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ABSTRACT 

As the world’s leading corn producer, the United States supplies more than 30% of the 

global corn production. Accurate and timely estimation of corn yield is therefore essential for 

commodity trading and global food security. Recently, machine learning (ML) and deep learning 

(DL) models have been explored for corn yield prediction. Despite the success, there are still two 

major limitations of existing ML-based crop yield prediction models. First, most existing models 

mainly focus on predicting the crop yield without providing any information about the 

uncertainty which is important to provide quantified confidence interval of the prediction to 

users for their knowledgeable decision makings. Second, data-driven DL models require a large 

amount of reference data samples (i.e., yield records) for model training and tend to have low 

spatial transferability due to domain shifts between different regions. In this dissertation, we 

focused on addressing these two major limitations using Bayesian learning and unsupervised 

domain adaptation (UDA) for corn yield prediction.  

Specifically, to address the first limitation, this dissertation proposed Bayesian neural 

networks (BNN) for corn yield prediction and uncertainty analysis. By applying Bayesian 

inference, the proposed BNN model can provide not only accurate yield prediction but also the 

corresponding predictive uncertainty. Feature variables were collected from multiple data 

sources, including remote sensing (RS) imagery, weather variables, soil properties, and historical 

average yield. Using preceding years since 2001 for model training, the developed BNN model 

achieved an average coefficient of determination (R2) of 0.77 for late-season prediction across 

the U.S. corn belt in testing years 2010–2019 and outperformed five other state-of-the-art ML 

models. Evaluation results of in-season yield prediction showed that the BNN model achieved 

the optimal prediction results by the middle of August, which is about two months before the 
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harvest. We also assessed the predictive uncertainty and found that more than 84% of the 

observed yield records were successfully enveloped in the 95% confidence interval of the 

predictive yield distribution. Uncertainties in yield prediction were mainly induced by the 

observation noise and related to the inter-annual and seasonal variabilities of environmental 

stress such as heat stress and water stress. 

To address the second limitation, this dissertation utilized the UDA strategy to reduce the 

domain shift between the source domain and the target domain with the aim of accurately 

predicting corn yield in the target domain without using labeled data from the target domain. We 

first proposed two single-source UDA models for county-level corn yield prediction based on RS 

images and weather variables. The proposed adaptive domain adversarial neural network 

(ADANN) and Bayesian domain adversarial neural network (BDANN) have been proven to have 

better spatial transferability and outperformed other supervised learning models and DANN in 

transfer experiments across two ecoregions in the U.S. corn belt. Furthermore, we proposed a 

multi-source UDA method named multi-source maximum predictor discrepancy (MMPD) to 

address the remaining issues of single-source domain adaptation methods. First, the multi-source 

UDA strategy was adopted in MMPD to avoid negative interference among source samples from 

heterogeneous regions. Also, by using the maximum predictor discrepancy (MPD), MMPD was 

trained to align source and target domains by considering crop yield response in the target 

domain based on task-specific regression models. Experiments on three UDA scenarios in the 

U.S. corn belt and Argentina have been conducted to evaluate the model performance. It was 

observed that MMPD outperformed representative single-source and multi-source UDA 

methods. 
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 In summary, this dissertation introduced Bayesian inference and UDA to county-level 

corn yield prediction based on RS and weather variables. Novel solutions have been provided for 

quantifying predictive uncertainty in crop yield prediction and improving spatial transferability 

for deep learning-based crop yield prediction models. This dissertation provides a robust 

framework for the in-season prediction of crop yield and highlights the need for a deeper 

understanding of the impact of environmental stress on agricultural productivity and crop yield. 

Moreover, this dissertation applied the UDA for crop yield prediction and demonstrated the 

effectiveness of adversarial learning for improving the transferability of DL models on crop yield 

prediction.  
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CHAPTER 1 INTRODUCTION 

1.1 Crop Yield Prediction 

With an increasing world population, it is projected that the world needs to feed 9.0 

billion people by 2050 (Godfray, et al., 2010). Ending hunger and improving food security are 

among the prime sustainable development goals of the United Nations (Lu et al., 2015). As the 

world’s largest corn producer and exporter, the U.S. harvested 366.6 million metric tons of corn 

and supplied over 30% of global corn production (Li et al., 2019; USDA, 2020a). Accurate and 

timely estimation of corn yield in the U.S. is therefore of great importance for farming resource 

management, food security monitoring, and market planning (Jiang et al., 2019; Johnson, 2014). 

Specifically, the accurate estimate of yields allows for better understanding of the food supply 

which in turn helps the demand side plan to better utilize the finite crop resources (Liu et al., 

2021). Moreover, under the pressures of global warming and climate extremes (Crane-Droesch, 

2018; Lobell et al., 2013, 2009), corn production in the U.S. has experienced substantial loss 

with increasing inter-year variability (Lobell et al., 2014; Sibley et al., 2014; USDA, 2020a). 

Seasonal estimation of large-scale corn yield can facilitate better assessments of its response to 

environmental stresses (Guan et al., 2017), and thus provide reliable information for adaptations 

in cropping systems for sustainable agriculture (Kang et al., 2020; Wang et al., 2018). Overall, 

accurate predictions of crop yield for corn and soybean in the U.S. are critical for ensuring food 

security, economic stability, and sustainable agricultural practices in the country. 

There are several publicly available corn yield predictions in the U.S. For example, the 

United States Department of Agriculture (USDA) National Agricultural Statistics Service 

(NASS) publishes crop progress and yield predictions of major staple crops for the U.S. at 
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monthly schedules before harvest. For example, corn progress reports are published from May to 

November. However, these publicly available predictions are mainly at the national and/or at the 

state level, which cannot meet the need for precision agriculture and knowledgeable decision 

makings at local (county) level. Also, USDA crop yield prediction is derived based on the 

nationwide agricultural survey and monthly field surveys during the growing season, which are 

costly and labor-intensive. Moreover, USDA NASS reports annual county-level yield statistics 

(Figure 1-1), which is based on a large-scale survey that is conducted after the growing season. 

The annual county-level yield statistics report is not available to the public until February of the 

next year. As a result, the applications and decision-makers that require near real-time in-season 

yield predictions (e.g., to assess the impact of ad hoc disaster events on crop yield loss), become 

very difficult. 

 

Figure 1-1. Corn yield in 2019 by county published by USDA NASS. 

To provide in-season corn yield prediction, many yield prediction methods have been 

developed. They can be mainly categorized into two types, including physical simulation models 

and statistical machine learning (ML) models (Archontoulis et al., 2020; Feng et al., 2020; 

Maimaitijiang et al., 2020). Physical crop models are developed according to the physiological 

characteristics of crops and estimate yield by simulating the underlying crop and environmental 
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processes, such as crop growth, nutrient cycling, soil-plant dynamics, and water balance 

(Archontoulis et al., 2020; Liu et al., 2022; Zhang et al., 2019). Representative crop models 

include the CROPGRO-soybean model (Jagtap and Jones, 2002), CERES-Maize model (Hodges 

et al., 1987), and DSSAT-CROPGRO-Perennial Forage model (Malik et al., 2018). Although 

these models can well explain and estimate crop productivity based on biophysical processes, 

extensive locally sensed data related to both biotic and abiotic factors are required for model 

calibration (Cai et al., 2017; Kang and Özdoğan, 2019), limiting their applicability in large-scale 

yield modeling (Sakamoto et al., 2013; Zhang et al., 2019).  

Statistical ML models, instead of simulating biophysical processes, attempt to perform 

yield estimation by establishing empirical relationships between driving factors of crop yield 

with historical yield records (Sun et al., 2020; Zhou et al., 2022). Therefore, they have the 

advantage of predicting crop yield with no need for explicit programming or knowledge of 

physiological mechanisms on individual crops (Wang et al., 2020; Zhang et al., 2019). Also, the 

advancement of satellite remote sensing (RS) technologies has enabled large-scale agricultural 

land monitoring with high spatial and temporal resolutions (Chen et al., 2022; Schwalbert et al., 

2020). RS of crop canopies offers insights into plant canopy structure and crop health, as 

variations in canopy density and discoloration associated with plant nutrient deficiency and other 

stressors are reflected in the measured spectra (Campolo et al., 2022). For example, the satellite-

derived Normalized Difference Vegetation Index (NDVI) can quantify vegetation by measuring 

the normalized difference between reflectance in near-infrared and red spectral bands (Figure 1-

2). The reason is that vegetation can strongly reflects near-infrared lights while mostly absorbing 

red lights (Feng et al., 2020). Based on the vegetation, the growing states of crops can be 

assessed, and their yield can be further predicted. 
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Figure 1-2. A map of NDVI, which can quantify vegetation on the land. The greener, the higher the 

vegetation is. 

As such, several ML models have been explored for crop yield prediction using satellite 

images at regional scales. For instance, Mkhabela et al. (2011) built linear regression models 

with the 10-day composite Normalized Difference Vegetation Index (NDVI) derived from 

Moderate Resolution Imaging Spectroradiometer (MODIS) to predict yield for multiple crops on 

the Canada Prairies. Bolton and Friedl (2013) derived multiple vegetation indices (VIs) from 

MODIS data, and linear regression models were then developed based on the extracted VIs for 

soybean and corn yield prediction across the U.S. corn belt. To assess yield using data from more 

than one source, non-linear ML models have been established to capture the complex 

relationships between yield with multimodal features. For example, Johnson (2014) built tree-

based regression models to assess sequential remotely sensed VIs and weather variables on 

soybean and corn yield prediction over the U.S. corn belt and demonstrated the feasibility of 

using multi-source data for crop production estimation. Kamir et al. (2020) built a support vector 

regression (SVR) model with time-series MODIS satellite images and weather records for wheat 

yield prediction, and the model explained 73% of the yield variability across the Australian 
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wheat belt. Furthermore, Wang et al. (2020) compared the performances between two linear 

regression models and four non-linear ML models in predicting winter wheat yield in the U.S., 

and the results showed that the non-linear ML models significantly outperformed the linear ones. 

Similarly, Chen et al. (2021) integrated satellite imagery, climate data, and meteorological 

indices for corn yield prediction at the city level in China using four ML approaches, including 

decision tree-based Cubist, random forest (RF), SVR, and extreme gradient boosting (XGBoost). 

Chen et al. (2022) proposed a spatial disaggregation method based on several ML methods for 

corn yield prediction in China at the municipal level. 

1.2 Supervised Deep Learning 

With the development of artificial neural networks (NN) and the improvement of 

computing power, deep learning (DL), as a branch of ML, has made impressive progresses in a 

variety of tasks, including image recognition, autonomous driving, speech recognition, machine 

translation, and medical diagnosis (Goodfellow et al., 2016). The core idea of DL is to simulate 

neurons in human brains through fully-connected layers (LeCun et al., 2015). Currently, most 

DL models are trained through supervised learning, which learns a function to associate the input 

(i.e., an image or feature vectors) with the label (i.e., response variables) (Russell and Norvig, 

2002). Specifically, during training, the input is first fed into the NN, and a prediction is made. 

After that, a training loss can be calculated based on the prediction and the ground-truth label. 

The trainable weights in the NN are then updated to minimize the loss during backpropagation. 

Before the NN is well trained, the training process is normally repeated several times until 

convergence.  

Recently, several supervised DL models have been explored for crop yield prediction 

(Kang et al., 2020; Ma et al., 2019; You et al., 2017; Yuan et al., 2020). For example, a fully 
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connected multi-layer perceptron (MLP) was developed by Khaki and Wang (2019) to predict 

the yield of maize hybrids at field scales in the U.S using soil and weather variables, achieving a 

root mean square error (RMSE) of 0.86 tons per hectare (t/ha). Besides fully connected MLP, 

some studies also use more advanced model structures for crop yield prediction. For instance, 

using time-series MODIS data, You et al. (2017) applied the Gaussian process on two DL 

architectures, Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN), 

for county-level soybean yield prediction. Their models outperformed USDA prediction by 15% 

on average. Jiang et al. (2019) built a phenology-based LSTM model for rain-fed corn yield 

prediction at the county level in nine U.S. Midwestern states. Using the time-series wide 

dynamic ranged vegetation index (WDRVI) and meteorological variables as input features, an 

RMSE of 0.87 mg/ha was achieved. Schwalbert et al. (2020) developed an LSTM model for 

municipality-level soybean yield prediction in Brazil using satellite imagery and climate data and 

achieved a mean absolute error (MAE) of 0.24 mg/ha. Kang et al. (2020) predicted county-level 

maize yield in twelve Midwestern states in the U.S. using several ML and DL approaches, 

including SVR, XGBoost, RF, LSTM, and CNN with an average RMSE of 1.00 t/ha.  

Despite the success, existing models mainly focus on predicting the yield without 

providing any uncertainty information that is important for quantifying the confidence interval of 

the prediction, which is very useful for practical applications. Also, the plain NN with point 

estimations on weights typically require an abundance of training data for model training and 

thus are subject to overfitting. These two issues raise our first research question (RQ-1): How to 

quantify predictive uncertainty and increase robustness for supervised deep learning 

models on corn yield prediction? 
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1.3 Unsupervised Domain Adaptation 

DL models are data-driven, which means that a large number of labeled training samples 

(e.g., RS images together with the ground-collecting crop yield records) are required for model 

training. Therefore, for regions without historical yield records, it is impossible to train a ML 

model from scratch. Also, most supervised DL models are location-specific or domain-specific. 

Due to the phenomenon known as domain shift, i.e., data distributions are different in the 

training region and the testing region, supervised DL models trained within one domain tend to 

experience a significant decrease in performance when directly applied to a new domain (Kouw 

and Loog, 2018). For example, RS images in different regions can have different statistical 

characteristics due to spatial heterogeneity in meteorological conditions, soil properties, and 

farming practices (Figure 1-3). Therefore, ML models established between reference (reported) 

yields and RS measurements within a specific spatial domain (i.e., source domain) often lose 

their validity when directly applied to a new spatial domain (i.e., target domain).  

 

Figure 1-3. Distributions of mean county-level NDVI (left) and mean air temperature (right) during 

August in Indiana (IN) and South Dakota (SD). 

To improve transferability for ML and DL models, transfer learning (TL), a ML 

technique that transfers knowledge learned from one domain to the other, has become a viable 

solution (Zhuang et al., 2019). To perform TL for deep NN, a widely used strategy is to first pre-

train a NN with labeled samples from the source domain and then fine-tune the weights of the 
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pre-trained NN using some labeled target samples. For example, Wang et al. (2018) adapted a 

deep CNN model trained with data from Argentina to predict province-level soybean yields in 

Brazil by fine-tuning the pre-trained model with labeled data from Brazil. Russello (2018) 

explored TL between two ecoregions in the U.S. for county-level soybean yield estimation by 

training a CNN model with labeled data from one ecoregion and fine-tuning it in another region. 

When an insufficient number of labeled data samples are available in the target domain, there 

would be concerns about overfitting if fine-tuning the entire network (Mehdipour Ghazi et al., 

2017). Therefore, some studies freeze the weights of earlier layers of a pre-trained DL 

architecture and customize the model to a given task by fine-tuning the last few layers. This 

framework works based on the idea that earlier layers of a NN learn generic features that can be 

used in relevant domains (Yosinski et al., 2014). For example, Barbedo (2018) fine-tuned the last 

few layers of a pre-trained GoogleNet with a plant disease database and adapted the network for 

plant disease classification. Abdalla et al (2019) fine-tuned a well-trained VGG16 with a small 

oilseed rape images dataset to classify plants in fields with high-density weeds. Similarly, Chen 

et al. (2020) freeze the learned weights in the top layers of a well-trained VGG19 and fine-tuned 

the last three layers with crop disease images to customize the trained model for disease 

classification. 

Despite several successful cases (Barbedo, 2018; Wang et al., 2018), a certain number of 

labeled data from the target domain is still needed to fine-tune the pre-trained networks. Since 

collecting crop yield data can be financially expensive, labor-intensive, and time-consuming, 

many agricultural production areas may lack reliable ground reference yield data for either 

directly training a ML model or fine-tuning supervised TL models. To improve transferability for 

ML models without relying on labeled data samples from the target domain, unsupervised 
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domain adaptation (UDA) has been proposed. The core idea of UDA is to reduce the domain 

shift between the source domain and the target domain by extracting cross-domain features 

(Figure 1-4). With the extracted cross-domain features, a cross-domain predictor can be trained 

and make accurate yield predictions in the target domain.  

 

Figure 1-4. A conceptual example of unsupervised domain adaptation (UDA). 

Widely used UDA methods can be categorized into two types, including discrepancy-

based methods and adversarial-based methods. Discrepancy-based methods try to align features 

from source and target domains by minimizing the distance between feature distributions (Long 

et al., 2015; Luo et al., 2017). Adversarial-based methods address the domain shift by learning 

good representations that are informative for the main learning task and indiscriminative between 

source and target domains (Ganin et al., 2016). 

Existing UDA methods mainly focus on the single-source scenario, i.e., labeled data 

samples are assumed to be from one source domain. Single-source UDA algorithms commonly 

employ a conjugated architecture with two objectives (Zhao et al., 2020). One objective is to 

learn a task model based on the labeled source samples by minimizing the corresponding task 

losses, such as mean square error loss (MSE) for regression (Feng et al., 2021) and cross-entropy 

loss for classification (Wang et al., 2021). The other objective is to reduce the domain shift and 

align the source domain and the target domain. One of the most representative single-source 
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UDA methods is the domain adversarial neural networks (DANN) (Ganin et al., 2017), which 

employs an adversarial objective with a domain discriminator to extract domain-invariant 

features from the source domain and the target domain. However, to our best knowledge, there 

are no UDA studies conducted for yield prediction which is a regression task that differs from 

classification applications. This raises our second research question (RQ-2): How does the 

strategy of adversarial learning can be leveraged to conduct unsupervised domain 

adaptation on corn yield prediction based on remote sensing and weather observations? 

Although single-source UDA methods have achieved satisfactory results in some real-

world applications, the assumption of a single source domain can be invalid in other scenarios 

when labeled data are from different domains (Zhao et al., 2020). Recently, there has been 

growing interest in multi-source UDA. Recent multi-source UDA models are mostly developed 

by extending existing single-source UDA strategies. For example, Peng et al. (2019) proposed a 

multi-source UDA model named Moment Matching for Multi-Source Domain Adaptation 

(M3SDA) for image classification. M3SDA reduces source-target divergence and inter-source 

divergence by minimizing the moment-related distance between each domain. Zhao et al. (2018) 

extended the DANN model and proposed multi-source domain adversarial networks (MDAN) by 

designing source-specific domain classifiers to realize multi-source UDA. Xu et al. (2018) 

proposed a deep cocktail network that uses multi-way adversarial learning to minimize the 

discrepancy between the target and source domains. Zhao et al. (Zhao et al., 2019) designed 

separate feature extractors for each source and thus could learn more discriminative target 

representations in an adversarial manner. Tasar et al. (2020) proposed a StandardGAN which 

standardizes multiple source domains and target domains for satellite image segmentation. Wang 

et al. (2022) designed domain-specific feature extractors and proposed a multi-source UDA for 
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unsupervised crop type mapping based on Sentine-2 images. Currently, there are no multi-source 

UDA studies for agricultural applications such as crop yield prediction. It raises the third 

research question (RQ-3): How does the strategy of multi-source unsupervised domain 

adaptation can be leveraged to conduct unsupervised domain adaptation on corn yield 

prediction based on RS and weather observations? 

