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ABSTRACT 
 
Downregulation of class I HLA (HLA-I) impairs immune recognition and surveillance in 

prostate cancer and is a mechanism of resistance to certain immunotherapies. However, 

the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully 

explored. Epigenetic changes are common in prostate cancer and have been proposed 

as drivers of prostate cancer progression. Here, we propose that epigenetic mechanisms 

1) regulate HLA-I expression in prostate cancer, 2) are targetable by inhibition of 

epigenetic modifying proteins, and 3) have utility as potential biomarkers in prostate 

cancer circulating tumor cells (CTCs). We establish this through a comprehensive 

analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and 

metastatic human prostate cancer. Genomic alterations were found to be extremely rare 

in the HLA-I genes in primary and metastatic prostate cancer and were not associated 

with HLA-I gene expression. Loss of expression of HLA-I genes was associated with 

increased DNA methylation and histone H3 lysine 27 tri-methylation as well as decreased 

chromatin accessibility and histone H3 lysine 27 acetylation. We found that epigenetic 

regulation of the HLA-I genes was targetable by inhibiting DNA methyltransferase 

(DNMT) and histone deacetylase (HDAC) protein families. DNMT and HDAC inhibition 
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decreased DNA methylation, increased H3 lysine 27 acetylation, and functionally re-

expressed HLA-I on the surface of tumor cells. These results suggest the possibility for 

therapeutic use of epigenetic modifying agents to upregulate HLA-I on tumor cells to 

promote tumor clearance. Identifying patients who harbor epigenetically regulated HLA-I 

would allow for more personalized therapy decisions regarding epigenetic and 

immunotherapies. Described in this thesis is a method we developed for enrichment of 

methylated DNA from low-input samples, including CTCs. We validate the ability of this 

assay to detected HLA-I methylation in CTCs with low HLA-I expression, demonstrating 

the potential for methylated HLA-I as an epigenetic biomarker in prostate cancer.   
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Prostate Cancer Overview 

Prostate cancer begins as a hormone-dependent disease, arising from cells in the 

prostate gland (1). Initial treatment for localized prostate cancer may include watchful 

waiting, removal of the prostate by radical prostatectomy, or radiation (2). The 5-year-

survival rate for localized disease is 100%, but this drops to 30.5% once the cancer has 

metastasized to distant regions (3). Treatment for metastatic prostate cancer usually 

involves androgen deprivation therapy (ADT) because the growth of prostate cancer is 

initially dependent on androgen receptor (AR) signaling (1,2). The majority of men on ADT 

will eventually progress to metastatic castration-resistant prostate cancer (mCRPC) 

where treatment options are limited (4). Understanding the mechanisms that contribute 

to the transition of localized prostate cancer to metastatic disease is critical to providing 

better patient care and improving patient outcomes.  

 

Immune Evasion in Cancer 

In order for a tumor cell to travel from the primary tumor site to a site of metastasis, many 

molecular and microenvironmental changes need to occur including loss of cell-cell 

adhesion, resistance to cell cycle checkpoints, and changes to the microenvironment of 

metastatic seeding locations (5). Additionally, a tumor cell must survive encounters from 

various immune cells, whose function is to seek and destroy diseased cells (5,6). This 

avoidance of destruction by the immune system is termed immune escape or immune 

evasion. Multiple mechanisms of immune evasion have been proposed. These 

mechanisms involve many different cell types and cell signaling pathways stemming from 

both the tumor cell itself and cells within the tumor microenvironment (6).  
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The presence of various cell types within the tumor microenvironment can directly affect 

the ability of the immune system to find and eliminate tumor cells. Myeloid derived 

suppressor cells (MDSCs) are multifunctional when it comes to tumor immune evasion. 

MDSCs are involved in the formation of cancer associated fibroblasts (CAFs), the 

recruitment of T regulatory cells (Tregs), and their own differentiation into tumor associated 

macrophages (TAMs) (7). CAFs secrete multiple cytokines that modulate the composition 

of immune cells present in the microenvironment and induce changes to the structure of 

the microenvironment to physically block immune infiltration (8). Increased Tregs in the 

microenvironment can support survival of a tumor by promoting self-tolerance and 

effectively shutting down T-cell response to the tumor (9). TAMs support immune evasion 

through many mechanisms including suppression of CD8+ T-cell activation and 

recruitment of other immunosuppressive cell types (10). 

Mechanisms of immune evasion that are intrinsic to tumor cells commonly involve 

ways of hiding from cells that are involved in both innate and adaptive immunity (6). Some 

of these mechanisms are highlighted in Figure 1.1. Innate immune responses by natural 

killer (NK) cells are subverted by tumor cells through downregulation or proteolytic 

cleavage of certain proteins that bind to NK cell receptors (11,12). These proteins include 

MICA, MICB, and the UL16-binding protein (ULBP) family (11,13). CD8+ cytotoxic T-cells 

are the main cell type responsible for adaptive immune responses. Successful recognition 

of tumor cells by CD8+ T-cells relies on the expression or lack of expression of certain 

proteins on both the tumor cell and the T-cell (14). The proteins involved in T-cell 

mediated recognition and lysis of tumor cells are numerous and include members of 
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antigen processing machinery (APM), negative co-stimulatory molecules, tumor 

associated antigens (TAAs), class I major histocompatibility complex (MHC-I) molecules, 

and programmed death ligand 1 (PD-L1) (14-16). Changes to the expression levels of 

these proteins in the tumor cell renders the T-cell response ineffective and leads to tumor 

cell survival (17,18). 

Any or all of these mechanisms may be employed by a tumor cell to avoid 

destruction by the innate and adaptive immune system. However, the mechanisms 

involving alteration of CD8+ T-cell interactions with MHC-I are of particular interest 

because of the central role T-cells play in tumor elimination as well as the recent advances 

in immunotherapy, many of which rely on MHC-I expression. As a result, understanding 

these mechanisms and the regulation of MHC-I molecules in tumor cells can lead to 

improved treatment efficacy. 

 

Class I Major Histocompatibility Complex (MHC-I) and the Class I Human Leukocyte 

Antigens (HLA-I) 

The major histocompatibility complex (MHC) located on chromosome 6 consists of at 

least 250 protein-encoding and non-encoding genes, the majority of which are involved 

in regulating cellular immunity (19). Among these genes are the class I human leukocyte 

antigens. The class I human leukocyte antigens consist of three classical genes, HLA-A, 

HLA-B, and HLA-C, and three non-classical genes, HLA-E, HLA-G, and HLA-F. These 

genes code for proteins of the same names that serve important roles in the immune 

system. HLA-E, HLA-F, and HLA-G are each involved in regulation of NK cells through 

independent mechanisms (19). HLA-E and HLA-G also regulate certain subsets of T-cells 
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and HLA-G is able to inhibit B-cell proliferation (19). HLA-A, HLA-B, and HLA-C, referred 

to from here on as HLA-I, are by far the most researched and well understood of the 

human leukocyte antigens and are involved in regulation of CD8+ T-cells. HLA-I proteins 

are components of class I major histocompatibility complex molecules (MHC-I). Any of 

the three HLA-I proteins can be used in the formation of MHC-I (20,21). HLA-I genes have 

very similar sequences and the resulting proteins are similar in structure, which allow 

them to be interchangeable in the formation of MHC-I (22). However, polymorphisms in 

the genes allow for variations in peptide-binding and expression levels, which greatly 

increase the ability of the immune system to adapt to fight new infections and tumor 

development (20,23). MHC-I is expressed at the surface of virtually every nucleated cell 

in the human body (24). MHC-I expression is critical for T-cell mediated lysis of cells that 

have been infected with viruses or bacteria as well as tumor cells (25).  

An overview of the formation of MHC-I molecules is shown in Figure 1.2. MHC-I 

molecules are assembled in the endoplasmic reticulum (ER) and trafficked through the 

Golgi apparatus to the cell surface (24). In the ER, the scaffolding proteins calreticulin, 

calnexin, and ERp57 aid in the folding and assembly of a heterodimer consisting of HLA-

A, B, or C and beta-2-microglobulin (B2M) (24,26-28). In the cytoplasm, the 

immunoproteasome digests an intracellular protein into peptides that are transported into 

the ER by a complex called “transporter associated with antigen processing” (TAP) 

(24,29). The ER chaperone tapasin facilitates the loading of a peptide into the HLA-I and 

B2M dimer, resulting in a complete MHC-I molecule (24,30). The MHC-I molecule is then 

transported out of the ER and through the Golgi apparatus to the cell surface where it can 

interact with T-cells (24).  
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T-cells bind MHC-I through the T-cell receptor (TCR) and will also interact with co-

stimulatory molecules and cell-cell adhesion molecules on the cell surface (25). Naïve T-

cells “read” the peptide presented by MHC-I on professional antigen presenting cells 

(APCs) such as dendritic cells to determine if the peptide is self, non-self, or diseased-

self (31). Naïve T-cells can also directly interact with tumor cells that have MHC-I present 

on the surface, however they are not considered strong activators of T-cells on their own 

(32). Recognition of a non-self or diseased-self antigen will activate the T-cell. Activated 

T-cells can then find other cells expressing this antigen in MHC-I complexes (31). Upon 

recognition, the T-cell will induce apoptosis by releasing perforin and granzyme B into the 

target cell and activating the caspase pathway (25). Disruption of any point in the MHC-I 

assembly, trafficking, or T-cell interaction processes, including the downregulation of 

HLA-I expression, can result in diseased cells surviving and proliferating despite the 

presence of cytotoxic T-cells (6,33-35).  

 

HLA-I Downregulation in Prostate Cancer 

Downregulation of HLA-I proteins has been widely described in multiple cancer types, 

including prostate, breast, colon, and cervical cancer (36,37). Previous studies have 

reported downregulation of HLA-I in approximately 70% of primary prostate tumors with 

complete loss in up to 34% of primary tumors and 80% of metastatic sites (37-39). Loss 

of expression of HLA-I at the cell surface eliminates cytotoxic T-cell response to tumor 

cells and renders many immunotherapies ineffective (36-38).  
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The interaction between T-cells and cancer cells through MHC-I is indispensable to the 

effectiveness of some immunotherapies, including certain methods of adoptive cell 

transfer, cancer vaccines, and PD-1/PD-L1 targeted therapies (40-42). When HLA-I is not 

expressed at the cell surface, T-cells are unable to bind through the TCR to elicit cytotoxic 

effects. When HLA-I is genetically downregulated such as though loss of heterozygosity 

(LOH) or mutational events, there is no way to re-express HLA-I apart from gene therapy 

(40,43). However, HLA-I that is transcriptionally downregulated has the potential to be re-

expressed with drugs that target the source of downregulation (40,44). Distinguishing the 

mode of downregulation can allow the opportunity for patients with transcriptionally 

downregulated HLA-I to benefit from a treatment that causes HLA-I re-expression in 

combination with immunotherapy. Furthermore, re-expressing HLA-I even without the 

addition of immunotherapy may allow a patient’s own immune system to be more efficient 

in tumor clearance. 

While the phenomenon of HLA-I downregulation has been well defined at the 

protein level in prostate cancer, the molecular mechanisms that contribute to HLA-I 

downregulation remain unknown. Downregulation of protein expression can be 

accomplished through multiple mechanisms including dysregulation of protein folding and 

trafficking, binding of transcriptional repressors, silencing of transcriptional activators, use 

of alternative promoters and enhancers, and epigenetics. Evidence from a growing body 

of literature suggests epigenetics may be at the heart of many of the mechanisms driving 

prostate cancer progression, including impaired antigen presentation.  
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Epigenetics Overview 

Epigenetic alterations affect gene transcription without changing the sequence of the 

genome.  Epigenetic alterations include DNA methylation, histone tail methylation, and 

histone tail acetylation. Other, more rare epigenetic alterations also exist, but are less well 

understood. The combination of DNA methylation and histone tail modifications allows 

genes to be reversibly silenced or activated depending on cellular needs both in the 

context of cellular differentiation and development and in response to environmental 

stimuli (45).  

DNA methylation is the conversion of the DNA base, cytosine, to 5-methylcytosine 

by adding a methyl group at the fifth position of cytosine’s pyrimidine ring (46). This base 

remains unchanged in its binding to guanine, thus leaving the sequence of the DNA 

unchanged through DNA replication and cell division. Methylation mainly occurs on 

cytosines that are located 5’ of a guanine, termed a CpG dinucleotide (46). CpG’s are 

often enriched at regulatory sites of genes, including gene promoters, and are referred to 

as CpG islands. Hypermethylation of CpG islands in the promoter regions of genes can 

silence gene transcription by preventing the binding of transcription factors and RNA 

polymerase (46,47). Actively transcribed genes have hypomethylated CpG islands in their 

promoters and some genes may lack them altogether, relying on other methods of 

transcriptional regulation to maintain expression levels (48).  

DNA methylation is created and maintained in cells by the DNA methyltransferases 

(DNMTs) (49). DNMT1 is referred to as the maintenance methyltransferase. Its main 

function is to copy DNA methylation during DNA replication in mitosis to ensure 

methylation signatures are maintained from parent to daughter cell (49). DNMT3a and 
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DNMT3b are referred to as the de novo methyltransferases and are involved in adding 

new methylation to DNA in response to cellular signals (49,50). An additional DNA 

methyltransferase exists, DNMT3L, that lacks catalytic activity, but may aid in recruitment 

of the other epigenetic modifying proteins to DNA and is often found complexed with the 

de novo methyltransferases at sites of methylation (50-52).  

  Histones are a family of proteins that create chromatin structure in the nucleus 

through DNA interactions. DNA is wrapped around histone proteins forming nucleosomes 

(53). Certain histone proteins have tails or cores that can be posttranslationally modified 

at specific residues (54). These modifications are often referred to as the “histone code” 

and control histone to histone and histone to DNA interactions (53). Some modifications 

such as tri-methylation on lysine 27 of histone H3, are transcriptionally repressive 

because they promote condensation of chromatin by bringing histone complexes closer 

together, reducing the accessibility of transcriptional machinery in that location (53,55). 

Other modifications such as acetylation of the same lysine residue, are associated with 

regions of active transcription and promote open chromatin structure, allowing interaction 

between transcriptional machinery and DNA (56,57). 

Histone tails are modified by several families of enzymes that catalyze the removal 

or addition of modifications of histone tails and cores. Among these are histone 

methyltransferases (HMTs), histone acetyltransferases (HATs), lysine demethylases 

(KDMs), and histone deacetylases (HDACs) (55,58-60). The interactions of all of these 

protein families and their contributions to chromatin regulation are an area of ongoing 

study.   
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Epigenetics in Prostate Cancer 

Epigenetics is thought to be a driving force in the progression of prostate cancer (61). 

Prostate cancers generally do not have a large mutational burden, with a median somatic 

mutation frequency of 0.7 per megabase, one of the lowest in 21 cancers surveyed from 

the TCGA database (62). ETS fusions, such as the TMPRSS2-ERG fusion, and AR 

amplification are the most common genomic alterations in prostate cancer, but are found 

at frequencies of only 50% (63,64). Alternatively, multiple epigenetic alterations have 

been identified that occur in more than 90% of men (65,66). As such, the epigenetic 

landscape in prostate cancer has been the focus of many studies.  

The epigenetic landscape in prostate cancer is summarized in Figure 1.3. The 

majority of prostate cancers have a global decrease in DNA methylation, as measured by 

methylation of transposable elements in the genome (67-69). Loss of DNA methylation is 

generally believed to contribute to genome instability and the activation of oncogenes 

(66,70,71). In contrast, there is an increase in DNA methylation at specific gene 

promoters, leading to gene silencing (65,66,72,73). Many of these genes are involved in 

tumor suppression, hormone regulation, DNA damage and cell cycle regulation, 

apoptosis, and cellular immunity (66,74). One of the most well characterized 

hypermethylated genes in prostate cancer is glutathione S-transferase pi (GSTP1). 

GSTP1 methylation has been reported in numerous studies at frequencies ranging 

between 70% and 100% (65,66,75-78). Other genes like APC and RASSF1a have also 

been reported by certain groups to be methylated in more than 90% of samples tested 

(65,76,79,80). The significant commonality of these DNA methylation changes make 

them an attractive target for developing prostate cancer specific biomarkers.  
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The increase in DNA methylation at specific gene promoters is accompanied by changes 

in expression of the proteins that add and remove methyl groups to DNA. Protein 

expression of the DNMT family members is increased in prostate cancer tissues 

compared to normal tissue (81,82). Activity of these proteins is also increased in cell lines 

and ex vivo prostate tumor models (81,82). Expression of the ten-eleven translocation 

(TET) family of proteins, which initiate the de-methylation of DNA, have been found to be 

downregulated in a subset of prostate cancers and have been specifically implicated in 

the promotion of metastasis (83-86). 

Histone modifications in prostate cancer have been largely studied at the global 

level. Gene specific histone modifications have not been well characterized because of 

the lack of techniques available that accommodate the low cell numbers obtained from 

biopsies (87,88). However, global studies of histone modifications have revealed changes 

in multiple histone modifications that correlate with silencing of tumor suppressor genes 

and activation of oncogenes (89). Global loss of heterochromatin in prostate cancer 

driven by a loss of histone tail acetylation has been reported in multiple studies (90). This 

global loss of heterochromatin results in expression of genes that are otherwise silenced 

or expressed in low levels in normal tissues, including genes involved in tumor growth 

and survival. Overexpression of HATs, including p300/CBP, have been reported in 

prostate cancer, supporting observations of increased histone acetylation (91). Inhibition 

of p300/CBP has also been proposed as a therapeutic strategy for mCRPC (92,93).  

In contrast, levels of histone H3 lysine 27 tri-methylation (H3K27me3) have also 

been reported to be upregulated in prostate cancer (89). H3K27me3 has been found to 
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be enriched in the promoters of specific genes, including tumor suppressor genes 

RASSF1 and RARB (89,94). In addition, the class I HDACs and some HMTs have been 

found to be upregulated in prostate tissues, supporting the shift towards chromatin-

mediated gene silencing (95-99). The HMT that writes H3K27me3, EZH2, is now being 

investigated as a drug target to reverse the gene silencing caused by increased levels of 

H3K27me3 (100). These observations taken together point to an important role for 

epigenetic regulation in prostate cancer.  

 

Epigenetic Regulation of MHC-I in Prostate Cancer 

A small, but growing body of evidence has begun to implicate epigenetic mechanisms in 

the regulation of MHC-I and its processing machinery in prostate cancer.  Our lab 

observed that inhibition of DNMT and HDAC proteins in prostate cancer cell lines and ex 

vivo cultures induces expression of cancer testes antigens, which are important 

components of effective tumor clearance by CTLs (101). HDAC inhibition was found to 

induce expression of various MHC-I and APM components in prostate cancer cell lines 

(39,102). Inhibition of BET bromodomain-containing proteins, which are readers of 

histone acetylation, lead to increased HLA-I protein expression and immunogenicity in 

vivo (103). However, the direct effect of inhibition of epigenetic modifying proteins on the 

epigenetic modifications of the HLA-I genes has not been explored. Furthermore, in depth 

characterization of the epigenetic landscape of the HLA-I genes in prostate cancer has 

not yet been performed. Understanding the prevalence and function of HLA-I epigenetic 

alterations can help solidify HLA-I as an important target of epigenetic therapy and identify 

the patient subsets that may have the most benefit from these therapies.  
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DNA Methylation as a Biomarker 

New biomarkers are needed to aid clinicians in following the biology of patient disease 

and monitoring response to treatment. Genomic and transcriptomic biomarkers have 

been explored as biomarkers of disease presence and progression, but are either not 

present in the majority of patients or ineffective at predicting patient response to therapy. 

The TMPRSS2-ERG fusion and AR amplification are the most common genomic event 

in prostate cancer, but are found in only ~50% of men (63,104-106). AR splice variants, 

such as ARv7, have been reported in as many as 100% of metastatic tissues in various 

studies, but do not predict response to therapy unless found in circulation, where the 

detection rate is much lower, between 10-30% (107-109). Therefore, new classes of 

biomarkers have been an area of intense research. DNA methylation has been the 

subject of much of this research due to the notable high frequency of certain DNA 

methylation changes in prostate cancer. In addition to the high frequency of DNA 

methylation alterations, the inherent plasticity of epigenetic marks also makes this an 

attractive option for a biomarker of patient response to treatment. 

The challenge in biomarker assessment in prostate cancer is the source of tumor 

material. Primary prostate biopsies are often a one-shot option due to the invasiveness 

of the procedure and the frequency of radical prostatectomy to treat the disease. 

Metastatic biopsies are also generally not repeated because prostate cancer most often 

metastasizes to the bone, making repeated biopsies invasive, painful, and expensive. 

Instead, liquid biopsies have been proposed as alternatives. Liquid biopsies include 

blood, lymph, and urine, and are minimally invasive, which allows for repeated and 
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longitudinal sampling (110,111). Sources for DNA to assess DNA methylation are cell 

free DNA (cfDNA) and circulating tumor cells (CTCs). However in both of these cases, 

the amount of tumor specific DNA that can be extracted from a single sample is incredibly 

low and often contains contaminating non-tumor DNA on the order of 10 to 1000 times 

the amount of tumor DNA (112,113). In order to use DNA methylation as a biomarker in 

prostate cancer liquid biopsies, a method must be developed to accommodate low cell 

inputs in the presence of high background.  

Current methods for analyzing gene specific DNA methylation most often rely on 

bisulfite conversion of DNA, which is incredibly damaging and can lead to a loss of up to 

90% of the starting material (114-116). Newer protocols have been developed for single 

cell technologies, but because of random DNA shearing or degradation during processing 

and low read coverage for sequencing based methods, retention of the target of interest 

cannot be guaranteed (117). There exists a need in the field for a better DNA methylation 

assay that can reliably extract DNA from low-input, heterogenous samples.  

 

Aim of Thesis 

Understanding the mechanisms that promote prostate cancer progression is key to 

improving patient outcomes and developing better therapies. One of these mechanisms 

is immune evasion, where cells employ various techniques to hide from immune cells. 

Downregulation of HLA-I has been reported as one of these techniques and is a common 

occurrence in prostate cancer. However, the molecular mechanisms regulating HLA-I loss  

in prostate cancer have not been fully explored. Epigenetic alterations in prostate cancer 

have been reported as molecular drivers of prostate cancer progression. Here, we 
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propose that epigenetic mechanisms contribute to HLA-I downregulation in prostate 

cancer. The goal of this thesis work is to explore the epigenetic landscape of HLA-I in 

prostate cancer, investigate the contribution of epigenetic alterations in the HLA-I genes 

to loss of HLA-I gene expression, and develop a method for analysis of low-input DNA 

methylation to evaluate methylated HLA-I as a liquid biomarker in CTCs.  
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Figure 1.1. Tumor-cell intrinsic mechanisms of immune evasion  
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Figure 1.1. Tumor-cell intrinsic mechanisms of immune evasion.  PD-L1 

overexpression on the surface of tumor cells leads to T-cell tolerance and decreased 

proliferation (a). Loss or downregulation of MHC-I on tumor cells prevents T-cells from 

binding and reading antigens (b). Downregulation of TAAs in tumor cells can inhibit T-cell 

mediated recognition of tumor cells (c). Proteolytic cleavage of MICA/B proteins prevents 

direct activation of NK cells by the tumor cell, while cleaved proteins that bind to NK cells 

in the extracellular space promote NK cell tolerance (d). Various cytokines, chemokines, 

and growth factors secreted by tumor cells are able to prohibit proliferation of NK cells, 

dendritic cells, and T-cells and induce immune tolerance (e). Cytokines, chemokines, and 

growth factors secreted by tumor cells are also able to recruit TAMs and Treg cells that 

support tumor growth and survival (f). Created with BioRender.com.  
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Figure 1.2. Overview of class I human leukocyte antigen (HLA-I) processing 
pathway 
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Figure 1.2. Overview of class I human leukocyte antigen (HLA-I) processing 

pathway. Dimerization of beta-2-microglubulin (B2M) and class I human leukocyte 

antigen (HLA-I) takes place in the endoplasmic reticulum with the help of chaperone 

proteins calnexin, calreticulin, and ERp57. Antigens are created by digestion of 

intercellular proteins by the immunoproteasome. Antigens are then transported into the 

endoplasmic reticulum by TAP and loaded into HLA-I:B2M complexes stabilized by 

tapasin. Antigen-loaded MHC-I molecules are trafficked to the cell surface through the 

Golgi apparatus. T cell receptors (TCR) bind functional MHC-I molecules at the cell 

surface to facilitate T cell mediated immunological responses. Created with 

BioRender.com.  
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Figure 1.3. Overview of the epigenetic landscape in prostate cancer 
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Figure 1.3. Overview of the epigenetic landscape in prostate cancer. A) The removal 

of histone marks associated with transcriptional activation and addition of marks 

associated with transcriptional repression takes place at specific gene promoters. 

Changes to histone signatures can be facilitated by various epigenetic readers, writers, 

and erasers, including HDACs and HMTs. Alteration of histone modifications is 

accompanied by hypermethylation, written by DNMTs, at specific gene promoters and 

CpG islands. The combination of increase in heterochromatin and hypermethylation leads 

to silencing of genes, including those involved in prevention of tumor growth and 

progression. B) In contrast, there is a genome-wide dysregulation of chromatin structure 

that is facilitated by epigenetic modifiers including HATs, which leads to an increase in 

histone marks associated with euchromatin and gene transcription. In addition, 

hypomethylation occurs genome-wide and in the promoters of oncogenes. Promoter 

hypomethylation allows for binding of transcriptional machinery, including TFs and RNA 

polymerase, leading to an increase in oncogene transcription. Overall, the dysregulation 

of chromatin structure and genome-wide hypomethylation causes increased genomic 

instability, which can promote tumor growth and survival. Created with BioRender.com. 
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ABSTRACT 

Downregulation of class I HLA (HLA-I) impairs immune recognition and surveillance in 

prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, 

the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully 

explored. Here, we employed a comprehensive analysis of HLA-I genomic, epigenomic 

and gene expression alterations in primary and metastatic human prostate cancer. Loss 

of HLA-I gene expression was associated with increased promoter and CpG island DNA 

methylation, enrichment of tri-methylated lysine 27 on histone H3, and reduced chromatin 

accessibility. DNMT and HDAC inhibition decreased DNA methylation and increased H3 

lysine 27 acetylation to re-express HLA-I on the surface of tumor cells. Re-expression of 

HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured 

PSMA27-38-specific CD8+ T-cells. These results suggest the possibility for therapeutic use 

of epigenetic modifying agents to upregulate HLA-I on tumor cells to promote tumor 

clearance. 
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INTRODUCTION 

Approximately 30,000 men die of metastatic prostate cancer per year in the US and the 

incidence of men presenting with metastatic disease is rising (3,118). There is a critical 

need to identify the molecular drivers that contribute to prostate cancer growth and 

metastasis. Immune evasion is one of the hallmarks of cancer pathogenesis and cancer 

be therapeutically targeted by immunotherapies that augment T-cell recognition and lysis 

of tumor cells. (5,119,120). However, display of a functional class I major 

histocompatibility complex (MHC-I) is required for recognition of tumor cells by cytotoxic 

T lymphocytes (CTLs). Lack of MHC-I display at the cell surface reduces tumor 

immunogenicity and drives resistance to immune checkpoint inhibitors (34,43,121,122). 

MHC-I is a multimeric protein composed of a class I human leukocyte antigen (HLA-I) 

protein (A, B, or C), beta-2-microglobulin (B2M), and a peptide derived from an 

intracellular protein (123). Downregulation of the MHC-I components has been proposed 

as a mechanism of immune evasion in numerous cancer types, including prostate cancer 

(6,34,37). with downregulation of HLA-I observed in ~70% of primary prostate tumors with 

complete loss in up to 34% of primary tumors and 80% of metastatic lesions (38,39). The 

molecular alterations that lead to HLA-I downregulation in prostate cancer remain largely 

unknown.  

Recent findings have pointed to epigenetic mechanisms as drivers of prostate 

cancer progression (124,125). Overexpression of epigenetic modifying proteins, including 

the de novo methyltransferases, DNMT3A and DNMT3B, and class I histone 

deacetylases, HDAC1, HDAC2, and HDAC3, has been implicated in altering epigenetic 

programs and contributing to metastasis in prostate cancer (81,126). Studies in 
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esophageal squamous cell carcinoma and gastric cancer found that DNA methylation 

was a contributing mechanism to HLA-I downregulation, however epigenetic regulation 

of HLA-I has not yet been explored in prostate cancer (127,128). Inhibition of DNMT and 

HDAC proteins has been proposed as a therapeutic strategy in prostate cancer, though 

minimal clinical success has been observed in solid tumors (129). Despite this, there is 

promising evidence for the usefulness of epigenetic therapies in combination with 

immunotherapy (130). There remains a need to better understand the interplay between 

epigenetic and immune functions in cancer cells and for accessible biomarkers for both 

determining treatment benefit and monitoring treatment response (130). We have 

previously demonstrated that modulating the activity of DNMT and HDAC proteins in 

prostate cancer cell lines and ex vivo human prostate tissue induced the expression of 

cancer testis antigens (CTAs), which have been proposed as targets for tumor vaccine 

therapies (101). Taking advantage of the ability of epigenetic mechanisms to modulate 

aspects of the immune response, such as HLA-I expression, may improve the efficacy of 

certain immunotherapies. In this study, we demonstrate that transcriptional 

downregulation of HLA-I is coordinated by epigenetic silencing mechanisms, which can 

be reversed to functionally re-express HLA-I in vivo and restore HLA-I dependent T-cell 

activation.  
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RESULTS 

Genomic alterations in HLA-I are rare in human prostate cancer 

Previous studies have shown widespread HLA-I downregulation at the protein level in 

prostate cancer tissues (36-39). We sought to determine if genomic alterations in the 

HLA-I genes could be contributing to loss of HLA-I expression in prostate cancer. HLA-I 

copy number alterations and mutations were analyzed in primary and metastatic prostate 

adenocarcinoma samples in a data set from an analysis performed by Armenia et. al. of 

6 independent studies (131). Genomic alterations in HLA-I were very low with these 3 

genes individually exhibiting an alteration frequency of 6% or less in primary prostate 

cancer and 3% or less in metastatic prostate cancer (Figure 2.1A). Only 7/680 (1.0%) of 

primary adenocarcinoma samples and 6/333 (1.8%) of metastatic adenocarcinoma 

samples had a deletion or mutation event in any HLA-I gene and gene amplification was 

only seen in HLA-C. The majority of the identified alterations overall were the 

amplifications that occurred in HLA-C, which are not typically associated with 

downregulation of protein expression. The frequencies of deletion or mutation events had 

high study to study variation, but there were less than 5 deletions or mutations in any 

study. 

 We next analyzed HLA-I genomic gains and losses in relation to HLA-I mRNA 

expression in the TCGA PanCancer Prostate Adenocarcinoma (PRAD) data set to 

determine whether these alterations affect gene expression (Figure 2.1B). No significant 

differences in mRNA expression were observed between any of the groups. Groups with 

only one patient were not included in the analysis. Shallow deletions can be indicative of 

loss of heterozygosity (LOH), which has been reported to contribute to HLA-I 
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downregulation in breast and non-small cell lung cancer (132,133). While the shallow 

deletion groups did have a slightly lower mean mRNA expression level compared to the 

diploid group, this did not reach statistical significance and represented a relatively small 

subset of overall samples, suggesting LOH may not drive loss of HLA-I expression in 

prostate cancer. Overall, these analyses indicate the vast majority of HLA-I 

downregulation events in prostate cancer cannot be attributed to changes to the genome 

itself. 

 

HLA-I gene expression is downregulated in subsets of human prostate cancer 

We next analyzed changes in HLA-I gene expression in prostate cancer. We chose to 

analyze the PRAD data set for its abundance of samples (n=497), however this data set 

only includes primary site samples. In order to also compare metastatic gene expression 

to primary tumor gene expression, we also analyzed an additional data set from Taylor et 

al (134). The gene expression in the PRAD data set was determined by RNA-seq and the 

gene expression in the Taylor data set was determined by cDNA microarray. Data was 

converted into z-scores comparing tumor samples to the normal samples from the 

respective study to be able to compare between the two different experimental systems, 

however appropriate precaution should be used for any primary:primary comparisons due 

to the different methods of data acquisition.  

We examined both the mean z-score in the population as well as the number and 

percentage of samples that were significantly up- and downregulated based on a 

confidence level of 95% (Figure 2.1C, Table 2.1). In the two primary data sets, only HLA-

A showed noticeable negative shift in mean z-score, indicating a population level 
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downregulation of gene expression compared to normal samples. However, all three 

genes had significant negative shifts in mean z-score in the metastatic samples from the 

Taylor data set. The HLA-I genes were downregulated in 14% or less of samples in the 

primary data sets, but were downregulated in 58%-63% of the metastatic samples. 

Significant downregulation of HLA-I was also associated with decreased time to 

biochemical recurrence (two occurrences of PSA ³ 0.2ng/mL) after radical prostatectomy 

when compared to all other patients or patients with significantly upregulated HLA-I 

expression (Figure 2.1D,E). These data show that HLA-I may be transcriptionally 

downregulated in a small subset of primary prostate cancers and the majority of 

metastatic prostate cancers and loss of HLA-I gene expression is a risk factor for 

biochemical recurrence.  

 

Aberrantly expressed DNMT and class I HDAC genes are correlated to HLA-I in 

human prostate cancer 

Previous studies have implicated the DNMTs and class I HDACs as a driving force in 

prostate cancer biology. We hypothesized that the DNMTs and class I HDACs could 

promote immune evasion by downregulation of HLA-I as well. We analyzed the 

expression of DNMT1, DNMT3A, DNMT3B, and the class I HDACs HDAC1, HDAC2, 

HDAC3, and HDAC8 in the PRAD and Taylor data sets and their correlation to HLA-I 

expression in prostate cancer. Table 2.1 summarizes the number and percentage of 

patients in each study showing up- and downregulation of each of these genes. The de 

novo DNMTs and class I HDAC genes tended to be upregulated more often than 

downregulated with the exception of HDAC8, which was upregulated in 25% the samples 
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in the PRAD data set, but only in 1 sample from the Taylor data set. An analysis of the 

mean z-score in each data set revealed that DNMT3A, DNMT3B and HDAC1/2/3 tended 

to have positively shifted z-scores indicating an increase in mean gene expression in the 

tumor populations (Figure 2.2A).  

