
(4.153)

<8 (yryM V3 LA n/4> Mo < 8(Jr| +t/16) M2 < 8tM>/®,
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From (4.121), (4.130) with ¢/25, (4.150), (4.151), and (4.153) we have

P 2/3 M3
Pp[ il faa(6e) 2 MG} 2 exp[- = 1]

40 - 212C t? ¢
St—2+2 eXp[ 220| ‘]\/ p[ 210]

t t t
2 (expl- 5] v espl- i) + 2espl- 1]
40 212C t 218C
—t + 6 exp[— 220] < v

For this range, from (4.131) with ¢ = 1/2* and /25 we also have

t
SSexp{ ] + 2exp[— 217]

<10exp {— Konn t] .

4.6 Lower bound for the fluctuation

In this section we finish the proof of Theorem 4.3. We continue to use our notation P?
as explained in the beginning of Section 4.4. However at some places we go back to
notation P” in Remark 3.15. We also refer readers to page 115 for various definitions
and notations. We construct our environment as follows:

Let {n;; : i > 0,7 > 0} be i.i.d. uniform random variables on (0,1). Let w;;(2) =
—H(pij,mi;) with p;j =X, +0; fori,5 > 1 and p;o = A\i + 2, po; = 6; — z. For subsets

A C iy, let

).ty (A Z exXp [ Z ka(z)] :

X, EA r=1
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Lemma 4.26 (Lemma 5.1. of [33]). For m > 2 and n > 1 we have this comparison of

partition functions:

Zm,n(fy > 0) < Z(l,l),(m,n) < Zm,n(&m > 0)

= < . 4.154
Zm—l,n(gy > O) Z(l,l),(m—l,n) m—l,n(fz > O) ( )

Lemma 4.27 (Lemma 5.4 of [33]). For each fized w, Q% . (& >0) < Q¥ (& > 0) for

mi,mn ma,n

all0 < my < me and n > 0.
The proof of the following lemma is adapted from [18].

Lemma 4.28. Let C be the constant in (4.117). Then whenever m +n > C?, we have
P |10g Zimn(Gnn) = B2 108 Zin(Gun) = G| 2 . (4.155)

Proof. Write zg = (., and My = (0,,,)° as before. First assume A, ,, in (4.30) satisfies

Almn = Yn — 20 So we have Az}, = Zmto > sotb Consider A with
1 1/3
0<z—-A<Az,, and A=z —1r/My".

We can use Lemma 4.24: Suppose m+n > (128(a;+b;) log 2)3. We have M&/?’ > 128log 2
by (4.145).
For 0 <r < Az}ang/g,

5 1 . 1 220C
P lonle> 0z 5] - 1-P Qg >0 2 g 21- 28w

If r < Az#7nMé/3/2, from Lemma 4.25(1), we have

~ A\ 2/3 ) 2220
PP |:Q vw{fzo(fx) Z tMO } Z Z_L:| S Iz (4157)
for t > (2r) V 1. Choose such r and ¢. From (4.156) and (4.157) we have
m w 2200 222C
P? |:Q)\7 {0 < fZO(gl') < tM(?B} > 1/4i| >1-— 2 — t—2 (4158)
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From (4.158)
220¢ 222C
oz 2

Q10 < fo (&) < tM2*} > 1 /4]
T
| Zmn(A)

1 1, -
200 < Fufee) <) 2 dexp (8108 200 + BV 1o Zna)|

1

VAN
=k
A

I
3=k
2

2040 < Fu(€s) < M2} > 1/4]

VAN
3=k
A

(4.159)
- 1 - -
+P? [Zm,n(A) < exp 5 (E? 108 Zynpn(N) + E? log Zm,n(zo))} : (4.160)

We treat (4.160). From Lemma 4.23(2), we have

219¢C

r2

(4.160) = P* [mg Zmn(N) = B2 10g Zpnn(N) < —[E2 108 Zun(20) — B2 108 Zy (V)] /2} <

Note that if we do not use our standard realization of weights by uniform random

variables, we can write
(4.159) = PP [1og 74 40 < fol&) < tMZ®} > 271 (BP0 log Zyn  + BP* log Zyn) — log 4} .

Let S = S(w) denote the event in the above probability. Then we have

2210 2220
2 g2

(1 ) SPPA(S).

We construct a new environment to handle P**(S) and P (S). Let
w=u(t) =max{k >0: f, (k) < tM*}.

If w > 0, then we use the same realization as the beginning of this section for bulk

weights and modify boundary weights only:

wio =wio(A) for 1<i<uw
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and

w;j = w;;(20) for remaining weights.

Let @ denote this new environment. If © = 0, then set @ = w. We have
PPAS) = PP[S(@)).

Let v* be the distribution of w(zy), ¥ the distribution of @ and h = d/dv* the Radon-
Nikodym derivative. Here we consider random environment w as a collection of log-

gamma random variables. Since only boundary weights are different, we have
) = [T 20 20) (0 — )il
When u = 0, the product is interpreted as 1. Schwartz inequality gives
PP[S(&)] = BP*(hlg) < (EP#0R2)1/2prao[§)L/2,

Now we compute E”*0h%: Introduce a function H()) then we can write

i=1 I(Ai +A)?
=exp Z log I'(A\; + 20) +1ogT'(A\; +2X — 29) — 2log T'(A\; + ) (4.161)
i=1
=exp H ().

We have

H//(/\) = i(4@1()‘z + 2\ — Zo) — 2@1()\1 + /\)) = —4UA;(ZO + 2()\ — Zo)) + QUA;()\)

=1

and by substituting A\ = 2,

H'(2) =0 and H"(z) = 2u|A,(20)] = 2f.,(u).
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Also note that if zo — A < (2, + 20)/4, which is satisfied in our case (recall we assume

r < Az}mnMOl/g'/Q), from Lemma 4.16 part (1),
H"(X) < 16u|Al(20)] = 16, (u).
Hence from Taylor’s theorem and the definition of u, we have
H(N\) < 8f.(u) - (N — 20)* < 8tr?.

Collecting all the results, we have

2210 2220

(1 7a2 t2

<PP* [log Z2 , — B 108 Zyy = 27" (EPM0g Zpn — BP0 l0g Zinn) — log 4] .

) exp(—8tr?) < PP#[S]

(4.162)

provided 1 — £3.¢ — 2°¢ ~ (. From (4.137) and (4.140), if r > 64, then

r2 t2

21 (BPM og Zyp — BP0 10g Zyp ) — logd > My/°.
Take 7 = t = (2'2)y/C. Then we have
P [log 25, > BP0 log Zy + My*| >,
where
§ = exp[-C?).

Note that this is only possible when Az}anOl /3 /2 is sufficiently large because we need
r< Az}n’nMé/g/Z Since

m-+n

My > v b)) > —m-
0 = (m+n)|¥aar + 1) > (a1 + 012’
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we have
(ao + bo)
- 8(&1 + bl)

Hence if we choose (m +n) > C?, then we have the desired result.

