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ABSTRACT

As the world’s leading corn producer, the United States supplies more than 30% of the
global corn production. Accurate and timely estimation of corn yield is therefore essential for
commaodity trading and global food security. Recently, machine learning (ML) and deep learning
(DL) models have been explored for corn yield prediction. Despite the success, there are still two
major limitations of existing ML-based crop yield prediction models. First, most existing models
mainly focus on predicting the crop yield without providing any information about the
uncertainty which is important to provide quantified confidence interval of the prediction to
users for their knowledgeable decision makings. Second, data-driven DL models require a large
amount of reference data samples (i.e., yield records) for model training and tend to have low
spatial transferability due to domain shifts between different regions. In this dissertation, we
focused on addressing these two major limitations using Bayesian learning and unsupervised

domain adaptation (UDA) for corn yield prediction.

Specifically, to address the first limitation, this dissertation proposed Bayesian neural
networks (BNN) for corn yield prediction and uncertainty analysis. By applying Bayesian
inference, the proposed BNN model can provide not only accurate yield prediction but also the
corresponding predictive uncertainty. Feature variables were collected from multiple data
sources, including remote sensing (RS) imagery, weather variables, soil properties, and historical
average yield. Using preceding years since 2001 for model training, the developed BNN model
achieved an average coefficient of determination (R?) of 0.77 for late-season prediction across
the U.S. corn belt in testing years 2010-2019 and outperformed five other state-of-the-art ML
models. Evaluation results of in-season yield prediction showed that the BNN model achieved

the optimal prediction results by the middle of August, which is about two months before the



viii
harvest. We also assessed the predictive uncertainty and found that more than 84% of the
observed yield records were successfully enveloped in the 95% confidence interval of the
predictive yield distribution. Uncertainties in yield prediction were mainly induced by the

observation noise and related to the inter-annual and seasonal variabilities of environmental

stress such as heat stress and water stress.

To address the second limitation, this dissertation utilized the UDA strategy to reduce the
domain shift between the source domain and the target domain with the aim of accurately
predicting corn yield in the target domain without using labeled data from the target domain. We
first proposed two single-source UDA models for county-level corn yield prediction based on RS
images and weather variables. The proposed adaptive domain adversarial neural network
(ADANN) and Bayesian domain adversarial neural network (BDANN) have been proven to have
better spatial transferability and outperformed other supervised learning models and DANN in
transfer experiments across two ecoregions in the U.S. corn belt. Furthermore, we proposed a
multi-source UDA method named multi-source maximum predictor discrepancy (MMPD) to
address the remaining issues of single-source domain adaptation methods. First, the multi-source
UDA strategy was adopted in MMPD to avoid negative interference among source samples from
heterogeneous regions. Also, by using the maximum predictor discrepancy (MPD), MMPD was
trained to align source and target domains by considering crop yield response in the target
domain based on task-specific regression models. Experiments on three UDA scenarios in the
U.S. corn belt and Argentina have been conducted to evaluate the model performance. It was
observed that MMPD outperformed representative single-source and multi-source UDA

methods.



In summary, this dissertation introduced Bayesian inference and UDA to county-level
corn yield prediction based on RS and weather variables. Novel solutions have been provided for
quantifying predictive uncertainty in crop yield prediction and improving spatial transferability
for deep learning-based crop yield prediction models. This dissertation provides a robust
framework for the in-season prediction of crop yield and highlights the need for a deeper
understanding of the impact of environmental stress on agricultural productivity and crop yield.
Moreover, this dissertation applied the UDA for crop yield prediction and demonstrated the
effectiveness of adversarial learning for improving the transferability of DL models on crop yield

prediction.
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CHAPTER 1 INTRODUCTION

1.1Crop Yield Prediction

With an increasing world population, it is projected that the world needs to feed 9.0
billion people by 2050 (Godfray, et al., 2010). Ending hunger and improving food security are
among the prime sustainable development goals of the United Nations (Lu et al., 2015). As the
world’s largest corn producer and exporter, the U.S. harvested 366.6 million metric tons of corn
and supplied over 30% of global corn production (Li et al., 2019; USDA, 2020a). Accurate and
timely estimation of corn yield in the U.S. is therefore of great importance for farming resource
management, food security monitoring, and market planning (Jiang et al., 2019; Johnson, 2014).
Specifically, the accurate estimate of yields allows for better understanding of the food supply
which in turn helps the demand side plan to better utilize the finite crop resources (Liu et al.,
2021). Moreover, under the pressures of global warming and climate extremes (Crane-Droesch,
2018; Lobell et al., 2013, 2009), corn production in the U.S. has experienced substantial loss
with increasing inter-year variability (Lobell et al., 2014; Sibley et al., 2014; USDA, 2020a).
Seasonal estimation of large-scale corn yield can facilitate better assessments of its response to
environmental stresses (Guan et al., 2017), and thus provide reliable information for adaptations
in cropping systems for sustainable agriculture (Kang et al., 2020; Wang et al., 2018). Overall,
accurate predictions of crop yield for corn and soybean in the U.S. are critical for ensuring food

security, economic stability, and sustainable agricultural practices in the country.

There are several publicly available corn yield predictions in the U.S. For example, the
United States Department of Agriculture (USDA) National Agricultural Statistics Service

(NASS) publishes crop progress and yield predictions of major staple crops for the U.S. at



monthly schedules before harvest. For example, corn progress reports are published from May to
November. However, these publicly available predictions are mainly at the national and/or at the
state level, which cannot meet the need for precision agriculture and knowledgeable decision
makings at local (county) level. Also, USDA crop yield prediction is derived based on the
nationwide agricultural survey and monthly field surveys during the growing season, which are
costly and labor-intensive. Moreover, USDA NASS reports annual county-level yield statistics
(Figure 1-1), which is based on a large-scale survey that is conducted after the growing season.
The annual county-level yield statistics report is not available to the public until February of the
next year. As a result, the applications and decision-makers that require near real-time in-season
yield predictions (e.g., to assess the impact of ad hoc disaster events on crop yield loss), become

very difficult.

Corn for Grain 2019
Yield Per Harvested Acre by County
for Selected States

Figure 1-1. Corn yield in 2019 by county published by USDA NASS.

To provide in-season corn yield prediction, many vyield prediction methods have been
developed. They can be mainly categorized into two types, including physical simulation models
and statistical machine learning (ML) models (Archontoulis et al., 2020; Feng et al., 2020;
Maimaitijiang et al., 2020). Physical crop models are developed according to the physiological

characteristics of crops and estimate yield by simulating the underlying crop and environmental



processes, such as crop growth, nutrient cycling, soil-plant dynamics, and water balance
(Archontoulis et al., 2020; Liu et al., 2022; Zhang et al., 2019). Representative crop models
include the CROPGRO-soybean model (Jagtap and Jones, 2002), CERES-Maize model (Hodges
et al., 1987), and DSSAT-CROPGRO-Perennial Forage model (Malik et al., 2018). Although
these models can well explain and estimate crop productivity based on biophysical processes,
extensive locally sensed data related to both biotic and abiotic factors are required for model
calibration (Cai et al., 2017; Kang and Ozdogan, 2019), limiting their applicability in large-scale

yield modeling (Sakamoto et al., 2013; Zhang et al., 2019).

Statistical ML models, instead of simulating biophysical processes, attempt to perform
yield estimation by establishing empirical relationships between driving factors of crop vyield
with historical yield records (Sun et al., 2020; Zhou et al., 2022). Therefore, they have the
advantage of predicting crop yield with no need for explicit programming or knowledge of
physiological mechanisms on individual crops (Wang et al., 2020; Zhang et al., 2019). Also, the
advancement of satellite remote sensing (RS) technologies has enabled large-scale agricultural
land monitoring with high spatial and temporal resolutions (Chen et al., 2022; Schwalbert et al.,
2020). RS of crop canopies offers insights into plant canopy structure and crop health, as
variations in canopy density and discoloration associated with plant nutrient deficiency and other
stressors are reflected in the measured spectra (Campolo et al., 2022). For example, the satellite-
derived Normalized Difference Vegetation Index (NDVI) can quantify vegetation by measuring
the normalized difference between reflectance in near-infrared and red spectral bands (Figure 1-
2). The reason is that vegetation can strongly reflects near-infrared lights while mostly absorbing
red lights (Feng et al., 2020). Based on the vegetation, the growing states of crops can be

assessed, and their yield can be further predicted.



Figure 1-2. A map of NDVI, which can quantify vegetation on the land. The greener, the higher the
vegetation is.

As such, several ML models have been explored for crop yield prediction using satellite
images at regional scales. For instance, Mkhabela et al. (2011) built linear regression models
with the 10-day composite Normalized Difference Vegetation Index (NDVI) derived from
Moderate Resolution Imaging Spectroradiometer (MODIS) to predict yield for multiple crops on
the Canada Prairies. Bolton and Friedl (2013) derived multiple vegetation indices (VIs) from
MODIS data, and linear regression models were then developed based on the extracted Vs for
soybean and corn yield prediction across the U.S. corn belt. To assess yield using data from more
than one source, non-linear ML models have been established to capture the complex
relationships between yield with multimodal features. For example, Johnson (2014) built tree-
based regression models to assess sequential remotely sensed VIs and weather variables on
soybean and corn yield prediction over the U.S. corn belt and demonstrated the feasibility of
using multi-source data for crop production estimation. Kamir et al. (2020) built a support vector
regression (SVR) model with time-series MODIS satellite images and weather records for wheat

yield prediction, and the model explained 73% of the yield variability across the Australian



wheat belt. Furthermore, Wang et al. (2020) compared the performances between two linear
regression models and four non-linear ML models in predicting winter wheat yield in the U.S.,
and the results showed that the non-linear ML models significantly outperformed the linear ones.
Similarly, Chen et al. (2021) integrated satellite imagery, climate data, and meteorological
indices for corn yield prediction at the city level in China using four ML approaches, including
decision tree-based Cubist, random forest (RF), SVR, and extreme gradient boosting (XGBoost).
Chen et al. (2022) proposed a spatial disaggregation method based on several ML methods for

corn yield prediction in China at the municipal level.

1.2Supervised Deep Learning

With the development of artificial neural networks (NN) and the improvement of
computing power, deep learning (DL), as a branch of ML, has made impressive progresses in a
variety of tasks, including image recognition, autonomous driving, speech recognition, machine
translation, and medical diagnosis (Goodfellow et al., 2016). The core idea of DL is to simulate
neurons in human brains through fully-connected layers (LeCun et al., 2015). Currently, most
DL models are trained through supervised learning, which learns a function to associate the input
(i.e., an image or feature vectors) with the label (i.e., response variables) (Russell and Norvig,
2002). Specifically, during training, the input is first fed into the NN, and a prediction is made.
After that, a training loss can be calculated based on the prediction and the ground-truth label.
The trainable weights in the NN are then updated to minimize the loss during backpropagation.
Before the NN is well trained, the training process is normally repeated several times until

convergence.

Recently, several supervised DL models have been explored for crop yield prediction

(Kang et al., 2020; Ma et al., 2019; You et al., 2017; Yuan et al., 2020). For example, a fully



connected multi-layer perceptron (MLP) was developed by Khaki and Wang (2019) to predict
the yield of maize hybrids at field scales in the U.S using soil and weather variables, achieving a
root mean square error (RMSE) of 0.86 tons per hectare (t/ha). Besides fully connected MLP,
some studies also use more advanced model structures for crop yield prediction. For instance,
using time-series MODIS data, You et al. (2017) applied the Gaussian process on two DL
architectures, Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN),
for county-level soybean yield prediction. Their models outperformed USDA prediction by 15%
on average. Jiang et al. (2019) built a phenology-based LSTM model for rain-fed corn yield
prediction at the county level in nine U.S. Midwestern states. Using the time-series wide
dynamic ranged vegetation index (WDRVI) and meteorological variables as input features, an
RMSE of 0.87 mg/ha was achieved. Schwalbert et al. (2020) developed an LSTM model for
municipality-level soybean yield prediction in Brazil using satellite imagery and climate data and
achieved a mean absolute error (MAE) of 0.24 mg/ha. Kang et al. (2020) predicted county-level
maize yield in twelve Midwestern states in the U.S. using several ML and DL approaches,

including SVR, XGBoost, RF, LSTM, and CNN with an average RMSE of 1.00 t/ha.

Despite the success, existing models mainly focus on predicting the yield without
providing any uncertainty information that is important for quantifying the confidence interval of
the prediction, which is very useful for practical applications. Also, the plain NN with point
estimations on weights typically require an abundance of training data for model training and
thus are subject to overfitting. These two issues raise our first research question (RQ-1): How to
quantify predictive uncertainty and increase robustness for supervised deep learning

models on corn yield prediction?



1.3Unsupervised Domain Adaptation

DL models are data-driven, which means that a large number of labeled training samples
(e.g., RS images together with the ground-collecting crop yield records) are required for model
training. Therefore, for regions without historical yield records, it is impossible to train a ML
model from scratch. Also, most supervised DL models are location-specific or domain-specific.
Due to the phenomenon known as domain shift, i.e., data distributions are different in the
training region and the testing region, supervised DL models trained within one domain tend to
experience a significant decrease in performance when directly applied to a new domain (Kouw
and Loog, 2018). For example, RS images in different regions can have different statistical
characteristics due to spatial heterogeneity in meteorological conditions, soil properties, and
farming practices (Figure 1-3). Therefore, ML models established between reference (reported)
yields and RS measurements within a specific spatial domain (i.e., source domain) often lose

their validity when directly applied to a new spatial domain (i.e., target domain).
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Figure 1-3. Distributions of mean county-level NDVI (left) and mean air temperature (right) during
August in Indiana (IN) and South Dakota (SD).

To improve transferability for ML and DL models, transfer learning (TL), a ML
technique that transfers knowledge learned from one domain to the other, has become a viable
solution (Zhuang et al., 2019). To perform TL for deep NN, a widely used strategy is to first pre-

train a NN with labeled samples from the source domain and then fine-tune the weights of the



pre-trained NN using some labeled target samples. For example, Wang et al. (2018) adapted a
deep CNN model trained with data from Argentina to predict province-level soybean yields in
Brazil by fine-tuning the pre-trained model with labeled data from Brazil. Russello (2018)
explored TL between two ecoregions in the U.S. for county-level soybean yield estimation by
training a CNN model with labeled data from one ecoregion and fine-tuning it in another region.
When an insufficient number of labeled data samples are available in the target domain, there
would be concerns about overfitting if fine-tuning the entire network (Mehdipour Ghazi et al.,
2017). Therefore, some studies freeze the weights of earlier layers of a pre-trained DL
architecture and customize the model to a given task by fine-tuning the last few layers. This
framework works based on the idea that earlier layers of a NN learn generic features that can be
used in relevant domains (Yosinski et al., 2014). For example, Barbedo (2018) fine-tuned the last
few layers of a pre-trained GoogleNet with a plant disease database and adapted the network for
plant disease classification. Abdalla et al (2019) fine-tuned a well-trained VGG16 with a small
oilseed rape images dataset to classify plants in fields with high-density weeds. Similarly, Chen
et al. (2020) freeze the learned weights in the top layers of a well-trained VGG19 and fine-tuned
the last three layers with crop disease images to customize the trained model for disease

classification.

Despite several successful cases (Barbedo, 2018; Wang et al., 2018), a certain number of
labeled data from the target domain is still needed to fine-tune the pre-trained networks. Since
collecting crop yield data can be financially expensive, labor-intensive, and time-consuming,
many agricultural production areas may lack reliable ground reference yield data for either
directly training a ML model or fine-tuning supervised TL models. To improve transferability for

ML models without relying on labeled data samples from the target domain, unsupervised



domain adaptation (UDA) has been proposed. The core idea of UDA is to reduce the domain
shift between the source domain and the target domain by extracting cross-domain features
(Figure 1-4). With the extracted cross-domain features, a cross-domain predictor can be trained

and make accurate yield predictions in the target domain.
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Figure 1-4. A conceptual example of unsupervised domain adaptation (UDA).

Widely used UDA methods can be categorized into two types, including discrepancy-
based methods and adversarial-based methods. Discrepancy-based methods try to align features
from source and target domains by minimizing the distance between feature distributions (Long
et al., 2015; Luo et al., 2017). Adversarial-based methods address the domain shift by learning
good representations that are informative for the main learning task and indiscriminative between

source and target domains (Ganin et al., 2016).

Existing UDA methods mainly focus on the single-source scenario, i.e., labeled data
samples are assumed to be from one source domain. Single-source UDA algorithms commonly
employ a conjugated architecture with two objectives (Zhao et al., 2020). One objective is to
learn a task model based on the labeled source samples by minimizing the corresponding task
losses, such as mean square error loss (MSE) for regression (Feng et al., 2021) and cross-entropy
loss for classification (Wang et al., 2021). The other objective is to reduce the domain shift and

align the source domain and the target domain. One of the most representative single-source
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UDA methods is the domain adversarial neural networks (DANN) (Ganin et al., 2017), which
employs an adversarial objective with a domain discriminator to extract domain-invariant
features from the source domain and the target domain. However, to our best knowledge, there
are no UDA studies conducted for yield prediction which is a regression task that differs from
classification applications. This raises our second research question (RQ-2): How does the
strategy of adversarial learning can be leveraged to conduct unsupervised domain

adaptation on corn yield prediction based on remote sensing and weather observations?