To investigate how the expression of these various genes associate with HLA-I 

expression, we calculated Pearson r values for the correlation between HLA-I and DNMT 

and HDAC genes in each data set (Figure 2.2B). Correlation patterns varied among the 

data sets, however we found that DNMT3B was highly negatively correlated to HLA-I 

gene expression in all three data sets and HDAC2 was the most negatively correlated to 

HLA-I gene expression in the metastatic samples (Figure 2.2C). DNMT3A was also 

negatively correlated to HLA-I gene expression in the PRAD data set. HDAC3 and 

HDAC8 gene expression was positively correlated to HLA-I gene expression in the Taylor 

data sets, though showed weak to no correlation in the PRAD data set. Overall, the 

correlation of DNMT3B and HDAC2 to HLA-I gene expression along with overexpression 

of these gene families, suggests a key role for epigenetic modification of DNA and 

histones in HLA-I downregulation, among other epigenetic pathways.  

 

HLA-I CpG islands are methylated in primary prostate cancer 

We next sought to investigate the DNA methylation signatures of the HLA-I genes in 

primary and metastatic prostate cancer biopsies. We analyzed the level of methylation at 

probes from the Illumina 450K methylation array within the HLA-I CpG islands in normal 

prostate tissue vs. prostate adenocarcinoma samples in the PRAD data set (Figure 2.3A). 

Every probe located within the HLA-A genomic region showed higher methylation levels 
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in prostate tumor samples compared to normal. There were also multiple probes located 

within HLA-B and HLA-C with significantly higher levels of methylation compared to 

normal. Notably, the probe located within 50bp leading up to the transcription start site 

for both HLA-A and HLA-C had the most significant increase in methylation in prostate 

tumors compared to normal samples (Figure 2.3B). HLA-B had significant methylation in 

the tumor samples at three sites within the gene body and within the promoter, 500bp 

upstream of the transcription start site. 

We then explored whether the patients with increased levels of methylation in HLA-

I had corresponding decreases in HLA-I gene expression. Correlations between matched 

patient gene expression from RNA-seq data and the methylation score at each probe 

were calculated (Table 2.2). Significant negative correlations were found in 12/12 HLA-A 

probes, 11/19 HLA-B probes, and 11/15 HLA-C probes in the tumor samples, and only 

2/12, 5/19 and 3/15 for HLA-A, HLA-B and HLA-C normal samples respectively. There 

were also two probes, probe 1 and 3, in the HLA-C tumor samples that showed significant 

positive correlation between methylation and gene expression, which could indicate the 

presence of important regulatory elements in the HLA-C distal promoter and further 

upstream.  

While many of these correlations have reached statistical significance, the Pearson 

r values are relatively weak, which may be due the smaller subset of patients in these 

cohorts that have significantly reduced HLA-I gene expression, as summarized in Table 

2.1. To further investigate the association between gene expression and methylation in 

HLA-I genes, we separated the samples into three groups: high, medium, and low 

expression. High and low expression were defined by having a significant z-score using 
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a 95% confidence level relative to normal samples, with all non-significant samples placed 

into the medium category. We then compared methylation levels in the stratified samples 

to normal samples (Figure 2.3C). Methylation tended to be higher in the low HLA-I 

expression samples. Samples expressing medium and high levels of HLA-I were either 

not significantly different in methylation level, or high expressing samples had lower 

methylation levels than the medium expressing samples. We chose one probe from the 

promoter region of each gene to examine further and evaluate the statistical significance 

of the stratifications (Figure 2.3D). For each of these probes, the samples expressing low 

levels of HLA-I had significantly more methylation than the samples expressing medium 

or high levels of HLA-I. In HLA-B and HLA-C, the samples expressing high levels of HLA-

I also had significantly lower methylation levels than the samples expressing medium 

levels of HLA-I. This analysis suggests a significant role for DNA methylation in HLA-I 

transcriptional downregulation in patients with prostate cancer.   

 

Decreased chromatin accessibility is associated with HLA-I downregulation in 

primary prostate cancer 

Studies on histone modifications in prostate cancer have been conducted largely at the 

global level with studies typically measuring overall levels of histone modification 

abundance (89,135). HLA-I specific histone modification signatures have not been 

explored in patients with prostate cancer. However, we can make inferences about 

epigenetic regulation of HLA-I in prostate cancer using ATAC-seq data from the TCGA 

PanCancer study. We analyzed the ATAC-seq signals in available primary prostate 

samples from the PRAD data set at two genomic locations: a proximal enhancer region 
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and the promoter. We then compared the changes in chromatin accessibility at these 

regions to matched HLA-I gene expression. While the sample size was small, those with 

high HLA-I gene expression tended to have higher scores for chromatin accessibility, 

especially in the promoter regions (Figure 2.4A). However, there were a few samples with 

low HLA-I gene expression and high chromatin accessibility. HLA-A gene expression was 

significantly positively correlated with ATAC-seq signal at the proximal enhancer region 

and HLA-C gene expression was significantly positively correlated with ATAC-seq signal 

at the promoter (Figure 2.4B). All other ATAC-seq signals were also positively correlated 

with HLA-I gene expression, but did not reach significance, likely due to the small sample 

size. This preliminary analysis suggests that HLA-I downregulation is associated with a 

decrease in accessible chromatin in key regulatory regions.  

 

DNMT and HDAC inhibition induces HLA-I expression in vitro 

The strong negative correlations between DNMT and HDAC family members and HLA-I 

expression in patient samples suggests that we may be able to re-express HLA-I by 

targeting the DNMT and HDAC families therapeutically. To investigate this, we utilized 

the prostate cancer cell lines LNCaP, PC3, 22rv1, and LAPC4 as well as a benign 

prostate cell line, RWPE1, as in vitro models. We first analyzed baseline HLA-I, DNMT, 

and HDAC expression in these cell lines. HLA-I protein expression was downregulated in 

LNCaP, 22rv1, PC3, and LAPC4 when compared to RWPE1 both at the cell surface as 

measured by immunofluorescence microscopy and in whole cell lysates visualized by 

western blot (Figure 2.5A). HLA-I gene expression was also significantly downregulated 

in these four prostate cancer cell lines when compared to RWPE1 gene expression levels 
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(Figure 2.5B). DNMT expression was measured by immunofluorescent microscopy in 

each cell line (Figure 2.5C). Increases in DNMT1, DNMT3a, and DNMT3b were seen in 

LNCaP, 22rv1, and LAPC4 cells compared to RWPE1. PC3 cells had increased levels of 

DNMT3a, but not DNMT 1 or DNMT3b. HDAC expression was measured by western blot 

(Figure 2.5D). Each cell line had increased protein expression of at least one HDAC family 

member. In contrast to what was observed in patient samples, DNMT and HDAC gene 

expression was not upregulated in the cancer cell lines compared to RWPE1 (Figure 

2.5E). However, our findings are line with previous studies, which showed that while 

DNMT and HDAC gene expression is unchanged or downregulated in prostate cancer 

cell lines compared to RWPE1 cells, protein expression and activity is significantly 

upregulated (81,82,136). 

We next pharmacologically inhibited DNMT and HDAC activity in the prostate 

cancer cell lines and RWPE1. We treated the cell lines with SGI-110 (SGI) to inhibit 

DNMTs or LBH-589 (LBH) to inhibit the class I HDACs either alone or in combination and 

measured HLA-I gene expression in response to the drugs. We found that the cancer cell 

lines all responded to at least one treatment condition (Figure 2.6). The combination 

treatment was the most effective to restore HLA-I expression in all cell lines tested. The 

cell lines had varying responses to the treatments when used as single agents. LNCaP 

and LAPC4 cells were responsive to both SGI treatment alone and LBH treatment alone. 

PC3 cells were also more sensitive to SGI treatment alone compared to LBH treatment 

alone. 22rv1 cells showed an opposite effect and were more responsive to LBH treatment 

alone compared to SGI treatment alone. Similar responses were also found in cell lines 

treated with a different DNMT inhibitor, 5-aza-2-deoxycytidine (5AZA2), alone and in 
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combination with LBH (Appendix A). Overall, these results support our hypothesis that 

loss of HLA-I expression is regulated by epigenetic mechanisms in prostate cancer cells. 

 

HLA-I downregulation is associated with increased DNA methylation and H3K27 tri-

methylation and loss of H3K27 acetylation prostate cancer cell lines  

HLA-I induction by inhibition of epigenetic modifying proteins strongly suggests HLA-I is 

epigenetically silenced in prostate cancer cell lines. To confirm this, we analyzed 

epigenetic signatures in LNCaP, 22rv1, PC3, and LAPC4 compared to RWPE1. We 

designed a set of primers to target regions of the HLA-I genes that were identified as 

being differentially methylated in patient samples, including the distal and proximal 

promoter as well as two intragenic regions (IG) near Exon1/Intron1 (IG 1) and 

Exon2/Intron2 (IG 2) (Figure 2.7A). Methylation of HLA-I was evaluated using MBD2-

based enrichment of methylated DNA followed by qPCR (Figure 2.7B). LAPC4 had the 

highest level of methylation in all three HLA-I genes. PC3 and LNCaP also had increased 

methylation in certain gene regions compared to RWPE1. 22rv1 had the lowest overall 

methylation of the cancer cell lines. Methylation in IG2 tended to be the most enriched in 

cancer cell lines and overall, methylation in the cancer cell lines was increased in at least 

2 of the evaluated gene regions for each gene (Figure 2.7C). Overall, the methylation 

landscape in these four prostate cancer cell lines is comparable to the signatures found 

in patient samples.  

Since HLA-I gene expression was associated with a less accessible chromatin 

state (Figure 2.4), we hypothesized that repressive histone signatures may also be 

present in the HLA-I genes in prostate cancer cell lines. Chromatin immunoprecipitation 
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(ChIP) was performed using antibodies targeting acetylated (H3K27ac), a marker of 

active transcription, and tri-methylated (H3K27me3) lysine 27 on histone H3, a marker of 

transcriptional repression. Primers were designed to locations near a peak in H3K27ac 

signature in GM12878, a lymphoblastoid cell line, determined by ChIP-seq from the 

ENCODE consortium (137) (Figure 2.7A). Overall, the prostate cancer cell lines showed 

significant decreases in H3K27ac and increases in H3K27me3 when compared to 

RWPE1 (Figure 2.7D). The cell lines 22rv1 and LAPC4 had particularly low levels of lysine 

27 acetylation in HLA-I. LAPC4 and 22rv1 also had the highest overall level of tri-

methylation. This strong repressive signature in 22rv1 may explain why HLA-I expression 

is so low in these cells, even though DNA methylation was not very high, suggesting that 

individual tumors may regulate HLA-I by different epigenetic mechanisms.  

We generated correlation matrices for HLA-I protein expression, gene expression, 

methylation, and histone modifications to examine the relationships between each of 

these measures in the prostate cell lines (Figure 2.7E). We found that protein and gene 

expression were highly positively correlated in each gene. Methylation within each region 

tended to be positively correlated with methylation in other regions and with H3K27 tri-

methylation, and negatively correlated with H3K27 acetylation, indicating co-occurrence 

of these epigenetic signatures. The pattern of correlation between methylation signatures 

in each gene region and HLA-I expression was heterogeneous. We found that 

methylation within the IG 1 and IG 2 region of HLA-A and HLA-C was negatively 

correlated with corresponding gene and protein expression. HLA-B IG 2 methylation was 

also negatively correlated with HLA-B gene and protein expression. The strongest 

correlations were found in the histone modification group. H3K27 acetylation was strongly 
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positively correlated with gene and protein expression and H3K27 tri-methylation was 

strongly negatively correlated with gene and protein expression for all three HLA-I genes. 

This analysis demonstrates that strong repressive epigenetic signatures are enriched at 

the HLA-I genes and correlated to HLA-I gene expression in prostate cancer cell lines. 

 

DNMT and HDAC inhibition reverses repressive epigenetic signatures in vitro 

To confirm that the changes in gene and protein expression in response to DNMT 

and HDAC inhibitors are accompanied by epigenetic changes in the genes themselves, 

we measured DNA methylation and histone modification changes in response to SGI, 

5AZA2, and LBH. HLA-I methylation was reduced across the HLA-I genes in response to 

SGI and 5AZA2 (Figure 2.8A, Appendix A), regardless of whether gene expression was 

significantly induced from SGI treatment alone, suggesting DNA methylation loss may not 

be sufficient in all cases to re-express HLA-I. This may be due to histone modifications 

not changing from a repressive state even when DNA methylation has been removed. 

This is supported by the retention of H3K27me3 and H3K27ac levels in 22rv1 cells when 

treated with SGI (Figure 2.8B). This can also explain why cell lines tended to show the 

strongest response to combination treatments. To analyze changes in histone acetylation 

in response to HDAC inhibition by LBH, we performed ChIP analysis to look at H3K27ac 

in treated cell lines. H3K27ac was significantly increased in response to LBH in 22rv1 

cells and a similar trend was observed in LNCaP and LAPC4 cells, though the results 

were not statistically significant (Figure 2.8C).  

Enrichment of RNA polymerase II (RPB1) at the HLA-I gene promoters was 

increased in LNCaP cells in response to SGI treatment, showing that the increase in gene 
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expression is associated with increased transcriptional activity (Figure 2.8D). RBP1 

enrichment at the HLA-I promoters was also increased in 22rv1 cells in response to LBH 

(Figure 2.8E). However, RPB1 enrichment not increased in LNCaP cells in response to 

LBH treatment. This difference in LBH induced RPB1 binding between LBH treated 22rv1 

and LNCaP cells is corroborated by the differences in inducibility of HLA-I gene 

expression in response to LBH in these two cell lines, suggesting the epigenetic 

signatures are driving gene expression. While responses to DNMT and HDAC inhibition 

were varied in prostate cancer cell lines, the changes to the epigenetic landscape that 

accompany gene and protein induction suggest modulation of epigenetic proteins in 

prostate cancer may be useful to re-express epigenetically silenced HLA-I in patients.  

 

DNMT and HDAC inhibition induces HLA-I gene expression ex vivo 

The in vitro data suggest that DNMT and HDAC inhibition can significantly alter the 

expression of HLA-I. We next wanted to test whether this holds true in a more 

physiologically relevant system. Primary prostate tumor tissue was acquired from radical 

prostatectomy specimens and grown in an ex vivo culture. Expression of the HLA-I genes 

and three prostate specific genes, AR, KLK3 (PSA), and ACP3 (PAP), was measured to  

establish baseline HLA-I levels and confirm the presence of prostate cells in the culture 

(Figure 2.9A). Tissue in ex vivo culture was treated with DMSO, 5AZA2, or LBH either 

alone or in combination and induction of HLA-I expression was measured (Figure 2.9B). 

Similar to our in vitro cell culture studies, we found considerable heterogeneity regarding 

both the magnitude and pattern of HLA-I gene induction in response to either drug among 

these patient samples. 3 out of 5 patients showed robust induction in response to at least 
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one of the treatment regimens. Among the responders, 2 out of 3 responded to 5AZA2 

and showed no response to LBH alone. 1 out of 3 responders showed strong induction 

to LBH and less response to 5AZA2. In 2 out of 5 patient samples we saw negligible 

response to 5AZA2 or LBH treatments. Overall, these ex vivo culture studies corroborate 

the cell line data and indicate a biologically relevant role for DNMT and HDAC inhibition 

in re-expression of HLA-I in prostate cancer. Moreover, these data again highlight the 

variability in response to inhibition of these two classes of epigenetic regulators and 

underlines the multiple epigenetic mechanisms that are at play.  

 

HLA-I upregulation on tumor cells by DNMT and HDAC inhibition enhances 

activation of PSMA-specific T-cells 

We next sought to assess the functional relevance of HLA-I upregulation by DNMT and 

HDAC inhibition. To do this, we measured the CD8+ T-cell response to LNCaP cells 

treated with 5AZA2, SGI, and LBH alone and in combination. PSMA27-38-specific CD8+ T-

cells were raised by peptide vaccination in HHD mice expressing humanized HLA-A*02. 

HLA-A*02 expressing LNCaP cells were pre-treated with 5AZA2, SGI, or LBH or a 

combination of SGI or 5AZA2 and LBH and then co-cultured with splenocytes from 

vaccinated or unvaccinated mice (Figure 2.10A). As an additional control, an anti-HLA-I 

blocking antibody was used to block HLA-I at the LNCaP cell surface. After co-culture, T-

cell activation markers were measured by flow cytometry in T-cells from each co-culture 

treatment condition (Figure 2.10B). We found that PSMA27-38 tetramer-positive (PSMA+) 

CD8+ T-cells that were co-cultured with LNCaP cells treated with any DNMT or HDAC 

inhibitor increased in frequency and expressed increased levels of activation markers 
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CD69 and LFA-1 compared to those co-cultured with DMSO treated LNCaP cells. These 

T-cells also expressed increased levels of granzyme B and interferon-g (IFN-g), markers 

indicative of T-cell stimulation and differentiation into cytotoxic T-cells (CTLs). 

Additionally, the population of T-cells expressing CD107 (LAMP1), a marker of T-cell 

degranulation, was increased in the T-cells co-cultured with LNCaP cells treated with 

5AZA2, SGI, and/or LBH.  

The percent of PSMA+ CD8+ T-cells present after co-culture with LNCaP cells in 

each treatment condition is shown in Figure 2.10C. Treatment of LNCaP cells with SGI 

and LBH in combination significantly increased the percent of PSMA+CD8+ T-cells after 

co-culture with LNCaP cells at a 2:1 or 1:1 T-cell effector to tumor target (E:T) ratio SGI 

alone was able to significantly increase the percent of PSMA+CD8+ T-cells after co-culture 

with LNCaP cells at a 2:1 T-cell effector to tumor target ratio. The percent of PSMA+ CD8+ 

T-cells present increased after co-culture with LNCaP cells treated with 5AZA2 and LBH 

in combination, though this did not reach statistical significance. Treatment of LNCaP 

cells with HLA-I blocking antibody was able to ablate these effects. No significant changes 

in the percent of PSMA+ T-cells where seen when LNCaP cells were co-cultured with T-

cells from unvaccinated mice. This study confirms a clear functional role for HLA-I 

induction by DNMT and HDAC inhibition and suggests the utility of HLA-I re-expression 

for vaccine-based immunotherapies that rely on functional MHC-I expression on tumor 

cells.  
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DISCUSSION 

The evidence presented here demonstrates that epigenetic mechanisms regulate 

expression of HLA-I genes in human prostate cancer. While it has been known for 

decades that HLA-I is downregulated at the protein level in prostate cancer, there have 

been limited investigations into the molecular underpinnings of this phenomenon, 

especially as it relates to epigenetic regulation of these genes. To address this lack of 

understanding, we have described the HLA-I methylome in prostate cancer patient 

samples and cell lines and confirmed the presence of repressive histone modifications in 

cell line models.  

Our investigations into the regulation of class I HLA genes in prostate cancer 

revealed frequent HLA-I loss in metastatic tumors. The striking decrease in HLA-I 

expression in metastatic lesions identified in this study implies a possible role for loss of 

HLA-I expression in progression to metastasis. Previous findings showing that promoter 

DNA methylation increases during progression and that epigenetic mechanisms are 

important drivers prostate cancer progression (65,97,138). Whether the epigenetic 

alterations in HLA-I genes are a driver or passenger in the metastatic cascade will need 

to be further studied, but we hypothesize that immune evasion due to epigenetic loss of 

HLA-I plays a role in metastasis. 

 This study is in line with previous work showing HDAC inhibition upregulates HLA-

I gene and proteins levels in LNCaP cells (39), and gene expression levels in PC3 and 

Du145 cells (39,102). Our work expands on these studies by examining the basal 

epigenetic signatures as well as changes in those signatures in response to HDAC and 

DNMT inhibition in multiple cell lines. We strengthen this idea further by showing 
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biological relevance for HLA-I induction by DNMT and HDAC inhibition in ex vivo tissue 

samples. Importantly, we also showed that HLA-I expression can be functionally induced 

on tumor cells by DNMT and HDAC inhibition, leading to increased activation of co-

cultured T-cells from PSMA peptide vaccinated mice.  

 A previous study from our lab found DNMT and/or HDAC inhibition induces 

expression of CTAs (139) and another study found APM molecules were upregulated with 

HDAC inhibition (102). Our current study supports a wider role for epigenetics in 

regulating antigen presentation by also downregulating the HLA-I genes themselves. 

Inhibition of DNMT and HDACs is likely affecting many cellular pathways in addition to 

HLA-I genes, CTAs, and APM, leading to the phenotypes we observed in this study. A 

recent study found inhibition of BET bromodomain containing proteins, which are readers 

of histone acetylation, led to increased HLA-I protein expression and immunogenicity in 

vivo, supporting the important role we have found for histone modifications in HLA-I 

regulation (103). Further investigation into the contributions of other affected cellular 

pathways is needed to fully understand this phenomenon.   

DNMT and HDAC inhibitors have been explored for their possible therapeutic 

efficacy and numerous clinical trials are ongoing for single or combination uses, including 

trials with 5AZA2, SGI, and LBH (140). Recently, the first epigenetic therapy for a solid 

tumor, a small molecule drug targeting EZH2, was approved by the FDA for use in 

epithelioid carcinoma (141,142). Previously, the only FDA approved uses for drugs 

targeting epigenetic modifying proteins were for hematologic malignancies. The limited 

success of epigenetic therapies in solid cancers may be due to the heterogeneity in the 

epigenetic signatures and responses to therapies as evidenced in our current study (129). 
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Additionally, failure of immunotherapies has been attributed to lack of immunogenicity of 

tumor cells as well as the inability to monitor treatment response in solid tumors (130). 

We anticipate that the monitoring HLA-I methylation status in patients as well as protein 

levels both before and during treatment may alleviate some of these challenges and we 

are currently working to develop epigenetically silenced HLA-I as a therapeutic biomarker. 

Overall, this study has implicated epigenetic mechanisms in the regulation of HLA-I in 

prostate cancer and points to epigenetic therapy as a promising option for enhancing the 

immune response in prostate tumors.  
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MATERIALS AND METHODS 

Analysis of Public Data Sets 

Genomic alteration data was accessed and analyzed in cBioPortal (RRID: SCR_014555) 

(143,144). TCGA-PRAD data was accessed and downloaded through UCSC Xena (145). 

Data from Taylor, et. al. (134) was accessed, analyzed, and downloaded through 

cBioPortal. ATAC-seq data from Corces, et al. was accessed, analyzed, and downloaded 

through UCSC Xena (145,146). Methylation beta values and matched gene expression 

values were accessed through Wanderer (147). Prism 8 (GraphPad Prism, RRID: 

SCR_002798) was used for correlation analyses. Z-scores for gene expression and 

ATAC-seq were calculated with the following formula: 

Z=
χ-μ
σ  

where c is the tumor or metastasis gene expression value, µ is the normal sample 

population mean, and s is the normal sample population standard deviation. In the ATAC-

seq data set, z-scores were calculated as compared to the tumor population, where c is 

the tumor gene or ATAC-seq expression value, µ is the tumor sample population mean, 

and s is the tumor sample population standard deviation. 

 

Cell Lines and Cell Culture 

LAPC4 (ATCC, Cat# CRL-13009, RRID: CVCL_4744) were maintained in DMEM 

Medium (Corning) supplemented with 20% fetal bovine serum (FBS) (Gibco, Cat# 

10437028), 1% sodium pyruvate (Corning, Cat# MT25000CI), 0.5% beta-

mercaptoethanol, and 1% penicillin-streptomycin (HyClone, Cat# SV30010). LAPC4 cells 

were cultured in poly-d-lysine coated flasks and/or plates (BioCoat flasks: Corning, Cat# 
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0877260; 6-well plates: Sigma-Aldrich, Cat# Z720798-20EA). RWPE1 (ATCC Cat# CRL-

11609, RRID: CVCL_3791, LNCaP (RCB, Cat# RCB2144, RRID: CVCL_1379) – used 

for 5AZA/LBH epigenetic drug treatment gene expression experiments and epigenetic 

drug treatment protein expression experiments, 22Rv1 (ATCC, Cat# CRL-2505, RRID: 

CVCL_1045), and PC3 (ATCC, Cat# CRL-7934, RRID: CVCL_0035)  cells were 

maintained in RPMI 1640 Medium (Corning, Cat# MT10040CV) supplemented with 10% 

FBS, 1% sodium pyruvate, 1% penicillin-streptomycin, 1% non-essential amino acids 

(HyClone, Cat# SH30238.01), and 0.1% beta-mercaptoethanol. LCL (HCC2218-BL, 

ATCC, Cat# CRL-2363, RRID: CVCL_1264) and LNCaP (ATCC, Cat# CRL-1740, RRID: 

CVCL_1379) – used for baseline gene expression, SGI/LBH epigenetic drug treatment 

experiments, DNA methylation, and chromatin immunoprecipitation experiments – cells 

were grown in RPMI 1640 Medium supplemented with 10% FBS and 1% penicillin-

streptomycin (LCL grown in suspension). LCL, RWPE1, LNCaP, 22rv1, and PC3 were 

cultured in tissue culture treated flasks and/or plates (Flasks: Corning, Cat# 07202000; 

Plates: Thermo Fisher Scientific,  Cat# 087721G). 

 

Ex Vivo Culture of Prostate Tissue 

Human prostate tissues were obtained from patients undergoing radical prostatectomy at 

the University of Wisconsin-Madison. All patients were consented under an Institutional 

Review Board (IRB) protocol #20130653. Absorbable gelatin sponges (Ethicon, Cat# 

1973) were cut into pieces to fit in a 24-well tissue culture plate. Sponges were soaked in 

Ham’s F-12 media (Fisher Scientific, Cat# SH3002601) supplemented with 0.25 units/ml 

regular insulin (Sigma-Aldrich, Cat# I9278-5ML), 1 μg/mL hydrocortisone (Sigma-Aldrich, 
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Cat# H0888-1g), 5 μg/mL human transferrin (Sigma-Aldrich, Cat# T8158-100mg), 2.7 

mg/ml dextrose, 0.1 nM non-essential amino acids (HyClone, Cat# SH30238.01), 100 

units/ml and 100 μg/mL Penicillin/Streptomycin respectively (HyClone, Cat# SV30010), 2 

mM L-glutamine (Corning, Cat# 25-005-CI), 25 μg/mL bovine pituitary extract (Life 

Technologies, Cat# 13028014), and 1% fetal bovine serum (FBS) (Gibco, Cat# 

10437028) until fully saturated. Each core was cut into ~1 mm2 by 1 mm2 cubes. Tissue 

was placed on the sponges and cultured for up to 4 days at 37o C at 5% CO2 and 500μL 

media was replaced daily. 

 

Immunoblotting 

Whole cell lysates were collected from adherent cells by scraping into RIPA buffer after 

washing with cold PBS. Whole cell lysates were separated by SDS-PAGE and transferred 

onto nitrocellulose membrane. Membranes were blocked with SuperBlock blocking buffer 

(Thermo Scientific, Cat# 37515). Membranes were probed with primary antibodies diluted 

in 3% BSA in TBS plus 0.1% Tween-20 at 4oC overnight followed by incubation with HRP-

linked secondary antibody (BioLegend, Cat# 405306, RRID:AB_315009) at RT for 1 hour 

and visualization by chemiluminescence. Primary antibodies: HLA-I clone W6/32 

(BioLegend, Cat# 311412, RRID:AB_493132), a-tubulin (BioLegend, Cat# 627901, 

RRID:AB_439760). 

 

Immunofluorescent staining in cell lines 

For HLA-I staining, cells were seeded on coverslips in 6 well plates and fixed with 4% 

formaldehyde for 10 mins followed by washing with 1x PBS and blocking with 5% FBS in 
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1x PBS with 0.1% BSA. Fixed cells were stained with Hoechst 33342 (Thermo Fisher, 

Cat# PI62249) and anti-HLA-I conjugated to FITC (BioLegend, Clone W6/32, Cat# 

311404) overnight at 4oC in PBS with 0.1% BSA. Coverslips were mounted on slides with 

VECTASHIELD Antifade Mounting Medium (Vector Laboratories, Cat# H-1000-10). For 

DNMT staining, cells were seeded in 24 well plates and fixed with 4% formaldehyde for 

10 minutes followed by washing with 1x PBS, permeabilization with 0.3% Triton X-100 for 

5 minutes at RT, and blocking with 5% FBS in x PBS with 0.1% BSA. Cells were stained 

with Hoechst 33342 (Thermo Fisher, Cat# PI62249) and primary antibodies overnight in 

PBST with 0.1% Triton X-100 at 4oC: DNMT1 (Cell Signaling, clone D63A6, cat# 5032, 

RRID:AB_10548197), DNMT3a (Thermo Fisher Scientific, clone 64B1446, Cat# MA5-

16171, RRID:AB_2537690), or DNMT3b (Cell Signaling, clone E8A8A, cat# 57868, 

RRID:AB_.2799534). Cells were stained with secondary antibodies at RT for 1hr. Slides 

or plates were imaged at 10x using NIS Elements AR Microscope Imaging Software (NIS-

Elements, RRID:SCR_014329) and analyzed using NIS Elements AR analysis software.  

 

MBD2-MBD Enrichment of Methylated DNA from Cell Lines 

Genomic DNA was isolated from cells using the AllPrep RNA/DNA Mini Kit (Qiagen, Cat# 

80204) according to manufacturer’s instructions. DNA was quantified by a NanoDrop 

1000 spectrophotometer and 1μg DNA was sheared by sonication to an average size of 

around 200bp. Methylated DNA was enriched from sheared genomic DNA using the 

EpiXplore Methylated DNA Enrichment Kit (Takara Bio, Cat# 631962) according to 

manufacturer’s instructions. Enrichment was measured by qPCR using primers designed 
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to various regions of HLA-A, HLA-B, and HLA-C (Integrated DNA Technologies). Primers 

are listed in Table 2.3.  

 

Chromatin Immunoprecipitation 

Chromatin immunoprecipitation (ChIP) was performed according to manufacturer’s 

instructions using the SimpleChIP Enzymatic Chromatin IP Kit with Magnetic Beads (Cell 

Signaling Technology, Cat# 9003S). Immunoprecipitation was performed using the 

following antibodies from Cell Signaling Technology: Histone H3 (Clone D2B12, Cat# 

4620S, RRID: AB_1904005), H3K27ac (Clone D5E4, Cat# 8173S, RRID: AB_10949503), 

H3K27me3 (Clone C36B11, Cat# 9733S, RRID: AB_2616029), and IgG (Cat# 2729S, 

RRID: AB_1031062). DNA was then analyzed by qPCR using primers designed to target 

HLA-A, HLA-B, and HLA-C (Integrated DNA Technologies). Primers are listed in Table 

2.3. The H3K27ac signature in GM12878 determined by ChIP-seq from the ENCODE 

consortium (137) was accessed in the UCSC Genome Browser (RRID: SCR_005780) to 

aid in primer design.  

 

Epigenetic Drug Treatments of Cell Lines and Ex Vivo Tissue 

5-Aza-2′-deoxycytidine (5AZA2) (Sigma-Adrich, Cat# A3656-5MG), Panobinostat (LBH, 

LBH589) (Selleckchem, Cat# S1030), and SGI-110 (SGI) (Astex Pharmaceuticals) were 

dissolved in DMSO and stored at -80oC in aliquots. Cells were treated with 10μM 5AZA2, 

1μM SGI, or DMSO for 72 hours. 10nM or 100nM LBH was added for the last 24 hours 

after 48 hours of 5AZA2 or SGI treatment for combination treatments. 
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Gene Expression Analysis in Cell Lines 

Total RNA was isolated from cells using the AllPrep RNA/DNA Mini Kit (Qiagen, Cat# 

80204) according to manufacturer’s instructions. RNA was quantified by a NanoDrop 

1000 spectrophotometer and 1μg total RNA was reverse transcribed using the High 

Capacity RNA-to-cDNA kit (Thermo Fisher Scientific, Cat# 4388950). cDNA was diluted 

10x and 5uL was used per reaction for qPCR. Pre-designed TaqMan probes (Thermo 

Fisher) for HLA-A (Hs01058806_g1), HLA-B (Hs00818803_g1), and HLA-C 

(Hs00740298), and RPLP0 (4333761F) were used with iTaq Universal Probes Supermix 

(BioRad, Cat# 1725135). Gene expression was determined using the delta-delta-Ct 

method after normalization of each gene to housekeeping gene, RPLP0 (P0). 

 

Gene Expression Analysis in Epigenetic Drug Treated Ex Vivo Tissue and 5AZA2/LBH 

Treated Cell Lines 

Total RNA was isolated from cells using RNeasy Mini Kit (Qiagen, Cat# 74106) according 

to manufacturer’s protocol. Total RNA was isolated from ex vivo tissue using the Aurumä 

Total RNA Fatty and Fibrous Tissue Kit (BioRad, Cat# 7326830) according to the 

manufacturer’s protocol.  RNA was quantified by a NanoDrop 1000 spectrophotometer 

and 1µg total RNA was reverse transcribed using iScript Reverse Transcription Supermix 

(Bio-Rad, Cat# 1708841). 1µL of the cDNA synthesis reaction was used to perform qPCR 

using SsoAdvanced Universal SYBR Green Supermix (BioRad, Cat# 1725274) according 

to the manufacturer’s protocol. HLA-A, HLA-B, HLA-C, and RPLP0 primers are listed in 

Table 2.3. Gene expression was determined using the delta-delta-Ct method after 

normalization of each gene to housekeeping gene, RPLP0 (P0). 
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Peptide Vaccinations and T-cell Co-Culture 

PSMA specific CD8+ T-cells were generated by PSMA27-38 peptide vaccination of HHD 

transgenic humanized mice expressing human HLA-I A*02. The HHD mice were a 

generous gift from Professor Francois Lemonnier at the Pasteur Institute, Paris (148). 