Az, 1/3/2 (m 4 n)Y3.

For the case Ay, = Tm + 20, use A > z and g,,(§,). The proof is the same with

appropriate modifications. O

Proof of the lower bound in (4.22). This is an immediate consequence of Lemma 4.28.

For N > C?,
Var”* log Z,, , = E* (1og Zmn — EP% log van)Q > 6—02(07%7”)2‘
0

Lemma 4.29. Let C be the constant in (4.117). Then for Ny = ¢*“*, whenever m+n >
Ny we have

B | (108 Zet 1)) — Gman) | = 27 @ (4.163)
Proof. Write zg = (i and (0,0)% = My as before. Recall that ¢y, = E#*log Z,,,
(see (4.14) and (4.19)). Let S be the event

S ={log Z,, > EP* log Z.n + M&/3}.

By Lemma 4.28 there exist positive § = e~¢* and N, = C? such that Pr= [S] > ¢ for
(m+n) > Ny. Without loss of generality, assume zy > (by — ag)/2. We use the simple
upper bound

10g Zm’n(ZO) Z log Z(l,l),(m,n) + wljo(Z()) + Wi,1- (4164)

Let €(z0) = w1,0(20) + w1,1. Note that

Efle(20)%] < 2E7[(wr0(20))*] + 2B [(w1,1)?]

CL()—I—bO
v
5 ) + (o (

(4.165)

Qo —f- b()))Q

< 4]0 + (Wo(ay + b1))?].
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From these we have

0= E”[(log Zmn(20) — E” log van(zo)) 1g]
+ IEP[(Iog Zmn(z0) — E” log Zm,n(z(])) 1ge]

> Pro[SIM + E*[(log Z(1,1).0mn) — E?10g Zimn(20)) 1se] + E?[e(20)15¢])-
Therefore

oMy* < RP [(Ep 10g Zn.n(20) — log Z(m),(m,n))lsC] + P[] e(z0)]]

If \/Er[e(20)]2 < 6M7"%/2, we have

sMy'

E? [(EP log Zyn(20) — log Z<1,1>,<m,n>)+] Z

Direct calculation using (4.165) shows that we may take Ny = e*C”. O

4.7 Identification of scaling exponents

In this section, we prove Theorem 4.4. We start from points in .S.

Proof of Theorem ./ (1). As before, My = (0,,,,)* and z = ((s). Note that —ag < z <
bg. Define

(521:(CLO+Z)/2, (522:(170—2)/2

and

0z =021 N\ 0zs.
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Suppose (., satisfies (., € [z — 021, 2 + d22). Then from (4.118) and monotonicity of

U, explained in (A.2) we have
(m +n)|Vy(ay 4+ b1)| < My < (m + n)|[Wa(02)]. (4.166)
Therefore in this case (4.24) holds with
Cy = |Uy(ay + by)|/? (4.167)

and

Cy = [Wy(62)|13. (4.168)
Hence we need to prove (4.25) to complete the proof.
From Lemma 4.16 part (4) and (4.23), we have
’mA:ﬂ(z) + nB;I(z)| < |mA'(z) + nB’(z)’ + |\I/2(6z)‘(mW1(am, a) +nWi(B., B))
< |[NzA'(z) + NyB'(z)| + K|A'(z)| + KB'(z)
+ | W2 (62) [ (mWi(aum, ) + nWi(By, B))

< | Wa(62)| (2K + mWy (e, @) + nWi(By, B)).

(4.169)
Since
Moo (2) 2 (m +n)[Wa(ar + by
for any z € (—aop, by), from (4.62) we have
‘mA;”](\Z:(:;B a1 (4.170)
as N — oo. Use Lemma 4.22 with Az,,,, = 20z. Then we obtain (4.25). O

Next, we treat the case of 5.



Lemma 4.30. Suppose Assumption /.2 holds. We have

3dy _
i ™ (m GO)Z( 1 —0

m—o0 m

and

We also have

lim ————— = lim
m—o0 MLy, — ag)

Proof. For 2 < p; < 3, we have

m34(x,, — ag) Zm: 1
(

< m*h (T — aO)pl_chl

for some C,, > 0. From Assumption 4.2 part (b), we have

C,,C
3dy — an)Pr2 __Tm-a
m (xm aO) Cp1 S m(p1*2)q1*3d1

For (4.172), note that for all sufficiently large m,

xm:i_xmzl_xm_aozl_xm_ao_ .
T — Qo T — Qo Tm2 — @y M™
Application of (4.171) gives (4.172).
For (4.173), from (4.171) we have
1
lim — =0.
e300 m(zm, — ag)?
This result and (A.6) gives
Uy (2, —
fi Y20 = 0)
m—o0 m
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(4.171)

(4.172)

(4.173)
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Recall that our parameter (,,, is in (—Z,, y,) and possibly z,, = minj<;<, A\; > ao.
In particular, it is possible to have —z,,, < (. n < —ap. In the flat region S, this is the

case as the following lemma shows.

Lemma 4.31. Let y/x = v; = 1/s; be the line S;NS. Fizv > v, and assume n/m > v

for all but finitely many m and n.

(1) There exists a positive constant m, that depend on ag, ai, by and by such that for
m 2> My,

Cm,n < —ayp, (:Bm + Cm,n) S (yn - gm,n)

(2) Let n =n(m) and assume lim D _w > v. Then we have
m—o0 M,

\\) —
lim YL+ Gnn) B ) = — P () (4.174)
and
lim A (Gun) = —wB'(—ag) = —A'(—ap). (4.175)
m—0o0 ’Ul

(3) There exists an another constant m, such that for m > m,,

\Ijl(xm + gm,n) > (U - Ul)

A Gun)| © 20 (4.176)

(4) There exist a positive constant No(v,ag, a1, bg, by) such that for N =m +n > Ny,
we have

CiN < (0pn)? < C3N (4.177)

and

((@m + Cnn)Tmn)” < Co, (4.178)
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where

O, — (U — Ul)\Ifl((ll + bl)

! 2’1)(1 + a1 + bl) ’
02 = (2 +a; + bl)\lfl((ao + b0>/2)
and
5 20
C0:(2+a1+b1> .
vV — U1
(5) Ky in (4.31) satisfies
vV — U1
K, . > . 417
nz (4179

Proof. (1) Note that

AL (—ag) + %BZ(—GO) > (v — 1) B, (—ao) + [A},(—a0) + v1 B, (—ao)].

From (4.62), (4.63), Lemma 4.16 part (4) and (5), we have

li_r>n (v —v1)B,,(—ag) = (v —v1)B'(—ag) >0 (4.180)
and
lim A/ (—ag) +v1 B, (—ag) = A'(—ag) + v1 B (—ap) = 0. (4.181)

m—ro0

The last equality is from (4.7). Therefore for all sufficiently large m,
mA! (—ag) + nB,(—ag) > 0.