1.4 Research Activities 

1.4.1 Yield Prediction and Uncertainty Analysis 

As mentioned before, existing supervised learning models are unable to provide 

uncertainty information and are prone to overfitting. These two issues raise RQ-1: How to 

quantify predictive uncertainty and increase robustness for supervised deep learning 

models on corn yield prediction? Bayesian neural networks (BNN), which introduce Bayesian 

inference over the weights in the neural networks (Blundell et al., 2015) have provided 

opportunities to address these issues. Specifically, through Bayesian inference, BNN estimates 

the predictive distribution rather than a single value. Based on that, the uncertainty interpretation 

of the target value can be obtained through the spread of the distribution. Furthermore, by adding 

the prior data distribution in the model development, BNN is less prone to overfitting due to the 

prior regularization (Gal et al., 2017; LeCun et al., 2015; Nasrabadi, 2007).  

To answer RQ-1, this dissertation proposes research activity 1 (RA-1): Bayesian neural 

networks for corn yield prediction and uncertainty analysis. By applying Bayesian inference, 

the proposed BNN model can provide not only accurate yield estimation but also the 

corresponding predictive uncertainty. Specifically, informative variables including time-series 

VIs, sequential weather variables, and soil properties, were first extracted from multiple data 

sources and aggregated to the county level. A BNN yield prediction model was then developed 
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based on the extracted features and observed yield records. The proposed model was evaluated in 

the U.S. corn belt and compared with several state-of-art ML and DL models. Finally, the spatial 

patterns of the predictive uncertainty were analyzed and the potential driving factors for such 

patterns were investigated. 

1.4.2 Single-source UDA for Corn Yield Prediction 

The proposed BNN yield prediction model requires labeled data samples for training and 

may have low spatial transferability. The success of DANN in applications such as image 

classification raises the second research question (RQ-2): How does the strategy of adversarial 

learning can be leveraged to conduct domain adaptation on corn yield prediction based on 

remote sensing and weather variables? The DANN consists of three parts, including a feature 

extractor, a domain classifier, and a label predictor. During the training process, on the one hand, 

the feature extractor is trained collaboratively with the label predictor to minimize the prediction 

loss with the aim of extracting task-informative features. On the other hand, the feature extractor 

is trained adversarially against the domain classifier to maximize the domain loss with the aim of 

extracting domain-invariant features. As a result, the feature extractor will be updated towards 

extracting task-informative and domain-invariant features to help alleviate the negative impact of 

domain shift and make accurate predictions across two domains. 

Despite success in classification applications, DANN cannot be directly applied for 

regression tasks such as crop yield prediction. This is mainly because the predefined weighting 

parameter in the original DANN model, which controls the trade-off between the prediction loss 

and the domain loss, needs to be adjusted according to the yield magnitudes which can change 

dramatically in different agricultural production regions as well as in different harvest years. 

Also, since the training set for county-level corn yield prediction is comparatively small, 
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overfitting may happen during the training of DANN. To address these issues, the dissertation 

proposes research activity 2 (RA-2): Adversarial domain adaptation on corn yield prediction, 

in which two variants of DANN, i.e., Adaptive DANN (ADANN) and Bayesian DANN 

(BDANN), are developed for corn yield prediction at the county level based on remote sensing 

images and weather variables. The ADANN model was designed to adaptively adjust the 

weighting parameter between the yield prediction loss and the domain classification loss. Based 

on ADANN, we further applied Bayesian inference to model training and designed the BDANN 

model. Both models were evaluated in two ecoregions of the U.S. corn belt and compared with 

other widely used ML and DL models.  

1.4.3 Multi-source UDA for Corn Yield Prediction 

Although single-source UDA is a promising solution to improve transferability for DL 

models with no need for reference yield records in the target domain, there are still two major 

bottlenecks in applying UDA methods to crop yield prediction based on remote sensing images 

and weather variables. First, most current UDA methods are designed for single-source UDA 

with the assumption that all labeled samples are from the same domain. In practice, labeled 

training samples may be collected from multiple source domains with different feature 

distributions (Zhao et al., 2020). Since domain shifts exist not only between source and target but 

also among different source domains, single-source UDA methods could have a poor 

performance when samples from different sources interfere with each other (Riemer et al., 2019). 

Second, current UDA methods mostly align distributions of source and target without 

considering specific tasks. For remote sensing images and weather variables with significant 

domain shifts, directly aligning feature distributions may project the data into ambiguous feature 
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spaces with no meaningful information. As a result, misalignment would happen and 

misprediction would still be made.  

Recently, there have been growing interests in multi-source UDA to address the 

aforementioned issues (Lin et al., 2020; Zuo et al., 2021). However, there are no multi-source 

UDA studies for agricultural applications such as crop yield prediction. This raises our third 

research question (RQ-3): How does the strategy of multiple unsupervised domain 

adaptation can be leveraged to conduct domain adaptation on corn yield prediction based 

on remote sensing and weather observations? 

To answer RQ-3, this dissertation proposed research activity 3 (RA-3): Multi-source 

Maximum Predictor Discrepancy (MMPD) for unsupervised domain adaptation on corn 

yield prediction. We used the strategy of multi-source UDA to group labeled data samples into 

multiple sources and aligned the target domain to each source domain separately. Also, the idea 

of maximum predictor discrepancy (MPD) was used to conduct UDA by considering specific 

tasks via pairs of domain-specific yield predictors. As such, data samples from different regions 

were grouped into multiple sources for multi-source domain adaptation. Then, by using MPD, 

the MMPD model tried to align the distributions of source and target domains by considering 

task-specific regression models. The proposed MMPD model was evaluated in three scenarios in 

the U.S. corn belt and Argentina and compared with other state-of-art UDA methods. 

1.5  Organization of the Dissertation 

There are five chapters in this dissertation. Chapter 1 introduces the background of this 

dissertation and raises the research questions followed by the investigated RAs. Chapter 2 

presents the study areas and the data sources for this study. Chapter 3 proposes the BNN model 
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for county-level corn yield prediction and uncertainty analysis. Chapter 4 develops ADANN and 

BDANN for UDA on corn yield prediction at the county level. Chapter 5 proposes the MMPD 

model for multi-source UDA on corn yield prediction at the county level. Chapter 6 concludes 

the major contributions and limitations of the dissertation and discusses potential future work. A 

list of peer-reviewed publications and manuscripts in preparation corresponding to major 

chapters of the dissertation are summarized as follows. 

Chapter 3:  

• Ma, Y., Zhang, Z., Kang, Y. and Özdoğan, M., 2021a. Corn yield prediction and 

uncertainty analysis based on remotely sensed variables using a Bayesian neural 

network approach. Remote Sensing of Environment, 259, p.112408. 

Chapter 4: 

• Ma, Y., Zhang, Z., Yang, H.L. and Yang, Z., 2021b. An adaptive adversarial domain 

adaptation approach for corn yield prediction. Computers and Electronics in 

Agriculture, 187, p.106314. 

• Ma, Y. and Zhang, Z., 2022. A Bayesian Domain Adversarial Neural Network for 

Corn Yield Prediction. IEEE Geoscience and Remote Sensing Letters, 19, pp 1-5. 

Chapter 5: 

• Ma, Y., Zhang, Z, 2022. Multi-source Unsupervised Domain Adaptation on Corn 

Yield Prediction. AAAI-22 AI for Agriculture and Food Systems (AIAFS) Workshop. 

• Ma, Y., Zhang, Z., 2022. Maximum Predictor Discrepancy for Multi-source 

Unsupervised Domain Adaptation on Corn Yield Prediction (Manuscript Submitted). 
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CHAPTER 2 MATERIALS 

The U.S. corn belt and Argentina are both the top corn-producing regions in the world. 

They were selected as the study areas due to the availability of sufficient yield records for model 

development and validation. Feature variables were collected from multiple data sources and 

paired with the corresponding county-level yield records for model development. 

2.1 Study Areas 

The study areas include the U.S. corn belt and Argentina. The U.S. corn belt is in the 

Midwestern United States (Figure 2-1). This area is geographically flat and relatively flat with 

fertile soils (Johnson, 2014). Therefore, It has become the main agricultural region in the U.S. 

since the year 1850 and accounts for over 75% of the annual corn production in the U.S. (USDA, 

2020b). County-level historical yield records in the U.S. corn belt from 2001 to 2019 were 

collected from the USDA National Agricultural Statistics Service (NASS) Quick Stats Database, 

a platform for accessing U.S. agricultural data (USDA, 2020b).  

 

Figure 2-1. The county-level average yield of corn in the U.S. corn belt over the years 2008–2019. 

Argentina is also a significant producer and exporter of corn. Being in the Southern 

Hemisphere, seasons in Argentina are the reverse of those of the U.S. Cornfields in Argentina 



17 

 

mostly locate in several provinces (Figure 2-2), including Buenos Aire (BA), Santa Fe (SF), and 

Santiago del Estero (SE). This region has plenty of rainfall and thus has a favorable climate for 

rainfed crop production (Global Yield Gap Atlas, 2021). Historical yield records at the county 

level in Argentina corn production areas from 2006 to 2019 were collected from the online 

platform by the Argentina Ministry of Agriculture (Argentine Undersecretary of Agriculture, 

2020), which provides historical planted acreage, harvested acreage, production, and yield for 

main crops. 

 

Figure 2-2. The county-level average yield of corn in Argentina over the years 2008–2019. 

2.2 Satellite Imagery 

Since the VIs have been widely used for yield prediction (Bolton and Friedl, 2013; 

Johnson, 2014), they were considered in this study and extracted from the daily MODIS 

MCD43A4 product (Table 2.1) which provides visible, near-infrared (NIR), and shortwave 
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infrared (SWIR) reflectance data at 500-m spatial resolution (Schaaf and Wang, 2015). The 

MODIS MCD43A4 product is generated daily using 16 days of Terra and Aqua MODIS data 

(Wang et al., 2020).  

Table 2-1. Spectral band information of the MODIS MCD43A4 product. 

Band Wavelength (nm) Name 

1 620-670 Red 

2 841-876 NIR 

3 459-479 Blue 

4 545–565 Green 

5 1230–1250 SWIR 

6 1628–1652 SWIR2 

7 2105–2155 SWIR3 

 

Based on the spectral bands from MODIS MCD43A4 product, three complementary VIs 

were calculated and used as predictors, including Enhanced Vegetation Index (EVI), Green 

Chlorophyll Index (GCI), and Normalized Difference Water Index (NDWI). Specifically, EVI is 

an enhanced version of NDVI that has higher sensitivity in high biomass regions and can more 

precisely quantify vegetation on the ground (Gao et al., 2000; Huete et al., 2002). GCI quantifies 

the light use efficiency by measuring the canopy chlorophyll content and can be used as an 

indicator for crop health (Gitelson et al., 2005). NDWI quantifies the vegetation moisture 

content, and thus it is widely utilized to measure the water content changes in crop leaves and 

can monitor droughts (Bolton & Friedl, 2013; Gao, 1996). These three VIs were calculated as 

below (Eq. (2.1-2.3)): 

𝐸𝑉𝐼 = 2.5 ×
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝑒𝑑 − 𝐶2 × 𝐵𝑙𝑢𝑒 + 𝐿
 (2.1) 

𝐺𝐶𝐼 =
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
− 1 (2.2) 
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𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 (2.3) 

where 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐺𝑟𝑒𝑒𝑛 𝑁𝐼𝑅, and 𝑆𝑊𝐼𝑅 respectively represent the atmospherically corrected 

surface reflectance in red, blue, green, near-infrared, and shortwave infrared channels; 𝐿 stands 

for the soil and canopy background adjustment factor; 𝐶1  and 𝐶2  denote the coefficients to 

correct atmospheric influences. The coefficients in Eq. (2.2) were set to  𝐿 = 1, 𝐶1 = 6, and 𝐶2 = 

7.5 according to the MODIS EVI algorithm from previous studies (Jiang et al., 2008; Kang et al., 

2020). 

Besides satellite VIs, daytime and nighttime land surface temperature (LSTday and 

LSTnight) were collected and extracted from the MODIS MYD11A2 product, which provides 

daily data with a 1-km spatial resolution (Park et al., 2005). These two variables were considered 

because they have been used for monitoring agricultural drought, which is a critical 

environmental stressor that can significantly affect crop productivity (Guan et al., 2017; Johnson, 

2014; Lobell et al., 2013). 

2.3 Weather Variables 

The weather variables were extracted from the dataset generated by the Parameter 

elevation Regressions on Independent Slopes Model (PRISM), which is a climate analysis 

system that uses point data, a digital elevation model (DEM), and other spatial datasets to 

generate gridded estimates of climatic parameters (Daly et al., 2008). To be concrete, six primary 

meteorological variables, including daily mean, minimum, maximum temperature (Tmean, 

Tmin, and Tmax), daily minimum, and maximum Vapor Pressure Deficit (VPDmin, VPDmax), 

and daily total precipitation (PPT), were collected from the PRISM dataset which has a 4-km 

spatial resolution. Besides, we also used the Global Land Data Assimilation System (GLDAS) 
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dataset which generates optimal fields of land surface states and fluxes at 0.25 arc degree spatial 

resolution by ingesting satellite- and ground-based observational data products and using 

advanced land surface modeling and data assimilation techniques (Rodell et al., 2004). Two 

variables were derived from the GLDAS dataset. One was the daily mean evapotranspiration 

(ET) which is related to the atmospheric water cycle, and the other was a water stress indicator 

(GLDASws) calculated as the ratio of ET and potential ET collected from the GLDAS dataset 

(Kang et al., 2020). 

Considering that PRISM only covers the conterminous United States and is not available 

for Argentina, we extracted PPT from the Climate Hazards Group Infrared Precipitation with 

Stations (CHIRPS) dataset with a resolution of ~5.5 km (Funk et al., 2015) and Tmean, Tmax, 

and Tmean from the ERA5 reanalysis dataset with a resolution of ~0.25 arc degrees for counties 

in Argentina (Cunha and Silva, 2020). CHIRPS is a long-term quasi-global rainfall dataset, 

which incorporates satellite imagery with ground station data to generate gridded time-series 

rainfall for global drought monitoring (Funk et al., 2015). ERA5 combines climate model data 

with observations from across the world for atmospheric reanalysis of the global climate (Cunha 

and Silva, 2020). 

2.4 Soil Properties 

Soil properties are also critical for plant growth and have significant impacts on crop 

yield. Three types of soil properties in the U.S. corn belt were collected, including Soil Available 

Water Holding Capacity (AWC), Soil Organic Matter (SOM), and Cation Exchange Capacity 

(CEC), which were derived at 30-m spatial resolution from Soil Survey Geographic database 

(SSURGO) (Soil Survey Staff et al., 2020). AWC quantifies the water availability in soil, which 

directly influences root and plant growth. SOM represents the amount of soil organic matter, and 



21 

 

higher SOM can help reduce soil erosion rates and increase water and nutrient retention. CEC is 

included since it measures the capacity of a soil to hold essential nutrients and thus a good 

indicator of the soil’s potential to harbor a healthy crop.  

2.5 Data Preprocessing 

Google Earth Engine (GEE) platform was leveraged to preprocess the data. Data 

collection in the U.S. corn belt started from 2001 to 2019 while data collection in Argentina 

started from 2006 to 2019. Specifically, spatial filtering was first conducted by using the MODIS 

Land Cover Type product (MCD12Q1 v6) at 500-m spatial resolution and NASS Cropland Data 

Layer (CDL) as the crop masks to mask out observations on non-cultivated croplands in each 

county. After that, each type of variable was aggregated spatially at the county level by 

calculating the mean value. Then, sequential variables including VIs and weather variables were 

aggregated into a 16-day interval to cover the complete planting and growing season for corn. 

Finally, the feature variables were paired with county-level yield records and used for model 

development.  

 

Figure 2-3. The data preprocessing steps. 
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CHAPTER 3 BAYESIAN NEURAL NETWORKS FOR 

CORN YIELD PREDICTION AND UNCERTAINTY 

ANALYSIS 

3.1  Overview 

Accurate and timely prediction of corn yield is essential for regional food security. 

Traditional ML and DL methods are trained to associate input feature vectors with yield records 

but cannot quantify the predictive uncertainty. To achieve accurate corn yield prediction and 

simultaneously quantify its uncertainty, a BNN was proposed. By applying Bayesian inference, 

the BNN yield prediction model can estimate the predictive distribution and thus provide both 

yield prediction and corresponding predictive uncertainty through the spread of the distribution. 

Furthermore, by adding the prior data distribution in the model development, BNN is less prone 

to overfitting due to the prior regularization (Gal et al., 2017; LeCun et al., 2015; Nasrabadi, 

2007). 

Feature variables were collected from multiple data sources, including remote sensing 

(RS) imagery, weather variables, soil properties, and historical average yield. Experiments in the 

U.S. corn belt in 2010-2019 showed that the BNN model outperformed state-of-art ML and DL 

models. Also, the in-season prediction performance of the BNN model was evaluated within the 

growing season from May to October at a 16-day interval. The optimum prediction accuracy was 

achieved by the BNN model by the middle of August, which is about two months before the 

harvest. Besides, we also analyzed the predictive uncertainty and found that more than 84% of 

the observed yield records were successfully enveloped in the 95% confidence interval of the 
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predictive yield distribution. Finally, the potential driving factors for the predictive uncertainty 

were investigated and several factors were found to be highly correlated with the predictive 

uncertainty, including the observation noise and the environmental stress such as heat and water 

stress. 

3.2 Methodology 

3.2.1 Fundamentals of BNN 

A NN can be viewed as a probabilistic model 𝑝(𝑦|𝐱, 𝐰) to associate the input 𝐱 with the 

response variable 𝑦  through successive hidden layers with weights 𝐰 . For yield prediction, 

which is a regression problem, 𝑦 is a continuous variable, and 𝑝(𝑦|𝐱, 𝐰) is assumed to be a 

Gaussian distribution (Nasrabadi, 2007). Given a data sample (𝐱𝑖, 𝑦𝑖), the NN is trained to 

predict the yield distribution 𝑁(𝑦̂𝑖, 𝜎̂𝑖
2): 

                                                  𝑝(𝑦𝑖|𝑥𝑖, 𝐰̂(𝑡)) =
1

√2𝜋𝜎̂𝑖
2

exp (−
(𝑦𝑖−𝑦̂𝑖)2

2𝜎̂𝑖
2 ) 

 

(3.1) 

Correspondingly, given training samples 𝒟 = {(𝐱𝟏, 𝑦1), (𝐱𝟐, 𝑦2), … , (𝐱𝐍, 𝑦𝑁)},  the NN is 

trained through the maximum likelihood estimation (MLE) (LeCun et al., 2015). In practice, the 

NN is commonly updated to minimize the negative log-likelihood function (Eq. (3.2)). 