Although single-source UDA methods have achieved satisfactory results in some real-
world applications, the assumption of a single source domain can be invalid in other scenarios
when labeled data are from different domains (Zhao et al., 2020). Recently, there has been
growing interest in multi-source UDA. Recent multi-source UDA models are mostly developed
by extending existing single-source UDA strategies. For example, Peng et al. (2019) proposed a
multi-source UDA model named Moment Matching for Multi-Source Domain Adaptation
(M3SDA) for image classification. M®SDA reduces source-target divergence and inter-source
divergence by minimizing the moment-related distance between each domain. Zhao et al. (2018)
extended the DANN model and proposed multi-source domain adversarial networks (MDAN) by
designing source-specific domain classifiers to realize multi-source UDA. Xu et al. (2018)
proposed a deep cocktail network that uses multi-way adversarial learning to minimize the
discrepancy between the target and source domains. Zhao et al. (Zhao et al., 2019) designed
separate feature extractors for each source and thus could learn more discriminative target
representations in an adversarial manner. Tasar et al. (2020) proposed a StandardGAN which
standardizes multiple source domains and target domains for satellite image segmentation. Wang

et al. (2022) designed domain-specific feature extractors and proposed a multi-source UDA for
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unsupervised crop type mapping based on Sentine-2 images. Currently, there are no multi-source
UDA studies for agricultural applications such as crop yield prediction. It raises the third
research question (RQ-3): How does the strategy of multi-source unsupervised domain
adaptation can be leveraged to conduct unsupervised domain adaptation on corn yield

prediction based on RS and weather observations?

1.4Research Activities

1.4.1 Yield Prediction and Uncertainty Analysis

As mentioned before, existing supervised learning models are unable to provide
uncertainty information and are prone to overfitting. These two issues raise RQ-1: How to
qguantify predictive uncertainty and increase robustness for supervised deep learning
models on corn yield prediction? Bayesian neural networks (BNN), which introduce Bayesian
inference over the weights in the neural networks (Blundell et al.,, 2015) have provided
opportunities to address these issues. Specifically, through Bayesian inference, BNN estimates
the predictive distribution rather than a single value. Based on that, the uncertainty interpretation
of the target value can be obtained through the spread of the distribution. Furthermore, by adding
the prior data distribution in the model development, BNN is less prone to overfitting due to the

prior regularization (Gal et al., 2017; LeCun et al., 2015; Nasrabadi, 2007).

To answer RQ-1, this dissertation proposes research activity 1 (RA-1): Bayesian neural
networks for corn yield prediction and uncertainty analysis. By applying Bayesian inference,
the proposed BNN model can provide not only accurate yield estimation but also the
corresponding predictive uncertainty. Specifically, informative variables including time-series
Vs, sequential weather variables, and soil properties, were first extracted from multiple data

sources and aggregated to the county level. A BNN yield prediction model was then developed
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based on the extracted features and observed yield records. The proposed model was evaluated in
the U.S. corn belt and compared with several state-of-art ML and DL models. Finally, the spatial
patterns of the predictive uncertainty were analyzed and the potential driving factors for such

patterns were investigated.

1.4.2 Single-source UDA for Corn Yield Prediction

The proposed BNN vyield prediction model requires labeled data samples for training and
may have low spatial transferability. The success of DANN in applications such as image
classification raises the second research question (RQ-2): How does the strategy of adversarial
learning can be leveraged to conduct domain adaptation on corn yield prediction based on
remote sensing and weather variables? The DANN consists of three parts, including a feature
extractor, a domain classifier, and a label predictor. During the training process, on the one hand,
the feature extractor is trained collaboratively with the label predictor to minimize the prediction
loss with the aim of extracting task-informative features. On the other hand, the feature extractor
is trained adversarially against the domain classifier to maximize the domain loss with the aim of
extracting domain-invariant features. As a result, the feature extractor will be updated towards
extracting task-informative and domain-invariant features to help alleviate the negative impact of

domain shift and make accurate predictions across two domains.

Despite success in classification applications, DANN cannot be directly applied for
regression tasks such as crop yield prediction. This is mainly because the predefined weighting
parameter in the original DANN model, which controls the trade-off between the prediction loss
and the domain loss, needs to be adjusted according to the yield magnitudes which can change
dramatically in different agricultural production regions as well as in different harvest years.

Also, since the training set for county-level corn yield prediction is comparatively small,
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overfitting may happen during the training of DANN. To address these issues, the dissertation
proposes research activity 2 (RA-2): Adversarial domain adaptation on corn yield prediction,
in which two variants of DANN, i.e., Adaptive DANN (ADANN) and Bayesian DANN
(BDANN), are developed for corn yield prediction at the county level based on remote sensing
images and weather variables. The ADANN model was designed to adaptively adjust the
weighting parameter between the yield prediction loss and the domain classification loss. Based
on ADANN, we further applied Bayesian inference to model training and designed the BDANN
model. Both models were evaluated in two ecoregions of the U.S. corn belt and compared with

other widely used ML and DL models.

1.4.3 Multi-source UDA for Corn Yield Prediction

Although single-source UDA is a promising solution to improve transferability for DL
models with no need for reference yield records in the target domain, there are still two major
bottlenecks in applying UDA methods to crop yield prediction based on remote sensing images
and weather variables. First, most current UDA methods are designed for single-source UDA
with the assumption that all labeled samples are from the same domain. In practice, labeled
training samples may be collected from multiple source domains with different feature
distributions (Zhao et al., 2020). Since domain shifts exist not only between source and target but
also among different source domains, single-source UDA methods could have a poor
performance when samples from different sources interfere with each other (Riemer et al., 2019).
Second, current UDA methods mostly align distributions of source and target without
considering specific tasks. For remote sensing images and weather variables with significant

domain shifts, directly aligning feature distributions may project the data into ambiguous feature



14

spaces with no meaningful information. As a result, misalignment would happen and

misprediction would still be made.

Recently, there have been growing interests in multi-source UDA to address the
aforementioned issues (Lin et al., 2020; Zuo et al., 2021). However, there are no multi-source
UDA studies for agricultural applications such as crop yield prediction. This raises our third
research question (RQ-3): How does the strategy of multiple unsupervised domain
adaptation can be leveraged to conduct domain adaptation on corn yield prediction based

on remote sensing and weather observations?

To answer RQ-3, this dissertation proposed research activity 3 (RA-3): Multi-source
Maximum Predictor Discrepancy (MMPD) for unsupervised domain adaptation on corn
yield prediction. We used the strategy of multi-source UDA to group labeled data samples into
multiple sources and aligned the target domain to each source domain separately. Also, the idea
of maximum predictor discrepancy (MPD) was used to conduct UDA by considering specific
tasks via pairs of domain-specific yield predictors. As such, data samples from different regions
were grouped into multiple sources for multi-source domain adaptation. Then, by using MPD,
the MMPD model tried to align the distributions of source and target domains by considering
task-specific regression models. The proposed MMPD model was evaluated in three scenarios in

the U.S. corn belt and Argentina and compared with other state-of-art UDA methods.

1.5 Organization of the Dissertation

There are five chapters in this dissertation. Chapter 1 introduces the background of this
dissertation and raises the research questions followed by the investigated RAs. Chapter 2

presents the study areas and the data sources for this study. Chapter 3 proposes the BNN model
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for county-level corn yield prediction and uncertainty analysis. Chapter 4 develops ADANN and
BDANN for UDA on corn yield prediction at the county level. Chapter 5 proposes the MMPD
model for multi-source UDA on corn yield prediction at the county level. Chapter 6 concludes
the major contributions and limitations of the dissertation and discusses potential future work. A
list of peer-reviewed publications and manuscripts in preparation corresponding to major

chapters of the dissertation are summarized as follows.
Chapter 3:

e Ma, Y., Zhang, Z., Kang, Y. and Ozdogan, M., 2021a. Corn yield prediction and
uncertainty analysis based on remotely sensed variables using a Bayesian neural

network approach. Remote Sensing of Environment, 259, p.112408.
Chapter 4:

e Ma, Y., Zhang, Z., Yang, H.L. and Yang, Z., 2021b. An adaptive adversarial domain
adaptation approach for corn yield prediction. Computers and Electronics in
Agriculture, 187, p.106314.

e Ma, Y. and Zhang, Z., 2022. A Bayesian Domain Adversarial Neural Network for

Corn Yield Prediction. IEEE Geoscience and Remote Sensing Letters, 19, pp 1-5.
Chapter 5:

e Ma, Y., Zhang, Z, 2022. Multi-source Unsupervised Domain Adaptation on Corn
Yield Prediction. AAAI-22 Al for Agriculture and Food Systems (AIAFS) Workshop.
e Ma, Y. Zhang, Z., 2022. Maximum Predictor Discrepancy for Multi-source

Unsupervised Domain Adaptation on Corn Yield Prediction (Manuscript Submitted).
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CHAPTER 2 MATERIALS

The U.S. corn belt and Argentina are both the top corn-producing regions in the world.
They were selected as the study areas due to the availability of sufficient yield records for model
development and validation. Feature variables were collected from multiple data sources and

paired with the corresponding county-level yield records for model development.

2.1Study Areas

The study areas include the U.S. corn belt and Argentina. The U.S. corn belt is in the
Midwestern United States (Figure 2-1). This area is geographically flat and relatively flat with
fertile soils (Johnson, 2014). Therefore, It has become the main agricultural region in the U.S.
since the year 1850 and accounts for over 75% of the annual corn production in the U.S. (USDA,
2020b). County-level historical yield records in the U.S. corn belt from 2001 to 2019 were
collected from the USDA National Agricultural Statistics Service (NASS) Quick Stats Database,

a platform for accessing U.S. agricultural data (USDA, 2020b).

-
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Figure 2-1. The county-level average yield of corn in the U.S. corn belt over the years 2008-20109.

Argentina is also a significant producer and exporter of corn. Being in the Southern

Hemisphere, seasons in Argentina are the reverse of those of the U.S. Cornfields in Argentina
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mostly locate in several provinces (Figure 2-2), including Buenos Aire (BA), Santa Fe (SF), and
Santiago del Estero (SE). This region has plenty of rainfall and thus has a favorable climate for
rainfed crop production (Global Yield Gap Atlas, 2021). Historical yield records at the county
level in Argentina corn production areas from 2006 to 2019 were collected from the online
platform by the Argentina Ministry of Agriculture (Argentine Undersecretary of Agriculture,
2020), which provides historical planted acreage, harvested acreage, production, and yield for

main crops.

Figure 2-2. The county-level average yield of corn in Argentina over the years 2008-2019.
2.2 Satellite Imagery

Since the VIs have been widely used for yield prediction (Bolton and Friedl, 2013,
Johnson, 2014), they were considered in this study and extracted from the daily MODIS

MCD43A4 product (Table 2.1) which provides visible, near-infrared (NIR), and shortwave
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infrared (SWIR) reflectance data at 500-m spatial resolution (Schaaf and Wang, 2015). The
MODIS MCD43A4 product is generated daily using 16 days of Terra and Aqua MODIS data

(Wang et al., 2020).

Table 2-1. Spectral band information of the MODIS MCD43A4 product.

Band Wavelength (nm) Name
1 620-670 Red
2 841-876 NIR
3 459-479 Blue
4 545-565 Green
5 1230-1250 SWIR
6 1628-1652 SWIR2
7 2105-2155 SWIR3

Based on the spectral bands from MODIS MCD43A4 product, three complementary VIs
were calculated and used as predictors, including Enhanced Vegetation Index (EVI), Green
Chlorophyll Index (GCI), and Normalized Difference Water Index (NDWI). Specifically, EVI is
an enhanced version of NDVI that has higher sensitivity in high biomass regions and can more
precisely quantify vegetation on the ground (Gao et al., 2000; Huete et al., 2002). GCI quantifies
the light use efficiency by measuring the canopy chlorophyll content and can be used as an
indicator for crop health (Gitelson et al., 2005). NDWI quantifies the vegetation moisture
content, and thus it is widely utilized to measure the water content changes in crop leaves and
can monitor droughts (Bolton & Friedl, 2013; Gao, 1996). These three VIs were calculated as

below (Eq. (2.1-2.3)):

EVI = 2.5 x (NIR — Red) 2.1
""" NIR+C, xRed — C, X Blue + L 1)

~1 (2.2)
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NDWI — NIR — SWIR 23)
" NIR + SWIR '

where Red, Blue, Green NIR, and SWIR respectively represent the atmospherically corrected
surface reflectance in red, blue, green, near-infrared, and shortwave infrared channels; L stands
for the soil and canopy background adjustment factor; C; and C, denote the coefficients to
correct atmospheric influences. The coefficients in Eq. (2.2) were setto L=1,C; =6, and C, =
7.5 according to the MODIS EVI algorithm from previous studies (Jiang et al., 2008; Kang et al.,

2020).

Besides satellite VIs, daytime and nighttime land surface temperature (LSTday and
LSTnight) were collected and extracted from the MODIS MYD11A2 product, which provides
daily data with a 1-km spatial resolution (Park et al., 2005). These two variables were considered
because they have been used for monitoring agricultural drought, which is a critical
environmental stressor that can significantly affect crop productivity (Guan et al., 2017; Johnson,

2014; Lobell et al., 2013).

2.3Weather Variables

The weather variables were extracted from the dataset generated by the Parameter
elevation Regressions on Independent Slopes Model (PRISM), which is a climate analysis
system that uses point data, a digital elevation model (DEM), and other spatial datasets to
generate gridded estimates of climatic parameters (Daly et al., 2008). To be concrete, six primary
meteorological variables, including daily mean, minimum, maximum temperature (Tmean,
Tmin, and Tmax), daily minimum, and maximum Vapor Pressure Deficit (VPDmin, VPDmax),
and daily total precipitation (PPT), were collected from the PRISM dataset which has a 4-km

spatial resolution. Besides, we also used the Global Land Data Assimilation System (GLDAS)
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dataset which generates optimal fields of land surface states and fluxes at 0.25 arc degree spatial
resolution by ingesting satellite- and ground-based observational data products and using
advanced land surface modeling and data assimilation techniques (Rodell et al., 2004). Two
variables were derived from the GLDAS dataset. One was the daily mean evapotranspiration
(ET) which is related to the atmospheric water cycle, and the other was a water stress indicator
(GLDASws) calculated as the ratio of ET and potential ET collected from the GLDAS dataset

(Kang et al., 2020).

Considering that PRISM only covers the conterminous United States and is not available
for Argentina, we extracted PPT from the Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS) dataset with a resolution of ~5.5 km (Funk et al., 2015) and Tmean, Tmax,
and Tmean from the ERAS reanalysis dataset with a resolution of ~0.25 arc degrees for counties
in Argentina (Cunha and Silva, 2020). CHIRPS is a long-term quasi-global rainfall dataset,
which incorporates satellite imagery with ground station data to generate gridded time-series
rainfall for global drought monitoring (Funk et al., 2015). ERA5 combines climate model data
with observations from across the world for atmospheric reanalysis of the global climate (Cunha

and Silva, 2020).

2.4Soil Properties

Soil properties are also critical for plant growth and have significant impacts on crop
yield. Three types of soil properties in the U.S. corn belt were collected, including Soil Available
Water Holding Capacity (AWC), Soil Organic Matter (SOM), and Cation Exchange Capacity
(CEC), which were derived at 30-m spatial resolution from Soil Survey Geographic database
(SSURGO) (Soil Survey Staff et al., 2020). AWC quantifies the water availability in soil, which

directly influences root and plant growth. SOM represents the amount of soil organic matter, and
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higher SOM can help reduce soil erosion rates and increase water and nutrient retention. CEC is
included since it measures the capacity of a soil to hold essential nutrients and thus a good

indicator of the soil’s potential to harbor a healthy crop.

2.5Data Preprocessing

Google Earth Engine (GEE) platform was leveraged to preprocess the data. Data
collection in the U.S. corn belt started from 2001 to 2019 while data collection in Argentina
started from 2006 to 2019. Specifically, spatial filtering was first conducted by using the MODIS
Land Cover Type product (MCD12Q1 v6) at 500-m spatial resolution and NASS Cropland Data
Layer (CDL) as the crop masks to mask out observations on non-cultivated croplands in each
county. After that, each type of variable was aggregated spatially at the county level by
calculating the mean value. Then, sequential variables including VIs and weather variables were
aggregated into a 16-day interval to cover the complete planting and growing season for corn.
Finally, the feature variables were paired with county-level yield records and used for model

development.

! MODIS PRISM GLDAS
Spatial Filtering

Spatial Aggregation

Temporal Aggregation

Pair with Yield
Records

Figure 2-3. The data preprocessing steps.




22

CHAPTER 3 BAYESIAN NEURAL NETWORKS FOR

CORN YIELD PREDICTION AND UNCERTAINTY

ANALYSIS

3.1 Overview

Accurate and timely prediction of corn yield is essential for regional food security.
Traditional ML and DL methods are trained to associate input feature vectors with yield records
but cannot quantify the predictive uncertainty. To achieve accurate corn yield prediction and
simultaneously quantify its uncertainty, a BNN was proposed. By applying Bayesian inference,
the BNN vyield prediction model can estimate the predictive distribution and thus provide both
yield prediction and corresponding predictive uncertainty through the spread of the distribution.
Furthermore, by adding the prior data distribution in the model development, BNN is less prone
to overfitting due to the prior regularization (Gal et al., 2017; LeCun et al., 2015; Nasrabadi,

2007).