Since Gn(2) = mA,(2) +nB,(2) is a convex function of z and G, (Gnn) = 0, we

have (,,,, < —ag. Since x,, — ao,

(xm + Cm,n) S (bO + aO) S (yn - Cm,n)

for all large m. Assume these properties hold for m > m,,.



(2) From the definition of (,,,, we have

\Ill(xm + Cm,n) o

m

We claim that

m

1
m
i=2

/ _
il S e~ )]
and
lim sup |B),(Cnn) — B'(—ao)| = 0.
m—00 p>muy

Suppose these hold. Write z

\Ifl (l’m -+ Zo)

Z qjl(l’m:i + Cm,n) + %B;<Cm,n)

= (mn- Then from (4.181) and (4.182) we have

lim = A'(—ag) + wB'(—ag) = (w — v1)B'(—ap)
m—0o0 m
and
Til_r}réo A;n(zo) = —%1_1}20 EB/ (20) = —wB’(—ao).

This proves (4.174) and (4.175). Hence it remains to prove (4.183) and (4.184).

Suppose m > m,,.

with zg < 2* < —ay),

1 m
‘_E Z Uy (T + 20) — A’(—a0)|
i=2
1 m
§ ‘—% Z\Ijl(fﬂmz + Zo) — A;l(—a(])‘ + ’A;n(—ao) — A,(—ao)l
1 m
S ‘—— \Ij ijl‘{‘zo - zmz_ }
/ / m_ao)
+\Am<—ao)—A(—a0|+} - |
= | S Wy (s + 27| + AL (—a0) — A(—ag)| + | m_%)\
=2
m = \Ij m
< | S o )| [ 0) — ()] [P

Hence —zx,, < zy < —ap.
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(4.182)

(4.183)

(4.184)

From Taylor’s Theorem, for some z*

(4.185)
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The last line of (4.185) goes to 0 as m — oo by Lemma 4.30 and (A.6). This proves

(4.183).
Similarly, for some other z*,
|B),(20) — B'(—ao)| < |B,(20) = By,(—a0)| + | B,(—ao) — B'(—ao)]
< B/(z*)- ‘zo + ag‘ + ‘Bfl(—ao) — B’(—ao)‘
(4.186)
< Bj(—ao) - (xm — ao) + | By,(—ae) — B'(—ao)|
S |\IJQ(CLQ + b0)| . ($m - Cl()) + |B,:L<—Cl0) — B’(—a0)|.

Hence

sup ‘B;(Zo) - B,(—ao){ < {‘1’2(% + bo)’ “(Tm — ag) + sup ‘BZ(—GO) - B/(—ao)}

n>mu n>mu

and we have (4.184) by (4.62), Lemma 4.16 part (4) and the fact that x,, — ao.

(3) We need (4.183) and (4.184). Proof for part (3) is similar to that of part (2). We

skip the details.

(4) Write My = (0.,)°. From (A.6), we have

M§/3 < Z}\PQ()\Z' + Zo)|2/3 + Z‘\I’z(ej — Zo)|2/3

i=1 j=1
< (24 a1+ b)*? i;Jan:;]
- . 2 R 2
:izl (>\l + ZO) j=1 (9.7 Zo) (4187)
< (24 ap +by)*? Z Wy (i + 20) + Z Wy (0; — Zo)]
Li=1 j=1

= (2 + a1 + 61)2/3 HmA;n(Z())‘ + nB;L(Zo)] .
On the other hand,

a0+b0
2

‘mA;n(Zo)| S m\lfl( ) if 20 Z (bo — (10)/2
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and

Clo—i-bo
2

nB;(Zo) S n\Ill( ) if 20 S (bo - CL())/Q.
Therefore

a0+b0
2

ImA! (z0)| + nB,,(20) < 2Wy( )N

since [mAL, (z0)| = nB,(2). From (4.187), we have
My < CoN,

where CQ = (2 “+ap + bl)‘lll((a() + bo)/2)

Now we estimate a lower bound of Mg 3. For any z,
}mA;n(Z)‘ +nB;(z) > Vyi(a; + by)N.

From (A.6), we have

1
M3 > o T + 2 WS -y Tm + 20). 4.188
0 _‘ 2( 0)| _1+a1+61 1( O) ( )
For m > m,,
\Ill(xm—i‘Zo) . \Ijl(ZL’m—i‘Zo) > v — U1 >0
‘mA;n(zo)| +nB! (z) ’2mA;n(z0)’ )]
2/3

from (4.176). Combining these inequalities, we obtain a lower bound for M;"".

(?} — ’Ul)\pl((ll + bl)

M3 >
0 - 2U(1+6L1+b1)

From (A.6),

921 72/3 L+a; +b | o3
m My < ——M'".
(o 20 My < Uy (2 + 20)

Hence by (4.187) we have

2v

v—1v;

2|mAL (20)] + nB; (20)
\Ifl($m -+ Zo)

(@ + 20)2 My < (2 4+ a1+ by) < (2+ar +by)?
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(5) If m > m,, then from (A.8) and (4.31), we have

> AGnn|¥Yao(zm + 20)] _ (T + 20)| Vo (zm + 20)| - Uy (2 + 20)
= m|A;,(z0)] m|A;, (20)] — 2m| A7, (20)]

(4.176) gives (4.179). O

Proof of Theorem 4.4 (2). (4.28) is an immediate consequence of (4.173) and Lemma 4.31

(1). (4.27) is from (4.174) and (A.6). (4.26) is from (4.178). O

Proof of Theorem 4.4 (3). First, consider (z,y) € S. Let z = ((s). The computation of

(4.169) shows that
mA! +nB!

N—o0 N =0

For some z* between z and (,,, we have

‘qum — Gm7n(z)| = Azl - ‘mA;n(z*) +nBj(z")

< |Azpnl - ‘mA;ﬂ(z) + nB;(z)|,
where Az, = (nn — 2. The last inequality is from the convexity of G,,,(z) and
the definition of (. Since Az, , goes to 0 as N — oo by (4.25), we have from

Assumption 4.1(a)

. Pman Grn(2)
b G =

= 2A(2) +yB(2) = ¢(,y).
Next, consider (z,y) € S; with s < s1. For some z* between —ag and (,,,, we have

|¢m7n — Gm7n(—ao)| = Azl - ‘mA;n(z*) +nB) (z")

(4.189)
< |Azm,n| : ‘mA;n(_CLO) + anlz(_aO) )

where Az, = (o + ao. From (4.28), we have

hm ‘gbm,n - Gm,n(_aO)‘
N—o00 N

<0-|zA'(—a) + yB'(—ag)| = 0.
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Therefore
. ¢m,n T Gmm(_ao) _ — A
WION ST N Al r Bl =eley).
Finally consider (x,y) with s = s;. Let 2 = —ag + € for some small ¢ > 0. Then

Jlim (NA’m( ) + %B;(z)) — 2A'(2) + yB'(z) > 0.

Hence G, < —ag + € for all sufficiently large N and
|Cmn + o] < (2 — ap) + €.

