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Abstract

Limiting free energy and scaling exponents for directed polymers with inho-

mogeneous parameters

We consider directed polymer models where a fluctuating path is coupled with a

random environment. Our focus is on the models with a random environment given by

inhomogeneous parameters. We study the limiting free energy of fairly general inhomo-

geneous models. First, we derive the existence and basic properties of the limiting free

energy for an asymptotically mean stationary model. Second, we apply our results to

the exactly solvable log-gamma polymer. We give a variational formula for the point to

point free energy in terms of the marginal distributions of the parameters. We identify

critical angles at which the free energy transitions from strictly concave to linear. We

also obtain explicit formulas for some special distributions of the parameters. Third, we

study the fluctuation of free energy around some limit shape. We give scaling exponents

for the log-gamma polymer. The KPZ exponent 1/3 appears in the concave sector and

the diffusive exponent 1/2 in the flat region.



ii

Acknowledgements

I am sincerely grateful to the many people who have helped me complete this dissertation.

First, I would like to thank my advisor Timo Seppäläinen for his patience with my
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Chapter 1

Introduction

1.1 Directed polymer models

We study a model called directed polymer in a random environment where a fluctu-

ating path is coupled with a random environment (see [20, 21, 33] for related results

and notations). We consider directed paths in the nonnegative orthant Zd+ of the d-

dimensional integer lattice. Let x� = (xk)k≥0 denote the directed path started at the

origin: xk ∈ Zd+,x0 = 0, and xk − xk−1 ∈ R = {e1, e2, . . . , ed} where ei (1 ≤ i ≤ d) are

the standard basis vectors of Rd. Let Πp2l
n be the set of admissible paths x� = (xi)0≤i≤n

that start at the origin. (Here p2l stands for “point to line”.) The path x� represents

the directed polymer. The environment ω = {ωx : x ∈ Zd+} is a collection of real-valued

weights.

For a path segment x0,n = (x0, . . . ,xn), Hn(x0,n) is the total weight collected by the

walk up to time n: Hn(x�) = Hn(x0,n) =
∑n

i=1 ωxi . The quenched polymer distribution

on paths, in environment ω and at inverse temperature β > 0, is the probability measure

defined by

Qω
n(x�) =

1

Zω
n

exp{βHn(x0,n)} (1.1)



2

where

Zω
n =

∑
x0,n∈Πp2ln

eβHn(x0,n)

is a normalization factor (partition function). Our primary subjects are asymptotic

behavior of logZω
n (free energy) and its fluctuation around the limiting value as n goes

to infinity. This model is for directed polymers with free endpoints. Another model

considered is the directed polymer with constrained endpoints. Relevant definitions are

as follows.

For u ≤ v (coordinatewise inequality) in Zd+ let Πu,v denote the set of admissible

lattice paths x� = (xi)0≤i≤n with n = |v−u|1 that satisfy x0 = u, xi−xi−1 ∈ R, xn = v.

Define point-to-point polymer partition functions for u ≤ v in Zd+ by

Zu,v = Zω
u,v =

∑
x�∈Πu,v

exp{β
|v−u|1∑
i=1

ωxi} =
∑

x�∈Πu,v

exp{βH|v−u|1(x�)} (1.2)

and the polymer measure on the set of paths Πu,v by

Qu,v{x�} = Qω
u,v{x�} =

1

Zu,v

exp{β
|v−u|1∑
i=1

ωxi}, x� ∈ Πu,v. (1.3)

The environment ω is typically assumed to be i.i.d. random variables and subaddi-

tive ergodic theorem plays an essential role to prove the existence of limiting free energy.

In the present work, we focus on the environment driven by nonstationary distributions.

Our goal is to derive limit theorems similar to those of i.i.d. cases, in inhomogeneous

settings. However, there is no hope to derive limit theorems under arbitrary inhomoge-

neous distributions. Thus we require some sort of stationarity. Our results are based on

the asymptotically mean stationary setting in a sense made precise below.

Let (Ω,F) be a measurable space and T : Ω → Ω a measurable transformation. A

probability measure P is called asymptotically mean stationary (AMS) (relative to T ),
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if there is a probability measure P̄ on (Ω,F) such that

∀B ∈ F : lim
n→∞

1

n

n−1∑
i=0

P (T−iB) = P̄ (B). (1.4)

In this setting the measure P̄ is stationary and it is therefore called the stationary mean

of P , see [24, 25] for details. The invariant σ algebra I is the set of all invariant events

(T−1B = B, ∀B ∈ I). A probability measure P is said to be ergodic if P (B) = 0 or 1 for

B ∈ I. AMS measure is ergodic if and only if its stationary mean is (Lemma 7.13 [24]).

Examples of AMS measures are given in Chapters 2 and 3.

1.2 Background

Polymer models were first introduced by Huse and Henley in 1985 in statistical physics

context [26]. Since then rigorous mathematical research started [27]. When β = 0,

the polymer model becomes a simple random walk, more precisely, a rotated version of

SRW. The diagonal axis plays the role of the time axis. If β goes to∞, that is, if we take

the zero temperature limit, our model converges to the last-passage percolation model

or corner growth model. Our main interest is in the effect of random environment on

the behavior of the polymer at a positive temperature 0 < β <∞. For d ≥ 4 and small

β > 0, these models show diffusive behavior and converge to Brownian motion if suitably

scaled [8]. These results were obtained through the observation that Wn = Zn/EZn is a

martingale under i.i.d. random environment. The limit W∞ = limWn is either almost

surely 0 or almost surely positive by a zero-one law. The case W∞ > 0 is called weak

disorder. Note that β = 0 case gives W∞ = 1 and the disordered noise driven by random

environment has no effect on the behavior of polymer. The case W∞ = 0 is called strong

disorder since the disordered noise has a strong effect. It is known that there is a critical
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value βc such that weak disorder appears for β < βc and strong for β > βc. For d = 2

and d = 3, βc = 0 [12]. Since the β parameter plays no role in the present work, we fix

its value at β = 1.

d = 2 cases have received active research attention regarding the KPZ (Kardar-Paris-

Zhang) universality class (see the survey [13] and references therein). Both polymer

model and corner growth model are believed to belong to the KPZ class. In many

cases, both models share similar properties and proof methodologies. KPZ class is

characterized by its statistics: the fluctuations around limiting quantities (limiting free

energy, time constant, etc.) are the order of n1/3 and appropriately rescaled random

variables converge to some Tracy-Widom distributions. These conjectured exponents

and limiting distributions are proved for some exactly solvable models where explicit

formulas are available for precise analysis. For corner growth models, not only i.i.d. cases

but also inhomogeneous cases are studied ([17, 22, 23]). Our application to a log-gamma

model in the later part of this paper is inspired by Emrah’s work [17]. We adapted some

notations and reasoning from [17]. In polymer models, most researches were carried out

with i.i.d. setting. Some inhomogeneous parameter models for a log-gamma model are

considered in [9, 14] in the course of deriving the results for i.i.d. cases. Their works

are useful if one studies the Tracy-Widom distributional limit of inhomogeneous models.

In this thesis, we consider the limiting free energy and fluctuation exponents of exactly

solvable log-gamma model under inhomogeneous settings.
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1.3 Log-gamma polymer models

In this section, we introduce the inhomogeneous 2-dimensional log-gamma polymer

which can be explicitly solvable. The log-gamma polymer was first introduced in [33] and

exact formulas of limits are derived under i.i.d. assumptions. This model belongs to the

KPZ universality class and conjectured scaling exponents with limiting Tracy-Widom

distribution were derived in [9, 33].

We change the picture slightly. Our model lives in N2. Choose parameters Λ =

{λi}∞i=1 and Θ = {θj}∞j=1. (Λ,Θ) is in S0 , [a0, a1]N × [b0, b1]N ' ([a0, a1]× [b0, b1])N for

some a0 < a1 and b0 < b1 in R with a0 + b0 > 0. S0 is equipped with the product Borel

σ-algebra G0 generated by coordinate projections. We give weight parameters at site

(i, j) ∈ N2 by ρi,j = λi + θj. Let ρ = {ρx}x∈N2 . The distribution Pρ of ω given ρ is a

product measure over x = (i, j) ∈ N2 with

e−ω(i,j) ∼ Gamma(ρi,j), (1.5)

where the density of the Gamma(ρi,j) is given in Table 1. We call the distribution of

−ω(i, j) the log-gamma(ρi,j) distribution. See A.2 for the properties of the log-gamma

distribution. We consider either deterministic or random parameters Λ and Θ. In case

of random parameters, Pρ is the conditional distribution of ω given (Λ,Θ) and the

(unconditional) distribution of ω is denoted by P. Hence P =
∫
Pρ(Λ,Θ) dQ(Λ,Θ), where

Q is the distribution of (Λ,Θ).

It turns out that, for some AMS choices of parameters, the log-gamma polymer

models have properties that allow precise analysis. In particular, we can compute the

limiting free energy and the scaling exponents for the fluctuation. As a simple example

of parameters, one can take i.i.d. sequences of Λ and Θ. More detailed formulations of
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the model and results can be found in Chapters 3 and 4.

1.4 Overview of the main results

This thesis consists of three main chapters. Each chapter includes more detailed in-

formation and results. In this section, we state some selected results of our work. A

summary of the organization of the results obtained in this thesis is as follows.

Chapter 2 considers general inhomogeneous polymer models. In Chapter 2 we show

the existence of the limiting free energy under a quite general AMS setting. For x ∈ Rd
+,

a quantity, if exists,

lim
n→∞

1

n
logZω

0,bnxc (1.6)

is called the limiting point-to-point free energy. The limiting point-to-line free energy is

defined by

lim
n→∞

1

n
logZω

n (1.7)

if the limit exists.

Positive temperature polymer models were studied by several authors. In [19], large

deviations and law of large numbers for various polymer related quantities are derived

in general i.i.d. setting. They proved large deviations of free energy and quenched large

deviations for the exit point of the polymer chain. In this thesis we focus on law of large

numbers for the free energy of polymers with inhomogeneous parameters. The existence

of limiting free energy was proved in [19] using standard subadditive ergodic theorems.

We employ some ideas from [19] using a nonstationary subadditive ergodic theorem.

However the setting and argument are quite complicated due to nonstationarity. There

is a one difference between i.i.d. weights and AMS weights. For i.i.d. weights, the
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limiting free energy is deterministic and continuous on Rd
+. However, in general AMS

setting the limiting free energy is deterministic and continuous only on Rd
>0. The limiting

free energy is random on the boundary (see Theorem 3.6).

In Section 2.1 precise assumptions on the distribution of weights are given, and main

results are stated. In Section 2.3 AMS measures are fully studied, and a nonstation-

ary subadditive ergodic theorem is established. A nonstationary subadditive ergodic

theorem is an essential tool to establish the existence of the limiting free energy with

inhomogeneous parameters. We devote Section 2.4 to technical results for the proof of

the main results.

In Chapter 3, we restrict our discussion to 2-dimensional polymers. For 2d-polymers,

we provide more natural and general weight assumptions to guarantee the existence of

limiting free energy (see Assumption 3.1). We apply these results to explicitly solvable

model, log-gamma polymer. Moreover, we show that the limiting point-to-point free

energy has a variational formula

φ̄(x, y) = lim
n→∞

1

n
logZω

0,(bnxc,bnyc) = inf
−a0<z<b0

{xA(z) + yB(z)},

where A and B are convex functions on the interval (−a0, b0) defined by

A(z) = −
∫

(0,∞)

Ψ0(z + λ)α(dλ),

B(z) = −
∫

(0,∞)

Ψ0(−z + θ) β(dθ),

where Ψ0 is the digamma function (see Table 1), and α, β are some distributions of

parameters. Based on this formula, we give more precise picture of limiting free energy.

Figure 1 shows a possible level curve of limiting free energy. As we can see, we have flat

regions S1 and S2 near coordinate axes. We give conditions for the existence of these flat



8

regions in terms of A and B. In principle, we can obtain similar variational formulas for

general polymers. However precise information about A and B are not known in general,

it is hard to find conditions for these regions in terms of inhomogeneous parameter

distributions.

Emrah derived some explicit formulas for some inhomogeneous corner growth models

and identified some conditions for flat regions in [17]. We adapt the zero-temperature

argument of [17] to positive temperature polymers. In Section 3.4 the inhomogeneous

log-gamma model is analyzed, and certain formulas are derived.
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Figure 1: A level curve of limiting free energy (red).

Chapter 4 is concerned about the fluctuation around the limiting free energy. We

restrict to a specific model, the log-gamma polymer. With slightly less restrictive as-

sumptions on the parameters, scaling exponents are derived. Indeed we only assume

some weak convergence conditions instead of much stronger AMS conditions. This
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weakening is possible due to explicit formulas which enable precise analysis. We focus

on quenched (a fixed realization of parameters) fluctuation. Due to the inhomogeneity

of parameters, we study fluctuations around quenched shape φm,n (see (4.19)) instead of

annealed shape φ̄(x, y). The quenched shape itself converges to the annealed shape as

(m,n) grows along the direction (x, y). We show that the fluctuation of the free energy

around φm,n is of order n1/3 in the region S, and of order n1/2 in S1 and S2. We will give

the precise meaning of fluctuation in Chapter 4 and derive various quantities to prove

this assertion. The key feature that enables precise analysis is the existence of stationary

processes, which have the Burke property that gives exact formulas for the expectation

and variance of free energy. We discuss these formulas at length in Chapter 4.

1.5 Notations and conventions

Some notations used in this paper are provided below.

Table 1: Notations

Notation Definition

N the set of natural numbers {1, 2, 3, . . . }

Z+ the set of nonnegative integers {0, 1, 2, . . . }

R+ the set of nonnegative real numbers

R>0 the set of positive real numbers

[n,m] the set {n, . . . ,m} (n ≤ m) for n,m ∈ N

x ∨ y max{x, y} for x, y ∈ R

x ∧ y min{x, y} for x, y ∈ R

Continued on next page
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Continuation of Table 1

Notation Definition

bxc the largest integer less than or equal to x ∈ R

dxe the least integer greater than or equal to x ∈ R

|x|p the `p norm (1 ≤ p <∞) of x ∈ Rd. Equals (|x1|p + · · ·+ |xd|p)1/p

|x|∞ the `∞ norm of x ∈ Rd. Equals max1≤i≤d |xi|

x · y the inner product in Rd. Equals x1y1 + · · ·+ xdyd

0 the zero vector (0, . . . , 0) in Rd

1 the one vector (1, . . . , 1) in Rd

ei the i-th standard coordinate vector (0, . . . , 1, . . . , 0) of Rd

x� a path x� = (xk)
n
k=0 in Zd+ with steps zk = xk − xk−1 ∈ R = {e1, e2, . . . , ed}

|A| = card(A) the cardinality of a set A

Γ(ρ) the usual gamma function for ρ > 0. Γ(ρ) =
∫∞

0
xρ−1e−x dx

Gamma(α,β) the gamma distribution on R+ with the density Γ(α)−1βαxα−1e−βx dx

Gamma(ρ) the gamma distribution Gamma(ρ,1)

Ψ0 the digamma function Γ′/Γ

Ψ1 the trigamma function Ψ′0

Vector notations: elements of Rd and Zd are occasionally written as v = (v1, v2, . . . , vd)

to emphasize v is a vector. We understand some vector operations and relations coor-

dinatewise. Here are examples. Inequalities are coordinatewise: x ≤ y if xi ≤ yi and

x < y if xi < yi for 1 ≤ i ≤ d. We also understand positive and negative parts and the

absolute value of vectors coordinatewise: x± = (x±1 , . . . , x
±
d ), |x| = (|x1|, . . . , |xd|). For

x ∈ Rd, bxc = (bx1c, . . . , bxdc) is a floor of x.
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Shift maps Tv act on suitably indexed configurations w = (wx) by (Tvw)x = wv+x.

We employ compact expressions like T -invariant, T -ergodic, and T -AMS.
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Chapter 2

Directed polymers with

inhomogeneous parameters

2.1 Introduction

We present our results in this chapter and explain precise assumptions on the distribution

of weights. Refer to Section 1.1 for the definition of polymer models and free energy.

A natural nonstationary condition for weights would be independent but not identically

distributed weights. The distribution of weights is given by inhomogeneous parameters.

Let (S,S) be a measurable space. Let (Ω0,G0) be the space of parameters where Ω0 =

SZd+ and G0 the product σ-algebra generated by coordinate projections. Let Ω1 = RZd+

be the space of weights with the product Borel σ-algebra G1. To control errors of

estimations, we will assume, throughout this paper, the following:

Assumption 2.1. (a) There is a nonnegative random variable η0 which has a cumu-

lative distribution function (CDF) F with the property∫ ∞
0

(1− F (x))1/ddx <∞. (2.1)

(b) A function F2 : S× R→ [0, 1] is given. For fixed ρ0 ∈ S, F2(ρ0, ·) is a CDF. If a

random variable ω0 has the CDF F2(ρ0, ·), then |ω0| is stochastically dominated by
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η0 (|ω0| ≤ST η0).

We consider the following weight distributions.

Definition 2.2. For given parameters ρ = {ρx : x ∈ Zd+} ∈ Ω0, define a distribution of

weights {ωx : x ∈ Zd+} ∈ Ω1 by a product measure using F2 in Assumption 2.1 :

Pρ = ⊗x∈Zd+F2(ρx, ·). (2.2)

As explained in Introduction 1.1 we use the AMS setting to guarantee the existence

of limits. To apply the AMS setting to our models we need more definitions. Suppose

(Ω,F) is a measurable space. Let T̂ = {Tu}u∈Zd+ be a semigroup of measurable transfor-

mations of Ω such that T0 = Id|Ω and Tu ◦ Tv = Tu+v for all u,v ∈ Zd+. A probability

measure P on Ω is called stationary with respect to T̂ (or T̂ -stationary) if P = P ◦ T−1
u

for each u ∈ Zd+. We say P is totally ergodic with respect to T̂ (or T̂ -totally ergodic)

if Iu ⊆ F , the invariant σ-field of Tu, is trivial for each u ∈ Nd : P (A) ∈ {0, 1} for

A ∈ Iu, u ∈ Nd. Note that this definition refers only to the bulk directions u > 0 and

do not require T̂ -stationarity. To state assumptions of main results we give the following

definition.

Definition 2.3. Let Ω and T̂ be as above. A probability measure Q is called AMS with

respect to T̂ (or T̂ -AMS) if the following conditions are satisfied.

(a) There is a reference measure Q0 on Ω such that Q0 is stationary and totally ergodic

with respect to T̂ .

(b) For each u ∈ Nd, Q is AMS relative to Tu with stationary mean Q0 :

∀B ∈ F : lim
n→∞

1

n

n−1∑
i=0

Q((Tu)−iB) = Q0(B). (2.3)
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We call Q0 the stationary mean of Q. Q is also T̂ -totally ergodic by Lemma 7.13 of

[24]. Note that we do not require that Q is AMS relative to Tu if u /∈ Nd.

In this chapter we select a particular semigroup as follows: Let Tu : Ω0 → Ω0 be

a translation operator given by Tu(ρ)(v) = ρ(v + u) for ρ ∈ Ω0 and u,v ∈ Zd+. Then

T̂ = {Tu}u∈Zd+ forms a semigroup. The following assumption is used for the main results

of this chapter.

Assumption 2.4. We consider either deterministic or random parameters ρ ∈ Ω0.

When ρx are random, we denote the distribution of {ρx : x ∈ Zd+} by Q. We assume

Q is T̂ -AMS. When parameters ρx are chosen according to Q, the conditional law of

weights ω = {ωx : x ∈ Zd+} given ρ is given by (2.2): P (ω ∈ · | ρ) = Pρ.

Remark 2.5. Deterministic parameter also can be handled in this framework. Q is

given by the Dirac measure Q = δρ. The distribution of ω on Ω1 = RZd+ is denoted by P.

Hence P = EQPρ. Note that for deterministic parameters, P = Pρ. Under P (Pρ), the

expectation is denoted by E (Eρ). We write ν to denote the joint distribution of (ρ, ω)

on Ω0 × Ω1. Hence P above is simply ν. Q and P are marginal distributions of ν. We

adopt this notation to remove confusion.

In this thesis, we are interested in the scaling limits of free energy. To obtain limit

theorems, we use a nonstationary subadditive ergodic theorem. A subadditive ergodic

theorem requires further restrictions on Q and F2 since in general, the subadditive

ergodic theorem does not hold in the AMS setting. Therefore we add the following.

Assumption 2.6. The distribution of parameters Q and F2 satisfy one of the following

conditions.

(a) Q � Q0.
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(b) We assume that S is equipped with a partial order �. (Typically S is a Polish

space with a closed ordering so that all intervals are measurable [29].) Give a co-

ordinatewise partial order on Ω0. Now assume Q is stochastically smaller than Q0

on Ω0, that is,
∫
g dQ ≤

∫
g dQ0 for all bounded monotonically increasing function

g : Ω0 → R. In this case, we assume that the function F2 in Assumption 2.1

is monotonically decreasing function in the first variable: F2(s1, x) ≥ F2(s2, x) if

s1 � s2.

Remark 2.7. If two measurable maps ρ, ρ0 : (Ω,P)→ Ω0 satisfy ρx � ρ0
x for all x ∈ Zd+,

then the distribution of ρ is stochastically smaller than the distribution of ρ0.

Here are some examples of Q and Q0.

Example 2.8. (a) Let L ∈ N be fixed. Suppose ρ ∈ Ω0 is deterministic and ρx+Lei =

ρx for all x ∈ Zd+ and ei, i = 1, . . . , d. Then

Q0 =
1

Ld

∑
0≤x≤(L−1)1

δTx(ρ)

is T̂ -stationary and ergodic. In this case, we take Q = δρ. Hence periodic weights

belong to our model. Note that an i.i.d. environment ω belongs to this example

with L = 1.

(b) Q0 = α⊗Z
d
+ where α is a probability measures on S. Q0 is totally ergodic with

respect to T̂ by Kolmogorov 0-1 law. For Q, choose any nonnegative function

f : Ω0 → R with EQ0f = 1 and take dQ = fdQ0.

(c) Let S = R with the standard ordering. Fix N ∈ N, a0 ∈ R and u ∈ Nd. Let Q0

be any probability measure on [a0,∞)Z
d
+ ⊆ Ω0 that is T̂ -stationary and ergodic.
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Let ρ0 : (Ω,P) → Ω0 be a measurable map with the distribution Q0. Suppose a

measurable map ρ : Ω → Ω0 satisfies ρx = ρ0
x for x ≥ Nu and ρx ≤ a0 for other

x ∈ Zd+. Then Q, the distribution of ρ, is stochastically smaller than Q0. One can

easily show that Q is T̂ -AMS with stationary mean Q0.

(d) Assumption 2.6 (b) can be satisfied with deterministic parameters. If we combine

(a) and (c), we can construct an example: Let S = (0,∞) with the standard

ordering. Fix N ∈ N, b > a > 0 in S. Set ρ0
x = b for all x ∈ Zd+. Set ρx = b for

all x ≥ N1 and ρx = a for other points. Take F2 the cdf of log-gamma random

variables defined by F2(r, x) = F (r, 1, x) using (A.13) (r ∈ S, x ∈ R). Then the

distributions of ρ0 and ρ become an example.

2.2 Results

We begin by defining the concept of scaling limits. For a given function φ : Zd+ → R,

the scaling limit of φ is a function φ̄ whose domain is a subset of Rd
+ and defined by

φ̄(x) = lim
n→∞

1

n
φ(bnxc), provided the limit exists. The basic properties of scaling limits

are developed in Section 2.4. The limiting point-to-point free energy is a scaling limit

of the point-to-point free energy. Now we can state the main result of our work. First,

we show that limiting point-to-point free energy exists. Recall the definition of Pρ and

P in Remark 2.5.

Theorem 2.9. Suppose Assumptions 2.4 and 2.6 hold. Then, there exists a unique

deterministic function φ̄ defined on Rd
+ and an event Ω′1 ⊆ Ω1 such that the following

hold.
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(a) The limit lim
n→∞

n−1 logZω
0,bnxc = φ̄(x) for all x ∈ Rd

>0 simultaneously if ω ∈ Ω′1.

Furthermore, for Q-almost every choice of ρ, Pρ(Ω′1) = 1.

(b) φ̄(x) satisfies for x ∈ Rd
>0

φ̄(x) = lim
n→∞

E
( 1

n
logZ0,bnxc

)
= lim

n→∞

1

n

∫ (
Eρ logZ0,bnxc

)
Q0(dρ).

(c) φ̄ is continuous, positive-homogeneous, superadditive, concave on Rd
+ :

For x, y ∈ Rd
+, 0 ≤ s ≤ 1 and c > 0,

φ̄(cx) = cφ̄(x) (2.4)

φ̄(x) + φ̄(y) ≤ φ̄(x + y) (2.5)

sφ̄(x) + (1− s)φ̄(y) ≤ φ̄(sx + (1− s)y). (2.6)

Note that in (a) and (b) we do not require the convergence occurs on the boundary

of Rd
+ even though φ̄ is defined on Rd

+. Using this result, we obtain a limit theorem for

the point-to-line free energy.

Corollary 2.10. Under the same assumptions, the limit lim
n→∞

n−1 logZω
n exists if ω ∈ Ω′1,

and is given by lim
n→∞

n−1 logZω
n = sup

x≥0
|x|1=1

φ̄(x).

Organization of Chapter 2. Before we prove the main results, we collect technical

results first. The crux of the proof of the main theorems is a combination of a nonsta-

tionary subadditive ergodic theorem and concentration inequalities. This proof strategy

is somewhat unusual. In Section 2.3, nonstationary subadditive ergodic theorems are

established. In Section 2.4, we collect useful concentration inequalities. We use con-

centration inequalities to show that deviation of free energy around its mean is small
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enough. And then a nonstationary subadditive ergodic theorem is used to show that (in-

homogeneous) mean of free energy, when normalized by scaling parameter n, converges.

Combination of these two results gives the proof of the main results. Theorem 2.9 and

Corollary 2.10 are proved in Section 2.4.

2.3 Nonstationary subadditive ergodic theorems

In this section, we investigate conditions that guarantee the existence of limiting free

energy. The main topic is asymptotically mean stationary (AMS) measures. After

we develop a nonstationary subadditive ergodic theorem, which is the most important

theorem in this section, we prove the main results in the next section. Let (Ω,F) be a

measurable space and T : Ω→ Ω a measurable transformation. Recall that a probability

measure P is AMS relative to T (T -AMS), if there is a probability measure P̄ on (Ω,F)

such that

∀B ∈ F : lim
n→∞

1

n

n−1∑
i=0

P (T−iB) = P̄ (B).

We say a process is AMS if its distribution is AMS. Here are some examples of nonsta-

tionary yet AMS measures [25, 30].

Example 2.11. (a) If µ, η are probability measures such that η is stationary and

µ� η, then µ is AMS (see the next Theorem).

(b) A time homogeneous irreducible Markov chain with a stationary distribution π is

AMS for any initial distribution P0.

(c) If µ is stationary with respect to TN for some integer N (or N-periodic), then µ

is AMS with respect to T with stationary mean µ̄(F ) = N−1
∑N−1

i=0 µ(T−iF ).
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Theorem 2.12. Let (Ω,F) be a measurable space and T : Ω → Ω a measurable trans-

formation. Let µ, η be probability measures on (Ω,F).

(a) µ is AMS if and only if for every bounded measurable f : Ω → R, 1
n

∑n−1
i=0 f ◦ T i

converges µ-a.s. as n→∞. In that case, the ergodic theorem holds and the limit

is given by Eµ̄(f |I).

(b) If η is stationary and dominates µ asymptotically, then µ is AMS: η dominate µ

asymptotically if B ∈ F and η(B) = 0 implies that limn→∞ µ(T−nB) = 0.

(c) Let T = ∩n≥0T
−nF be the tail σ-field. If η is stationary, the following are equiva-

lent:

(1) η dominates µ asymptotically.

(2) If F ∈ I and η(F ) = 0, then µ(F ) = 0.

(3) If F ∈ T and η(F ) = 0, then µ(F ) = 0.

Proof. See Theorems 1, 2, and 3 in [25].

From the above theorem, if µ � η and η is stationary, µ is AMS. One may be

tempted to conclude that η is the stationary mean of µ. However, we need ergodicity to

reach that conclusion as the following Corollary shows.

Corollary 2.13. If µ � η and η is a stationary and ergodic probability measure on

(Ω,F) relative to T , then µ is AMS and its stationary mean is η.

Proof. We show that η is the stationary mean of µ. If dµ = fdη for some nonnegative
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f : Ω→ R with Eηf = 1 then for A ∈ F ,

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A)) = lim
n→∞

1

n

n−1∑
i=0

∫
Ω

1A ◦ T i dµ

= lim
n→∞

1

n

n−1∑
i=0

∫
Ω

(1A ◦ T i)f dη =

∫
Ω

( lim
n→∞

1

n

n−1∑
i=0

1A ◦ T i)f dη

=

∫
η(A)f dη = η(A).

(2.7)

The equality in the last line comes from ergodic theorem and ergodicity of η.

Lemma 2.14. Let (S,S) be a measurable space and τ : S → S a measurable map. Let

γ : S → Ω be a measurable map and γ ◦ τ = T ◦ γ. Suppose P and P0 are probability

measures on (S,S) and Q = γ#(P ), Q0 = γ#(P0) are pushforward measures on (Ω,F)

of P and P0 under γ. Then the following hold.

(a) If P � P0, then Q� Q0.

(b) If P0 is τ -invariant, then Q0 is T -invariant .

(c) If P is τ -AMS with stationary mean P0, then Q is T -AMS with stationary mean

Q0.

(d) If P0 is τ -ergodic, then Q0 is T -ergodic.

Proof. (a) If A ∈ F and Q0(A) = 0 then P0(γ−1(A)) = Q0(A) = 0. Since P � P0 we

have Q(A) = P (γ−1(A)) = 0.

(b) This is a direct consequence of the property

γ ◦ τ = T ◦ γ. (2.8)

For A ∈ F ,

Q0(T−1(A)) = P0(γ−1(T−1(A))) = P0(τ−1(γ−1(A))) = P0(γ−1(A)) = Q0(A).
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(c)

∀A ∈ F , lim
n→∞

1

n

n−1∑
i=0

Q(T−i(A)) = lim
n→∞

1

n

n−1∑
i=0

P (γ−1(T−i(A)))

= lim
n→∞

1

n

n−1∑
i=0

P (τ−i(γ−1(A))) = P0(γ−1(A)) = Q0(A)

(2.9)

(d) If T−1(A) = A (A ∈ F), then

τ−1(γ−1(A)) = γ−1(T−1(A)) = γ−1(A).

Hence Q0(A) = P0(γ−1(A)) = 0 or 1.

Lemma 2.14 says AMS property is preserved under pushforwards of a measurable

map that intertwines translation maps. We have a similar result for stochastic kernels.

Let (S,S) be a measurable space and τ : S → S a measurable map. A stochastic

kernel from S to Ω is a measurable map κ : S → M1(Ω), where M1(Ω) is the set

of probability measures on Ω equipped with the σ-algebra induced by the mappings

πB : µ 7→ µ(B), B ∈ F (Chapters 1 and 5 of [28]). Suppose that κ intertwines τ with

T : κ(s, T−1(B)) = κ(τ(s), B) for s ∈ S, B ∈ F . Then we have

∫
Ω

g(T (ω)) κ(s, dω) =∫
Ω

g(ω) κ(τ(s), dω) for an integrable function g (g is κ(τ(s), ·)-integrable if and only

if g ◦ T is κ(s, ·)-integrable). For a probability measure P on S, a measure Q = Pκ

is defined by Q(B) =

∫
S

κ(s, B)P (ds). The integral of g : Ω → R under Q is given

by

∫
g dQ =

∫
S

(∫
Ω

g(ω)κ(s, dω)

)
P (ds). We say that κ is ergodic relative to T if

κ(s, A) = 0 or 1 for s ∈ S and A ∈ F with T−1(A) = A. Note that the value 0 or 1 may

depends on s.
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Lemma 2.15. For probability measures P and P0 on S, consider Q = Pκ and Q0 = P0κ.

If κ intertwines τ with T then the following hold.

(a) If P � P0, then Q� Q0.

(b) If P0 is τ -invariant, then Q0 is T -invariant.

(c) If P is τ -AMS with stationary mean P0, then Q is T -AMS with stationary mean

Q0.

(d) If P0 is τ -ergodic and κ is T -ergodic, then Q0 is T -ergodic.

Proof. The proof is almost similar to the proof of Lemma 2.14.

(a) If A ∈ F and Q0(A) = 0 then κ(s, A) = 0 for P0-a.s. s. Thus κ(s, A) = 0 for

P -a.s. s since P � P0 and we have Q(A) =

∫
S

κ(s, A)P (ds) = 0.

(b) This comes immediately from the intertwining property.

(c)

∀A ∈ F , lim
n→∞

1

n

n−1∑
i=0

Q(T−i(A)) = lim
n→∞

1

n

n−1∑
i=0

∫
S

(∫
Ω

1A ◦ T i(ω)κ(s, dω)

)
P (ds)

= lim
n→∞

1

n

n−1∑
i=0

∫
S

(∫
Ω

1A(ω)κ(τ i(s), dω)

)
P (ds)

=

∫
S

(
lim
n→∞

1

n

n−1∑
i=0

g(τ i(s))

)
P (ds) =

∫
S

g(s)P0(ds) = Q0(A),

(2.10)

where g(s) =

∫
Ω

1A(ω)κ(s, dω) = κ(s, A) and the last line is from Theorem 2.12 (a).

(d) If T−1(A) = A (A ∈ F), then κ(s, A) = κ(s, T−1(A)) = κ(τ(s), A) for all s.

Therefore g(s) = κ(s, A) is a τ -invariant function. Since P0 is ergodic relative to τ , g is

a constant P0-a.s. g(s) can take only 0 or 1 since κ is ergodic relative to T . Hence g ≡ 0

or 1 P0-a.s. Therefore Q0(A) =

∫
S

g dP0 = 0 or 1.
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For i.i.d. cases the subadditive ergodic theorem is used to prove the existence of var-

ious limits. Unlike the ergodic theorem, the subadditive ergodic theorem does not easily

generalize to AMS measures. For a counterexample, see Theorem 8.5 in [24]. However,

we have some partial results. A sequence of functions {fn : Ω→ R |n = 1, 2, . . . } satis-

fying the relation fm+n ≥ fm+fn ◦Tm for all m,n ∈ Z+ is called superadditive (f0 = 0).

Define f(ω) = lim supn→∞
1
n
fn(ω) and f(ω) = lim infn→∞

1
n
fn(ω). We say a measurable

function g : Ω → S is µ-almost surely invariant if µ(g ◦ T k = g ; k = 1, 2, . . . ) = 1 (see

Lemma 7.6 in [24]). An event F is said to be µ-almost invariant if 1F is.

Lemma 2.16. Let (Ω,F , µ, T ) be an AMS system with stationary mean µ̄ and S a

standard Borel space (or nice space). If f : Ω → S is µ-almost surely invariant and

h : S → S ′ is measurable, then h ◦ f is µ-almost surely invariant. If f : Ω → R is

µ-almost surely invariant, then f is µ-integrable if and only if f is µ̄-integrable. In that

case Eµf = Eµ̄f .

Proof. The first statement is obvious from the definition of almost surely invariance.

For any µ-almost surely invariant set F , µ(F ) = Eµ1F = Eµ(1F ◦ T k) = µ(T−kF ). So

by the definition of µ̄ we have µ(F ) = µ̄(F ). Therefore Eµf = Eµ̄f holds for indicator

functions of µ-almost surely invariant sets and their linear combinations. For general

functions approximation by simple functions gives the result. Let f ≥ 0 be a µ-almost

surely invariant function. Define fn by fn =
22n−1∑
k=0

k

2n
1( k

2n
≤f< k+1

2n
). Then fn ↑ f and fn

is µ-almost surely invariant from the first claim. Now monotone convergence theorem

gives

Eµf = lim
n→∞

Eµfn = lim
n→∞

Eµ̄fn = Eµ̄f.
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For general f , write f = f+ − f− and use the result of a nonnegative case. This proof

also shows that f is µ integrable if and only if f is µ̄ integrable when f is µ-almost

surely invariant.

