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abstract

Manufacturing variations refer to the uncertainties in the processes and inconsis-
tency in the products produced. There have been increasing efforts to minimize
the manufacturing variations, and reducing manufacturing variations in advanced
manufacturing processes and systems is becoming more important. Advanced
manufacturing processes and systems integrate manufacturing with innovative
science and technologies and boost manufacturing efficiency and productivity. The
integration with sensor technology now provides massive data, creating unprece-
dented research opportunities to model and analyze through data-driven models
and methods. However, at the same time, advanced manufacturing processes and
systems involve new critical challenges in modeling and managing the manufactur-
ing variations. Many advanced manufacturing processes and systems have complex
dynamics and transformation and multiple components involved, which create
significant variations and uncertainties. However, physics-based models are often
unavailable and often fail to address the uncertainties. This dissertation addresses
multiple challenges listed below in modeling and managing the manufacturing
variations:

1. Variation source identification in multistage manufacturing systems: In
multistage manufacturing systems, where multiple operations are performed
in a series of stages (e.g., workstations), the variations produced from opera-
tions propagate to downstream measurements. In such systems, it is crucial to
identify faulty operations with excessive variations among a large number of



xvi

operations based on the quality measurements. We consider a common case
where the measurements are not directly taken from the operations but from
products in the downstream stage and the number of operations is much
larger than the number of measurements. However, inferring underlying
variations of numerous operations by limited measurements cause technical
challenges in statistical inference. Therefore, we want to establish a statisti-
cal model that can identify faulty operations by leveraging the Engineering
domain knowledge. Three types of domain knowledge are considered: 1)
The fact that faults occur sporadically; 2) Practitioners’ empirical knowledge
of the faults occurrence frequency; 3) Various tolerance levels on variations
across operations.

2. Modeling inkjet printing manufacturing process: The inkjet printing manu-
facturing process involves significant random variations due to the complex
physical and chemical dynamics of the nanomaterial pieces in the printed
ink. Process variations create significant uncertainties in the manufactured
product quality, but such uncertainties have not been studied. Therefore, it is
crucial to model the randomness in the manufacturing outcome in terms of
process parameters. Building upon the statistical model, this work further
aims to establish a statistic that evaluates the manufacturing outcome quality,
and ultimately identifies abnormal manufacturing outcomes.

3. Statistical calibration of underlying physical variable: In designing man-
ufacturing processes and products, inferring the underlying physical input
variable, called statistical calibration, is often needed. For example, by using



xvii

the GFET nanosensor outputs, inferring the amount of the target substance
in the environment is important. Furthermore, the uncertainty of the inferred
variable needs to be quantified. However, due to significant process vari-
ations in manufacturing, the GFET nanosensor outputs involve significant
random variations, and thus precise inferring is challenging. Specifically,
random shapes and random locations of functional data need to be modeled
for precise calibration.

4. Optimal parameter design through Bayesian optimization: It is very cru-
cial to design manufacturing processes or products so that they have small
quality variations while satisfying the overall quality (i.e., robust design).
However, data are often costly to acquire especially in the designing stage.
Furthermore, the underlying exact relationships between the design variables
and the mean and variance of the outputs are not known and are in complex
forms. Therefore, a sample efficient data-driven method to find the robust
design needs to be established.

To address these challenges listed above, four problems are investigated in this
dissertation. (i) To build a special sparsity-enhanced Bayesian linear random-effects model

to reflect Engineering domain knowledge. With the proposed model, Engineering
domain knowledge on sparse faults with excessive variations is incorporated into
the model, and the variation sources are successfully identified. (ii) To model the

uncertainties in the inkjet printing manufacturing process in terms of physical process

parameters. Building upon the proposed model, abnormal manufacturing outcomes
are successfully identified. (iii) To establish a non-parametric model to characterize
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functional data with significant variations. The issue with random shapes and random
shifting of functional data is addressed. (iv) To establish sample-efficient stochastic

constrained optimization method for constrained robust parameter design. The proposed
technique minimizes the variations while satisfying a constraint on the mean of the
quality measurements by conducting a small number of experiments.

Because the proposed methods are driven by data, these models and meth-
ods are very flexible and can be used to address many general problems in other
manufacturing processes.
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1 introduction

1.1 Motivation

Manufacturing variations refer to the uncertainties in the processes and incon-
sistency in the products produced. The production quality of a process is often
defined as inversely proportional to the variations in the processes and products
(Camelio et al., 2003). Therefore, understanding and managing the manufacturing
variations are crucial. To maintain the high quality of manufacturing processes,
there have been increasing efforts to minimize the variations from manufacturing
processes and systems (Montgomery, 2012). Recent development in science and
technologies have introduced new advanced manufacturing processes and systems,
in which, manufacturing processes and products are integrated with innovative
science and technologies and new materials; thereby, we can achieve low costs
and large productivity and respond rapidly to customer demands (Science and
Technology Policy Institute, 2010). Understanding and managing the variations
of advanced manufacturing are thus becoming more important to fully realize
their promises. Besides, modern data acquisition technologies embedded into the
manufacturing processes and systems have provided unprecedented data, coming
with research opportunities for data analytics. For example, many automotive
industries have been transformed into automated smart manufacturing systems
combined with robotics and sensor technologies. The data collected from the
sensors can be exploited for effectively control the manufacturing variations. In
nanomanufacturing, the inkjet printing technique is one of the additive nanosensor
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manufacturing processes. By the the inkjet printing, components of nanosensors
are printed on-demand very quickly and precisely. This printing technique is a
key to the mass production of nanosensors; it scales up the fabrication process
by removing the bottle-neck parts in conventional manufacturing processes. The
nanomanufacturing data can be easily obtained from microscopic devices for the
analysis.

Advanced manufacturing processes and systems provide significant opportu-
nities. However, at the same time, there are critical challenges we are facing: (i)

advanced manufacturing processes and systems are very complex and have not
been studied deeply. Advanced manufacturing processes often involve complex
physical and/or chemical dynamics and transformation. The complexity of ad-
vanced manufacturing systems comprising numerous operations often hinders
investigating the variations and precise diagnosis of the excessive variations. Statis-
tical modeling to understand the variations and methods to manage and control
the process quality are crucial. (ii) Physics-based models are often not available to
account for the processes and the uncertainties involved. Therefore, data-driven
models and methods for controlling the process and quality and designing the
processes and systems are urgently needed. (iii) However, the types of data ob-
tained from advanced manufacturing processes and systems are very diverse; the
examples of data types include image data and functional data. (iv) At the same
time, engineering knowledge is often available, and such knowledge needs to be
integrated into the data-driven models and methods to be established.

Because advanced manufacturing processes and systems have emerged recently,
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only limited works are available on statistical modeling and methods that address
the aforementioned challenges.

1.2 Research Objectives

This dissertation aims to analyze and manage manufacturing variations in advanced
manufacturing processes and systems using statistical models and methods. Four
research tasks are summarized as follows.

1. Variation source identification in multistage manufacturing systems: In
multistage manufacturing systems, where multiple operations are performed
in a series of stages (e.g., workstations), the variations produced from opera-
tions propagate to downstream measurements. In such a system, it is crucial
to identify faulty operations with excessive variations among a large number
of operations based on the quality measurements. We consider a common case
where the measurements are not directly taken from the operations but from
products in the downstream stage and the number of operations is much
larger than the number of measurements. However, inferring underlying
variations of numerous operations by limited measurements cause technical
challenges in statistical inference. Therefore, we want to establish a statistical
model that can identify the faulty operations by leveraging the Engineering
domain knowledge. Three types of domain knowledge are considered: 1)
The fact that faults occur sporadically; 2) Practitioners’ empirical knowledge
on the faults occurrence frequency; 3) Various tolerance levels on variations
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across operations.

2. Modeling inkjet printing manufacturing process: The inkjet printing manu-
facturing process involves significant random variations due to the complex
physical and chemical dynamics of the nanomaterial pieces in the printed
ink. Process variations create significant uncertainties in the manufactured
product quality, but such uncertainties have not been studied. Therefore, it is
crucial to model the randomness in the manufacturing outcome in terms of
process parameters. Building upon the statistical model, this work further
aims to establish a statistic that evaluates the manufacturing outcome quality,
and ultimately identifies abnormal manufacturing outcomes.

3. Statistical calibration of underlying physical variable: In designing man-
ufacturing processes and products, inferring the underlying physical input
variable, called statistical calibration, is often needed. For example, by using
the GFET nanosensor outputs, inferring the amount of the target substance
in the environment is important. Furthermore, the uncertainty of the inferred
variable needs to be quantified. However, due to significant process vari-
ations in manufacturing, the GFET nanosensor outputs involve significant
random variations, and thus precise inferring is challenging. Specifically,
random shapes and random locations of functional data need to be modeled
for precise calibration.

4. Optimal parameter design through Bayesian optimization: It is very crucial
to design manufacturing processes or products so that they have small quality
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variations while satisfying the overall quality (i.e., robust design). However,
data is often costly to acquire especially in the designing stage. Furthermore,
the underlying exact relationships between the design variables and the mean
and variance of the outputs are not known and are in complex forms. There-
fore, a sample efficient data-driven method to find the robust design needs to
be established.

1.3 Outline of the Dissertation

The remainder of this dissertation focuses on the aforementioned problems in the
application of advanced manufacturing processes and systems.

Chapter 2: Variation Source Identification in Multistage Manufacturing Systems

Using Bayesian Approach with Sparse Variance Components Prior

Multistage manufacturing systems are modeled by a Bayesian linear random-effects
model. Specifically, the product dimensions are modeled as observations with
respect to the dimensional deviations of operations as random coefficients. The
variances of the random coefficients are modeled by a special sparsity-enhanced
Bayesian hierarchical prior distribution. The proposed prior distribution reflects
the Engineering domain knowledge that the faults occur sporadically in a system
and successfully addresses the challenge that the number of operations is much
larger than the number of measurements. Furthermore, the proposed prior can
incorporate the practitioners’ empirical knowledge of the faults occurrence frequen-
cies and effectively reflect the different tolerance levels for different operations. The
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performance of the proposed model is demonstrated in extreme conditions in the
numerical study and autobody assembly data in the case study.

Chapter 3: Statistical Modeling and Analysis of k-Layer Coverage of Two-Dimensional

Materials in Inkjet Printing Processes

The inkjet-printed patterns, where random nanomaterial (specifically, 2d material)
flakes are randomly dispersed, are modeled by a stochastic geometry model. In
nanosensor manufacturing, both the random coverage and random thickness of the
flakes determine the sensor performance; the random coverage and random thick-
ness are represented by “k-layer coverage”, defined by the proportion of the area
covered exactly by the k layers of overlapping flakes. Then, based on the stochastic
model, the mean and variance of the k-layer coverage are derived, and then the
relationship between the ‘mean and variance’ of the k-layer coverage and the physi-
cal process parameters is investigated. Building upon the aforementioned results,
a statistical framework that identifies abnormal printed inkjet-printed patterns
based on image data is proposed. The performance of the proposed framework is
validated with the real inkjet printed pattern image data.

Chapter 4: Landmark-Embedded Gaussian Process Model With Applications for Func-

tional Data Calibration

A special Bayesian hierarchical Gaussian process model is proposed to model the
functional data (i.e., the sensor outputs) whose shapes and locations are randomly
determined. The proposed model successfully characterizes the random shapes
and random locations by embedding the location features in a unified model. Then,
a statistical calibration framework that infers both the point and interval estimates
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of the unobserved input variable is proposed. The numerical and case studies
demonstrate the beneficial aspects of our proposed model.

Chapter 5: Robust Parameter Design on Dual Stochastic Response Models with Con-

strained Bayesian Optimization

A novel stochastic constrained Bayesian optimization method is proposed for a
robust parameter design problem, which is to find the optimal control variable
values that minimize the quality variations of advanced Engineering systems (e.g.,
nanosensors) while satisfying their overall quality. In particular, the data at hand
are very expensive to obtain and are generated under stochastic environments; un-
der the same control variable values, the observed quality values are not the same.
Special surrogate models and an acquisition function are established for stochastic
constrained Bayesian optimization. The mean and variance of the quality values
are represented by carefully designed Gaussian process models. The proposed
acquisition function leverages both the prediction and quantified uncertainties of
the surrogate models and explicitly encourages exploration over design space to
find the global solution, not being satisfied by local optimums. Both the numerical
and case studies confirm the performance of the proposed method.

Finally, Chapter 6 summarizes the contributions of this research work and
discusses future work.
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2 variation source identification in manufacturing

processes using bayesian approach with sparse variance

components prior ∗

We present a Bayesian linear random effects model for variation source identification
in multistage manufacturing processes with a prior for sparse variance components.
A modified horseshoe+ prior is used to tackle high dimensional problems with
low sample size and sparse variation sources. Furthermore, we introduce the
informed-horseshoe+ prior that incorporates the likelihood information of possible
variation sources. To estimate the variations from the informed horseshoe+ prior,
a specially-designed Gibbs sampler is established. Through a series of numerical
experiments and case study, we showed that the proposed informed horseshoe+
outperforms the existing prior distributions when variation sources are sparse.

2.1 Introduction

Manufacturing variation refers to the uncertainties in the process and inconsistency
in the products produced. The production quality of a process is often defined as
inversely proportional to the process variation (Camelio et al., 2003). Thus, variation
reduction in manufacturing processes is an essential objective of process quality
control. On one hand, under normal working conditions, the process variation is

∗This chapter is based on the paper: Lee, J., J. Son, S. Zhou, and Y. Chen (2020). Variation
source identification in manufacturing processes using bayesian approach with sparse variance
components prior. IEEE Transactions on Automation Science and Engineering, 17(3), 1469–1485.
https://doi.org/10.1109/tase.2019.2959605.
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caused by the inevitable natural process variations, also called “common" causes in
statistical process control literature. On the other hand, under abnormal conditions,
the excessive process variation is caused by process faults or “variation sources".
Take an example of the panel assembly process in Zhou et al. (2003). Fig. 2.1 shows
the two panel assembly process via three stations, which is simplified from an
autobody assembly process. At the first station, the panel 1 and 2 are assembled.
At the station II, the panels 3 and 4 are attached to the previous subassembly that
are combined at the station I. The whole assembled panel is inspected at the final
station III. In assembly lines, one of the most important factors that plays a critical
role in determining the dimensional integrity of the final assembly is the positioning
accuracy of fixture locators (Zhou et al., 2003; Bastani et al., 2017, 2016; Huang
et al., 2007). Deviation of the fixture locators leads to the dimensional deterioration
of the final products. Under normal working conditions, the fixture locations are
tight and accurate leading to very small dimensional variation in the final assembly.
However, suppose a fixture is loosened and no longer able to fasten workpieces
tightly at the station I. Then, the relative position of the panel 1 and 2, which is
an important measure of dimensional quality, would have large variations and
inconsistency among different products. In such case, the loosened fixture locator is
considered as a variation source. Clearly, for effective variation reduction, we need
to quickly identify the variation source and then make adjustments to rectify the
issue. Generally, the target qualities (e.g., the relative positions of two panels in the
above example) are called the Key Product Characteristics (KPCs). The underlying
factors that impact on KPCs (e.g., the fixture locators) are called Key Control
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Characteristics (KCCs). In most manufacturing processes, the KPCs are directly
measured while many KCCs are not monitored closely due to the measurement
cost and/or physical constraints. Thus, it is often necessary to identify the variation
sources among KCCs based on the readily-available measurements of the KPCs.

Figure 2.1: Illustration of a panel assembly process

Considering the importance of the problem, a large body of literature have
dealt with variation modeling and variation source identification in manufacturing,
particularly multistage processes. Although there are many methods available in
the literature, the existing variation source identification approaches follow a similar
three-step framework. First, the mathematical relationship between KPCs and KCCs
are obtained through either the physical principles or data-driven approaches. In
many cases, the exact relationship between KPCs and KCCs is nonlinear. However,
most existing methods adopt a linear model because such nonlinear relationships
can be approximated by a linear relationship using the Taylor series expansion.
Second, based on the linear KPC-KCC relationship, the variance of the KCCs are
estimated. The estimation can be done by various techniques, such as variation
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pattern matching (e.g., Rong et al. (1999); Ding et al. (2002)) or direct statistical
variation components estimation (e.g., Zhou et al. (2004); Apley and Shi (1998);
Chang and Gossard (1998); Ding et al. (2005)). Lastly, the KCCs with excessive
large variance are identified as variation sources. A comprehensive survey of the
existing variation source identification approaches is provided in Shi and Zhou
(2009).

Most of the existing works on variation source identification assume we have
measurements on a large number of KPCs and the system is well-conditioned
so there is no identifiability issues. In other words, it is assumed we can always
uniquely estimate the variance of KCCs using the available rich KPC measurements.
However, in practice, due to physical constraints or measurement cost, we may have
measurements only on a very limited number of KPCs; hence, we may not be able
to uniquely identify all the variation sources in the processes. Indeed, Zhou et al.
Zhou et al. (2003) studied the diagnosability issue and established conditions under
which the variation source is fully identifiable. The deficiency in measurement
and the resulting lack of identifiability make most of available variation source
identification methods vulnerable.

To resolve the intractability issue caused by measurement deficiency, we can
consider the sparsity of the variation sources. The basic premise is that the existence
of variation sources during a given period of time is sparse. This is a very reasonable
assumption because the simultaneous occurrence of process errors are often low in
practice. Despite the great potential, so far, the literature considering the sparsity
in variation source identification has been scarce. The identifiability of variance
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components under sparse condition is studied based on the concept of compressed
sensing in Bastani et al. (2016). They utilized a measure for the sparsity to study
sensor placements. The identification of the mean deviation fault (instead of the
fault of excessive variation) under sparse condition is studied in Bastani et al.
(2017). The sparse variation source identification method presented in Bastani et al.
(2013) is the most relevant work to our study. The method can be characterized
as a moment based method following several steps: first, from the relationship
between KPCs and KCCs, the relationship among the variances of KPCs, KCCs, and
measurement noises are established. Then, the authors treat the variance equations
as a linear regression model. To find a sparse solution of the regression problem,
the relevant vector machine (RVM) approach is used in the last step. One potential
limitation of this approach is that the variance of the KPCs and KCCs are inherently
non-negative. However, in their RVM approach, the normal distribution is adopted
for the distribution of these variances, which may produce misleading negative
values. Further, by converting the raw data into the second order moments and then
conducting variation source identification, there is potential information loss. Our
method proposed in this chapter can mitigate those issues by specifying proper
distributions. Furthermore, our approach provides an opportunity to include
additional information (domain knowledge) rather than incurring potential loss of
information. Another relevant body of literature is pattern matching method based
on principal component analysis (Ding et al., 2002; Li and Zhou, 2005; Li et al., 2007).
Although the scope of the engineering problem they are trying to solve is similar to
ours, it is easy to differentiate the rigorous Bayesian variation estimation approach
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proposed in this chapter and the existing pattern matching methods. In pattern
matching method, it is required to assume that there is only a single variation
source in the process in order to employ the principal component analysis results.
Comparing with that methods, our Bayesian approach can handle the situations
of more than one variation sources and can incorporate prior knowledge in the
identification. In addition, the Bayesian approach can provide the distribution
information of the identification result, which is more statistically rigorous. Those
advantageous features of the proposed method in contrast to the existing methods
in the literature will be discussed later in detail.

In this chapter, we propose a new variation source identification approach con-
sidering sparse conditions. The goal is to identify the KCCs that have excessive
variations based on the measurements on KPCs. We adopt the linear random effects
model to describe the relationship among KPCs and KCCs and then establish a
Bayesian approach to fully utilize a priori knowledge. A sparsity-enhanced prior dis-
tribution for the variance component that is well-suited for our model is developed.
Unlike the typical choices of the prior distribution in Bayesian variance estimation,
the prior distribution used in our proposed approach has a high density at zero.
Consequently, during the inference, the algorithm tends to push estimates to be
zero; hence, the sparsity in the estimation is naturally encouraged. Furthermore,
noting that practitioners often have domain-specific empirical knowledge on how
likely different variational faults may occur, we design the prior distribution in a
way that such empirical knowledge can be taken into consideration. This is one of
the main strengths of the Bayesian approach. To facilitate efficient inference, we
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established a specially-designed Gibbs sampler for our model. Comprehensive nu-
merical study and a real case study are also performed to illustrate the effectiveness
of the proposed approach.

The rest of the chapter is organized as follows. In Section 2.2, we present
the mathematical framework of Bayesian linear random effects model with sparse
variance components. The Gibbs sampler is then proposed in Section 2.3 to illustrate
how to estimate the parameters in the model. In Section 2.4, we evaluate the
performance of the proposed method through a series of numerical studies, then
the case study results based on a panel assembly multistage process are presented
to validate our method in Section 2.5. Lastly, Section 2.6 concludes the chapter.

2.2 Bayesian Linear Random Effects Model for

Variation Source Identification

2.2.1 Bayesian Linear Random Effects Model

Linear random effects model has been widely used for variation source identification
(Apley and Shi, 1998; Chang and Gossard, 1998; Zhou et al., 2004). In the linear
random effects model, process variations in KCCs are represented in terms of the
variances of the random effects coefficients. A general linear random effects model
is given as follows:

yi = Axi + ϵi, (2.1)
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xi ∼ N (0, Σx) , (2.2)

Σx = diag
(
σ2

1, . . . , σ2
P

)
, (2.3)

ϵi ∼ N
(
0, σ2

ε I[N×N ]
)

(2.4)

where i = 1, . . . , M and yi = (y1i, . . . , yNi)T ∈ RN is the KPC measurement
vector for the i-th product. For each product i, N KPCs are observed. A =

(ajk)j=1,...,N,k=1,...,P ∈ RN×P is the design matrix for the linear model, which is
derived from the physical structure of the process. Because the products are pro-
duced by the same process, we assume that every product shares the same design
matrix A. xi = (x1i, . . . , xP i)T is a random errors vector for the i-th product, which
is a coefficient vector of random effects that follow the normal distribution with
mean 0 and the variance-covariance matrix Σx. Since the variations are of our main
concern, the fixed effects coefficients are set as 0. The process errors (e.g., wears
of different locators in a fixture system) can often be assumed as independent
(Zhou et al., 2003); hence, Σx is a diagonal matrix where k-th diagonal element is
σ2

k and non-diagonal elements are zeros. The diagonal elements of Σx is also called
variance components. In fact, variation sources in the process are represented by
these variance components. If they are excessively large, we say we have significant
variation sources in the process. ϵi = (ε1i, ε2i, . . . , εNi)T is the measurement error
vector where εji is independent and identically distributed normal random variable
with mean 0 and variance σ2

ε . This model has been widely used in variation source
identification and has been proven to be quite effective (Zhou et al., 2003).

We also want to point out that in practice, different tolerance requirements may
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exist for different KCCs. In such case, variance of a faulty variation source may be
smaller than those of the normal ones if its tolerance allowance is much tighter than
others. In these scenarios, we need to transform the model in (2.1) to make the
scales of the variation sources identical to each other. Such model standardization
can be easily achieved as follows. Denote tk as the tolerance level of the variation of
k-th KCC. When σk > tk, the k-th source is regarded as faulty variation source. The
model of (2.1) can be transformed as below.

yi =
(
AT−1

)
(Txi) + ϵi (2.5)

T = diag
( 1

t1
, . . . ,

1
tP

)
(2.6)

where T ∈ RP ×P is a diagonal matrix with its k-th diagonal element being 1/tk. It
is easy to see that the transformed model still can be written in the same form of
(2.1) as

yi = A′x′
i + ϵi (2.7)

x′
i ∼ N (0,Σ′

x) (2.8)

Σ′
x = diag

(
σ′

1
2
, . . . , σ′

P
2) (2.9)

where A′ = AT−1, x′
i = Txi, and σ′

k = σk/tk.
In above model, σ′

k represents the relative standard deviation against the tol-
erance level of k-th KCC. Under this model, the k-th variation source should be
identified as a faulty source when the estimate of σ′

k is larger than 1 because σ̂′
k > 1

is equivalent to σ̂k > tk. In this way, variations from all the KCCs can remain on the
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same scale. The assumption that any non-faulty KCCs will have smaller variances
than that of the faulty KCCs will be satisfied. Without loss of generality, we will
simply use model in (2.1) as the underlying model in the rest sections.

In most existing variation source identification methods, researchers have been
using conventional approaches such as maximum likelihood estimation or moment
based approach to estimate the variance components (σ2

1, . . . , σ2
P ) based on the

observation y = (yT
1 , . . . , yT

M)T . A good review and comparison of those approaches
can be found in Ding et al. (2005).

In this work, we propose to use a Bayesian approach for variation source identi-
fication instead. In a Bayesian model, we treat the parameters to be estimated as
random variables following certain prior distributions. In our case, we have

(σ2
ε , σ2

1, ..., σ2
P ) ∼ π (.) (2.10)

where π (.) is the prior distribution for σ2
ε and (σ2

1, ..., σ2
P ). Given the prior, we can

find the posterior distribution P (σ2
ε , σ2

1, . . . , σ2
P |y) through the Bayes theorem as

P
(
σ2

ε , σ2
1, . . . , σ2

P

∣∣∣y) (2.11)

= P (y, σ2
ε , σ2

1, . . . , σ2
P )∫

·· ·
∫

σ2
ε ,σ2

1 ,...,σ2
P

P (y, σ2
ε , σ2

1, . . . , σ2
P )dσ2

ε dσ2
1 . . . dσ2

P

(2.12)

= P (y|σ2
ε , σ2

1, ..., σ2
P ) π (σ2

ε , σ2
1, ..., σ2

P )∫
·· ·
∫

σ2
ε ,σ2

1 ,...,σ2
P

P (y|σ2
ε , σ2

1, ..., σ2
P ) π (σ2

ε , σ2
1, ..., σ2

P )dσ2
ε ...dσ2

P

(2.13)

We estimate the parameters by taking the mean of the posterior distribution
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(e.g., mean values of σ2
1, ..., σ2

P under the distribution P (σ2
ε , σ2

1, . . . , σ2
P |y)) through

sampling or analytical evaluation. A typical challenge in Bayesian approaches for
a complex problem is how to sample from the posterior distribution because, in
most cases, an explicit expression of the posterior mean is not available. Therefore,
we established an efficient algorithm for sampling from (2.11) which is illustrated
later in the section 2.3.

One of the prominent advantages of the Bayesian model is the capability of
specifying the prior distribution freely to enhance the sparsity of the solution.
Also, it allows us to utilize a priori knowledge into the model. In Section 2.2.2, we
propose a prior distribution, namely the informed horseshoe+ distribution, for σ2

ε

and (σ2
1, ..., σ2

P ). This prior can take some empirical domain knowledge of variation
source occurrences and enhance the solution sparsity.

2.2.2 Prior Distributions Considering Sparsity: Informed

Horseshoe+ Prior

In the literature, the inverse gamma prior is one of the widely-used prior distribu-
tions for variances in Bayesian estimation scheme. For example, the inverse gamma
prior has been used for the variance components in a non-sparse Bayesian linear
random effects model in Zeng and Chen (2015) to monitor the means and variance
components of the optical profiles in low-E glass manufacturing processes. The in-
verse gamma is a conjugate prior for the variances of normally-distributed random
variables, which means the posterior distribution is in the same distribution family.
The inverse gamma distribution has two parameters: shape and scale parameters.
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The left panel of Fig. 2.2 illustrates the inverse gamma distributions with different
parameter specifications. One obvious feature of the inverse gamma distribution
is that the density of the inverse gamma at zero is always zero. In other words,
the samples from the distribution will never get zero values. Using the inverse
gamma prior forces the estimated variance components to be away from zero. This
characteristics directly conflict to our rationale of sparse variance estimation, where
we want to assign zero to most of the variance components and only keep a very
small number of nonzero components.

Figure 2.2: Probability density functions of variance component σ2
k from the

inverse gamma and informed horseshoe+ priors

Keeping a small number of nonzero variance component (ensuring sparsity) is
crucial. To illustrate its importance, let F denotes the index set of the faulty variation
sources and N is that of the non-faulty sources. If we note that the probability of
multiple process faults occurring simultaneously is very small, we have σ2

k ≫ 0

for k ∈ F and σ2
k ≫ σ2

h > 0 for k ∈ F, h ∈ N with |F| ≪ |N|. The faulty variation
sources (i.e. the number of faulty sources with large variance) are sparse and the
non-faulty sources still have their own non-zero normal process noises. However,
the variability of the non-faulty sources is considerably smaller than the variability
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of the faulty sources. The sparsity in the solution allows us to identify the variation
sources under some extreme conditions. Specifically, if the number of potential
variation sources is much larger than the number of KPCs to be measured, i.e.,
P ≫ N , the variation sources are generally not identifiable. However, under
sparsity condition (e.g., only a few variation sources are present), we can uniquely
identify them.

Although it may have not been popular in variance source identification liter-
ature, the Bayesian sparse parameter estimation has been used in various fields.
Most of the existing Bayesian sparse estimation works focus on the variable selec-
tion and mean estimation problem (Park and Casella, 2008; Carvalho et al., 2010;
Bhadra et al., 2017; Li and Chen, 2016). To take the sparsity into consideration, it is
important to construct appropriate prior distributions. There are two main types of
priors considering sparsity: discrete mixtures and shrinkage priors (Carvalho et al.,
2009). Both priors try to create nonzero probability mass or density at zero. The first
method achieves the goal through a mixture distribution with point mass at zero
and the second method uses a continuous density function with positive density
at zero. The discrete mixture prior is conceptually simple but computational chal-
lenging. The shrinkage prior is relatively complex to construct but more attractive
computationally. In this work, we propose a shrinkage type prior distribution for
the linear random effects models. The proposed prior distribution is inspired by the
horseshoe+ distribution that has been used in Bayesian variable selection in regres-
sion (Bhadra et al., 2017). We significantly extend the horseshoe+ distribution by
adding more flexibility and apply it to variance component estimation with sparsity.
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We called this prior distribution as the “informed horseshoe+" (IHS+) distribution.
The Bayesian linear random effects model with the informed horseshoe+ prior is
presented below.

yji|xki, σ2
ε ∼ N

(
P∑

k=1
ajkxki, σ2

ε

)

, j = 1, . . . , N, i = 1, . . . , M

xki|σ2
k ∼ N

(
0, σ2

k

)
, k = 1, . . . , P, i = 1, .., M

σk|τ, ηk ∼ C+ (τηk) , k = 1, . . . , P

τ |σε ∼ C+ (σε)

ηk|w ∼ C+ (w) , k ∈ Ω

ηk ∼ C+ (1) , k ∈ {1, . . . , P} \ Ω

σε ∼ C+ (1)

(2.14)

where C+ is the half Cauchy distribution and Ω is a prioritized index set that contain
indexes of fault-likely variation sources based on domain knowledge. The first two
rows in (2.14) specify the linear random effects model that is consistent with that
in (2.1). yji is a measurement for the product i from the sensor j. ajk is the (j, k) th
element of the design matrix A. xki is a random effect coefficient for the KCC k of the
product i, which is a normal random variable with mean 0 and variance component
σ2

k. σ2
k and σ2

ε are the variance components of the random effects coefficients and
the measurements, respectively.

Added to the linear random effects model, the priors for σ2
k and σ2

ε are specified in
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the rest 5 rows in (2.14). For each KCC k, the standard deviation σk follows the half
Cauchy distribution with a scale parameter of the multiplication of τ and ηk, where
τ and ηk are called the global shrinkage and local shrinkage parameters, respectively.
The parameter τ follows the half Cauchy distribution with a scale parameter σε. The
parameter ηk follows the half Cauchy distribution with a scale parameter w when
k ∈ Ω. Otherwise, ηk follows the standard half Cauchy distribution. The σε follows
the standard half Cauchy distribution. The hierarchical structure of the specified
prior distribution looks complicated. A graphical representation of the structure
is shown in Fig. 2.3, where a square represents a constant, a circle represents a
random variable, and a directed line indicates the dependence of the variables.

Figure 2.3: Graphical representation of our model

A good prior distribution for our problem should possess the following features:
1) It should have a large density at zero so the shrinkage, as well as the sparsity, is
enforced; 2) It should have flexibility to adjust the sparsity so we may take some
prior knowledge into consideration; 3) There should be an efficient way to compute
or sample from the posterior distribution. The proposed informed horseshoe+
distribution indeed has those features. First, as shown in the middle and right
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panels of Fig. 2.2, with the proposed informed horseshoe+ prior distribution, the
marginal distribution of the variance components has a positive density at zero
and the magnitude of the density can be adjusted. In other words, the variance
component estimation can be sparse. Second, the informed horseshoe+ distribution
is a “shrinkage" type prior distribution and is quite flexible to adjust the level of
sparsity or the strength of the shrinkage. As shown in Fig. 2.3, τ is a global
parameter that influences the distribution of all the variance components σ2

1, ..., σ2
P ,

while η1, ..., ηP are local parameters that influence the distribution of individual
variance components. As shown in (2.14), the standard deviations σ1, ..., σP follow
the half Cauchy distributions with distribution parameters determined by τ and
ηk. The probability density function of the half Cauchy distribution is shown in
Fig. 2.4. When the distribution parameter decreases, the density around zero
becomes thicker. Therefore, if τ is small enough (i.e., close to zero), all the variable
components σ2

1, . . . , σ2
P tend to have almost zero values except for the ones with

local shrinkage parameter ηk large enough to offset the shrinkage of τ . Intuitively,
τ can be viewed as the penalty parameter in the lasso and ridge regression in terms
of its role in overall shrinkage enforcement. A smaller τ leads to stronger shrinkage
and more sparsity in the solution. On the other hand, η1, ..., ηP can be viewed as
local shrinkage parameters that allow the individual adjustment of the shrinkage for
each variance component. A larger ηk value indicates the corresponding standard
deviation σk is likely to be nonzero while a smaller ηk value indicates σk is likely to be
zero. In the informed horseshoe+ prior distribution, instead of assigning some fixed
values to τ and η1, ..., ηP , we assume that τ and η1, ..., ηP also follow the half Cauchy
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distribution, which further improves the model flexibility. Specifically, τ follows
the half Cauchy distribution with the parameter determined by σε. This model
structure can avoid the distribution of the variance components being ill-posed with
a shape of bimodal density (Polson and Scott, 2011). Regarding the distribution
of the local shrinkage parameters η1, ..., ηP , we allow to assign a fixed distribution
parameter either 1 or w. If, based on domain knowledge, we believe the occurrence
of variations at certain sources is more likely than others, then we can assign a
relatively large parameter w to the corresponding ηk. With a large w, we will get a
larger ηk; hence, leading to a nonzero variance component estimation. Through this
arrangement, the prior knowledge can be incorporated in the informed horseshoe+
distribution. Third, we can implement the efficient Gibbs sampling scheme to
sample from the posterior distribution for the variance component estimation with
the informed horseshoe+ prior distribution. The technical details of the specially-
designed Gibbs sampler can be found in section 2.3.