Mice were given once weekly subcutaneous injections of 100 ug synthetic PSMA peptide 

(VLAGGFFLL) (ProImmune, Oxford, UK) in 100uL CFA (Thermo Fisher Scientific, Cat# 

NC0916022) for the first injection or IFA vehicle (Sigma-Aldrich, Cat# AR002) for 

subsequent injections. Splenocytes were harvested 1 week after last immunization and 

the number of live PSMA27-38-specific CD8+ splenocytes was determined by flow 

cytometry analysis following staining with GhostDyeä Violet 510 (Tonbo Biosciences, 

Cat# 13-0870), anti-mouse CD8 antibody (Tonbo Biosciences, Cat# 25-0081, 

RRID:AB_2621623) and Pro5â PSMA27-38 A*02:01 MHC I pentamer (ProImmune, 

Oxford, UK). PSMA vaccinated splenocytes were then co-cultured with LNCaP cells that 

were pretreated with DMSO vehicle or 10uM 5AZA2 or 1uM SGI for 72 hours and/or 10nM 

LBH for the last 24 hours in RPMI media supplemented with 10% FBS. In control co-

culture wells, LNCaP cells were treated with 5 µg of purified anti-HLA-A,B,C blocking 

antibody (clone W6/32) (BioLegend, Cat# 311412, RRID:AB_493132) prior to adding 

splenocytes. Cells were co-cultured for 72 hours and Golgi-stop (BD Biosciences, Cat# 

554724) was added for the last 4 hours of culture, following the manufacturer’s protocol. 

Cells were then harvested and subjected to labeling with GhostDyeä Violet 510 and 

surface markers: CD8 (Tonbo Biosciences, Cat# 25-0081, RRID:AB_2621623), Pro5â 

PSMA27-38 A*02:01 MHC I pentamer (ProImmune), CD69 (BD Pharmigen, Cat# 551113, 
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RRID:AB_394051), LFA-I (BD Biosciences, Cat# 558191, RRID:AB_397055), and 

CD107 (BD Biosciences, Cat# 564347, RRID:AB_2738760) followed by fixation and 

permeabilization with BD Cytofix/Cytoperm (Thermo Fisher Scientific, Cat# 554714) 

according to the manufacturer’s protocol and intracellular staining with antibodies against 

murine IFNg (Tonbo Biosciences, Cat# 20-7311, RRID:AB_2621616) and Granzyme B 

(BD Biosciences, Cat# 560211, RRID:AB_1645488). Cells were then washed and 

acquired on an LSR II Fortessa or an Attune NxT instrument followed by data analysis by 

the FlowJo software v9.9.6 (FlowJo, RRID: SCR_008520). Gating controls included the 

fluorescent minus one (FMO) strategy. 

 

Statistical Analysis 

Survival curve analysis was performed using the log-rank (Mantel-Cox) test. For the HLA-

I genomic alteration and HLA-I protein expression studies, comparison between groups 

was made with an ordinary-way ANOVA followed by post hoc analysis with the Tukey test 

for correction of multiple comparisons. For baseline gene expression and ChIP 

experiments, comparisons between groups were made with 2-way ANOVA using the 

Dunnett method for correction of multiple comparisons. For drug treatment gene 

expression experiments, comparison between DMSO and treatment groups were made 

by t-test corrected for multiple comparisons by the Holm-Sidak method. Gene expression 

statistical analyses were performed on delta-Ct values. All statistical analyses were 

performed in Prism 8 (GraphPad Prism, RRID: SCR_002798). 
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Table 2.1. Up- and downregulation of HLA-I, DNMTs, and class I HDACs. 

 Up (%)  Down (%) 

 
Primary 
(TCGA) 

Primary 
(Taylor) 

Metastatic 
(Taylor)  

Primary 
(TCGA) 

Primary 
(Taylor) 

Metastatic 
(Taylor) 

 n=496 n=130 n=19  n=496 n=130 n=19 
HLA-A 40 (8) 15 (12) 1 (5)  90 (18) 24 (18) 12 (63) 
HLA-B 74 (15) 18 (14) 2 (11)  28 (6) 19 (15) 12 (63) 
HLA-C 70 (14) 17 (13) 1 (5)  42 (8) 18 (14) 12 (63) 

DNMT1 33 (7) 9 (7) 10 (53)  41 (8) 40 (31) 2 (11) 
DNMT3A 179 (36) 28 (22) 9 (47)  6 (1) 11 (8) 1 (5) 
DNMT3B 98 (20) 10 (8) 7 (37)  14 (3) 1 (1) 0 (0) 

HDAC1 188 (38) 43 (33) 8 (42)  17 (3) 17 (13) 4 (21) 
HDAC2 158 (32) 14 (11) 7 (37)  80 (16) 0 (0) 0 (0) 
HDAC3 104 (21) 27 (21) 7 (37)  15 (3) 24 (18) 3 (16) 
HDAC8 193 (39) 0 (0) 1 (5)  5 (1) 27 (21) 6 (32) 
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Table 2.2. Correlation of HLA-I gene expression to DNA methylation. 
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Table 2.3. Primers used for gene expression and epigenetic analysis of HLA-I. 

MBD2 Enrichment Forward Primer (5'-3') Reverse Primer (5'-3') 

H
LA

- A
 Distal Promoter GCCAAGACTCAGGGAGACAT AAACTGCGGAGTTGGGGAAT 

Proximal Promoter CCAACTCCGCAGTTTCT CACTGATTGGCTTCTCTGG 
Exon 1 CCAGAGAAGCCAATCAGTG GAGTAGCAGGAGGAGGGTTC 
Exon 2 GACCAGGAGACACGGAATG CTTCGGGGTGGATCTCGGA     

H
LA

-B
 Distal Promoter GCCTTCAGAGAAAACTTCACCAGG TCTTGTGTAGGGAAACTGAGCA 

Proximal Promoter TTCCAGGATACTCGTGACGC TCCCTCCCGACCCGC 
Exon 1 GGAGGGAAATGGCCTCTG GGACACGGAGGTGTAGAAATAC 
Exon 2 CCGGAACACACAGATCTACAA TCAGGGAGGCGGATCTC     

H
LA

-C
 Distal Promoter GACTCTACACGTCCATTCCCAG CTTTGCCTTACCTTACCTCACCT 

Proximal Promoter CAGGGTCTCAGGCTCCAAGG GGAAGAAGGACCCGACGCAG 
Exon 1 GAGACCTGGGCCTGTGA GTCGAAATACCTCATGGAGTGG 
Exon 2 CTCCCACTCCATGAGGTATTTC GCGCTTGTACTTCTGTGTCT 

    
ChIP   

 HLA-A AACCCTCCTCCTGCTACTC GGGACACGGATGTGAAGAAATA 

 HLA-B GGAGGGAAATGGCCTCTG GGACACGGAGGTGTAGAAATAC 

 HLA-C GAGACCTGGGCCTGTGA GTCGAAATACCTCATGGAGTGG 

Gene Expression 
(Figure 2.9)   

 HLA-A GCGGCTACTACAACCAGAGC CCAGGTAGGCTCTCAACT 

 HLA-B TCCTAGCAGTTGTGGTCATG TCAAGCTGTGAGAGACATAT 

 HLA-C TCCTGGTTGTCCTAGTC CAGGCTTTACAAGTGATGAG 

 RPLP0 GACAATGGCAGCATCTACAAC GCAGACAGACACTGGCAA 
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Figure 2.1. HLA-I genomic alterations and gene expression in primary and 
metastatic prostate cancer.  
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Figure 2.1. HLA-I genomic alterations and gene expression in primary and 

metastatic prostate cancer. A) Amplification, deletion, and mutations in HLA-A, HLA-B, 

and HLA-C in primary prostate cancer across 4 independent studies and metastatic 

prostate cancer across 3 independent studies. Overall percent altered for each gene is 

shown. All existing alterations are shown. B) HLA-I genomic alterations in relation to HLA-

I gene expression in the PRAD dataset. C) HLA-A, HLA-B, and HLA-C expression in the 

PRAD, and Taylor data sets. Z-scores are relative to normal samples in the respective 

study. Dotted lines indicate z-score of +/- 1.96. Expression above or below dotted line is 

considered significantly up- or downregulated respectively. Line and error bars represent 

mean and 95% confidence interval. D) Kaplan-Meier curves showing disease-free 

survival time for patients in the Taylor data set with low expression (z-score < -1.96) vs. 

high expression (z-score > 1.96) of any HLA-I gene. E) Kaplan-Meier curves showing 

disease-free survival time for patients in the Taylor data set with low HLA-I expression in 

any HLA-I gene (z-score < -1.96) vs. all other patients (z-score > -1.96).    
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Figure 2.2. DNMT and HDAC gene expression and correlation to HLA-I in prostate 
cancer.  
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Figure 2.2 DNMT and HDAC gene expression and correlation to HLA-I in prostate 

cancer. A) Gene expression of the DNMTs and class I HDACs in the PRAD and Taylor 

data sets. Represented as z-scores relative to normal samples. Error bars represent 

SEM. Dotted lines indicate z-score of +/- 1.96. Expression above or below dotted line is 

considered significantly up- or downregulated respectively. Line and error bars represent 

mean and 95% confidence interval.  B) Pearson r correlation matrix of gene expression 

of DNMTs and class I HDACs to HLA-I in each data set. C) Pearson r correlation values 

from (B) ordered from most negatively correlated to most positively correlated.  
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Figure 2.3. DNA methylation at HLA-I genes is associated with loss of HLA-I gene 
expression in prostate cancer. 
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Figure 2.3. DNA methylation at HLA-I genes is associated with loss of HLA-I gene 

expression in prostate cancer. A) Methylation levels across the promoter and CpG 

islands of HLA-A, HLA-B, HLA-C. Gene regions where probes fall, TSS, and CpG island 

location are annotated. Distances between probes are not to scale. B) Volcano plot of 

statistical significance against difference in methylation levels between tumor and normal 

samples. Distance from the TSS for two points are indicated. C) Methylation beta values 

are shown at each probe across the HLA-I promoters and CpG islands for normal samples 

and tumor samples separated by gene expression level. D) Box plots of methylation levels 

of selected probes within the gene promoters separated by gene expression level. For C) 

and D) gene expression was categorized as: low expression: z-score < -1.96, med 

expression 1.96 < z-score > -1.96, high expression: z-score > 1.96. 
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Figure 2.4. Loss of chromatin accessibility at HLA-I genes is associated with loss 
of HLA-I gene expression in prostate cancer. 
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Figure 2.4. Loss of chromatin accessibility at HLA-I genes is associated with loss 

of HLA-I gene expression in prostate cancer. F) ATAC-seq from PRAD data set at a 

proximal enhancer and promoter in each HLA-I gene. G) Pearson r correlation of ATAC-

seq signal from a proximal enhancer region and promoter to HLA-I gene expression.  

  

 

  



 63 

Figure 2.5. Expression of HLA-I, DNMTs, and HDACs in prostate cancer cell lines. 
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Figure 2.5. Expression of HLA-I, DNMTs, and HDACs in prostate cancer cell lines. 

A) HLA-I protein expression measured by western blot and immunofluorescence and (B) 

HLA-I gene expression in 4 prostate cancer cell lines (LNCaP, 22rv1, PC3, and LAPC4) 

compared to a normal prostate epithelial cell line, RWPE1. C) Immunofluorescent imaging 

of DNMT expression in prostate cancer cell lines and RWPE1. D) Western blot showing 

class I HDAC expression in prostate cancer cell lines and RWPE1. E) Gene expression 

of DNMTs and class I HDACs in prostate cancer cell lines and RWPE1. 
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Figure 2.6. Inhibition of DNMTs and HDACs induces HLA-I expression in prostate 
cancer cell lines.  
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Figure 2.6. Inhibition of DNMTs and HDACs induces HLA-I expression in prostate 

cancer cell lines. HLA-I gene induction in cell lines treated with SGI or LBH alone and in 

combination. Data is represented as expression relative to housekeeping gene P0 and 

as a fold change relative to DMSO.  
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Figure 2.7. HLA-I downregulation is associated with a repressive epigenetic 
signature in prostate cancer cell lines.  
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Figure 2.7. HLA-I downregulation is associated with a repressive epigenetic 

signature in prostate cancer cell lines. A) Primer locations for DNA methylation and 

histone modification analyses. B) DNA methylation in LNCaP, 22rv1, PC3, LAPC4, 

RWPE1, and a lymphoblastoid cell line (LCL) in four regions of the HLA-I genes. C) ChIP 

using antibodies to H3K27ac and H3K27me3 in LNCaP, 22rv1, PC3, and LAPC4 

compared to RWPE1. D) Correlation matrix for HLA-I protein expression, gene 

expression, DNA methylation and H3K27 histone modifications. Pearson r values are 

indicated in each box.  
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Figure 2.8. Inhibition of DNMTs and HDACs alters epigenetic signatures in 
prostate cancer cell lines. 
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Figure 2.8. Inhibition of DNMTs and HDACs alters epigenetic signatures in prostate 

cancer cell lines.  A) Heat map indicating the methylation level in cell lines treated with 

DMSO or SGI. B) ChIP using an antibody to H3K27ac in 22rv1 cells treated with DMSO 

or SGI. C) ChIP using antibodies to H3K27ac in cell lines treated with DMSO or LBH. D) 

ChIP using an antibody to Rpb1 in LNCaP cells treated with DMSO or SGI. E) ChIP using 

an antibody to Rpb1 in 22rv1 and LNCaP cells treated with DMSO or LBH.  
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Figure 2.9. Inhibition of DNMTs and HDACs induces HLA-I gene expression in 
primary prostate cancer ex vivo. 
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Figure 2.9. Inhibition of DNMTs and HDACs induces HLA-I gene expression in 

primary prostate cancer ex vivo. A) Gene expression analysis of the HLA-I genes and 

prostate specific elements of the AR pathway in prostate tumor tissue cultured ex vivo. 

B) Gene expression analysis of induction of HLA-I and AR pathway elements in ex vivo 

tissue treated with DMSO, 5AZA2, LBH, or 5AZA2+LBH. Error bars represent SD. * 

p<0.05. 
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Figure 2.10. DNMT and HDAC inhibition in tumor cells increases co-cultured T-
cell activation.  
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Figure 2.10. DNMT and HDAC inhibition in tumor cells increases co-cultured T-cell 

activation. A) Vaccination and co-culture scheme to analyze PSMA27-38-specific T-cell 

response to LNCaP cells treated with epigenetic modifying agents. B) Plots represent the 

rare-event cell analysis of PSMA27-38-specific T-cells to assess the cytolytic features. Top 

row shows PSMA27-38 tetramer binding on the total CD8+ splenocyte subset. PSMA27-38 

tetramer+ cells are projected in rows 2-4 and gate frequencies are expressed as a 

percentage of total PSMA27-38 CD8+ T-cells. Plots represent expression of activation 

markers CD69, LFA-1, IFNg, granzyme B, and CD107 (LAMP1). C) Graphs represent the 

frequency of PSMA27-38 pentamer positive cells within the total CD8+ T-cell population 

after co-culture with LNCaP cells treated with epigenetic modifying agents. Splenocytes 

were co-cultured with LNCaPs in ratios of 2:1 and 1:1 PSMA27-38 tetramer+ CD8+ T-cell 

Effector to tumor Target (E:T). In control conditions, splenocytes from unvaccinated mice 

were co-cultured with LNCaPs treated with epigenetic modifying agents or HLA-I as 

blocked by an anti-HLA-A,B,C blocking antibody. Error bars represent SD. * p<0.05. 
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SEEMLIS: A Flexible and Semi-
Automated Method for Enrichment of 

Methylated DNA from Low-input 
Samples 

 
 
 
 
 
 

 
 
 
This chapter is adapted from the following publication under review: Rodems TS, Juang 
DS, Stahlfeld CN, Gilsdorf C, Krueger TE, Heninger E, Zhao SG, Sperger JM, Beebe 
DJ, Haffner MC, Lang JM. SEEMLIS: A Flexible Semi-Automated Method for 
Enrichment of Methylated DNA from Low-input Samples. 
 
Contributions: Figure 3.5A was performed in collaboration with J.M.S. Figure 3.9 was 
performed in collaboration with C.N.S. and C.G. All other experiments and analyses 
were performed by T.S.R.  
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ABSTRACT 

DNA methylation alterations have emerged as hallmarks of cancer and have been 

proposed as screening, prognostic, and predictive biomarkers. Traditional approaches for 

methylation analysis have relied on bisulfite conversion of DNA, which can damage DNA 

and is not suitable for targeted gene analysis in low-input samples. Here we have adapted 

methyl-CpG binding domain protein 2 (MBD2)-based DNA enrichment for use on a semi-

automated exclusion-based sample preparation (ESP) platform for robust and scalable 

enrichment of methylated DNA from low-input samples, called SEEMLIS. We show that 

combining methylation-sensitive enzyme digestion with ESP-based, MBD2 enrichment 

allows single gene analysis with high sensitivity for GSTP1 in highly impure, 

heterogenous samples. We also show that ESP-based, MBD2 enrichment coupled with 

targeted pre-amplification allows analysis of multiple genes with sensitivities approaching 

the single cell level in pure samples for GSTP1 and RASSF1 and sensitivity down to 14 

cells for these genes in highly impure samples. We demonstrate the potential utility of 

SEEMLIS using circulating tumor cells from patients with prostate cancer. In summary, 

this novel assay provides a platform for determining methylation signatures in rare cell 

populations with broad implications for research and clinical applications.  
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INTRODUCTION 

Epigenetic modifications to DNA are fundamental to human biology, including 

histone tail modifications, changes in chromatin structure, and DNA methylation. The 

ability of epigenetic modifications to alter gene expression without changing the sequence 

of the genome is essential to human development and disease (149). DNA methylation 

in particular has been widely studied for its contributions to human development and 

disease (150).  DNA methylation refers to the addition of a methyl group to the fifth carbon 

of the nucleotide cytosine. In humans, cytosine methylation mainly occurs at cytosines 

that are 5’ to a guanine, termed CpG (46). CpG methylation contributes to gene regulation 

directly by blocking binding sites of transcription factors or RNA polymerase and indirectly 

by recruiting other epigenetic modifiers that promote chromatin reorganization 

(46,47,151). Importantly, these changes are heritable and conserved, but can also be 

plastic in nature (152,153), making them attractive targets for studying disease 

progression and developing biomarkers and therapies.  

DNA methylation changes are a hallmark of almost all malignancies (154). In 

prostate cancer for instance, alterations in DNA methylation have been extensively 

studied and have been shown to exhibit exquisite biomarker properties for early detection 

and disease monitoring (77,154-158). This approach is particularly relevant since there is 

a lack of recurrent genomic alterations in prostate cancer (62), with the most common 

genomic alterations only occurring in ~50% of patients (64,104-106). The lack of genomic 

alterations in prostate cancer generates a need for non-genomic prognostic and 

predictive biomarkers. During tumor progression, specific gene promoters and CpG 

islands are hypermethylated, leading to silencing of genes including tumor suppressor 
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genes such as APC and RASSF1 (65,66,159). Importantly, many of these genes are 

methylated in more than 75% of patients, with some genes such as GSTP1 being 

methylated in over 95% of patients with prostate cancer (65). Therefore, DNA methylation 

changes, especially in specific gene promoters, have the potential to be powerful 

prognostic and predictive biomarkers.  

An increasing number of recent studies have investigated the feasibility of using 

DNA methylation signatures in DNA from liquid biopsies such as circulating tumor cells  

(CTCs) and cell-free DNA (cfDNA) as prognostic and predictive biomarkers. Studies in 

prostate cancer cfDNA and breast cancer cfDNA and CTCs, for example, have identified 

multiple candidate biomarkers that may be useful for early detection and diagnosis (160-

163). However, robustly assessing DNA methylation changes from small amounts of DNA 

remains a major technical challenge. The overwhelming majority of these studies utilize 

bisulfite conversion based approaches such as methylation specific PCR (MS-PCR) or 

reduced representation bisulfite sequencing (RRBS). Bisulfite conversion has been 

shown to extensively damage DNA and can result in a loss of up to 90% of DNA yield 

(114). Due to the limited amount of tumor DNA in liquid biopsies, bisulfite conversion-

based approaches are suboptimal and may not enable clinical diagnostic use.  

To circumvent the issues that arise from bisulfite-based approaches, multiple 

studies have investigated affinity enrichment-based approaches using either antibodies 

or proteins that specifically bind methylated DNA. For instance, the use of 5-

methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) antibodies has been shown to 

enrich for methylated DNA from as little as 0.5ng of starting material (164,165). The 

methyl-CpG binding domain (MBD) of methyl-CpG binding proteins such as MeCP2 and 
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MBD2 have also been used to enrich methylated DNA (166-168). An assay termed 

combination of methylated-DNA precipitation and methylation-sensitive restriction 

enzymes (COMPARE-MS) employs the methyl-CpG binding domain of MBD2 (MBD2-

MBD) coupled with DNA digestion with methylation-sensitive restriction enzymes to 

enrich methylated DNA in heterogenous samples. This assay was used to profile multiple 

genes from 20ng of DNA from prostate cancer biopsy samples (168). Here we sought to 

develop a robust and scalable enrichment platform for targeted analysis of methylated 

DNA from low-input samples. We combined the strength of the COMPARE-MS assay 

with semi-automated exclusion-based sample preparation (ESP) to enrich methylated 

DNA from low-input samples, in an assay called SEEMLIS. We developed SEEMLIS to 

enable methylated DNA analysis in low-input samples such as CTC-derived DNA.  

Our lab already has a well-established platform for CTC capture, protein staining, 

and nucleic acid extraction both with a handheld and a semi-automated microfluidic ESP 

system (139,169,170). Both of these systems harness the rapid, gentle, and low-loss 

physical characteristics of the ESP system to enable extraction of high quality DNA from 

low-input samples, which can be used for virtually any DNA-based experimental endpoint. 

In this study, we show that DNA extracted from this system can be used directly for DNA 

methylation analysis by SEEMLIS. We validated the performance of SEEMLIS for single 

gene analysis using CTCs from patients with prostate cancer as our source of low-input 

target DNA. Additionally, we show that SEEMLIS followed by a pre-amplification step, 

can allow methylation analysis of multiple gene targets from low cell inputs, with sensitivity 

down to a single cell for certain targets in samples with low non-tumor cell contamination.  
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SEEMLIS was designed for seamless integration into our CTC capture, imaging, and 

nucleic acid extraction ESP-based system. However, this assay is applicable for use with 

any genomic DNA source where methylation marks and genomic integrity are sufficiently 

preserved. The clinical utility of this assay is far reaching, including the ability to monitor 

responses to epigenetic therapies and to identify patients with specific methylation 

signatures that are prognostic of disease outcomes or render them resistant or 

susceptible to certain therapies. Importantly, while we have developed this system in the 

context of prostate cancer, this assay is readily transferable to other types of cancer and 

diseases where DNA methylation changes are of importance  
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RESULTS 

Range of detection of GSTP1 promoter in LNCaP DNA after digestion with a 

methylation-sensitive restriction enzyme and MBD2-MBD enrichment 

An overview of the SEEMLIS workflow in shown in Figure 3.1. SEEMLIS was designed 

for seamless integration into our existing ESP-based CTC isolation platforms. In this 

report, we will use these techniques for sample isolation, DNA extraction, and methylated 

DNA enrichment where applicable. However, SEEMLIS may be performed from step 2 of 

the workflow (MBD2-MBD Enrichment) with DNA isolated from samples of interest in any 

way that preserves methylation and does not significantly damage or shear DNA (168). 

In this study, DNA was extracted from lysed cells by magnetic silica coated beads using 

ESP-based approaches, which our lab has used extensively for nucleic acid isolation 

(139,170,171). To fragment DNA, a combination of methylation-sensitive and in-sensitive 

restriction enzymes was used as described previously (168). The addition of a 

methylation-sensitive restriction enzyme that only cuts if the restriction site is 

unmethylated further reduces unspecific background signal. Tagged MBD2-MBD protein 

was immobilized on cobalt coated magnetic beads to capture methylated DNA. Bead-

bound DNA is purified by automated magnetic transfer via ESP through a wash buffer 

and into water for elution.  

To test the range of detection for a single, methylated gene, we chose GSTP1 as 

a benchmark. GSTP1 promoter hypermethylation is present in more than 95% of prostate 

cancers and has previously been used in various biomarker studies (65,75,77,172). 

Methylation of the repetitive element, LINE1, was used as a positive control for successful 

enrichment of methylated DNA since LINE1 is highly abundant in the human genome and 
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known to be methylated in virtually all human cells (173,174). We chose to use the LNCaP 

cell line as our positive sample. Bisulfite sequencing has previously been performed on 

the LNCaP cell line which shows that the promoter and CpG island of GSTP1 is heavily 

methylated (168,175,176). White blood cells (WBC) from healthy donors and patients with 

prostate cancer were used to represent the WBC population in circulation as our negative 

control. It has been previously shown that GSTP1 is hypomethylated in white blood cells 

(65,177). GSTP1 primer location, genomic context, and methylation levels for LNCaP 

(176,178) and WBCs (177,178) are shown in Figure 3.2. For all LNCaP and WBC 

validation experiments, DNA was extracted by semi-automated ESP as described in the 

methods unless otherwise indicated. 

To determine the sensitivity, specificity, and range of SEEMLIS for GSTP1 in 

LNCaP cells, we generated serial dilutions of LNCaP DNA at 1000, 100, 10, and 1 cell(s) 

and used 1000 WBCs as a negative control. Enrichment was performed as described in 

the methods and Figure 3.1. DNA was digested with AluI and HhaI restriction enzymes 

prior to enrichment of methylated DNA with MBD2-MBD coated magnetic beads. 

Quantitative PCR (qPCR) was performed on enriched DNA using primers for GSTP1 and 

LINE1. Raw Ct values were used to create ROC curves and calculate GSTP1 and LINE1 

methylation index (MI) for each dilution of LNCaP cells and WBC samples. An ROC curve 

was created using all LNCaP and WBC values, which had an area under the curve (AUC) 

of 0.86 (Figure 3.3A). Youden’s J statistic was used to find the optimal threshold (OT), 

which resulted in 81.25% sensitivity and 85.71% specificity for methylated GSTP1 to 

distinguish LNCaP from WBC. This threshold was applied to the methylation index values 

calculated for each dilution of LNCaP and WBC samples (Figure 3.3B). We were able to 
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detect methylated GSTP1 from LNCaP cells above the OT 8/8 times at the 1000 and 100 

cell dilutions, 7/8 times at the 10 cell dilution and 3/8 times at the single cell dilution. 

GSPT1 was found above the OT 4/28 times in any WBC sample. LINE1 methylation was 

detected in all samples in an input dependent manner, indicating successful enrichment 

of methylated DNA from all sample types (Figure 3.3B). 

We also created an ROC curve using only LNCaP samples with greater than or 

equal to 10 cells to demonstrate the increased sensitivity when not working with single 

cell samples (Figure 3.3A). This curve results in an AUC very close to 1.0 (0.98). A similar 

threshold under these conditions results in an improvement in sensitivity (95.83%), but 

no improvement to specificity. The threshold determined to be optimal by Youden’s J 

statistic for this sample set is more restrictive, but with higher sensitivity and specificity of 

87.50% and 96.43% respectively. The ROC curve generated with data from LNCaP cell 

inputs of greater than or equal to 100 cells has an AUC of 1.0 with 100% sensitivity and 

specificity at the calculated optimal threshold (Figure 3.3A). 

To determine the efficiency of SEEMLIS and calculate a detection limit, we plotted 

the GSTP1 Ct values against LINE1 Ct values and cell input number. GSTP1 and LINE1 

Ct values were positively correlated to each other across the various dilutions of LNCaP 

cells (Figure 3.3C). Similar relative enrichment of GSTP1 and LINE1 in individual 

enrichment reactions suggests stochastic variations in how much input DNA is added 

from the serial dilutions is responsible for differences in GSTP1 enrichment from the same 

dilution, rather than inefficient capture of methylated DNA. Importantly, GSTP1 is 

detected in MBD2-MBD enriched LNCaP DNA in an input dependent manner, where each 

10-fold dilution of starting cells results in a gain of 3.42 Ct values as determined by the 
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slope of the best fit line when plotting raw Ct values vs. log cell input, resulting in an assay 

efficiency of 96.06% (Figure 3.3D). The equation of the best fit line was used to calculate 

a detection limit for GSTP1 in this assay based on the OT from Figure 3.3B. The detection 

limit based on these values is 3 cells.  

 

Range of detection of GSTP1 promoter in heterogenous samples after methylation-

sensitive restriction enzyme digestion and MBD2-MBD enrichment 

Next, we wanted to determine range of detection of GSTP1 in samples representative of 

the purity of DNA isolated from circulating tumor cells (CTCs). DNA collected form CTC 

samples is often contaminated with large amounts of WBC DNA due to persistence of 

WBCs in the sample even after CTC enrichment. To test the ability of SEEMLIS to detect 

GSTP1 in impure, heterogenous populations, we generated contrived samples to be 

representative of the purity levels we may obtain from CTC samples. We used LNCaP 

cells to represent CTCs and spiked them into patient-derived WBCs. We spiked 

approximately 1000, 100, 10, and 1 LNCaP cells by serial dilution into 1000 WBCs. These 

spike-ins represent a range of purity levels from CTCs being 50% of the population to 

“worst case scenario” purity levels, where CTCs are less than 1% of the cell population. 

The input amounts are representative of the range of CTC numbers we may get from 

patient samples, although we also observe higher numbers of CTCs and greater purity in 

certain patients. We were able to detect methylated GSTP1 from the contrived sample 

sets at similar levels as LNCaP cells alone at each dilution (Figure 3.3E). Methylated 

GSTP1 was detected from LNCaP cells spiked into 1000 WBCs above the OT 4/4 times 

at the 1000 LNCaP cell dilution, 3/4 times at the 10 LNCaP cell dilution and 2/4 times at 
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the single LNCaP cell dilution. Detection of LINE1 methylation corresponded to the total 

cell number present in the sample for each of these spike-in experiments.  

We also wanted to confirm that different levels of WBCs would not introduce more 

false positive GSTP1 signals compared to 1000 WBC inputs, since circulating tumor cell 

samples may have varying levels of WBCs. We measured GSTP1 and LINE1 detection 

in WBC inputs of 5000, 2000, 100, 10, and 1 cells to confirm that GSTP1 signal was 

consistently low in various WBC input amounts (Figure 3.4). The GSTP1 signal in WBCs 

did not increase significantly at inputs greater than 1000 cells. GSPT1 signal was below 

the detection limit 100% of the time in dilutions lower than 1000 cells. LINE1 was detected 

relative to input amount up to 2000 cells, where saturation of LINE1 signal occurred. 

Therefore, in these assay conditions, interpretation of LINE1 as a readout of total cellular 

level is only applicable to inputs of 2000 cells or less.  

 

Detection of methylated GSTP1 in prostate cancer CTCs 

A cohort of patients was selected to test the performance of SEEMLIS on patient CTC 

samples. The samples in this cohort were collected by EpCAM positive selection following 

CD45+ depletion using a handheld ESP device called the VERSA where RNA was 

extracted prior to DNA extraction (171). The VERSA technology integrates multiple 

analysis steps into one microfluidic device, including capture, staining, and imaging of 

CTCs followed by nucleic acid extraction from the same cells. The RNA from the samples 

in this cohort was used to assess gene expression of various prostate specific markers 

to ensure the presence of CTCs in the sample. All samples had gene signatures that 

support the presence of prostate epithelial cells by expression of multiple prostate specific 
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genes (Figure 3.5A). Estimates of CTC and WBC numbers and sample purity were made 

from images taken prior to nucleic acid extraction, where CTCs were considered EpCAM 

and Hoechst positive and negative for WBC exclusion markers CD45, CD14, and CD44b 

(Table 3.1). Sample 274 had a purity greater than 50%. Sample 411 did not have an 

image available. All other samples ranged in purity from 1.0%-10.2%. CTC number 

ranged from 7 to 237.  

DNA obtained from the patient samples was enriched for methylated DNA by 

MBD2-MBD and qPCR was performed for GSTP1 and LINE1 using the enriched DNA. 

Methylation index was calculated for each sample and the OT determined for GSTP1 in 

LNCaP cells was applied. We were able to detect methylated GSTP1 above the OT in 

5/6 (83%) samples (Figure 3.5B). LINE1 methylation was detected in all samples 

indicating methylated DNA was captured even in sample 578 where methylated GSTP1 

was not detected. GSTP1 methylation index was significantly correlated to the CTC 

number determined by imaging (Figure 3.5C). However, LINE1 methylation index did not 

significantly correlate to total cell number. This may be due to inaccuracy in determining 

total cell number from live cell images or loss of LINE1 methylation seen during prostate 

cancer progression leading to LINE1 methylation levels not correlating with cell number 

(67). This pilot study shows that SEEMLIS can successfully detect methylated GSTP1 

from a range of input target cell numbers and sample purities for seamless integration of 

targeted methylated DNA analysis into CTC capture, imaging, and gene expression 

analysis to allow comprehensive biomarker evaluation.  
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SEEMLIS performance without the use of a methylation-sensitive enzyme to 

facilitate multiple target detection 

While detection of one gene is useful in many contexts, there are myriad reasons for 

wanting to detect methylation in multiple gene targets from the same low-input sample. 

Splitting the sample into separate reactions for each gene is not ideal when working with 

heterogenous, low-input samples. Multiplexing primers in a pre-amplification reaction 

would allow analysis of multiple genes from the same limited sample, while still allowing 

a single methylated DNA enrichment per sample. However, due to the complexity of 

methylation patterns in each different gene region that we may want to include, the use 

of a methylation-sensitive enzyme in the assay poses a problem.  