Therefore from (4.189), we have

R N =0
and
. ¢m,n Gm,n(_ao) _ _
J&g)noo N J\P_Igo N = v A(—ap) +yB(—ao) = ¢(z,y)

4.8 Fluctuation of the free energy

In this section, we obtain fluctuation results of the (A, ©)-polymer. For the (A, ©)-
polymer, there is an explicit integral formula for the Laplace transform of the law of the
partition function. The following result is taken from Theorem 3.8.ii of [14]. For our

models, without loss of generality we may assume m > n and ay > 0, by < 0.

Proposition 4.32. Fix m > n, and assume ag > 0 and by < 0. For all s >0

n m n

_sz0 N S (0 —w _ r wl—l—)\k
EP [e @ »>] —/indws =1 Br—w) H (wg —6)) HHF)\;C—F@[ w), (4.190)
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where
1 - 1
sp(W) = ——— e 4.191
(w) (2mi)n! i [(wy, — wy) ( )
k#l
and dw refers to multiple contour integrals in C™.
By the above Proposition, the law of Z(1 1),(m.ny 18 @ symmetric function of (Aq, ..., Ap)
and (01, ...,0,). Therefore we can assume
A< A< < A, and 6 <6, <o <0, (4.192)

In this section we couple (A, ©)-polymer with (A, O, zg)-polymer and obtain some fluc-

tuation bounds of Z(D1 1) For 0 < u; < ug < m, decompose according to the value

of &,:

S(mn)*

ol ) 5 (o) S

(1,1),(m;n) k=u1+1 (1 1),(m,n)

Consider a new environment @(A) with a new parameter A for the rectangle B,,, =

{0,...,m} x{0,...,n} (see (4.47)). By (4.154) and Lemma 4.27,

06 5
Z(Dk,l),(m,n) 201 =k < Z3 1 jn(&y > 0)

0 O >
Z(l,l),(m,n) Z(1 1), (m n) m,n(gy > O)
%H—k n(fy > O) m+1 En 1
7 S 0 eXp m i\n .
'Lrun,n(gy > O) m,n %{L,n(éy Z i

Recall that —w; o ~ log-gamma(\; + zo) and —I% ~ log-gamma(\; + A). Let

m+1—i,n

k—1
Dk: = WI%O —+ Z(wm — I’?H—l—i,n)’ Tk = EpDk, and Sk = Dk — Tk

i=1

Thus we have

Zmn(ur < & < ug) < U2—w exp
)

Zd T Qe L& >0

sup Sk + sup Tk> : (4.193)
(1,1),(m;n)

uy <k<usg u <k<ug

Recall definitions of f, and g, in (4.83).
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Lemma 4.33. Let C' be the constant in (4.117) and s, t, r > 0. Then whenever

m+n > 22 (ay + by + 1), we have the following.

(1) If r > 1/2 and t > 2(sr +4), then

IP)P,Cm,n ) ( me,n(f ) = S<0 ) ) ) > 4—1€tom,n < 12 exp[——]
ZD 211
(1,1),(m,n)
4.194
2o (1/2 <r < AlmnOmn/2) ( )
+
21020 A (8 exp [— Kg’;;’” TD y (AlmnOmn/2 <7 < A2 Omn)
and
Zman(0 < < m,n 2 t
]P)p,Cm,n ) ( ng,n(gy) — S(O- 5 ) ) 2 4—1€t0'm,n S 12 eXp[__]
ZD 211
(1,1),(m,n)
4.195
28 (1/2 <7 < AlnnOmn/2) (4195)
+

r2

20C A <8 exp [—%TD y (AlmnOmn/2 <7 < A2 Omn).
(2) Ift > 2(25Az27, . 0mn + 4), then

Zmn(0 < fe,,. (&) < S(Um,n)2> 1 to t
Z(D’ > 4 tetomn | < 12exp[—ﬁ] (4.196)

1,1),(m,n)

]P)vam,n

and if t > 2(25Az), ,Omn +4), then

Zmn(0 < Ylmn (gy) < 3<Um7n)2)

O
Z(l,l),(m,n)

]PP:Cm,n

o ¢
> 471e! m’”] <12 exp[—ﬁ]. (4.197)

(3) If t > 4(ay + by + 1)(0mn)? then

t
PPmn (108 Zynm — 108 Z1 1y (mmy = tOmn] < 24 exp[—ﬁ]. (4.198)

Proof. (1) We only give the proof for &,.. Write zg = (pnn and My = (0,,,)°. Let
u=max{k : f,, (k) < SM(?/?’} and A\ = 2o + TMO_I/?’ with r > 0. We assume u > 1 since

u = (0 case is trivial.
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From (4.193), probability in (4.194)

~ - 1
<P [ Qb >0 < 5 (4.199)
+Pr [ sup S > tMol/?’ — sup Ty — log(8u)| . (4.200)
0<k<u 0<k<u

We estimate (4.199) first. By Lemma 4.24, if m+n > (128(a; + b1) log 2)3, then we have
~ - 1
(1199) = | Q2,(6 > 0) 2 3

218¢ (1/2 S r S AZ'E]anS/?’/Z) (4201)

Jov:

<

ZEN (Sexp |~ Tger] ), (A, M2 <0 < A2 7).

Here we used the symmetry of M(z) with respect to permutation of parameters (A, ©).

Next, we treat probability (4.200). We use the following Lemma.

Lemma 4.34 (Etemadi’s Inequality, M19 of [5]). If Si,..., S, are sums of independent

random variables, then fort > 0
P{lrg]?gxn |Sk| > 3t} < 31r£]?§<nP{]Sk| >t}
From Taylor’s theorem and monotonicity of A} (z) explained in (4.11),

Tk = k‘Ak(Zo) — k?Ak<)\) — \I/()()\k + )\)

< B[4} (20)] - (A = 20) = To(Ax + 20) < srMp"* + 20" = (s7 -+ 2)Mp"?

since
1
—Wo(A < d —— < M,

O(k+ZO)_)\k+ZO an Owt 20 = 0

by (4.121) and (A.3).
Since
M,
u<m+n 4 (a1 + b1)° M,y
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by (A.6), if m +n > 63(a; + by + 1)° then

log(8u) < 3llog(2(ar + b)) + log(M{/)] < 6(ar +by) + MY* < 200 (4.202)

Therefore we have

sup Ty + log(8u) < [sr + 4]M3/3.

0<k<u

Thus if ¢ > 2[sr + 4], then

(4.200) < P* { sup Sy, > tMg/3/2] .

0<k<u

(4.203)

S) can be written as

Sy =5 +87 =

-

I
—

(2

<Wi,0 - Epwi,o)
k

o @ P Tw
(Im+1—ﬁn ]E Ln+1—@n>‘
=1

—_

We have
Var” 5 = £, (k)
and
Var’ S,gl) = falk — 1) < f., (k).