Moreover, in a traditional NN for regression, it is assumed that the 𝑝(𝑦|𝐱, 𝐰) has a constant 

standard deviation. As a result, the loss function can be converted to minimize the mean squared 

error (MSE) (Eq. (3.3)): 

                                           − log 𝑝(𝒟|𝐰̂(𝑡)) = − log ∏ 𝑝(𝑦𝑖|𝑥𝑖 , 𝐰̂(𝑡))𝑁
𝑖=1  

 
(3.2) 

                                                                        = − log ∏
1

√2𝜋𝜎̂𝑖
2

exp (−
(𝑦𝑖−𝑦̂𝑖)2

2𝜎̂𝑖
2 )𝑁

𝑖=1   

                                                                        = − ∑ log
1

√2𝜋𝜎̂𝑖
2

exp (−
(𝑦𝑖−𝑦̂𝑖)2

2𝜎̂𝑖
2 )𝑁

𝑖=1   
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                                                                        = ∑
(𝑦𝑖−𝑦̂𝑖)2

2𝜎̂𝑖
2 + √2𝜋𝜎̂𝑖

2𝑁
𝑖=1  

 

 

                                                               𝑀𝑆𝐸 =
1

𝑁
(𝑦𝑖 − 𝑦̂𝑖)

2 (3.3) 

Though successful, the traditional NN was trained to do point estimation on each 

trainable weight. It means that each trainable weight is estimated to be a single value. As a result, 

it makes NN subject to overfitting, especially when the training size is relatively small compared 

to the number of trainable parameters (Blundell et al., 2015; Deodato et al., 2019). More 

importantly, since each weight is fixed after training, a well-trained NN can only predict the 

yield without quantifying the predictive uncertainty, which is very important for model 

evaluation.  

 

Figure 3-1. Comparison between traditional and Bayesian NN. Left: traditional NN with each weight 

modeled as a fixed value. Right: BNN with each weight modeled as a probability distribution. 

To improve the DL models’ robustness against overfitting and quantify predictive 

uncertainty, BNN was proposed by applying Bayesian inference to the traditional NN. Instead of 

having point estimation on weights, all weights in BNN are represented by probability 

distributions, and the difference between traditional NN and BNN is illustrated in Figure 3-1. 

Specifically, the posterior distribution 𝑝(𝐰|𝒟) of the weights is estimated according to the Bayes 

theorem. For an input sample 𝐱, its predictive distribution of label 𝑦 can then be made by taking 
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an expectation under 𝑝(𝐰|𝒟) , which is denoted as 𝑝(𝑦|𝐱, 𝒟) = ∫ 𝑝(𝑦|𝐱, 𝐰)𝑝(𝐰|𝒟)𝑑𝐰 . 

However, it is intractable to directly estimate posterior distributions for weights considering the 

size of deep NN. Instead, the posterior on the weights are approximated by a variational 

distribution via variational learning (Blundell et al., 2015), which finds the variational 

parameters 𝛉 of a distribution on the weights 𝑞(𝐰|𝛉) that minimize the KL-divergence with the 

posterior on the weights 𝑝(𝐰|𝒟): 

𝛉∗ = arg min
𝛉

𝐾𝐿[𝑞(𝐰|𝛉)||𝑝(𝐰|𝒟)] (3.4) 

                                              = arg min
𝛉

𝐾𝐿[𝑞(𝐰|𝛉)||𝑝(𝐰)] + 𝔼𝑞(𝐰|𝛉)[− log 𝑝(𝓓|𝐰)]  

There are two terms in Eq. (3.4): The first term is a prior-dependent loss 𝐿𝑝 =

𝐾𝐿[𝑞(𝐰|𝛉)||𝑝(𝐰)], which is the KL-divergence between the variational distribution 𝑞(𝐰│𝛉) 

and the prior distribution 𝑝(𝐰)  of trainable parameters 𝐰 . The second term, 

𝐸𝑞(𝐰|𝛉)[− log 𝑝(𝓓|𝐰)] , is a data-dependent loss in the form of a negative log-likelihood 

function. Use Monte Carlo integration and sample 𝐰̂(𝑡) from 𝑞(𝐰|𝛉), the loss function can be 

approximated as: 

ℱ(𝒟, 𝛉) ≈
1

𝑇
∑[log 𝑞(𝐰̂(𝑡)|𝛉) − log 𝑝(𝐰̂(𝑡)) − log 𝑃(𝒟|𝐰̂(𝑡))]

𝑇

𝑡=1

 (3.5) 

                                =
1

𝑇
∑ [log 𝑞(𝐰̂(𝑡)|𝛉) − log 𝑝(𝐰̂(𝑡)) − ∑ log 𝑃(𝑦𝑖|𝑥𝑖 , 𝐰̂(𝑡))𝑁

𝑖=1 ]𝑇
𝑡=1   

in which (𝑥𝑖, 𝑦𝑖) is the 𝑖-th data samples; 𝑁 is the total number of training samples; 𝑇 is the total 

number of sampling times; In practice, we can just sample once (e.g., T=1). 

After training, every possible configuration of w sampled from 𝑞(𝐰|𝛉)  can make a 

prediction, and taking the expectation is equivalent to average predictions using an ensemble of 

NN weighted by the posterior distribution of weights, which can be considered as a special case 

of ensemble learning (Jospin et al., 2020). Also, regularization is introduced by placing the prior 
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distribution 𝑝(𝐰) . These together help prevent overfitting and thus improve the model 

generalization ability. More importantly, since each weight is modeled as a distribution, the 

prediction from BNN is different in each run. Therefore, given an input data sample, its 

predictive uncertainty can be estimated by drawing weight samples from the posterior 

distribution and running a series of predictions. 

3.2.2 Model Architecture 

In this study, we aimed to not only predict the corn yield but also obtain the uncertainty 

associated with the prediction. In a BNN with a single output of yield prediction (Figure 3-1 

Right), given an input data sample, its prediction uncertainty can be obtained by drawing weight 

samples from the variational distributions and running a series of predictions. The uncertainty is 

estimated by calculating the standard deviation of the series of predictions. Although feasible, 

this approach cannot directly estimate the predictive uncertainty but requires Monte Carlo 

sampling which is computationally intensive and time-consuming (Goodfellow et al., 2016).  

To enable the model to predict the yield and estimate the predictive uncertainty 

simultaneously, we designed a BNN architecture with two endpoints (Figure 3-2). As described 

in Section 3.1, for a probabilistic model, given an input data sample, the predicted yield 

distribution is in the form of a Gaussian distribution. Therefore, the proposed BNN model is 

trained to predict the yield distribution with one endpoint outputting the mean of the yield 

distribution and the other endpoint outputting the standard deviation. Specifically, the developed 

BNN model starts with a multi-layer feature extraction net to extract high-level features from the 

inputs. Then, the extracted features are fed into two independent sub-networks, namely “yield 

net” and “uncertainty net”, to respectively estimate the mean 𝑦̂ and standard deviation 𝜎̂ for the 
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final predictive distribution 𝑁(𝑦̂, 𝜎̂), in which 𝑦̂ is the unbiased estimation of the predicted yield 

value and 𝜎̂ quantifies the predictive uncertainty (i.e., a larger 𝜎̂ indicates higher uncertainty).  

Through experimental analysis, the architecture of the BNN model was designed to have 

a depth of five (Figure 3-2). The feature extraction net started with an input layer followed by 

two hidden layers with 256 and 128 neurons respectively, and both the yield net and uncertainty 

net included two fully connected hidden layers with 64 and 32 neurons for each. We chose the 

Rectified Linear Unit (ReLU) as the activation function and Adam algorithm was adopted as the 

optimizer to update trainable parameters after each epoch (Goodfellow et al., 2016). The number 

of training iterations was set to 1500 epochs with the batch size as 512.  

 

Figure 3-2. The architecture of the developed BNN model. 

3.3  Experimental Setup 

The BNN model was trained and evaluated within twelve Midwestern U.S. states, 

including  North Dakota, South Dakota, Kansas, Nebraska, Minnesota, Iowa, Wisconsin, Illinois, 

Indiana, Ohio, Missouri, and Arkansas (Johnson, 2014). Informative variables including time-

series VIs, sequential weather variables, soil properties, harvest year, and historical average yield 

(Table 3.1), were first extracted from multiple data sources and aggregated to the county level. 

MODIS Land Cover Type product (MCD12Q1 v6) at 500-m spatial resolution was applied as the 
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mask layer to exclude non-cultivated areas. The sequential feature variables were then 

aggregated into a 16-day interval from March 10th to October 4th. Finally, the extracted feature 

variables and yield records were paired for model development. Data collection was from 2001 

to 2019. 

Table 3-1. Summary of the input features for model development. 

Category Variables Mask Layer 
Related 

properties 

Spatial 

Resolution 
Source Latency 

Satellite 

Imagery 

EVI 

MODIS Land Cover 

Type product 

(MCD12Q1 v6) 

Plant vigor 
500 m 

 

MODIS One day 

GCI 

NDWI 

LSTday 

(Kelvin) 

 

 

Heat stress 

1 km 
LSTnight 

(Kelvin) 

Weather 

Tmean (°C) 

4 km PRISM One day 

Tmax (°C) 

Tmin (°C) 

PPT (mm) 

Water stress 

VPDmax (hPa) 

VPDmean 

(hPa) 

VPDmin (hPa) 

GLDASws1 0.25 arc 

degree 
GLDAS 

One 

month ET (mm) 

Soil 

AWC (cm) 
Soil water 

uptake 30 m 

 

SSURGO 

 
N/A 

SOM (kg/m2) Soil nutrient 

uptake CEC (cmol/kg) 

Others 

Harvest Year  

 
County-

level 

USDA 

NASS 
N/A 

Historical 

average yield 

(t/ha) 

 

 

To validate the developed BNN model, it was compared to five widely used ML models, 

including (i) three traditional ML models: Ridge regression (Ridge), RF, and SVR; and (ii) two 

representative DL models: multilayer perceptron (MLP) and LSTM. All the approaches were 
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evaluated on ten testing years 2010–2019, and for each testing year, data in all preceding years 

since 2001 were used for model training. To evaluate the performance of each model, three 

metrics including coefficient of determination (R2), RMSE, and mean absolute relative error 

(MARE) were selected as the metrics and calculated as (Eq. (3.5-3.7)): 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (3.5) 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 (3.6) 

MARE =
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1
 (3.7) 

where 𝑛  denotes the number of data samples; 𝑦𝑖  and 𝑦̂𝑖  are the reference yield record and 

estimated yield for the 𝑖th county in the testing set; 𝑦̅ denotes the mean values of reference yield 

records in the testing set. 

3.4  Results and Discussion 

3.4.1 End-of-season Prediction Performance 

We first compared the end-of-season prediction performance on October 4th with the full-

length feature set, and the accuracies of the six models on each testing year over five runs are 

reported in Table 3.2-3.4. It was observed that the developed BNN model outperformed all the 

other ML and DL methods with the smallest year-to-year variation, reaching an average R2 of 

0.77 over ten testing years. It was observed that BNN was the best-performing model in most 

testing years. LSTM is the second best, demonstrating its strong capability of handling time-

series features. Also, it was notable that the non-linear ML approaches had much better 
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performances than the linear Ridge regression model, showing that the linear model could fail to 

capture the complex relationship between multi-source data and crop yield.  

Table 3-2. The R2 of end-of-season evaluation in 2010-2019. 

Year Ridge RF SVR MLP LSTM BNN 

2010 0.62 0.66 0.65 0.61 0.64 0.72 

2011 0.67 0.71 0.68 0.69 0.63 0.73 

2012 0.47 0.54 0.59 0.60 0.64 0.70 

2013 0.55 0.67 0.56 0.63 0.74 0.72 

2014 0.54 0.66 0.61 0.69 0.71 0.82 

2015 0.43 0.67 0.56 0.72 0.72 0.75 

2016 0.54 0.65 0.68 0.70 0.72 0.82 

2017 0.64 0.74 0.75 0.75 0.79 0.83 

2018 0.65 0.76 0.67 0.77 0.78 0.82 

2019 0.24 0.48 0.50 0.63 0.65 0.76 

Average 0.54 0.65 0.63 0.68 0.70 0.77 

 

Table 3-3. The RMSE (t/ha) of end-of-season evaluation in 2010-2019. 

Year Ridge RF SVR MLP LSTM BNN 

2010 1.19 1.13 1.15 1.22 1.16 1.05  

2011 1.31 1.22 1.28 1.27 1.35 1.14 

2012 2.07 1.89 1.73 1.69 1.57 1.41 

2013 1.44 1.24 1.42 1.36 1.06 1.13 

2014 1.37 1.18 1.26 1.13 1.09 0.86 

2015 1.52 1.14 1.33 1.06 1.08 1.01 

2016 1.36 1.18 1.12 1.09 1.04 0.85 

2017 1.35 1.16 1.14 1.15 1.03 0.94 

2018 1.41 1.17 1.38 1.14 1.12 0.98 

2019 1.63 1.34 1.28 1.14 1.07 0.92 

Average 1.47 1.27 1.31 1.23 1.16 1.03 

 

Table 3-4. The MARE (%) of end-of-season evaluation in 2010-2019. 

Year Ridge RF SVR MLP LSTM BNN 

2010 11.18 10.48 10.54 11.31 10.58 9.14 

2011 15.45 15.00 15.32 15.18 16.36 13.65 

2012 34.29 30.70 28.23 28.09 25.64 22.23 

2013 12.40 10.58 12.20 11.26 9.26 9.55 

2014 9.84 8.93 9.32 8.01 7.82 6.46 

2015 11.77 8.78 9.76 8.02 8.01 7.63 

2016 10.03 8.87 8.39 8.07 7.94 6.35 

2017 9.72 8.81 8.65 8.68 8.22 6.83 

2018 10.98 8.48 10.75 8.40 8.32 7.42 
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2019 13.84 9.89 9.72 8.32 8.26 6.30 

Average 13.95 12.05 12.29 11.53 11.04 9.56 

 

 To evaluate whether the methods are statistically different on the reported R2, we used a 

paired sample t-test to perform the statistical tests between the BNN evaluation results and each 

comparison model. A t-test is a statistical test that compares the means of two samples (Mishra et 

al., 2019). In our case, we compared the means of R2 of each model in all testing years. Since the 

experiment was repeated five times in each testing year, there were totally 50 pairs of samples in 

the t-test. As shown in Table 3-5, the accuracy improvement obtained by the proposed BNN 

model was statistically significant. 

Table 3-5 Results of the paired sample t-test between the R2 of each comparison model and BNN in all 

testing years. 

Model t p-value 

BNN vs Ridge 55.390 0.000 

BNN vs. RF 38.892 0.000 

BNN vs. SVR 52.580 0.000 

BNN vs. MLP 37.676 0.000 

BNN vs. LSTM 27.811 0.000 

 

We then presented the density scatter plots of all the methods in Fig 3.5 to further show 

the agreement between the reported and the predicted yield in three representative testing years, 

including 2012, 2016, and 2019. 2016 is an average year with a normal climate and normal 

planting progress. Therefore, 2016 is regarded as a normal year. On the other hand, prolonged 

heat occurred in the U.S. corn belt during the middle of summer in 2012 and an unusually wet 

spring followed by an unusually cool June postponed the corn planting in the U.S. corn belt in 

2019 (Johnson, 2014; USDA, 2020b), which made these two years abnormal. The best 

agreement was again observed in the developed BNN model over all three selected testing years 

(Fig 3.5(f1-f3)), while the linear Ridge regression model showed less agreement than the other 
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approaches (Fig 3.5(a1-a3)). The proposed BNN model outperformed all the other ML and DL 

methods and could not only achieve high prediction accuracy with an R2 over 0.80 in average 

years (Fig 3.5(f2)) but also had stable performance in abnormal years (Fig 3.5(f1)&(f3)). 

Besides, it was notable that RF, SVR, and MLP made severe overestimation errors in 2012 (Figs 

3.5(b1), (c1), (d1)) and had severe underestimation errors in 2016 and 2019 (Figs 3.5(b2-b3), 

(c2-c3), (d2-d3)). In 2012, most counties experienced large yield losses due to the prolonged 

drought. As a result, the trained models tended to overestimate the corn yield in 2012. In 2016 

and 2019, due to the imbalanced training set in which there were relatively fewer high-yield 

samples, models would be trained biasedly and made overestimation errors. Although the LSTM 

showed improvement in these aspects, large errors were still observed in low-yield counties 

(Figure 3-5(e1-e3)) in comparison with the proposed BNN model. 
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Figure 3-3. The density scatter plots of reported yields vs. predicted yields of (a) Ridge, (b) RF, (c) SVR, 

(d) MLP, (e) LSTM, and (f) BNN in three testing years: (1) 2012; (2) 2016; (3) 2019. 
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To further illustrate the performances of different models, we presented the absolute 

relative error maps in 2012, 2016, and 2019 for each model in Figure 3-4, in which darker color 

represents a larger error. The results showed that compared to other states, larger errors were 

observed in North Dakota, South Dakota, Kansas, Arkansas, and Missouri, in all the approaches. 

This is likely because of environmental stresses (i.e., water stress and heat stress) in these areas, 

which can introduce uncertainty in crop productivity and increase the difficulties in modeling 

crop yield variability. Subsequently, comparing different approaches, the BNN model 

outperformed the other models and had smaller errors for most counties in both the average year-

2016 (Figure 3-4 (f2)) and abnormal years-2012 and 2019 (Figure 3-4 (f1)&(f3)). In particular, 

the linear Ridge regression model performed the worst among the six models and made more 

errors in Iowa, Wisconsin, and Illinois in 2016 and 2019 (Figure 3-4 (a2)-(a3)) when compared 

to other methods. Some improvements were shown in all the non-linear models, and errors in the 

central region were significantly reduced in the prediction results by LSTM and BNN.  
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Figure 3-4. The absolute relative error maps of (a) Ridge, (b) RF, (c) SVR, (d) MLP, (e) LSTM, and (f) 

BNN in three testing years: (1) 2012; (2) 2016; (3) 2019. 
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3.4.2 In-season Prediction Performance 

We further compared the model performance for in-season prediction. Within the 

growing season from May to October in 2010-2019, we compared the developed BNN model 

with other non-linear ML methods, and the linear Ridge regression model was excluded from the 

comparison due to its unsatisfactory performance shown in Section 3.4.1. To present the overall 

model performance, we averaged the R2 of each model over ten testing years. The average time 

series R2 achieved by each model from middle May to early October at every 16 days in ten 

testing years are shown in Figure 3-5. In general, it was notable that all the methods performed 

poorly during the early growing season (before mid-June) when the corn had just been planted or 

emerged from the ground. During this stage, the RS and weather features had relatively weak 

correlations with corn yield and it was challenging to make accurate yield predictions (Johnson, 

2014). Along with the active growth of corn on the ground, the prediction accuracy gradually 

increased as more information became available and was captured by the predictors. After that, 

the model performance became stable in early August when corn transited from the vegetative 

stage to the reproductive stage. Moreover, compared to the other five approaches, the developed 

BNN model became the best-performing one since late-June and achieved a near-optimal 

accuracy in mid-August which is over two months before the harvest season. It demonstrated 

that the model was able to give highly accurate yield predictions in the middle of the growing 

season. 
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Figure 3-5. The average R2 of different models during the growing season in all testing years. 

Besides the average time-series R2, we presented the time-series relative error maps of 

the BNN model averaged over all testing years in Figure 3-6. The figure showed that during the 

early growing season, large errors were observed in most states. As time proceeded and more 

informative predictors were used, fewer errors were exhibited and significant improvements 

were demonstrated in Iowa, Wisconsin, Illinois, and Indiana, where more than half of the 

counties had an absolute relative error that was less than 10%. Additionally, the spatial error 

patterns had stabilized since early August, which agreed with the results shown in Figure 3-5. 