Feature variables were collected from multiple data sources, including remote sensing
(RS) imagery, weather variables, soil properties, and historical average yield. Experiments in the
U.S. corn belt in 2010-2019 showed that the BNN model outperformed state-of-art ML and DL
models. Also, the in-season prediction performance of the BNN model was evaluated within the
growing season from May to October at a 16-day interval. The optimum prediction accuracy was
achieved by the BNN model by the middle of August, which is about two months before the
harvest. Besides, we also analyzed the predictive uncertainty and found that more than 84% of

the observed yield records were successfully enveloped in the 95% confidence interval of the
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predictive yield distribution. Finally, the potential driving factors for the predictive uncertainty
were investigated and several factors were found to be highly correlated with the predictive
uncertainty, including the observation noise and the environmental stress such as heat and water

stress.

3.2Methodology

3.2.1 Fundamentals of BNN

A NN can be viewed as a probabilistic model p(y|x, w) to associate the input x with the
response variable y through successive hidden layers with weights w. For yield prediction,
which is a regression problem, y is a continuous variable, and p(y|x,w) is assumed to be a
Gaussian distribution (Nasrabadi, 2007). Given a data sample (x;,y;), the NN is trained to

predict the yield distribution N (9;, 67%):

1 (vi—9)?
exp (—==5—)

(DY) =
pilXi, W =
Ol ) [2n8? 26 (3.1)

Correspondingly, given training samples D = {(xq,y1), (X2,¥2), .., Xn,¥n)}, the NN s
trained through the maximum likelihood estimation (MLE) (LeCun et al., 2015). In practice, the
NN is commonly updated to minimize the negative log-likelihood function (Eg. (3.2)).
Moreover, in a traditional NN for regression, it is assumed that the p(y|x, w) has a constant
standard deviation. As a result, the loss function can be converted to minimize the mean squared

error (MSE) (Eq. (3.3)):

~logp(D[W®) = —log [T, p(vlxi, @) (3.2)
= —log [T\, ——exp (— L0
' ,2716-2 20

(yi=9i)>

1
=—Z§V=1108\[§9Xp =% )
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ZN (YL 3’1 + 27'[62

i
MSE =~ (y; = 9,)? (33)

Though successful, the traditional NN was trained to do point estimation on each
trainable weight. It means that each trainable weight is estimated to be a single value. As a result,
it makes NN subject to overfitting, especially when the training size is relatively small compared
to the number of trainable parameters (Blundell et al., 2015; Deodato et al., 2019). More
importantly, since each weight is fixed after training, a well-trained NN can only predict the

yield without quantifying the predictive uncertainty, which is very important for model

o1 | [o3] [07] o6 | IN] |2 [ 0]
R LG &

) )

Figure 3-1. Comparison between traditional and Bayesian NN. Left: traditional NN with each weight
modeled as a fixed value. Right: BNN with each weight modeled as a probability distribution.

To improve the DL models’ robustness against overfitting and quantify predictive
uncertainty, BNN was proposed by applying Bayesian inference to the traditional NN. Instead of
having point estimation on weights, all weights in BNN are represented by probability
distributions, and the difference between traditional NN and BNN is illustrated in Figure 3-1.
Specifically, the posterior distribution p(w|D) of the weights is estimated according to the Bayes

theorem. For an input sample x, its predictive distribution of label y can then be made by taking
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an expectation under p(w|D), which is denoted as p(y|x,D) = [ p(y|x,w)p(w|D)dw .

However, it is intractable to directly estimate posterior distributions for weights considering the

size of deep NN. Instead, the posterior on the weights are approximated by a variational

distribution via variational learning (Blundell et al., 2015), which finds the variational

parameters 0 of a distribution on the weights q(w|0) that minimize the KL-divergence with the
posterior on the weights p(w|D):

6" = argmin KL[q(w|8)||p(w|D)] (3.4)

= argmin KL[q(w|8)||p(w)] + E(wjg)[~ logp(D|w)]

There are two terms in Eq. (3.4): The first term is a prior-dependent loss L, =

KL[q(w|0)||p(w)], which is the KL-divergence between the variational distribution q(w|9)

and the oprior distribution p(w) of trainable parameters w . The second term,

Eq(W|9)[_ logp(D|w)], is a data-dependent loss in the form of a negative log-likelihood

function. Use Monte Carlo integration and sample w® from q(w|®8), the loss function can be

approximated as:

T
F(D,0) ~ %Z[logq(v’\?(tne) —logp(W®) — log P(D|W®)] (3.5)

t=1

— 157, [lo a(#©]6) ~ logp(@®) — £, log P(yx, #)]

in which (x;, y;) is the i-th data samples; N is the total number of training samples; T is the total

number of sampling times; In practice, we can just sample once (e.g., T=1).

After training, every possible configuration of w sampled from q(w|@) can make a
prediction, and taking the expectation is equivalent to average predictions using an ensemble of
NN weighted by the posterior distribution of weights, which can be considered as a special case

of ensemble learning (Jospin et al., 2020). Also, regularization is introduced by placing the prior
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distribution p(w). These together help prevent overfitting and thus improve the model
generalization ability. More importantly, since each weight is modeled as a distribution, the
prediction from BNN is different in each run. Therefore, given an input data sample, its
predictive uncertainty can be estimated by drawing weight samples from the posterior

distribution and running a series of predictions.

3.2.2 Model Architecture

In this study, we aimed to not only predict the corn yield but also obtain the uncertainty
associated with the prediction. In a BNN with a single output of yield prediction (Figure 3-1
Right), given an input data sample, its prediction uncertainty can be obtained by drawing weight
samples from the variational distributions and running a series of predictions. The uncertainty is
estimated by calculating the standard deviation of the series of predictions. Although feasible,
this approach cannot directly estimate the predictive uncertainty but requires Monte Carlo
sampling which is computationally intensive and time-consuming (Goodfellow et al., 2016).

To enable the model to predict the yield and estimate the predictive uncertainty
simultaneously, we designed a BNN architecture with two endpoints (Figure 3-2). As described
in Section 3.1, for a probabilistic model, given an input data sample, the predicted yield
distribution is in the form of a Gaussian distribution. Therefore, the proposed BNN model is
trained to predict the yield distribution with one endpoint outputting the mean of the yield
distribution and the other endpoint outputting the standard deviation. Specifically, the developed
BNN model starts with a multi-layer feature extraction net to extract high-level features from the
inputs. Then, the extracted features are fed into two independent sub-networks, namely “yield

net” and “uncertainty net”, to respectively estimate the mean y and standard deviation & for the



27

final predictive distribution N (¥, ), in which ¥ is the unbiased estimation of the predicted yield
value and & quantifies the predictive uncertainty (i.e., a larger & indicates higher uncertainty).
Through experimental analysis, the architecture of the BNN model was designed to have
a depth of five (Figure 3-2). The feature extraction net started with an input layer followed by
two hidden layers with 256 and 128 neurons respectively, and both the yield net and uncertainty
net included two fully connected hidden layers with 64 and 32 neurons for each. We chose the
Rectified Linear Unit (ReLU) as the activation function and Adam algorithm was adopted as the
optimizer to update trainable parameters after each epoch (Goodfellow et al., 2016). The number

of training iterations was set to 1500 epochs with the batch size as 512.

s >
=\

\
¥
— \ -
" ()

| >| >|
yE
j

Input layer Hidden layers

Yield net

Feature extraction net
Figure 3-2. The architecture of the developed BNN model.

3.3 Experimental Setup

The BNN model was trained and evaluated within twelve Midwestern U.S. states,
including North Dakota, South Dakota, Kansas, Nebraska, Minnesota, lowa, Wisconsin, Illinois,
Indiana, Ohio, Missouri, and Arkansas (Johnson, 2014). Informative variables including time-
series VIs, sequential weather variables, soil properties, harvest year, and historical average yield
(Table 3.1), were first extracted from multiple data sources and aggregated to the county level.

MODIS Land Cover Type product (MCD12Q1 v6) at 500-m spatial resolution was applied as the
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mask layer to exclude non-cultivated areas. The sequential feature variables were then
aggregated into a 16-day interval from March 10th to October 4th. Finally, the extracted feature

variables and yield records were paired for model development. Data collection was from 2001

to 2019.
Table 3-1. Summary of the input features for model development.
. Related Spatial
Category Variables Mask Layer properties  Resolution Source  Latency
EVI
GCl Plant vigor S00m
. NDWI
Satellite LSTday MODIS  One day
Imagery .
(Kelvin) 1km
LSTnight
(Kelvin)
Tmean (°C) Heat stress
Tmax (°C)
Tmin (°C) MODIS Land Cover
PPT (mm) Type product
VPDmax (hPa)  (MCD12Q1 v6) 4 km PRISM  One day
Weather
VPDmean
(hPa) Water stress
VPDmin (hPa)
GLDASws! 0.25 arc One
ET (mm) degree GLDAS month
Soil water
Soil AWC (cm) uptake 30m  SSURGO ..
SOM (kg/m?) Soil nutrient
CEC (cmol/kg) uptake
Harvest Year
Historical County- USDA
Others average yield level NASS NIA
(t/ha)

To validate the developed BNN model, it was compared to five widely used ML models,
including (i) three traditional ML models: Ridge regression (Ridge), RF, and SVR; and (ii) two

representative DL models: multilayer perceptron (MLP) and LSTM. All the approaches were



29

evaluated on ten testing years 2010-2019, and for each testing year, data in all preceding years
since 2001 were used for model training. To evaluate the performance of each model, three
metrics including coefficient of determination (R?), RMSE, and mean absolute relative error

(MARE) were selected as the metrics and calculated as (Eq. (3.5-3.7)):

Yie1 (i — 71)?

RR=1-TFrr— (3.5)
Yie (i — ¥)?
1 n
RMSE = j—z 0 = 92 (36)
n i=1
1 n J—
MARE = —2 PAAmELY 3.7)
Niai=1 Y;

where n denotes the number of data samples; y; and y; are the reference yield record and
estimated yield for the ith county in the testing set; ¥ denotes the mean values of reference yield

records in the testing set.

3.4 Results and Discussion

3.4.1 End-of-season Prediction Performance

We first compared the end-of-season prediction performance on October 4™ with the full-
length feature set, and the accuracies of the six models on each testing year over five runs are
reported in Table 3.2-3.4. It was observed that the developed BNN model outperformed all the
other ML and DL methods with the smallest year-to-year variation, reaching an average R? of
0.77 over ten testing years. It was observed that BNN was the best-performing model in most
testing years. LSTM is the second best, demonstrating its strong capability of handling time-

series features. Also, it was notable that the non-linear ML approaches had much better
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performances than the linear Ridge regression model, showing that the linear model could fail to

capture the complex relationship between multi-source data and crop yield.

Table 3-2. The R?of end-of-season evaluation in 2010-2019.

Year Ridge RF SVR MLP LSTM BNN
2010 0.62 0.66 0.65 0.61 0.64 0.72
2011 0.67 0.71 0.68 0.69 0.63 0.73
2012 0.47 0.54 0.59 0.60 0.64 0.70
2013 0.55 0.67 0.56 0.63 0.74 0.72
2014 0.54 0.66 0.61 0.69 0.71 0.82
2015 0.43 0.67 0.56 0.72 0.72 0.75
2016 0.54 0.65 0.68 0.70 0.72 0.82
2017 0.64 0.74 0.75 0.75 0.79 0.83
2018 0.65 0.76 0.67 0.77 0.78 0.82
2019 0.24 0.48 0.50 0.63 0.65 0.76
Average 0.54 0.65 0.63 0.68 0.70 0.77
Table 3-3. The RMSE (t/ha) of end-of-season evaluation in 2010-2019.
Year Ridge RF SVR MLP LSTM BNN
2010 1.19 1.13 1.15 1.22 1.16 1.05
2011 1.31 1.22 1.28 1.27 1.35 1.14
2012 2.07 1.89 1.73 1.69 1.57 1.41
2013 1.44 1.24 1.42 1.36 1.06 1.13
2014 1.37 1.18 1.26 1.13 1.09 0.86
2015 1.52 1.14 1.33 1.06 1.08 1.01
2016 1.36 1.18 1.12 1.09 1.04 0.85
2017 1.35 1.16 1.14 1.15 1.03 0.94
2018 141 1.17 1.38 1.14 1.12 0.98
2019 1.63 1.34 1.28 1.14 1.07 0.92
Average 1.47 1.27 1.31 1.23 1.16 1.03
Table 3-4. The MARE (%) of end-of-season evaluation in 2010-2019.
Year Ridge RF SVR MLP LSTM BNN
2010 11.18 10.48 10.54 11.31 10.58 9.14
2011 15.45 15.00 15.32 15.18 16.36 13.65
2012 34.29 30.70 28.23 28.09 25.64 22.23
2013 12.40 10.58 12.20 11.26 9.26 9.55
2014 9.84 8.93 9.32 8.01 7.82 6.46
2015 11.77 8.78 9.76 8.02 8.01 7.63
2016 10.03 8.87 8.39 8.07 7.94 6.35
2017 9.72 8.81 8.65 8.68 8.22 6.83
2018 10.98 8.48 10.75 8.40 8.32 7.42
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2019 13.84 9.89 9.72 8.32 8.26 6.30

Average 13.95 12.05 12.29 11.53 11.04 9.56

To evaluate whether the methods are statistically different on the reported R?, we used a
paired sample t-test to perform the statistical tests between the BNN evaluation results and each
comparison model. A t-test is a statistical test that compares the means of two samples (Mishra et
al., 2019). In our case, we compared the means of R? of each model in all testing years. Since the
experiment was repeated five times in each testing year, there were totally 50 pairs of samples in
the t-test. As shown in Table 3-5, the accuracy improvement obtained by the proposed BNN

model was statistically significant.

Table 3-5 Results of the paired sample t-test between the R? of each comparison model and BNN in all
testing years.

Model t p-value
BNN vs Ridge 55.390 0.000
BNN vs. RF 38.892 0.000
BNN vs. SVR 52.580 0.000
BNN vs. MLP 37.676 0.000
BNN vs. LSTM 27.811 0.000

We then presented the density scatter plots of all the methods in Fig 3.5 to further show
the agreement between the reported and the predicted yield in three representative testing years,
including 2012, 2016, and 2019. 2016 is an average year with a normal climate and normal
planting progress. Therefore, 2016 is regarded as a normal year. On the other hand, prolonged
heat occurred in the U.S. corn belt during the middle of summer in 2012 and an unusually wet
spring followed by an unusually cool June postponed the corn planting in the U.S. corn belt in
2019 (Johnson, 2014; USDA, 2020b), which made these two years abnormal. The best
agreement was again observed in the developed BNN model over all three selected testing years

(Fig 3.5(f1-f3)), while the linear Ridge regression model showed less agreement than the other



32

approaches (Fig 3.5(al-a3)). The proposed BNN model outperformed all the other ML and DL
methods and could not only achieve high prediction accuracy with an R? over 0.80 in average
years (Fig 3.5(f2)) but also had stable performance in abnormal years (Fig 3.5(f1)&(f3)).
Besides, it was notable that RF, SVR, and MLP made severe overestimation errors in 2012 (Figs
3.5(b1), (cl), (d1)) and had severe underestimation errors in 2016 and 2019 (Figs 3.5(b2-b3),
(c2-c3), (d2-d3)). In 2012, most counties experienced large yield losses due to the prolonged
drought. As a result, the trained models tended to overestimate the corn yield in 2012. In 2016
and 2019, due to the imbalanced training set in which there were relatively fewer high-yield
samples, models would be trained biasedly and made overestimation errors. Although the LSTM
showed improvement in these aspects, large errors were still observed in low-yield counties

(Figure 3-5(e1-e3)) in comparison with the proposed BNN model.
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Figure 3-3. The density scatter plots of reported yields vs. predicted yields of (a) Ridge, (b) RF, (¢) SVR,

(d) MLP, (e) LSTM, and (f) BNN in three testing years: (1) 2012; (2) 2016; (3) 2019.
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To further illustrate the performances of different models, we presented the absolute
relative error maps in 2012, 2016, and 2019 for each model in Figure 3-4, in which darker color
represents a larger error. The results showed that compared to other states, larger errors were
observed in North Dakota, South Dakota, Kansas, Arkansas, and Missouri, in all the approaches.
This is likely because of environmental stresses (i.e., water stress and heat stress) in these areas,
which can introduce uncertainty in crop productivity and increase the difficulties in modeling
crop yield variability. Subsequently, comparing different approaches, the BNN model
outperformed the other models and had smaller errors for most counties in both the average year-
2016 (Figure 3-4 (f2)) and abnormal years-2012 and 2019 (Figure 3-4 (f1)&(f3)). In particular,
the linear Ridge regression model performed the worst among the six models and made more
errors in lowa, Wisconsin, and Illinois in 2016 and 2019 (Figure 3-4 (a2)-(a3)) when compared
to other methods. Some improvements were shown in all the non-linear models, and errors in the

central region were significantly reduced in the prediction results by LSTM and BNN.
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Figure 3-4. The absolute relative error maps of (a) Ridge, (b) RF, (c) SVR, (d) MLP, (e) LSTM, and (f)

BNN in three testing years: (1) 2012; (2) 2016; (3) 2019.
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3.4.2 In-season Prediction Performance

We further compared the model performance for in-season prediction. Within the
growing season from May to October in 2010-2019, we compared the developed BNN model
with other non-linear ML methods, and the linear Ridge regression model was excluded from the
comparison due to its unsatisfactory performance shown in Section 3.4.1. To present the overall
model performance, we averaged the R? of each model over ten testing years. The average time
series R? achieved by each model from middle May to early October at every 16 days in ten
testing years are shown in Figure 3-5. In general, it was notable that all the methods performed
poorly during the early growing season (before mid-June) when the corn had just been planted or
emerged from the ground. During this stage, the RS and weather features had relatively weak
correlations with corn yield and it was challenging to make accurate yield predictions (Johnson,
2014). Along with the active growth of corn on the ground, the prediction accuracy gradually
increased as more information became available and was captured by the predictors. After that,
the model performance became stable in early August when corn transited from the vegetative
stage to the reproductive stage. Moreover, compared to the other five approaches, the developed
BNN model became the best-performing one since late-June and achieved a near-optimal
accuracy in mid-August which is over two months before the harvest season. It demonstrated
that the model was able to give highly accurate yield predictions in the middle of the growing

season.
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Figure 3-5. The average R? of different models during the growing season in all testing years.