Theorem 2.17. Let (Ω,F , µ, T ) be an AMS system with stationary mean µ̄. Suppose

that {fn : n = 1, 2, . . . } is a superadditive sequence of µ̄ integrable random variables and

supnE
µ̄fn/n <∞. Suppose one of the following conditions is satisfied :

(a) f is µ-almost surely invariant.

(b) µ� µ̄.

(c) Ω is equipped with a partial order �. fn are increasing functions (i.e., x � y implies

fn(x) ≤ fn(y)). Finally, µ is stochastically smaller than µ̄, that is,
∫
g dµ ≤

∫
g dµ̄

for all bounded measurable increasing functions g.

Then there is an invariant function φ : Ω → R and an event Ω0 ⊆ Ω such that

limn→∞
1
n
fn(ω) = φ(ω) (ω ∈ Ω0), and µ(Ω0) = µ̄(Ω0) = 1. The function φ(ω) can

be chosen as

φ = sup
n

1

n
Eµ̄(fn|I). (2.11)

φ satisfies

Eµφ = Eµ̄φ = sup
n

1

n
Eµ̄fn = lim

n→∞

1

n
Eµ̄fn. (2.12)

Proof. To prove the result under this condition, we first establish some general properties

of superadditive sequences. Let Fn =
∑n−1

i=0 f1◦T i. Then {Fn}n≥1 is additive and fn ≥ Fn

by superadditivity. Since the theorem holds for an additive sequence by Theorem 2.12 (a)

we only need to prove the assertion for fn − Fn. Hence we may assume that fn ≥ 0.
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We show that f ≥ φ holds µ-a.s.. Fix m. For each i (0 ≤ i < m) write n = i + m` + r

(0 ≤ r < m). By superadditivity and positivity of fn

fn ≥ fi + fm ◦ T i + fm ◦ T i+m + fm ◦ T i+2m + · · ·+ fm ◦ T i+(`−1)m + fr ◦ T i+`m

≥ fi + fm ◦ T i + fm ◦ T i+m + fm ◦ T i+2m + · · ·+ fm ◦ T i+(`−1)m = fi +
`−1∑
j=0

fm ◦ T i+jm

Summing over i gives

mfn ≥
m−1∑
i=0

fi +
m`−1∑
j=0

fm ◦ T j

Dividing by mn and AMS ergodic theorem give f ≥ 1
m
Eµ̄(fm|I). Since this holds for

all m, we have f ≥ f ≥ φ µ-a.s. Now we are in a position to prove the claim.

(a) Since f is µ-almost surely invariant and φ is invariant, from Lemma 2.16,

Eµ̄φ = Eµ̄f = Eµf ≥ Eµf ≥ Eµφ = Eµ̄φ (2.13)

The first equality holds by the subadditive ergodic theorem for stationary measures.

Therefore we have µ(f = f = φ) = 1.

(c) Since fn are increasing functions, f and f are also increasing.

Eµ̄φ = Eµ̄f ≥ Eµf ≥ Eµf ≥ Eµφ = Eµ̄φ (2.14)

The first equality holds by the subadditive ergodic theorem for stationary measures and

the last equality comes from the invariance of φ. In particular, we have Eµf = Eµf =

Eµφ which implies µ(f = f = φ) = 1.

(b) The conclusion follows immediately from the subadditive ergodic theorem for

stationary measures since µ̄({f = f = φ}) = 1.

Lemma 2.16 and the subadditive ergodic theorem for stationary measures give (2.12).
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2.4 Technical results and proof of main theorems

This section is devoted to the proof of the main results Theorem 2.9 and Corollary 2.10.

We develop some technicalities in section 2.4.1 used throughout the paper.

2.4.1 Preliminaries

In this section, we record results that are used throughout. First, we establish some

conventions. On a given measurable space we consider several probability measures

simultaneously. To reduce confusion and to ease proofs, we mainly use the following

conventions. Weights ωx with the distribution in Definition 2.2 are realized as functions

of i.i.d. uniform random variables and coupling with η is used:

ωx = F−1
x (Ux), ηx = F−1(Ux), x ∈ Zd+ (2.15)

where {Ux : x ∈ Zd+} are i.i.d. Uniform(0,1) random variables, Fx the CDF of ωx and

F−1(t) = inf{s ∈ R : F (s) ≥ t}, (0 < t < 1), the generalized inverse of F [6].

In the remaining work, we use the following conventions. (Ω,F ,P) is a probability

space where most random variables are defined. A generic element in Ω is denoted by

w. Recall that Ω1 = RZd+ equipped with the σ-algebra G1 generated by the coordinate

projections is used for sets of configurations. In particular ω, η, and U in (2.15) are

measurable maps from Ω to Ω1. Sometimes we use the notations ω, η, and U for

configurations in Ω1. The context should indicate which one is meant: measurable map

from Ω to Ω1 or element of Ω1.

For Assumption 2.4 we continue to use the couplings in (2.15) and assume ρ = {ρx :

x ∈ Zd+} : Ω→ Ω0 are independent of uniform random variables {Ux} in (2.15). Recall
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that for given parameters ρ = {ρx : x ∈ Zd+} we write Pρ for the conditional distribution

of ω given ρ (see (2.2)). Note that Eρ(X ◦Tu) = ETuρX holds for a given random variable

X : Ω1 → R, configuration of parameters ρ, and shift map Tu. (Here we slightly abused

notation: The first Tu is defined on Ω1 and the second Tu is defined on Ω0.)

Next, basic properties of the free energy are considered; their connection to last

passage percolation and greedy lattice animals. For u ≤ v in Zd+, the last-passage times

are defined by

Gu,v = Gω
u,v = max

x�∈Πu,v

|v−u|1∑
i=1

ωxi , u ≤ v in Zd+. (2.16)

A finite path (xi)0≤i≤n in Πu,v is a geodesic between u and v if it is the maximizing path

that realizes Gu,v, namely, Gu,v =
∑n

i=1 ωxi . When paths start at the origin we drop u

from the notation;

Πv = Π0,v, Zu = Z0,u, and Gv = G0,v. (2.17)

For a finite subset ξ of Zd+, the weight H(ξ) of ξ is defined by H(ξ) =
∑

v∈ξ ωv. A lattice

animal [31] is a finite connected subset of Zd. Let A(n) be the set of lattice animals of

size n which contain the origin. A greedy lattice animal of size n is a connected subset

of size n containing the origin, whose weight is maximal among all such sets. Let N(n)

be this maximum weight. We have

N(n) = Nω(n) = max
ξ∈A(n)

H(ξ). (2.18)

It is convenient to construct the above objects as functions of coordinate variables.

Let B be a finite subset of Zd and A ⊆ {0, 1}B be a subset of the power set of B or

collection of indicator functions supported on subsets of B. We may consider A as a

subset of RB. Here we regard RB as Rn with n = |B|. Let

‖A‖p = max
a∈A
|a|p (1 ≤ p ≤ ∞) and |A| = card(A).
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For a set B and a subset A of {0, 1}B, define fB,A : RB −→ R by

fB,A(X) = log
∑
a∈A

ea·X for X ∈ RB. (2.19)

Similarly define GB,A : RB −→ R by

GB,A(X) = max
a∈A

a ·X for X ∈ RB. (2.20)

Typical examples of A are formed from a set of paths: Let Π be a collection of paths in

B. Then aπ = 1{x1,...,xn} for π = x� = (x0,x1, . . . ,xn). (x0 is excluded from aπ.) A is

given by A = {aπ}π∈Π.

We customize these definitions to our models. For u ≤ v in Zd+, write

B = [u,v] =
d∏
i=1

[ui, vi] ⊆ Zd+, ΠB = Π[u,v] = {ax� : x� ∈ Πu,v} ⊆ RB.

Note the difference between Πu,v and Π[u,v]. The former is a set of paths, and the latter

is a set of indicator functions. For ω ∈ RZd+ write its restriction to B by ωB ∈ RB. We

write fB and GB for fB,A, GB,A when A = ΠB. We also write fn and Gn for fB,A, GB,A

when A = {aπ}π∈Πp2ln
. Under these conventions, we have the following representations

of free energy, last passage time, and weight of greedy lattice animal.

logZω
u,v = f[u,v](ω[u,v])

logZω
n = fn(ω[0,n]d)

Gω
u,v = G[u,v](ω[u,v])

Nω(n) = GBn,Ã(n)(ωBn)

(2.21)

where Bn = [−n, n]d and Ã(n) = {1ξ : ξ ∈ A(n)}.

We close this section with the following lemma.
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Lemma 2.18. Suppose A satisfies |A| ≤ C
‖A‖1
0 for some positive constant C0. Then

the following hold.

(a) fB,A and GB,A are convex and nondecreasing functions on RB.

(b) GB,A ≤ fB,A ≤ GB,A + log |A| ≤ GB,A + ‖A‖1 logC0.

(c) |GB,A(X)| ≤ GB,A(|X|) ≤ ‖A‖2 · |X|2.

(d) |fB,A(Y )− fB,A(X)| ∨ |GB,A(Y )−GB,A(X)| ≤ GB,A(|Y −X|).

(e) fB,A and GB,A are Lipschitz functions on RB with respect to the `2 norm with the

Lipschitz constants ≤ ‖A‖2 ≤
√
‖A‖1.

Proof. (a) Since a ≥ 0, fB,A and GB,A are nondecreasing functions. GB,A is the maxi-

mum of linear functions so that it is convex. Let α, β > 0 and α + β = 1.

fB,A(αX1 + βX2) = log
∑
a∈A

ea·(αX1+βX2)

≤ log

(∑
a∈A

ea·X1

)α(∑
a∈A

ea·X2

)β

(Hölder’s ineqaulity)

= α log
∑
a∈A

ea·X1 + β log
∑
a∈A

ea·X2 = αfB,A(X1) + βfB,A(X2)

(b) Trivial.

(c) From (a) GB,A is nondecreasing so that |GB,A(X)| ≤ GB,A(|X|).

GB,A(|X|) = max
a∈A

a · |X| ≤ max
a∈A
|a|2|X|2 ≤ ‖A‖2 · |X|2.
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(d) Since a ≥ 0,

fB,A(Y ) = log
∑
a∈A

ea·Y ≤ log
∑
a∈A

ea·Xea·(Y−X)+

≤ log

((∑
a∈A

ea·X

)
emaxa∈A a·(Y−X)+

)

= fB,A(X) +GB,A((Y −X)+) ≤ fB,A(X) +GB,A(|Y −X|).

(2.22)

Changing the role of X, Y , we obtain |fB,A(Y ) − fB,A(X)| ≤ GB,A(|Y − X|). The

inequality for GB,A is proved similarly.

(e) This follows from (c) and (d). Note that for a ∈ A, |a|2 =
√
|a|1 since a(i,j) =

0, 1.

2.4.2 Concentration inequalities

In this subsection, we collect useful concentration inequalities.

Theorem 2.19. Let X = (X1, . . . , Xn) be a random variable with independent compo-

nents taking values in [0, R]. Let F : Rn −→ R be a convex L-Lipschitz function with

respect to the `2 norm. Let MF be a median of F(X). Then for all t ≥ 0

P(|F(X)−MF| ≥ t) ≤ 4e−t
2/(4L2R2)

P(|F(X)− EF(X)| ≥ t) ≤ e64e−t
2/(16L2R2)

(2.23)

Proof. For the first inequality, see [10] Theorem 7.12. For the second, see the proof of

[31] Lemma 5.1.

Theorem 2.20. There exists a universal constant c0 < ∞ which does not depends on

the distribution (but depends on d) such that if F satisfies (2.1) and weights are F -i.i.d.

then there exists a deterministic N with

N(n)

n
→ N almost surely and in L1(Ω) (2.24)
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as n→∞, and

N ≤ c0

∫ ∞
0

(1− F (x))1/ddx. (2.25)

The same c0 satisfies

sup
n
EF N(n)

n
≤ c0

∫ ∞
0

(1− F (x))1/ddx. (2.26)

Proof. See [31] Theorems 1.1 and 2.3.

Theorem 2.21. Suppose F in (2.1) is supported on [0, R] and weights ω has a distri-

bution Pρ. Then for all t ≥ 0, n ∈ N, and u ≤ v in Zd+

Pρ(| logZn − Eρ logZn| ≥ nt) ≤ e64e−nt
2/(64R2) (2.27)

and

Pρ(| logZnu,nv − Eρ logZnu,nv| ≥ nt) ≤ e64e−nt
2/(64R2|v−u|1). (2.28)

Proof. These are direct consequences of Lemma 2.18 and Theorem 2.19. Note that ωx

are supported on [−R,R]. Lipschitz constants are bounded by
√
n and

√
n|v − u|1

respectively.

Concentration inequalities give the following theorems. Recall that at some places ω

and η are considered as measurable maps from (Ω,F ,P) to Ω1 (see the paragraph below

(2.15)). Expectation under P is denoted by E.

For y > 0 consider the “y-truncated” weight ωy given by

ωyx = ωx1(|ωx|≤y) + y1(ωx>y) − y1(ωx<−y). (2.29)

Theorem 2.22. For a fixed L ∈ N, suppose un ≤ vn ≤ Ln1 for all n ∈ N. Then Pρ-a.e.

ω,

lim sup
n→∞

1

n
logZω

un,vn = lim
y→∞

lim sup
n→∞

1

n
logZωy

un,vn (2.30)
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and

lim inf
n→∞

1

n
logZω

un,vn = lim
y→∞

lim inf
n→∞

1

n
logZωy

un,vn . (2.31)

The same identity holds for the last passage time G.

Proof. Note that |ωx − ωyx| = (|ωx| − y)+ ≤ (ηx − y)+ (η in (2.15)) . Now the random

variables (ηx − y)+, x ∈ Zd+, are i.i.d. and non-negative with distribution F y, where

F y(t) = F (t+ y), t ≥ 0. We have

ky ,
∫ ∞

0

(1− F y(t))1/ddt =

∫ ∞
y

(1− F (t))1/ddt. (2.32)

From (2.21) and Lemma 2.18,

| logZω
un,vn − logZωy

un,vn| ∨ |G
ω
un,vn −G

ωy

un,vn|

≤ Gun,vn(|ω − ωy|) ≤ N (η−y)+(Ln+ 1).

(2.33)

Divide both sides by n and take n → ∞. Theorem 2.20 applied to the situation where

the distribution F is replaced by F y and the bounded case give

lim sup
n→∞

|
logZω

un,vn

n
−

logZωy

un,vn

n
| ≤ Lc0ky

Pρ-almost surely. By Lemma 2.18(a), the limits on the right-hand side of (2.30) and

(2.31) exist for any ω. If we let y →∞ along a countable sequence, Pρ-a.s. convergence

holds.

Theorem 2.23. We have for Pρ-a.e. ω,

lim
n→∞

( logZω
n

n
− Eρ logZn

n

)
= 0. (2.34)
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Proof. If |ωx| is bounded by y > 0 for all x ∈ Zd+, Borel-Cantelli lemma and Theorem 2.21

give the result. For general weights, consider ωy in (2.29).

From (2.21) and Lemma 2.18,

| logZω
n − Eρ logZn| = |fn(ω)− Efn(ω)|

≤ |fn(ω)− fn(ωy)|+ |fn(ωy)− Efn(ωy)|+ |Efn(ωy)− Efn(ω)|

≤ |Gn(|ω − ωy|)|+ |fn(ωy)− Efn(ωy)|+ EGn(|ω − ωy|)

≤ N (η−y)+(n+ 1) + |fn(ωy)− Efn(ωy)|+ EN (η−y)+(n+ 1).

(2.35)

Divide both sides by n and take n → ∞. Theorem 2.20 applied to the situation where

the distribution F is replaced by F y and the bounded case give

lim sup
n→∞

| logZω
n

n
− Eρ logZn

n
| ≤ 2c0ky

almost surely. y →∞ along a countable sequence proves (2.34).

Corollary 2.24. Suppose the distribution of ρ is Q and the conditional law of ω given

ρ is Pρ. Denote the joint distribution of (ρ, ω) by ν. Then for ν-a.e. ρ and ω,

lim
n→∞

( logZω
n

n
− Eρ logZn

n

)
= 0. (2.36)

Proof. Let A ∈ G0 ⊗ G1 be an event

A = {(ρ, ω) ∈ Ω0 × Ω1 : lim
n→∞

( logZω
n

n
− Eρ logZn

n

)
= 0}

and its section

Aρ = {ω ∈ Ω1 : lim
n→∞

( logZω
n

n
− Eρ logZn

n

)
= 0}.

Then for Q-a.e. ρ, Pρ(Aρ) = 1 by Theorem 2.23. Therefore

ν(A) =

∫
Ω0

Pρ(Aρ)Q(dρ) = 1.
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Theorem 2.25. Let L ∈ N and ρ be fixed. Then Pρ-a.e. ω, we have

lim
n→∞

1

n
max

{∣∣logZω
u,v − Eρ logZu,v

∣∣ : u ≤ v ≤ Ln1 in Zd+
}

= 0. (2.37)

Proof. Suppose ωx, x ∈ Zd+ are bounded by y > 0. Then by (2.28) for t > 0 ,

Pρ(| logZω
u,v − Eρ logZu,v| ≥ nt) ≤ e64e−nt

2/(64y2L).

Therefore, counting u and v, we have

Pρ
(

max
u,v

{∣∣logZω
u,v − Eρ logZu,v

∣∣} ≥ nt

)
≤ (Ln+ 1)2de64e−nt

2/(64y2L).

Borel-Cantelli lemma gives (2.37).

For more general weights, consider y-truncated weights as in (2.29). From (2.21) and

Lemma 2.18

| logZω
u,v − Eρ logZu,v|

≤| logZω
u,v − logZωy

u,v|+ | logZωy

u,v − Eρ logZωy

u,v|+ |Eρ logZωy

u,v − Eρ logZω
u,v|

≤Gu,v(|ω − ωy|) + max
u1,v1

| logZωy

u1,v1
− Eρ logZωy

u1,v1
|+ EρGu,v(|ω − ωy|)

≤N (η−y)+(Ln+ 1) + max
u1,v1

| logZωy

u1,v1
− Eρ logZωy

u1,v1
|+ EρN (η−y)+(Ln+ 1).

(2.38)

Therefore from Theorem 2.20, for Pρ-a.e. ω,

lim sup
n→∞

1

n
max
u,v
| logZω

u,v − Eρ logZu,v| ≤ 2Lc0ky, (2.39)

where ky is as in (2.32). If we let y → ∞ along a countable sequence, then we have

(2.37).

The following corollary is one of the key elements for the main results. The a.s.

convergence happens simultaneously for all x ≤ y in Rd
+.
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Corollary 2.26. Let ρ be fixed, for Pρ-a.e. ω, we have for all x ≤ y in Rd
+

lim
n→∞

( logZω
bnxc,bnyc

n
−

Eρ logZbnxc,bnyc
n

)
= 0. (2.40)

Corollary 2.27. Suppose the distribution of ρ is Q and the conditional law of ω given

ρ is Pρ. Denote the joint distribution of (ρ, ω) by ν. Then for ν-a.e. ρ and ω, we have

for all x ≤ y in Rd
+

lim
n→∞

( logZω
bnxc,bnyc

n
−

Eρ logZbnxc,bnyc
n

)
= 0 (2.41)

Proof. The proof is the same as in Corollary 2.24.

Remark 2.28. These Theorems also hold for the last-passage times Gu,v because we

only used general concentration inequalities applicable also to last-passage times in the

proof.

2.4.3 Properties of limits

We develop some general theory of the scaling limit. Let φ : Zd+ → R be a function.

φ̄ : Dφ ⊆ Rd
>0 → (−∞,∞] is defined as φ̄(x) = lim

n→∞

1

n
φ(bnxc) provided the limit exists

and Dφ denotes the set of all points in Rd
>0 where the limit exists. We call φ̄ the scaling

limit of φ. Note that ∞ is allowed as a limit.

Proposition 2.29. Suppose φ is nondecreasing (u ≤ v ⇒ φ(u) ≤ φ(v)) and Nd ⊆ Dφ.

Then the following hold :

(a) x ∈ Dφ, a > 0 ⇒ ax ∈ Dφ, φ̄(ax) = aφ̄(x). φ̄ is nonnegative and nondecreasing

on Dφ.
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(b) Dφ = Rd
>0.

(c) If lim
n→∞

xn/n = x, (xn ∈ Zd+,x ∈ Rd
>0) then lim

n→∞

1

n
φ(xn) = φ̄(x).

(d) If φ̄ attains ∞ at some point in Rd
>0, φ̄ ≡ ∞ on Rd

>0.

(e) If φ̄ is finite then φ̄ is continuous. φ̄ extends continuously to Rd
+. If we compute φ̄

on the boundary of Rd
+ directly from φ we have φ̄ ≤ the continuous extension of φ̄

on the boundary.

Proof. (a) Since bbnacxc ≤ bnaxc ≤ bdnaexc we obtain

aφ̄(x) = lim inf
n→∞

bnac
n

φ(bbnacx)c
bnac

≤ lim inf
n→∞

φ(bnaxc)
n

≤ lim sup
n→∞

φ(bnaxc)
n

≤ lim sup
n→∞

dnae
n

φ(bdnaex)c
dnae

= aφ̄(x).

Clearly φ̄ is nondecreasing. Hence for 0 < r < 1, φ̄(x) ≥ φ̄(rx) = rφ̄(x) and letting

r ↓ 0 proves nonnegativeness.

(b) From (a) and Nd ⊆ Dφ, Qd
>0 ⊆ Dφ. Let x ∈ Rd

>0. Choose sequences {xk} of Qd
>0

with xk ↑ x and εk ↓ 0 such that x(1− εk) < xk < x(1 + εk). This is possible since x > 0

and Qd
>0 is dense. We obtain xk/(1 + εk) < x < xk/(1− εk), from which

1

1 + εk
φ̄(xk) ≤ lim inf

n→∞

1

n
φ(bnxc) ≤ lim sup

n→∞

1

n
φ(bnxc) ≤ 1

1− εk
φ̄(xk)

Since φ̄(xk) is nondecreasing letting k →∞ gives limn→∞
1
n
φ(bnxc) = limk→∞ φ̄(xk).

(c) Fix 0 < a < 1 < b. For all sufficiently large n, bnaxc < xn < bbnxc. Hence (a)

and (b) give

aφ̄(x) ≤ lim inf
n→∞

1

n
φ(xn) ≤ lim sup

n→∞

1

n
φ(xn) ≤ bφ̄(x).

a, b→ 1 proves (c).
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(d) Suppose φ̄(x0) = ∞. Given x, considering a ray connecting the origin and x,

choose y on the ray with x0 ≤ y. Since φ̄ is nondecreasing and homogeneous we have

φ̄(x) = (|x|1/|y|1)φ̄(y) =∞.

(e) Let x ∈ Rd
>0 and ε > 0. Consider an open box centered at x, Bε = {y ∈ Rd

>0 :

x(1 − ε) < y < x(1 + ε)}. supBε φ̄ − infBε φ̄ = φ̄(x(1 + ε)) − φ̄(x(1 − ε)) = 2εφ̄(x).

ε ↓ 0 implies the continuity of φ̄ at x. Define [φ̄](x) = inf{φ̄(y) : y > x} for x ∈ Rd
+.

Then [φ̄] = φ̄ on Rd
>0 by continuity and monotonicity of φ̄. [φ̄] is nondecreasing and

positive-homogeneous on Rd
+. For x ∈ ∂Rd

+ let

Cε = {y ∈ Rd
+ : x(1− ε) < y < x + ε1}

where 1 = (1, . . . , 1) ∈ Rd
+. Since [φ̄] is nondecreasing and positive-homogeneous,

sup
Cε

[φ̄]− inf
Cε

[φ̄] = [φ̄](x + ε1)− [φ̄](x(1− ε)) = φ̄(x + ε1)− [φ̄](x) + ε[φ̄](x).

Let ε ↓ 0 and use the definition of [φ̄] to get continuity at x.

The second assertion is obvious.

We extend this result to the superadditive case.

Proposition 2.30. Suppose a doubly indexed real sequence xu,v, (u ≤ v ∈ Zd+) satisfies:

(a) x is superadditive.

x0,u+v ≥ x0,u + xu,u+v, (2.42)

(b) There is a linear function ψ : Rd → R such that xu,u+v ≥ ψ(v) for u, v ∈ Zd+.

Define φ(u) = x0,u. Then the following hold.
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(1) φ− ψ is nondecreasing.

(2) If Nd ⊆ Dφ, then φ̄ satisfies the properties of Proposition 2.29 except the mono-

tonicity. (But φ̄− ψ is nondecreasing and φ̄ ≥ ψ.)

(3) Moreover if φ̄ is superadditive on Nd: (φ̄(u + v) ≥ φ̄(u) + φ̄(v)), then φ̄ is

superadditive, concave on Rd
>0.

Proof. (1) We prove φ− ψ is nondecreasing. From (b) we have

(φ(u + v)− ψ(u + v))− (φ(u)− ψ(u)) = (φ(u + v)− φ(u))− (ψ(u + v)− ψ(u))

≥ xu,u+v − ψ(v) ≥ 0

Therefore it follows that φ− ψ is nondecreasing.

(2) This part is an immediate consequence of (1) and Proposition 2.29. For part (3),

from continuity and homogeneity of φ̄, we have

φ̄(x + y) = lim
n→∞

1

n
φ̄(bnxc+ bnyc)

≥ lim
n→∞

1

n
φ̄(bnxc) + lim

n→∞

1

n
φ̄(bnyc) = φ̄(x) + φ̄(y) on Rd

>0. (2.43)

Superadditivity and positive-homogeneity give concavity.

2.4.4 Proofs of the main results

We apply the previous development to prove Theorem 2.9 and Corollary 2.10. The

conditional law of ω conditioned on ρ defines a stochastic kernel from Ω0 to Ω1 by

κ(ρ) = Pρ. κ is an ergodic kernel relative to Tu for all u > 0 in Zd+ by the Kolmogorov

0-1 law. Therefore by Lemma 2.15, P is totally ergodic with respect to T̂ and P has

stationary mean P0 = Q0κ under Assumption 2.4. Hence we may apply Theorem 2.17 to

P to prove limit theorems under Assumption 2.6. However we do not take this approach
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because to establish simultaneous limit theorems for uncountably many directions is

more difficult in this setting and, more importantly, we cannot use this approach if Q

does not satisfy Assumptions 2.4 and 2.6 (see Theorem 3.17). Therefore first we prove

limit theorems for parameters ρ using the nonstationary subadditive ergodic theorem and

then combine this with results from concentration inequalities to obtain limit theorems

for ω.

Theorem 2.31. Suppose Assumptions 2.4 and 2.6 hold. Define Yu,v(ρ) = Eρ logZu,v

for u ≤ v in Zd+ and ρ ∈ Ω0. Then Q-a.s. the scaling limit of φY (u) = Y0,u (u ∈ Zd+)

exists for all x ∈ Rd
>0 and is deterministic. The scaling limit φ̄Y satisfies

φ̄Y (x) = lim
n→∞

1

n
EQ0

(
Y0,bnxc

)
= lim

n→∞

1

n
EQ
(
Y0,bnxc

)
.

This limit function φ̄Y is continuous, positive-homogeneous, superadditive, concave on

Rd
>0 and extends continuously to Rd

+.

Proof. For fixed u ∈ Nd define Xn(ω) = logZω
0,nu (ω ∈ Ω0). Then this sequence is

superadditive:

Xn+m(ω) = logZω
0,(n+m)u ≥ logZω

0,mu + logZω
mu,(m+n)u = Xm(ω) +Xn(Tmu ω) (2.44)

Averaging this sequence with respect to Pρ (ρ ∈ Ω0) we obtain Yn(ρ) , EρXn. The new

sequence is also superadditive :

Yn+m(ρ) ≥ Ym(ρ) + Yn(Tmu ρ) (2.45)

Since we assumed that |ωx| are stochastically bounded by η0 (see the condition (b) below

(2.1)), Lemma 2.18(b) and (2.21) give

− EFN(n|u|1 + 1) ≤ Yn(ρ) ≤ n|u|1 log d+ EFN(n|u|1 + 1), (2.46)



40

where F is the CDF of η0 and EF refers to F⊗Z
d
+ . By Theorem 2.20, Yn(ρ)/n is bounded

below with lower bound −C|u|1 for some constant C and bounded above with upper

bound (C + log d)|u|1. Q is AMS with stationary mean Q0 relative to Tu by Assump-

tion 2.4. We can apply Theorem 2.17 to ρ and Tu. Note that in the case of Assump-

tion 2.6(b), Yu,v(ρ) is a monotone increasing function of ρ by Lemma 2.18(a). Therefore

Q(A) = 1 where A = {ρ ∈ Ω0 : n−1Eρ logZ0,nu converges for all u ∈ Nd}. Since Q0

is assumed to be totally ergodic with respect to T̂ , these limits are deterministic and

satisfy

φ̄Y (u) = lim
n→∞

EQ0
( 1

n
Y0,nu

)
= lim

n→∞

1

n
Y0,nu = lim

n→∞
EQ
( 1

n
Y0,nu

)
for u ∈ Nd Q-a.s. by Theorem 2.17. The last equality comes from the dominated

convergence theorem. Note that φ̄Y is superadditive on Nd since its formula is given by

a T̂ -stationary measure Q0. Therefore we can use Proposition 2.30 since Q-a.s., for all

u,v, Yu,v are bounded below by −C|v− u|1 (by the same reasoning as in (2.46)). This

yields the stated properties for φ̄Y .

Proof of Theorem 2.9. Define Xu,v(ω) = logZω
u,v and φ(u) = X0,u for u ≤ v in Zd+ and

ω ∈ Ω1. In Corollary 2.27 we showed that for ν-a.e. (ρ, ω), for all x ≤ y in Rd
+

lim
n→∞

( logZω
bnxc,bnyc

n
−

Eρ logZbnxc,bnyc
n

)
= 0, (2.47)

and in Theorem 2.31 we showed Q-a.s. and hence ν-a.s.,

lim
n→∞

Eρ logZω
0,bnxc

n
= φ̄Y (x). (2.48)

for a deterministic function φ̄Y and x > 0 in Rd
+. Therefore φ̄ as claimed in Theorem 2.9

exists ν-a.s. for all x > 0 and agrees with φ̄Y . The properties of φ̄ are given in

Theorem 2.31.
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Proof of Corollary 2.10. Let ε be a positive rational number. Then choose rational

points {v1,v2, . . . ,vM} on the hyperplane |x|1 = 1 + ε and {u1,u2, . . . ,uM} on the

hyperplane |x|1 = 1 − ε so that |vi − ui|1 = 2ε and boxes [ui,vi] cover the hyperplane

|x|1 = 1 in the first orthant (0 ≤ ui ≤ vi, vi > 0). Then {[nui, nvi]} cover the hy-

perplane |x|1 = n. For points x ∈ Zd+ in [nui, nvi] we have bnuic ≤ x ≤ bnvic and

logZω
0,x ≤ logZω

0,bnvic +G
|ω|
bnuic,bnvic.

Therefore

logZω
n = log

∑
x∈Zd+:|x|1=n

Zω
0,x ≤ log

(
(n+ 1)d max

x∈Zd+:|x|1=n
Zω

0,x

)
≤ d log(n+ 1) + max

1≤i≤M
logZω

0,bnvic + max
1≤i≤M

G
|ω|
bnuic,bnvic.

(2.49)

Divide by n, and take n→∞ to conclude that ν-a.s.,

lim sup
n→∞

logZω
n

n
≤ max

1≤i≤M
lim
n→∞

logZω
0,bnvic

n
+ max

1≤i≤M
lim sup
n→∞

G
|ω|
bnuic,bnvic

n

≤ max
1≤i≤M

φ̄(vi) + max
1≤i≤M

c0k|vi − ui|1

≤ (1 + ε) max
x:|x|1=1

φ̄(x) + 2εc0k

(2.50)

where

k =

∫ ∞
0

(1− F (t))1/ddt.

The inequality lim sup
n→∞

n−1G
|ω|
bnuic,bnvic ≤ c0k|vi − ui|1 is justified as follows. From the

coupling (2.15) we have G
|ω|
bnuic,bnvic ≤ Gη

bnuic,bnvic and

lim sup
n→∞

G
|ω|
bnuic,bnvic

n
≤ lim

n→∞

(Gη
bnuic,bnvic

n
−
EFGbnuic,bnvic

n

)
+ lim

n→∞

EFG0,bnvic−bnuic

n
.

(2.51)

Corollary 2.27 applied to η, G, and F (see Remark 2.28) with Theorem 2.20 gives the

result.
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For the lower bound note that for x ∈ Rd
>0 with |x|1 = 1,

logZω
0,bnxc + logZω

bnxc,u ≤ logZω
n

where u ∈ Zd+ and bnxc ≤ u ≤ dnxe with |u|1 = n. Hence we have

lim
n→∞

logZω
0,bnxc

n
≤ lim inf

n→∞

logZω
n

n
+ lim

n→∞

EFG0,dnxe−bnxc

n

ν-a.s. The second term comes as in (2.51). Therefore

φ̄(x) ≤ lim inf
n→∞

1

n
logZω

n .

and, since x is arbitrary we have lim
n→∞

1

n
logZω

n = max
x|x|1=1

φ̄(x) ν-a.s.
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Chapter 3

Limiting free energy for

two-dimensional polymers

3.1 Introduction

In this chapter, we focus on 2-dimensional directed polymers. We give a more precise

picture of the limit shape φ̄ and show the existence of limiting free energy for some

special types of models. In two dimension, we have conditions to guarantee the existence

of limiting free energy which are more natural and useful than Assumption 2.6.

For a random variable X with the distribution F2(r, ·), let F2(r), r ∈ S, be the

expectation of X:

F2(r) = EX =

∫
R
xF2(r, dx). (3.1)

Assumption 3.1. Let Q be the distribution of parameters ρ = {ρi,j} ∈ Ω0 = SZ2
+ and

F2 be as in Assumption 2.1. For Q-a.e. ρ, the limits

lim
n→∞

1

n

n−1∑
k=0

F2(ρi,k), lim
n→∞

1

n

n−1∑
k=0

F2(ρk,j) (3.2)

exist for all i, j ∈ Z+ and satisfy

lim
n→∞

1

n

n−1∑
k=0

F2(ρi,k) ≤ lim sup
m→∞

lim
n→∞

1

n

n−1∑
k=0

F2(ρm,k) (3.3)
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and

lim
n→∞

1

n

n−1∑
k=0

F2(ρk,j) ≤ lim sup
m→∞

lim
n→∞

1

n

n−1∑
k=0

F2(ρk,m) (3.4)

for all i and j ∈ Z+.

Remark 3.2. A subadditive ergodic theorem is applicable to these models as we will see

soon. In Definition 2.3, Q is Tu-AMS only for u > 0 with a common stationary mean

Q0. (3.2) imposes some sort of AMS properties for u = e1 and e2. These conditions are

quite natural since if Q is stationary, these conditions are satisfied not only for F2 but

also for any bounded function f : S→ R.

We give some models that satisfy Assumptions 2.4 and 3.1. We change the picture

slightly. Our model lives in N2. Choose parameters Λ = {λi}∞i=1 and Θ = {θj}∞j=1.

(Λ,Θ) is in S0 , [a0, a1]N × [b0, b1]N ' ([a0, a1] × [b0, b1])N for some a0 < a1 and b0 < b1

in R. S0 is equipped with the product Borel σ-algebra G0 generated by coordinate

projections. We introduce notations to fit this example into our general setting. Shift

maps τk,l : S0 → S0 act on S0 for k, l ∈ Z+ by ({λi}∞i=1, {θj}∞j=1) 7→ ({λi+k}∞i=1, {θj+l}∞j=1).

Then τ̂ = {τx}x∈Z2
+

is a semigroup.