Figure 2.4: Probability density functions of half Cauchy distribution

From above discussion, it can be seen that the proposed informed horseshoe+
distribution possesses several desirable features for Bayesian sparse estimation. Be-
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cause the proposed prior distribution is an extension of the conventional horseshoe+
distribution (Bhadra et al., 2017), we point out some key differences between these
two. In the conventional horseshoe+ distribution, all the shrinkage parameters in-
cluding τ and η1, ..., ηP are assigned to follow the standard half Cauchy distribution
with parameter 1. The simple structure of the existing horseshoe+ prior distribution
has been appreciated especially for variable selection in regression models. The
proposed informed horseshoe+ prior distribution has different parametrization to
ensure more flexibility for sparse variance component estimation in random effects
models. Due to the structural differences and distinctive objectives, the resulting
posterior distributions and the corresponding sampling strategy of the proposed
prior distribution in this chapter are noticeably different.

2.3 Inference Based on Gibbs Sampler for the

Informed Horseshoe+

In this section, we present the efficient Gibbs sampling strategy for the posterior
distribution derived from the informed horseshoe+ prior distribution. Our param-
eters of interest are the variance components {σk} . The joint distribution of our
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model is

P (y, σε, x11, . . . , xki, . . . , xP M , σ1, . . . , σP , η1, . . . , ηP , τ)

=
M∏

i=1
P
(
yi|σε, {xi}M

i=1

)
P∏

k=1

{
M∏

i=1

{
P (xki|σk)

}
P (σk|ηk, τ) P (ηk)

}
P (τ |σε) P (σε)

(2.15)

where y represents the aggregated KPC measurements from M products. A closed
form expression of the posterior distribution of the variance components is not
tractable due to the complex joint distribution. Therefore, sampling method such
as Markov chain Monte Carlo (MCMC) is considered.

Gibbs sampler is a MCMC method that is to sample from the posterior distri-
bution (Hobert and Casella, 1996). In order to do the Gibbs sampling, we need to
derive the full conditional probability distribution, which is a conditional probabil-
ity distribution of the variable given the rest of all the variables, for every variables
included in the distribution function. Then, for each variable, we draw a sample
from its full conditional probability distribution. After the dispersion of the samples
converge to a distribution, the converged distribution of the sample is the posterior
distribution of the parameter. Gibbs sampler is more efficient than other sampling
methods such as rejection sampling or Metropolis algorithm, because of its 100%
acceptance rate of samples (Gelman et al., 2013b).

Gibbs sampler requires two conditions. 1) The posterior distribution has to be
proper, that is, the integration of the posterior over its support should be finite.
The proper prior ensures the proper posterior distribution. 2) The full conditional
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probability distributions should be available. Our prior is proper because it consists
of probability distributions whose integrals over their supports are one. The main
challenge for using Gibbs sampler is that full conditional distributions are not
always available. To avoid such issue, conjugate priors are widely used so that the
full conditional distributions can be analytically derived. Then, sampling from the
posterior by the Gibbs sampler becomes feasible.

Despite the attractive properties of the horseshoe+ prior distribution, it is dif-
ficult to implement Gibbs sampler because the half Cauchy distribution is not a
conjugate prior. However, a half Cauchy random variable can be sampled with
two hierarchical inverse gamma distributions by introducing an auxiliary variable
(Wand et al., 2011). Makalic and Schmidt (Makalic and Schmidt, 2016) derived
Gibbs sampler for the conventional horseshoe+ prior that deals with mean param-
eters in a simple regression with hierarchical inverse gamma priors. However, they
omitted the global shrinkage parameter, which is a very important variable in our
setting with sparsity issue. Based on the model in Section 2.2.2, we propose the
complete Gibbs sampler for the informed horseshoe+ prior distribution.

The half Cauchy random variable with the scale parameter ς , σ ∼ C+ (ς) , is
equivalent to the hierarchical representation of two inverse gamma distributions
with an auxiliary variable (Wand et al., 2011). Since they did not present the proof,
we present the proof in the appendix 2.A.
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σ ∼ C+ (ς) is equivalent to

σ2|ν ∼ IG (0.5, 1/ν)

ν|ς2 ∼ IG
(
0.5, 1/ς2

) (2.16)

Then, (2.14) can be represented just with multiple inverse gamma distributions.
The random variables that follow the half Cauchy distributions are decomposed
into the two hierarchical inverse gamma distributions. Similarly, σk ∼ C+ (τ ηk) is
equivalent to

σ2
k|νk ∼ IG (0.5, 1/νk)

νk|τ 2, η2
k ∼ IG

(
0.5, 1/

(
τ 2 η2

k

)) (2.17)

where νk is the auxiliary variable.
Similarly, ηk ∼ C+ (w) is equivalent to

η2
k|ζk ∼ IG (0.5, 1/ζk)

ζk|w ∼ IG
(
0.5, 1/w2

) (2.18)

In other words, ηk can be sampled with two inverse gamma distributions by
introducing an auxiliary variable ζk. For the conventional horseshoe+, w = 1 is used
for all the local shrinkage parameters ηk. For the proposed informed-horseshoe+,
w = 1 is used for k ̸∈ Ω and w > 1 is used for k ∈ Ω where Ω is a set of index for
the prioritized sources.



29

τ ∼ C+ (σε) is equivalent to

τ 2|ξ ∼ IG (0.5, 1/ξ)

ξ|σ2
ε ∼ IG

(
0.5, 1/σ2

ε

) (2.19)

where ξ is the auxiliary variable and
σε ∼ C+ (1) is equivalent to

σ2
ε ∼ IG (0.5, 1/ϕ)

ϕ ∼ IG (0.5, 1)
(2.20)

with an auxiliary variable ϕ.
Then, the posterior distribution of each variance component variable is sampled

via Gibbs sampling algorithm. The Gibbs sampler is presented in Algorithm 1.
The details about how probability distributions in Algorithm 1 were specified are
shown in Appendix 2.B. From the Gibbs sampler provided above, we can estimate
variance components of the random effects coefficients.
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Algorithm 1 Gibbs sampling algorithm for the informed horseshoe+ prior model.
Input: The number of iterations nIter, the design matrix A, the measurements

data y, the number of products M , the number of parameters P , the number of
measurements N

1: Initialize iter = 1, xki = 0, σ2
k, vk, η2

k, τ 2, ζk, ξ, ϕ, σ2
ε = 1 (k = 1, . . . , P, i =

1, . . . , M)
2: while iter ≤ nIter do
3: Initialize k = 1
4: while k ≤ P do
5: Initialize i = 1
6: while i ≤ M do
7: xki|yji, σ2

ε ,
{
x1i, . . . , x(k−1)i, x(k+1)i, . . . , xP i

}
, σ2

k ∼

N

σ2
k

∑N

j=1

{
ajk

(
yji−

∑
s̸=k

ajs xsi

)}
σ2

k

∑N

j=1 ajk
2+σ2

ε

,
σ2

kσ2
ε

σ2
k

∑N

j=1 ajk
2+σ2

ε


8: i = i + 1
9: end while

10: σ2
k| {xki}M

i=1 , νk ∼ IG
(

M+1
2 ,

∑M

i=1(xki)2

2 + 1
νk

)
11: νk|σ2

k, τ 2, η2
k ∼ IG

(
1, 1

σ2
k

+ 1
τ2 η2

k

)
12: η2

k|τ 2, νk, ζk ∼ IG
(
1, 1

τ2 νk
+ 1

ζk

)
13: ζk|η2

k, w2 ∼ IG
(

1, 1
η2

k
+ 1

w2

)
14: k = k + 1
15: end while
16: τ 2| {νk}P

k=1 , {ηk}P
k=1 , ξ ∼ IG

(
P +1

2 ,
∑P

k=1

(
1

η2
k

νk

)
+ 1

ξ

)
17: ξ|τ 2, σ2

ε ∼ IG
(
1, 1

τ2 + 1
σ2

ε

)
18: σ2

ε |y, {xi}M
i=1 , ξ, ϕ ∼

IG
(

MN
2 + 1,

∑N
j=1

∑M
i=1

(yji−
∑P

k=1 ajk xki)2

2 + 1
ξ

+ 1
ϕ

)
19: ϕ|σε ∼ IG

(
1, 1

σ2
ε

+ 1
)

20: iter = iter + 1
21: end while

The overall implementation procedure is summarized in Fig. 2.5. The im-
plementation steps can be classified into three categories: process-defined steps,
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user-defined steps, and variation source identification steps. The process-defined
steps, represented as white boxes with solid line border, require the design informa-
tion from the physical process. In those steps, the user needs to identify the KPCs
and KCCs. Based on the relationship between the KPCs and KCCs in the physical
process, the design matrix A can be constructed as shown in Jin and Shi (1999b);
Ding et al. (2002); Camelio et al. (2003). The tolerance requirements on the KCCs,
if any, should be collected in this step.

2) Identify the key 
control characteristics 
𝐾𝐾𝐾𝐾𝐾𝐾𝑘𝑘 ,𝑘𝑘 = 1, … ,𝑃𝑃

1) Identify the key product characteristics (measurements)

3) Construct the 
design matrix 𝐀𝐀

4-1) Specify an index set 𝛀𝛀 which
contains the indexes of possible 

faulty KCCs
4-2) Set the relative weight 𝑤𝑤

which represents how likely the 
KCCs in 𝛀𝛀 are faulty compare to 

the other KCCs 

6) Model Construction

𝐲𝐲𝑖𝑖 = 𝐀𝐀𝐱𝐱𝑖𝑖 + 𝛜𝛜𝑖𝑖 ,
𝐱𝐱𝑖𝑖~𝒩𝒩 𝟎𝟎, diag 𝜎𝜎12, … ,𝜎𝜎𝑃𝑃2

where 𝑖𝑖 = 1, … ,𝑀𝑀
𝐱𝐱𝑖𝑖 = 𝐾𝐾𝐾𝐾𝐾𝐾1, … ,𝐾𝐾𝐾𝐾𝐾𝐾𝑃𝑃 𝑇𝑇

7) Does the process has different 
tolerance allowance level 𝑡𝑡𝑘𝑘 given to 
the variability of different 𝐾𝐾𝐾𝐾𝐾𝐾𝑘𝑘?

8) Model transformation

𝐀𝐀′ = 𝐀𝐀𝐓𝐓−𝐓𝐓,
𝐱𝐱𝑖𝑖′ = 𝐓𝐓𝐱𝐱𝑖𝑖, where

𝐓𝐓 = diag
1
𝑡𝑡1

, … ,
1
𝑡𝑡𝑃𝑃

9) Estimate 𝜎𝜎𝑘𝑘2 using Gibbs Sampling
shown in Algorithm 1 (𝑘𝑘 = 1, … ,𝑃𝑃)

10) Detect KCCs with �𝝈𝝈𝑘𝑘2 that are significantly larger than the other KCCs

YES

NO

Process-defined steps User-defined steps Proposed method

5) Inspect the key 
product characteristics 

of 𝑀𝑀 products

Figure 2.5: Summary of implementation procedure
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The user-defined steps, represented as white boxes with dashed line border,
provide an opportunity for practitioners to provide additional prior knowledge.
Here, the user identifies the likely faulty variance sources that we should pay extra
attention in the later variation source identification step. If known, the weight on
those variation sources, w can be provided as well. If unknown, simply a uniform
weight can be used.

The proposed variation source identification steps are shown in gray boxes
with solid line border. In these steps, we first construct the model based on the
input information from previous steps. If different tolerance levels are specified
for the KCCs, we need to standardize the model to make the scales of the variation
sources identical. After the model construction step, the variability of each KCC is
estimated by the proposed Gibbs sampling in Algorithm 1. Based on the estimated
variability, the faulty KCCs can be identified.

In the following section, we illustrate the numerical study to validate our pro-
posed method.

2.4 Numerical Study

For performance evaluation and comparison, we conducted a series of numerical
simulations. The performance evaluation focuses on two aspects. First, the model
proposed in this chapter should be able to identify the variation sources correctly.
Therefore, the detection power for identifying the variation sources under sparse
condition is measured by the area under the curve (AUC). Second, once the varia-
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tion sources have been identified, our model should provide accurate estimates of
those identified variance components. This can be done by comparing the estimated
values with the underlying true values that have been used for simulating data. In
the numerical study, we compare the horseshoe+ (HS+), informed horseshoe+
(IHS+), and inverse gamma (IG) priors where the IG serves as a baseline.

2.4.1 Simulation Design

The simulation was conducted in three steps: data generation, parameter estimation,
and performance evaluation. The data generation begins with randomly sampling
an index set of the true faulty variation sources F with a pre-specified size of |F|.
The rest (non-faulty process natural variation sources) is set into N. Once the
two groups of sources (F and N) have been determined, we generate M random
effects coefficients as xki ∼ N (0, σ2

k), i = 1, . . . , M for each location of the KCC
k = 1, . . . , P . In the numerical study, we assume that σk = 1 for k ∈ F and σk = 0.02

for k ∈ N. It should be noted that the non-faulty sources in N have non-zero σk in
order to incorporate natural process variations under normal working conditions
which is common in manufacturing practice. To generate the observations y =

(yT
1 , . . . , yT

M)T , we need to specify a design matrix A and measurement noise ϵ. The
(j, k) th element ajk of the design matrix A is generated from a normal distribution
N (0, 100) and εji ∼ N (0, 0.2) for j = 1, . . . , N, i = 1, . . . M . The standard deviation
of measurement noise σε is significantly greater than σk for k ∈ N. Also, σε is
44.22% of the standard deviation of the faulty variation sources σk for k ∈ F

(σ2
k/σ2

ε = 0.2 ∀k ∈ F). In other words, measurement noise is significantly large;
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hence, detecting the faulty sources should not be trivial for the readily-available
methods such as a IG-based model. The last step of the data generation process is
to obtain a set of simulated observations y = (yT

1 , . . . , yT
M)T based on yi = Axi + ϵi

for every product i. The data generation process is summarized in Fig. 2.6.

Given |F|, faults and non-faults index
sets, F and N, are randomly generated

Random effects are generated,
xki ∼ N (0, 1) for k ∈ F, and xki ∼ N

(
0, (0.02)2

)
for k ∈ N, i = 1, . . . , M

Design matrix A is generated

Measurement errors are generated
εji ∼ N (0, 0.2)

Measurements are simulated
yi = Axi + ϵi for every product i

Figure 2.6: Flow chart of the data generation process

To include various scenarios in the performance evaluation, we considered the
number of potential fault locations to be P = 10, 30, or 50. Also, different number of
faulty sources |F| were considered, |F| = 1 and |F| = 2. For instance, if P = 10 and
|F| = 1, then there should be only one faulty variation source with σk = 1 and nine
non-faulty sources with σk = 0.02. The complexity of the identification problem
increases as both P and |F| increase. For each scenario, we conducted 100 numerical
simulations. We assume that we have three products (M = 3) and the number
of observations for each product is set as 3 (N = 3). From the diagnosability
theory (Zhou et al., 2003), we can show that the sample size specified in this
simulation makes our problem undiagnosable. Notice that these scenarios are
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designed challenging. For example, the scenario with 50 variance components of
the process errors has 50+1=51 variance components to be estimated, including
the measurement noise. On the other hand, only 9 measurements (N × M = 9) are
available. Estimating 51 parameters based on 9 data points is not a trivial task. In
other words, conventional Bayesian estimation methods such as the one based on
the IG should not perform well unless a sophisticated sparsity-enhancing technique
has been applied.

In this comparative performance evaluation, we considered three prior distribu-
tions: the IG, HS+, and IHS+ priors. For the IG, the hyper-parameter is specified as
0.001 and a non-informative prior log σε ∝ 1 is used for measurement noise. The IG
specifications are adopted from the literature (Zeng and Chen, 2015; Gelman, 2006).
Unlike the HS+ which does not take any prior input, the proposed IHS+ is capable
of using domain knowledge of fault-likely KCCs of the manufacturing process.
In other words, we may select a few indexes of variance components in advance
and provide the index set (denoted by Ω) to the IHS+. The variance components
corresponding to the indexes in Ω should empirically have shown high probability
of being variation sources. In this case, it is easy to foresee that the choice of Ω

would have a significant impact on the variation source identification performance.
To investigate this issue, we considered two aspects regarding the “quality" of
the knowledge set Ω. First is the size of fault-likely set |Ω|. Suppose we have 50
variation sources and, among them, there are 5 prioritized variance components
(|Ω|/P = 0.1) that have frequently been the major variation sources. Intuitively,
this domain knowledge is better than a knowledge set with 15 prioritized sources



36

(|Ω|/P = 0.3). In addition to size, another important aspect is the accuracy of
domain knowledge defined as

acc (Ω,F) = |Ω ∩ F|
min (|Ω| , |F|) (2.21)

The accuracy is defined as the number of correctly identified variations among
the pre-specified set (|Ω ∩ F|) over the maximum number of identifiable variations
with the prioritized set (min (|Ω| , |F|)). In practice, given 5 specified locations
(|Ω| = 5), it is possible that among 2 variational faults (|F| = 2), only one of them
is correctly specified (|Ω ∩ F| = 1). In that case, the proportion of the correctly
specified prioritized sources is 50%. Intuitively, the higher acc (Ω,F) is the better;
hence, acc (Ω,F) can be viewed as a measure of the accuracy of Ω. Both the size
and accuracy of the domain knowledge have impact on the performance of our
proposed model. Therefore, in this simulation, we used two different sizes of Ω,
|Ω|/P = 0.1 and |Ω|/P = 0.3. Also, we considered five different cases where the
average of acc (Ω,F) over experiments are 0%, 30%, 50%, 70%, and 100%. When
it is 0%, no variation source in Ω is correctly specified whereas 100% means that
|Ω ∩ F| = min (|Ω| , |F|).

It should be noted that, for the IHS+ prior, there is a hyper-parameter w that
needs to be specified. The hyper-parameter w determines the scale of local shrinkage
parameter and there is no golden standard for computing the best w for the half
Cauchy distribution. However, it is known that the half Cauchy distribution with
scale parameter w is w times widely distributed than the one with scale parameter
1, i.e., P (a < 1) = P (b < w) when a ∼ C (1)+ and b ∼ C (w)+. Therefore, w can be
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selected based on empirical knowledge of the relative likelihood of faults on the
variation sources. For instance, suppose an engineer knows that a specific KCC
is likely to be a variation source with 50% chance while other KCCs are likely to
be variation sources with only 10% chance based on his/her experience. Then,
w = 5 would be a reasonable choice. Throughout the numerical study, we specified
w = 10 based on a series of trial-and-error using the case study data obtained from
a multistage panel assembly process. We would like to emphasize that w needs to
be tailored for a different application because inappropriately tuned w may have
negative impact on the performance of the IHS+ prior.

Based on the simulated data, we estimate variance components using Gibbs
sampler for each scenario. The estimator is set as the mean of the samples from
10,000 iterations in Gibbs sampler algorithm after burning in 20,000 iterations.

2.4.2 Performance Evaluation

2.4.2.1 Fault Detection Capability

The proposed model classifies all variation sources into two categories F̂ and N̂,
where F̂ and N̂ are the sets of indexes classified to variational faults and non-faults,
respectively. Once we obtain the estimates of all parameters in the model, we
identify the variance components with larger estimates. Then, we can compare the
model-identified variation sources with the true variation sources that have been
used for generating the data to assess the detection power of the model. By repeating
this procedure, we can compute the rates of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). TP means that the variation source
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detected by the algorithm was indeed one of the true variation sources. Similarly, TN
indicates that the non-fault source determined by the algorithm was truly natural
process variation. FP and FN respectively refer to false alarm and misdetection.
The variation source identification (fault detection) process is illustrated in Fig. 2.7.

Figure 2.7: Illustration of the variation source identification process

The power of detecting variation sources can be conveniently summarized by the
AUC which is the area under the Receiver Operating Characteristics (ROC) curve
(Hanley and McNeil, 1982). The AUC is widely used for assessing classification
accuracy because it considers the trade-off between type I and type II errors. If
the algorithm provides a perfect classification result, the AUC will be 1. The AUC
with a value close to 0.5 indicates that the classification algorithm did not perform
significantly better than a random guess. The AUCs computed by our numerical
simulation are shown in Table 2.1.
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Table 2.1: Average AUCs from numerical study

|Ω|/P = 10% |Ω|/P = 30%
Pr{Correct} 0% 30% 50% 70% 100% 0% 30% 50% 70% 100%
|F| P IG HS+ IHS+ IHS+

1
10 0.9354 0.9885 0.9941 0.9931 0.9974 0.9930 0.9996 0.9789 0.9777 0.9943 0.9944 0.9989
30 0.5278 0.9337 0.8910 0.9542 0.9459 0.9814 0.9964 0.7704 0.8587 0.8721 0.9246 0.9859
50 0.4986 0.8665 0.8049 0.8450 0.9104 0.9133 0.9930 0.6306 0.7682 0.8707 0.8663 0.9779

2
10 0.7797 0.8843 0.8671 0.8969 0.9193 0.9209 0.9454 0.7773 0.8745 0.9099 0.9573 0.9837
30 0.5185 0.7448 0.6881 0.8100 0.8061 0.9070 0.9613 0.5634 0.6508 0.7425 0.8253 0.9285
50 0.5012 0.6884 0.6352 0.7201 0.8301 0.8527 0.9424 0.5349 0.6153 0.6953 0.7578 0.8700

From Table 2.1, we can see that the IG prior always performs worse than both the
HS+ and IHS+ for all cases. The IG shows acceptable performance for less-sparse
cases when P = 10. However, the performance degrades quickly as the size of the
problem increases. Interestingly, even the IHS+ with 0% accurate Ω outperforms
the IG. This observation highlights the effectiveness of using sparsity-enhanced
priors when the variation source identification problem is undiagnosable. As
expected, for all three prior distributions, the AUC decreases as P and |F| increases.
However, unlike the IG prior, the sparsity-enhanced priors (HS+ and IHS+) show
reasonable performance even with complex cases. Especially, the proposed method
(IHS+) was able to identify the variation sources satisfactorily under the most
challenging case considered in the simulation (P = 50 and |F| = 2). Comparing
the HS+ and IHS+, in general, we can see that the IHS+ outperforms the HS+
if the quality of domain knowledge embedded in Ω was not too bad. In other
words, unlike the conventional prior distributions, the fault detection performance
of the proposed IHS+ prior should always have a room for improvement as long
as we could obtain a better knowledge set Ω. The sparsity prior enables ones to
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identify a larger number of faulty variation sources than observed data points by
forcing the variance estimates of the non-faulty sources to be close to zero so that
only a few parameters that correspond to the significant faults are estimated as
positive. Unlike our methods taking advantage of the sparsity condition, the inverse
gamma prior distribution assumes positive values for all parameters (Polson and
Scott, 2011). Therefore, the inverse gamma prior model should estimate almost
51 positive variances with only 9 measures. Although some variance components
might be estimated close to zero, the tendency of pushing the estimates away
from zero makes the model fail in estimation. As a results, the sparsity prior of
the Bayesian model becomes more crucial for the estimation based on data with
higher-dimension and lower-sample size.

2.4.2.2 Estimation Accuracy

Correctly identifying the variation sources is undoubtedly the most important
goal of the proposed sparsity-enhanced Bayesian method. However, it would be
meaningful to investigate not only the variation source identification performance
but also the estimation accuracy because, once the variation sources were identified,
one may want to take a closer look at how large the variances are. To obtain useful
insights along this line, we report the average of estimated variance components
that were correctly classified into F and N.

The classification depends on the decision threshold; hence, as the first step,
an optimal threshold is defined based on the ROC curve. The optimal threshold
is the one that corresponds to a point on a ROC curve which is closest to (FPR,
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TPR)= (0, 1) in terms of the Euclidean distance where FPR and TPR respectively
denote a false positive rate and a true positive rate (Perkins and Schisterman, 2006).
Fig. 2.8 shows the (FPR, TPR) pair computed by the optimal threshold for the
IG, HS+, and IHS+ priors. In Fig. 2.8, the IHS+(100%) represents the case of
|Ω ∩ F| = min (|Ω| , |F|), i.e., perfectly accurate Ω whereas the IHS+(0%) indicates
the opposite worst case.

Figure 2.8: An optimal threshold point for the IG, HS+, 0% IHS+, and 100% IHS+
in a setting with P = 50, |F| = 2, and |Ω| = 5.

Based on the optimal threshold, we classify the indexes of the variance com-
ponents into F̂ and N̂. Then, we present the estimates of the correctly classified
variance components in Table 2.2 (i.e. σ̂2

k, where k ∈ (F ∩ F̂) ∪ (N ∩ N̂)) to evaluate
the estimation accuracy. In Table 2.2, the column of F presents the faulty variation
sources while the column of N contains the non-faulty sources. In other words, the
true value for F column should be 1 whereas the true value for N is (0.02)2.



42

Table 2.2: Average estimated variance components that are correctly classified in
numerical study

Pr{Correct} 0% 30% 50% 70% 100%
Priors IG HS+ IHS+

|F| P |Ω|/P F N F N F N F N F N F N F N

1

10 10% 2.841 0.045 1.792 0.007 1.744 0.007 1.735 0.005 1.819 0.005 1.864 0.005 1.919 0.004
30% 1.650 0.005 1.754 0.005 1.756 0.005 1.795 0.005 1.896 0.005

30 10% 15.8 0.242 1.008 0.003 1.007 0.003 1.178 0.003 1.226 0.003 1.329 0.003 1.399 0.003
30% 1.006 0.002 1.419 0.004 1.314 0.002 1.362 0.002 1.445 0.004

50 10% 1198.0 4.395 1.035 0.002 0.893 0.001 1.010 0.002 1.091 0.001 1.257 0.002 1.292 0.002
30% 0.621 0.001 1.055 0.001 0.948 0.002 1.047 0.001 1.103 0.002

2

10 10% 2.704 0.078 1.488 0.039 1.409 0.034 1.593 0.036 1.672 0.030 1.760 0.035 1.750 0.023
30% 1.421 0.038 1.514 0.029 1.806 0.021 1.784 0.020 1.884 0.019

30 10% 15.1 0.223 1.304 0.010 0.970 0.010 1.049 0.007 1.090 0.008 1.204 0.010 1.353 0.009
30% 0.577 0.004 1.023 0.009 1.129 0.007 1.117 0.009 1.189 0.008

50 10% 311.7 2.364 0.545 0.005 0.399 0.004 0.646 0.004 0.773 0.006 0.788 0.005 0.870 0.007
30% 0.510 0.003 0.594 0.003 0.506 0.002 0.740 0.005 0.764 0.006

From Table 2.2, we can see that the HS+ and IHS+ priors significantly outper-
form the IG prior in all cases. More importantly, the IG prior tends to overestimate
the variance components and the accuracy of the IG-based estimation degrades
quickly as P increases. For P = 50, the average estimate based on the IG prior
becomes extremely large. This result, in addition to what we observed in AUC com-
parison, suggests that the IG prior is not suitable for solving a sparse variance iden-
tification problem. Unlike the IG prior, the estimates from the sparsity-enhanced
priors (HS+ and IHS+) show acceptable results. An interesting observation is
that the average estimates of σ2

k tend to decrease as P becomes larger for both
the HS+ and IHS+. This decreasing trend is the opposite of what we observe for
the IG prior. The phenomenon is mainly due to the global shrinkage parameter.
As P increases, data become more sparse and sparse data inevitably makes the
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global shrinkage parameters quickly shrink down by a large amount. The powerful
shrinkage effect naturally pushes the estimates towards 0. As mentioned earlier,
the quality of prior knowledge incorporated into the IHS+ affects the estimation
accuracy. The estimation accuracy of the IHS+ increases as Ω with better quality
becomes available. Especially, as |Ω| decreases, the estimation accuracy of the IHS+
generally increases.

2.5 Case Study

In this section, we demonstrate the variation source identification method based on
the proposed model with application in multistage panel assembly process. The
assembly process is adopted from Zhou et al. (2003) and the process has been
already illustrated in Fig. 2.1 in the Introduction of this chapter. As described
earlier, this multistage process consists of three stations: two assembly stations
and an inspection station. At each assembly station, the panels are secured by the
activated fixture locators denoted by Li, i = 1, . . . , 8. In the case study, we have
two types of locators: a 4-way locator which controls the motion of a panel in both
x- and z-coordinates and a 2-way locator which controls the movement only in
z-coordinate. The positional dimension of each assembly is observed in x- and
z-dimensions by the sensors installed at the corner of each station. Each sensor,
Mi, i = 1, . . . , 5, measures two-dimensional deviations of panel. Throughout the
case study, the assembly process described above is referred as Process I. There
exists another type of assembly process as discussed in Zhou et al. (2003). This
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process, namely Process II, has different sensor location in the third station and the
sensor placement makes differences in terms of diagnosability (Zhou et al., 2003).
Therefore, we shall consider both processes (Process I and II) in the case study.

The original assembly process described in Zhou et al. (2003) is not a com-
plex process. There are only 18 possible directions for assembly deviation (P =

18). Therefore, the two-dimensional deviation data (measurements of x- and
z-coordinates for each product) collected by a few sensors were sufficient for pro-
viding enough measurements to make the variation source identification problem
diagnosable. The case study needs to be based on a more challenging dataset,
i.e., sparse and high-dimensional problem with limited samples, to emphasize the
advantageous features of the sparsity-enhanced priors. Therefore, in the design ma-
trix, we removed some rows and columns that are associated with the z-coordinate
sensor. In other words, we assumed that the sensors only measure x-coordinate.
In this way, the design matrices for Process I and II have dimensions of (5 × 11)

and (5 × 12), respectively. From the revised assembly process, we have P = 11 for
Process I and P = 12 for Process II. The details of the design matrices are presented
in Appendix 2.C.

For the assembly process, we consider two cases: |F| = 1 and |F| = 2. For
each case, we conducted a series of multiple variation sources identification to
include all variation sources. For instance, among 11 variance components for
Process I, the actual fault can occur anywhere. Thus, we first use data when the
true variational fault has occurred at location 1 and see if the proposed method can
correctly detect the true location of the variation source. After that, we use different
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data with the true variation source location at 2 and repeat the same variation source
identification procedure. Basically, we perform the variation source identification
for all 11 locations sequentially. In other words, the variation source identification
has been conducted P times for |F| = 1 and

(
P
2

)
times for |F| = 2. Furthermore,

each detection for a given variation source has been repeated 10 times. This case
study procedure makes the total number of variation source identification trials
10 × P for |F| = 1 and 10×

(
P
2

)
times for |F| = 2.

Another key player in the case study is the quality of Ω provided to the IHS+.
We considered |Ω| = 1 and |Ω| = 3. Also, we examined performance of the IHS+
prior with probability of correctness of 0%, 30%, 50%, 70%, and 100% for Ω as
similar to the numerical simulation. For the sake of performance evaluation, we
wanted to consider various Ω. Therefore, the prior information Ω has been randomly
generated according to the size and the accuracy specified above. Based on the
case study data, all parameters of the IG, HS+, and IHS+ were estimated by the
Gibbs sampler. The estimator is defined as the mean of the samples from 10,000
iterations after burning in the first 20,000 iterations. Unlike the numerical study,
estimation accuracy may not be easy to evaluate because the true values of σ2

k

and σ2
ε are typically not available in practice. Therefore, we mainly use AUC as

our performance metric for evaluating the detection power of variation source
identification.

There are two key factors that may have impact on the performance of our
proposed method. The difference magnitude between the process noises of non-
faulty and faulty variation sources is one of them. Another challenge for the fault
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identification under a sparsity condition would be the measurement noise. To
make the performance evaluation section more complete, three scenarios are con-
sidered: (i) small process noise with large measurement noise, (ii) large process
noise with small measurement noise, and (iii) large process noise with large mea-
surement noise. For the analysis (i), we follow the same standard deviations of
faulty, non-faulty, measurement noise to the numerical study, i.e. σN/σF = 0.02 and
σε/σF = 0.447 where σF, σN, σε are the standard deviations of faulty, non-faulty, and
measurement noise, respectively. In this setting, significantly large measurement
noise makes the variation source identification challenging. In (ii) we adopted
standard deviation ratios that already have been used and validated in the vari-
ation source identification literature (Ding et al., 2002), that is, σN/σF = 1/3 and
σε/σF = 0.01. Compared to (i), it is easy to see that the difference between σN

and σF is substantially reduced (i.e., natural process noise for non-faulty sources
is increased) whereas the measurement noise has become less significant. In (iii),
both the large standard deviation of measurement noise from (i) and the large
process noise from (ii) are adopted (i.e.σN/σF = 1/3 and σε/σF = 0.447). The
average AUCs from the case study (i), (ii), and (iii) are summarized in Table 2.3,
2.4, and 2.5.
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Table 2.3: Average AUCs from case study under small process noises and large
measurement noises (σN/σF = 0.02 and σε/σF = 0.4472 )

|Ω| = 1 |Ω| = 3

Pr{Correct} 0% 30% 50% 70% 100% 0% 30% 50% 70% 100%
|F| Process IG HS+ IHS+ IHS+

1 I 0.8023 0.8768 0.8516 0.8964 0.9034 0.9409 0.9679 0.7839 0.8209 0.8668 0.8903 0.9382
II 0.7646 0.8433 0.8253 0.8510 0.8910 0.8955 0.9349 0.7406 0.8028 0.8317 0.8559 0.9008

2 I 0.7262 0.8209 0.7906 0.8183 0.8427 0.8540 0.8785 0.7331 0.7916 0.8296 0.8777 0.9332
II 0.7015 0.7808 0.7584 0.7836 0.7990 0.8186 0.8462 0.7138 0.7767 0.8195 0.8436 0.9070

Table 2.4: Average AUCs from case study under large process noises and small
measurement noises (σN/σF = 1/3 and σε/σF = 0.01 )

|Ω| = 1 |Ω| = 3

Pr{Correct} 0% 30% 50% 70% 100% 0% 30% 50% 70% 100%
|F| Process IG HS+ IHS+ IHS+

1 I 0.6815 0.8692 0.8433 0.8737 0.9016 0.9316 0.9570 0.7898 0.8233 0.8549 0.8841 0.9364
II 0.6679 0.8228 0.7920 0.8335 0.8627 0.8798 0.9256 0.7848 0.8323 0.8680 0.8833 0.9268

2 I 0.6748 0.8170 0.7882 0.8146 0.8395 0.8498 0.8808 0.7402 0.8059 0.8379 0.8684 0.9333
II 0.6349 0.7942 0.7711 0.7956 0.8111 0.8316 0.8574 0.7162 0.7758 0.8255 0.8543 0.9073

Table 2.5: Average AUCs from case study under large process and measurement
noises (σN/σF = 1/3 and σε/σF = 0.4472)

|Ω| = 1 |Ω| = 3

Pr{Correct} 0% 30% 50% 70% 100% 0% 30% 50% 70% 100%
|F| Process IG HS+ IHS+ IHS+

1 I 0.6265 0.7436 0.7135 0.7670 0.8134 0.8571 0.9138 0.6983 0.7667 0.8018 0.8464 0.9157
II 0.6561 0.7374 0.7176 0.7723 0.8001 0.8442 0.8947 0.6524 0.7136 0.7517 0.8126 0.8509

2 I 0.6382 0.7353 0.7037 0.7449 0.7656 0.7909 0.8230 0.6644 0.7446 0.7888 0.8391 0.9073
II 0.6225 0.7016 0.6756 0.7076 0.7340 0.7542 0.7869 0.6355 0.7043 0.7491 0.8038 0.8674

Based on Table 2.3, 2.4, and 2.5, we can see that, unlike the numerical simulation,
the performance of the IG in the case study is comparable to the other two sparsity-
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enhanced priors. This result is due to the relatively low dimension of the multistage
assembly process used in the case study. However, we still see that the HS+ and
IHS+ outperform the IG in most cases. When |F| increases from 1 to 2, the AUC of
the HS+ reduces by approximately 5% in both Process I and II. Similar performance
degradation can be observed for the IHS+ as well. The performance of the IHS+
prior depends on the quality of prior domain knowledge Ω. Better fault detection
can be achieved using the IHS+ with |Ω| = 1 than |Ω| = 3. Also, the AUC of
the IHS+ increases as proportion of the correctly identified variation sources in Ω

increases. Comparing the HS+ and IHS+, the IHS+ outperforms the HS+ if the
accuracy of Ω was greater than 30% when |Ω| = 1. For |Ω| = 3, the IHS+ demands
higher quality Ω to outperform the HS+, e.g., accuracy of Ω may need to be greater
than 70%.