The benefit of more temporal information was less pronounced in North Dakota, South Dakota, 

Kansas, Missouri, and Arkansas, where crops experienced severer environmental stresses 

compared to other states (Li et al., 2019; Lobell et al., 2013). 
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Figure 3-6. The time-series absolute relative error maps for the developed BNN model averaged over all 

testing years. 

3.4.3 Predictive Uncertainty Analysis 

Besides the predicted yield, another important output of the developed BNN model was 

the predictive uncertainty. We first assessed the predictive uncertainty by using the P-factor 

which is defined as the percentage of observed yield enveloped within the 95% confidence 

interval bounded by the predictive uncertainty (Sheng et al., 2019) and it can be calculated as 

below: 

P-factor =
𝑁𝑄𝑖

𝑛
 (3.8) 

where 𝑁𝑄𝑖  denotes the number of data samples whose observed yields are within the 95% 

credible interval of the prediction; 𝑛 is the total number of data samples. In this study, the P-

factor for late-season corn yield prediction across all counties in 2010-2019 was 0.841, showing 

that more than 84% of observed yield records were successfully enveloped in the confidence 

interval bounded by the predictive uncertainty. Based on the corn harvest areas in each county, 

we further grouped all counties into three groups, including the low-area region, the middle-area 
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region, and the high-area region. Each of them had an equal number of counties. The P-factors 

for the low-area region, the middle-area region, and the large-area region were 0.851, 0.837, and 

0.835, respectively. It demonstrated that the uncertainty estimation worked equally well in 

counties with different corn harvest areas. 

 We further analyzed the in-season predictive uncertainty. Here we used the relative 

predictive uncertainty to represent the normalized uncertainty level in each county, which was 

defined as a ratio of the predictive uncertainty 𝜎̂ and the predictive yield 𝑦̂. The resulting time-

series relative uncertainty maps averaged over all testing years 2010-2019 are given in Figure 3-

7. The results indicated that predictions in May had the highest uncertainty, reaching more than 

10% for most counties. This agrees with the fact that predictions during the early growing season 

could be unreliable. With more sequential features obtained, the developed BNN model had 

more confidence in its prediction, and the overall uncertainty level gradually decreased since late 

May. A stable uncertainty pattern was observed in early August when corn reached the peak of 

its vegetative stages. It was notable that the pattern of the relative predictive uncertainty (Figure 

3-7) mirrored the pattern of the absolute relative errors (Figure 3-6). Mid- and late-season 

predictions in North Dakota, South Dakota, Kansas, Missouri, and Arkansas had relatively large 

uncertainties, which is consistent with the prediction errors against the yield statistics provided 

by NASS. Furthermore, the overall uncertainty change across all the counties within the growing 

season was summarized in a box plot and shown in Figure 3-8. It was noticed that early-season 

predictions were associated with much higher uncertainty levels than mid- and late- seasons.  
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Figure 3-7. The time-series relative predictive uncertainty maps for the developed BNN model averaged 

over all testing years. 

 
Figure 3-8. Box plot of the time-series relative predictive uncertainty across all the counties. 

 In general, two main patterns were exhibited in the uncertainty maps (Figure 3-7). On the 

one hand, as more temporal features were included, the estimations of weight distributions of the 

BNN model became more accurate, and therefore for all the counties, the uncertainties 

associated with their predictions were reduced through the growing season. On the other hand, as 
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we have observed previously, some regions (e.g., North Dakota, South Dakota, Kansas, 

Missouri, and Arkansas) constantly showed larger prediction errors than others (Figure 3-6) and 

remained at a relatively high uncertainty level at the end of the growing season (Figure 3-7). This 

certain spatial pattern was likely caused by the inherent characteristics of the training data. 

Therefore, we used the results obtained in early September when the uncertainty patterns were 

stabilized to further explore the causes of this aspect.  

 
Figure 3-9. Maps of (a) predictive uncertainty on Sep 2nd, (b) percentage of non-corn fields (%), (c) EDD 

(℃ ∙ 𝑑𝑎𝑦), (d) LSTday ( 𝐾𝑒𝑙𝑣𝑖𝑛), and (e) average VPDmean (𝑘𝑃𝑎). 

The observation noise was first considered. In this study, instead of using NASS 

Cropland Data Layer (CDL) which is not fully available for the U.S. corn belt before 2007, the 
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MODIS Land Cover Type product was employed as the cropland mask to aggregate the multi-

source data in each county for all the years. Since this mask does not distinguish crop types, RS 

and weather variables on other crops could introduce noise to the training data. We quantified the 

noise level by calculating the percentage of non-corn fields among all cropland in each county 

across ten testing years (2010-2019), and the percentage maps (named “perc_non_corn”) are 

shown in Figure 3-9 (b). As expected, a strong similarity pattern was observed between 

“perc_non_corn” and the corresponding uncertainty maps (Figure 3-9 (a)), with a high positive 

correlation r= 0.74 (p<0.001).  

Besides the observation noise, we further explored the correlations between the predictive 

uncertainty with the sequential VI and environmental features, and the results are shown in 

Figure 3-10. It was noted that lower correlations were shown before the middle of June, and this 

was mainly because less profound crop growth signals could be captured during the early 

vegetative stage. Then, during July and August, the predictive uncertainty was found to be 

strongly correlated with all three VIs. The negative correlations with the VIs indicated that there 

was less uncertainty for yield modeling in healthier cornfields. Although VIs can be used to 

indicate crop yield potential, climate variables were the abiotic factors that could significantly 

affect crop growth and yield potential. In this context, strong correlations were observed between 

the uncertainty and several weather variables that could potentially relate to two types of 

environmental stresses: heat stress (Tmax and LSTday) and water stress (VPDmean, VPDmax, 

ET, and GLDASws). Specifically, during a drought, VPDmean and VPDmax would increase 

since the actual atmospheric water vapor content is less than the saturated water vapor pressure 

(Yuan et al., 2019), and ET and GLDASws tend to decrease because transpiration by crops 

would generally reduce (Kang et al., 2020).  
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Figure 3-10. Correlation coefficients between time-series features and predicted uncertainty. 

However, ET and GLDASws are less representative than VPDmean or VPDmax since 

evaporation from open water bodies would increase during a drought (Jensen et al., 1990), which 

resulted in the comparatively weak correlation between the predictive uncertainty with ET and 

GLDASws. Also, we found that VPDmean and VPDmax were highly correlated. Therefore, we 

calculated the average VPDmean from June to August to represent the water stress. Also, the 

Extreme Degree Days (EDD) and average LSTday from June to August were calculated and 

used as indicators of heat stress that the crop experienced during its critical growth stage. The 

EDD was considered because it is indicative of cumulative extreme heat within the growing 

period (Lobell et al., 2013), and it was calculated as below (Eq. 3.9&3.10):  
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𝐸𝐷𝐷 = ∑ 𝐷𝐷30+,t

𝑁

𝑡=1
 (3.9) 

𝐷𝐷30+,t = {

    0          if 𝑇t < 30℃
𝑇t − 30

24
  if 𝑇t ≥ 30℃

 (3.10) 

in which 𝑇t is the hourly temperature estimated based on Tmin and Tmax; 𝐷𝐷30+,t represents the 

𝐸𝐷𝐷 for hour 𝑡 in each day; 𝑁 is the total number of hours from June 1st to August 31st.  

The resulting maps for the three variables are shown in Figure 3-11 (c)-(e). The results 

showed that high similarities were observed between the three variables (Figure 3-11 (c)-(e)) 

with the uncertainty (Figure 3-11 (a)), and the average correlations respectively achieved 0.70 

(p<0.001), 0.76 (p<0.001), and 0.72 (p<0.001) for EDD, LSTday, and VPDmean, respectively. 

Moreover, we noticed that counties with higher predictive uncertainties were mainly located in 

the western and southern U.S. corn belt where the corn was under heavier heat stress and water 

stress during the summer (Lobell et al., 2014; Zipper et al., 2016), while in humid and temperate 

regions (e.g. central U.S. corn belt), lower uncertainty was typically associated with the 

predictions (Russello, 2018). 

3.4.4 Uncertainty Component Analysis 

The predictive uncertainty mainly consists of the epistemic uncertainty and the aleatoric 

uncertainty (Kendall and Gal, 2017). The epistemic uncertainty represents the uncertainty in 

model parameters and the model structure since we are uncertain about which model parameters 

or which model structure to choose for prediction. Therefore, we also referred it as the model 

uncertainty. The epistemic uncertainty can be reduced if more training samples are available, and 

the model are better trained. On the other hand, the aleatoric uncertainty captures noise inherent 

in the observations as a result of measurement imprecision. Therefore, we referred it as the data 
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uncertainty. Since it is caused by the inherent noises of the data, it cannot be reduced even if we 

have more data.   

The predictive uncertainty 𝜎̂  from the proposed BNN model combines the aleatoric 

uncertainty 𝜎̂𝑎 and epistemic uncertainty 𝜎̂𝑒. To quantify the epistemic uncertainty, we can use 

the Markov sampling. Specifically, given the same input feature vector 𝐱̂, the trained BNN 

model can be run 𝐾 times and output a series of outputs {𝑦̂1, 𝑦̂2, … , 𝑦̂𝐾}. In this case, since we use 

the same input, the variance of the outputs {𝑦̂1, 𝑦̂2, … , 𝑦̂𝐾}  would be mainly caused by the 

uncertainty in the model parameters, i.e., the epistemic uncertainty. As such, the epistemic 

uncertainty 𝜎̂𝑒 can be quantified as: 

𝜎̂𝑒 = √
1

𝐾 − 1
∑ (𝑦̂𝑘 − 𝜇̂)2

𝐾

𝑘=1
 

 

(3.11) 

𝜇̂ =
1

𝐾
∑ 𝑦̂𝑘

𝐾

𝑘=1
 (3.12) 

Based on the sampling results, we calculated the sample standard deviation instead of the 

population standard deviation. Corresponding, the denominator in Formula (3.11) is 𝐾 − 1 , 

which guarantees the unbiased estimation of the standard deviation (Härdle and Simar, 2019). 

After that. we can quantify the epistemic uncertainty 𝜎̂𝑎 by: 

𝜎̂𝑎 = √𝜎̂2 − 𝜎̂𝑒
2 

 

(3.13) 
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Figure 3-11. The aleatoric uncertainty map (left) and the epistemic uncertainty map (right) in 2019. 

We took the testing year 2019 as an example and calculated the aleatoric uncertainty and 

the epistemic uncertainty for each county. As illustrated in the corresponding relative uncertainty 

maps (Figure 3-11), the aleatoric uncertainty was larger than the epistemic uncertainty. It 

demonstrated that the predictive uncertainty was mainly caused by the data noises, which is in 

agreement with the analysis in Section 3.4.3. On the other hand, since a large number of data had 

been used for model training, the epistemic uncertainty was reduced to a small level.  

3.5 Summary 

In this study, we proposed a BNN model for county-level corn yield prediction based on 

RS images, weather variables, soil properties, harvest year, and historical average yield. The 

proposed BNN model can simultaneously predict the corn yield and the corresponding predictive 

uncertainty. Experiments in the U.S. corn belt in ten testing years 2010-2019 showed that the 

proposed BNN model could make accurate end-of-season yield predictions with stale 

performances across different testing years. It also outperformed five commonly used linear and 

non-linear ML and DL models with an average R2 of 0.77. The in-season prediction performance 
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was also evaluated within the growing season starting from middle May to early October at a 16-

day interval. The developed BNN model achieved near-optimal performance around the middle 

of August (R2 ≈ 0.75), which is about two months ahead of the harvest. Furthermore, we 

analyzed the time-series predictive uncertainty during the growing season. The results showed 

that more sequential features could help lower the uncertainty level, and the patterns stabilized 

around early August. Correlation coefficients analysis showed that the observation noise due to 

the crop mask, prolonged exposure to extreme heat, and severe water would potentially increase 

the predictive uncertainty. 

The main contributions of this work are summarized as follows: 

• A BNN model was proposed for corn yield prediction and uncertainty estimation, 

which could accurately predict county-level corn yield and outperforms other ML and 

DL models. 

• Accurate corn yield prediction could be made in August, which is about two months 

ahead of the harvest. 

• The predictive uncertainty has a strong correlation with the prediction error.  

• The potential sources of predictive uncertainty are observation noises and 

environmental stresses, such as heat stress and water stress. 
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CHAPTER 4 ADVERSARIAL UNSUPERVISED DOMAIN 

ADAPTATION ON CORN YIELD PREDICTION 

4.1 Overview 

Supervised ML models require data samples with labels (i.e., yield records) for model 

training. For those agricultural regions without historical yield records, it is impossible to 

directly train a ML-based crop yield prediction model. Also, due to the domain shift (Kouw and 

Loog, 2019) caused by spatial heterogeneity of meteorological conditions, soil properties, and 

farming practice, ML models established between reference (reported) yields and RS 

measurements within a specific region often lose their validity when directly applied to the other 

regions. TL, a ML technique that transfers knowledge learned from a local region with rich 

ground reference data to the target region with limited or no ground truth data, has become a 

viable solution. To perform TL for deep NN, a widely used strategy is to first pre-train a model 

on a source domain with abundant ground reference data and then adapt it to a target domain by 

fine-tuning the pre-trained model with labeled samples from the target domain. However, since 

collecting yield data can be financially expensive, labor-intensive, and time-consuming, many 

agricultural production areas may lack reliable ground reference yield data for either directly 

training or fine-tuning the supervised DL models. 

To improve the transferability of DL models without relying on labeled target samples, 

UDA has been a promising strategy. The core idea of UDA is to reduce the domain shift by 

aligning the feature distributions in the source domain and the target domain (Figure 4-1). UDA 

algorithms commonly employ a conjugated architecture with two objectives (Zhao et al., 2020). 

One objective is to learn a task model based on the labeled source samples by minimizing the 
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corresponding task loss function, such as MSE for regression (Feng et al., 2021) and cross-

entropy loss for classification (Wang et al., 2021). The other objective is to reduce the domain 

shift and align the source domain and the target domain. One of the most representative single 

UDA methods is domain adversarial neural networks (DANN) (Ganin et al., 2017), which 

employs an adversarial objective with a domain discriminator to extract domain-invariant 

features from source and target domains. The structure of DANN mainly has three parts, 

including a feature extractor, a domain classifier, and a label predictor. During the training 

process, the feature extractor is updated to minimize the prediction loss for the label predictor 

and maximize the domain loss for the domain classier. Since it is trained adversarially against the 

domain classifier, the feature extractor can be updated towards generating domain-invariant 

features to help alleviate the negative impact of domain shift. Meanwhile, the feature extractor is 

trained collaboratively with the label predictor so that it is updated to extract task-informative 

features to fulfill the main tasks. 

 

Figure 4-1. A conceptual example of unsupervised domain adaptation (UDA). 

Despite the success in classification applications, the DANN model cannot be directly 

applied for regression tasks such as crop yield prediction. This is mainly because it is hard to find 

an optimal weighting parameter to control the trade-off between the prediction loss and the 

domain loss in the original DANN model. Specifically, mean squared error (MSE) is adopted as 
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the prediction loss which can have a quite different magnitude than the cross-entropy-based 

domain classification loss. Also, since the training set for county-level corn yield prediction is 

comparatively small, overfitting may happen during the training of DANN. To address these 

issues, in RA-2, we proposed two variants of DANN, i.e., Adaptive DANN (ADANN) and 

Bayesian DANN (BDANN), for corn yield prediction at the county level. The ADANN model 

was designed to adaptively adjust the weighting parameter between the prediction loss and the 

domain loss to avoid overweighting either of them. Based on ADANN, we further applied 

Bayesian learning to the model training and designed BDANN intending to improve the model’s 

robustness to overfitting as well as its learning ability on small training sets. 

4.2  Methodology 

4.2.1 Fundamentals of DANN 

Deep NN are trained in a supervised learning way to associate input data samples 𝐱 ∈ 𝑋 

with data labels 𝐲 ∈ 𝑌 by learning the distribution 𝐷(𝐱, 𝐲), in which 𝑋 denotes the input feature 

space and 𝑌 denotes the output space. In the scenario of yield prediction, 𝐱 are RS and weather 

variables and 𝐲 denotes the reported yield records. Given two datasets from the source domain 

𝒟𝑠 with 𝑛𝑠 data samples and the target domain 𝒟𝑡 with 𝑛𝑡 data samples, they are likely to have 

different distributions 𝐷𝑠(𝐱, 𝐲)  and 𝐷𝑡(𝐱, 𝐲)  due to different geophysical environments. 

Consequently, a ML model trained with data samples from 𝐷𝑠 would have degraded performance 

if directly applied to 𝐷𝑡.  

To improve the spatial transferability of DL models across different domains, UDA is a 

promising strategy. The core idea of UDA is to reduce the domain shift by aligning the feature 

distributions in the source domain and the target domain. One representative UDA method is the 

DANN, which reduces the impact of the domain shift by projecting input feature vectors from 
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two different domains into a common subspace (Ganin et al., 2016; Wang et al., 2018; Zhuang et 

al., 2019). As illustrated in Figure 4-2, a DANN model mainly consists of three parts, including a 

feature extractor 𝐺𝑓 , a domain classifier 𝐺𝑑 , and a yield predictor 𝐺𝑦  (Figure 4-2). During 

training, from left to right, the 𝑖 th data sample 𝐱𝑖  from 𝒟𝑠  or 𝒟𝑡  is first fed to the feature 

extractor 𝐺𝑓 for feature extraction (Eq (4.1)). Then, the extracted features 𝐱𝑖
𝑐 is forwarded into 

the domain classifier 𝐺𝑑 to predict the domain label 𝑑̂𝑖. (Eq (4.2)) The domain label indicates 

whether the corresponding 𝐱𝑖  is from the source domain (𝐱𝑖~𝐷𝑠(𝐱) if 𝑑𝑖 = 0) or the target 

domain (𝐱𝑖~𝐷𝑡(𝐱) if 𝑑𝑖 = 1). Meanwhile, the extracted features 𝐱𝑖
𝑐 is forwarded into the yield 

predictor 𝐺𝑦 to predict the yield 𝑦̂𝑖.(Eq (4.3)). 

𝐱𝑖
𝑐 = 𝐺𝑓(𝐱i; 𝐰𝑓) (4.1) 

𝑑̂𝑖 = 𝐺𝑑(𝐱𝑖
𝑐; 𝐰𝑑) (4.2) 

𝑦̂𝑖 = 𝐺𝑦(𝐱𝑖
𝑐; 𝐰𝑦) (4.3) 

where 𝐰𝑓 denotes trainable weights in the feature extractor 𝐺𝑓, 𝐰𝑑 denotes the trainable weights 

in the domain classifier 𝐺𝑑, and 𝐰𝑦 denotes the trainable weights in the yield predictor 𝐺𝑦.  