Assumption 3.3. We consider parameters (Λ,Θ) ∈ S0. We denote the distribution of

(Λ,Θ) by Q. Q and the conditional law of weights ω = {ωx : x ∈ N2} given (Λ,Θ)

satisfy the following:

(a) Q is AMS with respect to τ̂ (see Definition 2.3). We denote the stationary mean

of Q by Q0.

(b) The weight parameters ρ = {ρx : x ∈ N2} ∈ RN2
are determined by (Λ,Θ): The

weight parameter at site (i, j) ∈ N2 is ρi,j = γ(λi, θj), where γ : [a0, a1]× [b0, b1]→
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R is a fixed function. We assume that γ is a continuous function that monotonically

increases in each coordinate (x ≤ y implies γ(x, z) ≤ γ(y, z) and γ(z, x) ≤ γ(z, y)).

(c) The conditional law of ω given (Λ,Θ) is given by (2.2):

P (ω ∈ · |Θ,Λ) = Pρ = ⊗x∈N2F2(ρx, ·).

(d) F2 in part (c) satisfies the following. F2 : R × R → [0, 1] is a monotonically

increasing function in the first variable. Let α and β denote the distributions of

λ1 and θ1 under Q0, respectively. We assume a0 = inf supp α and b0 = inf supp β.

Here, for a probability measure P , supp P is the support of P . If α({a0}) = 0 then

we require that λi > a0 for all i, Q-a.s. Similarly if β({b0}) = 0 then we require

that θj > b0 for all j, Q-a.s.

(d’) Alternatively, F2 is a monotonically decreasing function in the first variable, and

we assume a1 = sup supp α and b1 = sup supp β. We have similar conditions on

boundary points as (d).

We give more details of how this procedure connects our main results and these

two-dimensional models in Section 3.3. Here are some examples of Q0 and Q.

Example 3.4 (Examples of AMS measures and their stationary means). (a) Let

Q0 = α⊗N ⊗ β⊗N

where α and β are probability measures on [a0, a1] and [b0, b1] respectively. Q0

is totally ergodic with respect to τ̂ by Kolmogorov 0-1 law. For Q, choose any

nonnegative function f : S0 → R with EQ0f = 1 and take dQ = fdQ0.
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(b) Suppose (Λ,Θ) is deterministic and L-periodic: L ∈ N and

τL,0(Λ,Θ) = τ0,L(Λ,Θ) = (Λ,Θ).

Then

Q0 =
1

L2

∑
0≤k,l<L

δτk,l(Λ,Θ)

is stationary and totally ergodic with respect to τ̂ . In this case take Q = δ(Λ,Θ).

Note that an i.i.d. environment ω belongs to this example with L = 1.

(c) Consider independent time homogeneous irreducible, aperiodic Markov chains Xn

on a countable set S1 ⊆ [a0, a1] and Yn on a countable set S2 ⊆ [b0, b1] with tran-

sition probabilities p and q respectively (n ≥ 1). Assume p and q have stationary

distributions πX , πY and initial distributions of Xn, Yn are πX , πY respectively. Let

Zn = (Xn, Yn) then Zn is a Markov chain on S1×S2 with the transition probability

p̄((x1, y1), (x2, y2)) = p(x1, x2)q(y1, y2). p̄ has a stationary distribution π = πX⊗πY

Let Q0 be the distribution of ({Xn}n≥1, {Yn}n≥1) ' Zn. Then clearly Q0 is sta-

tionary. We claim that Q0 is ergodic with respect to τu for any u = (u1, u2) > 0.

The proof is similar to that given in Example 7.1.7 [16].

Let Fn = σ(X1, . . . , Xnu1 , Y1, . . . , Ynu2). Let Wn = (Xnu1 , Ynu2). Wn is a Markov

chain on S1 × S2 with respect to Fn and its transition probability is given by

p̄W ((x1, y1), (x2, y2)) = pu1(x1, x2)qu2(y1, y2). Then Wn is irreducible since Xn,

Yn are aperiodic. And p̄W has a stationary distribution π. (See the proof of Theo-

rem 6.6.4.[16]) If A ∈ Iu, 1A◦τnu = 1A. So the shift invariance of 1A, independence

of Xn and Yn, and the Markov property imply

EP0(1A|Fn) = Eπ(1A ◦ τnu |Fn) = h(Wn)
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where h(x) = Ex1A, x ∈ S1 × S2, and P x is the distribution of Zn started at x.

(Note that we do not use the distribution of Wn.) Lévy’s 0-1 law gives that the left-

hand side converges to 1A as n → ∞. (Here we used u > 0.) On the other hand

since Wn is irreducible and recurrent Q0-a.s., for any y ∈ S1 × S2 the right-hand

side of the above equation is h(y) i.o., so either h(x) ≡ 0 or h(x) ≡ 1, and Q0(A) =

0 or 1. In this case, we may take Q as the distribution of ({Xn}n≥1, {Yn}n≥1) for

any initial distributions.

(d) Take Q0 as in preceding examples. For a2 > a1, b2 > b1 and N > 0 take any

probability measure Q1 on ([a1, a2]× [b1, b2])N . Let Q = Q1 ⊗Q0. Note that Q is

not absolutely continuous with respect to Q0 but it is stochastically larger than Q0.

3.2 Results

In this section, we present our results: First, the existence of the limiting free energy

for models introduced in the previous section. Second, boundary values of limiting free

energy. Finally, examples of log-gamma polymer with a variational characterization of

the shape of the limiting free energy. At the end of this section, we briefly explain how

and where these results are proved.

For models satisfying Assumption 3.1, a subadditive ergodic theorem can be used

without Assumption 2.6.

Theorem 3.5. Suppose Assumptions 2.4 and 3.1 holds. Then the conclusion of Theo-

rem 2.9 holds.

Theorem 3.6. Suppose Assumption 3.3 holds. Then the conclusion of Theorem 2.9
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holds. Furthermore, the continuous extension of φ̄ satisfies the boundary condition in

terms of essential supremums under Q0 in Assumption 3.3:

φ̄(1, 0) = β- ess sup
θ1

∫
F2(γ(λ, θ1))α(dλ) (3.5)

and

φ̄(0, 1) = α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ) (3.6)

where α and β are distributions of λ1 and θ1 under Q0.

Finally, we give results for the inhomogeneous log-gamma polymer.

Theorem 3.7. Consider the log-gamma polymer introduced in Section 1.3. Suppose Q,

the distribution of (Λ,Θ), is τ̂ -AMS and we also have boundary conditions on a0 and

b0 as explained in Assumption 3.3(d). Then Theorem 3.6 is applicable. Furthermore, a

variational formula holds

lim
n→∞

1

n
logZω

(1,1),(bnxc,bnyc) = φ̄(x, y) = inf
−a0<z<b0

{xA(z) + yB(z)} (3.7)

for any x, y > 0. A(z) and B(z) are defined on (−a0, b0) and

A(z) = −
∫

(0,∞)

Ψ0(z + λ)α(dλ)

B(z) = −
∫

(0,∞)

Ψ0(−z + θ) β(dθ).

(3.8)

From these explicit formulas, we obtain a more precise picture of limiting shape.

Especially, we have some moment conditions for the existence of flat regions S1 and S2.

We borrow notations from [17].

Let S denote the sector of the first quadrant (R2
>0) on which

−B′(−a0)/A′(−a0) < x/y < −B′(b0)/A′(b0). (3.9)
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holds, Note that A and B are infinitely many differentiable functions. Let S1 and S2

denote the sectors defined by the inequalities x/y ≤ −B′(−a0)/A′(−a0) and x/y ≥

−B′(b0)/A′(b0), respectively. We have R2
>0 = S1 ∪ S2 ∪ S. Possibly, S1 = ∅ or S2 = ∅.

The following Corollary is analogous to Corollary 2.3 of [17].

Corollary 3.8. φ̄ extends to R2
+ and the following hold.

(a) φ̄(x, y) = xA(−a0) + yB(−a0) for (x, y) ∈ S1.

(b) φ̄(x, y) = xA(b0) + yB(b0) for (x, y) ∈ S2.

(c) φ̄(cx1 + (1− c)x2, cy1 + (1− c)y2) > cφ̄(x1, y1) + (1− c)φ̄(x2, y2) for 0 < c < 1 and

(x1, y1), (x2, y2) ∈ S that are nonparallel.

(d) For (x, y) ∈ S, there is a unique minimizer ζ ∈ (−a0, b0) in (3.7). ζ depends on

x/y and given by the inverse function of −B′(z)/A′(z) > 0 for z ∈ (−a0, b0):

− B′(ζ(x/y))

A′(ζ(x/y))
=
x

y
. (3.10)

(e) φ̄ is continuously differentiable.

(f) S1 6= ∅ ⇔
∫

1

(λ− a0)2
α(dλ) <∞, S2 6= ∅ ⇔

∫
1

(θ − b0)2
β(dθ) <∞.

For certain choices of α and β, more tractable formulas are possible. One can derive

the following formulas from (3.10). First, we introduce some generalized polygamma

functions to represent our formulas. Define

Ψ−1(x) = log Γ(x), Ψ−n(x) =
1

(n− 2)!

∫ x

0

(x− t)n−2 log Γ(t) dt for n ≥ 2.

These functions are called negapolygamma functions [1] and satisfy Ψ′n = Ψn+1 for all

n ∈ Z. See A.1 for more properties of polygamma functions. Using integration by parts,
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we have

A(n, L, y) , −n+ 1

Ln+1

∫ L

0

xnΨ0(x+ y) dx

=
(−1)n(n+ 1)!

Ln+1
Ψ−n−1(y) + (n+ 1)!

n+1∑
k=1

(−1)kL−k

(n+ 1− k)!
Ψ−k(y + L)

and

A′(n, L, y) , −n+ 1

Ln+1

∫ L

0

xnΨ1(x+ y) dx

=
(−1)n(n+ 1)!

Ln+1
Ψ−n(y) + (n+ 1)!

n+1∑
k=1

(−1)kL−k

(n+ 1− k)!
Ψ−k+1(y + L)

for y, L > 0 and n ≥ 0.

Example 3.9. [Explicit formulas] Some level curves are illustrated in Figure 2 and

Figure 3. In Figure 3, the level curve of (a) is strictly convex but not tangential

to the axes, and the level curve of (b) is strictly convex only in the middle sector

S and flat on the edges.

(a) α = β = δc for some c > 0.

φ̄(x, y) = −xΨ0(ζc(x/y) + c)− yΨ0(−ζc(x/y) + c),

where ζc is the inverse function of the map z 7→ Ψ1(−z+c)
Ψ1(z+c)

, |z| < c. Note that this

model is for the i.i.d. environment with a parameter µ = 2c. This formula is given

in (2.16) of [33].

(b) α and β are uniform measures on the interval [c, c+ L] for some c, L > 0.

φ̄(x, y) =− x
log Γ

(
ζ0(x/y) + c+ L

)
− log Γ

(
ζ0(x/y) + c

)
L

− y
log Γ

(
−ζ0(x/y) + c+ L

)
− log Γ

(
−ζ0(x/y) + c

)
L

,



51

where ζ0 is the inverse function of the map z 7→ Ψ0(−z + c+ L)−Ψ0(−z + c)

Ψ0(z + c+ L)−Ψ0(z + c)
,

|z| < c. Note that when L→ 0 we obtain the result in (a).

(c) For n ≥ 1, α = β = (n+ 1)(x− c)n/Ln+1 dx on the interval [c, c+ L] for some c,

L > 0.

φ̄(x, y) = xAn(ζn(x/y)) + yAn(−ζn(x/y)) on S,

where An(z) = A(n, L, c + z) and ζn is the inverse function of the map z 7→
A′(n, L, c− z)

A′(n, L, c+ z)
, |z| < c. . For n ≥ 2, S1, S2 are nonempty.

y
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0.6

0.6

0.8

0.8

1.0

1.0

1.2

1.2
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1.4

1.6

1.6

Figure 2: The level curve φ̄ = 2 (blue) with c = 0.3 and level curve φ̄ = 2 (red) with c = 0.3,
L = 0.2 (Uniform measure) in Example 3.9 (a) and (b).

Organization of Chapter 3. Theorems 3.5 and 3.6 are proved in Section 3.3. We show

that a nonstationary subadditive ergodic theorem is applicable under assumptions in this

chapter. In Section 3.4 we prove Theorem 3.7 and Corollary 3.8. Explicit formulas are

derived by precise analysis of stationary process with boundary conditions and coupling

with these processes are used.
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(a) c = 0.2, L = 0.4, n = 1.
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(b) c = 0.2, L = 0.4, n = 2.

Figure 3: The level curves φ̄ = 2 (red) with various α and β

in Example 3.9 (c).

3.3 The existence of the limiting free energy

In this section, we prove Theorem 3.5 and Theorem 3.6. The difficult part when we apply

a nonstationary subadditive ergodic theorem is that not every superadditive sequence

is almost surely invariant. Hence we used conditions (b) and (c) in Theorem 2.17 when

we proved Theorem 2.9. For 2-dimensional polymers, it is much easier to prove that

the superadditive sequence obtained from free energy is almost surely invariant under

weaker assumptions like Assumption 3.1. The key observation is that free energy formed

by bulk weights is not much different from the free energy formed by weights including

boundary weights as Lemma 3.10 shows.

Let x� = (xk)k≥0 be a directed path in Z2
+. We consider x� as a Markov chain

with transition probability p(x,x + e1) = p(x,x + e2) = 1/2 for x ∈ Z2
+. Denote the

distribution of x· by P . We write P x for P if P (x0 = x) = 1.

For a path segment xm :n = (xm, . . . ,xn), let H(xm :n) =
∑

m<k≤n ω(xk). Let

Hm,n(x�) = H(xm :n). If x ≤ y and there exists a unique directed path connecting

two points, we denote that path by x → y. Concatenation of x → y and y → z is
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denoted by x→ y→ z.

With this convention, we have, for u ≤ v ∈ Z2
+,

Zu,v =2n−mEu [1{xn−m = v} exp(H0,n−m(x�))]

=2n−mE0 [1{xm = u, xn = v} exp(Hm,n(x�))]

(3.11)

where m = |u|1 and n = |v|1.

Let Z̃u,v = Zu,v/2
|v−u|1 . log Z̃ is also superadditive like logZ : for u ≤ v ≤ w ∈ Z2

+,

log Z̃u,v + log Z̃v,w ≤ log Z̃u,w. For fixed m,n ∈ N, define stopping times Tm and T n by

Tm = inf{k ≥ 0 : xk = (m, r) for some r ∈ Z+ } (3.12)

and

T n = inf{k ≥ 0 : xk = (r, n) for some r ∈ Z+ }. (3.13)

Lemma 3.10. Let u ≤ v ≤ w ∈ Z2
+ and v = (m1, n1), w = (m,n). Then we have

logZu,w ≤ logZv,w + |v − u|1 log 2

+

[(
Gu,(m1,n) −

n∑
j=n1+1

ω(m1,j)

)
∨
(
Gu,(m,n1) −

m∑
i=m1+1

ω(i,n1)

)]
,

(3.14)

where G is the last-passage time (2.16).

Proof. Without loss of generality, we may assume u = 0. Let T = Tm1 ∨ T n1 . Let

y = (m1, n) if xT = (m1, r) and y = (m,n1) otherwise. By strong Markov property,
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Z̃0,w = E0 [exp(H0,T +HT,m+n)1{xm+n = w}]

= E0
[
exp(H0,T )Z̃xT ,w

]
= E0

[
exp(H0,T − log Z̃v,xT ) exp(log Z̃v,xT + log Z̃xT ,w)

]
≤ E0

[
exp(H0,T +H(xT → y)− log Z̃v,xT −H(xT → y)) exp(log Z̃v,w)

]
≤ Z̃v,wE

0 [exp(G0,y −H(v→ y))]

≤ Z̃v,w · exp(the second line of (3.14)).

(3.15)

Take the log then we obtain (3.14).

Consider empirical measures on S for n ∈ N, i, j ∈ Z+ and ρi,j ∈ S

αn,j =
1

n

n−1∑
i=0

δρi,j , βn,i =
1

n

n−1∑
j=0

δρi,j . (3.16)

For convenience let α0,i = β0,j = 0. For any bounded measurable function f : S→ R,

write

αj(ρ, f) = lim
n→∞

∫
f(r)αn,j(dr) = lim

n→∞

1

n

n−1∑
i=0

f(ρi,j) (3.17)

and

βi(ρ, f) = lim
n→∞

∫
f(r) βn,i(dr) = lim

n→∞

1

n

n−1∑
j=0

f(ρi,j) (3.18)

provided these limits exist.

For y > 0 and r ∈ S, let

F y
2 (r) =

∫
R
ωy F2(r, dω), (3.19)

where ωy is the y-truncated weight in (2.29). Then from Assumption 2.1

∣∣F y
2 (r)− F2(r)

∣∣ ≤ ∫ |ω|1{|ω| > y}F2(r, dω) ≤ h(y)

for some nonincreasing function h with limy→∞ h(y) = 0.
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Lemma 3.11. Suppose (3.17) and (3.18) hold for F2. If ω has the distribution Pρ in

(2.2), then for (m0, n0) ≤ (m1, n1) ∈ Z2
+ we have

lim
n→∞

1

n
Gω

(m0,n0),(m1,n) = max
m0≤i≤m1

βi(ρ, F2) (3.20)

and

lim
m→∞

1

m
Gω

(m0,n0),(m,n1) = max
n0≤j≤n1

αj(ρ, F2) (3.21)

Pρ-a.s. and in L1(Pρ).

Proof. Without loss of generality, we may assume (m0, n0) = (0, 0). For fixed i ≤ m1,

from the law of large numbers or Corollary 2.26 with shifting the origin, we have

lim
n→∞

1

n

n−1∑
j=0

(
ωi,j − F2(ρi,j)

)
= 0.

Our assumption that F2 satisfies (3.18) gives

lim
n→∞

1

n

n−1∑
j=0

F2(ρi,j) = βi(ρ, F2).

Therefore we have

lim inf
n→∞

1

n
Gω

0,(m1,n) ≥ lim
n→∞

1

n

n∑
j=1

ωi,j = lim
n→∞

1

n

n−1∑
j=0

F2(ρi,j) = βi(ρ, F2)

Pρ-a.s. and hence,

lim inf
n→∞

1

n
Gω

0,(m1,n) ≥ max
0≤i≤m1

βi(ρ, F2).

Consider ωy for some fixed y > 0. Then by Theorem 2.19, there exists positive

constants C1(y) and C2(y) such that for any path x� in Π0,(m1,n),

Pρ [Hy(x�) ≥ EρHy(x�) + nε] ≤ C1e
−C2nε2 ,
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where Hy(x�) = Hωy(x�). Since there are at most (n+ 1)m1+1 paths

Pρ
[
Gωy

0,(m1,n) ≥ max
x�

EρHy(x�) + nε

]
≤ C1(n+ 1)m1+1e−C2nε2 . (3.22)

Therefore from Borel-Cantelli lemma, Pρ a.s.,

lim sup
n→∞

1

n
Gωy

0,(m1,n) ≤ lim sup
n→∞

1

n
max{EρHy(x�) : x� ∈ Π0,(m1,n)}.

Any path in Π0,(m1,n) can be decomposed into a disjoint union of paths from (i, Ji) to

(i, Ji+1), i = 0, 1, . . . ,m1, where ji ∈ Z+ for each i and

0 = J0 ≤ J1 ≤ · · · ≤ Jm1+1 = n. (3.23)

Note that F2(r) is bounded by some constant M > 0 from Assumptions 2.1. For N ∈ N

define

ε(N) = max
0≤i≤m1

sup{
∣∣∫ F2(r) βn,i(dr)− βi(ρ, F2)

∣∣ : n ≥ N}.

Then from the assumption that F2 satisfies (3.18), we have limN→∞ ε(N) = 0. Note that
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J · ε(J) ≤ 2NM + n · ε(N) for any J ≤ n and N . Since
∣∣F y

2 (r)−F2(r)
∣∣ ≤ h(y), we have

F y
2 (ρ0,0) + EρHy(x�)

=

m1∑
i=0

Ji+1∑
j=Ji

F y
2 (ρi,j)

≤(n+m1 + 1)h(y) +

m1∑
i=0

Ji+1∑
j=Ji

F2(ρi,j)

=(n+m1 + 1)h(y)

+

m1∑
i=0

[
(1 + Ji+1)

∫
F2(r) β1+Ji+1,i(dr)− Ji

∫
F2(r) βJi,i(dr)

]
≤(n+m1 + 1)h(y) + (m1 + 1)M

+

m1∑
i=0

[(Ji+1 − Ji)βi(ρ, F2) + Ji+1ε(Ji+1) + Jiε(Ji)]

≤n · max
0≤i≤m1

βi(ρ, F2) + (n+m1 + 1)h(y)

+ (m1 + 1)M + 2n(m1 + 1)ε(N) + 4(m1 + 1)NM.

(3.24)

Therefore

lim sup
n→∞

1

n
max
x�

EρHy(x�) ≤ max
0≤i≤m1

βi(ρ, F2) + 2(m1 + 1)ε(N) + h(y).

Letting N →∞, we have Pρ-a.s.,

lim sup
n→∞

1

n
Gωy

0,(m1,n) ≤ max
0≤i≤m1

βi(ρ, F2) + h(y).

For general weights, from Theorem 2.22,

lim sup
n→∞

1

n
Gω

0,(m1,n) = lim
y→∞

lim sup
n→∞

1

n
Gωy

0,(m1,n)

≤ max
0≤i≤m1

βi(ρ, F2).

(3.25)
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Therefore (3.20) holds Pρ-a.s. Since G is dominated by weights of greedy lattice animal,

from Theorem 2.20 and dominated convergence theorem, L1(Pρ) convergence also holds.

(3.21) is proved similarly.

Proof of Theorem 3.5. Note that when we proved Theorem 2.9, we used Assumption 2.6

in Theorem 2.31 to invoke Theorem 2.17(b) or (c), a nonstationary subadditive ergodic

theorem. Therefore it is enough to show that the sequence fn(ρ) = Eρ logZ0,nu for fixed

u = (u1, u2) ∈ N2 satisfies the condition (a) in Theorem 2.17.

For any m ∈ Z+, from superadditivity of fn, we have f ≥ f ◦ Tm, where T = Tu.

Hence we need to show that f ≤ f ◦ Tm for any m, Q-a.s. Suppose that for some

(m1, n1) ∈ Z2
+

max
0≤i≤m1

βi(ρ, F2) = βm1(ρ, F2) and max
0≤j≤n1

αj(ρ, F2) = αn1(ρ, F2). (3.26)

Then for m and n with mu ≤ (m1, n1) ≤ nu, from Lemma 3.10,

logZ0,nu ≤ logZ(m1,n1),nu + (m1 + n1) log 2

+

[(
G0,(m1,nu2) −

nu2∑
j=n1+1

ω(m1,j)

)
∨
(
G0,(nu1,n1) −

nu1∑
i=m1+1

ω(i,n1)

)]

≤ logZmu,nu − logZmu,(m1,n1) + (m1 + n1) log 2

+

[(
G0,(m1,nu2) −

nu2∑
j=n1+1

ω(m1,j)

)
∨
(
G0,(nu1,n1) −

nu1∑
i=m1+1

ω(i,n1)

)]
.

(3.27)

Hence from (3.2) and Lemma 3.11,

lim sup
n→∞

1

n
Eρ logZ0,nu ≤ lim sup

n→∞

1

n
Eρ logZmu,nu.

Therefore f(ρ) ≤ f ◦ Tm(ρ) for this m and ρ. Thus if we can show that for Q-a.e. ρ,

there exists a sequence {(m1(k), n1(k)}∞k=0 such that m1(k), n1(k) → ∞ and (3.26) is
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satisfied, then f is Q-almost surely invariant and this completes the proof. However we

can find such a sequence from (3.3) and (3.4).

Proof of Theorem 3.6. Define Γ : S0 → Ω0 = RN2
+ by ρi,j = Γ(Λ,Θ)i,j = γ(λi, θj) for

i, j ∈ N, where γ is as in Assumption 3.3(b). Then Γ intertwines translation maps:

Γ ◦ τk,l = Tk,l ◦ Γ. Let Q′ = Γ#(Q) and Q′0 = Γ#(Q0) be pushforward measures on Ω0

of Q and Q0, respectively. By Lemma 2.14, Q′ and Q′0 satisfy Assumption 2.4.

Let q1 and q2 denote the coordinate projections from RN × RN onto RN defined by

q1(Λ,Θ) = Λ and q2(Λ,Θ) = Θ, respectively. Let τ : RN → RN be the shift map defined

by τ(x)k = xk+1 for k ∈ N. Let f : RN → R be a bounded measurable map. Since Q0 is

τ1,1-ergodic, we have

lim
n→∞

1

n

n∑
k=1

f ◦ τ k−1(Λ) = lim
n→∞

1

n

n∑
k=1

f ◦ q1 ◦ τ k−1
1,1 (Λ,Θ) = EQ0 [f ◦ q1] (3.28)

and

lim
n→∞

1

n

n∑
k=1

f ◦ τ k−1(Θ) = lim
n→∞

1

n

n∑
k=1

f ◦ q2 ◦ τ k−1
1,1 (Λ,Θ) = EQ0 [f ◦ q2] Q-a.s. (3.29)

Therefore Λ and Θ are separately ergodic. If we write Q1 and Q2 for the distributions

of Λ and Θ under Q0, respectively, then we conclude that Λ and Θ are τ -AMS with

stationary means with Q1 and Q2, respectively.

Now suppose Assumption 3.3(d)’ holds. Then F2(r) is a nondecreasing function. Let

Bλ = {s : F2(γ(λ, s)) is not continuous at s} and

B =
⋃
{Bλ : α({λ}) > 0}.

Then B is countable. Therefore for Q-a.e. Λ, from (3.28)

lim
n→∞

1

n

n∑
k=1

F2(γ(λk, s)) =

∫
F2(γ(λ, s))α(dλ) (3.30)
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for all s ∈ B′ = (Q ∩ [b0, b1]) ∪ {b0, b1} ∪ B. Let Ω′0 be an event that (3.30) holds

and Q(Ω′0) = 1. If θ(Λ,Θ) is a random variable taking values in B′, then we have for

(Λ,Θ) ∈ Ω′0,

lim
n→∞

1

n

n∑
k=1

F2(γ(λk, θ)) =

∫
F2(γ(λ, θ))α(dλ)

For general θ, let θn,1 = n−1bnθc and θn,2 = n−1dnθe. Then θn,1 ≤ θ ≤ θn,2. We have

lim sup
m→∞

1

m

m∑
k=1

F2(γ(λk, θ)) ≤
∫
F2(γ(λ, θn,2))α(dλ)

and

lim inf
m→∞

1

m

m∑
k=1

F2(γ(λk, θ)) ≥
∫
F2(γ(λ, θn,1))α(dλ)

if (Λ,Θ) ∈ Ω′0. Suppose θ /∈ B′. Then by letting n→∞, from the definition of B′,

lim sup
m→∞

1

m

m∑
k=1

F2(γ(λk, θ))− lim inf
m→∞

1

m

m∑
k=1

F2(γ(λk, θ))

≤
∫
F2(γ(λ, θ)+)− F2(γ(λ, θ)−)α(dλ) = 0.

(3.31)

Therefore for Q-a.e. Λ and Θ,

αj(ρ, F2) = lim
m→∞

1

m

m∑
k=1

F2(γ(λk, θj)) =

∫
F2(γ(λ, θj))α(dλ). (3.32)

Similarly,

βi(ρ, F2) = lim
m→∞

1

m

m∑
k=1

F2(γ(λi, θk)) =

∫
F2(γ(λi, θ)) β(dθ). (3.33)

From (3.32), if β({b1}) = 0, then αj(ρ, F2) ≤ limb↑b1
∫
F2(γ(λ, b))α(dλ). We claim

that

lim sup
m→∞

αm(ρ, F2) = lim
b↑b1

∫
F2(γ(λ, b))α(dλ).

Let f = 1[b1−ε,b1] be an indicator function for ε > 0. Since Θ is AMS with stationary

mean Q2,

lim
n→∞

1

n

n∑
k=1

f(θk) =

∫
1[b1−ε,b1](θ) β(dθ) > 0.
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Hence θj > b1 − ε infinitely often and the claim is justified. Therefore

αj(ρ, F2) ≤ lim sup
m→∞

αm(ρ, F2)

If β({b1}) > 0, considering f = 1{b1}, we have the same result. Similarly, we have

βi(ρ, F2) ≤ lim sup
m→∞

βm(ρ, F2).

Therefore Q′ and Q′0 satisfy Assumption 3.1. The boundary conditions of φ̄ are proved

in the following Lemma.

Lemma 3.12. Let ε > 0. There exists δ > 0 such that if 0 < x < δ, then

∣∣φ̄(x, 1)− α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ)

∣∣ < ε (3.34)

and ∣∣φ̄(1, x)− β- ess sup
θ1

∫
F2(γ(λ, θ1))α(dλ)

∣∣ < ε. (3.35)

Proof. Since the scaling limit φ̄ is completely determined by Q0, we assume Q = Q0.

The proof is similar to that of Lemma 3.11. Let u = (u1, u2) ∈ N2. We have

logZω
1,1+nu ≥

nu2∑
j=1

ω1,j +

nu1∑
i=1

ωi,nu2 .

Hence Q0-a.s.,

φ̄(u1, u2) = lim
n→∞

1

n
logZω

1,1+nu ≥ u2β1(ρ, F2)−Mu1 = u2

∫
F2(γ(λ1, θ)) β(dθ)−Mu1,

where M is an upper bound of F2(r). Since φ̄ is a deterministic function,

φ̄(u1/u2, 1) ≥ α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ)−Mu1/u2.

Since φ̄ is continuous, for all x > 0,

φ̄(x, 1) ≥ α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ)−Mx. (3.36)
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Let Kn =
∣∣Π1,1+uu

∣∣. By comparing
∫ n

1
log x dx and log(n!), one has

log

(
n+m

n

)
≤ (n+m)(−p log p− q log q) + log(n+m)

where p = n/(n+m) and q = m/(n+m). Hence with p = u1/(u1 + u2),

logKn ≤ n(u1 + u2)(−p log p− (1− p) log(1− p)) + log(nu1 + nu2)

By considering paths in Π1,1+uu and y-truncated weights, we have

Pρ
[
logZωy

1,1+nu − logKn ≥ max
x�

EρHy(x�) + nε

]
≤Pρ

[
Gωy

1,1+uu ≥ max
x�

EρHy(x�) + nε

]
≤ C1Kne

−C2n(u1+u2)ε2
(3.37)

(see (3.22)).

If u1/u2 is sufficiently small, say < δ, then the upper bound in (3.37) is summable

over n. Therefore from Borel-Cantelli lemma, if u1/u2 < δ,

lim
n→∞

1

n
logZωy

1,1+nu ≤ (u1 + u2)(−p log p− (1− p) log(1− p))

+ lim sup
n→∞

1

n
max{EρHy(x�) : x� ∈ Π1,1+nu}+ ε.

(3.38)

By choosing smaller δ, we have

lim
n→∞

1

n
logZωy

1,1+nu ≤ lim sup
n→∞

1

n
max{EρHy(x�) : x� ∈ Π1,1+nu}

+ (u1 + u2 + 1)ε

(3.39)
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if u1/u2 < δ. Using notations in (3.24), if λ = max1≤i≤nu1 λi (we use Assumption 3.3(d’)),

F y
2 (ρ0,0) + EρHy(x�)

=

nu1∑
i=1

Ji+1∑
j=Ji

F y
2 (ρi,j)

≤(nu1 + nu2 + 1)h(y) +

nu1∑
i=1

Ji+1∑
j=Ji

F2(γ(λi, θj))

≤(nu1 + nu2 + 1)h(y) +

nu1∑
i=1

Ji+1∑
j=Ji

F2(γ(λ, θj))

≤(nu1 + nu2 + 1)h(y) +Mnu1 +

nu2∑
j=1

F2(γ(λ, θj))

≤(nu1 + nu2 + 1)h(y) +Mnu1 +

nu2∑
j=1

F2(γ(b2, θj)),

(3.40)

where b2 = b1 if α({b1}) > 0 and b2 = b1− otherwise. For the latter case, F2(γ(b1−, θ)) =

limb↑b1 F2(γ(b, θ)). By ergodic theorem, we have

lim sup
n→∞

1

n
max
x�

EρHy(x�) ≤ u2 ·
∫
F2(γ(b2, θ)) β(dθ) +Mu1 + (u1 + u2)h(y). (3.41)

Note that

α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ) =

∫
F2(γ(b2, θ)) β(dθ).

Therefore we have, Pρ-a.s.,

lim sup
n→∞

1

n
Zωy

1,1+nu ≤u2 · α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ)

+Mu1 + (u1 + u2)h(y) + (u1 + u2 + 1)ε.

(3.42)

For general weights, from Theorem 2.22,

lim sup
n→∞

1

n
Zω

1,1+nu = lim
y→∞

lim sup
n→∞

1

n
Zωy

1,1+nu

≤u2 · α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ) + (M + 2ε)u1 + 2εu2.

(3.43)
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Hence if u1/u2 < δ then

φ̄(u1/u2, 1) ≤ α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ) + (M + 2ε)u1/u2 + 2ε.

From continuity of φ̄ we have

φ̄(x, 1) ≤ α- ess sup
λ1

∫
F2(γ(λ1, θ)) β(dθ) + (M + 2ε)x+ 2ε. (3.44)

for all 0 < x < δ. (3.36) and (3.44) prove (3.34). We omit the proof of (3.35).

3.4 The log-gamma polymer model

3.4.1 Definitions and Conventions

In this section, we study an explicitly solvable log-gamma polymer model and mostly

use results and conventions from previous work. Our model lives in N2.

First, we describe the CDF of our model precisely. Let G2 : R×R→ R be a function

defined by G2(r, x) =
1

Γ(r)

∫ x

−∞
exp[ry − ey] dy for x ∈ R and r > 0. G2(r, ·) is the

CDF of a log-gamma(r) random variable (see (A.13)). We write Gr(x) for G2(r, x).

H(r, u) = G−1
r (u) = (0 < u < 1) is the inverse of G2(r, ·) and increasing in r by (A.19)

and (A.22). If −ω is a log-gamma(r) random variable, the CDF of ω is given by

Fr(x) = F2(r, x) =
1

Γ(r)

∫ x

−∞
exp[−ry − e−y] dy (3.45)

and F−1
r (u) = −H(r, 1 − u). F−1

r (u) is decreasing in r. Note that F2(r) = −EX =

−Ψ0(r), where X is a log-gamma(r) random variable.

Now we explain how this model can be handled in the framework we developed.
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Proof of Theorem 3.7. We provide functions in Assumption 3.3 for this model. γ in

(b) is given by γ(λ, θ) = λ + θ. We showed that F2 is increasing function in the first

variable (we restrict the domain of F2 to R>0). Therefore F2 satisfies (d). The weights

in (1.5) are precisely as explained in (c). One only need to show that F2 satisfies

Assumption 2.1. One can easily construct F in (2.1). See Remark 3.14. Therefore we

can apply Theorem 3.6. For the boundary values of φ̄, we have

φ̄(1, 0) = β- ess sup
θ1

∫
−Ψ0(λ+ θ1)α(dλ) = A(b0) (3.46)

and

φ̄(0, 1) = α- ess sup
λ1

∫
−Ψ0(λ1 + θ) β(dθ) = B(−a0), (3.47)

where A and B are functions in (3.8)

To prove the variational formula (3.7) and to obtain some explicit formulas, we

utilize stationary processes with boundary conditions and couple these processes with

our original process without boundary conditions. The precise setting is as follows. To

couple these stationary processes with the original model, we need to extend sites. Let

S0 = RN × RN, Ω′0 = RN2
, and Ω0 = RZ2

+ . These spaces are equipped with the product

σ-algebras. We extend weight parameters ρ to sites in Z2
+ \ N2. For −a0 < z < b0,

ρi,0 = λi + z, ρ0,j = θj − z

for boundary points (i, j ∈ N). We set ρ0,0 = 0. We write ρz for these weight parameters.