Table 2.4 and Table 2.5 show that the proposed sparsity enhanced prior models
are robust to the natural process noises than IG. In Table 2.4, the AUCs of IG are
significantly smaller than those in Table 2.3. On the other hand, the AUCs of the
HS+ and the IHS+ are almost similar to those in Table 2.3. For the most challenging
scenario where both measurements noises and natural process noises are large
(Table 2.5), the AUCs of all the models are considerably smaller than the other
cases where either measurement noises or process noises are small. However, even
in this challenging case, we observe that the proposed sparsity enhanced model
outperforms IG consistently.

The results shown in the case study along with the numerical simulation results,
we can clearly see the importance of considering a sparsity-enhanced prior for
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detecting faulty variance components. In addition, the proposed IHS+ prior can
provide significantly better fault detection performance as long as we had reason-
ably good domain knowledge of the multistage process. In practice, such empirical
knowledge is not difficult to obtain. Therefore, the proposed IHS+ prior model has
significant potentials for improving the variation source detection power especially
for solving undiagnosable variance identification problems.

2.6 Conclusion

Modern multistage manufacturing processes typically involve a lot of different
types of operations and a critical fault may occur anywhere in the complex multi-
stage process. Because the impact of a variation easily propagates to downstream
operations, it is crucial (at the same time, challenging) to efficiently identify the
source of variation. In this chapter, we proposed a variation source identification
method based on Bayesian random effects model. The proposed model introduces
a unique sparsity-enhanced prior called the informed horseshoe+ prior and it can
address the sparse nature of the variation source identification problem effectively.
In addition, the proposed method can incorporate the prior domain knowledge
into the model so that variation source identification can be done even for a com-
plex and undiagnosable system. We showed the promising performance of our
model through a series of numerical simulations and case study. We believe the
proposed approach can be used for a general variation component estimation based
on the linear mixed effects models. The proposed model can solve variation source
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detection problems in diverse manufacturing processes such as machining process.
The specific contributions of the proposed variation source identification method

are as follows: first, an innovative sparsity-enhanced prior distribution, the in-
formed horsesoe+, is established and integrated into the Bayesian random effects
model. In the literature, a few prior distributions for addressing the sparsity issue
already have been investigated. However, those existing priors are not directly
applicable to the variance component identification problem. Therefore, we pro-
posed the informed horseshoe+ prior distribution which significantly extends the
conventional horseshoe+ prior. Second, a Gibbs sampler specifically designed
for the proposed model is developed. Bayesian inference often suffers from the
heavy computational burden. Due to the multiple hierarchical structure of our
Bayesian random effects model, an efficient inference method was crucial to make
the variation source identification method feasible in practice. The proposed Gibbs
sampler decomposes the half Cauchy distributions into two hierarchical inverse
gamma distributions so that full conditional probability distributions can be easily
computed. Third, we demonstrated the importance of utilizing domain knowledge
about the specific process of our interest for solving a variation source identifica-
tion problem. Unlike the existing Bayesian inference methods that are available in
relevant literature, our approach provides a straightforward way of embedding
empirical domain knowledge into Bayesian inference procedure. Furthermore, we
investigated how the quality of empirical domain knowledge affect the performance
of variation source identification. To the best of our knowledge, there is no similar
study in current literature.
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In this chapter, one of the assumptions is that all process errors are independent.
However, in some manufacturing processes, the process errors might be correlated
to each other. If the correlation is strong, it may affect the fault detection results.
Estimating the true correlation structure is a very challenging task especially when
the manufacturing system has a complex multistage processes and it may demand
a new algorithm to achieve the goal. However, expanding our current method so
that it can incorporate correlated process errors might be an interesting research
topic. It should be also noted that the proposed model has been tested and vali-
dated mainly in the application of multistage panel assembly process. Although
the extensive numerical simulations have been conducted for a comprehensive
performance evaluation, a different application may require different parameter
specifications. Therefore, we plan to perform fault detection based on more types
of manufacturing system to highlight the generalizability of the proposed method.
We shall investigate along this line and report the results in the near future.
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appendix

2.A Proof of the Half Cauchy Distribution Equivalent

to two Inverse Gamma Distributions

As Wand et al. Wand et al. (2011) omitted the proof, we present the proof

σ ∼ C+ (ς)

is equivalent to

σ2|ν ∼ IG (0.5, 1/ν)

ν|ς2 ∼ IG
(
0.5, 1/ς2

)

Proof. The marginal probability distribution of σ2|ς2 is
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∫

P
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)
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)
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= 1

πς
(

1 +
(

σ
ς

)2
)

where, P (σ2|ν) and P (ν|ς2) are inverse gamma probability distribution of σ2 and ν,
respectively, and J is a Jacobian of the transformation from the variable σ2 to σ. ■

2.B Gibbs Sampling

The joint distribution

P (y) =
M∏

i=1
P
(
yi|σ2

ε , xi

)
P∏

k=1

{
M∏

i=1

{
P (xki|σk)

}
P (σk|ηk, τ) P (ηk)

}
P (τ |σε) P (σε)

is transformed into the one with the inverse gamma distributions.

P (y) =
M∏

i=1
P
(
yi|σ2

ε , {xki}
)

P∏
k=1

{
M∏

i=1

{
P
(
xki|σ2

k

) }
P
(
σ2

k|νk
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P
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P
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P (ζk)

}
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(
τ 2|ξ

)
P
(
ξ|σ2

ε

)
P
(
σ2

ε |ϕ
)

P (ϕ)

Based on the full joint distribution, the full conditional distributions for all the
variables are presented.
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1.
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{
x1i, . . . , x(k−1)i, x(k+1)i, . . . , xP i

}
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Proof.
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2.C Design Matrices of the Case Study

Process I

A =



1 0.7857 −0.7857 0 0 0 0 0 0 0 0

0 0 0 1 1.1 0 0 0 0 0 0

0 0.4011 −0.7857 0 0.3846 1 0.3846 −0.3846 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0.4011 −0.7857 0 0.3846 0 0.1215 −0.3846 0 0.2632 1


Process II
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A =



1 0.7857 −0.7857 0 0 0 0 0 0 0 0 0

0 0 0 1 1.1 0 0 0 0 0 0 0

0 0.4011 −0.7857 0 0.3846 1 0.3846 −0.3846 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 −1 −0.0957 0 0 1 0.4 −0.0957
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3 statistical modeling and analysis of k-layer

coverage of two-dimensional materials in inkjet

printing processes ∗

Two-dimensional layered materials/flakes, also known as crystalline atom-thick
layer nanosheets, have recently been receiving great attention in electronics fab-
rication due to their unique and intriguing properties. The k-layer coverage area
(i.e., the area covered by k number of overlapping layers) of the printed flake
pattern significantly impacts on the properties of the printed electronics. In this
work, we constructed a statistical model to describe the k-layer coverage of ran-
domly distributed two-dimensional materials. A series of results are obtained to
provide not only the expectation but also the variance of the coverage area. The
boundary effects on the random flakes coverage are also studied. In addition, an
approximated statistical testing approach is also developed in this work to detect
abnormal coverage patterns. The case studies based on simulated data and real
flakes images obtained from the inkjet printing process demonstrate the accuracy
and effectiveness of the proposed model and analysis methods.

∗This chapter is based on the paper: Lee, J., S. Zhou, and J. Chen (2021). Statistical modeling and
analysis of k-layer coverage of two-dimensional materials in inkjet printing processes. Technometrics,
63(3), 410–420. https://doi.org/10.1080/00401706.2020.1805020.
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3.1 Introduction

Two-dimensional layered materials, also known as crystalline atom-thick layer
nanosheets, have recently been receiving great attention in electronics fabrication
due to their unique and intriguing properties. Graphene, for example, has high elec-
tronic and thermal conductivity, optical transparency, and mechanical strength and
flexibility (Li et al., 2014). After the discovery of an exfoliation method of graphene
from graphite by Novoselov (2004), a large body of literature has been dealing with
graphene and its variants, such as graphene oxide, as well as other two-dimensional
materials, such as molybdenum disulfide (MoS2). The inkjet printing technique has
been gaining growing interests to fabricate electronics with these two-dimensional
materials (Sowade et al., 2016). Inkjet printing is an additive patterning technique
that deposits functional ink, which may contain two-dimensional materials as a
solute, through nozzles onto the substrates. Inkjet-printed graphene and its vari-
ants have shown promising opportunities in a wide range of applications (Li et al.,
2014), including sensors (Dua et al., 2010; Huang et al., 2011), wearable textiles (Li
et al., 2012), antennas (Shin et al., 2011), and memory (Huber et al., 2017).

This work is motivated by the recently developed field-effect transistor(FET)
sensors, which are used to detect the heavy metal ions in water (Chang et al.,
2019). The sensor is illustrated in Figure 3.1.1. In such a sensor, the flakes of two-
dimensional materials, namely rGO flakes, are inkjet-printed on the substrate. Two
electrodes, named drain and source, are put on the printed pattern. As the gate
voltage (denoted by Vg in the figure) is applied, the current between drain and
source can be measured. When the sensor is exposed to the water contaminated by
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heavy metal ions, the current between the drain and source will deviate from its
normal value.

Figure 3.1.1: Field-effect transistor sensor for heavy metal detection in water

The performance of the FET sensor is most significantly influenced by the
coverage and thickness (i.e., number of overlapping layers) of flakes on the area
between two electrodes. The FET sensor needs a high gap in the currents between
on and off states. This can be achieved when flakes cover more surface with less
flake overlap (Sui and Appenzeller, 2009). In the inkjet printing process, flakes
distribute randomly between the electrodes, and we cannot directly control them.
It is highly desirable to have a model to describe and analyze the randomness in the
coverage and the overlapping of randomly distributed two-dimensional materials.
With such a model, we can link the process parameters to the flake distribution
and predict the performance including both the sensitivity and repeatability of the
fabricated sensors. In addition, we can use the model to identify if the flakes are
uniformly distributed on the substrate, which is important for the process quality
control purposes.

The existing literature on the random two-dimensional flakes coverage cannot
address the practical needs in the inkjet-printing process. The study directly on the
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inkjet-printed pattern is mostly done based on the first principles. Researchers have
investigated the drying process based on the physical movements of particles
(Deegan et al., 1997; Fischer, 2002; Hu and Larson, 2006). The physics-based
research gives insights into flakes behaviors during the ink’s drying. However, the
works in this category do not deal with the statistical behavior of flake coverage.
The most widely-known statistical model for the random two-dimensional coverage
is the boolean model. The boolean model is based on the union set of every flake set
whose location and shape is random (Chiu et al., 2013). The area covered by one
or more layers is equally treated as covered, and the complement set as uncovered.
The boolean model is popularly used in the literature on the coverage of random
wireless sensor networks (Hsin and Liu, 2004; Liu et al., 2005; Liu and Towsley,
2003, 2004; Liu et al., 2005). There are two significant limitations of this model in
pursuit of our objective. (1) It cannot explain multi-layer coverage. We need a more
sophisticated model that can distinguish the thickness of the coverage because the
performance of the electronics differs with respect to different thicknesses. (2) Its
main focus is on the expectation of the coverage. To quantify the uncertainty in
the manufacturing process, the variance of coverage should also be modeled and
analyzed.

Some relevant literature can also be found in the application of randomly de-
ployed wireless sensor networks. Their main interest is the detectability of special
events such as wildfire by randomly deployed sensors. Many researchers have
studied this field (Hsin and Liu, 2004; Liu et al., 2005; Liu and Towsley, 2003, 2004;
Liu et al., 2005). However, it is hard to adopt these models because (1) fixed radius
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circular ranges are assumed, (2) only expectation is studied, (3) many works used
the boolean model; therefore, they cannot distinguish different thicknesses. In Wan
and Chih-Wei (2006), the authors studied the problem of a point/region being
covered by at least k sensors. However, the exact k-layer coverage problem is not
investigated. Furthermore, in their study, the coverage area of a single sensor is
assumed to be a circle with a fixed radius. However, in the problem we are facing,
flakes are randomly created from the ink fabrication process with different sizes
and shapes. As a result, their model cannot address our needs.

In this chapter, to fill this research gap, we establish a statistical model that
describes the uncertainties in the flakes dispersion and coverage with respect to
different levels of thicknesses, namely k-layer coverage fraction, of the printed pattern.
The flakes are defined by combining the uniformly distributed random locations and
random shapes. A series of analytic results are obtained providing the expectation
and variance of the coverage fraction with different thicknesses. The boundary
effects on the random flakes coverage are also studied. Based on this model, we
further propose a statistical testing method that detects the nonuniform printed
pattern. These proposed models and methods are tested and validated through
extensive numerical study and real flakes distribution images obtained from an
inkjet process.

The rest of the chapter is organized as follows. Section 3.2 introduces the inkjet
printing process and the relevant process parameters. Some basic assumptions on
the flake distribution based on the process physics are also introduced. Section 3.3
delineates the proposed random flakes model and the expectation and variance of
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the coverage fraction with different thicknesses. The statistical testing approach to
detect abnormal flake coverage is presented in Section 3.4. A numerical study that
validates the proposed model is presented in Section 3.5. The validation based on
the real flakes image is conducted in Section 3.6. Finally, we draw a conclusion and
discussion in Section 3.7.

3.2 Inkjet Printing and Basic Assumptions

The inkjet printing process consists of two separate steps: ink preparation and
inkjet printing. To provide the desired functionality, the ink is customized in the
ink preparation step by controlling the mass concentration and size of the flakes in
the ink (Figure 3.2.1(a)). First, two-dimensional material (e.g. graphene) flakes
are exfoliated from crystal (e.g. graphite) and dissolved into the solvent up to
the target mass concentration of the flakes in the ink. Then, the flakes sizes in
the ink are reduced up to the target size by controlling the exposure time to the
ultrasonic milling. The prepared ink is printed through the inkjet printer (Figure
3.2.1(b)). After the ink dries out, the dispersed flakes are left with a pattern,
providing functionality. The real image of a flake pattern printed by an inkjet
printer is presented in Figure 3.2.1(c) that is produced in He and Derby (2017).
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(a) (b) (c)

Figure 3.2.1: Two stages of two-dimensional material inkjet printing process are
described: (a) ink preparation process and (b) inkjet printing process. (c) An

image of the real pattern printed by an inkjet printer produced.

Table 3.2.1: Physical parameters
Symbol Definition

cF Mass concentration of the two-dimensional material flakes in the ink droplet
hF Height of the two-dimensional material flakes
ρF Density of the two-dimensional material flakes
VD Volume of the ink droplet
θc Contact angle of the ink droplet
RF Radius of the contact area of the ink droplet on the substrate

The critical parameters in the printing step are summarized in Table 3.2.1.
Among these parameters, hF and ρF are constant material properties. The vol-
ume of the droplet ejected from an inkjet printer, VD, can also be viewed as constant
because VD can be precisely controlled in a modern inkjet printing process (Singh
et al., 2010) at picoliter level. Once the droplet falls on the substrate, it forms a
spherical cap as shown in Figure 3.2.1(b). The contact angle θc is determined by
the combination of the ambient temperature and the material properties of the
substrate and droplet. The relationship among the droplet volume VD, contact
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angle θc, and radius of the contact area RF is given as (Picknett and Bexon, 1977)

VD = π

3 (1 − cos θc)2 (2 + cos θc)
(

RF

sin θc

)3
(3.1)

RF can be obtained given VD and θc from (3.1). The mass concentration of the
flakes in a droplet, cF , is defined by the mass of the flakes in the ink droplet divided
by the volume of the droplet. Due to the random dispersion of the flakes in the ink,
cF of different droplets are different. Thus, cF of a droplet should be viewed as a
random variable.

With E [cF ], we can derive the expected number of flakes in the droplet. Specifi-
cally, the mass of the flakes in the droplet is equal to the total summed sizes of flakes∑N

i=1 |Fi| multiplied by the height and density of the flakes, where |Fi| denotes the
area of ith flake and N is the number of flakes in the droplet; therefore, ∑N

i=1 |Fi| =

(cF VD) / (hF ρF ). Because the flake size |Fi| is an independent random variable from
each other and N , EN

[
E
[∑N

i=1 |Fi|
∣∣∣N]] = EN [N E [|Fi||N ]] = E [N ]E [|Fi|]. Then,

the expectation of the number of flakes, E [N ], is

E [N ] = E [cF ] VD

E [|Fi|] hF ρF

(3.2)

According to the physical principles of the inkjet printing process, we can have
the following three non-restrictive assumptions:

• Flakes are uniformly distributed within the printed pattern: from a large body
of literature, it is widely known that flakes are uniformly distributed when a
coffee-ring does not form (Fischer, 2002; He, 2016).
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• The number of flakes in a printed pattern is an independent Poisson random
variable: the number of points drawn from an area where the point event
occurrence follows the continuous uniform distribution is known to follow the
Poisson distribution. This assumption has been widely used in the literature.
For example, the number of printed cells in a printing process is known to
follow the Poisson distribution (Kim et al., 2016; Merrin et al., 2007).

• Flake shape and size are independent random variables from the other process
parameters: because the flake shape and size are determined before the
printing process, the flake shapes and sizes are independent random variables
from the other process parameters in the inkjet printing step.

The relationship in (3.2) and the above assumptions will be used in the following
k-coverage model.

3.3 k-Layer Random Coverage Fraction

3.3.1 Statistical Model of Flake Coverage

In this chapter, we propose a statistical flakes model that accounts for the random
coverage and thickness of flakes in terms of the expectation and variance of the
random coverage fraction. We consider random flakes. A flake Fi (i = 1, . . . , N)
has its center location ϕi uniformly distributed over SF ⊂ R2, and SF is the flake

space or printed space within which flakes are deposited. The number of flakes N is a
Poisson random variable with the parameter of mean E [N ]; thus, the flakes center
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locations (ϕ1, ϕ2, . . .) follow the Poisson process. The shape of the flake Fi is defined
by an independent and identically distributed (i.i.d.) random compact set, and the
size of the flake Fi is denoted by |Fi|. A rigorous definition of the random flakes is
included in Appendix 3.A.1. The definition of the random flakes is illustrated in
Figure 3.3.1.

𝐹1

𝐹2

𝐹𝑖
𝜙2

𝜙1

𝜙𝑖

𝐹3
𝜙3

Figure 3.3.1: Random flakes are considered. The random flakes’ center locations
are uniformly distributed, and their shapes are defined by random compact sets.

Our objective is to study the expectation and variation of the coverage fraction
that is covered by k layers of overlapping flakes, hereafter called k-layer coverage
fraction, deposited in the space SF . The k-layer coverage fraction, denoted by Ck, is
evaluated by measuring the thickness at every point in SF through the indicator
Tk (z) (k = 0, 1, . . .); Tk (z) is a random variable that is 1 if the point z ∈ SF is
covered by k layers of flakes or 0 otherwise. Conditioned on the point z, Tk (z) is a
Bernoulli random variable. Tk (z) is statistically dependent on Tk (w) for w ∈ SF .
Two points with a closer distance have a higher dependency because a near point
w is also likely to be covered by the same flake covering z. The k-layer coverage
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fraction, Ck, can be calculated as

Ck =
∫

z∈SF
Tk (z) dz∫

z∈SF
dz

(3.3)

We first introduce the expectation and variance of Ck under the absence of the
boundary effects in Section 3.3.2.1 and 3.3.2.2. In general, the flake distribution
close to the boundary of the printed area (i.e., the contact area of the droplet on
the substrate) is different from the distribution around the center of the area. Such
difference refers to the boundary effects. If the printed area is much larger than
the size of flakes, the boundary effects can be ignored. Otherwise, the boundary
effects may be significant. The boundary effects on the mean and variance of Ck

are considered in Section 3.3.3. The method to calculate the exact expectation and
variance with the random circular flakes is presented in Section 3.3.4. To make
the flow smooth, the details of the mathematical derivations of these results are
deferred to Appendix.

3.3.2 k-Layer Coverage Fraction Without Boundary Effects

3.3.2.1 Expectation of k-Layer Coverage Fraction

The expectation of k-layer random coverage fraction is obtained by evaluating
the thickness at every point over the space SF . The probability of any point z

being covered by any k flakes is the same over SF because every flake is uniformly
distributed; therefore, E [Ck] = E [Tk (z)]. Because Tk (z) is a binary random variable,
E [Tk (z)] = P [Tk (z)] where P [Tk (z)] is the probability that a point z is covered by
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exact k flakes. Then, E [Ck] is as follows.

E [Ck] = E [Tk (z)] = P [Tk (z)] = exp {−E [N ] p} (E [N ] p)k

k! (3.4)

where N is the number of flakes in SF following the Poisson distribution, and p is
the expected probability that a point z in SF is covered by a single random flake:

p = E
[

|Fi|
|SF |

]
(3.5)

We denote pi = |Fi|/|SF | as the probability that the flake Fi covers a point z (i.e.,
p = E [pi]). The result in (3.4) is obtained through deriving the probability that the
point z is covered by any k among N flakes. The detailed derivation of (3.4) can be
found in Appendix 3.B.1.

Point z is covered by the flake Fi when the flake’s center location ϕi is located
within a specific region, flip (Fi, z) ⊂ R2; flip (Fi, z) is defined as the region where
Fi is rotated by 180° and translated so that its center is on z (Figure 3.3.2(a)). Because
ϕi is uniformly distributed, the probability that ϕi is located within flip (Fi, z) is
|Fi| / |SF |, which does not rely on the flake center location ϕi nor the point z. The
rationale for using flip (Fi, z) is illustrated in Figure 3.3.2(b). For the flake Fi to
cover z, the distance between ϕi and z must be shorter than the distance between
ϕi and α that is the point where a line from ϕi crossing z meets the boundary of the
flake. Equivalently, if ϕi falls in between α′ and z, meaning ϕi is within flip (Fi, z),
z is covered by the flake. The mathematical definition of flip (Fi, z) can be found
in Appendix 3.A.2.
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𝐹𝑖

𝜙𝑖

USED

𝐳

𝕊𝐹

𝜙𝑖

𝐹𝑖

𝑓𝑙𝑖𝑝(𝐹𝑖 , 𝐳)

(a)

USED

𝜙𝑖

𝐹𝑖

𝐳

𝛼

𝛼′

𝑓𝑙𝑖𝑝(𝐹𝑖 , 𝐳)

(b)

Figure 3.3.2: (a) The event that a point z is covered by the flake Fi is equivalent to
the event that the center location ϕi is located within the dashed area, denoted by
flip (Fi, z) (point reflection of Fi whose center is on z). (b) Illustration of rationale

for using flip (Fi, z).

The expectation of Ck is in the form of the Poisson probability mass function
with its parameter E [N ] p. It is notable that E [Ck] does not depend on the individual
flake size or shape, but it is determined by E [N ] p = E

[∑N
i |Fi|

]
/ |SF |, which is the

relative total size of the flakes to the size of the printed pattern. This relative size
is proportional to the mass concentration of the flakes in the ink. In other words,
E [Ck] is determined by the mass concentration.

3.3.2.2 Variance of k-Layer Coverage Fraction

The variance of Ck is obtained through the spatial correlation, which is represented
by the covariance or the correlation coefficient, of the thickness at every pair of two
points in SF .

Var [Ck] = 1
|SF |2

{∫
z∈SF

∫
w∈SF

Cov [Tk (z) , Tk (w)] dw dz
}

(3.6)
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= Var [Tk (z)]
∫

z∈SF

∫
w∈SF

Corr [Tk (z) , Tk (w)] dw dz
|SF |2

≤ Var [Tk (z)] (3.7)

where Cov is covariance and Corr is correlation coefficient. The detailed mathemat-
ical derivations of (3.6), (3.7), and the following results regarding the variance can
be found in Appendix 3.B.2. Var [Ck] can be decomposed into two parts, Var [Tk (z)]

and the normalized integration of Corr [Tk (z) , Tk (w)]. Var [Tk (z)] can be found in
terms of E [Tk (z)] (presented in (3.4)): Var [Tk (z)] = E [Tk (z)] −E [Tk (z)]2, for any
z in SF . Therefore, Var [Tk (z)] does not rely on the individual flake shapes or sizes
but it relies on the total size of the flakes. In contrast, smaller flakes will produce
smaller correlations of the thickness at two different points (Corr [Tk (z) , Tk (w)]),
leading to a smaller variance of Ck. The upper-bound of Var [Ck] is Var [Tk (z)] by
setting Corr [Tk (z) , Tk (w)] = 1 for all z and w. However, this upper-bound is
generally not tight.

We can also obtain a more detailed expression of Cov [Tk (z) , Tk (w)] as

k∑
l=0

E [N ]2k−l pII(z, w)l {p − pII(z, w)}2(k−l)

l! {(k − l)!}2 exp {−E [N ] (2p − pII(z, w))} − E [Ck]2

(3.8)

where pII(z, w) = E [pII i(z, w)] is the expected probability that two points z and
w are covered by a single random flake, and pII i(z, w) = P [z ∈ Fi ∩ w ∈ Fi] is the
probability that the both points are covered by the same flake Fi, which can be
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written as

pII i(z, w) = |(flip (Fi, z)) ∩ (flip (Fi, w))|
|SF |

(3.9)

The basic idea to obtain (3.8) is that Cov [Tk (z) , Tk (w)] can be calculated with
the probability of an event that two points z and w are both covered by k flakes
(P [Tk (z) = 1, Tk (w) = 1]). This event can be divided into k + 1 mutually exclusive
collectively exhaustive subevents: both points z and w are covered by the l same
flakes (l = 0, 1, . . . , k) and by (k − l) layers with different flakes (Figure 3.3.3).

(a) (b) (c)

Figure 3.3.3: The event that two points are covered by k layers can be divided into
k + 1 mutually exclusive collectively exhaustive subevents: points z and w are

covered by the same l flakes and by k − l layers of different flakes. The subevent
when l = 2, k = 3 is illustrated in (a). Two points are covered by l layers with the

same flakes in (b) and by k − l layers with different flakes in (c).

The covariance of two different levels of coverage fractions Cov [Ck, Ch] can be
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calculated in a similar manner.

Cov [Ck, Ch] = 1
|SF |2

∫
z

∫
w

min(k,h)∑
l=0

E [N ]k+h−l pII(z, w)l {p − pII(z, w)}(k+h−2l)

l! {(k − l)!}2

× exp [−E [N ] {2p − pII(z, w)}] − E [Ck]E [Ch]dwdz

(3.10)

where Var [Ck] = Cov [Ck, Ck].
Notice that pII i(z, w) in (3.9) depends on the shape of the flakes. Consider,

for example, two different shapes of flakes, circle and ellipse, that have the same
size |Fi|. Then, because the sizes of the flakes are given the same, the major axis
of the elliptical flake is longer than the diameter of the circular flake. Therefore,
there will exist some points z and w that the circular flake cannot cover both
points (pII i(z, w) = 0) whereas the wider elliptical flake can cover the both points
(pII i(z, w) > 0).

In the following section, the expectation and variance of Ck with boundary
effects are presented.

3.3.3 k-Layer Coverage Fraction Considering Boundary Effects

The boundary effects can be ignored when the size of the printed region SF is
significantly larger than the flakes sizes. However, the boundary effect may not be
ignored when SF is not large compared to the sizes of the flakes.

The boundary of the ink droplet restricts whole flakes to be located within it,
which forces the flake center location ϕi to be placed in a smaller space Sϕi

⊂ SF .
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The mathematical definition of Sϕi
can be found in Appendix 3.A.3. This restriction

causes complications in the calculation of the mean and variance of k-layer coverage
fractions. This restricted flake center space is illustrated in Figure 3.3.4.

Figure 3.3.4: With the boundary condition, the center point space Sϕi
, where the

center point of flake Fi can be located, depends on the size of the flake.

With the boundary effects, the mean and variance of k-layer coverage fraction
presented in (3.4) and (3.10) still hold, but the parameter p (z) and pII(z, w) need
to be adjusted accordingly. Although p (z) is constant over the space SF when the
boundary effects are considered, p (z) relies on point z with the consideration of
boundary effects because of the restriction of Sϕi

. Now, flake Fi covers point z if the
flake’s center is located within Sϕi

∩ (flip (Fi, z)) among its possible position Sϕi
.

Thus, p (z) is

p (z) = E
[

|Sϕi
∩ (flip (Fi, z))|

|Sϕi
|

]
(3.11)
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Similarly, pII (z, w) is as follows.

pII (z, w) = E
[

|Sϕi
∩ (flip (Fi, z)) ∩ (flip (Fi, w))|

|Sϕi
|

]
(3.12)

3.3.4 k-Layer Coverage Fraction for Circular Flakes

3.3.4.1 k-Layer Coverage Fraction Without Boundary Effects

Calculation of Var [Ck] involves pII(z, w), which relies on the shape of the flakes. In
this section, we show how to calculate pII(z, w) based on the random sized circular
flakes; the random radius is denoted by ri, and its probability density function is
denoted by f (ri). The robustness of the outcome with respect to different flake
shapes are presented in the numerical study.

With circular flakes, now, |(flip (Fi, z)) ∩ (flip (Fi, w))| in (3.9) reduces to
|D(z, ri) ∩ D(w, ri)| where D(z, ri) = {x | ∥x − z∥ ≤ ri} is a circular disc whose
radius is ri and center is on z. Now, |D(z, ri) ∩ D(w, ri)| can be found in a closed
form (shaded area in Figure 3.3.5). Therefore, p = E [pi] and pII(z, w) = E [pII i(z, w)]

can be obtained as follows.

p = r2

R2
F

(3.13)

pII(z, w) = 1
|SF |

∫ ∞

r= d
2

f (r)

2r2 cos−1 d

2r
− d

√
r2 − d2

4

 dr (3.14)
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Figure 3.3.5: A circular flake covers both points z and w if and only if the center of
the flake (square dot, ϕi) is located within the overlap of D(z, ri) and D(w, ri)
(shaded area) where D(z, ri) is a circular disc whose center is z with radius ri.

3.3.4.2 k-Layer Coverage Fraction With Boundary Effects

With the boundary effects, to calculate p (z) and pII(z, w), a complex geometrical
relationship needs to be considered: Sϕi

∩ (flip (Fi, z)) and Sϕi
∩ (flip (Fi, z)) ∩

(flip (Fi, w)). To make the problem tractable, we propose an approximation method
to estimate p (z) and pII(z, w) by reducing the space to be evaluated.

We want to study E [Ck] and Var [Ck] over a reduced space Se, namely evaluation

space. In particular, we want to precisely estimate p (z) and pII(z, w) for E [Ck] and
Var [Ck] while losing the least amount of information on the coverage. We specify
Se as follows.

Se = {z|P (∥z∥ > RF − 2ri) ≤ ε} (3.15)

where ε is a very small number, and ∥·∥ is the Euclidean distance from the origin.
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We used 0.001 for ε for this work. Under Se, pi (z) is approximated as follows.

pi (z) ≈ p̃i = |Fi|
|Sϕi

|
(3.16)

Figure 3.3.6 shows pi values with respect to different ∥z∥. When z falls in
∥z∥ ≤ Rci

= RF − 2ri, pi is constant as p̃i, and as ∥z∥ surpasses Rci
, pi diminishes to

zero at RF . Therefore, all the points z ∈ Se, will be exactly evaluated by the true
value p̃i with the probability of 1 − ε (Figure 3.3.6(a)). When the flake radius is
very large, some points z where Rci

≤ ∥z∥ ≤ Re have pi smaller than p̃i with a small
chance ε (Figure 3.3.6(b)). Therefore, p (z) will be slightly overestimated. pII(z, w)

is also calculated similarly.

(a) pi is constant within ∥z∥ < Re

when the flake radius is small and ri ≤
0.5 (RF − Re)

(b) pi reduces within ∥z∥ < Re as ∥z∥
increases when the flake radius is large
and ri > 0.5 (RF − Re)

Figure 3.3.6: The probability that a point is covered by k layers of flakes is affected
by the boundary effect.

Then, p (z) and pII(z, w) can be obtained as follows.

p (z) =
∫ RF /2

r=0

{
r2

(RF − r)2

}
f (r) dr +

∫ ∞

RF /2
f (r) dr (3.17)
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pII(z, w) =
∫ RF /2

r=0

{
|D(z, r) ∩ D(w, r)|

(RF − r)2

}
f (r) dr +

∫ ∞

RF /2
f (r) dr (3.18)

where D(z, r) is a circular disc whose center is on z with radius r, and
|D(z, r) ∩ D(w, r)| = 2r2 cos−1 (d/2r) − d

√
r2 − d2/4.

This method provides a quite accurate approximation of the k-coverage fractions
with the boundary effects. Its accuracy is validated in the numerical studies.

