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ABSTRACT

Entity matching (EM) finds data records that refer to the same real-world entity. Numerous

EM solutions have been proposed. These solutions however suffer from two main problems. First,

they are not end-to-end. That is, the EM workflow consists of multiple steps, such as cleaning,

blocking, matching, sampling, labeling, debugging, etc. Current work however has focused mostly

on blocking and matching, ignoring the remaining steps. Second, most current works are designed

primarily for power users. They are very difficult for lay users to use. In this dissertation I develop

solutions to address the above two problems. For the first problem, I work together with several

colleagues to develop Magellan, an end-to-end EM solution approach. Within the context of

Magellan, I develop a solution to help users extract missing attribute values from textual data (so

that EM can be performed more accurately). For the second problem, I develop a solution that

lay users can use to perform EM end-to-end easily on the cloud, using a cluster of machines, and

optionally using crowdsourcing. I then focus on string matching, a special case of EM, and develop

an effective end-to-end solution for lay users. Finally, I describe how the above solutions have been

implemented (mostly as open-source software) and deployed to solve real-world applications. The

open-source implementation of several solutions in particular has been deployed on Kaggle, a large

and well-known data science and competition platform with well over 0.5M users.
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Chapter 1

Introduction

Entity matching (EM) identifies data instances that refer to the same real-world entity, such

as (David Smith, UW-Madison) and (D. M. Smith, UWM). This is a critical problem in many

application domains such as e-commerce, biomedical, scientific data, military intelligence, etc.

[3, 5, 37, 2, 38, 30, 39, 97]. It will become even more critical in the age of Big Data and data

science.

Many types of EM tasks exist, such as matching tuples across two tables, matching within a

single table, matching into a knowledge base, matching XML data, etc [29, 19]. In this dissertation,

I will consider the EM task of matching tuples across two tables, which is a very common scenario

in practice. Specifically, given two tables A and B, find all tuple pairs (a ∈ A, b ∈ B) that refer to

the same real-world entity. Figure 1.1 illustrates this scenario.

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1 

a2 

a3  

b1

b2

Matches

(a1, b1)  

(a3, b2)  

Table A Table B

Figure 1.1: An example of matching two tables.

For this EM scenario, numerous solutions have been proposed over the past few decades [29,

19]. While significantly advancing the state of the art, these solutions still suffer from two major

problems. First, they are not end-to-end. That is, the EM workflow consists of multiple steps,

such as cleaning, blocking, matching, sampling, labeling, debugging, etc. Current work however
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Figure 1.2: Two main steps in EM.

has focused mostly on blocking and matching, ignoring the remaining steps. Second, most current

works are designed primarily for power users. They are very difficult for lay users to use. In what

follows I elaborate on these two problems and then discuss my solution approaches.

1.1 Developing End-to-End EM Solutions

Two fundamental steps in the EM process are blocking and matching, and current work has

focused mostly on these two steps. Below I briefly explain these two steps. Given two tables

A and B to match, considering matching all pairs in the Cartesian product of A and B is often

impractical, because there are too many of them. So the goal of blocking is to remove obvious non-

matching tuple pairs, to reduce the number of pairs to be considered. Then matching is performed

over the tuple pairs that survive blocking, to predict each tuple pair as a match/non-match. For

example, in Figure 1.2, to match two tables describing persons, we first block on state attribute

(i.e., considering only tuples that agree on the value of state) to reduce the number of tuple pairs

considered for matching from 6 to 4. Then we perform matching only over these 4 pairs, to predict

each pair as a match/non-match. In practice, however, EM is a long and complex process involving

many more steps, such as cleaning, sampling, labeling, debugging, etc. Current work has mostly

ignored these steps.

To address this problem, I work together with several colleagues to develop Magellan, an end-

to-end EM solution approach. Within the context of Magellan, I develop a solution to help users
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extract missing attribute values from textual data (so that EM can be performed more accurately).

I now briefly elaborate on these solutions.

Developing an End-to-End EM Solution Approach: In collaboration with several colleagues,

most notably Pradap Konda, I have contributed to developing Magellan, an end-to-end EM man-

agement system that focuses on all steps in the EM workflow [55]. The key ideas underlying

Magellan are as follows:

• develop how-to guides, which is a procedure telling the user what to do step-by-step from

the two input tables to matches,

• examine the procedure to identify all the pain points, and

• develop solutions for the pain points and implement the solutions as open-source tools in the

Python data science ecosystem.

I describe Magellan in more details in Chapter 2. Within the context of Magellan, I develop

a solution to help users extract missing attribute values from textual data (so that EM can be

performed more accurately), as described next.

Helping Users Extract Missing Attribute Values: A problem often encountered when users

develop EM workflows using Magellan is missing attribute values. For example, consider the

tuple in Figure 1.3 which describes a product. Observe that the value for the attribute “Size” of

the product is missing. Instead, the “Title” attribute contains the size value. In such cases the

user often needs to extract such “sprinkled” attribute values, and then uses them to perform more

accurate EM.

Figure 1.3: Example of a tuple describing a product with a missing attribute value.

To do so, users often write rule-based extractors (e.g., regexes). For example, one such regex is

shown below:



4

\d+ \s(dia|inches|feet|foot|ft|inch|in|meter|m|mm|cm|yards|yard|yd|yds).

The regex is then matched over the product title and the matched phrase is extracted as the size

value. A common problem when writing such regexes is that an regex is often not “expansive”

enough, i.e., a disjunction of a regex in the rule contains too few terms. Finding all or most such

terms is time consuming (often taking hours in practice) and error-prone. For example, the above

regex contains 15 such terms in the disjunction.

To address this, I develop an interactive tool that helps users efficiently expand a disjunction in

a regex in minutes instead of hours. The user starts by writing a initial regex with a few terms (at

least one) in the disjunction, and provides the initial regex and a dataset as input to the tool. Next,

the tool processes the given dataset to find a set of candidate terms to be added to the disjunction.

Next, it ranks these candidates, and shows the top-k candidates to the user. The user provides

feedback on which candidates are correct. The tool uses the feedback to re-rank the remaining

candidates. This repeats until either all candidates have been verified by the user, or when the user

thinks he or she has found enough terms.

Realizing the above idea raises two challenges. First, we need to find candidate terms that can

be added to the disjunction. Second, we need a method to evaluate these candidates in order to

rank them. I address these challenges in Chapter 2.

1.2 Developing Effective EM Solutions for Lay Users

Figure 1.4: An example of matching drugs.

Most current EM works are designed primarily for power users (e.g., those who know how

to program). But increasingly more and more lay users, who do not know how to program and

may not know much about EM, also want to do EM. For example, consider biomedical scientists

matching drugs across two tables (see Figure 1.4). Such users do not know much about EM, e.g.,

knowing about string similarity measures (e.g., edit distance, Jaccard, TF/IDF, etc.) and when to



5

Figure 1.5: A screenshot of CloudMatcher’s homepage.

use which measure, about machine learning models and when to use which model, etc. Current

solutions however are very difficult for such lay users to use.

To address the above problem, I develop a solution that lay users can use to perform EM end-

to-end easily on the cloud, using a cluster of machines, and optionally using crowdsourcing. I then

focus on string matching, a special case of EM, and develop an effective end-to-end solution for

lay users. In what follows I elaborate on the above two solutions.

Helping Lay Users Perform End-to-End EM on the Cloud: To address the EM needs of lay

users, in collaboration with Sanjib Das, I propose Falcon, a end-to-end crowdsourced EM solution

on the cloud for lay users. Specifically, a lay user simply needs to go to Falcon’s Web site, uploads

two tables to be matched, performs some basic pre-processing, then pushes a button. Falcon will

perform EM end-to-end. To do so, it will use crowd workers on Amazon’s Mechanical Turk (or

some other crowdsourcing platform) to label tuple pairs (as match / non-match). The user just has

to pay for the labeling. Alternatively, instead of using crowdsourcing, the user can just label these

tuple pairs. At the end, Falcon will return the desired matches. Recently, in collaboration with

Yash Govind, I have deployed Falcon as a cloud-based service, CloudMatcher, thereby making

EM for lay users a reality. Figure 1.5 shows a screenshot of CloudMatcher’s homepage.
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Falcon often needs to scale the execution of crowdsourced EM workflows over tables of mil-

lions of tuples. Realizing this raises three major challenges:

• First, I do not want to scale up a monolithic standalone EM workflow. Rather I want a

solution that is modular and extensible so that I can focus on scaling up pieces of it, and

can easily extend it later to more complex EM workflows. To address this, I introduce an

RDBMS-style execution and optimization framework, in which an EM task is translated

into a plan composed of operators, then optimized and executed. Compared to traditional

RDBMSs, this framework is distinguished in that its operators can use crowdsourcing.

• The second challenge is to provide efficient implementations for the operators. I describe a

set of implementations in Hadoop that significantly advances the state of the art. In partic-

ular, I focus on the blocking step as this step consumes most of the machine time. Current

Hadoop-based solutions to execute blocking rules either do not scale or have considered

only simple rule formats. I develop a solution that can efficiently process complex rules over

large tables. The solution uses indexes to avoid enumerating the Cartesian product, but faces

the problem of what to do when indexes do not fit in memory. I show how the solution can

nimbly adapt to these situations by redistributing the indexes and the associated workloads

across the mappers and reducers.

• Finally, I consider the challenge of optimizing EM plans. I show that combining machine

operations with crowdsourcing introduces novel optimization opportunities, such as using

crowd time to mask machine time. I develop masking techniques that use the crowd time

to build indexes and to speculatively execute machine operations. I also show to replace

an operator with an approximate one which has almost the same accuracy yet introduces

significant additional masking opportunities.

I describe Falcon in more details in Chapter 3. I then focus on string matching, a special case of

EM, and develop an effective end-to-end solution for lay users, as described next.

Helping Lay Users Perform End-to-End String Matching: Most current EM solutions focus on

matching relational tuples. These solutions are not optimized for matching strings (e.g., matching
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Figure 1.6: An example of matching two sets of strings.

two sets of names), which is ubiquitous in practice. As a result, in this direction I focus on this

specialized yet common case of EM. I develop an end-to-end string matching solution that lay

users can easily use yet obtain significantly higher matching accuracy than current string matching

solutions.

String matching (SM) is the problem of finding strings from two given sets A and B that refer

to the same real-world entity, such as “Michael J. Williams” and “Williams, Michael” (see Figure

1.6). Current SM works define match conditions using string similarity measures, of form

sim measure(a, b) ≥ δ, which predicts a pair of strings (a ∈ A, b ∈ B) as a match if their

similarity score (e.g., edit distance, Jaccard) is at least δ. Numerous solutions have been proposed

to efficiently execute such conditions over large sets of strings [104].

However, current SM approaches suffer from two major limitations. First, they are not end-to-

end. That is, most of the current solutions only consider efficiently executing the match condition,

ignoring the critical step of coming up with a good match condition. In practice, it is often error-

prone and time consuming for the user to select a good similarity measure or pick a good threshold

for the match condition.

Second, current solutions consider only match conditions that are a single predicate. In prac-

tice, using a single predicate for SM raises two serious problems. First, many real-world datasets

are heterogeneous, in that different data regions exhibit different characteristics. They can best be

matched using multiple predicates, each of which captures the characteristics of one data region.

Example 1.2.1. Consider matching two sets of person names that contains both long names (e.g.,

Shivaram Venkataraman, Christos Papadimitriou) and short names (e.g., Dave Maier, Chen Li). A

single predicate such as jaccard 2gram(a, b) ≥ ε does not work well because it is difficult to set

the threshold ε properly. A high value for ε helps match long names accurately, but can be too high
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for short names, incorrectly predicting many matching short names as non-matches. Conversely,

a low ε helps match short names accurately, but can be too low for long names. Intuitively, we

should use two predicates of the form jaccard 2gram(a, b) ≥ ε, but one with a high ε for long

names, and the other with a lower ε for short names. We can check if a name is long using a

predicate such as length(a) > 9, which returns true if the length of string a (i.e., the number of

characters in a excluding space characters) exceeds 9.

Such heterogeneity arises naturally in a single dataset (e.g., large datasets of person names

often contain a mixture of long and short names), or arises because a dataset to be matched is

being created by integrating several smaller datasets, each of which contains data of a different

nature.

Another serious problem is that real-world strings often contain substrings with special mean-

ing. Treating such substrings differently from the rest of the strings can significantly improve the

matching accuracy. To do so, however, we need to use multiple predicates.

Example 1.2.2. Consider matching house addresses. Using a single predicate such as jaccard 3gr

am(a, b) ≥ ε does not work well. A high ε (e.g., 0.9) can match addresses correctly, but ex-

clude many matches with lower Jaccard scores, e.g., “522 Wilson St Austin TX 78704” and “522

Wilson Street Austin TX 78704”. A lower ε (e.g., 0.8) helps identify matches such as the above

one, but incorrectly matches “522 Wilson St Austin TX 78704” and “422 Wilson St Austin TX

78704”, which differ only in the house numbers. To address this problem, we can extract all num-

bers from each string, then declare two strings match if the strings are highly similar (e.g., using

jaccard 3gram(a, b) ≥ 0.8) and their numbers are also highly similar (e.g., using a predicate

such as cosine num(a, b) ≥ 0.8).

To address the above limitations, I propose Smurf, an end-to-end string matching solution that

interacts with the user to learn a random forest (which uses a rich set of predicates) as the match

condition, then efficiently executes the random forest over the two sets of strings. Specifically, to

use Smurf, a lay user simply needs to upload two sets of strings to Smurf’s Web site, and labels

the set of pairs of strings shown by Smurf. Smurf uses these labeled string pairs to learn a random
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Figure 1.7: (a)-(b) A toy random forest consisting of two decision trees, and (c) matching rules
extracted from the forest.

forest (in an active-learning fashion), executes the forest over the two sets of strings, then return

the matches. Smurf uses random forests (RFs) as match conditions. A random forest F is a set of

n decision trees [13]. It declares a string pair a match if at least αn trees in F declare the pair a

match (where α is pre-specified). Random forests are widely used in practice (e.g., [82, 23, 42]),

often give very competitive performance, are relatively easy to understand, and are amenable to

optimization (as we will see). Figures 1.7.a-b show a toy forest with just two trees.

Realizing Smurf raises the major challenge of efficiently executing a random forest F over

two sets of input strings A and B. Our solution to this forms the key technical contribution of this

work. Specifically, consider a random forest F of n trees. Naively, we can execute each tree on A

and B, then combine their outputs (e.g., predicting a string pair a match if at least αn trees predict

the pair a match). This however is very time consuming. To address this problem, I propose to (a)

execute only a subset of trees on A and B to obtain a relatively small set J of string pairs that are

likely to be matches, then (b) execute the remaining trees only on J (instead of on A and B). I

show that this solution is guaranteed to be correct, yet takes far less time. I call the above two steps

blocking and matching, as they are similar in spirit to the blocking and matching steps commonly

used in EM [29].
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At the heart of both blocking and matching is the need to efficiently execute a set of decision

trees (DTs) over two sets of strings (or over a set of string pairs). A DT can be viewed as a

disjunction of matching rules (each being a conjunction of predicates). Figure 1.7.c shows all three

matching rules extracted from the toy forest. Thus, executing a set of DTs reduces to executing a

set of rules. Current work has optimized the execution of individual matching rules [23, 57]. But

as far as we know, no work has yet optimized the execution of a set of rules. Our work develops

such a solution. We observe that the matching rules often share a lot of computation, as illustrated

below:

Example 1.2.3. Suppose that a rule contains edit dist(a, b) < 3 and that another rule contains

edit dist(a, b) < 5. Then the (relatively expensive) edit distance computation is performed twice.

As another example, suppose that two rules contains overlap word(a, b) > 3 and jaccard word(a,

b) > 0.6, respectively. Then the overlap computation (i.e., finding the number of words that are

common to both a and b) is performed twice (because computing Jaccard scores also requires

computing the overlap).

To address this problem, I execute the rules jointly, in a way reminiscent of multi-query opti-

mization in RDBMSs [86]. Specifically, I define a small set of core operators that are specific to

string contexts. Given a set of rules to be executed, I show how to combine them into a plan (com-

posed of these operators). I define four optimization techniques to remove redundant computations

in such a plan. I show how to estimate the runtime of a plan, then how to efficiently search a large

space of plans to find one that employs the above optimization techniques to minimize runtime.

Finally, I show how to efficiently execute the selected plan. I describe Smurf in more details in

Chapter 4.

1.3 Contributions and Outline of This Dissertation

To summarize, in this dissertation I make the following contributions:

• First, I work together with several colleagues to develop Magellan, an end-to-end EM solu-

tion approach that focuses on all steps in the EM workflow. Within the context of Magellan,
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I develop a solution to help users extract missing attribute values from textual data (so that

EM can be performed more accurately). As far as we can tell, no current work has considered

this problem for EM.