A methylation-sensitive enzyme will cut at its restriction site only if the DNA is 

unmethylated. Designing primers that contain this restriction site can improve background 

from non-specifically captured DNA by preventing amplification during qPCR. However, 

in the context of evaluating methylation at multiple targets in low-input samples, each 

restriction site for this enzyme is required to be methylated in each gene in the list of 

targets to be analyzed. While the use of the methylation-sensitive enzyme is beneficial 

for reducing the amount of background unmethylated target DNA, finding a methylation-

sensitive restriction enzyme that is compatible with each region of interest becomes 

prohibitively difficult as the number of targets increases. Therefore, depending on the 

chosen genes, it may be necessary to use only non-methylation-sensitive restriction 

enzymes for detection in the same low-input sample.  
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We tested the effect of not using a methylation-sensitive enzyme on GSTP1 detection in 

LNCaP and WBCs pre- and post-MBD2-MBD enrichment (Figure 3.6). Samples were 

digested with the methylation-sensitive enzyme, HhaI or the non-methylation-sensitive 

enzyme, HpyCH4V. All samples were also digested with the non-methylation-sensitive 

enzyme AluI. We chose to add an additional non-methylation-sensitive enzyme to replace 

HhaI to increase the number of cut sites in our target regions. This ensures that the 

fragments are small enough to mitigate false positives from enrichment of methylated 

regions far away from the primer site. We found that while the use of the methylation-

sensitive enzyme reduces signal from WBCs, the signal without the enzyme is still low 

enough to warrant use in heterogenous populations, if we apply a higher limit of detection 

to limit false positives. The combination of enzyme types should be empirically 

determined by the researcher for each application of this assay based on the desired 

target regions.  

 

Detection of multiple targets by pre-amplification of MBD2-MBD enriched DNA 

In order to detect methylation at multiple genes from low cell input samples, we tested the 

addition of a pre-amplification step prior to qPCR. We used the TaqMan system for 

targeted pre-amplification, which amplifies pre-selected targets with the same probes 

used in subsequent qPCR-based analysis. We chose this targeted method for pre-

amplification rather than a traditional whole genome amplification (WGA) method for its 

speed, reduced hands-on time, and flexibility. Additionally, because we are analyzing a 

known subset of genes, amplifying the entire genome increases the risk of unpredictable 

biased amplification, which may be exacerbated by the uneven fragment lengths 
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produced by restriction enzyme digestion. We have published multiple studies using the 

TaqMan system of pre-amplification for gene expression and have done extensive testing 

in this context to ensure pre-amplification is not affecting the results of our experiments 

(139,171,179). In order to determine that the pattern and amount of pre-amplification of 

our DNA primers is similar across our genes of interest, we compared Ct values for each 

primer set using 5ng and 0.5ng of pre-amplified and unamplified LNCaP DNA (Figure 

3.7A). The amplification pattern is similar across all primer sets after pre-amplification and 

at different starting concentrations. GSTP1 gained approximately 10 Ct values. RASSF1, 

APC, and RARB gained approximately 12 Ct values.    

To test the performance of SEEMLIS with the pre-amplification step included, we 

generated serial dilutions of 1000, 100, 10, and 1 LNCaP cell(s) and used 1000 and 100 

patient-derived WBCs as a negative control. We also spiked 1000, 100, 10, and 1 LNCaP 

cell(s) into 1000 patient-derived WBCs to mimic CTC samples. The samples were 

enriched for methylated DNA by MBD2-MBD capture. The enriched DNA was then placed 

directly into a pre-amplification reaction. We included primers for four genes in the pre-

amplification pool (RASSF1, APC, RARB and GSTP1) which have previously been 

identified as being methylated in a large percentage of prostate cancers (65). Primer 

locations, genomic context, and methylation level determined by whole genome bisulfite 

sequencing in LNCaP (176) and WBCs (177) are shown in Figure 3.2. It is important to 

note that RARB is methylated at a low level in WBCs, which is likely to result in a more 

restrictive detection limit for this gene. LINE1 was left out of the pre-amplification pool 

because it is abundant enough to be detected in samples that have been diluted after the 

pre-amplification without pre-amplification of LINE1 itself. Pre-amplified DNA was then 
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diluted 1:5 and qPCR was performed for GSTP1, RASSF1, APC, RARB, and LINE1. Ct 

values from all LNCaP and WBC samples, excluding spike in samples, were plotted 

together for each gene to determine cut off Ct values to be used for methylation index 

calculations, as described in more detail in the Methods (Figure 3.7B). Ct values from the 

1000 cell WBC samples and LNCaP samples of 10 cells or greater were used to create 

ROC curves for each gene (Figure 3.8A). The 1 cell LNCaP dilution samples were not 

included in the ROC curves because of the increased background we expected from not 

using a methylation-sensitive enzyme for digestion. The AUCs for GSTP1, RASSF1, 

APC, and RARB were 0.88, 0.84, 0.83, and 0.67 respectively. Youden’s J statistic was 

used to find the OT for each gene, which are listed in Figure 3.8A.  

Methylation index was calculated for each gene as described in the Methods 

section for pre-amplified samples and the OTs calculated for each gene in Figure 3A were 

applied (Figure 3.8B). We were able to detect methylated GSTP1 and RASSF1 from 

LNCaP cells above the OT 4/4 times at the 1000 and 100 cell dilutions and 2/4 times at 

the 10 cell dilution. We were able to detect methylated APC above the OT 4/4 times at 

the 1000 and 100 cell dilutions and 1/4 times at the 10 cell dilution. RARB was only 

detected above the optimal threshold 4/4 times at the 1000 cell dilution and 2/4 times at 

the 100 cell dilution. GSTP1, RASSF1, and APC were detected above the OT 4/4 times 

at the 1000 and 100 cell dilutions for the spike in samples. RARB was detected above the 

OT 4/4 times at the 1000 cell dilution and 3/4 times at the 100 cell dilution. Only RASSF1 

was ever detected above the optimal threshold at the 10 cell dilution for the spike-in 

samples (1/4 times). As expected, we were not able to detect any gene above the optimal 

thresholds at the 1 cell dilution for LNCaP alone or the spike-in samples. LINE1 



 91 

methylation was detected at all dilutions in all samples in a dilution dependent manner. 

LINE1 Ct values were significantly positively correlated with Ct values for each gene 

(Figure 3.8C). Methylated DNA was enriched in an input dependent manner for inputs of 

1000, 100, and 10 cells for each gene, with efficiencies for GSTP1, RASSF1, APC, and 

RARB of 87%, 101%, 92%, and 122% respectively (Figure 3.8D). Undetected samples 

were excluded from efficiency analyses. Detection limits listed in Figure 3.8A were 

calculated based on the OT using the equation of the best fit line determined by plotting 

Ct values vs. cell input (Figure 3.8D). GSTP1 and RASSF1 had a detection limit of 14 

cells while APC and RARB had detection limits of 24 and 152 cells respectively. 

We also performed SEEMLIS on 100 WBCs in addition to 1000 WBCs to see if 

lowering the amount of background cells would reduce background signal (Figure 3.8B). 

The GSTP1 and RASSF1 signals from 100 WBCs were reduced to effectively 0. APC 

signal was reduced to the equivalent level of a single LNCaP cell. RARB signal was not 

reduced between 1000 and 100 WBCs. These results indicate that reducing the amount 

of background WBCs in the sample may lower the threshold enough to approach single 

cell sensitivity for certain genes.  

 

Detection of multiple targets in pre-amplified MBD2-MBD enriched DNA from cells 

isolated by single cell aspiration  

These data suggest that the lack of a methylation-sensitive enzyme and addition of a pre-

amplification step can allow us to look at multiple gene targets in CTC samples where 

WBCs are present, but only in certain high purity or high CTC-burden samples. In order 

to look at multiple gene targets in samples where purity or CTC-burden is low, further 
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purification steps are warranted. One way to achieve 100% CTC purity is to use a single-

cell aspirator to select only CTCs or only WBCs. We tested the feasibility of this by using 

a semi-automated single cell aspirator (SASCA) developed in our lab (180). We tested 

the feasibility of this in 3 prostate cancer CTC samples that were first enriched for EpCAM 

positive cells as well as LNCaPs and WBCs as positive and negative controls 

respectively. An example image of a single WBC in the single cell aspirator microarray is 

shown in Figure 3.10A. We aspirated 2-3 groups of approximately 10-15 CTCs, LNCaP 

cells,, and WBCs. We then performed SEEMLIS without the use of a methylation-

sensitive enzyme with the pre-amplification step included on each of these samples. 

Methylation index was calculated for each gene in each group (Figure 3.9B). We were 

able to detect LINE1 from each sample at comparable levels to each other and to our 10 

cell dilution samples in Figure 3.8. We were able to detect GSTP1 from 1 LNCaP sample 

and in 1 CTC group from Pt. 1. RASSF1 was detected in both LNCaP control groups as 

well as 2/2 CTC groups from patient 1 and 2/3 CTC groups from patient 2. APC was 

detected in 1/2 LNCaP groups, but was not detected in any CTC groups. RARB was 

detected in all CTC groups from Patients 2 and 3 and in 1/2 CTC groups from patient 3. 

None of the genes, apart from LINE1, were detected in the aspirated WBC group. 

Generating pure samples by single cell aspiration allowed us to perform a multiplexed 

analysis of methylation signatures in prostate cancer CTCs. These data demonstrate the 

utility of this assay for targeted methylation analysis in CTCs and other low-input samples.  
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DISCUSSION 

Analyzing epigenetic signatures in low-input samples such as DNA derived from liquid 

biopsies has been an on-going challenge. Most techniques that measure DNA 

methylation rely on bisulfite conversion of DNA, which can lead to extensive damage of 

input material. This problem necessitates large input amounts, or reduces sensitivity such 

that targeted analysis of specific regions is not reliable. This loss of sensitivity is especially 

true in heterogenous samples due to the increased need for assay sensitivity to 

distinguish target DNA from background DNA. The assay presented here uses MBD2-

MBD enrichment of methylated DNA in a semi-automated ESP based system to support 

targeted DNA methylation analysis in low-input samples without chemical DNA alteration 

or lengthy protocols.   

While we have developed SEEMLIS in the context of prostate cancer and 

specifically with CTC biomarker development in mind, this assay is readily transferable 

for targeted methylation analysis and biomarker development in any disease state, 

including blood and solid tumors and non-cancer diseases. This assay also provides a 

method for analysis of single cell heterogeneity, which may be useful not only for research 

in disease progression, but also for non-disease states such as development and cellular 

differentiation.  

SEEMLIS also lends itself to further downstream applications such as sequencing 

the MBD2-MBD captured DNA (MBD-seq) and we are currently exploring this endpoint. 

There have been multiple studies that have performed reduced representation bisulfite 

sequencing (RRBS) from low-input samples including single cells, but this necessitates 

using sequencing methods that even further reduce sequence representation than when 
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performed with thousands of cells (181,182). Furthermore, because the damage caused 

by bisulfite conversion is a random event, analysis of specific gene loci at the single cell 

level is reliant on chance that the site of interest remains intact, is converted efficiently, 

and is able to be mapped successfully post-sequencing. This assay provides a way to 

alleviate some of these challenges by enabling enrichment of methylated DNA from low-

input samples without chemically altering or damaging the DNA. While previous studies 

have demonstrated success in MBD-seq on samples inputs as low as 5ng (183), we 

anticipate that our semi-automated capture assay will be able to lower the minimum input 

even further based on the results in this study, especially in pure samples. As such, the 

clinical and research utility of this technique is incredibly far-reaching.  

A limitation of capture-based assays such as this one is the lack of single 

nucleotide resolution. As of now, bisulfite or enzymatic based conversion techniques must 

be used in order to achieve this level of resolution. However, resolution at the single base 

level is often not needed for clinical tests or to understand the contribution of DNA 

methylation to disease progression or heterogeneity. SEEMLIS is not meant to reveal the 

transcriptional nuances that may arise from alterations in methylation at specific CpG 

sites, but rather is designed to sensitively and specifically identify regions of DNA 

methylation in low-input samples. Identification of differences in methylated regions by 

this assay may then lead to more in depth, higher resolution studies of DNA from larger 

samples.   

This adaptability of SEEMLIS to many research-based and clinical needs, 

including highly sensitive, single gene analysis and analysis of multiple genes from single 

or multiple cells, makes it an exciting tool for methylation analysis in various settings. The 
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ability to quickly and reliably analyze epigenetic biomarkers is important for researchers 

and clinicians due to revelations over the last few decades on epigenetic influence on 

development and disease. 
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MATERIALS AND METHODS 

Cells for Assay Validation 

LNCaP cells (ATCC) were a gift from Dr. David Jarrard and were cultured in RPMI 

medium (Corning) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin (HyClone). LNCaP cells were harvested when confluent and 

frozen in aliquots in growth medium plus 10% DMSO (Fisher Scientific) at -80o C and 

quick thawed for use in assay validations experiments. White blood cells (WBCs) for 

assay validation experiments were derived from healthy donor blood or from the blood of 

a patient with prostate cancer. WBCs were selected on CD45 positivity using magnetic 

LS MACS columns (Miltenyi). WBCs were frozen in aliquots in PBS plus 10% DMSO 

(Fisher Scientific) at -80o C and quick thawed for use in assay validations experiments.  

 

DNA Extraction 

Semi-automated DNA extraction was performed on a Gilson PIPETMAX liquid handling 

robot enabled for exclusion-based sample preparation (ESP), termed EXTRACTMAX 

(184). LiDS buffer (90mM Tris-HCL, 500mM lithium chloride, 1% Igepal CA-630, 10mM 

EDTA, 1mM dithiothreitol) and MagneSil Paramagnetic Particles (PMPs) (Promega) 

resuspended in GTC buffer (10 mM Tris-HCl, 6 M guanidinium thiocyanate, 0.1 % Igepal 

CA-630, pH 7.5) are added to the EXTRACTMAX extraction microplate (Gilson) by the 

robot. Cells were added to the microplate well containing LiDS, GTC, and MagneSil beads 

and mixed by the robot. Cells were allowed to lyse and DNA was allowed to bind to 

MagneSil PMPs for 5 minutes. The robot then transferred the MagneSil PMPs with bound 

DNA by exclusive liquid repellency (ELR) through one PBST (PBS containing 0.1% 
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Tween-20) wash, one PBS wash, and into water for elution. Beads were manually 

resuspended in the elution well and allowed to elute for 2 minutes. The MagneSil PMPs 

are magnetically transferred out of the elution well, leaving eluted DNA in water. LNCaP 

and WBC DNA for restriction enzyme and primer pre-amplification validation experiments 

was extracted using the AllPrep DNA/RNA mini kit (Qiagen) according to manufacturer’s 

instructions. 

 

Restriction Enzyme Digestion 

DNA is digested using 1 µL of each chosen restriction enzyme (AluI at 10 units/µL, HhaI 

at 20 units/µL, and/or HpyCH4V at 5 units/µL; NEB) in 20 µL reactions containing 1x 

CutSmart Buffer (NEB) for 15 minutes at 37 ºC followed by enzyme inactivation for 20 

minutes at 80 ºC.  

 

Methylated DNA Enrichment 

25 µL of TALON magnetic beads (Takara) were washed 3x with 100 µL 1x Binding Buffer 

(BB) (4% glycerol, 1 mM MgCl2, 0.5 mM EDTA, 120 mM NaCl, 2 mM Tris-HCl pH 7.4, 

0.2% Tween-20, and 0.5mM DTT). Washed beads were resuspended in 100 µL MBD2-

MBD Coupling Buffer (1x BB, 1x Halt protease inhibitor cocktail (Thermo Scientific), 500 

ng Unmethylated Lambda DNA (Promega), 5 µL tagged MBD2-MBD (EpiXplore Kit, 

Takara)) and placed on shaker at RT for 1 hour to bind MBD2-MBD to the TALON beads. 

MBD2-MBD bound beads were washed 3x with 100 µL 1x BB and resuspended in 88 µL 

1x BB with 1x Halt protease inhibitor cocktail and added to 20 µL restriction enzyme 

digested DNA in 200 µL PCR tubes. This reaction was placed on a shaker at RT for 3 
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hours to bind methylated DNA to MBD2-MBD conjugated TALON beads. PCR tubes were 

placed onto the Gilson PIPETMAX liquid handling robot (EXTRACTMAN system enabled 

for ESP as previously described (184)) for washing and elution steps. The robot 

transferred the whole volume from the PCR tubes onto the EXTRACTMAX extraction 

microplate (Gilson) and then magnetically transferred the TALON beads through a wash 

containing 1x BB with 1x Halt protease inhibitor cocktail and into water for elution. The 

whole elution volume including beads was manually pipetted into new 200 µL PCR tubes 

and placed in a thermocycler at 95oC for 15 minutes to ensure complete elution of 

methylated DNA. If pre-amplification of captured DNA was being performed, the elution 

volume was manually pipetted into new 200 µL PCR tubes containing the pre-

amplification reaction mix and placed directly into the thermocycler under pre-

amplification cycling conditions. The resulting eluate was used in downstream 

applications. Volumes indicated are per reaction. 

 

Quantitative Real Time PCR and Pre-amplification 

Quantitative PCR was performed using TaqMan hydrolysis probes (Applied Biosystems) 

and iTaq Universal Probes Supermix (Bio-Rad). Custom primer pairs and FAM dye-

labeled TaqMan MGB probes were used for methylation analysis. Primer and probe 

sequences are listed in Table 3.2. Commercially available probes from Applied 

Biosystems were used for gene expression analysis for AR_Total (Hs00907242_m1), 

TMPRSS2 (Hs01120965_m1), KLK2 (Hs_00428383_m1), FOLH1 (Hs00379515_m1), 

NKX3.1(Hs00171834_m1), POLR2A (Hs00172187_m1), and RPLP0 (4333761F). 

Cycling conditions: 5 minutes at 95 ºC for initial denaturation and enzyme activation 
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followed by 45 amplification cycles of 5 seconds at 95 ºC and 30 seconds at 60 ºC. Pre-

amplification was performed using custom hydrolysis probes and TaqMan PreAmp 

Master Mix (Applied Biosystems) when indicated according to manufacturer 

specifications. Cycling conditions: 10 minutes at 95 ºC for enzyme activation followed by 

14 cycles of 95 ºC for 15 seconds and 60 ºC for 4 minutes. Pre-amplified samples were 

diluted 1:5 with TE buffer. 

 

Single Cell Aspiration 

For LNCaP and WBC aspiration, cells were first diluted to 100 cells/µl with PBS. For CTC 

aspiration, CTCs were first enriched using the VERSA platform as described above were 

stained in the VERSA with Hoechst 33342 (Thermo Fisher) and anti-bodies to EpCAM 

conjugated to PE (Abcam) and exclusion markers: CD27, CD45, CD34, and CD11b each 

conjugated to AlexaFluor 647 (BioLegend). Single cell aspiration was performed using a 

custom semiautomated single-cell aspirator (SASCA) platform as previously described 

(180). PDMS microarrays were prepared as previously described and adhered to a 

cleaned glass microscope slide. For diluted LNCaP and WBC samples, 6 µl cells were 

seeded for a total of ~600 cells per microarray. Stained CTC samples were seeded 

directly from the VERSA into the microarray. The microarray was imaged on a Nikon Ti-

E Eclipse inverted fluorescent microscope, and target cells were identified by phenotypic 

staining analysis for CTCs or brightfield imaging for LNCaP and WBC control groups. 

CTCs were identified as EpCAM positive, exclusion (CD45/CD34/CD11b/CD27) negative 

cells, whereas WBCs were classified as EpCAM negative, exclusion positive cells. 

Groups of 10-15 CTCs, LNCaPs, and WBCs were aspirated from microwells and 
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dispensed directly into 10 µL PBS in the extraction plate for DNA extraction. Images of 

the microarray were analyzed using NIS Elements AR Microscope Imaging Software 

(NIS-Elements, RRID:SCR_014329) to obtain HLA-I mean fluorescent intensity (MFI) 

values. 

 

Whole Blood Processing and CTC Capture 

Blood is collected and processed as previously described (171,185). Briefly, whole blood 

collected by venipuncture into EDTA tubes was separated by centrifugation with Ficoll-

Paque PLUS (Fisher Scientific). The layer containing mononucleated cells was depleted 

of CD45+ cells by magnetic LS MACS columns (Miltenyi). CTCs were isolated using an 

anti-EpCAM goat polyclonal antibody (R&D Systems). RNA was isolated using oligo (dT) 

Dynabeads (Invitrogen) and DNA was isolated using MagneSil Paramagnetic Particles 

(PMPs) (Promega) as previously described (170). 

 

Methylation Index Calculation 

Methylation Index (MI) was calculated by the delta Ct method using the max cycle value 

(MCV) as the “control” Ct value:  

Methylation Index= 2-(Ct-MCV) 

MCV for GSTP1 (no pre-amplification) is 45. Unamplified wells were given the MCV as 

their Ct value for analysis. MI of 1 is then interpreted as no enrichment of methylated DNA 

for the target. MCV for each gene for pre-amplified samples was assigned for each gene 

by determining a Ct cutoff where serially diluted replicates are no longer reliably detected 

or where clustering of negative controls is seen (Figure 3.7B). MCV for pre-amplified 
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GSTP1 was set at 35. MCV for pre-amplified RASSF1 was set at 33,  APC at 28, and 

RARB at 30. MCV for LINE1 in either condition is 45.  

 

Statistical Analysis 

Receiver operator characteristic (ROC) curves were generated for each gene using Prism 

8 (GraphPad) by plotting sensitivity vs. 100-specificity for the raw Ct values of LNCaP 

(true positive) and WBC (true negative). Optimal Threshold (OT) values were determined 

using Youden’s J Statistic which is defined as the maximum value achieved from 

subtracting 100 from the sum of the sensitivity and 100-specificity values (in 

percentages). The associated Ct value was then converted into a methylation index (MI) 

using the MCV for each gene as described in the methods. Area under the curve (AUC) 

with 95% confidence intervals were found and reported, which indicate the probability that 

a randomly selected true positive sample will have a greater MI value than a randomly 

selected true negative sample. Simple linear regression and semi-log non-linear fit 

analyses were performed in Prism 8 and r, R2 and slope are reported where relevant to 

data interpretation. Assay efficiencies (E) were calculated using slopes of best fit lines 

when comparing raw Ct values to log cell input as follows:  

E= -1+10- 1
slope  

All error bars represent SEM. 
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Table 3.1. CTC, WBC, and Total Cell Counts for Patient Samples 

 
Patient # CTCs WBCs Total Cells Purity (%) 

     

274 237 242 479 49.5 
408 72 1355 1427 5.0 
581 7 238 245 2.9 
411 NA NA NA NA 
501 28 2783 2811 1.0 
578 9 79 88 10.2 

 
  



 104 

Table 3.2. Custom TaqMan probe sequences for DNA methylation analysis 

 
Gene Primer Sequence (5' - 3') 

GSTP1 
Fwd TTCGCTGCGCACACTTC 

Probe CGGTCCTCTTCCTGCTGTCTGTTT 

Rev CTTTCCCTCTTTCCCAGGTC    

RASSF1 
Fwd CCTCCAGAAACACGGGTA 

Probe TTTGCGGTCGCCGTCGTTGT 

Rev CTTCCTTCCCTCCTTCGTC    

APC 
Fwd TTATTACTCTCCCTCCCACCTC 

Probe TCTTGTGCTAATCCTTCTGCCCTGC 

Rev TGGCAGTTGACACGCATAG    

RARB 
Fwd GAAGGAGAACTTGGGATCTT 

Probe CTAACCGGCTCGTTCGGACCTTT 

Rev AGCCTGTAATTGATCCAAATGA    

LINE1 
Fwd CGCAGGCCAGTGTGTGT 

Probe CCGTGCGCAAGCCGA 

Rev TCCCAGGTGAGGCAATGC 
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Figure 3.1. SEEMLIS workflow. 
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Figure 3.1. SEEMLIS workflow. Samples are pre-processed to enrich for circulating 

tumor cells. CTCs are captured by methods including ESP-based enrichment and single 

cell aspiration. Genomic DNA is extracted using ESP-based methods. Genomic DNA is 

digested with restriction enzymes and enriched using MBD2-MBD bound magnetic 

beads. Methylated DNA is washed and eluted on a semi-automated ESP-based system 

and used in downstream applications such as qPCR.  

 

  



 107 

Figure 3.2. Primer locations and genomic context for GSTP1, RASSF1, APC, and 
RARB. 
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Figure 3.2. Primer locations and genomic context for GSTP1, RASSF1, APC, and 

RARB. Forward and reverse primer locations are shown for each gene (red arrows). The 

boxes encompassing the red arrows represent the location on either side of the amplicon 

where the closest restriction enzyme cut site for any of the enzymes used in the assay 

will cut. Lightning bolts are locations of methylation-sensitive restriction enzyme cut sites 

in GSTP1. Genomic context for each gene was generated using the UCSC genome 

browser using the GRCh37/hg19 genome. The locations of the CpG island for each gene 

if present is indicated by the green bar with the total number of CpG dinucleotides in the 

whole CpG island (not only what is present in image) indicated. LNCaP and WBC (PBMC) 

methylation data performed by whole genome bisulfite sequencing from studies deposited 

into the UCSC genome browser is shown by vertical gold bars (176-178). 
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Figure 3.3. Range of detection of GSTP1 promoter in MBD2-MBD enriched DNA.  

  

10
00 10

0 10 1

100

101

102

103

104

105

M
et

hy
la

tio
n 

In
de

x 
(M

I)

GSTP1

LNCaP Spike-in
Pt WBC

20 25 30 35 40 45
25

30

35

40

45

LINE1 Ct Value

G
ST

P1
 C

t V
al

ue

LINE1 vs GSTP1 Ct values
in LNCaP

r: 0.874
R2: 0.765
p<0.0001

Pa
tie

nt H
D

10
00 10

0 10 1

100

101

102

103

104

105

M
et

hy
la

tio
n 

In
de

x 
(M

I)

GSTP1

1000 WBC LNCaP

Pa
tie

nt H
D

10
00 10

0 10 1

100

101

102

103

104

105

106

107

M
et

hy
la

tio
n 

In
de

x 
(M

I)

LINE1

1000 WBC LNCaP
0 20 40 60 80 100

0

20

40

60

80

100

100% - Specificity%

Se
ns

iti
vi

ty
%

GSTP1
≥1 Cell

AUC: 0.86 (0.76 to 0.96)
Optimal Threshold (OT): 7.781
Detection Limit: 3 cells
OT Sensitivity: 81.25%
OT Specificity: 85.71%

A B

E

10
00 10

0 10 1

100

101

102

103

104

105

106

107

M
et

hy
la

tio
n 

In
de

x 
(M

I)

LINE1

LNCaP Spike-in
Pt WBC

10-1 100 101 102 103 104
30
32
34
36
38
40
42
44
46

Input (# cells)
G

ST
P1

 C
t V

al
ue

Input Cells vs GSTP1 Ct values
in LNCaP

Slope: -3.42

C D

0 20 40 60 80 100
0

20

40

60

80

100

GSTP1
≥10 Cells

100% - Specificity%

Se
ns

iti
vi

ty
%

AUC: 0.98 (0.95 to 1.00)
Optimal Threshold (OT): 18.25
Detection Limit: 6 cells
OT Sensitivity: 87.50%
OT Specificity: 96.43%

0 20 40 60 80 100
0

20

40

60

80

100

GSTP1
≥100 Cells

100% - Specificity%

Se
ns

iti
vi

ty
%

AUC: 1.00 (1.00 to 1.00)
Optimal Threshold (OT): 56.50
Detection Limit: 19 cells
OT Sensitivity: 100%
OT Specificity: 100%



 110 

Figure 3.3. Range of detection of GSTP1 promoter in MBD2-MBD enriched DNA. 

Methylated DNA was enriched by MBD2-MBD capture from DNA extracted from serially 

diluted LNCaP cells (n=8 per dilution) and 1000 patient-derived (n=10) or healthy donor 

(HD) (n=18) white blood cells (WBCs). Quantitative RT-PCR for GSTP1 and LINE1 was 

performed using enriched methylated DNA. A) ROC curves were generated for all LNCaP 

samples compared to all WBC samples (greater than or equal to 1 cell), only WBC 

samples greater than or equal to 100 cells, or only WBC samples greater than or equal 

to 10 cells. Area under the curve (AUC) with 95% confidence interval is indicated. Optimal 

threshold (OT) values determined by Youden’s J statistic are listed with their associated 

sensitivity and specificity values. Detection limit was calculating using the slope of the 

best fit line of GSTP1 Ct values plotted against cell input. B) Relative methylation was 

calculated by delta Ct relative to a max cycle value (MCV) of 45 with all undetected 

samples set to a Ct value of 45 for analysis. Optimal threshold as determined by ROC 

curve is shown as a dotted line. Each dot represents an individual sample taken from a 

pool of cells diluted to the indicated concentration. C) LINE1 and GSTP1 Ct values were 

plotted against each other for all LNCaP samples. A simple linear regression was 

performed to determine the best fit line and 95% confidence interval for that line (shaded 

region). R and R2 values are listed for the correlation. D) GSTP1 Ct values were averaged 

for each cell input and plotted against the cell input values. A semi-log non-linear fit was 

performed to determine the best fit line and the slope of the best of fit line (-3.42). Each 

ten-fold dilution of input should result in a gain of 3.32 Ct values, giving a slope of -3.32 

for a perfect assay (100% efficiency). E) Relative methylation for serially diluted LNCaP 
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cells spiked into 1000 WBCs from a patient (n=8) is shown. Performed as described 

above for (B). All error bars represent standard error of the mean (SEM).  
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Figure 3.4. Detection of GSTP1 promoter in additional dilutions of WBCs and limit 
of LINE1 detection. 
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Figure 3.4. Detection of GSTP1 promoter in additional dilutions of WBCs and lmit 

of LINE1 detection. Additional dilutions of WBCs of 5000, 2000, 100, 10, and 1 cell(s) 

were created to determine the background GSTP1 level and upper range of detection 

for the assay based on LINE1 detection. GSTP1 detection was not increased in larger 

dilutions compared to 1000 cells and was under the OT (dotted line) for all dilutions 

lower than 1000. LINE1 values were dilution dependent for the 100, 10, and 1 cell(s) 

dilutions. The upper limit of range of detection is approximately 2000 cells.  
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Figure 3.5. Detection of GSTP1 promoter in MBD2-MBD enriched DNA from 
prostate cancer CTCs. 
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Figure 3.5: Detection of GSTP1 promoter in MBD2-MBD enriched DNA from 

prostate cancer CTCs. Circulating tumor cells (CTCs) were enriched by positive 

selection for EpCAM using ESP. RNA and DNA were extracted from the EpCAM selected 

population following live cell, on chip imaging of selected cells. A) Gene expression was 

determined by qPCR for the indicated genes. Raw Ct values were used to create the heat 

map. Heat map intensity is determined separately for each gene and comparisons can 

be made within each column, but not across rows. B) DNA extracted from the enriched 

population was digested with AluI and HhaI restriction enzymes prior to enrichment of 

methylated DNA by MBD2-MBD. qPCR was performed for GSTP1 and LINE1 using the 

enriched methylated DNA. Relative methylation was calculated by delta Ct relative to a 

max cycle limit of 45 with all undetected samples (ND) set to a Ct value of 45 for analysis. 

Optimal threshold for GSTP1 is shown as a dotted line. C) Relative methylation for GSTP1 

and LINE1 is plotted against the number of CTCs (GSTP1) or total number of cells 

(LINE1). A semi-log non-linear fit was performed to determine the best fit line. GSTP1 is 

positively correlated to CTC number with an R2 value of 0.94 and p value of 0.0062. 
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Figure 3.6. Effect of non-methylation sensitive enzyme digestion on GSTP1 
enrichment.  
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Figure 3.6. Effect of non-methylation-sensitive enzyme digestion on GSTP1 

enrichment. 5ng of LNCaP or WBC DNA was digested with AluI and either HhaI or 

HpyCH4V. Half of the samples were then enriched for methylated DNA. qPCR for 

GSTP1 was performed on the digested and enriched DNA. Relative amplification of 

GSTP1 is shown for each condition. Optimal threshold for GSTP1 is shown as a dotted 

line.  
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Figure 3.7. Analysis of pre-amplification for GSTP1, RASSF1, APC, and RARB. 
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Figure 3.7. Analysis of pre-amplification for GSTP1, RASSF1, APC, and RARB. A) 

5ng and 0.5ng of LNCaP DNA was digested with AluI and HhaI. Digested DNA was then 

pre-amplified with primers to the indicated genes. qPCR was performed on pre-amplified 

(Pre-Amp) and non-pre-amplified (Input) DNA. Ct values are shown for each condition 

with standard deviation of triplicate qPCR wells shown. B) Ct values for SEEMLIS 

enriched methylated DNA from serial dilutions of LNCaP DNA and 1000 WBCs were 

plotted for each gene to determine max cycle value (MCV) cut off Ct value. Dotted lines 

indicate the determined cut off for each gene as labeled.  
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Figure 3.8. Detection of multiple genes from MBD2-MBD enriched DNA. 
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Figure 3.8. Detection of multiple genes from MBD2-MBD enriched DNA. Methylated 

DNA was enriched by MBD2-MBD capture from DNA extracted from serially diluted 

LNCaP cells (n=4 per dilution), 1000 (n=16) and 100 (n=8) patient-derived WBCs, and 

serially diluted LNCaP cells spiked into 1000 patient-derived WBCs (n=4 per dilution). 