3.4 Statistical Testing for Nonuniform Coverage

Patterns

The expectation and variance of coverage fraction we have derived are based on
the assumption that the flake center points (ϕ1, ϕ2, . . .) are uniformly distributed.
Therefore, when the flakes are no longer distributed uniformly, the distribution of
Ck, along with E [Ck] and Var [Ck], changes. Based on this property, we provide a
statistical testing method to detect the nonuniform patterns based on the k-layer
coverage fraction Ck evaluated from the real image. In the inkjet printing process,
some combination of unfavorable process conditions may lead to a “coffee-ring"
effect: most of the flakes will be clustered around the boundary of the printed region.
Such an effect is very detrimental to the sensor performance, and we want to detect
such a condition when it happens. Furthermore, due to the overlapping of flakes, it
is generally very difficult to measure the center locations of the flakes from images.
Thus, the flake center locations are not available to assess the flake distribution.
Instead, Ck is generally obtainable from images. Therefore, the proposed method
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of testing the flake distribution based on Ck is very useful.
The hypothesis testing is based on the fact that Ck approximately follows the

normal distribution. Billingsley (1995) showed that the summation of the asso-
ciated Bernoulli random variables in a sequence follows the normal distribution
asymptotically as the number of the random variables goes to infinity when the
random variables far apart from each other in the sequence are nearly independent.
This condition corresponds to the coverage fractions: Ck =

∫
z∈SF

Tk (z) / |SF | is the
integration of the Bernoulli random variable Tk (z) that has a nonzero correlation
with Tk (w) if z and w are close but has a nearly zero correlation when z and w

are distant due to the limitations in the flake sizes. In particular, as the correlation
between two points lessens, the variances of the coverage fractions diminish, and
the distribution of the coverage fractions gets closer to the normal distribution.

When the variance of Ck is large, however, its distribution may be discrepant
from the normal. According to the previous analysis, we know larger flakes induce
a larger variance of coverage fractions. Because flakes must be deposited through
the inkjet printer nozzle, there exists a limitation in the size of printable flakes,
relative to the size of the droplet. As a result, we can examine the distribution of the
Ck in the worst-case scenario, when Ck has the largest variance. The largest printed
flakes given nozzle sizes are investigated in He and Derby (2017). According to
their study, we simulated flakes with E [r] = 17.95, Sd [r] = 11.6, E [N ] = 122.1, and
RF = 180 for the worst-case scenario with 1,000 repetitions where Sd stands for the
standard deviation. The histogram of the zero- and single-layer coverage fractions
simulated based on the given parameters are Figure 3.4.1, and they are well fitted
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to the normal distribution. As the variances of the coverage fractions reduce, the
coverage fractions fit better to the normal distribution.

(a) Histogram of C0 (b) Histogram of C1 (c) Histogram of C2

Figure 3.4.1: The histograms of C0 (left), C1 (center), and C2 (right) based on the
simulated data suggest that they fit well to the normal distribution.

With the normal approximation of the distribution of Ck, a χ2 test can be es-
tablished. A vector of the multiple layer coverage fractions from zero- to (m-1)-
overlapping flakes is defined by Cm = (C0, C1, . . . , Cm−1)T with its mean E [Cm] =

(E [C0] ,E [C1] , . . . ,E [Cm−1])T , which are calculated through (3.4). The covariance
matrix, ΣCm where its kth diagonal component is Var [Ck] and its (k, h) element is
Cov [Ck, Ch], is calculated through (3.8) and (3.10). Then, the proposed statistic Qm

is as follows.

Qm = (Cm − E [Cm])T Σ−1
Cm

(Cm − E [Cm]) ∼ χ2
m (3.19)

Qm follows the chi-square distribution with the degree of freedom m. m can be
selected based on how many layers are distinguishable in the image. Because many
electronics require a low number of overlapping layers, m may not need to be large.
We would like to mention that χ2

m distribution approximates Qm very well. In
the aforementioned worst-case, the false alarm probability of the test from the
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simulated data with 5,000 iterations is 0.049 when we use χ2
1−0.05,m as the critical

value of the test. The actual false alarm probability is very close to the nominal
value of 0.05.

The statistical testing can be performed as follows. First, E [Cm] and ΣCm are
calculated from (3.4), (3.8), and (3.10) with the printing parameters. Based on
the image resolution, m, the number of distinguished layers from the image is
determined. The upper control limit of the testing is set as χ2

1−α,m where 1 − α is
the specified confidence level. Then, the coverage fractions Ck, k = 0, . . . , m − 1, are
measured from the printed pattern. When Qm is larger than the upper control limit,
the printed pattern is identified as nonuniform. Once Qm is larger than the control
limit, we know that the flakes are not uniformly distributed (with a probability of
1-(p-value)). This is because if the flakes were uniformly distributed, the mean and
variance of the coverage fractions would be the same as the theoretical ones, and
Qm would not be significantly large under the chi-square distribution.

Figure 3.4.2 illustrates the implementation procedure to facilitate utilizing the
results in this work. In Figure 3.4.2, the decisions that users need to make are
represented by the boxes with dashed-line boundaries, and the other processes
are represented by the boxes with solid-line boundaries. The main outcome of our
work consists of two parts: the mean and covariance of the flake coverage fractions
and the uniformity statistical testing. The process of obtaining the outcomes of the
flake coverage model is represented by the white boxes. The uniformity statistical
testing process is represented in the grey boxes.
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1) Obtain the inkjet printing process parameters

2) Obtain 𝐸[𝑁] from Eq. (2)

3) Does boundary effects need to be considered?

· 𝑝(𝒛) from Eq. (13)
· 𝑝𝐼𝐼 𝒛,𝒘 from Eq. (14)

4-1) Is circular flake 
shape assumed?

4-2) Is circular flake 
shape assumed?

6) Obtain 
· 𝐸[𝐶𝑘] from Eq. (4)
· 𝐶𝑜𝑣[𝐶𝑘 , 𝐶ℎ] from Eq. (10)

9) Obtain 𝑸𝑚 from Eq. (19)

7) Determine the number of 
layers to consider: 𝑚

8) Obtain 𝑪𝑚 = 𝐶0, … , 𝐶𝑚−1
𝑇

from a printed pattern image

10) Is 𝑸𝑚 > 𝜒1−𝛼
2 ?

Non-uniform

Uniform

· 𝑝(𝒛) from Eq. (5)
· 𝑝𝐼𝐼 𝒛,𝒘 from Eq. (9)

· 𝑝(𝒛) from Eq. (17)
· 𝑝𝐼𝐼 𝒛,𝒘 from Eq. (18)

· 𝑝(𝒛) from Eq. (11)
· 𝑝𝐼𝐼 𝒛,𝒘 from Eq. (12)

No

Yes

Flake Coverage ModelDecision by users Uniformity Statistical Testing

Yes

No

Yes

No

Yes

No

5) Obtain

11) The pattern is 

V7

Figure 3.4.2: Summary of the implementation procedure

3.5 Numerical Study

In this section, the robustness of our proposed method is validated with different
shapes of flakes (circle, ellipse, and rectangle) in various parameter settings. The
parameter settings for the cases are shown in Table 3.5.1. For each case, we change
one set of parameters (baseline case) to a higher level (Settings 1) or a lower level
(Settings 2) while the other parameters are fixed.

Four parameters are selected to vary: (1) size of the flakes: mean and standard
deviation of flake sizes (E [|F |] and Sd [|F |]) are varied. The baseline is where
E [|F |] = 98.17 and Sd [|F |] = 117.87 (which is when E [r] = 5 and Sd [r] = 2.5 of
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Table 3.5.1: Summary of the parameters used in the numerical study

Case Parameter Parameter Values Table Index
Baseline Setting 1(H) Setting 2(L) No Boundary Boundary

(i) E [|F |] 98.17 392.70 3.93 Table A.3 Table A.8Sd [|F |] 117.87 471.47 4.71
(ii) E [N ] p 1 1.5 0.5 Table A.4 Table A.9
(iii) RF 150 200 100 Table A.5 Table A.10
(iv) Ratio(r) 0.5 0.7 0.3 Table A.6 Table A.11

circular flakes). They are changed into a high level (E [|F |] = 392.70 and Sd [|F |] =

471.47 where E [r] = 10 and Sd [r] = 5 of circular flakes) and a low level (E [|F |] =

3.93 and Sd [|F |] = 4.71 where E [r] = 1 and Sd [r] = 0.5 of circular flakes). (2)
Flakes mass concentration: E[N ]p, indicating the flakes mass concentration, is
increased to 1.5 and reduced to 0.5. (3) Radius of the flake space: we considered a
circular flake space with radius of RF = 150, which is changed to 200 and 100. (4)
Ratio of radius: the shapes of elliptical and rectangular flakes have varied. Ratio(r),
the ratio between two axes of ellipse and rectangle (ratio between minor and major
axes in an ellipse and ratio between width and length in a rectangle) is varied.

For each setting, we conducted the analysis both with and without the boundary
effects. The outcomes from the simulation with three different flakes shapes (circle,
ellipse, and rectangle) are presented along with the results calculated from the
equations proposed in Section 3.3.4. The simulations are conducted with 1,000
iterations. Because of the page limit, the detailed results are presented as tables in
Appendix 3.C. The table indexes can be found in Table 3.5.1. From the numerical
study results, we can observe the following characteristics:

1. The analytical results obtained in this chapter (based on Equations (3.4) and
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(3.8)) fit the simulation results very well. The expectations of the coverage
fractions show little discrepancies among different shapes of flakes, and the
outcomes based on our proposed equations are consistent with the simulated
results. The flake shapes seldom affect the results. The standard deviations
of the coverage fractions show larger differences than the expectations, but
the discrepancies are still small. We can conclude that the expectation and
standard deviation of the coverage fractions are robust to the flake shapes.

2. Without boundary effects, E [C0] and E [C1] are only determined by E[N ]p. A
larger mass concentration (indicated by large E[N ]p) reduces the uncovered
area. On the contrary, Sd [C0] and Sd [C1] are mainly affected by the relative
size of the flakes to that of the printed pattern (E [|Fi|] / |SF |) as shown in
Figure 3.5.1.

0

0.01

0.02

0.03

0.04

0.05

Sd[C0] Sd[C1] 𝐸 𝐹 / 𝑆𝐹

Figure 3.5.1: Changes in Sd [Ck] , k = 0, 1

3. The impact of the boundary effects on C0 can be observed. E [C0]s are smaller
when the boundary effects are considered in comparison to those without
boundary effects. Especially, larger flakes show a large difference of E [C0].
With the boundary effects, larger flakes tend to gather inside the flake space,
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leading to a reduction of E [C0]. Inversely, a larger pattern size (larger radius of
the printed pattern RF ) narrows the impacts of the boundary effects, meaning
that a large printing area reduces the effects of the boundary. In general, as the
flake sizes get smaller and as the size of the printed pattern RF gets large, our
proposed approximation method that considers the boundary effects becomes
more accurate. Overall, E [C0] from the analytical equation (3.4) are smaller
than those from the simulations. This is because we slightly overestimate the
probability of a point being covered by a random flake.

3.6 Validation With Real Inkjet-Printed Flake Images

In this section, we show that the proposed model well describes the real flakes
patterns produced by inkjet printing process, and the statistical testing scheme can
detect nonuniform patterns. A flakes image is a surface topology image scanned
by focused electron beams in the micrometer scale (also known as an SEM image).
The original images are adopted from He and Derby (2017) and He (2016) with
permission.

Six real images are presented in Figure 3.6.1. These are complete images of the
dried droplets obtained from the inkjet printing processes. The physical parameters
obtained from the printing process are summarized in Table 3.6.1 (He (2016)).
Figure 3.6.1(a)-(c) show three uniform patterns, and Figure 3.6.1(d)-(f) show three
nonuniform patterns that are widely known as the coffee-ring effect. When the
coffee-ring appears, flakes are pushed forward and deposited near the boundary
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of the droplet; therefore, white blanks form in the center of the dried pattern.
The coffee-rings in Figure 3.6.1(d)-(e) are quite subtle to observe without careful
attention; thus, we marked the center of the images to highlight the coffee-ring
effects. In Figure 3.6.1(d)-(f), large portions of white blanks are clearly observed
in the center of the dried droplet. Additional information on these images are
presented in Appendix 3.D.1.

Table 3.6.1: Physical parameters
E [cF ] hF ρF VD θc

0.5 mg/ml 1.0 nm 2200 mg/ml 0.77 nL 9.6 °

To conduct the statistical testing, the zero- and single-layer coverage fractions, C0

and C1, are extracted from the real images as follows. First, the brightness values of
the pixels inside the grey-scale image are plotted as a histogram (Figure 3.6.2). From
the histogram, we can decide the cut-off brightness dividing each layer coverage.
We used a heuristic method to determine the cut-off thresholds in this work, and the
procedure is presented in Appendix 3.D.2. The proportions of zero- and single-layer
coverage are obtained accordingly.

0 0.2 0.4 0.6 0.8 1
0

5

Figure 3.6.2: Histogram of the brightness of every pixel in the real inkjet-printed
pattern image shown in Figure 3.6.1(a). Cut-off values for zero- and single-layer

coverage are presented as vertical dashed lines.
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(a) µr = 17.95µm,σr = 11.6µm (b) µr = 10.85µm, σr = 7.9µm (c) µr = 3.55µm, σr = 4.5µm

(d) µr = 1.85µm, σr = 1.9µm (e) µr = 0.9µm, σr = 2.15µm
(f) µr = 0.475µm, σr =
0.225µm

Figure 3.6.1: Real images of the patterns printed by inkjet printer.

The extracted zero- and single-layer coverage fractions are presented in Table
3.6.2. In the table, E [r] and Sd [r] are the expectation and standard deviation of the
radius of the flakes, which are provided in He and Derby (2017) and He (2016).
The reduced space Se is evaluated to deal with the boundary effects. C0 and C1

are the coverage fractions measured from the images. E [Ck] and Sd [Ck] are the
expectation and standard deviation of the k-layer coverage fraction Ck calculated
by Equations (3.4) and (3.8), and Cov [C0, C1] is the covariance between C0 and C1

calculated by Equation (3.10). The chi-square statistics Q2 calculated by Equation
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Table 3.6.2: Case study outcome calculated by (3.4), (3.8), and (3.10) for the real
images in Figure 3.6.1. For each printed pattern, statistical proportion test is

conducted.
E [r] Sd [r] C0 C1 E [C0] E [C1] Sd [C0] Sd [C1] Cov [C0, C1] Q2 p-value
17.95 11.6 0.0977 0.2268 0.0773 0.1979 0.0542 0.0732 0.0028 0.18 0.9161
10.85 7.9 0.1039 0.2739 0.1041 0.2355 0.0414 0.0480 0.0015 1.39 0.499
3.55 4.5 0.1962 0.352 0.1081 0.2405 0.0460 0.0528 0.0021 4.49 0.1058
1.85 1.9 0.1451 0.353 0.1556 0.2895 0.0144 0.0122 0.0001 91.92 1.1×10−20

0.9 2.15 0.125 0.659 0.1002 0.2305 0.0590 0.0712 0.0037 152.52 7.6×10−34

0.475 0.225 0.217 0.5922 0.1768 0.3063 0.0010 0.0008 0 132,603 0

(3.19) are presented, followed by their p-values.
Based on the statistical testing, the images in Figure 3.6.1(a)-(c) are identified

uniformly distributed with p-values larger than 0.1 while the images in Figure
3.6.1(d)-(f) are considered as nonuniform patterns with p-values less than 0.01.
The case studies show that our proposed method can effectively catch the subtle
nonuniformities of the pattern images.

The validation based on the real images suggests our proposed statistical model
and the testing methods fit well with real data and can identify the nonuniform
flakes dispersion pattern.

We would like to mention that the physical size of the images needs to be
large enough to include a sufficient number of printed flakes. If an image is too
small and includes only a limited number of flakes, the variance of the coverage
fractions would be significantly large, and it will lead to a lower ability to identify
the nonuniform patterns (i.e., a lower hypothesis testing power).
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3.7 Conclusion

In this work, we constructed a statistical model to describe the k-layer coverage of
randomly distributed two-dimensional materials. A series of results are obtained to
provide not only the expectation but also the variance of coverage area. Compared
with existing results, the proposed model considers the coverage with multiple
overlapping layers and also provides the variance of the coverage area. To make our
model more useful, boundary effects are also studied. With the boundary effects,
a method to accurately evaluate the expectation and variance of k-layer coverage
within a certain region is proposed. In addition, an approximated statistical testing
approach is developed in this work to detect abnormal coverage patterns. The
case studies based on the simulated data and real flake images obtained from the
inkjet printing process show the accuracy and effectiveness of the proposed model
and analysis methods. We expect the proposed model to be used to predict the
functionality of the printed electronics and control the variability. The proposed
statistical model may also be used in different applications. For example, our model
can be used to describe the overlapping random coverage for the random wireless
sensor network. Our proposed model can provide the prediction and quantification
of variation where the detection ranges of the sensors are random.

We would like to mention that sometimes SEM image data might be expensive so
that we may not be able to use these images for real-time quality control. However,
even though the SEM image data are expensive, SEM images (or similar imaging
data) are commonly available in modern microelectronic manufacturing processes,
and these images can certainly be used for offline inspection and root cause analysis.
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There are some interesting possible future directions. To calculate the variance
of the coverage fractions in the integration, the circular shape of flakes was assumed
in this work. However, if the flake shapes are far from circles, the result may not
be sufficiently accurate. We can improve the accuracy of this model by using the
observed flake shapes from the flake images directly onto the flake size and pII(z, w)

estimations. For a more accurate estimate of the expected flake size, practitioners
may use the flake images of patterns printed with diluted inks so that every flake
is distinct and store the set of shapes of the flakes. Then, the mean flake size can
be estimated based on the exact shape of the flakes, and accurate pII(z, w) may be
estimated based on the observed shapes of flakes. Another possible direction of
studying pII(z, w) would be the field of stochastic geometry, which has studied
many aspects of the random geometry behaviors, including the boolean model. We
plan to study these issues and report them in the future.
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appendix

3.A Mathematical Definitions

3.A.1 Mathematical Definition of Random Flakes

Each flake Fi is defined by a combination of its center point/location ϕi and its
shape Ξi.

Fi = ϕi + Ξi = {ϕi + s|s ∈ Ξi} (3.20)

The locations {ϕ1, ϕ2, . . .} follow a point process where every point is uniformly
distributed in SF ⊂ R2 where SF is the flake space or printed space within which
flakes are deposited. The shape of the ith flake, denoted by Ξi, is defined by an
independent and identically distributed (i.i.d.) random compact set Ξi ⊂ R2 whose
center is on the origin. |Ξi| = |Fi| is the size of the flake.

A random compact set is a random variable that has a compact set as a value.
The definition of a random compact set can be found in Molchanov (2005, 2006): A
random compact set is a random closed set X with almost surely compact values.
A random closed set is a map X : Ω → F from a probability space (Ω, Σ, P ) to
the family F of closed subsets of a locally compact separable Hausdorff space E if
{X ∩ K ̸= ∅} ∈ Σ for every K from the family K of compact subsets of E.
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3.A.2 Mathematical Definition of flip (·, ·)

flip (Fi, z) is defined by z+Ref (Ξi) where Ref (Ξ) = {(x, y)|(−x, −y) ∈ Ξ} is a point
reflection function that returns the point reflection of the given geometry.

3.A.3 Mathematical Definition of Sϕi

The restricted space in which the center point ϕi of flake Fi can be located, denoted
by Sϕi

, is defined by Sϕi
:= {c|c + Ξi ⊂ SF , c ∈ SF } ⊂ SF .

3.B Detailed Derivation of the Main Results

3.B.1 Expectation of k-Layer Coverage Fraction

A detailed derivation of the expectation of the k-layer coverage fraction E [Ck] is
described. First, we show E [Ck] = E [Tk (z)] based on that any point z in SF is
covered by a random flake with the same probability.

E [Ck] = E
[∫

z∈SF
Tk (z) dz∫

z∈SF
dz

]
=
∫

z∈SF
E [Tk (z)] dz
|SF |

(3.21)

= E [Tk (z)] (3.22)

where Tk (z) is a random variable that is one if point z is covered by k layers of
flakes, or zero, otherwise. By the law of total expectation, E [Ck] = E [E [Ck|N ]]. We
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first derive E [Ck|N ].

E [Ck|N ] = E [Tk (z)|N ] = E{pi} [E [Tk (z)|N, {Fi}] ] (3.23)

= E{pi} [P [Tk (z) = 1|N, {Fi}] ] (3.24)

= E{pi}

 ∑∑
i

xi=k

N∏
i=1

pi
xi (1 − pi)1−xi

 (3.25)

=
∑∑
i

xi=k

N∏
i=1

E [pi]xi (1 − E [pi])1−xi (3.26)

=
(

N

k

)
pk (1 − p)N−k (3.27)

where p = E [pi]. E [Tk (z)] = P [Tk (z)] because Tk (z) is a Bernoulli random variable
conditioned on z. The main idea is pi = |Fi| / |SF |, the probability that a point
is covered by the flake Fi, is an independent random variable because |Fi| is an
independent random variable. When the number of printed flakes N follows the
Poisson distribution with mean E [N ], E [Ck] can be written as follows.

E [Ck] = EN [E [Ck|N ]] =
∞∑

N=k

E [N ]N exp (−E [N ])
N !

N !
k! (N − k)!p

k (1 − p)N−k (3.28)

= (E [N ] p)k exp (−E [N ])
k!

∞∑
N=k

{E [N ] (1 − p)}N−k

(N − k)! (3.29)

= exp (−E [N ] p) (E [N ] p)k

k! (3.30)
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3.B.2 Variance of k-layer Coverage Fraction

Var [Ck] can be represented in terms of Cov [Tk (z) , Tk (w)].

Var [Ck] = Var
[∫

z∈SF
Tk (z) d z∫

z∈SF
d z

]
(3.31)

= 1
|SF |2

{
E
[(∫

z∈SF

Tk (z) d z
)2
]

− E
[∫

z∈SF

Tk (z) d z
]2
}

(3.32)

= 1
|SF |2



∫∫

z,w∈SF

E [Tk (z) Tk (w)] d wd z


2

−
∫∫

z,w∈SF

E [Tk (z)]E [Tk (w)] d wd z


(3.33)

= 1
|SF |2

∫
z∈SF

∫
w∈SF

Cov [Tk (z) , Tk (w)] d wd z (3.34)

Further, by definition, (3.34) is the same as

Var [Tk (z)]
|SF |2

∫
z∈SF

∫
w∈SF

Corr [Tk (z) , Tk (w)] d wd z (3.35)

For Cov [Tk (z) , Tk (w)] = E [Tk (z) Tk (w)] − E [Tk (z)]E [Tk (w)], we need
E [Tk (z) Tk (w)], which can be obtained based on the law of total expectation:
E [Tk (z) Tk (w)] = E [E [Tk (z) Tk (w)|N ]]. Because both Tk (z) and Tk (w) are bi-
nary variables that have zero or one as values, the event of interest is {Tk (z) =

1 ∩ Tk (w) = 1} and E [Tk (z) Tk (w)|N ] = P [Tk (z) Tk (w)|N ]. This event can be
divided into k + 1 mutually exclusive collectively exhaustive subevents: both points
z and w are covered by the l same flakes and by (k − l) layers with different flakes,
(l = 0, 1, . . . , k) where, for each flake, points z and w are both covered by the same
flake with probability pII i(z, w) = P [z ∈ Fi ∩ w ∈ Fi] and pII(z, w) = E [pII i(z, w)].
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E [Tk (z) Tk (w)|N ] can be written as follows.

E [Tk (z) Tk (w)|N ] = E [E [Tk (z) Tk (w)|N, {Fi}]|N ] (3.36)

= E [P [Tk (z) = 1, Tk (w) = 1|N, {Fi}]|N ] (3.37)

= E


∏

|{i}|=l

pII i(z, w)
∏

|{j}|=k−l
j ̸=i

pI j(z, w)
∏

|{h}|=k−l
h̸=i
h̸=j

pI h(z, w)
∏
v ̸=i
v ̸=j
v ̸=h

p∅v(z, w)

 (3.38)

=
k∑

l=0

N !
l! (N − l)!pII(z, w)l (N − l)!

{N − l − 2 (k − l)}! {(k − l)!}2 pI(z, w)2(k−l) p∅(z, w)N−l−2(k−l)

(3.39)

=
k∑

l=0

N !
l!(k − l)!2 {N − 2k + l}!

pII(z, w)l {p − pII(z, w)}2(k−l) {1 − 2p + pII(z, w)}N−2k+l

(3.40)

where pII i(z, w) is the expected probability that points z and w are both covered
by the flake Fi, and pI i(z, w) = p − pII i(z, w) and p∅i

(z, w) = 1 − 2p + pII i(z, w) are
the probabilities that one of the points is covered and that none of them is covered
by the flake Fi, respectively, and those without subscript i are the expectations of
them. (e.g., pII(z, w) = E [pII i(z, w)]).

Given that N is a Poisson random variable, E [Tk (z) Tk (w)] can be written as
follows.

E [Tk (z) Tk (w)] = E [E [Tk (z) Tk (w)|N ]] (3.41)

=
∞∑

N=k

E [N ]N exp (−E [N ])
N ! P [Tk (z) = 1, Tk (w) = 1|N ] (3.42)
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= exp (−E [N ])
k∑

l=0

∞∑
N=k

E [N ]N

l!(k − l)!2 {N − 2k + l}!
pII(z, w)l {p − pII(z, w)}2(k−l)

× {1 − 2p + pII(z, w)}N−2k+l

(3.43)

= exp (−E [N ])
k∑

l=0

E [N ]2k−l

l!(k − l)!2
pII(z, w)l {p − pII(z, w)}2(k−l)

×
∞∑

N=k

{E [N ] (1 − 2p + pII(z, w))}N−2k+l

{N − 2k + l}!

(3.44)

=
k∑

l=0

E [N ]2k−l pII(z, w)l {p − pII(z, w)}2(k−l)

l! {(k − l)!}2 exp {−E [N ] (2p − pII(z, w))} (3.45)

Var [Ck] can be obtained byVar [Ck] =
∫

z∈SF

∫
w∈SF

E [Tk (z) Tk (w)]−E [Tk (z)]2 dwdz/|SF |2.
Cov [Ck, Ch] can be obtained in a similar manner through ∫z∈SF

∫
w∈SF

E [Tk (z) Th (w)]−

E [Tk (z)]E [Th (w)] dwdz/|SF |2. Now, the event of interest is {Tk (z) = 1 ∩ Th (w) = 1},
which also can be divided into (min (k, h)+1) mutually exclusive collectively exhaus-
tive subevents: both points z and w are covered by the l same flakes while z is cov-
ered by (k − l) and w by (h − l) layers with different flakes, and l = 0, 1, . . . , min (k, h).
Following the same derivation process of Var [Ck], Cov [Ck, Ch] can be written as fol-
lows.

1
|SF |2

∫
z

∫
w

min(k,h)∑
l=0

E [N ]k+h−l pII(z, w)l {p − pII(z, w)}(k+h−2l)

l! {(k − l)!}2

× exp [−E [N ] {2p − pII(z, w)}] − E [Ck]E [Ch]dwdz

(3.46)
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3.C Detailed Outcome of Numerical Study

In this section, we include the detailed outcome of the numerical studies. The
parameter settings for the cases are shown in Table 3.C.1. For each case, we change
one set of parameters (baseline case) to a higher level (Settings 1) or lower level
(Settings 2) while the other parameters are fixed.

Table 3.C.1: Summary of parameters used in the numerical study

Case Parameter Parameter Values Table Index
Baseline Setting 1

(Large)
Setting 2
(Small) No Boundary Boundary

(i) E [|F |] 98.17 392.70 3.93 Table 3.C.3 Table 3.C.8Sd [|F |] 117.87 471.47 4.71
(ii) E [N ] p 1 1.5 0.5 Table 3.C.4 Table 3.C.9
(iii) RF 150 200 100 Table 3.C.5 Table 3.C.10
(iv) Ratio(r) 0.5 0.7 0.3 Table 3.C.6 Table 3.C.11

The comparison of the expectation and standard deviation of the zero- and
single-layer coverage fractions (C0 and C1) between the baseline and the first setting
(i.e., high setting) is presented in Figure 3.C.1 and 3.C.2, respectively.
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(a) E [C0] without boundary effects (b) Sd [C0] without boundary effects

(c) E [C0] with boundary effects (d) Sd [C0] with boundary effects

Figure 3.C.1: Estimates regarding C0 obtained by the simulation and equations

(a) E [C1] without boundary effects (b) Sd [C1] without boundary effects

(c) E [C1] with boundary effects (d) Sd [C1] with boundary effects

Figure 3.C.2: Estimates regarding C1 obtained by the simulation and equations
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Table 3.C.2: Baseline without boundary effects
Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Sim
Circle 0.3296 0.3661 0.2029 0.0258 0.0132 0.0140 −7 · 10−05

Ellip. 0.3267 0.3648 0.2045 0.0250 0.0124 0.0137 −6.1 · 10−05

Rect. 0.3234 0.3650 0.2062 0.0245 0.0129 0.0136 −3.7 · 10−05

Eq Circle 0.3277 0.3656 0.2039 0.0256 0.0134 0.0142 −6.6 · 10−05

Table 3.C.3: Case(i): The expectation and standard deviation of 0-, 1-, and 2-layer
coverage fractions with different flake sizes without boundary effects. Large |F | is
when E [|F |] = 392.70 and Sd [|F |] = 471.47 and small is when E [|F |] = 3.93 and

Sd [|F |] = 4.71.
|F | Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.369 0.367 0.1836 0.0451 0.0242 0.0244 -0.0004
Ellip. 0.3694 0.3663 0.1841 0.045 0.0218 0.0242 -0.00036
Rect. 0.368 0.3686 0.1838 0.0456 0.022 0.024 -0.00038

Eq Circle 0.3679 0.3679 0.1839 0.0428 0.0239 0.0241 0.000024

Small Sim
Circle 0.3681 0.3678 0.1839 0.0045 0.0026 0.0026 −4.40 · 10−06

Ellip. 0.3677 0.3679 0.184 0.0045 0.0025 0.0026 −4.20 · 10−06

Rect. 0.368 0.3679 0.1838 0.0047 0.0025 0.0026 −4.60 · 10−06

Eq Circle 0.3679 0.3679 0.1839 0.0046 0.0024 0.0025 −4.00 · 10−06

Table 3.C.4: Case(ii): The expectation and standard deviation of 0-, 1-, and 2-layer
coverage fractions with different E [N ] p that corresponds to the mass

concentration level without boundary effects. Large E [N ] p is when E [N ] p = 1.5
and small is when E [N ] p = 0.5.

E [N ] p Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.2232 0.3351 0.2510 0.0171 0.0120 0.0098 4.97 · 10−05

Ellip. 0.2228 0.3346 0.2513 0.0174 0.0113 0.0098 5.9 · 10−05

Rect. 0.2230 0.3345 0.2511 0.0170 0.0110 0.0096 6.26 · 10−05

Eq Circle 0.2231 0.3347 0.2510 0.0166 0.0127 0.0096 0.000086

Small Sim
Circle 0.6061 0.3038 0.0758 0.0259 0.0172 0.0101 -0.0004
Ellip. 0.6051 0.3039 0.0763 0.0248 0.0159 0.0102 -0.00034
Rect. 0.6056 0.3037 0.0761 0.0259 0.0164 0.0102 -0.00038

Eq Circle 0.6065 0.3033 0.0758 0.0263 0.0166 0.0111 -0.00037
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Table 3.C.5: Case(iii): The expectation and standard deviation of 0-, 1-, and 2-layer
coverage fractions with different RF , the radius of printed pattern without
boundary effects. Large RF is when RF = 200 and small is when RF = 100.

RF Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.3676 0.3679 0.1840 0.0179 0.0086 0.0095 −6.6 · 10−05

Ellip. 0.3681 0.3677 0.1840 0.0172 0.0087 0.0092 −5.6 · 10−05

Rect. 0.3687 0.3679 0.1836 0.0169 0.0081 0.0088 −5.1 · 10−05

Eq Circle 0.3679 0.3679 0.1839 0.0170 0.0088 0.0093 −3.5 · 10−05

Small Sim
Circle 0.3681 0.3688 0.1836 0.0330 0.0175 0.0180 -0.00022
Ellip. 0.3687 0.3676 0.1840 0.0337 0.0170 0.0173 -0.00024
Rect. 0.3667 0.3683 0.1846 0.0345 0.0162 0.0188 -0.00018

Eq Circle 0.3679 0.3679 0.1839 0.0328 0.0176 0.0184 −5.1 · 10−05

Table 3.C.6: Case(iv): The expectation and standard deviation of 0-, 1-, and 2-layer
coverage fractions with different Ratio(r), the ratio between two axis of ellipse and

rectangle without boundary effects. Large Ratio(r) is when Ratio(r) = 0.7 and
small is when Ratio(r) = 0.3.

Ratio(r) Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.3679 0.3676 0.1840 0.0226 0.0117 0.0120 −9.6 · 10−05

Ellip. 0.3681 0.3679 0.1837 0.0233 0.0115 0.0128 −9.1 · 10−05

Rect. 0.3684 0.3681 0.1837 0.0226 0.0113 0.0119 -0.00011
Eq Circle 0.3679 0.3679 0.1839 0.0224 0.0117 0.0124 -0.00005

Small Sim
Circle 0.3670 0.3682 0.1842 0.0233 0.0126 0.0122 -0.00012
Ellip. 0.3692 0.3675 0.1835 0.0216 0.0100 0.0117 −6 · 10−05

Rect. 0.3692 0.3678 0.1832 0.0229 0.0100 0.0120 −7.2 · 10−05

Eq Circle 0.3679 0.3679 0.1839 0.0224 0.0117 0.0124 -0.00005

Table 3.C.7: Baseline with boundary effects
Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Sim
Circle 0.3296 0.3661 0.2029 0.0258 0.0132 0.0140 −7 · 10−05

Ellip. 0.3267 0.3648 0.2045 0.0250 0.0124 0.0137 −6.1 · 10−05

Rect. 0.3234 0.3650 0.2062 0.0245 0.0129 0.0136 −3.7 · 10−05

Eq Circle 0.3277 0.3656 0.2039 0.0256 0.0134 0.0142 −6.6 · 10−05
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Table 3.C.8: Case(i): The expectation and standard deviation of 0-, 1-, and 2-layer
coverage fractions with different flake sizes with boundary effects. Large |F | is

when E [|F |] = 392.70 and Sd [|F |] = 471.47 and small is when E [|F |] = 3.93 and
Sd [|F |] = 4.71.

|F | Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.2866 0.3604 0.2240 0.0570 0.0317 0.0315 −4.1 · 10−05

Ellip. 0.2846 0.3573 0.2246 0.0535 0.0297 0.0298 4.71 · 10−05

Rect. 0.2734 0.3539 0.2298 0.0541 0.0305 0.0302 0.000222
Eq Circle 0.2834 0.3573 0.2253 0.0563 0.0318 0.0319 0.000019

Small Sim
Circle 0.3603 0.3680 0.1877 0.0051 0.0028 0.0029 −5.3 · 10−06

Ellip. 0.3600 0.3678 0.1878 0.0049 0.0026 0.0027 −4.4 · 10−06

Rect. 0.3592 0.3678 0.1883 0.0046 0.0025 0.0027 −3.6 · 10−06

Eq Circle 0.3601 0.3678 0.1878 0.0048 0.0024 0.0026 −4 · 10−06

Table 3.C.9: Case(ii): The expectation and standard deviation of 0-, 1-, and 2-layer
coverage fractions with different E [N ] p that corresponds to the mass

concentration level with boundary effects. Large E [N ] p is when E [N ] p = 1.5 and
small is when E [N ] p = 0.5.