 

Figure 4-2. The structure of the DANN model, including a gradient reversal layer GRL (pink), a feature 

extractor 𝐺𝑓 (blue), a domain classifier 𝐺𝑑 (green), and a yield predictor 𝐺𝑦 (yellow). 
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The model aims to make accurate yield predictions and reduce domain shift through joint 

training 𝐺𝑓 , 𝐺𝑦 , and 𝐺𝑑 . To achieve these two goals, there are two corresponding training 

objectives: 1) train the feature extractor 𝐺𝑓  collaboratively with the yield predictor 𝐺𝑦  to 

minimize the yield prediction loss 𝐿𝑦𝑖𝑒𝑙𝑑  and 2) train the feature extractor 𝐺𝑓  adversarially 

against the domain classifier 𝐺𝑑  to maximize the domain loss 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 . By realizing the first 

objective, the feature extractor 𝐺𝑓 is updated to extract task-specific features which can be used 

to accurately predict corn yield by the yield predictor 𝐺𝑦. By realizing the second objective, the 

feature extractor is driven to project input feature vectors into a common subspace and generate 

domain-invariant features. To perform adversarial training between 𝐺𝑓  and 𝐺𝑑 , a gradient 

reversal layer (GRL) is introduced to connect the domain classifier 𝐺𝑑 and the feature extractor 

𝐺𝑓 . The gradient reversal layer acts as an identity function during forward propagation and 

reverses the gradient by multiplying it by -1 during backpropagation (Ganin et al., 2017). As a 

result, the total loss function of this network becomes (Eq. (4.4)): 

𝐿(𝐰𝑓 , 𝐰𝑑 , 𝐰𝑦) = 𝐿𝑦𝑖𝑒𝑙𝑑 − 𝜆𝐿𝑑𝑜𝑚𝑎𝑖𝑛 (4.4) 

𝐿𝑦𝑖𝑒𝑙𝑑 =
1

𝑛𝑆
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛𝑆

𝑖=1
 (4.5) 

𝐿𝑑𝑜𝑚𝑎𝑖𝑛 = −
1

𝑛𝑆 + 𝑛𝑇
∑ 𝑑𝑖 log(𝑑̂𝑖) + (1 − 𝑑𝑖) log(1 − 𝑑̂𝑖)

𝑛𝑆+𝑛𝑇

𝑖=1
 (4.6) 

where 𝜆 is defined as the weighting parameter that adjusts the trade-off between the domain loss 

and the prediction loss. 𝑛𝑠 and 𝑛𝑡 represent the number of training samples in the source domain 

and the target domain, respectively. 𝐿𝑦𝑖𝑒𝑙𝑑 is the yield prediction loss in the form of MSE (Eq. 

(4.5)). 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 is the domain loss in the form of binary cross entropy (Eq. (4.6)).  
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4.2.2 Adaptive DANN 

Though successful, the performance of DANN largely depends on the weighting 

parameter 𝜆  between the prediction loss 𝐿𝑦𝑖𝑒𝑙𝑑  and the domain loss 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 . It is typically 

predefined experimentally. DANN has been widely used in classification applications where 

both the prediction loss and the domain loss are defined as the cross-entropy loss and therefore 

are of a similar magnitude. However, in crop yield prediction, which is a regression task, the 

yield prediction loss 𝐿𝑦𝑖𝑒𝑙𝑑  is defined as the form of MSE which can have a quite different 

magnitude than the cross-entropy-based domain classification loss 𝐿𝑑𝑜𝑚𝑎𝑖𝑛. Moreover, since the 

prediction loss 𝐿𝑦𝑖𝑒𝑙𝑑 can be varying in different regions and different years, it is challenging to 

find an optimal weighting parameter.  

Therefore, we developed an adaptive domain adversarial neural network (ADANN) 

approach for corn yield prediction (Figure 4-3), in which the weighting parameter 𝜆 was adjusted 

adaptively. Specifically, we followed Ganin et al. (2016) and used a schedule to initialize 𝜆 at 0 

and gradually increased it as training proceeded. Meanwhile, the 𝜆 was normalized with the ratio 

of the prediction loss and the domain loss to offset the magnitude imbalance. A formal definition 

of the weighting parameter is given as follows: 

𝑝𝑖 =
𝑖

𝑁
 (4.7) 

𝑟𝑖 =
𝐿𝑦𝑖

𝐿𝑑𝑖
 (4.8) 

𝜆𝑖 = 𝑟𝑖(
1

1 + exp(−𝑝𝑖)
− 2) (4.9) 

where 𝑝𝑖 denotes the learning progress and increases linearly from 0 to 1 as the epoch 𝑖 increases 

from 0 to the maximum number of epochs 𝑁; 𝑟𝑖 is the normalization term defined as the ratio of 
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the prediction loss and the domain loss during the 𝑖th epoch. This schedule makes sure there is a 

small weight on the domain loss during the early training which enhances the robustness of the 

domain classifier against noisy signals during the early phase of model training (Ganin et al., 

2016). As training proceeds, the weight on the domain loss is increased to make sure that cross-

domain features are extracted and can be used for accurate yield prediction by the yield 

predictors 𝐺𝑦. After convergence, the trained ADANN is able to reduce the domain shift and 

make accurate yield prediction in the target domain. 

 

Figure 4-3. The architecture of the ADANN model. 

4.2.3 Bayesian DANN 

We further proposed the Bayesian domain adversarial neural networks (BDANN) in 

which we introduced Bayesian inference during model training. There are two major novelties in 

the proposed BDANN. First, each hidden layer was designed as a Bayesian layer in which the 

posterior distributions on each weight were approximated via variational inference. By adding 

the prior data distribution in the model development, BNN is less prone to overfitting due to the 

prior regularization (Gal et al., 2017; LeCun et al., 2015; Nasrabadi, 2007). Second, to account 

for the different data uncertainty levels from county to county, the yield predictor was designed 

to have two endpoints to predict the yield distribution by outputting both the predicted yield 

value and predictive uncertainty (Figure 4-4).  
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Figure 4-4. The architecture of the proposed BDANN. 

Specifically, instead of making point estimates of trainable weights 𝐰, BDANN was 

trained to estimate posterior distributions 𝑝(𝐰|𝒟)  given the training data 𝓓 . However, it is 

intractable to directly estimate posterior distributions considering the size of deep NN. Therefore, 

we approximated 𝑝(𝐰|𝒟)  by variational learning, which finds the variational distribution 

𝑞(𝐰|𝛉)  on the weights given trainable variational parameters 𝛉  that minimizes the KL-

divergence with the true posterior on the weights (Eq. (4.10)) (Blundell et al., 2015; Ma et al., 

2021a): 

𝐿(𝛉) = 𝐾𝐿[𝑞(𝐰|𝛉)||𝑝(𝐰|𝓓)] (4.10) 

                = ∫ 𝑞(𝐰|𝛉) log
𝑞(𝐰|𝛉)

𝑝(𝐰)𝑝(𝓓|𝐰)
𝑑𝐰 

 

                                            = 𝐾𝐿[𝑞(𝐰|𝛉)||𝑝(𝐰)] − 𝐸𝑞(𝐰|𝛉)[log 𝑃(𝓓|𝐰)]  

where 𝐾𝐿(𝑝, 𝑞) denotes the KL-divergence between two distributions 𝑝 and 𝑞. There are two 

terms in (Eq. (4.10)): The first term is a prior-dependent loss 𝐿𝑝𝑖𝑜𝑟 = 𝐾𝐿[𝑞(𝐰|𝛉)||𝑝(𝐰)], which 

is the KL-divergence between the prior and the variational distribution. The second term, 

𝐿𝑦𝑖𝑒𝑙𝑑 = −𝐸𝑞(𝐰|𝛉)[log 𝑃(𝓓|𝐰)], is the negative log-likelihood function for yield prediction. To 

account for the different data uncertainty levels from county to county, the yield prediction loss 

𝐿𝑦𝑖𝑒𝑙𝑑 was designed in the form of a normal distribution as: 
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𝐿𝑦𝑖𝑒𝑙𝑑 =
1

𝑛𝑆
∑

(𝑦𝑖 − 𝑦̂𝑖)2

2𝜎̂𝑖
2 + log 𝜎̂𝑖

𝑛𝑆

𝑖=1
 (4.11) 

where 𝑦̂𝑖 and 𝜎̂𝑖 denotes the mean and the standard deviation for the predictive yield distribution. 

The mean 𝑦̂𝑖  is regarded as the predicted yield and the standard deviation 𝜎̂𝑖  quantifies the 

predictive uncertainty. Note that the yield loss can be converted to MSE (Eq. (4.5)) if 𝜎̂𝑖  is 

assumed to be a constant for all data samples. However, this assumption is invalid in our 

scenario since the uncertainty level in training data can be varying in different regions as well as 

in different observation years (Ma et al., 2021a). Therefore, the BDANN was designed to output 

both the predicted yield and its standard deviation from the predictor, and the yield loss was 

designed as Eq. (4.11). The final loss function for the proposed BDANN is (Eq. (4.12)): 

𝐿(𝛉) = 𝐿𝑝𝑟𝑖𝑜𝑟 + 𝐿𝑦𝑖𝑒𝑙𝑑 + 𝜆𝐿𝑑𝑜𝑚𝑎𝑖𝑛 (4.12) 

4.3  Experimental Setup 

Both ADANN and BDANN were trained and evaluated within twelve Midwestern U.S. 

states, including North Dakota, South Dakota, Kansas, Nebraska, Minnesota, Iowa, Wisconsin, 

Illinois, Indiana, Ohio, Missouri, and Michigan. To evaluate the model’s transferability across 

different regions, the counties under study were grouped into two diverse ecological regions 

based on the United States Environmental Protection Agency (EPA) (EPA, 2001), including the 

Eastern Temperate Forests (ETF) region and the Great Plains (GP) region (Figure 4-5). The ETF 

is characterized by a warm, humid, and temperate climate, with humid summers and mild to cold 

winters. ETF is mainly covered by dense and diverse forests. GP, on the other hand, mainly 

consists of flat grasslands and has a scarcity of forests. The change of seasons in GP is more 

obvious, with very hot summers and harsh winters. GP is also subjected to drought, due to the 
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scarcity of forests and lack of rainfall (Omernik, 1987; Omernik and Griffith, 2014). Therefore, 

we chose ETF and GP as two domains for transfer experiments. 

 

Figure 4-5. Corn growing counties in the two ecosystem regions within the study area, including the 

Eastern Temperate Forests (ETF) region and the Great Plains (GP) region. 

Time-series RS imagery and weather observations were collected from 2006 to 2019 as 

input predictors (Table 4.1). Three representative VIs (i.e., EVI, NDWI, and GCI) and five 

weather variables (LSTday, LSTnigh, Tmax, Tmean, and PPT) were selected as the predictors 

and paired with the reported yield records from USDA for model development (USDA, 2020b).  

Table 4-1. Summary of study areas and data used for model development. 

Domains Environment and Climate Landcover Layer Predictor Variables 

Eastern 

Temperate 

Forest (ETF) 

Largely covered by dense forests 

with humid summers and temperate 

winters USDA-NASS 

Cropland Data Layer 

(CDL) 

• EVI, NDWI, GCI 

from MODIS 

MCD43A4 

• LSTday and 

LSTnight from 

MODIS 

MYD11A2 

• Tmax, Tmean, PPT 

from PRISM 

Great Plains 

(GP) 

Mainly consists of grasslands and a 

scarcity of forests, with very hot 

summers and harsh winters. 
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Besides ADANN and BDANN, three other approaches were chosen as the comparison 

methods, including RF, DNN, and the original DANN model with a fixed weighting parameter λ 

in the loss function. Each model was evaluated under two transfer experiments (i.e., GP→ETF 

and ETF→GP) where GP and ETF were alternatively used as the source domain and the target 

domain for model evaluation. For RF and DNN, they were trained only using labeled samples 

from the source domain and directly evaluated in the target domain. For the UDA method, they 

were trained using labeled source samples and unlabeled target samples and evaluated in the 

target domain in each testing year. Using all preceding years since 2006 for model training, the 

models were evaluated in four testing years 2016 - 2019. R2 and RMSE were selected as the 

metrics to evaluate the performance of each model (Eq. (3.5-3.6)). 

4.4  Results and Discussion 

4.4.1 Experimental Results 

The evaluation results of transfer experiments from GP to ETF and from ETF to GP were 

shown in Table 4.2. The best-performing one was highlighted in bold for each study case. It was 

observed that both RF and DNN had poor performances in the target domain. Due to the domain 

shift existing between the source domain and the target domain, RF and DNN trained in the 

source domain could not accurately predict the corn yield in the target domain. Especially in 

2019, when a flood postponed the planting of corn in several states in ETF (i.e., Illinois and 

Indiana) (Baum et al., 2020), the domain shift was further enlarged between ETF and GP, and 

both RF and DNN achieved low agreement in the transfer experiment from GP to ETF. 

Through UDA, it was observed that the DANN model had improved performance in the 

target domain in several cases. For example, in the year 2019, DANN improved the R2 and 
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RMSE to 0.42 and 1.08 t/ha in the transfer experiment from GP to ETF, respectively. However, 

DANN had an unstable performance and could only slightly improve the accuracy in several 

transfer experiments when compared to RF and DNN. ADANN and BDANN further 

outperformed the DANN with more stable performance in different testing years. ADANN and 

BDANN had similar performance in most cases while BDANN outperformed ADANN in 

several cases. For example, when transferring from GP to ETF in 2019, BDANN decreased the 

RMSE by about 10% when compared to the ADANN model. It demonstrated that by estimating 

the weights in the form of variational distributions, BDANN was more robust and had stronger 

learning abilities. 

Table 4-2. Model evaluation in transfer experiments. 

Year Case RF DNN DANN ADANN BDANN 

  RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

2016 
GP→ETF 1.26 0.49 1.14 0.58 1.12 0.60 0.96 0.70 0.90 0.74 

ETF→GP 1.70 0.28 1.63 0.33 1.50 0.44 1.16 0.66 0.96 0.76 

2017 
GP→ETF 1.01 0.56 1.15 0.45 0.88 0.58 0.84 0.60 0.83 0.61 

ETF→GP 1.83 0.47 1.45 0.67 1.38 0.70 1.06 0.82 1.20 0.77 

2018 
GP→ETF 1.10 0.57 1.22 0.47 1.17 0.51 0.98 0.66 0.95 0.67 

ETF→GP 1.68 0.45 1.75 0.41 1.42 0.61 1.40 0.62 1.18 0.72 

2019 
GP→ETF 1.23 0.26 1.27 0.20 0.96 0.48 0.93 0.51 0.88 0.57 

ETF→GP 1.43 0.59 1.21 0.72 1.13 0.76 1.07 0.78 1.07 0.78 

 

To evaluate whether the methods are statistically different on the reported R2, the paired 

sample t-test between the ADANN and BDANN evaluation results and each comparison model 

were performed. A t-test is a statistical test that compares the means of two samples (Mishra et 

al., 2019). In our case, we first compared the means of R2 of ADANN model with each model in 

all testing years. Then, we compared the means of R2 of BDANN model with each model in all 
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testing years. Since each experiment was repeated five times, there were a total of 40 pairs of 

samples in the t-test. As shown in Table 4-3, the results showed that the accuracy improvement 

obtained by the proposed ADANN and BDANN was statistically significant. 

Table 4-3. Results of the paired sample t-test between the R2 of each model in all testing years. 

Model t p-value 

ADANN vs RF 39.445 0.000 

ADANN vs. DNN 28.750 0.000 

ADANN vs. DANN 17.434 0.000 

BDANN vs RF 49.461 0.000 

BDANN vs. DNN 35.548 0.000 

BDANN vs. DANN 26.554 0.000 

BDANN vs ADANN 8.083 0.000 

 

We further draw the density scatter plots of reported corn yield versus predicted corn 

yield in all testing years 2016-2019 to show the agreement of reported yield and predicted yield 

(Figure 4-6). It was observed that both RF and DNN were unable to achieve good agreement in 

both transfer experiments. Specifically, in the transfer experiment GP → ETF, severe 

underestimation happened since most of the scatter points were located below the reference line 

(Figure 4-6 (a1)-(b1)). In the transfer experiment ETF → GP, underestimation still happened to 

high-yielding counties in GP (Figure 4-6 (a2)-(b2)). The main reason was that the domain shift 

would cause bias in model training and result in biased prediction when directly applying the 

model to the target domain. This biased estimation was significantly mitigated by DANN when 

UDA was considered. However, DANN still had biased estimations and overestimated corn yield 

for low-yielding counties in ETF (Figure 4-6 (c1)). ADANN and BDANN further outperformed 

DANN and achieved better agreement between the reported yields and the predicted yields. It 

demonstrated that ADANN and BDANN had better spatial transferability (Figure 4-6 (d)&(e)). 
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Figure 4-6. The density scatter plots of reported corn yield versus predicted corn yield in all testing years 

2016-2019 in transfer experiments (1) ETF → GP and (2) GP → ETF for model (a) RF, (b) DNN, (c) 

DANN, (d) ADANN, (e) BDANN  

Moreover, we present the absolute error maps averaged over years 2016-2019 for each 

model (Figure 4-7). For RF and DNN, clusters of large errors were observed in regions far from 

the source domain. For example, when transferring from ETF to GP, a large number of errors 

were observed in the west of Nebraska and Kansas (Figure 4-7 (a1)-(b1)). Similarly, when 

transferring from GP to ETF, large errors were concentrated in the east of Michigan and Ohio 

(Figure 4-7 (a2)-(b2)). Without UDA, RF and DNN tended to make large errors in these distant 

areas that have large domain shifts with the source domain. The DANN model had reduced the 

errors but still had clusters of large errors in the west of Nebraska (Figure 4-7 (a3)). ADANN and 

BDANN further reduced the errors and had better spatial transferability across the target 

domains (Figure 4-6 (d)&(e)).  
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Figure 4-7. The absolute error maps averaged over years 2016-2019 in transfer experiments (1) ETF → 

GP and (2) GP → ETF for model (a) RF, (b) DNN, (c) DANN, (d) ADANN, (e) BDANN. 

4.4.2 t-SNE Visualization of Feature Distributions 

To provide a visual insight into the effects of UDA by each model, we visualized the 

feature distributions of the input feature vectors as well as the extracted features by DANN, 

ADANN, and BDANN using the t-distributed Stochastic Embedding (t-SNE) algorithm. The t-

SNE algorithm is an unsupervised data visualization tool that projects the high-dimensional 

feature vectors to a low-dimensional space (i.e., two-dimension in our case) for visualization 

(Maaten and Hinton, 2008). Since it is challenging to do spatial analysis in the original high-

dimensional feature space, the t-SNE algorithm was used to project a high-dimensional feature 

vector to a two-dimensional space for visualization. Figure 4-8 shows the visualization results for 

the original input features and extracted features by each UDA model in 2019. Data samples 

from ETF and GP are color-coded, with green representing ETF and yellow representing GP. 
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Figure 4-8. The t-SNE visualization results of (a) original features and extracted features by (b) DANN, 

(c) ADANN, and (d) BDANN in 2019. 

Before UDA, the original feature distributions from ETF and GP were separate from each 

other with limited overlapping areas (Figure 4-8 (a)). It indicated that there existed large domain 

shifts between ETF and GP. Therefore, RF and DNN trained in one domain would have poor 

performance in the other domain. The goal of UDA is to reduce the domain shift between source 

and target domains by blending features from different domains into a uniform distribution in the 

feature space. After UDA, DANN, ADANN, and BDANN were able to largely reduce the 

domain shift (Figure 4-8 (b)-(d)). However, some isolated data samples were observed in the 

visualization results of DANN (Figure 4-8 (b)). It was found that those isolated data samples 

were mostly counties near the boundary of two domains, such as from Wisconsin and Minnesota. 