Enriched methylated DNA was pre-amplified with probes to the indicated genes 

(excluding LINE1). Pre-amplified DNA was diluted 1:5 and qPCR was performed with the 

same probes, including LINE1. A) For each gene, ROC curves for WBC samples of 1000 

cells and LNCaP samples of 1000, 100, or 10 cells were created. Area under the curve 

(AUC) with 95% confidence interval is indicated. Optimal threshold (OT) values 

determined by Youden’s J statistic are listed with their associated sensitivity and 

specificity values. Detection limit was calculating using the slope of the best fit line of Ct 

values plotted against cell input (D). B) Relative methylation was calculated by delta Ct 

relative to a max cycles value (MCV) of 35 (GSTP1), 33 (RASSF1, APC, RARB), or 45 

(LINE1) with all undetected samples set to the corresponding MCV for analysis. Optimal 

threshold as determined by ROC curve is shown as a dotted line. Each dot represents an 

individual sample taken from a pool of cells at the indicated concentration. C) Ct values 

for LINE1 vs. Ct values for each gene were plotted against each other for LNCaP samples 

of 1000, 100, 10, and 1 cell(s). A simple linear regression was performed to determine 

the best fit line and 95% confidence interval for that line (shaded region). R and R2 values 

are listed for the correlation. Each gene was significantly correlated to LINE1 values with 

p values <0.0001.  D) Ct values were averaged for each cell input and plotted against the 

cell input values. A semi-log non-linear fit was performed to determine the best fit line and 
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the slope of the best of fit line, which are indicated in parentheses for each gene. All error 

bars represent standard error of the mean (SEM). 
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Figure 3.9. Detection of multiple genes in MBD2-enriched DNA from cells purified 
by single cell aspiration.   
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Figure 3.9. Detection of multiple genes in MBD2-enriched DNA from cells purified 

by single cell aspiration. A) Example image of WBCs seeded into microarray for 

single cell aspiration. Zoomed image is showing a single microwell within the microarray 

containing a single WBC. B) Methylation index for GSTP1, RASSF1, APC, RARB, and 

LINE1 in groups of cells collected by single cell aspiration. Each dot represents a group 

of 10-15 cells that were aspirated, pooled, and processed with SEEMLIS.  
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Chapter 4:  
 

HLA-I as a potential biomarker in 
circulating tumor cells 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is adapted from the following manuscript in preparation: Rodems TS, 
Heninger E, Stahlfeld CN, Gilsdorf C, Carlson K, Kircher MR, Beebe DJ, McNeel DG, 
Haffner MC, Lang JM. Targetable epigenetic alterations regulate class I HLA loss in 
prostate cancer. 
 
Contributions: Figure 4.1A was performed in collaboration with E.H. and K.C. Figure 4.4 
was performed in collaboration with C.N.S. and C.G. All other experiments and 
analyses were performed by T.S.R.  
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ABSTRACT 

Personalized medicine has long been a goal of the oncology community. Using 

biomarkers to identify patients who would or would not benefit from therapies ensures 

that patients are not subjected to painful, expensive, and time-consuming treatments that 

are not effective. In prostate cancer, the hunt for biomarkers has been met with limited 

success. Part of the lack of robust biomarkers in prostate cancer is the lack of common 

genomic alterations present in prostate cancer. The most common genomic alterations 

are only present in half the patient population. On the other hand, epigenetic alterations 

have been found to be much more common in prostate cancer. For example, DNA 

methylation in the promoter of GSPT1 and RASSF1 is present in more than 90% of 

human prostate cancer. Our studies in this thesis suggest that methylated HLA-I may 

have utility as a biomarker to identify patients who may benefit from epigenetic therapies 

either alone or in combination with immunotherapies that rely on HLA-I expression. We 

have developed a method to assess DNA methylation signatures in low-input samples, 

including circulating tumor cells (CTCs), called SEEMLIS and descried in Chapter 3 of 

this thesis. Here, we use SEEMLIS to detect HLA-I methylation in CTCs from patients 

with prostate cancer. We found that HLA-I was able to be detected in CTCs with low HLA-

I expression. This provides a foundation for future biomarker development and studies on 

HLA-I DNA methylation I circulation during cancer progression.   
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INTRODUCTION 

The World Health Organization defines a biomarker as “any substance, structure or 

process that can be measured in the body or its products and influence or predict the 

incidence of outcome or disease” (186). The National Institutes of Health has published 

official definitions for multiple different types of biomarkers including diagnostic, 

predicative, prognostic, safety, susceptibility, and pharmacodynamic (187). Biomarkers 

are varied in nature, ranging from phenotypic to genomic to measures of whole-body 

system processes. The development of more and better biomarkers will help shape the 

future of personalized medicine.  

Biomarkers have been of particular use in cancer, especially because of the 

heterogenous nature of human cancer biology and treatment response. Existing and well-

known biomarkers include the BRCA genes as susceptibility biomarkers of breast cancer, 

HER2 as a predictive biomarker for response to HER2-targeted therapies, and PSA as a 

prognostic biomarker for prostate cancer progression (187). While some biomarkers have 

proven to be extremely useful in the clinic, other biomarkers have been met with 

worrisome issues often relating to heterogeneity in patient disease. Therefore, novel 

biomarkers in cancer are continually being sought after. 

One of the most well-known biomarkers, PSA, is a liquid biomarker in prostate 

cancer. PSA has been reported to have both diagnostic and prognostic uses, however, 

PSA has been criticized for its lack of sensitivity and specificity, especially for diagnosis 

(188). Genomic alterations such as AR amplification and TMPRSS2-ERG fusion events 

have also been proposed as biomarkers in prostate cancer (105,106,189,190). However, 

the search for other genomic biomarkers has been limited, partly due to the infrequent 
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nature of genomic alterations in prostate cancer (62). Therefore, there is a need for better 

biomarkers in the clinic. Epigenetic biomarkers have been proposed as alternatives. 

Certain methylation events, including GSTP1, RASSF1, APC, and RARB, can be 

identified in more than 80% of patients with prostate cancer and combinations of common 

epigenetic markers are being investigated for their diagnostic and prognostic potential 

(65,75-77,157,158,172,191). Identification of methylation signatures in HLA-I in Chapter 

2 lead us to hypothesize that methylated HLA-I may have utility as a biomarker in prostate 

cancer.  

The ability to measure HLA-I methylation in tumors is the first step in determining 

the efficacy of epigenetically silenced HLA-I as a biomarker in patients with prostate 

cancer. Evaluating primary tumor biopsies is typically limited to single snapshot of early 

disease biology due to patients receiving prostatectomy as typical first line therapy. 

Metastatic biopsies require painful and invasive procedures and are generally not 

repeatable. Liquid biopsies, including blood, urine, and lymph, represent a minimally 

invasive alternative to traditional solid biopsy sources of tumor material (110). Liquid 

biopsies can also be performed repeatedly and longitudinally, which allows for dynamic 

evaluation of biomarkers and treatment response. Multiple types of tumor material can be 

obtained from liquid biopsies including circulating tumor DNA (ctDNA), exosomes, and 

circulating tumor cells (CTCs). As intact cells, CTCs represent the most comprehensive 

source of tumor material and offer the ability to analyze protein, RNA, and DNA from the 

same sample. 

Our lab has a microfluidic platform to enumerate CTCs, analyze protein 

expression, and extract nucleic acids, however prior to the work in Chapter 3 of this thesis, 
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we were not able to perform methylated DNA analysis (139,170,171). Traditional methods 

of methylation analysis are not suitable for targeted evaluation of methylation signatures 

from rare cell populations such as CTCs. Development of the SEEMLIS assay described 

in Chapter 3 allows us to perform multiplexed, targeted analysis of HLA-I in CTCs. In this 

study, we performed the first analysis of HLA-I protein expression in CTCs from patients 

with prostate cancer and identified methylated HLA-I in CTCs with low HLA-I expression, 

supporting the potential for methylated HLA-I as a future clinical biomarker, and 

identifying HLA-I low or negative CTCs as a potentially druggable population.  
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RESULTS 

Evaluation of HLA-I protein expression in CTCs 

The data in this thesis as well as data from other groups have shown HLA-I protein and 

gene expression is lost or downregulated in a subset of primary prostate cancers and the 

majority of metastatic prostate cancers. Therefore, we hypothesized that HLA-I loss would 

also be identifiable in CTCs from patients with prostate cancer. Prior to this work, HLA-I 

expression in CTCs had not been studied. We gathered two cohorts of 8 patients to study 

HLA-I expression at the cell surface and intracellularly. Samples were collected, stained, 

and imaged using VERSA technology. CTCs were identified as being Hoechst positive,  

cytokeratin positive, and negative for multiple white blood cell proteins. White blood cells 

(WBCs) were identified as being Hoechst positive, cytokeratin negative, and positive for 

WBC proteins. Mean fluorescent intensity (MFI) of HLA-I was generated per cell and 

compared to the median HLA-I in the WBC population from the entire cohort, which 

served as a population control for normal HLA-I expression (Figure 4.1A). A 

representative image of a CTC and WBC is shown in Figure 4.1B. We found that HLA-I 

expression was heterogenous both between patients and between individual CTCs from 

the same patient. In the intracellular expression group, 7 out of 8 patients had at least 

one CTC with expression below the median WBC level of expression. Half of the patients 

had intracellular HLA-I expression below the median WBC level in all CTCs. For the 

surface expression cohort, all 8 samples had at least two CTCs with surface expression 

of HLA-I below the level of median WBC expression. Only one patient had the majority of 

CTCs fall above the WBC median. This analysis suggests that surface expression of HLA-

I is impaired in CTCs from patients with prostate cancer, but the mechanisms contributing 
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to loss of surface expression may be varied. Therefore, identifying patients that would 

benefit from epigenetic therapies may require deeper analysis than evaluating HLA-I 

protein expression alone. While low intracellular staining of HLA-I may imply 

transcriptional downregulation, there are multiple molecular mechanisms which may yield 

the same phenotype. As such, loss of protein expression alone may not be indicative of 

epigenetic silencing of HLA-I.  

 

Validation of detection of methylated HLA-I in prostate cancer cell lines by 

SEEMLIS  

As described in Chapter 3 of this thesis, we have developed a method for methylated 

DNA analysis in CTCs, called SEEMLIS. We sought to use this method to measure HLA-

I methylation in CTCs to evaluate this signature as a potential biomarker. We first 

validated the enzymes and primers in cell line models and patient-derived WBCs. As 

discussed in Chapter 3, using methylation sensitive enzymes to digest DNA for SEEMLIS 

decreases background signal. However, we were not able to identify a methylation 

sensitive enzyme with a cut site that was commonly methylated in all of our target DNA 

regions. For example, evaluation of the cut site for the methylation sensitive enzyme used 

for GSTP1 single gene analysis, HhaI, is unmethylated in HLA-A in LNCaP cells despite 

heavy preceding methylation levels (Figure 4.2A). This results in loss of HLA-A signal 

from LNCaPs after digestion with HhaI (Figure 4.2B). We chose to continue with the non-

methylation sensitive enzyme, HpyCH4V, to avoid interference from differences in 

methylated CpG signatures at enzymatic cut sites that may exist between genes and 

between patients.  
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 We next tested the ability of the assay to detect HLA-A, HLA-B, and HLA-C 

methylation from various starting DNA and cell inputs and in heterogenous samples. For 

the following validation experiments, we performed SEEMLIS for multiple gene analysis, 

which includes a pre-amplification step prior to qPCR. To confirm we could detect 

differences in methylation level using the enzymes and primers that were chosen, we 

generated serial dilutions of LNCaP and LAPC4 DNA from 5ng down to 0.005ng as well 

as dilutions of WBC DNA at 5ng and 0.5ng per run. DNA was digested with AluI and 

HpyCH4V followed by the methylated DNA enrichment, wash, and elution steps of 

SEEMLIS. Enriched DNA was subjected to qCPR using primers targeting HLA-A, HLA-

B, HLA-C, and LINE1 (Figure 4.3A). We determined a max cycle threshold (MCV) of 33 

by plotting all the LNCaP and LAPC4 raw Ct values and defining a cut-off cycle value 

near the point where replicate captures were no longer reliably detected (Figure 4.3B). 

This MCV was used to calculate all relative methylation values in this Chapter. Relative 

methylation for the LNCaP, LAPC4, and WBC samples is shown in Figure 4.3C. We were 

able to detect methylated HLA-I from both prostate cancer cell lines down to the 0.05ng 

level in both duplicate runs. Detection at the 0.005ng level was more successful in the 

LAPC4 cell line, which is supported by our data in Chapter 2 showing HLA-I is more 

methylated in LAPC4 cells compared to LNCaP cells. HLA-I methylation was detected in 

the WBC samples, but at much lower levels than the corresponding cancer cell line 

dilutions. LINE1 was detected in an input dependent manner in all cell lines and WBC 

samples.  

Next we tested the whole SEEMLIS platform beginning with the semi-automated 

DNA capture step. We generated serial dilutions of 1000, 100, 10, and 1 LNCaP cells and 
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1000 and 100 patient-derived WBCs as control samples. We also generated spike-in 

samples to represent a patient sample containing CTCs with background WBCs by 

spiking 1000, 100, 10, or 1 LNCaP cell(s) into 1000 WBCs. Methylated DNA was enriched 

in each sample by SEEMLIS followed by qPCR using primers targeting HLA-A, HLA-B, 

HLA-C, and LINE1. Relative methylation was calculated for each sample (Figure 4.3D). 

We were able to detect methylated HLA-I in LNCaP cells at similar levels to the DNA 

inputs for the corresponding dilutions (i.e. 5ng is on the order of 1000 cells, 0.5ng is on 

the order of 100 cells, etc). We also detected methylated HLA-I from spike-in samples at 

similar levels to samples with LNCaP alone. LINE1 was detected in an input dependent 

manner in all cell lines and WBC samples as well as spike-in samples.  

We next generated ROC curves for each HLA-I gene using the data from Figure 

4.3C. We chose to leave the single cell dilution out of the calculations since we are 

reducing sensitivity of the assay with the addition of the pre-amplification step and do not 

anticipate performing this assay for HLA-I detection on heterogenous samples with fewer 

than 10 CTCs due to the relatively high background signal in WBCs shown in Figure 4.3D. 

We generated two sets of ROC curves, one using the data from 1000 WBCs and one 

using the data from 100 WBCs, to demonstrate the limitations of using this assay with 

high background samples (Figure 4.3E,F). The curves generated from the 1000 WBC 

data had areas under the curve ranging from 0.59 to 0.77. An area under the curve (AUC) 

of 0.5 represents a test that is not able to distinguish the difference between the two input 

sample types. Therefore, the ability of this test to distinguish between LNCaP cells and 

high levels of WBCs based on HLA-I methylation is relatively weak. HLA-B had the 

highest AUC and lowest detection limit, which was calculated from the optimal threshold 



 134 

(OT) determined by Youden’s J statistic plugged into the equation of the best fit line and 

for the LNCaP dilution series. The ROC curves generated using the 100 WBC data show 

that reducing background signal can significantly improve the sensitivity, specificity, and 

detection limits of this assay. Both HLA-A and HLA-B had curves with an AUC of 1, 

representing a perfect test. HLA-C also had a markedly improved AUC of 0.89. Each gene 

had a calculated detection limit of under 10 cells. Since these detection limits are based 

on cell lines that we have determined to be relatively uniformly and heavily methylated, 

we anticipate the real limits for CTC samples would be much more conservative. This 

may limit our ability to use samples straight from VERSA isolation. In fact, when we 

attempted to perform this assay on two VERSA-isolated CTC samples with approximately 

600-1000 WBCs present, we were unable to detect methylated HLA-I above the 

thresholds determined by the cell line studies. HLA-C was not detected in either sample, 

but we did detect HLA-A and HLA-B methylation at levels that were relative to estimated 

CTC counts. Due to the high threshold that was necessary to apply, we were unable to 

attribute the HLA-A and HLA-B signal to CTCs for certain. However, we hypothesized 

that with more stringent sample clean-up, we would be able to detect methylated HLA-I 

from CTCs with a lower background threshold applied. 

 

Evaluation of HLA-I methylation in CTCs purified by single-cell aspiration 

To eliminate the background signal from WBCs, we utilized a semi-automated single cell 

aspiration system to individually aspirate CTCs (180). With this technology, we were also 

able to separate out subgroups of CTCs with high or low HLA-I protein expression to 

further analyze the association of HLA-I methylation signatures with HLA-I expression in 
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CTCs. CTCs were first isolated using VERSA and stained with Hoechst and antibodies 

to HLA-I, EpCAM, and markers of WBCs. Stained cells were seeded onto a microwell 

array for aspiration (Figure 4.4A). CTCs were then aspirated based on relative levels of 

HLA-I expression determined by fluorescence microscopy for each patient sample. A 

representable example image of a cell in each of these populations is presented in Figure 

4.4B. Groups of approximately 10-15 HLA-I positive or HLA-I negative CTCs were 

selected for single cell aspiration. We confirmed HLA-I expression differences in the 

identified populations by analyzing the mean fluorescent intensity (MFI) of HLA-I 

expression in each group (Figure 4.4C). HLA-I expression in the HLA-I negative CTC 

populations was significantly lower than both the HLA-I positive CTC populations and the 

matched WBC populations. Of note, HLA-I expression in the HLA-I positive CTC groups 

was lower than matched WBCs. Though the differences were not statistically significant, 

this lower level of HLA-I expression may be functionally significant and epigenetically 

regulated. We also collected a control group of approximately 10 WBCs from an additional 

patient as well as a positive control group of 10 LNCaP cells for comparison.  

Methylated DNA was enriched by MBD2 protein-based precipitation from 

enzymatically digested DNA from the collected groups of CTCs and controls and 

subjected to qPCR with primers targeting LINE1 and the HLA-I genes. We were able to 

successfully detect HLA-I methylation from 10 aspirated LNCaP cells, while no 

methylation was detected in the WBC group (Figure 4.4D). LINE1 methylation was 

detected at comparable levels in all patient samples and controls (Figure 4.4D,E). We 

were able to detect HLA-I methylation in all three patient samples, though the pattern of 

detection and association with protein expression varied (Figure 4.4E). Two out of three 
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patients, patient 568 and 490, had methylation signatures in at least two HLA-I genes that 

were higher in HLA-I negative CTCs compared to HLA-I positive CTCs. Patient 568 had 

HLA-A and HLA-B methylation in the HLA-I negative population at levels similar to LNCaP 

cells. HLA-A methylation was detected in the HLA-I positive population from patient 568, 

though at a lower level than the HLA-I negative group. We were able to obtain two groups 

of HLA-I negative CTCs from patient 490, both of which had methylation in HLA-A and 

HLA-B. One of the groups also had a small detected amount of HLA-C methylation. 

However, similar to patient 568, HLA-A was also detected in the HLA-I positive group. 

Patient 487 had detectable methylation in both groups of CTCs, with higher levels 

detected in the HLA-I positive population. As mentioned above and shown in Figure 4.4C, 

the HLA-I expression level in the HLA-I positive CTC group was lower than the matched 

WBC expression, suggesting that lower, non-negative HLA-I expression may still be 

epigenetically regulated in some patients. Importantly, these patients may still benefit 

from epigenetic therapy to express HLA-I to levels closer to that of WBCs. Overall, this 

preliminary experiment represents the first analysis of HLA-I methylation in CTCs and 

demonstrates our ability to detect HLA-I methylation in prostate cancer CTCs with low 

HLA-I expression levels, providing a foundation for future biomarker studies.  
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DISCUSSION 

Circulating tumor cells are believed to have metastatic potential and provide a relatively 

non-invasive snapshot of tumor biology, which can be repeatedly sampled by blood draw. 

The utility of CTCs in the clinic extends to the biological signatures of CTCs that can be 

used as therapeutic biomarkers. So far, biomarker studies in CTCs have been largely 

restricted to protein makers and enumeration, but recent advances in technology have 

opened the door for epigenetic-based biomarker development. This Chapter 

demonstrates the potential for methylated HLA-I as a biomarker for identifying patients 

with epigenetically downregulated HLA-I. Identifying these patients may guide future 

clinician decision about which patients may benefit from certain classes of epigenetic and 

immunotherapies.  

This study represents the first analysis of HLA-I protein expression and DNA 

methylation in prostate cancer CTCs. HLA-I protein expression has been assessed in 

primary and metastatic prostate cancer lesions, but no studies have been published on 

expression of HLA-I in CTCs from patients with prostate cancer. Here we show that both 

intracellular and extracellular HLA-I protein expression is highly heterogenous in prostate 

cancer CTCs. However, we were able to identify CTCs with HLA-I expression below the 

WBC median expression level in all but one patient and several patients had CTCs that 

were all below the WBC medial expression. The overall lower expression of HLA-I in 

CTCs in the patients in these two cohorts suggests loss of HLA-I may be important for 

cell survival in circulation and possibly to their ability to successfully disseminate. Future 

investigations into how HLA-I loss contributes to the metastatic potential of CTCs and 

promotes survival in circulation will help support this hypothesis.    
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Prior to this work, a limited number studies had performed analyses of methylated DNA 

in CTCs from various tumor types, including two studies in prostate cancer (160,161,192-

198). However, all of these studies utilized methods that require bisulfite conversion of 

DNA, which can damage the input material. Our method, SEEMLIS, is unique in that it 

does not rely on bisulfite conversion, thus preserving the quality and integrity of the input 

DNA. Our use of restriction enzymes to cut DNA, rather than relying on random shearing, 

also preserves our target sequences. These key differences allow for successful 

enrichment and detection of methylated DNA as evidenced by amplification of LINE1, 

even from very low starting input. For comparison, Pixberg et al. had successful 

amplification of methylated DNA in only 30-40% of their CTC samples. In contrast, we 

were able to detect LINE1 methylation in all 5 CTC samples we tested at levels that were 

comparable to estimated total cell input. A high assay success rate, such as that achieved 

here with SEEMLIS, is critically important to for future endeavors to perform analysis of 

HLA-I at scale in the clinic.  

Our initial attempt to detect methylated HLA-I in CTC samples containing large 

amounts of background WBCs was not successful due to the relatively high cutoff we had 

to assign to account for the high signal from WBCs determined in our validation 

experiments. While it is possible that this signal may be non-specific, it is also possible 

that we are detecting real epigenetic regulation of gene expression in a small subset of 

the total WBC population. A recent study evaluated HLA-I gene expression in different 

immune cell types and in hematopoietic cells are various stages of differentiation. This 

study found significant variability across these populations, where certain cell types 
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including certain lineages of hematopoietic progenitor cells had much lower HLA-I gene 

expression compared to other immune cell types. It is possible that epigenetic 

mechanisms may regulate these differences in expression, from a development or cell 

differentiation perspective, which may be detected by our assay. Future studies will 

assess HLA-I methylation in various WBC lineages and developmental stages to 

determine if this may be impacting our sensitivity. Using this information, we can include 

additional sample clean-up steps to remove the specific cell types that diminish our ability 

to detect HLA-I methylation in CTCs.  

To overcome the challenges with impure CTC samples, we employed single cell 

aspiration to generate pure CTC populations. We collected groups of CTCs stratified by 

HLA-I protein staining and evaluate HLA-I methylation signatures in the two subgroups. 

While we were able to successfully detect HLA-I methylation in CTCs using this 

purification method, the association of HLA-I methylation with protein expression was not 

as clear. We found that HLA-B and/or HLA-C were associated with HLA-I negative CTCs 

in two out of three patients, while methylated HLA-A was detected in both HLA-I negative 

and positive CTCs. One possibility is that some of the signal we are detecting may be 

unrelated to HLA-I loss. The DNA fragment generated by our chosen restriction enzymes 

contains the entire promoter and CpG island. Our study on HLA-I methylation signatures 

in prostate cancer cell lines in Chapter 2 revealed that only certain areas of differential 

methylation in cancer cell lines were correlated to loss of gene and protein expression. 

Therefore, we may be detecting methylation signatures that are uniquely present in CTCs, 

but do not have and bearing on HLA-I downregulation. In contrast, our analysis of HLA-I 

methylation in TCGA samples in Chapter 2 suggested a more uniform effect of differential 
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methylation on loss of gene expression, especially for HLA-A. Additional investigation into 

the contribution of specific areas of DNA methylation to HLA-I expression, followed by re-

design of enzyme combinations to generate more specific fragments, will alleviate these 

challenges for future studies.  

Another reason we may detect HLA-I methylation in both CTC subgroups is the 

large amount of intra- and interpatient heterogeneity in HLA-I expression in CTCs and 

WBCs. This makes it challenging to determine a cut off or range for “normal” and 

functional HLA-I expression level. The level of HLA-I expression in the HLA-I positive CTC 

group was overall lower than the WBC group, which may indicate that the HLA-I positive 

CTCs have impaired and non-functional HLA-I expression that is epigenetically regulated. 

Determining a cutoff for functional downregulation of HLA-I may make the association of 

HLA-I protein expression and methylation clearer. Our future studies will include analysis 

of HLA-I expression levels on HLA-I function to establish the functional expression range 

of HLA-I in our assay. This will allow us to determine true positive and negative thresholds 

for HLA-I expression in CTCs. 

Despite these challenges, we have shown that HLA-I methylation can be detected 

in purified groups of CTCs from patients with prostate cancer. This initial analysis of HLA-

I DNA methylation in CTCs is promising for the future of epigenetic biomarker 

development in rare cells. 

  



 141 

MATERIALS AND METHODS 

CTC Capture, Imaging, and Analysis  

Blood samples were collected from patients after receiving written informed consent 

under a protocol approved by the IRB at the University of Wisconsin-Madison. CTCs were 

processed and stained as previously described in Sperger et. al (139). Briefly, PBMCs 

were isolated from whole blood on Ficoll-Paque PLUS (GE Healthcare, Cat# 45-001-750) 

gradient and fixed with Cytofix Fixation Buffer (BD Biosciences, Cat# 554655). Fixed cells 

were incubated with paramagnetic particles (PMPs) (Dynabeads® FlowComp™ Flexi kit, 

Life Technologies, Cat# 11061D) coated with biotinylated anti-EpCAM antibody (R&D 

Systems, Cat# AF960, RRID: AB_355745). The Versatile Exclusion-based Rare Sample 

Analysis (VERSA) platform was used for enrichment and staining of CTCs, as described 

previously (139,169,199). PMP bound cells were isolated in the VERSA and stained with 

Hoechst 33342 (Thermo Fisher, Cat# PI62249) and antibodies to the proteins indicated 

in the corresponding figures, which are summarized in Table 4.1. Pan-cytokeratin (CK) 

was conjugated to Alexa Fluorä 790 using the Alexa Fluorä 790 Antibody Labeling Kit 

(Life Technologies, Cat# A20189) according to manufacturer’s instructions. All other 

antibodies were purchased pre-conjugated to the fluorophores listed in Table 4.1. CD45, 

CD34, and CD11b were used on the same channel to serve as a white blood cell (WBC) 

“exclusion channel”. CD14 and CD27 were included in addition to CD45, CD34, and 

CD11b in the WBC exclusion channel for the experiment measuring extracellular HLA-I 

in CTCs only. Cells were stained for extracellular markers at 4oC for 30 minutes. Cells 

were permeabilized and stained for intracellular antibodies with BD Perm/Wash at 4oC 

overnight (BD Biosciences, Cat# BDB554723). Cells were imaged in the VERSA at 10x 
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magnification using NIS Elements AR Microscope Imaging Software (NIS-Elements, 

RRID:SCR_014329) and analyzed using NIS Elements analysis software. CTCs were 

defined as positive for Hoechst and CK and negative for CD45/34/11b or 

CD45/34/11b/14/27. All other cells were considered part of the WBC population. 

 

Single Cell Aspiration of CTCs for Methylation Analysis 

CTCs enriched using the VERSA platform as described above were stained in the VERSA 

with Hoechst 33342 (Thermo Fisher, Cat# PI62249) and anti-bodies to HLA-I, EpCAM, 

CD27, CD45, CD34, and CD11b. Fluorophores, catalog numbers, and other antibody 

information is summarized in Table 4.1. Cells were then further enriched using a single 

cell aspiration platform, SASCA, as described by Tokar et al (180). Briefly, cells were 

seeded into polydimethylsiloxane (PDMS) microwells mounted on a glass microscope 

slide. The microwell array was imaged on a Nikon Ti-E Eclipse inverted fluorescent 

microscope, and target cells were identified by phenotypic staining analysis. CTCs were 

identified as EpCAM positive, exclusion (CD45/CD34/CD11b/CD27) negative cells, 

whereas WBCs were classified as EpCAM negative, exclusion positive cells. CTCs were 

further subdivided into groups based on HLA-I positivity compared to WBCs in the same 

sample. Target cells were aspirated from microwells and dispensed directly into a droplet 

of PBS in the EXTRACTMAN extraction plate (Gilson, Cat# 22100008) for DNA 

extraction. Images of the microarray were analyzed using NIS Elements AR Microscope 

Imaging Software (NIS-Elements, RRID:SCR_014329) to obtain HLA-I mean fluorescent 

intensity (MFI) values.   
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DNA Extraction from CTCs 

Semi-automated DNA extraction was performed on a Gilson PIPETMAX liquid handling 

robot enabled for exclusion-based sample preparation (ESP), termed EXTRACTMAX 

(184). LiDS buffer (90mM Tris-HCL, 500mM lithium chloride, 1% Igepal CA-630, 10mM 

EDTA, 1mM dithiothreitol) and MagneSil Paramagnetic Particles (PMPs) (Promega, Cat# 

MD1441) resuspended in GTC buffer (10 mM Tris-HCl, 6 M guanidinium thiocyanate, 0.1 

% Igepal CA-630, pH 7.5) are added to the extraction microplate (Gilson, Cat# 22100008) 

by the robot. Cells were added to the microplate well containing LiDS, GTC, and MagneSil 

beads and mixed by the robot. Cells were allowed to lyse and DNA was allowed to bind 

to MagneSil PMPs for 5 minutes. The robot then transferred the MagneSil PMPs with 

bound DNA by exclusion liquid repellency (ELR) through one PBST (PBS containing 0.1% 

Tween-20) wash, one PBS wash, and into 15µL of nuclease-free water (Promega, Cat# 

P1197) for elution. Beads were manually resuspended in the elution well and allowed to 

elute for 2 minutes. The MagneSil PMPs are magnetically transferred out of the elution 

well, leaving eluted DNA in water.  

 

MBD2-MBD Enrichment of Methylated DNA from CTCs  

The SEEMLIS method described in Chapter 3 was used for all methylation studies. 

Briefly, 25 µL of TALON magnetic beads (Takara, Cat# 635637) were resuspended in 

100 µL MBD2-MBD Coupling Buffer (1x BB, 1x Halt protease inhibitor cocktail (Thermo 

Scientific, Cat# PI87786), 500 ng Unmethylated Lambda DNA (Promega, Cat# D1521), 

5 µL tagged MBD2-MBD (EpiXplore Kit, Takara, Cat# 631962) and placed on shaker at 

RT for 1 hour to bind MBD2-MBD to the TALON beads. MBD2-MBD bound beads were 
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added to DNA digested using 1 µL of each restriction enzyme (AluI at 10 units/µL (NEB, 

Cat# R0137L) and HpyCH4V at 5 units/µL (NEB, Cat# R0620L)) and placed on a shaker 

at RT for 3 hours to bind methylated DNA to MBD2-MBD conjugated TALON beads. 

Bead-bound methylated DNA was washed and eluted on the Gilson EXTRACTMAX 

system and placed into PCR prepared with pre-amplification master mix.  

 

Pre-amplification and qPCR of MBD2-MBD Enriched DNA from CTCs. 

Quantitative PCR was performed using custom TaqMan hydrolysis probes (Applied 

Biosystems) and iTaq Universal Probes Supermix (Bio-Rad, Cat# 1725153). Primer and 

probe sequences are listed in Table 4.2. Cycling conditions: 5 minutes at 95 ºC for initial 

denaturation and enzyme activation followed by 45 amplification cycles of 5 seconds at 

95 ºC and 30 seconds at 60 ºC. Pre-amplification was performed using the custom 

hydrolysis probes and TaqMan PreAmp Master Mix (Applied Biosystems, Cat# 4488593) 

when indicated according to manufacturer specifications. Cycling conditions: 10 minutes 

at 95 ºC for enzyme activation followed by 14 cycles of 95 ºC for 15 seconds and 60 ºC 

for 4 minutes. Pre-amplified samples were diluted 1:5 with TE buffer. Ct values were 

transformed into relative methylation values by the following equation: 

Methylation Index =2-(Ct-MCV) 

Where MCV is the max cycle value, which is the Ct cut-off determined by plotting data 

points from serial dilutions and determining where replicate values are no longer reliably 

detected. If serial dilutions are always reliably detected, the MCV is set at the highest 

cycle ran for qPCR. For HLA-I, MCV is equal to 33. For LINE1, MCV is equal to 45. 
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Statistical Analysis 

All statistical analyses were performed in Prism 8 (GraphPad Prism, RRID: 

SCR_002798). For CTC MFI experiments, comparisons were made by Kruskal-Wallis 

test using the Dunn’s method for correction of multiple comparisons. Receiver operator 

characteristic (ROC) curves were generated for each gene by plotting sensitivity vs. 100-

specificity for the raw Ct values of LNCaP (true positive) and WBC (true negative). 

Optimal Threshold (OT) values were determined using Youden’s J Statistic which is 

defined as the maximum value achieved from subtracting 100 from the sum of the 

sensitivity and 100-specificity values (in percentages). The associated Ct value was then 

converted into a methylation index (MI) as described above. Area under the curve (AUC) 

with 95% confidence intervals were found and reported, which indicate the probability that 

a randomly selected true positive sample will have a greater MI value than a randomly 

selected true negative sample. Semi-log non-linear fit analyses were performed in prism 

to calculate detection limits. All error bars represent SEM. 
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Table 4.1. Antibodies used for HLA-I expression studies. 

Experiment Target Fluorophore Clone Manufacturer Catalog Number RRID 

Intracellular 
HLA I 

staining in 
CTCs 

HLA-I PE W6/32 BioLegend 311406 AB_314875 
CD45 647 HI30 BioLegend 304018 AB_389336 
CD34 647 581 BioLegend 343508 AB_1877133 
CD11b 647 M1/70 BioLegend 101218 AB_389327 

CK 790 C-11 BioLegend 628602 AB_439775 
       

Extracellular 
HLA I 

staining in 
CTCs 

HLA-I 647 W6/32 BioLegend 311414 AB_493135 
CD45 PE HI30 BioLegend 304008 AB_314396 
CD34 PE 581 BioLegend 343506 AB_1731862 
CD11b PE M1/70 BioLegend 101208 AB_312791 
CD14 PE HCD14 BioLegend 325606 AB_830679 
CD27 PE O323 BioLegend 302842 AB_2564146 

CK 790 C-11 BioLegend 628602 AB_439775 
       

HLA-I 
staining in 
CTCs for 
single cell 
aspiration 

HLA-I FITC W6/32 BioLegend 311404 AB_314873 
CD45 647 HI30 BioLegend 304018 AB_389336 
CD34 647 581 BioLegend 343508 AB_1877133 
CD11b 647 ICRF44 BioLegend 301319 AB_493020 
CD27 647 O323 BioLegend 302812 AB_493082 

EpCAM PE VU-1D9 Abcam ab112068 AB_10861805 
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Table 4.2. Primers used for HLA-I methylation studies. 