• Second, in collaboration with Sanjib Das, I propose Falcon, an end-to-end crowdsourced

EM solution on the cloud for lay users. Falcon often needs to scale the execution of crowd-

sourced EM workflows over tables of millions of tuples. To address this, I use RDBMS-

style query execution and optimization over a Hadoop cluster. The Hadoop-based solution

in Falcon to execute complex rules over the Cartesian product of the two tables significantly

advances the state of the art. I develop three novel optimization techniques to mask machine

time by scheduling certain machine activities during crowdsourcing activities. Falcon can

efficiently perform crowdsourced EM over tables of 1.0M - 2.5M tuples at the cost of $54 -

$65.5.

• Third, I propose Smurf, an end-to-end string matching solution that lay users can easily

use yet obtains significantly higher matching accuracy than current string matching solu-

tions. Smurf learns random forests (which uses a rich set of predicates) as match conditions,

and efficiently executes the random forest over the two sets of strings. To execute the ran-

dom forest fast, Smurf decomposes it into a blocking step and a matching step, then uses

RDBMS-style plan generation and optimization to execute sets of decision trees efficiently

in both steps, by reusing computation across trees.

• Finally, I implement the above solutions (mostly as open-source software) and deploy them

to solve real-world problems. The open-source implementation of several solutions in par-

ticular has been deployed on Kaggle, a large and well-known data science and competition

platform with well over 0.5M users.

The rest of this dissertation is organized as follows. Chapter 2 introduces Magellan and describes

the solution to help users extract missing attribute values. Chapters 3 and 4 describe Falcon and

Smurf respectively. Chapter 5 describes software development and deployment experience, and

Chapter 6 concludes this dissertation.
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Parts of this dissertation have been published in database conferences. Magellan (Chapter 2) is

described in two VLDB-2016 papers [55, 54]. Our solution to help users extract missing attribute

values (Chapter 2) is described in a SIGMOD-2015 paper [75]. Falcon (Chapter 3) is described in

a SIGMOD-2017 paper [23], and Smurf (Chapter 4) is currently under submission.
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Chapter 2

Developing End-to-End EM Solutions

In this chapter I develop Magellan, an end-to-end EM solution approach. Within the context

of Magellan, I develop a solution to help users extract missing attribute values from textual data

(so that EM can be performed more accurately).

2.1 Developing an End-to-End EM Solution Approach

In this section I begin by describing how EM is done in practice and then build on that to

develop an end-to-end EM solution approach.

2.1.1 EM in Practice

In practice, EM often involves many more steps than just blocking and matching, and is often

carried out in two stages: development and production. The goal of the development stage is to

discover a good EM workflow, e.g., one with high matching accuracy. This is typically done using

data samples. The production stage then applies the workflow discovered in the development stage

to the entirety of the data. Since this data is often large, a major concern here is to scale up the

workflow. Other concerns include quality monitoring, logging, crash recovery, etc.

To illustrate, consider an example of trying to match two large tables A and B (of 1M tuples

each) using supervised machine learning. To do this, we begin with the development stage, as

shown in Figure 2.1. Here the user often has to do the following steps:



14

Figure 2.1: Development stage.

• The large input tables A and B cannot be used directly as any operation performed on them

could be very time consuming. So the user will first downsample the tables to create smaller

tables A′ and B′ (say of 100K tuples each).

• Then the user may explore the tables by performing visualization and do data cleaning if

needed.

• Next, the user will perform blocking on A′ and B′, by trying out various blocking strategies

to come up with what he or she judges to be the best. After applying blocking, the user will

get a candidate set of tuple pairs C to be considered for matching.

• Next, the user has to somehow select and apply a matcher to C. Since a supervised learning

based approach is used for matching, the user first needs to create training data by sampling

a set S from C and manually label each tuple pair in S as a match or a non-match to obtain

a labeled set G.

• The user will now use G to select a best matcher using cross validation. After applying the

matcher, each pair in C will be predicted as a match or a non-match.

• Finally, the user will check the quality of the predictions. If the user is satisfied with the

accuracy, then a workflow will be outputted for the production stage. Otherwise the user
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Figure 2.2: Production stage.

may need to go back, debug, and redo the previous steps. For example, after debugging, the

user may perform data cleaning, do information extraction, add new features, etc.

After the development stage, the user has obtained a workflow which consists of the selected

blocker and matcher. Then in the production stage the user will apply this workflow to the original

tables A and B. Since these tables are large, scaling is a major issue. Thus, the workflow is

typically executed in a big data system such as Hadoop, Spark, etc. (see Figure 2.2).

Current EM solutions provide support only for the blocking and matching steps in this EM

workflow, while ignoring less well-known yet equally critical steps such as extraction, debugging,

sampling, labeling, etc. To address this, in collaboration with several colleagues, I have contributed

to developing Magellan, an end-to-end EM management system that focuses on all steps in the

EM workflow [55]. In what follows I describe Magellan, an attempt to build an end-to-end EM

solution .

2.1.2 The Magellan Approach

Figure 2.3 shows the Magellan architecture. The system targets a set of EM scenarios. For

each EM scenario it provides a how-to guide. The guide proposes that the user solve the scenario

in two stages: development and production.

In the development stage, the user seeks to develop a good EM workflow (e.g., one with high

matching accuracy). The guide tells the user what to do, step by step. For each step the user can

use a set of supporting tools, each of which is in turn a set of Python commands. This stage is

typically done using data samples.
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Figure 2.3: The Magellan architecture.

In the production stage, the guide tells the user how to implement and execute the EM workflow

on the entirety of data, again using a set of supporting tools. Both stages have access to the Python

script language and interactive environment (e.g., IPython). Further, tools for these stages are

built on top of the Python data analysis stack and the Python Big Data stack, respectively. Thus,

Magellan is an “open-world” system, as it often has to borrow functionalities (e.g., cleaning,

extraction, visualization) from other Python packages on these stacks.

Finally, the current Magellan is geared toward power users (who can program). We envision

that in the future facilities for lay users (e.g., GUIs, wizards) can be laid on top (see Figure 2), and

lay user actions can be translated into sequences of commands in the underlying Magellan.

Within the context of Magellan, I now develop a solution to help users extract missing attribute

values from textual data (so that EM can be performed more accurately), as described next.

2.2 Helping Users Extract Missing Attribute Values

A problem often encountered when users develop EM workflows using Magellan is missing

attribute values. For example, consider the tuple in Figure 2.4 which describes a product. Observe

that the value for the attribute “Size” of the product is missing. Instead, the “Title” attribute con-

tains the size value. In such cases the user often needs to extract such “sprinkled” attribute values,
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Figure 2.4: Example of a tuple describing a product with a missing attribute value.

and then uses them to perform more accurate EM.

To extract such attribute values, users often write rule-based extractors (e.g., regexes). But

writing such rules can be very error-prone and time consuming. In particular, a common problem

is that an rule is often not “expansive” enough, i.e., a disjunction of a regex in the rule contains too

few terms. For example, to extract product type attribute from the product title, a user may write a

rule such as:

R1 : (motor | engine) oils?→ motor oil,

which states that if a product title contains the word “motor” or “engine”, followed by “oil” or

“oils”, then extract the product type as “motor oil”.

Later the user may realize that this rule is not expansive enough, in that the disjunction should

contain more terms such as “car”, “truck”, “vehicle”, and “scooter” as well. In fact, there can be

tens of terms indicating “motor” and they should all be in this disjunction. Eventually, the rule

may become:

R2 : (motor | engine | auto(motive)? | car | truck | suv | van | vehicle |

motorcycle | pick[−]?up | scooter | atv | boat) (oil | lubricant)s?→ motor oil.

The first disjunction of the regex in the above rule contains 13 terms (e.g., “motor”, “engine”, etc.).

Clearly, finding all or most such terms is error-prone and time consuming (often taking hours

in our experience). To find these terms, the user often has to painstakingly “comb” a very large set

of product titles, in order to maximize recall and avoid false positives. EM users have indicated to

us that a solution that helps them to efficiently expand such regexes would be highly desirable.

2.2.1 Our Solution

Thus, I will develop a tool that helps users find such terms, which we call “synonyms”, in

minutes instead of hours. The user starts by writing a short rule such as Rule R1 described above.
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Figure 2.5: The architecture of the tool that supports users in creating rules.

Next, suppose the user wants to expand the disjunction in R1, given a data set of product titles D.

Then he or she provides the following rule to the tool:

R3 : (motor | engine | \syn) oils?→ motor oil,

where the string \synmeans that the user wants the tool to find all synonyms for the corresponding

disjunction (this is necessary because a regex may contain multiple disjunctions, and currently

for performance and manage-ability reasons the tool focuses on finding synonyms for just one

disjunction at a time).

Next, the tool processes the given data set D to find a set of synonym candidates C. Next, it

ranks these synonym candidates, and shows the top k candidates. The user provides feedback on

which candidates are correct. The tool uses the feedback to re-rank the remaining candidates. This

repeats until either all candidates in C have been verified by the user, or when the user thinks he

or she has found enough synonyms (see Figure 2.5). I now describe the main steps of the tool in

more details.

Finding Candidate Synonyms: Given an input regexR, we begin by generating a set of general-

ized regexes, by allowing any phrase up to a pre-specified size k in place of the disjunction marked

with the \syn tag in R. Intuitively, we are only looking for synonyms of the length up to k words

(currently set to 3). Thus, if R is (motor | engine | \syn) oils?, then the following generalized

regexes will be generated:

(\w+) oils?

(\w+\s+\w+) oils?
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(\w+\s+\w+\s+\w+) oils?

We then match the generalized regexes over the given data D to extract a set of candidate syn-

onyms. In particular, we represent each match as a tuple <candidate synonym, prefix, suffix> ,

where candidate synonym is the phrase that appears in place of the marked disjunction in the cur-

rent match, and prefix and suffix are the text appearing before and after the candidate synonym in

the product title, respectively.

For example, applying the generalized regex (\w+) (jean | jeans) to the title “big men’s

regular fit carpenter jeans, 2 pack value bundle” produces the candidate synonym carpenter, the

prefix “big men’s regular fit”, and the suffix “2 pack value bundle”. We use the prefix and suffix

(currently set to be 5 words before and after the candidate synonym, respectively) to define the

context in which the candidate synonym is used.

The set of all extracted candidate synonyms contains the “golden synonyms”, those that have

been specified by the analyst in the input regex (e.g., “motor” and “engine” in the “motor oil” ex-

ample). We remove such synonyms, then return the remaining set as the set of candidate synonyms.

Let this set be C.

Ranking the Candidate Synonyms: Next we rank synonyms in C based on the similarities

between their contexts and those of the golden synonyms, using the intuition that if a candidate

synonym appears in contexts that are similar to those of the golden synonyms, then it is more likely

to be a correct synonym. To do this, we use a TF/IDF weighting scheme [80]. This scheme assigns

higher scores to contexts that share tokens, except where the tokens are very common (and thus

having a low IDF score).

Specifically, given a matchm, we first compute a prefix vector ~Pm = (pw1,m, pw2,m, ..., pwn,m),

where pwt,m is the weight associated with prefix token t in match m, and is computed as pwt,m =

tf t,m ∗ idf t. Here, tf t,m is the number of times token t occurs in the prefix of match m, and idf t is

computed as idf t = log( |M |
df t

), where |M | is the total number of matches.

Next, we normalize the prefix vector ~Pm into P̂m. We compute a normalized suffix vector Ŝm

for match m in a similar fashion.
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In the next step, for each candidate synonym c ∈ C, we compute, ~Mp,c, the mean of the

normalized prefix vectors of all of its matches. Similarly, we compute the mean suffix vector ~Ms,c.

Next, we compute ~Mp and ~Ms, the means of the normalized prefix and suffix vectors of the

matches corresponding to all golden synonyms, respectively, in a similar fashion.

We are now in a position to compute the similarity score between each candidate synonym

c ∈ C and the golden synonyms. First we compute the prefix similarity and suffix similarity for c

as: prefix sim(c) =
~Mp,c· ~Mp

| ~Mp,c|| ~Mp|
, and suffix sim(c) =

~Ms,c· ~Ms

| ~Ms,c|| ~Ms|
. The similarity score of c is then

a linear combination of its prefix and suffix similarities:

score(c) = wp ∗ prefix sim(c) + ws ∗ suffix sim(c)

where wp and ws are balancing weights (currently set at 0.5).

Incorporating User Feedback: Once we have ranked the candidate synonyms, we start by

showing the top k candidates to the user (currently k = 10). For each candidate synonym, we also

show a small set of sample product titles in which the synonym appears, to help the user verify.

Suppose the user has verified l candidates as correct, then he or she will select these candidates (to

be added to the disjunction in the regex), and reject the remaining (k − l) candidates. We use this

information to rerank the remaining candidates (i.e., those not in the top k), then show the user the

next top k, and so on.

Specifically, once the user has “labeled” the top k candidates in each iteration, we refine the

contexts of the golden synonyms based on the feedback, by adjusting the weights of the tokens

in the mean prefix vector ~Mp and the mean suffix vector ~Ms to take into account the labeled

candidates. In particular, we use the Rocchio algorithm [77], which increases the weight of those

tokens that appear in the prefixes/suffixes of correct candidates, and decreases the weight of those

tokens that appear in the prefixes/suffixes of incorrect candidates. Specifically, after each iteration,

we update the mean prefix and suffix vectors as follows:

~M ′
p = α ∗ ~Mp +

β

| Cr |
∑
c∈Cr

~Mp,c −
γ

| Cnr |
∑
c∈Cnr

~Mp,c (2.1)

~M ′
s = α ∗ ~Ms +

β

| Cr |
∑
c∈Cr

~Ms,c −
γ

| Cnr |
∑
c∈Cnr

~Ms,c (2.2)
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Product Type Input Regex Sample Synonyms Found

Area rugs (area | \syn) rugs?
shaw, oriental, drive, novelty,

braided, royal, casual, ivory, tufted,

contemporary, floral

Athletic gloves (athletic | \syn) gloves? impact, football, training, boxing,

golf, workout

Shorts (boys? | \syn) shorts?
denim, knit, cotton blend, elastic,

loose fit, classic mesh, cargo, car-

penter

Abrasive wheels & discs (abrasive | \syn) (wheels? | discs?)
flap, grinding, fiber, sanding, zirco-

nia fiber, abrasive grinding, cutter,

knot, twisted knot

Table 2.1: Sample regexes provided by the analyst to the tool, and synonyms found.

where Cr is the set of correct candidate synonyms and Cnr is the set of incorrect candidate syn-

onyms labeled by the analyst in the current iteration, and α, β and γ are pre-specified balancing

weights.

The user iterates until all candidate synonyms have been exhausted, or he or she has found

sufficient synonyms. At this point the tool terminates, returning an expanded rule where the target

disjunction has been expanded with all new found synonyms.

2.2.2 Empirical Evaluation

Overall Performance: We have evaluated the tool using 25 input regexes randomly selected

from those being worked on at the experiment time by the WalmartLabs analysts. Table 4.7.1

shows examples of input regexes and sample synonyms found. Out of the 25 selected regexes,

the tool found synonyms for 24 regexes, within three iterations (of working with the analyst). The

largest and smallest number of synonyms found are 24 and 2, respectively, with an average number
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Figure 2.6: Comparison of the TF-IDF and NB (i.e., Naive Bayes) approaches to finding synonyms
for regex expansion.

of 7 per regex. The average time spent by the analyst per regex is 4 minutes, a significant reduction

from hours spent in such cases. This tool has been in production at WalmartLabs since June 2014.

Effectiveness of TF-IDF Technique: Our goal is to examine the effectiveness of the TF/IDF

technique underlying this tool, which henceforth we will call SynFinder for brevity.

To examine this effectiveness, we can try to show that for each of the 25 regexes in our ex-

periment, SynFinder ranks the correct synonyms higher than the incorrect ones. To do this, we

would need to label all candidate synonyms found by SynFinder as correct/incorrect (so that we

have the golden data to perform the above experiment). Unfortunately SynFinder often returns a
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Figure 2.7: Number of synonyms found after five iterations as we vary the context window size.

very large set of candidate synonyms (from hundreds to over a thousand, see the second column in

Table 4.7.1). Manually labeling such large sets is highly impractical.

As a result, we opted for a second approach, where we compare SynFinder with some other

reasonable method, and show that SynFinder finds more correct synonyms than that method in

the first several iterations (thus proving more effective for the analyst). Specifically, we compare

SynFinder with a method that uses a Naive Bayes classifier to label a candidate synonym as correct

or incorrect. We trained the Naive Bayes classifier on the contexts surrounding golden synonyms,

using as the default 5 tokens to each side of the synonyms.