Since those counties were geographically close to each other and tended to have small domain 

shifts, the domain loss calculated based on those data samples was always small. Therefore, 

nearby data samples could be easily aligned with each other. Consequently, the feature extractor 

of DANN would be mostly updated based on distant data samples with large domain shifts. Also, 

since a fixed weighting parameter was given between the yield prediction loss and the domain 

loss, DANN was trained to reduce the domain loss from the beginning of training. As a result, 

DANN was updated to separately match nearby data samples and distant data samples but failed 

to consider aligning the whole source and target domains (Ma and Zhang, 2022).  
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On the other hand, ADANN was able to adaptatively adjust the weighting parameter. At 

the beginning of training, the domain loss was weighted near zero so that the model would not be 

mostly updated based on distant data samples with large domain shifts. As the training 

proceeded, the weighting parameter increased and ADANN gradually align the source domain 

and the target domain. Therefore, the data samples from both domains were well aligned. 

Moreover, BDANN, due to the regularization by the prior distributions, could further prevent 

being overtrained on distant data samples and thus learned to extract cross-domain features with 

high spatial generalizability. Therefore, the t-SNE results showed that ADANN and BDANN had 

closely aligned the whole source and target domains with no isolated data clusters (Figure 4-8 

(c)-(d)). 

4.4.3 Model Performance with Different Sizes of Training Sets 

Finally, the learning abilities of ADANN and BDANN on small training datasets and 

their performances were evaluated under different sizes of the training set. Specifically, the 

training set with data samples from 2006 to 2018 was decreased and used to train the model. 

After that, the trained model was evaluated on the full testing set in the target domain in the 

testing year 2019. ETF and GP were alternatively used as the source domain and the target 

domain. In both experiments, the size of the training set was gradually decreased from 100% (the 

whole training set) to 10% (only 10% of the training set was kept). The model performance was 

shown in Figure. 4-9.  
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Figure 4-9. Mean R2 and its standard deviation of ADANN and BDANN in transfer experiments (1) GP 

→ ETF and (2) ETF → GP when reducing the training set size from 100% to 10% in 2019. 

It was observed that the BDANN model had a more stable performance in both transfer 

experiments (Figure 4-9). Specifically, when transferring from GP to ETF, BDANN constantly 

outperformed ADANN regardless of the training size. Also, the ADANN model’s performance 

decreased significantly when only a small percentage of the training set was used. On the other 

hand, when transferring from ETF to GP, both ADANN and BDANN performed equally well 

when a relatively large training set was used. This was because the training set in the ETF was 

more equally distributed. Therefore, when only a part of the training set in ETF was left, both 

ADANN and BDANN could still well align ETF and GP. As the training size was further 

decreased, the remaining training set in ETF was less representative and thus more difference 

between the two models was observed. The BDANN model was able to achieve an R2 of over 

0.60 when using only 10% of training data, while the performance of ADANN dropped 

significantly. These results demonstrated that the BDANN model could generalize well on small 

training sets. 

 



66 

 

4.5 Summary 

In this study, the strategy of adversarial domain adaptation was used to improve the 

spatial transferability of DL models for corn yield prediction. Two variants of DANN, i.e., 

ADANN and BDANN, were proposed for corn yield prediction at the county level based on RS 

images and weather variables. The ADANN model was designed to adaptively adjust the 

weighting parameter between the yield prediction loss and the domain classification loss. Based 

on ADANN, we further proposed BDANN by applying Bayesian inference to the model training. 

Both ADANN and BDANN were evaluated in two ecoregions of the U.S. corn belt and 

compared with other widely used ML models and UDA methods including RF, DNN, and the 

DANN model with a fixed weighting parameter. Evaluation results across two ecoregions in the 

U.S. corn belt demonstrated that the proposed ADANN and BDANN had better spatial 

transferability with more stable performance against RF, DNN, and DANN in four testing years 

2016-2019. The t-SNE visualization results showed ADANN and BDANN could effectively 

reduce the domain shift and well align the source domain and the target domain. Furthermore, 

we also compared the model performance on the training set with decreasing size. It was 

observed that the BDANN model could generalize well on small training sets.  

The main contributions of this work are summarized as follows: 

• The UDA strategy was used for corn yield prediction and two adversarial domain 

adaptation models were proposed for county-level corn yield prediction based on RS 

images and weather variables. 

• The proposed ADANN and BDANN outperformed RF, DNN, and DANN with better 

spatial transferability across spatial domains.  
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• The t-SNE visualization showed that ADANN and BDANN were able to effectively 

reduce the domain shift and well align the source domain and the target domain.  

• Experiments on the training set with a decreasing size demonstrated that the BDANN 

model could generalize well on small training sets. 
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CHAPTER 5 MULTI-SOURCE MAXIMUM PREDICTOR 

DISCREPANCY FOR UNSUPERVISED DOMAIN 

ADAPTATION ON CORN YIELD PREDICTION 

5.1  Overview 

In Chapter 4, we have demonstrated the effectiveness of the UDA strategy on corn yield 

prediction. However, there are two major bottlenecks in applying current UDA methods to crop 

yield prediction based on RS images and weather variables.  

First, most existing UDA methods attempt to address the domain shift by directly 

matching feature distributions in the source and target domains by extracting domain-invariant 

features. However, directly aligning feature distributions may cause ambiguous domain-invariant 

features. Such ambiguous features have limited information regarding the main task (i.e., crop 

yield prediction). For example, in the scenario of crop yield prediction, large domain shifts are 

likely to exist across geospatial domains due to environmental variations (Deines et al., 2021). 

For those target samples that are outside the support of the source domain, they are likely to lose 

discriminative features if the crop yield response in the target domain is not considered during 

UDA. Therefore, simply aligning the feature distributions without considering the specific task 

for the target domain may not effectively address the domain shift and the prediction accuracy in 

the target domain could be still low after UDA (Riemer et al., 2019).  

Second, most UDA methods were designed for single-source UDA, which assumes that 

all the labeled data are collected from a single homogeneous domain. In reality, crop yield data 

used for model training are typically collected from multiple heterogeneous regions (Zhao et al., 
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2020). In such cases, the single-source UDA strategy could be trivially applied by combining the 

different regions into a single source (Ma et al., 2021b). However, due to the spatial 

heterogeneity, the domain shift not only exists between the source domain and the target domain 

but also exists among different source domains/regions. Thus, the combined data across multiple 

regions may negatively interfere with each other during the learning process.  

A promising way to address the first issue is to use the Maximum Classifier Discrepancy 

(MCD) instead of using a domain classifier/discriminator during adversarial learning (Saito et 

al., 2018b). The core idea of MCD is to align source and target distributions by utilizing the task-

specific decision boundaries modeled by two classifiers. First proposed for image classification 

by Saito et al. (2018b), Satio et al. trained a feature extractor and two independent classifiers on 

labeled source images and unlabeled target images. The two classifiers are trained to minimize 

the classification loss on labeled source images while maximizing their classification 

discrepancy on unlabeled target images. By doing this, the model has been trained to measure the 

domain shift in a task-specific way. The model could distinguish target images that are far from 

the support of the source domain. The feature extractor is then trained to fool the classifiers by 

minimizing the classifier discrepancy to have the target samples generated inside the support of 

the source which can help reduce the domain shift. 

To address the second issue and better leverage data from multiple source domains, there 

have been growing interests in multi-source UDA, which is a powerful extension of single-

source UDA that aligns the target domain to multiple source domains simultaneously (Zhao et 

al., 2020). Recent multi-source UDA models are mostly developed by extending existing single-

source UDA strategies. For example, Peng et al. (Peng et al., 2019) extended the single-source 

moment-matching method and proposed a moment-matching multi-source UDA model named 
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M3SDA for image classification, which reduces source-target divergences and inter-source 

divergences by minimizing the moment-related distances between each domain. Similarly, 

adversarial-based single-source UDA models have been extended for multi-source UDA by 

incorporating multiple feature extractors and domain discriminators for multi-way adversarial 

learning. For instance, Xu et al. (Xu et al., 2018) proposed a deep cocktail network that uses 

multi-way adversarial learning to minimize the discrepancy between the target and source 

domains for image classification. Zhao et al. (Zhao et al., 2019) designed separate feature 

extractors for each source to learn discriminative target representations in an adversarial manner 

for image classification. 

Motivated by MCD and the recent development of multi-source UDA, in this chapter, we 

proposed a novel MMPD model for corn yield prediction using satellite images and weather 

variables. First, inspired by MCD, we proposed MPD and designed a feature extractor and 

source-specific yield predictors. The feature extractor and each pair of source-specific yield 

predictors were trained in an adversarial manner to align the source and target domains by 

considering crop yield response in the target domain through the yield prediction regression 

curves. Second, to avoid negative interference among labeled data from heterogeneous spatial 

regions, the strategy of multi-source UDA was employed by grouping labeled data based on 

multiple sources and adapting them to the target domain separately. The final predictions on the 

target domains were made based on the ensemble results from multiple source domains. 

5.2 Methodology 

5.2.1 Multi-source Maximum Predictor Discrepancy 

In the scenario of crop yield prediction, input predictors 𝐱 ∈ 𝑋  are RS images and 

weather variables, and the target variable 𝑦 ∈ 𝑌 is the crop yield. 𝑋 denotes the input feature 
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space and 𝑌 denotes the label space. Given an unlabeled target domain 𝒟𝑡 and 𝑀 labeled source 

domains 𝒟𝑠 = {𝒟1, … , 𝒟𝑀}, the MMPD model has a weight-shared feature extractor 𝐺𝑓, which 

takes input 𝐱𝑖 from source or target domains to extract features, and 𝑀 pairs of source-specific 

yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
, which takes extracted features from 𝐺𝑓 and make yield prediction 

𝑦̂𝑖𝑘
 and 𝑦̂𝑖𝑘

′  (Figure 5-1). 𝐺𝑝𝑘
 and 𝐺𝑝𝑘

′  are the pair of yield predictors for the 𝑖-th source domain 

and they have the same structure. 

 

Figure 5-1. The architecture of the proposed MMPD model. 

The goal of the MMPD model is to align source and target domains by utilizing a pair of 

source-specific yield predictors as the discriminator to consider the relationship between 

regression curves and target samples. For this objective, we need to detect target samples far 

from the support of each source and align them to the source. Such target samples are likely to be 

inaccurately predicted by the predictors trained with labeled source samples because they have a 

large domain shift with the source domain. Therefore, we proposed to utilize the disagreement of 

the pair of domain-specific yield predictors in yield prediction for target samples. Each pair of 

domain-specific yield predictors are first trained with labeled source samples so that they can 
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classify source samples correctly. Note that each pair of yield predictors are initialized with 

different weights to obtain different predictors at the beginning of training. As a result, for target 

samples far from the support of the source domains, the pair of source-specific yield predictors 

are likely to make very different predictions. The disagreement of each pair of yield predictors 

on target samples, which is termed as predictor discrepancy, can indicate the domain shift 

between the source and target domains. Each pair of domain-specific yield predictors is trained 

to maximize the predictor discrepancy on target samples to effectively detect the target samples 

outside the support of the source domain. On the other hand, the 𝐺𝑓  is trained to fool the 

discriminator by minimizing the predictor discrepancy to have the target samples generated 

inside the support of the source which can help reduce the domain shift. The goal is to obtain a 

𝐺𝑓  that can extract domain-invariant and task-informative features. To achieve that goal, the 

MMPD model is trained recursively in three steps (Figure 5-2). 

 

Figure 5-2. The three steps of training the MMPD model. 

Step 1: First, to make the weight-shared feature extractor 𝐺𝑓  and the domain-specific 

yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 obtain informative features, they are trained to correctly predict 

crop yields of the source samples (Figure 5-2. (Step 1)). Specifically, labeled data from each 

source is forwarded through the feature extractor to extract features. Then, the extracted features 

are fed forward to the source-specific predictors for yield prediction. Each pair of yield 
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predictors is trained to be the expert in the specific source domain. The yield prediction loss in 

each source is calculated as the mean squared error (Eq. (5.2)-(5.3)) and the model is trained to 

minimize the total yield prediction loss in all sources (Eq. (5.1)): 

min
𝐺𝑓,{𝐺𝑝𝑘

,𝐺𝑝𝑘
′ }

𝑘=1

𝑀
∑ 𝐿𝑦(𝒟𝑘) + 𝐿𝑦

′ (𝒟𝑘)

𝑀

𝑘=1

 

 

(5.1) 

𝐿𝑦(𝒟𝑘) =
1

𝑁𝑘
∑(𝑦𝑖𝑘

− 𝑦̂𝑖𝑘
)

2

𝑁𝑘

𝑖=1

 
(5.2) 

𝐿𝑦′(𝒟𝑘) =
1

𝑁𝑘
∑(𝑦𝑖𝑘

− 𝑦̂𝑖𝑘

′ )
2

𝑁𝑘

𝑖=1

 
(5.3) 

where 𝑁𝑘 is the number of labeled training samples from the 𝑘-th source domain; 𝑦̂𝑖𝑘
 and 𝑦̂𝑖𝑘

′  are 

predicted yields by the pair of source-specific predictors for the 𝑘-th source domain.  

Step 2: In this step, each pair of yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 are trained as 

discriminators for a fixed feature extractor 𝐺𝑓 . By training each pair of yield predictors to 

increase the discrepancy on target samples, they can detect the target samples outside the support 

of the source (Figure 5-2. (Step 2)). Specifically, we fix the feature extractor 𝐺𝑓 and keep the 𝑀 

pairs of source-specific yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 trainable. The unlabeled target data 𝒟𝑡 are 

first fed into the feature extractor 𝐺𝑓 and then forwarded to all predictors. The yield predictor 

discrepancy 𝐿𝑑(𝒟𝑡) is calculated in L2 norm between the predicted yield 𝑦̂𝑖𝑘
 and 𝑦̂𝑖𝑘

′  for each pair 

of source-specific predictors 𝐺𝑝𝑘
 and 𝐺𝑝𝑘

′  (Eq. (5.5)-(5.6)). Given a target sample out of the 

support of the source, a large predictor discrepancy is expected (Figure 5-2. (Step 2)). The yield 

predictors are trained to maximize the predictor discrepancy 𝐿𝑑(𝒟𝑡) by minimizing the negative 

𝐿𝑑(𝒟𝑡) so they can discriminate target samples excluded from the support of the source (Eq. 

(5.4)). Meanwhile, like Step 1, labeled source data from each source domain are fed into the 
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network, and the yield prediction loss 𝐿(𝒟𝑠) on the source samples are calculated (Eq. (5.1)). 

The source-specific predictors are also trained to minimize the yield prediction loss 𝐿(𝒟𝑠) to 

maintain the support of each source. The overall training objective is given as follows (Eq. 

(5.4)): 

min
{𝐺𝑝𝑘

,𝐺𝑝𝑘
′ }

𝑘=1

𝑀
𝐿(𝒟𝑠) − 𝐿𝑑(𝒟𝑡) 

(5.4) 

𝐿𝑑(𝒟𝑡) = ∑ 𝐿𝑑𝑘
(𝒟𝑡)

𝑀

𝑘=1

 (5.5) 

𝐿𝑑𝑘
(𝒟𝑡) =

1

𝑁𝑡
∑(𝑦̂𝑖𝑘

− 𝑦̂𝑖𝑘
′ )

2

𝑁𝑡

𝑖=1

 
(5.6) 

where 𝑁𝑡 denotes the number of unlabeled training samples from the target domain. 

Step 3: In this step, the feature extractor 𝐺𝑓  is trained to minimize the predictor 

discrepancy on target samples for fixed yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 (Figure 5-2. (Step 3)). 

Specifically, the feature extractor 𝐺𝑓 is kept trainable while the 𝑀 pairs of source-specific yield 

predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 are fixed. Unlabeled target data 𝐱𝐭 is fed into the network and used to 

calculate the predictor discrepancy 𝐿𝑑(𝒟𝑡) (Eq. (5.5)). During backpropagation, the feature 

extractor 𝐺𝑓 is updated towards minimizing the predictor discrepancy loss (Eq. (5.7)) while the 

yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 are fixed. 

min
𝐺𝑓

𝐿𝑑(𝒟𝑡) (5.7) 

The MMPD model is trained recursively by these three steps until convergence. Overall, 

the feature extractor 𝐺𝑓  and the yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 are trained in an adversarial 

manner under the condition that the source samples can be predicted correctly. Finally, the 
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feature extractor 𝐺𝑓 is expected to extract task-informative (i.e., informative to the crop yield) 

and domain-invariant (i.e., small domain shift between source and target domains) features. In 

other words, source and target distributions are aligned in a task-specific way. 

5.2.2 Ensemble Schema 

In the testing phase, target samples 𝐱𝑖 are forwarded through the feature extractor 𝐺𝑓 and 

𝑀  pairs of source-specific yield predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
. 𝑀  pairs of predicted yields 

{𝑦̂𝑖𝑘
, 𝑦̂𝑘

′ }
𝑘=1

𝑀
 are given by yield predictors. An ensemble schema was first tested to directly 

average the M pairs of outputs as the final yield prediction but generated unsatisfying results. It 

was found that different sources may have different relationships with the target, e.g., one source 

domain might better align with the target domain (Zhao et al., 2020). Therefore, uniformly 

averaging predictions from all source predictors could result in unsatisfying accuracy. 

To address this issue, a weighted ensemble schema was proposed to combine the 

predictions from each source predictor. In fact, if the target domain and the 𝑘-th source domain 

are well aligned, the 𝑘-th pair of source-specific yield predictors will have a low prediction error 

for the 𝑘 -th source dataset 𝒟𝑘  and a small predictor discrepancy for the target dataset 𝒟𝑡 . 

Therefore, a weighting schema can be designed based on the prediction errors. Let 𝛼𝑘 be the 

weighting parameter for the 𝑘-th source domain with the source-specific prediction error 𝑒𝑟𝑟𝑜𝑟𝑘 

and 𝑑𝑖𝑠𝑘 be the predictor discrepancy for the target dataset 𝒟𝑡. The weighting parameter 𝛼𝑘 is 

defined as follows: 

𝛼𝑘 =
𝛽

𝑒𝑟𝑟𝑜𝑟𝑘 𝑑𝑖𝑠𝑘
 (5.8) 
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𝑒𝑟𝑟𝑜𝑟𝑘 =
1

𝑁𝑘
∑ (𝑦𝑖𝑘

−
1

2
(𝑦̂𝑖𝑘

+ 𝑦̂𝑖𝑘

′  ))
2𝑁𝑘

𝑖=1
 (5.9) 

𝑑𝑖𝑠𝑘 =
1

𝑁𝑡
∑(𝑦̂𝑖𝑘

− 𝑦̂𝑖𝑘
′ )

2

𝑁𝑡

𝑖=1

 (5.10) 

where the source-specific prediction error 𝑒𝑟𝑟𝑜𝑟𝑘 is defined as the mean squared error (MSE) of 

the 𝑘-th pair of predictors for the 𝑘-th source dataset 𝒟𝑘  of size 𝑁𝑘  (Eq. (5.9)); the predictor 

discrepancy 𝑑𝑖𝑠𝑘 is defined as the mean predictor discrepancy for the target dataset 𝒟𝑡 of size 𝑁𝑡 

(Eq. (5.10)); 𝛽 is a tunable parameter to adjust the magnitude of 𝛼𝑘. 

