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ABSTRACT

With the advancement of nanofabrication techniques, the sizes of semiconductor elec-
tronic and optoelectronic devices keep decreasing while the operating speeds keep increas-
ing. High-speed operation leads to more heat generation and puts more thermal stress on
the devices. Since the heat conduction in semiconductors is dominated by the lattice (i.e.,
phonons), understanding phonon transport in nanostructures is essential to addressing and
alleviating the thermal-stress problem in these modern devices.

In addition to the increased thermal stress, the advanced techniques that have allowed
for the shrinking of the devices routinely rely on heterostructuring, doping, alloying, and the
growth of intentionally strained layers to achieve the desired electronic and optical properties.
These introduce impediments to phonon transport such as boundaries, interfaces, point
defects (alloy atoms or dopants), and strain. Phonon transport is strongly affected by this
nanoscale disorder. This dissertation examines how different types of disorder interact with
phonons and degrade phonon transport.

First, we study thermal transport in graphene nanoribbons (GNRs). GNRs are quasi-
one-dimensional (quasi-1D) systems where the edges (boundaries) play an important role in
reducing thermal conductivity. Additionally, the thermal transport in GNRs is anisotropic
and depend on the GNR’s chirality (GNR orientation and edge termination). We use phonon
Monte Carlo (PMC) with full phonon dispersions to describe two highly-symmetric types of
GNRs: the armchair GNR (AGNR) and the zigzag GNR (ZGNR). PMC tracks phonon in

real space and we can explicitly include non-trivial edge structures. Moreover, the relatively
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low computational burden of PMC allows us to simulate samples up to 100 pym in length
and predict an upper limit for thermal conductivity in graphene.

We then investigate the thermal conductivity in III-V superlattices (SLs). SLs consist
of alternating thin layers of different materials and III-V SLs are widely used in nanoscale
thermoelectric and optoelectronic devices. The key feature in SLs is that it contains many
interfaces, which dictates thermal transport. As III-V SLs are often fabricated using well-
controlled techniques and have high-quality interfaces, we develop a model with only one
free parameter—the effective rms roughness of the interfaces—to describe its twofold influ-
ence: reducing the in-plane layer thermal conductivity and introducing thermal boundary
resistance (TBR) in the cross-plane direction. Both the calculated in-plane and cross-plane
thermal conductivity of SLs agree with a number of different experiments.

Finally, we study thermal conductivity of ternary III-V alloys. In modern optoelectronic
devices, ternary III-V alloys are used more often than binary compounds because one can use
composition engineering to achieve different effective masses, electron/hole barrier heights,
and strain levels. Ternary alloys are usually treated under the virtual crystal approximation
(VCA) where cation atoms are assumed to be randomly distributed and possess an averaged
mass. This assumption is challenged by a discrepancy between different experiments, as well
as the discrepancy between experiments and calculations. We use molecular dynamics (MD)
to study the ternary alloy system as both atom masses and atom locations are explicitly
tracked in MD. We discover that the thermal conductivity is determined by a competition

between mass-difference scattering and the short-range ordering of the cations.



Chapter 1

Introduction

1.1 Phonons
1.1.1 Bravais Lattice and Reciprocal Lattice

In solid-state physics, a Bravais lattice is an infinite array of lattice points arranged

periodically. In two-dimensional (2D) space, lattice sites can be generated by:
R = niaz + nqaa, (11)

where ny and ny are integers and a; and as are called the primitive vectors of the lattice.
The primitive vectors determine the primitive cell, which is the minimum unit repeated in
the lattice. There are 5 different Bravais lattices in 2D, among which the hexagonal lattice
is of great importance in solid-state physics since stable 2D materials such as graphene have
this lattice structure. Figure 1.1 is showing the schematic of a hexagonal lattice with one
atom at each lattice site. In a hexagonal lattice, the two primitive vectors have the same
length (Ja;| = |az|) and the angle between them is 120° (0 = 120°).

In three-dimensional (3D) space, lattice sites are generated using 3 primitive vectors:
R = niay + neag + nsas, (12)

and there are 14 Bravais lattices. The 3D materials we focus on in this thesis all have the

face-centered cubic (fcc) Bravais lattice.
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Figure 1.1: A schematic of the hexagonal lattice, |a;| = |ag|,0 = 120°.

Owing to the periodicity, it is useful to introduce the reciprocal lattice. In 3D, the
primitive vectors of the reciprocal lattice is constructed as:

as X ag ag X ap

b1 =27 b2 =27 (13)

al-a2><a3’ al-a2><a3’ - al-a2><a3‘
A reciprocal lattice vector is of the form G = miby+mobs+msbs where mq, mo, and mgz are
integers. The Wigner-Seitz cell of the reciprocal lattice is known as the first Brillouin zone

(1BZ) and all the physically significant wave vectors for elastic waves live in the 1BZ[31].

1.1.2 Lattice Waves and Phonon Dispersion

At finite temperatures, atoms vibrate about their equilibrium lattice. As the lattice is
an elastic medium, the vibrations propagate and the material supports waves. Phonons are
quanta of the normal modes of crystal wave excitations. For an atom in the crystal, its
motion can be captured with Newton’s second law of motion:

mit, = Y K (ug — uy), (1.4)

t

where ug is the displacement of atom s and the sum is over all the neighboring atoms
interacting with atom s with K being the interaction force constant matrix between the
two. Due to the underlying periodicity of the lattice, displacements have the form of a

traveling plane wave:

us = ugp exp (iqRs) exp (—iw(q)t) , (1.5)



where q and Ry are a vector from the 1BZ and a Bravais lattice vector, respectively. With
the knowledge of all the force constant matrices, one can solve for the phonon dispersion
relation w(q).

Depending on the dimensionality of the physical system and the number of atoms per
basis in the direct-space Bravais lattice, we get different number of branches for the dispersion
relation. In a 3D crystal with 2 atoms per basis, there are 3 x 2 = 6 different branches, 3
acoustic branches and 3 optical branches. Among these there is 1 longitudinal acoustic
(LA) branch, 1 longitudinal optical (LO) branch, 2 transverse acoustic (TA) branches, and
2 transverse optical (TO) branches.

From the phonon dispersion relation, one can extract the group velocity of a wave with

wave vector q from each branch b:

Vg = Vqws(q)- (1.6)

The signature of an acoustic branch is often a linear dispersion as q approaches zero; the
corresponding group velocity is referred to as the sound velocity in the material. On the
other hand, optical branches are higher in energy and rather dispersionless compared to
acoustic branches. Optical phonons carry large amount of energy while having small group

velocities.

1.1.3 Phonon Distribution and Density of States (DOS)

Phonons are bosons and they follow the Bose-Einstein (BE) distribution in equilibrium

1

NBE = . )
exp <,€JT“’T) -1

(1.7)

where i ~ 1.05 x 107 Js is the reduced Planck’s constant, kp &~ 1.38 x 1072* J/K is the
Boltzmann’s constant, w is the phonon angular frequency, and 7T is the temperature.
Since each phonon carries energy hw, the average energy carried by a phonon mode is

hw

<E> = hw *NMBE — s
hw .
exp (kB_T) 1

(1.8)



In a crystal, the density of states (D(w)dw) measures the number of allowed sound modes in
the frequency interval between w and w + dw. The number can be obtained by enumerating
the allowed reciprocal lattice vectors for phonons in the shell between the isoenergy surface

w and w + dw in the dispersion relation:

V 3 V ds,
Dlew)d = W /shell ra= (2m)3 / Ug(‘l)’ (19)

where V' is the volume of the physical system, S, is the area of the isoenergy surface, and

vy(q) is the group velocity at each q point. The DOS can be obtained analytically with some
approximation of the dispersion relation, but is often obtained numerically in the realistic

full-dispersion case.

1.2 Thermal Conductivity in Semiconductor Nanos-
tructures

1.2.1 Fourier’s Law

Thermal conductivity, often denoted with x, quantifies the ability of a material to conduct
heat. In solids, heat conduction is mediated by phonons or free electrons. In SI units,
thermal conductivity is measured in watts per meter-kelvin (W/m-K). In experiments,

thermal conductivity is primarily evaluated from the Fourier’s law:
Jjq = —kV,T, (1.10)

where jq is the flux of thermal energy. The temperature gradient in the equation implies
that the thermal energy transfer is a diffusive process and that « is in general a tensor.
Furthermore, the thermal conductivity tensor at a given temperature is in general an intrinsic
property of the material.

In most bulk materials, thermal transport is isotropic, meaning the thermal conductivity
has the same value along different directions. However, in nanostructures, the thermal
transport can be anisotropic, and we often address the thermal conductivities along different

directions separately. As a result, Fourier’s law is often applied in its one-dimensional (1D)



form:

, dT
Joa = —HK—, (1.11)

where x is the direction along which the thermal conductivity is measured.

In undoped or lightly doped semiconductors, the population of free electrons is small
and the heat conduction is dominated by phonons. More specifically, heat flux is mainly
carried by acoustic phonons as optical phonons are less excited (due to large energy) and
less mobile (small group velocity). In this thesis, we only consider the acoustic phonon
contribution to thermal conductivity and ignore electrons and optical phonons. In some
special circumstances optical phonons can become important, and we will discuss it in more
details then.

With increasing interests on measuring the thermal conductivity of nanostructures, Fourier’s
law has been generalized to non-diffusive regimes to calculate “size-dependent thermal con-
ductivity.” If the size of a nanostructure is smaller than the carrier mean free path (MFP)
A, thermal transport inside the structure is partially ballistic, and thermal conductivity ex-
tracted from Fourier’s law increases with the structure size. In this generalized notation,
a size-independent thermal conductivity calculated from Fourier’s law indicates diffusive
thermal transport while a size-dependent thermal conductivity is a signature of ballistic

transport.

1.2.2 Phonon Scattering

As mentioned in Sec. 1.2.1, phonon transport on a large scale is a diffusive process rather
than a ballistic one, and the main mechanisms of relaxing phonon momentum are scattering
with structural imperfections and scattering with other phonons. The former arises from
imperfections in the lattice; it is especially important in nanostructures where rough edges
or interfaces can pose great resistance to thermal transport. Previously when we introduced
the phonon dispersion relation, an implicit assumption is that the interatomic potential an

atom feels is harmonic, or goes to as high as the second order in displacement. However, in



reality, an interatomic potential can be expanded as [32]

UR +dr)=U(R) +dr-VU(R) + % (dr-V)’U(R) + % (dr-V)’UR)+---, (1.12)

where R is the equilibrium position and all terms with the third-order or higher in dis-
placement represent anharmonicity. Due to this anharmonicity, phonons with different
wave vectors can collide with each other and change momentum. The dominant form of
phonon-phonon scattering is the three-phonon process where two incoming phonons collide
and scatter into one outgoing phonon or one incoming phonon scatters into two outgoing
phonons. There are two processes for three-phonon scattering, the normal (N) process and
the Umklapp (U) process.

Take the case where two phonons scatter into one as an example. In the N process, both

the phonon momentum and the phonon energy are conserved

q: + 92 =qs,
(1.13)

W1+CU2 = Ws,

where w; represent phonon frequencies and q; are wave vectors in the 1BZ. As a result of
the momentum and energy conservation, the phonon flux is unchanged before and after the
scattering event, thus the thermal resistivity from the N process is zero.[31]

On the other hand, U processes conserve energy exactly and momentum up to a reciprocal

lattice vector

a1 +92 =q3+ G,
(1.14)
w1 +CU2 = Ws,

where G can be any reciprocal lattice vector. Due to the nonzero G, the phonon flux will

change after the scattering event, leading to thermal resistance.

1.3 Phonon Transport

As heat is mainly carried by phonons, modeling thermal conductivity in bulk materials

and their nanostructures depends on studying the phonon transport inside the structure. In



different environments, phonon transport can be coherent (wavelike) or incoherent (particle-

like) or partially coherent which is somewhere in between.

1.3.1 Coherent Phonon Transport

In the coherent transport regime, phonons behave like waves, meaning phonons can sur-
vive a long time traveling inside the material without suffering any phase-changing scattering
events, thus able to maintain wave behavior. To observe this, one must minimize phonon
scattering by using very pure materials and low temperatures. Because of the wave nature,
a signature of coherent phonon transport is linear dependence of thermal conductivity on
the sample size.

Here we talk about coherent phonon transport in the context of superlattices (SLs) con-
sisting of periodic alternating layers. The interfaces between neighboring layers have been
believed to destroy phonon coherence completely[33], making the cross-plane thermal con-
ductivity of SLs independent of the number of period in the SL. The first experimental
evidence of coherent phonon transport across SL interface was reported in 2012 by Luck-
yanova et al. [34] in a GaAs/AlAs superlattice over the temperature range of 30 to 150
kelvin.

Modeling coherent phonon transport requires a method that is able to capture its wave

nature.

1.3.2 Semiclassical Phonon Transport

In the semiclassical transport regime, phonons behave like (classical) particles due to
frequent scattering events. This typically holds for thermal transport at high temperatures
(room temperature or higher) or in nanostructures with a lot of boundary roughness in it.

In this picture, we can assume phonons are pointlike particles and we can know its

location and momentum at the same time. Transport is governed by the phonon Boltzmann



transport equation (pBTE)

anb (I', q, t)
ot

ony(r,q,t
+Vb,q-Vrnb(r,q,t):% . (1.15)

scat
Here, ny(r,q,t) is the time-dependent phase space distribution of the phonons in branch b
and vy, g = Vqwh q is the phonon group velocity. The means by which a phonon can leave
its current phase space location is drifting to a new location (second term on the left) or
scatter into a different momentum (term on the right). Modeling thermal conductivity in

the semiclassical regime often involves solving the pBTE under some approximations.

1.3.3 Phonon Transport in Semiconductor Nanostructures

As Moore’s law predicts, the size of semiconductor devices keeps decreasing while increas-
ing the operation speed and frequency keep increasing. The thermal stress devices face are
more severe than ever. The advanced techniques that allowed the shrinking of the devices
[35, 36] routinely rely on heterostructuring, doping, alloying, and the growth of intention-
ally strained layers to achieve the desired electronic and optical properties. At the same
time, nanoscale imperfections such as boundaries, interfaces, point defects, and strain are
inevitably introduced and will all impact the thermal transport in these devices. In order to
address the thermal stress problem in nanoscale devices, it is essential to study the thermal

transport in nanostructures, especially in the presence of these disorders.

1.4 Overview of This Dissertation

Three projects under the umbrella of semiclassical simulation of thermal transport in

semiconductor nanostructures are discussed in this thesis:

1. Two-dimensional (2D) Phonon Monte Carlo (PMC) simulation of thermal conductivity

of graphene nanoribbons (GNRs) using full phonon dispersion.

2. Thermal conductivity of III-V superlattices (SLs).



(a) Bulk thermal conductivity of III-V compound semiconductors from solving the
phonon Boltzmann transport equation (PBTE) under the relaxation time approx-

imation (RTA) using full phonon dispersion.

(b) Thermal boundary resistance (TBR) from interpolating between the acoustic mis-
match model (AMM) and the diffusive mismatch model (DMM) with a single free

parameter.

3. Molecular dynamics (MD) simulation of thermal conductivity in III-V ternary alloys.

1.4.1 Organization of Chapters

In Chapter 2, we provide a brief introduction to all the simulation techniques used to
predict thermal conductivity in this work, i.e., solving the PBTE under the RTA, solving the
PBTE with the PMC method, and obtaining thermal conductivity through MD simulations.

In Chapter 3, we present the 2D PMC simulation of GNRs with full phonon dispersion.
We discuss in detail the implementation of the algorithm to generate and scatter phonons
according to the full phonon dispersion. We address the special concern of conserving energy
inside the simulation domain. We validate the simulation technique by benchmarking the
results against a number of experiments. We predict an upper limit of thermal conductivity
in graphene and conclude samples larger than 100 pym in size are needed to observe the limit.

Chapter 4 introduces the model for bulk thermal conductivity of III-V compound semi-
conductors and their ternary alloys. Here we solve the PBTE under the RTA together with
the full phonon dispersion. We present the scattering rates as well as all the parameters used
in the model. We show the calculated temperature-dependent thermal conductivity of binary
compounds in comparison with experimental data. We calculate the thermal conductivity of
ternary alloys AlGaAs, InGaAs, and InAlAs under the virtual crystal approximation (VCA)
at room temperature (RT) and compare with experiments.

Chapter 5 builds on Chapter 4 and presents a model for describing thermal conductiv-

ity in ITI-V superlattices (SL) with just one free parameter—effective interface roughness A
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between layers. We discuss the twofold influence the interface roughness has on the thermal
transport, along both in-plane and cross-plane directions. We show the formula for calcu-
lating thermal conductivity and results for multiple GaAs/AlAs SLs and InGaAs/InAlAs
superlattice (SL) structures. We also comment on the agreement with existing experiments
and the discrepancies which inspired further investigation.

Chapter 6 summarizes the process of modeling thermal conductivity of III-V ternary
alloys using equilibrium molecular dynamics (EMD). We present the process of optimizing
the Tersoff interactive potential for binary III-As compounds and apply them to ternary
alloys. We explore the competing influence mass-difference scattering and short-range order

have on the thermal conductivity of ternary alloys.

1.4.2 Research Accomplishments

The work presented in this thesis are based on three published peer-reviewed journal
papers (Mei et al., 2014; Mei and Knezevic, 2015; Mei et al., 2017)[37, 38, 39], one submitted
journal paper (Mei and Knezevic, 2017)[40], three conference presentations (Mei et al., 2014;
Mei, Aksamija, and Knezevic, 2015; Mei and Knezevic, 2017), and one book chapter (Maurer,
Mei, and Knezevic, 2017)[41].