Apply corollary A.5 part (3) with A = |4} ()| and ro = 2, + 2 :

1/3 1/3
: [l&;! >3 ] = [‘Szi”l >

P
16 +

201 52/3 1/3
< 4(eXp[—&]vexp[—(x”“)tMo ])

tA1U3
571> 7]

(4.204)
211 f. (k) 64

12 t ¢
< 4 (exp[—ﬁ] \ GXP[_6_4]) < 46Xp[_ﬁ]‘
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The last line is from the definition of u, (4.121) and the inequality t > 2sr > s.

Lemma 4.34 gives

t
(4.200) < 12exp[— 53] (4.205)

(2) We derive a different bound for the probability in (4.196). From the superaddi-

tivity of log Z, we have

k-1

Z wi,1 + log Z(Dk,l),(m,n) < log Z(Dl,l),(m,ﬂ)'
i—1

Hence we get

ZD

Zmn 0< e < -
n(0 <& <u) < ZeXp
(1,1),(m,n) k=1

k
W1+ Z(Wi,o - Wi,l)]
i=1

< uexp { sup Sk + sup Tk}
0<k<u 0<k<u

(4.206)

where S and T}, are defined by

k
Ck = wm + Z(ww — wm), Tk = IE”C’k and Sk = Ck — Tk

i=1

Therefore

probability in (4.196) < P* { sup Sy > tMy"? — ( sup T}, +10g(8u)>] . (4.207)

0<k<u 0<k<u
Since —w; o ~ log-gamma(\; + zp), —w;1 ~ log-gamma(\; + 6;) and all w;o, w;1 are
independent, from Taylor’s theorem and monotonicity of A} (z) (see (4.11)), we have
Tk = ]CAk(Zo) — kAk(Gl) — ‘IJQ(/\k —+ 91)

< k| A} (20)] - (01 — 20) — Wo(Ni + 2) < (61 — z0)M'* + 2M, >,
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Therefore from (4.202) and (4.192),

sup Ty, + log(8u) < 2sA22  My"* + 4M,".

0<k<u

Thus

probability in (4.196) < P* | sup S, > tM"%/2| (4.208)

0<k<u
if
t> 2[25Az§wM§/3 +4].

S} can be written as

k
S, = S,E,l) + S,iz) = Z (Wi,o —E° log wz‘,())

We have

and
Var” S = fo, (k= 1) < fuo (R)
since zg < y, = 01. Apply corollary A.5 part (3) with A = ’A;c(zo)| and rg = x,, + 20 :

M

pr [|Sk} > < 4exp[—%]. (4.200)

Lemma 4.34 gives

t
probability in (4.196) < 12 exp[—

o] (4.210)
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m|A! (2 nBl, (=
(3) We use part (2). Set s = |MT§/(30)‘ = 2%330). From (A.8),
m{A,,m(Zo)| S 2(@1 + bl)mAZ@(Zo) S 2(&1 —+ bl)Mo.
Hence s < 2(a; + bl)Mol/S. Since Az}, V Az2 . < (ay + b1)/2, from (4.121), if

t > 4(ay + by + 1)2M2*

then t satisfies conditions in part (2). Therefore

P [log Do =108 Z3 1) oy = EMy! 3]

S]P;p,zo Zmél(&ﬂ > O) Z 4fletM5/3 + P70 ng(gy > 0) Z 4fletMé/3
Z(l,l),(m,n) Z(l,l),(m,n)
t
<24 exp[—ﬁ].

Theorem 4.35. Let C' be the constant in (4.117). Then whenever
m—+n Z 221(611 + bl + 1)6,

we have the following.

[pPCmin Hlog Zmn — log Z(Dl’l),(m’nﬂ > tUm,n}

(

32
2t207 (0 <t < (Almn)*(Omn)?/4)
< 5EA (40 exp [— e WD o (AGnn) X (0mn)4) <t < d(ar + by + 1) (04n0)?
| 28 exp[—35rr], (t > 4(ay + by + 1)*(0mpn)?)

<2320 1v !
-2 (Kpmn)t) "

(4.211)
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Proof. Without loss of generality, we may assume ACppn = (Zm — (mp). Then Az2 | =
(01 — Gnn)/2 > (ag +bo)/2 by (4.192). Write zg = (i and My = (04,,)°. Supperaddi-
tivity of log Z gives

log Z,,, ,, > log Z(lel),(m,n) + wo 1.
Hence

P7* \log Z,,, — log Z(D1’1)7(m’n) < —tMOI/?’] < [pr#o [Wog < —tMé/3

EP,Zoe—wog 1/3

/3 _
_W = (91 — Zo)e M, < (CLO + bo)e M,

For the other direction let 51,50 > 0 and u = 51M02/3, v = 52M5/3.

pP-=o ZDZm,n Z etMS/gl
(1,1),(m,n)
— ]P)p,zo Zmyn({o < fzo(gx) S U} U {0 < gzo(gy) S U}) > etMé/S
_Z(Dl,l),(m,n)Qm,N({o < o (&) S ub U0 < g0(§y) Sv}) —
< P20 Zma(0 <[5 (&) S ) > letM;/S 4 preo Znn(0 < g5 (&y) < v) > letMé/S
L Zawmm 4 Z1,2)6mm) 4
(4.212)
1
#P [Qa({0 <€) S uPU{0 < 0 (6) <D < ] (4.213)
< PP ) ( E fo(g ) U) > _etM3/3 4 ppr2o van({fzo(gx) > u}) > =
Z 4
(1,1),(m,n)
(4.214)
a0 < g, < 1 1 1
po | Zrn02 90 S0 5 Lo | po [, (1 (6) 2 01 2 3]
Z(l,l),(m,n) 4 4

(4.215)
Set r = v/t. First, assume ¢ > 16.

Case 1. 0 <t < (AZSn,n)2M§/3/4-
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We use Lemma 4.33(1). Set s, = s5 = s = v/t/4. Then we have t > 2(sr + 4).

Therefore line (4.212) is bounded by 22°C'/t?>. By Lemma 4.25,

. 1 1 2310
line (4'213) < PPz Qm,n({fzo (53;) > u}) > Z} +PP {Qm,n({gzo(gy) > u}) > Z = 2

Case 2. (Az0, )2M;? /4 <t < (A22,)°M;".

Let

P(t) = 22;10 A (10 exp {— Ko ﬁD .

922
Set s; = v/t/4. From (4.194) and Lemma 4.25, we have

line (4.214) < 2P(t).
Set so = v/t/8. From (4.197) and Lemma 4.25,
line (4.215) < 2P(t).
Case 3. (Azgw)QMOQ/?’ <t <4(ay + by + )M
Set s, = sy = V/t/8. From (4.196), (4.197) and Lemma 4.25, we have
line (4.214) and (4.215) < 2P(t).
Case 4. t > 4(ay + by + 1)]\/[3/3. Use (4.198).
These bounds hold even for 0 < ¢ < 16. O

Proof of Theorem 4.5. In Theorem 4.35, we can replace log Z,, , with E*¢mnlog Z,, , =
®m.n using Lemma 4.21. Since our constants are sufficiently large, direct computation

shows that same upper bounds can be used. Since

108 Z(1 1) (mn) = 108 Z(1,1),(mm) + w11
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and wy 1 ~ log-gamma(A; + 6), by changing C' if necessary, we have upper bounds in

(4.32).