Figure 2.6 compares the two methods. The first column shows 10 rules that we randomly

sampled for this experiment. The second column shows the number of candidate synonyms. The

names “TF-IDF” and “NB” in the third column stand for SynFinder and the Naive Bayes method,

respectively. Subsequent columns show the number of correct synonyms returned by each method

in the first five iterations (most WalmartLabs analysts typically stopped after 3-5 iterations).

The table in the figure shows that on nine out of ten rules, SynFinder finds as many or signifi-

cantly more synonyms than the Naive Bayes method, sometimes as many as 7 times more (e.g., 14

vs. 2 for Rule #5, see the last column). It also shows that SynFinder often finds more synonyms

faster (e.g., in the first few iterations) than the Naive Bayes method. These results suggest the

effectiveness of the SynFinder approach.
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Effect of Context Length: We examined the sensitivity of SynFinder as we vary the size of the

contexts (set at 5 as default). Figure 2.7 shows the total number of synonyms found by SynFinder

after 5 iterations, as we vary the context size from 3 to 9. The figure shows no change or a minimal

improvement from size 3 to 9, thus suggesting that SynFinder is relatively robust to small changes

in the context window size.

2.3 Related Work

Developing an End-to-End EM Solution Approach: Numerous EM algorithms have been

proposed [29]. But far fewer EM systems have been developed [19]. None of the existing systems

provides support for steps such as extraction, sampling, labeling, selecting and debugging blockers

and matchers, as Magellan does.

Some recent works have discussed desirable properties for EM systems, e.g., being extensible

and easy-to-deploy [21], being flexible and open source [18], and the ability to construct complex

EM workflow consisting of distinct phases, each requiring a specific technique depending on the

given application and data requirements [34]. These works do not discuss covering the entire EM

pipeline, how-to guides, building on top of data analysis and Big Data stacks, and open-world

systems, as we do in Magellan.

Finally, the notion of “open world” has been discussed in [35], but in the context of crowd

workers’ manipulating data inside an RDBMS. Here we discuss a related but different notion of

open-world systems that often interact with and manipulate each other’s data. In this vein, the

work [15] is related in that it discusses the API design of the scikit-learn package and its design

choices to seamlessly tie in with other packages in Python.

Helping Users Extract Missing Attribute Values: Several works have addressed the problem

of finding synonyms or similar phrases [40, 59]. Godbole et al. [40] consider building generic

synonym dictionaries. Lin [59] considers automatically clustering similar words based on the

distributional pattern of words. But our problem is different in that we focus on finding “synonyms”

that can be used to extend a regex. Thus the notion of synonym here is defined by the regex.
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Many interactive regex development tools exist (e.g., [6, 7]). But they focus on helping users

interactively test a regex, rather than extending it with “synonyms”. Li et al. [58] address the

problem of transforming an input regex into a regex with better extraction quality. They use a

greedy hill climbing search procedure that chooses at each iteration the regex with the highest F-

measure. But this approach again focuses on refining a given regex, rather than extending it with

new phrases.

2.4 Conclusion

In this chapter, I described Magellan, a novel end-to-end EM management system. Then I

proposed a solution to help users extract missing attribute values from textual data (so that EM can

be performed more accurately). Finally, I presented our evaluation with analysts at WalmartLabs.

As far as we can tell, no current work has considered this problem for EM.
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Chapter 3

Helping Lay Users Perform End-to-End EM on the Cloud

3.1 Introduction

Figure 3.1: An example of matching drugs.

Most current EM works are designed primarily for power users (e.g., those who know how

to program). But increasingly more and more lay users, who do not know how to program and

may not know much about EM, also want to do EM. For example, consider biomedical scientists

matching drugs across two tables (see Figure 3.1). Such users do not know much about EM, e.g.,

knowing about string similarity measures (e.g., edit distance, Jaccard, TF/IDF, etc.) and when to

use which measure, about machine learning models and when to use which model, etc. Current

solutions however are very difficult for such lay users to use.

To address this problem, a recent work has introduced Corleone [42], a solution that crowd-

sources the entire EM workflow. Specifically, a user only needs to supply the two tables to be

matched and pay the crowdsourcing cost. Corleone will perform the end-to-end EM in an hands-

off manner, making it easier for lay users to do EM.

As described, Corleone is highly promising. But it suffers from a major limitation: it does not

scale to large tables, as the following example illustrates.

Example 3.1.1. Back in 2016, we wanted to provide EM services to hundreds of domain scientists.

Such users often do not know how to, or are reluctant to, deploy EM systems locally (such systems
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often require a Hadoop cluster, as we will see). So we wanted to provide such EM services on the

cloud, supported in the backend by a cluster of machines.

During any week, we may have tens of submitted EM tasks running. Many of these tasks

require blocking, but the users do not know how to write blocking rules (which often involve string

similarity functions, e.g., edit distance, Jaccard, TF/IDF), and we simply cannot afford to ask our

two busy developers to assist the users in all of these tasks.

Thus, we planned to deploy the hands-off solution of Corleone. A user can just submit the two

tables to be matched on a Web page and specify the crowdsourcing budget. We will run Corleone

internally, which uses the crowd to match. (In fact, if users do not want to engage the crowd, they

can label the tuple pairs themselves. Most users we have talked to, however, prefer if possible to

just pay a few hundreds crowdsourcing dollars to obtain the result in 1-2 days.)

As described, Corleone seems perfect for our situation. Unfortunately, it executes a single-

machine in-memory EM workflow, and does not scale at all to tables of moderate and large sizes.

Our users often need to match tables of 50-200K tuples each (and some have tables of millions

of tuples), e.g., an applied economist studying non-profit organizations in the US must match two

lists of hundreds of thousands of organizations. For such tables, Corleone took weeks, a simply

unacceptable time (and use of machine resources).

The above example shows that Corleone is highly promising for certain EM situations, e.g.,

EM as a service on the cloud, but that it is critical to scale Corleone up to large tables, to make

such cloud-based services a reality.

To address this problem, in this chapter I introduce Falcon (fast large-table Corleone), a solu-

tion that scales up Corleone to tables of millions of tuples.

I begin by identifying three reasons for Corleone’s being slow. First, it often performs too

many crowdsourcing iterations without a noticeable accuracy improvement, resulting in large

crowd time and cost. Second, many of its machine activities take too long. In particular, in the

blocking step Corleone simply applies the blocking rules to all tuple pairs in the Cartesian prod-

uct of the two input tables A and B. This is clearly unacceptable for large tables. Finally, when

Corleone performs crowdsourcing, the machines sit idly, a waste of resources. If we can “mask
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the machine time” by scheduling as many machine activities as possible during crowdsourcing, we

may be able to significantly reduce the total runtime.

I then describe how Falcon addresses the above problems. It is difficult to address all three

simultaneously. So Falcon provides a relatively simple solution to cap the crowdsourcing time and

cost to an acceptable level (for now), then focuses on minimizing and masking machine time.

Challenges: Realizing the above goals raised three challenges. First, I do not want to scale up

a monolithic stand-alone EM workflow. Rather, I want a solution that is modular and extensible

so that we can focus on scaling up pieces of it, and can easily extend it later to more complex EM

workflows. To address this, I introduce an RDBMS-style execution and optimization framework,

in which an EM task is translated into a plan composed of operators, then optimized and executed.

Compared to traditional RDBMSs, this framework is distinguished in that its operators can use

crowdsourcing.

The second challenge is to provide efficient implementations for the operators. I describe a

set of implementations in Hadoop that significantly advances the state of the art. I focus on the

blocking step as this step consumes most of the machine time. Current Hadoop-based solutions to

execute blocking rules either do not scale or have considered only simple rule formats. I develop a

solution that can efficiently process complex rules over large tables. The solution uses indexes to

avoid enumerating the Cartesian product, but faces the problem of what to do when the indexes do

not fit in memory. I show how the solution can nimbly adapt to these situations by redistributing

the indexes and associated workloads across the mappers and reducers.

Finally, I consider the challenge of optimizing EM plans. I show that combining machine

operations with crowdsourcing introduces novel optimization opportunities, such as using crowd

time to mask machine time. I develop masking techniques that use the crowd time to build indexes

and to speculatively execute machine operations. I also show how to replace an operator with an

approximate one which has almost the same accuracy yet introduces significant additional masking

opportunities. To summarize, my main contributions are:

• I show that for important emerging topics such as EM as a cloud service, Corleone is ideally

suited, but must be scaled up to make such services a reality.
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• I show that an RDBMS-style execution and optimization framework is a good way to address

scaling for crowdsourced EM, and I develop the first end-to-end solution to scale up hands-

off crowdsourced EM.

• I define a set of operators and plans for crowdsourced EM that uses machine learning.

• I develop a Hadoop-based solution to execute complex rules over the Cartesian product of

two tables (without materializing the Cartesian product), a problem that arises in many set-

tings (not just in EM). The solution significantly advances the state of the art.

• I develop three novel optimization techniques to mask machine time by scheduling certain

machine activities during crowdsourcing activities.

Finally, extensive experiments with real-world data sets (using real and synthetic crowds) show

that Falcon can efficiently perform hands-off crowdsourced EM over tables of 1.0M - 2.5M tuples

at the cost of $54 - $65.5.

3.2 Problem Definition

I now briefly describe Corleone [42], analyze its limitations, and define the problem consid-

ered in this work.

3.2.1 The EM Workflows of Corleone

Many types of EM tasks exist, e.g., matching across two tables, within a single table, matching

into a knowledge base, etc. Corleone (and Falcon) consider one such kind of tasks: matching

across two tables. Specifically, given two tables A and B, Corleone applies the EM workflow in

Figure 3.2 to find all tuple pairs (a ∈ A, b ∈ B) that match. This workflow consists of four main

modules: Blocker, Matcher, Accuracy Estimator, and Difficult Pairs’ Locator.

The Blocker generates and applies blocking rules to A× B to remove obviously non-matched

pairs (Figure 3.3.b shows two such rules). Since A × B is often very large, considering all tuple
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Figure 3.2: The EM workflow of Corleone.

pairs in it is impractical. So blocking is used to drastically reduce the number of pairs that subse-

quent modules must consider. The Matcher uses active learning to train a random forest classifier

[13], then applies it to the surviving pairs to predict matches. The Accuracy Estimator computes

the accuracy of the Matcher. The Difficult Pairs’ Locator finds pairs that most likely the current

Matcher has matched incorrectly. The Matcher then learns a better random forest to match these

pairs, and so on, until the estimated matching accuracy no longer improves.

Corleone is distinguished in that the above four modules use no developers, only crowdsourc-

ing. For example, to perform blocking, most current works would require a developer to examine

Tables A and B to come up with heuristic blocking rules (e.g., “If prices differ by at least $20,

then two products do not match”), code the rules (e.g., in Python), then execute them over A and

B. In contrast, the Blocker in Corleone uses crowdsourcing to learn such blocking rules (in a

machine-readable format), then automatically executes those rules. Similarly, the remaining three

modules also heavily use crowdsourcing but no developers.

Corleone can also be run in many different ways, giving rise to many different EM workflows.

The default is to run multiple iterations until the estimated accuracy no longer improves. But the

user may also decide to just run until a budget (e.g., $300) has been exhausted, or to run just one

iteration, or just the Blocker and Matcher, or just the Matcher if the two tables are relatively small,

making blocking unnecessary, etc.

3.2.2 The EM Workflows Considered by Falcon

As a first step, Falcon will consider EM workflows that consist of just the Blocker followed by

the Matcher, or just the Matcher. (Virtually all current works consider similar EM workflows.) As
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we will see, these workflows already raise difficult scaling challenges. Considering more complex

EM workflows is future work.

I now briefly describe the Blocker and the Matcher, focusing only on the aspects necessary to

understand Falcon (see [42] for a complete description).

The Blocker: The key idea underlying this module is to use crowdsourced active learning to

learn a random forest based matcher (i.e., binary classifier) M [13], then extract certain paths of

M as blocking rules.

Specifically, learning on A×B is impractical because it is often too large. So this module first

takes a small sample of tuple pairs S from A × B (without materializing the entire A × B), then

uses S to learn matcher M .

To learn, the module first trains an initial random forest matcher M , uses M to select a set

of controversial tuple pairs from sample S, then asks the crowd to label these pairs as matched /

no-matched. In the second iteration, the module uses these labeled pairs to re-train M , uses M to

select a new set of tuple pairs from S, and so on, until a stopping criterion has been reached.

At this point the module returns a final matcher M , which is a random forest classifier con-

sisting of a set of decision trees. Each tree when applied to a tuple pair will predict if it matches,

e.g., the tree in Figure 3.3.a predicts that two book tuples match only if their ISBNs match and the

number of pages match. Given a tuple pair p, matcher M applies all of its decision trees to p, then

combines their predictions to obtain a final prediction for p.

Next, the module extracts all tree branches that lead from the root of a decision tree to a “No”

leaf as candidate blocking rules. Figure 3.3.b shows two such rules extracted from the tree in

Figure 3.3.a. The first rule states that if two books do not agree on ISBNs, then they do not match.

Next, for each extracted blocking rule r, the module computes its precision. The basic idea is

to take a sample T from S, use the crowd to label pairs in T as matched / no-matched, then use

these labeled pairs to estimate the precision of rule r. To minimize crowdsourcing cost and time,

T is constructed (and expanded) incrementally in multiple iterations, only as many iterations as

necessary to estimate the precision of r with a high confidence (see [42]).
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Figure 3.3: (a) A decision tree learned by Corleone and (b) blocking rules extracted from the tree.

Finally, the Blocker applies a subset of high-precision blocking rules to A × B to remove

obviously non-matched pairs. The output is a set of candidate tuple pairs C to be passed to the

Matcher.

The Matcher: This module applies crowdsourced active learning on C to learn a new matcher

N , in the same way that the Blocker learns matcher M on sample S. The module then applies N

to match the pairs in C.

Reasons for Not Using Key-Based Blocking: Recall that we plan to learn blocking rules such

as those in Figure 3.3.b. As we will see in Section 3.4, it is a major challenge to execute such rules

over two tables A andB efficiently, without enumerating the entire Cartesian product as Corleone

does.

Given this, one may ask why consider rule-based blocking (RBB) at all. In particular, many

recent works have used key-based blocking (KBB, see the related work section), where tuples are

grouped into blocks based on associated keys, and only tuples in each block are considered in the

subsequent matching step. As such, KBB is highly scalable.

It turns out that KBB does not work well for many data sets, due to dirty data, variations in data

values, and missing values. For example, on the Products, Songs, and Citations data sets in Section

4.8, our extensive effort at KBB produces recalls of 72.6%, 98.6%, and 38.8% (recall measures the

fraction of true matches that survive the blocking step; ideally we want 100% recall). In contrast,

rule-based blocking produces recalls of 98.09%, 99.99%, and 99.67%.

Thus, we decide to use rule-based blocking. This does not mean we execute blocking rules on

the materialized Cartesian product, like Corleone. Instead, we analyze the rules, build indexes
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over the tables, then use them to quickly identify only a small fraction of tuple pairs to which

the rules should be applied (see Section 3.4). In particular, it can be shown that when a blocking

rule performs key-based blocking (e.g., the first rule in Figure 3.3.b, “(isbn match = N) → No”,

considers only tuples that share the same ISBN), our solution in Section 3.4 reduces to current

key-based blocking solutions on MapReduce.

3.2.3 Limitations of Corleone

Corleone is highly promising because it uses only crowdsourcing to achieve high EM accuracy

at a relatively low cost [42]. However it suffers from a major limitation: it does not scale to large

tables. The largest table pair in [42] is 2.6K tuples × 64K tuples.

Several real-world applications that we have been working with, however, must match tables

ranging from 100K to several millions of tuples. On two tables of 100K tuples each, Corleone

had to be stopped after more than a week, with no result. Clearly, we must drastically scale up

Corleone to make it practical.

To scale, our analysis reveals that we must address three problems. First, we must minimize the

crowd time of Corleone. As described earlier, the Blocker and Matcher crowdsource in iterations

(until reaching a stopping criterion). Each iteration requires the crowd to label a certain number of

tuple pairs (e.g., 20). The number of iterations can be quite large (e.g., close to 100 for the Blocker

in certain cases), thus incurring a large crowd time (and cost).