During the PhD study, the author also worked on electrothermal simulation of quantum
cascade lasers (QCLs), which is not included in this thesis. That work resulted in two
peer-reviewed journal paper (Jonasson, Mei, et al., 2015; Shi, Mei, et al., 2017)[42, 43], one
conference presentation (Shi, Mei, and Knezevic, 2015), and one book chapter (Mei, et al.,
2017)[44].

Ongoing projects include combined experimental and theoretical characterization of ther-
mal conductivity in InAlAs that is lattice-matched to InP (Ing52Al 4sAs) and electrothermal
simulation of QCL in the density matrix formalism. These projects will yield two peer-

reviewed journal papers.
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Chapter 2

Semiclassical Techniques for Predicting Ther-
mal Conductivity

In this chapter, we will briefly survey a few semiclassical simulation techniques commonly
used to calculate thermal conductivity. We are focusing on the techniques utilized in this
thesis to facilitate the understanding of following chapters.

One avenue to predicting thermal conductivity starts from the phonon Boltzmann trans-
port equation (PBTE) (Equation 1.15) in a steady state. In general, the PBTE cannot be
solved analytically because of the scattering term. With the help of powerful computers, we
can solve the PBTE numerically using both deterministic and stochastic approaches. Short
of resorting to large scale computations, various of approximations can be made to the scat-
tering term in order to solve the PBTE, the relaxation time approximation (RTA) is the
most common and successful one. Phonon Monte Carlo (PMC) treats the scattering term
stochastically by using random numbers to determine scattering events.

Another popular branch of techniques is based on molecular dynamics (MD) simulations.
In an MD simulation, a set of atoms are tracked in real space with initial positions and
momenta. The motion of the atoms are governed by the Newton’s second law while the
forces applied to atoms are captured using some empirical interatomic potential. Thermal
conductivity can be extracted from both an equilibrium MD (EMD, the whole system is at
the same temperature and no macroscopic flux flows) via the fluctuation-dissipation theorem

or an nonequilibrium MD (NEMD) via the Fourier’s law.
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2.1 The Relaxation Time Approximation (RTA)

At steady state, in the presence of thermal gradient, the PBTE becomes

anb(ra q, t) _ anb(rv q, t)

Voa Vel =0 ot

(2.1)

scat
In the case of a small temperature gradient, PBTE can be linearized by assuming the phonons

mainly follows the equilibrium BE distribution with only a small correction:

nb(r7 q, t) = nBE(wb,qa Tr) + TLL(I‘, q, t) (22)

Here nj(r,q,t) describes the small deviation from the equilibrium distribution. It is worth
noting that this deviation alone brings the thermal transport since the equilibrium distribu-
tion is symmetric with respect to the wave vector q and will lead to zero heat flux. Under
the RTA, it is assumed that the rate at which phonon distribution changes due to scattering

is proportional to its deviation from equilibrium through a constant relaxation rate

/
t
~ (T at) (2.3)

scat Tb7q

anb(r7 q, t)
ot

1

Here the relaxation rate 7 q

is often defined as a combined rate of all possible scattering

mechanisms
-1 _ 1
Tha = Z Tb,qyi* (2'4)
i

To calculate thermal conductivity along a certain direction, we further reduce the PBTE

to an 1D equation. Substituting Eq. (2.3) to the reduced PBTE, we obtain

AT Onpg(wpq,T) ni(r,q)
. 9 — 2-5
Vb7q X L 8T Tb’q 3 ( )

Here X is the unit vector along the temperature gradient direction, AT is the temperature
difference between the two ends separated by length L. Note we assume a constant temper-
ature and the equilibrium distribution in the derivative part on the left hand side because

of the small gradient. Heat flux is then calculated from
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1
jq - V Z nb(r7 q)hwb,qvb,q - X
b,q
1 N
= Z ny(r, Q) hwp qVbq - X (2.6)
b,q
1 N2 anBE(wb, ,T) AT
v ;Tb’qhwb’q Voo 75
Comparing Eq. (2.6) with Eq. (1.10), thermal conductivity can be evaluated as
1 .2 Onpe(Wh g, 1)
K= bzq Th.qMWhq (Vb.q - X) a—Tq' (2.7)

Onpg(wp,q,T)

Here the term hwy q— 5+

is also known as the specific heat capacity for the phonon

branch and wave vector.

2.2 Phonon Monte Carlo (PMC)

Monte Carlo (MC) methods use computer-generated random numbers to simulate a com-
plicated system and obtain statistical results. PMC uses MC to treat the scattering term in
the PBTE. PMC is a semiclassical method as in that phonons are point-like and have specific
locations as well as momenta. An ensemble of phonons with certain distribution are tracked
in real space in the simulation domain: they drift according to their group velocity, they
reflect from domain boundaries when they reach them, and they encounter scattering events
according to their scattering probabilities. Two ends of the simulation domain are connected
to slightly different heat baths to develop a temperature gradient as well as heat flux inside
the domain. Thermal conductivity is then extracted from the 1D Fourier’s law. Considering
the setup, the typical simulation domain in PMC is a cuboid (in 3D) or a rectangle (in 2D).
An advantage with PMC is it is straight forward to include nontrivial geometries to these
simulation domain such as edge structures or internal defects.

In terms of simulation capability, PMC is a middle ground between the simplistic RTA
and the complicated full atomistic simulations. With the stochastic treatment of scattering

events, PMC provides a much more realistic description of phonon transport than the RTA
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and thus gives more accurate results. Further, the geometry of the structure can be treated
explicitly rather than phenomenologically as in RTA. On the other hand, without describing
explicitly and being limited by the underlying lattice of the material, PMC can simulate
relatively large (~ pm in size) without too much computational burden. In the phonon
ensemble, a simulation particle can represent multiple phonons, which further reduces the
storage and computation requirements.

In PMC, the phonon ensemble evolves according to the PBTE with time discretized into
small steps. The phase space distribution ny(r,q,t) is obtained from a snapshot of the
histogram at a certain time step. The initial distribution is often assigned as the equilibrium
one npg(wp,q, I') since we are again not too far from equilibrium. At each step, phonon drift
with their group velocities, which are obtained from their dispersion relations. Phonons can
then scatter and change accordingly at the end of each step. The drift-and-scatter loop
continues until the end of the simulation. Figure 2.1 shows a typical PMC simulation flow
where the dashed box encloses the transport kernel.

To implement PMC as shown in Fig 2.1, a few things need to be considered. First and
foremost, this scheme implicitly assumes that phonons will encounter at most 1 scattering
event in a step and scatter always comes at the end of the step. Both these assumptions
require the time step to be sufficiently small (relative to the typical phonon relaxation time)
to be valid. Secondly, one need the knowledge of phonon dispersion relation and phonon DOS
for the branches of interest to calculate the proper group velocities and generate the initial
equilibrium distribution. Usually only acoustic phonon branches are included in PMC and an
isotropic approximation to the dispersion can be adopted to simplify the simulation.[45, 46]
When phonon transport is anisotropic, full dispersion needs to be considered to capture the
special behavior.[47, 37] The reinitialization step is added here in an effort to conserve energy
on an average sense without violating the phonon distribution. Last but not the least, one
need to come up with some criterion to terminate the simulation. Because of the stochastic

nature of the method, any result from PMC needs to be averaged over some period of time
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Figure 2.1: Flowchart of the PMC simulation. Transport kernel is inside the dashed box.
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after the system reaches steady state. A detailed implementation of a 2D PMC with full

dispersion is described in Sec. 3.

2.3 Molecular Dynamics (MD)

Molecular dynamics (MD) is a classical atomistic simulation technique where the atoms
making up a material are explicitly tracked in real space. In semiconducting materials where
phonons dominate the thermal transport, it is suitable to use MD to describe thermal trans-
port at a finite temperature. In a MD simulation, time is also discretized into small steps.
The size of the step should preferably be larger to allow for the capability of longer simulation;
on the other hand, it also needs to be small enough for the system properties to converge.
The trajectory of an atom is predicted with an empirical interatomic potential (EIP), which
has an analytical form. The most simple interatomic potentials accounts for only two-body
interaction while more sophisticated potentials can include many-body interactions. The
choice of potential ultimately dictates all results obtained from a MD simulation because
everything depends on it: the minimum point in the potential determines the equilibrium
lattice constant and the cohesive energy, the gradient of the potential gives the force ap-
plied to an atom, the second derivative of the potential governs the phonon dispersion, and
higher orders derivatives of the potential describes the anharmonicity in the material. As a
result, it is important to choose a potential that at is accurate at least up to the 3™ order
to accurately describe thermal conductivity using MD.

Given that we have chosen a proper potential, there are two main techniques to predict
thermal conductivity using MD. The equilibrium MD (EMD) approach keeps the system
equilibrated at the given temperature and uses the Green-Kubo (GK) formula to predict
thermal conductivity depending on how fast instantaneous heat fluctuations dissipates in

the system. In a 3D isotropic case,

oo L[S0, o8
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where S(t) is the instantaneous heat flux calculated from atom velocities and local potentials
and (S(¢)S(0)) is the heat flux autocorrelation function (HFACF). In anisotropic cases,
thermal conductivity along certain directions can be calculated from the HFACF along that
direction.

The non-equilibrium (NEMD) approach has a similar simulation domain to that of PMC.
Two ends of the simulation domain are equilibrated at slightly different temperatures to
induce a temperature gradient and a macroscopic heat flux. The Fourier’s law (Eq. (1.10))
is then applied to extract the thermal conductivity along the direction where heat is flowing.
Since the Fourier’s law is directly used in predicting thermal conductivity, NEMD is also
referred to as the direct method. In implementing NEMD), one can either impose temperature
difference to induce heat flux or impose heat flux to induce temperature difference, the latter
is also sometimes referred to as the reverse NEMD (RNEMD). Figure 2.2 describes the typical
simulation domain of NEMD with fixed and periodic boundary conditions in 3D.

Apart from predicting bulk thermal conductivity, NEMD is also capable of predicting
thermal boundary resistance (TBR). Figure 2.3 depicts a typical simulation domain for
extracting TBR. At steady state, heat flows from material 1 to material 2 and there will be
an abrupt temperature drop at the interface between two materials because of the TBR. With
the knowledge of temperature drop AT and the heat flux j,, TBR can then be calculated

from

AT
g

Compared to other techniques to describe TBRs, NEMD method has the advantage that

R, (2.9)

one can explicitly add structure such as atom mixing or roughness to the interface easily.
This is very important to study the behavior of realistic interfaces.

As has briefly touched on previously, two main drawbacks of using MD for thermal
transport are: (1) the quality of the results depend on the quality of the choice of interatomic
potential and (2) size of the simulation domain is small as limited by the number of atoms,
thus size effect might emerge. In EMD, the size effect primarily comes from the fact that the

system does not support phonon modes with wavelength longer than twice the system size,
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Figure 2.2: Simulation domain of NEMD method for extracting thermal conductivity
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thus the contribution from these phonons are cutoff. In NEMD, on the other hand, the size
effect is likely the result of partial ballistic thermal transport along the heat flux direction.
A lot of effort has been devoted to developing potentials that accurately capture the thermal
properties and eliminating size effects in both EMD and NEMD simulations. The thesis has

more details on these in Sec. 1.
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Chapter 3

Thermal Conductivity of Graphene Nanorib-
bons (GNRs): 2D PMC with Full Dispersion

This chapter details the 2D PMC solver we developed to extract thermal conductiv-
ity in 2D materials with anisotropic thermal transport properties. While we use graphene
nanoribbons (GNRs) as the sample system, the technique developed here is suitable for any
2D material whose thermal transport is largely semiclassical [48, 49]. The contents of this

chapter closely resemble Ref. [37].

3.1 Phonon Properties of Graphene

A main purpose of this work is to accurately describe the size-dependent thermal conduc-
tivity of graphene measured in experiment by Chen et al.[7, 9] and Xu et al.[8] in experiments.
As a result, we are interested in GNRs on the larger side where the confinement has little in-
fluence on phonon properties. To simplify things without losing accuracy, we use the phonon

properties of bulk graphene in the simulation.

3.1.1 Phonon Dispersion with Dynamical Matrix Method

Phonon dispersion relation of graphene is accurately captured with the empirical dynam-
ical matrix method including fourth-nearest-neighbors (4NN) proposed by Saito et al.[50].
Recall Eq. (1.4) and Eq. (1.5) for describing the atom motion and displacement. Although
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Figure 3.1: Dispersion curves in the 1BZ for the TA, LA, ZA, TO, LO, and ZO phonon
branches in single-layer graphene, calculated from the empirical dynamical matrix method

including 4th nearest neighbors.
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Table 3.1: Force constants for 2D graphene in units of 10 N/m. The subscripts r, ti, and to

refer to the radial, transverse in-plane, and transverse out-of-plane directions, respectively.

graphene is a 2D material, atoms in suspended graphene can move along the direction per-
pendicular to the graphene plane. The force constants for radial, transverse in-plane, and
transverse out-of-plane directions for the nth nearest neighbor (¢!, ¢§?), and ¢\, respec-
tively) are given in Table 3.1.[50] As there are two atoms per basis in graphene, we get 6
phonon branches. Apart from the typical TA, LA, TO, and LO branches, the out-of-plane
modes are given special names as the flexural acoustic (ZA) and the flexural optical (ZO)
modes to signify that the motion is perpendicular to graphene plane. Figure 3.1 displays all
6 branches obtained from our calculation in the 1BZ. As can be confirmed, optical branches
have higher energy and are relatively dispersionless, thus making negligible contributions
to the thermal conductivity. One other observation is that ZA branch behaves differently
than TA or LA branch (or any other typical acoustic branch): instead of having a linear
dispersion close to the I point (q = 0), ZA branch has a quadratic dispersion. This behavior
origins from the fact that it is associated with motion along the direction where the lattice
does not extend. The direct result of this is a reduced sound velocity for ZA phonons and a

large DOS near zero energy (details in Sec. 3.1.2).
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3.1.2 Phonon DOS from Full Dispersion

In a 2D reciprocal lattice, Eq. (1.9) reduces to

1 [ dL,
D) = 7 / e (3.1)

Here the DOS is normalized per unit area and subscript b represents a certain branch. Ly,
denote the length of the isoenergy curve for branch b and energy hw. With full dispersion,
we can only obtain the energy and group velocity information at discrete reciprocal lattice
points, so Eq. (3.1) must be evaluated numerically. The method proposed by Gilat and
Raubenheimer[6] is modified here for 2D where the 1BZ is partitioned into grids and the
isoenergy curve inside a grid is assumed to be a straight line segment while the group velocity
inside the grid is constant. The associate error can be arbitrarily small as we reduce the
grid size. Figure 3.2 shows the calculated phonon DOS for the three acoustic branches to be
included in the PMC solver. Note that the ZA phonon DOS is overwhelmingly larger than

that of TA and LA at very small energy range, making it the most numerous among all.

3.2 Single Phonon Generation

From Sec. 1.1.3, we now have all the information needed to generate an ensemble of
phonons in graphene following the equilibrium BE distribution at a given temperature 7T'.
In practice, we generate one phonon at a time. To uniquely identify a phonon, we need to
specify its energy fiw, branch b, wave vector q, and group velocity vy, ,. Note these properties
are not entirely independent of each other: the group velocity is fixed once the other three are
fixed. To generate a phonon, we first determine the environment temperature 7' (details in
Sec. 3.3 and then choose hw, b, and q in the specified order. Figure 3.3 shows the generating

process of a single phonon; arrows with dice next to it indicate random numbers are involved.
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calculated following the Gilat-Raubenheimer method.[6]
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3.2.1 Choosing Energy

In choosing hw, we numerically inverse the cumulative distribution function (CDF) of w.

The total number of phonons with energy within (0, iw) is at temperature T is
NW <w) = Z/ npg(w’, T) Dy (W' )dw'. (3.2)
b 0

To obtain the CDF, we normalize this with the total number of phonons in the system
N(W' < wmax). In practice, we divide (0,wpax|) into Ny intervals separated by a small
frequency Aw; the central frequency in the ith interval is w. ;. In addition, we use a branch-
dependent phonon weight W}, (one simulation particle represents W}, real phonons) to save

computation time. With everything in place, we form a CDF table with Ny, entries

2= 2 (nr(We,j, T)) Dy (we ;) / Wh
F{(T) = = - (3.3)
(npE(we j, 1)) Dy (we,5) / Wh

To complete the table, we set Fy(7) = 0, meaning that all phonons should have positive
energy. It is easy to verify F;(T) € [0, 1]. Figure 3.4 is a typical CDF for graphene at 300 K.

To choose phonon frequency, we draw a random number R; and look for the interval ¢
satisfying F;_1 < R; < F; with the bisection algorithm. We decide the frequency of this
phonon falls in the ¢th interval and the actual frequency is determined with another random

number Ry, w = we; + (2Ry — 1)%.

3.2.2 Choosing Branch

After an w is chosen, we draw a third random number R3 to choose the phonon branch
b. The probability of a phonon with w being in branch b is proportional to Dy(w), therefore

we have )

TA, Rg < fTA(W)

b= LA, fTA(w) < Rg < fTA(w) + fLA(w) (3'4)

ZA, otherwise.

\
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Figure 3.4: Cumulative distribution function of phonon frequency at 300 K. The frequency

range w € [0,2.5 x 10"]rad/s was divided into Ni,; = 2500 equal intervals in the numerical

calculation.



29

where f,(w) = D“;V(w) /> D“;’['/S)) is the normalized probability of being in branch b for the
b/

b

chosen frequency w with the weighting taken into consideration.

3.2.3 Choosing Wave Vector

After the phonon energy and branch are chosen, we are now limited to a specific isoenergy
curve inside the 1BZ. We use a set of lookup tables together with the rejection technique to
find a proper q for the chosen phonon with energy hw and branch b, the detailed algorithm
is documented in Appendix A. Note that we do not explicitly use q in the simulation; it
serves as a bridge to help us find the group velocity vy, 4(q) (in general not parallel to q).