Original parameters on N2 is denoted by ρ

Definition 3.13 (Inhomogeneous log-gamma polymer). Assume −a0 < z < b0. All

polymer models are defined on L = N2 or Z2
+. For given parameters ρ̃ ∈ RL, Pρ̃ is
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given by (2.2) (we use L instead of Z2
+) with F2 in (3.45). Q satisfies conditions in

Theorem 3.7.

(1) Let (Λ,Θ) be fixed. The (Λ,Θ)-polymer is the up-right directed polymer model

started at (1, 1) ∈ N2: L = N2 and the distribution of ω is Pρ.

(2) The (Λ,Θ, z)-stationary polymer is a polymer started at the origin: L = Z2
+ and

the distribution of ω is Pρz . Note that the bulk weights are the same as in part (1)

but we give z-dependent weights for boundaries.

(3) The Q-polymer is a polymer started at (1, 1) ∈ N2: L = N2. The distribution for

parameters (Λ,Θ) is Q. The conditional law of the weights ω given the parameters

(Λ,Θ) is Pρ.

(4) (Q, z)-stationary polymer is a polymer model started at the origin: L = Z2
+. The

distribution for parameters (Λ,Θ) is Q. The conditional law of the weights ω given

the parameters (Λ,Θ) is Pρz .

Remark 3.14. As in (2.15) we use couplings to realize various weights simultaneously.

U = {Ux}x∈Z2
+

are i.i.d. Uniform-(0,1) random variables. (Λ,Θ) is independent of U .

ωx = F−1
ρx (Ux) for x ∈ L. By monotonicity of F−1

r in r we have

F−1
a1+b1

(Ux) ≤ ωx ≤ F−1
(a0+z)∧(b0−z)(Ux)

for x ∈ Z2
+ \ {(0, 0)}. Let F z be the CDF of

max{|F−1
a1+b1

(U0)|, |F−1
(a0+z)∧(b0−z)(U0)|, 1}.

We write F for F 0. F z has an exponential tail. In particular

kz ,
∫ ∞

0

(1− F z(t))1/2 dt <∞.
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η variables are given by ηx = (F z)−1(Ux) for x ∈ Z2
+.

Remark 3.15 (Notations). Eµ is used to denote the expectation for a general probability

measure µ. (Ω,F ,P) is a generic probability space that is not part of the polymer model

(see Section 2.4.1).

The distribution of ω is denoted by Pρ in (1) and P in (3), respectively. For z-

stationary models, the distribution is denoted by Pρ,z in (2) and Pz in (4), respectively.

Note that marginals of Pρ,z and Pz on Ω′0 are Pρ and P, respectively.

Under P the expectation of X is EX and variance Var(X). Overline means centering:

X = X − EX. Qω is the quenched polymer measure. The annealed measure is P (·) =

EQω(·) with expectation E. Under Pρ or Pρ,z we use similar conventions. For example,

the expectation of X is EρX or Eρ,zX.

3.4.2 Stationary processes with boundary conditions

In this section we consider the inhomogeneous log-gamma polymer with boundary con-

ditions, processes in a stationary ([21], not to be confused with T̂ -stationarity in this

paper) situation as explained below. Working with these models is crucial for explicit

computations. Note that stationary polymers are defined by altering the distribution of

the weights on the boundaries of Z2
+, maintaining the same distribution on the bulk.

A remarkable feature of the stationary processes is that the horizontal and vertical

increments of the free energy (or the ratio of partition functions) are stationary. Recall

the convention in (2.17). Variables indexed by a single point do not have the parentheses,
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for example, Zm,n = Z(m,n) = Z(0,0),(m,n). Define

Im,n = logZm,n − logZm−1,n for m ≥ 1 and n ≥ 0

Jm,n = logZm,n − logZm,n−1 for m ≥ 0 and n ≥ 1.

(3.48)

The partition function satisfies

Zm,n = eωm,n(Zm−1,n + Zm,n−1) for (m,n) ∈ N2 (3.49)

and one can verify that for (m,n) ∈ N2

e−Im,n = e−ωm,n
e−Im,n−1

e−Im,n−1 + e−Jm−1,n

e−Jm,n = e−ωm,n
e−Jm−1,n

e−Im,n−1 + e−Jm−1,n
.

(3.50)

The following Proposition is a key to explicit computations and explains why we call

stationary polymers stationary.

Proposition 3.16. Consider the (Λ,Θ, z)-stationary polymer and the (Q, z)-stationary

polymer in Definition 3.13 for −a0 < z < b0. Let k, l ∈ Z+.

(a) Ii,l has the same distribution as ωi,0 for any i ∈ N.

(b) Jk,j has the same distribution as ω0,j for any j ∈ N.

(c) For the (Λ,Θ, z)-stationary polymer we have that for any fixed l ∈ Z+, the random

variables {Ii,l : i ∈ N} are independent, and for any fixed k ∈ Z+, the variables

{Jk,j : j ∈ N} are independent.

(d) For the (Q, z)-stationary polymer, part (c) holds if Q is given by a product measure

on S0.
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Proof. For an i.i.d. environment in the bulk (λi = λ, θj = θ are constants) this is proved

in Theorem 3.3 [33] with slightly different formulations. Reversibility or Burke property

is given in Lemma 3.2 [33] where a special property of the Gamma distribution is used

for the proof, and then by induction argument (a), (b), and (c) are proved. For the

(Λ,Θ, z)-stationary polymer, we have the same proof so we omit it. See [33] for details.

For the (Q, z)-stationary polymer, the conditional law of I(i, l) conditioned on (Λ,Θ)

is Fλi+z(·) by the result for the (Λ,Θ, z)-stationary polymer. In particular, the condi-

tional distributions do not depend on Θ. Therefore the distribution of Ii,l does not

depend on l. This observation also indicates that {Ii,l : i ∈ N} are independent if Q is

a product measure. Same proof holds for Jk,j.

Recall definitions of A and B in (3.8). We can compute the limiting free energy of

z-stationary polymers. For −a0 < z < b0, let φ̄z denote the function

φ̄z(x, y) = xA(z) + yB(z). (3.51)

Theorem 3.17. We have

lim
n→∞

logZω
bnxc,bnyc

n
= φ̄z(x, y) for all x, y ≥ 0 in R (3.52)

for the following cases.

(a) For the (Λ,Θ, z)-stationary polymer (3.52) holds Pρ,z-a.s. if empirical measures

1

n

n∑
i=1

δλi and
1

n

n∑
j=1

δθj converge weakly to α and β, respectively.

(b) For the (Q, z)-stationary polymer (3.52) holds Pz-a.s.

Proof. We prove this theorem for x, y > 0. The cases x = 0 and y = 0 can be handled
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in the same way. From (3.48), we have

logZω
bnxc,bnyc

n
=

1

n

bnxc∑
i=1

Ii,0 +
1

n

bnyc∑
j=1

Jbnxc,j.

Averaging with respect to Pρ,z, from Proposition 3.16 we have

Eρ,z logZbnxc,bnyc
n

= − 1

n

bnxc∑
i=1

Ψ0(z + λi)−
1

n

bnyc∑
j=1

Ψ0(−z + θj). (3.53)

(a) Since Ψ0 is continuous and

Ψ0(z + a0) ≤ Ψ0(z + λi) ≤ Ψ0(z + a1)

Ψ0(−z + b0) ≤ Ψ0(−z + θj) ≤ Ψ0(−z + b1)

(3.54)

we have for any x, y

− 1

n

bnxc∑
i=1

Ψ0(z + λi)→ xA(z)

− 1

n

bnyc∑
j=1

Ψ0(−z + θj)→ yB(z)

(3.55)

from the weak convergence. Corollary 2.26 gives the convergence in (3.52) for Pρ,z-a.s.

ω.

(b) Note that for fixed x and y, (3.55) holds for Q-a.e. (Λ,Θ) by (3.28) and (3.29).

Therefore (3.54) and Proposition 2.30 give simultaneous convergence in (3.55) for all x

and y, Q-a.s. Finally, Corollary 2.27 implies the convergence in (3.52) for Pz-a.s. ω.

Theorem 3.18.

φ̄z(1, 1) = sup
0≤t≤1

{φ̄z(1− t, 0) + φ̄(t, 1)} ∨ sup
0≤t≤1

{φ̄z(0, 1− t) + φ̄(1, t)} (3.56)

This theorem is stated and proved for some inhomogeneous corner growth models

in Proposition 4.4 [17] and for i.i.d. log-gamma polymers in Lemma 4.1 [21]. In the

following proof we adapt their argument.
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Proof. Note the inequality

φ̄(x, y) ≤ φ̄z(x, y) (3.57)

for any x, y ≥ 0. This follows from the inequality

logZ(0,0),(1,1) + logZ(1,1),(m,n) ≤ logZ(0,0),(m,n)

and from P being the projection of Pz onto Ω′0. Since φ̄z is linear,

φ̄z(1, 1) = φ̄z(1− t, 0) + φ̄z(t, 1) ≥ φ̄z(1− t, 0) + φ̄(t, 1)

φ̄z(1, 1) = φ̄z(1− t, 0) + φ̄z(1, t) ≥ φ̄z(0, 1− t) + φ̄(1, t)

for any 0 ≤ t ≤ 1. Taking the supremum of the right-hand sides over t gives (3.56) with

≥ in place of =.

We can decompose the partition function Zm,n according to the exit point of the

path from the boundary:

Zω
m,n =

m∑
k=1

(
exp(

k∑
i=1

ωi,0)
)
· Z�(k,1),(m,n) +

n∑
`=1

(
exp(

∑̀
j=1

ω0,j)
)
· Z�(1,`),(m,n) (3.58)

where Z�u,v is the partition function including the weight of the starting point:

Z�u,v = eωuZu,v. (3.59)

Proof for the ≤ half of (3.56) is similar to that of Corollary 2.10. Take m = n to

compute φ̄z(1, 1). Let L ∈ N, ui = bin/Lc for 0 ≤ i ≤ L and consider n > L large

enough to ensure that ui < ui+1. For any 1 ≤ k ≤ n there exists some 0 ≤ i < L such

that ui < k ≤ ui+1. A summand in (3.58) satisfies

logZω
k,0 + logZ�(k,1),(n,n) ≤ logZω

ui,0
+ logZ

|ω|
(ui,0),(ui+1,0)

+ logZ
|ω|
(ui,1),(ui+1,1) + logZω

(1+ui,1),(n,n).

(3.60)
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It follows that

logZω
n,n ≤ log(4n) + max

0≤i<L
{logZω

ui,0
+ logZω

(1+ui,1),(n,n)}∨

max
0≤i<L

{logZ
|ω|
(ui,0),(ui+1,0) + logZ

|ω|
(ui,1),(ui+1,1)}∨

max
0≤i<L

{logZω
0,ui

+ logZω
(1,1+ui),(n,n)}∨

max
0≤i<L

{logZ
|ω|
(0,ui),(0,ui+1) + logZ

|ω|
(1,ui),(1,ui+1)}.

(3.61)

Since we already established the existence of limits we only need to identify the limits.

All limit formulas are completely determined by the expectations under Q0. Hence we

may assume Q = Q0 and so our model is stationary relative to shift maps. We have the

following equalities in distribution under P.

Zω
(1+ui,1),(n,n) = Zω

(1,1),(n−ui,n)

Zω
(1,1+ui),(n,n) = Zω

(1,1),(n,n−ui) ,

which imply

1

n
logZω

(1+ui,1),(n,n) → φ̄(1− i/L, 1)

1

n
logZω

(1,1+ui),(n,n) → φ̄(1, 1− i/L)

(3.62)

in probability as n → ∞. Hence these limits are a.s. if n tends to ∞ along suitable

subsequences.

Divide through by n in (3.61), let n→∞ along suitable subsequences and consider

the limit of each term. By Theorem 3.17, (3.62), and ergodic theorem for error terms

φ̄z(1, 1) ≤ max
0≤i<L

max{φ̄z(i/L, 0) + φ̄(1− i/L, 1),

φ̄z(0, i/L) + φ̄(1, 1− i/L)}+
C(z) +D(z)

L

≤ sup
0≤t≤1

max{φ̄z(t, 0) + φ̄(1− t, 1),

φ̄z(0, t) + φ̄(1, 1− t)}+
C(z) +D(z)

L
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where C(z) = Ez
(
|ω1,0|+ |ω1,1|

)
and D(z) = Ez

(
|ω0,1|+ |ω1,1|

)
. Finally, let L→∞.

To complete the proof of Theorem 3.7, we state an analytic theorem. Suppose A(z),

B(z) are real valued functions defined on (−a0, b0). We assume that A and B are C2

functions and A′′, B′′ > 0 on (−a0, b0). We also assume that A′ < 0 and B′ > 0 on

(−a0, b0). For −a0 < z < b0, gz is a linear function on R2 given by

gz(x, y) = xA(z) + yB(z). (3.63)

Let g : R2
+ → R be a continuous, concave, and positive homogeneous function.

Theorem 3.19. Suppose the identity

gz(1, 1) = sup
0≤t≤1

{max{g(t, 1) + gz(1− t, 0), g(1, t) + gz(0, 1− t)}} (3.64)

holds for all −a0 < z < b0 and assume

g(1, 0) = lim
z↑b0

A(z) , A(b0), g(0, 1) = lim
z↓−a0

B(z) , B(−a0). (3.65)

Then

g(x, y) = inf
−a0<z<b0

{xA(z) + yB(z)} (3.66)

for all x, y ≥ 0.

Proof. This theorem is implied in the proof of Proposition 4.4 [17]. From (3.64) and

linearity of gz we have 0 = sup{g(x, y)− gz(x, y) : |(x, y)|∞ = 1, (x, y) ∈ R2
+}. Since g

and gz are continuous this supremum is achieved at some point (x0, y0). By (3.65) and

strict monotonicity of A and B, (x0, y0) must be in the interior of R2
+. We claim that

0 = sup{g(t, 1)− gz(t, 1) : 0 ≤ t <∞}
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for all −a0 < z < b0. For t ≥ 0 let ct = |(t, 1)|∞. Then from positive homogeneity of g,

we get g(t, 1)− gz(t, 1) = ct
(
g(t/ct, 1/ct)− gz(t/ct, 1/ct)

)
≤ 0. If y0 = 1 take t = x0 and

we are done. Suppose x0 = 1 and 0 < y0 < 1. In this case take t = x0/y0 and we are

done. It follows immediately that

B(z) = sup
0≤t<∞

{−tA(z) + g(t, 1)}.

Define h : R→ R ∪ {∞} by h(t) = −g(t, 1) for t ≥ 0 and h(t) =∞ for t < 0. Then

h is lower semi-continuous and proper convex on R. Let k be the function defined on

(−A(−a0),−A(b0)) and given by k(x) = B ◦ A−1(−x). Hence

k(x) = sup
0≤t<∞

{tx− h(x)} (3.67)

for any x ∈ (−A(−a0),−A(b0)). Let h∗ denote the convex conjugate of h, that is,

h∗(x) = sup
t∈R
{tx− h(t)} = sup

t≥0
{tx− h(t)} (3.68)

for x ∈ R. Comparison of (3.67) and (3.68) shows that h∗ agrees with k on (−A(−a0),−A(b0)).

Now we compute h∗ on the complement of (−A(−a0),−A(b0)). From the second equal-

ity of (3.68), h∗ is nondecreasing and is bounded below by −h(0) = g(0, 1) = B(−a0).

Since k is strictly increasing function,

h∗(−A(−a0)) ≤ lim
x↓−A(−a0)

h∗(x) = lim
x↓−A(−a0)

k(x)

= lim
x↓−A(−a0)

B ◦ A−1(−x) = lim
z→−a0

B(z) = B(−a0).

(3.69)

Hence h∗(x) = B(−a0) for x ≤ −A(−a0). On the other hand, if x > −A(b0) = −g(1, 0)

then h∗(x) =∞ since

lim
t→∞

tx− h(t) = lim
t→∞

t(x+ g(1, 1/t)) =∞.
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For x = −A(b0), note that h∗ is lower semi-continuous and nondecreasing. Therefore

h∗(−A(b0)) = lim
x↑−A(b0)

h∗(x) = lim
x↑−A(b0)

k(x) = B(b0)

and h∗ is continuous on (−∞,−A(b0)].

Since h is a lower semi-continuous and proper convex function, by the Fenchel-Moreau

theorem, h equals the convex conjugate of h∗, hence,

h(t) = sup
x∈R
{tx− h∗(x)} (3.70)

for all t ∈ R. We claim that, for t ≥ 0, the supremum could be taken over the in-

terval (−A(−a0),−A(b0)). For t ≥ 0, the function x 7→ tx − h∗(x) is nondecreasing

on (−∞,−A(−a0)] and is −∞ for x > −A(b0). Hence, from the continuity of h∗ on

(−∞,−A(b0)],

h(t) = sup
x∈[−A(−a0),−A(b0)]

{tx− h∗(x)}

= sup
x∈(−A(−a0),−A(b0))

{tx− h∗(x)}

= sup
z∈(−A(−a0),−A(b0))

{−tA(z)−B(z)}

= − inf
z∈(−A(−a0),−A(b0))

{tA(z) +B(z)}

(3.71)

which implies (3.66) from the positive homogeneity of g.

Corollary 3.20. Recall the definition of the sectors S, S1, and S2 in (3.9) and below.

We have the following.

(a) g(x, y) = xA(−a0) + yB(−a0) for (x, y) ∈ S1.

(b) g(x, y) = xA(b0) + yB(b0) for (x, y) ∈ S2.
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(c) g(cx1 + (1− c)x2, cy1 + (1− c)y2) > cg(x1, y1) + (1− c)g(x2, y2) for 0 < c < 1 and

(x1, y1), (x2, y2) ∈ S that are nonparallel.

(d) g is continuously differentiable.

(e) S1 6= ∅ ⇔ A′(−a0) <∞, S2 6= ∅ ⇔ B′(b0) <∞.

Proof. This corollary is proved in Corollary 2.3 [17] with specific forms of A and B. Our

proof is exactly same therein but for completeness we give details. Since A′ and B′ are

increasing, for any fixed x, y > 0, the derivative z 7→ xA′(z) + yB′(z) is also increasing

and continuous. If (x, y) ∈ S1,

xA′(z) + yB′(z) ≥ xA′(−a0) + yB′(−a0) ≥ 0

so that the infimum of g(x, y) is achieved at z = −a0. If (x, y) ∈ S2,

xA′(z) + yB′(z) ≤ xA′(b0) + yB′(b0) ≤ 0

and hence (b) follows.

If (x, y) ∈ S, the derivative has a unique zero. Suppose

g(x, y) = xA(z) + yB(z) (3.72)

where −a0 < z < b0 is the unique solution of the equation

− B′(z)

A′(z)
=
x

y
. (3.73)

Since −B′/A′ is increasing and continuous, it has a strictly increasing and continuous

inverse ζ defined on {r > 0 : (r, 1) ∈ S}. Also −B′/A′ is continuously differentiable with
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derivative (A′′B′ − A′B′′)/(A′)2 > 0. Hence by the inverse function theorem, ζ is C1 as

well. Hence, for (x, y) ∈ S,

g(x, y) = xA(ζ(x/y)) + yB(ζ(x/y)) (3.74)

and using (3.73), (3.74), we compute the gradient of g on S as

∇g(x, y) = (A(ζ(x/y)), B(ζ(x/y))). (3.75)

This gradient tends to (A(−a0), B(−a0)) as (x, y) approaches S1 and to (A(b0), B(b0))

as (x, y) approaches S2. Hence we have (d).

If (x1, y1), (x2, y2) ∈ S are nonparallel then ζ(x1/y1) 6= ζ(x2/y2), which gives the

strict inequality

g(x1, y1) + g(x2, y2) = x1A(ζ(x1/y1)) + y1B(ζ(x1/y1))

+ x2A(ζ(x2/y2)) + y2B(ζ(x2/y2))

< (x1 + x2)A(z) + (y1 + y2)B(z)

(3.76)

for any −a0 < z < b0. Setting z = ζ((x1 + x2)/(y1 + y2)) gives g(x1 + x2, y1 + y2) >

g(x1, y1) + g(x2, y2), and (c) is proved from this and positive homogeneity of g. (e) is

immediate from computations above.

Proof of Theorem 3.7 completed. Note that A and B are infinitely differentiable and the

derivatives are given by

dk

dzk
A(z) = −

∫
(0,∞)

Ψk(z + λ)α(dλ)

dk

dzk
B(z) = (−1)k+1

∫
(0,∞)

Ψk(−z + θ) β(dθ)

(3.77)
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for any k ≥ 1. In particular, A is a strictly decreasing convex function and B is a strictly

increasing convex function. The variational formula for the log-gamma polymer is im-

mediate from Theorem 3.18 and Theorem 3.19. Note that condition (3.65) is satisfied

by (3.46) and (3.47).

Proof of Corollary 3.8. We obtain the result except for part (f) by Corollary 3.20. Since

S1 6= ∅ if and only if −B′(−a0)/A′(−a0) > 0, we need to estimate B′(−a0) and A′(−a0).

From (3.77) and (A.2), we have B′(−a0) > 0. Therefore S1 6= ∅ if and only if A′(−a0) <

∞, and this is equivalent to
∫

1
(λ−a0)2

α(dλ) < ∞ from (A.6). The condition for S2 can

be derived similarly.
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Chapter 4

Scaling exponents for the

log-gamma polymer

4.1 Introduction

This chapter continues to study the log-gamma polymer with emphasis on the fluctuation

exponents with slightly different weight assumptions. Recall that our parameters satisfy

(1.5) and

a0 ≤ λi ≤ a1 and b0 ≤ θj ≤ b1 (4.1)

for i ≥ 1 and j ≥ 1. We refer the reader to Section 3.4 for the definitions of various

polymer models (Definition 3.13) and notation conventions (Remark 3.15).

In previous chapters, we imposed the AMS conditions to the parameters (Λ,Θ) and

expressed the limiting free energy in terms of marginal distributions of λ1 and θ1 under

the stationary mean Q0. See Theorem 3.7 and Corollary 3.8. In this chapter, we leave

the restrictive AMS settings but give weaker conditions to obtain the same results for

the law of large numbers. Detailed analysis of stationary polymer models gives results

for the scaling exponents also.

We assume the following. Suppose α and β are supported on [a0, a1] and [b0, b1],
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respectively. Suppose α and β satisfy

a0 = inf supp α and b0 = inf supp β. (4.2)

Consider the empirical measures for m, n ∈ N

αm =
1

m

m∑
i=1

δλi , βn =
1

n

n∑
j=1

δθj (4.3)

where δx is a Dirac measure at the point x ∈ R.

Assumption 4.1. Parameters Λ, Θ satisfy the following conditions for measures α and

β.

(a) (Deterministic case) αn and βn converge weakly to α and β, respectively.

(b) (Random case) The distribution of (Λ,Θ) is Q. For a.e. realization of (Λ,Θ),

condition (a) is achieved.

The fluctuation of logZ is governed by the extremal statistics of parameters λi and

θj. In particular, the case of linear sector S1 (see (3.9) and the paragraph there) needs a

careful analysis of these statistics. In this chapter, we assume that S1 is nonempty. We

introduce the following notations. For m,n ≥ 1, rearrange the parameters λ1, . . . , λm

and θ1 . . . , θn into a nondecreasing sequences

xm:1 ≤ xm:2 ≤ · · · ≤ xm:m (4.4)

and

yn:1 ≤ yn:2 ≤ · · · ≤ yn:n. (4.5)

Set

xm = xm:1 = min
1≤i≤m

λi and yn = yn:1 = min
1≤j≤n

θj. (4.6)
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The behavior of logZ in S1 is diffusive. To get concrete results, we further impose

assumptions. We only state assumptions for the case S1 6= ∅. One can easily obtain

a similar result in the case S2 6= ∅. Note that we have
∫

1
(λ−a0)2

α(dλ) < ∞ from

Corollary 3.8.

Assumption 4.2. We add the following conditions to Assumption 4.1. There are pos-

itive constants p1, q1, d1 with 2 < p1 ≤ 3 and d1 < (p1 − 2)q1/3 for which the following

hold.

(a) (Convergence condition)

lim
m→∞

∫
1

(λ− a0)p1
αm(dλ) =

∫
1

(λ− a0)p1
α(dλ) <∞.

(b) (Separability condition) There are constants Cq1 > 0 and D1 > 0 such that

(xm:1 − a0) ≤ Cq1
mq1

for m ≥ 1 and

xm:1 − a0

xm:2 − a0

≤ 1− D1

md1

for all sufficiently large m.

(c) In the case of Assumption 4.1 (b), conditions (a) and (b) with random constants

Cq1, D1 are satisfied for a.e. realization of (Λ,Θ).

Note that condition (a) enforces λi > a0 for all sufficiently large i. Hence we assume

λi > a0 for all i. If λis are chosen randomly according to α and α satisfies appropriate

moment conditions, condition (a) is achieved a.s. Condition (b) is also satisfied for

a wide class of distributions. See conditions above Theorem 1 of [23] and Section 6

therein.
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4.2 Results

In this section, we present our results. In Theorem 3.7, the limiting free energy is given

by

φ̄(x, y) = inf
−a0<z<b0

{xA(z) + yB(z)},

where A and B are defined by (3.8). Recall that S denotes the sector of the first quadrant

on which

−B′(−a0)/A′(−a0) < x/y < −B′(b0)/A′(b0)

and S1, S2 denote the sectors defined by the inequalities x/y ≤ −B′(−a0)/A′(−a0) and

x/y ≥ −B′(b0)/A′(b0), respectively. The boundary of S̄ consists of two lines. Write

S1 ∩ S̄ and S2 ∩ S̄ by lines

x/y = s1 = −B
′(−a0)

A′(−a0)
and x/y = s2 = −B

′(b0)

A′(b0)
, (4.7)

respectively. For (x, y) ∈ S, there exists a unique minimizer ζ ∈ (−a0, b0) given by

(3.10). ζ satisfies

xA′(ζ) + yB′(ζ) = 0.

The statements of our results involve discrete version of quantities A, B and ζ computed

with αm and βn in place of α and β, respectively.

We focus on (Λ,Θ)-polymer and (Λ,Θ, z)-polymer. In the following we understand

(Λ,Θ) are given and fixed. For a probability measure µ on [a, b] define

Aµ(z) = −
∫

Ψ0(λ+ z)µ(dλ) for z > −a (4.8)

and Bµ(z) = Aµ(−z) for z < a. Aµ(z) and Bµ(z) are monotone functions because

polygamma functions are monotone (see (A.1)). Note that A(z) = Aα(z) and B(z) =
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Bβ(z). We write Am(z) = Aαm(z) and Bn(z) = Bβn(z) for αm and βn. Therefore

Am(z) = −
∫

Ψ0(λ+ z)αm(dλ) = − 1

m

m∑
i=1

Ψ0(λi + z) (4.9)

and

Bn(z) = −
∫

Ψ0(θ − z) βn(dθ) = − 1

n

m∑
j=1

Ψ0(θj − z). (4.10)

We interpret A0(z) = 0. Note that

A′m(z) < 0 , A′′m(z) > 0 and B′n(z) > 0 , B′′n(z) > 0. (4.11)

For fixed m, n, Am and Bn are defined for −xm < z < yn, where xm and yn are given

by (4.6). Note that (−a0, b0) ⊆ (−xm, yn) and this inclusion could be proper. Define

Gm,n(z) = mAm(z) + nBn(z) (4.12)

and

Mm,n(z) = mA′′m(z) + nB′′n(z) > 0. (4.13)

From Proposition 3.16 we have

Gm,n(z) = Eρ,z logZm,n (4.14)

and

Mm,n(z) =
d2

dz2
Eρ,z logZm,n (4.15)

when we consider Eρ,z logZm,n as a function of z. Recall our notation conventions in

Remark 3.15. Here ρ refers to the bulk parameters and z to boundary parameters.

For m, n ≥ 1,

lim
s→yn

mA′m(s) + nB′n(s) =∞ (4.16)
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and

lim
s→−xm

mA′m(s) + nB′n(s) = −∞. (4.17)

Therefore there exists a unique ζm,n ∈ (−xm, yn) with

G′m,n(ζm,n) = 0 (4.18)

since Gm,n(z) is a smooth convex function of z. Hence ζm,n is the unique minimizer of

Gm,n(z). Note that since it is possible to get xm > a0, we may have ζm,n ∈ (−xm,−a0).

Theorem 4.4 below will give conditions for the range of ζm,n. Define

φm,n = inf
−xm<z<yn

{mAm(z) + nBn(z)} = Gm,n(ζm,n) (4.19)

and

σm,n = (Mm,n(ζm,n))1/3 . (4.20)

We will show that Eρ logZ(1,1),(m,n) is close to φm,n and fluctuation of logZ(1,1),(m,n)

around φm,n is controlled by σm,n. It turns out that σm,n grows in the order of N1/3 in

S and N1/2 in S1, where N = m + n. We obtain these results first for some stationary

polymer models and then, by coupling these models with the original model, for the

(Λ,Θ)-polymer. Note that φm,n = Eρ,ζm,n logZm,n.

Theorem 4.3. For given m,n ≥ 1, consider the (Λ,Θ, ζm,n)-stationary polymer in

Definition 3.13. Then there exist positive constants C0, C and N0 such that

Varρ,ζm,n(logZm,n) ≤ C
(
σm,n

)2
(4.21)

for all N ≥ 1 and

Varρ,ζm,n(logZm,n) ≥ C0

(
σm,n

)2
(4.22)

for all N ≥ N0.
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The constants C0, C and N0 do not depend on m, n. They only depend on a0 + b0

and a1 + b1. We have explicit formulas for these constants. See (4.117) for C. We can

take C0 = e−C
2

and N0 = C2. See Lemma 4.28. This theorem reveals scaling exponents

in the KPZ universality class. A key point in KPZ class is that the fluctuation exponents

should be connected to curvature. This is explicit in the bounds (4.21) and (4.22) with

(4.15) and in particular the quadratic provides the 2/3 exponent.

This theorem does not use Assumptions 4.1 and 4.2. If we use Assumptions 4.1 and

4.2, then we can quantify σm,n and find a connection to Theorem 3.7 and Corollary 3.8.

In the remainder of this section, all constants implicitly depend on a0, b0 and a1, b1. Also

under Assumptions 4.1 and 4.2, these constants depend on the convergence rate of αn

and βn to α and β, respectively. If we give some conditions for the rate of convergence

in terms of Wasserstein distance W1 in (4.60), we can obtain explicit formulas. However,

we do not pursue such details.

For the (Λ,Θ, z)-stationary polymer, characteristic direction is v(z) = (v1(z), v2(z)) =

(B′(z),−A′(z))/(B′(z) − A′(z)). For (Λ,Θ)-polymer without boundary, we say ζ(x/y)

is the characteristic value of (x, y) if (x, y) ∈ S. Let N = m + n denote the scaling

parameter we take to ∞. Fix (x, y) ∈ R2
>0 with x + y = 1. We take (m,n) along the

direction (x, y). More precisely we assume that the coordinates (m,n) of the endpoint

of the polymer satisfy

|m−Nx| ∨ |n−Ny| ≤ K (4.23)

for some fixed constant K > 0. In light of Theorem 3.7 and Corollary 3.8, we expect

that ζm,n is close to the characteristic value ζ(x/y) for (x, y) ∈ S and −a0 for (x, y) ∈ S1.

Theorem 4.4. Suppose Assumptions 4.1 and 4.2 hold. Let (x, y) ∈ R2
>0 with x+ y = 1
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and ε > 0 be given. Assume (m,n) satisfy (4.23). Let s = x/y. There exist positive

constants N0(s,K, ε), C0(s), C1(s) and C2(s) such that whenever N ≥ N0 the following

hold.

(1) For (x, y) ∈ S, that is, s1 < s < s2,

C1N
1/3 ≤ σm,n ≤ C2N

1/3 (4.24)

and

|ζm,n − ζ(s)| ≤ ε. (4.25)

(2) For (x, y) ∈ S1 and s < s1,

C1N
1/2 ≤ σm,n ≤ C2N

1/2 (4.26)

and

|ζm,n + xm| ≤
C0√
m
. (4.27)

We also have

lim
m→∞

|ζm,n + a0| = 0, lim
m→∞

√
m|ζm,n + a0| =∞. (4.28)

(3) We have

lim
N→∞

φm,n
N

= φ̄(x, y). (4.29)

The constants in the above Theorem continuously depend on s. Part (3) shows that

the quenched shape converges to the annealed shape as N grows.

Next, we study the model without boundaries. First, we state a general fluctuation

result. Define

∆ζm,n = (xm + ζm,n) ∧ (yn − ζm,n) (4.30)
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and

Km,n =
∆ζm,n(σm,n)3

m|A′m(ζm,n)|
=

∆ζm,n(σm,n)3

nB′n(ζm,n)
. (4.31)

Theorem 4.5. Consider the (Λ,Θ)-polymer. Then there exist constants C, C1 and N0

that depend on a0 +b0 and a1 +b1 such that whenever m+n ≥ N0, we have the following.

Pρ
{∣∣logZ(1,1),(m,n) − φm,n

∣∣ ≥ tσm,n
}

≤



C
t2
, (0 < t ≤ (∆ζm,nσm,n)2/4)

C
(

1
t
∧ exp

[
−Km,n

√
t
])
, ((∆ζm,nσm,n)2/4) ≤ t ≤ 4(a1 + b1 + 1)2σ2

m,n

C exp[−t], (t ≥ 4(a1 + b1 + 1)2σ2
m,n)

≤C1

t2

(
1 ∨ 1

(Km,n)4

)
.

(4.32)

If we use Assumptions 4.1 and 4.2, by estimating Km,n, then we obtain the following

results. Here we have a result for the limiting point-to-point free energy of the polymer

without boundary.

Theorem 4.6. Consider the (Λ,Θ)-polymer. Suppose Assumptions 4.1 and 4.2 hold

and let x, y > 0. Then we have the same result as in Theorem 3.7.

lim
L→∞

L−1 logZω
(1,1),(bLxc,bLyc) = φ̄(x, y). (4.33)

For the fluctuation results, we have the following.

Theorem 4.7. Consider the (Λ,Θ)-polymer. Let (x, y) ∈ S with x+y = 1. Let s = x/y.

If Assumption 4.1(a) holds then there exist positive constants L0, C0, C1, and C2 that

depend on s such that, for t > 0 and L ≥ L0,

Pρ
[
| logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc| ≥ tL1/3

]
≤ C0

t2
, (4.34)
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and

Eρ
∣∣logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc

∣∣2 ≤ C1L
2/3 logL. (4.35)

For the lower bound, we have

C2L
1/3 ≤ Eρ

∣∣logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc
∣∣. (4.36)

Therefore in the region S, the expected KPZ behavior is proved. (4.34) and (4.35)

are our improvement compared to Theorem 2.4 of [33]. There, they proved similar

probability bounds with C/t3/2. Next theorem shows that the fluctuation in S1 is of

order L1/2.

Theorem 4.8. Consider the (Λ,Θ)-polymer. Let (x, y) ∈ S1 with x + y = 1. Suppose

s = x/y < s1. If Assumptions 4.1 and 4.2 hold then there exist positive constants L0,

C0, C1, and C2 that depend on s such that, for t > 0 and L ≥ L0,

Pρ
[
| logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc| ≥ tL1/2

]
≤ C0 exp[−C1

√
t]. (4.37)

For the lower bound, we have

C2L
1/2 ≤ Eρ

∣∣logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc
∣∣. (4.38)

The behavior of the free energy on the boundary of S is subtle to analysis. We do

not have precise scaling exponent. We only prove the following Theorem, which shows

that the fluctuation is at least subdiffusive.

Theorem 4.9. Consider the (Λ,Θ)-polymer. Suppose Assumptions 4.1 and 4.2 hold

and let x/y = s1. Then we have

logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc√
L

→ 0 (4.39)

in probability under Pρ.
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Organization of Chapter 4. Before we prove the main results in Section 4.3, we collect

basic properties of the model. From the Burke-type property, we obtain a formula for

the variance of stationary polymers. The upper and lower bounds of Theorem 4.3 are

proved in Sections 4.4 and 4.6. Theorem 4.4 is proved in Section 4.7. The results for

the polymer without boundary conditions are proved in Section 4.8. Theorem 4.5 is the

most important result. It is obtained by coupling the original polymer model with an

appropriate stationary polymer. Then the remaining theorems are easily proved from

these results.