 Forward Primer (5'-3') Reverse Primer (5'-3') Probe (5'-3') 

HLA-A GTGGACGACACGCAGTTC GCCCCTCCTGCTCTATCCA TCGACAGCGACGCCGCG 

HLA-B CAGTTCGTGAGGTTCGACA CTCTCGGTAAGTCTGTGTGTT CGGAGTATTGGGACCGGAACACA 

HLA-C GCTTCATCTCAGTGGGCTAC CGCTTGTACTTCTGTGTCT TTCGTGCGGTTCGACAGCGA 

LINE1 CGCAGGCCAGTGTGTGT TCCCAGGTGAGGCAATGC CCGTGCGCAAGCCGA 
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Figure 4.1. HLA-I expression in circulating tumor cells.  
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Figure 4.1. HLA-I expression in circulating tumor cells. A) Intra- and extracellular 

HLA-I protein expression in circulating tumor cells from 8 patients with prostate cancer. 

Cells in the intracellular expression group were permeabilized prior to HLA-I staining. 

Dotted line represents median HLA-I expression in all patient matched WBCs. B) 

Representative images of a CTC with low HLA expression and a WBC near the median 

expression from patient 384. 
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Figure 4.2. Evaluating the use of alternative enzymes for methylation analysis by 
SEEMLIS to detect HLA-I methylation. 
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Figure 4.2. Evaluating the use of alternative enzymes for methylation analysis by 

SEEMLIS to detect HLA-I methylation. A) Bisulfite sequencing analysis of HLA-A exon 

2 in LNCaP and WBC DNA with the cut site for methylation sensitive restriction enzyme, 

HhaI, indicated. Black circles represent methylated CpGs. White circles represent 

unmethylated CpGs. B) Methylation index for HLA-A and LINE1 in two different restriction 

enzyme digest combinations in LNCaP and WBCs.  
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Figure 4.3. Initial validation of SEEMLIS for detection of methylated HLA-I. 
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Figure 4.3. Initial validation of SEEMLIS for detection of methylated HLA-I. A) Primer 

locations for assessing CTC methylation. The cut sites of the restriction enzymes used to 

digest the DNA are indicated. The fragments used for MBD2-MBD enrichment extend 

from the first enzyme cut site to the second, with the primer location in the center. B) Raw 

Ct values from LNCaP and LAPC4 serial dilutions plotted to determine cut off for max 

cycle value (MCV). Dotted line is at chosen MCV of 33. C) Methylation indexes for MBD2-

MBD enriched serially diluted LNCaP and WBC DNA at the indicated ng amounts 

(amounts indicated are per assay run) D) Methylation indexes for SEEMLIS enriched 

serially diluted cell amounts (amounts indicated are per assay run). For spike in samples 

in, serially diluted LNCaP cells spiked into 1000 patient-derived WBCs. For each gene, 

ROC curves for WBC samples of 1000 cells (E) or 100 cells (F) and LNCaP samples of 

1000, 100, or 10 cells were created. Area under the curve (AUC) with 95% confidence 

interval is indicated. Optimal threshold (OT) values determined by Youden’s J statistic are 

listed with their associated sensitivity and specificity values. Detection limit was 

calculating using the slope of the best fit line of Ct values plotted against cell input. G) 

Methylation index of the HLA-I genes and LINE1 in two CTC samples. Estimated numbers 

of CTCs and WBCs in each sample are indicated below graph. For (C) and (D), each dot 

represents an individual sample taken from a pool of cells at the indicated concentration. 

Error bars represent SEM. For (C), (D), and (E), optimal thresholds as determined by 

ROC curve are shown as dotted lines.  
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Figure 4.4. Detection of methylated HLA-I in HLA-I positive and negative CTCs 
purified by single cell aspiration. 
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Figure 4.4. Detection of methylated HLA-I in HLA-I positive and negative CTCs 

purified by single cell aspiration. A) Image of a seeded microwell (pt. 568) with zoomed 

in images showing one HLA-I positive CTC (circle) and one HLA-I negative CTC (square). 

B) Representative 10x images of HLA-I negative and HLA-I positive CTCs and a WBC in 

the single cell aspirator microwells (pt. 490). C) HLA-I mean fluorescent intensity (MFI) of 

HLA-I in each CTC population and matched WBCs. Approximately 10-15 CTCs were 

chosen to be aspirated from each group with the exception of the WBC populations, which 

were not used for analysis. D) HLA-I methylation in 10 WBCs and 10 LNCaP cells purified 

by single-cell aspiration. E) HLA-I methylation in HLA-I positive and negative groups of 

approximately 10-15 CTCs. * p<0.05, ** p<0.01, *** p<0.001.  
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Chapter 5:  
 

Discussion and Future Directions 
  



 158 

AIM OF THESIS OVERVIEW 

Prostate cancer is the second most commonly diagnosed cancer in men and accounts 

for just over 10% of all new cancer cases in the United States (3). While men who are 

diagnosed with local and regional disease have extremely good prognoses, men 

diagnosed with metastatic prostate cancer have a 5-year survival rate of only 30% (3). 

The overarching goal of many prostate cancer research groups has been to understand 

the molecular mechanisms of metastasis in an effort to improve long term survival rates 

for men with metastatic prostate cancer. An area of increasing interest in prostate cancer, 

and the larger oncology research community, is the contribution of the immune system to 

cancer progression and metastasis. Immune evasion, or the ability of cancer cells to hide 

from the immune system, has been attributed to the promotion of cancer progression and 

metastasis and also plays a role in resistance to therapy, especially immunotherapies 

(34,35,200). Understanding how cancer cells evade the immune system is critical to 

improve patient outcomes and develop better therapies.  

 One mechanism of immune evasion is downregulation of immune regulatory 

molecules by cancer cells, including the class I major histocompatibility complex (MHC-

I). MHC-I is essential for tumor cell recognition by T-cells through the T-cell receptor 

(TCR). Loss of MHC-I at the cell surface reduces tumor immunogenicity and renders 

certain immunotherapies ineffective. Downregulation or loss of expression of class I 

human leukocyte antigens (HLA-I), one component of MHC-I molecules, represents a 

major contributing factor to loss of MHC-I at the surface of tumor cells. Downregulation of 

HLA-I has been reported in many types of cancer, including prostate cancer (36,37). 

However, prior to this thesis, the epigenetic mechanisms regulating HLA-I downregulation 
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in prostate cancer had not been widely explored. Additionally, no research had been done 

to describe HLA-I expression in circulating tumor cells, which are a valuable tool for 

studying solid tumor dissemination and are thought to have metastatic potential. The goal 

of this thesis work was to characterize and investigate the epigenetic mechanisms 

involved in HLA-I downregulation in prostate cancer and develop a method to describe 

HLA-I methylation in circulating tumor cell (CTC) samples to aid future biomarker 

development. Elucidating mechanisms of HLA-I regulation in primary, metastatic, and 

circulating prostate tumor cells can increase understanding of immune evasion 

mechanisms during prostate cancer progression and generate new molecular targets for 

therapeutic intervention. In addition, the ability to measure and monitor HLA-I methylation 

in CTCs can aid physicians in decision-making for treatment regimens, allowing for more 

personalized therapy options.  

 

  



 160 

DISCUSSION 

Epigenetic regulation of HLA-I in prostate cancer 

HLA-I loss has been well defined at the protein level in multiple cancer types, including 

prostate cancer (36,37). However, prior to this thesis work, limited research had been 

done to explore the molecular mechanisms responsible for HLA-I loss. A previous study 

had identified loss of heterozygosity (LOH) as responsible for HLA-I loss in breast and 

non-small cell lung cancer (132,133). Previous studies in colon cancer and melanoma 

had also identified genomic alterations that contributed to HLA-I loss (201). Yet another 

study identified mutations that caused loss of HLA-I expression in cervical cancer 

(202,203). In contrast, we found a striking lack of genomic alterations and mutations in 

the HLA-I genes in patients with primary or metastatic prostate cancer. More importantly, 

we found no correlation of genomic alterations to HLA-I gene expression. One caveat to 

this analysis is that the HLA-I genes are significantly polymorphic, which can lead to 

certain alterations being masked when analyzing sequencing data. One study addressed 

this issue in lung cancer by aligning sequencing reads to patient matched germline DNA, 

rather than a reference genome, to account for variations in each individual’s HLA 

haplotype (133). This study found the percentage of NSCLC tumors with LOH was 

approximately 5 to 7 times higher than what is reported in TCGA data for NSCLC. 

However, even if we apply this increase to the number of deep deletion events in the data 

in Figure 2.1A, there would still be less than 10% of samples harboring deep deletions in 

any HLA-I gene. This is, of course, speculative and further investigations into the true 

percentage of prostate tumors with LOH in the HLA-I genes may be warranted. 
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Nevertheless, it seems likely that genomic alterations in HLA-I genes are not a significant 

contributor to HLA-I loss in prostate cancer.  

We next measured HLA-I gene expression in prostate cancer to determine if HLA-

I loss occurs at the transcriptional level. To do this, we analyzed HLA-I gene expression 

data from the TCGA-PRAD (PRAD) data set and a study by Taylor et al (134). 

Comparison of HLA-I gene expression in primary tumor samples from both studies 

relative to gene expression in normal prostate tissue identified a subgroup of primary 

tumor samples with diminished HLA-I gene expression. Interestingly, in the Taylor data 

set, the percentage of samples with low HLA-I expression was much higher in metastatic 

samples, suggesting HLA-I gene expression may be lost during the metastatic process 

or that tumor cells with low HLA-I expression may have a survival advantage. Patients 

from the Taylor data set with low HLA-I gene expression had significantly decreased 

disease-free survival time based on biochemical recurrence (two occurrences of PSA ³ 

0.2ng/mL) after radical prostatectomy. Together, these analyses identified that there is a 

subgroup of patients with prostate cancer with low HLA-I gene expression, which is 

associated with negative patient outcomes. This is important information for oncologists 

due to the prevalence of immunotherapies in use in the clinic. Not only would these 

patients not benefit from immunotherapies that rely on MHC-I expression on tumor cells, 

including certain cancer vaccines and PD-1/PD-L1 targeted therapies, but they also likely 

represent a patient population that may progress faster without effective treatment due to 

increased immune evasion capabilities of the tumors (40,42). 

It is important to consider the different methods of data collection and analysis in 

the PRAD and Taylor data sets. The PRAD gene expression data was generated by RNA-
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seq while the Taylor data set was generated by cDNA microarray. These two methods 

differ in that RNA-seq measures expression across the entire transcriptome, while cDNA 

microarrays only measure expression by pre-defined probes included in the array. In this 

way, RNA-seq is much more comprehensive. A recent study looked at concordance 

between gene expression data generated by Affymetrix microarray and RNA-seq. This 

study found that RNA-seq had increased dynamic range compared to the Affymetrix 

microarray and determined a concordance of 40-60% between the platforms for 

differentially expressed genes (204). Another caveat to consider is sample purity. In both 

the PRAD and Taylor studies, the samples collected for analyses were not always 100% 

pure, meaning non-tumor cells were included in the sample preparation and subsequent 

analyses. Non-tumor cell types that would be included in prostate cancer samples include 

immune cells and prostate basal cells, which are likely to have high expression of HLA-I 

genes. The Taylor et al. and TCGA tumor samples were required to be at least 70% and 

60% tumor material, respectively (205). One study analyzed tumor purity in multiple 

TCGA studies and found that the PRAD data set had a median purity level of 90%, with 

a range from ~40% to 100% (206). This study also found that enrichment of genes related 

to immune function was significantly altered when accounting for tumor purity in multiple 

TGCA data sets, however the HLA-I genes were not among those that were altered. 

Despite these considerations, these data sets provide valuable information for the 

biological relevance of HLA-I gene expression in patients. We hypothesized that 

understanding the mechanisms that contribute to loss of HLA-I gene expression may help 

identify effective therapies for patients in the HLA-I low subgroup.  
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 Loss of gene expression can occur as the result of many different mechanisms. 

Having ruled out genomic alterations as a significant source of HLA-I regulation in 

prostate cancer, we hypothesized that transcriptional regulation by epigenetic 

mechanisms could be responsible. Previous studies in esophageal cancer had reported 

that DNA methylation in the promoter regions of the HLA-I genes was a major contributing 

factor to loss of HLA-I gene expression (128). Additionally, studies from our lab had found 

that treating cell lines with epigenetic modifying agents could induce expression of cancer 

testis antigens (CTAs), which are peptides presented to T-cells by MHC-I molecules and 

are important for cancer vaccine therapies and general immune surveillance (101). At the 

global level, epigenetic changes are common in prostate cancer. There is a global loss of 

methylation across the genome leading to increased genomic instability and expression 

of oncogenes (67,69-71). In contrast, DNA methylation at specific gene promoters has 

been found to be significantly increased during prostate cancer progression (65). In 

addition, the expression of epigenetic readers and writers is altered in prostate cancer. 

DNA methyltransferase (DNMT) and histone deacetylase (HDAC) protein expression has 

been reported to be increased in prostate cancer tissue (95). While protein expression 

was not available, DNMT and HDAC gene expression was increased in the PRAD and 

Taylor data sets. We found DNMT and HDAC protein expression was increased in 

prostate cancer cell lines compared to a benign prostate epithelial cell line, however gene 

expression was not increased. Importantly, expression of members of the DNMT and 

HDAC families was correlated to HLA-I expression in the PRAD and Taylor data sets and 

our cell line models. Therefore, we hypothesized that HLA-I genes may harbor epigenetic 

signatures which contribute to loss of HLA-I expression by blocking HLA-I transcription.  
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 Our analysis of the epigenetic landscape of the HLA-I genes in prostate cancer 

cell lines revealed differential DNA methylation, H3K27 acetylation, and H3K27 tri-

methylation levels across the HLA-I genes when compared to a benign prostate epithelial 

cell line. These epigenetic changes were highly correlated to HLA-I gene and protein 

expression in the cell lines. Treatment with DNMT and HDAC inhibitors reversed DNA 

methylation and histone acetylation signatures, respectively. DNMT and HDAC inhibition 

also induced HLA-I expression in cancer cell lines and prostate cancer biopsies cultured 

ex vivo. Increased binding of RNA polymerase II at HLA-I promoters after treatment with 

DNMT and HDAC inhibitors supports our hypothesis that repressive epigenetic signatures 

are regulating HLA-I transcription. We confirmed functionality of the induced HLA-I protein 

by co-culturing PSMA positive LNCaP cells pre-treated with DNMT and/or HDAC 

inhibitors with T-cells from PSMA-vaccinated mice. Activation of T-cells was increased 

when co-cultured with treated cells compared to DMSO controls and was dependent on 

HLA-I accessibility. These results show that HLA-I is epigenetically regulated in prostate 

cancer and inhibition of DNMT and HDAC proteins leads to functional re-expression of 

HLA-I at the cell surface. 

While this study focused on epigenetic regulation of HLA-I genes, there are many 

other genes involved in maintaining MHC-I expression at the cell surface. Multiple genes 

involved in antigen processing, including genes encoding the subunits of the 

immunoproteasome and genes involved in MCH-I trafficking, are downregulated in the 

prostate cancer cell lines used in this study. Preliminary studies suggest that DNMT and 

HDAC inhibition may induce expression of the antigen processing machinery (APM) 

genes (Appendix A). Epigenetic silencing in genes involved in antigen presentation may 
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drive the expression changes in APM proteins observed in prostate cancer, which could 

contribute to loss of MHC-I expression at the cell surface. It is a goal of future studies to 

explore the interconnected pathways that contribute to functional MHC-I expression. 

Analysis of genome-wide methylation and histone modifications in cell lines and patient 

samples would give insight into the pattern of epigenetic silencing that contributes to loss 

of MHC-I expression overall. 

Overall, these results indicate a key role for epigenetic regulation of HLA-I 

expression in prostate cancer and that HLA-I loss is reversible with epigenetic therapy 

(Figure 5.1). Future studies will need to focus on the utility of this type of treatment in 

patients. Identifying patients with epigenetically silenced HLA-I is necessary to perform 

these studies and would allow for more personalized therapy decisions in the future, 

specifically in regards to epigenetic and immunotherapy. 

 

Development of SEEMLIS 

 Sensitively and specifically measuring epigenetic signatures in patients is essential 

to the development of epigenetic-based biomarkers. Tumor tissue is difficult to obtain 

from patients with prostate cancer. Biopsies from the primary tumor offer the most readily 

available source of tumor DNA, but is often only an option in early stage prostate cancer 

due to prostatectomy. In later stage disease, metastatic lesions can also serve as a 

source of tumor DNA, however prostate cancer most often metastasizes to the bone, 

which requires a painful and invasive procedure to biopsy. Liquid biopsies, such as blood 

draws, have been proposed as a minimally invasive alternative to traditional tissue 

biopsies with the added benefit of being able to be performed repeatedly. Our lab has a 
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semi-automated platform for isolation of CTCs from whole blood by exclusion-based 

sample preparation (ESP), which enables CTC enumeration, protein staining, and nucleic 

acid extraction (139,171). In order to detect epigenetic signatures in CTCs, we sought to 

expand the capabilities of this platform to enable methylated DNA enrichment. 

  A method called COMPARE-MS had been developed by a collaborator of our lab 

to enrich for methylated DNA from heterogenous samples including tumor biopsies using 

a combination of methylation sensitive restriction enzyme digestion and enrichment with 

a peptide derived from the methyl DNA binding domain of methyl-CpG-binding domain 

protein 2 (MBD2-MBD) (168). We took advantage of the sensitivity and specify afforded 

by COMPARE-MS with the capabilities of our semi-automated CTC isolation system to 

develop SEEMLIS, semi-automated ESP-based enrichment of methylated DNA from low-

input samples. Using this assay, we were able to successfully detect GSTP1 methylation 

from CTC samples estimated at ³1% purity. To detect methylation in multiple genes to 

enable multiplexed analysis of DNA methylation in the same cells, we generated pure 

CTC populations by single cell aspiration and added a pre-amplification step. In summary, 

SEEMLIS was able to sensitively and specifically detect methylation signatures from low-

input CTC samples, suggesting this assay could be used to develop epigenetic 

biomarkers, such as methylated HLA-I, in prostate cancer.  

 SEEMLIS was developed with analysis of prostate cancer CTCs, and specifically 

for analysis of HLA-I methylation, in mind, however there are far reaching applications for 

this assay. SEEMLIS is inherently flexible in both the sample types that can be used and 

the endpoints that can be measured. While we developed this assay using CTCs as our 

input, any source of DNA could but used provided methylation signatures remain intact. 
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For example, we have used this assay to measure methylation in biopsies, spheroid 

cultures, and cfDNA from plasma. Other sources of DNA that may be applicable include 

urine, seminal fluid, cerebrospinal fluid, pleural effusion, and ascites. Each of these 

sources of DNA may provide unique insights into the course of disease and disease 

biology. Additionally, this assay is not limited to studying methylation in cancer. Important 

methylation changes occur in other disease states as well as non-disease related cellular 

development and differentiation and aging. The ability to perform methylation analysis 

with such low-inputs also allows for multiple analyses to be performed on one sample, 

increasing the amount of information that can be obtained from one patient sample. In 

addition to flexibility in sample type, the types of analyses that can be performed on the 

enriched DNA can also be interchanged. Enriched DNA can be used in any downstream 

assay that is compatible with measuring fragmented DNA. Methods of analyzing enriched 

DNA include gel-based analyses to look at global methylation levels, traditional and 

multiplexed qPCR, and sequencing. Overall, the flexibility of SEEMLIS makes this a 

powerful tool to study disease biology using rare and low-input samples. 

 

HLA-I methylation as a biomarker in circulating tumor cells 

Prior to the work described in this thesis, loss of HLA-I protein expression had been 

observed in primary and metastatic prostate tumor lesions. However, the status of HLA-I 

expression in tumor cells in circulation was unknown. Here we performed the first analysis 

of HLA-I protein expression in circulating tumor cells (CTCs). We found that while CTCs 

had heterogenous expression of both total and surface HLA-I, we were able to detect 

populations of CTCs with strikingly low HLA-I expression when compared to the white 
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blood cell (WBC) population. Cells in circulation with low HLA-I expression are likely not 

able to be located and killed by circulating T-cells, contributing to persistence and survival 

of this cell population. In this way, HLA-I loss may be contributing to the development of 

metastases since CTCs are thought to have metastatic potential. Treatments that reverse 

HLA-I loss may help boost the ability of the immune system to locate tumor cells before 

they are able to seed at a metastatic site.  

Prior to this study, HLA-I methylation had not been assessed in prostate cancer 

CTCs. The data in this thesis show that epigenetic loss of HLA-I can be reversed to 

functionally induce HLA-I expression. However, we also found that epigenetic signatures 

and responses to different classes of epigenetic modifying agents vary. Therefore, it is 

important to know whether HLA-I loss in each patient is due to epigenetic regulation and 

if so, what kind of regulation. Understanding the regulatory mechanisms involved in HLA-

I loss may allow physicians to personalize therapies to match the epigenetic signature in 

HLA-I from each patient. We first sought to use the SEEMLIS assay to detect methylated 

HLA-I as a biomarker for patients with HLA-I regulated by methylation. These patients 

may be candidates for future clinical trials with DNMT inhibitors to induce expression of 

HLA-I. To assess HLA-I methylation in CTCs, we generated pure CTC populations by 

single cell aspiration stratified by HLA-I protein and measured methylation in HLA-A, HLA-

B, and HLA-C. To our knowledge, this represents the first targeted analysis of HLA-I 

methylation in CTC samples. We found that methylation in the HLA-I genes varied by 

patient. We were able to identify three patients with evidence of methylation in one or 

more HLA-I genes in CTC populations with low HLA-I expression.  HLA-I methylation was 

also detected in some of the HLA-I positive CTC subset. HLA-I expression in the HLA-I 
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positive CTC subsets was still lower than the mean expression in matched PBMCs, 

suggesting diminished, non-negative HLA-I expression may also be regulated by 

epigenetic mechanisms. Importantly, these patients may still respond to epigenetic 

therapy.  Alternatively, we hypothesize that further optimization of the assay specifically 

to target only areas of methylation that are necessary or required for HLA-I inactivation 

may reveal clearer differences in the HLA-I positive and negative groups. Investigation 

into the correlation of HLA-I methylation in CTCs and clinical outcomes is also warranted 

and a goal of our future studies. In summary, we were able to use SEEMLIS to perform 

the first analysis of HLA-I methylation in prostate cancer CTCs and discovered that HLA-

I methylation can be detected in CTCs with low HLA-I protein expression, proving 

potential for development of a clinical biomarker. 
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FUTURE DIRECTIONS  

Evaluate the effect of EZH2 inhibition on HLA-I induction and epigenetic signatures 

The data in this thesis show that epigenetic mechanisms, including DNA methylation 

within the CpG islands and a loss of normal levels of histone H3 lysine 27 acetylation, 

regulate HLA-I expression in prostate cancer. We demonstrated the inducibility of HLA-I 

expression by two DNMT inhibitors and an HDAC inhibitor. However, these drugs 

represent only a small subset of the epigenetic modifying agents that are currently being 

studied in pre-clinical models and clinical trials. Therefore, we are interested in evaluating 

the effect of other classes of epigenetic modifying agents for their ability to re-express 

epigenetically silenced HLA-I in prostate cancer. 

One target that has been increasingly studied for its role in epigenetic regulation 

in many cancer types is EZH2. EZH2 is a methyltransferase responsible for writing lysine 

27 methylation on histone H3 and is a part of the polycomb repressive complex 2 (PRC2). 

There are currently dozens of active trials for drugs targeting EZH2, including multiple for 

treatment of prostate cancer (207). Tazemetostat, a first-in-class EZH2 inhibitor, was 

approved this year for treatment of epithelioid sarcoma (141,142). This is the first 

epigenetic therapy approved by the FDA for use in a solid tumor. One study found that 

EZH2 was a critical regulator of MHC-I loss in neuroblastoma, Merkel cell carcinoma, and 

small cell lung cancer (208). We discovered an increase in H3K27me3 in the HLA-I genes 

in prostate cancer cell lines compared to non-cancerous cells, which was highly 

negatively correlated to HLA-I gene and protein expression. We hypothesize that EZH2 

inhibitor treatment of the prostate cancer cell lines identified in this thesis as having 

increased levels of H3K27me3 in the HLA-I genes would result in decreased levels of 
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H3K27me3 and increased levels of H3K27ac with corresponding increases in HLA-I gene 

and protein expression. Preliminary studies from our lab have shown promising results in 

the ability of EZH2 inhibition to induce HLA-I expression similarly to DNMT and HDAC 

inhibition. Future studies will focus on treatments with EZH2 inhibitors alone and in 

combination with DNMT and/or HDAC inhibitors and their effect on improving 

immunogenicity of prostate tumors. 

 

Investigate how HLA-I DNA methylation signatures are written and maintained in 

prostate cancer cells by DNMTs 

One of the major questions that has arisen after we characterized the DNA methylation 

and H3K27 signatures in prostate cancer cell lines was how these signatures are being 

written and maintained. We determined that DNMT and HDAC proteins are involved in 

HLA-I regulation from the data presented in this thesis on DNMT and HDAC inhibition in 

cell lines. However, because these inhibitors are not targeted to a specific DNMT or 

HDAC family member, we do not know which members are responsible for writing and 

erasing the corresponding epigenetic marks. We obtained preliminary data using siRNA 

to knock down DNMT3a and DNMT3b alone and in combination followed by qPCR and 

MBD2-MBD enrichment to measure HLA-I induction and changes in DNA methylation 

(Appendix A). Interestingly, HLA-I was not significantly induced in LNCaP and LAPC4 

cells despite decreases in DNA methylation. It is possible that repressive histone 

signatures are still preserved at the HLA-I genes in these cells, causing the genes to 

remain silenced. The opposite effect was seen in PC3 cells where siDNMT treatment led 

to significant increases in HLA-I gene expression, but DNA methylation was increased 
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rather than decreased. These results suggest complicated and varying biological 

mechanisms regulate HLA-I epigenetic changes. We need to further investigate this 

mechanism and perform necessary control experiments to understand these differences.  

 

Investigate the contribution of HLA-I promoter and exon 2 DNA methylation to loss 

of HLA-I expression.  

The CpG islands of the HLA-I genes are very large at around 1kb each. We found that 

methylation occurs across the entirety of the CpG islands and is not confined to the 

promoter region. Traditionally, promoter methylation and methylation within exon 1 has 

been associated with repressed genes while intragenic methylation has been associated 

with actively transcribed genes, preventing alternative splicing, and preventing alternative 

transcription start sites from being used (209-211). This paradigm has started to shift as 

methylation and its control of gene expression are beginning to be better understood. For 

example, we found that methylation within exon 2 of the HLA-I genes was highly 

negatively correlated with HLA-I expression. Interestingly, our study found that promoter 

methylation in HLA-I was not always negatively correlated with gene expression and 

generally occurred at lower levels than exonic methylation. We are interested in 

determining if promoter and exonic methylation in HLA-I is necessary and/or sufficient for 

HLA-I silencing. Knowing which areas of methylation are required for HLA-I repression 

would help us to develop a better biomarker and better understand epigenetic regulation 

of HLA-I.  

 To study the specific areas of methylation that may control HLA-I expression, we 

want to employ a CRISPR-based system for targeted DNA de-methylation as described 
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in a paper by Xu et al. (212). This method utilizes a catalytically dead Cas9 protein fused 

to the catalytic domain of TET1 (dCas9-TET1-CD) to specifically de-methylate regions of 

DNA. dCas9-TET1-CD is guided to the region of interest by a small guide RNA (sgRNA) 

and TET1-CD will catalyze the de-methylation of methyl groups in the region. In this way, 

we can specifically de-methylate either the promoter or exon 2 regions of HLA-I genes 

and evaluate gene expression as a result of de-methylation. Additionally, this experiment 

can determine whether removing methylation in the HLA-I genes alone is enough to re-

express the genes, since drug treatments and siRNA experiments will affect methylation 

genome wide.  

 If this experiment is successful, there are other dCas9 fusion constructs that might 

be of interest. For example, dCas9 fused to histone acetyltransferase (HAT) catalytic 

domains could reveal whether increased histone acetylation at HLA-I alone is enough to 

induce gene expression of HLA-I. Another option is to transfect dCas9 fused to HDAC or 

DNMT proteins into cells that express normal levels of HLA-I to introduce repressive 

epigenetic signatures at specific regions of the gene. Adding repressive modifications is 

an alternative way to demonstrate what epigenetic modifications are required for gene 

silencing as well as the locations that are most effective.  

 Preliminary experiments using dCas9-TET1-CD with sgRNAs targeting the 

promoter and exon 2 regions of HLA-A have shown very little impact on gene expression 

(Appendix B). However, it is possible we need to alter technical aspects of the experiment 

such as cell lines used or titration of reagents and plasmid for transfection in order to see 

the effects of methylation loss on HLA-I. Additional control experiments also need to be 

performed to confirm dCas9 is reaching the target location in the cell. Nevertheless, this 
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study would provide valuable insight into the mechanism behind epigenetic regulation of 

HLA-I as well as help optimize HLA-I methylation as a biomarker.  

 

Investigate epigenetic regulation of MHC-I assembly and antigen processing 

machinery 

Loss of expression of HLA-I is only one aspect of MHC-I downregulation in prostate 

cancer cells. Dysregulation or loss of expression of any of the numerous proteins involved 

in antigen processing, assembly of MHC-I molecules, or transport of MHC-I molecules to 

the cell surface can result in decreased MHC-I expression. Many of these proteins, 

including TAP2 and B2M, have been reported to be downregulated in prostate cancer 

(36). The inhibitors that were used in this thesis will have cell-wide and genome-wide 

effects. While we have focused on the response of HLA-I expression and epigenetics to 

these inhibitors, it stands to reason that re-expression of HLA-I is enhanced by other 

genes affected by the inhibitors. The dCas9-TET1-CD study described above will shed 

some light on the contribution of other induced genes to HLA-I induction by DNMT 

inhibitors since HLA-I should be the only de-methylated gene in these experiments. 

However, it would also be prudent to evaluate induction of a panel of these genes in 

response to DNMT and HDAC inhibitors followed by epigenetic analysis of genes that are 

induced by these inhibitors. Preliminary data from our lab suggests some of the APM 

genes are indeed induced by DNMT and HDAC inhibition, however we have not 

examined the epigenetic signatures present in these genes (Appendix A). The epigenetic 

signatures in these genes will be further investigated in future studies.  
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Further develop the SEEMLIS assay to be completely automated 

One of the greatest advantages of SEEMLIS over traditional tube-based approaches to 

methylated DNA enrichment is the inclusion of automated steps. Automation is a powerful 

tool for biological assays due to the reduced hands on time for the researcher and 

reduction in human error. The increased accuracy and precision afforded when using 

automation is crucial when working with low-input samples such as DNA from single cells 

or rare cell populations including CTCs. Therefore, increasing the level of automation in 

the SEEMLIS assay would potentially increase the assay sensitivity even further. 

 The Gilson EXTRACTMAX platform on which SEEMLIS was designed has 

inherent flexibility due to multiple deck spaces for various, interchangeable uses including 

assay plates, tip boxes, waste boxes, and tube racks of various sizes. Additionally, our 

lab has been successful in working with engineers to 3D print custom devices to address 

non-traditional assay needs. Therefore, it is within the capabilities of our lab to have the 

SEEMLIS assay be virtually completely automated from CTC capture through methylated 

DNA enrichment. 

 Currently, we are able to capture CTCs and extract DNA in an entirely automated 

manner. At this stage, the DNA is removed from the assay plate by manually pipetting the 

elution volume out of the elution well and into PCR strip tubes in which DNA digestion 

and MBD2-MBD binding is performed. The MBD2-MBD-bound methylated DNA and 

beads is then washed and eluted on the automated platform. In order to move the DNA 

digestion and MBD2-MBD binding steps onto the robot, new elements need to be added 

to the robot capabilities. For restriction enzyme digestion, samples will need to be heated 

to 37oC for 15 minutes so a heating element would need to be added to the robot deck. 



 176 

We would also need to confirm minimal loss of sample volume due to evaporation will 

take place during this step. If evaporation proves to be problematic, other steps would 

need to be taken to ensure volume retention, such as the addition of a plate cover or 

increased digestion volume. For MBD2-MBD enrichment, a method for continuous 

sample mixing would need to be included in the automated protocol. Continuous mixing 

may be accomplished by magnetic-based mixing where we employ the built-in magnetic 

system to move the beads up and down through the solution. Another method may be to 

have the robot periodically mix the samples by pipetting up and down. It may also be 

possible to have efficient binding if the volume of the binding reaction is low enough. We 

have successfully enriched methylated DNA in volumes lower than 5uL without mixing 

using a patent-pending method for volume free reagent addition, suggesting that lowering 

our reaction volume may eliminate or lessen the need for on-robot mixing. Implementing 

and optimizing these additions may increase sensitivity and ease of use of the assay and 

are worth pursuing, especially for clinical applications.  

 

Further develop HLA-I as a biomarker 

Chapter 4 of this thesis delves into the possibility that DNA methylation in HLA-I could be 

used as a biomarker to identify patients with epigenetically silenced HLA-I. Being able to 

identify these patients may be useful to determine which patients would not benefit from 

certain types of immunotherapy or which patients may benefit from epigenetic therapy 

alone or in combination with immunotherapy. We were able to successfully detect HLA-I 

methylation in CTCs from patients with prostate cancer with low HLA-I expression. While 
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these results are promising, changes can be made to improve sensitivity and specificity 

of detection.  

Two major areas of improvement are choice of restriction enzymes and primer 

design. The restriction enzymes used in the study in Chapter 4 were chosen for their 

compatibility with a larger panel of genes and could be further optimized specifically for 

the HLA-I genes. The DNA fragments generated by these enzymes are approximately 

1kb long, extending from the promoter to exon 3 and encompassing the majority of the 

CpG island of each gene. The advantage of a larger fragment is that we are able to 

capture and measure methylation anywhere within the CpG island and proximal promoter 

regions of the genes, which was ideal for early stage studies since we did not have a 

clear idea of which areas of methylation were common in the patient population. However, 

having such a large DNA fragment also has disadvantages. One disadvantage is that we 

may be detecting methylation that is not important for gene silencing. The results of future 

studies exploring targeted de-methylation or methylation of the HLA-I genes as described 

above may inform us of the ideal locations in each gene to target for biomarker 

development. Enzymes could then be chosen that frame the area of interest better. 