Second, we must minimize the machine time of Corleone. The single biggest “consumer” of

machine time turned out to be the step of executing the blocking rules. For this step Corleone

applies the rules to each tuple pair in A× B. This clearly does not scale, e.g., two tables of 100K

tuples each already produce 10 billion tuple pairs, too large to be exhaustively enumerated. Given

the single-machine in-memory nature of Corleone, certain other steps also consume considerable

time, e.g., the set C of tuple pairs output by the Blocker is often quite large (often in the tens of

millions), making active learning on C very slow.

Finally, Corleone performs crowdsourcing and machine activities sequentially. For example,

in each iteration of active learning in the Blocker, the machine is idle while Corleone waits for the
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crowd to finish labeling a set of tuple pairs. Thus, we should consider masking the machine time,

by scheduling as many machine activities as possible during crowdsourcing. As we will see in

Section 3.5.2, this raises very interesting optimization opportunities, and can significantly reduce

the total execution time.

3.2.4 Goals of Falcon

It is difficult to address all of the above performance factors simultaneously. So as a first

step, in Falcon I will develop a relatively simple solution to keep the crowd time (and cost) at an

acceptable level (for now), then focus on minimizing and masking machine time.

Keeping Crowd Time Manageable: The total crowd time tc is the sum of tab, crowd time for

active learning of the Blocker, ter, crowd time for evaluating the blocking rules of the Blocker, and

tam, crowd time for active learning of the Matcher.

We observe that active learning in the Blocker and Matcher can take up to 100 iterations.

Yet after 30 iterations or so the accuracy of the learned matcher stays the same or increases only

minimally. As a result, in Falcon we stop active learning when the stopping criterion is met or

when the number of iterations has reached a pre-specified threshold k (currently set to 30). This

caps the crowd times tab and tam.

As for ter, we can show that the procedure of evaluating blocking rules described in [42] is

guaranteed to execute at most 20 iterations per rule (see [1] for a proof). As a result, we can

estimate an upper bound on the total crowd time (regardless of the table sizes):

Proposition 1. For active learning in the Blocker and Matcher, let k be the upper bound on the

number of iterations, q1 be the number of pairs to be labeled in each iteration, and ta be the

average time it takes the crowd to label a pair (e.g., the time it takes to obtain three answers from

the crowd, then take majority voting). For rule evaluation in the Blocker, let n be the number of

rules to be evaluated, and q2 be the number of pairs to be labeled in each iteration. Then the total

crowd time tc is upper bounded by ta(2kq1 + 20nq2).
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In practice, when crowdsourcing tables of several million tuples each, we found tc in the range

9h 59m - 15h 48m on Mechanical Turk. While still high, this time is already acceptable in many

settings, e.g., many users are satisfied with letting the system run overnight. Thus, we turn our at-

tention to reducing machine time, which poses a far more serious problem as it can easily consume

weeks.

Minimizing and Masking Machine Time: Let tm be the total machine time (i.e., the sum of the

times of all machine activities). The total time of Corleone is (tc + tm). We seek to minimize

this time by (a) minimizing tm, and (b) masking, i.e., scheduling as many machine activities as

possible during crowd activities. This will result in a (hopefully far smaller) total time (tc + tu),

where tu < tm is the total time of machine activities that cannot be masked.

We will seek to preserve the EM accuracy of Corleone, which are shown to be already quite

high in a variety of experiments [42]. Yet we will also explore optimization techniques that may

reduce this accuracy slightly, if they can significantly reduce (tc + tu).

Reasons for Focusing on Machine Time: As hinted above, we focus on machine time for several

reasons. First, for now machine time is the main bottleneck. It often takes weeks on moderate data

sets, rendering Corleone unusable. On the other hand, crowd time (say on Mechanical Turk) is

already in the range of being acceptable for many applications. So our first priority is to reduce

machine time to an acceptable range (say hours), to be able to build practical systems.

Second, Section 4.8 shows that we have achieved this goal, reducing machine time from weeks

to 52m - 2h 32m on several data sets. Since crowd time on Mechanical Turk was 11h 25m - 13h

33m, it may appear that the next goal should be to minimize crowd time because it makes up a large

portion of total time. This however is not quite correct. As I discuss in Section 3.6.1, crowd time

can vary widely depending on the platform. In fact, I describe an application on drug matching

that uses in-house crowds, where crowd time was only 1h 37m, but machine time was 2h 10m,

constituting a large portion (57%) of the total run time. For such applications further optimizing

machine time is important.
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Finally, once we have made major progress on reducing machine time, we fully intend to focus

on crowd time, potentially using the techniques in [47].

3.3 The Falcon Solution

3.3.1 Adopting an RDBMS Approach

Recall that Falcon considers EM workflows consisting of the Blocker followed by the Matcher,

or just the Matcher if the tables are small. A straightforward solution is to just optimize these two

stand-alone monolithic EM workflows.

This solution however is unsatisfying. First, soon we may want to add more operators (e.g.,

the Accuracy Estimator), resulting in more kinds of EM workflows. Second, we focus for now

on machine time, but soon we may consider other objectives, e.g., minimizing crowd time/cost,

maximizing accuracy, etc. In fact, users often have differing preferences for trade-offs among

accuracy, cost, and time. It would be difficult to extend an “opaque” solution focusing on stand-

alone monolithic EM workflows to such scenarios. Finally, the Blocker and Matcher actually share

common operations, e.g., crowdsourced active learning. An opaque solution makes it hard to factor

out and optimize such commonalities.

For these reasons, I propose that Falcon adopt an RDBMS approach. Specifically, (1) I will

identify a set of basic operators that underlie the Blocker and Matcher (as well as constitute a

big part of other modules, e.g., Accuracy Estimator). I will compose these operators to form

EM workflows. (2) I will develop efficient implementations of these operators, using Hadoop.

And (3) I will develop both intra- and inter-operator optimization techniques for the resulting EM

workflow, focusing on rule-based optimization for now (and considering cost-based optimization

in the future).

I now define a set of operators and show how to compose them to form EM workflows, hence-

forth called EM plans. Sections 3.4-3.5 describe efficient implementations of operators, then plan

generation, execution, and optimization.
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3.3.2 Operators

I have defined the following eight operators that we believe are sufficient to compose a wide

variety of EM plans.

sample pairs: takes two tables A,B and a number n, and outputs a set S of n tuple pairs

(a, b) ∈ A×B. This operator is important because we want to learn blocking rules on the sample

S instead of A×B, as learning on A×B is impractical for large A and B.

gen fvs: takes a set S of tuple pairs and a set F of m features, then converts each pair (a, b) ∈ S

into a feature vector 〈f1(a, b), . . . , fm(a, b)〉, where each feature fi ∈ F is a function that maps

(a, b) into a numeric score. For example, a feature may compute the edit distance between the

values of the attributes title of a and b. This operation is important because we want to learn

blocking rules (during the blocking stage) and a matcher (during the matching stage), and we need

feature vectors to do the learning. (Section 3.5.1 discusses how Falcon generates features.)

al matcher: Suppose we have taken a sample S fromA×B and have converted S into a set S ′ of

feature vectors. This operator performs crowdsourced active learning on S ′ to learn a matcher M .

Specifically, it trains an initial matcher M , uses M to select a set of controversial pairs from S ′,

asks the crowd to label these pairs, uses them to improve M , and so on, until reaching a stopping

criterion.

get blocking rules: extracts a set of blocking rules from a matcher M (typically output by

operator al matcher). This operator assumes that M is such that we can extract rules from it. To

be concrete, Falcon will assume that M is a random forest, from which we can extract a set of

blocking rules {R1, . . . , Rn} such as those shown in Figure 3.3.b. Each rule Ri is of the form

pi1(a, b) ∧ . . . ∧ pimi
(a, b)→ drop (a, b), (3.1)

where each predicate pij(a, b) is of the form [f i
j(a.x, b.y) opij v

i
j]. Here f i

j is a function that computes

a score between the values of attribute x of tuple a ∈ A and attribute y of tuple b ∈ B (e.g., string

similarity functions such as edit distance, Jaccard). Thus predicate pij compares this score via

operation opij (e.g., =, <, ≤) with a value vij .
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Figure 3.4: The two plan templates used in Falcon.

eval rules: takes a set of blocking rules, computes their precision and coverage, then retains

only those with high precision and coverage. Precisions are computed using crowdsourcing. This

operator is important because some blocking rules may be imprecise, i.e., eliminating too many

matching tuples when applied to A×B.

select opt seq: Let R be the set of n blocking rules output by eval rules. Then there are∑n
k=0

(
n
k

)
∗ k! possible rule sequences, each containing a subset of rules in R. Executing a rule

sequence R̄ on a tuple pair means executing each rule in R̄ in that order, until a rule “fires” or all

rules have been executed. It turns out that the rule sequences of R can vary drastically in terms

of precision, selectivity, and run time. Thus this operator returns a rule sequence R̄∗ from R that

when applied to A×B would minimize run time while maximizing precision and selectivity (i.e.,

it would produce a set of tuple pairs C that is as small as possible and yet contains as many true

matching pairs as possible).

apply blocking rules: applies a sequence of blocking rules R̄ to two tables A and B, producing

a set of tuple pairs C ⊆ A×B to be matched in the matching stage. Applying R̄ in a naı̈ve way to

all pairs in A × B is clearly impractical. So this operator uses indexes to apply R̄ only to certain

tuple pairs, on a Hadoop cluster (see Section 3.4.3).

apply matcher: applies a matcher to a set of tuple pairs C, where each pair is encoded as a

feature vector, to predict “matched”/“not matched” for each pair in C.
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3.3.3 Composing Operators to Form Plans

The above eight operators (together with relational operators such as selection, join, and pro-

jection) can be combined in many different ways to form EM plans. As a first step, Falcon will

consider the two common plan templates in Figure 3.4, which correspond to the EM workflows

that use both the Blocker and Matcher, and just the Matcher, respectively.

The first plan template (Figure 3.4.a, where operators with crowd symbol use crowdsourcing)

performs both blocking and matching. Specifically, we apply sample pairs to Tables A and B

to obtain a sample S, then convert S into a set of feature vectors S ′. Next, we do crowdsourced

active learning on S ′ to obtain a matcher M . Next we extract blocking rules R from M , then use

crowdsourcing to evaluate and retain only the best rules E. Next, we select the best rule sequence

F from E, then apply F on Tables A and B to obtain a set of tuple pairs C. Finally, we convert C

into a set of feature vectors C ′, do crowdsourced active learning on C ′ to learn a matcher N , then

apply N to match pairs in C ′.

The second plan template (Figure 3.4.b) performs only matching. It computes the Cartesian

product C of A and B, converts C into a set of feature vectors C ′, does crowdsourced active

learning on C ′ to learn a matcher N , then applies N to match pairs in C ′.

Falcon selects the first plan template if it deems TablesA andB sufficiently large, necessitating

blocking, otherwise it selects the second plan template (see Section 3.5.1).

3.4 Efficient Implementations of Operators

I have developed an efficient Hadoop solution for the apply blocking rules operator (the re-

maining operators have been implemented by Sanjib Das and are described in [1]). Among the

operators, apply blocking rules consumes by far the most of machine time, and is also the most

difficult to implement.

Recall that apply blocking rules takes two tables A and B, and a sequence of rules R̄ =

[R1, . . . , Rn], where each rule Ri is of the form shown in Formula 3.1, then outputs all tuple pairs

(a, b) ∈ A×B that satisfy at least one rule in R̄.
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Figure 3.5: (a) A rule sequence, (b) the same rule sequence converted into a single “positive” rule,
and (c) an illustration of how apply all works.

Example 3.4.1. Consider the sequence of two rules [R1, R2] in Figure 3.5.a. Rule R1 states that

two books do not match if their titles are not sufficiently similar (using a Jaccard similarity function

over the two titles tokenized as two sets of words). Rule R2 states that two books do not match if

they disagree on years and their prices differ by at least $10 (here exact match(a.year, b.year)

returns 1 if the years match and 0 otherwise, and abs diff(a.price, b.price) returns the absolute

difference in prices).

In what follows I describe the limitations of the current solutions for this operator, the key ideas

underlying our solution, then the implementation of these ideas.

3.4.1 Limitations of Current Solutions

Two MapReduce solutions to apply rules to tuple pairs inA×B have been proposed: MapSide

and ReduceSplit [52].

MapSide assumes the smaller table fits in the memory of the mappers, in which case it can

execute a straightforward map-only job to enumerate the pairs and apply the rules. If neither table

fits in memory, then ReduceSplit uses the mappers to enumerate the pairs, then spreads them

evenly among the Reducers, which apply the rules.

As far as I can tell, these are state-of-the-art solutions that can be applied to our setting. (The

works [90, 101, 57] are related, but consider specialized types of rules and develop specialized

solutions for these. Hence they do not apply to our setting that uses a far more general type of

rules.)
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Both MapSide and ReduceSplit are severely limited in that they still enumerate the entire

A×B, which is often very large (e.g., 10 billion pairs for two tables of 100K tuples each).

3.4.2 Key Ideas Underlying Our Solution

Both MapSide and ReduceSplit assume the rules are “blackboxes”, necessitating the enu-

meration of A × B. This is not true in Falcon, where the rules use the features automatically

generated by Falcon (see Section 3.5.1), and these features in turn often use well-known similar-

ity functions, e.g., edit distance, Jaccard, exact match, etc. (see Example 3.4.1). Thus, we can

exploit certain properties of these functions to build index-based filters, then use them to avoid

enumerating A×B.

Example 3.4.2. Suppose we want to find all tuple pairs in A × B that satisfy the predicate

jaccard word(a.title, b.title)> 0.6. It is well known that for a pair of string (x, y), jaccard(x, y)

≥ t implies |y|/t ≥ |x| ≥ |y| · t [104]. This property can be exploited to build a length filter for

the above predicate. Specifically, we build a B-tree index Il over the lengths of attribute a.title

(counted in words). Given a tuple b ∈ B the filter uses Il to find all tuples a in A where the length

of a.title falls in the range [|b.title| · 0.6, |b.title|/0.6], then returns only these (a, b) pairs. We can

then evaluate jaccard word(a.title, b.title) > 0.6 only on these pairs.

Realizing this idea in MapReduce however raises the challenge that the indexes may not fit into

memory. So I propose four solutions that balance between the amount of available memory and

the amount of work done at the mappers and reducers, then develop rules for when to select which

solutions.

3.4.3 The End-to-End Solution

We now build on the above ideas to describe the end-to-end solution for apply blocking rules.

1. Convert the Rule Sequence into a CNF Rule: We begin by rewriting the rule sequence

R̄ = [R1, . . . , Rn] into a form that is amenable to distributed processing in subsequent steps.
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Specifically, we first rewrite R̄ as a single “negative” rule P in disjunctive normal form (DNF):

[p11(a, b) ∧ . . . ∧ p1m1
(a, b)] ∨ . . . ∨ [pn1 (a, b) ∧ . . . ∧ pnmn

(a, b)]

→ drop (a, b).

Then we convert this negative rule into a “positive” rule Q in conjunctive normal form (CNF):

[q11(a, b) ∨ . . . ∨ q1m1
(a, b)] ∧ . . . ∧ [qn1 (a, b) ∨ . . . ∨ qnmn

(a, b)]

→ keep (a, b) as they may match,

where each predicate qij is the complement of the corresponding predicate pij in the “negative” rule

P .

Example 3.4.3. The rule sequence [R1, R2] in Figure 3.5.a is converted into the “positive” rule Q

in CNF in Figure 3.5.b.

2. Analyze CNF Rule to Infer Index-Based Filters: Next, we analyze the CNF rule to infer

index-based filters. Work on string matching has studied several such filters for similarity functions

(e.g., [83, 17]). Falcon builds on this work. It currently uses eight similarity functions (e.g., edit

distance, Jaccard, overlap, cosine, exact match, etc.), and five filters. The filters are discussed in

detail in Section 3.4.4.

Example 3.4.4. Consider again rule Q in Figure 3.5.b. Falcon assigns three filters to predicate

jaccard word(a.title, b.title) > 0.6: length filter, prefix filter, and position filter [104]. Falcon

assigns an equivalence filter to exact match(a.year, b.year) = 1. Given a tuple b ∈ B, this filter

uses a hash index to find all tuples in A that have the same year as b.year. Finally, Falcon assigns

a range filter to abs diff(a.price, b.price) < 10. Given a tuple b ∈ B, this filter uses a B-tree

index to find all tuples in A whose prices fall into the range (b.price− 10, b.price+ 10).

Once we have inferred all filters for rule Q, we execute several MapReduce (MR) jobs to build

the indexes for these filters (more details in Section 3.4.5).

3. Apply the Filters to the Rule Sequence: Let F and I be the set of filters and indexes that

have been constructed for rule Q, respectively. We now consider how to use MapReduce to apply
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F to A× B (without materializing A× B) to find a set of tuple pairs that may match, then apply

Q to these pairs. A reasonable solution is to copy the set of indexes I to each of the mappers, use

I to quickly locate candidate pairs (a, b), send them to the reducers, then apply Q to these pairs.