O

Corollary 4.36. Under the same assumptions as in Theorem /.5, there exists a positive

constant Cy that depends on ag + by and a; + by such that

Ep (‘IOg Z(1 1),(m,n) Qbmn’ ) S Cl(am,n>2 [log(Agm,nam,n> + (K )4

Proof. From (4.32), with a new constant C}, we have

(Um,n) Ep|10gZ1 1),(m,n) ¢mn}

=2 / tP? [|log Z(11)(mn) = Gmn| = tOmn] dt
0

(ACWL,'n.a'm,,'n)2 1 o0
<1+2C / - dt + 2C / te~KmnVt 4
1 0

1
. S
<C4 |:10g(A§m,nO-mvn) T (Km,n)4:|

Proof of Theorem 4.7. Set m = |Lx|, n = | Ly|. From (A.8),

1

AnlGna) = = a0

> mM%@m,n)L B, (Cnn) >

Hence from the definition of K,,,, (4.31),

> Abnn
al +b

m,n

Let z = ((s). From (4.25), for all sufficiently large L > Ly,

Almn > 0z = =[(ag + 2) A (by — 2)] .

DN | —

B, (Gnn)-

(4.216)

(4.217)

(4.218)

(4.219)

Therefore we get (4.34) from (4.24) and (4.32). (4.35) is a consequence of Corollary 4.36.

We have (4.36) from (4.163).

]
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Proof of Theorem 4.8. Set m = |Lz|, n = |Ly] and N = m + n. From Lemma 4.31,

we have
1
Km,n Z 1(1 - 3/31)7 (ACm,nO.m,n)2 S CO
for some constant.
Therefore we obtain (4.37) from (4.26) and (4.32). (4.38) is from (4.163). O

Proof of Theorem 4.9. Let m = |Lx], n = |Ly|, and My = o3, . From Theorem 4.5, it

is enough to show that

. Om,n
lim 0.

L—>oo\/Z:

From Assumption 4.2(a),

1 1
—)pl < /(A—am(d)\) < Oy

m(x, — ag — ag)P

for some C),, > 0. Hence from (4.172) and (A.6)

m m C
- Z Vo (T + 20) < — Z Vo (T — ) < (xo—_rr;()) < Cym! P (4.220)
i=2 i=2 m

for some Cy, C; > 0. For all large enough L, we have (., < (by — ag)/2 and

ao + b

nB.((mn) < 1| s ). (4.221)
Therefore it is enough to show that
li L 0
im =0.
L—oo (xm _|_ Cm,n)ﬁ
From the definition of (,,,, we have
Ui (zm + Cnn) 1 — n _,
a S W+ ) + o BG) (4222)

=2
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If G < —ag, by the computation in (4.185) and (4.186),

Uy (2, + 20)
m
m - ! ! v m
< |2 — N Wa (s — )| + | AL (—a0) — A'(—a0)| + }W| (4.223)
=2

+ ‘n/m — 1/81‘ . H\Ij2<a0 + b())l : (Qfm - CL()) + ‘B;l(—a()) — B,(—ao)l] .

If (m,n > —Qy,

\Dl<xm + Cm,n) < \Ijl(xm - aO)
m - m ’
Therefore from Lemma 4.30
U
lim (@ + Cmn) =0
L—o0 L
and hence
li 1 0
im =0.
L= (T + G VL

]

Proof of Theorem 4.6. First consider the case (z,y) € S or (z,y) € S with x/y < s1.
By Theorems 4.7 and 4.8 we have

E?log Z " - =
lim 08 Z(1,1),(|La),| Ly)) — PLx),|Ly) _
L—oo L

0.

On the other hand, we have

z,y).

L—o0

. DlLa), Ly T
lim —————= =
im 7 o(

Erlog Z o -
by (4.29). Therefore lim %8 2@ (Lalllul) _ ¢(x,y). One can apply Theorem 2.23

L—oo L

to have a.s. convergence.
Convergence for boundary points can be proved approximation from S and S; and
continuity of ¢. If S, is nonempty, then we extend Assumption 4.2 to cover S, and

obtain the same results. O
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Appendix A

Appendix

In this section, we summarize basic facts for polygamma functions and log-gamma dis-

tributions.

A.1 Polygamma functions

Here we collect basic facts about polygamma functions.
The logarithm of Gamma function logI'(s) is convex and (real) analytic on (0, 00).
The derivatives are the polygamma funtions W(s) = (d*™!/ds*™1)logT'(s), k > 0. We

use the identities from [3] :

@0($):—7+Z( ! ! )»

i+1 ita
= 1
=0

where v is the Euler constant. From (A.1), all polygamma functions are monotonic

functions. In this thesis, we use these properties a great deal. In particular, we have

Uy (x) >0, W, is decreasing and
(A.2)

Uy(x) <0, Wy is increasing.

From these series representations we have

1 1
logz — — < Uy(x) <log(x+1) — — (A.3)
T T
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for all x > 0 by Corollary 2.3 in [32]. We also have the inequality
1
logx — - < VYy(z) <logex — — (A.4)

from Theorem 3.1 in [2].

For p > 1 and z > 0 we have

1 1 s 1 1 1
NV — < D T A5
v e S Ly S e )

To prove (A.5), use the following inequalities:

/f —1:67’1 i

where f(t) = 1/(x +¢)?. In particular we have

Ko (k- 1) Ko (k1)

o Y s < WUg(2)| € 5 s (A.6)
for all z > 0 and k£ > 1.
From (A.1) we have
<) < @ (A7)
for0<ec<1andk >1.
We also have
B o < o

for x > 0 and k > 1. The left inequality is from (A.6) and the right is from (A.1).

A.2 Log-gamma distribution

In this section, we collect some facts about the log-gamma distribution. We need a

technical lemma whose proof is given by the dominated convergence theorem. Part (4)
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of the following lemma is a well-known result for sufficient statistics (Fisher-Neyman

factorization theorem).