Finally, we applied the Softmax function to normalize the weighting parameters 

{𝛼1, 𝛼2, … , 𝛼𝑀} (Eq. (5.11)). A weighting vector 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑀) can be derived and the 

final prediction 𝑦̂𝑖 for the target samples 𝐱𝑖 is a weighted average ensemble of predicted yields 

from 𝑀 sources (Eq. (5.12)): 

𝑤𝑘 =
𝑒𝛼𝑘

∑ 𝑒𝛼𝑘𝑀
𝑘=1

 (5.11) 

𝑦̂𝑖 = ∑
1

2
𝑤𝑘(𝑦̂𝑖𝑘

+ 𝑦̂𝑖𝑘

′  )
𝑀

𝑘=1
 (5.12) 

5.2.3 Model Architecture 

The architecture of the MMPD model was finalized to have a depth of six after a 

thorough experimental analysis of accuracy on an independent validation set (Figure 5-1). 

Specifically, the weight-shared feature extractor 𝐺𝑓 consists of three fully connected layers. Each 

pair of source-specific yield predictor 𝐺𝑝𝑘
 and  𝐺𝑝𝑘

′  has two fully connected layers and one output 

layer. The batch normalization layer (BatchNorm) was used between each hidden layer to 

address internal covariate shifts and overfitting (Ioffe and Szegedy, 2015). The Rectified Linear 

Unit (ReLU) was used in each neuron as the activation function. The Adam optimizer was used 
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to update the model during training. The detailed training process of the proposed MMPD model 

is illustrated in Table 5.1. 

Table 5-1. The Modeling Process of the Proposed MMPD Model 

Algorithm 1 Modeling Process of the Proposed Method 

procedure DEFINITIONS 

    𝒟𝑠 = {𝒟1, 𝒟2, … , 𝒟𝑀}: 𝑀 labeled source domains 

    𝒟𝑡: the unlabeled target domain 

𝐺𝑓: the weight-shared feature extractor 

{𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
: pairs of source-specific yield predictors for each source domain 

Epochs: the total number of training epochs 

end procedure 

 

procedure TRAINING PROCESS 

1. Initialize 𝐺𝑓 with random weights 

2. Initialize each pair of source-specific predictors {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ } with different weights 

    Repeat steps 3-11 until reaching the Epochs 

3. Input 𝒟𝑠 to the MMPD model 

4. Calculate the total yield prediction loss 𝐿(𝒟𝑠) using Eq. (5.1) 

5. Update 𝐺𝑓 and {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 to minimize 𝐿(𝒟𝑠) 

6. Input 𝒟𝑠 and 𝒟𝑡 through the MMPD model 

7. Calculate the total yield prediction loss 𝐿(𝒟𝑠) using Eq. (1); calculate the predictor 

discrepancy loss 𝐿𝑑(𝒟𝑡) using Eq. (5.5) 

8. Freeze 𝐺𝑓 and update {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
 to minimize 𝐿(𝒟𝑠) and maximize 𝐿𝑑(𝒟𝑡) 

9. Input 𝒟𝑡 through the MMPD model 

10. Calculate the predictor discrepancy loss 𝐿𝑑(𝒟𝑡) using Eq. (5.5) 

11. Freeze {𝐺𝑝𝑘
, 𝐺𝑝𝑘

′ }
𝑘=1

𝑀
and update 𝐺𝑓 to minimize 𝐿𝑑(𝒟𝑡) 

end procedure 

 

procedure TESTING PROCESS 

1. Input 𝐷𝑠 and 𝐷𝑡 to the trained MMPD model 

2. Calculate the source-specific prediction error 𝑒𝑟𝑟𝑜𝑟𝑘 on the source dataset 𝐷𝑠 for the 𝑘-

th source using Eq. (5.9) 

3. Calculate the predictor discrepancy 𝑑𝑖𝑠𝑘  on the target dataset 𝐷𝑡  for the 𝑘 -th source 

using Eq. (5.10) 

4. Calculate the weighting parameter 𝛼𝑘 of the 𝑘-th source using Eq. (5.8) 

5. Normalize the weighting parameters using Eq. (5.11) 

6. Calculate the final prediction 𝑦̂𝑖  for a given target sample 𝐱𝑖 as the weighted average 

ensemble using Eq. (5.12) 

end procedure 
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5.3  Experimental Setup 

We selected the U.S. corn belt and Argentina as the study areas due to the availability of 

sufficient yield records for model development and validation. Historical yield records in the 

U.S. corn belt were collected at the county level in 2006-2019 from the USDA National 

Agricultural Statistics Service (NASS) Database (USDA, 2020b). Similarly, county-level yield 

records in Argentina from 2006 to 2019 were collected from the Argentina Ministry of 

Agriculture (Argentine Undersecretary of Agriculture, 2020). 

To evaluate the spatial transferability of the proposed MMPD model under different 

scenarios, three transfer experiments have been designed. In the first experiment, we separated 

counties in the U.S. corn belt into three domains according to the state-level average yield over 

the recent ten years (Figure 5-3). As illustrated in Table 5.2, counties in states with an average 

yield of less than 10.00 t/ha were grouped as the low-yield domain; counties in states with an 

average yield between 10.00 t/ha and 11.00 t/ha were grouped as the mid-yield domain; counties 

in states with an average yield higher than 11.00 t/ha were grouped as the high-yield domain. 

During UDA, three domains would be used as source domains and every single state would be 

alternatively treated as the target domain. For example, when the target domain is Kansas, 

labeled training samples in Kansas are first removed from the training set. Then, unlabeled data 

samples in Kansas and the remaining labeled samples from three source domains are used for 

model training. Finally, the trained models are evaluated in Kansas in each testing year. 

Table 5-2. Multiple domains based on state-level mean yield. 

Low-yield states Mean yield Mid-yield states Mean yield High-yield states Mean Yield 

Kansas (KS) 8.65 t/ha Michigan (MI) 10.02 t/ha Minnesota (MN) 11.48 t/ha 

North Dakota (ND) 8.78 t/ha Wisconsin (WI) 10.38 t/ha Nebraska (NE) 11.50 t/ha 

South Dakota (SD) 9.39 t/ha Ohio (OH) 10.72 t/ha Illinois (IL) 11.73 t/ha 

Missouri (MO) 8.45 t/ha Indiana (IN) 10.86 t/ha Iowa (IA) 11.99 t/ha 



79 

 

 

 

Figure 5-3. Three domains based on the state-level mean yield. 

In the second experiment, counties in the U.S. corn belt were grouped into four domains 

according to eco-regions partitioned by National Ecological Observatory Network (NEON). 

NEON is a continental-scale research platform for understanding ecosystems (Kampe, 2010). 

NEON partitions the U.S. into a total of twenty eco-regions, each of which represents different 

regions of vegetation, landforms, climate, and ecosystem performance. Counties in the U.S. corn 

belt are in seven NEON eco-regions, including Great Lakes, Prairie Peninsula, Cumberland 

Plateau, Ozark Complex, Northern Plains, Central Plains, and Southern Plains. Since some eco-

regions consist of a very small number of counties, we thus merged small eco-regions and finally 

resulted in four eco-domains (Figure 5-4). In transfer experiments, each eco-domain would be 

alternatively treated as the target domain and the other three eco-domains would be treated as 

sources. 
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Figure 5-4. Multiple eco-domains partitioned based on NEON eco-regions. 

In the third experimental setting, we further evaluate the proposed model through transfer 

experiments from the U.S. corn belt to Argentina (Figure 5-5). Large domain shifts exist between 

these two agricultural regions since they are in different hemispheres. The U.S. corn belt has a 

continental climate while corn-producing areas in Argentina mostly have a humid subtropical 

climate (Rubel and Kottek, 2011). Following the first experiment, counties in the U.S. corn belt 

were divided into three domains based on the state-level average yield (Figure 5-3). Labeled 

samples from these three U.S. source domains and unlabeled samples from Argentina were used 

for model training. The trained models were evaluated in Argentina in the testing year 2016-

2019. 



81 

 

 

Figure 5-5. Counties with corn yield records in Argentina. 

Time-series RS imagery and weather observations were collected as input predictors 

(Table 5.3). A detailed description of each data source is given in Chapter 2. The MMPD model 

was compared to three other approaches, including DNN, DANN, and M3SDA. DNN was used 

as the baseline model and was trained with only labeled source samples. After training, DNN 

was directly evaluated in the target domain without UDA. When training DANN, multiple 

sources were grouped into one source domain since DANN is a single-source UDA method. 

M3SDA was trained following the multi-source setting. In addition, we also evaluated the 

performance of the Single-source Maximum Predictor Discrepancy (SMPD) model, which is the 

single-source counterpart of MMPD. SMPD was designed to have a feature extractor and a pair 

of yield predictors. The final prediction is the average value of the predicted yields from the pair 

of yield predictors. Like DANN, multiple source domains were grouped into a single source 

domain when training the SMPD model. We used all preceding years since 2006 for model 

training and tested models in four testing years 2016–2019. Each model was evaluated based on 

RMSE and MARE. 
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Table 5-3. Summary of study areas and data used for model development. 

 

5.4  Results and Discussion 

5.4.1 Transfer experiments among U.S. States 

We first evaluated the MMPD model based on three source domains in the U.S. corn belt 

which are divided based on the state-level average yield (Figure 5-3). The evaluation results 

averaged over 2016-2019 in each target state are reported in Table 5.4. The best performer in 

each case is highlighted in bold. MMPD was observed to outperform other models in each target 

state. Specifically, DNN performed well in some states but had low accuracy in others, 

especially in low-yield states such as Kansas and North Dakota. The reason is that most training 

samples are from the mid-yield and high-yield states which would introduce bias in training 

DNN and limit its generalizability to low-yield states. Through UDA, DANN and M3SDA had 

improved performance in a few target states (i.e., Missouri and Ohio) but performed worse than 

DNN in most cases. These results indicate that merely aligning feature distributions in source 

Study 

Area 
Landcover Layer 

Predictor Variable Experiment 

The U.S.  

corn belt 

USDA-NASS 

Cropland Data Layer 

(CDL) 

• EVI, NDWI, GCI from 

MODIS MCD43A4 

• LSTday, LSTnight from 

MODIS MYD11A2 

• Tmean, Tmax, PPT from 

PRISM 

• Experiment 1: Source: Three 

source domains based on 

state-level average yield in 

the U.S. corn belt → Target: 

One state in the U.S. corn 

belt. 

 

• Experiment 2: Source: Three 

NEON eco-regions in the 

U.S. corn belt → Target: 

One NEON eco-region in the 

U.S. corn belt. 

 

• Experiment 3: Source: Three 

source domains based on 

state-level average yield in 

the U.S. corn belt → Target: 

Argentina. 

Argentina 

MODIS Land Cover 

Type product 

(MCD12Q1 v6) 

• EVI, NDWI, GCI from 

MODIS MCD43A4 

• LSTday, LSTnight from 

MODIS MYD11A2 

• Tmean, Tmax from ERA5 

• PPT from CHIRPS 
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and target domains without considering the yield response in the target domain might invalidate 

the predictor training since the samples in the target domain might be mistakenly aligned to 

target samples with different yield levels. The SMPD model had comparable corn yield 

prediction in several states (i.e., Ohio and Wisconsin) but had poor performance in most cases. 

For example, SMPD performed poorly in high-yield states, such as Illinois and Iowa. This 

demonstrated that grouping all labeled samples into one source could increase the difficulty for 

the model to learn from data samples collected from highly heterogenous regions. Instead, 

MMPD outperformed SMPD and other models with better prediction in all cases. With MPD and 

multi-source strategy, MMPD could align target samples to the most relevant source and extract 

informative features for the yield prediction task. 

Table 5-4. Average evaluation results of RMSE (t/ha) and MARE in each target state in testing years 

2016-2019. 

Target #Counties DNN DANN M3SDA SMPD MMPD 

  RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE 

IL 98 1.30 8.77% 1.60 10.92% 1.66 11.31% 1.83 12.42% 1.25 8.40% 

IN 85 0.87 6.07% 0.91 6.54% 1.05 7.42% 1.08 8.02% 0.84 5.96% 

IA 99 1.26 8.46% 1.88 13.30% 1.99 13.57% 1.96 13.81% 1.20 8.01% 

KS 71 1.41 14.51% 1.59 16.30% 1.74 19.38% 1.70 17.95% 1.26 12.87% 

MI 59 1.14 10.34% 1.09 9.80% 1.22 10.66% 1.11 9.88% 1.06 9.63% 

MN 76 1.53 10.75% 1.63 11.43% 1.27 8.89% 1.67 12.23% 1.09 7.71% 

MO 70 1.51 13.23% 1.16 9.83% 1.23 10.98% 1.47 13.12% 1.11 9.70% 

NE 81 1.40 9.16% 1.48 10.34% 1.42 9.67% 1.98 14.11% 1.35 8.48% 

ND 43 1.20 12.94% 1.37 15.19% 2.05 25.92% 1.22 13.78% 1.11 12.16% 

OH 77 1.14 8.84% 1.08 8.61% 1.13 8.35% 1.12 8.48% 0.92 7.38% 

SD 47 1.49 12.41% 1.27 11.03% 1.39 14.14% 1.22 9.84% 1.10 9.04% 

WI 57 1.22 9.29% 1.08 8.14% 1.34 10.08% 1.04 7.81% 0.94 7.20% 

 

To evaluate whether the methods were statistically different on the reported MARE, a 

paired sample t-test was used (Mishra et al., 2019). The statistical tests between the evaluation 

results of MMPD and each comparison model were performed. A t-test is a statistical test that 

compares the means of two samples. In this experiment, we compared the means of MARE of 

each model in all testing years. Since each experiment was repeated five times in each state, 
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there were totally 60 pairs of samples in each t-test. As shown in Table 5-5, the accuracy 

improvement obtained by the proposed MMPD was statistically significant. 

Table 5-5. The paired sample t-test of the transfer experiments among U.S. States between the MARE of 

each comparison model and MMPD. 

Model t p-value 

MMPD vs DNN 17.379 0.000 

MMPD vs. DANN 21.640 0.000 

MMPD vs. MSDA 23.340 0.000 

MMPD vs SMPD 28.856 0.000 

 

Furthermore, we showed the density scatter plots for each model in four representative 

target states to compare the agreement between the reported and the predicted yields in the 

average of four testing years (Figure 5-6). The best agreement was again observed from the 

MMPD model. It is also observed that all models show top performance in Indiana. Specifically, 

the non-UDA model DNN illustrated the best prediction results in Indiana. This indicates that 

Indiana has the smallest domain shift, which has been further evidenced by the best performance 

among all states for almost all UAD models (except M3SDA). However, DNN performed poorly 

in South Dakota with obvious underestimations (Figure 5-6 (a3)). The reason is that South 

Dakota is located on the boundary of the corn belt and has a large domain shift with respect to 

other states. DANN and M3SDA relatively underperformed in predicting the yields in selected 

states with larger disagreement with the reported yields (Figure 5-6 (b)&(c)) since they merely 

matched feature distributions in source and target domains without considering target yield 

response. SMPD had better agreement than DANN and M3SDA in South Dakota and Wisconsin 

but had no obvious improvement in comparison with DNN (Figure 5-6). The MMPD model 

outperformed other models and had a better agreement in chosen target domains (Figure 5-6 (e)). 

Moreover, we noticed that all UDA models tended to underestimate corn yield in Iowa. Iowa is 
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the top corn-producing state in the U.S. with lots of high-yield counties. The UDA models’ 

prediction results indicate that the prior information or local training samples from the target 

domain may be still needed when large biases exist between different domains. Even though, as 

shown in Figure 5-6, MMPD is still the best-performing model in Iowa with the least 

underestimation. 

 

Figure 5-6. The density scatter plots of reported yields vs. predicted yields in 2016-2019 of (a) DNN, (b) 

DANN, (c) M3SDA, (d) SMPD, (e) MMPD in (1) IN, (2) IA, (3) SD, (4) WI. 

Finally, we presented the absolute error maps averaged over four testing years for each 

model, in which darker color represents a larger error. Still, the proposed MMPD model was 
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observed to have better spatial transferability than the other UDA models. In concrete, M3SDA 

and DANN were observed to have spatial clustering of large errors in the east of IA (Figure 5-7 

(b2)&(c2)) and central South Dakota (Figure 5-7 (c3)). Meanwhile, in Indiana (Figure 5-7 

(b1)&(c1)) and Wisconsin (Figure 5-7 (b4)&(c4)), M3SDA and DANN tended to make larger 

errors than the DNN model. SMPD had solved the problem of the spatial cluster of big errors but 

still had big prediction errors in Iowa and South Dakota (Figure 5-7 (d2)&(d3)). Comparatively, 

MMPD had better addressed the domain shift issue with smaller prediction errors in all selected 

target states. 
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Figure 5-7. The average absolute error maps in 2016-2019 for model (a) DNN, (b) DANN, (c) M3SDA, 

(d) SMPD, (e) MMPD in (1) Indiana, (2) Iowa, (3) South Dakota, (4) Wisconsin. 

5.4.2 Transfer experiments among U.S. Ecoregions 

In the second experiment, we evaluated MMPD via UDA among four eco-domains in the 

U.S. corn belt (Figure 5-4). The evaluation results of four-year average yield predictions of 

2016-2019 are given in Table 5-5 with the best performer highlighted in bold.  

Table 5-6. Average evaluation results of RMSE (t/ha) and MARE in each target eco-domain in testing 

years 2016-2019. 

Target #Counties DNN DANN M3SDA SMPD MMPD 
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As shown in Table 5-6, DNN performed poorly in the target eco-domain B, eco-domain 

C, and eco-domain D with RMSE over 1.30 t/ha due to the existence of domain shift. DANN 

slightly outperformed DNN in eco-domain A, eco-domain B, and eco-domain D due to the 

effects of UDA. However, it was observed that M3SDA again failed to effectively address the 

domain shift issue and performed poorly in all eco-domains. On the other hand, SMPD 

performed better than DANN in eco-domain C and D but had lower accuracy in eco-domain A 

and eco-domain B (Table 5-6). MMPD, however, improved the prediction accuracy and 

outperformed other models in eco-domain A, eco-domain C, and eco-domain D. However, both 

SMPD and MMPD had worse performance than DNN and DANN in eco-domain B. To evaluate 

whether the methods were statistically different on the reported MARE, a paired sample t-test 

was used. In this experiment, we compared the means of MARE of each model in all testing 

years. Since each experiment was repeated five times in each eco-domain in each year, there 

were totally 80 pairs of samples in each t-test (Table 5-7). Due to its comparatively poor 

performance in Ecoregion B, the MMPD didn’t perform significantly better than DNN or 

DANN. However, the results still demonstrated that the accuracy improvement obtained by the 

proposed MMPD was significantly better than M3SDA and SMPD. 

Table 5-7 The paired sample t-test of the transfer experiments among U.S. Ecoregions between the 

MARE of each comparison model and MMPD. 

Model t p-value 

MMPD vs DNN -0.297 0.767 

MMPD vs. DANN -2.710 0.007 

MMPD vs. M3SDA 20.007 0.000 

MMPD vs SMPD 15.009 0.000 

  RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE 

A 204 1.15 9.18% 1.04  7.84% 1.25 10.24% 1.10 8.69% 0.97 7.76% 

B 431 1.35 9.76% 1.30 9.11% 2.19 15.43% 2.16 15.39% 1.90 13.51% 

C 145 1.56 13.31% 1.56  14.53% 1.77 15.60% 1.53 13.12% 1.47 13.02% 

D 78 1.36 12.14% 1.32  11.22% 2.12 17.56% 1.32 10.43% 1.18 10.27% 
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Figure 5-8. The density scatter plots of reported yields vs. predicted yields in 2016-2019 of (a) DNN, (b) 

DANN, (c) M3SDA, (d) SMPD, (e) MMPD in (1) eco-domain A, (2) eco-domain B, (3) eco-domain C, 

and (4) eco-domain D. 