After obtaining vy, 4(q), the phonon generation process is complete and the generated
phonon is put into a random location r inside a certain cell (more details in Sec. 3.5.1). A
complete phonon in our simulation has the following properties: w, b, vy, ,(q), and r; these

properties are maintained throughout the simulation.

3.3 Simulation Domain

The simulation domain is a 2D ribbon with width W and length L. We are mostly
interested in the thermal transport in the two highly symmetric GNR orientations: AGNR
and ZGNR. Figure 3.5 shows the schematic of an AGNR (top) and a ZGNR (bottom),
respectively. Besides these two edge structures, a ribbon with perfectly smooth edges is used
to recover the bulk graphene limit in the simulation.

As mentioned in Sec. 2.2, two ends of the simulation domain are held at slightly different
temperatures T}, (hot end) and 7T, (cold end). Following previous PMC work [51, 52, 53, 54,
55, 56|, the simulation domain is divided into N, cells along the length direction (longitudinal
direction) and each cell i is assumed to be at a local equilibrium temperature 7;. In a typical
simulation, AT = T}, — T, is 20 — 40 K and N, varies from 50 to 100, depending on the
ribbon length. We make sure that the temperature drop in each cell is small (% < 0.5 K)
so that the local equilibrium approximation is valid. In each simulation, we initially assign

temperatures in each cell so the temperature profile inside the ribbon is linear.



>
; A

30

Figure 3.5: Schematic of the simulation domain of width W and length L. (Top) Armchair

GNR. (Bottom) Zigzag GNR.



31

3.3.1 Boundary Conditions and Contacts

Since the simulation domain is finite, phonons might drift out and end up outside its
boundaries. In our simulations, the boundaries along the longitudinal direction are reflecting
boundaries: a phonon is reflected back inside if drifting into these boundaries. When the
boundaries are perfectly smooth, all the reflections are specular, thus a ribbon with any
width would restore the thermal conductivity of an infinite width ribbon.

The boundaries along the transverse direction (or at the two ends) are connected to
heat baths and any phonon coming in is thermalized by the contact. The easiest way to
implement the thermal contacts is to make the first cell at each end a “black-body cell”.[45]
After the drift and scattering process, all the phonons inside these two end cells or left from
either end of the ribbon are deleted. At the end of each step, a new ensemble of phonons

are generated according to the appropriate reservoir temperature to fill the end cell.

3.4 The Transport Kernel

The transport kernel is the main loop of the PMC solver. Time is discretized into small
steps At; the criterion for “small” is elaborated in Sec. 3.4.3. As time evolves, the phonon
ensemble will first reach steady state and then stay at the steady state until the end of the
simulation. Recall the Fourier’s law (Eq. (1.10)), we are most interested in the heat flux
Jq- The instantaneous value of j, can be obtained by sitting at a cell boundary and count
the energy taken across the boundary by all phonons at a certain time step. To detect the
steady state, we take advantage of the fact that heat flux going into the ribbon must be the
same as that coming out of the ribbon (so the energy inside stays constant). We compare
the average heat flux coming in and going out at the two ends and claim steady state once
their values are within 0.1% of each other. As briefly mentioned in Sec. 2.2, after steady
state, we keep recording the instantaneous j, at chosen cell boundaries over a period of time

(~ 1 ns) to get a stable averaged heat flux value.



32

3.4.1 Phonon Drift and Edge Scattering

In the current algorithm, each phonon drift according to their own group velocity for the

full time step in each loop. The target phonon position at the end of the step is
Tend = Fstart + VgAt. (35)

In case of the perfectly smooth edge ribbon, updating the end location of the phonon is
straightforward. If re,q falls inside of the simulation domain, r.,q is updated directly; oth-
erwise, the time 0t when first contact happened is calculated by setting the y component of
renq to that of the boundary being crossed. Then the new starting location is updated as
the crossing location, the y component of the group velocity is flipped (vy, = —vy,4), and
the remaining drift time is updated as At — dt. The process is repeated until the drift time
reduces to zero.

In case of the GNRs with real-space edges, we need to pay special attention to the
edge scattering events. Although both the structures are perfectly periodic, these edges
effectively introduce back-scattering of phonons and will reduce the thermal conductivity,
similar to rough edges. In treating edge scattering, we need to make sure that: (1) the
old phonon scatter into a legit new phonon according to the phonon dispersion relation, (2)
the scattering is elastic (new phonon has the same energy as the old phonon), and (3) the
distribution of phonons coming in the boundary should be the same as that going out. To
satisfy these conditions simultaneously, we specifically chose edge-structures that possess the
same symmetry as the phonon dispersion, therefore by simply specularly reflect a phonon at
the boundary, all the requirements are automatically satisfied.

Even the boundary scattering is still specular, it is more complicated with real-space
edges because of the shadowing effect. Figure 3.6 illustrates this effect in both armchair and
zigzag edge structures. According to Eq. (3.5), the target end position is at point A, which
is inside the ribbon. It is tempting to update the end location directly to A as previously
done in the perfectly smooth ribbon. However, with closer analysis, an edge-scattering event

should have happened at point B and the real end point is A’. To account for this effect,
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a “soft wall” (red dashed line in Fig. 3.6) is introduced. The phonon drift will always
stop whenever it hit the “soft wall”, then we calculate the time it takes to get to all the
(real) boundaries close by. The shortest time corresponds with the location where boundary
scattering happens. This is repeated until the phonon leaves the region enclosed by the “soft

wall” and the real boundaries.

3.4.2 Phonon Scattering Rate in Graphene

With the conditions we are interested in for suspended graphene, the following scatter-
ing mechanisms are considered: three-phonon (Umklapp and Normal), isotope, and grain

boundary scattering. The total scattering rate for a given w and b follows
T W) =7 (@), (3.6)

where 7, !'is the total scattering rate and 7';]31 is the contribution from the ith mechanism.

3.4.2.1 Phonon-Phonon Scattering

Phonon-phonon scattering dominates in the temperature range of our interest (300 — 600
K) for suspended graphene and three-phonon interactions are the most important form
of phonon-phonon scattering in thermal conductivity calculation.[57, 47] As mentioned in
Sec. 1.2.2, there are the non-resistive N process and the resistive U process. Considering
the 3-phonon interactions explicitly is too computationally expensive and the accuracy still
depends on how often we check the positions and the resolution of the dispersion. Therefore,
we follow previous work [51, 45, 46] and treat the 3-phonon interactions as an effective
inelastic 2-phonon process through a scattering rate[47]

o) = h—%ngTe_@b/ST (3.7)
byU N M@vab ' ’

Here vsy, is the mode-dependent sound velocity, determined from the average slope of the

dispersion curve near the T point (vsra = 1.17 x 10* m/s, vspa = 2.19 x 10 m/s, and
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(b) A

Figure 3.6: Illustration of the shadowing effect in treating boundary scattering in (a)
armchair and (b) zigzag edges. By direct calculation, end-point location A is inside the
ribbon. However, an edge-scattering event should have happened at point B and the real

end-point location should be A’.
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Usza = 2.28 X 103 m/s). M is the average atomic mass in graphene and Oy is the mode-
specific Debye temperature obtained from

o 51 [w?Dy(w) dw

e; = i
P 3kE [ Dy(w) dw

(3.8)

In our case, Eq. (3.8) is numerically evaluated and the Debye temperature for three branches
are Oa = 1126.18 K, O, = 1826.39 K, and Ozx = 623.62 K, respectively. The strength
of the scattering process is also controlled by the Griineissen parameter 7, here we take
YLA = 2, YTA = %, and yza = —1.5.[47] The first half of the rate is the standard Umklapp
interaction strength [57] and the exponential term adds the effective contribution from the

redistribution via the N processes.

3.4.2.2 Isotope Scattering

The essence of isotope scattering is mass-difference scattering, thus the rate of which can
also be used to treat impurity scattering. We deal with pristine graphene without impurities,
so phonons scatter from the mass difference due to the naturally present isotopes. For
carbon, the natural abundance is 98.9% for 2C and 1.1% for *C. The mode-dependent
isotope scattering rate is[58]

™
Thp(w) = EFQOW2Db(W), (3.9)

where

D= fi(l—M;/M) (3.10)

is the mass-difference constant and f; is the abundance of the ith isotope. 2y ~ 2.62 x
1072% m? is the average area occupied by one carbon atom. In our simulation, we consider
both natural abundance and the isotropically modified graphene samples. As a matter of
fact, from Sec. 1.1.2 we know the percentage of isotopes would also slightly modify the
dispersion relation through the average atomic mass M. Note this does not change the
general shape of the dispersion, but we use the modified dispersion to generate tables for

more accuracy. Isotope scattering is an elastic process.
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3.4.2.3 Grain Boundary Scattering

Single-crystal graphene samples are obtained through exfoliation, which is not scalable.
Chemical vapor deposition (CVD) on transition metal substrates such as copper has been
used to synthesize good-quality large-area graphene,[59] yet CVD-fabricated graphene is
always polycrystalline so phonons scatter from the grain boundaries, which yield as extra

resistance. The expression for the grain-boundary scattering rate[60] is

_ v -
T = =) (3.11)

It is intuitive that the rate should be proportional to the phonon group velocity and in-

1

—— — 1 describes the influence
tap(w)

versely proportional to the average grain size lg. Z(w) =
of transmission coefficient tgp(w) at the boundary. This matters because when a phonon
hits the grain boundary, it could either transmit as if nothing was there or be reflected, and
the probability of transmission is dependent on the energy, represented by tgp(w). One can
get the transmission coefficient from first principle calculations, but usually, for simplicity,
we ignore the w dependence of the transmission, and Z(w) reduces to a coefficient describing
the influence of the average transmission. We treat the grain boundary scattering as an
elastic scattering process just like isotope scattering. Another reason why we could ignore
the w dependence is that, with the CVD technique, the average grain size in polycrystalline
graphene could be quite large and the grain boundary scattering rate is fairly small compared
to other intrinsic scattering events. This is also why CVD graphene shares a lot of extraordi-
nary properties of exfoliated graphene in experiment.[61, 62, 63] A recent account of phonon

transport in polycrystalline suspended graphene, considering the grain-size distribution, can

be found in Ref. [64].

3.4.3 Phonon Scattering and Time Step

In our transport kernel, edge scattering events are explicitly considered in the drifting
step (Sec. 3.4.1) and other mechanisms are considered in scattering step. As mentioned in

Sec. 2.2, we consider at most one scattering event at each step, the probability of scattering
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after time At is [32]
pb,scat(w) =1~ eXp[_At : bel(wﬂ. (312)

Since we use a single time step for all phonons, it must be small enough so that the average
probability of scattering for all phonons, Pseas, is sufficiently small. In practice, we tested
out several choices and found that Pey < 1% is a good criterion for choosing the time step
At. As a result, the time step would vary for simulations at different temperatures, as the
rates are temperature dependent. For suspended graphene at 300 K, we use At = 0.1 ps.

Upon completion of the drift routine in each step, we calculate for each phonon the
probability of having been scattered during the previous step from Eq. (3.12). Note that
scattering rates are temperature-dependent, so we should update the temperature in each
cell after the drift before calculating the probabilities. We then use a random number 7; to
decide whether the phonon would actually scatter. If r; > py, cat, nothing happened and we
move on to the next phonon. If r; < py, gcat, the phonon scattered and we go on to choose the
mechanism. As At is small, the probability for mechanism ¢ is proportional to its scattering
rate

Dbscati(w) = 1 — exp[—At - Tl;il (w)] ~ At - Tb_’z-l (w). (3.13)

Similar to choosing phonon branch in Sec. 3.2.2, another random number r5 to choose the
mechanism.

Once the mechanism is chosen, we scatter the phonon according to whether the scat-
tering event is inelastic (phonon-phonon scattering) or elastic (isotope and grain-boundary
scattering). For elastic process, we keep the phonon branch and energy, but randomly find a
new wave vector and group velocity according to the dispersion relation following the same
algorithm as in Sec. 3.2.3. For inelastic process, we replace the phonon with a random
new phonon from the phonon pool. We make sure that phonons being replaced and added
have the same distribution, so the energy is conserved collectively among the ensemble. A
caveat is that this distribution is different from the equilibrium BE distribution we used in
Sec. 3.2.1, because the scattering rate is energy-dependent and phonons with large energy

has a higher probability of being replaced. As a result, we need a modified CDF to generate
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phonons after the phonon-phonon interaction:

N;(T) - pou(we,;)

2

Froai(T) = ) (3.14)

N;(T) - pou(we,;)

'MZ i

Il
—

3

j
where N;(T) = (npr(wej, 1)) Dy(we;)/Wh is the average number of simulation particles in
the jth energy interval and pyu(w. ;) is the probability of a phonon in branch b suffering
from phonon-phonon scattering during the step. A typical modified CDF is shown in Fig. 3.7
for 300 K and At = 0.1 ps.

3.5 Energy Conservation

At steady state, the total phonon energy inside the simulation domain must be conserved.
Since we are deleting and generating phonons at each step (thermal contacts and inelastic

scattering), we need to make sure energy is conserved.

3.5.1 Initialization

The initialization process refers to filling a cell with phonons according to an assigned
temperature T'. It happens before we enter the transport kernel and at the thermal contacts
each step (Sec. 3.3). For a cell with area A and temperature T, the expected total phonon
energy is

Erarger = AZ / Dy(w)(npg(w, T)))hw dw. (3.15)

As we generate phonons one by one and put them into a random location inside the cell, we

keep track of the phonon energy already added to the cell
Ecurrent - Z hwinm (316)

where ¢ runs through all the phonons inside the cell. We call the maximum energy carried
by a numerical particle Fy.x = max(hw;Wy,). Since we have no control over the energy of

phonon to be generated (Sec. 3.2), we cannot meet E;areer €xactly. Instead, we stop generating
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phonons when

Ecurrent € [Etarget - Emax/za Etarget + Emax/Q] (317)

while keeping track of
Eresidue = Etarget - Ecurrent~ (318)

The next time we want to enforce energy conservation in the cell, the residue energy is added

to the calculated target energy
Etarget = EtC:gget + Elresidue- (3.19)

3.5.2 Reilnitialization

The reinitialization process happens after the scattering step. The way we treat inelastic
scattering (Sec.3.4.3) events only conserves energy on an average sense when lots of phonons
are being replaced. However, sometimes scattering events are rare and it takes a long time
to achieve steady state. Reinitialization is added to expedite the process; the idea is similar
to that in the initialization process (Sec. 3.5.1). Before scattering, the exact total energy

inside a cell is recorded as Elpescat, Which makes the target energy after scattering
Etarget = Eprescat + Eresidue~ (320)

After scattering, we compare the actual cell energy Euperscat With Eiarget. If Easterscat 1S
too large, we randomly choose phonons one by one inside the cell to delete. If Fyferscat 1S
too small, we generate new phonons (from the original CDF) to add to the cell. Both the

deletion and addition ends when
Ecurrent S [Etarget - Emax/2a Etarget + Emax/2] ) (321)

and the new residue energy is updated afterwards.
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3.6 Simulation Results

The goals we want to achieve with the 2D PMC solver are: (1) accurately describe ther-
mal conductivity of graphene, (2) capture the experimentally measured size-dependent ther-
mal conductivity or the ballistic to diffusive crossover, (3) understanding why the crossover
exists and predict the thermal conductivity at the diffusive limit, and (4) study orientation-
dependent thermal conductivity of GNRs. In this section, we show the simulation results

for all the entires mentioned.

3.6.1 Reliability Test

A good reliability test for PMC is a comparison of the steady-state temperature pro-
file between the diffusive and ballistic limits. Purely diffusive transport should lead to a
linear temperature profile while ballistic transport would result in a constant temperature
Thallistic = (w)l/ * inside the ribbon, with abrupt changes at the two ends.[65] For situ-
ations in between — the quasiballistic regime — the temperature profile is expected to have
both features: a linear drop inside the ribbon, with an abrupt change at the two ends. We
accurately capture all three regimes in the PMC simulation: calculations in the diffusive
and ballistic limits are presented in the inset to Fig. 3.8, while the quasiballistic regime is
depicted in Fig. 3.9).