Lemma A.1. Let € be a measurable space with a o-finite measure pu and H,Y
Q x I — R are measurable functions where I C R s an interval. Assume H,Y are

differentiable in the second variable and their derivatives are dominated by a function

9: |2 (w, )], |2 (w,r)| < g(w) for all (w,r) € Q x I. Also assume H is dominated

by a function h: H(w,r) < h(w) for all (w,r) € Q x I. Finally assume " and ge"
eH(w,r)

are p integrable. Define a probability measure @, by dQ,(w) = 70 du(w) where
r

Z(r) = [, e" @ u(dw) is a normalizing factor. Then we have

0 oOH
— f— QT—
(1) B logZ(r)=F r
0 oY OH
QT — QT QT'
(2) _87"E Y(r)y=F B + Cov= (Y, B )

(3) In particular, if H(w,r) =7rT(w) and Y does not depend on r then

dlog Z

— Qr
o = EU(T) (A.9)
0%log Z o
52 = Var®=(T) (A.10)
gEQrY =Cov? (Y,T) = E¥[Y(T — EVT)] (A.11)
.
82

——E“Y = Cov? (Y,(T — E¥T)?)
or? (A.12)

= E% Y (T — E9T)* = Var® (7)) ].
(4) If H(w,r) = rT(w) then the conditional law of w under Q, given T is independent

of r: Qrlw e - |T) =Qpy(we-|T) for all r,ry € I.
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For o, § > 0 we define the log-gamma(«,3) distribution by the distribution of w if

e¥ ~ Gamma(a,). The CDF of the log-gamma(a, ) distribution is given by

Fla,p,z) = Fﬁ(:) /_x exp [ay — Bey} dy (A.13)

for x € R. Note that if A ~ log-gamma(«,) then
EA = Uy(a) —log B, VarA = U,(a) (A.14)

and for t > —«

log Ee'* =log'(av + t) — log I'(a) — tlog 3. (A.15)

For r > 0 we write log-gamma(r) and F.(z) = F(r,z) for log-gamma(r,1) and

F(r,1,x), respectively. Let H, : (0,1) — R be the inverse of F, satisfying
F(r,H,(u)) =u (A.16)

for all w € (0,1). We write H,(u) = H(r,u) when subscripts are not convenient. Then

if 7 is a Uniform(0, 1) random variable, H,.(n) is a log-gamma(r) random variable. From

(A.16),
0H OF/or
W(r, u) = _8F/(9x(r’ H,(u)). (A.17)
For r > 0 and 2 € R define the function
L(r,z) = —gﬁ:—;gr(r, )
T (A.18)
- / (Wo(r) — y)eW e "+ dy.
Then
O r) = Lo Ho(w) (A.19)



and

where Li(r, z) is defined by

0*H {8[, oL
u) =

Li(r,z) = oL —(r,x) + L(r, x)g:[; (r,x).

or

In next lemma, we collect some properties of H, L and L;.

Lemma A.2. L and L satisfy

0< Lir,z) < 62(1; ) [l = wo(r)| + 0]

and

’Ll(T,IL’)l §(1+€2<1\/7’)) eQ(ITVT) [x—\lfo N+ ]

+M[ — Wo(r |+\/W}

If A ~ log-gamma(r) and n ~ Uniform(0, 1), then

EL(r, A) = Egﬂ (r,m) = %EH (r,m) = Vi (r)
and
EL(r, A) = ;221{( 77)—5—22131{( 1) = Wa(r).
We also have
B (L0 AP) < S0 )

and

E|Li(r, A)| < (1420e*(1V 1)) [T(r)].

Finally, we have

T2

Ee!tnA) < t| < :
e oo for |t V)

W + L%:| (T, Hr(u)) - Ll(r7 Hr(u))7
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(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)
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Proof. Let A be a random variable with the distribution log-gamma(r). For a function

f, we denote the expectation of f(A) by E”"f(A). From (A.11),

aa—f(r’ x) = E"[I{A < z}(A— TUy(r))].
Hence for x; < o,
oF or r
) = S ) = By < A < ma}(A — Wo(0)].

Therefore 2 F(r,-) is decreasing on (—oo, Wo(r)] and increasing on [¥o(r),c0). Since
2 F(r,—00) = ZF(r,00) = 0, 2F(r,z) < 0 for all z € R. Thus we have L > 0 from
(A.18).

We record some useful integral representations of L: From (A.18) and E"A = Wy (r),

we have
L(r,z) = / (y — Wo(r))ev™ e+ dy. (A.29)
By a change of variables, substituting t = y — x, we get
0

Lir,z) = / (Wo(r) — & — t)e™ expl—e* + ¢7] dt (A.30)
and

L(r,z) = / (x — Uo(r) +t)e" exp[—e®™ + "] dt. (A.31)

0

Now we estimate L: For r > 0 let

[ (r) exple”")]
er‘llo(r) :

C(r) = (A.32)

From (A.13), (A.14), (A.30) and (A.31), we have, for x < Wq(r),

0
L(r,z) <(To(r) — z) / e exp[—e¥oFt 4 Vo] gy

—0o0

0
+ / t]e™ exp[—e Vo H 4 P gy

—00

<C(r) [\x = Wo(r)| + v ‘1’1(7")]
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and for z > Wq(r)

L(T, IB) S(l' _ \110(7“)) / et eXp[_e‘Ifo(r)-i-t + 6\110(7“)] dt
0
+/ |t|e" exp[—e¥o)Ht 4 ¥l gt
0

<C(r) [|x W ()| + \/wl(r)} .

Hence we have
L(r,@) < C(r) [l = Wo(r)| + /I1(7)] - (A.33)
Therefore we obtain (A.22) from Lemma A.3 below. Next, we prove (A.23). First, we

estimate dL/0r. From (A.30) and (A.31) we have

L 0
0 = Uy (r )/ e exp[—e” T + e”] dt

ar
b (A.34)
+ / (Uo(r) — z — t)te™ exp[—e™ + €] dt
and
oL _ —\111(7")/ e exp[—e T + €] dt
or 0

N (A.35)
+ / (z — Wo(r) + t)te exp[—e™" + 7] dt.
0

For x < Wy(r), from (A.34),

oL 0
— <y (r) / et exp[—eYo Tt 4 ¥ gy

<C(r)¥y(r)
and
0
Z—L 2/ (Uo(r) — x — t)te" e exp|—et + 7] dt
r —00

0
= W(r)] / " exp|— Yo | W) gy

0
- / t2e" exp[—e 0Tt 4 o] gt

—00

> — O [|o = Wo(r) VI + 1)
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Hence we have
!2—5\ < () [l = To(n)| VI () + W)
For x > Wy(r), we obtain the same inequality using (A.35). Therefore
@—f! < C(r) [\33 = Wo(r) |V (r) + \Ijl(r):| : (A.36)

Second, we estimate OL/Jz. From (A.18) and (A.31), we have

Z—i’(r, z) = (Wo(r) — 2) + (¢ — r)L(r, 2) (A.37)
and
g—i = /0 h it exp[—e"t" + €*] dt .
e /0 (= o(r) + 1) (e — 1) exp[—c™ + 7] dt.
From (A.33) and (A.37) we get
Lg—i > — |z — Uo(r)|L — pL?
> = O(r) [(w = Wo(r)” + o = To(r) VW17 (A-39)
—rC(r)? [(x — Wo(r)? + 20a — Vo (r) |/ 1 (r) + \Ifl(r)] .
For z < Wy(r), from (A.37),
L9E e~z
Oz (A.40)