A challenge however is that I (which can be as large as 3G in our experiments) may not fit

into the memory of each mapper. So we propose four solutions that balance between the amount

of memory available for the indexes at the mappers and the amount of work done at the reducers.

Section 3.5.1 discusses how to select among these four solutions.

(a) apply-all: This solution loads the entire set of indexes I into the memory of each mapper,

which uses I to locate pairs (a, b) that may match. The reducers then apply rule Q to these pairs

(see the pseudo code in Algorithm 3.1).

Example 3.4.5. Consider three mappers into whose memory we already load indexes I (Figure

3.5.c). We first partition tableA three ways sending each partition to a mapper. We do the same for

tableB. Now consider Mapper 1. For each arriving tuple a ∈ A, it emits a key-value pair 〈aid, a〉,

where aid is the ID of a. For each arriving tuple b ∈ B, Mapper 1 applies the filters by using I

to find a set of IDs of tuples in A that may match with b. Let these IDs be aid1, . . . , aidn. Then

Mapper 1 emits key-value pairs 〈aid1, b〉, . . . , 〈aidn, b〉 (I discuss below optimizations to avoid

emitting multiple copies of the same tuple). The other mappers proceed similarly.

Each emitted key-value pair is sent to one of the two reducers. For example, for a particular

key aid, Reducer 1 receives all key-value pairs with that key: 〈aid, a〉, 〈aid, b1〉, . . . , 〈aid, bm〉 (see

Figure 3.5.c). Then this reducer can apply rule Q to the pairs (a, b1), . . . , (a, bm).

(b) apply-greedy: loads only the indexes of the most selective conjunct of ruleQ into the mappers’

memory. The mappers apply only the filters of this conjunct. The reducers then apply Q to all

surviving pairs. The selectivity of each conjunct in Q can be computed from the selectivity of the

corresponding rule in R̄. See [1] on how to estimate rule selectivities when we evaluate the rules

on sample S.

(c) apply-conjunct: uses multiple mappers, each loading into memory only the indexes of one
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Algorithm 3.1 apply-all
1: Input: Tables A and B, Rule sequenceR, L: set of length indexes, O: set of token orderings, P : set of inverted indexes (on prefix tokens), H:

set of hash indexes, and T : set of tree indexes

2: Output: Candidate tuple pairs C

3:
4: map-setup: /* before running map function */

5: Load L,O, P , H , and T into memory

6: Q⇐ TranslateR into a positive rule in CNF

7:
8: map(K: null, V : record from a split of either A or B):

9: if V ∈ B then

10: /* Q = q1 ∧ q2... where each qi is pi1 ∨ pi2 ...*/

11: CQ⇐
⋂

q∈Q (
⋃

p∈q FindProbableCandidates(V , p))

12: for each a.id ∈ CQ, emit (a.id, V )

13: else /* V ∈ A */

14: emit(V.id, V )

15: end if

16:
17: reduce(K′: a.id where a ∈ A, LIST V ′: contains a ∈ A and a set of B tuples, CB):

18: for each b ∈ CB do

19: if (a, b) does not satisfy rule sequenceR, emit (a, b)

20: end for

Procedure FindProbableCandidates(b, p)

1: Input: b ∈ B, p: predicate of the form sim(a.col1, b.col2) op v

2: Output: Cp = {a.id | a ∈ A, (a, b) passes all filters}

3: if sim = ExactMatch then

4: Hp⇐ Get hash index for p from H

5: Cp⇐ Probe Hp with b.col2

6: else if sim ∈ {AbsDiff, RelDiff} then

7: Tp⇐ Get tree index for p from T

8: Cp⇐ Probe Tp with range [b.col2− v, b.col2 + v]

9: else /* sim ∈ {Jaccard, Dice, Overlap, Cosine, Levenshtein} */

10: {Pp, Lp, Op} ⇐ Get inverted index, length index and token ordering for p from P,L and O

11: l⇐ Compute prefix length of b.col2 using v

12: bl⇐ Get prefix tokens of b.col2 using l and Op

13: Cp⇐ Probe Pp with bl, apply position and length filters using Pp and Lp

14: end if

15: return Cp

conjunct (of rule Q). There are at most as many mappers as the number of conjuncts (no mapper

for those conjuncts whose indexes do not fit into the mappers’ memory). The reducers first perform
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intersection on the pairs surviving various mappers, then apply Q to the pairs in the intersection.

(d) apply-predicate: is similar to apply conjunct, except that here each mapper loads the indexes

of one predicate (of rule Q), and the reducers need to process the pairs surviving the mappers in a

more complicated fashion (than just taking intersection as in apply conjunct).

Optimizations: We have extensively optimized the above solutions. First, in the default mode

some mappers process only tuples from A and some process only tuples from B. This incurs

highly unbalanced loads. We have optimized so that each mapper processes both A’s and B’s

tuples in a way that evens out the loads. Second, we have minimized the intermediate output size,

e.g., by passing only the IDs of the tuples from B to the reducers, instead of passing the whole

tuples, whenever possible (this is in addition to compressing the intermediate output.) Finally, we

extensively optimized processing rule sequences. For example, we cache and reuse computations

such as jaccard word(a.title, b.title) (as the same rule or two different rules may refer to this),

and we simplify predicate expressions such as p < 0.5 AND p < 0.2 into p < 0.2 (see [1] for

more details).

3.4.4 Using Filters to Apply Blocking Rules

We now describe in detail the filters and indexes used in Falcon. We associate one or more

filters with each predicate qij in Q. A filter is a necessary (but not sufficient) condition for a tuple

pair (a, b) to satisfy the predicate qij(a, b). In other words, if the filter does not pass (a, b) then

it is guaranteed that qij(a, b) is not satisfied. But if the filter passes (a, b), then qij(a, b) must be

evaluated to see if it is satisfied.

For example, if the predicate is [Jaccard(a.x, b.y) ≥ 0.6], then a “share-token” filter is f1

= “a.x and b.y must share at least one token”, and a “length” filter is f2 = length(a.x)/0.6 ≥

length(b.y) ≥ 0.6 ∗ length(a.x).

We build on prior work [29] to come up with the various filters that can be constructed and

indexes that can be created to quickly find tuple pairs that satisfy the filters. Below are the five

filters (and the corresponding indexes) that we consider in our implementations.
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1. Equivalence Filter: requires that “a.x” and “b.y” are equivalent for the predicate f(a.x, b.y)

op v to be satisfied on pair (a, b). It is implemented using a hash index on “a.x”, and is used

for predicates that use exact match similarity function.

2. Range Filter: requires that “b.y” lie within a range of “a.x” for the predicate to be satis-

fied. It is implemented using a B-tree index over “a.x”, and is used for predicates involving

abs diff and rel diff .

3. Length Filter: requires that a constraint on the lengths of “a.x” and “b.y” be satisfied for

the predicate to be satisfied. It is implemented using a length index on length(a.x) (probed

using length(b.y)), and is used for predicates involving Jaccard, overlap,Dice, cosine and

Levenshtein.

4. Prefix Filter: requires that there must be at least one shared token in the prefixes of “a.x”

and “b.y” for the predicate to be satisfied. Note that the tokens of “a.x” and “b.y” are first

re-ordered based on a global token ordering and then prefixes of the re-ordered tokens are

considered. This filter is implemented using an inverted index over the prefixes of re-ordered

tokens of “a.x”, and used for predicates involving Jaccard, overlap, Dice, cosine and

Levenshtein.

5. Position Filter: requires that at least a certain number of tokens be shared between the pre-

fixes of “a.x” and “b.y”. It is implemented using an inverted index on the prefixes of “a.x”

(the same index constructed for prefix filters) and a length index (constructed for length fil-

ters). It is used for predicates involving Jaccard, overlap, Dice, cosine and Levenshtein.

Since filters have been extensively used in string matching and set similarity joins, we point the

reader to [29] for more details. Next I describe how we construct indexes in Falcon to implement

the various filters.
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3.4.5 Building Indexes for Filters in MapReduce

Once we have inferred all filters for rule Q, we run several MapReduce (MR) jobs to build the

indexes for these filters. Specifically, we run three MR jobs sequentially to build all the relevant

indexes for rule Q.

Before running the first MR job, Falcon first analyzes Q to determine all the unique attribute-

tokenization pairs (x, T ) used in Q. For example, if Q uses two features: Dice 3gram(a.title,

b.title) and Jaccard word(a.title, b.title), then there are two unique attribute-tokenization pairs:

(title, word) and (title, 3gram).

For each attribute-tokenization pair (x, T ):

1. The first MR job computes the frequencies of all tokens obtained by tokenizing (using T )

the values of attribute x of all A tuples.

2. The second MR job sorts all the tokens obtained for that (x, T ) pair in increasing order of

frequencies to obtain a global token ordering for that (x, T ) pair, which will be used by the

next MR job to construct inverted indexes for prefix and position filters.

3. The third MR job tokenizes (using T ) values of attribute x of each A tuple; reorders the

tokens (using the global token ordering output by the second MR job); computes prefix

length for that tuple; and indexes the prefix of the reordered tokens.

In addition to constructing inverted indexes of prefix tokens, the third MR job also simultaneously

constructs the length indexes (needed for length filter), hash indexes (for equivalence filter) and

B-tree indexes (for range filters). Note that each MR job scans the table A only once.

3.5 Plan Generation, Execution, and Optimization

3.5.1 Plan Generation and Execution

Given two tables A and B (to be matched), we generate a plan p as follows. First, we analyze

A and B to automatically generate a set of features F . Later, operators such as gen fvs will need

these features (e.g., to convert tuple pairs into feature vectors).
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Next, we estimate the size of A× B, where each pair is encoded as a feature vector (using the

features in F ). If this size does not fit in the memory of machine nodes, then blocking is likely to

be necessary, so we generate the plan in Figure 3.4.a. Otherwise we generate the plan in Figure

3.4.b. (Since we are currently using a rule-based optimization approach, this is just a heuristic

rule encoding the intuition that in such cases the plan in Figure 3.4.b can do everything solely in

memory, and hence will be faster. In the future we will consider a cost-based approach that selects

the plan with the estimated lower runtime.)

Next, we replace each logical operator in p except operator apply blocking rules with a phys-

ical operator. Currently each such logical operator has just a single physical operator, so these

replacements are straightforward. We cannot yet replace apply blocking rules because this log-

ical operator has six physical operators: four provided by us (e.g., apply all, apply greedy, etc.)

and two from prior work: MapSide and ReduceSplit (Section 3.4). Selecting the appropriate

physical operator requires knowing the index sizes and the rule sequence R̄, which are unknown

at this point.

So in the next step we execute all operators in p from the start up to (and including) the operator

right before apply blocking rules. This produces the rule sequence R̄. Next, we convert it into a

single positive rule Q, then infer filters and build indexes for Q, as described in Section 3.4.

Once index building is done, we select a physical operator for apply blocking rules, i.e., select

among the six methods apply all, apply greedy, etc. as follows.

First, let c be the most selective conjunct in rule Q. Let sel(c) and sel(Q) be the selectivities

of c and Q, respectively (see [1] on computing such selectivities). Clearly sel(c) ≥ sel(Q). If

sel(Q)/sel(c) exceeds a threshold (currently set to 0.8), then intuitively c is almost as selective as

the entire rule Q. In this case, we will select apply greedy.

Otherwise we proceed in this order (a) if the indexes for all conjuncts fit in memory (of a

mapper) then select apply all; (b) if the indexes of at least one conjunct fit in memory then select

apply conjunct; (c) if the indexes of each predicate fit in memory then select apply predicate;

(d) if the smaller table fits in memory then select MapSide, else select ReduceSplit.
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Figure 3.6: Three types of optimization solutions that use crowd time to mask machine time.

After selecting a physical operator for apply blocking rules, we execute it, then execute the

rest of plan p. Of course, if p does not involve blocking, then we do not have to deal with the above

issues, and plan execution is straightforward.

3.5.2 Plan Optimization

We now consider how to optimize plan p. The Falcon framework raises many interesting

optimization opportunities regarding time, accuracy, and cost. As a first step, Falcon will focus on

a kind of optimization called “using crowd time to mask machine time”.

To explain, observe that plan p currently executes machine and crowd activities sequentially,

with no overlap. For example, eval rules uses the crowd to evaluate blocking rules. Only after

this has been done would select opt seq and apply blocking rules start, which execute machine

activities on a Hadoop cluster. Thus this cluster is idle during eval rules. This clearly raises an

opportunity: while eval rules is performing crowdsourcing, if we can do some useful machine

activities on the idle cluster, we may be able to reduce the total run time. To mask machine time,

we have developed three solutions, marked with (1), (2), and (3) respectively in Figure 3.6.

• Solution (1) uses the crowd time in al matcher and eval rules to build indexes for apply

blocking rules.

• Solution (2) speculatively executes rules and matchers for apply blocking rules and apply

matcher.

• The above solutions are inter-operator optimizations. Solution (3) in contrast is an intra-

operator optimization for al matcher. It interleaves “selecting pairs for labeling” with
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“crowdsourcing to label the pairs”. As such, it learns an approximate matcher but drasti-

cally cuts down on pair selection time.

I now describe these solutions.

1. Building Indexes for apply blocking rules: Recall that apply blocking rules must build

indexes for filters. There are two earlier operators in the plan pipeline, al matcher and eval rules,

where crowdsourcing is done and the Hadoop cluster is idle. So we will move as much index

building activities to these two operators as possible.

In particular, while al matcher crowdsources, we still do not know the rules that apply blocking

rules will ultimately apply. So we use the Hadoop cluster to build only generic indexes that do not

depend on knowing these rules, e.g., hash and range indexes for numeric and categorical attributes,

and global token orderings for string attributes. This ordering will be required if later we decide to

build indexes for prefix and position filters [104].

After al matcher has finished crowdsourcing, it outputs a matcher M . get blocking rules

then extracts blocking rules from M . Next, eval rules ranks then evaluates the top 20 rules using

crowdsourcing. So while eval rules crowdsources, we already know that the rules apply blocking

rules ultimately uses will come from this set of 20 rules. So we use the Hadoop cluster to build

indexes for all predicates in all 20 rules (or for as many predicates as we can). Clearly, some of

these indexes may not be used in apply blocking rules. But if some are used, then we have saved

time.

2. Speculative Execution of Future Operations: Recall that eval rules uses crowdsourcing to

evaluate 20 rules and retain only the best ones. Then select opt seq examines these rules to output

an optimal rule sequence R̄, which apply blocking rules will execute.

While eval rules crowdsources the evaluation of the 20 rules, we use the idle Hadoop cluster

to speculatively execute these 20 rules (in practice we use the cluster to build indexes first, then

to speculatively execute the rules). If later it turns out R̄ contains at least one rule that has been

executed, then we can reuse the result, saving significant time.
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Specifically, we execute the 20 rules individually, in the order that eval rules crowdsources

(i.e., executing the most promising rules first). When eval rules finishes, select opt seq takes

over and outputs an optimal rule sequence R̄, say [R2, R1, R3]. At this point we start executing

apply blocking rules as usual, but modify it to use the speculative execution results as follows.

Suppose the output of one or more rules in R̄ has been generated. Then we pick the smallest

output then apply the remaining rules to it in a map-only job. For example, suppose that the

outputs O(R1), O(R3) of rules R1, R3 have been generated, and that O(R3) is the smallest output.

Then we apply the sequence [R2, R1] to O(R3).

Now suppose none of the outputs of the rules in R̄ has been generated, but we are still in the

middle of running a MapReduce (MR) job to execute a rule in R̄. Then reusing becomes quite

complex, as we want to keep the MR job running, but tell it that the rule sequence R̄ has been

selected, so that it can figure out how to execute R̄ while reusing whatever partial results it has

obtained so far.

Specifically, if the MR job is still in the map stage, then a reasonable strategy is to let the map-

pers complete, then tell the reducers to use R̄ to evaluate the tuple pairs. This strategy resembles

apply greedy. Thus, we use it if operator apply blocking rules has selected apply greedy as the

rule execution strategy. Otherwise, apply greedy has not been selected, suggesting that similar

strategies may also not work well. In this case we kill the MR job and start apply blocking rules

as usual.

Now if the MR job is in the reduce stage, then it has already produced some partX of the output

of a rule, say R1. We then communicate the rule sequence R̄, say [R2, R1, R3], to the reducers, so

that for new incoming tuple pairs, the reducers can apply R̄ and collect the output into a set of files

Y . We then run a map-only job to apply [R2, R3] to X to obtain a set of files Z. The sets Y and Z

contain the desired tuple pairs (i.e., the correct output of apply blocking rules).