Besides the average time-series R?, we presented the time-series relative error maps of
the BNN model averaged over all testing years in Figure 3-6. The figure showed that during the
early growing season, large errors were observed in most states. As time proceeded and more
informative predictors were used, fewer errors were exhibited and significant improvements
were demonstrated in lowa, Wisconsin, Illinois, and Indiana, where more than half of the
counties had an absolute relative error that was less than 10%. Additionally, the spatial error
patterns had stabilized since early August, which agreed with the results shown in Figure 3-5.
The benefit of more temporal information was less pronounced in North Dakota, South Dakota,
Kansas, Missouri, and Arkansas, where crops experienced severer environmental stresses

compared to other states (Li et al., 2019; Lobell et al., 2013).
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Figure 3-6. The time-series absolute relative error maps for the developed BNN model averaged over all
testing years.

3.4.3 Predictive Uncertainty Analysis

Besides the predicted yield, another important output of the developed BNN model was
the predictive uncertainty. We first assessed the predictive uncertainty by using the P-factor
which is defined as the percentage of observed yield enveloped within the 95% confidence
interval bounded by the predictive uncertainty (Sheng et al., 2019) and it can be calculated as

below:

P-factor = Nfi (3.8)

where NQ; denotes the number of data samples whose observed yields are within the 95%
credible interval of the prediction; n is the total number of data samples. In this study, the P-
factor for late-season corn yield prediction across all counties in 2010-2019 was 0.841, showing
that more than 84% of observed yield records were successfully enveloped in the confidence
interval bounded by the predictive uncertainty. Based on the corn harvest areas in each county,

we further grouped all counties into three groups, including the low-area region, the middle-area
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region, and the high-area region. Each of them had an equal number of counties. The P-factors
for the low-area region, the middle-area region, and the large-area region were 0.851, 0.837, and
0.835, respectively. It demonstrated that the uncertainty estimation worked equally well in

counties with different corn harvest areas.

We further analyzed the in-season predictive uncertainty. Here we used the relative
predictive uncertainty to represent the normalized uncertainty level in each county, which was
defined as a ratio of the predictive uncertainty & and the predictive yield y. The resulting time-
series relative uncertainty maps averaged over all testing years 2010-2019 are given in Figure 3-
7. The results indicated that predictions in May had the highest uncertainty, reaching more than
10% for most counties. This agrees with the fact that predictions during the early growing season
could be unreliable. With more sequential features obtained, the developed BNN model had
more confidence in its prediction, and the overall uncertainty level gradually decreased since late
May. A stable uncertainty pattern was observed in early August when corn reached the peak of
its vegetative stages. It was notable that the pattern of the relative predictive uncertainty (Figure
3-7) mirrored the pattern of the absolute relative errors (Figure 3-6). Mid- and late-season
predictions in North Dakota, South Dakota, Kansas, Missouri, and Arkansas had relatively large
uncertainties, which is consistent with the prediction errors against the yield statistics provided
by NASS. Furthermore, the overall uncertainty change across all the counties within the growing
season was summarized in a box plot and shown in Figure 3-8. It was noticed that early-season

predictions were associated with much higher uncertainty levels than mid- and late- seasons.
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Figure 3-7. The time-series relative predictive uncertainty maps for the developed BNN model averaged
over all testing years.
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Figure 3-8. Box plot of the time-series relative predictive uncertainty across all the counties.

In general, two main patterns were exhibited in the uncertainty maps (Figure 3-7). On the
one hand, as more temporal features were included, the estimations of weight distributions of the
BNN model became more accurate, and therefore for all the counties, the uncertainties

associated with their predictions were reduced through the growing season. On the other hand, as
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we have observed previously, some regions (e.g., North Dakota, South Dakota, Kansas,
Missouri, and Arkansas) constantly showed larger prediction errors than others (Figure 3-6) and
remained at a relatively high uncertainty level at the end of the growing season (Figure 3-7). This
certain spatial pattern was likely caused by the inherent characteristics of the training data.
Therefore, we used the results obtained in early September when the uncertainty patterns were

stabilized to further explore the causes of this aspect.
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Figure 3-9. Maps of (a) predictive uncertainty on Sep 2", (b) percentage of non-corn fields (%), (c) EDD
(°C - day), (d) LSTday ( Kelvin), and (e) average VPDmean (kPa).

The observation noise was first considered. In this study, instead of using NASS

Cropland Data Layer (CDL) which is not fully available for the U.S. corn belt before 2007, the
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MODIS Land Cover Type product was employed as the cropland mask to aggregate the multi-
source data in each county for all the years. Since this mask does not distinguish crop types, RS
and weather variables on other crops could introduce noise to the training data. We quantified the
noise level by calculating the percentage of non-corn fields among all cropland in each county
across ten testing years (2010-2019), and the percentage maps (named “perc non_corn”) are
shown in Figure 3-9 (b). As expected, a strong similarity pattern was observed between
“perc_non_corn” and the corresponding uncertainty maps (Figure 3-9 (a)), with a high positive
correlation r=0.74 (p<0.001).

Besides the observation noise, we further explored the correlations between the predictive
uncertainty with the sequential VI and environmental features, and the results are shown in
Figure 3-10. It was noted that lower correlations were shown before the middle of June, and this
was mainly because less profound crop growth signals could be captured during the early
vegetative stage. Then, during July and August, the predictive uncertainty was found to be
strongly correlated with all three VIs. The negative correlations with the VIs indicated that there
was less uncertainty for yield modeling in healthier cornfields. Although VIs can be used to
indicate crop yield potential, climate variables were the abiotic factors that could significantly
affect crop growth and yield potential. In this context, strong correlations were observed between
the uncertainty and several weather variables that could potentially relate to two types of
environmental stresses: heat stress (Tmax and LSTday) and water stress (VPDmean, VPDmax,
ET, and GLDASws). Specifically, during a drought, VPDmean and VPDmax would increase
since the actual atmospheric water vapor content is less than the saturated water vapor pressure
(Yuan et al., 2019), and ET and GLDASws tend to decrease because transpiration by crops

would generally reduce (Kang et al., 2020).
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Figure 3-10. Correlation coefficients between time-series features and predicted uncertainty.

However, ET and GLDASws are less representative than VPDmean or VPDmax since
evaporation from open water bodies would increase during a drought (Jensen et al., 1990), which
resulted in the comparatively weak correlation between the predictive uncertainty with ET and
GLDASws. Also, we found that VPDmean and VPDmax were highly correlated. Therefore, we
calculated the average VPDmean from June to August to represent the water stress. Also, the
Extreme Degree Days (EDD) and average LSTday from June to August were calculated and
used as indicators of heat stress that the crop experienced during its critical growth stage. The
EDD was considered because it is indicative of cumulative extreme heat within the growing

period (Lobell et al., 2013), and it was calculated as below (Eq. 3.9&3.10):
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N
EDD = DDsg4 (3.9)
t=1
0  ifT, <30°C
=T, - 30 3.10
DD3p4 ¢ { t 2 if T, = 30°C ( )

in which T is the hourly temperature estimated based on Tmin and Tmax; DDj3, « represents the
EDD for hour ¢ in each day; N is the total number of hours from June 1% to August 31%.

The resulting maps for the three variables are shown in Figure 3-11 (c)-(e). The results
showed that high similarities were observed between the three variables (Figure 3-11 (c)-(e))
with the uncertainty (Figure 3-11 (a)), and the average correlations respectively achieved 0.70
(p<0.001), 0.76 (p<0.001), and 0.72 (p<0.001) for EDD, LSTday, and VPDmean, respectively.
Moreover, we noticed that counties with higher predictive uncertainties were mainly located in
the western and southern U.S. corn belt where the corn was under heavier heat stress and water
stress during the summer (Lobell et al., 2014; Zipper et al., 2016), while in humid and temperate
regions (e.g. central U.S. corn belt), lower uncertainty was typically associated with the
predictions (Russello, 2018).

3.4.4 Uncertainty Component Analysis

The predictive uncertainty mainly consists of the epistemic uncertainty and the aleatoric
uncertainty (Kendall and Gal, 2017). The epistemic uncertainty represents the uncertainty in
model parameters and the model structure since we are uncertain about which model parameters
or which model structure to choose for prediction. Therefore, we also referred it as the model
uncertainty. The epistemic uncertainty can be reduced if more training samples are available, and
the model are better trained. On the other hand, the aleatoric uncertainty captures noise inherent

in the observations as a result of measurement imprecision. Therefore, we referred it as the data
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uncertainty. Since it is caused by the inherent noises of the data, it cannot be reduced even if we
have more data.

The predictive uncertainty & from the proposed BNN model combines the aleatoric
uncertainty 6, and epistemic uncertainty 6,. To quantify the epistemic uncertainty, we can use
the Markov sampling. Specifically, given the same input feature vector X, the trained BNN
model can be run K times and output a series of outputs {y;, ¥, ..., ¥k }. In this case, since we use
the same input, the variance of the outputs {y;,¥,, ..., ¥x} would be mainly caused by the
uncertainty in the model parameters, i.e., the epistemic uncertainty. As such, the epistemic

uncertainty 4, can be quantified as:

K
e = LZ Ik — )2 (3.11)
¢ K —14ap=4

1 K
i=— 5 (3.12)

Based on the sampling results, we calculated the sample standard deviation instead of the

population standard deviation. Corresponding, the denominator in Formula (3.11) is K — 1,
which guarantees the unbiased estimation of the standard deviation (Hérdle and Simar, 2019).

After that. we can quantify the epistemic uncertainty 6, by:

A

6o =+/6%—6¢ (3.13)
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Figure 3-11. The aleatoric uncertainty map (left) and the epistemic uncertainty map (right) in 2019.

We took the testing year 2019 as an example and calculated the aleatoric uncertainty and
the epistemic uncertainty for each county. As illustrated in the corresponding relative uncertainty
maps (Figure 3-11), the aleatoric uncertainty was larger than the epistemic uncertainty. It
demonstrated that the predictive uncertainty was mainly caused by the data noises, which is in
agreement with the analysis in Section 3.4.3. On the other hand, since a large number of data had

been used for model training, the epistemic uncertainty was reduced to a small level.
3.5Summary

In this study, we proposed a BNN model for county-level corn yield prediction based on
RS images, weather variables, soil properties, harvest year, and historical average yield. The
proposed BNN model can simultaneously predict the corn yield and the corresponding predictive
uncertainty. Experiments in the U.S. corn belt in ten testing years 2010-2019 showed that the
proposed BNN model could make accurate end-of-season yield predictions with stale
performances across different testing years. It also outperformed five commonly used linear and

non-linear ML and DL models with an average R? of 0.77. The in-season prediction performance
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was also evaluated within the growing season starting from middle May to early October at a 16-
day interval. The developed BNN model achieved near-optimal performance around the middle

of August (R? =~ 0.75), which is about two months ahead of the harvest. Furthermore, we

analyzed the time-series predictive uncertainty during the growing season. The results showed
that more sequential features could help lower the uncertainty level, and the patterns stabilized
around early August. Correlation coefficients analysis showed that the observation noise due to
the crop mask, prolonged exposure to extreme heat, and severe water would potentially increase
the predictive uncertainty.
The main contributions of this work are summarized as follows:
e A BNN model was proposed for corn yield prediction and uncertainty estimation,
which could accurately predict county-level corn yield and outperforms other ML and
DL models.
e Accurate corn yield prediction could be made in August, which is about two months
ahead of the harvest.
e The predictive uncertainty has a strong correlation with the prediction error.
e The potential sources of predictive uncertainty are observation noises and

environmental stresses, such as heat stress and water stress.
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CHAPTER 4 ADVERSARIAL UNSUPERVISED DOMAIN

ADAPTATION ON CORN YIELD PREDICTION

4.10verview

Supervised ML models require data samples with labels (i.e., yield records) for model
training. For those agricultural regions without historical yield records, it is impossible to
directly train a ML-based crop yield prediction model. Also, due to the domain shift (Kouw and
Loog, 2019) caused by spatial heterogeneity of meteorological conditions, soil properties, and
farming practice, ML models established between reference (reported) yields and RS
measurements within a specific region often lose their validity when directly applied to the other
regions. TL, a ML technique that transfers knowledge learned from a local region with rich
ground reference data to the target region with limited or no ground truth data, has become a
viable solution. To perform TL for deep NN, a widely used strategy is to first pre-train a model
on a source domain with abundant ground reference data and then adapt it to a target domain by
fine-tuning the pre-trained model with labeled samples from the target domain. However, since
collecting yield data can be financially expensive, labor-intensive, and time-consuming, many
agricultural production areas may lack reliable ground reference yield data for either directly

training or fine-tuning the supervised DL models.

To improve the transferability of DL models without relying on labeled target samples,
UDA has been a promising strategy. The core idea of UDA is to reduce the domain shift by
aligning the feature distributions in the source domain and the target domain (Figure 4-1). UDA
algorithms commonly employ a conjugated architecture with two objectives (Zhao et al., 2020).

One objective is to learn a task model based on the labeled source samples by minimizing the
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corresponding task loss function, such as MSE for regression (Feng et al., 2021) and cross-
entropy loss for classification (Wang et al., 2021). The other objective is to reduce the domain
shift and align the source domain and the target domain. One of the most representative single
UDA methods is domain adversarial neural networks (DANN) (Ganin et al., 2017), which
employs an adversarial objective with a domain discriminator to extract domain-invariant
features from source and target domains. The structure of DANN mainly has three parts,
including a feature extractor, a domain classifier, and a label predictor. During the training
process, the feature extractor is updated to minimize the prediction loss for the label predictor
and maximize the domain loss for the domain classier. Since it is trained adversarially against the
domain classifier, the feature extractor can be updated towards generating domain-invariant
features to help alleviate the negative impact of domain shift. Meanwhile, the feature extractor is
trained collaboratively with the label predictor so that it is updated to extract task-informative

features to fulfill the main tasks.

Source Domain . .
Misprediction

oA
, FANY ANt b
Source Domain_______._-------""~
Predictor 08 @) \ Misprediction
A
YA . .
Cross-Domain o occcpmemomo=mmmTT /A :High yield samples
Predictor O O :Low yield samples

Figure 4-1. A conceptual example of unsupervised domain adaptation (UDA).

Despite the success in classification applications, the DANN model cannot be directly
applied for regression tasks such as crop yield prediction. This is mainly because it is hard to find
an optimal weighting parameter to control the trade-off between the prediction loss and the

domain loss in the original DANN model. Specifically, mean squared error (MSE) is adopted as
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the prediction loss which can have a quite different magnitude than the cross-entropy-based
domain classification loss. Also, since the training set for county-level corn yield prediction is
comparatively small, overfitting may happen during the training of DANN. To address these
issues, in RA-2, we proposed two variants of DANN, i.e., Adaptive DANN (ADANN) and
Bayesian DANN (BDANN), for corn yield prediction at the county level. The ADANN model
was designed to adaptively adjust the weighting parameter between the prediction loss and the
domain loss to avoid overweighting either of them. Based on ADANN, we further applied
Bayesian learning to the model training and designed BDANN intending to improve the model’s

robustness to overfitting as well as its learning ability on small training sets.

4.2 Methodology

4.2.1 Fundamentals of DANN

Deep NN are trained in a supervised learning way to associate input data samples x € X
with data labels y € Y by learning the distribution D(x,y), in which X denotes the input feature
space and Y denotes the output space. In the scenario of yield prediction, x are RS and weather
variables and y denotes the reported yield records. Given two datasets from the source domain
D, with ng data samples and the target domain D, with n, data samples, they are likely to have
different distributions Dg(x,y) and D.(x,y) due to different geophysical environments.
Consequently, a ML model trained with data samples from D would have degraded performance

if directly applied to D;.

To improve the spatial transferability of DL models across different domains, UDA is a
promising strategy. The core idea of UDA is to reduce the domain shift by aligning the feature
distributions in the source domain and the target domain. One representative UDA method is the

DANN, which reduces the impact of the domain shift by projecting input feature vectors from
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two different domains into a common subspace (Ganin et al., 2016; Wang et al., 2018; Zhuang et
al., 2019). As illustrated in Figure 4-2, a DANN model mainly consists of three parts, including a
feature extractor Gy, a domain classifier G;, and a yield predictor G, (Figure 4-2). During
training, from left to right, the ith data sample x; from D, or D, is first fed to the feature

extractor G for feature extraction (Eq (4.1)). Then, the extracted features x; is forwarded into

the domain classifier G, to predict the domain label d;. (Eq (4.2)) The domain label indicates
whether the corresponding x; is from the source domain (x;~D,(x) if d; = 0) or the target
domain (x;~D.(x) if d; = 1). Meanwhile, the extracted features x{ is forwarded into the yield

predictor G, to predict the yield §;.(Eq (4.3)).