E [N ] p Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.1895 0.3143 0.2622 0.0194 0.0145 0.0111 0.000122
Ellip. 0.1874 0.3140 0.2627 0.0186 0.0141 0.0105 0.000118
Rect. 0.1844 0.3109 0.2634 0.0186 0.0143 0.0103 0.000126

Eq Circle 0.1876 0.3139 0.2627 0.0190 0.0145 0.0110 0.000113

Small Sim
Circle 0.5731 0.3187 0.0890 0.0304 0.0192 0.0127 -0.0005
Ellip. 0.5706 0.3198 0.0900 0.0299 0.0184 0.0126 -0.00047
Rect. 0.5677 0.3217 0.0906 0.0300 0.0181 0.0124 -0.00047

Eq Circle 0.5725 0.3193 0.0891 0.0300 0.0189 0.0127 -0.00049
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Table 3.C.10: Case(iii): The expectation and standard deviation of 0-, 1-, and
2-layer coverage fractions with different RF , the radius of printed pattern with

boundary effects. Large RF is when RF = 200 and small is when RF = 100.
RF Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.3399 0.3661 0.1980 0.0192 0.0100 0.0105 −4.6 · 10−05

Ellip. 0.3378 0.3667 0.1988 0.0182 0.0096 0.0100 −3.2 · 10−05

Rect. 0.3345 0.3661 0.2002 0.0187 0.0094 0.0102 −2.9 · 10−05

Eq Circle 0.3381 0.3666 0.1988 0.0188 0.0097 0.0103 −4.3 · 10−05

Small Sim
Circle 0.3089 0.3631 0.2129 0.0411 0.0219 0.0221 -0.00011
Ellip. 0.3074 0.3619 0.2135 0.0400 0.0202 0.0213 −8.8 · 10−05

Rect. 0.2995 0.3607 0.2181 0.0384 0.0207 0.0207 −3.9 · 10−05

Eq Circle 0.3061 0.3624 0.2145 0.0402 0.0217 0.0226 −8.1 · 10−05

Table 3.C.11: Case(iv): The expectation and standard deviation of 0-, 1-, and
2-layer coverage fractions with different Ratio(r), the ratio between two axis of

ellipse and rectangle with boundary effects. Large Ratio(r) is when Ratio(r) = 0.7
and small is when Ratio(r) = 0.3.

Ratio(r) Type Shape E [C0] E [C1] E [C2] Sd [C0] Sd [C1] Sd [C2] Cov [C0, C1]

Large Sim
Circle 0.3282 0.3656 0.2039 0.0261 0.0129 0.0144 −6.7 · 10−05

Ellip. 0.3282 0.3653 0.2038 0.0259 0.0128 0.0144 −5.5 · 10−05

Rect. 0.3227 0.3650 0.2064 0.0244 0.0133 0.0135 −4.7 · 10−05

Eq Circle 0.3277 0.3656 0.2039 0.0256 0.0134 0.0142 −6.6 · 10−05

Small Sim
Circle 0.3289 0.3660 0.2033 0.0258 0.0129 0.0142 −6.6 · 10−05

Ellip. 0.3233 0.3650 0.2062 0.0247 0.0116 0.0132 −3.7 · 10−05

Rect. 0.3187 0.3641 0.2085 0.0242 0.0112 0.0131 −1 · 10−05

Eq Circle 0.3277 0.3656 0.2039 0.0256 0.0134 0.0142 −6.6 · 10−05

3.D Additional Information on Validation

3.D.1 Resolution of the Six Images

The resolution of the used images are as follows.
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• Figure 14(a): 663 × 562 pixels

• Figure 14(b): 449 × 399 pixels

• Figure 14(c): 449 × 416 pixels

• Figure 14(d): 449 × 399 pixels

• Figure 14(e): 449 × 407 pixels

• Figure 14(f): 451 × 407 pixels

The first image resolution is distinctly different from the others because it is obtained
from a different image collection setting.

3.D.2 Cut-Off Threshold Selection

There is a large body of literature on selecting the cut-off thresholds from the
histogram of grey-scaled images (Otsu, 1979; Cheriet et al., 1998; Kotte et al., 2018;
Huang and Wang, 2009). To determine the cut-off thresholds in this article, we
used a heuristic method. First, the brightness values of the pixels inside the grey-
scale image are plotted as a histogram (Figure 3.D.1). Second, the peak points
of the histogram are selected, which will be the most representative brightness
for each number of flake layers (dotted-lines). Then, between each pair of two
neighboring peak points, the minimum point of the brightness values is selected for
the thresholds (dashed-lines). The identified zero- and single-layers of the images
are examined, and they look quite accurate (Figure 3.D.2).



108

0 0.2 0.4 0.6 0.8 1
0

5

Figure 3.D.1: Histogram of the brightness of every pixel in the real inkjet-printed
pattern image. The peak values are presented with dotted lines, and the cut-off

values for zero- and single layer coverage are presented as dashed-lines.

(a) Zero-layer coverage area (b) Single-layer coverage area (c) Original Image

Figure 3.D.2: (a) The zero-layer coverage and (b) the single-layer coverage are
extracted from (c) the inkjet printed pattern.

We provide the validation of our method by additionally conducting the case
study by using Otsu’s methods, which is one of the most popular histogram thresh-
old selection techniques and proven effective (Kotte et al., 2018; Huang and Wang,
2009). The results from Otsu’s method are presented in Table 3.D.1, and they are
consistent with those from ours. In Table 3.D.1, the coverage fractions extracted
from Otsu’s method also identified Figure 14(d)-(f) as nonuniform patterns and
Figure 14(a)-(c) as uniform patterns. More specifically, we used the Otsu’s methods
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recursively to determine the cut-offs (Otsu, 1979; Cheriet et al., 1998). First, the
histogram of the brightnesses of pixels of images is constructed. Suppose we have
L levels of brightness, and pi is the relative frequency of the pixels in ith brightness
level (i = 1, . . . , L). Otsu’s method selects the threshold t that maximizes the
between-class variance σ2

b .

arg max
t

σ2
b = w0(t)w1(t) (µ1(t) − µ0(t))2 (3.47)

where w0(t) = ∑t
i=1 pi, w1(t) = ∑L

i=t+1 pi, µ0(t) = ∑t
i=1 ipi/w0, and µ1(t) = ∑L

i=t+1 ipi/w1.
Because Otsu’s method makes the variance of the relative frequencies into consid-
eration, the measurement errors of the brightness are inherently considered.

Table 3.D.1: Case study outcome with Otsu’s method.
E [r] Sd [r] C0 C1 E [C0] E [C1] Sd [C0] Sd [C1] Cov [C0, C1] Q2 p-value
17.95 11.6 0.0829 0.2572 0.0773 0.1979 0.0542 0.0732 0.0028 1.07 0.5856
10.85 7.9 0.1015 0.2731 0.1041 0.2355 0.0414 0.048 0.0015 1.485 0.4759
3.55 4.5 0.1961 0.3444 0.1081 0.2405 0.046 0.0528 0.0021 4.049 0.132
1.85 1.9 0.1534 0.3376 0.1556 0.2895 0.0144 0.0122 0.0001 45.103 1.6×10−10

0.9 2.15 0.1204 0.4275 0.1002 0.2305 0.059 0.0712 0.0037 29.11 4.8×10−7

0.475 0.225 0.2426 0.2113 0.1768 0.3063 0.001 0.0008 0 18,899 0
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4 landmark-embedded gaussian process model with

applications for functional data calibration ∗

In practice, we often need to infer the value of a target variable from functional
observation data. A challenge in this task is that the relationship between the
functional data and the target variable is very complex: the target variable not only
influences the shape but also the location of the functional data. In addition, due to
the uncertainties in the environment, the relationship is probabilistic, that is, for a
given fixed target variable value, we still see variations in the shape and location of
the functional data. To address this challenge, we present a landmark-embedded
Gaussian process model that describes the relationship between the functional data
and the target variable. A unique feature of the model is that landmark information
is embedded in the Gaussian process model so that both the shape and location in-
formation of the functional data are considered simultaneously in a unified manner.
Gibbs-Metropolis-Hasting algorithm is used for model parameters estimation and
target variable inference. The performance of the proposed framework is evaluated
by extensive numerical studies and a case study of nano-sensor calibration.

4.1 Introduction

In practice, we often need to infer the value of an unobserved variable from func-
tional observation data. In this chapter, we call the unobserved variable “target

∗This chapter is based on the paper: Lee, J., C. Wang, X. Sui, S. Zhou, and J. Chen (2021).
Landmark-embedded gaussian process model with applications for functional data calibration. IISE
Transactions. https://doi.org/10.1080/24725854.2021.1974129.
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variable”; specifically, we consider a continuous target variable. For example, it
is common that we need to infer the tools’ conditions (e.g., misplacement) from
the functional sensing signals collected from the process in manufacturing process
control (Lei et al., 2010a). In sensor development, we often want to infer the value of
an underlying physical variable from direct sensor observations. Indeed, this work
is motivated by developing a graphene-based field-effect transistor (GFET) sensor
to measure the concentration of the heavy metal in water (Zhou et al., 2014). The
GFET sensor is one of the widely known nano-sensors that have been developed to
detect a wide range of target substances, including heavy metals (Zhou et al., 2014),
Escherichia coli (E. coli) (Thakur et al., 2018), and specific proteins (Liu et al., 2012).
The GFET sensors can be made cheaply through printing processes, and be portable
and disposable (Maity et al., 2017). Such sensors are very useful in practice to have
frequent measurements of water quality at multiple locations. Indeed, frequent
wide area sensing is especially crucial in the source water quality control to prevent
catastrophic water contamination (Maity et al., 2017). To utilize the data obtained
from cheaply made sensors, which has large variations, we aim to predict the target
variable (e.g., target substance) and its predicted interval by leveraging functional
data modeling. We call such a prediction as “statistical calibration” as the statistical
inference of the unobserved input variable values from the observed responses is
often referred to as “statistical calibration”, or simply “calibration” (Osborne, 1991).
A GFET sensor consists of a gate, a drain electrode, a source electrode, a graphene
channel that bridges the drain and source, and nano-particle probes scattered on
the channel (Figure 4.1.1). The probes can bind with a specific target substance
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in water and change the electronic properties of the graphene channel. The gate
voltage also impacts on the electrical conductivity of the graphene channel. As a
result, for a given sensor and a specific concentration value of the target substance,
we will see a specific functional signal of drain-source current vs. gate voltage. This
signal can be obtained by varying gate voltage and measuring the corresponding
drain-source current. In principle, we could use physical principles to infer the
concentration value from the sensor signals. However, the physical relationship
between the sensor signal and the concentration is very complex. Furthermore,
many sensor parameters that will be needed by the physical model will not be
precisely known. Thus, the physics-based calibration approach is infeasible. As a
result, we employ a data-driven method to calibrate the functional data. We first
build up a statistical model linking the sensor signal and the concentration using a
historical training dataset and then infer the concentration value for a new signal.

4

𝐕𝐠

𝐕𝐝𝐬

Graphene

+−

+−

Gate Oxide

Gate

DS

(a)

5

𝑽𝒈

SiO2 Layer

Gate

Probe

Lead Ion
𝑽𝒅𝒔

Au Au

(b)

Figure 4.1.1: Field-effect transistor sensor

Figure 4.1.2 shows the sensor signals obtained from multiple GFET sensors in
contaminated water with three different lead ion concentrations. From these data,
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we can see some obvious characteristics:

• The signals have significant variations even under the same concentration
value. The reason is that the probes in the GFET sensor can be only used
once; thus, the sensor is for single use. For repeated measures of the same
concentration value, we have to use multiple sensors. The variations in sensor
structures will lead to significant variations in the sensor signals. In this chap-
ter, we call the variations from each signal “same-level” variation. Similarly,
we call the signal variations across different concentration values “across-level”
variation; here, level refers to the value of the target variable.

• We can find a common feature among different signals in Figure 4.1.2: every
signal has a V-shape. This is due to the carrier bipolar transport behavior in
the graphene, and the minimum current is called the Dirac point (Wang et al.,
2016). However, there are same-level and across-level variations in not only
the shape of the V but also the location of the V bottom.

Clearly, to effectively model these characteristics, we need to model four main
types of variations: same-level shape, same-level location, across-level shape, and
across-level location variations. Due to the significant variations in the sensing
signals, the predicted concentration value would inevitably involve uncertainties.
Therefore, it is desirable to provide the interval estimates of the concentration
values. Under the uncertainties of the predicted values, interval estimates are
essential in sensor applications for the decision-makers to make better decisions
and in sensor development to quantify sensor repeatability. The goal of this chapter



114

is to establish a comprehensive model to infer the point and interval estimates
of the target substance concentration value for a new sampled signal based on
the historical data. With this approach, we hope to improve the accuracy of the
nanosensor for measuring the target substance concentration value.
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Figure 4.1.2: The drain-source currents are measured with respect to a sequence of
gate voltages from contaminated water with 0, 10, and 20 ppb lead ions. (Units:

ampere on vertical and voltage on horizontal axes).

Statistical calibration has been widely used in predicting and improving sensor
performance in various applications. For example, the camera irradiance needs
to be calibrated from the charge-coupled device (CCD) images to conduct a color
correction and white balancing for CCD sensors (Tsin et al., 2001). In the radio-
frequency integrated circuit (RFIC) sensors, testing circuit measurements are used
to calibrate the knob settings (e.g., tunable resistance or capacitance) to correct the
sensor bias (Lu et al., 2015; Han et al., 2009). However, most of these calibration
techniques are based on scalar-to-scalar mapping, which cannot characterize the
functional measurements and variation features in our problem.

Functional regression models with a scalar response variable and functional
predictors can be considered for the functional data calibration. For example,
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the functional linear regression model with B-spline basis can be used for the
non-periodic functional signal data to predict the concentration (Ramsay and
Silverman, 2005). The functional linear regression model, however, assumes a fixed
relationship between the response variable and the predictors of the population;
therefore, it does not consider the random characteristics of the functional signals
including the shape and location variations. Similarly, many machine learning
techniques, such as deep neural networks, 1) often cannot provide quantification of
the uncertainty of the prediction (Khosravi et al., 2011) and 2) require a significant
amount of data (Ingrassia and Morlini, 2005); such big data may not be available in
practice. Therefore, they are not suitable to address the uncertainties in our data.

The Gaussian process model is a widely used nonparametric model to charac-
terize random functional signals (Rasmussen and Williams, 2006; Santner et al.,
2003). However, the conventional Gaussian process model does not differentiate
same-level and across-level shape variations and does not explicitly consider the
random shifts in signal locations. Obviously, if the random shifts in signal loca-
tions are not considered, the fitted Gaussian process model will be misleading
with wrong shape and exaggerated variation (Ramsay and Silverman, 2005). A
straightforward idea to consider the location variation in the signals is two-steps
methods. First, align the signals by vertically and horizontally shifting the signal.
For example, landmark registration, which aligns the signals by superimposing
signals’ location features, can be applied (Gasser and Kneip, 1995; Ramsay et al.,
2014). Such location features, also called ‘landmarks’, are defined by the features
observed in the given functional dataset. For the GFET sensing data, the bottom of
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the V shape is a natural choice for the landmark. Second, fit a Gaussian process
model to the aligned signals with the target variable (e.g., the concentration) as
a predictor and infer the value of the target variable for a sample signal based on
the fitted Gaussian process model. However, in this simple two-steps method, the
target variable is inferred only through the shape information of the signal, and
the signal shift information is ignored. Of course, one can further build a model
to link the target variable with the location shifts of the signals. Then, the target
variable can be inferred based on both the signal shape and location information.
However, how to combine the calibration result from shape information and that
from location information is not clear. Furthermore, in this two-steps procedure,
the location variation and shape variation are considered separately in the signal
alignment and model fitting/inference procedure, which will lead to inefficiency
and suboptimal results in both signal shape and location estimation.

In this chapter, we propose a landmark-embedded Gaussian process model to
consider the above-mentioned four types of variations, namely same-level shape
and location variations and across-level shape and location variations, in a unified
framework. This framework has two types of latent functions: one represents the
same-level variations in shape and location of the signals, and the other represents
the across-level variations in shape and location. The signals’ location information
is characterized by the embedded landmark information in the Gaussian process.
The embedded landmark ensures precise modeling of 1) individual signal’ shape,
2) signal shape changes over target variable, and 3) signal location changes over
the target variable. The landmarks are included as parameters in the model, and
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all the parameters including the landmarks are estimated simultaneously. This
integrative modeling of the whole data is very beneficial, by which we can accurately
estimate the landmarks as well as other parameters. A hybrid Gibbs sampling
method with the Metropolis-Hasting algorithm is developed for model parameters
estimation and target variable inference. This proposed functional data calibration
method is robust and effective because all the available signals are considered
simultaneously. Comprehensive numerical and real-world case studies demonstrate
that the calibration performance is significantly better than various competing
methods including the above two-steps method.

We would like to mention that our work is distinct from the ‘computation
model’-based Bayesian calibration (Kennedy and O'Hagan, 2001; Higdon et al.,
2013; Goh et al., 2013; Plumlee et al., 2016; Gramacy et al., 2015; Lee et al., 2020;
Farmanesh et al., 2020). First, the Bayesian calibration methods aim to estimate the
population-level ‘calibration parameters’ that make the computational model best
fitted to the data set. The ideal values of the calibration parameters to be found
are fixed and correspond to the whole data set and model. On the other hand, we
aim to predict the target variable (e.g., contamination level) value that is specific

to one signal based on the historical dataset. Therefore, the model structure is
quite different. Second, the responses of the models in the Bayesian computational
calibration literature are scalar variables; only the relationship between the response
and the calibration parameters are designed by functional models, such as Gaussian
processes. However, the responses in our data are functional data. In Plumlee et al.
(2016), the calibration parameter is of functional form, but the responses are still
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scalar. In Guo et al. (2017), to handle functional response, the authors estimated
the intermediate scalar variables by the physics-based mathematical model. Then,
they used these estimated scalar values as the responses of the Gaussian process
and performed calibration by using a typical Bayesian calibration process. Our
proposed method is data-driven and directly uses the functional responses to
predict the value of the associated target variable in our model. Third, we have
complex randomness in the functional type of responses. Individual signals are
randomly shaped and shifted, which cannot be characterized by the conventional
Gaussian processes used in the literature.

The rest of the chapter is organized as follows. Section 4.2 presents the structure
of the proposed landmark-embedded Gaussian process model. Section 4.3 describes
MCMC sampling methods that estimate the parameters in the proposed method
and infer the target variable given newly observed signals based on the fitted
model; In Section 4.3.1, we first provide a roadmap of using the Gibbs sampling
for the parameter estimations and target variable calibration. Then, the specific
Gibbs sampling methods are described for parameter estimation in Section 4.3.2
and calibration in Section 4.3.3. Section 4.4 demonstrates the performance of the
proposed calibration method with the proposed model by extensive numerical
studies. Case study results are presented to show the effectiveness of our model in
Section 4.5. Section 4.6 draws a conclusion and shows a brief discussion.
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4.2 Proposed model structure

Suppose functional data are obtained in M groups, and each group corresponds
to a distinct value of the target variable denoted by ti ∈ R, i = 1, . . . , M . For
group i, we have Ni functional samples, denoted by {xij, yij}, j = 1, . . . , Ni, where
yij =

(
yij1, . . . , yijLij

)T
∈ RLij is the response and xij =

(
xij1, . . . , xijLij

)T
∈ RLij is

the predictor. Further, we denote a landmark for each functional sample as (λH
ij , λV

ij),
where λH

ij is the “horizontal landmark” and λV
ij is the “vertical landmark”; λH

ij and
λV

ij are the position of the landmark on the horizontal and vertical axes, respectively.
Landmarks are defined by the common features of the functional data. We can
choose different features as the landmark for different applications (e.g., maximum
point, or point when the signal passing a certain value). For the problem of GFET
sensor calibration, the minimum point of the functional sample (i.e., the V bottom)
can be selected as its landmark. For notation simplicity, we assume the number
of functional samples in each group and the length of each functional sample are
identical, i.e., Ni = N , Lij = L, xij = x = (x1, . . . , xL)T. This assumption is only for
notation simplicity and can be easily relaxed in the proposed framework. Thus, we
denote the training data as D = {(yij, x, ti)}, i = 1, . . . , M and j = 1, . . . , N . Please
note that the landmarks are included as parameters and to be estimated with other
parameters. To describe this data, we propose a Gaussian process model in a special
structure as follows.

yij = fG
ij (x, ti) + f I

ij(x) + λV
ij1[L] + ϵij (4.1)

f I
ij(x) ∼ N

(
0,ΩI

(ij,i′j′)

(
x; λH

ij

))
(4.2)
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fG
ij (x, ti) ∼ N

(
0,ΩG

(ij,i′j′)

(
x, ti; λH

ij

))
(4.3)

yij is the observed functional signal and represented by the summation of mea-
surement noises ϵij and the denoised signal (fG

ij (x, ti) + f I
ij(x) + λV

ij1[L]). fG
ij and

f I
ij are two independent Gaussian process latent functions that have two distinct

roles. fG
ij (x, ti) =

(
fG

ij (x1, ti) , . . . , fG
ij (xL, ti)

)T
∈ RL is defined over the predictor x

and target variable t and captures the across-level variations in shape and location.
In particular, fG

ij characterizes the common shape of the function at the target vari-
able ti. f I

ij(x) =
(
f I

ij(x1) , . . . , f I
ij(xL)

)T
∈ RL is a function of only x and captures

the same-level variations in shape and location. f I
ij additionally accounts for the

random difference of the individual signal’s shape from the common shape, caused
from the individual sensor-to-sensor variations. The vertical landmark λV

ij1[L] is the
mean of yij , where 1[L] is a column vector with L rows whose every component is
one, and ϵij is additive measurement noise whose component is an independent
normal random variable with mean zero and variance σ2

ε . This proposed Gaus-
sian process model in (4.1)-(4.3) is quite flexible and captures the four types of
variations of the data mentioned in the introduction section.

The Gaussian process model is flexible and effective to model functional data,
where functional samples are viewed as the realizations from a multivariate normal
distribution. In the specifications of a Gaussian process model, the covariance
function plays a critical role in determining the model characteristics. Here, we
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propose the following covariance terms,

ΩI
(ij,i′j′)(x) = δii′δjj′σ2

I kI

(
x − λH

ij , x − λH
i′j′

)
(4.4)

ΩG
(ij,i′j′)(x, ti) = σ2

GkG

((
x − λH

ij , ti

)
,
(
x − λH

i′j′ , ti′

))
(4.5)

where δkh is the Kronecker delta function, σ2
I and σ2

G are the prior vertical vari-
ations and kI(·, ·) and kG(·, ·) are the kernel functions of f I

ij(·, ·) and fG
ij (·, ·). The

detailed information of the kernels used in this work is presented in Appendix
A in the supplementary material. The horizontal landmark λH

ij is integrated into
the covariance function for precise characterization of the functional shape from
the aligned signals. With the above covariance function definition, the covariance
matrix ΩY = Cov (Y ,Y ) of the overall data Y =

(
yT

11, . . . , yT
MN

)T is

ΩY =



ΩG
11 + ΩI

11 ΩG
(11,12) · · · ΩG

(11,ij) · · · ΩG
(11,MN)

ΩG
(12,11) ΩG

12 + ΩI
12 · · · ΩG

(12,ij) · · · ΩG
(12,MN)

... ... . . . ... ...
ΩG

(ij,11) ΩG
(ij,12) · · · ΩG

ij + ΩI
ij · · · ΩG

(ij,MN)
... ... ... . . . ...

ΩG
(MN,11) ΩG

(MN,12) · · · ΩG
(MN,ij) · · · ΩG

MN + ΩI
MN



+ σ2
εI[MNL]

(4.6)

where I[MNL] is the identity matrix with dimension MNL × MNL. ΩG
(ij,i′j′) =

Cov
(
fG

ij ,fG
i′j′

)
represents the covariance between different signals yij and yi′j′ .

ΩI
ij = ΩI

(ij,ij) = Cov
(
f I

ij,f
I
ij

)
and ΩG

ij = ΩG
(ij,ij) = Cov

(
fG

ij ,fG
ij

)
on the diagonal
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components of ΩY represent covariance structure within each functional sample
yij .

For the probabilistic relationship between the landmarks and the target variable,
we adopt the Gaussian process prior for the landmarks with the target variable as
the predictor; this enables us to infer the target variable value based on the location
information of the signals in calibration. We denote the entire horizontal and vertical
landmarks by λH =

(
λH

11, . . . , λH
MN

)T
∈ RMN and λV =

(
λV

11, . . . , λV
MN

)T
∈ RMN ,

and their corresponding target variable vector by tλ =
(
t11

T
[N ], . . . , tM1

T
[N ]

)T
∈ RMN .

Then, λH and λV follow the multivariate normal distributions.

λH ∼ N
(
0, σ2

HkH(tλ, tλ)
)

+ ϵH (4.7)

λV ∼ N
(
0, σ2

V kV (tλ, tλ)
)

+ ϵV (4.8)

where ϵH ∼ N
(
0, σ2

εHI[MN ]
)

and ϵV ∼ N
(
0, σ2

εV I[MN ]
)
. The noises ϵH and ϵV

account for the variations on the landmarks at a given target variable. The ker-
nel function kH(·, ·) and kV (·, ·) are specified in Appendix A in the supplementary
material. Equations (4.1)-(4.3), (4.7), and (4.8) provide the complete model speci-
fication.

The kernel functions used for the Gaussian processes often involve the hyperpa-
rameters (e.g., lengthscale parameter for Gaussian kernels). The kernel functions
and the hyperparameters constitute the Gaussian process prior, and they need to
be selected based on our a priori knowledge on the functional signals; the hyperpa-
rameters are determined based on the functional signals change as the predictor
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values change (Plumlee et al., 2016). The hyperparameters used in this work is
discussed in Appendix A.3 in the supplementary material.

Figure 4.2.1 illustrates how our proposed model can successfully address the
challenges from both shape and location variations to achieve accurate point and
interval estimates. To precisely model the functional signals with significant random
variations, the proposed method facilitates characterizing both the common shape
and the individual differences in the shape of the functional signals for a given value
of the target variable. The location shifts of the signals against the target variable
are captured by the Gaussian process priors (presented in Equations (4.7) and (4.8)
) as illustrated in Figure 4.2.1(c). Figure 4.2.1(d) depicts the intermediate results
of our proposed methods fitted to the data. Horizontal and vertical landmarks are
used to align the functional data by moving the signals along the x-axis and y-axis,
respectively, so that the landmarks are located at the origin. The Gaussian process
model is based on the aligned functional data; therefore, the estimated global mean
function has a similar shape with individual signals, and the estimated variances
(and the confidence intervals) are small. fG characterizes the common shape of
aligned signals for a given target variable value. Then, the unexplained parts of
the signals are accounted for by f I

ij . In Figure 4.2.1(e), each signal is represented
by the common shape by fG (solid line) and the remained unexplained parts are
further accounted for by f I

ij (dashed line), which facilitate precisely representing
the individual signals. In contrast, the conventional Gaussian process presented in
Figure 4.2.1(b) provides a generic shape of one mean function for all the signals
obtained from the same value of the target variable. To achieve accurate interval
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estimates from calibration, we also need to precisely model the uncertainties in the
signals. Our proposed model provides precise shapes for the fitted mean functions
and narrow confidence intervals tailored for each signal, as shown in Figure 4.2.1(f).
The precise mean estimation and narrow confidence interval facilitate accurate
prediction. The conventional Gaussian process model without alignment, on the
other hand, shows a wide confidence interval in Figure 4.2.1(b) because the signals
have different shapes at the same predictor values.

We would like to point out that the use of the landmarks is not confined to the
V-shape features of functional data. For example, landmarks can also be defined
as the points where the functions passing through a specified value or as the local
maximum or minimum. Such features are commonly observed in functional data
in various applications because many functional data have a local maximum or
minimum point (Lei et al., 2010b; Reza et al., 2020). When we have multiple local
maximums and/or minimums, one of which can be specified as a landmark. In
Mosesova (2007), landmarks are defined by the first point where the first differences
of the functional data become positive. A brief discussion on potential identifiability
issues on the landmark specification is provided in Appendix B.

4.3 Model parameter estimation and calibration

We first estimate the model parameters, denoted by Θ = {σ2
ε , σ2

I , σ2
G,λH ,λV , σ2

H , σ2
V ,

σ2
εH , σ2

εV } and then infer the target variable t based on the estimated parameters Θ̂ by
using the Markov chain Monte Carlo sampling method. In section 4.3.1, we provide
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Figure 4.2.1: The conventional Gaussian process and our proposed model are fitted
to the dataset that includes nine functional signals where three signals are

collected from each of three target variable values (i.e., t is one of (0, 10, 20)). Two
standard deviation confidence intervals are presented. (a) The original functional

signals where t = 10. (b) The conventional Gaussian process fitted to the
functional signals. The mean and confidence intervals at t = 10 are presented. (c)
The relationship between the landmarks (i.e., functional signals’ locations) and the
target variables accounted for by the Gaussian process priors (presented in (4.7)

and (4.8)). (d) The fitted fG
ij , aligned signals, and the confidence intervals for the

aligned signals at t = 10 are presented. (e) Solid lines (fG
ij (x, ti) + λV

ij) show the
predicted functional signals with the estimated common shapes (fG

ij ), and the
estimated landmarks (λH

ij , λV
ij) are presented in square dots. The difference in

individual signal’ shape is adjusted by f I
ij(x); therefore, the dashed lines have

similar shapes to the original signals but smoother because the measurement
noises are removed. (f) The complete model, denoted by fij , fitted to the original
signals. The mean functions (dashed lines) and confidence intervals are presented

along with the original signals (solid lines).
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a general structure of the Gibbs sampler that we employ, and the specific sampling
processes for the model parameter estimations and calibration are described in
Section 4.3.2 and Section 4.3.3, respectively.

4.3.1 Roadmap of parameter estimation and calibration

Based on the training dataset D, we want to estimate Θ = {σ2
ε , σ2

I , σ2
G,λH ,λV , σ2

H , σ2
V ,

σ2
εH , σ2

εV } in parameters estimation and infer
(
tnew, λV

new, λH
new

)
in calibration for a

sampled functional signal. For simplicity, here, we describe the sampling process
for Θ, but the same idea applies to calibration, instead of sampling Θ, by sampling(
tnew, λV

new, λH
new

)
conditioning on Θ̂. We employ the Gibbs sampling, which is an

iterative procedure to sample from the joint posterior distribution, P (Θ|D), and the
Metropolis-Hasting algorithm is used to draw samples from the non-trivial proba-
bility distributions; how to draw a sample using the Metropolis-Hasting algorithm
can be found in Appendix C in the supplementary material. The samples from
nth iterations are denoted by Θ(n) =

{
θ

(n)
1 , . . . , θ

(n)
P

}
where θ

(n)
k is a kth parameter in

Θ(n); for example, θ1 is the first parameter σ2
ε and θ9 is σ2

εV . Gibbs sampling is a spe-
cific case of the Metropolis-Hasting algorithm. The Metropolis-Hasting algorithm
constructs a Markov chain that is irreducible and aperiodic and samples from the
chain; such chain ensures the sampling distribution converges to the stationary
posterior distribution (Gelman et al., 2013a). Brief description of the sampling
method is presented in Appendix D of the supplementary material. We briefly
discussed the computational complexity of the proposed method in Appendix G in
the supplementary material. The detailed cyclic sampling processes specific for the
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model estimation and calibration are described in the following Section 4.3.2 and
4.3.3.

4.3.2 Model parameter estimation

The model parameters Θ are estimated by the Gibbs sampler described in Section
4.3.1. In particular, we sample the landmarks λH and λV and all the variances in
the model from the full conditional distribution. Landmarks are obtained from
the posterior mean of the functional signal denoised from yij , denoted by fij (i.e.,
fij = fG

ij + f I
ij + λH

ij ), rather than from the observations yij directly to achieve
robustness and accuracy by removing the effects of measurement noises. The types
of the landmark can be specified based on the features of the given functional data.
The technical details are presented in Appendix E in the supplementary material.
The iterative cyclic sampling process to nth sample Θ(n) is presented below.

• Step 1: sample horizontal landmarks λH (n) =
(
λH

11
(n)

, . . . , λH
MN

(n))T
, and vertical

landmarks λV (n) =
(
λV

11
(n)

, . . . , λV
MN

(n))T given the sampled parameters in
the previous step and the training set D including the whole signals Y =(
yT

11, . . . , yT
MN

)T:

– For each i = 1, . . . , M , j = 1, . . . , N

1. Obtain posterior mean of fij(x, ti):

Ω
(n−1)
fijY

(
Ω

(n−1)
Y

)−1
(
Y − λV

Y

(n−1)
)

+ λV
ij

(n−1) (4.9)
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where Ω
(n−1)
Y is the prior covariance matrix of Y and Ω

(n−1)
fijY

is the
prior joint covariance matrix between fij and Y , constructed with the
(n − 1)th sampled parameters λH (n−1), σ2

G
(n−1), σ2

I
(n−1), and σ2

ε
(n−1).

λV
Y

(n−1) =
(
λV

11
(n−1)

1T
[L], . . . , λV

MN
(n−1)

1T
[L]

)T is a (n − 1)th sampled
vertical landmarks vector corresponding to Y . The detailed deriva-
tion of (4.9) is presented in Appendix E.1 in the supplementary
material.

2. Obtain landmarks: the minimum point of the posterior mean of the
signal is used in this work.

λH
ij

(n) = arg min
x

E
[
fij(x, ti)

∣∣∣D, Θ(n−1)
]

(4.10)

λV
ij

(n) = min
x

E
[
fij(x, ti)

∣∣∣D, Θ(n−1)
]

(4.11)

where E
[
fij(x, ti)

∣∣∣D, Θ(n−1)
]

is obtained in (4.9).

• Step 2: sample σ2
G

(n) and σ2
I

(n) (variances of the latent functions fG
ij and f I

ij) and σ2
ε

(n)

(measurement noise), and σ2
H

(n) and σ2
V

(n) (variance of the Gaussian process for the

landmarks) and σ2
εH

(n) and σ2
εV

(n) (corresponding errors) from the full conditional
probabilistic distribution given the previously sampled parameters, by using
the Metropolis-Hasting algorithm with the acceptance rates presented in
Appendix E.2 and E.3 in the supplementary material.

Our method does not restrict the landmark only to the minimum points of
signals. When a different definition of the landmarks is used, the required change



129

in the algorithm is minimal, remaining other parts the same: Only the Equations
(4.10) and (4.11) need to be modified instead of using min function.