Further, in order to validate our assumption of local equilibrium, especially in the ballistic
regime, we made a phonon distribution histogram inside the ribbon in steady state. The
normalized histogram (main panel of Fig. 3.8) falls right on top of the theoretically calculated
BE distribution, proving that our local equilibrium assumption stands even in the ballistic
limit. Therefore, the PMC algorithm is reliable from the ballistic all the way to the diffusive
regime. In the quasiballistic regime, we extend the definition of thermal conductivity and

use the the slope of the linear region inside the ribbon as the gradient VT in Eq. 1.10 to

calculate the “size-dependent” thermal conductivity.
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Figure 3.8: (Main panel) Normalized phonon distribution histogram in the ballistic
transport regime compared with the Bose-Einstein distribution. The histogram is obtained
by running the simulation with all the scattering mechanism turned off and recording the
energies of all the phonons inside the GNR after the steady state is established; 7, = 315 K
and 7. = 285 K in this case. The Bose-Einstein distribution is obtained based on
temperature Thanistic = 301.12 K inside the ribbon. (Inset) The calculated temperature
profile inside the ribbon in the ballistic limit. The linear profile is also depicted for

comparison.
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regime. Here the temperature at two ends are T}, = 315 K and 7, = 285 K and the number

of cells N, = 60.
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3.6.2 Length-Dependent Thermal Conductivity

We look at the thermal conductivity of graphene and GNRs from 300 K to 600 K, the
range where most experiments are carried out.[66, 67, 68, 69, 7, 9, 70, 8, 71] Thermal conduc-
tivity of suspended GNRs generally depends on both width and length.[47, 7, 8] The width
dependence comes from the relative importance of edge scattering to internal mechanisms;
for wide enough GNRs, thermal conductivity no longer depends on the width.[70, 8] We use
perfectly smooth boundary GNRs with small width to mimic transport in very wide GNRs

where there is no width dependence in their thermal conductivity (Sec. 3.3).
3.6.2.1 Comparison with Experiment

Chen et al.[7] fabricated large-area graphene using the CVD technique and transferred
it onto a low-stress silicon-nitride-membrane substrate, with several holes of diameters Dy,
ranging from 2 to 10 pm. Thereby, they obtained suspended circular graphene samples of
given diameters and measured their thermal conductivities using Raman spectroscopy. There
is no edge roughness and the characteristic length associated with the heat-flow direction
is the hole diameter. We do not simulate circular samples here, but we can set the ribbon
length L to match Dy, and the resulting thermal conductivity should be comparable to the
experimental data. In Fig. 3.10, we present the calculated thermal conductivity for GNRs
with lengths comparable to the sample diameters in the experiments of Chen et al.[7] As
the experiments were performed on CVD-grown, polycrystalline graphene, we have included
grain-boundary scattering in the calculation. The simulation results agree well with the
measurement from 300 K to 600 K and for various sizes. Based on our simulations, phonon
transport in all these samples is still in the quasiballistic regime: the thermal conductivity
monotonically increases with increasing sample length. Chen et al. observed a size depen-
dence for samples from 2 to 8 um, but, owing to a large uncertainty in the measurements,

they could not accurately extract a monotonic dependence over the size range.
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Figure 3.10: Thermal conductivity of graphene for different lateral dimensions, as obtained
by Chen et al.[7] in the circular geometry (symbols) and from our simulation in the

rectangular GNR geometry (lines).
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3.6.2.2 Ballistic-to-Diffuse Crossover

Length-dependence of thermal conductivity comes from the relative magnitude of the
phonon mean free path (MFP) A and the ribbon length L; for long enough GNRs, transport
would be diffusive and the length dependence would vanish. Ghosh et al.[72] estimated the
MFP of graphene to be A ~ 800 nm near room temperature. However, in our simulations,
we find that A for phonons in different branches and energy ranges from a few nanometers all
the way up to hundreds of microns. Figure 3.11 shows the cumulative distribution function of
phonon mean free path A for suspended graphene at 300 K. Note that about 20% of phonons
have A > 100 pgm and more than 10% have A > 200 um. Figure 3.12 shows the calculated
thermal conductivity of wide GNRs over a range of lengths L at room temperature. The
thermal conductivity keeps increasing with increasing length up to L ~ 100 pm, which is
to be expected considering that nearly 20% of phonons have a mean free path longer than
that (see Fig. 3.11). This length is larger than any of the measured samples, therefore,
all the existing experiments on suspended graphene[66, 68, 67, 69, 7, 8] were carried out in
the quasiballistic regime, so the maximal thermal conductivity of suspended bulk graphene
could be higher than what experiments indicate.

This simulation captures the ballistic-to-diffusive crossover of phonon transport in sus-
pended graphene.[70] In the purely ballistic transport regime, the thermal conductance G
tends to a constant, while in the purely diffusive transport regime, the thermal conductivity
k is constant. G and k are related through G = m% where A is the cross-sectional area per-
pendicular to the heat-flow direction and L is the length. We denote the constant thermal
conductance in the ballistic regime as Gy and the constant thermal conductivity in the

diffusive regime as kgqg. As L — 0,

h

R = Gball c . (322&)

I

As L — oo, we have

K — Kqiff- (322b)
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Figure 3.11: Normalized cumulative distribution function of phonon mean free path for
suspended graphene at 300 K. About 20% of phonons have a mean free path greater than
100 pm.
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Figure 3.12: Length-dependent thermal conductivity of wide GNRs at room temperature,
obtained from the PMC simulation. Dashed line is a guide for the eye. (Inset) Comparison
of normalized thermal conductivity from our simulation (red dots) and the experimentally
obtained data of Xu et al.[8] The blue curve shows the thermal conductivity estimated with
maximal contact resistance, the green one corresponds to the value with no contact

resistance.
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At the left end of Fig. 3.12, thermal conductivity varies almost linearly with length, indicating
ballistic transport. Gpay of GNR depends on width,[73, 74, 75] and from our simulation we
extract the room-temperature ballistic conductance per unit cross section as Gpay /A ~ 5% 10°
W /m?K, which is close to the theoretical value of 5.28 x 10° W/m?K obtained by Munoz,
Lu, and Yakobson.[74] At the right end, thermal conductivity does saturate at very large
lengths (around 100 pm at room temperature). For the quasiballistic region in between,
it is often assumed that the ballistic and diffusive transport channels can be connected “in
series”, which would give k! = ryf + GphA/L.[70] We find it impossible to fit the data
using this expression; any such fit that is reasonable at low L drastically underestimates the
diffusive limit. A dashed curve numerical fit in the main panel of Fig. 3.12, to guide the
eye, follows Inkx = 7.6 + 0.3In L — 0.013(In L)?, i.e. x ~ 1998L%3[~0-013(nL) Tt ig clear that
this fit is poor in the diffusive limit, as it does not saturate, but may be appropriate for a
number of experiments with GNRs shorter than 100 pm.

Recently, Xu et al.[8] observed a length dependence of thermal conductivity in their sus-
pended wide GNR samples. However, their measured thermal conductivity is much smaller
than our simulation results as well as other experimental ones;[7, 9] the offset is likely related
to sample-preparation specifics. In order to compare with their length-dependence trend, we
scaled their data and ours to 1 at the maximal length they measured. The inset to Fig. 3.12
shows a comparison between the scaled data from our PMC simulation and the experiment
of Xu et al.[8] (experimental results are presented here via best quadratic fits to the data,
green and blue curves). The green line and the blue line are the estimated maximal and

minimal possible thermal conductivities, and our simulation falls right in between.

3.6.3 Isotope effect

Thermal conductivity of graphene could be largely influenced by isotopes. Chen et al.[9]
measured thermal conductivity of graphene with different **C compositions. From the sim-
ulation point of view, phonon dispersion, DOS, and scattering rates all change as the abun-

dance of 13C changes. We choose GNRs with L = 2.8 ym following experiment.[9]
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Figure 3.13 shows the temperature dependence for four different compositions from
experiment[9] compared with our PMC simulation results. We are able to capture the
composition-dependence trend: thermal conductivity with 50%'3C is the lowest because the
two isotopes are equally mixed, giving rise to maximal isotope scattering. In general, our
simulation data agrees well with experiment in a large temperature and 3C abundance range.

Figure 3.14 shows a direct comparison of thermal conductivity versus *C composition at
a fixed temperature (7' = 380 K). Our results are within the measured range and are even
closer to the experimental data than the molecular dynamics simulation results reported by

Chen et al. themselves.[9]

3.6.4 Width-dependent thermal conductivity

Perfectly periodic edge structures have been achieved in practice for both armchair|76,
77, 78, 79] and zigzag|76, 77, 79] orientations. Both theoretical[80] and experimental[81]
work show the perfect armchair edge to be stable. The zigzag edge is relatively stable,
though theory predicts that the zigzag edge can reconstruct to a pentagon-heptagon shape
and become more stable.[80] Experiments showed that reconstructions in both direction
(from all hexagon to pentagon-heptagon and from pentagon-heptagon to all hexagon) are
spontaneous under the experimental environment conditions.[81] It was also shown that the
bond length and angle between bonds at the edges may differ slightly from those inside the
ribbon.[80, 81] We work with perfect edges because of they share the symmetry of graphene
dispersion (Sec. 3.4.1) For simplicity, we use the equilibrium C-C bond length as the length
of our edge segments and neglect the bond-angle changes.

In studying the width-dependence, we set the L = 10 pum for all the GNRs. Figure 3.15
shows the width dependence of thermal conductivity for both AGNRs and ZGNRs at 300
K. We see that the thermal conductivity for both orientations varies greatly with width,
approaching the smooth-edge value for the same length in the wide-GNR limit. The dif-

ference with respect to orientation is minute here at room temperature.  The influence
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Figure 3.15: Thermal conductivity of 10 — pm-long AGNRs (blue squares) and ZGNRs

(green triangles) at 300 K as a function of GNR width, obtained from the PMC simulation.

The red dashed line is the upper limit of thermal conductivity for the same length,

calculated with a flat-edge GNR.
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Figure 3.16: Thermal conductivity versus temperature for GNRs of width 500 nm (black),

200 nm (red), and 100 nm (blue) calculated based on PMC. For each width, we present

data obtained with isotropic dispersion (open circles), as well as with full dispersion

assuming the AGNR (solid squares) and ZGNR (solid triangles) ribbon orientation.



5}

of orientation and full dispersion only becomes significant at lower temperatures. We in-
clude both full-dispersion AGNR and ZGNR as well as an isotropic dispersion approxi-
mation to demonstrate the point. For each acoustic branch, the isotropic dispersion ap-
proximation was obtained from a quadratic fit to the full dispersion, wy, = vspq + cbg>.
Here, cra = —1.15 x 1077, cpa = —3.95 x 1077, and czy = 2.83 x 1077 (in m?/s), while
vsra = 1.17 X 10%, vpa = 2.19 x 10%, and vsza = 2.28 x 10® (in m/s). All GNRs have
the same length L = 10 pym and their widths take values of 500-nm, 200-nm, and 100-nm.
Figure 3.16 shows the calculated thermal conductivity as a function of temperature for these
GNRs.

Based on Fig. 3.16, we see that the isotropic dispersion approximation generally over-
estimates thermal conductivity, quite dramatically so at low temperatures. The relative
error brought about by the use of isotropic approximation at low temperatures is quite
high in narrow GNRs, where edge roughness dominates. The difference between full and
isotropic dispersion decreases with increasing temperature. The trend is intuitively plau-
sible, as orientation-dependent edge-roughness scattering dominates at low temperatures,
while the momentum-randomizing three-phonon scattering take over as the temperature in-
creases. We also note that the thermal conductivity of ZGNRs is higher than that of AGNRs,

in agreement with the results of atomistic studies.[82, 83, 84, 85]

3.6.5 Bulk Limit

As we both L and W become large enough, thermal transport is at the diffusive-limit
and the edge becomes irrelevant. The calculations from both edge structures converge to
the smooth-edge limit and the resultant thermal conductivity rgg indicates the upper limit
of that could obtained in graphene samples. As we have mentioned, almost all samples in
experiments|[66, 68, 67, 69, 7, 8] are still in the quasiballistic regime, so kg is higher than all
experimental data. In Fig.3.17 we show the comparison with predicted upper limit of thermal
conductivity from Dorgan et al.[10] We see that the difference reduces as the temperature

increases, because the phonon MFP decreases as the temperature increases. As a result, for a
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given sample length, transport moves from quasiballisic to diffusive at higher temperatures,
therefore the measured values are closer to the calculated diffusive upper limit. Another
insight we can take from Fig. 3.17 is that thermal transport is indeed isotropic for infinitely

large graphene, which was predicted by first-principles calculations(86].

3.7 Conclusion to Chapter 3

We studied phonon transport in suspended single-layer graphene and micron-sized GNRs
using the full-dispersion PMC technique. The calculated thermal conductivity is in good
agreement with experimental measurements of Chen et al.[9, 7] and Xu et al.[8] We captured
the ballistic-to-diffusive crossover in thermal conductivity and found that the diffusive limit
at room temperature is not reached in most experiments, as lengths over 100 Im are needed.
Consequently, the diffusive upper limit is likely higher than predicted,[10] and we calculate
it for temperatures up to 600 K. We show that the GNR orientation matters for thermal
transport, with ZGNRs having higher thermal conductivity than AGNRs in micron-sized
systems, which is the same trend observed in atomistic calculations. The error made by
employing the isotropic dispersion approximation for transport in GNRs is not large at
room temperature, but the results with isotropic dispersions generally overestimate thermal
conductivity and quite considerably so at low temperatures and in narrow GNRs. The full-
dispersion PMC technique, presented here in detail, combines an efficient transport kernel
(including inelastic and elastic scattering, as well as enabling the incorporation of real-space
edge features) with an accurate account of phonon dispersions. This technique is a good
choicein terms of accuracy, computational efficiency, and adaptability to different materials
or geometriesfor analyzing systems with pronounced directional sensitivity (such as GNRs,
or generally semiconductor membranes and nanowires), which have rough boundaries and

are too large to address using atomistic techniques.
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Chapter 4

Thermal Conductivity of I1I-V Bulk Materials:
3D RTA with Full Dispersion

ITI-V arsenide (III-As) ternary alloys and their superlattices (SLs) are widely used in
optoelectronic and thermoelectric devices.[87, 88| In particular, the use of these ITI-As al-
loys brings about great flexibility in designing the active region of quantum cascade lasers
(QCLs).[89] In quantum cascade lasers (QCLs), self-heating is the main issue limiting the
development of room-temperature (RT) continuous-wave (CW) lasing, which is exacerbated
by the poor thermal conduction through the active core where hundreds of interfaces are
present in a typical structure. [90, 12, 91] Despite the wide popularity, even the bulk thermal
properties of these ternary alloys are poorly understood and characterized, leading to trouble
analyzing the thermal performance of these devices.

In this chapter, we present a semiclassical model describing thermal conductivity of I1I-
V compound semiconductors, and apply it to III-As systems. The PBTE is solved in the
RTA; thermal conductivity of both binary and ternary ITI-As materials is well described with
the model. This chapter lays the foundation of Chapter 5 where we investigate the crucial

influence interfaces have on the thermal transport in II1-As SLs.

4.1 Phonon Scattering Rate in III-V Materials

Same as in graphene, the total scattering rate for a given phonon equals the summation

of the contribution from all scattering mechanisms (Eq. 3.6). Here we consider both U



29

and N three-phonon scattering processes, mass-difference scattering (from both isotopes
and alloying), and scattering from charged carriers and ionized dopants. The following
subsections provide the scattering rates and parameters we used for each mechanism. Note
III-V materials are 3D materials, we consider 2 TA branches and 1 LA branch (see Sec. 1.1).

It should be noted that even though we consider only III-As materials (AlAs, GaAs, and
InAs to be specific) in this work, the general methodology and scattering rates should be
applicable to other III-V bulk materials or group-IV semiconductors (e.g. Si, Ge) and their
alloys (e. g. Si,Ge;_,) as well.

4.1.1 Phonon-Phonon Scattering
The scattering rate due to the U process is [92]

A 2, .2
b, 1) = 22D - oo, (4.1)
’ M@b,DUSQ,b

the same as that in graphene (Eq. 3.7). The mode-dependent sound velocity v}, and Debye
temperature are both obtained from calculated dispersion.
The scattering rate due to the N process is [93, 94]
Brwn(q)T*,  b=TA,

ala T) = (4.2)
BL(@)T?, b =LA,

where
k4 ’}/2 QQ
N T @ (4.32)
T Q)
and
L ki3S (4.3D)

N R (q)
Here, €}y is the average volume occupied by an atom in the lattice. We assume the same
Griineissen parameter 7, for both N and U processes in a given branch. However, in the case
of TII-V materials , the experimentally measured 7, vary a lot.[95, 96, 97| In practice, we
start with a reference value and slightly adjusted it to get the best fit to the experimentally

obtained thermal conductivity (see Table 4.1). In our calculations, By is on the order of
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10 x —14 s7'K=3 and BY is on the order of 10 x —26 s7'K~°, varying slightly as the group

velocity and mass difference changes for different materials (see Table 4.1).

4.1.2 Mass-Difference Scattering

There are two major sources of mass-difference scattering in compound semiconductors:
the natural occurrence of isotopes and the fact that the compound is formed with different
elements and they have different masses. The scattering rate of a phonon due to mass-

difference is[98, 99]

(@) = 5 Q0T (@) Do), (4.4)

where '\ is the total mass parameter, obtained by summing over all mass parameters.
For a single element A with an average mass of My = > fiMi a, where f; and M, o are

the abundance and the mass of the ith isotope of element A, the isotope mass parameter is
Ti(A) =) fil = Mia/My). (4.5)

For a compound with the form of A,B,C...., the effective isotope mass parameter can be

expressed as[100]

1
_x+y+z+”.

iso

where

M_xMA+yMB+z]\/_[C—|—...
rt+y+z+...

is the average atom mass in the compound.
Here we are interested in both binary and ternary III-As compounds, so the general form
of the compound becomes A, B;_,As, (0 <z < 1). Since the element As has only one stable

isotope "®As[101], our total isotope mass parameter simplifies to

[iso = oVt (1 Q)M YL [xMAQFI(A)Jru—x)MB?FI(B) : (4.8)
TIVIA - X B As
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In binary (x = 0 or = 1) compounds, isotope scattering is dominant at low temperatures
(< 150 K). In ternary (0 < x < 1) compounds, group III elements A and B forms a random

alloy and introduces alloy mass scattering. The alloy mass-difference parameter is[21, 22]
Lattoy = (1 — ) [(AM/Z\/IHI)2 + e(Aa/&)Q] , (4.9)

where

AM = My — Mg,

My = My + (1 — z) Mg,

(4.10)

Aa = ap — ag,

a=xap+ (1 —x)ag.
Here as and ap are the lattice constant of binary compounds AAs and BAs, respectively. €
is an empirically determined constant which captures the scattering caused by the mismatch
of lattice constants. Here we take ¢ = 45 for the III-V compounds following Abeles.[21]
Relative abundance of isotopes is taken as: 26Al: 0.001, 2"Al: 0.999; "Ga: 0.3989, %°Ga:

0.6011; *3In: 0.0429, *°In: 0.9571.