Similarly, Figure 5-8 illustrated the density scatter plots of reported yields vs. predicted 

yields in each target eco-domain in the four-year average of 2016-2019 for all prediction models. 

The proposed MMPD model was observed to have the best agreement in most target eco-

domains though its prediction is inferior to DNN and DANN for eco-domain B. It was further 

observed that the scatteredness of the predictions highly depended on the eco-domains as 

evidenced by the high compactness of eco-domain A and vs high scatteredness of eco-domain C 

and eco-domain D. This may indicate the homogeneity differences among different regions and 
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the need for further subdividing the domains for training and prediction.  

 

Figure 5-9. The average absolute error maps in 2016-2019 for model (a) DNN, (b) DANN, (c) M3SDA, 

(d) SMPD, (e) MMPD in (1) eco-domain A, (2) eco-domain B, (3) eco-domain C, and (4) eco-domain D. 

Finally, we presented the four-year average absolute error maps for each model (Figure 

5-9). Again, the proposed MMPD model had better spatial transferability than other models in 

most cases (Figure 5-9 (e)). However, it was observed that the overall prediction errors of 

MMPD were larger than DNN and DANN in eco-domain B (Figure 5-9 (a2), (b2), (d2), and 

(e2)), which were consistent with the results shown in Table 5-5. As shown in Figure 5-9, the 

UDA models M3SDA, SMPD, and MMPD all showed degraded performance in eco-domain B. 

It was noticed that the number of counties in eco-domain B significantly exceeds the number of 

counties in other eco-domains as shown in Table 5-5. This meant smaller training sets of three 



91 

 

these source domains were used as compared to the target domain B. Therefore, when 

conducting UDA to eco-domain B, each domain-specific yield predictor of MMPD was not 

sufficiently trained. This indicates that large source domains are required to guarantee the 

success of the proposed MMPD model. Even though, MMPD still outperformed SMPD by a 

large margin in eco-domain B since negative interference among different source samples was 

well handled by MMPD. 

5.4.3 Transfer experiments from the U.S. corn belt to Argentina 

The model performance was further tested for UDA from the U.S. corn belt to Argentina. 

A large domain shift exists between the U.S. corn belt and Argentina since they are in different 

hemispheres with different climates. The U.S. corn belt was chosen as the source since it has 

more labeled data samples for model training. Specifically, DNN was trained in the U.S. corn 

belt and evaluated in Argentina without UDA or TL. DANN and SMPD were trained using the 

whole U.S. corn belt as a single source domain. To train M3SDA and MMPD, counties in the 

U.S. corn belt were divided into three source domains based on the state-level average yield for 

multi-source UDA (Figure 5-3). The evaluation results of each model for 2016-2019 are reported 

in Table 5-6 with the best results highlighted in bold for each year. 

Table 5-8. Average evaluation results of RMSE (t/ha) and MARE in domain adaptation from the U.S. 

corn belt to Argentina in each testing year 2016-2019. 

Testing 

year 
#Counties DNN DANN M3SDA SMPD MMPD 

  RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE 

2016 122 1.87 18.86% 1.64 16.78% 1.92 19.82% 1.79 18.70% 1.41 15.12% 

2017 116 1.86 18.08% 1.79 17.81% 1.52 15.88% 1.66 16.30% 1.48 14.43% 

2018 113 2.01 27.08% 1.88 25.32% 1.71 22.47% 1.96 26.76% 1.60 21.00% 

2019 118 2.46 24.92% 2.26 21.94% 2.02 20.92% 2.21 22.63% 1.98 19.23% 

 

To evaluate whether the methods were statistically different on the reported MARE, a 

paired sample t-test was used. The statistical tests between the evaluation results of MMPD and 
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each comparison model were performed, and the results are shown in Table 5-9. In this 

experiment, we compared the means of MARE of each model in all testing years. Since each 

experiment was repeated five times in each year, there were totally 20 pairs of samples in each t-

test. The results demonstrated that the prediction accuracy obtained by the proposed MMPD was 

significantly better than the other comparison models in the transfer experiments from the U.S. corn belt 

to Argentina. 

Table 5-9. The paired sample t-test of the transfer experiments from the U.S. corn belt to Argentina 

between the MARE of each comparison model and MMPD. 

Model t p-value 

MMPD vs DNN 20.210 0.000 

MMPD vs. DANN 13.765 0.000 

MMPD vs. M3SDA 12.645 0.000 

MMPD vs SMPD 15.091 0.000 

 

Due to the big domain shift between the U.S. corn belt and Argentina, DNN performed 

poorly in all testing years, especially in 2018, when the corn harvest in Argentina was hit by the 

worst drought in half a century (“Buenos Aires Times | Corn to surpass soybean production this 

year, says Argentina,” 2019). By aligning the feature distributions in source and target domains, 

all UDA models showed different levels of prediction accuracy improvement as compared to the 

DNN model but had different stabilities. For example, in 2018, both DANN and M3SDA 

improved the prediction accuracy and reduced the RMSE by large margins compared to DNN. 

However, in 2017, DANN had barely improved its accuracy in comparison with DNN. Also, in 

2016, M3SDA had worse performance than DNN and made about 1.00% more MARE. SMPD 

was observed to outperform DNN in all testing years but underperformed DANN and M3SDA in 

some testing years. In comparison, the proposed MMPD outperformed DNN and all other UDA 

models in all testing years (Table 5-6). 
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Figure 5-10. The density scatter plots of reported yields vs. predicted yields in Argentina of (a) DNN, (b) 

DANN, (c) M3SDA, (d) SMPD, (e) MMPD in the testing year (1) 2016, (2) 2017, (3) 2018, (4) 2019. 

Fig 5-10 shows the density scatter plots of each model to demonstrate the agreement 

between the reported and predicted corn yields in each testing year. Again, the predicted yields 

by DNN were in poor agreement with the reported yields in most testing years due to the domain 

shift. As shown in Figure 5-10, different models have different levels of prediction bias in 

different years. In particular, DNN significantly underestimated corn yield in 2017 and 2019 

(Figure 5-10 (a2)-(a4)) while corn yield was significantly overestimated by DANN in 2017, 

M3SDA in 2016, 2018, and 2019, SMPD in 2016, 2018, and 2019. However, MMPD further 

improved the prediction accuracy and achieved the best agreement in all four testing years with 

the least estimation bias (Figure 5-10 (e1)-(e4)). 
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Figure 5-11. The average absolute error maps in Argentina of model (a) DNN, (b) DANN, (c) M3SDA, 

(d) SMPD, (e) MMPD in the testing year (1) 2016, (2) 2017, (3) 2018, (4) 2019. 

Finally, Figure 5-11 illustrates the corresponding absolute error maps for all models in 

each testing year. It was observed that DNN constantly made large errors across Argentina, 

especially in provinces Santiago del Estero (SE), Santa Fe (SF), and Buenos Aires (BA). DANN 

had reduced errors in SF and BA in 2018 (Figure 5-11 (b3)) but no obvious improvement was 

observed in other testing years. Similarly, the performance of M3SDA was not stable. For 

example, in comparison with DNN, M3SDA had fewer errors in SF in 2018 (Figure 5-11 (c3)) 

but had more errors in the same region in 2017 and 2019 (Figure 5-11 (c2)&(c4)). The SMPD 

model had a decent performance in BA but performed poorly in SE (Figure 5-11 (d)). Again, the 

proposed MMPD model outperformed the other models with obvious improvements in each 
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testing year. For example, MMPD constantly reduced errors in BA and improved yield 

prediction in southern SE and SF (Figure 5-11 (e)). Also, MMPD accurately estimated the corn 

yields in SF with all absolute errors less than 1.50 t/ha in 2018 (Figure 5-11 (e3)). Furthermore, it 

was noted that SE and northern SF constantly had large errors. These regions have a very low 

corn yield with an average yield below 4.00 t/ha. As a result, it was challenging to align these 

data samples to the source domains since most U.S. counties have a corn yield larger than 6.00 

t/ha. Therefore, all UDA models made large prediction errors in these regions. 

5.4.4 t-SNE Visualization of Feature Distribution 

To provide a visual insight into the effects of UDA by each model, we visualized the 

feature distributions of the input features as well as the extracted features by each UDA model 

using the t-distributed Stochastic Embedding (t-SNE) algorithm (Maaten and Hinton, 2008). As 

shown in Figure 5-12 - 5-14, one example for each UDA scenario in the testing year 2019 was 

presented since similar results were obtained in other cases or other testing years. 

 

Figure 5-12. The t-SNE visualization of (a) input features, and extracted features from (b) DANN, (c) 

M3SDA, (d) SMPD, and (e) MMPD in three source domains (i.e., U.S. low-yield domain, mid-yield 

domain, high-yield domain) and the target domain (i.e., Iowa) in the testing year 2019.  

 

Figure 5-13. The t-SNE visualization of (a) input features, and extracted features from (b) DANN, (c) 

M3SDA, (d) SMPD, and (e) MMPD in three source domains (i.e., eco-domain A-C) and the target domain 

(i.e., eco-domain D) in the testing year 2019.  
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Figure 5-14. The t-SNE visualization of (a) input features, and extracted features from (b) DANN, (c) 

M3SDA, (d) SMPD, and (e) MMPD in three source domains (i.e., U.S. low-yield domain, mid-yield 

domain, high-yield domain) and the target domain (i.e., Argentina) in the testing year 2019. 

The goal of UDA is to blend features from different domains in a uniform distribution in 

the feature space. For given input features, different t-SNE visualization results were illustrated 

in Figure 5-12 – 5-14 for different source and target domains. For example, as shown in Figure 

5-14 (a), the t-SNE transformed features of the domains of the U.S. corn belt and Argentina 

clearly illustrated domain shift between source and target domains as well as among different 

source domains, as those domain features were separately clustered. After domain adaptation 

with different UDA methods, the domain shift has been reduced to different degrees as shown in 

Figure 5-12 – 5-14 (b)-(e). 

Specifically, DANN could well merge the source and target samples. However, since 

DANN addresses the domain shift by directly matching feature distributions in source and target 

domains, the wrong alignment would happen. For example, when Iowa was the target domain, 

quite a few target samples were aligned to the mid-yield domain by DANN although Iowa is a 

high-yield state (Figure 5-12 (b)). Similarly, M3SDA tries to reduce the domain discrepancy by 

matching moments across all pairs of source and target domains. Therefore, it was observed that 

feature distributions in the target domain were aligned closer to those in source domains by 

M3SDA, but individual target samples were not uniformly mixed with source samples. For 

example, when eco-domain D was the target domain, M3SDA aligned target samples closer to 

the source samples but failed to dismantle the cluster of target samples (Figure 5-13 (c)). This 
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explains why M3SDA performed poorly in most cases. SMPD better aligned the target domain to 

source domains while there were still some extracted target feature samples located far from the 

support of source domains (Figure 5-14 (d)). For example, when Argentina was the target 

domain, a cluster of target samples extracted by SMPD was observed to be outside the support of 

either of the source domain. Moreover, for single-source UDA methods DANN and SMPD, it 

was noted that they tended to merge the source and target samples to a narrow space (Figure 5-

12 – 5-14 (b)&(d)). It indicated that samples from different sources have also been tightly 

aligned by DANN and SMPD, which could cause negative interference. On the other hand, the t-

SNE transformed features of MMPD have shown the best adaptation patterns (Figure 5-12 – 5-

14 (e)). Through maximum predictor discrepancy and multi-source UDA, MMPD aligned target 

samples to the most similar source domain by extracting domain-invariant and task-informative 

features. For example, as shown in Figure 5-12 (e), target samples from Iowa have been mostly 

aligned with the high-yield domain since counties in Iowa mostly have high corn yields. 

Similarly, when Argentina was the target domain, most target samples have been matched to the 

low-yield and mid-yield domains (Figure 5-14 (e)) in the U.S. since the corn yields in Argentina 

are mostly located in the range. 

5.5 Summary 

In this study, we proposed a multi-source UDA method named MMPD for county-level 

corn yield prediction based on time-series RS imagery and weather variables (Ma et al., 2023; 

Ma and Zhang, 2021). The proposed MMPD model aims to reduce the domain shift between 

source and target domains and accurately predict corn yield in the target domain without using 

labeled data from the target domain. By using the MPD, MMPD was trained to align source and 

target domains by considering crop yield response in the target domain based on task-specific 
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regression models. Also, the multi-source UDA strategy was adopted in MMPD to avoid 

negative interference among source samples from heterogeneous regions. Experiments on three 

UDA scenarios in the U.S. corn belt and Argentina have been conducted to evaluate the model 

performance. It was observed that MMPD outperformed representative single-source and multi-

source UDA methods. Also, the t-SNE visualization analysis showed that MMPD not only 

reduced the domain shift between source and target domains but also matched the target samples 

to the most similar source domain. 

The main contributions of this work are summarized as follows: 

• A multi-source UDA method, i.e., MMPD, has been developed for corn yield 

prediction based on RS imagery and weather variables. 

• Instead of aligning feature distributions only, the MPD was used to align source and 

target domains by considering crop yield response in the target domain. 

• The strategy of multi-source UDA was adopted for the first time in the yield 

prediction tasks to avoid negative interference among labeled data samples from 

heterogeneous spatial regions and better leverage data from multiple source domains. 

• The proposed MMPD model outperformed commonly used supervised learning, 

single-source UDA, and multi-source UDA models with improved spatial 

transferability in different scenarios across the U.S. corn belt and Argentina for 

multiple testing years. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

Recently, ML and DL models have been explored for corn yield prediction. Despite the 

success, there are still two major limitations of existing DL-based crop yield prediction models. 

First, existing models mainly focus on predicting the crop yield without providing any 

information about the predictive uncertainty which is important for quantifying the confidence 

interval of the prediction. Second, data-driven ML and DL models require a large amount of data 

samples with labels (i.e., yield records) for model training and tend to have low spatial 

transferability due to domain shifts among different regions. In this dissertation, we tried to 

address these two major limitations through Bayesian inference and UDA. Specifically, the 

contributions of this dissertation are summarized as follows: 

• In Chapter 3, we tried to address the first challenge by introducing Bayesian inference 

into DL and proposed a BNN model for corn yield prediction and uncertainty 

estimation. The proposed BNN model could accurately predict county-level corn 

yield and outperforms other ML and DL models. Also, accurate corn yield prediction 

could be made by the proposed BNN model in August, which is about two months 

ahead of the harvest. Moreover, it has been proven that predictive uncertainty has a 

strong correlation with prediction error. It means that the predictive uncertainty can 

be used to quantify the quality of the prediction even without the ground truth yield 

records. Finally, the potential sources of predictive uncertainty have been analyzed. It 

has been found that observation noises and environmental stresses, such as heat stress 
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and water stress, could potentially increase the uncertainty in corn yield prediction 

(Ma et al., 2021a). 

• In Chapter 4, we tried to address the second challenge by using the UDA strategy. 

Two adversarial domain adaptation models were proposed for county-level corn yield 

prediction based on RS images and weather variables. The proposed ADANN and 

BDANN have been proven to have better spatial transferability across spatial regions 

and outperformed other supervised learning models and the original DANN in 

transfer experiments. The t-SNE visualization showed that ADANN and BDANN 

were able to effectively reduce the domain shift and well align the source domain and 

the target domain (Ma et al., 2021b; Ma and Zhang, 2022).  

• In Chapter 5, we further addressed the existing issue with current single-source UDA 

methods and proposed a multi-source UDA method, i.e., MMPD, for corn yield 

prediction based on RS and weather variables. Instead of aligning feature 

distributions only, the MPD was used to align source and target domains by 

considering crop yield response in the target domain. Also, the strategy of multi-

source UDA was adopted for the first time in the yield prediction tasks to avoid 

negative interference among labeled data samples from heterogeneous spatial regions 

and better leverage data from multiple source domains. The proposed MMPD model 

outperformed commonly used supervised learning, single-source UDA, and multi-

source UDA models with improved spatial transferability in different UDA scenarios 

across the U.S. corn belt and Argentina for multiple testing years. 

6.2 Future Work 

The future work can be focused on the following research directions: 
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• Multiple Instance Regression: In this dissertation, the RS images and weather 

variables were preprocessed by first masking out irrelevant pixels based on a cropland 

layer and then aggregating RS images and weather variables to the county level by 

calculating their mean values in each county. However, directly aggregating all pixels 

within each county would cause information loss. To fully utilize the detailed 

information in RS images, multiple instance regression (MIR) (Wagstaff et al., 2008) 

is a promising strategy. In the scenario of county-level crop yield prediction, instead 

of purely using the mean value of image pixels to represent the county, MIR 

considers each county as a bag, its crop yield as the bag label, and pixel-level 

observations within the county as instances. As a result, RS images are organized as 

bags of instances, with a single label (i.e., crop yield records) applied to each bag. 

With multiple instances in each bag, more detailed information has been kept and 

enabled the regressor to better associate the RS images with the crop yield. 

• Partial Domain Adaptation: Our current studies on UDA generally assume identical 

label space across different domains. This assumption can be invalid in scenarios 

such as crop yield prediction since the yield levels can be very different from region 

to region. As a result, a negative transfer could happen, and target samples can be 

mistakenly aligned to source samples with very different yields. To alleviates 

negative transfer caused by the mismatch of label spaces, partial domain adaptation 

(PDA) can be a promising strategy (Cao et al., 2018). Instead of matching the whole 

source domain and the target domain, PDA tries to down-weight the outlier source 

samples during model training. Therefore, source samples that are within the label 

space of the target samples will be given large weights during training while potential 



102 

 

outlier source samples will be given small weights. As a result, the negative transfer 

can be effectively alleviated while the positive transfer can be prompted. 

• Knowledge-guided Machine Learning: Fixed error patterns have been observed in 

certain areas of our research activities. For example, in both the supervised learning 

experiments and transfer experiments, models tend to underestimate the corn yield in 

Iowa. The reason is that Iowa is the top corn-producing state in the U.S. Since the 

training dataset is not uniformly distributed and has comparatively fewer high-yield 

samples, either supervised learning models or UDA models would biasedly 

underestimate the high-yield counties such as those from Iowa. To address this issue 

and avoid biased corn yield prediction, a promising way is to use knowledge-guided 

ML by introducing prior knowledge to ML. With prior knowledge such as the 

historical yield level in certain areas, the ML models can reduce potential biases in 

the prediction. 

• Explainable and Interpretable Transfer Learning: The explainability and 

interpretability of TL and UDA models is essential for understanding how they work 

and for identifying the factors that influence their transferability and performance. 

Also, with interpretable models, the input feature variables with high transferability 

can be identified, which will provide guidance for feature selection and model 

architectures. However, most of existing TL and UDA models in agriculture lack 

interpretability. Existing studies of TL in agriculture focus on training strategies and 

model performance. The lack of interpretability of TL models in agriculture can limit 

their usefulness and adaptation. Therefore, improving the interpretability of TL 
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models in agriculture is crucial, particularly in the context of climate change, to 

enable better utilization of these models in tackling unforeseen issues. 
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