4.3.3 Functional data calibration

The calibration is formulated to infer the posterior distribution of t given a new
functional sample ynew at predictors x ∈ RL, i.e., P

(
t|ynew, x, Θ̂

)
, where Θ̂ is the

estimated parameter set from Section 4.3.2. More specifically, P
(
t|ynew, x, Θ̂

)
is

obtained by marginalizing the joint distribution P
(
t, λV

new, λH
new, |ynew, x, Θ̂

)
, where

λV
new and λH

new are the landmarks for ynew. The iterative cyclic sampling process to
sample nth samples of

(
t, λV

new, λH
new

)
is presented below.

• Step 1: sample horizontal landmark λH
new

(n) of signal ynew from the full condi-
tional distribution P

(
λH

new

∣∣∣ynew, x, Θ̂, t(n−1)
)

by using the Metropolis-Hasting
algorithm with the acceptance rates presented in Appendix F.1.1 in the sup-
plementary material.

• Step 2: sample vertical landmark λV
new

(n) of signal ynew from the normal distribu-
tion N

(
µλV

new

(n), σ2
λV

new

(n)) where

σ2
λV

new

(n) = 1
1T

[L]

(
Ω

(n−1)
ynew

)−1
1[L]

+ 1
Ω̂λV

new
− Ω̂λV

newλV

(
Ω̂λV

)−1
Ω̂λV λV

new

(4.12)
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and µλV
new

(n) is

1T
[L]

(
ynew − λV

new

(n−1)
) (

Ω(n−1)
ynew

)−1
+

Ω̂λV
newλV

(
Ω̂λV

)−1
λ̂V

Ω̂λV
new

− Ω̂λV
newλV

(
Ω̂λV

)−1
Ω̂λV λV

new

σ2
λV

new

(n)

(4.13)

where Ω(n−1)
ynew

is the covariance matrix of ynew calculated by (4.6) with λH
new

(n−1)

and Θ̂, and Ω̂λV = σ̂2
V kV (tλ, tλ)+σ̂2

εV I[MN ], Ω̂λV
newλV = σ̂2

V kV (t, tλ), and Ω̂λnew =

σ̂2
V kV (t, t) + σ̂2

εV .

• Step 3: sample target variable t(n) from P
(
t|λV

new
(n)

, λH
new

(n)
, ynew, x, Θ̂

)
defined

in (4.14) by using the Metropolis-Hasting algorithm.

The detailed derivation of the acceptance rates for the Metropolis-Hasting algo-
rithms (step 1) and the posterior distribution N

(
µλV

new
, σ2

λV
new

)
(step 2) are presented

in Appendix F in the supplementary material. In step 3, the full conditional distribu-
tion of the target variable is not a trivial probability distribution, and we decompose
it as follows:

P
(
t|λV

new, λH
new, ynew, x, Θ̂

)
∝ π (t) πH

(
t|λH

new

)
πV

(
t|λV

new

)
πynew

(
t|ynew, λH

new, λV
new

)
(4.14)

where π (t) is the prior distribution of t, and πH

(
t|λH

new

)
= P

(
λH

new

∣∣∣λ̂H , tλ, t
)

, πV

(
t|λV

new

)
= P

(
λV

new

∣∣∣λ̂V , tλ, t
)
, and πynew

(
t|ynew, λH

new, λV
new

)
= P

(
ynew

∣∣∣x, Θ̂, λH
new, λV

new, t
)

are
the likelihood of t given λH

new, λV
new, and ynew, respectively. Specifically, πH and πV

are the posterior predictions of Gaussian process for λH
new and λV

new, respectively,
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given the estimated landmarks (λ̂H and λ̂V ) of the training signals. πynew is the
multivariate normal distribution with mean λV

new1[L] and covariance Ωynew defined
in (4.6) given Θ̂. This decomposition allows us to fully utilize the information on
the random shifts and shapes during the calibration process. This is illustrated in
Figure 4.3.1, a new sampled signal is evaluated by the three likelihoods: horizontal
landmark, vertical landmark, and shape. The horizontal and vertical landmarks
(λH

new and λV
new) are evaluated by the likelihood πV and πH over the target variable.

Once conditioning on the landmarks, every signal is aligned by overlapping its
landmark with the origin, and the shapes of the aligned signals are evaluated by
the likelihood πynew . Then, by aggregating all three likelihoods with the prior prob-
ability of the target variable, the posterior probability is obtained. In this manner,
this process evaluates the new signal ynew by all three aspects, horizontal and verti-
cal locations and shape in terms of t. This detailed probabilistic model structure
improves calibration accuracy. For example, suppose we have functional signals
with large vertical shifting variations and small horizontal shifting variations as in
Figure 4.3.1. Vertical landmarks of signals would provide weak information on the
target variable, which produce widely distributed likelihoods πV over t. In contrast,
horizontal landmarks will provide strong information on the target variable and
produce densely distributed likelihoods πH of t around the true target variable.
Then, (4.14) reflects the strengths of the pieces of evidence during calibration by
multiplying the three likelihoods. The resulting posterior distribution would be
dense around the true target variable by taking advantage of the strong information.
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Figure 4.3.1: Illustration of the calibration process

4.4 Numerical study

The performance of our proposed calibration method with the landmark-embedded
Gaussian process model is validated by extensive numerical studies. In Section
4.4.1, the evaluation criteria and the benchmark settings are described. The results
of the numerical studies are reported in Section 4.4.2.

4.4.1 Evaluation criteria and benchmark settings

We conducted numerical studies with multiple different scenarios. For each sce-
nario, ten different training sets (D = 10) are generated. Each training set includes
four groups (M = 4, (t1, t2, t3, t4) = (0, 10, 20, 30)), and ten functional signals
(N = 10) for each group. Each functional signal yij is measured at a sequence of pre-
dictors from -100 to 100 equally spaced by 4 (L = 101, x = (−100, −96, . . . , 100)T),
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and the signals, predictors, and target variable ti are observed. A test set is gen-
erated for each dataset. In each test set, ten test signals (R = 10) are created at
each of nine values of the target variable (ttest

t ) from 2 to 26 with increment of 3
(T = 9, (ttest

1 , ttest
2 , . . . , ttest

9 ) = (2, 5, . . . , 26)). In total, 900 test signals are calibrated
((D = 10 datasets) × (R = 10 test signals at each group) × (T = 9 test groups)) in
each scenario.

The proposed calibration method is based on MCMC sampling, and the calibra-
tion result is a histogram of the sampled target variables. As a result, we use the
median value (point estimate) and the 90%-posterior interval (interval estimate) of
the histogram to evaluate the calibration performance. The overall accuracy of the
prediction is evaluated by the point prediction (i.e., one single predicted value) More
specifically, we assess the performances of point estimates in terms of accuracy and
performance stability. The distribution of the absolute prediction error (APE) of
the point estimates

APEP
dtr =

∣∣∣t̂dtr − ttest
t

∣∣∣ (4.15)

will be reported by box plots, where t̂dtr is the point estimate from rth test signal
from the target variable ttest

t with dth training set. Notice that the contamination
values used for the test signals are selected between 0 and C, where C is defined
by the largest value of the target variable used in the training set; therefore, a
reasonably calibrated point estimate would have an APE less than C. We define
a set of reasonable point estimates’ indexes R =

{
(d, t, r) |APEP

dtr < C
}

. Then, we
report the mean squared prediction error (MSPE) only with the predicted point
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estimate t̂dtr whose (d, t, r) is in R to evaluate the overall calibration accuracy after
removing the outliers’ influence.

MSPE =
∑

(d,t,r)∈R

(
t̂dtr − ttest

t

)2

|R|
(4.16)

Furthermore, the proportion of the number of the calibrated results that failed to
be included in R over the total number of calibrated results, denoted by %Fail, is
also reported to show performance stability.

%Fail = 1 − |R|
D × T × R

(4.17)

A lower %Fail indicates higher performance stability.
We also report the accuracy of the interval estimates. In Bayesian statistics,

posterior interval (also known as credible interval) is often used for interval es-
timates (Gelman et al., 2013a). α%-posterior interval, or briefly α%-interval, of a
target variable is defined by the range containing the true target variable value with
the probability of α%. For each signal calibration, we calculate the 90%-interval,
defined by the range between 5th and 95th percentiles of the posterior target vari-
able values sampled from the MCMC. The accuracy of the interval estimates is
evaluated by the accuracy of the proportion that the predicted intervals contain
the true target values. Ideally, 90% of the ‘90%-intervals’ should include the true
values. Accordingly, the errors are calculated as follows: We counted the number
of intervals that include the true target variable values for each test dataset; the
proportions of the counts that the predicted intervals include the true values (over
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the total T × R times calibrations) are calculated for each dataset.

P̂d =
∑T

t=1
∑R

r=1 1
(
ttest
t ∈ Îdtr

)
T × R

(4.18)

where Îdtr denotes the interval estimated from rth test signal from the target variable
ttest
t with dth training set, and 1 (·) is one if it satisfies the condition in the bracket or

zero. Then, the absolute prediction errors as the difference between the calculated
proportion and the true inclusion probability, 0.9, for each dataset

APEI
d = |P̂d − 0.9| (4.19)

are reported in box plots.
We benchmark the performance of our proposed calibration method, namely

landmark-embedded Gaussian process, denoted by LEGP, against other three alter-
native models. The kernel functions and their hyperparameters that we used are
presented in Appendix A in the supplementary material.

• LR(·): two-steps landmark registration approaches; Step 1: landmark registra-
tion. landmarks are obtained from the minimum point of the posterior mean
function of the individually fitted Gaussian process f I

ij(x) ∼ GP(0, σ2
I kI(x, x)),

and the signals are aligned by overlapping the landmarks. Step 2: calibra-
tion. a conventional Gaussian process is fitted to the aligned functional data,
and the target variable is inferred from a new sample signal based on the
fitted Gaussian process model. Notice that these methods do not consider
the same-level variations of the functional signal shapes. Two types of land-
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mark registration approach methods are considered with different calibration
methods in the second step:

– LR(Aln): calibration is conducted only with the Gaussian process model
fG(x, t) ∼ GP(0, σ2

GkG((x, t) , (x, t))) fitted to the aligned functional data.
In this method, the location information is not used in calibration. To be
specific, in this manner, we aligned all the signals in the training dataset
(denoted by D′) and test signals (denoted by y′

new) by overlapping the
landmarks to the origin. P (t|y′

new, D′) is estimated by the likelihood
function P (y′

new|t, D′).

– LR(Lm): calibration is conducted with both the Gaussian process models
of the aligned signals fG(x, t) ∼ GP(0, σ2

GkG((x, t) , (x, t))) and landmarks
λH ∼ GP(0, σ2

HkH(t, t)) and λV ∼ GP(0, σ2
V kV (t, t)). The calibration re-

sult
P
(
t|y′

new, D′, λH
new

, λV
new

,λ
)

is inferred by the likelihood function decom-
posed by (4.14). This calibration method assumes that the landmarks
and aligned signals are given as fixed predictors, and the shape and
location of the test signal are considered independently in model fitting
and calibration, while our proposed method considers the estimated
landmark distribution and integrates the estimation uncertainty into the
calibration step in a unified manner.

• FLR: functional linear regression that models the concentration as a scalar
response variable and the sensing signals as the functional predictors (Ramsay
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and Silverman, 2005). B-spline basis is used for the functional predictors,
and the number of basis functions and the penalty variable are selected by
the cross-validation. The prediction interval is obtained by the parameter
bootstrapping with 1,000 samples. Functional linear regression assumes
a fixed population model to represent the relationship between the scalar
variable and the functional signals. Hence, the random variations of the
functional signals are not addressed with this method.

4.4.2 Numerical study result

The proposed model and the four benchmarks are compared in this section using
numerical simulations. The random signal yij = (yij1, . . . , yijL)T is created from jth
sensor at ti as follows.

yijl = (ti − 100)
[
exp

(
−
{(

1 + δS
ij/50

) (
xl − δH

ij

)}2
/2500

)
+ 5 exp {(xl − 5ti) /50}

]
+ sin

(
(xl − δH

ij )/10π
) {(

xl − δH
ij

)
/20

}2
+ δV

ij + εijl

(4.20)

The general shapes of the simulated signals are illustrated in Figure 4.4.1. The
functional form of the signals is assumed unknown to any of the used methods. The
signals have four characteristics: 1) non-trivial shapes for modeling (asymmetric
and wavy), 2) random shifting (horizontally and vertically) and random shape
presented in each individual signal, 3) common trends of the signals’ random
shifting and shapes across the target variables, and 4) measurement noises. The
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random features of horizontal and vertical shifts, signals’ shape, and noises are
denoted by δS

ij ∼ N (0, σ2
S) and δH

ij ∼ N (ti − 20, σ2
H) and δV

ij ∼ N
(
0.1 (ti − 20)2 , σ2

V

)
and ε ∼ N (0, σ2

ε), respectively. σ2
H , σ2

V , σ2
S , and σ2

ε parameterize the magnitude of
the randomness in the horizontal shifts, vertical shifts, shape of the signals, and
noises, respectively. We consider five different cases to validate the benefits of our
proposed model, where each case has different values for the parameters of σ2

H , σ2
V ,

σ2
S , σ2

ε and N . The parameters used in each case are summarized in Table 4.4.1.
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Figure 4.4.1: Simulated signals with t = 0, t = 10, t = 20, t = 30 for Case I.

For each of the training dataset, the statistical parameters are first estimated.
Then, the unknown target variable is inferred for each test signal based on the
estimated model parameters. The initial parameters for calibrating the test signal
are set empirically according to the training model estimates. Due to the customized
initial values, within 100 burn-in, the sample parameters tended to be stationary.
The samples from the burn-in period were disregarded. After burning-in, Q =300
samples are collected from the posterior distribution of the target variable. The
convergence of the MCMC sampling was checked both in parameter estimation
and calibration to determine if the iteration process can be completed. For the
convergence threshold ratio, 0.05 was used.
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Table 4.4.1: Five designed cases considered in the numerical study
Case σH σV σS σε N Comment

I 7 10 5 3 10 Baseline: all the randomness are included
II 0 20 5 3 10 No random horizontal but large vertical random shifting
III 7 10 5 10 10 Large noises
IV 7 10 5 3 3 Small sample size
V 10 20 0 3 10 Large location variations with no shape variations

Figure 4.4.2 presents the distribution of APEs (defined in (4.15)), and Table 4.4.2
summarizes 1) MSPE calculated only with the predicted point estimates whose
APEs are less than 30 (defined in (4.16)) and 2) the proportion of the number of
calibrated point estimates whose APEs are larger than 30 (defined in (4.17)). The
results indicate that our proposed model clearly outperforms the others. In every
case, our proposed model shows the best accuracy with the smallest MSPE and the
best stability (zero number of the APEs larger than 30 in the table). The results
confirm that our proposed method effectively utilizes the information of the signals’
location and shape. The MSPE of LEGP from Case II is much smaller than its MSPE
from Case I and than the MSPEs from the other methods in Case II. Notice that, in
Case II, the relationship between signals’ horizontal locations and target variable
involves no randomness. By leveraging the location information over the target
variable, LEGP facilitates the accurate inference of the target variable values even
if there is a significant random vertical shifting in signals. Our proposed model
also enables accurate calibration with a smaller sample size (Case IV) while all the
other methods show quite bad performances in both accuracy and performance
stability. The outperformance of LR(Lm) over LR(Aln) in accuracy and performance
stability of point estimates confirms the importance of utilizing the signals’ shifted
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location in calibration. FLR performed quite well in the point estimates although
it noticeably underperformed LEGP. In most cases (Case II-V), FLR outperforms
LR(Lm) and LR(Aln).
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Figure 4.4.2: Absolute prediction error with point estimated target variable for
given five cases.

Table 4.4.2: The MSPE from the calibrated point estimates whose absolute
prediction errors are less than 30 (defined in (4.16)) and the proportion of the
number of the calibrated point estimates whose absolute prediction errors are

larger than 30 in bracket (defined in (4.17)).

LEGP LR(Aln) LR(Lm) FLR
Case I 10 (0%) 83.4 (22.2%) 31 (1.4%) 56 (1%)
Case II 6.5 (0%) 102.1 (16.9%) 47.3 (1.8%) 14.5 (0%)
Case III 12.2 (0%) 82.4 (16.9%) 38.9 (1.6%) 29.3 (0%)
Case IV 4.9 (0%) 135.6 (16.4%) 54.5 (2.6%) 36 (0.1%)
Case V 16.6 (0%) 106.4 (16.4%) 67.4 (5%) 65.8 (1.7%)

Figure 4.4.3 exhibits the absolute errors of the interval estimates (defined in
(4.19)) from all the models. The interval estimates of our proposed method signifi-
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cantly more accurate than those from the reference methods. The absolute errors
of the interval estimates from LEGP are between 0 and 0.1 in every case. On the
other hand, the median errors of the two-steps approaches (LR(Aln) and LR(Lm))
are between 0.45 and 0.65 with ranges between 0.1 and 0.2. The absolute errors
from FLR are the worst: the medians of the errors are between 0.7 and 0.8 and
their ranges are longer than the others, with between 0.2 and 0.6. Such inaccuracy
of the interval estimates from FLR is because FLR does not properly characterize
the randomness of the given functional data. FLR assumes a ‘population-level’
fixed relationship between the response and functional predictors; therefore, it
cannot precisely account for the randomness involved in the signals. The imprecise
modeling of the randomness in the signals resulted in overconfidence in the interval
estimates and failed in including the true target variable values in most cases. A
brief discussion about the overconfidence is provided in Appendix H.

Overall, LR models showed poor performance in both point and interval predic-
tions. The accuracy of the interval estimates is distinctly lower than our proposed
LEGP model due to the distinct disadvantages of LR models over LEGP model:
First, in LR models, the landmarks are less precise because the GP models used for
landmark estimations are different from the GP models used for calibration, which
incurs discrepancy. Also, individually fitted GP models in landmark estimations
cannot consider the correlation between signals, which provide less precise fitting
and accordingly less precise landmarks. Second, LR models use the conventional
GP models to the aligned signals and for calibration, which do not consider the
individual shape differences of signals. The individual random shape differences
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Figure 4.4.3: Absolute prediction error of the 90%-interval estimates for each
training set, defined in (4.19). For each dataset, we calculate the proportion of the
number of tests of which estimated intervals cover the true target variable values
over the number of total calibrated results (defined in (4.18)), and the absolute

difference between the calculated proportion and 0.9 is reported.

are incorrectly accounted for by the independent measurement errors. Third, un-
certainties in the estimated landmarks and the functional signals are not precisely
quantified because landmarks are assumed to be determined as constants after the
landmark estimation process. In LEGP, on the other hand, landmarks are included
as parameters in the model, and all the parameters including the landmarks are
estimated simultaneously by a Bayesian method. The results confirms that this in-
tegrative modeling approach is very effective, by which we can accurately estimate
the landmarks as well as other parameters.
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4.5 Case study

In this section, we demonstrate the functional data calibration based on the GFET
sensor signal data, which have been illustrated in Figure 4.1.2. The GFET sensor
signals are obtained from a complex physical model of the GFET sensor (Wang
et al., 2021a), which has been validated using real sensing data. In the dataset, the
drain-source currents are obtained corresponding to the gate voltages with given
sensor physical and geometrical parameter settings, including the length of the
graphene channel and drain-source voltages. The gate voltages are equally spaced
from -40V to 60V by 0.5V. We use the sensor physical and geometrical settings
obtained from Wang et al. (2021a). Because the random variations exist in sensor
settings, we can observe significant variations in the sensing signal as seen in Figure
4.1.2.

As described earlier in the introduction section, the training set consists of three
groups of contamination levels: 0, 10, 20 ppb. In each training set, ten signals are
included for each group of contamination levels; therefore, in total, thirty functional
signals are in a training set. The test set consists of ten groups of contamination
levels from 1 ppb to 19 ppb by the increment of 2 ppb, and each group has ten signals.
Hence, each test set has a hundred signals. The proposed landmark-embedded
Gaussian process model is first estimated using the training dataset, and then
the calibration is conducted with every test signal using the estimated model. To
make reliable performance evaluation, we repeat 10 times of model training and
signal calibrations. Thus, in total, we have 10 training datasets and corresponding
10 testing datasets. The concentration levels in the training sets are known. On
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the other hand, the concentration levels in the test sets are assumed unknown in
calibration, and the calibration results are evaluated by being compared with the
true concentration levels.

The evaluation criteria and benchmarks used in the numerical studies are also
used in the case study. Figure 4.5.1() shows the distribution of the APEs of the
point estimates (defined in (4.15)) in box plots where only APEs less than 20
are displayed. Table 4.5.1 reports 1) MSPE calculated with the calibrated point
estimates whose APEs are less than 20 for the accuracy (defined in (4.16)) , and
2) the proportion of the number of the calibrated point estimates whose APEs are
larger than 20 for the stability (defined in (4.17)). Figure 4.5.1(a) is the box plot of
the absolute errors of the posterior interval coverage, defined in (4.19). Similar to
the numerical study results in Section 4.4, the results indicate that our proposed
model (LEGP) clearly outperforms the reference methods. LEGP shows the smallest
median and variance of the prediction errors with respect to both point estimates
and interval estimates. Especially, the interval estimates of LEGP are significantly
more accurate than those of the reference methods. The median of the absolute
error of the interval estimates’ coverages is less than 0.1, on the other hand, those
from the reference methods are larger than 0.3 with large variations. Although the
point estimates from FLR are quite accurate, their interval estimates are the worst
with median of 0.8.
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Figure 4.5.1: Absolute prediction errors of the (a) point estimates (defined in
Equation (4.15)) and (b) 90%-posterior interval in the case studies (defined in

Equation (4.19)).

Table 4.5.1: Summary results of the case study. MSPE is calculated from the
calibrated point estimates whose APEs are smaller than 20. %Fail is the proportion
of the calibrated point estimates whose APEs are larger than 20 (Equation (4.17)).

LEGP LR(Aln) LR(Lm) FLR
MSPE(%Fail) 10.8(0%) 90.9(27.9%) 40.3(3.9%) 13.8(0%)

4.6 Conclusion

In this chapter, we establish a data-driven non-parametric statistical functional
model, namely landmark-embedded Gaussian process to account for the functional
signals with four types of variations: same-level shape, same-level location, across-
level shape, and across-level location variations. The individual random shifts of the
functional signals are characterized by the landmarks embedded in the Gaussian
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process model. The specially tailored structure with two latent functions of the
Gaussian processes is constructed to account for the same-level variations of signals
while capturing the across-level variations shared among signals. Our proposed
method is a unified model where the alignment and Gaussian process parameter
estimations are conducted simultaneously. The landmarks are estimated from the
fitted Gaussian process, not from the noisy raw data. Our proposed model provides
a comprehensive view over all the observed signals, automatically accounting
for their four random variations. Therefore, we can fully utilize the available
information for the alignment and statistical calibration. We developed Markov
chain Monte Carlo (MCMC) algorithms to estimate the model parameters and infer
the probability distribution of the unknown target variable. The performance of
the calibration is evaluated in the numerical studies with simulated data and a case
study with GFET sensor signal data.

Statistical functional data calibration framework in this chapter can be applied
in various applications besides sensor calibration, such as profile data monitoring
and diagnosis from the manufacturing domain. In many manufacturing systems,
the machine operating conditions and environments change dynamically. The
uncertainties in the environments often induce random shifts and shape changes in
the functional signals (Lei et al., 2010a; Zhang et al., 2018). The proposed framework
can be applied to those profile data to estimate the unobserved working condition.
The estimated working condition can be used for root-cause identification of the
manufacturing process and for anomaly detection.

The proposed method successfully account for the random shifts and random
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shapes of the functional data in calibration by using the landmark defined by the
user. We can perform the prediction in the calibration stage fairly quickly despite
the higher computational burden on the model parameters estimation stage. In
order to further improve the scalability, one can use one of the approximation
techniques to make the Gaussian process parameters estimation scalable. Many
approximation techniques have been developed for scalable Gaussian process, for
example, by introducing inducing points in the functional data (Herbrich et al.,
2003). GPyTorch uses graphics processing unit (GPU) to make the Gaussian process
fitting and prediction further scalable (Gardner et al., 2018). There also have been
efforts to reduce the computational burdens in hyperparameter estimation of the
Gaussian processes (Chen et al., 2020). In addition, the MCMC sampling procedure
in the parameters estimation and calibration process in this work can also be easily
parallelized with multiple chains to speed up the Gaussian process estimation time.

We would like to point out that to utilize the proposed method, we need to pre-
specify certain landmarks for the signal. These landmarks can often be identified
based on the physical meanings of the signal, for example, GFET sensor signals
(Wang et al., 2016) and tonnage signals (Jin and Shi, 1999a). However, there may
be some cases where it is hard to select a meaningful landmark for alignment. In
such case, the proposed method cannot be applied.

One interesting future research direction would be an algorithmic method of
landmark specification: an algorithm that can automatically define good landmarks
by investigating the feature of the given functional data. Such algorithm might
be especially useful when we need to choose the best landmark among multiple
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candidates, such as multiple local maxima and minima. One possible approach is
a feature selection method.

Another interesting future research direction is the application on censored
functional data. When the functional data are censored, a simple approach is to
discard the censored functional data and use the remained data for parameter
estimation. This treatment is reasonable only when the censored data size is small.
When we have a large amount of the data being censored, we may not simply ignore
the censored data. One possible approach is to infer and recover the full shape of
such functional signals based on the historical data and use our proposed method.
To deal with censored functional data, one may build a complete model that can
simultaneously recover the unseen shapes of the functional signals as well as their
landmarks for calibration.
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appendix

4.A Prior Specification

4.A.1 Kernel functions

Four kernel functions are presented in this article for the Gaussian processes:
kI(x, x′), kG((x, t) , (x′, t′)), kH(t, t′), and kV (t, t′). We used the Gaussian kernel for
all the kernel functions because the Gaussian kernel is flexible and able to capture
various features of the functional data Kontar et al. (2018). A univariate Gaussian
kernel is defined as follows.

k(x, x′) = exp
(

−(x − x′)2

2l2
1

)
(4.21)

For bivariate Gaussian processes, we used

k((x, t) , (x′, t′)) = exp
(

−(x − x′)2

2l2
1

− (t − t′)2

2l2
2

)
(4.22)

where l1 and l2 are the length-scale parameters. The length-scale parameters are
tuning parameters that are specified by users according to the characteristics of
the signals. The length-scale parameters determine the length of the wiggles of
the prior functional curve. In this article, k(x, x′) is defined as a matrix whose
(l, l′)-component is k(xl, x′

l′) where xl and x′
l′ are lth and l′th component of x and

x′, respectively. k((x, t), (x′, t′)) is defined as a matrix whose (l, l′)-component is
k((xl, t), (x′

l′ , t′)).



150

4.A.2 Prior Distributions

For variance of the normal distributions, people often use the inverse gamma prior
distribution.

σ2 ∼ π (α, β) (4.23)

The α and β are the hyper-parameters that are pre-specified according to the empir-
ical domain knowledge about the variance. They can be selected so that their mean
and variance are equals to those we already know as prior information. Another
way of selecting these hyper-parameters are setting them zero and make the prior
uninformative. This implies that the prior probability densities of any values are
the same within its support. The uninformative priors are widely used if specific
knowledge about parameters is not available, or ones do not want to put some
specific knowledge so that let the data speak. In this work, we used noninformative
priors for all the variances (equivalently, α = 0, β = 0 of the inverse gamma prior
distribution).

For the target variable, the noninformative prior with positive values is used.
Specifically, for all t > 0,

π (t) ∝ 1 (4.24)
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4.A.3 Lengthscales for the Gaussian Kernels

Lengthscale of the Gaussian kernels can be selected based on our prior knowledge
on the functional signals. The lengthscale can be explained by how far we need
to move (along a particular axis) in input space for the function values to become
uncorrelated (Williams and Rasmussen, 2006). In the application of GFET sensors,
we set the lengthscale lI for f I as 10. This is because the 10 voltages range around
the turning point of each functional signal can provide detailed current readings
for describing the function turning behavior. The turning point is an important
characteristic in our model, and facilitate strong correlation around the turning
point can help remove noise in identifying the landmark locations. Based on the
same intuition, we set the lG for fG as 40. This is because the global lengthscale
should cover the turning point behavior in not only the each individual signal,
but all the functional signals under different t’s. The lengthscale for t is also set
as 40, and it facilitates the correlation among contamination intensities within 40
ppb difference. As a result, the lH and lV are also set as 40 to keep consistent in
describing the correlation impacts resulting from t.

Please note that the lengthscales lI , lG, lH and lV can also be estimated by maxi-
mizing the log likelihood function of the Gaussian process model. However, large
scale Gaussian process often suffers numerical issues in parameter estimation (Yi
et al., 2011). The lengthscales can also be treated as unknown random variables
and integrated into the MCMC parameter estimation procedure we introduced in
Section 3. However, this will add another layer of the MCMC procedure and make
the whole algorithm inefficient.
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In summary, below are the lengthscales used in this work for both numerical
and case studies.

• lI = 10 is used for the lengthscale of kernel kI(x, x′).

• lG = (40, 40) is used for the lengthscale for kernel kG((x, t) , (x′, t′)).

• lH = 40 is used for the lengthscale for kernel kH(t, t′).

• lV = 40 is used for the lengthscale for kernel kV (t, t′).

4.B Landmark specification

There may be an identifiability issue for the linear functional signals when we
have both horizontal and vertical landmarks in the proposed model because we
cannot tell if a linear functional signal shifted horizontally or vertically: vertical shift
((y−d1) = ax+b) always can be represented by the horizontal shift (y = a(x−d2)+b)
with some d2. Regardless, our proposed method can be used for the linear functional
signals by defining different landmarks. For example, we can define the landmark
as a point where the functions passing T as landmark, and then, the landmark will
be defined as λH

ij
(n) = arg minx

∣∣∣E [fij(x, ti)
∣∣∣D, Θ(n−1)

]
− T

∣∣∣ and λV
ij

(n) = T ; these
will be substituted for the Equations (4.10) and (4.11) in the main text instead
of using min function; this is the only required modification in the method in
response to different landmark specification. Under this definition of landmark, we
choose a fixed vertical landmark, and the horizontal shifts of the linear function are
accounted for by the horizontal landmarks.
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4.C Metropolis-Hasting Algorithm

In this article, the Metropolis-Hasting algorithm is used for parameter estimation
and calibration. Here, we briefly describe the algorithm.

4.C.1 Proposal Distribution

The Metropolis-Hasting algorithm draws samples from proposal distributions. The
normal distribution is widely used for the proposal distribution to sample the
random variables whose supports are the real line. The random variables that only
have positive values also can be sampled from the normal distribution after log
transformation. We used the normal distribution for the proposal distributions.

θ̃ ∼ N
(
θ(n−1), σ2

J

)
(4.25)

The parameters that only can have positive values (e.g. variance) are sampled
after log transformation. For instance, log-variance is sampled from the normal
distribution.

log
(
σ̃2
)

∼ N
(
log
(
σ2(n−1))

, σ2
J

)
(4.26)

where σ2
J is the variance of the proposal distribution. The proposal distribution

is denoted by J hereafter, therefore, for example, the proposal distribution for σ2

above is J
(
σ̃2
∣∣∣σ2(n−1)) = N

(
log
(
σ2(n−1))

, σ2
J

)
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4.C.2 Sampling Process of the Metropolis-Hasting algorithm

The process of the Metropolis-Hasting algorithm is briefly explained. Suppose we
want to sample an arbitrary parameter θ from the Metropolis-Hasting algorithm.
Given the proposal probability distribution J

(
θ̃
∣∣∣θ(n−1)

)
and the acceptance rate

A
(
θ̃, θ(n−1)

)
, the Metropolis-Hasting algorithm is conducted as follows.

1. Draw θ̃ ∼ J
(
θ̃
∣∣∣θ(n−1)

)
2. Draw u ∼ U (0, 1)

3. If u ≤ A
(
θ̃, θ(n−1)

)
, θ(n) = θ̃, or θ(n) = θ(n−1)

where U (0, 1) is the uniform distribution between zero and one, and the acceptance
rate is calculated by

A
(
θ̃, θ(n−1)

)
= min

1,
P
(
θ̃
)

J
(
θ(n−1)

∣∣∣θ̃)
P (θ(n−1)) J

(
θ̃
∣∣∣θ(n−1)

)
 (4.27)

For simplicity, throughout the appendix, we denote the above sampling process by
θ(n) ∼ MH

(
J
(
θ̃
∣∣∣θ(n−1)

)
, A

(
θ̃, θ(n−1)

))
.

4.D Cyclic Sampling

4.D.1 Sampling process

Here is the sampling process; first, the initial values of the parameters Θ(0) are set,
and the burn-in period, the number of iterations for one round (Q), the maximum
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number of iterations, and a convergence threshold are specified by users. Then, the
parameters are sampled iteratively by following the cyclic sampling process, and the
generic cyclic sampling process is described below. To ensure the samples obtained
are from the posterior distribution, it is suggested to have burn-in sampling periods
from which samples are removed before collecting samples. After disregarding the
samples from the burin-in period, parameters are sampled by iterating the cyclic
sampling Q times, and the convergence of the samples are checked. The iterative
estimation process is repeated until the convergence criterion is satisfied or until it
reaches the maximum number of iterations. The general iterative cyclic sampling

process is as followed.

• Cyclic sampling: for k = 1, . . . , P ,

– Step k: draw a sample θ
(n)
k given the previously sampled parameters,

{θh}(n)
h=1,...,k−1 and {θh}(n−1)

h=k+1,...,P from the full conditional probability dis-
tribution
P
(
θm

∣∣∣{θh}(n)
h=1,...,k−1 , {θh}(n−1)

h=k+1,...,P , D
)
. When this distribution is non-

trivial to sample from, the Metropolis-Hasting algorithm is used for
sampling.

Our convergence criterion is presented in Appendix 4.D.2 in the supplementary
material.
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4.D.2 Cyclic Sampling Convergence criterion

Here is the convergence check criterion that we used in this work; every Qth iteration,
the convergence of the samples is checked. For each parameter, calculate the mean of
the sampled parameter with the first 2/3 and the last 2/3 of the samples (excluding
the samples from the burn-in period). If the difference ratio between two means
is larger than a convergence threshold (e.g. 0.05), continue the iterative cyclic
sampling. If the samples converged or did not converge within the user-specified
maximum iteration, finish the iteration.

4.E Model Parameter Estimation

4.E.1 Posterior Distribution of Signals for Landmark Sampling

The nth samples of the landmarks λH
ij

(n) and λV
ij

(n) are obtained from the conditional
distribution of the individual signal function f I

ij(x, ti) given Y . f I
ij(x, ti) is predicted

from the entire observed signals in training set D by constructing the multivariate
normal distributions for Y and f I

ij(x, ti) given (n − 1)th sampled parameters Θ(n−1).