4.1.3 Dopant and Electron Scattering

When the III-V compound semiconductors are doped (we consider n—type only for our
applications of interest), group-II1 atoms may be randomly replaced by group-IV dopant,
creating extra free electrons. Doping introduces two extra scattering mechanisms, phonon-
electron interaction and impurity mass-difference scattering. At low doping levels, the re-

laxation time due to phonon-electron interaction can be expressed as[102]

N, 2 %92 *,,2
ola) = S [T o () (111)

~ p(ksT | 2kpT 2ksT

Here Np represents the doping concentration, &4.¢ is the deformation potential, p is the den-
sity of the crystal, and m* is the electron effective mass in the crystal. For ternary materials,

m* is obtained from weighted average of those in the constituent binary materials.[103]
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The impurity mass-difference scattering yields an additional contribution to the total
mass parameter discussed in the previous section,[104]

Np (6M\?
.. =-—2(=1". 4.12
PN (M) ( )

Ny = 1/ is the concentration of native atoms, and M = Mp — My is the mass difference
between the dopant and the average mass of group-III atoms being replaced. Our assumed
n-type dopant is Si where Mg; = 28.085.

The effect of scattering introduced by doping is negligible when the impurity level is below
10'7, and still small compared to other scattering rates when then doping level exceeds 10'8,

agree well with the result shown in experiment.[15]

4.2 Thermal Conductivity of Binary Compounds

In ITI-V semiconductor compounds, where acoustic phonons carry the vast majority of
the heat.[93, 11] As derived previously in Sec. 2.1, the full thermal conductivity tensor of a

crystalline semiconductor at temperature 7' can therefore be calculated as [105]

R(T) =) Cola, T)m(a, T)vg (a)vp (a), (4.13)

where Cy,(q,T') is the phonon heat capacity for branch b given as

g [—< S >] Fn(q)? ehen(@/ksT
Culq,T) = L] _ [en(a)) e . (4.14)
or kpT?  [ehen(@/ksT — 1]

Th(q, T") is the total phonon relaxation time and v (q) is the phonon group velocity along
the « direction for given mode and wave vector. Both the heat capacity and the group
velocity are calculated from the exact phonon dispersion relation using the adiabatic bond
charge model (ABCM).[106, 107] We numerically evaluate Eq. (4.13) over the first Brillouin
Zone (1BZ) to obtain one entry in the bulk thermal conductivity tensor. When dealing
with ternary compounds (A,B;_,C), the parameters in ABCM are calculated in the virtual

crystal approximation (VCA).[21]



Material GaAs InAs AlAs

yra1 (exp.) 0.57 0.58 0.46
yra1 (ab initio) 0.52 0.46 0.46
Yraz (exp.) 0.57 0.58 0.46
Yrae (ab initio) 0.52 0.46 0.46
i (exp.) 1.35 1.6 1.35
YLa (ab initio) 1.3 1.35 1.35
Orarp (K) 14121 103.93  181.59
O1a2p (K) 167.76 124.64 215.21
Orap (K) 304.96  253.16  380.07
BEAY (10 x —14 s7'K™3) 0.421 1.33 0.166
BIA2 (10 x —14 s71K3) 0443 139  0.173
BEA (10 x —26 51K ~9) 1.27 2.85 7.04
vrar (m/s) 3307.3 28175  4318.2
vra2 (m/s) 3361.9  2793.0  4284.7
via (m/s) 54182  4708.7  6812.4
ao (A) 5.6532  6.0583  5.6611
Qo = a3/4 (10 x =2 m?) 45168 55580  4.5357
m* (mo = 9.1 x 10731 kg) 0.063 0.023 0.1
M (a.u. = 1.66054 x 10727 kg) 69.7978 144.9142  26.999
p (10% kg/m?) 53232 5.673  43.7342

Table 4.1: Material parameters used in the calculation.
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We apply the scattering rates (Sec. 4.1) and the thermal conductivity model (Eq. 4.13)
to three binary arsenide compounds—GaAs, AlAs, and InAs—whose thermal properties have
been extensively studied both experimentally[15, 14, 13, 108, 12, 20, 18, 19, 17] and via ab
inito calculations[11]. We find that thermal conductivity of bulk III-V binary materials is
quite isotropic: diagonal terms in the thermal conductivity tensor are the same while off-
diagonal terms are negligible. As a result, we report the thermal conductivity as a single

number (k = K** = kYW = g**).

4.2.1 Thermal Conductivity of GaAs

Figure 4.1 shows the thermal conductivity of GaAs obtained from our full dispersion
calculations together with the experimental results from Amith et al.,[15] Carlson et al.,[14]
Inyushkin et al.,[13] and the ab inito results of Lindsay et al.[11]. By slightly adjusting the
Griineissen parameter, we can get thermal conductivity that agrees very well with either
experiment (green curve) or first-principles calculations (light-blue curve). Purple curve

shows our calculation from an isotropic dispersion approximation (see Sec. B).

4.2.2 Thermal Conductivity of AlAs

Similarly, Fig. 4.2 compares the calculated thermal conductivity of AlAs (blue curve) with
analytical fit from Evans et al. (orange curve),[12] experimental data from Afromowitz,[16]
and ab inito calculations (green curve).[11] Purple curve is again showing the results from

isotropic dispersion approximation (see Sec. B).

4.2.3 Thermal Conductivity of InAs

Figure 4.3 shows the thermal conductivity of InAs from our calculation (yra = 0.56, ya =
1.60 for blue curve and ~ypp = 0.46, y.a = 1.35 for red curve) compared with ab initio re-
sults from Lindsay et al. (green curve), [11] experimental data from Heckman et al. (yellow

triangles),[17] Tamarin et al. (brown circles),[18] Guillou et al. (pink diamonds),[19] and
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Figure 4.1: Thermal conductivity of bulk GaAs based on our calculation with full
dispersion; ypa = 0.57, ypa = 1.35 (blue curve) and ypa = 0.52, vpa = 1.30 (red curve).
The green curve shows the ab initio results from Lindsay et al..[11] The orange curve is an
analytic fit to the experimental data of Evans et al.[12] The purple curve is the calculated
thermal conductivity based on our model and with the isotropic dispersion approximation
(see Appendix B). Blue circles, yellow triangles, and blue diamonds correspond to the
experimental data from Inyushkin et al.,[13] Carlson et al.,[14] and Amith et al.,[15]

respectively.
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Figure 4.2: Thermal conductivity of bulk AlAs based on our calculation with full
dispersion. ypa = 0.46 and yp,4 = 1.35 (blue curve). In green, orange, and purple we show
the ab initio data from Lindsay et al.,[11] an analytic fit to the experimental data from
Evans et al.,[12] and the calculation with isotropic dispersion approximation (see

Appendix B), respectively. The red symbol shows experimental data from Afromowitz.[16]
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Bowers et al. (orange squares),[20] respectively. Purple curve shows the isotropic dispersion

approximation (see Sec. B).

4.3 Thermal Conductivity of Ternary Alloys

III-V ternary compounds are typically random alloys; in our case, we are interested in
the alloy of two III-As binary compounds. In the lattice, the anion cites are always taken by
an As atom while the cation cites can be randomly taken by either of the group-III atoms.
As a result of the mass-difference between group-III atoms, alloy scattering is the dominant
mechanism that influences the thermal conductivity of ternary arsenide compounds.

Unfortunately, very few experiments[4, 21, 16, 22] have been carried out on these materials
and they were all performed at room temperature (RT). We calculate thermal conductivity
of In,Ga;_,As, Al,Ga;_,As, and In,Al;_,As at RT with various compositions and compare

with experimental results.[4, 21, 16, 22]

4.3.1 Thermal Conductivity of InGaAs

Figure 4.4 shows our calculated thermal conductivity of bulk In,Ga;_,As with varying
In compositions (purple diamonds) compared with the theoretical results from Abeles (blue
curve) [21] and the experimental results from Adachi (red curve) [22] and Abrahams et al.
(orange dots) [4]. Our calculations agree well with the available experimental data over a

wide range of compositions.

4.3.2 Thermal Conductivity of AlGaAs

Figure 4.5 shows our calculated thermal conductivity of bulk Al,Ga;_,As with varying
Al compositions (red diamonds) compared with the experimental results from Afromowitz

et al.[16]. The agreement is good over the whole composition range as well.
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Figure 4.3: Thermal conductivity of bulk InAs based on our calculation with full
dispersion; ypa = 0.56, ypa = 1.60 (blue curve) and ypa = 0.46, ypa = 1.35 (red curve).
The green curve shows the ab initio results from Lindsay et al..[11] The purple curve shows
the calculated thermal conductivity with the isotropic dispersion approximation (see
Appendix B). Yellow triangles, brown circles, pink diamonds, and orange squares
correspond to the experimental data from Heckman et al.,[17] Tamarin et al.,[18] Guillou et

al.,[19] and Bowers et al.,[20] respectively.
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Figure 4.4: Thermal conductivity of bulk In,Ga;_,As with varying In composition. The
blue curve shows the theoretical results from Abeles.[21] The red curve and orange dots
present the experimental results from Adachi[22] and Abrahams et al.,[4] respectively.

Purple diamonds represent the results of our calculation.
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Figure 4.5: Thermal conductivity of bulk Al,Ga;_,As with varying Al composition. Blue
dots and red diamonds show the experimental data of Afromowitz et al.[16] and the results

of our calculation, respectively.
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4.3.3 Thermal Conductivity of InAlAs

To our knowledge, no systematic measurements of the thermal conductivity of In,Al;_;As
have been carried out thus far. Figure 4.6 shows our calculated thermal conductivity of
In,Al;_;As with varying In composition. Note that upon further analysis, these results
likely overestimate the thermal conductivity due to the VCA mass-difference scattering rate

this model implements (see Sec. 4.1.2). More discussion on this can be found in Sec. 5.

4.4 Conclusion to Chapter 4

We solve the PBTE under the RTA to describe the thermal conductivity of IT1I-As (AlAs,
GaAs, and InAs) compound semiconductors. The obtained temperature-dependent ther-
mal conductivity agree well with experimental measurements over the temperature range
between 100 K and 400 K. We also calculate the thermal conductivity of III-As ternary
alloys (Al Ga;_(As, In,Ga;_,As, and In,Al;_(As) with different composition x under the
VCA at room temperature. For Al,Ga;_,As and In,Ga;_,As, the calculated results agree
well with experimental data.[16, 4, 22] For In,Al;_,As, experimental results only exist for
Ing 50Alg 45 As(lattice-matched to InP) and do not agree with each other.[5, 27] We will revisit

the results for In,Al;_,As in the next two chapters.
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Chapter 5

Thermal Conductivity of III-V Superlattices
(SLs): 3D RTA with Full Dispersion

A semiconductor superlattice (SL) is a periodic structure, with each period consisting of
two or more thin layers of different materials. III-V semiconductor SLs have been widely
used in electronic and photonic devices.[109, 87, 110, 88] Thermal transport in SLs exhibits
pronounced anisotropy: the cross-plane thermal conductivity (the thermal conductivity in
the SL growth direction, normal to each planar layer) is much lower than the in-plane thermal
conductivity.[111] Advanced experimental techniques have enabled the measurements of the
in-plane[112] and cross-plane[113, 114] thermal conductivity on several material systems.
These results show that thermal conductivity of a SL is substantially lower than that of a
weighted average of the constituent bulk materials.[23, 115, 24, 26, 116, 25, 117, 91, 1, 27]
Theoretical studies show that the interfaces between adjacent layers are responsible for both
the overall reduction and the anisotropy of thermal conductivity.[118, 33, 119] In this chapter,
we offer a model that quantitatively captures both effects of the interfaces in III-V SLs. The
bulk thermal conductivity of the I1I-V materials (both binary compounds and ternary alloys)
making up the SLs are obtained through solving the PBTE in the RTA. The influence of
interfaces is captured through a single free parameter—the effective rms roughness A of the

interface.
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5.1 Model Overview

We break down the thermal conductivity of SLs to two main parts, the layer thermal
conductivity and the thermal boundary resistance (TBR). Layer thermal conductivity is re-
duced from the bulk value because of the (partially) diffuse interface scattering. The lowered
layer thermal conductivity contributes to the lowering of thermal conductivity in both in-
plane and cross-plane direction. Additionally, TBR between adjacent layers is responsible
for the pronounced cross-plane thermal-conductivity reduction.[118, 33, 120, 111]

The interfacial transport behavior in SLs is largely dependent on the material system and
the interface quality.[111] The acoustic mismatch model (AMM) and the diffuse mismatch
model (DMM) have been traditionally used to calculate the phonon transmission coefficient
and the resulting TBR of an interface.[121, 122] These two models are believed to yield the
lower and upper limits of the TBR, respectively, but do not satisfactorily explain realistic
experimental results.[120] Molecular dynamics (MD) simulations[119, 123, 124, 125, 126, 127]
have provided valuable insights into heat transport across a number of solid-solid interfaces.
The non-equilibrium Green’s function technique (NEGF) has also been applied to describe
the phonon dynamics,[128, 129] generally without phonon-phonon scattering. In general,
atomistic simulations are limited by computation burden, which makes it hard to study
complicated SL structures, such as the active region of solid-state lasers.[87, 88|

We build our semiclassical model on top of the previous description of thermal conduc-
tivity in III-V bulk materials (see Sec. 4). The in-plane thermal conductivity is obtained
from connecting the layers in parallel while the cross-plane conductivity is calculated from
connecting the layers and the TBRs in series. The TBR of each interfaces is calculated by
interpolating between the AMM and DMM transmission coefficients at the interface. Both
the partially diffuse interface scattering and the AMM-DMM interpolation are described
with the aid of the same momentum-dependent specularity parameter, wherein there is a

single adjustable parameter — an effective interface rms roughness. The model can effectively
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describe complicated systems with an arbitrary number of interfaces and random layer thick-

nesses. Despite the model simplicity, the calculation results agree well with experimental

data from multiple studies by different groups.[23, 115, 24, 26, 25, 1, 27|

Even though a typical layer thickness in III-V SL structures is on the order of a few

nanometers, we argue that coherent phonon transport can be neglected and that the semi-

classical pBTE provides an appropriate framework for analyzing heat flow in these systems

over a range of temperatures. The reasons for this assertion are the following:

1. We are interested in the thermal conductivity of SLs near room temperature, where

the phonon-phonon interaction is strong and breaks the phonon wave coherence.[130]
Experiments find that coherent transport is prominent in GaAs/AlAs SLs only when
T<100 K.[34] Considering that ternary IT1I-V compounds have a much higher scattering
rate than binary compounds, coherent transport phenomena in them would only show

at even lower temperatures.

. Even in best-quality lattice-matched SLs, there exist three or more interfacial lay-
ers, which effectively introduces atomic scale roughness.[131, 132, 133, 134, 135, 34]
Phonons may suffer from phase-breaking interface scattering when they hit the rough

interface.[136]

. The phonon coherence length has been estimated to be smaller than 2 nm for GaAs,[118,
33] and the number should be even lower for SLs formed by ternary compounds, es-
pecially when there is strain in the SL. The SL structures we use to validate our
model[23, 115, 24, 26, 25, 1, 27] have layer thicknesses equivalent to or thicker than
that. Other SL structures that we are interested in [12, 137] also have relatively thick
layers or only one thin layer among tens of thick layers, making the coherent transport

contribution negligible.

. In QCLs, the SL is formed with multiple periods, often called stages, with many layers
in each stage and the layer thickness in each stage being highly variable, depending
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on the desired optoelectronic properties.[12, 137] Consequently, the QCL SL structure
behaves as a nearly random multilayer system in which coherent phonon transport is

further suppressed.[138]

As a result of all the reasoning above, we do not consider phonon coherent transport or
phonon confinement to analyze thermal transport. We use bulk dispersions and the phonon

Boltzmann transport equation in the SL thermal conductivity calculations.

5.2 The Twofold Influence of Effective Interface Rough-
ness

As mentioned briefly above, there will inevitably exist a few transition layers between
adjacent materials in a SL structure.[131, 132, 133, 134, 135, 34] Figure 5.1 shows a schematic
of interfaces between lattice-matched crystalline layers in SLs. In the transition region, if we
drew a line that separated the atoms of one crystal from those of the other, we would get a
jagged boundary. Therefore, we model the interface with an effective interface rms roughness
A, which captures the basic properties of interfacial mixing. The thicker the transition
layer, the higher the A. Most III-V SLs are grown by molecular beam epitaxy (MBE)[35] or
metal-organic chemical vapor deposition (MOCVD),[36] both being well-controlled growth
environments. As a result, all the interfaces in the SL should be nearly identical. Therefore,
we use a single roughness A to model all the interfaces.