Finally, if none of the outputs of rules in R̄ has been generated, and none of these rules is

currently being executed, then we simply start apply blocking rules as usual.

In addition to speculatively executing blocking rules (as described above), we speculatively

execute matchers (in the matching phase). Recall that al matcher trains a new matcher in each
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iteration of crowdsourced active learning. When it decides to stop, it outputs the “best” matcher

so far, which is then applied to the candidate set of tuple pairs by the apply matcher operator.

While al matcher crowdsources, the Hadoop cluster is idle and can potentially be used to apply a

matcher to the candidate set. So in this optimization, we speculatively execute the apply matcher

operator with the “best” matcher so far (while al matcher is crowdsourcing). If the speculatively

executed matcher happens to be the final matcher output by al matcher then we would have saved

the apply matcher run time. If not, we simply execute apply matcher as usual.

3. Masking Pair Selection in al matcher: Recall that after apply blocking rules has applied a

rule sequence R̄ to Tables A and B to obtain a set of candidate tuple pairs C, we convert C into a

set of feature vectors C ′, then use al matcher to “active learn” a matcher on C ′.

Specifically, al matcher iterates. In each iteration it (a) applies the matcher learned so far to

C ′ and uses this result to select 20 “most controversial” pairs from C ′, (b) uses crowdsourcing to

label these pairs, then (c) adds the labeled pairs to the training data and retrains the matcher.

It turns out that when C ′ is large (e.g., more than 50M pairs), Step (a) can take a long time,

e.g., 2 minutes per iteration in our experiments; if al matcher takes 30 iterations, this incurs 60

minutes, a significant amount of time. Consequently, we examine how to minimize the run time

of Step (a). One idea is to do Step (a) during the time allotted to crowdsourcing of Step (b). The

problem, however, is that Step (b) depends on Step (a): without knowing the 20 selected pairs, we

do not know what to label in Step (b).

To address this seemingly insurmountable problem, I propose the following solution. In the

first iteration, we select not 20, but 40 tuple pairs. Then we send 20 pairs to the crowd to be

labeled, as usual, keeping the remaining 20 pairs for the next batch. When we get back the 20

pairs labeled by the crowd, we immediately send the remaining 20 pairs for labeling. During the

labeling time we use the 20 pairs already labeled to retrain the matcher and select the next batch of

20 pairs, and so on.

Thus the above solution masks the pair selection time using the pair labeling time. It approxi-

mates the original physical implementation of al matcher since it may not learn the same matcher

(because it selects 40 pairs in the first iteration, instead of 20). Our experiments however show that
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Dataset Table A Table B # of Correct Matches
Products 2,554 22,074 1,154
Songs 1,000,000 1,000,000 1,292,023
Citations 1,823,978 2,512,927 558,787

Table 3.1: Data sets for our experiments.

this loss is negligible, e.g., both matcher versions achieve 99.61% F1 accuracy on the Songs data

set, yet the optimized version drastically reduces pair selection time, from 58m 32s to 2m 5s (see

Section 4.8).

We use the above optimization for al matcher in the matching stage, when it is applied to a

large set of pairs (at least 50M in the current Falcon). We do not use it for al matcher in the

blocking stage as this operator is applied to a relatively small sample of 1M tuple pairs, incurring

little pair selection time.

3.6 Empirical Evaluation

We now empirically evaluate Falcon. We consider three real-world data sets in Table 3.1,

which describe electronics products, songs within a single table, and citations in Citeseer and

DBLP, respectively. Songs and Citations have 1-2.5M tuples in each table, and are far larger than

those used in crowdsourced EM experiments so far. See [1] for more details on these data sets.

We used Mechanical Turk and ran Falcon on each data set three times, paying 2 cents per

answer. In each run we used common turker qualifications to avoid spammers, such as allowing

only turkers with at least 100 approved HITs and 95% approval rate. We ran Hadoop on a 10-node

cluster, where each node has an 8-core Intel Xeon E5-2450 2.1GHz processor and 8GB of RAM.

In addition to the above three data sets, we have recently successfully deployed Falcon to solve

a real-world drug matching problem at a major medical research center. We will briefly report on

that experience as well.

3.6.1 Overall Performance

We begin by examining the overall performance of Falcon. The first few columns of Table

3.2 show that Falcon achieves high accuracy, 81.9% F1 on Products and 95.2-97.6% F1 on Songs
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Dataset
Accuracy (%) Cost

(# Questions)
Run Time

Candidate Set Size
P R F1 Machine Time Crowd Time Total Time

Products 90.9 74.5 81.9 $57.6 (960) 52m 13h 7m 13h 25m 536K - 11.4M
Songs 96.0 99.3 97.6 $54.0 (900) 2h 7m 11h 25m 11h 58m 1.6M - 51.4M
Citations 92.0 98.5 95.2 $65.5 (1087) 2h 32m 13h 33m 14h 37m 654K - 1.06M

Table 3.2: Overall performance of Falcon on the data sets. Each row is averaged over three runs.

and Citations. Products is a difficult data set used in Corleone, and the accuracy 81.9% here is

comparable to the accuracy of Corleone (86% F1 after the first iteration, see [42]). Note that each

row of Table 3.2 is averaged over three runs. (Table 3.3 shows all nine runs. The results show that

while the candidate set size can vary across runs, affecting the machine and crowd time, the cost

and the F1 accuracy stay relatively stable.)

The next column, labeled “Cost”, shows that this accuracy is achieved at a reasonable cost of

$54 - 65.5 (the numbers in parentheses show the number of questions to the crowd).

The next two columns show the total machine time and crowd time, respectively. Crowd time

on Mechanical Turk is somewhat high (11h 25m - 13h 33m), underscoring the need for future

work to focus on how to minimize crowd time. Machine time is comparatively lower, but is still

substantial (52m - 2h 32m).

The next column, labeled “Total Time”, shows the total run time of 11h 58m - 14h 37m. This

time is often less than the sum of machine time and crowd time, e.g., the Songs data set incurs a

“machine time” of 2h 7m and a “crowd time” of 11h 25m; yet it incurs a “total run time” of only

11h 58m. This is because plan optimization was effective, masking parts of the machine time by

executing them during the crowd time (see more below).

The last column shows the number of tuple pairs surviving blocking: 536K - 51.4M. This

number varies a lot, both within and across data sets. Yet despite such drastic swings, we have

observed that Falcon stays relatively stable in terms of accuracy and cost (see Table 3.3).

Drug Matching: Recently we have successfully deployed Falcon to match drug descriptions

across two tables for a major medical research center. The tables have 453K and 451K tuples.
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Dataset Runs
Accuracy (%) Cost

(# Questions)
Run Time

Candidate Set Size
P R F1 Machine Time Crowd Time Total Time

Products Run 1 92.6 74.9 82.8 $61.2 (1020) 31m 52s 12h 45m 22s 13h 1m 23s 536K
Products Run 2 88.4 75.1 81.2 $58.8 (980) 56m 9s 13h 57s 13h 18m 41s 5.3M
Products Run 3 91.8 73.4 81.6 $52.8 (880) 1h 6m 32s 13h 35m 57s 13h 56m 3s 11.4M
Songs Run 1 90.9 99.7 95.1 $56.4 (940) 3h 54m 4s 11h 59m 39s 12h 38m 55s 51.4M
Songs Run 2 98.2 99.6 98.9 $55.2 (920) 1h 23m 5s 11h 44m 36s 12h 18m 15.9M
Songs Run 3 98.9 98.7 98.8 $50.4 (840) 1h 4m 1s 10h 30m 4s 10h 57m 8s 1.6M
Citations Run 1 92.4 99.6 95.9 $52.8 (880) 1h 49m 18s 9h 59m 8s 10h 38m 26s 654K
Citations Run 2 93.4 96.8 95.1 $66.8 (1100) 3h 6m 12s 15h 48m 16h 27m 46s 835K
Citations Run 3 90.2 99.2 94.5 $76.8 (1280) 2h 40m 54s 14h 51m 47s 16h 44m 31s 1.06M

Table 3.3: All runs of Falcon on the data sets.

For privacy reasons we could not use Mechanical Turk. So an in-house scientist labeled the data,

effectively forming a crowd of 1 person.

The scientist labeled 830 tuple pairs, incurring a crowd time of 1h 37m. Machine time was 2h

10m, constituting a significant portion (57%) of the total run time. Our optimizations reduced this

machine time by 49%, to 1h 6m, resulting in a total Falcon time of 2h 42m. The end result is 4.3M

matches, with 99.18% precision and 95.29% recall on a set-aside sample.

Discussion: The results suggest that Falcon can crowdsource the matching of very large tables

(of 1M-2.5M tuples each) with high accuracy, low cost, and reasonable run time. In particular, the

run times 11h 58m - 14h 37m suggest that Falcon can match large tables overnight, a time frame

already acceptable for many real-world applications. But there is clearly room for improvement,

especially for crowdsourcing time on Mechanical Turk (11h 25m - 13h 33m).

It is also important to note that crowd time can vary widely, depending on the platform. For

instance, many companies have in-house dedicated crowd workers (often as contractors) or use

platforms such as Samasource and WorkFusion that can provide dedicated crowds. Many applica-

tions with sensitive data (e.g., drug matching) will use a “crowd” of one or a few in-house experts.

In such cases, the crowd time can be significantly less than that on Mechanical Turk. As a result,

machine time can form a significant portion of the total run time, thus requiring optimization.
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Dataset sample gen al matcher get block eval rules sel opt apply block gen al matcher apply
pairs fvs rules seq rules fvs matcher

Products 1m 15s 34s 8h 14m 37s 2m 9s 46m 46s 130ms 0 (1m 53s) 49s 3h 54m 40s 33s
Songs 1m 29s 33s 5h 21m 29s 30s 1h 48m 19s 52ms 0 (5m 7s) 13m 5s 5h 12m 9s (6h 40m 34s) 1m 21s
Citations 2m 23s 36s 2h 23m 12s 45s 1h 10m 144ms 7m (1h 13m 20s) 55s 6h 53m 35s

Table 3.4: Falcon’s runtimes per operator on the data sets. Each row refers to the first run of each
data set.

3.6.2 Performance of the Components

We now “zoom in” to examine the major components of Falcon. Recall that we run Falcon

three times on each data set. Table 3.4 shows the time of the first run on each data set, broken down

by operator.

Table 3.4 shows that five “machine” operators: sample pairs, gen fvs, get block rules,

sel opt seq, and apply matcher, finish in seconds or minutes, suggesting that they have been

successfully optimized. The remaining three operators: the two “crowd” operators, al matcher

and eval rules, and the “machine” operator apply block rules are the most time-consuming. In

what follows we will now zoom in on the major operators described in detail in this chapter.

Operator sample pairs: Recall that we run Falcon three times on each data set. Table 3.4 shows

the time of the first run on each data set, broken down by operator. Column “sample pairs” of this

table shows that sampling is very fast, taking just 1m 15s - 2m 23s. The candidate sets in the last

column of Table 3.2 contain tuple pairs surviving blocking. These sets are just 0.01-0.95% of the

size of A×B, and retain 98.09-99.99% of matching pairs. These results suggest that our sampling

solution is fast and effective, in that it helps Falcon learn very good blocking rules.

Operators al matcher & eval rules: The first “al matcher” column of Table 3.4 shows that the

time we learn a matcher via active learning in the blocking step is quite significant, 2h 23m - 8h

14m, due mainly to crowdsourcing. Similarly, column “eval rules” shows a high rule evaluation

time of 46m - 1h 48m, also due to crowdsourcing. This raises an opportunity for masking machine

time, which we successfully exploit. For example, column “apply block rules” show in parenthe-

ses the unoptimized time of apply blocking rules: 1m 53s - 1h 13m 20s, which in certain cases
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is quite significant. Masking optimization however successfully reduced these times to just 0 - 7m

(the numbers outside parentheses).

The second “al matcher” column of Table 3.4 shows that the time we learn a matcher in the

matching step is also quite significant, due partly to crowdsourcing and partly to pair selection

(see Section 3.5.2). Pair selection however was successfully optimized. For example, for Songs

the unoptimized “al matcher” time is 6h 40m 34s (the number in parentheses). Pair selection

optimization reduced this to 5h 12m 9s (almost all of which is crowdsourcing time).

Operator apply blocking rules: The numbers in parentheses in column “apply block rules” of

Table 3.4 show that this operator takes 1m 53s - 1h 13m 20s on three data sets, suggesting that

our Hadoop-based solution was able to scale up to large tables. Masking optimization successfully

reduced this time further, to just 0 - 7m, as shown in the same column (outside the parentheses).

For this operator, recall that we provided four solutions, apply all (AA), apply greedy (AG),

apply conjunct (AC), and apply predicate (AP ), as well as rules on when to select which so-

lution. In addition, we also supplied two Hadoop-based solutions from prior work: MapSide and

ReduceSplit [52]. We now examine the performance of these six solutions. Recall that we ran

Falcon three times on each data set, resulting in nine runs. In all runs except two Falcon correctly

selected the best solution (i.e., the one with lowest run time). For example, on a run of Songs,

the times for AA,AG,AC, and AP are 10m 19s, 1h 3m, 1h 40m, and 1h 45m, respectively, and

Falcon correctly picked AA to run. (MapSide and ReduceSplit did not complete on this data

set.)

In all nine runs, the best solution was eitherAA (4 times),AG (3 times), orMapSide (2 times).

Solutions MapSide and ReduceSplit only worked on Products, the smallest data set. For Songs

and Citations they had to be killed as they took forever trying to enumerate A×B.

For these nine runs, each mapper has 2G of memory, sufficiently large for AA and AG to

work. When we reduced the amount of memory to 1G and 500M, AA,AG, and AC did not work

on Songs and Citations because there was not enough memory to load the required indexes, but

AP worked well (AC did not appear to dominate in any experiment).
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Dataset U O Reduction O − O1 O − O2 O − O3

Products 18m 16m 11% 17m 17m 16m
Songs 2h 12m 39m 70% 40m 43m 2h 7m
Citations 1h 46m 40m 62% 41m 1h 45m 40m

Table 3.5: Effect of optimizations on machine time.

Overall, the results here suggest that (a) the solutions can vary drastically in their run times,

(b) Falcon often selected the best solution, which is AA,AG, or AP depending on the amount of

available memory, and (c) prior solutions do not scale as they enumerate A×B.

3.6.3 Effectiveness of Optimization

Recall that our goal is to minimize the machine time beyond the crowdsourcing time (i.e., the

machine time that cannot be masked). Column “U” of Table 4.4 shows this unoptimized time, 18m

- 2h 12m, for the first run of each data set. Column “O” shows the optimized time 16m - 40m, a

significant reduction, ranging from 11% to 70% (see Column “Reduction”). This result suggests

that the current optimization techniques of Falcon are highly effective.

The next three columns show the run time when we turned off each type of optimization: index

building (O1), speculative execution (O2), and masking pair selection (O3). The result shows that

all three optimization types are useful, and that the effects of some are quite significant (e.g., O2

on Citations and O3 on Songs).

3.6.4 Sensitivity Analysis

We now examine the main factors affecting Falcon’s performance.

Error Rate of the Crowd: First we examine how varying crowd error rates affect Falcon. To do

this, we use the random worker model in Corleone to simulate a crowd of random workers with a

fixed error rate (i.e., the probability of incorrectly labeling a pair) [42]. Figure 3.7 shows F1, run

time, and cost vs. the error rate (the results are averaged over three runs).

We can see that as error rate increases from 0 to 15%, F1 decreases and run time increases,

but either minimally or gracefully. Interestingly there is no clear trend on cost. This is because

in some cases (e.g., when the error rate is high), active learning converged early, thereby saving
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Figure 3.7: Effect of crowd error rate on F1, runtime, and cost.

Figure 3.8: Performance of Falcon across varying sizes of Songs and Citations data.

crowdsourcing costs. In any case, recall that there is a cap on crowdsourcing cost (Section 3.2.4)

and the costs in Figure 3.7 remain well below that cap.

Size of the Tables: So far we have shown that Falcon achieved good performance on tables

of size 1-2.5M tuples. We now examine how this performance changes as we vary the table size.

Figure 3.8 shows F1, run time, cost as we run Falcon on 25%, 50%, 75%, and 100% of Songs and

Citations (using simulated crowd with 5% error rate and 1.5m latency per a 10-question HIT; each

data point is averaged over 3 runs). The results show that as table size increases, (a) F1 remains

stable or fluctuates in a small range. (b) run time increases sublinearly, and (c) cost increases

sublinearly (recall that cost will not exceed the cap).