4.3 Basic properties and technical results

We follow [33] for notations and quote some theorems therein. Sometimes it is convenient

to use multiplicative weights: Yi,j = eω(i,j), (i, j) ∈ Z2
+. Then the partition function is

given by

Zm,n =
∑

x�∈Πm,n

m+n∏
k=1

Yxk (4.40)

where Πm,n denotes the set of admissible lattice paths x� = (xi)0≤i≤m+n that satisfy

x0 = (0, 0), xi − xi−1 ∈ {(1, 0), (0, 1)}, xm+n = (m,n). Symbols U and V will denote

weights on the horizontal and vertical boundaries:

Ui,0 = Yi,0 and V0,j = Y0,j for i, j ∈ N. (4.41)

The partition function that includes the weight at the starting point is written as

Z�(i,j),(k,l) =
∑

x�∈Π(i,j),(k,l)

k−i+l−j∏
r=0

Yxr = Yi,jZ(i,j),(k,l) (4.42)

where Π(i,j),(k,l) is the set of up-right paths x� = (xr)0≤r≤k−i+l−j from x0 = (i, j) to

xk−i+l−j = (k, l).
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Recall definitions of Im,n and Jm,n in (3.48). Define for (i, j) ∈ N2

Ui,j =
Zi,j
Zi−1,j

= eIi,j, Vi,j =
Zi,j
Zi,j−1

= eJi,j

and Xi−1,j−1 =

(
1

Ui,j−1

+
1

Vi−1,j

)−1

.

(4.43)

The partition function satisfies

Zm,n = Ym,n(Zm−1,n + Zm,n−1) and (m,n) ∈ N2. (4.44)

Lemma 4.10 (Lemma 3.1 of [33]). Consider two sets of positive initial values {Ui,0, V0,j, Yi,j :

i, j ∈ N} and {Ũi,0, Ṽ0,j, Ỹi,j : i, j ∈ N} and satisfy Ui,0 ≥ Ũi,0, V0,j ≤ Ṽ0,j, and Yi,j = Ỹi,j.

Then Ui,j ≥ Ũi,j, Vi,j ≤ Ṽi,j for all (i, j) ∈ N2.

Proposition 4.11 (Theorem 3.3 of [33] and Proposition 3.16). Consider the (Λ,Θ, z)-

stationary polymer. Let (m,n) ∈ N2. The variables {Ui,n, Vm,j, Xk−1,l−1 : 1 ≤ i, k ≤

m, 1 ≤ j, l ≤ n} are mutually independent with marginal distributions

U−1
i,n ∼ Gamma(λi + z), V −1

m,j ∼ Gamma(θj − z),

and X−1
k−1,l−1 ∼ Gamma(λk + θl).

(4.45)

Let σ : N→ N be a finite permutation that σ(i) 6= i for only finitely many i. Consider

a sequence Λ = (λ1, λ2, . . . ) ∈ RN and empirical measures associated with this sequence

αn =
1

n

n∑
i=1

δλi . σ acts naturally on parameters Λ and αn, that is, (σΛ)i = λσ(i) and

(σα)n =
1

n

n∑
i=1

δλσ(i) .

Rn : Z+ → Z+ is a reflection defined by Rn(i) = n + 1 − i for 1 ≤ i ≤ n and

Rn(i) = i for i = 0 and i > n. The restriction of Rn onto N is also denoted by Rn.

Define Rm,n : Z2
+ → Z2

+ by

Rm,n(i, j) = (Rm(i), Rn(j)) (4.46)
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for (i, j) ∈ Z2
+. Rm,n acts naturally on ω ∈ RZ2

+ by

(Rm,nω)i,j = ωRm,n(i,j).

For a fixed rectangle Bm,n = {0, . . . ,m}×{0, . . . , n}, we define the reversed environ-

ment by

ω̃ = Rm,nω. (4.47)

We have the following lemma whose proof is elementary.

Lemma 4.12. If ω defines a (Λ,Θ, z)-stationary polymer, then ω̃ defines a (RmΛ, RnΘ, z)-

stationary polymer and Z�,ω(1,1),(m,n) = Z�,ω̃(1,1),(m,n). Therefore Z�,ω1

(1,1),(m,n)

d
= Z�,ω2

(1,1),(m,n) if ω1

and ω2 are constructed by (Λ,Θ) and (RmΛ, RnΘ), respectively.

Let

ξx = max{k ≥ 0 : xi = (i, 0) for 0 ≤ i ≤ k} (4.48)

and

ξy = max{k ≥ 0 : xj = (0, j) for 0 ≤ j ≤ k} (4.49)

denote the exit points of a path from the x- and y-axes. Recall that the annealed

measure is P ρ,z(·) = Eρ,zQω(·) with expectation Eρ,z(·) (see Remark 3.15). The function

L(r, x) in the following Theorem is introduced in (A.18). We refer to Lemma A.2 for

the properties of L.

Theorem 4.13 (Theorem 3.7 of [33]). Consider (Λ,Θ, z)-stationary polymer. For

m,n ∈ Z+ we have these identities:

Varρ,z[logZm,n] =
n∑
j=1

Ψ1(θj − z)−
m∑
i=1

Ψ1(λi + z) + 2Eρ,z
m,n

[
ξx∑
i=1

L(λi + z,−ωi,0)

]
(4.50)
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and

Varρ,z[logZm,n] = −
n∑
j=1

Ψ1(θj − z) +
m∑
i=1

Ψ1(λi + z) + 2Eρ,z
m,n

[
ξy∑
j=1

L(θj − z,−ω0,j)

]
.

(4.51)

When ξx = 0 or ξy = 0 the sum is interpreted as 0.

Proof. We follow [33] with appropriate modifications. We prove (4.50). Let us abbreviate

temporarily, according to the compass directions of the rectangle Bm,n,

SN = logZm,n − logZ0,n, SS = logZm,0, SE = logZm,n − logZm,0, SW = logZ0,n.

Then

Varρ,z[logZm,n] = Varρ,z(SW + SN ) = Varρ,z(SW) + Varρ,z(SN ) + 2Covρ,z(SW , SN )

= Varρ,z(SW) + Varρ,z(SN ) + 2Covρ,z(SS + SE − SN , SN )

= Varρ,z(SW)− Varρ,z(SN ) + 2Covρ,z(SS , SN ).

(4.52)

The last equality is from Proposition 4.11. By assumption Varρ,z(SW) =
∑n

j=1 Ψ1(θj−z),

and Varρ,z(SN ) =
∑m

i=1 Ψ1(λi + z) by Proposition 4.11.

It remains to work on Covρ,z(SS , SN ). Now consider a system with two independent

parameters λ and θ with weight distributions (for i, j ∈ N, λ > −a0, θ > −b0)

−ωi,0 ∼ log-gamma(λi + λ), −ω0,j ∼ log-gamma(θj + θ)

and

−ωi,j ∼ log-gamma(λi + θj).

We show that

Covρ,z(SS , SN ) = − ∂

∂λ
Eλ,θ(SN )

∣∣
(λ,θ)=(z,−z). (4.53)
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The joint p.d.f. of {−ωi,j} is (x = {xi,j})

gλ,θ(x) =
m∏
i=1

1

Γ(λi + λ)
exp[(λi + λ)xi,0 − exi,0 ] ·

n∏
j=1

1

Γ(θj + θ)
exp[(θj + θ)x0,j − ex0,j ]

·
∏

1≤i≤m
1≤j≤n

1

Γ(λi + θj)
exp[(λi + θj)xi,j − e−xi,j ]

=
m∏
i=1

1

Γ(λi + λ)

n∏
j=1

1

Γ(θj + θ)
· exp(λ

m∑
i=1

xi,0)

· exp(θ
n∑
j=1

x0,j) ·G(Λ,Θ, x).

Therefore if we only focus on λ, we can write gλ,θ(x)dx =
eλT (x)µ(dx)

A(λ)
where T (x) =∑m

i=1 xi,0, µ(dx) = exp(θ
∑n

j=1 x0,j) · G(Λ,Θ, x)dx, and A(λ) is a normalizing factor.

Hence we can apply Lemma A.1 (3). Since xi,j = −ωi,j, we have T = −SS and (4.53)

follows.

Next, we calculate (∂/∂λ)Eλ,θ(SN ). We also utilize a direct functional dependence on

λ in Zm,n by realizing the weights ωi,0 as functions of uniform random variables. Then if

η = (η1, . . . , ηm) is a vector of Uniform(0,1) random variables, ωi,0 = −Hλi+λ(ηi) where

H is a function introduced in (A.16) . Note that

∂

∂λ
Eλ,θ(SN ) =

∂

∂λ
Eλ,θ(logZm,n − SW) =

∂

∂λ
Eλ,θ logZm,n = Eλ,θ

∂

∂λ
logZm,n. (4.54)

We justify the last equality soon. First, we compute ∂
∂λ

logZm,n. A quenched measure

can be written as

Qω(dx�) =
eH

ω(x�)µc(dx�)

Zm,n
(4.55)

where µc is the counting measure on Πm,n and

Hω(x�) =
m+n∑
k=1

ωxk =

ξx∑
i=1

(−Hλi+λ(ηi)) +
m+n∑

k=ξx+1

ωxk , (4.56)
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Zm,n = Zm,n(λ) =
∑

x�∈Πm,n

eH
ω(x�). (4.57)

Recall that
∑ξx

i=1 is interpreted as 0 when ξx = 0. Lemma A.1 and (A.19) give

∂

∂λ
logZm,n = EQω ∂Hω

∂λ
= −EQω

ξx∑
i=1

L(λi + λ,Hλi+λ(ηi)). (4.58)

Taking expectation, we obtain (4.50). Finally, we justify the interchange of expectation

and differentiation in (4.54). Using (A.22) and strict monotonicity of H(r, η) in the first

coordinate, we can invoke the dominated convergence theorem.

We finish the proof by recording some useful identities. We replace the weights

on the y-axis with functions of uniform random variables. Let η′ = (η′1, . . . , η
′
n) be a

vector of Uniform(0,1) random variables independent of η and the bulk weights ω. Let

ω0,j = −Hθj+θ(η
′
j). Write Ẽρ for the expectation over the uniform variables η, η′ and

the bulk weights {ωi,j : i, j ≥ 1}. Then we have

Eρ,z
m,n

[
ξx∑
i=1

L(λi + z,−ωi,0)

]
=− Ẽρ

(
EQω ∂Hω

∂λ

)∣∣
(λ,θ)=(z,−z)

Eρ,z
m,n

[
ξy∑
j=1

L(θi − z,−ω0,j)

]
=− Ẽρ

(
EQω ∂Hω

∂θ

)∣∣
(λ,θ)=(z,−z).

(4.59)

In the remainder of this section, we collect facts for the Wasserstein distance W1.

For the proofs, we refer the reader to [7, 15]. Given a separable metric space (E, d), let

Z(E, d) denote the space of all Borel probability measures µ on E. For p ≥ 1, denote by

Zp(E, d), or just Zp(E) the collection of all probability measures µ in Z(E, d) such that∫
E

d(x, x0)p µ(dx) <∞



95

for some, or equivalently all, x0 ∈ E. The Wasserstein distance Wp between two proba-

bility measures µ, ν on E is defined by

Wp =

(
inf

{∫
E×E

d(x, y)p ξ(dx, dy) : ξ ∈M(µ, ν)

})1/p

(4.60)

where M(µ, ν) is the set of all probability measures on E × E with marginals µ and ν.

Note that for p < q, we have Wp ≤ Wq.

Theorem 4.14 (Convergence in Wp). Let 1 ≤ p < ∞. Given µ ∈ Zp(E, d) and a

sequence {µn} in Zp(E, d), the following properties are equivalent:

(1) Wp(µn, µ)→ 0 as n→∞.

(2) µn → µ weakly and for some, or equivalently all x0 ∈ E,

lim
n→∞

∫
E

d(x, x0)p µn(dx) =

∫
E

d(x, x0)p µ(dx).

The Lipschitz semi-norm for suitable real-valued functions f on E is defined by

‖f‖Lip = sup{|f(x)− f(y)|
d(x, y)

: x 6= y inE}.

Theorem 4.15 (Kantorovich-Rubinstein). Given a separable metric space (E, d), for

all µ, ν ∈ Z1(E, d),

W1(µ, ν) = sup
‖u‖Lip≤1

∣∣∣∣∫
E

u dµ−
∫
E

u dν

∣∣∣∣
where the supremum is taken over all Lipschitz functions u : E → R with Lipschitz

semi-norm ‖u‖Lip ≤ 1.

We apply these Theorems to our model. For a given constant 2 < p1 ≤ 3, let

λ̂i =
1

(λi − a0)p1
, α̂n =

1

n

n∑
i=1

δλ̂i . (4.61)
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Let α̂ denotes the distribution of (λ− a0)−p1 under α. Then from Assumptions 4.1, 4.2

and Theorem 4.14, we have

lim
n→∞

W1(αn, α) = lim
n→∞

W1(βn, β) = 0 (4.62)

and

lim
n→∞

W1(α̂n, α̂) = 0. (4.63)

For k ≥ 1 and a ≥ 0, define a function ϕk,a : (0,∞)→ R by

ϕk,a(x) = Ψk(a+ x−1/p1). (4.64)

Then from (A.6) we have

|ϕ′k,a(x)| =(1/p1)
∣∣x−1−1/p1Ψk+1(a+ x−1/p1)

∣∣ ≤ (1/p1)
∣∣x−1−1/p1Ψk+1(x−1/p1)

∣∣
≤ k!

p1

[
(k + 1)x(k+1)/p1−1 + xk/p1−1

]
.

In particular, for x ≥ b > 0,

|ϕ′1,a(x)| ≤ |ϕ′1,0(x)| ≤ κ1(b) =
1

p1

[
2b2/p1−1 + b1/p1−1

]
. (4.65)

If p1 = 3, we have

|ϕ′2,a(x)| ≤ |ϕ′2,0(x)| ≤ κ2(b) =
2

3

[
3 + b−1/3

]
. (4.66)

Recall definition (4.8) for a probability measure µ on [a, b] and z > −a. Note that

the k-th derivative of Aµ is well-defined and given by

A(k)
µ (z) = −

∫
Ψk(λ+ z)µ(dλ). (4.67)

Since polygamma functions are monotonic, A
(k)
µ are also monotonic. Let

A(k)
µ (−a) = lim

z↓−a
A(k)
µ (z). (4.68)
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Lemma 4.16. For k ≥ 1, A
(k)
µ (z) satisfies the following.

(1) If −a < z1 < z2 and c = (a+ z1)/(a+ z2), then

∣∣A(k)
µ (z1)

∣∣ ≤ 1

ck+1

∣∣A(k)
µ (z2)

∣∣
and

max{
∣∣A(k)

µ (z)
∣∣ : z1 ≤ z ≤ z2} ≤

1

ck+1

∣∣A(k)
µ (z2)

∣∣.
(2)

∣∣A(k)
µ (−a)

∣∣ <∞ if and only if
∫

1
(λ−a)k+1 µ(dλ) <∞

(3) Let 1 < p ≤ k + 1. If
∫

1
(λ−a)p

µ(dλ) <∞ then

∣∣A(k)
µ (z)

∣∣ ≤ k!

(z + a)k+1−p

[∫
1

(λ− a)p
µ(dλ) +

1

p− 1

∫
1

(λ− a)p−1
µ(dλ)

]
.

(4) Under Assumption 4.1(a), for z > −a0,

∣∣A(k)
m (z)− A(k)(z)

∣∣ ≤ ∣∣Ψk+1(a0 + z)
∣∣W1(αm, α)

and for z < b0

∣∣B(k)
n (z)−B(k)(z)

∣∣ ≤ ∣∣Ψk+1(b0 − z)
∣∣W1(βn, β).

(5) Under Assumption 4.2, for z ≥ −a0,

∣∣A′m(z)− A′(z)
∣∣ ≤ 1

p1

[
2(a1 − a0)p1−2 + (a1 − a0)p1−1

]
W1(α̂m, α̂).

(6) Under Assumption 4.2, if p1 = 3, then for z ≥ −a0,

∣∣A′′m(z)− A′′(z)
∣∣ ≤ 2

3

[
3 + (a1 − a0)−1/3

]
W1(α̂m, α̂).
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Proof. (1) From (A.7) we have

∣∣A(k)
µ (z1)

∣∣ =
∣∣A(k)

µ

(
−a+ c(z2 + a)

)∣∣
=

∫ ∣∣Ψk

(
(λ− a) + c(z2 + a)

)∣∣µ(dλ) ≤
∫ ∣∣Ψk

(
c(λ− a) + c(z2 + a)

)∣∣µ(dλ)

≤ 1

ck+1

∫ ∣∣Ψk

(
(λ− a) + (z2 + a)

)∣∣µ(dλ) =
1

ck+1

∣∣A(k)
µ (z2)

∣∣.
(4.69)

Monotonicity of polygamma functions (see (A.1)) gives the proof of the second part.

(2) follows from (A.6).

(3) Note that for λ > a and z > −a from (A.5)

|Ψk(λ+ z)| =
∞∑
i=0

k!

(λ+ z + i)k+1
=
∞∑
i=0

k!

(λ+ z + i)k+1−p(λ+ z + i)p

≤ k!

(a+ z)k+1−p

∞∑
i=0

1

(λ− a+ i)p

≤ k!

(a+ z)k+1−p

[
1

(λ− a)p
+

1

(p− 1)(λ− a)p−1

]
.

(4.70)

Therefore (4.67) and (4.70) give the proof of part (3).

(4) From Theorem 4.15 we have

∣∣A(k)
m (z)− A(k)(z)

∣∣ =
∣∣∫ Ψk(λ+ z)αm(dλ)−

∫
Ψk(λ+ z)α(dλ)

∣∣
≤
∣∣Ψk+1(a0 + z)

∣∣W1(αm, α)

since

sup{
∣∣Ψ′k(λ+ z)

∣∣ : λ ≥ a0} =
∣∣Ψk+1(a0 + z)

∣∣.
Note that αm is supported on [a0,∞) since λi ≥ a0 by assumption (4.1). Proof for Bn

is similar.
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(5) From (4.65) and Theorem 4.15 we have∣∣A′m(z)− A′(z)
∣∣ =

∣∣∫ Ψ1(λ+ z)αm(dλ)−
∫

Ψ1(λ+ z)α(dλ)
∣∣

=
∣∣∫ ϕ1,z+a0(λ̂) α̂m(dλ̂)−

∫
ϕ1,z+a0(λ̂) α̂(dλ̂)

∣∣
≤κ1((a1 − a0)−p1)W1(α̂m, α̂)

since λ̂ ≥ (a1 − a0)−p1 .

(6) From (4.66) and Theorem 4.15 we have∣∣A′′m(z)− A′′(z)
∣∣ =

∣∣∫ Ψ2(λ+ z)αm(dλ)−
∫

Ψ2(λ+ z)α(dλ)
∣∣

=
∣∣∫ ϕ2,z+a0(λ̂) α̂m(dλ̂)−

∫
ϕ2,z+a0(λ̂) α̂(dλ̂)

∣∣
≤κ2((a1 − a0)−p1)W1(α̂m, α̂).

4.4 Upper bound for the fluctuation

As in the proof of Theorem 4.13 we replace weights on the x- and y-axes with functions

of uniform random variables: −ωi,j = H(ri,j, ui,j) with appropriate parameter ri,j and

uniform random variable ui,j. Recall that H is defined by (A.16). See the comments

above (4.59) for more details. In particular, Ẽρ refers to the expectation over uniform

random variables and bulk weights. Hence

Eρ,zX = ẼρX(z) (4.71)

if a random variable X is suitably realized by X(z). For the annealed measure, we write

Ẽρ
m,nX(z) for Eρ,z

m,nX. In the remainder of this paper, we continue to use this realization

of weights. Recall that xm = min1≤i≤m λi and yn = min1≤j≤n θj.
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Lemma 4.17 (Lemma 4.1 of [33]). Consider the (Λ,Θ, z)-stationary polymer. For all

m, n and all z ∈ (−xm, yn), we have

∣∣ d
dz

Varρ,z[logZm,n]
∣∣ ≤C1 · (mA′′m(z) + nB′′n(z)) = C1 ·

(
d2

dz2
Eρ,z logZm,n

)
, (4.72)

where

C1 = 2 + 20e2(1 + a1 + b1). (4.73)

The last equality is from (4.15).

Proof. Identity (4.59) is convenient. Recall the definition of Hω in (4.56). Temporarily

assume we can exchange expectation and differentiation. This will be justified later. By

the chain rule and Lemma A.1 we have

d

dz

[
− ẼρEQω ∂Hω

∂λ

∣∣
(λ,θ)=(z,−z)

]
= −Ẽρ d

dz

[
EQω ∂Hω

∂λ

∣∣
(λ,θ)=(z,−z)

]
= −Ẽρ

[ ∂
∂λ
EQω ∂Hω

∂λ
− ∂

∂θ
EQω ∂Hω

∂λ

]∣∣
(λ,θ)=(z,−z)

= −Ẽρ
[
EQω ∂

2Hω

∂λ2
+ CovQω(

∂Hω

∂λ
,
∂Hω

∂λ
)

− EQω ∂
2Hω

∂θ∂λ
− CovQω(

∂Hω

∂λ
,
∂Hω

∂θ
)
]∣∣

(λ,θ)=(z,−z)
.

(4.74)

Similarly

d

dz

[
− ẼρEQω ∂Hω

∂θ

∣∣
(λ,θ)=(z,−z)

]
= −Ẽρ d

dz

[
EQω ∂Hω

∂θ

∣∣
(λ,θ)=(z,−z)

]
= −Ẽρ

[ ∂
∂λ
EQω ∂Hω

∂θ
− ∂

∂θ
EQω ∂Hω

∂θ

]∣∣
(λ,θ)=(z,−z)

= −Ẽρ
[
EQω ∂

2Hω

∂λ∂θ
+ CovQω(

∂Hω

∂θ
,
∂Hω

∂λ
)

− EQω ∂
2Hω

∂θ2
− CovQω(

∂Hω

∂θ
,
∂Hω

∂θ
)
]∣∣

(λ,θ)=(z,−z)
.

(4.75)

Since

Hω(x�) =

ξx∑
i=1

ωxi +

ξy∑
j=1

ωxj +
m+n∑

k=ξx∨ξy+1

ωxk

= −
ξx∑
i=1

Hλi+λ(ηi)−
ξy∑
j=1

Hθj+θ(η
′
j) +

m+n∑
k=ξx∨ξy+1

ωxk ,

(4.76)
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we have, from (A.19),

∂Hω(x�)

∂λ
= −

ξx∑
i=1

L(λi + λ,Hλi+λ(ηi)) and

∂Hω(x�)

∂θ
= −

ξy∑
j=1

L(θj + θ,Hθj+θ(η
′
j)).

(4.77)

Since ξxξy = 0 and L(ρ, x) > 0, from (4.77), we have

∂2Hω

∂λ∂θ
= 0 and

CovQω(
∂Hω

∂λ
,
∂Hω

∂θ
) = EQω

(
∂Hω

∂λ

∂Hω

∂θ

)
−
(
EQω ∂Hω

∂λ

)(
EQω ∂Hω

∂θ

)
= −

(
EQω ∂Hω

∂λ

)(
EQω ∂Hω

∂θ

)
< 0.

Therefore, from (4.50), (4.59), and (4.74), we have

d

dz
Varρ,z[logZm,n] ≤−

n∑
j=1

Ψ2(θj − z)−
m∑
i=1

Ψ2(λi + z)

− Ẽρ
(
EQω ∂

2Hω

∂λ2

)∣∣
(λ,θ)=(z,−z)

=mA′′m(z) + nB′′n(z)− Ẽρ
(
EQω ∂

2Hω

∂λ2

)∣∣
(λ,θ)=(z,−z)

(4.78)

and from (4.51), (4.59), and (4.75),

d

dz
Varρ,z[logZm,n] ≥

n∑
j=1

Ψ2(θj − z) +
m∑
i=1

Ψ2(λi + z)

+ Ẽρ
(
EQω ∂

2Hω

∂θ2

)∣∣
(λ,θ)=(z,−z)

=−mA′′m(z)− nB′′n(z) + Ẽρ
(
EQω ∂

2Hω

∂θ2

)∣∣
(λ,θ)=(z,−z).

(4.79)

To complete the proof, we have to estimate
∣∣Ẽρ(EQω ∂2Hω

∂λ2

)∣∣ and
∣∣Ẽρ(EQω ∂2Hω

∂θ2

)∣∣.
From (4.77) and (A.20)

∂2Hω(x�)

∂λ2
= −

ξx∑
i=1

L1(λi + λ,Hλi+λ(ηi)).
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From (A.27) we obtain

∣∣Ẽρ(EQω ∂
2Hω

∂λ2

)∣∣ ≤ m∑
i=1

Ẽρ|L1(r,Hr(ηi)|
∣∣
r=λi+λ

≤
(
1 + 20e2(1 + a1 + b1)

) m∑
i=1

∣∣Ψ2(λi + λ)
∣∣

=
(
1 + 20e2(1 + a1 + b1)

)
mA′′m(λ).

(4.80)

We have a similar inequality for
∣∣Ẽρ(EQω ∂2Hω

∂θ2

)∣∣.
Hence (4.78), (4.79) and (4.80) give

| d
dz

Varρ,z[logZm,n]| ≤
(
2 + 20e2(1 + a1 + b1)

)
(mA′′m(z) + nB′′n(z)). (4.81)

Therefore it remains to justify the first equalities of (4.74) and (4.75). The integrands

of the last expressions of (4.74) and (4.75) can be written in terms of L, L1, λis, θjs and

ω. As in the proof of Theorem 4.13, (A.22), (A.23), and monotonicity of H(r, η) in r

are used to show that these integrands are dominated by some z-independent integrable

functions.

Corollary 4.18. Consider the (Λ,Θ, z)-stationary polymer. For all m, n and all z1 < z2

in (−xm, yn), we have

∣∣Varρ,z2 [logZm,n]− Varρ,z1 [logZm,n]
∣∣

≤C1 ·
∣∣(mA′m(z2) + nB′n(z2)

)
−
(
mA′m(z1) + nB′n(z1)

)∣∣, (4.82)

where C1 is given by (4.73).
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Proof. We have ∣∣Varρ,z2 [logZm,n]− Varρ,z1 [logZm,n]
∣∣

=
∣∣∫ z2

z1

d

dz
Varρ,z[logZm,n] dz

∣∣
≤C1

∫ z2

z1

mA′′m(z) + nB′′n(z) dz

=C1 ·
∣∣(mA′m(z2) + nB′n(z2)

)
−
(
mA′m(z1) + nB′n(z1)

)∣∣.

We prove the upper bound of Theorem 4.3. We fix m, n and consider z ∈ (−xm, yn).

For −xm < z < yn, 0 ≤ k ≤ m, and 0 ≤ l ≤ n define

fz(k) = k
∣∣A′k(z)

∣∣ =
k∑
i=1

Ψ1(λi + z)

and gz(l) = lB′l(z) =
l∑

j=1

Ψ1(θj − z).

(4.83)

Note that fz and gz are strictly increasing functions in k and l, respectively.

Lemma 4.19. For any c1 > 0 we have the following.

Eρ,z
m,n

[
ξx∑
i=1

L(λi + z,−ωi,0)

]
≤ Eρ,z

m,nfz(ξx) + c1E
ρ,z
m,nξx +

275

c4
1

[
2

(xm + z)10
+ 1

]
, (4.84)

Eρ,z
m,n

[
ξy∑
j=1

L(θj − z,−ω0,j)

]
≤ Eρ,z

m,ngz(ξy) + c1E
ρ,z
m,nξy +

275

c4
1

[
2

(yn − z)10
+ 1

]
. (4.85)

Proof. This lemma is a generalization of Lemma 4.2 in [33] which is proved for the

homogeneous model. We give details for (4.84) to get a precise bound. Define Li =

L(λi + z,−ωi,0), L̄i = Li − Eρ,zLi and Sk =
∑k

i=1 L̄i.

Eρ,z
m,n

[
ξx∑
i=1

Li

]
= Eρ,z

m,n

ξx∑
i=1

Eρ,zLi + Eρ,z
m,n

[
ξx∑
i=1

L̄i

]
= Eρ,z

m,n

ξx∑
i=1

Eρ,zLi +
m∑
k=1

Eρ,z
[
Qω
m,n{ξx = k}Sk

]
.
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The first term can be computed using (A.24):

Eρ,z
m,n

ξx∑
i=1

Eρ,zLi = Eρ,z
m,n

ξx∑
i=1

Ψ1(λi + z) = Eρ,z
m,n[ξx

∣∣A′ξx(z)
∣∣]

= Eρ,z
m,nfz(ξx).

For the second term, we have

m∑
k=1

Eρ,z
[
Qω
m,n{ξx = k}Sk

]
≤ c1E

ρ,z
m,nξx +

m∑
k=1

Eρ,z [1{Sk ≥ c1k}Sk]

and

Eρ,z [1{Sk ≥ c1k}Sk] = c1kPρ,z(Sk ≥ c1k) +

∫ ∞
c1k

Pρ,z(Sk ≥ t) dt

≤ Eρ,z|Sk|`

(c1k)`−1
(1 +

1

`− 1
) ≤ C`

c`−1
1 k`/2−1

·
[

2

(xm + z)2`
+ 1

]
for all ` ≥ 2. The last bound comes from (A.54). Taking ` = 5, we obtain the result.

Theorem 4.13 and Lemma 4.19 say that the variance is controlled by the behavior of

exit points. So we need to estimate Efz(ξx) and Eξx.

Lemma 4.20. Let X(x�, ω) ≥ 0 be a random variable defined on Πm,n × Ω0. For s > 0

let qωs = Qω
m,n(X ≥ s). Suppose there are random variables Ws(ω) and functions f(s),

g(s) such that log qs ≤ Ws, ẼρWs ≤ f(s) < 0 for s ≥ s1 > 0, and Ṽar
ρ
Ws ≤ g(s) for

s1 ≤ s ≤ s2. Then we have

Ẽρ
m,nX = ẼρEQωm,nX ≤ s1 +

∫ s2

s1

(
ef(s)/2 +

4g(s)

f(s)2

)
ds

+

∫ ∞
s2

(
ef(s)/2 + P̃ρ{Ws − ẼρWs ≥ −1

2
f(s)}

)
ds.
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Proof.

Ẽρ
m,nX =

∫ ∞
0

Ẽρqs ds =

∫ ∞
0

∫ 1

0

P̃ρ(qs ≥ t) dt ds

≤ s1 +

∫ ∞
s1

∫ 1

0

P̃ρ(qs ≥ t) dt ds ≤ s1 +

∫ ∞
s1

∫ 1

0

P̃ρ(eWs ≥ t) dt ds

= s1 +

∫ ∞
s1

[∫ ef(s)/2

0

P̃ρ(eWs ≥ t) dt+

∫ 1

ef(s)/2
P̃ρ(eWs ≥ t) dt

]
ds

≤ s1 +

∫ ∞
s1

[ef(s)/2 + P̃ρ(Ws − ẼρWs ≥ −1
2
f(s))] ds.

Now apply Chebyshev inequality for s1 ≤ s ≤ s2.

For −xm < λ < z < yn and u ∈ [1,m] ∩ N, we have

Qz,ω
m,n{ξx ≥ u} =

1

Z(z)

∑
x�

1{ξx ≥ u}eHz(x�)

=
1

Z(z)

∑
x�

1{ξx ≥ u}eHλ(x�) exp

[
ξx∑
i=1

(
Hλi+λ(ηi)−Hλi+z(ηi)

)]

≤Z(λ)

Z(z)
· exp

[
u∑
i=1

(
Hλi+λ(ηi)−Hλi+z(ηi)

)]
(4.86)

where Z = Zm,n (see (4.57)) and u ∈ {1, 2, . . . ,m}. This is from

Hz(x�) = Hλ(x�) +

ξx∑
i=1

(
Hλi+λ(ηi)−Hλi+z(ηi)

)
for ξx > 0 and the fact that Hr(η) is increasing in r. Now we estimate Eρ,z

m,nh(ξx) where

h : N → R is a positive increasing function. We take h(k) = fz(k) and h(k) = k. For

s > 0 let

v(s) = inf{k ∈ N : h(k) ≥ s}. (4.87)

We interpret inf ∅ =∞. For our h(k) = fz(k) ≥ kΨ1(a1 + b1) or h(k) = k, v(s) <∞ for

all s > 0. Note that for all s > 0, h(v(s)) ≥ s and

Qz,ω
m,n{h(ξx) ≥ s} = Qz,ω

m,n{ξx ≥ v(s)}.
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If h(k) = fz(k), then fz(v(s)) = h(v(s)) ≥ s. If h(k) = k, then v(s) = dse ≥ s and

fz(v(s)) = v|A′v(z)| ≥ v(s)Ψ1(a1 + b1) ≥ sΨ1(a1 + b1).

Therefore we have

fz(v(s)) ≥ cs (4.88)

for c = 1 if h(k) = fz(k) and for c = Ψ1(a1 + b1) if h(k) = k.

Now we start to prove the upper bound of variance. Recall definitions of Am and Bn

(see (4.8)). For m,n ≥ 1 and ζm,n define

∆z1
m,n = (xm + ζm,n)/2. (4.89)

For simplicity of notation, we set

z0 = ζm,n. (4.90)

For u ≥ 1 and z0 −∆z1
m,n ≤ λ < z ≤ z0, let

Yu,z(λ) =

(
logZm,n(λ) +

u∑
i=1

Hλi+λ(ηi)

)
−

(
logZm,n(z) +

u∑
i=1

Hλi+z(ηi)

)
. (4.91)

From (4.86), we have logQz,ω
m,n{ξx ≥ u} ≤ Yu,z(λ). Note that this inequality also holds

for u > m (log 0 = −∞). Here we consider not only z = z0 but also z < z0 for later use

in Lemma 4.25. By Proposition 4.11 and (4.71),

Ẽρ logZ(λ) = −
m∑
i=1

Ψ0(λi + λ)−
n∑
j=1

Ψ0(θj − λ) = mAm(λ) + nBn(λ). (4.92)
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Hence by Taylor’s theorem, for some λ < z1, z2 < z,

ẼρYu,z(λ) =

(
mAm(λ) + nBn(λ) +

u∑
i=1

Ψ0(λi + λ)

)

−

(
mAm(z) + nBn(z) +

u∑
i=1

Ψ0(λi + z)

)

= (mAm(λ) + nBn(λ)− uAu(λ))− (mAm(z) + nBn(z)− uAu(z))

=m[Am(λ)− Am(z)] + n[Bn(λ)−Bn(z)]− u[Au(λ)− Au(z)]

=
(
mA′m(z) + nB′n(z)

)
· (λ− z) +

(
mA′′m(z1) + nB′′n(z1)

)
· (λ− z)2

2

− uA′u(z2) · (λ− z)

=−∆z ·
[
u
∣∣A′u(z2)

∣∣+
(
mA′m(z) + nB′n(z)

)
− ∆z

2

(
mA′′m(z1) + nB′′n(z1)

)]
,

(4.93)

where ∆z = z − λ ≤ (z − z0) + ∆z1
m,n.