The probability of a phonon reflecting specularly from a rough interface is represented

by a wave-number-dependent specularity parameter[139]

Pspec(@) = exp(—4A%|q|* cos? ), (5.1)

where |q| is the magnitude of the wave vector, and 6 represents the angle between q and
the normal direction to the interface. This expression is nominally derived in the limit
of uncorrelated roughness;[140, 139] but considering that more correlated surfaces scatter

phonons more specularly,[141] surface correlation can effectively be captured by using a

lowered A.[142]
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Figure 5.1: Even between lattice-matched crystalline materials, there exist nonuniform
transition layers that behave as an effective atomic-scale interface roughness with some rms
roughness A. This effective interface roughness lead to phonon momentum randomization

and to interface resistance in cross-plane transport.
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5.2.1 Layer Thermal Conductivity

Diffuse interface scattering affects all phonons in the SL and influences phonon mode
occupation inside each layer.[143] The effect on interface roughness on mode population
can be captured by solving the pBTE with appropriate boundary conditions. The result
is an effective interface scattering rate [143] that captures the interplay between internal

mechanisms described in Sec. 4.1 and interface roughness in a layer of thickness L:

- up,1(q) Fy(q, L)
intlerface< ) == I ™ internal}()q)ﬂb @ s (52&)
l—= I Fp((L L)
where
1— spec 1— —L interna
Fy(q,L) = [ Pspec(Q)]{ exp[—L/ Ty interna1 (4) Vb, 1| } (5.2b)

1- pspec(q) exp[_L/Tb,internal(q)be,J_]
is a mode-dependent scaling factor. Here, b denotes the phonon branch and q its wave vector,

vp, 1 is the component of the phonon group velocity normal to the interface, and 7, jnternal (Q) is
the total relaxation time due to internal scattering mechanisms in the layer (see Sec. 4.1). It
is noteworthy that the effective rate of interface scattering (5.2a) depends on both roughness
and the relative size of the layer thickness (L) to the mean free path for internal scattering
(Th,internal (@) Vb, 1 ): for very thin layers (L/Ty internal(d)vb, 1 << 1) the phonon “sees” both
interfaces of a layer (1. . (q) — 2%@:22—:::‘;, a well-known expression derived by

Ziman[140]), while for very thick layers (L/Ty internal(q)vp >> 1), the phonon will scatter

many times due to internal mechanisms between successive interactions with interfaces, as if

Ub,J_(Q)

the interfaces were completely independent (7, p..(q) — 24

[1 — Depec(q)])- For details,
see Ref. [143]. Through this additional effective scattering rate, rough interfaces that bound
each layer affect phonon population and thus influence both in-plane and cross-plane thermal

transport.[143] This is the first aspect of interfacial influence on thermal transport in SLs.

5.2.2 Thermal Boundary Resistance

The cross-plane thermal conductivity bears an additional influence of the interfaces.[122,
144] In order to carry heat along the cross-plane direction, phonons must cross interfaces. As

there are two different materials on the two sides of the interface, the phonon transmission
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probability through the interface is not unity, and a thermal boundary resistance emerges.
There have been two widely accepted models — the AMM[121, 145] and the DMM - for the
calculation of the phonon transmission coefficient and the TBR.[122]

From the AMM point of view, the interface is treated as a perfect plane and the phonons
as plane waves. The transmission probability is determined from an analogue of Snell’s law
for electromagnetic waves. The AMM transmission probability for a phonon going from

material 1 to material 2 can be expressed as:

AMM . 4ZbL,1(Q)ZbL,2(Q)
thise(a) = [Zbﬁ((ﬁ N beQ(q)]Q, (5.3)

where Zﬁl /2 =P /gvﬁl /2 (q) are the perpendicular acoustic impedances of sides 1 and 2. p is
the mass density of a material.

On the other hand, in the DMM, the assumption is that the coherence at the interface is
completely destroyed: a phonon loses all memory about its velocity and randomly scatters
into another phonon with the same energy. The transmission coefficient can be derived from

the principle of detailed balance as[146]

DMM . Ub,2(Q)D2(W1(Q))
52 ) = ) Dater (@) + v (@) Dr () 54

where D;(w) and Ds(w) are the phonon densities of states in materials 1 and 2, respectively.

In reality, for a high-quality interface like that in a III-V SL structure, phonon inter-
face scattering is neither purely specular nor completely diffuse; consequently, the AMM
overestimates while the DMM underestimates the transmission coefficient. [147] In order to
accurately model the TBR in a large temperature range and for various interfaces, we will
interpolate between the two models for the transmission coefficient.[33, 148] We posit that
the specularity parameter (5.1) can also be used to give weight to the probability of phonon
transmission without momentum randomization, i.e., to the AMM transmission coefficient.

In other words, we introduce an effective phonon transmission coefficient as

tb(Q) = pspec<q) ’ tkA)MM(q> + [1 - pspec<q>] ' thMM(q) (55>
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This coefficient captures both the acoustic mismatch and the momentum randomization at
a rough interface between two media. The rougher the interface, the lower the specularity
parameter, and therefore the higher the TBR. The TBR will only be picked up by the
phonons trying to cross an interface, thus having an influence on cross-plane transport only.

This is the second effect the roughness has on the thermal transport.

5.3 Calculation of In-plane and Cross-plane Thermal
Conductivities

In calculating SL thermal conductivity, we first calculate each layer’s thermal conductivity
in the same way as the bulk thermal conductivity of a material (Ch. 4), but with an additional
scattering rate (5.2a) due to the presence of interfaces.[143] The layer thermal conductivity
obtained this way will already be lower than the bulk thermal conductivity of the same
material.

Second, the TBR is calculated using a transmission coefficient interpolated from the
AMM and the DMM values. The TBR from material 1 to material 2, denoted R;_,», is given
by

1 Ub,1,1(Q)Chr(q)t12(wy
3 1,1 () Cp r(q)t o (wi(q))

e = g 2 T a(n (@) T fan (@) (56)

2
b,q

The denominator in the expression is a correction factor introduced following the modified
definition of temperature of Simons[149] and Zeng and Chen,[150] as the phonon distribution
at the interface is far from equilibrium. The correction ensures that the TBR vanishes at a
fictitious interface inside a material. Here (t12(wi(q)) + t2—1(wi(q))) represents the average
value of transmission coefficients over the Brillouin zone.

With properly calculated layer thermal conductivity and the TBR, the in-plane and cross-

plane thermal conductivity of a SL with two layers per period can be written as[144, 143]
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Lllil + L2/€2
in—plane — T 7 |, 1 5.7
Rin—pl Ll T L2 ( a)
Rcross—plane = i 7 Ll i L2 y (57b)
S22 4 (Rise + Ra)

where L, and L, are the layer thicknesses of materials 1 and 2, respectively, while x; and
ko are the corresponding layer thermal conductivities. Ry .o and R;_,; represent the TBRs

from layer 1 to layer 2 and from layer 2 to layer 1. The expressions can be extended to the

situation of a SL with n layers of thicknesses L; (i =1,...,n):
> iy Lirsi
in—plane — l_n—y 5.7
! Zi:l Li ( C)
"L
Zz:l (57d)

Kcross—plane = S Li/ri + R
with the understanding that R, _.,+1 = R,_.1, owing to periodicity. It is also clear why SLs
can act as thermal rectifiers: the layer sequence is important in Eq. (5.7d), as the cross-plane
thermal conductivity is not the same in both directions, because the TBRs are generally not

symmetric (R;_,; # R;_).

5.4 Results and Comparison with Experiments

We have compared the results from our simple model with several experimental results
by different groups on both in-plane[23, 24, 1] and cross-plane[115, 26, 25, 1, 27| thermal

conductivity of IIl-arsenide SLs and obtained good agreement.

5.4.1 GaAs/AlAs Superlattices

Figure 5.2 shows the RT in-plane thermal conductivity of GaAs/AlAs SLs with various
layer thicknesses. To compare with Yao's data,[23] we set the effective interface roughness
to 6 A. The calculated data agrees well with experiment, except for the layer thickness
of 20 nm. However, we argue that the in-plane thermal conductivity should first increase

monotonically with increasing layer thickness, then saturate at the bulk value; yet, the
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Figure 5.2: In-plane thermal conductivity of GaAs/AlAs superlattices as a function of layer
thickness. Red dots are the experimental data from Yao [23] and blue diamonds are our

calculated data with A = 6 A.
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Figure 5.3: In-plane thermal conductivity of a GaAs/AlAs superlattice (layer thickness 70
nm) as a function of temperature. Red symbols show the experimental results of Yu et

al.[24] and the blue curve shows the calculations from our model with A = 3.7 A.
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experimental data is not monotonic, which indicates that issues with the measurement might
explain the discrepancy between our theory and experiment.

Figure 5.3 shows the in-plane thermal conductivity of a GaAs/AlAs SL with a layer
thickness of 70 nm at various temperatures. The symbols are the experimental results
reported by Yu et al.[24] and the line is our calculation with A = 3.7 A. The calculation
agrees well with experiment over a wide temperature range.

Figure 5.4 shows the cross-plane thermal conductivity of GaAs/AlAs SLs with various
layer thicknesses and from 100 K to 400 K. Symbols show the experimental results reported
by Capinski and Maris[26] and Capinski et al.[25] The corresponding curves are obtained
from our model. We first set the layer thicknesses to those reported in experiments and
then slightly adjust the effective roughness to get the best fit. The roughness chosen for the
40%40, 25x25, 10x10, and 12x14 SLs [x is the notation in these two experimental papers]
are 1.75 A, 1.65 A, 1.3 A, and 1.8 A, respectively. The thermal conductivity varies very little
as the temperature changes, and the value is much smaller than that of the in-plane thermal
conductivity, both indicating that the TBR indeed dominates thermal transport across the
plane.

Luckyanova et al.[1] recently measured both the in-plane and the cross-plane thermal
conductivity of a GaAs/AlAs SL. Our calculation for the same structure and the experi-
mental results are shown in Table 5.1. All the calculation results used an effective interface
rms roughness of 1.1 A for the 2-nm system and 1.9 A for the 8-nm one, which results in
good agreement for the cross-plane conductivity; however, the measured in-plane thermal
conductivity is considerably lower than the calculation. In fact, the experimental data from
Luckyanova et al.[1] shows a great discrepancy with all the previous experiments on similar
systems.[23, 24, 26, 25] For example, the in-plane thermal conductivity of their 8-nm SL
is considerably smaller than that of the 5-nm SL in Yao’s paper,[23] which is counterin-
tuitive and does not agree with well-established trends of increasing thermal conductivity
with increasing layer thickness. Furthermore, the cross-plane thermal conductivity (8.7+0.4

W/mK) is considerably smaller than that of Capinski et al. (10.52 W/mK) with similar
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Figure 5.4: Cross-plane thermal conductivity of GaAs/AlAs superlattices as a function of

temperature. Blue circles, orange diamonds, and brown squares show the measured

cross-plane thermal conductivity data for 40x40, 25x25, and 10x10 SLs from Capinski et

al.[25] Grey stars are the cross-plane thermal conductivity data for for a 12x14 SL from

Capinski and Maris.[26] The corresponding curves are calculated based on our model, with

the effective rms roughness A denoted in the legend
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layer thickness 2 nm 8 nm
exp cal exp cal
Kin—plane 8.056£048 | 25.03 | 11.44£0.46 | 22.78
Keross—plane 6.5+0.5 6.38 8.7+04 8.59

Table 5.1: Comparison of experimental results from Luckyanova et al.[1] and our calculated
data for GaAs/AlAs SLs with layer thickness of 2 nm and 8 nm. In the calculation, we

assume an interface rms roughness of 1.1 A for the 2-nm system and 1.9 A for the 8-nm one.

layer thickness. The earlier experiments[23, 25] should have worse or at best equivalent
interface quality to the samples in the most recent work,[1] owing to the development in
growth techniques that happened over the past few decades; yet, older samples show higher
conductivities. Luckyanova et al.[1] also performed density functional perturbation theory

(DFPT) simulation, the results of which are about twice what they measured.

5.4.2 InGaAs/InAlAs Superlattices

Sood et al.[27] studied the RT cross-plane thermal conductivity of lattice-matched In-
GaAs/InAlAs SLs (Ing 53Gag.47As/Ing 50Aly 48 As) with varying layer thicknesses. They used
the notation AmGn to represent a SL structure with the InAlAs and InGaAs layer thick-
nesses of n and m nanometers, respectively. Six different SL structures (A2G2, A2G4, A2G6,
A4G2, A4G4, A6G2) were measured and these experimental results are reproduced as blue
diamonds in Figure 5.5.

We show our calculation results in Figure 5.5. The green circles are the results from
our bulk rates as described in Sec. 4.3.3. The calculation assumes very small roughness
A = 0.5 A, in keeping with the X-ray diffraction measurements that show nearly perfect
interface quality. We note that the green data points are higher than the measurement,
but that the trend with the period length is the same as in experiment. Indeed, increasing

the interface roughness would significantly and adversely affect the slope of the thermal
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conductivity with increasing period length. Therefore, we believe that the reason for the
discrepancy is the incomplete knowledge of internal (bulk) scattering in InAlAs, exacerbated
by the lack of direct experimental measurements.

Namely, from their data, Sood et al.[27] extract the bulk thermal conductivities of InGaAs
and InAlAs to be 5 W/mK and 1 W/mK, respectively. While our calculated bulk thermal
conductivity of InGaAs matches experiment, we calculate the bulk conductivity of InAlAs
to be of 3.1 W/mK, considerably higher than what Sood et al. reported. Unfortunately,
there is no direct experimental data on the thermal conductivity of InAlAs, making it hard
to tell what could be the reason of the difference between our calculation and their extracted
result.

In red squares, we artificially increase the internal scattering rate of InAlAs so that its
bulk thermal conductivity is around 1 W/mK; in keeping with Sood et al.[27], and we keep
the interface scattering rate as before, corresponding to very small A = 0.5 A for good-
quality interfaces. We see that the red squares agree very well with experimental data, both
quantitatively and in the trend with with increasing period length. Considering that the
normally calculated thermal conductivity for InAs and AlAs agree with experiment, we be-
lieve there is likely some nontrivial aspect of alloy scattering in InAlAs that the model in
Ch. 4 does not fully capture and that leads to apparently much lower bulk alloy conduc-
tivity of InAlAs than anticipated. Experimental measurement on InAlAs with different In

compositions and at differnt temperatures would help shed light on the issue.

5.5 Conclusion to Chapter 5

Based upon the bulk thermal conductivity model presented in Chapter 4, we analyzed
thermal transport in ITI-As SL structures. The calculation of the thermal conductivity
tensor in superlattices involves each layers conductivity, itself affected by the impact of
diffuse interface scattering on phonon populations, as well as explicit thermal boundary
resistance that only affects the cross-plane thermal transport. We calculate the TBR between

interfaces based on interpolating the transmission coefficient between the AMM and the
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Figure 5.5: Cross-plane thermal conductivity of Ings53Gag47As/Ing 50Alg 48As SLs as a
function of the period length. The notation AmGn represents a SL structure with the
InAlAs and InGaAs layer thicknesses of m and n nanometers, respectively. Blue diamonds
show the experimental data from Sood et al.[27], green dots show our calculation with
regular scattering rates, and red squares show the calculation results with artificially
increased bulk rates for InAlAs. In both calculations, A is chosen to be 0.5 A, in keeping

with the perfect interface quality revealed in X-ray diffraction experiments.
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DMM, where the specularity parameter (traditionally used to describe diffuse scattering) is
also used as the AMM weight in the interpolation. Therefore, with a single free parameter—
the effective interface rms roughness A (often ranging from 0.5 Ato 6 Afor high-quality II1I-As
interfaces)—we captured the transport properties of multiple GaAs/AlAs and InGaAs/InAlAs
SL structures over a wide temperature range (70 K to 400 K). The observed discrepancy
between the calculated and experimentally extracted layer thermal conductivity of InAlAs
indicates that the VCA being questionable for this material. This topic is further explored
in Chapter 6.

The presented model is fairly simple yet quite accurate, especially when used with full
phonon dispersions. It can be very useful for thermal modeling complicated QCL structures,
with many interfaces. The model is also applicable to other material systems where SLs

have good-quality interfaces and phonon transport can be considered incoherent.
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Chapter 6

Thermal Conductivity of I1I-V Bulk Materials:
EMD

As discussed in chapter. 4 and 5, adopting the virtual crystal approximation[21] (VCA)
to compute the thermal conductivity (TC) of ternary I11-As alloys works well for Al,Ga;_(As
and In,Ga,_As with various x compositions.[4, 22, 16] For In,Al;_,As, however, experimen-
tal TC value is only available for Ings2Alg4sAsand don’t agree with each other.[5, 27] Our
calculated TC is 2.82 W/m-K, which is close to the Koh et al.[5] result but very far from the
Sood et al.[27] value. Since we have benchmarked the technique for binaries, we speculate it
is the VCA that is not entirely suitable for characterizing the TC of ternary III-As alloys.

Within the VCA, there are two major assumptions whose validity needs to be questioned
when it comes to the calculation of TC in ternary alloys A,B;_C. (1) All cations can effec-
tively be replaced with an effective averaged cation, whose mass is calculated as the weighted
average of cation masses, i.e., (my = xmp + (1 —z)mpg). (2) The alloy is random, i.e., cation
sites are randomly taken by atom A or atom B, with the frequency proportional to cation
abundance (x and (1 — z), respectively). Although an effective mass-difference scattering
rate is added to compensate for the fact that assumption (1) eliminates scattering caused
by cation mass-difference,[21] this approach is inherently perturbative and assumes that the
cation mass difference is small with respect to the average cation mass. Therefore, the valid-
ity of this perturbative mass-difference-scattering approach becomes suspect when the cation
masses are different. In our case, my; = 26.98 au, mg, = 69.72 au, and my, = 114.82, so

it makes sense that the model works better for In,Ga;_As and Al,Ga;_,As than it does
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for In,Al;_ As, since the mass difference between Al atoms and In atoms is significant. The
second assumption is directly contradicted by a number of X-ray and transmission electron
microscopy (TEM) experiments conducted on ternary I11-V alloys grown epitaxially on GaAs
or InP substrate.[151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162] These experiments
show that group III atoms in ternary III-As epi-layers are arranged with certain order rather
than completely randomly. This ordered structure is also backed up by observable change
in the width of electronic bandgap of these materials. The most observed types of ordering
for Ing 53Gag 47As and Ing 52Alg 4sAs are the CuPt-B order[151, 152, 153, 155] and the triple-
period-A (TPA) order.[154, 156, 157, 158, 159, 160] The CuAu-I order is more common in
Al 5Gag5As[161, 162] but could also be observed in Ings3Gag47As or IngsAlg4sAs under
appropriate growth conditions.[157, 162]

To directly address these two questionable assumptions, we use molecular dynamics (MD)
to study the thermal transport inside ternary III-As alloys. In a MD simulation, the mass
and location of each atom are tracked in real space; therefore it is straightforward to include
individual mass and the exact alloy structure explicitly in the simulation. We adopt the
Tersoft[163, 164] empirical interatomic potentials (EIPs) to describe the interaction between
atoms. The parameters we used in the EIPs had been obtained by an optimization tech-
nique, starting from the existing ones,[2, 165, 3] with the goal to better capture the phonon
properties of binary III-As semiconductors.[166] We then used the optimized EIPs to study

the influence of mass difference and ordering on the TC of ternary III-As alloys.