Additional Experiments: As we varied the Hadoop cluster size from 5 to 20 nodes, we found

that the machine time of Falcon (i.e., total time subtracting crowd time) decreases, as expected.

But this decrease is largest from 5-node to 10-node. Subsequent decrease is not as significant. For
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example, the times of a run of Songs on a 5-, 10-, 15-, and 20-node cluster are 31m, 11m, 7m, and

6m, respectively.

We are also interested in knowing how sample size affects Falcon. As we vary the sample size

from 500K to 2M tuples, we found that it has negligible effects on F1, and increases total run time

and cost very slightly. Based on this, we believe a sample size of 1M (that we have used) or even

500K is a good default size.

Regarding memory size, its largest effect would be on apply blocking rules, and we have

discussed this earlier in Section 3.6.2. Finally, we have experimented with varying the maximal

number of iterations for active learning. As this number goes from 30 to 100, we found that (a) all

active learning in our experiments terminated before 100, (b) the run time (including crowdsourc-

ing time) increased significantly, (c) yet F1 accuracy fluctuates in a very small range. This suggests

that capping the number of iterations at some value, say 30 as we have done, is a reasonable solu-

tion to avoid high run time and cost yet achieve good accuracy.

3.7 Related Work

Parallel Execution of DAGs of Operators: Several pioneering works have developed platforms

for the specification, optimization, and parallel execution of directed acyclic graphs (DAGs) of

operators (e.g., [51, 76, 48, 41]).

While highly scalable for many applications, these platforms are not applicable to our context

for two reasons. First, it is difficult to encode our workflows, which are specific to learning-based

EM, in their DAG languages. For example, some platforms consider only key-based blockers, i.e.,

grouping tuples with the same key into blocks [51]. Falcon however learns a more general kind of

blockers called rule-based blockers, which cannot be easily encoded using the current operators of

these platforms. Similarly, crowd-based active learning (to learn blockers/matchers) is common in

Falcon, but difficult to encode in the current platforms.

Second, even if we can encode our workflows (using UDFs, say), the platforms cannot execute

them scalably because they do not yet have scalable solutions for rule-based blocking. In most
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cases, rule-based blocking will be treated as a “blackbox” UDF to be applied to all tuple pairs in

the Cartesian product of the input tables, an impractical solution.

RDBMS-Style Solutions for Data Cleaning: Several such solutions have been developed, e.g.,

Ajax, BigDansing, and Wisteria [36, 51, 46]. Compared to these works, Falcon is novel in

four aspects. First, Falcon focuses on learning-based EM (which uses active learning to learn

blockers/matchers). It provides eight “atomic” operators that we believe are appropriate for (a)

modeling such EM processes, (b) facilitating efficient operator implementation, and (c) providing

opportunities for inter-operator optimization. In contrast, current works either do not consider

learning-based EM [51], or define operators at granularity levels that are too coarse for the above

purposes [36, 46]. For example, feature vector generation, a very common step in learning-based

EM, is not modeled as an atomic operation. As another (extreme) example, Ajax uses just a single

operator called Match to model the entire EM process.

Second, current works consider only certain types of blocking, such as key-based ones [51].

However, such blocking types are not accurate for many real-world data sets, due to dirty/missing

data (see Section 3.2.2). As a result, Falcon considers a far more general type of blocking called

rule-based blocking and develops efficient MapReduce solutions.

Third, current works do not provide comprehensive end-to-end solutions for parallel crowd-

sourced EM. Ajax considers neither parallel processing nor crowdsourcing. BigDansing develops

a highly effective parallel platform but does not consider crowdsourcing. Wisteria crowdsources

only the matching step and provides parallel processing for a limited set of blockers and matchers

(e.g., only for string similarity join-style blockers). In contrast, Falcon can handle more general

types of blockers and matchers. It crowdsources and provides parallel processing (where neces-

sary) for all steps of the EM process. It also provides effective novel optimizations, e.g., masking

machine time using crowd time.

Finally, both Ajax and BigDansing require users to manually specify blockers/matchers. In

contrast, Falcon automatically learns them. Wisteria also considers learning, but it supports only

learning the matchers.
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Blocking: Key-based blocking (KBB) partitions tuples into blocks based on associated keys (the

subsequent matching step then considers only tuples within each block). As such, KBB is highly

scalable and is employed in many recent works [51, 31, 102, 25, 20]. Our experience however

suggests that it is not always accurate on real-world data, in that it can “kill off” too many true

matches (see Section 3.2.2). As a result, we elect to use rule-based blocking (RBB), as used in

Corleone. RBB subsumes KBB, i.e., each KBB method can be expressed as an RBB rule. RBB

proves highly accurate in our experiments (Section 4.8), but is challenging to scale. As far as we

can tell, Falcon provides the first MapReduce solution to scale such rules (each being a Boolean

expression of predicates).

Recent work has also examined scaling up sorted neighborhood blocking [53] and meta-blocking

[31, 102], which combines multiple blocking methods in a scalable fashion. Such methods are

complementary to our work here, and can potentially be used in future versions of Falcon.

Similarity Joins: Falcon is also related to scaling up similarity joins (SJs) [90, 101, 78, 99, 92]

and theta joins [68]. To avoid examining all tuple pairs in the Cartesian product, work on SJs

uses inverted indexes [83], prefix filtering [17], partition-based filtering [28], and other pruning

techniques [101] (see [104] for a recent survey). Some have considered special similarity functions

such as Euclidean distance [84] and edit distance [99, 92]. Most works however consider join

conditions of just a single predicate [90, 101] or a conjunction of predicates [57], and develop

specialized solutions for these. In contrast, Falcon develops general solutions to handle far more

powerful join conditions in our blocking rules, which are Boolean expressions of predicates.

Active Learning and Optimizing: Like Falcon, [66] also proposes using active learning to

reduce the number of tuple pairs to be labeled by the crowd. However, it applies learning to the

Cartesian product, and thus does not scale to large tables. The idea of combining and optimizing

crowd- and relational operators is also discussed in [73]. But as far as we know, Falcon is the first

work to do so for crowdsourced EM. Further, some works on optimizing crowd operators have

focused on minimizing cost [64, 74], minimizing crowd latency [47], or studying the trade-offs

between the two [32]. These works are complementary to ours, which focuses on minimizing



63

the machine time. As far as we know, no other work has proposed the “masking machine time”

optimizations in Section 3.5.2.

Crowdsourced RDBMSs: Finally, works have proposed crowdsourced RDBMSs [35, 64, 72, 73,

62] and have addressed crowdsourcing enumeration, select, max, count, and top-k queries, among

others (e.g., [89, 71, 45, 61, 26, 70, 8]). Crowdsourced joins (CSJs) which at the heart solve the

EM problem, have been addressed in [35, 63, 64, 32, 95, 16, 91, 93, 96]. Initial CSJ works [35, 63]

however crowdsource all tuple pairs in the Cartesian product of the two tables and hence do not

scale. Recent CSJ works [32, 64] ask users to write filters to reduce the number of tuple pairs to be

crowdsourced. Such hand-crafted filters can be difficult to write and using them severely limits the

applicability of crowdsourced RDBMSs. Falcon can automatically learn such filters (i.e., blocking

rules) using crowdsourcing, and thus can potentially be used to perform CSJ over large tables.

3.8 Conclusion

In this chapter I have shown that for important emerging topics such as EM as a service on the

cloud, the hands-off crowdsourcing approach of Corleone is ideally suited, but must be scaled up

to make such services a reality.

I have described Falcon, a solution that adopts an RDBMS approach to scale up Corleone.

Extensive experiments show that Falcon can efficiently match tables of millions of tuples. I am

currently in the process of deploying Falcon as an EM service on the cloud for data scientists.

Falcon also provides a framework for many interesting future research directions. These in-

clude minimizing crowd latency / monetary cost, examining more optimization techniques (includ-

ing cost-based optimization), extending Falcon with more operators (e.g., the Accuracy Estimator

of Corleone), and applying Falcon to other problem settings, e.g., crowdsourced joins in crowd-

sourced RDBMSs.
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Chapter 4

Helping Lay Users Perform End-to-End String Matching

Most current EM solutions focus on matching relational tuples [29]. These solutions are not

optimized for matching strings (e.g., matching two sets of names), which is ubiquitous in practice.

As a result, in this direction I focus on this specialized yet common case of EM. I develop an

end-to-end string matching solution that lay users can easily use yet obtain significantly higher

matching accuracy than current string matching solutions.

4.1 Introduction

String similarity join (also called string matching) finds strings from two given sets that refer to

the same real-world entity, such as “Michael J. Williams” and “Williams, Michael” in Figure 4.1.

This problem plays a fundamental role in many data management applications, including schema

matching, entity matching, value normalization, etc. [104].

Figure 4.1: An example of matching two sets of strings.

As a result, over the past few decades, string similarity join (SSJ) has received significant attention.

Tremendous progress has been made [104]. Current SSJ works however still suffer from two major

limitations.
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First, they are not end-to-end. That is, most of the current solutions only consider efficiently

executing the join condition, ignoring the critical step of coming up with a good join condition. In

practice, it is often error-prone and time consuming for the user to select a good similarity measure

or pick a good threshold for the join condition.

Second, they consider only join conditions that are a single predicate, such as jaccard 2gram

(a, b) > 0.8, which tokenizes strings a and b into sets of 2-grams, computes their Jaccard score,

then declares a and bmatched if this score exceeds 0.8. In practice, using a single predicate for SSJ

raises two serious problems. First, many real-world datasets are heterogeneous, in that different

data regions exhibit different characteristics. They can best be matched using multiple predicates,

each of which captures the characteristics of one data region.

Example 4.1.1. Consider matching two sets of person names that contains both long names (e.g.,

Shivaram Venkataraman, Christos Papadimitriou) and short names (e.g., Dave Maier, Chen Li). A

single predicate such as jaccard 2gram(a, b) ≥ ε does not work well because it is difficult to set

the threshold ε properly. A high value for ε helps match long names accurately, but can be too high

for short names, incorrectly predicting many matching short names as non-matches. Conversely,

a low ε helps match short names accurately, but can be too low for long names. Intuitively, we

should use two predicates of the form jaccard 2gram(a, b) ≥ ε, but one with a high ε for long

names, and the other with a lower ε for short names. We can check if a name is long using a

predicate such as length(a) > 9, which returns true if the length of string a (i.e., the number of

characters in a excluding space characters) exceeds 9.

Such heterogeneity arises naturally in a single dataset (e.g., large datasets of person names

often contain a mixture of long and short names), or arises because a dataset to be matched is

being created by integrating several smaller datasets, each of which contains data of a different

nature.

Another serious problem is that real-world strings often contain substrings with special mean-

ing. Treating such substrings differently from the rest of the strings can significantly improve the

matching accuracy. To do so, however, we need to use multiple predicates.
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Example 4.1.2. Consider matching house addresses. A single predicate such as jaccard 3gram(a,

b) ≥ ε does not work well. A high ε (e.g., 0.9) can match addresses correctly, but exclude many

matches with lower Jaccard scores, e.g., “522 Wilson St Austin TX 78704” and “522 Wilson

Street Austin TX 78704”. A lower ε (e.g., 0.8) helps identify matches such as the above one,

but incorrectly matches “522 Wilson St Austin TX 78704” and “422 Wilson St Austin TX 78704”,

which differ only in the house numbers. To address this problem, we can extract all numbers

from each string, then declare two strings match if the strings are highly similar (e.g., using

jaccard 3gram(a, b) ≥ 0.8) and their numbers are also highly similar (e.g., using a predicate

such as cosine num(a, b) ≥ 0.8).

To address the above two problems, in this work I describe Smurf (String matching using

random forest), a solution that uses multiple predicates in the join condition for SSJ. Experiments

in Section 4.8 show that Smurf significantly improves matching accuracy compared to the single-

predicate case, by 22.4, 19.03, 10.96, 10.5, and 1.15% absolute F1 over five datasets, thereby

demonstrating the promise of this approach.

To realize Smurf, I identify properties of real-world strings that can be important for matching

(e.g., those regarding length, capitalization, special substrings, numeric tokens, etc.), then define

a rich set of features to capture these properties. This is so that given any two sets of strings to

match, Smurf can automatically generate the features then use them to create multiple predicates.

Next, I consider how to combine the predicates to form join conditions for SSJs. The simplest

method is to use a single matching rule which is a conjunction of multiple predicates [23, 57], such

as

[length(a) > 9] ∧ [jaccard 2gram(a, b) ≥ 0.8]→ match (4.1)

But a single rule cannot express “if-then-else” conditions necessary to handle data heterogeneities.

To do so, a natural solution is to use a decision tree (DT), which can be viewed as a disjunction

of multiple matching rules. But a single DT is often sensitive to noise. As a result, I use random

forests (RFs) as join conditions. A random forest F is a set of n decision trees [13]. It declares

a string pair a match if at least αn trees in F declare the pair a match (where α is pre-specified).
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Random forests are widely used in practice (e.g., [82, 23, 42]), often give very competitive per-

formance, are relatively easy to understand, and are amenable to optimization (as we will see).

Section 4.8.1 shows that random forests achieve significantly higher matching accuracy than a

single DT.

I then consider how to create a random forest for the join condition. Asking the user to manually

write a random forest is unrealistic. Instead, I propose to ask him or her to perform active learning

(by labeling string pairs as match/no-match) to learn a random forest. Several recent works [82,

23, 42] have described such solutions, but for entity matching. I adapt them to our SSJ context.

Our solution asks the user to label no more than 400 string pairs. For the five datasets in Section

4.8, users typically need 1-3 seconds to label a pair, or under 20 minutes for 400 pairs.

Once I have learned a random forest F as the join condition, I need to execute it over the two

sets of input strings A and B. This raises major scaling challenges. My solution to these forms the

key technical contribution of this work.

Specifically, consider a random forest F of n trees. Naively, we can execute each tree on A

and B, then combine their outputs (e.g., predicting a string pair a match if at least αn trees predict

the pair a match). This however is very time consuming. To address this problem, I propose to (a)

execute only a subset of trees on A and B to obtain a relatively small set J of string pairs that are

likely to be matches, then (b) execute the remaining trees only on J (instead of on A and B). I

show that this solution is guaranteed to be correct, yet takes far less time. I call the above two steps

blocking and matching, as they are similar in spirit to the blocking and matching steps commonly

used in entity matching [29]. I show how to select a good subset of trees for the blocking step.

At the heart of both blocking and matching is the need to efficiently execute a set of decision

trees (DTs) over two sets of strings (or over a set of string pairs). A DT can be viewed as a

disjunction of matching rules (each being a conjunction of predicates, e.g., see the rule in Formula

4.1). Thus, executing a set of DTs reduces to executing a set of rules. Current work has optimized

the execution of individual matching rules [23, 57] (see Section 4.5.1). But as far as I know, no

work has yet optimized the execution of a set of rules. Our work develops such a solution. I

observe that the matching rules often share a lot of computation, as illustrated below:
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Example 4.1.3. Suppose that a rule contains edit dist(a, b) < 3 and that another rule contains

edit dist(a, b) < 5. Then the (relatively expensive) edit distance computation is performed twice.

As another example, suppose that two rules contains overlap word(a, b) > 3 and jaccard word(a,

b) > 0.6, respectively. Then the overlap computation (i.e., finding the number of words that are

common to both a and b) is performed twice (because computing Jaccard scores also requires

computing the overlap).

To address this problem, I execute the rules jointly, in a way reminiscent of multi-query opti-

mization in RDBMSs [86]. Specifically, I define a small set of core operators that are specific to

string contexts. Given a set of rules to be executed, I show how to combine them into a plan (com-

posed of these operators). I define four optimization techniques to remove redundant computations

in such a plan. I show how to estimate the runtime of a plan, then how to efficiently search a large

space of plans to find one that employs the above optimization techniques to minimize runtime.

Finally, I show how to efficiently execute the selected plan. Section 4.8.1 shows that this solution

drastically outperforms existing solutions that execute the rules individually, by up to 32x.

In summary, I make the following contributions:

• I show that using multiple predicates, instead of a single predicate as in current SSJ work,

can significantly improve SSJ accuracy.

• I present Smurf, a solution that learns a random forest as a join condition for SSJ, then

efficiently executes it over two sets of strings.

• I show how to efficiently execute a set of matching rules (that are at the heart of a random

forest) by executing them jointly to minimize redundant computation. Our solution signif-

icantly outperforms current solutions that only optimize the execution of a single matching

rule.

• I describe extensive experiments that show the utility of our approach.