 Y

f I
ij(x, ti)

 ∼ N


 λV

Y
(n−1)

λV
ij

(n−1)
1[L]

 ,

Ω
(n−1)
Y Ω

(n−1)
Y fij

Ω
(n−1)
fijY

Ω
(n−1)
fijfij


 (4.28)

where λV
Y =

(
λ111

T
[L], . . . , λMN1

T
[L]

)T is the vertical landmarks vector corresponding
to Y . Ω

(n−1)
Y , Ω(n−1)

fijY
, and Ω

(n−1)
fijfij

are the prior (joint) covariance matrices given
parameters λH (n−1), σ2

G
(n−1), σ2

I
(n−1), and σ2

ε
(n−1). ΩY is defined in (4.6). Ω(n−1)

fijY
=



157

[
Ω

(n−1)
fijy11 , . . . ,Ω

(n−1)
fijyMN

]
where Ω

(n−1)
fijyi′j′ is

σ2
G

(n−1)
kG

((
x − λH

ij

(n−1)
, ti

)
,
(
x − λH

i′j′ , ti′

))
+

δii′δjj′σ2
I

(n−1)
kI

(
x − λH

ij

(n−1)
, x − λH

i′j′
(n−1)

)
(4.29)

where δkh is a Kronecker delta function. The conditional distribution of the individ-
ual signal function of jth sensor at ti is as follows.

f I
ij

(n)(x) |Y , Θ(n−1) ∼ N
(

µ
I|Y
ij

(n)
(x) , σ2I|Y

ij

(n)
(x)
)

(4.30)

µ
I|Y
ij

(n)
(x) = Ω

(n−1)
fijY

(
Ω

(n−1)
Y

)−1
(
Y − λV

Y

(n−1)
)

+ λV
ij

(n−1) (4.31)

σ2I|Y
ij

(n)
(x) = Ω

(n−1)
fijfij

− Ω
(n−1)
fijY

(
Ω

(n−1)
Y

)−1
Ω

(n−1)
fijY

T (4.32)

4.E.2 Acceptance rate for variance sampling

The variances of global and individual Gaussian processes and the environment
noises σ2

G, σ2
I , σ2

ε are sampled by the Metropolis-Hasting algorithm using the prop-
erty that the full conditional distribution of one given the others is proportional
to

P
(
Y
∣∣∣σ2

G, σ2
I , σ2

ε ,λH
Y ,λV

Y

)
π
(
σ2

G

)
π
(
σ2

I

)
π
(
σ2

ε

)
(4.33)

where π (·) is a prior distribution. P
(
Y
∣∣∣σ2

G, σ2
I , σ2

ε ,λH
Y ,λV

Y

)
is the normal distribu-

tion with mean λV
Y and covariance matrix ΩY embedded with λH

Y .
The acceptance rate for the full conditional distribution of the global latent
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function variance given the other variances sampled in the previous step
A
(
σ̃2

G, σ2
G

(n−1)
∣∣∣σ2

I
(n−1)

, σ2
ε

(n−1)
,λH

Y
(n)

,λV
Y

(n)
, D
)

is

P
(
σ̃2

G

∣∣∣σ2
I

(n−1)
, σ2

ε
(n−1)

,λH
Y

(n)
,λV

Y
(n)

, D
)

J
(
σ2

G
(n−1)

∣∣∣σ̃2
G

)
P
(
σ2

G
(n−1)

∣∣∣σ2
I

(n−1)
, σ2

ε
(n−1),λH

Y
(n)

,λV
Y

(n)
, D
)

J
(
σ̃2

G

∣∣∣σ2
G

(n−1)) (4.34)

P
(
σ̃2

G

∣∣∣σ2
I

(n−1)
, σ2

ε
(n−1)

,λH
Y

(n)
,λV

Y
(n)

, D
)

is proportional to

P
(
Y
∣∣∣∣σ̃2

G, σ2
I

(n−1)
, σ2

ε
(n−1)

,λH
Y

(n)
,λV

Y

(n)
)

π
(
σ̃2

G

)
π
(
σ2

I
(n−1))

π
(
σ2

ε
(n−1)) (4.35)

where P
(
Y
∣∣∣σ̃2

G, σ2
I

(n−1)
, σ2

ε
(n−1)

,λH
Y

(n)
,λV

Y
(n)) is the likelihood function of σ̃2

G given
Y , σ2

I
(n−1), and σ2

ε
(n−1), and π (σ2) is the prior distribution of σ2. Therefore, the

acceptance rate in (4.34) is

N
(
Y
∣∣∣λV

Y ,ΩY

(
σ̃2

G, σ2
I

(n−1)
, σ2

ε
(n−1)

,λH
Y

(n)))
π
(
σ̃2

G

)
log N

(
σ2

G
(n−1)

∣∣∣log
(
σ̃2

G

)
, σ2

J (G)

)
N
(
Y
∣∣∣λV

Y ,ΩY

(
σ2

G
(n−1)

, σ2
I

(n−1)
, σ2

ε
(n−1),λH

Y
(n)))

π
(
σ2

G
(n−1)) log N

(
σ̃2

G

∣∣∣log
(
σ2

G
(n−1))

, σ2
J (G)

)
(4.36)

where

• N
(
Y
∣∣∣λV

Y ,ΩY

(
σ2

G, σ2
I , σ2

ε ,λH
Y

))
is the probability density function of the mul-

tivariate normal distribution likelihood function given Y with mean λV
Y and

variance ΩY

(
σ2

G, σ2
I , σ2

ε ,λH
Y

)
, which is as follows.

∣∣∣ΩY

(
σ2

G, σ2
I , σ2

ε ,λH
Y

)∣∣∣− 1
2 exp

{
−1

2
(
Y − λV

Y

)T (
ΩY

(
σ2

G, σ2
I , σ2

ε ,λH
Y

))−1 (
Y − λV

Y

)}
(4.37)
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ΩY

(
σ2

G, σ2
I , σ2

ε ,λH
Y

)
denotes the covariance matrix of Y given σ2

G, σ2
I , and σ2

ε .

ΩY

(
σ2

G, σ2
I , σ2

ε ,λH
Y

)
= ΩI

Y + ΩG
Y + σ2

εI[MNL] (4.38)

ΩI
Y and ΩG

Y are defined as follows.

ΩI
Y = σ2

I diag
(
kI

(
x11 − λH

11, x11 − λH
11

)
, . . . , kI

(
xMN − λH

MN , xMN − λH
MN

))
(4.39)

ΩG
Y = σ2

GkG

((
X − λH

Y ,C
)

,
(
X − λH

Y ,C
))

(4.40)

where X , λH
Y , and C are the predictors, horizontal landmarks, and target

variables, corresponding to Y , respectively.

• π (σ2) is the prior distribution of σ2.

• log N
(
σ̃2

G

∣∣∣log
(
σ2

G
(n−1))

, σ2
J (G)

)
is the likelihood of the log-normal distribution

with mean parameter log
(
σ2

G
(n−1)) and variance parameter σ2

J (G), which is
written as.

log N
(
σ̃2

G

∣∣∣log
(
σ2

G
(n−1))

, σ2
J (G)

)
= 1

σJ (G)
√

2π
exp

−

{
log
(
σ̃2

G

)
− log

(
σ2

G
(n−1))}2

2σ2
J (G)


(4.41)

The acceptance rates for the full conditional distributions of the variance σ2
I and

σ2
ε can be derived in the same manner.
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A
(
σ̃2

I , σ2
I

(n−1)
∣∣∣σ2

G
(n)

, σ2
ε

(n−1)
,λH

Y
(n)

,λV
Y

(n)) is

N
(
Y
∣∣∣λV

Y
(n)

,ΩY

(
σ2

G
(n)

, σ̃2
I , σ2

ε
(n−1)

,λH
Y

(n)))
π
(
σ̃2

I

)
log N

(
σ2

I
(n−1)

∣∣∣log
(
σ̃2

I

)
, σ2

J (I)

)
N
(
Y
∣∣∣λV

Y
(n)

,ΩY

(
σ2

G
(n)

, σ2
I

(n−1)
, σ2

ε
(n−1),λH

Y
(n)))

π
(
σ2

I
(n−1)) log N

(
σ̃2

I

∣∣∣log
(
σ2

I
(n−1))

, σ2
J (I)

)
(4.42)

A
(
σ̃2

ε , σ2
ε

(n−1)
∣∣∣σ2

I
(n)

, σ2
G

(n)
,λH

Y
(n)

,λV
Y

(n)) is

N
(
Y
∣∣∣λV

Y
(n)

,ΩY

(
σ2

G
(n)

, σ2
I

(n)
, σ̃2

ε ,λH
Y

(n)))
π
(
σ̃2

ε

)
log N

(
σ2

ε
(n−1)

∣∣∣log
(
σ2

ε
(n−1))

, σ2
J (ε)

)
N
(
Y
∣∣∣λV

Y
(n)

,ΩY

(
σ2

G
(n)

, σ2
I

(n)
, σ2

ε
(n−1),λH

Y
(n)))

π
(
σ2

ε
(n−1)

)
log N

(
σ̃2

ε

∣∣∣log
(
σ̃2

ε

)
, σ2

J (ε)

)
(4.43)

4.E.3 Sampling Variances of the Gaussian Process for Landmarks

with Metropolis-Hasting algorithm

The variances of the Gaussian process functions for the landmarks σ2
H and σ2

εH

can be sampled by the Metropolis-Hasting algorithm using the property that
P
(
σ2

H |σ2
εV ,λH , tλ

)
is proportional to

P
(
λH

∣∣∣σ2
H , σ2

εH , tλ
)

π
(
σ2

H

)
π
(
σ2

εH

)
(4.44)

where λH =
(
λH

11, . . . , λH
MN

)T and tλ =
(
t11

T
[N ], . . . , tM1

T
[N ]

)T
∈ RMN is a vector

of the target variable corresponding to λH . P
(
λH

∣∣∣σ2
H , σ2

εH , tλ
)

is the probabil-
ity distribution of the normal distribution with mean 0 and covariance matrix
σ2

HkH(tλ, tλ) + σ2
σ2

εH
I[MN ]. σ2

V and σ2
εV are sampled in the same manner.

The acceptance rates for the full distribution of σ2
H and σ2

εH are described. The
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acceptance rate of σ2
V and σ2

εV can be derived in the same manner. Let’s denote λH =(
λH

11, . . . , λH
MN

)T and tλ =
(
t11

T
[N ], . . . , tM1

T
[N ]

)T. A
(
σ2

H , σ2
H

(n−1)
∣∣∣σ2

εH
(n−1)

,λH (n)) is

N
(
λH (n)∣∣∣0,ΩH

(
σ̃2

H , σ2
εH

(n−1)))
π
(
σ̃2

H

)
log N

(
log
(
σ2

H
(n−1))∣∣∣σ̃2

H , σ2
J (λ)

)
N
(
λH (n)

∣∣∣0,ΩH

(
σ2

H
(n−1)

, σ2
εH

(n−1)))
π
(
σ2

H
(n−1)) log N

(
σ̃2

H

∣∣∣log
(
σ2

H
(n−1))

, σ2
J (λ)

)
(4.45)

where N
(
λH (n)∣∣∣0,ΩH(σ2

H , σ2
εH)

)
is the probability density function of the multi-

variate normal distribution with mean zero and covariance matrix

ΩH

(
σ2

H , σ2
εH

)
= σ2

Hkλ(tλ, tλ) + σ2
εHI[MN ] (4.46)

In the same manner, A
(
σ2

εH , σ2
εH

(n−1)
∣∣∣σ2

H
(n−1)

,λH (n)) is

N
(
λH (n)∣∣∣0,ΩH

(
σ2

H
(n−1)

, ˜σ2
εH

))
π
( ˜σ2

εH

)
log N

(
log
(
σ2

εH
(n−1))∣∣∣ ˜σ2

εH , σ2
J (ελ)

)
N
(
λH (n)

∣∣∣0,ΩH

(
σ2

H
(n−1)

, σ2
εH

(n−1)))
π
(
σ2

εH
(n−1)) log N

( ˜σ2
εH

∣∣∣log
(
σ2

εH
(n−1))

, σ2
J (ελ)

)
(4.47)

4.F Calibration

4.F.1 Full conditional distributions of the landmarks

The full conditional distribution of the test signal’s landmark (denoted by λnew

representing either horizontal or vertical landmark) P
(
λnew

∣∣∣ynew, xnew, Θ̂, t
)

is pro-
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portional to

P
(
ynew

∣∣∣xnew, Θ̂, λH
new, λV

new, t
)
P
(
λnew

∣∣∣Θ̂, t
)

(4.48)

P
(
ynew

∣∣∣xnew, Θ̂, λH
new, λV

new, t
)

is the multivariate normal distribution with mean
λV

new and covariance Ωynew given the estimated parameters Θ̂. P
(
λnew

∣∣∣Θ̂, t
)

is the
posterior prediction of the Gaussian process of λnew based on the estimated param-
eters, which can be expanded as.

N
(
Ω̂λnewλ

(
Ω̂λ

)−1
λ̂, Ω̂λnew − Ω̂λnewλ

(
Ω̂λ

)−1
Ω̂λλnew

)
(4.49)

where λ = (λ11, . . . , λMN)T and tλ is a vector of target variables t corresponding to
λ.

Ω̂λ = σ̂2
λkλ(tλ, tλ) + σ̂2

ελI[MN ], Ω̂λnewλ = σ̂2
λkλ(t, tλ), and Ω̂λnew = σ̂2

λkλ(t, t) + σ̂2
ελ

where σ2
λ, σ2

ελ, and kλ(·, ·) will be substituted with σ2
H , σ2

εH , and kH(·, ·) for the
horizontal landmarks and σ2

V , σ2
εV , and kV (·, ·) for the vertical landmarks. Because

λV
new is the mean of the normal distribution and its prior distribution is also Gaussian

in (4.49), the posterior distribution of λV
new is the normal distribution, from which

can be easily sampled. The full conditional distribution of λV
new is presented in

the following Appendix 4.F.1.2. However, the posterior distribution of λH
new is not

following a well-known distribution family because the covariance matrix of the
likelihood function Ωynew is a function of λH

new. Hence, the Metropolis-Hasting
algorithm is used to sample λH

new from the full conditional posterior distribution.
The acceptance rate for the Metropolis-Hasting algorithm for λV

new is presented in
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following Appendix 4.F.1.1.

4.F.1.1 Acceptance rate for landmark for the horizontal landmarks

The acceptance rate for the full conditional distribution of λV
new, A

(
λ̃H

new, λH
new

(n−1)),
is as follows.

N
(
ynew

∣∣∣λV
new, Ωynew

(
λ̃H

new

))
N
(
λ̃H

new

∣∣∣µ̂new, Σ̂new

)
N
(
ynew

∣∣∣λV
new, Ωynew

(
λH

new
(n−1)

))
N
(
λH

new
(n−1)

∣∣∣µ̂new, Σ̂new

) (4.50)

where µ̂new = Ω̂λnewλ

(
Ω̂λ

)−1
λ̂, Σ̂new = Ω̂λnew − Ω̂λnewλ

(
Ω̂λ

)−1
Ω̂λλnew , and

Ωynew

(
λH

new

)
= σ2

I kI

(
xnew − λH

new, xnew − λH
new

)
+σ2

GkG((xnew − λH
new, tnew), (xnew −

λH
new, tnew)) +σ2

εI[Lnew,Lnew] and Lnew is the size of xnew and ynew.

4.F.1.2 Posterior mean and variance of the vertical landmarks

The full conditional posterior distribution of P
(
λV

new

∣∣∣ynew, xnew, Θ̂, t
)

is as follows.

P
(
λV

new

∣∣∣ynew, xnew, Θ̂, t
)

∝ P
(
ynew

∣∣∣xnew, Θ̂, λH
new, λV

new, t
)
P
(
λV

new

∣∣∣Θ̂, t
)

(4.51)

P
(
ynew

∣∣∣xnew, Θ̂, λH
new, λV

new, t
)

is the probability density of the multivariate normal
distribution

N
(
ynew

∣∣∣λV
new1[Lnew], Ωynew

(
λH

new

))
(4.52)
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and P
(
λV

new

∣∣∣D, Θ̂, tnew

)
is

N
(

λV
new

∣∣∣∣Ω̂λnewλ

(
Ω̂λ

)−1
λ̂, Ω̂λnew − Ω̂λnewλ

(
Ω̂λ

)−1
Ω̂λλnew

)
(4.53)

Therefore, the full conditional posterior distribution ofP
(
λV

new
(n)∣∣∣ynew, xnew, Θ̂, t(n−1)

)
is

N
(
µλV

new

(n), σ2
λV

new

(n)) (4.54)

where

σ2
λV

new

(n) = 1
1T

[Lnew]

(
Ω

(n−1)
ynew

)−1
1[Lnew]

+ 1
σ2

λV
new

|λV

(n) (4.55)

µλV
new

(n) =

1T
[Lnew]

(
ynew − λV

new

(n−1)
) (

Ω(n−1)
ynew

)−1
+

µλV
new

|λV
(n)

σ2
λV

new
|λV

(n)

σ2
λV

new

(n) (4.56)

and

µλV
new

|λV
(n) = Ω̂λV

newλV

(
Ω̂λV

)−1
λ̂V (4.57)

σ2
λV

new
|λV

(n) = Ω̂λV
new

− Ω̂λV
newλV

(
Ω̂λV

)−1
Ω̂λV λV

new
(4.58)
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4.G Computational complexity and computed time for

numerical studies

The most computationally intensive part of our algorithm is the inverse opera-
tion of the Gaussian process prediction in the iterative operations of parameter
estimation (i.e., training) and calibration (i.e., testing), which are O(n3

train) and
O(n3

new) where ntrain and nnew are the number of data points in the training and
test data, respectively. Accordingly, the training is computationally intensive but
will be conducted offline. On the other hand, in the test stage, we focus on a single
signal to be calibrated while using the parameters estimated in the training set;
therefore, the calibration computation complexity is fairly low. We provide the
average computation times for the parameter estimation of each data set and the
calibration times of each signal in the test set in Table 4.G.1. The numerical and case
studies were performed in Matlab 2019b, except the functional linear regression that
was run in R, on Ubuntu Linux. The computer used in the experiments has Intel(R)
Core(TM) i9-9900K CPU @ 3.60GHz and 128 GB RAM memory. In principle, if we
conduct parallel computing to collect samples from Markov chains on n cores, we
can further reduce the computation time by cutting it into n times shorter.

Case I Case II Case III Case IV Case V
Param. Est. 9.38 min 10.91 min 10.92 min 0.45 min 15.58 min
Calibration 1.08 min 2.04 min 1.32 min 0.22 min 1.70 min

Table 4.G.1: Parameter Estimation time of each training data set and calibration
computation time for each signal in the numerical studies
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4.H Discussion of the interval estimates in numerical

and case studies

The length of the interval estimate implies the quantified uncertainties caused by the
randomness in the data. A wide interval estimate does not mean poor performance
of a method; it rather may imply that the prediction involves higher uncertainties
with a wide probability distribution due to the randomness in the original data.
In other words, accuracy of predicted interval estimate, rather than the simple
length of the interval estimate, is important. Too narrow estimated interval lengths
will always fail in including the true values due to their conservative view on the
uncertainties (“the true values would be within such a narrow interval”). On the
other hand, too wide interval lengths would always include the true values, which
also incur deviation from the target significance level (i.e., 90% in this case). Indeed,
in both numerical and case studies in the main text, all the reference methods failed
in providing accurate interval estimates; their interval estimates only include the
true target variable with much less probability than 90% (large errors) due to the
too narrow interval lengths. On the other hand, our proposed model provided
predicted interval estimates that include the true value with probability very close
to 90% (small errors).

Table 4.H.1 and 4.H.2 display the median length of the estimated intervals
(the difference between 95th and 5th percentiles of the posterior samples of the
target variable) of the numerical and case studies. The table indicates that the
other methods produce too conservative views on the uncertainties and fail in
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accurately accounting for the uncertainties involved in prediction; in fact, the lengths
of their interval estimates need to be longer. Notice that FLR, in most cases, has a
longer prediction intervals than LR(Lm) but the accuracy is generally worse. In
Case V, where the signals involve the most significant randomness (i.e., significant
uncertainties), FLR even misled to shorter lengths of the intervals than those in
Case I. This confirms that Bayesian calibration with Gaussian processes are more
suitable for characterizing the uncertainties in the functional data.

Table 4.H.1: Median length of the estimated 90%-intervals from numerical study

LEGP LR(Aln) LR(Lm) FLR
Case I 10.8 7 5.3 8.3
Case II 10.3 7.9 5.7 7.7
Case III 10.2 6.2 4.9 5.2
Case IV 12.3 6.1 4.1 8
Case V 20.5 9.8 7.5 6.4

Table 4.H.2: Median length of the estimated 90%-intervals from case study

LEGP LR(Aln) LR(Lm) FLR
Case study 9.3 13.8 6.8 3.5
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5 robust parameter design on dual stochastic response

models with constrained bayesian optimization ∗

In engineering system design, minimizing the variations of the quality measure-
ments while guaranteeing their overall quality up to certain levels, namely the
robust parameter design (RPD), is crucial. Recent works have dealt with the de-
sign of a system whose response-control variables relationship is a deterministic
function with a complex shape and function evaluation is expensive. In this work,
we propose a Bayesian optimization method for the RPD of stochastic functions.
Dual stochastic response models are carefully designed for stochastic functions.
The heterogeneous variance of the sample mean is addressed by the predictive
mean of the log variance surrogate model in a two-step approach. We establish
an acquisition function that favors exploration across the feasible and optimality-
improvable regions to effectively and efficiently solve the stochastic constrained
optimization problem. The performance of our proposed method is demonstrated
by the extensive numerical and case studies.

5.1 Introduction

We often want to design an engineering system so that its quality/performance mea-
surements (also called “response”) have small random variations while achieving
a satisfactory overall quality/performance. For example, in manufacturing design,

∗This chapter is based on the paper: Lee, J., S. Zhou, and J. Chen. (2022) Robust parameter
design on dual stochastic response models with constrained Bayesian optimization. submitted
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reducing manufacturing process variations is crucial to minimize the uncertainty
of the product quality. Also, in sensor design, finding the sensor structure that
creates the minimum variations in the output signals is very important. Robust
parameter design (RPD) is a statistical method that finds the optimal setting of
the control variables where the resulting responses are insensitive to the variations
created from noise variables, which are the sources of the undesirable uncertainty
in the response (Taguchi, 1986). RPD has been significantly studied for the past
couple of decades. RPD methods can be used in automatic process control, in
which RPD methods automatically find the best robust settings with automated
engineering systems or simulators (Zhong et al., 2010). Conventional RPD mini-
mizes the expected loss function where the minimization leads to reducing both
the variance of the response and the distance between the mean and a target (or
minimizing/maximizing the mean depending on the loss function we use). In other
words, the loss function presents the trade-off between the variance and the mean.
However, in practice, we often want to explicitly constrain the overall quality of the
process/products (i.e., the mean of the response) while minimizing the variance of
the response; we call this constrained robust parameter design (CRPD).

Many Conventional RPD works assume that noise variables are observable
and controllable in the experimentation stage but uncontrollable in the real world.
Under such assumptions, RPD methods have also been studied for deterministic
computer simulators. However, in many types of real-world data, there are various
unobserved and uncontrollable factors that create variations in responses. For
example, in multistage manufacturing processes, every operation involves process
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variations that often cannot be directly measured, and such variations propagate
to the downstream sensing measurements of the final product quality (Lee et al.,
2020). Some computer simulators are inherently stochastic (Al-Aomar, 2006). In
such stochastic environments, with the same values of the control variables, the
output response will have different values with variations. Naturally, considering
stochastic environments broadens the range of applications of the RPD.

Recently, researchers have studied RPD methods for expensive data where the
relationships between the response and control variables are unknown and complex.
For instance, many simulations take a long time to run a single round of experiment
where the relationship between the response surface and the control variables is
not known. Under stochastic environments, mean and variance of the response
are functions of the control variables, of which mathematical representations are
often complex and unknown; therefore, such functions cannot be expressed by
parametric expressions, such as quadratic forms.

It is very important to establish a CRPD method that addresses the aforemen-
tioned challenges: 1) data are generated from stochastic environments; 2) data
are expensive to obtain; 3) the underlying mean and variance are unknown and
complex functions of control variables. Time-consuming experiments call for a
sequential optimization method that can leverage the historical data to efficiently
find the optimal solution within a small number of experiments. In particular, we
establish a new stochastic constrained Bayesian optimization method. Bayesian
optimization consists of two parts: surrogate models and acquisition function.
Surrogate models predict the unobserved functions and quantify the uncertainty;



171

therefore, the Gaussian processes are commonly used for the surrogate models; an
acquisition function serves as an evaluation criterion of the control variables to be
used for the next experiment based on the prediction and quantified uncertainties
obtained from the surrogate models. To deal with stochastic response, instead of
directly modeling the response surface, its mean and variance can be represented
by surrogate models as functions of the control variables. In particular, two Gaus-
sian processes surrogate models are constructed for the unknown and complex
mean and variance functions. Bayesian optimization methods trade-off between
exploitation and exploration. It exploits its prediction to search for a precise solu-
tion while exploring the control variable space by selecting a control variable with
high uncertainty. For effective exploration, precise modeling of variance across
the control variable space is important. However, it is challenging to model the
variance of the errors in the mean surrogate model because sample means have
heterogeneous variance across control variable values, and the exact functional
form of the variance is unknown. Besides, a desirable acquisition function should
encourage exploration sufficiently while exploiting the prediction results. Through
our proposed stochastic constrained Bayesian optimization method, we addressed
the aforementioned technical challenges. In particular, our contributions can be
summarized in two aspects.

• First, we establish stochastic dual response surrogate models of the mean
and log variance of the response by the Gaussian processes. Specifically, the
sample mean and log sample variance are used as the observations of the
surrogate models. The heteroskedasticity of the variance of the errors in the



172

mean surrogate model is addressed by using a two-step approach. Particularly,
we predict the variance of the sample mean by the log variance surrogate
model.

• Second, we propose an acquisition function that explicitly encourages ex-
ploration while exploiting the predicted feasibility and optimality; both ex-
ploration and exploitation are performed based on the estimated surrogate
models. It selects the next experimental setting in unexplored regions with
high uncertainty that are likely to be feasible and have better objective values.
The current best optimal point is obtained from the predicted functions.

Our proposed method quickly and successfully finds the optimal robust design that
has the minimum variance while satisfying the mean constraint where the data are
generated from unknown complex expensive-to-evaluate stochastic functions. We
demonstrate the advantageous features of our proposed method with challenging
synthetic problems in the numerical study. In the case study, we show our proposed
method works well and outperforms the reference methods in the real world data
by using the graphene field-effect transistor nanosensor data.

The rest of the chapter is organized as follows. Relevant literature is reviewed
in Section 5.2. Section 5.3 describes our proposed method. In Section 5.3.1, the
dual stochastic surface response surrogate models are presented. The proposed
acquisition function for the constrained optimization on the stochastic functions is
detailed in Section 5.3.2. The performance of our proposed method is demonstrated
by the numerical study in Section 5.4 and by the case study in Section 5.5. Section
5.6 gives some discussions and draws conclusions.
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5.2 Literature Review

Conventional RPD conducts a ‘batch’ of experiments and obtains a ‘batch’ of data
at once, and the optimal robust setting is found based on the given data (Taguchi,
1986). Because whole experiments are conducted at once not leveraging the in-
formation of historical data, conventional RPD generally need large size of data.
Besides, conventional RPD minimizes a single loss function, such as the quadratic
loss function (Taguchi, 1986; Tan and Wu, 2012; Ouyang et al., 2019; Vanli and
Castillo, 2009; Shen, 2017; Zhong et al., 2010), and the weighted sum of mean
and variance (or standard deviation) (Apley et al., 2005; Shen, 2017). Such loss
functions characterize the trade-off between a lower variance and a better mean
(e.g., ’better’ can be defined as either ’lower’, ’larger’, or ’close to a target’ mean
value). However, such methods cannot constrain the mean of the responses. In
addition, many conventional RPD works considered factor variables (i.e., binary
or ordinal variables). Others who considered continuous control variables often
used parametric regressions (mainly, linear regressions in quadratic expressions);
such models cannot address the stochastic data generated from unknown/complex
mean and variance functions.

Dual response models have been studied for CRPD by fitting the mean and
variance of the response in terms of control variables (Vining and Myers, 1990;
Copeland and Nelson, 1996; Castillo et al., 1997; Fan, 2000; Köksoy and Doganaksoy,
2003; Yanıkoğlu et al., 2015). The dual response models can be used for stochas-
tic response data where the noise variables are not observable nor controllable.
However, most dual response models have common strict settings: 1) conducting
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a batch of experiments; 2) parametric linear models for each mean and variance
(mostly quadratic, but sometimes with a higher-order polynomial expression (Gio-
vagnoli and Romano, 2008)); 3) assuming independent errors with homogeneous
variances; 4) optimization only using the fitted mean curves (i.e, only exploitation).
These four conventional settings limit the use of such methods for CRPD.

Recent RPD works have dealt with complex shape black-box functions of data,
which are mostly motivated by the advent of computer simulations (Tan and Wu,
2012; Tan, 2015; Shen, 2017; Lehman et al., 2004). Most RPD literature on computer
simulations assumes deterministic computer simulators where noise variables are
assumed to be observable and controllable in experimentation stage; the true re-
sponse value will be known with certainty after an experiment. The simulation
outputs are modeled by the typical noiseless deterministic Gaussian process in
terms of both control and noise variables; such deterministic Gaussian process
models cannot be used for stochastic functions with differing mean and variance
functions.

Space-filling design, such as Latin hypercube sampling (McKay et al., 1979) and
uniform design (Yang et al., 2021; Fang et al., 2000), is also often used where points
far from each other are selected for experiments (Bektas et al., 2017). However,
space-filling design only favors exploration across the variable space and thus
requires many experiments.

To conduct a smaller number of experiments with the costly simulators, model-
based sequential optimization techniques have been used (Shen, 2017; Lehman
et al., 2004). Such sequential optimization methods select a setting to be used
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for the next experiment by utilizing the knowledge obtained from the historical
data. Shen (2017) used a stochastic approximation technique to optimize a loss
function, which is a gradient-based approach. Gradient calculation requires many
experiments with orthogonal designs on deterministic functions and is difficult
to perform on stochastic functions. Moreover, the gradient-based approach tends
to find a local optimum. Lehman et al. (2004) used the weighted expected im-
provement for deterministic simulators. They calculated the mean and variance by
assuming the noise variables and their probability distribution are known to solve
the constrained RPD. These methods can only be used for the deterministic data
generation functions whose noise variables are observable and controllable and
cannot be used in stochastic settings.

One may consider a global derivative-free optimization method generally used
for stochastic functions, such as the pattern search (Hooke and Jeeves, 1961) by
using the sample mean and sample variance as the observations. Although such
a method can handle a stochastic function in a complex unknown shape, such a
method is not desirable when an experiment is expensive to conduct because such
method does not consider the uncertainty of the samples; it generally requires a
large size of data.

Bayesian optimization has been shown efficient and effective for sequential
optimization and widely used in the field of model hyperparameter tuning for
machine learning algorithms (Jones et al., 1998; Snoek et al., 2012). In the Bayesian
optimization literature, several acquisition functions have been developed for the
constrained optimization on the deterministic functions (Zhan and Xing, 2020),
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including the weighted expected improvement (WEI) (Gardner et al., 2014). How-
ever, such methods cannot be directly applied to stochastic functions. Recently,
Letham et al. (2019) developed the noisy weighted expected improvement (NWEI),
using a quasi-Monte Carlo sampling technique to use the weighted expected im-
provement for stochastic functions. NWEI is inefficient because of its sampling
procedure at each iteration. Furthermore, WEI (accordingly, NWEI) is a greedy
technique because WEI multiplies two greedy terms: the expectation improvement
(Jasrasaria and Pyzer-Knapp, 2018) and the probability of feasibility (the cumu-
lative density functions are known to be greedy (Brochu et al., 2010; Berk et al.,
2019)).

Lehman et al. (2004) used the Bayesian optimization, in particular, WEI, for
the constrained RPD with a deterministic simulator. They calculated the mean
and variance from the predicted noiseless Gaussian process function fitted to the
deterministic simulator output surface and the assumed-to-be-known probability mass
functions of noise variables; therefore, this method cannot be used for a stochastic
function. Furthermore, even for a deterministic simulator, this method has several
limitations, especially when the number of noise variables is large: 1) As mentioned
above, WEI is a greedy method. 2) This method requires many samples across the
noise variables for variance estimation. As the number of noise variables increases,
the area of the space to explore grows exponentially, which demands an extensive
amount of experiments. 3) this method assumes the discrete noise variables. One
may discretize the continuous noise variables, but how to discretize will significantly
affect the performance and computational complexity.
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5.3 Constrained Bayesian Optimization on Robust

Parameter Design

We assume that data are generated from a stochastic black-box function. Response

y(x) is the output obtained by a ‘function evaluation’ (i.e., by conducting an exper-
iment). We want to find the optimal control variable value x that minimizes the
variance and guarantees the mean of the response. For example, in manufacturing,
one may want to find the setting of process parameters that minimize the variation
of the product dimensional quality while maximizing its mean. Response y(x) is a
function of x, and can be decomposed by the mean function µy(x) and error ε(x).

y(x) = µy(x) + ε(x) , (5.1)

where ε(x) is a normal random error with mean zero and variance function σ2
y(x)

(i.e., Var y(x) = Var ε(x) = σ2
y(x)). Given a fixed x, the response has constant

underlying mean and variance while the mean and variance are functions of x; that
is, the variance is heterogeneous over different x values. Our goal is to minimize
the log variance of the response σ2

y(x) while satisfying the constraint on the mean
µy(x) :

min log σ2
y(x)

s.t. µy(x) ≤ uy

(5.2)
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where uy is the upper bound of the mean function. Solving (5.2) is challenging
because we can only observe y(x) but not µy(x) nor σ2

y(x); both µy(x) and σ2
y(x)

need to be inferred from the observed values of y(x). This type of constrained
optimization formulation has been commonly used for the robust parameter design
with dual response models because this formulation is intuitive and practical
(Vining and Myers, 1990; Copeland and Nelson, 1996; Castillo et al., 1997; Fan, 2000;
Köksoy and Doganaksoy, 2003). Without loss of generality, we use a constraint
with an upper bound, but one can easily replace it by a lower bound or use both
lower and upper bounds.