6.1 Thermal Conductivity from Equilibrium Molecu-
lar Dynamics

All the MD simulations in this work are carried out in the LAMMPS[167] package. We
use equilibrium molecular dynamics (EMD) together with the Green-Kubo (GK) formula
(discussed in chapter. 2) to compute the TC of the compound semiconductors.

For cubic bulk semiconductors, the TC is expected to be isotropic. As a result, we

used cubic simulation cells with periodic boundary conditions applied in all directions. In a



92

typical simulation, the system was first initialized at the desired temperature 7" by assigning
each atom a random velocity that follows the thermal distribution at 7. Then the system
was equilibrated as an NPT ensemble (constant number of atoms, constant pressure as
1 atm, and constant temperature 7', as specified) using the Nosé-Hoover barostats and
thermostats[168, 169] for 100 ps. After that, the system was further equilibrated as an
NV E ensemble (constant number of atoms, constant volume, and constant system energy)
for another 100 ps before the heat flux is collected. The instantaneous heat flux is then
calculated and output into a file at every time step, for 5 million steps. A script was
written to post-process the output file to obtain the heat current autocorrelation function
and its running integral. We made sure the integral saturated and extracted the bulk TC
according to Eq. (2.8). The time step was chosen to be small enough so the system stays
stable throughout the simulation—here, the time step was 1 fs for binary materials and 0.1
fs for ternary alloys. For each simulation (given material and temperature), several random
starting velocity distributions were used and the final result was averaged among the different
runs. We tested the simulation domain sizes to make sure there is no size effect. The final
results for binary III-As were obtained with a simulation cell 10aq x 10ag X 10aq in size, where
ag is the lattice constant for the material. For ternary alloys, 8ag X 8ag X 8ay was enough
for the TC to converge. We used 9a¢ x 9ag X 9ag cells for alloys with TPA ordering as the
algorithm for generating cells requires the system size to be multiples of 3 (more details in

Sec. 6.4).

6.1.1 Quantum-Correction of Temperature

In MD simulations, system temperatures are calculated following the rules of classical
statistical mechanics.[170] We adopt a simple quantum-correction procedure for the temper-
atures by mapping the kinetic energy of an MD system at temperature Typ onto that of a

quantum system with temperature T4[170, 171]

1

3 1
QNkBTMD - Z Z huw(k, b) 92 T hw(k,b)
b k ex |:—kBTQ } —|—1
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In the left-hand side, N is the number of atoms in the system and kg is the Boltzmann
constant. In the right-hand side, the summation is over all the phonon branches b and wave
vectors k. hw(k, b) is the corresponding phonon energy. The additional % in the curly bracket
accounts for the non-zero ground energy in a quantum system. For the right-hand side, we
used an approximate isotropic phonon dispersion fitted from the full phonon dispersion, based
on our previous work.[38] Figure 6.1 shows the mapping between the quantum-corrected
temperature and the MD temperature for GaAs (the curve is similar for AlAs and InAs)
between 0 K and 500 K. We see that Tyip and T coincide at higher temperatures but differ
a great deal at lower temperatures. At room temperature, there is typically a 4% — 8%
difference between Tyip and T for III-As. Henceforth, all the temperatures listed in this

work are the quantum-corrected temperatures T4.

6.2 Optimizing the Tersoff Potentials
6.2.1 Tersoff Potentials

The Tersoff EIP was proposed in by Tersoff in 1988 for silicon,[163] extended to SiC in
1989,[164] and later successfully parameterized for most I1I-V binary compounds. |2, 172, 165,
3] Tersoff potentials have a cutoff distance that limits the atom interactions to only between
the nearest neighbors, which is an advantage in our case: the nearest-neighbor interaction
makes it easy to apply the potentials for binary III-As to ternary III-As alloys.

In the LAMMPS package, the Tersoff potential is described using 14 parameters in the
following form. The total energy of the system is the summation of energy between each

pair:

1
i JF#
The pair interaction potential V;; between atom 7 and atom j is described by the competition

between a repulsive term fr and an attractive term f4, and is modulated by a cutoff term

fc so that only nearest-neighbor interactions are included:

Vij = fo(rig) [fr(rig) + bijfa(ri)] - (6.3a)
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Figure 6.1: A typical mapping between the MD calculated temperature Typ and the
quantum-corrected temperature T (figure showing the case of GaAs). The two values

converge at high temperatures and differ a great deal at low temperatures.
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The cutoff function writes as

(
1 r<R—-D,
fo(r)=1<1 —lein(z=B) :R—D<r<R+D, (6.3b)
0 ;1 >R+ D,
\

where 7 is the variable. From Eq. (6.3b), the cutoff length is R+ D and there is a transition
window with width 2D. Both R and D are parameters of the Tersoff potential. Both the
repulsive and the attractive terms have an exponential form with A, B, A\; and Ay being

potential parameters:
fr(r) = Aexp(—=\ir), (6.3¢)
fa(r) = —=Bexp(—Aar). (6.3d)
To include the influence of the bond angle and length, the attraction term f4 is further

modified by the bond angle term b;; where

by = (L+~"E5) >, (6.3¢)
and
§ij = Z fo(rin)g(Oir) exp [A3" (rij —rir) "], (6.3f)
ki, j
c? c?
=50 1+ = — ) 3
9(60) = 9 ( + d?>  d?+ (cosf — cos 90)2> (6-3g)

The summation in &;; goes over all the central atom 4’s neighbors within the cutoff except
for the neighbor j whose interaction with ¢ we are considering. The bond angle 6;;;, can be
calculated with the three atoms’ coordinates and J;j; is a scaling parameter that is unity
in most cases. vy, n, A3, and m are potential parameters. In particular, m can only take
the value of 1 or 3. ¢, d, and cos 0y are bond-angle-related potential parameters. Note that
cos by is often denoted as h; the form of a cosine simply reminds us this parameter can only
take values between -1 and 1.

A variation of the original Tersoff potential is the Albe-Tersoff potential where the
strength and the decaying speed in Eq. (6.3c) and (6.3d) are expressed with parameters
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D., S, 5, and r. in place of A, B, A;, and \y.[173] The relationship between the two sets

of parameters can be derived as

A=

S T exXP (B/25Te), (6.4a)
B = S eXp (B\/2S/7e), (6.4b)

A1 = B+/2Sr, (6.4c)
= BV/25/re, (6.4d)

In the case of Albe-Tersoff potential, we work with the parameters D,, S, g, and r. and then

use a script to convert them to A, B, A\, and )\ for the input potential file of LAMMPS.

6.2.2 Phonon Dispersion from EIP

With a given EIP, the phonon frequencies h(k, b) for wave vector k and branch b can be
obtained by diagonalizing the dynamical matrix[174]

etkexll (6.5)

Dos(ijlk) =

where ['j represents atom j in the {’th unit cell and the summation is over all the relevant
neighbors of the central atom i. x(I') is the relative location of unit cell I’ with respect to the
unit cell ¢ is in. The interatomic force constants (IFCs) between atom i and j (¢as(0i;1'7))
are calculated using the central finite difference method:

(bij — av;? _ V<rij + da + dﬁ) - V(I’ij — da + dlg) — V(l"z‘j + da — dﬁ) + V(I‘ij — da — dﬁ)
*F " 9adp Ad,dg '

(6.6)
Phonon dispersion curves are obtained by computing the phonon frequencies for multiple
ks along a certain direction in the first Brillouin zone (1BZ). The sound velocities are obtained

from the acoustic branches near the zone center (I" point) as
[Van| = [Viw(k, b)], (6.7)

where the subscript b is the branch index. Since the phonon dispersion is isotropic near

the I" point, we use the dispersion curves along the [100] (I — X) direction to calculate the
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sound velocities. The two transverse acoustic (TA) branches are degenerate along the I' — X
direction and we only need one scaler velocity for the TA branches (vsta) and one for the

longitudinal acoustic (LA) branch (vspa).

6.2.3 Parameter Optimization

Most Tersoff potentials are parameterized so as to accurately capture the mechanical
properties of the materials.[163, 164, 2, 172, 165, 3] However, for the EIPs to be good at
describing thermal transport, they must also produce good phonon properties. Lindsay and
Broido[166] optimized the Tersoff potential of carbon (C) for thermal transport. They use a

x? minimization procedure

2 _ (ni — nexp,i)2 A
=) e, (6.8)

; ngp,i
where 7 runs over all the physical properties they optimize for. 7; and 7y, ,; are, respectively,
the calculated and experimental values for physical property 7. (; is the weighting factor
determining the relative importance of each physical property in the optimization process.
They assigned the most weight to the phonon frequencies and zone-center acoustic velocities
(also known as the sound velocities), because of their crucial rule in thermal transport.[166]
Here we follow a similar minimization approach to improve the EIPs’ performances for
describing the thermal transport. The physical properties we optimized for are the lattice
constant ag, the cohesive energy Lo, and the sound velocities vs 7o and vs 4. Note that the
agreement of the phonon dispersion only guarantees the accuracy of the second derivatives of
the EIPs (or the IFCs) (Sec. 6.2.2) while the finite TC of crystals originates from the phonon-
phonon scattering, related to the third and higher derivatives of the EIPs. Since the strength
of these higher-order interactions are not easily accessible through experiments, we used the
temperature-dependent TC measured in experiments as an additional gauge, because the
temperature variation of TC is dictated by phonon-phonon interactions. First, we optimize
the EIPs to match the phonon dispersion following Lindsay and Broido.[166] Then we used
the optimized potential to calculate the temperature-dependent TC following the procedure

described in Sec. 2.3. We were most interested in the temperature range between 100 K and
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500 K because most devices operate in this range. A comparison between the calculated and
measured TC instructed us to further adjust the weights in the optimization process. This
process was repeated until we obtained a satisfactory temperature-dependent TC from the
potentials.

For simplicity, we use existing parameterizations as starting points. To choose the best
starting point, we calculate the temperature-dependent TC with existing potentials. For the
three binary I1I-As materials—AlAs, GaAs, and InAs—we are most interested in, the potentials
that yield temperature-dependent TC closest to experimental values are from Sayed et al.[2],
Powell et al.[165], and Hammerschmidt et al.[3], respectively. Incidentally, all these three
are parameterized in the Albe-Tersoff form. Like Lindsay and Broido,[166] we try to adjust
only a few parameters among all. R and D are always left untouched because they dictate
the cutoff of the EIPs. m also stays constant per LAMMPS’s requirement. In the remaining
parameters, we find that D., 5, ¢, d, and h are very effective in adjusting the four physical
properties we want to optimize. Therefore, during the x? minimization, we only vary these

five parameters.

6.2.4 Optimized Potentials

In the optimization, we found that the parameters for GaAs from Powell et al.[165]
yielded very good sound velocities as well as temperature-dependent TC from 100 K to 500
K. Therefore we adopted this set of parameters as it was. However, the parameters for
AlAs|2] and InAs[3] both had to be optimized. Table 6.1 shows the optimized parameters
for AlAs and InAs. As mentioned in Sec. 6.2.3, the parameters other than the five listed
were kept the same as in the original sets.

The three panels in Fig. 6.2 are show the calculated temperature-dependent TC (dark
green dots with error bars) in comparison with experimental data[13, 15, 12, 18, 19, 20] (light
green solid lines) for AlAs, GaAs, and InAs, respectively. The insets show the calculated
phonon dispersion along the I' — X direction (dashed lines) in comparison with measured

values|[11, 28, 29, 30] (dots).
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AlAs
D, =2.6372
£ =1.6948
c=1.4145
d=10.9116
h =—0.6172

InAs
D, = 1.9949
B = 1.7660
c=4.0249
d =1.0157
h = —0.6096

Table 6.1: Optimized parameters for the Albe-Tersoff potentials for AlAs and InAs.

Parameters not listed are the same as in the original sets.[2, 3]
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6.3 Thermal Conductivity of Ternary Alloy: The Role
of Cation Mass Difference

After obtaining the optimized EIPs for binary compounds, we applied these potentials
to ternary alloys. We investigated the validity of the first assumption in the VCA (all cation
atom are assigned the same, weighted average mass) in predicting the TC. For this part,
we kept the second assumption that all ternary alloys were random alloys. We considered
In,Ga;_,As and In,Al,_,As alloys with = varying from 0.1 to 0.9. For each x, we generated
10 different random simulation cells with the corresponding composition. For each random
configuration, we conducted 20 simulations with different starting velocity distributions.
Each of the final TC value was averaged over the 200 runs.

In order to isolate the effect of the mass difference, we carry out two sets of simulations
(at RT). In the first set, all the cation atoms kept their own masses (ma = 26.98 au,
mg, = 69.72 au, and my, = 114.82 au). In the second set, the cations were all assigned
the same weighted-average mass [mayy = xm, + (1 — 2)mga a1]. Other than this difference,
the two sets used the same EIPs and random (not ordered) configurations in the simulation.
Figure 6.3 shows the TC data for both In,Ga;_As and In,Al;_ As. The results from the
explicit-mass (EM) case and the averaged-mass (VCA) case are shown in blue diamonds and

red dots, respectively. Existing experimental data is shown in stars, for comparison.[4, 5, 27]

From Fig. 6.3, the EM TC is consistently lower than the VCA TC across the In% for both
In,Ga;_,As and In,Al;_,As. Moreover, the difference between the EM and VCA is much
more pronounced in IngAl;_As (where the mass difference is larger) than in In,Ga;_(As
(where the mass difference is smaller). Therefore, it is evident that mass-difference scattering
is critical in III-V ternary random alloys. Using an averaged VCA mass for cations will
underestimate the mass-difference scattering; the larger the mass difference, the greater the
underestimate. Additionally, in the case of In,Ga;_As, both the EM TC and the VCA

TC are significantly smaller than the experimental value; in the case of In,Al;_,As, the two
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experimental results are so far apart that the EM TC and VCA TC fall in between the two
measurements. As a result, we can conclude that there must be another mechanism that

competes with the mass-difference scattering to influence the TC of ternary alloys.

6.4 Thermal Conductivity of Ternary Alloy: The Role
of Order

6.4.1 Thermal Conductivity of Alloys Near A,;B;;C Composition
with CuPt-B and CuAu-I order

Experimentalists who grow and characterize III-V epitaxy layers have long discovered
that both long-range and short-range order exists in ternary I1I-V alloys.[151, 153, 154, 155,
156, 157, 158, 175, 159, 160, 161, 162] Order leads to changes in bond length and electronic
band gaps. Since phonons are quanta of lattice vibrations,[140] it is intuitive that thermal
transport behavior will also change in the presence of ordering. Duda et al.[176, 177] studied
one particular type of order in Sip5Gegs using the non-equilibrium molecular dynamics
(NEMD) method and the simple Lennard-Jones potential. Baker and Norris[178] studied
both long-range and short-range order in Sig5Geg s with the Stillinger-Weber potential. We
were interested in ITI-V ternary alloys with compositions away from the 50%-50% case. We
also want to use EIPs that would give us quantitatively accurate results for TC. It is note-
worthy that order in III-V ternary alloy samples is often localized, i.e., it is common to have
“poly-ordering” where the sample has one type of order in one region and a different type
of order in another.[155, 175, 152]

For the sake of simplicity, in this work we only simulate samples with a single type of order
that extends to infinity and we applied periodic boundary conditions. Moreover, we focused
on three different types of order that are most commonly observed in III-V ternary alloys:
the CuPt-B type, the CuAu-I type, and the triple-period-A (TPA) type.[157] Both CuPt-B
and CuAu-I ordering yield alloys with the composition Ay ;Bg5C within the Zinc-Blende
lattice. Figure 6.4 shows the crystal structure of both the CuPt-B and CuAu-I ordering.

In CuPt-B ordering, A atoms and B atoms take alternate cation planes along the [-111]
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Material CuPt-B | CuAu-I | Rand. Alloy Expt.
In0_5GaO.5As 12.71 14.39 1.52 4.84 (In0_53Ga0.47AS)
IHO.5A10.5AS 6.488 6.472 1.25 2.68 (IHO.52A10.48AS)

Table 6.2: Comparison of calculated RT TC for Ing5GagsAs and Ing5Aly5As with perfectly
ordered CuPt-B and CuAu-I structure as well as the random alloy structure and the

experimentally measured TC for Ing 53Gag47As[4] and Ing 50 Alg 45 As[5].

direction. In CuAu-I ordering, A atoms and B atoms take alternate cation planes along
the [100] direction. Note that perfectly ordered alloys do not exist in experiments, so the
alternating planes are actually A-rich and B-rich planes. TPA ordering in its ideal form refers
to the case where the cation planes along [111] direction has a repeated pattern involving
3 planes. Therefore, ternary alloy A,B;_,C with any composition z can be represented in
some TPA ordering where each period has the arrangement of A,B;_,/A,B1_y/AyBi_y and
(u+v+w)/3 =z (note the three planes in a period cannot be all equal or the triple-period
collapses). Figure 6.5 depicts a typical crystal structure of ternary alloy AgsBos5C where
u=1, v=0,and w = 0.5.