From Lemma 4.16 part (1), with c = 1/2, z2 = z0 , a = xm and monotonicity of B
(l)
k

we have

|A(l)
k (λ0)| ≤ 2l+1|A(l)

k (z0)| and |B(l)
k (λ0)| ≤ |B(l)

k (z0)| (4.94)

for any λ0 ∈ [z0 −∆z1
m,n, z0]. In particular for l = 2 we have

mA′′m(λ0) + nB′′n(λ0) ≤ 8A′′m(z0) + 8B′′n(z0). (4.95)

Suppose ∆z and u satisfy

∆z ≤
u
∣∣A′u(z0)

∣∣
16M0

, (4.96)

where

M0 = σ3
m,n = Mm,n(ζm,n) = mA′′m(z0) + nB′′n(z0) (4.97)

is given by (4.20), and

u
∣∣A′u(z0)

∣∣ ≥ 4
∣∣mA′m(z) + nB′n(z)

∣∣. (4.98)
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Then from (4.93), (4.95) and monotonicity of A′u(z) in (4.11) we have

ẼρYu,z(λ) =−∆z ·
[1

2
u
∣∣A′u(z2)

∣∣
+

1

4
u
∣∣A′u(z2)

∣∣+
(
mA′m(z) + nB′n(z)

)
+

1

4
u
∣∣A′u(z2)

∣∣− ∆z

2

(
mA′′m(z1) + nB′′n(z1)

)]
≤−∆z ·

[1

2
u
∣∣A′u(z0)

∣∣]
−∆z · 1

4

[
u
∣∣A′u(z0)

∣∣− 4
∣∣(mA′m(z) + nB′n(z)

∣∣]
−∆z · 1

4

[
u
∣∣A′u(z0)

∣∣− 16∆zM0

]
≤−∆z

u
∣∣A′u(z0)

∣∣
2

= −∆z
fz0(u)

2
,

(4.99)

where fz is as defined in (4.83).

For given s > 0, we select u and ∆z by u = u(s) = v(s) and

∆z ≤ fz0(u)

16M0

∧ (z − z0 + ∆z1
m,n). (4.100)

So ∆z depends on s. Below u = u(s) throughout. Suppose (4.98) is satisfied. Then we
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have

P̃ρ
[
Qz,ω
m,n{h(ξx) ≥ s} ≥ exp[−fz0(u)∆z

4
]

]
= P̃ρ

[
Qz,ω
m,n{ξx ≥ u} ≥ exp[−fz0(u)∆z

4
]

]
≤ P̃ρ

[
Yu,z(λ) ≥ −fz0(u)∆z

4

]
≤ P̃ρ

[
Yu,z(λ)− ẼρYu,z(λ) ≥ fz0(u)∆z

4

]
≤ P̃ρ

[∣∣logZ(λ)− Ẽρ logZ(λ)
∣∣ ≥ fz0(u)∆z

16

]
+ P̃ρ

[∣∣logZ(z)− Ẽρ logZ(z)
∣∣ ≥ fz0(u)∆z

16

]
+ P̃ρ

[
u∑
i=1

Hλi+λ(ηi)− Ẽρ
u∑
i=1

Hλi+λ(ηi) ≥
fz0(u)∆z

16

]

+ P̃ρ
[

u∑
i=1

Hλi+z(ηi)− Ẽρ
u∑
i=1

Hλi+z(ηi) ≤ −
fz0(u)∆z

16

]
.

(4.101)

From (4.94), we have

Ṽar
ρ
[
u∑
i=1

Hλi+z(ηi)] = u|A′u(z)| ≤ 4u|A′u(z0)|

and

Ṽar
ρ
[
u∑
i=1

Hλi+λ(ηi)] = u|A′u(λ)| ≤ 4u|A′u(z0)|.

Apply Corollary A.5 part (3) with A = 4
∣∣A′u(z0)

∣∣ and r0 = ∆z1
m,n :

x =
fz0(u)∆z

16
, h(x) =

[
x2

32fz0(u)
∧

∆z1
m,nx

4

]
=

(∆z)2fz0(u)

213

Hence we have

P̃ρ
[

u∑
i=1

Hλi+λ(ηi)− Ẽρ
u∑
i=1

Hλi+λ(ηi) ≥
fz0(u)∆z

16

]
+

P̃ρ
[

u∑
i=1

Hλi+z(ηi)− Ẽρ
u∑
i=1

Hλi+z(ηi) ≤ −
fz0(u)∆z

16

]

≤ 2e−h(x) = 2 exp[−(∆z)2fz0(u)

213
].
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Therefore for s > 0, u = u(s) with (4.98) and ∆z ≤ fz0 (u)

16M0
∧ (z − z0 + ∆z1

m,n), we have

P̃ρ
[
Qz,ω
m,n{h(ξx) ≥ s} ≥ exp[−fz0(u)∆z

4
]

]
≤ P̃ρ

[
Yu,z(λ)− ẼρYu,z(λ) ≥ fz0(u)∆z

4

]
≤ P̃ρ

[∣∣logZ(λ)− Ẽρ logZ(λ)
∣∣ ≥ fz0(u)∆z

16

]
+ P̃ρ

[∣∣logZ(z)− Ẽρ logZ(z)
∣∣ ≥ fz0(u)∆z

16

]
+ 2 exp[−(∆z)2fz0(u)

213
].

(4.102)

Recall that our goal is to estimate Eρ,z0
m,nh(ξx) and to do that we use Lemma 4.20 with

appropriate choices of Ws. Suppose that, for some c > 0, v(s) satisfies fz0(v(s)) ≥ cs

for all s > 0. h(k) = fz0(k) and h(k) = k satisfy this condition by (4.88). Let

qs = Qz0,ω
m,n{h(ξx) ≥ s}, ∆z(s) =

cs

16M0

∧∆z1
m,n (4.103)

and

Ws = Yu(s),z0(λ), f(s) = −∆z(s)fz0(u(s))

2
. (4.104)

We have ẼρWs ≤ f(s) ≤ 0 by (4.99). Note that (4.98) is satisfied for any s > 0 in the

case z = z0. We will estimate probabilities in (4.102) with z = z0 by dividing the range

of s. Let

s2 = 16∆z1
m,nM0/c.

Case 1. s > s2.
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In this case ∆z = ∆z1
m,n and f(s) ≤ −c∆z1

m,ns/2. Therefore from (4.102) we have∫ ∞
s2

ef(s)/2 + P̃ρ(Ws − ẼρWs ≥ −1
2
f(s)) ds

≤ 4

c∆z1
m,n

+
214

c(∆z1
m,n)2

+
16

c∆z1
m,n

[
Ẽρ
∣∣logZ(λ)− Ẽρ logZ(λ)

∣∣+ Ẽρ
∣∣logZ(z0)− Ẽρ logZ(z0)

∣∣]
≤ 16

c∆z1
m,n

[
1 +

√
Ṽar

ρ
logZ(z) +

√
Ṽar

ρ
logZ(λ) +

210

∆z1
m,n

]
≤ 16

c∆z1
m,n

[
1 + 3

√
m|A′m(z0)|+ 3

√
nB′n(z0) +

210

∆z1
m,n

]
.

(4.105)

The last line comes from the fact that logZ(λ) = X + Y where X and Y are sums of

independent random variables with Ṽar
ρ
(X) =

∣∣mA′m(λ)
∣∣ and Ṽar

ρ
(Y ) = nB′n(λ). We

used (4.94) to bound |A′m(λ)| and B′n(λ) in terms of z0.

Case 2. s1 ≤ s ≤ s2 for s1 = rM
2/3
0 with r > 0 to be determined later.

In this case ∆z = cs
16M0

and f(s) ≤ − c2s2

32M0
. Now we compute the variance of Ws.

Ṽar
ρ
Ws ≤ 2 Ṽar

ρ[ u∑
i=1

Hλi+λ(ηi)−Hλi+z0(ηi)
]

+ 2 Ṽar
ρ[

logZ(λ)− logZ(z0)
]
.

The first term is ≤ 4u(|A′u(λ)|+ |A′u(z0)|) ≤ 20fz0(u) by (4.94). For the second term,

apply (4.72) and (4.95) with C1 = 2 + 20e2(1 + a1 + b1): For some λ∗ ∈ [λ, z0],

Ṽar
ρ[

logZ(λ)− logZ(z0)
]
≤ 2 Ṽar

ρ
logZ(λ) + 2 Ṽar

ρ
logZ(z0)

≤ 4 Ṽar
ρ

logZ(z0) + 2C1(mA′′m(λ∗) + nB′′n(λ∗))∆z

≤ 4 Ṽar
ρ

logZ(z0) + 16C1M0∆z

= 4 Ṽar
ρ

logZ(z0) + cC1s.

Therefore

Ṽar
ρ
Ws ≤ g(s) = 40fz0(u(s)) + 8 Ṽar

ρ
logZ(z0) + 2cC1s.
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and

4g(s)

f(s)2
≤ 640

(∆z)2fz0(u(s))
+

215M2
0 Ṽar

ρ
logZ(z0)

c4s4
+

213C1M
2
0

c3s3

≤ 5 · 215M2
0

c3s3
+

215M2
0 Ṽar

ρ
logZ(z0)

c4s4
+

213C1M
2
0

c3s3

≤ 215M2
0 Ṽar

ρ
logZ(z0)

c4s4
+

214C1M
2
0

c3s3
.

(4.106)

We use Lemma 4.20 with (4.106) to compute Eρ,z0
m,nh(ξx).

Eρ,z0
m,nh(ξx) ≤ rM

2/3
0 + (4.105)

+

∫ s2

rM
2/3
0

[
exp(−c2s2/(64M0)) +

215M2
0 Ṽar

ρ
logZ(z0)

c4s4
+

214C1M
2
0

c3s3

]
ds

≤ rM
2/3
0 +

16

c∆z1
m,n

[
1 + 3

√
m|A′m(z0)|+ 3

√
nB′n(z0) +

210

∆z1
m,n

]
+

32M
1/3
0

c2r
exp(−c2r2M

1/3
0 /64) + 213 Ṽar

ρ
logZ(z0)

c4r3
+ 213C1M

2/3
0

c3r2
.

(4.107)

Take r = 26/c. Then we obtain

cEρ,z0
m,nh(ξx) ≤

Ṽar
ρ

logZ(z0)

32
+ (64 + 2C1)M

2/3
0 + 1/128

+
16

∆z1
m,n

[
1 + 3

√
m|A′m(z0)|+ 3

√
nB′n(z0) +

210

∆z1
m,n

]
.

(4.108)

Combining (4.50), (4.84) with c1 = Ψ(a1 + b1) and (4.108) gives the upper variance
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bound for the free energy:

Ṽar
ρ
[logZm,n(z0)] ≤ 1 + (29 + 16C1) ·M2/3

0

+
210

xm + z0

(√
|mA′m(z0)|+

√
nB′n(z0)

)
+

28

xm + z0

+
219

(xm + z0)2

+
277

(Ψ1(a1 + b1))4

[
2

(xm + z0)10
+ 1

]
≤ (29 + 16C1) ·M2/3

0 +
279

(1 ∧Ψ1(a1 + b1))4

[
2

(xm + z0)10
+ 1

]
+

210

xm + z0

(√
|mA′m(z0)|+

√
nB′n(z0)

)
.

(4.109)

Using (4.51) we also have a upper bound :

Ṽar
ρ
[logZm,n(z0)] ≤ (29 + 16C1) ·M2/3

0 +
279

(1 ∧Ψ1(a1 + b1))4

[
2

(yn − z0)10
+ 1

]
+

210

yn − z0

(√
|mA′m(z0)|+

√
nB′n(z0)

)
.

(4.110)

For z0 ≥ (b0 − a0)/2, we have (xm + z0) ≥ (a0 + b0)/2 and for z0 ≤ (b0 − a0)/2, we have

(yn − z0) ≥ (a0 + b0)/2. Therefore we have

Ṽar
ρ
[logZm,n(z0)] ≤ (29 + 16C1) ·M2/3

0 +
279

(1 ∧Ψ1(a1 + b1))4

[
211

(a0 + b0)10
+ 1

]
+

211

a0 + b0

(√
|mA′m(z0)|+

√
nB′n(z0)

)
.

(4.111)

Note that from (A.6)

|mA′m(z0)|3/4 ≤
m∑
i=1

(Ψ1(λi + z0))3/4 ≤
m∑
i=1

(
1

(λi + z0)3/2
+

1

(λi + z0)3/4

)
≤2(1 + a1 + b1)5/4

m∑
i=1

1

(λi + z0)2
≤ 2(1 + a1 + b1)5/4mA′′m(z0)

≤2(1 + a1 + b1)5/4M0.
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A similar calculation for nB′n(z0) shows that

√
|mA′m(z0)|+

√
nB′n(z0) ≤ 4(1 + a1 + b1)M

2/3
0 . (4.112)

From (4.111) and (4.112) we have

Ṽar
ρ
[logZm,n(z0)] ≤ C2M

2/3
0 + C3, (4.113)

where

C2 = 210 + 320e2(1 + a1 + b1) +
213(1 + a1 + b1)

a0 + b0

(4.114)

and

C3 = 279(1 + a1 + b1)4

[
211

(a0 + b0)10
+ 1

]
. (4.115)

Since M0 ≥ |Ψ2(λ1 + z0)| ≥ 1/(1 + a1 + b1)3, from (4.113), (4.114) and (4.115) we have

Ṽar
ρ
[logZm,n(z0)] ≤ CM

2/3
0 , (4.116)

where

C = 291(1 + a1 + b1)6

[
1

(a0 + b0)10
+ 1

]
. (4.117)

This completes the proof of (4.21).

4.5 Useful estimates

In this section, we collect technical lemmas for the remaining sections. All polymer

models are (Λ,Θ, z)-stationary polymers. Weights on the axes are given by functions

of uniform random variables as in section 4.4. z-dependence of models is achieved by

the function H(ρ, η) in (A.16). See the first paragraph in Section 4.4. Thus we use
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the notation P̃ρ(X(z) ∈ ·) instead of Pρ,z(X ∈ ·) for a random variable X. Recall the

definitions of xm and yn in (4.6). z satisfies −xm < z < yn.

Recall definitions of Am and Bn in (4.9) and (4.10). For fixed m, n ≥ 1, let

M(z) = Mm,n(z) = mA′′m(z) + nB′′n(z)

= −
m∑
i=1

Ψ2(λi + z)−
n∑
j=1

Ψ2(θj − z) > 0
(4.118)

be as in (4.13). Suppose −xm < z∗1 ≤ z1 < z2 ≤ z∗2 < yn. Let

M1 = M(z1) and M2 = M(z2).

Since B′′′n (z) =
∫

Ψ3(θ − z) βn(dθ) > 0, B′′n(z1) ≤ B′′n(z2). By Lemma 4.16 part (1),

0 < A′′m(z1) ≤ A′′m(z2) ·
(
xm+z2
xm+z1

)3

. Hence we have M1/M2 ≤
(
xm+z∗2
xm+z∗1

)3

. In a similar way,

we obtain M2/M1 ≤
(
yn−z∗1
yn−z∗2

)3

. Therefore we have(
xm + z∗1
xm + z∗2

)3

≤M2/M1 ≤
(
yn − z∗1
yn − z∗2

)3

. (4.119)

Since

xm + z ≤ λi + z ≤ a1 + b1 and yn − z ≤ θj − z ≤ a1 + b1, (4.120)

we have, from (A.6),

M(z) ≥
∣∣Ψ2(xm + z)

∣∣+
∣∣Ψ2(yn − z)

∣∣ ≥ 2

(xm + z)3
+

2

(yn − z)3
≥ 1

(∆zm,n)3
, (4.121)

where

∆zm,n = (xm + z) ∧ (yn − z). (4.122)

Throughout this section, we assume the following. Recall the definitions of ζm,n in

(4.18), σm,n in (4.20), ∆ζm,n in (4.30) and Km,n in (4.31). As in the previous section,

for simplicity of notations, we sometimes write

z0 = ζm,n, M0 = σ3
m,n



116

(see (4.90) and (4.97)).

Let

∆z1
m,n = (xm + ζm,n)/2, ∆z2

m,n = (yn − ζm,n)/2. (4.123)

Note that M0 and Km,n only depend on λ1, . . . , λm and θ1, . . . , θn. M0 and Km,n are

symmetric functions of these parameters. Hence

M0(λ1, . . . , λm, θ1, . . . , θn) = M0(xm:1, . . . , xm:m, yn:1, . . . , yn:n) (4.124)

and

Km,n(λ1, . . . , λm, θ1, . . . , θn) = Km,n(xm:1, . . . , xm:m, yn:1, . . . , yn:n), (4.125)

where xm:1, . . . , xm:m, yn:1, . . . , yn:n are rearranged parameters in (4.4) and (4.5). From

(A.8),

A′′m(z0) = − 1

m

m∑
i=1

Ψ2(λi + z0)

≤ 2

m

m∑
i=1

1

λi + z0

Ψ1(λi + z0) ≤ 2

∆ζm,n
|A′m(z0)|.

Similarly, B′′n(z0) ≤ 2
∆ζm,n

B′n(z0). Hence we have

Km,n ≤ 4. (4.126)

We consider parameters z with

ζm,n −∆z1
m,n ≤ z ≤ ζm,n + ∆z2

m,n. (4.127)

Lemma 4.21. Suppose z satisfies (4.127). Let C be the constant in (4.117). Then we

have the following.
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(1) For t > 0,

P̃ρ
[∣∣logZm,n(z)− Ẽρ logZm,n(z)

∣∣ ≥ t
]

≤ 4

(
exp
[
− t2

128m|A′m(ζm,n)|
]
∨ exp

[
−(∆ζm,n)t

16

])
.

(4.128)

(2) For t > 0,

P̃ρ
[∣∣logZm,n(z)− Ẽρ logZm,n(z)

∣∣ ≥ t
]

≤
20Cσ2

m,n

t2

+ 2

(
exp
[
− t2

32|mA′m(z) + nB′n(z)|
]
∨ exp

[
−(∆ζm,n)t

16

])
.

(4.129)

We interpret 1/0 =∞.

(3) Suppose
∣∣mA′m(z) + nB′n(z)

∣∣ ≤ rσ2
m,n. For t > 0,

P̃ρ
[∣∣logZm,n(z)− Ẽρ logZm,n(z)

∣∣ ≥ tσm,n

]
≤ 20C

t2
+ 2

(
exp

[
−t2/(32r)

]
∨ exp[−t/16]

)
.

(4.130)

(4) For fixed 0 < c ≤ 2, if t ≥ c∆ζm,nσm,n, then

P̃ρ
[∣∣logZm,n(z)− Ẽρ logZm,n(z)

∣∣ ≥ tσm,n

]
≤ 4 exp

[
−cKm,n

128
t

]
.

(4.131)

Proof. Part (1). Write z0 = ζm,n and M0 = σ3
m,n.

Recall that

logZm,n(z) =
m∑
i=1

Ii,0(z) +
n∑
j=1

Jm,j(z) = Xm(z) + Yn(z).

We apply (A.53) and Lemma 4.16(1). Since Ṽar
ρ
X(z) = m

∣∣A′m(z)
∣∣ ≤ 4m

∣∣A′m(z0)
∣∣ and

Ṽar
ρ
Y (z) = nB′n(z) ≤ 4nB′n(z0) and λi + z ≥ ∆z1

m,n, we have

P̃ρ
[∣∣Xm(z)− ẼρXm(z)

∣∣ ≥ t
]
≤ 2

(
exp
[
− t2

32m|A′m(z0)|
] ∨ exp[−(xm + z0)t

8
]

)
. (4.132)
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Similarly,

P̃ρ
[∣∣Yn(z)− ẼρYn(z)

∣∣ ≥ t
]
≤ 2

(
exp
[
− t2

32nB′n(z0)
] ∨ exp[−(yn − z0)t

8
]

)
.

Since |mA′m(z0)| = nBn(z0), substituting t/2 into above inequalities, we get (4.128).

Part (2).

First, we assume mA′m(z) + nB′n(z) ≤ 0. Hence z ≤ z0 since mAm(z) + nBn(z) is a

smooth convex function of z. Define

g(k, z) = kA′k(z) + nB′n(z) for 0 ≤ k ≤ m.

Then g(0, z) > 0 and g(m, z) ≤ 0. Note that g is strictly decreasing in k for fixed z (see

(4.11)). Define

u = u(z) = min{k : g(k, z) ≤ 0} (4.133)

Note that u ≥ 1. Write logZm,n(z) as

logZm,n(z) = logZu,n(z) +
m∑

i=u+1

Ii,n(z).

Then

d

dz
Ẽρ logZu,n(z) = g(u, z) = g(u− 1, z)−Ψ1(λu + z)

and
∣∣g(u, z)

∣∣ ≤ Ψ1(λu+z). Let λ0 be the unique constant such that uA′u(λ0)+nB′n(λ0) =

0. Since mA′m(z0) + nB′n(z0) = 0, we have uA′u(z0) + nB′n(z0) ≥ 0. Hence we have

z ≤ λ0 ≤ z0. From Theorem 4.3 and (4.82),

Ṽar
ρ

logZu,n(z) ≤ C1|g(u, z)|+ C [uA′′u(λ0) + nB′′n(λ0)]
2/3
.
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From (A.6) and (A.7)∣∣g(u, z)
∣∣ ≤ Ψ1(λu + z) ≤ 4Ψ1(λu + z0) ≤

(
4

(λu + z0)2
+

4

λu + z0

)
≤ 8(1 + a1 + b1)

[
2

(λu + z0)3
∨ 1

(λu + z0)2

]2/3

≤ 8(1 + a1 + b1)|Ψ2(λu + z0)|2/3 ≤ CM
2/3
0 .

From Lemma 4.16(1) we also have

uA′′u(λ0) + nB′′n(λ0) ≤ 8uA′′u(z0) + 8nB′′n(z0) ≤ 8M(z).

Therefore we have

Ṽar
ρ

logZu,n(z) ≤ 5CM
2/3
0 . (4.134)

Chebyshev’s inequality with t/2 gives the first term of bound (4.129).

Now we consider
m∑

i=u+1

Ii,n(z).

We have, since g(u, z) ≤ 0,

Ṽar
ρ

m∑
i=u+1

Ii,n(z) =− [mA′m(z) + nB′n(z)] + [uA′u(z) + nB′n(z)]

≤
∣∣mA′m(z) + nB′n(z)

∣∣.
From (A.53),

P̃ρ
[∣∣ m∑
i=u+1

Ii,n(z)− Ẽρ
m∑

i=u+1

Ii,n(z)
∣∣ ≥ t/2

]

≤ 2

(
exp[− t2

32|mA′m(z) + nB′n(z)|
] ∨ e−t∆z0m,n/16

)
.

(4.135)

Collecting all the results we have (4.129).

If mA′m(z) + nB′n(z) ≥ 0, then write logZm,n(z) as

logZm,n(z) = logZm,v(z) +
n∑

j=v+1

Jm,j(z)
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. The same reasoning as above can be employed to prove (4.129).

Part (3). This is a consequence of (4.129). Note that we used (4.121) so that

σm,n∆ζm,n ≥ 1.

Part (4). This is a consequence of (4.128). Here we also used (4.126) and (4.121).

Next lemma estimates the distance between z and ζm,n.

Lemma 4.22. Suppose
∣∣mA′m(z)+nB′n(z)

∣∣ ≤ c∆zm,nM(z)/8 for some 0 < c < 1, where

∆zm,n is given by (4.122). Then

|z − ζm,n| ≤ (c∆zm,n) ∧ (1 + c)3|mA′m(z) + nB′n(z)|
M(z)

.

We also have

|z − ζm,n| ≤
c

1− c
∆z0

m,n.

Proof. Let z1 = z − c∆zm,n and z2 = z + c∆zm,n. Note that

xm + z

xm + z2

≥ 1

1 + c
and

yn − z1

yn − z
≤ 1 + c.

Then for some z∗ with z1 < z∗ < z, from (4.119) with z∗1 = z1 and z∗2 = z,

[mA′m(z1) + nB′n(z1)]− [mA′m(z) + nB′n(z)]

=− c∆zm,n[mA′′m(z∗) + nB′′n(z∗)] ≤ −c∆zm,nM(z)/(1 + c)3.

(4.136)

Hence mA′m(z1) + nB′n(z1) ≤ 0 since
∣∣mA′m(z) + nB′n(z)

∣∣ ≤ c∆zm,nM(z)/8. Similarly,

mA′m(z2) + nB′n(z2) ≥ 0. Therefore z1 ≤ ζm,n ≤ z2. Since for some z∗∗ between z and

ζm,n

∣∣mA′m(z) + nB′n(z)
∣∣ =

∣∣z − ζm,n∣∣[mA′′m(z∗∗) + nB′′n(z∗∗)] ≥ |z − ζm,n|
(1 + c)3

M(z),
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we have ∣∣z − ζm,n∣∣ ≤ (1 + c)3|mA′m(z) + nB′n(z)|
M(z)

.

Since |z − ζm,n| ≤ c∆zm,n we have

z − c∆zm,n ≤ ζm,n ≤ z + c∆zm,n.

Hence

(1− c)(xm + z) ≤ xm + z − c∆zm,n ≤ xm + ζm,n

and

(1− c)(yn − z) ≤ yn − z − c∆zm,n ≤ yn − ζm,n.

Therefore ∆ζm,n ≥ (1− c)∆zm,n so that

|z − ζm,n|
∆ζm,n

≤ |z − ζm,n|
(1− c)∆zm,n

≤ c

1− c
.

Lemma 4.23. Suppose z satisfies (4.127). Let C be the constant in (4.117). Write

z − ζm,n = r/σm,n then

P (z) = Pρ,z
{∣∣logZm,n − Eρ,z logZm,n

∣∣ ≥ ∣∣Eρ,z logZm,n − Eρ,ζm,n logZm,n
∣∣/4}

and

P (ζm,n) = Pρ,ζm,n
{∣∣logZm,n − Eρ,ζm,n logZm,n

∣∣ ≥ ∣∣Eρ,z logZm,n − Eρ,ζm,n logZm,n
∣∣/4}

satisfy the following.

(1) For 0 < r ≤ ∆ζm,nσm,n/2,

P (z) ∨ P (ζm,n) ≤ 217C

r4
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and for ∆ζm,nσm,n/2 ≤ r ≤ ∆z2
m,nσm,n

P (z) ∨ P (ζm,n) ≤ 219C

r2
∧
(

4 exp

[
−Km,n

222
r

])
.

(2) For −∆ζm,nσm,n/2 ≤ r < 0,

P (z) ∨ P (ζm,n) ≤ 217C

r4

and for −∆z1
m,nσm,n ≤ r ≤ −∆ζm,nσm,n/2

P (z) ∨ P (ζm,n) ≤ 219C

r2
∧
(

4 exp

[
−Km,n

222
r

])
.

Proof. We do the case r > 0. Write z0 = ζm,n and M0 = σ3
m,n as before. Let

f(z) = Ẽρ logZm,n(z0)− Ẽρ logZm,n(z). (4.137)

We estimate f(z). From (4.119),

M(z) ≤ 8M0 (4.138)

for z0 ≤ z ≤ z0 + ∆z2
m,n and

M(z) ≥ 1

8
M0 (4.139)

for z0 ≤ z ≤ z0 + ∆ζm,n/2.

Let ∆z = z − z0. For some z1 with z0 < z1 < z,

f(z) = [mAm(z0) + nBn(z0)]− [mAm(z) + nBn(z)]

= −∆z[mA′m(z0) + nB′n(z0)]− (∆z)2

2
[mA′′m(z1) + nB′′n(z1)]

= − (∆z)2

2
[mA′′m(z1) + nB′′n(z1)].

Suppose
∣∣∆z∣∣ ≤ ∆ζm,n/2. Then from (4.119), we have

f(z) ≤ −(∆z)2M0

16
= −r

2M
1/3
0

16
.
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Since f(z) is concave and f(z0) = 0 we also have

f(z) ≤
f(z0 + ∆z0

m,n/2)

∆z0
m,n/2

∆z

≤−
∆z0

m,nM0

32
∆z = −

∆z0
m,nM

2/3
0 r

32
≤ −rM

1/3
0

32

for ∆z ≥ ∆ζm,n/2. The last inequality is from (4.121).

Therefore we have

f(z) ≤


− r2

16
M

1/3
0 , (0 < r ≤ ∆ζm,n

2
M

1/3
0 )

− r
32
M

1/3
0 , (∆ζm,n

2
M

1/3
0 ≤ r ≤ ∆z2

m,nM
1/3
0 ).

(4.140)

Also note that, from (4.138),

∣∣mA′m(z) + nB′n(z)
∣∣ ≤ 8M0

∣∣∆z∣∣ ≤ 8rM
2/3
0 .

Therefore for 1/2 ≤ r ≤ ∆ζm,n
2

M
1/3
0 , from (4.130) with t = r2/26 we have

P (z) ∨ P (z0)

≤ 20 · 212C

r4
+ 2

(
exp

[
−r3/220

]
∨ exp[−r2/210]

)
≤ 20 · 212C

r4
+ 2 exp

[
−r2/221

]
≤ 5 · 214C

r4
+

243

r4
≤ 217C

r4
.

(4.141)

Note that this inequality holds also for 0 < r ≤ 1/2 since our C is sufficiently large. For

∆ζm,n
2

M
1/3
0 ≤ r ≤ ∆z2

m,nM
1/3
0 , from (4.130) with t = r/27 we have

P (z) ∨ P (z0)

≤ 20 · 214C

r2
+ 2

(
exp

[
−r/222

]
∨ exp[−r/211]

)
=

20 · 214C

r2
+ 2 exp

[
−r/222

]
≤ 20 · 214C

r2
+

245

r2
≤ 219C

r2
.

(4.142)

For this range, from (4.131) with c = 1/28 and t = r/27 we also have

P (z) ∨ P (z0)

≤ 4 exp

[
−Km,n

222
r

]
.

(4.143)
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Collecting all the results, we complete the proof of part (1). The case r < 0 is handled

similarly.

Lemma 4.24. Suppose z satisfies (4.127). Let C be the constant in (4.117). Write

z − ζm,n = r/σm,n. If m+ n ≥ (128(a1 + b1) log 2)3 then we have the following.

(1) For 0 < r ≤ ∆ζm,nσm,n/2,

P̃ρ
[
Qz,ω
m,n{ξx > 0} ≥ 1

2

]
≤ 218C

r4

and for ∆ζm,nσm,n/2 ≤ r ≤ ∆z2
m,nσm,n

P̃ρ
[
Qz,ω
m,n{ξx > 0} ≥ 1

2

]
≤ 220C

r2
∧
(

8 exp

[
−Km,n

222
r

])
.

(2) For −∆ζm,nσm,n/2 ≤ r < 0,

P̃ρ
[
Qz,ω
m,n{ξy > 0} ≥ 1

2

]
≤ 218C

r4

and for −∆z1
m,nσm,n ≤ r ≤ −∆ζm,nσm,n/2

P̃ρ
[
Qz,ω
m,n{ξy > 0} ≥ 1

2

]
≤ 220C

r2
∧
(

8 exp

[
−Km,n

222
r

])
.

Proof. We do the case r > 0. Write z0 = ζm,n and M0 = σ3
m,n as before. Note that

1/2 ≤ ∆ζm,nσm,n/2 by (4.121). Since our constant C is sufficiently large, the first

inequality in Part (1) is trivially satisfied for 0 < r ≤ 1/2. Therefore we may assume

r ≥ 1/2. From the definition of the quenched measure and (4.56), we have

Qz,ω{ξx > 0} ≤ Zm,n(z0)

Zm,n(z)
.
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Let f(z) be as in (4.137). Suppose f(z) ≤ −2 log 2. Then we have

P̃ρ
[
Qz,ω{ξx > 0} ≥ 1

2

]
≤ P̃ρ [logZm,n(z0)− logZm,n(z) ≥ − log 2]

≤ P̃ρ
[∣∣logZm,n(z0)− logZm,n(z)− f(z)

∣∣ ≥ −f(z)

2

]
≤ P̃ρ

[∣∣logZm,n(z0)− Ẽρ logZm,n(z0)
∣∣ ≥ |f(z)|

4

]
+ P̃ρ

[∣∣logZm,n(z)− Ẽρ logZm,n(z)
∣∣ ≥ |f(z)|

4

]
(4.144)

and, from Lemma 4.23(1), we have bounds in part (1).

Now we seek conditions for f(z) ≤ −2 log 2. From (4.140), for r ≥ 1/2, we have

f(z) ≤ −M1/3
0 /64. If M

1/3
0 ≥ 128 log 2, we have f(z) ≤ −2 log 2. From (A.6),

M0 ≥ (m+ n)|Ψ2(a1 + b1)| ≥ (m+ n)
1

(a1 + b1)3
.

Hence under our assumption m+ n ≥ (128(a1 + b1) log 2)3, we have

M
1/3
0 ≥ 128 log 2 (4.145)

and f(z) ≤ −2 log 2 for r ≥ 1/2. This completes the proof of part (1). The case r < 0

is handled similarly.

Lemma 4.25. Consider z with

ζm,n −∆z1
m,n/2 ≤ z ≤ ζm,n + ∆z2

m,n/2

and write z − ζm,n = r/σm,n. Let C be the constant in (4.117). Then we have the

following.

(1) Suppose z ≤ ζm,n. For 2|r| < t ≤ 4∆ζm,nσm,n

P̃ρ
[
Qz,ω
m,n{fζm,n(ξx) ≥ tσ2

m,n} ≥ exp[−t
2σm,n
64

]

]
≤ 222C

t4
(4.146)
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and for t ≥ (4∆ζm,nσm,n) ∨ (2|r|),

P̃ρ
[
Qz,ω
m,n{fζm,n(ξx) ≥ tσ2

m,n} ≥ exp[−tσm,n
16

]

]
≤218C

t2
∧
(

10 exp

[
−Km,n

219
t

])
.

(4.147)

(2) Suppose z ≥ ζm,n. For 2|r| < t ≤ 4∆ζm,nσm,n

P̃ρ
[
Qz,ω
m,n{gζm,n(ξy) ≥ tσ2

m,n} ≥ exp[−t
2σm,n
64

]

]
≤ 222C

t4
(4.148)

and for t ≥ (4∆ζm,nσm,n) ∨ (2|r|),

P̃ρ
[
Qz,ω
m,n{gζm,n(ξy) ≥ tσ2

m,n} ≥ exp[−tσm,n
16

]

]
≤218C

t2
∧
(

10 exp

[
−Km,n

219
t

])
.

(4.149)

Proof. We prove part (1). Part (2) can be proven similarly. Write z0 = ζm,n and

M0 = σ3
m,n as before. We use (4.86) and (4.102) with h(k) = fz0(k). Since fz0(u(s)) ≥ s

by (4.88), if conditions for (4.102) are satisfied, then we have

P̃ρ
[
Qz,ω
m,n{fz0(ξx) ≥ s} ≥ exp[−s∆z

4
]

]
≤ P̃ρ

[∣∣logZ(λ)− Ẽρ logZ(λ)
∣∣ ≥ s∆z

16

]
+ P̃ρ

[∣∣logZ(z)− Ẽρ logZ(z)
∣∣ ≥ s∆z

16

]
+ 2 exp[−(∆z)2s

213
],

(4.150)

where ∆z = z− λ > 0 and ∆z satisfies (4.100). To use (4.102), we need to check if u(s)

satisfies (4.98). Since

|mA′m(z) + nB′n(z)| = (z0 − z)M(z∗)

for some z ≤ z∗ ≤ z0, from (4.119), we have

|mA′m(z) + nB′n(z)| ≤ 8|r|M2/3
0 . (4.151)
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Therefore if s ≥ 2|r|M2/3
0 , then

u|A′u(z0)| = fz0(u(s)) ≥ s ≥
∣∣mA′m(z) + nB′n(z)

∣∣/4
and (4.98) is satisfied. Hence we can use (4.150) for s > 2|r|M2/3

0 . Substitute s = tM
2/3
0

into (4.150).

For 2|r| < t ≤ 4∆ζm,nM
1/3
0 (if this range is nonempty), set ∆z = s/(16M0). Then

for some λ∗ ∈ [λ, z0] we have

|mA′m(λ) + nB′n(λ)| = (z0 − λ)M(λ∗) ≤ 8(t+ |r|)M2/3
0 ≤ 16tM

2/3
0 . (4.152)

From (4.130) with t2/28, (4.150), (4.151), and (4.152) we have

P̃ρ
[
Qz,ω
m,n{fz0(ξx) ≥ tM

2/3
0 } ≥ exp[−t

2M
1/3
0

64
]

]

≤40 · 216C

t4
+ 2

(
exp[− t4

224|r|
] ∨ exp[− t2

212
]

)
+ 2

(
exp[− t4

224(t+ |r|)
] ∨ exp[− t2

212
]

)
+ 2 exp[− t3

221
]

≤40 · 216C

t4
+ 4

(
exp[− t3

225
] ∨ exp[− t2

212
]

)
+ 2 exp[− t3

221
]

≤222C

t4
.