Another disadvantage is that the HLA-I genes are methylated in normal cells beginning 

near the end of exon 3. This may explain why HLA-I methylation is detected at all in WBC 

samples. We have begun to test a new restriction enzyme, BstY1, that would cut the DNA 

closer to exon 2 (Figure 5.2A). Adding BstY1 would potentially improve specificity by 

removing areas from the HLA-A and HLA-C target DNA fragments near exon 3 where 

normal cells are methylated. Preliminary data shows that adding BstYI reduced the 

methylated HLA-A signal from WBCs to undetectable levels, while preserving the signal 
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from LNCaP cells (Figure 5.2B). LINE1 signal was comparable across all digestion and 

capture conditions (Figure 5.2C). Increasing the sensitivity of the assay in this way may 

allow us to detect HLA-I from CTC samples without the need to employ the single cell 

aspirator, saving time and effort.  

To improve primer design, we need to take into consideration the polymorphic 

nature of HLA-I. The primers used in this study will be optimized only for HLA-I haplotypes 

that share the same polymorphisms. While we know primers can handle some degree of 

mismatch, we would not know the level of mismatch or location of mismatches without 

knowing the HLA-I type of the patient. Therefore, it may be necessary to type each patient 

using patient matched WBCs and have a bank of HLA-I primers for SEEMLIS analysis to 

choose from based on the individual HLA-I signature from each patient. Another solution 

would be to rely on sequencing each sample rather than performing qPCR. We could 

then also sequence the genome from patient matched WBCs to account for issues 

aligning polymorphic regions to a reference genome. In either case, accounting for the 

polymorphic nature of HLA-I will allow us to develop a better biomarker.  

 

Perform ChIP and/or ATAC-seq on CTCs  

Prior to this thesis work, HLA-I expression and epigenetic signatures in CTCs had not 

been characterized. As described in Chapter 4 of this thesis, we identified populations of 

CTCs from patients with prostate cancer that had reduced HLA expression compared to 

white blood cells. We were also able to detect methylation of HLA-I genes in CTCs from 

patients with prostate cancer. While methylated HLA-I as a biomarker has promise, we 
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are also interested in pursuing alternative epigenetic biomarkers as well as investigating 

the epigenetic landscape in CTCs at a deeper level.  

In Chapter 2 of this thesis we found that HLA-I gene and protein expression was 

more tightly correlated to histone modifications rather than methylation signatures. This 

suggests that a histone modification may be a more predictive biomarker for epigenetic 

silencing of HLA-I than DNA methylation. However, analysis of histone modifications has 

traditionally required large amounts of starting material. Traditional ChIP assays typically 

require cell inputs in the range of millions of cells. More recently, there has been a push 

to generate protocols for low-input ChIP. However, even low-input ChIP protocols still 

require cell inputs of around 1000 cells, which is 10-100 times more than a typical CTC 

yield (213). While single cell methods for ChIP-seq exist, these methods require 

sequencing of 1000s of single cells to generate an overall picture of the cell population 

and are unable to accomplish targeted analysis of specific genes in single cells due to 

low coverage per individual cell (117,214). Therefore, in order to evaluate histone 

modifications in the HLA-I genes as biomarkers, a new method for targeted ChIP analysis 

would need to be developed.  

As described above, one of the advantages of the ESP-enabled Gilson 

EXTRACTMAX automated system is its flexibility. Additionally, many of the steps of 

MBD2 peptide-based enrichment of methylated DNA used in the SEEMLIS assay have 

parallels to ChIP. Both methods require shearing of DNA, binding of DNA to beads linked 

to a capture molecule, and several wash steps. As such, the SEEMLIS method can be 

used as a backbone to develop a ChIP assay for CTCs. One important difference between 

the two assays that will need to be considered is the use of an antibody for precipitation 
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for ChIP compared to a peptide for SEEMLIS. The differences in binding dynamics and 

non-specific binding capacity of antibodies and the MBD2-MBD peptide will need to be 

characterized and accounted for. Another key difference in the two assays is the method 

of DNA shearing used. SEEMLIS employs restriction enzymes to cut the DNA in 

predictable ways, which theoretically allows every available piece of target DNA to be 

analyzed. This is crucial for low-input assays. On the other hand, ChIP methods typically 

use sonication or MNase digestion to shear the DNA. These methods cut the DNA 

randomly and do not necessarily preserve every piece of target DNA. However, digesting 

CTC DNA with restriction enzymes prior to immunoprecipitation may be a viable option 

to combat this issue. With these modifications applied to the SEEMLIS method on our 

automated system, it may be possible to develop an assay for ChIP in CTCs.  

While targeted ChIP analysis of CTCs would allow for gene specific biomarker 

development, it is not ideal for discovery-based experiments to learn about CTC biology 

and heterogeneity. ChIP-seq can be used for these types of studies to identify epigenetic 

signatures that are associated with various CTC characteristics. We could perform low 

coverage ChIP-seq on thousands of single CTCs or smaller pools of CTCs using existing 

methods for low-input ChIP-seq (87,213,215). ChIP-seq would provide insight into the 

epigenetics of CTCs at the population level. Additionally, if CTC samples are stratified on 

certain characteristics such as treatment response or expression of specific genes or 

protein, ChIP-seq may be able to inform on key differences in histone modification 

patterns in the different groups.  

Another method for analyzing chromatin-based epigenetic signatures in CTCs is 

ATAC-seq. ATAC-seq is a way to measure chromatin accessibility in the genome. Similar 
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to single cell ChIP-seq, single cell ATAC-seq requires hundreds or thousands of cells 

sequenced at low coverage to be informative. However, if we are able to perform this 

analysis on enough CTCs, ATAC-seq could be very informative on the general epigenetic 

state across the genome in CTCs. One advantage to ATAC-seq over ChIP-seq is not 

having to choose a single histone modification to work with. While ATAC-seq does not 

specifically look at histone modifications, in many cases the amount of chromatin 

accessibility at a given gene promoter measured by ATAC-seq can give a general idea 

of what chromatin modifications may be present at that gene. For example, if the ATAC-

seq signal is low at a specific gene, we may expect to find a repressive histone signature 

including H3K27me3 at this gene. Global ATAC-seq analysis could therefore point us in 

the direction of genes that may be important for prostate cancer progression and 

metastasis or for treatment response, which may then may be developed as biomarkers 

using targeted ChIP analysis.  

 

Further develop the SEEMLIS assay to support MBD-seq capabilities  

In addition to ChIP-seq and ATAC-seq to evaluate chromatin-based epigenetic 

signatures, there are methods to evaluate DNA methylation signatures genome-wide. 

One method, MBD-seq, utilizes the MBD2-MBD peptide to enrich methylated DNA prior 

to sequencing the enriched DNA. This method identifies enriched areas of the genome, 

which are considered to have been methylated in the original cell population.  

We are currently working to adapt a next generation sequencing method to include 

a step for MBD2-MBD enrichment by SEEMLIS to study DNA methylation in CTCs. The 

method we are developing uses an enzyme-based approach to shear the DNA prior to 
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adaptor ligation to generate libraries. After adaptor ligation, the libraries are run through 

SEEMLIS beginning with the MBD2-MBD enrichment step. Libraries are then enriched by 

PCR with unique dual index primers to prepare them for sequencing. As a control, each 

sample will be split and run in parallel with one enriched using MBD2-MBD and one un-

enriched. I have successfully generated enriched and un-enriched  libraries from cell line 

samples and am working to make necessary adjustments based on the quality and 

quantity of the libraries to generate libraries from CTC samples.  

 One potential pitfall of this method is the presence of WBCs in the CTC samples. 

To attempt to combat false positive readings of tumor methylation, we are also including 

a matched WBC sample from each patient. This inclusion will allow us to know whether 

a methylation signature seen in the CTC sample is unique to the CTCs or present in the 

WBC population. If the background WBC signal turns out to mask signal from the CTCs, 

we can use the single cell aspirator to further purify the CTCs prior to sequencing. Another 

potential issue is differences in methylated DNA capture efficiency between samples. This 

could cause biases in sequencing or problems with false positive or negative results 

during analysis. To alleviate this, we are spiking enzymatically methylated lambda phage 

DNA into each sample to have an internal control for the efficiency of capture of 

methylated DNA. 

 Adding MBD-seq to the SEEMLIS repertoire would take the assay to a higher level 

of utility since genome-wide analyses on low-input samples and single cells is quickly 

becoming the gold standard in evaluating tumor biology and heterogeneity. Prostate 

cancer is generally a heterogenous disease and it stands to reason that differences in 

epigenetic regulation could contribute to this heterogeneity. Generating a picture of the 
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CTC DNA methylation landscape in prostate cancer would also lead to important 

advances in the understanding of prostate cancer metastasis.   
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Figure 5.1. Schematic of epigenetic and gene expression changes in HLA-I in 
response to DNMT and HDAC inhibition.   
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Figure 5.1. Schematic of epigenetic and gene expression changes in HLA-I in 

response to DNMT and HDAC inhibition.  At baseline, HLA-I genes are epigenetically 

silenced by repressive histone and DNA methylation signatures. LBH treatment inhibits 

HDACs and leads to increased levels of H3K27 acetylation, which is associated with an 

open chromatin state. 5AZA2 or SGI treatment inhibits DNMTs and leads to 

hypomethylation at the HLA-I genes. Both of these epigenetic changes allow RNA 

polymerase II to bind to the HLA-I promoters and induce gene transcription. Created with 

BioRender.com. 
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Figure 5.2. Potential alternative restriction enzyme combination for HLA-I 
biomarker studies 
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Figure 5.2. Potential alternative restriction enzyme combination for HLA-I. A) 

Schematic showing cut sites for BstYI (red), HpyCH4V (yellow), and AluI (blue) in the 

HLA-I genes. Primer location is shown with double sided arrow. B) Methylation index for 

(B) HLA-A and (C) LINE1 is shown for LNCaP and WBC samples digested with AluI and 

HpyCH4V with and without the addition of BstYI.  
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Appendix A: 
 

Additional Cell Line Epigenetic 
Signature Data and Epigenetic 

Modifying Drug Treatments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Portions of this appendix are adapted from the following publication in preparation: 
Rodems TS, Heninger E, Stahlfeld CN, Gilsdorf C, Carlson K, Kircher MR, Beebe DJ, 
McNeel DG, Haffner MC, Lang JM. Targetable epigenetic alterations regulate class I 
HLA loss in prostate cancer. 
 
Contributions: Figure A.2A was performed in collaboration with C.G. Figure A.3A was 
performed by E.H. Figure A.3B was performed by E.H., K.C, and M.R.K. All other 
experiments and analyses were performed by T.S.R.  
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This appendix contains data that is supplementary to the studies in Chapter 2. I performed 

a more extensive analysis of DNA methylation and H3K27 modifications in the HLA-I 

genes. This was not essential to the story in Chapter 2, but provides extra proof of 

epigenetic control of HLA-I expression and more support for what I found in Chapter 2. 

This appendix also contains preliminary data demonstrating the ability of DNMT and 

HDAC inhibition to induce expression of other genes related to MHC-I expression. 

Additionally, I have included experiments using siRNA to knockdown the de novo DNMTs 

in LNCaP, PC3, and LAPC4 cells.   

The DNA methylation experiments in this thesis were performed using MBD2-MBD 

peptide-based precipitation of methylated DNA fragments followed by qPCR. While this 

method was useful to gain an overall picture of DNA methylation in multiple cell lines and 

perform targeted analysis of DNA methylation in CTCs, it lacks single base pair resolution. 

In order to achieve this level of resolution, a method such as bisulfite sequencing must 

be used. I performed bisulfite sequencing on LNCaP and LAPC4 DNA for HLA-A, HLA-

B, and HLA-C (Figure A.1). Technical issues related to this experiment precluded me from 

getting data for some of the regions. We decided not to pursue the experiment further 

after that. However, this data does confirm that LNCaP and LAPC4 cells have the 

heaviest methylation in exon 2 and 3, which was seen in the MBD2-MBD experiments 

and in TCGA methylation array data from Chapter 2. This data also shows the relatively 

lower level of methylation overall in LNCaP cells, which is also corroborated by the MBD2-

MBD data. Also in line with our data in Chapter 2 is the lower level of methylation in the 

promoter regions compared to the exonic and intronic regions. Future studies to 

investigate the contribution of exonic and intronic methylation to gene expression will be 
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useful to determine whether these areas are drivers or passengers of HLA-I loss. 

Additionally, we were able to see that WBCs have a small amount of methylation late in 

Exon 3, confirming the utility of a new enzyme combination for methylation analysis in 

CTCs to avoid detecting this normal level of methylation in our patient samples.  

Chapter 2 of this thesis demonstrates that prostate cancer cell lines with low HLA-

I expression have repressive epigenetic signatures present at the HLA-I genes, including 

DNA and H3K27 methylation. In that Chapter, I showed selected primer sets and cell lines 

from the more comprehensive analysis that was performed. Figure A.2A shows the 

locations of additional primers that were used in this analysis. MBD2-MBD enrichment of 

DNA was performed in two additional cell lines a lymphoblastoid cell line (LCL), another 

prostate cancer cell line, Du145.  We also did this analysis on two control samples: DNA 

from a DNMT double knockout cell line (DKO HCT116) and enzymatically methylated 

HCT116 DNA as negative and positive controls for DNA methylation respectively. Figure 

A.2B shows a heat map with our entire data set for MBD2-MBD enrichment. We see that 

across all three genes, LAPC4, LNCaP, and PC3 have the highest levels of methylation 

overall, in accordance with the conclusions in Chapter 2. Du145 has increased levels of 

methylation compared to the non-cancerous cell lines in certain gene regions as well. 

LCL cells had overall low levels of methylation, with the exception of regions towards the 

end of the HLA-A and HLA-B CpG islands, in line with our previous observations for WBC 

HLA-I methylation. We also had included an extra set of primers for HLA-A, HLA-B, and 

HLA-C in our ChIP experiments from Chapter 2. The data for baseline expression with 

the extra primers is shown in Figure A.2C. This shows the same trends as we found in 

Chapter 2, where H3K27ac is lost in prostate cancer cell lines and H3K27me3 is more 
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enriched compared with RWPE1. I also included control genes in these experiments. 

MYOD1 is a control for H3K27me3 enrichment and lack of H3K27ac, while RPL30 is a 

control for the inverse signature. I also included total H3 and IgG as controls in my ChIP 

experiments. I did not see significant changes in total H3 capture between the cell lines 

in the HLA-I genes (Figure A.2D). IgG signal was low across all experiments (Figure 

A.2E).  

In Chapter 2, we measured the effects of SGI and LBH on HLA-I gene and protein 

induction and epigenetic signatures. We also did these same experiments using a 

different DNMT inhibitor, 5-aza-2-deoxycytidine (5AZA2). We saw similar results to our 

SGI experiments, which makes sense since the active form of SGI is the same molecule 

as 5AZA2. We saw that the combination of 5AZA2 and LBH was the most successful in 

inducing HLA-I gene and protein expression (Figure A.3A,B). We also again saw that 

22rv1 cells did not respond to DNMT inhibition alone, but did respond to LBH alone. 

LNCaP cells were less responsive in this experiment, but overall showed similar patterns 

as the SGI/LBH study. PC3 cells were less responsive to 5AZA2 than SGI, though did 

respond to combination treatment. I also measured DNA methylation in LNCaP, 22rv1, 

and LAPC4 cells treated with DMSO and 5AZA2 (Figure A.3C). We saw an overall 

reduction in DNA methylation after treatment with 5AZA2 compared to DMSO treatment, 

supporting the results in Chapter 2.  

This thesis focused on induction of HLA-I by epigenetic modifying agents. 

However, there are many other proteins involved in antigen processing and MHC-I 

expression at the surface. Three of these are beta-2-microglobulin (B2M), the 

immunoproteasome subunit LMP7, and calreticulin (CALR). As shown in Figure 1.2, B2M 
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is part of the MHC-I complex with HLA-I, LMP7 is a subunit of the immunoproteasome 

which digests proteins to generate the peptides that are loaded into complete MHC-I 

molecules, and CALR is a chaperone of MHC-I complex formation. One of the future 

directions of this project is to investigate how epigenetic mechanisms affect expression 

of these proteins. Figure A.4 shows preliminary data measuring induction of gene 

expression of B2M, PSMB8, the gene that encodes LMP7, and CALR in response to SGI 

and LBH. For B2M and PSMB8, a similar trend of induction was seen in LNCaP, 22rv1, 

and LAPC4 cells, where the combination treatment induced expression the most. 

Significant induction of B2M by LBH was seen in LNCaP and LAPC4 cells as well as by 

the combination treatment in LAPC4 cells. PSMB8 was significantly induced by SGI alone 

in LNCaP cells and by LBH alone in LAPC4 cells. Again, the combination treatment had 

the highest overall level of induction, though the results were not significant due to 

variability in response across replicates. PSMB8 expression was increased by LBH and 

the combination treatment in 22rv1, but again the results were not significant. Unlike B2M 

and PSMB8, CALR expression was not reduced in the cancer cell lines compared to 

RWPE1 and was not significantly induced by either drug or the combination in any of the 

cell lines, This demonstrates that not all genes involved in MHC-I expression are affected 

by epigenetic treatment. Overall, these preliminary results suggest that DMNT and HDAC 

inhibition has a wide impact on MHC-I processing, affecting other genes involved in MHC-

I expression at the cell surface in addition to HLA-I. Investigations into the entire MHC-I 

processing network will reveal important interactions between the genes that are affected 

by epigenetic regulation changes in prostate cancer.  
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The DNMT inhibitors used in this thesis affect DNMT1, DNMT3a, and DNMT3b activity. 

As the maintenance methyltransferase, DNMT1 regulates the copying of methylation 

signatures from parent to daughter cells during cell replication. DNMT3a and DNMT3b 

are able to write methylation onto CpGs in response to cellular signals during cellular 

growth phase. This means that the inhibitors we used will affect the copying of methylation 

signatures as well as the writing of new methylation signatures. However, we are not able 

to easily distinguish between the two types of methylation loss. To address this ambiguity, 

I utilized siRNA to knockdown the de novo methyltransferases alone and in combination 

with each other in LNCaP, PC3, and LAPC4 cells and looked at gene expression and 

DNA methylation of HLA-I. These three cell lines were the ones identified in Chapter 2 to 

have increased methylation in the HLA-I genes compared to RWPE1. I was able to 

achieve knockdown of DNMT3a and DNMT3b at the gene expression level in all three 

cell lines (Figure A.5A). However, we have not yet been able to successfully measure 

knockdown at the protein level. Each cell line had a different response to the knockdowns 

(Figure A.5A). HLA-I gene expression was not induced in LNCaP cells by knockdown of 

either methyltransferase. HLA-I gene expression was induced in PC3 cells in response 

to knockdown of both methyltransferases, with the dual knockdown being most effective. 

In LAPC4 cells, HLA-B was increased in response to DNMT3a and the dual knockdown, 

but the results were not significant. Interestingly, HLA-A gene expression was actually 

slightly reduced in response to siDNMT3b in LAPC4 cells.  

Next I looked at HLA-I DNA methylation in response to knockdown of each 

methyltransferase. Primer locations for this analysis are indicated in Figure A.5B. A heat 

map showing methylation levels across cell lines and conditions for each primer is shown 
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in Figure A.5C. Methylation was lost with knockdown of both methyltransferases and the 

combination in LNCaP cells, especially in the promoter regions of HLA-I. This would be 

the expected result if the de novo DNMTs are responsible are activity writing DNA 

methylation signatures on the HLA-I genes in the cell. In contrast, HLA-I DNA methylation 

was increased across all three genes in response to de novo DNMT knockdown in PC3 

cells. This result was surprising due to the increase in gene expression I observed in 

response to these conditions. One explanation could be that DNMT1 is compensating for 

DNMT3a and DNMT3b activity when one or the other is lost, accounting for increased 

methylation levels. These results also suggest that DNA methylation in PC3 do not 

significantly regulate HLA-I expression, which would be in line with the minimal, 

statistically insignificant levels of HLA-I induction we observed in response to DNMT 

inhibitors in PC3 cells. HLA-I methylation in LAPC4 was reduced in response to 

knockdown of DNMT3a and DNMT3b alone, but was not decreased in the dual 

knockdown condition. Again, this may suggest that DNMT1 may be able to compensate 

for de novo DNMT activity in these cells. HLA-I induction patterns in LAPC4 support this 

idea since siDNMT3a increased HLA-A and HLA-B expression more than the combination 

conditions. Interestingly, siDNMT3b did not increase LAPC4 gene expression at all, but 

did reduce methylation levels, suggesting there are other regulatory mechanisms that are 

affected by DNMT3b knockdown that influence HLA-I expression. Overall, this experiment 

generates many new questions related to the regulation of HLA-I in prostate cancer by 

epigenetic mechanisms, which will be addressed in future studies.  

 
.  
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Figure A.1. Bisulfite sequencing of the HLA-I genes in LNCaP, LAPC4, and WBC. 
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Figure A.1. Bisulfite sequencing of the HLA-I genes in LNCaP, LAPC4, and WBC. 

Bisulfite sequencing of three regions of HLA-A, HLA-B, and HLA-C in LNCaP, LAPC4, 

and patient-derived WBCs (HLA-A only). Black circles represent methylated CpGs, 

white circles represent unmethylated CpGs.   
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Figure A.2. Additional analysis of the epigenetic landscape of HLA-I in prostate 
cancer cell lines.  
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Figure A.2. Additional analysis of the epigenetic landscape of HLA-I in prostate 

cancer cell lines. A) Primer locations for DNA methylation and histone modification 

experiments. B) Heat map of DNA methylation in prostate cancer cell lines, RWPE1, a 

lymphoblastoid cell line (LCL). Enzymatically methylated HCT116 DNA and DNA from 

HCT116 cells with a double DNMT knockout phenotype are included as positive and 

negative assay controls, respectively. Data from Chapter 2 is included for reference with 

the additional cell lines and primers. ChIP with antibodies targeting H3K27ac and 

H3K27me3 (C) total histone H3 (D) and IgG (E) in prostate cancer cell lines and RWPE1.   
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Figure A.3. HLA-I induction and epigenetic changes by 5AZA2, SGI, and LBH.  
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Figure A.3. HLA-I induction and epigenetic changes by 5AZA2, SGI, and LBH. A) 

Representative histograms of flow cytometry analysis of HLA-I protein induction by 

5AZA2, LBH, or combination treatment with DMSO as a control. B) Gene induction by 

5AZA2, LBH, or combination treatment relative to DMSO treated cells. C) Heat map 

showing DNA methylation in DMSO and 5AZA2 treated cells.   
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Figure A.4. Induction of B2M and LMP7 by DNMT and HDAC inhibition in prostate 
cancer cell lines. 
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Figure A.4. Induction of B2M and LMP7 by DNMT and HDAC inhibition in prostate 

cancer cell lines. Relative expression and fold change of B2M, PSBM8, and CALR in 

RWPE1, LNCaP, 22rv1, and LAPC4 cells treated with DMSO, SGI or LBH alone or in 

combination. Error bars represent SEM. * p<0.05, ** p<0.01, *** p<0.001. 
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Figure A.5. Effect of siDNMT3a and siDNMT3b on HLA-I expression and DNA 
methylation in prostate cancer cell lines. 
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Figure A.5. Effect of siDNMT3a and siDNMT3b on HLA-I expression and DNA 

methylation in prostate cancer cell lines. A) Fold change in gene expression in cell 

lines transfected with siDNMT3a, siDNMT3b alone or in combination compared to cells 

transfected with non-targeting siRNA (siNT). B) Primer locations for DNA methylation 

analysis. C) Heat map showing DNA methylation in cell lines transfected with siNT, 

siDNMT3a, or siDNMT3b alone or in combination.   
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Appendix B: 
 

CRISPR-dCas9 Mediated Targeted 
De-methylation of HLA-A by TET1-

CD 
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Appendix B contains preliminary data related to the work in this thesis regarding the 

aberrant methylation of HLA-A in prostate cancer. The goal of these experiments were to 

determine which region or regions of the extensive methylation present in the HLA-A CpG 

island and promoter is essential for HLA-A silencing. Although the data presented in this 

thesis demonstrate that removal of methylation within the HLA-I genes by inhibition of the 

DNMT proteins is associated with an increase in gene expression, we cannot conclude 

that removal of DNA methylation in the HLA-I genes is sufficient for re-expression of HLA-

I due to the global effect DNMT inhibitors have in the cell. Additionally, it would be prudent 

to biomarker development to know which regions of methylation are most important to 

gene expression regulation. Therefore, I sought to design an experiment where I could 

systematically de-methylate specific regions of the HLA-A, while not affecting methylation 

levels elsewhere in the cell.  

To do this, I used a CRISPR construct with a catalytically dead Cas9 component 

(dCas9) which had been fused to the catalytic domain of TET1 (TET1-CD). This was 

developed by Xu et al. as a method for targeted removal of DNA methylation in the region 

where dCas9 is directed (212). Demethylation is accomplished by the fused TET1 

catalytic domain. TET proteins begin the demethylation process of CpGs endogenously 

in the cell by catalyzing the conversion of 5mC to 5hmC. Xu et al. was able to use this 

system to successfully demethylate and re-express RANKL, MAGEB2, and MMP2 in cell 

lines.  

I designed two small guide RNAs (sgRNAs) targeted to different areas of the HLA-

A gene: the promoter and exon 2. The locations of the sgRNAs are shown in Figure B.1A. 

I cloned the sgRNAs into the CRISPR-TET1-CD backbone and propagated the plasmids 
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in E.coli. I mini-prepped the plasmid while growing a culture for midi-prep and sequencing 

the resulting DNA to confirm the insertion of my sgRNA. Annotated chromatograms for 

the results of sequencing are shown in Figure B.1B. 

Next I transfected the CRSPR-TET1-CD plasmids into RWPE1, PC3 and LAPC4 

cells. I measured gene expression of HLA-A in the cells transfected with the promoter or 

exon 2 sgRNA plasmids compared to cells transfected with the original plasmid which 

has a scrambled sequence inserted in the sgRNA plasmid location (-sgRNA). No change 

in gene expression was seen in cells transfected with exon 2 sgRNA compared to the -

sgRNA condition (Figure B.2A). However, there was an approximately 50% decrease in 

gene expression in LAPC4 cells containing the promoter targeting sgRNA (Figure B.2B). 

It is possible that the reduction in gene expression could be due to the proximity of the 

promoter sgRNA to the TSS, where the dCas9 protein may be blocking the binding of 

RNA polymerase. This is supported by published studies that have used dCas9 targeted 

to gene TSSs to effectively block transcription (216,217). However, this reduction in gene 

expression was not seen in the other two cell lines. Experiments need to be done to 

confirm that the dCas9-TET1-CD protein is present at HLA-A, which can be done by ChIP 

analysis using a Cas9 antibody.  

I measured methylation at three locations in HLA-A in cells transfected with the 

exon 2 or scrambled sgRNA plasmid to see if methylation was successfully removed. 

There was an approximately 50% reduction in methylation at the three regions in the exon 

2 sgRNA transfected cells (Figure B.2C). This experiment has only been conducted once 

and only in one cell line, so additional experiments will need to be completed to draw 

conclusions from this data. However, preliminarily, it seems that loss of methylation alone 
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is not enough to induce expression of HLA-A in LAPC4 cells. This may be because 

repressive histone signatures are still present even if DNA methylation is removes. Future 

studies will also investigate the impact of HDAC inhibition or targeted histone tag 

modulation using a similar CRISPR-based system in combination with targeted de-

methylation of HLA-A.  
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Figure B.1. Locations and Sanger sequencing of sgRNAs 
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Figure B.1. Locations and Sanger sequencing of sgRNAs. A) sgRNA locations are 

indicated by blue boxes. B) Chromatograms from Sanger sequencing of mini-preps of 

clones generated for each sgRNA.  
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Figure B.2. HLA-A gene expression and methylation in cell lines transfected with 
dCas9-TET1-CD  
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Figure B.2. HLA-A gene expression and methylation in cell lines transfected with 

dCas9-TET1-CD. Fold change of HLA-A gene expression in cells transfected with dCas9-

TET1-CD containing sgRNA targeting exon 2 (A), promoter (B), or  scrambled sequence 

(-sgRNA). B) HLA-A methylation at three gene regions in cells transfected with exon 2 or 

scrambled sequence (-sgRNA).   
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Appendix C: 
 

Additional Experiments for the 
Development of SEEMLIS 
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This appendix contains extra experiments that were done during the development and 

validation of SEEMLIS. During the early development stages of this assay, we were using 

standard DNA oligo primers with SYBR green chemistry for qPCR. We switched to FAM 

labeled TaqMan probes so that we could perform pre-amplification. TaqMan also offers 

increased specificity due to the addition of an internal probe sequence for detection. Using 

the standard DNA oligos and SYBR chemistry, we had similar results to the final version 

of SEEMLIS in terms of sensitivity for GSTP1 analysis where methylated GSTP1 was 

detected in an input dependent manner from serially diluted LNCaP DNA, but was 

detected at much lower levels, if at all in WBC DNA (Figure C.1A). Using this version of 

the assay we measured  GSTP1 methylation in 7 CTC samples and cell free DNA (cfDNA) 

collected from matched plasma samples (Figure C.1B). Patient 314 did not have matched 

plasma available. LINE1 was detected in all samples. GSTP1 was detected in 5 CTC 

samples. In four of these samples, GSTP1 was also detected in the plasma samples. 

GSTP1 was detected in the plasma of one patient, but not in the CTC DNA. This 

experiment suggests that cfDNA could also be used for biomarker analysis using 

SEEMLIS.  

Figure C.2 contains additional data from validation of the multiplexed SEEMLIS 

assay. In this validation experiment, I serially diluted LNCaP, LAPC4, and WBC DNA and 

performed SEEMLIS from the MBD2-MBD enrichment step. We obtained similar results 

to what was seen in Chapter 3 with WBC and LNCaP whole cell dilutions. We also 

performed the multiplexed version of SEEMLIS on CTC samples that were processed 

using VERSA and contained high numbers of background WBCs (Figure C.3). We did 

not detect GSTP1 or RASSF1 above the Ct value thresholds determined in Chapter 4. 
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We able to detect APC and RARB, but could not definitively say that these signals were 

from CTCs as opposed to WBCs due to the high level of WBCs in the sample. The dotted 

lines on the graph represent the thresholds determined in Chapter 3 for these genes 

based on background level of 1000 WBCs. This data led us to purify CTC samples further 

by single aspiration for analysis, as seen in Chapter 3.  
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Figure C.1. Validation of methylated GSTP1 detection in LNCaP and WBC DNA 
and detection of methylated GSTP1 in CTC and plasma from patients with 
prostate cancer.  
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Figure C.1. Validation of methylated GSTP1 detection in LNCaP and WBC DNA and 

detection of methylated GSTP1 in CTC and plasma from patients with prostate 

cancer. A) Methylation index for GSPT1 in serially diluted WBC and LNCaP DNA 

enriched by MBD2-MBD. B) Methylation index for GSPT1 and LINE1 in DNA from CTCs 

and cfDNA from plasma from patients with prostate cancer.   
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Figure C.2. Validation of SEEMLIS in serially diluted WBC, LNCaP, and LAPC4 
DNA. 
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Figure C.2. Validation of SEEMLIS in serially diluted WBC, LNCaP, and LAPC4 DNA. 

Methylation index for serially diluted DNA samples in the indicated cell types are shown 

for GSTP1, RASSF1, APC, and RARB. LINE1 data for these samples can be found in 

Chapter 4.   
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Figure C.3. Background WBC population interferes with the ability to detect 
methylation of multiple genes in prostate cancer CTCs.  
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Figure C.3. Background WBC population interferes with the ability to detect 

methylation of multiple genes in prostate cancer CTCs. Methylation index is indicated 

for APC, RARB, and LINE1 in two patient samples. Dotted lines indicate the cut off based 

on 1000 WBC background. Estimated numbers of CTCs and WBCs are shown below 

each graph. GSTP1 and RASSF1 were not detected in these samples.  

 
  



 222 

REFERENCES 

1. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 
2004;25:276-308 

2. Litwin MS, Tan HJ. The Diagnosis and Treatment of Prostate Cancer: A Review. 
Jama 2017;317:2532-42 

3. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. SEER Cancer 
Statistics Review. based on November 2019 SEER data submission, posted to 
the SEER web site, April 2020 ed. Bethesda, MD: National Cancer Institute; 
1975-2017. 

4. Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after 
androgen deprivation therapy: mechanisms of castrate resistance and novel 
therapeutic approaches. Oncogene 2013;32:5501-11 

5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 
2011;144:646-74 

6. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune 
evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer 
Biol 2015;35 Suppl:S185-98 

7. Tesi RJ. MDSC; the Most Important Cell You Have Never Heard Of. Trends 
Pharmacol Sci 2019;40:4-7 

8. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, et al. Cancer-associated fibroblasts: 
an emerging target of anti-cancer immunotherapy. J Hematol Oncol 2019;12:86 

9. Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer 
immunotherapy. Ann N Y Acad Sci 2018;1417:104-15 

10. Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer 
immunotherapy. Immunotherapy 2017;9:289-302 

11. Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D 
receptor and its ligands in cancer immune escape. Mol Cancer 2019;18:29 

12. Schmiedel D, Mandelboim O. NKG2D Ligands–Critical Targets for Cancer 
Immune Escape and Therapy. Front Immunol 2018;9 

13. Mou X, Zhou Y, Jiang P, Zhou T, Jiang Q, Xu C, et al. The Regulatory Effect of 
UL-16 Binding Protein-3 Expression on the Cytotoxicity of NK Cells in Cancer 
Patients. Sci Rep 2014;4 

14. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-
inhibition. Nat Rev Immunol 2013;13:227-42 



 223 

15. Héninger E, Krueger TE, Lang JM. Augmenting antitumor immune responses 
with epigenetic modifying agents. Front Immunol 2015;6:29 

16. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on Tumor Cells With 
PD-1 on Tumor-Specific T Cells as a Mechanism of Immune Evasion: 
Implications for Tumor Immunotherapy. Cancer immunology, immunotherapy : 
CII 2005;54 

17. Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in 
anti-tumor immunity. Immunol Rev 2009;229:126-44 

18. Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed 
and the non-T-cell-inflamed tumor microenvironment. Int Immunol 2016;28:383-
91 

19. Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: 
expression, interaction, diversity and disease. J Hum Genet 2009;54:15-39 

20. Rock KL, Reits E, Neefjes J. Present Yourself! By MHC Class I and MHC Class II 
Molecules. Trends Immunol 2016;37:724-37 

21. Cruz-Tapias P, Castiblanco J, Anaya J-M. Major histocompatibility complex: 
Antigen processing and presentation. 2013 

22. Karr RW. The HLA Complex. In: Jameson JL, editor. Principles of Molecular 
Medicine. Totowa, NJ: Humana Press; 1998. p 273-81. 