We calculated the RT TC of perfectly ordered IngsGagsAs and Ings5Aly5As with both
CuPt-B and CuAu-I types of order and show the results in Table 6.2. The calculated TC
for Ing 5GagsAs and Ing5Aly5As with random alloy structures (with explicit mass) are also
shown for comparison. Since there are no experiments on IngsGagsAs and IngsAlgsAs,
we compared the results with experiments on Ings53Gag47As[4] and Ing 5oAlg 4sAs[5]. From
Table 6.2, we conclude that order of either type significantly increases the TC of both
Ing 5GagsAs and Ing5Aly5As alloys compared to the random alloy case. The CuAu-I type
ordering leads to slightly higher TC than the CuPt-B type order in both alloys. All the
simulated TC values from the perfectly ordered structures were higher than the experimental
measurement, which is intuitive because Ing 53Gag 47As and Ing 55 Alg 48As in experiments are

1) not perfectly ordered and 2) have In compositions away from 0.5.



Figure 6.4: The crystal structure of ordered ternary alloy AgsBgsC with CuPt-B and
CuAu-I ordering.
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CuPt-B CuAu-I
Material LM LM+4% | LM+8% LM LM+4% | LM+8% | Expt.
Ing 53Gag4rAs | 5.022 3.165 2.585 5.728 3.567 2.845 4.84
Ing s0Alg4sAs | 3.965 3.216 2.654 4.426 3.248 2.805 2.68

Table 6.3: Calculated RT TC for lattice-matched (LM) Ing53Gag.47As and
Ing 52 Al 48As with various percentage of additional random disorder. Experimentally

measured TC are also listed for comparison.[4, 5]

To directly compare the simulated TC with the experimentally measured TC for Ing 53Gag 47As and
Ing 50Alg 45As lattice matched to InP, we randomly replace 3% (2%) of Ga (Al) atoms in
the perfectly ordered structure with In atoms to obtain lattice-matched simulation cells.
Table 6.3 shows the TC of lattice-matched Ing53Gaga7As and Ings0Alg 4gAs from both our
simulations and the experiments. We see that TC obtained directly from the lattice-matched
simulation cells are still quite large compared to the experiments, which could be attributed
to the existence of additional disorder that is inevitable in real experimental samples. Here
we investigate one type of disorder: randomness. We take the lattice-matched simulation
cells and randomly swap an In atom with a Ga (Al) atom to create disorder. The amount
of disorder is categorized by the percentage of swapped In atoms in the cell. In Table 6.3,
the cells with the simulation results are labeled with LM+d%, where LM stands for lattice
matched and d% is the level of disorder. Consistent with the findings in Sec. 6.3, even
little disorder (< 10%) severely reduces the alloy TC. Comparing the calculation with ex-
periments, the level of disorder in Ings3Gaga7As is around 2% while in Ing 5o AlysgAs it is

approximately 8%. Also, as expected, the calculated lattice-matched TC for InGaAs and

InAlAs is lower than the corresponding TC calculated from the perfectly ordered structures.
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6.4.2 Thermal Conductivity of Alloys with Dierent Compositions
and TPA Order

To study the TC of ordered In,Ga;_4As and InyAl;_As with various z (away from 0.5),
we needed to implement TPA order. While it was impossible to consider every feasible
arrangement of the TPA order, we simulated the two extreme cases that would likely yield
the upper and lower limits of the TC with TPA order for each x. The idea is that with more
symmetry comes less phonon scattering, and the resulting TC should be higher. Note here we
only focus on the perfectly ordered structures, therefore x values were limited to multiples of
+. For each z, we generate two TPA cells: most symmetric (MS) and least symmetric (LS).
Figure 6.6 shows the TC calculated from the MS cells (red squres), LS cells (yellow dots),
and measured in experiments[4, 5| (blue diamonds), respectively. The results are consistent
with our expectations. The MS TC is higher than the LS TC while both are higher than the
experimental data (simulated structures are perfectly ordered, while experimental samples
contain disorder). TC values of MS and LS fall on top of each other when z = 55 and = = 35
because the MS and LS structures are equivalent in these cases. Calculated TC follows the
general U-shape (TC is lowest when z is close to 0.5 and increases as x approaches 0 and
1), except for a sudden TC jump at certain = values (z = {5, n = 2,4,6,8, and 10). The

jumps exist because these fractions {5 are reducible, which leads to additional symmetry in

the system.

6.5 Conclusion to Chapter 6

In this chapter, we studied the thermal conductivity of I1I-V ternary alloys, In,Ga;_,As and
In,Al;_,As in particular. We investigated how the mass difference between cation atoms and
the arrangement of cation atoms affect thermal transport. The MD technique is chosen for
its advantage in addressing individual atom mass and ordering in the alloy. Optimized Able-

Tersoff EIPs were used to describe the ternary alloys owing to their demonstrated success in
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describing I1I-V binary materials and their nearest-neighbor cutoffs that lend themselves to
application in alloys.

We first optimized the Able-Tersoff potentials by matching the calculated phonon dis-
persion to experiments. We also matched the calculated temperature-dependent TC to
experiment so the EIPs would capture higher orders in phonon-phonon interaction that are
key in thermal transport. The quantum correction to the temperature was also accounted
for in the simulations.

The optimized potentials were used to describe ternary alloys with both random and
ordered structures. For random alloys, we compared the cases where atom masses were
explicitly considered versus where they were all replaced with the averaged VCA mass, as
is commonly done within the Boltzmann transport framework. The results showed that
explicit atomic mass drastically reduces the TC of ternary alloys. The larger the mass
difference between the cations in the alloy, the larger the discrepancy between explicit-mass
and averaged-mass (VCA) TC results. We conclude that, when cation masses differ a lot (as
is the case of In,Al;_(As), it is essential to include atom masses explicitly and any calculation
that relies on VCA is likely inaccurate.

Moreover, measured thermal conductivities of ternary alloys are higher than calculations
with either explicit or VCA mass and random positioning of cations, which led us to look at
longer-range order in alloys. We considered perfectly ordered Ing5GagsAs and Ings5Alg5As
with both CuPt-B and CuAu-I types order and the corresponding lattice-matched alloys
Ing 53Gag47As and Ings0Alg4s8As. Order in ternary alloys considerably raises TC. By adding
random disorder to the lattice-matched alloys Ing 53Gag 47As and Ing 50Alg 45 As, we found that
experimental results could be reproduced with levels of disorder close to 2% in Ing 53Gag 47As and
8% in Ing soAlg 4gAs.

We also studied perfectly ordered TPA alloys In,Ga;_As and In,Al;_ As with various
compositions . We found that more symmetry in the alloy led to higher T'C, while the alloys
with the least symmetry still yielded higher TC than experiments, indicating the existence

of disorder in experiment.
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In conclusion, in modeling thermal transport in II1-V ternary alloys, it is crucial to include
both the explicit masses of atoms and th effects of long-range order. The measured TC for
III-V ternary alloys is likely a result of the competition between the two: reduction in TC
stemming from mass-difference scattering associated with random disorder and an increase
in TC associated with order in the alloy structure. These notions should be incorporated into
other techniques for calculating thermal transport in alloys, and highlight the importance of

critically evaluating the range of validity of even very common approximations, such as the

VCA.
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Appendix A: Algorithm for Choosing Wave
Vector

A.1 Probability Distribution in Polar Coordinates

The starting point of choosing a wave vector is a fixed isoenergy curve from the already
chosen w and b for the given phonon. Figure A.1 shows a set of isoenergy curves (separated
by 2 x 10" rad/s) for the TA mode (the other two modes have similar curves). As we can
see, the curves have near-radial symmetry, thus we use polar coordinates for convenience.
Further, the 1BZ has 12-fold symmetry following the graphene lattice, so we would only
need to consider the irreducible wedge (shaded area in Fig. A.1), and map it onto anyone of
its counterparts with equal probability. Since we know the phonon energy and branch, only
a polar angle  is needed to uniquely find a wave vector q. Here we choose the rejection
technique to find the appropriate angle and then calculate the wave vector q.

Evaluating the probability of a phonon having angle # on a particular isoenergy curve
w is similar to a discretized version of phonon DOS calculation detailed in Sec. 3.1.2. The
probability is represented by

arc(0 — 66,0 + 60)
[Vg(w, 0)]

p(w, 0) < Dyp(w, ) (A.1)

where arc(6 — 00,0 + 60) is the arc length on the isoenergy curve between (6 — 6,6 + §6)
and |v,(w, )| is the magnitude of group velocity (we assume the group velocity is constant
along the small arc). To make a rejection table, we need to discretize both the angular
frequency and the angle in irreducible wedge. For the frequency, we still use the same
discretization as in Sec. 3.2.1. For the angle, we divide the central angle of the irreducible
wedge (Omax = §) into N, equal intervals with Af = 9]“\‘%. The central frequency in the ¢th
interval is 0.; = (2i — 1)52. We evaluate (A.1) only at discrete points (we;, ;) and get
a Ny X N, interpolation table. For any 0 < w < wpax and 0 < 6 < 0., we can get the
probability of having a phonon from linear interpolation. We find that N, = 100 serves the

purpose of accurate interpolation.
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Figure A.1: Isoenergy curves in the 1BZ for TA-branch phonons. The neighboring curves

are separated by 2 x 10'3 rad/s and the shaded region in the black triangle is the

irreducible wedge in the 1BZ.
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Another effect caused by the full dispersion is that the group velocity at which phonons
travel is no longer parallel to their wave vectors. So an extra step is needed to find the
group velocity v,(w,#) associated with the chosen q. For each of the Ny, x N, discrete
points (wc;, 0.,;) where we evaluated the probability, we also evaluate the group velocity
Vy(Wei, 0c.;) using finite difference method. Since the group velocity is a vector, we store
each direction in a separate table, vy(wc, 0. ;) and vy(we;, 0 ;). Figure A.2 shows a point

and its associated q and v,. The shaded area shows the irreducible wedge.

A.2 Lookup Tables and Rejection Technique

We now have all the tables we need for phonon generation: the probability table p(we i, b..;)
and the two components of group velocity table vy (we, 6. ;) and vy(we;, 0 ;). We need a set
of these tables for each branch, and that makes 3 x 3 = 9 tables in total. All the tables are
Ning X N, (in our case 2500 x 100) in size and are pre-calculated and recorded before the
actual simulation.

The first thing in actually choosing the phonon wave vector is to interpolate in each of
the three 2D tables for our chosen branch b and get three 1D tables associated with our
specified frequency level w. The interpolation process for the three tables is the same and we
would just show the probability table p(w.;, 6. ;) as an example. Again using the bisection
algorithm, we can find the index m satisfying we,, < w < Wems1. Then the probability

of finding a phonon with angle 6., at level w is obtained from the weighted average of

p(wc,ma ec,j) and p(wc,m-i-l’ 007]')‘

P(Ocj)ly, = P(Wems be) - (1 = d) +

p(wc,m—&-l’ec,j) ’d7 ] = 1...Na,

(A.2)

W—Wc,m

where the weighting factor is d = =5*. Now we can normalize this 1D probability table so
that the maximal value in the table is unity. Note that we can only normalize the probability
table after interpolation between frequency levels. We still call the normalized table p(6. ;)| .

For the velocities, we get v(f.;)| and vy (0. )|, tables in the same way except that we do
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Figure A.2: A typical isoenergy curve (w = 9 x 10'3 rad/s). The shaded area shows the
irreducible wedge. Angle 0 fixes a point at the curve and the associated wave vector q and

group velocity v, is shown.



115

not normalize them. Now we are working only on the frequency level w, so we omit the
subscript w and just call the tables p(fe;), vx4(0c;), and vy 4(6c,;) from now on for brevity.

For a typical w value, the probability table looks like Fig. A.3 (the figure shows the table
for frequency level w = 3 x 10'® rad/s in TA-branch). We use the rejection technique with
this probability graph for choosing the angle. Draw a pair of random numbers (R4, Rs5) (both
R, and Ry are between 0 and 1). We would use Ry to get the tentative angle 0 = Ry - Oyax
and compare R5 with the probability to decide whether we accept the angle or not. To find
the probability associated with angle 6, we seek the index n satisfying 6, < 6 < 6, and

interpolate between the two:

p(0) =p(6w) - (1 = d') + p(Ouy1) - ', (A.3)

where d' = % is the weighting factor. If Rs < p(6), the angle is accepted and a point has
been uniquely chosen in the irreducible wedge. We then use the v (6. ;) and vy (6. ;) tables
to get the group velocity vy and vy for the phonon at this point. Otherwise, the angle should
be rejected, and we go back to drawing random number pairs (R4, R5) until one angle is

accepted.

A.3 Mapping to The Whole 1BZ

Since we are working with the irreducible wedge, a last step to map the point we found
in irreducible 1BZ to the whole 1BZ is needed. and modify the group velocity accordingly.
The twelve equivalent triangles in 1BZ are shown in Fig. A.4 and we number them counter-
clockwise. A random number Rg is used to choose one of the triangles and the index of the

final and vﬁnal

. v can be

chosen triangle is ceiling(12 x Rg). Then the final group velocities v
obtained from vy and vy by simple combinations of rotation and flipping according to the
symmetry. The mapping rules are shown in Table A.1. After the mapping, we finally have a
phonon satisfying all the distribution requirements and we can add this phonon to a random

position in its cell.
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Here the frequency level is at w = 3 x 10 rad/s in TA-branch.
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Index 1 2 3
Ugnal Uy \/731& - %Uy \/T%X + %Uy
Index 4 5 6
v —guxt \/T%Y —3Ux = \/Tgvy —
U}fjnal \/751])( + %Uy \/Tgvx - %Uy Uy
Index 7 8 9
pfinal —Ux —%vx — %gvy _%Ux + %gvy
vy Uy —Pu+ oy, — P — Juy
Index 10 11 12
pfinal Ly — %gvy SUx + %gvy Uy
S T T T

Table A.1: Mapping rule of calculating the final group velocities vi™! and v{" from the

group velocities vy and vy in the irreducible wedge of the 1BZ according to the triangle

index.
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A final note, GNRs could have different orientations, with the armchair (AGNR) and
zigzag (ZGNR) nanoribbon orientations being highly symmetric (Fig. 3.5). The presentation
thus far applies to phonon in armchair GNRs (AGNRs). The only modification needed
to simulate the transport in other orientations is to rotate v, with the angle ©, between

the armchair orientation and the simulated orientation in phonon generation process. In

T

particular, for zigzag GNRs (ZGNRs), the rotation angle is ©, = .
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Appendix B: Parameterization of Isotropic
Dispersion Relation in I1I-V Bi-
nary Materials

In order to calculate the thermal conductivity with full dispersion relation, we need to
calculate and store the information for each material, which requires a lot of computation
time and memory. However, it is a necessity in our case. First, we want to be able to
calculate the thermal conductivity of a ternary materials with any given composition for
which experimental work may generally not be available. Besides, experiments cannot give us
the dispersion information on any composition we want. Figure B.1 shows the exact phonon
dispersion of Ings3Gag47As along highly symmetric directions calculated from ABCM. As
we can see, the dispersion is not isotropic, and two TA branches are degenerate along the
[100] (I' — X) direction. Also, we can see that the isotropic Debye approximation or the sine
approximation of the dispersion are not ideal in capturing the features.

Thermal conductivity calculation of the three binary compounds (Figs. S1-S3) show that
using isotropic dispersion underestimates thermal conductivity for the binaries, primarily
because the two TA branches are not actually degenerate (Fig. B.1), and TA2 carries more
heat than TA1 because of the higher average group velocity. The isotropic dispersion also
overestimates the thermal conductivity of ternary materials, mainly because the phonon
DOS calculated from the isotropic dispersion is much smaller than that from full dispersion
(Fig. B.3).

To take advantage of the work we have done, and make it easier to get a sense of what the
dispersion relation of a ternary compounds with a random composition is like, we fit our full
dispersion data along [100] direction with a quadratic expression, which has been shown to

perform well in materials with similar crystal structure, such as Si[141] and GaN[56]. With
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two TA branches being degenerate, the dispersion relation reads

vig+ct¢?, b=TA
wh(q) = (B.1)
vl +chg?, b =LA,
where v and v are the sound velocity of two branches and ¢* and ¢ are the corresponding
quadratic coefficients. Note that everything reduces to a scalar in the isotropic approxima-
tion.

Figure B.2 shows that the expression is a good fit to the dispersion. We report the pa-
rameters in our quadratic fit so that one can get an easy and reasonably accurate estimate
of the phonon dispersion of ternary group-III arsenide materials with any composition. Fig-
ures B.4 and B.5 show the two fitting parameters of InGaAs as a function of In composition.

We find that both vs and c¢ fit well to a quadratic expression

b b, .2 b b
v (l‘) = UgpZ +Us1I+Us0§

APr) = S+ dr+eh,
where b = TA or LA.

We have calculated the parameters for three types of ternary compounds, In,Ga;_,As,
In, Al _,As, and Al,Ga;_,As, and they are reported in Table B.1. The isotropic approxi-
mation (Eq. (B.1)) to the full dispersion gives a fairly good estimate of the sound velocity.
The calculated thermal conductivity based on the isotropic approximation does differ from
that calculated with full dispersion: kis, ~ 0.6kgq for binaries and ki, ~ 1.2k for almost
evenly mixed ternaries. The error is in between when a ternary is not an even mix of two
binaries. However, if high accuracy is not critical, good estimates are possible with isotropic

dispersions that use the parameters given in Table B.1.
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Material InGaAs InAlAs AlGaAs
vy 130.50  116.59  555.58
vy -800.80 -275.19  422.04
vy 3602.3  4553.7  3616.6
cx -0e-9  -6.2e-8  -3.2e-8
ct 2.7e-8  1.3e-7T -2.4e-8
s 2.1e-7  -2.6e-7 -2.1e-7
vl 199.94 16543  782.56
vl -908.6  -359.84  537.55
vl 5196.3  6480.0  5216.3
cy -5.3e-9  -4.7e-8 -2.3e-8
cr 2.7e-8  1.le-7  -1.8e-8
c§ -1.4e-7  -1.8e-7  -1.4e-7
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Table B.1: Fitting parameters for sound velocity and quadratic coefficient to get isotropic

dispersion.
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