X{ = Gp(X;;wy) (4.1)
di = Ga(x{;wq) (4.2)
Yi = Gy(x{;wy) (4.3)

where w, denotes trainable weights in the feature extractor G¢, w, denotes the trainable weights

in the domain classifier G4, and w,, denotes the trainable weights in the yield predictor G,,.

! 1
! 1
! !
! 1
_____ ! 1 yicld
e : &T‘: ﬁ :> @ prediction ¥;
Do m— =1 =4 H
Dy : " | yield predictor Gy,
! TSy
"H N ¢ "y _
1 : :
1
feature extractor G, ! ai
_ _ _ leature extractor f_ _ : | : domain 1
I : i1:)rcdi<:11'0n ﬁi:
C——> forward propdgcmon | !
| domain classifier G4 .
backward propagation «- GRL  —mmmmmmmm s T
—~_ AL TN air
GRI,  gradient reversal layer - W ( ll) m‘;:“ \/
Iw, - 5 Ly

Figure 4-2. The structure of the DANN model, including a gradient reversal layer GRL (pink), a feature
extractor Gy (blue), a domain classifier G, (green), and a yield predictor G,, (yellow).
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The model aims to make accurate yield predictions and reduce domain shift through joint

training G¢, G,, and G,4. To achieve these two goals, there are two corresponding training
objectives: 1) train the feature extractor Gy collaboratively with the yield predictor G, to
minimize the yield prediction loss Ly, and 2) train the feature extractor G adversarially
against the domain classifier G; to maximize the domain 10SS Lgomain- BY realizing the first
objective, the feature extractor G is updated to extract task-specific features which can be used
to accurately predict corn yield by the yield predictor G,,.. By realizing the second objective, the
feature extractor is driven to project input feature vectors into a common subspace and generate
domain-invariant features. To perform adversarial training between G, and G,, a gradient
reversal layer (GRL) is introduced to connect the domain classifier G; and the feature extractor
Gy. The gradient reversal layer acts as an identity function during forward propagation and
reverses the gradient by multiplying it by -1 during backpropagation (Ganin et al., 2017). As a

result, the total loss function of this network becomes (Eq. (4.4)):

L(wf' wd'wy) = Lyield — ALgomain 4.4)
L : zns i —90)?
yield — ng - Yi— Vi (4.5)
1 ns+nr . .
Laomatn =~ ). dilog(d) + (1~ d)log(1 - ) (46)
i=

where A is defined as the weighting parameter that adjusts the trade-off between the domain loss
and the prediction loss. ng and n; represent the number of training samples in the source domain
and the target domain, respectively. L,,;.;4 is the yield prediction loss in the form of MSE (Eq.

(4.5)). Lgomain 1S the domain loss in the form of binary cross entropy (Eq. (4.6)).
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4.2.2 Adaptive DANN

Though successful, the performance of DANN largely depends on the weighting
parameter A between the prediction loss Ly;.;q and the domain 10ss Lyomqin - It is typically
predefined experimentally. DANN has been widely used in classification applications where
both the prediction loss and the domain loss are defined as the cross-entropy loss and therefore
are of a similar magnitude. However, in crop yield prediction, which is a regression task, the
yield prediction loss L, is defined as the form of MSE which can have a quite different
magnitude than the cross-entropy-based domain classification 10SS L;ymqin- Moreover, since the
prediction loss L,,;.;4 can be varying in different regions and different years, it is challenging to

find an optimal weighting parameter.

Therefore, we developed an adaptive domain adversarial neural network (ADANN)
approach for corn yield prediction (Figure 4-3), in which the weighting parameter A was adjusted
adaptively. Specifically, we followed Ganin et al. (2016) and used a schedule to initialize A at 0
and gradually increased it as training proceeded. Meanwhile, the A was normalized with the ratio
of the prediction loss and the domain loss to offset the magnitude imbalance. A formal definition

of the weighting parameter is given as follows:

l

Pi=7y 4.7

L .

i
rl Ldi (48)

1
A = (=~ 2) (4.9)
1+ exp(—p;) '

where p; denotes the learning progress and increases linearly from 0 to 1 as the epoch i increases

from O to the maximum number of epochs N; r; is the normalization term defined as the ratio of
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the prediction loss and the domain loss during the ith epoch. This schedule makes sure there is a
small weight on the domain loss during the early training which enhances the robustness of the
domain classifier against noisy signals during the early phase of model training (Ganin et al.,
2016). As training proceeds, the weight on the domain loss is increased to make sure that cross-
domain features are extracted and can be used for accurate yield prediction by the yield

predictors G,. After convergence, the trained ADANN is able to reduce the domain shift and

make accurate yield prediction in the target domain.

dom-;in classificr G4
Figure 4-3. The architecture of the ADANN model.
4.2.3 Bayesian DANN

We further proposed the Bayesian domain adversarial neural networks (BDANN) in
which we introduced Bayesian inference during model training. There are two major novelties in
the proposed BDANN. First, each hidden layer was designed as a Bayesian layer in which the
posterior distributions on each weight were approximated via variational inference. By adding
the prior data distribution in the model development, BNN is less prone to overfitting due to the
prior regularization (Gal et al., 2017; LeCun et al., 2015; Nasrabadi, 2007). Second, to account
for the different data uncertainty levels from county to county, the yield predictor was designed
to have two endpoints to predict the yield distribution by outputting both the predicted yield

value and predictive uncertainty (Figure 4-4).
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Figure 4-4. The architecture of the proposed BDANN.

Specifically, instead of making point estimates of trainable weights w, BDANN was
trained to estimate posterior distributions p(w|D) given the training data D. However, it is
intractable to directly estimate posterior distributions considering the size of deep NN. Therefore,
we approximated p(w|D) by variational learning, which finds the variational distribution
q(w|0@) on the weights given trainable variational parameters @ that minimizes the KL-
divergence with the true posterior on the weights (Eg. (4.10)) (Blundell et al., 2015; Ma et al.,
2021a):

L(8) = KL[q(w|8)||p(w|D)] (4.10)

_ (w|6)
- f q(wl(—)) lng(‘iI,)p(Dlw) dw

= KL[q(w|B)|Ip(wW)] — E (@) [log P(DIw)]

where KL(p, q) denotes the KL-divergence between two distributions p and q. There are two
terms in (Eq. (4.10)): The first term is a prior-dependent loss L;,, = KL[q(w|0)]|p(w)], which
is the KL-divergence between the prior and the variational distribution. The second term,
Lyieia = —E(w)0) [log P(D|w)], is the negative log-likelihood function for yield prediction. To
account for the different data uncertainty levels from county to county, the yield prediction loss

Lyie1q Was designed in the form of a normal distribution as:
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1 ng . — ). 2
Lyiela = n—sz Oi=I0" | 1oes, (4.11)

i=1 2612

where y; and 6; denotes the mean and the standard deviation for the predictive yield distribution.
The mean J; is regarded as the predicted yield and the standard deviation 4; quantifies the
predictive uncertainty. Note that the yield loss can be converted to MSE (Eq. (4.5)) if 6; is
assumed to be a constant for all data samples. However, this assumption is invalid in our
scenario since the uncertainty level in training data can be varying in different regions as well as
in different observation years (Ma et al., 2021a). Therefore, the BDANN was designed to output
both the predicted yield and its standard deviation from the predictor, and the yield loss was

designed as Eq. (4.11). The final loss function for the proposed BDANN is (Eq. (4.12)):

L(®) = Lprior + Lyield + ALgomain (4.12)

4.3 Experimental Setup

Both ADANN and BDANN were trained and evaluated within twelve Midwestern U.S.
states, including North Dakota, South Dakota, Kansas, Nebraska, Minnesota, lowa, Wisconsin,
Illinois, Indiana, Ohio, Missouri, and Michigan. To evaluate the model’s transferability across
different regions, the counties under study were grouped into two diverse ecological regions
based on the United States Environmental Protection Agency (EPA) (EPA, 2001), including the
Eastern Temperate Forests (ETF) region and the Great Plains (GP) region (Figure 4-5). The ETF
is characterized by a warm, humid, and temperate climate, with humid summers and mild to cold
winters. ETF is mainly covered by dense and diverse forests. GP, on the other hand, mainly
consists of flat grasslands and has a scarcity of forests. The change of seasons in GP is more

obvious, with very hot summers and harsh winters. GP is also subjected to drought, due to the
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scarcity of forests and lack of rainfall (Omernik, 1987; Omernik and Griffith, 2014). Therefore,

we chose ETF and GP as two domains for transfer experiments.

BB o | [ Eastern Temperate FOrestS  p o mmmr—wmm km
{ <) Great Plains 0 250 500

Figure 4-5. Corn growing counties in the two ecosystem regions within the study area, including the
Eastern Temperate Forests (ETF) region and the Great Plains (GP) region.

Time-series RS imagery and weather observations were collected from 2006 to 2019 as
input predictors (Table 4.1). Three representative Vs (i.e., EVI, NDWI, and GCI) and five
weather variables (LSTday, LSTnigh, Tmax, Tmean, and PPT) were selected as the predictors

and paired with the reported yield records from USDA for model development (USDA, 2020b).

Table 4-1. Summary of study areas and data used for model development.

Domains Environment and Climate Landcover Layer Predictor Variables
Eastern Largely covered by dense forests e EVI,NDWI, GCI
Temperate with humid summers and temperate from MODIS
MCD43A4
Forest (ETF winters -
(ETH USDA-NASS LSTday and
Cropland Data Layer LSTnight from
Mainly consists of grasslands and a
Great Plains (CDL) MODIS
scarcity of forests, with very hot MYD11A2
(GP)

e Tmax, Tmean, PPT
from PRISM

summers and harsh winters.
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Besides ADANN and BDANN, three other approaches were chosen as the comparison
methods, including RF, DNN, and the original DANN model with a fixed weighting parameter A

in the loss function. Each model was evaluated under two transfer experiments (i.e., GP—ETF
and ETF—GP) where GP and ETF were alternatively used as the source domain and the target

domain for model evaluation. For RF and DNN, they were trained only using labeled samples
from the source domain and directly evaluated in the target domain. For the UDA method, they
were trained using labeled source samples and unlabeled target samples and evaluated in the
target domain in each testing year. Using all preceding years since 2006 for model training, the
models were evaluated in four testing years 2016 - 2019. R? and RMSE were selected as the

metrics to evaluate the performance of each model (Eqg. (3.5-3.6)).

4.4 Results and Discussion

4.4.1 Experimental Results

The evaluation results of transfer experiments from GP to ETF and from ETF to GP were
shown in Table 4.2. The best-performing one was highlighted in bold for each study case. It was
observed that both RF and DNN had poor performances in the target domain. Due to the domain
shift existing between the source domain and the target domain, RF and DNN trained in the
source domain could not accurately predict the corn yield in the target domain. Especially in
2019, when a flood postponed the planting of corn in several states in ETF (i.e., lllinois and
Indiana) (Baum et al., 2020), the domain shift was further enlarged between ETF and GP, and

both RF and DNN achieved low agreement in the transfer experiment from GP to ETF.

Through UDA, it was observed that the DANN model had improved performance in the

target domain in several cases. For example, in the year 2019, DANN improved the R? and
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RMSE to 0.42 and 1.08 t/ha in the transfer experiment from GP to ETF, respectively. However,
DANN had an unstable performance and could only slightly improve the accuracy in several
transfer experiments when compared to RF and DNN. ADANN and BDANN further
outperformed the DANN with more stable performance in different testing years. ADANN and
BDANN had similar performance in most cases while BDANN outperformed ADANN in
several cases. For example, when transferring from GP to ETF in 2019, BDANN decreased the
RMSE by about 10% when compared to the ADANN model. It demonstrated that by estimating
the weights in the form of variational distributions, BDANN was more robust and had stronger

learning abilities.

Table 4-2. Model evaluation in transfer experiments.

Year Case RF DNN DANN ADANN BDANN

RMSE R* RMSE R’ RMSE R?® RMSE R? RMSE R?

2016 GP-ETF 126 049 114 058 112 060 09 070 090 0.74

ETF-GP 170 028 163 033 150 044 116 066 096 0.76

2017 GP—-ETF 101 056 115 045 088 058 084 060 083 061

ETF-GP 1.83 047 145 067 138 070 106 0.82 1.20 0.77

2018 GP—ETF 110 057 122 047 117 051 098 066 095 0.67

ETF-GP 168 045 175 041 142 061 140 0.62 1.18 0.72

GP-ETF 123 026 127 020 09 048 093 051 088 0.57

2019
ETF-GP 143 059 121 072 113 076 107 078 107 0.78

To evaluate whether the methods are statistically different on the reported R?, the paired
sample t-test between the ADANN and BDANN evaluation results and each comparison model
were performed. A t-test is a statistical test that compares the means of two samples (Mishra et
al., 2019). In our case, we first compared the means of R? of ADANN model with each model in

all testing years. Then, we compared the means of R?> of BDANN model with each model in all
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testing years. Since each experiment was repeated five times, there were a total of 40 pairs of
samples in the t-test. As shown in Table 4-3, the results showed that the accuracy improvement

obtained by the proposed ADANN and BDANN was statistically significant.

Table 4-3. Results of the paired sample t-test between the R? of each model in all testing years.

Model t p-value

ADANN vs RF 39.445 0.000
ADANN vs. DNN 28.750 0.000
ADANN vs. DANN 17.434 0.000
BDANN vs RF 49.461 0.000
BDANN vs. DNN 35.548 0.000
BDANN vs. DANN 26.554 0.000
BDANN vs ADANN 8.083 0.000

We further draw the density scatter plots of reported corn yield versus predicted corn
yield in all testing years 2016-2019 to show the agreement of reported yield and predicted yield
(Figure 4-6). It was observed that both RF and DNN were unable to achieve good agreement in
both transfer experiments. Specifically, in the transfer experiment GP — ETF, severe
underestimation happened since most of the scatter points were located below the reference line
(Figure 4-6 (al)-(b1)). In the transfer experiment ETF — GP, underestimation still happened to
high-yielding counties in GP (Figure 4-6 (a2)-(b2)). The main reason was that the domain shift
would cause bias in model training and result in biased prediction when directly applying the
model to the target domain. This biased estimation was significantly mitigated by DANN when
UDA was considered. However, DANN still had biased estimations and overestimated corn yield
for low-yielding counties in ETF (Figure 4-6 (c1)). ADANN and BDANN further outperformed
DANN and achieved better agreement between the reported yields and the predicted yields. It

demonstrated that ADANN and BDANN had better spatial transferability (Figure 4-6 (d)&(e)).
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Figure 4-6. The density scatter plots of reported corn yield versus predicted corn yield in all testing years
2016-2019 in transfer experiments (1) ETF — GP and (2) GP — ETF for model (a) RF, (b) DNN, (c)
DANN, (d) ADANN, (e) BDANN

Moreover, we present the absolute error maps averaged over years 2016-2019 for each
model (Figure 4-7). For RF and DNN, clusters of large errors were observed in regions far from
the source domain. For example, when transferring from ETF to GP, a large number of errors
were observed in the west of Nebraska and Kansas (Figure 4-7 (al)-(b1)). Similarly, when
transferring from GP to ETF, large errors were concentrated in the east of Michigan and Ohio
(Figure 4-7 (a2)-(b2)). Without UDA, RF and DNN tended to make large errors in these distant
areas that have large domain shifts with the source domain. The DANN model had reduced the
errors but still had clusters of large errors in the west of Nebraska (Figure 4-7 (a3)). ADANN and
BDANN further reduced the errors and had better spatial transferability across the target

domains (Figure 4-6 (d)&(e)).
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Figure 4-7. The absolute error maps averaged over years 2016-2019 in transfer experiments (1) ETF —
GP and (2) GP — ETF for model (a) RF, (b) DNN, (c) DANN, (d) ADANN, (e) BDANN.

4.4.2 t-SNE Visualization of Feature Distributions

To provide a visual insight into the effects of UDA by each model, we visualized the
feature distributions of the input feature vectors as well as the extracted features by DANN,
ADANN, and BDANN using the t-distributed Stochastic Embedding (t-SNE) algorithm. The t-
SNE algorithm is an unsupervised data visualization tool that projects the high-dimensional
feature vectors to a low-dimensional space (i.e., two-dimension in our case) for visualization
(Maaten and Hinton, 2008). Since it is challenging to do spatial analysis in the original high-
dimensional feature space, the t-SNE algorithm was used to project a high-dimensional feature
vector to a two-dimensional space for visualization. Figure 4-8 shows the visualization results for
the original input features and extracted features by each UDA model in 2019. Data samples

from ETF and GP are color-coded, with green representing ETF and yellow representing GP.
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Figure 4-8. The t-SNE visualization results of (a) original features and extracted features by (b) DANN,
(c) ADANN, and (d) BDANN in 2019.