In the following sections, we propose a stochastic constrained Bayesian opti-
mization method that finds the optimal solution of (5.2) only with a small number
of experiments conducted. The Bayesian optimization method is a sequential opti-
mization technique. The scheme initially starts with observed outputs at some x.
At each iteration, first, the proposed surrogate models (introduced in Section 5.3.1)
are fitted to predict the mean µy(x) and variance σ2

y(x) based on the responses of
y(x) and quantify the uncertainties in the predictions. Then, a point to be used for
the next experiment is suggested based on the proposed acquisition function (intro-
duced in Section 5.3.2) leveraging the prediction and quantified uncertainty by the
surrogate models. Then, after conducting experiments, the described iteration is
repeated.
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5.3.1 Mean and Variance Surrogate Models

We propose nonparametric dual stochastic response models that represent the
mean (i.e, µy(x)) and log variance (i.e., log σ2

y(x)) of the response y(x). Because
µy(x) and log σ2

y(x) are not observable, they are modeled by the Gaussian processes
where the sample mean and log sample variance of y(x) are used for their observations.
The conventional dual surface models, on the other hand, use two independent
polynomial linear regressions to model the mean and variance functions; the strict
assumptions of a quadratic form, homogeneous variance, and independent errors
cannot account for the complex uncertainties in the surrogate models (Vining and
Myers, 1990; Copeland and Nelson, 1996; Castillo et al., 1997; Fan, 2000; Köksoy
and Doganaksoy, 2003). Besides, our method does not need to observe the noise
variables nor their probability distribution to address the stochasticity in the re-
sponse; In contrast, Lehman et al. (2004) modeled the deterministic simulators by a
noiseless deterministic Gaussian process model with assumptions that the noise
variables are observable and their probability mass function is known.

We denote m(x) and v(x) by the sample mean and log sample variance (i.e.,
log s2 where s2 is sample variance) calculated by N sampled responses y(x). m(x)

and v(x) are modeled by the summation of the mean µ and error term δ that has
zero mean and positive variance:

v(x) = µv(x) + δv (5.3)

m(x) = µm(x) + δm(x) (5.4)
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where µv(x) and µm(x) are the mean functions of v(x) and m(x), and δv and δm(x)

are the normal random variables with mean zero. Because m is a unbiased estimator
(i.e., µm(x) = Em(x) = µy(x)) and the bias of v to log σ2

y(x) is constant (i.e., µv(x) =

E v(x) = log σ2
y(x)+b; specifically, the bias b is a function of the sample size N ; details

can be found in Appendix 5.A.2.) Optimization formulation (5.2) is equivalent
to min µv(x) subject to µm(x) ≤ uy. However, µv(x) and µm(x) are not observable;
therefore, they are modeled by the Gaussian process priors.

µv(x) ∼ GP(µo
v(x) , cov(x, x′;θv)) (5.5)

µm(x) ∼ GP(µo
m(x) , cov(x, x′;θm)) (5.6)

where µo
v(x) and µo

m(x) are the prior means of µv(x) and µm(x). cov (·, ·;θ) is a
covariance function with the hyperparameters θ, and cov (·, ·;θ) is represented
with a kernel function. We used the Gaussian kernel, which is one of the most
widely used kernel (Rasmussen and Williams, 2006).

cov
(
x, x′;θ =

{
σ2, l

})
= σ2 exp

(
−
∣∣∣lT (x − x′)

∥∥∥2
)

(5.7)

where l is the inverse length-scale parameters vector that characterizes the sensi-
tivity of the variables x to the Gaussian process outputs. In parameter design, we
cannot assume the sensitivities of all the parameters to the outputs are the same.
When a variable x in x is sensitive to the output, the corresponding l in l will be
estimated as a large number. Insensitive x will have a small l. σ2 is the Gaussian
process variances, and θ = {σ2, l} are to be estimated. The hyperparameters of the
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Gaussian processes θv and θm are estimated by the maximum likelihood estimation.
δv and δm(x) denote the sampling uncertainty of the two estimators v(x) and

m(x); the variances of v(x) and m(x) are characterized through the variances of δv

and δm(x), respectively. The log sample variance of normal random variable has
often been approximated by the normal distribution (Bartlett and Kendall, 1946;
Nair and Pregibon, 1988).

Var δv = 2
N − 1 (5.8)

With this approximated variance, the Gaussian process model in (5.5) can be
independently modeled and fitted. The mathematical derivation of (5.8) is given
(in terms of N) in Appendix 5.A.1 of the supplementary material.

The variance of the sample mean is heterogeneous across x because Var δm(x) =

σ2
y(x)/N , and we do not know the exact expression of σ2

y(x). It is important to
characterize this heterogeneity to precisely quantify the uncertainty, which is crucial
in Bayesian optimization. We predict this variance Var δm(x) by using a plug-in
estimator with the predictive mean of v(x). Notice that v(x) is a biased estimator of
log σ2

y(x) with a constant bias; E v(x) = log σ2
y(x) + b where the bias b = −1/(N − 1)

is approximated by the Taylor expansion (See Appendix 5.A.1 of the supplementary
material). Given these two equations, we obtain Var δm(x) = exp(E v(x) − b)/N .
By plugging the predictive mean µ̂v(x) into E v(x), we obtain

Var δm(x) = 1
N

exp
(

µ̂v(x) + 1
N − 1

)
(5.9)
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where µ̂v(x) is the predictive mean of v(x). The derivation of (5.9) is presented in
Appendix 5.A.2 of the supplementary material.

Notice that the predictive mean µ̂v is used in (5.9). The predictive mean and
variance, µ̂v and σ̂2

v, are obtained by the conditional posterior mean and variance.
Suppose that X = [x1 · · · xt] is the t control variable values used so far, and v =

[v1 · · · vt]T is the corresponding observed log sample variances. The predictive mean
and variance at x∗, given X and v are written as:

µ̂v = µo
v(x∗) + Cx∗,X {CX,X + Var δvI}−1 (v − µo

v(X)) (5.10)

σ̂2
v = Cx∗,x∗ − Cx∗,X {CX,X + Var δvI}−1 CX,x∗ (5.11)

where CX,X′ = C
(
X, X′; θ̂

)
is the prior (cross-)covariance matrix of X and X′,

whose (i, j) element is cov
(
xi, x′

j

)
where xi and x′

j are the i and j th columns of X

and X′, respectively. Both predictive mean and variance of the Gaussian process
surrogate models of v and m play important roles in the acquisition function. The
predictive means predict the means of v and m (i.e., µv and µm in (5.3) and (5.4)),
respectively, and the predictive variances σ̂2

v and σ̂2
m quantify the uncertainties in

the predictions. Here, we show the predictive mean and variance of the surrogate
models for v, but those of the surrogate model for m can also be obtained in the
same manner.

Therefore, we used N = 2 for the sample mean m and log sample variance v.
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5.3.2 Stochastic Constraints Bayesian Optimization Acquisition

Function

We propose an acquisition function that explicitly encourages exploration over
high uncertainty regions for the next experiment, presented in Section 5.3.2.1. The
description of obtaining the current best predicted feasible optimal solution is
detailed in Section 5.3.2.2.

5.3.2.1 Proposed acquisition function

In the Bayesian optimization, the point for the next experiment is selected based
on the acquisition function. We propose an acquisition function that explicitly
encourages exploration over the space with high uncertainty looking for a better
solution. It also exploits the knowledge about the objective and constraint functions
(i.e., optimality and feasibility). The proposed acquisition function α(x) is

α(x) = σ̂m(x) Φ
(

uy − µ̂m(x)
σ̂m(x)

)
Φ
(

vbest − µ̂v(x)
σ̂v(x)

)
(5.12)

where vbest is the current best objective value, and Φ (·) is the standard normal cu-
mulative density function. µ̂m(x) and σ̂m(x) are the predictive mean and standard
deviation of m at x, and µ̂v(x) and σ̂v(x) are those of v at x. In (5.12), the second
term Φ ((uy − µ̂m(x)) /σ̂m(x)) is the probability of feasibility, which is the probabil-
ity that the given x is feasible under the predicted probability distribution by the
mean surrogate model. Apparently, this term evaluates the feasibility of the given
x. The last term Φ ((vbest − µ̂v(x)) /σ̂v(x)) is the probability of improvement, which
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is the probability that the given x is better than the current best value vbest; this term
evaluates the optimality of the given x. These two terms evaluate the optimality and
feasibility conditions through probability functions. The most important term is
the first term σ̂m(x), which evaluates the uncertainty of the prediction. By selecting
x that has the largest standard deviation, we can reduce the largest uncertainty
about the response (Srinivas et al., 2012). Naturally, α(x) explicitly encourages
exploration and filters out bad candidates (infeasible nor not improving the ob-
jective value) to avoid over-exploration. On the contrary, the weighted expected
improvement (Gardner et al., 2014; Letham et al., 2019) is known as a greedy ap-
proach. The weighted expected improvement multiplies two terms, the expected
improvement and the probability of feasibility, and these both terms significantly
favor exploitation not performing enough exploration.

The setting for next experiment is selected at each iteration by maximizing the
proposed acquisition function:

xnext = argmax
x

α(x) (5.13)

The explicit exploration of our acquisition function provides many benefits: It
facilitates finding a better solution quickly and finding a global optimum. Even
after finding a good solution (or a local optimum), this acquisition function keeps
searching unexplored regions. In addition, exploration improves the precision of
the function estimation (Srinivas et al., 2012), which then improves the accuracy of
the solutions.

In the following Section 5.3.2.2, the current best feasible solution vbest used in
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(5.12) is described.

5.3.2.2 Current best predicted feasible optimal solution

We find the current best feasible solution xbest by the predicted objective and con-
straint functions then predict vbest at xbest.

xbest = arg min
x

µ̂v(x) + λ max(0, µ̂m(x) − uy) (5.14)

vbest = µ̂v(xbest) (5.15)

where λ is an arbitrary large number. The current best feasible point xbest is selected
from the predictive Gaussian process means of the objective and constraint functions.
Notice that the predictive mean is the empirical best linear unbiased predictor
(EBLUP) (Santner et al., 2018). The second term in (5.14) gives the penalty to
the feasibility gap, max(0, µ̂m(x) − uy). The feasibility gap quantifies how much
violated is the constraint; a feasible point has zero feasibility gap, and the feasibility
gap of an infeasible point is the distance of the point from the upper bound. As a
result, (5.14) finds the minimum point of the predicted objective function if there
exist feasible points. If feasible points are not available, it finds the point with the
smallest feasibility gap. vbest is used as the best feasible point in (5.12) in the next
iteration, and xbest will serve as the best solution when the algorithm is terminated.
We would like to point out that λ in (5.14) needs to be large enough. When there is
no feasible region, the penalty weighs significantly on the feasibility gap; therefore,
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we get a point close to the one with the minimum feasibility gap as the optimal
solution of (5.14). Nevertheless, our preliminary experiments indicate that the
values of λ barely affect the performance results as long as it is large enough, which
is shown in Appendix 5.A.4 of the supplementary material.

For the optimization of the acquisition functions, there are many options. We
used the DiRect (Dividing Rectangles) algorithm (Jones et al., 1993) to optimize
the acquisition functions. DiRect algorithm is a deterministic global optimization
(Jones and Martins, 2020) and is greatly used because it is fast and effectively finds
the global optimum. DiRect has also been used for acquisition function optimization
(Kandasamy et al., 2016, 2019).

The proof of the convergence of the proposed acquisition function is a challeng-
ing problem. In this work, instead of the proof, we validate the performance of
our proposed method by the results from the extensive numerical and case studies.
The results confirm the benefits of the proposed method.

The complete algorithm of the proposed method is summarized in Algorithm 2.
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Algorithm 2 Stochastic constrained Bayesian optimization for robust parameter
design
Input: : Budget for the number of experiments b, the number of initial data points

M , initial observations D0 = {(x0j, y01j, y02j) , j = 1 . . . , M}, penalty λ, initial
optimum value with an arbitrary large number vbest = λ.

Output: : xbest

Initialize: : Obtain H1 = {(x0j, v0j, m0j) , j = 1 . . . , M} from D0, t = 1.
1: while t ≤ ⌊b/2⌋ do
2: Estimate the Gaussian process parameters θvin (5.5) given Ht by the MLE.
3: Estimate the Gaussian process parameters θm in (5.6) given Ht by the MLE.
4: xt = argmax α(x) in (5.12).
5: xbest = arg minx µ̂v(x) + λ max(0, µ̂m(x) − uy) in (5.14).
6: vbest = µ̂v(xbest) in (5.15).
7: Observe yt1 and yt2 at xt.
8: Calculate vt and mt with yt1 and yt2.
9: Ht+1 = Ht

⋃ {(xt, vt, mt)}.
10: t = t + 1
11: end while

5.4 Numerical Study

We demonstrate the performance of our proposed method by using simulated data
from synthetic problems. We used four synthetic problems that have been widely
used for the performance comparison of the sequential optimization methods de-
signed for expensive-to-evaluate data (Letham et al., 2019). Each problem consists
of an objective function and a constraint function that are in complex shapes, and
both objective and constraint functions have many peaks and valleys; therefore,
there exist multiple local optimal solutions. Every synthetic problem consists of an
objective function f(x) and a constraint g(x) ≤ ug. We tailored the problems for
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the formulation of the robust parameter design:

min log f(x)

s.t. g(x) ≤ ug

(5.16)

and we assume that the response y(x) is generated from the normal distribution
with mean g(x) and standard deviation f(x):

y(x) ∼ N
(
g(x) , {f(x)}2

)
(5.17)

The robust parameter design has different characteristics from the general con-
strained sequential optimization settings. For example, function f(x) must be
positive as a standard deviation. We also want to ensure that the ratio of the mean
to the standard deviation is not too large to make the problem practical. Accord-
ingly, we rescaled the original functions but remained the shape of the original
functions and constraints. The details of the used functions are included in Ap-
pendix 5.B.1 of the supplementary material. We assume that we cannot observe
the true underlying functions f(x) and g(x) but only observe the responses y(x)

after function evaluations at x. We used four synthetic problems as below.

1. Gardner1: Two dimensional functions, originally from Gardner et al. (2014).
The objective function is wavy and thus has multiple local minimums. The
feasible regions of the constraints have two separated regions.

2. Gardner2: Two dimensional functions, originally from Gardner et al. (2014).
This problem has two separated small feasible regions.
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3. Gelbart: Two dimensional functions, originally from Gelbart et al. (2014).
Branin function is used as the objective function and the feasible region is a
circle.

4. Hartmann: Six dimensional functions, originally from Jalali et al. (2017). This
problem is included to show the performance in a high dimensional problem.

Fig. 5.4.1 shows the four synthetic problems used in the numerical study. The
feasible regions are highlighted by the shades with diagonal lines.

We compared the performance of our method with four reference methods
presented below.

• E2CBO: Our proposed method, “exploration-exploitation constrained Bayesian
optimization”. Dual stochastic response models presented in (5.3)-(5.6) are
used for the surrogate models. The proposed acquisition function in (5.12)
is used to find the next evaluation point, and (5.14) is used for the best fea-
sible point. The DiRect search algorithm is used for the optimization of the
acquisition functions.

• PS: Pattern search method, which is a derivative-free (i.e., no need to calcu-
late gradient) global optimization technique for stochastic functions (Hooke
and Jeeves, 1961). We used the tool provided by MATLAB. This method
is included to show the performance of the general stochastic optimization
technique.

• SoGP: Space-filling design with Gaussian process. The Sobol sequence, a
sequential space-filling design method, is used to select the next evaluation
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Figure 5.4.1: Four synthetic problems used in the numerical study where each
column represents each problem. The first row presents the best feasible objective
function, and the second row shows the constraint of each problem. The feasible

regions are highlighted by the shades with parallel lines. The global feasible
optimal point of each constrained optimization problem is marked with a dot.

Hartmann6 is plotted over the first and second control variables while fixing the
rest variables to 0.1.

point. Then, the Gaussian process models are fitted to the mean and log sam-
ple variance. The best feasible point is found by the predictive mean functions
using (5.14) through the DiRect search algorithm. Space-filling design has
been used in batch-based designs (Tan, 2015; Bektas et al., 2017) with Latin
hypercube. For the sequential algorithm, we used the Sobol sequence instead.
Space-filling designs only do exploration.
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• HWEI: Heuristic version of the weighted expected improvement. To validate
the performance of our proposed acquisition functions, existing acquisition
functions are included for comparison. Please note that we used our proposed
surrogate models presented in (5.3)-(5.6). HWEI is used as the acquisition
function. Letham et al. (2019) modified WEI heuristically to use it as a refer-
ence method in their experiments using stochastic functions. In particular,
HWEI obtains the best feasible point by the predictive mean of objective
and constraint functions (while WEI picks the best feasible point among the
observed data). WEI (accordingly, HWEI) is a greedy acquisition function,
favoring exploitation.

• NWEI: Noisy weighted expected improvement. This is a stochastic version
of WEI developed by Letham et al. (2019). However, NWEI is not efficient
because of its sampling schemes. More importantly, like HWEI, NWEI is a
greedy acquisition function, favoring exploitation. Please note that we used
our proposed surrogate models, but NWEI is only used for the acquisition
function to compare the performance of the acquisition functions.

We report the two performance indicators over the number of function evalua-
tions: The best feasible objective value and the feasibility gap. In particular, the medians
of these indicators over the replications of runs are presented. The best feasible
objective value is the true value of the objective function f(xbest) at the current best
point xbest only when the mean constraint g(xbest) ≤ ug is satisfied. The median
of the best feasible objective is calculated only with the feasible solutions. The
feasibility gap indicates how much the feasibility is violated based on the true
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constraint function value: max(0, g(xt) − ug). If the current solution is feasible, the
gap is 0, and if infeasible, the gap is the distance of the constraint function value
from the upper bound: g(xt) − ug.

These two indicators show the optimality and feasibility of the provided solution.
There is a trade-off between optimality and feasibility; if a constraint is violated
with a larger amount, one can easily achieve better objective values. Therefore, we
provide the feasibility gap that measures how close the solution is to the feasible
region. Because an infeasible point can have a better objective value, we use the
best feasible objective value as an indicator for the optimality. Our goal is to achieve
the minimum values in both the best feasible objective value and the feasibility gap.
An algorithm that has a significantly large feasibility gap may have a better best
feasible objective value, but this is not ideal because such an algorithm tends to
violate the constraints to provide a better objective value that is rarely feasible.

We performed experiments with 100 replications. We used the sample size of
two for the sample mean and the log sample variance. For each replication, two ini-
tial points of x are randomly selected (i.e., initially four evaluations are conducted).
Then, optimization is carried out by each of the five methods with the same ini-
tial points. Only SoGP takes its initial points by the Sobol sequence. We set the
budget of the function evaluations to the number of parameters multiplied by 100.
For example, we limited our function evaluations to 200 for the two-dimensional
functions, such as Gelbart, and 600 for the Hartmann6, a six-dimensional function.

Fig. 5.4.2 confirms that our proposed method significantly outperforms the
reference methods. In general, the Bayesian optimization methods (E2CBO, HWEI,
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and NWEI) outperformed the others (PS and SoGP); the Bayesian optimization
methods decrease both the feasible objective value and the feasibility gap quicker
than the other two methods. These results indicate that the Bayesian optimization
approach using our proposed surrogate models is effective in the stochastic con-
strained optimization of RPD. Because our surrogate models can characterize not
only the mean but also the uncertainty of the evaluated function, we can leverage
both information to minimize the number of evaluations via Bayesian optimization.
The performance of both SoGP and PS are not satisfactory. SoGP does not utilize the
historical information for the next evaluation and only explores a new region. PS,
on the other hand, uses the observed data for optimization but does not consider
the estimation uncertainty. In our additional experiments, PS tended to converge
eventually to the optimal solutions but after a significant number of evaluations.

We would like to highlight two observed advantageous features of our proposed
acquisition function compared to the other two acquisition methods (HWEI and
NWEI). First, our method quickly finds the better objective value. It reaches the
minimum points in the both best feasible objective value and the feasibility gap
the fastest. HWEI sometimes reaches the minimum feasibility gap quickly, but
the feasible objective value was slower to get to the optimal solution. Second, our
method tends to find the global optima while HWEI and NWEI stick to the local
optima. Even when our method finds a local minimum, it keeps exploring to find
a better solution. Our method not only keeps reducing the objective function but
also the feasibility gap as more evaluations are conducted. On the other hand,
HWEI and NEI were no longer able to decrease the feasibility gap in Gardner1
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Figure 5.4.2: The performance of five methods with four synthetic problems.
E2CBO is our proposed method. Each row shows the results from each problem.

First column shows the best feasible objective values, and the second column
shows the feasibility gap. They are shown over the number of function evaluations.
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and 2 problems. In a six-dimensional problem, both HWEI and NWEI successfully
reduced the feasibility gap but showed limitations in improving the objective values.

We also conducted the experiments by using different sample sizes for the
sample mean and the log sample variance with all the methods presented here. The
performance results are included in Appendix 5.B.2 of the supplementary material.
Given the same budget for the number of function evaluations, the performance is
the best with a sample size of 2 and better in a low sample size. This is because by
using only a small sample size, we could effectively utilize the spared samples to
explore a better solution.

5.5 Case Study

To demonstrate the performance of the proposed method with real-world data, we
used the data generated from the reduced graphene oxide field-effect transistor
(GFET) nanosensor model (Wang et al., 2021b); this nanosensor is designed to
detect lead ions in water. Such graphene-based FET sensors have many promising
beneficial characteristics and thus have been greatly developed to detect a wide
range of target substances, such as heavy metals (Zhou et al., 2014), Escherichia coli
(Thakur et al., 2018), and specific proteins (Liu et al., 2012). The GFET nanosensors
are only for one-time use and can only be used once, and the sensor-to-sensor
variations in structures are quite high (Lee et al., 2020). Naturally, the quality of the
GFET sensors involves high variations. Therefore, finding the sensor design setting
that has the minimum variance of the responses is important. Fig. 5.5.1 depicts
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the diagram of the GFET sensor structure. The output of the GFET sensor is the
current measured between the drain and source electrodes after a certain level of
voltage is applied between these two electrodes. Once the sensor is exposed to the
water containing the lead ions, the current drops. Then, the quality of the sensor is
characterized by the “response ratio” (Maity et al., 2020).

y(x) = Ib(x) − It(x)
Ib(x) (5.18)

where x is the control variable, and Ib(x) and It(x) are the drain-source current
measured from the sensor in pure water and in the contaminated water with 20
ppb lead ions, respectively, given x. Five control variables, length and width of
the graphene channel, temperature, gate electrode thickness, and drain-source
voltage are considered as the control variables. Eight noise variables are randomly
generated and accordingly the stochastic output y(x) is generated. The detailed
simulation settings are included in Appendix 5.C.1 in the supplementary material.
Even though the response ratio is deterministic given the values of the control and
noise variables, we regarded y(x) as stochastic and assumed the noise variables
unobservable. The goal of this case study is to find the optimal setting of the
control variables x that have the minimum variance of the response ratio y(x) while
satisfying that the mean response ratio is at least larger than a given tolerance; this
mean tolerance is set by 0.07.

We followed similar settings of the numerical study in Section 5.4. We conducted
100 replicated experiments. For each replicated experiment, we randomly selected
two initial samples, and all the methods shared these same initial samples (except
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Figure 5.5.1: Graphene field-effect transistor sensor

SoGP that used Sobol sequence). The four reference methods used in the numerical
studies were carried out to compare the performance of our proposed method. We
present the best feasible objective value and feasibility gap. In particular, the median
of these performance indicators over the experiment replications is presented. The
major difference of the case study from the numerical study is that we do not know
the true value of the mean nor the variance of the given function from which the
data are generated. Thus, we obtained 100 samples and used their sample mean and
sample variance as the indicators of the true mean and variance for validation. As
a result, the resulting performance involved further sample variations in validation.
To help readers interpret the figures, we smoothed the resulting graphs by the
moving median with a sliding window of length 50. The original plots are presented
in Appendix 5.C.2 of the supplementary material.

Fig. 5.5.2 depicts the best feasible objective values and the feasibility gaps of
the five methods. The figure confirms that only our proposed method quickly
finds the solution that has the minimum objective values and feasibility gap. All
the reference methods did not perform well in this dataset. Among the reference
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Figure 5.5.2: The performance of five methods in the case study. E2CBO is our
proposed method. The best feasible objective values and feasibility gap over the

number of evaluations are presented.

methods, some methods (SoGP and NWEI) reached low objective values quickly
but the feasibility gaps of these methods were much higher than ours. HWEI found
the solution with a low feasibility gap, but its objective value did not decrease but
rather increased above out of the visualized range. PS decreased both the best
feasible objective value and the feasibility gap, but the objective value was higher
than PS and NWEI and the feasibility gap was higher than HWEI. Our method
reached the lowest objective value along with NWEI and the feasibility gap was
lower than any other methods.

We also included the case study results conducted using different sample sizes
N for the sample mean and sample variance in Appendix 5.C.3 of the supplemen-
tary material. Similar to the numerical study, given the same number of function
evaluations, the performance from a small sample size was better than those from
a larger sample size.
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5.6 Conclusion

In this work, we proposed a stochastic constrained Bayesian optimization method
that minimizes the variance of the response while satisfying the constraint on its
mean, namely the cosntrained robust parameter design. In particular, our method
deals with the data generated from a stochastic black-box function. The dual
stochastic response surface models are constructed as surrogate models to model
the mean and log variance of the performance measures by the Gaussian processes.
The sample mean and log sample variance of sample size 2 are used as the responses
of the surrogate models. The approximated variance of the log sample variance is
used for the log variance model. The heterogeneous variance of the sample mean
is modeled by the plug-in estimator by the predictive mean of the log variance
model. We also proposed an acquisition function that favors exploration across the
control variable space while the optimality and feasibility of the point are taken
into account. It encourages evaluating a high uncertainty region that is likely to
be feasible and improve the objective value. The results from the numerical and
case studies confirm that the performance of our proposed method is significantly
better than the reference methods.

Our method widens the application range of RPD. Our proposed method can
be used for real-world data or simulation data whose observations are stochastic
and data generation function is complex and unknown. Our method automatically
finds the best robust setting of engineering systems when it is incorporated into
the target engineering system, such as simulators.

We did not prove the convergence of the proposed method. The convergence
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proof of the Bayesian optimization is indeed challenging. The convergence of the
conventional unconstrained acquisition functions has been proved recently, for
such as the upper confidence bound (Srinivas et al., 2012) and posterior sampling
(Russo and Roy, 2014). However, the convergence of the constrained Bayesian
optimizations, such as the weighted expected improvement, has not been studied
yet. We will further investigate this topic and plan to report the results in the near
future.
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appendix

5.A Derivation of results with N sample size

5.A.1 Approximated variance of the log sample variance

N denotes sample size for the sample mean and log sample variance. Var log(s2) is
approximated by the delta method. In the following proof, f (·) = log (·):

Var log(s2) ≈
(
f ′
(
E s2

))2
Var s2 = 1

(E s2)2 Var s2 (5.19)

= 1
(σ2)2

2σ4

N − 1 (5.20)

= 2
N − 1 (5.21)

5.A.2 Approximated variance of the sample mean

First, we approximate the bias of log sample variance by the second order Taylor
approximation.

E log
(
s2
)

≈ log
(
E s2

)
+ 1

2f ′′
(
E s2

)
Var s2 (5.22)

= log
(
E s2

)
− Var s2

2 {E s2}2 (5.23)

= log
(
σ2
)

−
(

2σ4

N − 1

){
1

2 (σ2)2

}
(5.24)

= log
(
σ2
)

− 1
N − 1 (5.25)
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where

Var s2 = 2σ4

N − 1 (5.26)

because y follows the normal distribution.
Now, we know log

(
σ2

y

)
≈ E log (s2) + 1/(N − 1) and Var m = σ2

y/N . Then,
Var m ≈ exp (E log (s2) + 1/(N − 1)) /N . Therefore, the plugged-in variance is

Var m ≈ 1
N

exp
(

µ̂lv(x) + 1
N − 1

)
(5.27)

where µ̂lv(x) is the posterior mean of the log sample variance model at x.

5.A.3 Effectiveness of the approximated variance in Bayesian

optimization

Approximated variance presented in Eq. (8) and (9) are lower than the true
values by a constant. Nevertheless, they effectively characterize the heterogeneity
of the variance of the sample mean. These variances play an important role in
uncertainty estimation so that the algorithm explores the uncertain regions in
sequential optimization. Therefore, the relative size of the variance over the control
variable is the most important. It is often observed that the variances smaller than
the true values are more effective in Bayesian optimization. When the prior variance
is large, the prior mean dominates in the predictive mean when the sample size is
small, which deteriorates prediction performance. To exploit the given observations
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for effective prediction, many samples are required. This contradicts the goal of the
Bayesian optimization that aims at using the least evaluated samples to find the
optimal solution.

5.A.4 Sensitivity analysis over the penalty λ

We conducted the sensitivity analysis with two-dimensional synthesized problems
used in our numerical studies by varying the penalty λ. Figure 5.A.1 indicates that
the penalty λ in our proposed method does not affect the performance much.

5.B Numerical study

5.B.1 Synthesized problems

Below are the four synthesized problems used in the numerical study.

• Gardner1

f(x1, x2) = cos (2x1) cos (x2) + sin (x1) (5.28)

g(x1, x2) = cos (x1) cos (x2) − sin (x1) sin (x2) − 0.5 (5.29)

ug = 0 (5.30)

x ∈ [0, 6]2 (5.31)
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Figure 5.A.1: Sensitivity analysis over the penalty λ. The minimum penalty is set
larger than the maximum value of each problem.

• Gardner2

f(x1, x2) = sin (x1) + x2 (5.32)
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g(x1, x2) = sin (x1) sin (x2) + 0.95 (5.33)

ug = 0 (5.34)

x ∈ [0, 6]2 (5.35)

• Gelbart

f(x1, x2) =
(

x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6
)2

+ 10
(

1 − 1
8π

)
cos (x1) + 10 (5.36)

g(x1, x2) = (x1 − 2.5)2 + (x2 − 7.5)2 − 50 (5.37)

ug = 0 (5.38)

x1 ∈ [−5, 10] , x2 ∈ [0, 15] , (5.39)

• Hartman6

f(x) = −
4∑

i=1
αi exp

−
6∑

j=1
Aij (xj − Pij)2

 (5.40)

g(x) = ∥x∥ − 1, (5.41)

ug = 0 (5.42)

x ∈ [0, 1]6 (5.43)

with α = [1.01.23.03.2],
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A =



10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


, and

P = 10−4



1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


5.B.2 Results with different sample sizes

We conducted the numerical study with different sample size for the sample mean
and log sample variance. The results are presented below. In summary, the per-
formances with a lower sample size outperformed those with a higher sample
size

5.B.2.1 Sample size 3

The numerical study results with sample size 3 is presented in Fig 5.B.1.

5.B.2.2 Sample size 5

The numerical study results with sample size 5 is presented in Fig 5.B.2.

5.B.2.3 Sample size 10

The numerical study results with sample size 10 is presented in Fig 5.B.3.
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5.C Case study

5.C.1 Setting of the case study

We used the data generated from the reduced graphene oxide field-effect transistor
(GFET) nanosensor model (Wang et al., 2021b). The output currents are simulated
both from the pure water and from the water contaminated by 20 ppb lead ions.
Then, the response ratio is calculated based on these two currents. The model takes
five control variables, the length and width of the graphene channel, temperature,
gate electrode thickness, and drain-source voltage. Eight noise variables are ran-
domly generated; the response ratio requires two sensor currents, and four noise
variables are used for each sensor current. The four noise variables are the hole and
electron carrier mobility, the gate voltage at the point of minimum drain current,
and the electron-hole puddle. The values of the noise variables for the pure water
sensor current and contaminated water sensor current are obtained from Wang
et al. (2021b). They are generated by the normal distribution; as a result, the created
output currents contained random variations. To see the detailed equations for the
sensor output, please refer to Wang et al. (2021b)

5.C.2 Results of the case study before smoothing

Fig 5.C.1 shows the case study results before smoothing.
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5.C.3 Results with different sample sizes

Here, we provide the case study results with different sample sizes: 3, 5, 10. We
made the resulting graphs smooth by the moving median with a sliding window
of length 50.

The case study results with respect to sample size 3, 5, and 10 are presented in
Fig 5.C.2, Fig 5.C.3, and Fig 5.C.4.
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Figure 5.B.1: Performance of the five methods in the numerical study (n = 3)
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Figure 5.B.2: Performance of the five methods in the numerical study (n = 5)
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Figure 5.B.3: Performance of the five methods in the numerical study (n = 10)
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Figure 5.C.1: Case Study results before smoothing N = 2
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Figure 5.C.2: Case Study results N = 3
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Figure 5.C.3: Case Study results N = 5
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Figure 5.C.4: Case Study results N = 10
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6 conclusion and future work

In this dissertation, variations and uncertainties of the advanced manufacturing
processes and systems are modeled. The contributions of this work are summarized
as follows.

1. The proposed sparsity enhanced prior enables us to identify the faulty opera-
tion with excessive variations even when we have a large number of operations
and do not have enough sensors. Our model is carefully designed to incorpo-
rate Engineering domain knowledge. The proposed sparsity-enhanced prior
distribution can be flexibly adjusted according to the practitioners’ empirical
knowledge of the fault occurrence frequency and different tolerance levels
across operations.

2. The random coverage and thickness of two-dimensional materials printed
by the inkjet printing technique are modeled by stochastic geometry model,
and the relationship between the process variables and the statistical model is
also investigated. Furthermore, a statistic is established to identify abnormal
patterns based on image data.

3. A nonparametric model that can precisely characterize the functional data
with random shape and random shifting is proposed. Building upon the
proposed model, a Bayesian framework to infer the underlying input variable
is established. With the proposed model, the underlying variable of a new
sampled signal is inferred accurately with precisely quantified uncertainties.
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4. New stochastic constrained Bayesian optimization method is proposed for
constrained robust parameter design, which aims to minimize the variance
of the quality while satisfying a constraint on the mean quality. Specifically,
for the Bayesian optimization, both the surrogate models and acquisition
functions are established. The proposed surrogate models successfully char-
acterize the heterogeneous variance of errors, and the proposed acquisition
explicitly explores the design space to quickly find the global optimal solution
not being satisfied by local optimums.

This dissertation mainly focused on establishing statistical models and meth-
ods that characterize and manage various types of uncertainties in the data from
advanced manufacturing processes and systems. For future research, I plan to
continue my research on the process and quality control in advanced manufactur-
ing processes and systems as well as smart and connected service systems. The
potential future research directions are as follows:

1. I plan to continue my research in establishing statistical and data mining
models and methods on emerging manufacturing processes. There are many
emerging manufacturing processes that need data-driven process and quality
control methods. To address complex processes, I will consider using non-
parametric statistical methods and machine learning methods such as neural
networks. To characterize uncertainties in a large-scale dataset, Bayesian deep
neural networks will be also considered.

2. By leveraging the historical data, I will investigate condition-based operation
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and maintenance planning methods for smart and connected production
systems. Especially when there are some dependencies between components
(e.g., working machines) in the production systems, we need to consider the
status of the entire components. I will integrate the Markov decision process,
stochastic process, and reinforcement learning methods to find the optimal
operation and maintenance plans.

3. I plan to extend my research applications to smart and connected service
systems, such as healthcare management systems, where the data are obtained
from individual clients/patients. In smart service systems, it is very important
to predict the future status of clients/patients and make smart decisions.
Specifically, I will investigate advanced nonparametric predictive modeling
and decision-making models, such as partially observable Markov decision
process models.
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