23. Knapp LA. The ABCs of MHC. Evolutionary Anthropology 2005;14:28-37 

24. Hewitt EW. The MHC class I antigen presentation pathway: strategies for viral 
immune evasion. Immunology 2003;110:163-9 

25. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. T Cells and MHC 
Proteins. Molecular Biology of the Cell. New York: Garland Science; 2002. 

26. Ellgaard L, Frickel EM. Calnexin, calreticulin, and ERp57: teammates in 
glycoprotein folding. Cell Biochem Biophys 2003;39:223-47 

27. Diedrich G, Bangia N, Pan M, Cresswell P. A role for calnexin in the assembly of 
the MHC class I loading complex in the endoplasmic reticulum. J Immunol 
2001;166:1703-9 

28. Hughes EA, Cresswell P. The thiol oxidoreductase ERp57 is a component of the 
MHC class I peptide-loading complex. Curr Biol 1998;8:709-12 

29. Ritz U, Seliger B. The transporter associated with antigen processing (TAP): 
structural integrity, expression, function, and its clinical relevance. Mol Med 
2001;7:149-58 



 224 

30. Li S, Paulsson KM, Chen S, Sjogren HO, Wang P. Tapasin is required for 
efficient peptide binding to transporter associated with antigen processing. J Biol 
Chem 2000;275:1581-6 

31. Houghton AN, Guevara-Patiño JA. Immune recognition of self in immunity 
against cancer. J Clin Invest 2004;114:468-71 

32. Petersen TR, Dickgreber N, Hermans IF. Tumor Antigen Presentation by 
Dendritic Cells. Critical reviews in immunology 2010;30 

33. Xia A, Zhang Y, Xu J, Yin T, Lu XJ. T Cell Dysfunction in Cancer Immunity and 
Immunotherapy. Front Immunol 2019;10 

34. Seliger B. Molecular mechanisms of HLA class I-mediated immune evasion of 
human tumors and their role in resistance to immunotherapies. HLA 
2016;88:213-20 

35. Thakur A, Vaishampayan U, Lum LG. Immunotherapy and immune evasion in 
prostate cancer. Cancers (Basel) 2013;5:569-90 

36. Carretero FJ, Del Campo AB, Flores-Martin JF, Mendez R, Garcia-Lopez C, 
Cozar JM, et al. Frequent HLA class I alterations in human prostate cancer: 
molecular mechanisms and clinical relevance. Cancer Immunol Immunother 
2016;65:47-59 

37. Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in 
human cancers: T-cell immunotherapy revives an old story. Mol Med Today 
1999;5:178-86 

38. Blades RA, Keating PJ, McWilliam LJ, George NJ, Stern PL. Loss of HLA class I 
expression in prostate cancer: implications for immunotherapy. Urology 
1995;46:681-7 

39. Kitamura H, Torigoe T, Asanuma H, Honma I, Sato N, Tsukamoto T. Down-
regulation of HLA class I antigens in prostate cancer tissues and up-regulation by 
histone deacetylase inhibition. J Urol 2007;178:692-6 

40. Garrido F. HLA Class-I Expression and Cancer Immunotherapy. Adv Exp Med 
Biol 2019;1151:79-90 

41. June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest 
2007;117:1466-76 

42. Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical 
and clinical developments and future perspectives. J Exp Clin Cancer Res 
2019;38 



 225 

43. Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent 
need to recover MHC class I in cancers for effective immunotherapy. Curr Opin 
Immunol 2016;39:44-51 

44. Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD, Perdicchio M, et al. 
Acquired cancer resistance to combination immunotherapy from transcriptional 
loss of class I HLA. Nat Commun 2018;9:3868 

45. Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. Basic 
concepts of epigenetics. Fertil Steril 2013;99:607-15 

46. Moore LD, Le T, Fan G. DNA methylation and its basic function. 
Neuropsychopharmacology 2013;38:23-38 

47. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 
2011;25:1010-22 

48. Vavouri T, Lehner B. Human genes with CpG island promoters have a distinct 
transcription-associated chromatin organization. Genome Biol 2012;13:R110 

49. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic 
regulation. Nat Rev Genet 2018;19:81-92 

50. Chedin F. The DNMT3 family of mammalian de novo DNA methyltransferases. 
Prog Mol Biol Transl Sci 2011;101:255-85 

51. Pacaud R, Sery Q, Oliver L, Vallette FM, Tost J, Cartron PF. DNMT3L interacts 
with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: 
role of the DNMT3L/DNMT3B/p65-NFkappaB complex in the (de-)methylation of 
TRAF1. Biochimie 2014;104:36-49 

52. Deplus R, Brenner C, Burgers WA, Putmans P, Kouzarides T, de Launoit Y, et al. 
Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic 
Acids Res 2002;30:3831-8 

53. Handy DE, Castro R, Loscalzo J. Epigenetic Modifications: Basic Mechanisms 
and Role in Cardiovascular Disease. Circulation 2011;123:2145-56 

54. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. 
Cell Res 2011;21:381-95 

55. Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine 
methylations. Exp Mol Med 2017;49:e324 

56. Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of 
gene expression. Biochem Cell Biol 2005;83:344-53 



 226 

57. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. 
Microbiol Mol Biol Rev 2000;64:435-59 

58. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase 
enzymes. Cold Spring Harb Perspect Biol 2014;6:a018713 

59. Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin 
biology and beyond. EMBO Rep 2015;16:1620-39 

60. Marmorstein R, Trievel RC. Histone Modifying Enzymes: Structures, 
Mechanisms, and Specificities. Biochim Biophys Acta 2009;1789:58-68 

61. Rennie PS, Nelson CC. Epigenetic mechanisms for progression of prostate 
cancer. Cancer Metastasis Rev 1998;17:401-9 

62. Lawrence MS, Stojanov P, Mermel CH, Garraway LA, Golub TR, Meyerson M, et 
al. Discovery and saturation analysis of cancer genes across 21 tumor types. 
Nature 2014;505:495-501 

63. Barbieri CE, Bangma CH, Bjartell A, Catto JW, Culig Z, Gronberg H, et al. The 
Mutational Landscape of Prostate Cancer. Eur Urol 2013;64:567-76 

64. Jernberg E, Bergh A, Wikstrom P. Clinical relevance of androgen receptor 
alterations in prostate cancer. Endocr Connect 2017;6:R146-R61 

65. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, 
Walsh PC, et al. Hypermethylation of CpG islands in primary and metastatic 
human prostate cancer. Cancer Res 2004;64:1975-86 

66. Majumdar S, Buckles E, Estrada J, Koochekpour S. Aberrant DNA Methylation 
and Prostate Cancer. Curr Genomics 2011;12:486-505 

67. Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, et al. 
DNA hypomethylation arises later in prostate cancer progression than CpG 
island hypermethylation and contributes to metastatic tumor heterogeneity. 
Cancer Res 2008;68:8954-67 

68. Zelic R, Fiano V, Grasso C, Zugna D, Pettersson A, Gillio-Tos A, et al. Global 
DNA hypomethylation in prostate cancer development and progression: a 
systematic review. Prostate Cancer Prostatic Dis 2015;18:1-12 

69. Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions 
of the human prostate. Cancer Res 1987;47:5274-6 

70. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and 
tumors promoted by DNA hypomethylation. Science 2003;300:455 



 227 

71. Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human 
cancers. Biochem Biophys Res Commun 1983;111:47-54 

72. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of 
tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys 
Acta 2016;1865:275-88 

73. Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF, et al. 
Methylation of the androgen receptor promoter CpG island is associated with 
loss of androgen receptor expression in prostate cancer cells. Cancer Res 
1998;58:5310-4 

74. Kirby MK, Ramaker RC, Roberts BS, Lasseigne BN, Gunther DS, Burwell TC, et 
al. Genome-wide DNA methylation measurements in prostate tissues uncovers 
novel prostate cancer diagnostic biomarkers and transcription factor binding 
patterns. BMC Cancer 2017;17 

75. Mahon KL, Qu W, Devaney J, Paul C, Castillo L, Wykes RJ, et al. Methylated 
Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic 
marker of prognosis and response to chemotherapy in castrate-resistant prostate 
cancer. British journal of cancer 2014;111:1802-9 

76. Matuschek C, Bolke E, Lammering G, Gerber PA, Peiper M, Budach W, et al. 
Methylated APC and GSTP1 genes in serum DNA correlate with the presence of 
circulating blood tumor cells and are associated with a more aggressive and 
advanced breast cancer disease. Eur J Med Res 2010;15:277-86 

77. Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson 
WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate 
cancer. J Cell Biochem 2004;91:540-52 

78. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. 
Cytidine methylation of regulatory sequences near the pi-class glutathione S-
transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad 
Sci U S A 1994;91:11733-7 

79. Zhang W, Jiao H, Zhang X, Zhao R, Wang F, He W, et al. Correlation between 
the expression of DNMT1, and GSTP1 and APC, and the methylation status of 
GSTP1 and APC in association with their clinical significance in prostate cancer. 
Mol Med Rep 2015;12:141-6 

80. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, et al. 
The presence of circulating total DNA and methylated genes is associated with 
circulating tumour cells in blood from breast cancer patients. Br J Cancer 
2009;100:1277-86 



 228 

81. Gravina GL, Ranieri G, Muzi P, Marampon F, Mancini A, Di Pasquale B, et al. 
Increased levels of DNA methyltransferases are associated with the tumorigenic 
capacity of prostate cancer cells. Oncol Rep 2013;29:1189-95 

82. Patra SK, Patra A, Zhao H, Dahiya R. DNA methyltransferase and demethylase 
in human prostate cancer. Mol Carcinog 2002;33:163-71 

83. Kamdar S, Isserlin R, Kwast TVd, Zlotta AR, Bader GD, Fleshner NE, et al. 
Exploring targets of TET2-mediated methylation reprogramming as potential 
discriminators of prostate cancer progression. Clinical Epigenetics 2019;11:1-19 

84. Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, et al. 
The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell 
Endocrinol 2018;462:41-55 

85. Spans L, Van den Broeck T, Smeets E, Prekovic S, Thienpont B, Lambrechts D, 
et al. Genomic and epigenomic analysis of high-risk prostate cancer reveals 
changes in hydroxymethylation and TET1. Oncotarget 2016;7:24326-38 

86. Rycaj K, Tang DG. Molecular determinants of prostate cancer metastasis. 
Oncotarget 2017;8:88211-31 

87. Dahl JA, Gilfillan GD. How low can you go? Pushing the limits of low-input ChIP-
seq. Brief Funct Genomics 2018;17:89-95 

88. Gilfillan GD, Hughes T, Sheng Y, Hjorthaug HS, Straub T, Gervin K, et al. 
Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 
2012;13:645 

89. Chen Z, Wang L, Wang Q, Li W. Histone modifications and chromatin 
organization in prostate cancer. Epigenomics 2010;2:551-60 

90. Braadland PR, Urbanucc iA. Chromatin Reprogramming as an Adaptation 
Mechanism in Advanced Prostate Cancer. Endocrine-related cancer 2019;26 

91. Heemers HV, Debes JD, Tindall DJ. The Role of the Transcriptional Coactivator 
p300 in Prostate Cancer Progression. Advances in experimental medicine and 
biology 2008;617 

92. Jin L, Garcia J, Chan E, de la Cruz C, Segal E, Merchant M, et al. Therapeutic 
Targeting of the CBP/p300 Bromodomain Blocks the Growth of Castration-
Resistant Prostate Cancer. Cancer research 2017;77 

93. Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, et al. 
Discovery of a potent catalytic p300/CBP inhibitor that targets lineage-specific 
tumors. Nature 2017;550:128-32 



 229 

94. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, et al. Gene 
Silencing in Cancer by Histone H3 Lysine 27 Trimethylation Independent of 
Promoter DNA Methylation. Nature genetics 2008;40 

95. Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Histone 
deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 
expression is associated with shorter PSA relapse time after radical 
prostatectomy. Br J Cancer 2008;98:604-10 

96. Melling N, Thomsen E, Tsourlakis MC, Kluth M, Hube-Magg C, Minner S, et al. 
Overexpression of enhancer of zeste homolog 2 (EZH2) characterizes an 
aggressive subset of prostate cancers and predicts patient prognosis 
independently from pre- and postoperatively assessed clinicopathological 
parameters. Carcinogenesis 2015;36:1333-40 

97. Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer. Protein Cell 
2013;4:331-41 

98. Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA. Expression 
changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated 
with DNA methylation changes in prostate cancer. Cancer Biol Ther 
2007;6:1403-12 

99. Ezponda T, Popovic R, Shah MY, Martinez-Garcia E, Zheng Y, Min DJ, et al. The 
Histone Methyltransferase MMSET/WHSC1 Activates TWIST1 to Promote an 
Epithelial-Mesenchymal Transition and Invasive Properties of Prostate Cancer. 
Oncogene 2013;32:2882-90 

100. Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med 2016;22:128-34 

101. Heninger E, Krueger TE, Thiede SM, Sperger JM, Byers BL, Kircher MR, et al. 
Inducible expression of cancer-testis antigens in human prostate cancer. 
Oncotarget 2016;7:84359-74 

102. Kortenhorst MS, Wissing MD, Rodriguez R, Kachhap SK, Jans JJ, Van der 
Groep P, et al. Analysis of the genomic response of human prostate cancer cells 
to histone deacetylase inhibitors. Epigenetics 2013;8:907-20 

103. Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl 
TR, et al. Immunogenicity of prostate cancer is augmented by BET bromodomain 
inhibition. J Immunother Cancer 2019;7:277 

104. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate 
cancer. Genes & development 2018;32:1105-40 

105. Fleischmann A, Saramaki OR, Zlobec I, Rotzer D, Genitsch V, Seiler R, et al. 
Prevalence and prognostic significance of TMPRSS2-ERG gene fusion in lymph 
node positive prostate cancers. Prostate 2014;74:1647-54 



 230 

106. Pettersson A, Graff R, Bauer S, Pitt M, Lis R, Stack E, et al. The TMPRSS2:ERG 
Rearrangement, ERG Expression, and Prostate Cancer Outcomes: A Cohort 
Study and Meta-Analysis. Cancer Epidemiol Biomarkers Prev 2012;21 

107. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et 
al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and 
Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate 
Cancer: The PROPHECY Study. J Clin Oncol 2019;37:1120-9 

108. Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Rodrigues DN, et al. 
Androgen receptor splice variant-7 expression emerges with castration 
resistance in prostate cancer. J Clin Invest 2019;129:192-208 

109. Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, et al. Association of 
AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With 
Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol 
2016;2:1441-9 

110. Lianidou E, Pantel K. Liquid biopsies. Genes Chromosomes Cancer 
2019;58:219-32 

111. Zainfeld D, Goldkorn A. Liquid Biopsy in Prostate Cancer: Circulating Tumor 
Cells and Beyond. Cancer Treat Res 2018;175:87-104 

112. Millner LM, Linder MW, Valdes R. Circulating Tumor Cells: A Review of Present 
Methods and the Need to Identify Heterogeneous Phenotypes. Ann Clin Lab Sci 
2013;43:295-304 

113. Lang JM, Casavant BP, Beebe DJ. Circulating tumor cells: getting more from 
less. Sci Transl Med 2012;4:141ps13 

114. Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP. Bisulfite Sequencing of DNA. 
Curr Protoc Mol Biol 2010;CHAPTER:Unit-7 917 

115. Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. 
Biology (Basel) 2016;5 

116. Shen L, Waterland RA. Methods of DNA methylation analysis. Curr Opin Clin 
Nutr Metab Care 2007;10:576-81 

117. Karemaker ID, Vermeulen M. Single-Cell DNA Methylation Profiling: 
Technologies and Biological Applications. Trends Biotechnol 2018;36:952-65 

118. Kelly SP, Anderson WF, Rosenberg PS, Cook MB. Past, Current, and Future 
Incidence Rates and Burden of Metastatic Prostate Cancer in the United States. 
Eur Urol Focus 2018;4:121-7 



 231 

119. Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD. Past, 
Current, and Future of Immunotherapies for Prostate Cancer. Front Oncol 
2019;9:884 

120. Schweizer MT, Drake CG. Immunotherapy for prostate cancer: recent 
developments and future challenges. Cancer Metastasis Rev 2014;33:641-55 

121. Lee JH, Shklovskaya E, Lim SY, Carlino MS, Menzies AM, Stewart A, et al. 
Transcriptional downregulation of MHC class I and melanoma de- differentiation 
in resistance to PD-1 inhibition. Nature communications 2020;11:1897- 

122. Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of 
Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor 
Immunotherapy Not Work for All Patients? American Society of Clinical Oncology 
Educational Book 2019:147-64 

123. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev 
Immunol 2013;31:443-73 

124. Ruggero K, Farran-Matas S, Martinez-Tebar A, Aytes A. Epigenetic Regulation in 
Prostate Cancer Progression. Curr Mol Biol Rep 2018;4:101-15 

125. Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, et al. The DNA 
methylation landscape of advanced prostate cancer. 2020;52:778-89 

126. Kim NH, Kim SN, Kim YK. Involvement of HDAC1 in E-cadherin expression in 
prostate cancer cells; its implication for cell motility and invasion. Biochem 
Biophys Res Commun 2011;404:915-21 

127. Ye Q, Shen Y, Wang X, Yang J, Miao F, Shen C, et al. Hypermethylation of HLA 
class I gene is associated with HLA class I down-regulation in human gastric 
cancer. Tissue Antigens 2010;75:30-9 

128. Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, et al. DNA hypermethylation is a 
mechanism for loss of expression of the HLA class I genes in human esophageal 
squamous cell carcinomas. Carcinogenesis 2001;22:1615-23 

129. Liao Y, Xu K. Epigenetic regulation of prostate cancer: the theories and the 
clinical implications. Asian J Androl 2019;21:279-90 

130. Villanueva L, Álvarez-Errico D, Esteller M. The Contribution of Epigenetics to 
Cancer Immunotherapy. Trends Immunol 2020;41:676-91 

131. Armenia J, Wankowicz S, Liu D, Gao J, Kundra R, Reznik E, et al. The Long Tail 
of Oncogenic Drivers in Prostate Cancer. Nature genetics 2018;50 

132. Garrido M, Rodriguez T, Zinchenko S, Maleno I, Ruiz-Cabello F, Concha Á, et al. 
HLA Class I Alterations in Breast Carcinoma Are Associated With a High 



 232 

Frequency of the Loss of Heterozygosity at Chromosomes 6 and 15. 
Immunogenetics 2018;70 

133. McGranahan N, Rosenthal R, Hiley C, Rowan A, Watkins T, Wilson G, et al. 
Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 
2017;171 

134. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. 
Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18:11-
22 

135. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, et al. Global histone 
modification patterns predict risk of prostate cancer recurrence. 2005;435:1262-6 

136. Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. 
DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by 
controlling RAD9 expression through targeted methylation. Carcinogenesis 2020 

137. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in 
the human genome. Nature 2012;489:57-74 

138. Aryee MJ, Liu W, Engelmann JC, Nuhn P, Gurel M, Haffner MC, et al. DNA 
methylation alterations exhibit intraindividual stability and interindividual 
heterogeneity in prostate cancer metastases. Sci Transl Med 2013;5:169ra10 

139. Sperger JM, Strotman LN, Welsh A, Casavant BP, Chalmers Z, Horn S, et al. 
Integrated analysis of multiple biomarkers from circulating tumor cells enabled by 
exclusion-based analyte isolation. Clin Cancer Res 2017;23:746-56 

140. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic 
regulators for cancer therapy: mechanisms and advances in clinical trials. Signal 
Transduct Target Ther 2019;4:62 

141. Rothbart SB, Baylin SB. Epigenetic Therapy for Epithelioid Sarcoma. Cell 
2020;181:211 

142. Italiano A. Targeting epigenetics in sarcomas through EZH2 inhibition. J Hematol 
Oncol 2020;13:33 

143. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. 
Integrative analysis of complex cancer genomics and clinical profiles using the 
cBioPortal. Sci Signal 2013;6:pl1 

144. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio 
cancer genomics portal: an open platform for exploring multidimensional cancer 
genomics data. Cancer Discov 2012;2:401-4 



 233 

145. Goldman M, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. The 
UCSC Xena platform for public and private cancer genomics data visualization 
and interpretation. BioRxiv 2019 

146. Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, et al. The 
Chromatin Accessibility Landscape of Primary Human Cancers. Science (New 
York, NY) 2018;362 

147. Diez-Villanueva A, Mallona I, Peinado MA. Wanderer, an interactive viewer to 
explore DNA methylation and gene expression data in human cancer. 
Epigenetics Chromatin 2015;8:22 

148. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Pérarnau B. HLA-A2.1-
restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 
microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double 
knockout mice. J Exp Med 1997;185:2043-51 

149. Murrell A, Hurd PJ, Wood IC. Epigenetic mechanisms in development and 
disease. Biochem Soc Trans 2013;41:697-9 

150. Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in 
mammalian development and disease. Nat Rev Mol Cell Biol 2019;20:590-607 

151. Razin A, Riggs AD. DNA methylation and gene function. Science (New York, NY) 
1980;210:604-10 

152. Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M. DNA methylation is a 
reversible biological signal. Proceedings of the National Academy of Sciences of 
the United States of America 1999;96:6107-12 

153. Almouzni G, Cedar H. Maintenance of Epigenetic Information. Cold Spring 
Harbor perspectives in biology 2016;8 

154. Strand SH, Orntoft TF, Sorensen KD. Prognostic DNA methylation markers for 
prostate cancer. Int J Mol Sci 2014;15:16544-76 

155. Yang M, Park JY. DNA methylation in promoter region as biomarkers in prostate 
cancer. Methods in molecular biology (Clifton, NJ) 2012;863:67-109 

156. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM, et al. 
DNA methylation profiling reveals novel biomarkers and important roles for DNA 
methyltransferases in prostate cancer. Genome Res 2011;21:1017-27 

157. Ahmed H. Promoter Methylation in Prostate Cancer and its Application for the 
Early Detection of Prostate Cancer Using Serum and Urine Samples. Biomark 
Cancer 2010;2010:17-33 



 234 

158. Zhao F, Olkhov-Mitsel E, van der Kwast T, Sykes J, Zdravic D, Venkateswaran 
V, et al. Urinary DNA Methylation Biomarkers for Noninvasive Prediction of 
Aggressive Disease in Patients with Prostate Cancer on Active Surveillance. J 
Urol 2017;197:335-41 

159. Yegnasubramanian S, Wu Z, Haffner MC, Esopi D, Aryee MJ, Badrinath R, et al. 
Chromosome-wide mapping of DNA methylation patterns in normal and 
malignant prostate cells reveals pervasive methylation of gene-associated and 
conserved intergenic sequences. BMC Genomics 2011;12:313 

160. Chimonidou M, Tzitzira A, Strati A, Sotiropoulou G, Sfikas C, Malamos N, et al. 
CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. 
Clin Biochem 2013;46:235-40 

161. Chimonidou M, Strati A, Tzitzira A, Sotiropoulou G, Malamos N, Georgoulias V, 
et al. DNA methylation of tumor suppressor and metastasis suppressor genes in 
circulating tumor cells. Clinical chemistry 2011;57:1169-77 

162. Kloten V, Becker B, Winner K, Schrauder MG, Fasching PA, Anzeneder T, et al. 
Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and 
RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast 
Cancer Res 2013;15:R4 

163. Ellinger J, Haan K, Heukamp LC, Kahl P, Buttner R, Muller SC, et al. CpG island 
hypermethylation in cell-free serum DNA identifies patients with localized 
prostate cancer. Prostate 2008;68:42-9 

164. Han D, Lu X, Shih AH, Nie J, You Q, Xu MM, et al. A Highly Sensitive and 
Robust Method for Genome-wide 5hmC Profiling of Rare Cell Populations. Mol 
Cell 2016;63:711-9 

165. Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, et al. 
Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 
2012;7:617-36 

166. Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG. Whole-genome 
DNA methylation profiling using MethylCap-seq. Methods (San Diego, Calif) 
2010;52:232-6 

167. Sonnet M, Baer C, Rehli M, Weichenhan D, Plass C. Enrichment of methylated 
DNA by methyl-CpG immunoprecipitation. Methods in molecular biology (Clifton, 
NJ) 2013;971:201-12 

168. Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG. 
Combination of methylated-DNA precipitation and methylation-sensitive 
restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative 
detection of DNA methylation. Nucleic Acids Res 2006;34:e19 



 235 

169. Casavant BP, Guckenberger DJ, Berry SM, Tokar JT, Lang JM, Beebe DJ. The 
VerIFAST: an integrated method for cell isolation and extracellular/intracellular 
staining. Lab Chip 2013;13:391-6 

170. Strotman L, O'Connell R, Casavant BP, Berry SM, Sperger JM, Lang JM, et al. 
Selective nucleic acid removal via exclusion (SNARE): capturing mRNA and 
DNA from a single sample. Anal Chem 2013;85:9764-70 

171. Pezzi HM, Guckenberger DJ, Schehr JL, Rothbauer J, Stahlfeld C, Singh A, et al. 
Versatile exclusion-based sample preparation platform for integrated rare cell 
isolation and analyte extraction. Lab Chip 2018;18:3446-58 

172. Maldonado L, Brait M, Loyo M, Sullenberger L, Wang K, Peskoe SB, et al. 
GSTP1 promoter methylation is associated with recurrence in early stage 
prostate cancer. J Urol 2014;192:1542-8 

173. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method 
for estimating global DNA methylation using bisulfite PCR of repetitive DNA 
elements. Nucleic Acids Res 2004;32:e38 

174. Cordaux R, Batzer MA. The impact of retrotransposons on human genome 
evolution. Nat Rev Genet 2009;10:691-703 

175. Fu LJ, Ding YB, Wu LX, Wen CJ, Qu Q, Zhang X, et al. The Effects of Lycopene 
on the Methylation of the GSTP1 Promoter and Global Methylation in Prostatic 
Cancer Cell Lines PC3 and LNCaP. Int J Endocrinol 2014;2014:620165 

176. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. 
Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for 
whole-genome DNA methylation profiling. Genome Biol 2016;17:208 

177. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, et al. The DNA methylome of human 
peripheral blood mononuclear cells. PLoS Biol 2010;8:e1000533 

178. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, et al. A reference 
methylome database and analysis pipeline to facilitate integrative and 
comparative epigenomics. PloS one 2013;8:e81148 

179. Johnson BP, Vitek RA, Geiger PG, Huang W, Jarrard DF, Lang JM, et al. Vital ex 
vivo tissue labeling and pathology-guided micropunching to characterize cellular 
heterogeneity in the tissue microenvironment. Biotechniques 2018;64:13-9 

180. Tokar JJ, Stahlfeld CN, Sperger JM, Niles DJ, Beebe DJ, Lang JM, et al. Pairing 
Microwell Arrays with an Affordable, Semiautomated Single-Cell Aspirator for the 
Interrogation of Circulating Tumor Cell Heterogeneity. SLAS Technol 
2020;25:162-76 



 236 

181. Guo H, Zhu P, Guo F, Li X, Wu X, Fan X, et al. Profiling DNA methylome 
landscapes of mammalian cells with single-cell reduced-representation bisulfite 
sequencing. Nat Protoc 2015;10:645-59 

182. Adey A, Shendure J. Ultra-low-input, tagmentation-based whole-genome bisulfite 
sequencing. Genome Res 2012;22:1139-43 

183. Aberg KA, Chan RF, Shabalin AA, Zhao M, Turecki G, Staunstrup NH, et al. A 
MBD-seq protocol for large-scale methylome-wide studies with (very) low 
amounts of DNA. Epigenetics 2017;12:743-50 

184. Guckenberger DJ, Pezzi HM, Regier MC, Berry SM, Fawcett K, Barrett K, et al. 
Magnetic System for Automated Manipulation of Paramagnetic Particles. Anal 
Chem 2016;88:9902-7 

185. Schehr JL, Schultz ZD, Warrick JW, Guckenberger DJ, Pezzi HM, Sperger JM, et 
al. High Specificity in Circulating Tumor Cell Identification Is Required for 
Accurate Evaluation of Programmed Death-Ligand 1. PLoS One 
2016;11:e0159397 

186. World Health Organization. WHO International Programme on Chemical Safety 
Biomarkers in Risk Assessment: Validity and Validation. Geneva: WHO; 2001. 

187. Food and Drug Administration. BEST (Biomarkers, EndpointS, and other Tools) 
Resource. Bethesda, MD: Co-published by National Institutes of Health (US); 
2016. 

188. Neuhaus J, Yang B. Liquid Biopsy Potential Biomarkers in Prostate Cancer. 
Diagnostics (Basel, Switzerland) 2018;8:68 

189. Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, et al. 
TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with 
invasion. Am J Surg Pathol 2007;31:882-8 

190. Rajput AB, Miller MA, Luca AD, Boyd N, Leung S, Hurtado-Coll A, et al. 
Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly 
differentiated prostate cancers. 2007 

191. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG. Prostate cancer detection by 
GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 
2003;9:2673-7 

192. Pixberg CF, Raba K, Muller F, Behrens B, Honisch E, Niederacher D, et al. 
Analysis of DNA methylation in single circulating tumor cells. Oncogene 2017 

193. Friedlander TW, Ngo VT, Dong H, Premasekharan G, Weinberg V, Doty S, et al. 
Detection and characterization of invasive circulating tumor cells derived from 



 237 

men with metastatic castration-resistant prostate cancer. Int J Cancer 
2014;134:2284-93 

194. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. 
Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis 
Seeding. Cell 2019;176:98-112 e14 

195. Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, et al. 
ESR1 Methylation: A Liquid Biopsy-Based Epigenetic Assay for the Follow-up of 
Patients with Metastatic Breast Cancer Receiving Endocrine Treatment. Clin 
Cancer Res 2018;24:1500-10 

196. Chimonidou M, Kallergi G, Georgoulias V, Welch DR, Lianidou ES. Breast 
cancer metastasis suppressor-1 promoter methylation in primary breast tumors 
and corresponding circulating tumor cells. Mol Cancer Res 2013;11:1248-57 

197. Lyberopoulou A, Galanopoulos M, Aravantinos G, Theodoropoulos GE, Marinos 
E, Efstathopoulos EP, et al. Identification of Methylation Profiles of Cancer-
related Genes in Circulating Tumor Cells Population. Anticancer Res 
2017;37:1105-12 

198. Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES. SOX17 
promoter methylation in circulating tumor cells and matched cell-free DNA 
isolated from plasma of patients with breast cancer. Clin Chem 2013;59:270-9 

199. Casavant BP, Strotman LN, Tokar JJ, Thiede SM, Traynor AM, Ferguson JS, et 
al. Paired diagnostic and pharmacodynamic analysis of rare non-small cell lung 
cancer cells enabled by the VerIFAST platform. Lab Chip 2014;14:99-105 

200. Jones D, Pereira ER, Padera TP. Growth and Immune Evasion of Lymph Node 
Metastasis. Front Oncol 2018;8:36 

201. Browning M, Petronzelli F, Bicknell D, Krausa P, Rowan A, Tonks S, et al. 
Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue 
Antigens 1996;47:364-71 

202. Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ. Multiple 
genetic alterations cause frequent and heterogeneous human histocompatibility 
leukocyte antigen class I loss in cervical cancer. J Exp Med 2000;191:961-76 

203. Koopman LA, van Der Slik AR, Giphart MJ, Fleuren GJ. Human leukocyte 
antigen class I gene mutations in cervical cancer. J Natl Cancer Inst 
1999;91:1669-77 

204. Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EAG, et 
al. Comparison of RNA-Seq and Microarray Gene Expression Platforms for the 
Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies. 
Frontiers in Genetics 2019;9 



 238 

205. Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary 
Prostate Cancer. Cell 2015;163:1011-25 

206. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. 
2015;6:8971 

207. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. Journal of 
hematology & oncology 2020;13:104- 

208. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, et al. An 
Evolutionarily Conserved Function of Polycomb Silences the MHC Class I 
Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer 
Cell 2019;36:385-401 e8 

209. Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation 
between DNA methylation of the first intron and gene expression across tissues 
and species. Epigenetics Chromatin 2018;11:37 

210. Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation 
and modulation of gene expression. Epigenomics 2013;5:553-68 

211. Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation 
modulates alternative splicing by recruiting MeCP2 to promote exon recognition. 
Cell Res 2013;23:1256-69 

212. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, et al. A CRISPR-based approach for 
targeted DNA demethylation. Cell Discovery 2016;2:16009 

213. Brind'Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. An ultra-low-
input native ChIP-seq protocol for genome-wide profiling of rare cell populations. 
Nat Commun 2015;6:6033 

214. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, et al. Single-cell 
ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 
2015;33:1165-72 

215. Dahl JA, Collas P. MicroChIP--a rapid micro chromatin immunoprecipitation 
assay for small cell samples and biopsies. Nucleic Acids Res 2008;36:e15 

216. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 
Repurposing CRISPR as an RNA-guided platform for sequence-specific control 
of gene expression. Cell 2013;152:1173-83 

217. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR 
interference (CRISPRi) for sequence-specific control of gene expression. Nature 
protocols 2013;8:2180-96 

 
 