Before UDA, the original feature distributions from ETF and GP were separate from each
other with limited overlapping areas (Figure 4-8 (a)). It indicated that there existed large domain
shifts between ETF and GP. Therefore, RF and DNN trained in one domain would have poor
performance in the other domain. The goal of UDA is to reduce the domain shift between source
and target domains by blending features from different domains into a uniform distribution in the
feature space. After UDA, DANN, ADANN, and BDANN were able to largely reduce the
domain shift (Figure 4-8 (b)-(d)). However, some isolated data samples were observed in the
visualization results of DANN (Figure 4-8 (b)). It was found that those isolated data samples
were mostly counties near the boundary of two domains, such as from Wisconsin and Minnesota.
Since those counties were geographically close to each other and tended to have small domain
shifts, the domain loss calculated based on those data samples was always small. Therefore,
nearby data samples could be easily aligned with each other. Consequently, the feature extractor
of DANN would be mostly updated based on distant data samples with large domain shifts. Also,
since a fixed weighting parameter was given between the yield prediction loss and the domain
loss, DANN was trained to reduce the domain loss from the beginning of training. As a result,
DANN was updated to separately match nearby data samples and distant data samples but failed

to consider aligning the whole source and target domains (Ma and Zhang, 2022).
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On the other hand, ADANN was able to adaptatively adjust the weighting parameter. At
the beginning of training, the domain loss was weighted near zero so that the model would not be
mostly updated based on distant data samples with large domain shifts. As the training
proceeded, the weighting parameter increased and ADANN gradually align the source domain
and the target domain. Therefore, the data samples from both domains were well aligned.
Moreover, BDANN, due to the regularization by the prior distributions, could further prevent
being overtrained on distant data samples and thus learned to extract cross-domain features with
high spatial generalizability. Therefore, the t-SNE results showed that ADANN and BDANN had

closely aligned the whole source and target domains with no isolated data clusters (Figure 4-8
(c)-(d)).

4.4.3 Model Performance with Different Sizes of Training Sets

Finally, the learning abilities of ADANN and BDANN on small training datasets and
their performances were evaluated under different sizes of the training set. Specifically, the
training set with data samples from 2006 to 2018 was decreased and used to train the model.
After that, the trained model was evaluated on the full testing set in the target domain in the
testing year 2019. ETF and GP were alternatively used as the source domain and the target
domain. In both experiments, the size of the training set was gradually decreased from 100% (the
whole training set) to 10% (only 10% of the training set was kept). The model performance was

shown in Figure. 4-9.
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Figure 4-9. Mean R? and its standard deviation of ADANN and BDANN in transfer experiments (1) GP
— ETF and (2) ETF — GP when reducing the training set size from 100% to 10% in 2019.

It was observed that the BDANN model had a more stable performance in both transfer
experiments (Figure 4-9). Specifically, when transferring from GP to ETF, BDANN constantly
outperformed ADANN regardless of the training size. Also, the ADANN model’s performance
decreased significantly when only a small percentage of the training set was used. On the other
hand, when transferring from ETF to GP, both ADANN and BDANN performed equally well
when a relatively large training set was used. This was because the training set in the ETF was
more equally distributed. Therefore, when only a part of the training set in ETF was left, both
ADANN and BDANN could still well align ETF and GP. As the training size was further
decreased, the remaining training set in ETF was less representative and thus more difference
between the two models was observed. The BDANN model was able to achieve an R? of over
0.60 when using only 10% of training data, while the performance of ADANN dropped
significantly. These results demonstrated that the BDANN model could generalize well on small

training sets.
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4.5Summary

In this study, the strategy of adversarial domain adaptation was used to improve the
spatial transferability of DL models for corn yield prediction. Two variants of DANN, i.e.,
ADANN and BDANN, were proposed for corn yield prediction at the county level based on RS
images and weather variables. The ADANN model was designed to adaptively adjust the
weighting parameter between the yield prediction loss and the domain classification loss. Based
on ADANN, we further proposed BDANN by applying Bayesian inference to the model training.
Both ADANN and BDANN were evaluated in two ecoregions of the U.S. corn belt and
compared with other widely used ML models and UDA methods including RF, DNN, and the
DANN model with a fixed weighting parameter. Evaluation results across two ecoregions in the
U.S. corn belt demonstrated that the proposed ADANN and BDANN had better spatial
transferability with more stable performance against RF, DNN, and DANN in four testing years
2016-2019. The t-SNE visualization results showed ADANN and BDANN could effectively
reduce the domain shift and well align the source domain and the target domain. Furthermore,
we also compared the model performance on the training set with decreasing size. It was
observed that the BDANN model could generalize well on small training sets.

The main contributions of this work are summarized as follows:

e The UDA strategy was used for corn yield prediction and two adversarial domain
adaptation models were proposed for county-level corn yield prediction based on RS
images and weather variables.

e The proposed ADANN and BDANN outperformed RF, DNN, and DANN with better

spatial transferability across spatial domains.
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The t-SNE visualization showed that ADANN and BDANN were able to effectively

reduce the domain shift and well align the source domain and the target domain.

Experiments on the training set with a decreasing size demonstrated that the BDANN

model could generalize well on small training sets.
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CHAPTER 5 MULTI-SOURCE MAXIMUM PREDICTOR

DISCREPANCY FOR UNSUPERVISED DOMAIN

ADAPTATION ON CORN YIELD PREDICTION

5.1 Overview

In Chapter 4, we have demonstrated the effectiveness of the UDA strategy on corn yield
prediction. However, there are two major bottlenecks in applying current UDA methods to crop

yield prediction based on RS images and weather variables.

First, most existing UDA methods attempt to address the domain shift by directly
matching feature distributions in the source and target domains by extracting domain-invariant
features. However, directly aligning feature distributions may cause ambiguous domain-invariant
features. Such ambiguous features have limited information regarding the main task (i.e., crop
yield prediction). For example, in the scenario of crop yield prediction, large domain shifts are
likely to exist across geospatial domains due to environmental variations (Deines et al., 2021).
For those target samples that are outside the support of the source domain, they are likely to lose
discriminative features if the crop yield response in the target domain is not considered during
UDA. Therefore, simply aligning the feature distributions without considering the specific task
for the target domain may not effectively address the domain shift and the prediction accuracy in

the target domain could be still low after UDA (Riemer et al., 2019).

Second, most UDA methods were designed for single-source UDA, which assumes that
all the labeled data are collected from a single homogeneous domain. In reality, crop yield data

used for model training are typically collected from multiple heterogeneous regions (Zhao et al.,
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2020). In such cases, the single-source UDA strategy could be trivially applied by combining the
different regions into a single source (Ma et al.,, 2021b). However, due to the spatial
heterogeneity, the domain shift not only exists between the source domain and the target domain
but also exists among different source domains/regions. Thus, the combined data across multiple

regions may negatively interfere with each other during the learning process.

A promising way to address the first issue is to use the Maximum Classifier Discrepancy
(MCD) instead of using a domain classifier/discriminator during adversarial learning (Saito et
al., 2018b). The core idea of MCD is to align source and target distributions by utilizing the task-
specific decision boundaries modeled by two classifiers. First proposed for image classification
by Saito et al. (2018b), Satio et al. trained a feature extractor and two independent classifiers on
labeled source images and unlabeled target images. The two classifiers are trained to minimize
the classification loss on labeled source images while maximizing their classification
discrepancy on unlabeled target images. By doing this, the model has been trained to measure the
domain shift in a task-specific way. The model could distinguish target images that are far from
the support of the source domain. The feature extractor is then trained to fool the classifiers by
minimizing the classifier discrepancy to have the target samples generated inside the support of

the source which can help reduce the domain shift.

To address the second issue and better leverage data from multiple source domains, there
have been growing interests in multi-source UDA, which is a powerful extension of single-
source UDA that aligns the target domain to multiple source domains simultaneously (Zhao et
al., 2020). Recent multi-source UDA models are mostly developed by extending existing single-
source UDA strategies. For example, Peng et al. (Peng et al., 2019) extended the single-source

moment-matching method and proposed a moment-matching multi-source UDA model named
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M3SDA for image classification, which reduces source-target divergences and inter-source
divergences by minimizing the moment-related distances between each domain. Similarly,
adversarial-based single-source UDA models have been extended for multi-source UDA by
incorporating multiple feature extractors and domain discriminators for multi-way adversarial
learning. For instance, Xu et al. (Xu et al., 2018) proposed a deep cocktail network that uses
multi-way adversarial learning to minimize the discrepancy between the target and source
domains for image classification. Zhao et al. (Zhao et al., 2019) designed separate feature
extractors for each source to learn discriminative target representations in an adversarial manner

for image classification.

Motivated by MCD and the recent development of multi-source UDA, in this chapter, we
proposed a novel MMPD model for corn yield prediction using satellite images and weather
variables. First, inspired by MCD, we proposed MPD and designed a feature extractor and
source-specific yield predictors. The feature extractor and each pair of source-specific yield
predictors were trained in an adversarial manner to align the source and target domains by
considering crop yield response in the target domain through the yield prediction regression
curves. Second, to avoid negative interference among labeled data from heterogeneous spatial
regions, the strategy of multi-source UDA was employed by grouping labeled data based on
multiple sources and adapting them to the target domain separately. The final predictions on the

target domains were made based on the ensemble results from multiple source domains.

5.2Methodology

5.2.1 Multi-source Maximum Predictor Discrepancy
In the scenario of crop yield prediction, input predictors x € X are RS images and

weather variables, and the target variable y € Y is the crop yield. X denotes the input feature
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space and Y denotes the label space. Given an unlabeled target domain D, and M labeled source

domains Ds = {Dy, ..., Dy}, the MMPD model has a weight-shared feature extractor G¢, which

takes input x; from source or target domains to extract features, and M pairs of source-specific
yield predictors {ka, G,;k}llil, which takes extracted features from G, and make yield prediction

i, and y;, (Figure 5-1). G, and G,, are the pair of yield predictors for the i-th source domain

and they have the same structure.
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Figure 5-1. The architecture of the proposed MMPD model.

The goal of the MMPD model is to align source and target domains by utilizing a pair of
source-specific yield predictors as the discriminator to consider the relationship between
regression curves and target samples. For this objective, we need to detect target samples far
from the support of each source and align them to the source. Such target samples are likely to be
inaccurately predicted by the predictors trained with labeled source samples because they have a
large domain shift with the source domain. Therefore, we proposed to utilize the disagreement of
the pair of domain-specific yield predictors in yield prediction for target samples. Each pair of

domain-specific yield predictors are first trained with labeled source samples so that they can
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classify source samples correctly. Note that each pair of yield predictors are initialized with
different weights to obtain different predictors at the beginning of training. As a result, for target
samples far from the support of the source domains, the pair of source-specific yield predictors
are likely to make very different predictions. The disagreement of each pair of yield predictors
on target samples, which is termed as predictor discrepancy, can indicate the domain shift
between the source and target domains. Each pair of domain-specific yield predictors is trained
to maximize the predictor discrepancy on target samples to effectively detect the target samples
outside the support of the source domain. On the other hand, the G is trained to fool the
discriminator by minimizing the predictor discrepancy to have the target samples generated
inside the support of the source which can help reduce the domain shift. The goal is to obtain a

G that can extract domain-invariant and task-informative features. To achieve that goal, the

MMPD model is trained recursively in three steps (Figure 5-2).
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Figure 5-2. The three steps of training the MMPD maodel.

Step 1. First, to make the weight-shared feature extractor G¢ and the domain-specific

yield predictors {ka, Gék}le obtain informative features, they are trained to correctly predict

crop yields of the source samples (Figure 5-2. (Step 1)). Specifically, labeled data from each
source is forwarded through the feature extractor to extract features. Then, the extracted features

are fed forward to the source-specific predictors for yield prediction. Each pair of yield
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predictors is trained to be the expert in the specific source domain. The yield prediction loss in
each source is calculated as the mean squared error (Eq. (5.2)-(5.3)) and the model is trained to

minimize the total yield prediction loss in all sources (Eq. (5.1)):

Z Ly (D) + Ly (D) G
Gy {ka ka}k k=1
1
Ly(Dy) = N—Z(yik - 93)° 2

L/ = - Z(ylk i)’ 9

where N, is the number of labeled training samples from the k-th source domain; y;, and y; are

predicted yields by the pair of source-specific predictors for the k-th source domain.

Step 2. In this step, each pair of yield predictors {ka,Gz’,k}r=1 are trained as

discriminators for a fixed feature extractor Gy. By training each pair of yield predictors to

increase the discrepancy on target samples, they can detect the target samples outside the support

of the source (Figure 5-2. (Step 2)). Specifically, we fix the feature extractor G, and keep the M

pairs of source-specific yield predictors {ka, Gy }24:1 trainable. The unlabeled target data D, are

first fed into the feature extractor Gy and then forwarded to all predictors. The yield predictor
discrepancy L4 (D,) is calculated in L2 norm between the predicted yield i, and 37i’k for each pair
of source-specific predictors G,, and G, (EQ. (5.5)-(5.6)). Given a target sample out of the
support of the source, a large predictor discrepancy is expected (Figure 5-2. (Step 2)). The yield
predictors are trained to maximize the predictor discrepancy L, (D;) by minimizing the negative
Lq(Dy) so they can discriminate target samples excluded from the support of the source (Eqg.

(5.4)). Meanwhile, like Step 1, labeled source data from each source domain are fed into the
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network, and the yield prediction loss L(Ds) on the source samples are calculated (Eq. (5.1)).
The source-specific predictors are also trained to minimize the yield prediction loss L(D) to
maintain the support of each source. The overall training objective is given as follows (Eqg.

(5.9)):

min M L(Ds) —L4(Dy)

(b 64
M

La(D) = Z Ly (D) 59

(5.6)

Ldk(Dt) - Z(ylk ylk
where N, denotes the number of unlabeled training samples from the target domain.
Step 3: In this step, the feature extractor G, is trained to minimize the predictor
discrepancy on target samples for fixed yield predictors {G Gy } fe1 (Figure 5-2. (Step 3)).

Dk’

Specifically, the feature extractor Gy is kept trainable while the M pairs of source-specific yield

predictors {ka, G{,k}llil are fixed. Unlabeled target data x, is fed into the network and used to

calculate the predictor discrepancy L,;(D;) (Eq. (5.5)). During backpropagation, the feature

extractor G is updated towards minimizing the predictor discrepancy loss (Eq. (5.7)) while the

yield predictors {G,,, G, ;\::1 are fixed.

ncl;icn Lg (Dt) (5.7)
The MMPD model is trained recursively by these three steps until convergence. Overall,
the feature extractor G, and the yield predictors {G,,, G, } are trained in an adversarial

Pk’

manner under the condition that the source samples can be predicted correctly. Finally, the
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feature extractor Gy is expected to extract task-informative (i.e., informative to the crop yield)

and domain-invariant (i.e., small domain shift between source and target domains) features. In

other words, source and target distributions are aligned in a task-specific way.

5.2.2 Ensemble Schema

In the testing phase, target samples x; are forwarded through the feature extractor G, and
M pairs of source-specific yield predictors {ka,G,;k}Ilil. M pairs of predicted yields

{37ik, Vi 1:=1 are given by vyield predictors. An ensemble schema was first tested to directly

average the M pairs of outputs as the final yield prediction but generated unsatisfying results. It
was found that different sources may have different relationships with the target, e.g., one source
domain might better align with the target domain (Zhao et al., 2020). Therefore, uniformly

averaging predictions from all source predictors could result in unsatisfying accuracy.

To address this issue, a weighted ensemble schema was proposed to combine the
predictions from each source predictor. In fact, if the target domain and the k-th source domain
are well aligned, the k-th pair of source-specific yield predictors will have a low prediction error
for the k-th source dataset D, and a small predictor discrepancy for the target dataset D,.
Therefore, a weighting schema can be designed based on the prediction errors. Let a; be the
weighting parameter for the k-th source domain with the source-specific prediction error error;
and dis; be the predictor discrepancy for the target dataset D;. The weighting parameter a, is

defined as follows:

B
=— 5.8
Yk errory dis (>8)
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i=1

where the source-specific prediction error errory is defined as the mean squared error (MSE) of
the k-th pair of predictors for the k-th source dataset D, of size Ny (Eq. (5.9)); the predictor
discrepancy disy, is defined as the mean predictor discrepancy for the target dataset D, of size N;

(Eg. (5.10)); B is a tunable parameter to adjust the magnitude of «a;,.

Finally, we applied the Softmax function to normalize the weighting parameters
{a, ay, ..., ay} (Eq. (5.11)). A weighting vector w = (wy, w,, ..., wy,) can be derived and the
final prediction y; for the target samples x; is a weighted average ensemble of predicted yields

from M sources (Eq. (5.12)):

e%k
Wi = W (511)
M1
5= ). ZWOut i) (512)

5.2.3 Model Architecture
The architecture of the MMPD model was finalized to have a depth of six after a
thorough experimental analysis of accuracy on an independent validation set (Figure 5-1).

Specifically, the weight-shared feature extractor G, consists of three fully connected layers. Each
pair of source-specific yield predictor G, and Gy, has two fully connected layers and one output

layer. The batch normalization layer (BatchNorm) was used between each hidden layer to
address internal covariate shifts and overfitting (loffe and Szegedy, 2015). The Rectified Linear

Unit (ReLU) was used in each neuron as the activation function. The Adam optimizer was used
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to update the model during training. The detailed training process of the proposed MMPD model

is illustrated in Table 5.1.