For t ≥
(

4∆ζm,nM
1/3
0

)
∨ (2|r|), set ∆z = ∆ζm,n/4. Then for some λ∗ ∈ [λ, z0] we

have

|mA′m(λ) + nB′n(λ)| = (z0 − λ)M(λ∗)

≤8
(
|r|M−1/3

0 + ∆z0
m,n/4

)
M0 ≤ 8(|r|+ t/16)M

2/3
0 ≤ 8tM

2/3
0 .

(4.153)
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From (4.121), (4.130) with t/26, (4.150), (4.151), and (4.153) we have

P̃ρ
[
Qz,ω
m,n{fz0(ξx) ≥ tM

2/3
0 } ≥ exp[−tM

1/3
0

16
]

]

≤40 · 212C

t2
+ 2

(
exp[− t2

220|r|
] ∨ exp[− t

210
]

)
+ 2

(
exp[− t

220
] ∨ exp[− t

210
]

)
+ 2 exp[− t

217
]

≤40 · 212C

t2
+ 6 exp[− t

220
] ≤ 218C

t2
.

For this range, from (4.131) with c = 1/24 and t/26 we also have

P̃ρ
[
Qz,ω
m,n{fz0(ξx) ≥ tM

2/3
0 } ≥ exp[−tM

1/3
0

16
]

]

≤8 exp

[
−Km,n

217
t

]
+ 2 exp[− t

217
]

≤10 exp

[
−Km,n

219
t

]
.

4.6 Lower bound for the fluctuation

In this section we finish the proof of Theorem 4.3. We continue to use our notation P̃ρ

as explained in the beginning of Section 4.4. However at some places we go back to

notation Pρ in Remark 3.15. We also refer readers to page 115 for various definitions

and notations. We construct our environment as follows:

Let {ηi,j : i ≥ 0, j ≥ 0} be i.i.d. uniform random variables on (0, 1). Let ωi,j(z) =

−H(ρi,j, ηi,j) with ρi,j = λi + θj for i, j ≥ 1 and ρi,0 = λi + z, ρ0,j = θj − z. For subsets

A ⊆ Π(i,j),(k,l), let

Zz
(i,j),(k,l)(A) =

∑
x�∈A

exp

[
k−i+l−j∑
r=1

ωxk(z)

]
.
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Lemma 4.26 (Lemma 5.1. of [33]). For m ≥ 2 and n ≥ 1 we have this comparison of

partition functions:

Zm,n(ξy > 0)

Zm−1,n(ξy > 0)
≤

Z(1,1),(m,n)

Z(1,1),(m−1,n)

≤ Zm,n(ξx > 0)

Zm−1,n(ξx > 0)
. (4.154)

Lemma 4.27 (Lemma 5.4 of [33]). For each fixed ω, Qω
m1,n

(ξx > 0) ≤ Qω
m2,n

(ξx > 0) for

all 0 < m1 < m2 and n ≥ 0.

The proof of the following lemma is adapted from [18].

Lemma 4.28. Let C be the constant in (4.117). Then whenever m+ n ≥ C2, we have

P̃ρ
[
logZm,n(ζm,n)− Ẽρ logZm,n(ζm,n) ≥ σm,n

]
≥ e−C

2

. (4.155)

Proof. Write z0 = ζm,n and M0 = (σm,n)3 as before. First assume ∆ζm,n in (4.30) satisfies

∆ζm,n = yn − z0. So we have ∆z1
m,n = xm+z0

2
≥ a0+b0

4
. Consider λ with

0 < z0 − λ ≤ ∆z1
m,n and λ = z0 − r/M1/3

0 .

We can use Lemma 4.24: Supposem+n ≥ (128(a1+b1) log 2)3. We haveM
1/3
0 ≥ 128 log 2

by (4.145).

For 0 < r ≤ ∆z1
m,nM

1/3
0 ,

P̃ρ
[
Qλ,ω
m,n{ξx > 0} ≥ 1

2

]
= 1− P̃ρ

[
Qλ,ω
m,n{ξy > 0} ≥ 1

2

]
≥ 1− 220C

r2
. (4.156)

If r ≤ ∆z1
m,nM

1/3
0 /2, from Lemma 4.25(1), we have

P̃ρ
[
Qλ,ω{fz0(ξx) ≥ tM

2/3
0 } ≥ 1

4

]
≤ 222C

t2
(4.157)

for t ≥ (2r) ∨ 1. Choose such r and t. From (4.156) and (4.157) we have

P̃ρ
[
Qλ,ω{0 < fz0(ξx) < tM

2/3
0 } ≥ 1/4

]
≥ 1− 220C

r2
− 222C

t2
. (4.158)
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From (4.158)

1− 220C

r2
− 222C

t2

≤ P̃ρ
[
Qλ,ω{0 < fz0(ξx) < tM

2/3
0 } ≥ 1/4

]
= P̃ρ

[
1

Zm,n(λ)
Zλ
m,n{0 < fz0(ξx) < tM

2/3
0 } ≥ 1/4

]
≤ P̃ρ

[
Zλ
m,n{0 < fz0(ξx) < tM

2/3
0 } ≥

1

4
exp

1

2

(
Ẽρ logZm,n(λ) + Ẽρ logZm,n(z0)

)]
(4.159)

+ P̃ρ
[
Zm,n(λ) ≤ exp

1

2

(
Ẽρ logZm,n(λ) + Ẽρ logZm,n(z0)

)]
. (4.160)

We treat (4.160). From Lemma 4.23(2), we have

(4.160) = P̃ρ
[
logZm,n(λ)− Ẽρ logZm,n(λ) ≤ −

∣∣Ẽρ logZm,n(z0)− Ẽρ logZm,n(λ)
∣∣/2] ≤ 219C

r2
.

Note that if we do not use our standard realization of weights by uniform random

variables, we can write

(4.159) = Pρ,λ
[
logZω

m,n{0 < fz0(ξx) < tM
2/3
0 } ≥ 2−1

(
Eρ,z0 logZm,n + Eρ,λ logZm,n

)
− log 4

]
.

Let S = S(ω) denote the event in the above probability. Then we have

(1− 221C

r2
− 222C

t2
) ≤ Pρ,λ(S).

We construct a new environment to handle Pρ,λ(S) and Pρ,z0(S). Let

u = u(t) = max{k ≥ 0 : fz0(k) < tM
2/3
0 }.

If u > 0, then we use the same realization as the beginning of this section for bulk

weights and modify boundary weights only:

ωi,0 = ωi,0(λ) for 1 ≤ i ≤ u
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and

ωi,j = ωi,j(z0) for remaining weights.

Let ω̂ denote this new environment. If u = 0, then set ω̂ = ω. We have

Pρ,λ[S] = P̃ρ[S(ω̂)].

Let νz0 be the distribution of ω(z0), ν̂ the distribution of ω̂ and h = dν̂/dνz0 the Radon-

Nikodym derivative. Here we consider random environment ω as a collection of log-

gamma random variables. Since only boundary weights are different, we have

h(ω) =
u∏
i=1

Γ(λi + z0)

Γ(λi + λ)
exp[(λ− z0)ωi,0].

When u = 0, the product is interpreted as 1. Schwartz inequality gives

P̃ρ[S(ω̂)] = Eρ,z0(h1S) ≤ (Eρ,z0h2)1/2Pρ,z0 [S]1/2.

Now we compute Eρ,z0h2: Introduce a function H(λ) then we can write

Ezh2 =
u∏
i=1

Γ(λi + z0)Γ(λi + 2λ− z0)

Γ(λi + λ)2

= exp

[
u∑
i=1

log Γ(λi + z0) + log Γ(λi + 2λ− z0)− 2 log Γ(λi + λ)

]

= expH(λ).

(4.161)

We have

H ′′(λ) =
u∑
i=1

(
4Ψ1(λi + 2λ− z0)− 2Ψ1(λi + λ)

)
= −4uA′u(z0 + 2(λ− z0)) + 2uA′u(λ)

and by substituting λ = z0,

H ′(z0) = 0 and H ′′(z0) = 2u
∣∣A′u(z0)

∣∣ = 2fz0(u).
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Also note that if z0 − λ ≤ (xm + z0)/4, which is satisfied in our case (recall we assume

r ≤ ∆z1
m,nM

1/3
0 /2), from Lemma 4.16 part (1),

H ′′(λ) ≤ 16u
∣∣A′u(z0)

∣∣ = 16fz0(u).

Hence from Taylor’s theorem and the definition of u, we have

H(λ) ≤ 8fz0(u) · (λ− z0)2 ≤ 8tr2.

Collecting all the results, we have

(1− 221C

r2
− 222C

t2
)2 exp(−8tr2) ≤ Pρ,z0 [S]

≤Pρ,z0
[
logZω

m,n − Eρ,z0 logZm,n ≥ 2−1
(
Eρ,λ logZm,n − Eρ,z0 logZm,n

)
− log 4

]
.

(4.162)

provided 1− 221C
r2
− 222C

t2
> 0. From (4.137) and (4.140), if r ≥ 64, then

2−1
(
Eρ,λ logZm,n − Eρ,z0 logZm,n

)
− log 4 ≥M

1/3
0 .

Take r = t = (212)
√
C. Then we have

Pρ,z0
[
logZω

m,n ≥ Eρ,z0 logZm,n +M
1/3
0

]
≥ δ,

where

δ = exp[−C2].

Note that this is only possible when ∆z1
m,nM

1/3
0 /2 is sufficiently large because we need

r ≤ ∆z1
m,nM

1/3
0 /2. Since

M0 ≥ (m+ n)|Ψ2(a1 + b1)| ≥ m+ n

(a1 + b1)3
,



133

we have

∆z1
m,nM

1/3
0 /2 ≥ (a0 + b0)

8(a1 + b1)
(m+ n)1/3.

Hence if we choose (m+ n) ≥ C2, then we have the desired result.

For the case ∆ζm,n = xm + z0, use λ > z0 and gz0(ξy). The proof is the same with

appropriate modifications.

Proof of the lower bound in (4.22). This is an immediate consequence of Lemma 4.28.

For N ≥ C2,

Varρ,z0 logZm,n = Eρ,z0
(
logZm,n − Eρ,z0 logZm,n

)2 ≥ e−C
2

(σm,n)2.

Lemma 4.29. Let C be the constant in (4.117). Then for N0 = e4C2
, whenever m+n ≥

N0 we have

Eρ
[(

logZ(1,1),(m,n) − φm,n
)−] ≥ 2−1e−C

2

σm,n. (4.163)

Proof. Write z0 = ζm,n and (σm,n)3 = M0 as before. Recall that φm,n = Eρ,z0 logZm,n

(see (4.14) and (4.19)). Let S be the event

S = {logZm,n ≥ Eρ,z0 logZm,n +M
1/3
0 }.

By Lemma 4.28 there exist positive δ = e−C
2

and N0 = C2 such that Pρ,z0 [S] ≥ δ for

(m + n) ≥ N0. Without loss of generality, assume z0 ≥ (b0 − a0)/2. We use the simple

upper bound

logZm,n(z0) ≥ logZ(1,1),(m,n) + ω1,0(z0) + ω1,1. (4.164)

Let ε(z0) = ω1,0(z0) + ω1,1. Note that

Ẽρ[ε(z0)2] ≤ 2Ẽρ[(ω1,0(z0))2] + 2Ẽρ[(ω1,1)2]

≤ 4
[
Ψ1(

a0 + b0

2
) +

(
Ψ0(

a0 + b0

2
)
)2

+
(
Ψ0(a1 + b1)

)2]
.

(4.165)
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From these we have

0 = Ẽρ[
(
logZm,n(z0)− Ẽρ logZm,n(z0)

)
1S]

+ Ẽρ[
(
logZm,n(z0)− Ẽρ logZm,n(z0)

)
1Sc ]

≥ Pρ,z0 [S]M
1/3
0 + Ẽρ[

(
logZ(1,1),(m,n) − Ẽρ logZm,n(z0)

)
1Sc ] + Ẽρ[ε(z0)1Sc ].

Therefore

δM
1/3
0 ≤ Ẽρ

[(
Ẽρ logZm,n(z0)− logZ(1,1),(m,n)

)
1Sc
]

+ Ẽρ[
∣∣ε(z0)

∣∣]
≤ Ẽρ

[(
Ẽρ logZm,n(z0)− logZ(1,1),(m,n)

)+
]

+

√
Ẽρ[ε(z0)]2.

If
√

Ẽρ[ε(z0)]2 ≤ δM
1/3
0 /2, we have

Ẽρ
[(
Ẽρ logZm,n(z0)− logZ(1,1),(m,n)

)+
]
≥ δM

1/3
0

2
.

Direct calculation using (4.165) shows that we may take N0 = e4C2
.

4.7 Identification of scaling exponents

In this section, we prove Theorem 4.4. We start from points in S.

Proof of Theorem 4.4 (1). As before, M0 = (σm,n)3 and z = ζ(s). Note that −a0 < z <

b0. Define

δz1 = (a0 + z)/2, δz2 = (b0 − z)/2

and

δz = δz1 ∧ δz2.
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Suppose ζm,n satisfies ζm,n ∈ [z − δz1, z + δz2]. Then from (4.118) and monotonicity of

Ψ2 explained in (A.2) we have

(m+ n)|Ψ2(a1 + b1)| ≤M0 ≤ (m+ n)|Ψ2(δz)|. (4.166)

Therefore in this case (4.24) holds with

C1 = |Ψ2(a1 + b1)|1/3 (4.167)

and

C2 = |Ψ2(δz)|1/3. (4.168)

Hence we need to prove (4.25) to complete the proof.

From Lemma 4.16 part (4) and (4.23), we have

∣∣mA′m(z) + nB′n(z)
∣∣ ≤ ∣∣mA′(z) + nB′(z)

∣∣+
∣∣Ψ2(δz)

∣∣(mW1(αm, α) + nW1(βn, β))

≤
∣∣NxA′(z) +NyB′(z)

∣∣+K
∣∣A′(z)

∣∣+KB′(z)

+
∣∣Ψ2(δz)

∣∣(mW1(αm, α) + nW1(βn, β))

≤
∣∣Ψ2(δz)

∣∣(2K +mW1(αm, α) + nW1(βn, β)).

(4.169)

Since

Mm,n(z) ≥ (m+ n)|Ψ2(a1 + b1)|

for any z ∈ (−a0, b0), from (4.62) we have∣∣mA′m(z) + nB′n(z)
∣∣

Mm,n(z)
→ 0 (4.170)

as N →∞. Use Lemma 4.22 with ∆zm,n = 2δz. Then we obtain (4.25).

Next, we treat the case of S1.
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Lemma 4.30. Suppose Assumption 4.2 holds. We have

lim
m→∞

m3d1(xm − a0)

m

m∑
i=1

1

(xm:i − a0)3
= 0 (4.171)

and

lim
m→∞

xm − a0

m

m∑
i=2

1

(xm:i − xm)3
= 0. (4.172)

We also have

lim
m→∞

1

m(xm − a0)2
= lim

m→∞

Ψ1(xm − a0)

m
= 0. (4.173)

Proof. For 2 < p1 ≤ 3, we have

m3d1(xm − a0)

m

m∑
i=1

1

(xm:i − a0)3

≤ m3d1(xm − a0)p1−2

m

m∑
i=1

1

(xm:i − a0)p1

≤ m3d1(xm − a0)p1−2Cp1

for some Cp1 > 0. From Assumption 4.2 part (b), we have

m3d1(xm − a0)p1−2Cp1 ≤
Cp1Cq1

m(p1−2)q1−3d1
→ 0.

For (4.172), note that for all sufficiently large m,

xm:i − xm
xm:i − a0

= 1− xm − a0

xm:i − a0

≥ 1− xm − a0

xm:2 − a0

≥ D1

md1
.

Application of (4.171) gives (4.172).

For (4.173), from (4.171) we have

lim
m→∞

1

m(xm − a0)2
= 0.

This result and (A.6) gives

lim
m→∞

Ψ1(xm − a0)

m
= 0.
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Recall that our parameter ζm,n is in (−xm, yn) and possibly xm = min1≤i≤m λi > a0.

In particular, it is possible to have −xm < ζm,n < −a0. In the flat region S1, this is the

case as the following lemma shows.

Lemma 4.31. Let y/x = v1 = 1/s1 be the line S1 ∩ S̄. Fix v > v1 and assume n/m ≥ v

for all but finitely many m and n.

(1) There exists a positive constant mv that depend on a0, a1, b0 and b1 such that for

m ≥ mv,

ζm,n < −a0, (xm + ζm,n) ≤ (yn − ζm,n).

(2) Let n = n(m) and assume lim
m→∞

n

m
= w ≥ v. Then we have

lim
m→∞

Ψ1(xm + ζm,n)

m
= (w − v1)B′(−a0) = −w − v1

v1

A′(−a0) (4.174)

and

lim
m→∞

A′m(ζm,n) = −wB′(−a0) =
w

v1

A′(−a0). (4.175)

(3) There exists an another constant mv such that for m ≥ mv,

Ψ1(xm + ζm,n)

m|A′m(ζm,n)|
≥ (v − v1)

2v
. (4.176)

(4) There exist a positive constant N0(v, a0, a1, b0, b1) such that for N = m+ n ≥ N0,

we have

C1N ≤ (σm,n)2 ≤ C2N (4.177)

and (
(xm + ζm,n)σm,n

)2 ≤ C0, (4.178)
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where

C1 =
(v − v1)Ψ1(a1 + b1)

2v(1 + a1 + b1)
,

C2 = (2 + a1 + b1)Ψ1((a0 + b0)/2)

and

C0 = (2 + a1 + b1)2 2v

v − v1

.

(5) Km,n in (4.31) satisfies

Km,n ≥
v − v1

4v
. (4.179)

Proof. (1) Note that

A′m(−a0) +
n

m
B′n(−a0) ≥ (v − v1)B′n(−a0) + [A′m(−a0) + v1B

′
n(−a0)] .

From (4.62), (4.63), Lemma 4.16 part (4) and (5), we have

lim
m→∞

(v − v1)B′n(−a0) = (v − v1)B′(−a0) > 0 (4.180)

and

lim
m→∞

A′m(−a0) + v1B
′
n(−a0) = A′(−a0) + v1B

′(−a0) = 0. (4.181)

The last equality is from (4.7). Therefore for all sufficiently large m,

mA′m(−a0) + nB′n(−a0) > 0.

Since Gm,n(z) = mAm(z) + nBn(z) is a convex function of z and G′m,n(ζm,n) = 0, we

have ζm,n < −a0. Since xm → a0,

(xm + ζm,n) ≤ (b0 + a0) ≤ (yn − ζm,n)

for all large m. Assume these properties hold for m ≥ mv.
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(2) From the definition of ζm,n we have

Ψ1(xm + ζm,n)

m
=− 1

m

m∑
i=2

Ψ1(xm:i + ζm,n) +
n

m
B′n(ζm,n). (4.182)

We claim that

lim
m→∞

sup
n≥mv

∣∣− 1

m

m∑
i=2

Ψ1(xm:i + ζm,n)− A′(−a0)
∣∣ = 0 (4.183)

and

lim
m→∞

sup
n≥mv

∣∣B′n(ζm,n)−B′(−a0)
∣∣ = 0. (4.184)

Suppose these hold. Write z0 = ζm,n. Then from (4.181) and (4.182) we have

lim
m→∞

Ψ1(xm + z0)

m
= A′(−a0) + wB′(−a0) = (w − v1)B′(−a0)

and

lim
m→∞

A′m(z0) = − lim
m→∞

n

m
B′n(z0) = −wB′(−a0).

This proves (4.174) and (4.175). Hence it remains to prove (4.183) and (4.184).

Suppose m ≥ mv. Hence −xm < z0 < −a0. From Taylor’s Theorem, for some z∗

with z0 < z∗ < −a0,∣∣− 1

m

m∑
i=2

Ψ1(xm:i + z0)− A′(−a0)
∣∣

≤
∣∣− 1

m

m∑
i=2

Ψ1(xm:i + z0)− A′m(−a0)
∣∣+
∣∣A′m(−a0)− A′(−a0)

∣∣
≤

∣∣− 1

m

m∑
i=2

Ψ1(xm:i + z0) +
1

m

m∑
i=2

Ψ1(xm:i − a0)
∣∣

+
∣∣A′m(−a0)− A′(−a0)

∣∣+
∣∣Ψ1(xm − a0)

m

∣∣
=

∣∣z0 + a0

m

m∑
i=2

Ψ2(xm:i + z∗)
∣∣+
∣∣A′m(−a0)− A′(−a0)

∣∣+
∣∣Ψ1(xm − a0)

m

∣∣
≤

∣∣xm − a0

m

m∑
i=2

Ψ2(xm:i − xm)
∣∣+
∣∣A′m(−a0)− A′(−a0)

∣∣+
∣∣Ψ1(xm − a0)

m

∣∣.

(4.185)
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The last line of (4.185) goes to 0 as m → ∞ by Lemma 4.30 and (A.6). This proves

(4.183).

Similarly, for some other z∗,

∣∣B′n(z0)−B′(−a0)
∣∣ ≤ ∣∣B′n(z0)−B′n(−a0)

∣∣+
∣∣B′n(−a0)−B′(−a0)

∣∣
≤ B′′n(z∗) ·

∣∣z0 + a0

∣∣+
∣∣B′n(−a0)−B′(−a0)

∣∣
≤ B′′n(−a0) · (xm − a0) +

∣∣B′n(−a0)−B′(−a0)
∣∣

≤
∣∣Ψ2(a0 + b0)

∣∣ · (xm − a0) +
∣∣B′n(−a0)−B′(−a0)

∣∣.
(4.186)

Hence

sup
n≥mv

∣∣B′n(z0)−B′(−a0)
∣∣ ≤ ∣∣Ψ2(a0 + b0)

∣∣ · (xm − a0) + sup
n≥mv

∣∣B′n(−a0)−B′(−a0)
∣∣

and we have (4.184) by (4.62), Lemma 4.16 part (4) and the fact that xm → a0.

(3) We need (4.183) and (4.184). Proof for part (3) is similar to that of part (2). We

skip the details.

(4) Write M0 = (σm,n)3. From (A.6), we have

M
2/3
0 ≤

m∑
i=1

∣∣Ψ2(λi + z0)
∣∣2/3 +

n∑
j=1

∣∣Ψ2(θj − z0)
∣∣2/3

≤ (2 + a1 + b1)2/3

[
m∑
i=1

1

(λi + z0)2
+

n∑
j=1

1

(θj − z0)2

]

≤ (2 + a1 + b1)2/3

[
m∑
i=1

Ψ1(λi + z0) +
n∑
j=1

Ψ1(θj − z0)

]

= (2 + a1 + b1)2/3
[∣∣mA′m(z0)

∣∣+ nB′n(z0)
]
.

(4.187)

On the other hand,

∣∣mA′m(z0)
∣∣ ≤ mΨ1(

a0 + b0

2
) if z0 ≥ (b0 − a0)/2
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and

nB′n(z0) ≤ nΨ1(
a0 + b0

2
) if z0 ≤ (b0 − a0)/2.

Therefore ∣∣mA′m(z0)
∣∣+ nB′n(z0) ≤ 2Ψ1(

a0 + b0

2
)N

since
∣∣mA′m(z0)

∣∣ = nB′n(z0). From (4.187), we have

M
2/3
0 ≤ C2N,

where C2 = (2 + a1 + b1)Ψ1((a0 + b0)/2).

Now we estimate a lower bound of M
2/3
0 . For any z,

∣∣mA′m(z)
∣∣+ nB′n(z) ≥ Ψ1(a1 + b1)N.

From (A.6), we have

M
2/3
0 ≥

∣∣Ψ2(xm + z0)
∣∣2/3 ≥ 1

1 + a1 + b1

Ψ1(xm + z0). (4.188)

For m ≥ mv,

Ψ1(xm + z0)∣∣mA′m(z0)
∣∣+ nB′n(z0)

=
Ψ1(xm + z0)∣∣2mA′m(z0)

∣∣ ≥ v − v1

2v
> 0

from (4.176). Combining these inequalities, we obtain a lower bound for M
2/3
0 .

M
2/3
0 ≥ (v − v1)Ψ1(a1 + b1)

2v(1 + a1 + b1)
N.

From (A.6),

(xm + z0)2M
2/3
0 ≤ 1 + a1 + b1

Ψ1(xm + z0)
M

2/3
0 .

Hence by (4.187) we have

(xm + z0)2M
2/3
0 ≤ (2 + a1 + b1)2 |mA′m(z0)|+ nB′n(z0)

Ψ1(xm + z0)
≤ (2 + a1 + b1)2 2v

v − v1

.
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(5) If m ≥ mv, then from (A.8) and (4.31), we have

Km,n ≥
∆ζm,n|Ψ2(xm + z0)|

m|A′m(z0)|
=

(xm + z0)|Ψ2(xm + z0)|
m|A′m(z0)|

≥ Ψ1(xm + z0)

2m|A′m(z0)|
.

(4.176) gives (4.179).

Proof of Theorem 4.4 (2). (4.28) is an immediate consequence of (4.173) and Lemma 4.31

(1). (4.27) is from (4.174) and (A.6). (4.26) is from (4.178).

Proof of Theorem 4.4 (3). First, consider (x, y) ∈ S. Let z = ζ(s). The computation of

(4.169) shows that

lim
N→∞

mA′m(z) + nB′n(z)

N
= 0

For some z∗ between z and ζm,n we have

∣∣φm,n −Gm,n(z)
∣∣ = |∆zm,n| ·

∣∣mA′m(z∗) + nB′n(z∗)
∣∣

≤ |∆zm,n| ·
∣∣mA′m(z) + nB′n(z)

∣∣,
where ∆zm,n = ζm,n − z. The last inequality is from the convexity of Gm,n(z) and

the definition of ζm,n. Since ∆zm,n goes to 0 as N → ∞ by (4.25), we have from

Assumption 4.1(a)

lim
N→∞

φm,n
N

= lim
N→∞

Gm,n(z)

N
= xA(z) + yB(z) = φ̄(x, y).

Next, consider (x, y) ∈ S1 with s < s1. For some z∗ between −a0 and ζm,n we have

∣∣φm,n −Gm,n(−a0)
∣∣ = |∆zm,n| ·

∣∣mA′m(z∗) + nB′n(z∗)
∣∣

≤ |∆zm,n| ·
∣∣mA′m(−a0) + nB′n(−a0)

∣∣, (4.189)

where ∆zm,n = ζm,n + a0. From (4.28), we have

lim
N→∞

∣∣φm,n −Gm,n(−a0)
∣∣

N
≤ 0 ·

∣∣xA′(−a0) + yB′(−a0)
∣∣ = 0.
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Therefore

lim
N→∞

φm,n
N

= lim
N→∞

Gm,n(−a0)

N
= xA(−a0) + yB(−a0) = φ̄(x, y).

Finally consider (x, y) with s = s1. Let z = −a0 + ε for some small ε > 0. Then

lim
N→∞

(m
N
A′m(z) +

n

N
B′n(z

)
) = xA′(z) + yB′(z) > 0.

Hence ζm,n ≤ −a0 + ε for all sufficiently large N and

|ζm,n + a0| ≤ (xm − a0) + ε.

Therefore from (4.189), we have

lim
N→∞

∣∣φm,n −Gm,n(−a0)
∣∣

N
= 0

and

lim
N→∞

φm,n
N

= lim
N→∞

Gm,n(−a0)

N
= xA(−a0) + yB(−a0) = φ̄(x, y).

4.8 Fluctuation of the free energy

In this section, we obtain fluctuation results of the (Λ,Θ)-polymer. For the (Λ,Θ)-

polymer, there is an explicit integral formula for the Laplace transform of the law of the

partition function. The following result is taken from Theorem 3.8.ii of [14]. For our

models, without loss of generality we may assume m ≥ n and a0 > 0, b1 < 0.

Proposition 4.32. Fix m ≥ n, and assume a0 > 0 and b1 < 0. For all s > 0

Eρ
[
e−sZ

�
(1,1),(m,n)

]
=

∫
iRn

dw s
∑n
l=1(θl−wl)

n∏
k,l=1

Γ(wk− θl)
m∏
k=1

n∏
l=1

Γ(wl + λk)

Γ(λk + θl)
sn(w), (4.190)
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where

sn(w) =
1

(2πi)nn!

n∏
k,l=1
k 6=l

1

Γ(wk − wl)
(4.191)

and dw refers to multiple contour integrals in Cn.

By the above Proposition, the law of Z�(1,1),(m,n) is a symmetric function of (λ1, . . . , λm)

and (θ1, . . . , θn). Therefore we can assume

λ1 ≤ λ2 ≤ · · · ≤ λm and θ1 ≤ θ2 ≤ · · · ≤ θn. (4.192)

In this section we couple (Λ,Θ)-polymer with (Λ,Θ, z0)-polymer and obtain some fluc-

tuation bounds of Z�(1,1),(m,n). For 0 ≤ u1 < u2 ≤ m, decompose according to the value

of ξx:

Zm,n(u1 < ξx ≤ u2)

Z�(1,1),(m,n)

=

u2∑
k=u1+1

exp

(
k∑
i=1

ωi,0

)
·
Z�(k,1),(m,n)

Z�(1,1),(m,n)

.

Consider a new environment ω̃(λ) with a new parameter λ for the rectangle Bm,n =

{0, . . . ,m} × {0, . . . , n} (see (4.47)). By (4.154) and Lemma 4.27,

Z�(k,1),(m,n)

Z�(1,1),(m,n)

=
Z�,ω̃(1,1),(m+1−k,n)

Z�,ω̃(1,1),(m,n)

≤
Z ω̃
m+1−k,n(ξy > 0)

Z ω̃
m,n(ξy > 0)

=
Qω̃
m+1−k,n(ξy > 0)Z ω̃

m+1−k,n

Qω̃
m,n(ξy > 0)Z ω̃

m,n

≤ 1

Qω̃
m,n(ξy > 0)

exp

(
−

k−1∑
i=1

I ω̃m+1−i,n

)
.

Recall that −ωi,0 ∼ log-gamma(λi + z0) and −I ω̃m+1−i,n ∼ log-gamma(λi + λ). Let

Dk = ωk,0 +
k−1∑
i=1

(ωi,0 − I ω̃m+1−i,n), Tk = ẼρDk, and Sk = Dk − Tk.

Thus we have

Zm,n(u1 < ξx ≤ u2)

Z�(1,1),(m,n)

≤ u2 − u1

Qω̃
m,n(ξy > 0)

exp

(
sup

u1<k≤u2
Sk + sup

u1<k≤u2
Tk

)
. (4.193)

Recall definitions of fz and gz in (4.83).



145

Lemma 4.33. Let C be the constant in (4.117) and s, t, r > 0. Then whenever

m+ n ≥ 221(a1 + b1 + 1)6, we have the following.

(1) If r ≥ 1/2 and t ≥ 2(sr + 4), then

Pρ,ζm,n
[
Zm,n(0 < fζm,n(ξx) ≤ s(σm,n)2)

Z�(1,1),(m,n)

≥ 4−1etσm,n

]
≤ 12 exp[− t

211
]

+


218C
r4
, (1/2 ≤ r ≤ ∆ζm,nσm,n/2)

220C
r2
∧
(

8 exp
[
−Km,n

222
r
])
, (∆ζm,nσm,n/2 ≤ r ≤ ∆z2

m,nσm,n)

(4.194)

and

Pρ,ζm,n
[
Zm,n(0 < gζm,n(ξy) ≤ s(σm,n)2)

Z�(1,1),(m,n)

≥ 4−1etσm,n

]
≤ 12 exp[− t

211
]

+


218C
r4
, (1/2 ≤ r ≤ ∆ζm,nσm,n/2)

220C
r2
∧
(

8 exp
[
−Km,n

222
r
])
, (∆ζm,nσm,n/2 ≤ r ≤ ∆z1

m,nσm,n).

(4.195)

(2) If t ≥ 2(2s∆z2
m,nσm,n + 4), then

Pρ,ζm,n
[
Zm,n(0 < fζm,n(ξx) ≤ s(σm,n)2)

Z�(1,1),(m,n)

≥ 4−1etσm,n

]
≤ 12 exp[− t

211
] (4.196)

and if t ≥ 2(2s∆z1
m,nσm,n + 4), then

Pρ,ζm,n
[
Zm,n(0 < gζm,n(ξy) ≤ s(σm,n)2)

Z�(1,1),(m,n)

≥ 4−1etσm,n

]
≤ 12 exp[− t

211
]. (4.197)

(3) If t ≥ 4(a1 + b1 + 1)(σm,n)2 then

Pρ,ζm,n
[
logZm,n − logZ�(1,1),(m,n) ≥ tσm,n

]
≤ 24 exp[− t

211
]. (4.198)

Proof. (1) We only give the proof for ξx. Write z0 = ζm,n and M0 = (σm,n)3. Let

u = max{k : fz0(k) ≤ sM
2/3
0 } and λ = z0 + rM

−1/3
0 with r > 0. We assume u ≥ 1 since

u = 0 case is trivial.
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From (4.193), probability in (4.194)

≤ P̃ρ
[
Qω̃
m,n(ξy > 0) ≤ 1

2

]
(4.199)

+ P̃ρ
[

sup
0<k≤u

Sk ≥ tM
1/3
0 − sup

0<k≤u
Tk − log(8u)

]
. (4.200)

We estimate (4.199) first. By Lemma 4.24, if m+n ≥ (128(a1 + b1) log 2)3, then we have

(4.199) = P̃ρ
[
Qω̃
m,n(ξx > 0) ≥ 1

2

]

≤


218C
r4
, (1/2 ≤ r ≤ ∆z0

m,nM
1/3
0 /2)

220C
r2
∧
(

8 exp
[
−Km,n

222
r
])
, (∆z0

m,nM
1/3
0 /2 ≤ r ≤ ∆z2

m,nM
1/3
0 ).

(4.201)

Here we used the symmetry of M(z) with respect to permutation of parameters (Λ,Θ).

Next, we treat probability (4.200). We use the following Lemma.

Lemma 4.34 (Etemadi’s Inequality, M19 of [5]). If S1, . . . , Sn are sums of independent

random variables, then for t ≥ 0

P{max
1≤k≤n

|Sk| ≥ 3t} ≤ 3 max
1≤k≤n

P{|Sk| ≥ t}.

From Taylor’s theorem and monotonicity of A′k(z) explained in (4.11),

Tk = kAk(z0)− kAk(λ)−Ψ0(λk + λ)

≤ k
∣∣A′k(z0)

∣∣ · (λ− z0)−Ψ0(λk + z0) ≤ srM
1/3
0 + 2M

1/3
0 = (sr + 2)M

1/3
0

since

−Ψ0(λk + z0) ≤ 2

λk + z0

and
1

(λk + z0)3
≤M0

by (4.121) and (A.3).

Since

u ≤ m+ n ≤ M0

|Ψ2(a1 + b1)|
≤ (a1 + b1)3M0
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by (A.6), if m+ n ≥ 63(a1 + b1 + 1)6 then

log(8u) ≤ 3[log(2(a1 + b1)) + log(M
1/3
0 )] ≤ 6(a1 + b1) +M

1/3
0 ≤ 2M

1/3
0 . (4.202)

Therefore we have

sup
0<k≤u

Tk + log(8u) ≤ [sr + 4]M
1/3
0 .

Thus if t ≥ 2[sr + 4], then

(4.200) ≤ P̃ρ
[

sup
0<k≤u

Sk ≥ tM
1/3
0 /2

]
. (4.203)

Sk can be written as

Sk = S
(1)
k + S

(2)
k =

k∑
i=1

(
ωi,0 − Ẽρωi,0

)
−

k−1∑
i=1

(
I ω̃m+1−i,n − ẼρI ω̃m+1−i,n

)
.

We have

Ṽar
ρ
S

(2)
k = fz0(k)

and

Ṽar
ρ
S

(1)
k = fλ(k − 1) ≤ fz0(k).