<C) [ (@ = Do(r)* + o = Do) VL)
since e” < e < . For x > Wy(r) we use (A.38) :

oL
— <<
or —

S/ e exp[—eo T YoM gt < C(r).
0

/ e exp[—e* T + "] dt
0
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Hence

2L <ot < ey [|x — W (r)| + \/\Ill(r)] . (A.41)

ox

Now we can estimate Lq:

From (A.36), (A.40) and (A.41) we have

La(r,2) C() [(2 = o) + 2l = o(r)| VW) + W1(r)] + C(r)L

, (A.42)
<CW) [Jo = Wo()] + VI + Cr)? [l = Wo(r)] + /T (7))
and from (A.36) and (A.39) we get
L) 2 = (14700 C0) [lo = W) + VD] . (A43)
Therefore we have
L4 2)| < (14 7C0)) C0) [l = Wofr)| + VL]
(A.44)

+ O [Jo = Wolr)] + V()]
(A.44) and (A.45) give (A.23).
We obtain (A.24) and (A.25) from (A.22), (A.23) and monotonicity of H(p,u) in p
using the dominated convergence theorem. (A.26) and (A.28) are from (A.22).
From the first line of (A.42) and (A.24), the positive part of L; satisfies
E (Li(r, A)* < 5C(r)¥,(r).
Hence by (A.8) and (A.25),
E|Li(r, A)| = 2E (L1(r, A))" — EL(r, A)
< | (r)| +10C(r) Wy (r)
< Wy (r)| + 20rC(r)|Wy(r)]

< (142021 V 7)) |Wy(r).

This completes the proof of the Lemma. O]



Lemma A.3. C in (A.32) is a strictly decreasing function and satisfies
5,1
0<C(r)<e?(=Vv1).
r
Proof. Note that C' satisfies
log C(r) = log T'(r) + ") — pTy(r)

and

(log C(r))" = ("™ — r)¥y(r) < 0.

The last inequality is from the Jensen’s inequality :
eV = B4 < Ered =i,

Hence C' is strictly decreasing.

Consider
r
e = e
Then from (A.3)
(log C1(r)) == — 1+ (") — )T, (1)

The last inequality is from Lemma 1.2 of [4].
From (A.3), C1(0) = lim,_,o C1(r) = e. Therefore

6r+1

r

c(r)

Since C' is strictly decreasing, C(r) < C(1) < e* for r > 1. This proves (A.45).
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(A.45)

O
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Next, we estimate some moments of log-gamma distribution related random vari-

ables. We need the following lemma.

Lemma A.4. Let Zy, Z,,... be independent random variables that satisfy for all i =
1,2,... E(Z;) =0 and E(|Z;|’) < oo for some p > 2. Set Sy = Zy + --- + Zj. Below

C = (18(1 —p~1)?p)” is a constant that depends only on p. The following hold.

(1)
>, ElZi|"
E|S,|P < (J% kP2, (A.46)

(2) Let a; > 0 and T > 0 be constants such that for all 1 < i <k and t € [-T,T],

log Eet%i < a;t?/2. Then for k > 1 and A > %Zle a;, we have for all x>0

P [% > x} VP [% < —x} < e kol@), (A.A4T)
where
ﬁﬁ ., 0<z < AT
g(z) =
Ty — A2 4 > AT.

2 9

Since g(x) > 552> A 1Tz, we also have for all x > 0

Sk Sk
p |2t ) LA
{k >x|V A < -
<exp|—k(552° A iTx)] (A.48)

— expl—42] V exp|—4L]
In this case we have

p+1

Tp

EIS” < p(2kAV/T(p/2) + =—T(p+1). (A.49)
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Proof. Part (1). This is a simple consequence of the Burkholder-Davis-Gundy inequality

[11]forp>landgt=1-ph

1
18p1/2q

(BY))'" < (ElSi[")'" < 18¢"p (BY!)'" (A.50)

where
Y, = (zk: 23)1/2'
i=1
Jensen’s inequality gives (1).
Part (2). (A.47) is a simple consequence of large deviation theory. For (A.49), we

have

E|S,” = p / P (S| > o] dy
0

<2p /Ooo yP1 (exp[—QlZ—QA] + exp[—Ty/Q]) dy (A.51)
= p(2kA)P/*T(p/2) + ;J;If(p +1).

O

Corollary A.5. LetY; be independent random variables with the distribution log-gamma(r;)

k
1
forr; > 0. Set Z;, =Y, —EY; and S, = Z1 + ... + Zy. Let ux = EZ(S’”V Then for
i=1
C=2""T(p+1)(18(1—p ) )", (p>2)
the following hold.

(1)
E|S,]P < Ckp/Q/ (Tip + i) p(dr). (A.52)

rp/z

(2) For fized ro >0, if r; > 1o for alli > 1, for kA > Var Sy and x > 0, we have

2
P15, > ] v P[5, < —a] <) — exp(—[ - 1 120
2 (A.53)
< exp(— ) V exp(—20)
- 8 Var Sy 4 7
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(3) Set W; = L(r;,Y;) — Vy(r;) and T, = Wy + - -+ + Wy, where L is given by (A.18).
Then

1 1
E|T,F < C1kp/2/ (TTP + M) pur(dr), (A.54)

where

Cy =2"PM(p+1) (181 —p™) )", (p22).

Proof. We need to estimate some moments of a log-gamma random variable Y with a

parameter r > 0. The logarithmic moment generating function of Z =Y — EY is
f(s) =logEe’” =logT(r +s) —log'(r) — sUo(r), s> —r.

Note that f(0) = f/(0) = 0 and f*+1(0) = W, (r) for k > 1. Taylor’s theorem gives

F(8) = F(0) + 5/(0) + 55 F(5) = 35U+ 57,

for some s* with 0 < |s*| < |s|. Therefore, for |s| <r/2 by (A.7),
1
0< f(s) < 552\111(7’/2) < 25704 (r).

From (A.6) and (A.49) with k£ = 1 we have

2p+1

E|ZP < p(20,(r/2)) T (p/2) + = T(p + 1)

rp

L (A.55)
< 22”+2F(p + 1) <— + m) .

rp

Let W = L(r,Y) — Uy(r). Then EW =0 and
(WP < L{r, Y)P v (W (r))?

since L > 0. By (A.22), we have

20~ 1e?P (1 V 1rP)

rp

L(r,Y)P < (Zp + (\Ill(r))p/2) )
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Since /W (r) < e*(1Vr)/r by (A.6) we have

9r=1e20(1 \/ 17)
'Y

W< (22 + (W (r)p).

Therefore (A.55) gives

1 1
E|W|P < 2332 (p + 1) (— + ) : (A.56)

r2p rp/ 2

We can use (A.55) together with (A.46) to prove part (1) of this corollary. For part
(2), we use (A.48). Set a; = 4W,(r;), T = ro/2 then ¥  a; = 4 Var(S}). Substitute kz

for x, then we have the result. For part (3), use (A.56) and (A.46). O
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