Table 5-1. The Modeling Process of the Proposed MMPD Model

Algorithm 1 Modeling Process of the Proposed Method
procedure DEFINITIONS
Ds = {D4,D,, ..., Dy }: M labeled source domains
D, the unlabeled target domain
Gy: the weight-shared feature extractor

{ka, G, k}l:ﬂ: pairs of source-specific yield predictors for each source domain
Epochs: the total number of training epochs

end procedure

procedure TRAINING PROCESS
1. Initialize G¢ with random weights
2. Initialize each pair of source-specific predictors {G,, , Gy, } with different weights
Repeat steps 3-11 until reaching the Epochs

Input Dy to the MMPD model

Calculate the total yield prediction loss L(Dy) using Eq. (5.1)

Update G; and {G,,,, G,Qk}f::l to minimize L(D;)

Input D, and D, through the MMPD model

Calculate the total yield prediction loss L(D) using Eq. (1); calculate the predictor
discrepancy loss L, (D;) using Eq. (5.5)

8. Freeze G, and update {G,,, Gl’,k}M to minimize L(D,) and maximize L, (D)

9. Input D, through the MMPD model
10. Calculate the predlctor discrepancy loss L, (D;) using Eqg. (5.5)

11. Freeze {G,,, ka}kzland update G; to minimize Ly (D;)
end procedure

No g ko

procedure TESTING PROCESS
1. Input Dy and D, to the trained MMPD model
2. Calculate the source-specific prediction error error;, on the source dataset D, for the k-
th source using Eq. (5.9)
3. Calculate the predictor discrepancy dis; on the target dataset D, for the k-th source
using Eq. (5.10)
4. Calculate the weighting parameter «,, of the k-th source using Eq. (5.8)
5. Normalize the weighting parameters using Eq. (5.11)
6. Calculate the final prediction p; for a given target sample x;as the weighted average
ensemble using Eq. (5.12)
end procedure
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5.3 Experimental Setup

We selected the U.S. corn belt and Argentina as the study areas due to the availability of
sufficient yield records for model development and validation. Historical yield records in the
U.S. corn belt were collected at the county level in 2006-2019 from the USDA National
Agricultural Statistics Service (NASS) Database (USDA, 2020b). Similarly, county-level yield
records in Argentina from 2006 to 2019 were collected from the Argentina Ministry of

Agriculture (Argentine Undersecretary of Agriculture, 2020).

To evaluate the spatial transferability of the proposed MMPD model under different
scenarios, three transfer experiments have been designed. In the first experiment, we separated
counties in the U.S. corn belt into three domains according to the state-level average yield over
the recent ten years (Figure 5-3). As illustrated in Table 5.2, counties in states with an average
yield of less than 10.00 t/ha were grouped as the low-yield domain; counties in states with an
average yield between 10.00 t/ha and 11.00 t/ha were grouped as the mid-yield domain; counties
in states with an average yield higher than 11.00 t/ha were grouped as the high-yield domain.
During UDA, three domains would be used as source domains and every single state would be
alternatively treated as the target domain. For example, when the target domain is Kansas,
labeled training samples in Kansas are first removed from the training set. Then, unlabeled data
samples in Kansas and the remaining labeled samples from three source domains are used for

model training. Finally, the trained models are evaluated in Kansas in each testing year.

Table 5-2. Multiple domains based on state-level mean yield.

Low-yield states  Mean yield | Mid-yield states Mean yield | High-yield states Mean Yield

Kansas (KS) 8.65 t/ha Michigan (MI) 10.02 t/ha | Minnesota (MN) 11.48 t/ha
North Dakota (ND) 8.78 t/ha Wisconsin (WI)  10.38 t/ha Nebraska (NE) 11.50 t/ha
South Dakota (SD) 9.39 t/ha Ohio (OH) 10.72 t/ha Ilinois (IL) 11.73 t/ha

Missouri (MO) 8.45 t/ha Indiana (IN) 10.86 t/ha lowa (1A) 11.99 t/ha
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RN State-level Mean Yield:
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[ ]10.00~11.00 tha
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Figure 5-3. Three domains based on the state-level mean yield.

In the second experiment, counties in the U.S. corn belt were grouped into four domains
according to eco-regions partitioned by National Ecological Observatory Network (NEON).
NEON is a continental-scale research platform for understanding ecosystems (Kampe, 2010).
NEON partitions the U.S. into a total of twenty eco-regions, each of which represents different
regions of vegetation, landforms, climate, and ecosystem performance. Counties in the U.S. corn
belt are in seven NEON eco-regions, including Great Lakes, Prairie Peninsula, Cumberland
Plateau, Ozark Complex, Northern Plains, Central Plains, and Southern Plains. Since some eco-
regions consist of a very small number of counties, we thus merged small eco-regions and finally
resulted in four eco-domains (Figure 5-4). In transfer experiments, each eco-domain would be
alternatively treated as the target domain and the other three eco-domains would be treated as

Sources.
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Eco-domain:

Great Lakes + Cumberland Plateau
Prairic Peninsula + Ozark Complex
Northern Plains

D | Central Plains + Southern Plains

Figure 5-4. Multiple eco-domains partitioned based on NEON eco-regions.

In the third experimental setting, we further evaluate the proposed model through transfer
experiments from the U.S. corn belt to Argentina (Figure 5-5). Large domain shifts exist between
these two agricultural regions since they are in different hemispheres. The U.S. corn belt has a
continental climate while corn-producing areas in Argentina mostly have a humid subtropical
climate (Rubel and Kottek, 2011). Following the first experiment, counties in the U.S. corn belt
were divided into three domains based on the state-level average yield (Figure 5-3). Labeled
samples from these three U.S. source domains and unlabeled samples from Argentina were used
for model training. The trained models were evaluated in Argentina in the testing year 2016-

2019.
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Figure 5-5. Counties with corn yield records in Argentina.

Time-series RS imagery and weather observations were collected as input predictors
(Table 5.3). A detailed description of each data source is given in Chapter 2. The MMPD model
was compared to three other approaches, including DNN, DANN, and M3SDA. DNN was used
as the baseline model and was trained with only labeled source samples. After training, DNN
was directly evaluated in the target domain without UDA. When training DANN, multiple
sources were grouped into one source domain since DANN is a single-source UDA method.
M3SDA was trained following the multi-source setting. In addition, we also evaluated the
performance of the Single-source Maximum Predictor Discrepancy (SMPD) model, which is the
single-source counterpart of MMPD. SMPD was designed to have a feature extractor and a pair
of yield predictors. The final prediction is the average value of the predicted yields from the pair
of yield predictors. Like DANN, multiple source domains were grouped into a single source
domain when training the SMPD model. We used all preceding years since 2006 for model
training and tested models in four testing years 2016-2019. Each model was evaluated based on

RMSE and MARE.
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Table 5-3. Summary of study areas and data used for model development.

Study Landcover Layer Predictor Variable Experiment
Area
e EVI NDWI. GCI from e Experiment 1: Source: Three
: ’ domains based on
USDA-NASS MODIS MCD43A4 source €d 0
TheUS.  Cropland Data Layer © LSTday, LSTnight from fltlaetel}lgvﬂorivle)iall?e_)y_;ggg eltn
corn belt (CDL) MODIS MYD11A2 Ore ététe in the U.S corﬁ
e Tmean, Tmax, PPT from belt "~
PRISM et
e Experiment 2: Source: Three
NEON eco-regions in the
U.S. corn belt — Target:
e EVI, NDWI, GCI from
; ’ One NEON eco-region in the
MODIS Land Cover ~ MODIS MCD43A4 S corrbelt
. Tvpe product e LSTday, LSTnight from = '
Argentina ype p
(MCD12Q1 v6) MODIS MYD11A2

e Experiment 3: Source: Three
source domains based on
state-level average yield in
the U.S. corn belt — Target:
Argentina.

e Tmean, Tmax from ERAS5
e PPT from CHIRPS

5.4 Results and Discussion

5.4.1 Transfer experiments among U.S. States

We first evaluated the MMPD model based on three source domains in the U.S. corn belt
which are divided based on the state-level average yield (Figure 5-3). The evaluation results
averaged over 2016-2019 in each target state are reported in Table 5.4. The best performer in
each case is highlighted in bold. MMPD was observed to outperform other models in each target
state. Specifically, DNN performed well in some states but had low accuracy in others,
especially in low-yield states such as Kansas and North Dakota. The reason is that most training
samples are from the mid-yield and high-yield states which would introduce bias in training
DNN and limit its generalizability to low-yield states. Through UDA, DANN and M3SDA had
improved performance in a few target states (i.e., Missouri and Ohio) but performed worse than

DNN in most cases. These results indicate that merely aligning feature distributions in source



83

and target domains without considering the yield response in the target domain might invalidate
the predictor training since the samples in the target domain might be mistakenly aligned to
target samples with different yield levels. The SMPD model had comparable corn yield
prediction in several states (i.e., Ohio and Wisconsin) but had poor performance in most cases.
For example, SMPD performed poorly in high-yield states, such as Illinois and lowa. This
demonstrated that grouping all labeled samples into one source could increase the difficulty for
the model to learn from data samples collected from highly heterogenous regions. Instead,
MMPD outperformed SMPD and other models with better prediction in all cases. With MPD and
multi-source strategy, MMPD could align target samples to the most relevant source and extract

informative features for the yield prediction task.

Table 5-4. Average evaluation results of RMSE (t/ha) and MARE in each target state in testing years
2016-2019.

Target #Counties DNN DANN MB3SDA SMPD MMPD

RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE
IL 98 1.30 8.77% 1.60 10.92% 1.66 11.31% 1.83 12.42% 1.25 8.40%
IN 85 0.87 6.07% 0.91 6.54% 1.05 7.42% 1.08 8.02% 0.84 5.96%
1A 99 1.26 8.46% 1.88 13.30% 1.99 13.57% 1.96 13.81% 1.20 8.01%
KS 71 141 14.51% 1.59 16.30% 1.74 19.38% 1.70 17.95% 1.26 12.87%
MI 59 1.14 10.34% 1.09 9.80% 1.22 10.66% 111 9.88% 1.06 9.63%
MN 76 1.53 10.75% 1.63 11.43% 1.27 8.89% 1.67 12.23% 1.09 7.71%
MO 70 151 13.23% 1.16 9.83% 1.23 10.98% 1.47 13.12% 1.11 9.70%
NE 81 1.40 9.16% 1.48 10.34% 1.42 9.67% 1.98 14.11% 1.35 8.48%
ND 43 1.20 12.94% 1.37 15.19% 2.05 25.92% 1.22 13.78% 111 12.16%
OH 77 1.14 8.84% 1.08 8.61% 1.13 8.35% 1.12 8.48% 0.92 7.38%
SD 47 1.49 12.41% 1.27 11.03% 1.39 14.14% 1.22 9.84% 1.10 9.04%
Wi 57 1.22 9.29% 1.08 8.14% 1.34 10.08% 1.04 7.81% 0.94 7.20%

To evaluate whether the methods were statistically different on the reported MARE, a
paired sample t-test was used (Mishra et al., 2019). The statistical tests between the evaluation
results of MMPD and each comparison model were performed. A t-test is a statistical test that
compares the means of two samples. In this experiment, we compared the means of MARE of

each model in all testing years. Since each experiment was repeated five times in each state,
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there were totally 60 pairs of samples in each t-test. As shown in Table 5-5, the accuracy

improvement obtained by the proposed MMPD was statistically significant.

Table 5-5. The paired sample t-test of the transfer experiments among U.S. States between the MARE of
each comparison model and MMPD.

Model t p-value
MMPD vs DNN 17.379 0.000
MMPD vs. DANN 21.640 0.000
MMPD vs. MSDA 23.340 0.000
MMPD vs SMPD 28.856 0.000

Furthermore, we showed the density scatter plots for each model in four representative
target states to compare the agreement between the reported and the predicted yields in the
average of four testing years (Figure 5-6). The best agreement was again observed from the
MMPD model. It is also observed that all models show top performance in Indiana. Specifically,
the non-UDA model DNN illustrated the best prediction results in Indiana. This indicates that
Indiana has the smallest domain shift, which has been further evidenced by the best performance
among all states for almost all UAD models (except M3SDA). However, DNN performed poorly
in South Dakota with obvious underestimations (Figure 5-6 (a3)). The reason is that South
Dakota is located on the boundary of the corn belt and has a large domain shift with respect to
other states. DANN and M3SDA relatively underperformed in predicting the yields in selected
states with larger disagreement with the reported yields (Figure 5-6 (b)&(c)) since they merely
matched feature distributions in source and target domains without considering target yield
response. SMPD had better agreement than DANN and M3SDA in South Dakota and Wisconsin
but had no obvious improvement in comparison with DNN (Figure 5-6). The MMPD model
outperformed other models and had a better agreement in chosen target domains (Figure 5-6 (e)).

Moreover, we noticed that all UDA models tended to underestimate corn yield in lowa. lowa is
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the top corn-producing state in the U.S. with lots of high-yield counties. The UDA models’
prediction results indicate that the prior information or local training samples from the target
domain may be still needed when large biases exist between different domains. Even though, as

shown in Figure 5-6, MMPD is still the best-performing model in lowa with the least

underestimation.
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Figure 5-6. The density scatter plots of reported yields vs. predicted yields in 2016-2019 of (a) DNN, (b)
DANN, (c) M3SDA, (d) SMPD, () MMPD in (1) IN, (2) IA, (3) SD, (4) WI.

Finally, we presented the absolute error maps averaged over four testing years for each

model, in which darker color represents a larger error. Still, the proposed MMPD model was
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observed to have better spatial transferability than the other UDA models. In concrete, M3SDA
and DANN were observed to have spatial clustering of large errors in the east of 1A (Figure 5-7
(b2)&(c2)) and central South Dakota (Figure 5-7 (c3)). Meanwhile, in Indiana (Figure 5-7
(b1)&(c1)) and Wisconsin (Figure 5-7 (b4)&(c4)), M3SDA and DANN tended to make larger
errors than the DNN model. SMPD had solved the problem of the spatial cluster of big errors but
still had big prediction errors in lowa and South Dakota (Figure 5-7 (d2)&(d3)). Comparatively,
MMPD had better addressed the domain shift issue with smaller prediction errors in all selected

target states.
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Figure 5-7. The average absolute error maps in 2016-2019 for model (a) DNN, (b) DANN, (c) M3SDA,
(d) SMPD, (e) MMPD in (1) Indiana, (2) lowa, (3) South Dakota, (4) Wisconsin.

5.4.2 Transfer experiments among U.S. Ecoregions
In the second experiment, we evaluated MMPD via UDA among four eco-domains in the
U.S. corn belt (Figure 5-4). The evaluation results of four-year average yield predictions of

2016-2019 are given in Table 5-5 with the best performer highlighted in bold.

Table 5-6. Average evaluation results of RMSE (t/ha) and MARE in each target eco-domain in testing
years 2016-20109.

Target #Counties DNN DANN M3SDA SMPD MMPD
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RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE

A 204 1.15 9.18% 1.04 7.84% 125 10.24% 1.10 8.69% 0.97 7.76%
B 431 1.35 9.76% 1.30 9.11% 219 1543% 216 1539% 190 13.51%
C 145 15 1331% 156 1453% 177 1560% 153 1312% 147 13.02%
D 78 136 1214% 132 11.22% 212 1756% 132 1043% 118 10.27%

As shown in Table 5-6, DNN performed poorly in the target eco-domain B, eco-domain
C, and eco-domain D with RMSE over 1.30 t/ha due to the existence of domain shift. DANN
slightly outperformed DNN in eco-domain A, eco-domain B, and eco-domain D due to the
effects of UDA. However, it was observed that M3SDA again failed to effectively address the
domain shift issue and performed poorly in all eco-domains. On the other hand, SMPD
performed better than DANN in eco-domain C and D but had lower accuracy in eco-domain A
and eco-domain B (Table 5-6). MMPD, however, improved the prediction accuracy and
outperformed other models in eco-domain A, eco-domain C, and eco-domain D. However, both
SMPD and MMPD had worse performance than DNN and DANN in eco-domain B. To evaluate
whether the methods were statistically different on the reported MARE, a paired sample t-test
was used. In this experiment, we compared the means of MARE of each model in all testing
years. Since each experiment was repeated five times in each eco-domain in each year, there
were totally 80 pairs of samples in each t-test (Table 5-7). Due to its comparatively poor
performance in Ecoregion B, the MMPD didn’t perform significantly better than DNN or
DANN. However, the results still demonstrated that the accuracy improvement obtained by the

proposed MMPD was significantly better than M3SDA and SMPD.

Table 5-7 The paired sample t-test of the transfer experiments among U.S. Ecoregions between the
MARE of each comparison model and MMPD.

Model t p-value
MMPD vs DNN -0.297 0.767
MMPD vs. DANN -2.710 0.007
MMPD vs. M3SDA 20.007 0.000

MMPD vs SMPD 15.009 0.000
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Figure 5-8. The density scatter plots of reported yields vs. predicted yields in 2016-2019 of (a) DNN, (b)
DANN, (c) M3SDA, (d) SMPD, () MMPD in (1) eco-domain A, (2) eco-domain B, (3) eco-domain C,

and (4) eco-domain D.

Similarly, Figure 5-8 illustrated the density scatter plots of reported yields vs. predicted

yields in each target eco-domain in the four-year average of 2016-2019 for all prediction models.

The proposed MMPD model was observed to have the best agreement in most target eco-

domains though its prediction is inferior to DNN and DANN for eco-domain B. It was further

observed that the scatteredness of the predictions highly depended on the eco-domains as

evidenced by the high compactness of eco-domain A and vs high scatteredness of eco-domain C

and eco-domain D. This may indicate the homogeneity differences among different regions and
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the need for further subdividing the domains for training and prediction.
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Figure 5-9. The average absolute error maps in 2016-2019 for model (a) DNN, (b) DANN, (c) M3SDA,
(d) SMPD, (¢) MMPD in (1) eco-domain A, (2) eco-domain B, (3) eco-domain C, and (4) eco-domain D.