Apply corollary A.5 part (3) with A =
∣∣A′k(z0)

∣∣ and r0 = xm + z0 :

P̃ρ
[∣∣Sk∣∣ ≥ tM

1/3
0

8

]
≤ P̃ρ

[∣∣S(1)
k

∣∣ ≥ tM
1/3
0

16

]
+ P̃ρ

[∣∣S(2)
k

∣∣ ≥ tM
1/3
0

16

]

≤ 4

(
exp[− t2M

2/3
0

211fz0(k)
] ∨ exp[−(xm + z0)tM

1/3
0

64
]

)

≤ 4

(
exp[− t2

211s
] ∨ exp[− t

64
]

)
≤ 4 exp[− t

211
].

(4.204)
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The last line is from the definition of u, (4.121) and the inequality t ≥ 2sr ≥ s.

Lemma 4.34 gives

(4.200) ≤ 12 exp[− t

211
]. (4.205)

(2) We derive a different bound for the probability in (4.196). From the superaddi-

tivity of logZ, we have

k−1∑
i=1

ωi,1 + logZ�(k,1),(m,n) ≤ logZ�(1,1),(m,n).

Hence we get

Zm,n(0 < ξx ≤ u)

Z�(1,1),(m,n)

≤
u∑
k=1

exp

[
ωk,1 +

k∑
i=1

(ωi,0 − ωi,1)

]

≤ u exp

[
sup

0<k≤u
Sk + sup

0<k≤u
Tk

] (4.206)

where Sk and Tk are defined by

Ck = ωk,1 +
k∑
i=1

(ωi,0 − ωi,1), Tk = ẼρCk and Sk = Ck − Tk.

Therefore

probability in (4.196) ≤ P̃ρ
[

sup
0<k≤u

Sk ≥ tM
1/3
0 −

(
sup

0<k≤u
Tk + log(8u)

)]
. (4.207)

Since −ωi,0 ∼ log-gamma(λi + z0), −ωi,1 ∼ log-gamma(λi + θ1) and all ωi,0, ωi,1 are

independent, from Taylor’s theorem and monotonicity of A′k(z) (see (4.11)), we have

Tk = kAk(z0)− kAk(θ1)−Ψ0(λk + θ1)

≤ k
∣∣A′k(z0)

∣∣ · (θ1 − z0)−Ψ0(λk + z) ≤ s(θ1 − z0)M
2/3
0 + 2M

1/3
0 .
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Therefore from (4.202) and (4.192),

sup
0<k≤u

Tk + log(8u) ≤ 2s∆z2
m,nM

2/3
0 + 4M

1/3
0 .

Thus

probability in (4.196) ≤ P̃ρ
[

sup
0<k≤u

Sk ≥ tM
1/3
0 /2

]
, (4.208)

if

t ≥ 2[2s∆z2
m,nM

1/3
0 + 4].

Sk can be written as

Sk = S
(1)
k + S

(2)
k =

k∑
i=1

(
ωi,0 − Ẽρ logωi,0

)
−

k−1∑
i=1

(
ωi,1 − Ẽρωi,1

)
.

We have

Ṽar
ρ
S

(1)
k = fz0(k)

and

Ṽar
ρ
S

(2)
k = fθ1(k − 1) ≤ fz0(k)

since z0 < yn = θ1. Apply corollary A.5 part (3) with A =
∣∣A′k(z0)

∣∣ and r0 = xm + z0 :

P̃ρ
[∣∣Sk∣∣ ≥ tM

1/3
0

8

]
≤ 4 exp[− t

211
]. (4.209)

Lemma 4.34 gives

probability in (4.196) ≤ 12 exp[− t

211
]. (4.210)
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(3) We use part (2). Set s = m|A′m(z0)|
M

2/3
0

= nB′n(z0)

M
2/3
0

. From (A.8),

m
∣∣A′m(z0)

∣∣ ≤ 2(a1 + b1)mA′′m(z0) ≤ 2(a1 + b1)M0.

Hence s ≤ 2(a1 + b1)M
1/3
0 . Since ∆z1

m,n ∨∆z2
m,n ≤ (a1 + b1)/2, from (4.121), if

t ≥ 4(a1 + b1 + 1)2M
2/3
0

then t satisfies conditions in part (2). Therefore

Pρ,z0
[
logZm,n − logZ�(1,1),(m,n) ≥ tM

1/3
0

]
≤Pρ,z0

[
Zm,n(ξx > 0)

Z�(1,1),(m,n)

≥ 4−1etM
1/3
0

]
+ Pρ,z0

[
Zm,n(ξy > 0)

Z�(1,1),(m,n)

≥ 4−1etM
1/3
0

]

≤ 24 exp[− t

211
].

Theorem 4.35. Let C be the constant in (4.117). Then whenever

m+ n ≥ 221(a1 + b1 + 1)6,

we have the following.

Pρ,ζm,n
[∣∣logZm,n − logZ�(1,1),(m,n)

∣∣ ≥ tσm,n
]

≤



232C
t2
, (0 < t ≤ (∆ζm,n)2(σm,n)2/4)

226C
t
∧
(

40 exp
[
−Km,n

222

√
t
])
, ((∆ζm,n)2(σm,n)/4) ≤ t ≤ 4(a1 + b1 + 1)2(σm,n)2

28 exp[− t
211

], (t ≥ 4(a1 + b1 + 1)2(σm,n)2)

≤232C

t2

(
1 ∨ 1

(Km,n)4

)
.

(4.211)
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Proof. Without loss of generality, we may assume ∆ζm,n = (xm − ζm,n). Then ∆z2
m,n =

(θ1 − ζm,n)/2 ≥ (a0 + b0)/2 by (4.192). Write z0 = ζm,n and M0 = (σm,n)3. Supperaddi-

tivity of logZ gives

logZm,n ≥ logZ�(1,1),(m,n) + ω0,1.

Hence

Pρ,z0
[
logZm,n − logZ�(1,1),(m,n) ≤ −tM

1/3
0

]
≤ Pρ,z0

[
ω0,1 ≤ −tM1/3

0

]
≤Eρ,z0e−ω0,1

etM
1/3
0

= (θ1 − z0)e−tM
1/3
0 ≤ (a0 + b0)e−tM

1/3
0 .

For the other direction let s1, s2 > 0 and u = s1M
2/3
0 , v = s2M

2/3
0 .

Pρ,z0
[

Zm,n
Z�(1,1),(m,n)

≥ etM
1/3
0

]

= Pρ,z0
[

Zm,n({0 < fz0(ξx) ≤ u} ∪ {0 < gz0(ξy) ≤ v})
Z�(1,1),(m,n)Qm,n({0 < fz0(ξx) ≤ u} ∪ {0 < gz0(ξy) ≤ v})

≥ etM
1/3
0

]

≤ Pρ,z0
[
Zm,n(0 < fz0(ξx) ≤ u)

Z�(1,1),(m,n)

≥ 1

4
etM

1/3
0

]
+ Pρ,z0

[
Zm,n(0 < gz0(ξy) ≤ v)

Z�(1,1),(m,n)

≥ 1

4
etM

1/3
0

]
(4.212)

+ Pρ,z0
[
Qm,n({0 < fz0(ξx) ≤ u} ∪ {0 < gz0(ξy) ≤ v}) ≤ 1

2

]
(4.213)

≤ Pρ,z0
[
Zm,n(0 < fz0(ξx) ≤ u)

Z�(1,1),(m,n)

≥ 1

4
etM

1/3
0

]
+ Pρ,z0

[
Qm,n({fz0(ξx) ≥ u}) ≥ 1

4

]
(4.214)

+ Pρ,z0
[
Zm,n(0 < gz0(ξy) ≤ v)

Z�(1,1),(m,n)

≥ 1

4
etM

1/3
0

]
+ Pρ,z0

[
Qm,n({gz0(ξy) ≥ v}) ≥ 1

4

]
.

(4.215)

Set r =
√
t. First, assume t ≥ 16.

Case 1. 0 < t ≤ (∆z0
m,n)2M

2/3
0 /4.
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We use Lemma 4.33(1). Set s1 = s2 = s =
√
t/4. Then we have t ≥ 2(sr + 4).

Therefore line (4.212) is bounded by 220C/t2. By Lemma 4.25,

line (4.213) ≤ Pρ,z0
[
Qm,n({fz0(ξx) ≥ u}) ≥ 1

4

]
+Pρ,z0

[
Qm,n({gz0(ξy) ≥ u}) ≥ 1

4

]
≤ 231C

t2
.

Case 2. (∆z0
m,n)2M

2/3
0 /4 ≤ t ≤ (∆z2

m,n)2M
2/3
0 .

Let

P (t) =
224C

t
∧
(

10 exp

[
−Km,n

222

√
t

])
.

Set s1 =
√
t/4. From (4.194) and Lemma 4.25, we have

line (4.214) ≤ 2P (t).

Set s2 =
√
t/8. From (4.197) and Lemma 4.25,

line (4.215) ≤ 2P (t).

Case 3. (∆z2
m,n)2M

2/3
0 ≤ t ≤ 4(a1 + b1 + 1)M

2/3
0

Set s1 = s2 =
√
t/8. From (4.196), (4.197) and Lemma 4.25, we have

line (4.214) and (4.215) ≤ 2P (t).

Case 4. t ≥ 4(a1 + b1 + 1)M
2/3
0 . Use (4.198).

These bounds hold even for 0 < t < 16.

Proof of Theorem 4.5. In Theorem 4.35, we can replace logZm,n with Eρ,ζm,n logZm,n =

φm,n using Lemma 4.21. Since our constants are sufficiently large, direct computation

shows that same upper bounds can be used. Since

logZ�(1,1),(m,n) = logZ(1,1),(m,n) + ω1,1
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and ω1,1 ∼ log-gamma(λ1 + θ1), by changing C if necessary, we have upper bounds in

(4.32).

Corollary 4.36. Under the same assumptions as in Theorem 4.5, there exists a positive

constant C1 that depends on a0 + b0 and a1 + b1 such that

Eρ
(∣∣logZ(1,1),(m,n) − φm,n

∣∣2) ≤ C1(σm,n)2

[
log(∆ζm,nσm,n) +

1

(Km,n)4

]
. (4.216)

Proof. From (4.32), with a new constant C1, we have

1

(σm,n)2
Eρ
∣∣logZ(1,1),(m,n) − φm,n

∣∣2
=2

∫ ∞
0

tPρ
[∣∣logZ(1,1),(m,n) − φm,n

∣∣ ≥ tσm,n
]
dt

≤1 + 2C

∫ (∆ζm,nσm,n)2

1

1

t
dt+ 2C

∫ ∞
0

te−Km,n
√
t dt

≤C1

[
log(∆ζm,nσm,n) +

1

(Km,n)4

]
.

(4.217)

Proof of Theorem 4.7. Set m = bLxc, n = bLyc. From (A.8),

A′′m(ζm,n) ≥ 1

2(a1 + b1)
|A′m(ζm,n)|, B′′n(ζm,n) ≥ 1

2(a1 + b1)
B′n(ζm,n). (4.218)

Hence from the definition of Km,n (4.31),

Km,n ≥
∆ζm,n
a1 + b1

. (4.219)

Let z = ζ(s). From (4.25), for all sufficiently large L ≥ L0,

∆ζm,n ≥ δz =
1

2
[(a0 + z) ∧ (b0 − z)] .

Therefore we get (4.34) from (4.24) and (4.32). (4.35) is a consequence of Corollary 4.36.

We have (4.36) from (4.163).
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Proof of Theorem 4.8. Set m = bLxc, n = bLyc and N = m + n. From Lemma 4.31,

we have

Km,n ≥
1

4
(1− s/s1), (∆ζm,nσm,n)2 ≤ C0

for some constant.

Therefore we obtain (4.37) from (4.26) and (4.32). (4.38) is from (4.163).

Proof of Theorem 4.9. Let m = bLxc, n = bLyc, and M0 = σ3
m,n. From Theorem 4.5, it

is enough to show that

lim
L→∞

σm,n√
L

= 0.

From Assumption 4.2(a),

1

m(xm − a0)p1
≤
∫

1

(λ− a0)p1
αm(dλ) ≤ Cp1

for some Cp1 > 0. Hence from (4.172) and (A.6)

−
m∑
i=2

Ψ2(xm:i + z0) ≤ −
m∑
i=2

Ψ2(xm:i − xm) ≤ C0m

(xm − a0)
≤ C1m

1+1/p1 (4.220)

for some C0, C1 > 0. For all large enough L, we have ζm,n ≤ (b0 − a0)/2 and

nB′′n(ζm,n) ≤ n
∣∣Ψ2(

a0 + b0

2
)
∣∣. (4.221)

Therefore it is enough to show that

lim
L→∞

1

(xm + ζm,n)
√
L

= 0.

From the definition of ζm,n, we have

Ψ1(xm + ζm,n)

m
=− 1

m

m∑
i=2

Ψ1(xm:i + ζm,n) +
n

m
B′n(ζm,n). (4.222)
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If ζm,n ≤ −a0, by the computation in (4.185) and (4.186),

Ψ1(xm + z0)

m

≤
∣∣xm − a0

m

m∑
i=2

Ψ2(xm:i − xm)
∣∣+
∣∣A′m(−a0)− A′(−a0)

∣∣+
∣∣Ψ1(xm − a0)

m

∣∣
+
∣∣n/m− 1/s1

∣∣ · [∣∣Ψ2(a0 + b0)
∣∣ · (xm − a0) +

∣∣B′n(−a0)−B′(−a0)
∣∣] .

(4.223)

If ζm,n > −a0,

Ψ1(xm + ζm,n)

m
≤ Ψ1(xm − a0)

m
.

Therefore from Lemma 4.30

lim
L→∞

Ψ1(xm + ζm,n)

L
= 0

and hence

lim
L→∞

1

(xm + ζm,n)
√
L

= 0.

Proof of Theorem 4.6. First consider the case (x, y) ∈ S or (x, y) ∈ S1 with x/y < s1.

By Theorems 4.7 and 4.8 we have

lim
L→∞

Eρ logZ(1,1),(bLxc,bLyc) − φbLxc,bLyc
L

= 0.

On the other hand, we have

lim
L→∞

φbLxc,bLyc
L

= φ̄(x, y).

by (4.29). Therefore lim
L→∞

Eρ logZ(1,1),(bLxc,bLyc)

L
= φ̄(x, y). One can apply Theorem 2.23

to have a.s. convergence.

Convergence for boundary points can be proved approximation from S and S1 and

continuity of φ̄. If S2 is nonempty, then we extend Assumption 4.2 to cover S2 and

obtain the same results.
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Appendix A

Appendix

In this section, we summarize basic facts for polygamma functions and log-gamma dis-

tributions.

A.1 Polygamma functions

Here we collect basic facts about polygamma functions.

The logarithm of Gamma function log Γ(s) is convex and (real) analytic on (0,∞).

The derivatives are the polygamma funtions Ψk(s) = (dk+1/dsk+1) log Γ(s), k ≥ 0. We

use the identities from [3] :

Ψ0(x) = −γ +
∞∑
i=0

( 1

i+ 1
− 1

i+ x

)
,

Ψk(x) = (−1)k+1k!
∞∑
i=0

1

(x+ i)k+1
k ≥ 1 (A.1)

where γ is the Euler constant. From (A.1), all polygamma functions are monotonic

functions. In this thesis, we use these properties a great deal. In particular, we have

Ψ1(x) > 0, Ψ1 is decreasing and

Ψ2(x) < 0, Ψ2 is increasing.

(A.2)

From these series representations we have

log x− 1

x
≤ Ψ0(x) ≤ log(x+ 1)− 1

x
(A.3)
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for all x > 0 by Corollary 2.3 in [32]. We also have the inequality

log x− 1

x
≤ Ψ0(x) ≤ log x− 1

2x
(A.4)

from Theorem 3.1 in [2].

For p > 1 and x > 0 we have

1

xp
∨ 1

(p− 1)xp−1
≤

∞∑
i=0

1

(x+ i)p
≤ 1

xp
+

1

(p− 1)xp−1
. (A.5)

To prove (A.5), use the following inequalities:

∞∑
i=1

f(i) ≤
∫ ∞

0

f(t) dt =
1

(p− 1)xp−1
≤

∞∑
i=0

f(i),

where f(t) = 1/(x+ t)p. In particular we have

k!

xk+1
∨ (k − 1)!

xk
≤ |Ψk(x)| ≤ k!

xk+1
+

(k − 1)!

xk
(A.6)

for all x > 0 and k ≥ 1.

From (A.1) we have

1 ≤
∣∣Ψk(cx)

∣∣∣∣Ψk(x)
∣∣ ≤ 1

ck+1
(A.7)

for 0 < c < 1 and k ≥ 1.

We also have

k

2x
≤ |Ψk+1(x)|
|Ψk(x)|

≤ k + 1

x
(A.8)

for x > 0 and k ≥ 1. The left inequality is from (A.6) and the right is from (A.1).

A.2 Log-gamma distribution

In this section, we collect some facts about the log-gamma distribution. We need a

technical lemma whose proof is given by the dominated convergence theorem. Part (4)
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of the following lemma is a well-known result for sufficient statistics (Fisher-Neyman

factorization theorem).

Lemma A.1. Let Ω be a measurable space with a σ-finite measure µ and H, Y :

Ω × I → R are measurable functions where I ⊆ R is an interval. Assume H,Y are

differentiable in the second variable and their derivatives are dominated by a function

g: |∂H
∂r

(ω, r)|, |∂Y
∂r

(ω, r)| ≤ g(ω) for all (ω, r) ∈ Ω × I. Also assume H is dominated

by a function h: H(ω, r) ≤ h(ω) for all (ω, r) ∈ Ω × I. Finally assume eh and geh

are µ integrable. Define a probability measure Qr by dQr(ω) =
eH(ω,r)

Z(r)
dµ(ω) where

Z(r) =
∫

Ω
eH(ω,r)µ(dω) is a normalizing factor. Then we have

(1)
∂

∂r
logZ(r) = EQr

∂H

∂r

(2)
∂

∂r
EQrY (r) = EQr

∂Y

∂r
+ CovQr(Y,

∂H

∂r
)

(3) In particular, if H(ω, r) = rT (ω) and Y does not depend on r then

∂ logZ

∂r
= EQr(T ) (A.9)

∂2 logZ

∂r2
= VarQr(T ) (A.10)

∂

∂r
EQrY = CovQ

r

(Y, T ) = EQr
[
Y (T − EQrT )

]
(A.11)

∂2

∂r2
EQrY = CovQ

r (
Y, (T − EQrT )2

)
= EQr

[
Y
(
(T − EQrT )2 − VarQr(T )

) ]
.

(A.12)

(4) If H(ω, r) = rT (ω) then the conditional law of ω under Qr given T is independent

of r: Qr(ω ∈ · |T ) = Qr0(ω ∈ · |T ) for all r, r0 ∈ I.
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For α, β > 0 we define the log-gamma(α,β) distribution by the distribution of ω if

eω ∼ Gamma(α,β). The CDF of the log-gamma(α, β) distribution is given by

F (α, β, x) =
βα

Γ(α)

∫ x

−∞
exp

[
αy − βey

]
dy (A.13)

for x ∈ R. Note that if A ∼ log-gamma(α,β) then

EA = Ψ0(α)− log β, VarA = Ψ1(α) (A.14)

and for t > −α

logEetA = log Γ(α + t)− log Γ(α)− t log β. (A.15)

For r > 0 we write log-gamma(r) and Fr(x) = F (r, x) for log-gamma(r,1) and

F (r, 1, x), respectively. Let Hr : (0, 1)→ R be the inverse of Fr satisfying

F (r,Hr(u)) = u (A.16)

for all u ∈ (0, 1). We write Hr(u) = H(r, u) when subscripts are not convenient. Then

if η is a Uniform(0, 1) random variable, Hr(η) is a log-gamma(r) random variable. From

(A.16),

∂H

∂r
(r, u) = −∂F/∂r

∂F/∂x
(r,Hr(u)). (A.17)

For r > 0 and x ∈ R define the function

L(r, x) = −∂F/∂r
∂F/∂x

(r, x)

=

∫ x

−∞
(Ψ0(r)− y)e(y−x)re−e

y+ex dy.

(A.18)

Then

∂H

∂r
(r, u) = L(r,Hr(u)) (A.19)
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and

∂2H

∂r2
(r, u) =

[
∂L

∂r
+ L

∂L

∂x

]
(r,Hr(u)) = L1(r,Hr(u)), (A.20)

where L1(r, x) is defined by

L1(r, x) =
∂L

∂r
(r, x) + L(r, x)

∂L

∂x
(r, x). (A.21)

In next lemma, we collect some properties of H, L and L1.

Lemma A.2. L and L1 satisfy

0 < L(r, x) ≤ e2(1 ∨ r)
r

[
|x−Ψ0(r)|+

√
Ψ1(r)

]
(A.22)

and ∣∣L1(r, x)
∣∣ ≤ (1 + e2(1 ∨ r)

) e2(1 ∨ r)
r

[
|x−Ψ0(ρ)|+

√
Ψ1(r)

]2

+
e4(1 ∨ r2)

r2

[
|x−Ψ0(r)|+

√
Ψ1(r)

]
.

(A.23)

If A ∼ log-gamma(r) and η ∼ Uniform(0, 1), then

EL(r, A) = E
∂

∂r
H(r, η) =

∂

∂r
EH(r, η) = Ψ1(r) (A.24)

and

EL1(r, A) = E
∂2

∂r2
H(r, η) =

∂2

∂r2
EH(r, η) = Ψ2(r). (A.25)

We also have

E
(
[L(r, A)]2

)
≤ 4e4(1 ∨ r2)

r2
Ψ1(r) (A.26)

and

E
∣∣L1(r, A)

∣∣ ≤ (1 + 20e2(1 ∨ r)
)
|Ψ2(r)|. (A.27)

Finally, we have

EetL(r,A) <∞ for |t| < r2

e2(1 ∨ r)
. (A.28)
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Proof. Let A be a random variable with the distribution log-gamma(r). For a function

f , we denote the expectation of f(A) by Erf(A). From (A.11),

∂F

∂r
(r, x) = Er[1{A ≤ x}(A−Ψ0(r))].

Hence for x1 < x2,

∂F

∂r
(r, x2)− ∂F

∂r
(r, x1) = Er[1{x1 < A ≤ x2}(A−Ψ0(r))].

Therefore ∂
∂r
F (r, ·) is decreasing on (−∞,Ψ0(r)] and increasing on [Ψ0(r),∞). Since

∂
∂r
F (r,−∞) = ∂

∂r
F (r,∞) = 0, ∂

∂r
F (r, x) < 0 for all x ∈ R. Thus we have L > 0 from

(A.18).

We record some useful integral representations of L: From (A.18) and ErA = Ψ0(r),

we have

L(r, x) =

∫ ∞
x

(y −Ψ0(r))e(y−x)re−e
y+ex dy. (A.29)

By a change of variables, substituting t = y − x, we get

L(r, x) =

∫ 0

−∞
(Ψ0(r)− x− t)ert exp[−ex+t + ex] dt (A.30)

and

L(r, x) =

∫ ∞
0

(x−Ψ0(r) + t)ert exp[−ex+t + ex] dt. (A.31)

Now we estimate L: For r > 0 let

C(r) =
Γ(r) exp[eΨ0(r)]

erΨ0(r)
. (A.32)

From (A.13), (A.14), (A.30) and (A.31), we have, for x ≤ Ψ0(r),

L(r, x) ≤
(
Ψ0(r)− x

) ∫ 0

−∞
ert exp[−eΨ0(r)+t + eΨ0(r)] dt

+

∫ 0

−∞
|t|ert exp[−eΨ0(r)+t + eΨ0(r)] dt

≤C(r)
[
|x−Ψ0(r)|+

√
Ψ1(r)

]
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and for x ≥ Ψ0(r)

L(r, x) ≤
(
x−Ψ0(r)

) ∫ ∞
0

ert exp[−eΨ0(r)+t + eΨ0(r)] dt

+

∫ ∞
0

|t|ert exp[−eΨ0(r)+t + eΨ0(r)] dt

≤C(r)
[
|x−Ψ0(r)|+

√
Ψ1(r)

]
.

Hence we have

L(r, x) ≤ C(r)
[
|x−Ψ0(r)|+

√
Ψ1(r)

]
. (A.33)

Therefore we obtain (A.22) from Lemma A.3 below. Next, we prove (A.23). First, we

estimate ∂L/∂r. From (A.30) and (A.31) we have

∂L

∂r
= Ψ1(r)

∫ 0

−∞
ert exp[−ex+t + ex] dt

+

∫ 0

−∞
(Ψ0(r)− x− t)tert exp[−ex+t + ex] dt

(A.34)

and

∂L

∂r
= −Ψ1(r)

∫ ∞
0

ert exp[−ex+t + ex] dt

+

∫ ∞
0

(x−Ψ0(r) + t)tert exp[−ex+t + ex] dt.

(A.35)

For x ≤ Ψ0(r), from (A.34),

∂L

∂r
≤Ψ1(r)

∫ 0

−∞
ert exp[−eΨ0(r)+t + eΨ0(r)] dt

≤C(r)Ψ1(r)

and

∂L

∂r
≥
∫ 0

−∞
(Ψ0(r)− x− t)tertert exp[−ex+t + ex] dt

≥− |x−Ψ0(r)|
∫ 0

−∞
|t|ert exp[−eΨ0(r)+t + eΨ0(r)] dt

−
∫ 0

−∞
t2ert exp[−eΨ0(r)+t + eΨ0(r)] dt

≥− C(r)
[
|x−Ψ0(r)|

√
Ψ1(r) + Ψ1(r)

]
.
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Hence we have ∣∣∂L
∂r

∣∣ ≤ C(r)
[
|x−Ψ0(r)|

√
Ψ1(r) + Ψ1(r)

]
.

For x ≥ Ψ0(r), we obtain the same inequality using (A.35). Therefore

∣∣∂L
∂r

∣∣ ≤ C(r)
[
|x−Ψ0(r)|

√
Ψ1(r) + Ψ1(r)

]
. (A.36)

Second, we estimate ∂L/∂x. From (A.18) and (A.31), we have

∂L

∂x
(r, x) =

(
Ψ0(r)− x

)
+ (ex − r)L(r, x) (A.37)

and

∂L

∂x
=

∫ ∞
0

ert exp[−ex+t + ex] dt

− ex
∫ ∞

0

(
x−Ψ0(r) + t

)
ert(et − 1) exp[−ex+t + ex] dt.

(A.38)

From (A.33) and (A.37) we get

L
∂L

∂x
≥− |x−Ψ0(r)|L− ρL2

≥− C(r)
[(
x−Ψ0(r)

)2
+ |x−Ψ0(r)|

√
Ψ1(r)

]
− rC(r)2

[(
x−Ψ0(r)

)2
+ 2|x−Ψ0(r)|

√
Ψ1(r) + Ψ1(r)

]
.

(A.39)

For x ≤ Ψ0(r), from (A.37),

L
∂L

∂x
≤|x−Ψ0(r)|L

≤C(r)
[(
x−Ψ0(r)

)2
+ |x−Ψ0(r)|

√
Ψ1(r)

]
.

(A.40)

since ex ≤ eΨ0(r) < r. For x ≥ Ψ0(r) we use (A.38) :

∂L

∂x
≤
∫ ∞

0

ert exp[−ex+t + ex] dt

≤
∫ ∞

0

ert exp[−eΨ0(r)+t + eΨ0(r)] dt ≤ C(r).
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Hence

L
∂L

∂x
≤C(r)L ≤ C(r)2

[
|x−Ψ0(r)|+

√
Ψ1(r)

]
. (A.41)

Now we can estimate L1:

From (A.36), (A.40) and (A.41) we have

L1(r, x) ≤C(r)
[(
x−Ψ0(r)

)2
+ 2|x−Ψ0(r)|

√
Ψ1(r) + Ψ1(r)

]
+ C(r)L

≤C(r)
[
|x−Ψ0(r)|+

√
Ψ1(r)

]2

+ C(r)2
[
|x−Ψ0(r)|+

√
Ψ1(r)

] (A.42)

and from (A.36) and (A.39) we get

L1(r, x) ≥ − (1 + rC(r))C(r)
[
|x−Ψ0(r)|+

√
Ψ1(r)

]2

. (A.43)

Therefore we have∣∣L1(r, x)
∣∣ ≤ (1 + rC(r))C(r)

[
|x−Ψ0(r)|+

√
Ψ1(r)

]2

+ C(r)2
[
|x−Ψ0(r)|+

√
Ψ1(r)

]
.

(A.44)

(A.44) and (A.45) give (A.23).

We obtain (A.24) and (A.25) from (A.22), (A.23) and monotonicity of H(ρ, u) in ρ

using the dominated convergence theorem. (A.26) and (A.28) are from (A.22).

From the first line of (A.42) and (A.24), the positive part of L1 satisfies

E (L1(r, A))+ ≤ 5C(r)Ψ1(r).

Hence by (A.8) and (A.25),

E|L1(r, A)| = 2E (L1(r, A))+ − EL1(r, A)

≤ |Ψ2(r)|+ 10C(r)Ψ1(r)

≤ |Ψ2(r)|+ 20rC(r)|Ψ2(r)|

≤
(
1 + 20e2(1 ∨ r)

)
|Ψ2(r)|.

This completes the proof of the Lemma.
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Lemma A.3. C in (A.32) is a strictly decreasing function and satisfies

0 < C(r) ≤ e2
(1

r
∨ 1
)
. (A.45)

Proof. Note that C satisfies

logC(r) = log Γ(r) + eΨ0(r) − ρΨ0(r)

and (
logC(r)

)′
= (eΨ0(r) − r)Ψ1(r) < 0.

The last inequality is from the Jensen’s inequality :

eΨ0(r) = eE
rA < EreA = r.

Hence C is strictly decreasing.

Consider

C1(r) =
r

er
C(r).

Then from (A.3)

(
logC1(r)

)′
=

1

r
− 1 + (eΨ0(r) − r)Ψ1(r)

=[
1

r
− ρΨ1(r)] + [eΨ0(r)Ψ1(r)− 1]

≤[eΨ0(r)Ψ1(r)− 1] < 0.

The last inequality is from Lemma 1.2 of [4].

From (A.3), C1(0) = limr→0C1(r) = e. Therefore

C(r) ≤ er+1

r
.

Since C is strictly decreasing, C(r) ≤ C(1) ≤ e2 for r ≥ 1. This proves (A.45).
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Next, we estimate some moments of log-gamma distribution related random vari-

ables. We need the following lemma.

Lemma A.4. Let Z1, Z2, . . . be independent random variables that satisfy for all i =

1, 2, . . . E(Zi) = 0 and E(|Zi|p) < ∞ for some p ≥ 2. Set Sk = Z1 + · · · + Zk. Below

C =
(
18(1− p−1)−1/2p

)p
is a constant that depends only on p. The following hold.

(1)

E|Sk|p ≤ C

∑k
i=1 E|Zi|
k

p

kp/2. (A.46)

(2) Let ai > 0 and T > 0 be constants such that for all 1 ≤ i ≤ k and t ∈ [−T, T ],

log EetZi ≤ ait
2/2. Then for k ≥ 1 and A ≥ 1

k

∑k
i=1 ai, we have for all x > 0

P

[
Sk
k
> x

]
∨P

[
Sk
k
< −x

]
≤ e−kg(x), (A.47)

where

g(x) =


1

2A
x2 , 0 ≤ x ≤ AT

Tx− AT 2

2
, x ≥ AT.

Since g(x) ≥ 1
2A
x2 ∧ 1

2
Tx, we also have for all x > 0

P

[
Sk
k
> x

]
∨P

[
Sk
k
< −x

]
≤ exp

[
−k( 1

2A
x2 ∧ 1

2
Tx)

]
= exp[−kx2

2A
] ∨ exp[−kTx

2
].

(A.48)

In this case we have

E|Sk|p ≤ p(2kA)p/2Γ(p/2) +
2p+1

T p
Γ(p+ 1). (A.49)
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Proof. Part (1). This is a simple consequence of the Burkholder-Davis-Gundy inequality

[11] for p > 1 and q−1 = 1− p−1:

1

18p1/2q
(EY p

k )1/p ≤ (E|Sk|p)1/p ≤ 18q1/2p (EY p
k )1/p (A.50)

where

Yk =
( k∑
i=1

Z2
i

)1/2
.

Jensen’s inequality gives (1).

Part (2). (A.47) is a simple consequence of large deviation theory. For (A.49), we

have

E|Sk|p = p

∫ ∞
0

yp−1P [|Sk| ≥ y] dy

≤ 2p

∫ ∞
0

yp−1

(
exp[− y2

2kA
] + exp[−Ty/2]

)
dy

= p(2kA)p/2Γ(p/2) +
2p+1

T p
Γ(p+ 1).

(A.51)

Corollary A.5. Let Yi be independent random variables with the distribution log-gamma(ri)

for ri > 0. Set Zi = Yi − EYi and Sk = Z1 + . . .+ Zk. Let µk =
1

k

k∑
i=1

δri . Then for

C = 22p+2Γ(p+ 1)
(
18(1− p−1)−1/2p

)p
, (p ≥ 2)

the following hold.

(1)

E|Sk|p ≤ Ckp/2
∫ (

1

rp
+

1

rp/2

)
µk(dr). (A.52)

(2) For fixed r0 > 0, if ri ≥ r0 for all i ≥ 1, for kA ≥ VarSk and x > 0, we have

P [Sk > x] ∨P [Sk < −x] ≤e−h(x) = exp
(
−[

x2

8kA
∧ r0x

4
]
)

≤ exp(− x2

8 VarSk
) ∨ exp(−r0x

4
).

(A.53)
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(3) Set Wi = L(ri, Yi)−Ψ1(ri) and Tk = W1 + · · ·+Wk, where L is given by (A.18).

Then

E|Tk|p ≤ C1k
p/2

∫ (
1

r2p
+

1

rp/2

)
µk(dr), (A.54)

where

C1 = 23p+3e2pΓ(p+ 1)
(
18(1− p−1)−1/2p

)p
, (p ≥ 2).

Proof. We need to estimate some moments of a log-gamma random variable Y with a

parameter r > 0. The logarithmic moment generating function of Z = Y − EY is

f(s) = log EesZ = log Γ(r + s)− log Γ(r)− sΨ0(r), s > −r.

Note that f(0) = f ′(0) = 0 and f (k+1)(0) = Ψk(r) for k ≥ 1. Taylor’s theorem gives

f(s) = f(0) + sf ′(0) +
1

2
s2f ′′(s∗) =

1

2
s2Ψ1(r + s∗),

for some s∗ with 0 < |s∗| < |s|. Therefore, for |s| ≤ r/2 by (A.7),

0 ≤ f(s) ≤ 1

2
s2Ψ1(r/2) ≤ 2s2Ψ1(r).

From (A.6) and (A.49) with k = 1 we have

E|Z|p ≤ p(2Ψ1(r/2))p/2Γ(p/2) +
22p+1

rp
Γ(p+ 1)

≤ 22p+2Γ(p+ 1)

(
1

rp
+

1

rp/2

)
.

(A.55)

Let W = L(r, Y )−Ψ1(r). Then EW = 0 and

|W |p ≤ L(r, Y )p ∨ (Ψ1(r))p

since L > 0. By (A.22), we have

L(r, Y )p ≤ 2p−1e2p(1 ∨ rp)
rp

(
Zp + (Ψ1(r))p/2

)
.
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Since
√

Ψ1(r) ≤ e2(1 ∨ r)/r by (A.6) we have

|W |p ≤ 2p−1e2p(1 ∨ rp)
rp

(
Zp + (Ψ1(r))p/2

)
.

Therefore (A.55) gives

E|W |p ≤ 23p+3e2pΓ(p+ 1)

(
1

r2p
+

1

rp/2

)
. (A.56)

We can use (A.55) together with (A.46) to prove part (1) of this corollary. For part

(2), we use (A.48). Set ai = 4Ψ1(ri), T = r0/2 then
∑k

i=1 ai = 4 Var(Sk). Substitute kx

for x, then we have the result. For part (3), use (A.56) and (A.46).
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