Finally, we presented the four-year average absolute error maps for each model (Figure
5-9). Again, the proposed MMPD model had better spatial transferability than other models in
most cases (Figure 5-9 (e)). However, it was observed that the overall prediction errors of
MMPD were larger than DNN and DANN in eco-domain B (Figure 5-9 (a2), (b2), (d2), and
(e2)), which were consistent with the results shown in Table 5-5. As shown in Figure 5-9, the
UDA models M3SDA, SMPD, and MMPD all showed degraded performance in eco-domain B.
It was noticed that the number of counties in eco-domain B significantly exceeds the number of

counties in other eco-domains as shown in Table 5-5. This meant smaller training sets of three
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these source domains were used as compared to the target domain B. Therefore, when
conducting UDA to eco-domain B, each domain-specific yield predictor of MMPD was not
sufficiently trained. This indicates that large source domains are required to guarantee the
success of the proposed MMPD model. Even though, MMPD still outperformed SMPD by a
large margin in eco-domain B since negative interference among different source samples was

well handled by MMPD.

5.4.3 Transfer experiments from the U.S. corn belt to Argentina

The model performance was further tested for UDA from the U.S. corn belt to Argentina.
A large domain shift exists between the U.S. corn belt and Argentina since they are in different
hemispheres with different climates. The U.S. corn belt was chosen as the source since it has
more labeled data samples for model training. Specifically, DNN was trained in the U.S. corn
belt and evaluated in Argentina without UDA or TL. DANN and SMPD were trained using the
whole U.S. corn belt as a single source domain. To train M3SDA and MMPD, counties in the
U.S. corn belt were divided into three source domains based on the state-level average yield for
multi-source UDA (Figure 5-3). The evaluation results of each model for 2016-2019 are reported

in Table 5-6 with the best results highlighted in bold for each year.

Table 5-8. Average evaluation results of RMSE (t/ha) and MARE in domain adaptation from the U.S.
corn belt to Argentina in each testing year 2016-2019.

Testing

year #Counties DNN DANN M3SDA SMPD MMPD
RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE
2016 122 187 1886% 164 16.78% 192 1982% 179 1870% 141 15.12%
2017 116 186 18.08% 179 1781% 152 1588% 1.66 16.30% 148 14.43%
2018 113 201 27.08% 188 2532% 171 2247% 196 26.76% 160 21.00%
2019 118 246  2492% 226 21.94% 202 20.92% 221 2263% 198 19.23%

To evaluate whether the methods were statistically different on the reported MARE, a

paired sample t-test was used. The statistical tests between the evaluation results of MMPD and
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each comparison model were performed, and the results are shown in Table 5-9. In this
experiment, we compared the means of MARE of each model in all testing years. Since each
experiment was repeated five times in each year, there were totally 20 pairs of samples in each t-
test. The results demonstrated that the prediction accuracy obtained by the proposed MMPD was
significantly better than the other comparison models in the transfer experiments from the U.S. corn belt

to Argentina.

Table 5-9. The paired sample t-test of the transfer experiments from the U.S. corn belt to Argentina
between the MARE of each comparison model and MMPD.

Model t p-value
MMPD vs DNN 20.210 0.000
MMPD vs. DANN 13.765 0.000
MMPD vs. M®SDA 12.645 0.000
MMPD vs SMPD 15.091 0.000

Due to the big domain shift between the U.S. corn belt and Argentina, DNN performed
poorly in all testing years, especially in 2018, when the corn harvest in Argentina was hit by the
worst drought in half a century (“Buenos Aires Times | Corn to surpass soybean production this
year, says Argentina,” 2019). By aligning the feature distributions in source and target domains,
all UDA models showed different levels of prediction accuracy improvement as compared to the
DNN model but had different stabilities. For example, in 2018, both DANN and M3SDA
improved the prediction accuracy and reduced the RMSE by large margins compared to DNN.
However, in 2017, DANN had barely improved its accuracy in comparison with DNN. Also, in
2016, M3SDA had worse performance than DNN and made about 1.00% more MARE. SMPD
was observed to outperform DNN in all testing years but underperformed DANN and M3SDA in
some testing years. In comparison, the proposed MMPD outperformed DNN and all other UDA

models in all testing years (Table 5-6).
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Figure 5-10. The density scatter plots of reported yields vs. predicted yields in Argentina of (a) DNN, (b)
DANN, (c) M3SDA, (d) SMPD, (e) MMPD in the testing year (1) 2016, (2) 2017, (3) 2018, (4) 2019.

Fig 5-10 shows the density scatter plots of each model to demonstrate the agreement
between the reported and predicted corn yields in each testing year. Again, the predicted yields
by DNN were in poor agreement with the reported yields in most testing years due to the domain
shift. As shown in Figure 5-10, different models have different levels of prediction bias in
different years. In particular, DNN significantly underestimated corn yield in 2017 and 2019
(Figure 5-10 (a2)-(a4)) while corn yield was significantly overestimated by DANN in 2017,
M3SDA in 2016, 2018, and 2019, SMPD in 2016, 2018, and 2019. However, MMPD further
improved the prediction accuracy and achieved the best agreement in all four testing years with

the least estimation bias (Figure 5-10 (el1)-(e4)).
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Figure 5-11. The average absolute error maps in Argentina of model (a) DNN, (b) DANN, (c) M3SDA,
(d) SMPD, (e) MMPD in the testing year (1) 2016, (2) 2017, (3) 2018, (4) 2019.

Finally, Figure 5-11 illustrates the corresponding absolute error maps for all models in
each testing year. It was observed that DNN constantly made large errors across Argentina,
especially in provinces Santiago del Estero (SE), Santa Fe (SF), and Buenos Aires (BA). DANN
had reduced errors in SF and BA in 2018 (Figure 5-11 (b3)) but no obvious improvement was
observed in other testing years. Similarly, the performance of M3SDA was not stable. For
example, in comparison with DNN, M3SDA had fewer errors in SF in 2018 (Figure 5-11 (c3))
but had more errors in the same region in 2017 and 2019 (Figure 5-11 (c2)&(c4)). The SMPD
model had a decent performance in BA but performed poorly in SE (Figure 5-11 (d)). Again, the

proposed MMPD model outperformed the other models with obvious improvements in each
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testing year. For example, MMPD constantly reduced errors in BA and improved vyield
prediction in southern SE and SF (Figure 5-11 (e)). Also, MMPD accurately estimated the corn
yields in SF with all absolute errors less than 1.50 t/ha in 2018 (Figure 5-11 (e3)). Furthermore, it
was noted that SE and northern SF constantly had large errors. These regions have a very low
corn yield with an average yield below 4.00 t/ha. As a result, it was challenging to align these
data samples to the source domains since most U.S. counties have a corn yield larger than 6.00

t/ha. Therefore, all UDA models made large prediction errors in these regions.

5.4.4 t-SNE Visualization of Feature Distribution

To provide a visual insight into the effects of UDA by each model, we visualized the
feature distributions of the input features as well as the extracted features by each UDA model
using the t-distributed Stochastic Embedding (t-SNE) algorithm (Maaten and Hinton, 2008). As
shown in Figure 5-12 - 5-14, one example for each UDA scenario in the testing year 2019 was

presented since similar results were obtained in other cases or other testing years.

@ Low-Yield States @ Mid-Yield States (O High-Yield States @ Target State

Figure 5-12. The t-SNE visualization of (a) input features, and extracted features from (b) DANN, (c)
M3SDA, (d) SMPD, and (¢) MMPD in three source domains (i.e., U.S. low-yield domain, mid-yield
domain, high-yield domain) and the target domain (i.e., lowa) in the testing year 2019.
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Figure 5-13. The t-SNE visualization of (a) input features, and extracted features from (b) DANN, (c)
M3SDA, (d) SMPD, and (¢) MMPD in three source domains (i.e., eco-domain A-C) and the target domain
(i.e., eco-domain D) in the testing year 2019.
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Figure 5-14. The t-SNE visualization of (a) input features, and extracted features from (b) DANN, (c)
M3SDA, (d) SMPD, and (¢) MMPD in three source domains (i.e., U.S. low-yield domain, mid-yield
domain, high-yield domain) and the target domain (i.e., Argentina) in the testing year 2019.

The goal of UDA is to blend features from different domains in a uniform distribution in
the feature space. For given input features, different t-SNE visualization results were illustrated
in Figure 5-12 — 5-14 for different source and target domains. For example, as shown in Figure
5-14 (a), the t-SNE transformed features of the domains of the U.S. corn belt and Argentina
clearly illustrated domain shift between source and target domains as well as among different
source domains, as those domain features were separately clustered. After domain adaptation
with different UDA methods, the domain shift has been reduced to different degrees as shown in

Figure 5-12 — 5-14 (b)-(e).

Specifically, DANN could well merge the source and target samples. However, since
DANN addresses the domain shift by directly matching feature distributions in source and target
domains, the wrong alignment would happen. For example, when lowa was the target domain,
quite a few target samples were aligned to the mid-yield domain by DANN although lowa is a
high-yield state (Figure 5-12 (b)). Similarly, M3SDA tries to reduce the domain discrepancy by
matching moments across all pairs of source and target domains. Therefore, it was observed that
feature distributions in the target domain were aligned closer to those in source domains by
M3SDA, but individual target samples were not uniformly mixed with source samples. For
example, when eco-domain D was the target domain, M3SDA aligned target samples closer to

the source samples but failed to dismantle the cluster of target samples (Figure 5-13 (c)). This
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explains why M3SDA performed poorly in most cases. SMPD better aligned the target domain to
source domains while there were still some extracted target feature samples located far from the
support of source domains (Figure 5-14 (d)). For example, when Argentina was the target
domain, a cluster of target samples extracted by SMPD was observed to be outside the support of
either of the source domain. Moreover, for single-source UDA methods DANN and SMPD, it
was noted that they tended to merge the source and target samples to a narrow space (Figure 5-
12 — 5-14 (b)&(d)). It indicated that samples from different sources have also been tightly
aligned by DANN and SMPD, which could cause negative interference. On the other hand, the t-
SNE transformed features of MMPD have shown the best adaptation patterns (Figure 5-12 — 5-
14 (e)). Through maximum predictor discrepancy and multi-source UDA, MMPD aligned target
samples to the most similar source domain by extracting domain-invariant and task-informative
features. For example, as shown in Figure 5-12 (e), target samples from lowa have been mostly
aligned with the high-yield domain since counties in lowa mostly have high corn yields.
Similarly, when Argentina was the target domain, most target samples have been matched to the
low-yield and mid-yield domains (Figure 5-14 (e)) in the U.S. since the corn yields in Argentina

are mostly located in the range.

5.5Summary

In this study, we proposed a multi-source UDA method named MMPD for county-level
corn yield prediction based on time-series RS imagery and weather variables (Ma et al., 2023;
Ma and Zhang, 2021). The proposed MMPD model aims to reduce the domain shift between
source and target domains and accurately predict corn yield in the target domain without using
labeled data from the target domain. By using the MPD, MMPD was trained to align source and

target domains by considering crop yield response in the target domain based on task-specific
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regression models. Also, the multi-source UDA strategy was adopted in MMPD to avoid

negative interference among source samples from heterogeneous regions. Experiments on three

UDA scenarios in the U.S. corn belt and Argentina have been conducted to evaluate the model

performance. It was observed that MMPD outperformed representative single-source and multi-

source UDA methods. Also, the t-SNE visualization analysis showed that MMPD not only

reduced the domain shift between source and target domains but also matched the target samples

to the most similar source domain.

The main contributions of this work are summarized as follows:

A multi-source UDA method, i.e., MMPD, has been developed for corn yield
prediction based on RS imagery and weather variables.

Instead of aligning feature distributions only, the MPD was used to align source and
target domains by considering crop yield response in the target domain.

The strategy of multi-source UDA was adopted for the first time in the yield
prediction tasks to avoid negative interference among labeled data samples from
heterogeneous spatial regions and better leverage data from multiple source domains.
The proposed MMPD model outperformed commonly used supervised learning,
single-source  UDA, and multi-source UDA models with improved spatial
transferability in different scenarios across the U.S. corn belt and Argentina for

multiple testing years.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

Recently, ML and DL models have been explored for corn yield prediction. Despite the
success, there are still two major limitations of existing DL-based crop yield prediction models.
First, existing models mainly focus on predicting the crop yield without providing any
information about the predictive uncertainty which is important for quantifying the confidence
interval of the prediction. Second, data-driven ML and DL models require a large amount of data
samples with labels (i.e., yield records) for model training and tend to have low spatial
transferability due to domain shifts among different regions. In this dissertation, we tried to
address these two major limitations through Bayesian inference and UDA. Specifically, the

contributions of this dissertation are summarized as follows:

e In Chapter 3, we tried to address the first challenge by introducing Bayesian inference
into DL and proposed a BNN model for corn yield prediction and uncertainty
estimation. The proposed BNN model could accurately predict county-level corn
yield and outperforms other ML and DL models. Also, accurate corn yield prediction
could be made by the proposed BNN model in August, which is about two months
ahead of the harvest. Moreover, it has been proven that predictive uncertainty has a
strong correlation with prediction error. It means that the predictive uncertainty can
be used to quantify the quality of the prediction even without the ground truth yield
records. Finally, the potential sources of predictive uncertainty have been analyzed. It

has been found that observation noises and environmental stresses, such as heat stress
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and water stress, could potentially increase the uncertainty in corn yield prediction
(Ma et al., 2021a).

e In Chapter 4, we tried to address the second challenge by using the UDA strategy.
Two adversarial domain adaptation models were proposed for county-level corn yield
prediction based on RS images and weather variables. The proposed ADANN and
BDANN have been proven to have better spatial transferability across spatial regions
and outperformed other supervised learning models and the original DANN in
transfer experiments. The t-SNE visualization showed that ADANN and BDANN
were able to effectively reduce the domain shift and well align the source domain and
the target domain (Ma et al., 2021b; Ma and Zhang, 2022).

e In Chapter 5, we further addressed the existing issue with current single-source UDA
methods and proposed a multi-source UDA method, i.e., MMPD, for corn vyield
prediction based on RS and weather variables. Instead of aligning feature
distributions only, the MPD was used to align source and target domains by
considering crop yield response in the target domain. Also, the strategy of multi-
source UDA was adopted for the first time in the yield prediction tasks to avoid
negative interference among labeled data samples from heterogeneous spatial regions
and better leverage data from multiple source domains. The proposed MMPD model
outperformed commonly used supervised learning, single-source UDA, and multi-
source UDA models with improved spatial transferability in different UDA scenarios

across the U.S. corn belt and Argentina for multiple testing years.
6.2 Future Work

The future work can be focused on the following research directions:
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Multiple Instance Regression: In this dissertation, the RS images and weather
variables were preprocessed by first masking out irrelevant pixels based on a cropland
layer and then aggregating RS images and weather variables to the county level by
calculating their mean values in each county. However, directly aggregating all pixels
within each county would cause information loss. To fully utilize the detailed
information in RS images, multiple instance regression (MIR) (Wagstaff et al., 2008)
IS @ promising strategy. In the scenario of county-level crop yield prediction, instead
of purely using the mean value of image pixels to represent the county, MIR
considers each county as a bag, its crop yield as the bag label, and pixel-level
observations within the county as instances. As a result, RS images are organized as
bags of instances, with a single label (i.e., crop yield records) applied to each bag.
With multiple instances in each bag, more detailed information has been kept and
enabled the regressor to better associate the RS images with the crop yield.

Partial Domain Adaptation: Our current studies on UDA generally assume identical
label space across different domains. This assumption can be invalid in scenarios
such as crop yield prediction since the yield levels can be very different from region
to region. As a result, a negative transfer could happen, and target samples can be
mistakenly aligned to source samples with very different yields. To alleviates
negative transfer caused by the mismatch of label spaces, partial domain adaptation
(PDA) can be a promising strategy (Cao et al., 2018). Instead of matching the whole
source domain and the target domain, PDA tries to down-weight the outlier source
samples during model training. Therefore, source samples that are within the label

space of the target samples will be given large weights during training while potential
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outlier source samples will be given small weights. As a result, the negative transfer
can be effectively alleviated while the positive transfer can be prompted.
Knowledge-guided Machine Learning: Fixed error patterns have been observed in
certain areas of our research activities. For example, in both the supervised learning
experiments and transfer experiments, models tend to underestimate the corn yield in
lowa. The reason is that lowa is the top corn-producing state in the U.S. Since the
training dataset is not uniformly distributed and has comparatively fewer high-yield
samples, either supervised learning models or UDA models would biasedly
underestimate the high-yield counties such as those from lowa. To address this issue
and avoid biased corn yield prediction, a promising way is to use knowledge-guided
ML by introducing prior knowledge to ML. With prior knowledge such as the
historical yield level in certain areas, the ML models can reduce potential biases in
the prediction.

Explainable and Interpretable Transfer Learning: The explainability and
interpretability of TL and UDA models is essential for understanding how they work
and for identifying the factors that influence their transferability and performance.
Also, with interpretable models, the input feature variables with high transferability
can be identified, which will provide guidance for feature selection and model
architectures. However, most of existing TL and UDA models in agriculture lack
interpretability. Existing studies of TL in agriculture focus on training strategies and
model performance. The lack of interpretability of TL models in agriculture can limit

their usefulness and adaptation. Therefore, improving the interpretability of TL
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models in agriculture is crucial, particularly in the context of climate change, to

enable better utilization of these models in tackling unforeseen issues.
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