Taken together, our work significantly advances the state of the art of SSJs, and can potentially be

applied to other contexts requiring fast execution of decision trees, random forests, or sets of rules.
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4.2 Problem Definition

I now provide some background information, then define the SSJ problem considered in this

work. I begin by defining:

Definition 1. [Features and predicates] A feature is a function that takes two strings a and b and

returns a numeric value. A predicate p(a, b) is of the form f(a, b) op ε, where f is a feature, op

is a comparison operator (e.g., ≥,≤), and ε is a pre-specified threshold. Given two strings a

and b, predicate p(a, b) evaluates to true iff a and b satisfy the comparison, and evaluates to false

otherwise.

For example, feature jaccard 3gram(a, b) tokenizes strings a and b into sets of 3-grams Sa

and Sb, then returns the Jaccard score |Sa ∩ Sb|/|Sa ∪ Sb|. Predicate jaccard 3gram(a, b) > 0.8

evaluates to true iff the Jaccard score exceeds 0.8. In SSJ contexts, features often involve string

similarity measures, e.g., edit distance, Jaccard, overlap, etc. [104].

Given two sets of stringsA andB, string similarity join (SSJ, often also called string matching)

is the problem of finding all pairs (a ∈ A, b ∈ B) that match, i.e., refer to the same real-world

entity. So far the most common solution is to apply a single-predicate join condition to A and B

(e.g., jaccard 3gram(a, b) > 0.8) to find all string pairs that satisfy the condition.

Using Indexes to Efficiently Execute a Single Predicate: Applying the SSJ predicate to all

pairs in A × B is often impractical because A × B can be very large. To address this problem,

current work typically builds an index I over a table, say A (sometimes multiple indexes may be

built, over both tables). For each string b ∈ B, it then consults the index to locate only a (relatively

small) set of strings in A that can potentially match with b. For example, suppose I is an inverted

index that, given a token, returns the IDs of all strings in A that contain that token. Then for a

string b ∈ B, we can consult I to find only those strings a in A that share at least a token with b,

then apply the SSJ predicate only to these (a, b) pairs. The step of consulting the index to locate a

small set of pairs is often called blocking, and the step of applying the SSJ predicate to these pairs

is called matching. Numerous blocking techniques for SSJs have been developed, e.g., inverted

index, size filtering, prefix filtering, etc. [104].
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SSJs with Random-Forest Join Conditions: In this work I will consider the following problem:

Definition 2 (SSJs using random forests). Given two sets of strings A and B, perform active

learning with a user U to learn a random forest F , such that given any two strings a ∈ A, b ∈ B,

we can apply F to predict if they match. Then apply F to A and B to obtain all pairs (a ∈ A, b ∈

B) predicted matched.

In practice, many users (e.g., domain scientists, lay users) do not know how to use (or want to

use or have access to) a machine cluster [50, 43]. Thus in this work, as a first step, I will consider

solving the above problem on a single machine, deferring solving it on a cluster to future work. I

now describe Smurf, our solution to this problem.

4.3 Defining Features

I now define a rich set of features and show how they capture string properties that are important

for matching. I show later how Smurf uses the features to create random-forest join conditions.

(a) Combining Tokenizers and Similarity Measures: The most obvious way to create many features

for a string pair is to exploit the entire range of similarity measures and tokenizers. First, we can

create features that use sequence-based similarity measures, e.g., edit distance, hamming distance.

(these measures do not tokenize the strings). Second, we can create features that combine a tok-

enizer type (e.g., word-level, q-gram) with a set-based similarity measure (e.g., Jaccard, overlap).

Third, we can create features that use phonetic measures (e.g., soundex). Finally, we can combine

these similarity measures to create more features (e.g., Jaccard over edit distance) [29].

(b) Computing Basic Properties of String Pairs: Examples of such features include computing the

lengths of the individual strings, the sum of the lengths, the absolute difference of the lengths,

whether a string is capitalized (e.g., the first character of each word, all characters), whether both

strings are capitalized, etc.

(c) Exploiting Special Character Sequences: Strings often contain substrings that are sequences

of special characters, e.g., numeric, all caps, alphanumeric, such as “326”, “TX”, and “78704”

in string “326 Main St Austin TX 78704”, “D246-34” and “41in” in “Sony TV D246-34 41in”.
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We can create features that extract sets of such substrings then compare them. For example, one

feature may compare two sets of numeric substrings using Jaccard, another feature may compare

two sets of alphanumeric substrings, etc.

(d) Exploiting Substrings at Certain Positions: Certain substrings may hold special significance,

e.g., the last word in a string may be last name (of a person), the first two words in a string which is

a product title may be the product name. As a result, we can create features that extract the k-word

prefixes and suffixes of strings, say, then compare them.

(e) User-Defined Features: Smurf automatically creates features of the above four types. But

it also gives the user the option to “plug in” blackbox features. For example, if the strings of-

ten contain dates, phone numbers, etc., then the user can write “quick-and-dirty” extractors (e.g.,

regex-based ones) to extract these entities, then create features to compare them.

As described, features of type (a) compute similarity scores, and thus are clearly necessary for

matching strings. Most current works use these features, but not those of types (b)-(e). Features

of type (b) help differentiate different data regions, thus handling data heterogeneity. Features of

types (c)-(d) help handle special substrings. Finally, features of types (e) can be used to handle

both.

Exact vs. Approximate Extraction: One may wonder why not ask the user to write features that

extract the exact special substrings, e.g., the exact last name or house number, then use them to

match more accurately. Smurf can naturally use such features (and it should, whenever available).

But such exact extraction is well-known to be labor-intensive and error-prone [81]. For example,

extracting last names is highly non-trivial. There is no clear procedure even for a human to deter-

mine just by looking at a full person name (especially foreign names) that which part of this name

is the last name, e.g., the last word or the last two words?

An important point that I make in this work is that even when such exact extraction is not

possible, due to constraints on time and labor, with just the generic features of types (a)-(d), we

can already significantly improve matching accuracy, compared to using a single predicate.
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Table 4.1: The set of features used by Smurf to learn a random forest.

Indeed, the current Smurf uses only 35 features of types (a)-(c). Smurf automatically generates

a set of features F defined over a pair of strings. Table 4.1 shows the features of different types

used by Smurf. Specifically, Smurf generates 16 features that captures similarity between strings

by computing a similarity score for the strings, 4 features that exploit the properties of strings (to

handle heterogeneity) and 15 features that extract special character sequences from the strings and

computes similarity between them.

Similarity-based features use either sequence-based measure such as edit distance, or combine

a tokenizer (such as word-level, q-gram) with a set-based similarity measure such as cosine, Dice,

Jaccard, overlap, overlap coefficient, etc. For example, the feature Jaccard word takes in two

strings, tokenizes each string into a set of words, and then computes the Jaccard score between the

two sets of words. The different set-based similarity measures taking as input two sets of tokens

X and Y can be computed as follows:

Jaccard(X, Y ) = |X ∩ Y |/|X ∪ Y |

Dice(X, Y ) = 2|X ∩ Y |/(|X|+ |Y |)

overlap(X, Y ) = |X ∩ Y |

overlap coefficient(X, Y ) = |X ∩ Y |/min(|X|, |Y |)

cosine(X, Y ) = |X ∩ Y |/
√
|X| · |Y |.

Also Smurf generates features that exploit properties of strings such as lengths of individual

strings, absolute difference of lengths etc. Finally, Smurf generates features that extract special

substrings from the input strings, and compare them. For example, the feature Jaccard numeric
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Figure 4.2: Learning a random forest via active learning.

takes in two strings, extracts the numeric substrings in each input string to obtain two sets of

numeric substrings, and then computes the Jaccard score between them.

Section 4.8.1 shows that with just this set of generic built-in features (which require no effort

from the user), we can already improve SSJ accuracy by 1.15-22.4% F1 on five datasets. As Section

4.8.1 shows, this is due to using certain features to perform approximate extraction (e.g., extracting

all numbers from an address can be viewed as an “approximate extraction” of house numbers), and

to using certain features to differentiate data regions and match each region differently.

4.4 Learning a Random Forest

Given two sets of stringsA andB, I now describe how Smurf learns a random forest (RF) as the

join condition. Existing work has developed solutions to learn RFs via active learning [23, 42, 82].

Smurf uses Falcon, the solution in [23], as it is the closest to our SSJ context. As such, this part

uses existing solutions and is not viewed as a contribution of our current work.

The goal of Falcon is to match records across two tables A and B. To do so, it performs active

learning onA andB to learn a RF, as illustrated in Figure 4.2. Specifically, Falcon begins by taking

a small sample S of tuple pairs from the Cartesian product of A and B (without materializing this

product). This is because learning directly on A×B is difficult as A×B is often too large.

Next, Falcon creates a set of features based on the schemas of A and B, then uses them to

convert each tuple pair in S into a feature vector. Let S ′ be the resulting set of feature vectors.

Next, Falcon trains an initial random forest F (by asking the user to supply two positive and two

negative examples), uses F to select the k “most informative” examples in S ′, asks the user to

label these examples, uses them to retrain F , and so on. This repeats until a convergence condition

is met, or the number of iterations has reached a pre-specified n. Falcon then outputs the final

random forest F .
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Figure 4.3: An example to motivate the blocking and matching steps.

Falcon can be straightforwardly applied to our context. Specifically, it uses the set of features

defined in the previous section, asks the user to label k = 20 string pairs in each iteration, runs for

at most n = 20 iterations (it could terminate earlier if a convergence condition is met), and learn

a random forest of 10 trees. These values are selected based on experimental results with Falcon

in [23]. Thus the user labels at most 400 string pairs (taking under 20 mins in our experiments).

Section 4.8.3 shows that Smurf is robust with respect to varying n, sample sizes, maximal tree

depth, and the number of trees in the forest. For further details, including how to take a good

sample from A and B, see [23].

4.5 Executing a Random Forest

I now provide an overview of our solution to efficiently execute the learned random forest over

two sets of strings, as well as the solution architecture. Subsequent sections describe the main

components of the solution in detail.
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4.5.1 Solution Overview

Suppose we have learned the random forest F of three decision trees (DTs) t1, t2, t3 in Figure

4.3.a (here, for simplicity, we show each predicate such as edit dist(a, b) < 3 only as edit dist <

3). We now consider how to efficiently execute F over two sets of stringsA andB. Note that given

a string pair (a ∈ A, b ∈ B), each tree in F will predict the pair as match or non-match (see Figure

4.3.a). We refer to the set of all string pairs a tree or random forest predicts to be matches as the

output of that tree or random forest.

Blocking and Matching: Suppose the above random forest F outputs a pair (i.e., predicting it to

be a match) only if at least two out of it three trees also output the pair. Naively, we can execute F

on two sets of strings A and B by executing each tree ti on A and B to obtain an output Ci, then

output all pairs that appear in the outputs of at least two trees (see Figure 4.3.b). This however is

very time consuming.

A better idea is to execute just two trees, say t1, t2 on A and B, to obtain outputs C1 and C2

(see Figure 4.3.c). The set I = C1 ∩C2 consists of all pairs predicted match by both t1 and t2, and

so can be output immediately as a part of output of the random forest F .

The set J = (C1∪C2)\ (C1∩C2) consists of all pairs predicted match by only one tree (either

t1 or t2). It is easy to see that we need to apply the remaining tree t3 only to set J . Let K be the set

of pairs in J predicted match by t3. Clearly, any such pair is also a match for the random forest F ,

because it is matched by exactly two trees (either t1 or t2, together with t3). The output of random

forest F is thus I ∪K (see Figure 4.3.c). Any other pair (i.e., neither in I nor in J) is not predicted

match by both t1 and t2 and hence cannot be a match for F .

In practice, the set J tends to be relatively small (see Section 4.8.2). Thus, applying tree t3 to

J tends to be much faster than applying it to the (potentially large) sets of strings A and B. This

time saving is significant when F is large, say 10 trees. Suppose in this case we need at least five

trees to match in order for F to match. Then we can apply six trees to A and B to obtain sets I and

J , then apply the remaining four trees to just the relatively small set J .
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Smurf uses the above idea. I refer to the first step of applying a subset of trees as blocking, in

the sense that it “blocks” a large portion of string pairs, only allowing a relatively small set of pairs

J to continue in the SSJ pipeline. I refer to the second step of applying the remaining trees to J as

matching.

Executing a Tree by Executing Its Matching Rules: The blocking step must execute a set of

DTs over sets of strings A and B. Continuing with the example in Figure 4.3, let us consider how

to execute the first tree t1 (Figure 4.3.a).

I refer to each path from the root of t1 to a “match” node as a matching rule. Figure 4.4.a

shows the two rules extracted from t1. Each rule is a conjunction of two predicates. Rule r1 for

instance captures the first path leading to a “match” node in the tree. Note that since on this path the

predicate (edit dist < 3) takes value “N”, i.e, false, in rule r1 we capture this as (edit dist ≥ 3).

Executing t1 then reduces to executing these two rules onA andB, then combining their output.

Figure 4.4.b illustrates this step. Note that the output of the tree is the union of the outputs of the

rules, because any pair predicted match by a rule is also predicted match by the tree.

Current Work on Rule Execution: I now consider how to execute a matching rule efficiently.

No current work has addressed this problem explicitly for string matching. But two recent works

[23, 57] have addressed it for record matching and can be applied to this context.

The first work, Falcon [23], proposes two solutions: ApplyAll and ApplyGreedy. To execute

a rule such as r1 in Figure 4.4.a, ApplyAll builds indexes for all predicates in the rule, i.e., for both

(edit dist ≥ 3) and (dice 3gram > 0.8). It then consults all indexes and take the intersection of

the outputs of these indexes to be the set H of record pairs that can possibly be in the rule output.

Finally, it evaluates the rule on H . ApplyGreedy builds an index for just one predicate in the rule,

consults the index to find a set H of record pairs, then applies the rule to H . The key challenge is

to select a predicate that is highly selective to build an index on, to minimize the size of H .

The second work [57] proposes a solution that I will refer to as RAR (Rule Applied to Record

Pairs). RAR analyzes the entire rule, builds a single index covering all predicates in the rule (using

prefix filtering ideas), uses the index to find a set H , then applies the original rule to H .
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Limitations of Current Work & Our Solution: As described, current work has developed

efficient solutions to execute a single matching rule. Executing a DT however requires executing

a set of rules, e.g., rules r1, r2 for tree t1 (Figure 4.4.a). As far as I can tell, no work has examined

efficiently executing a set of matching rules. (Falcon [23] does consider a set of rules, but those

are blocking rules, not matching rules as considered here. When adapting Falcon to matching

rules, it is easy to show that Falcon is capable of executing only a single such rule.)

Executing a set of rules by executing each rule individually can be very time consuming. I

observe that these rules often share a lot of computation. So I seek to execute them jointly, in a

“multi-query optimization” style. Specifically, I define a set of core operators, use them to generate

a plan that encodes the rules, then optimize and execute the plan.

For example, consider again the two rules r1, r2 in Figure 4.4.a. Predicates (dice 3gram > 0.8)

of r1 and (dice 3gram > 0.6) of r2 share computation. The plan in Figure 4.4.c executes both

rules jointly, by reusing this computation. It uses three operators: join, select, and filter (see

Section 4.6.1). Specifically, the plan first performs a single-predicate SSJ between A and B, using

join condition dice 3gram > 0.6. Next, it selects from the output of this join all pairs where

feature dice 3gram (which has been computed) exceeds 0.8 (see the left path of the plan), then it

computes feature edit dist for these pairs and selects only those with edit dist ≥ 3. This produces

the set D1, the output of rule r1. Similarly, the right path of the plan produces D2, the output of

rule r2. The plan returns C1 = D1 ∪ D2, the output of tree t1. Note how computing the feature

dice 3gram is done only once in this plan (in the “join” node).

So far I have discussed executing a single DT. The blocking step executes a set of DTs. It is

easy to see that the above idea generalizes to this case: we simply extract all matching rules from

the trees, then execute them in a joint fashion. (We do need to make sure that we know which

output pair comes from which tree.) For example, to execute trees t1, t2 (Figure 4.3.a), we extract

their three matching rules, then combine the rules to form the plan in Figure 4.4.d. Note how this

plan returns both C1 and C2, the outputs of trees t1 and t2, respectively. The matching step also

executes DTs and thus will also use the above joint execution idea.
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Figure 4.4: Executing rules in a joint fashion.

4.5.2 Solution Architecture

The above ideas lead to the overall architecture for executing a random forest F in Figure 4.5.

Given the set of trees T in F , I first select a subset T ′ of trees to perform blocking. This produces

a set of predicted matches I and a set of candidate pairs J . Next, in the matching step, I apply the

remaining trees T \ T ′ to J , to obtain a set of matches K. The output of F is then I ∪ K. Both

the blocking and matching steps rely on a module that provides efficient execution of a set of DTs,

using operators, indexes, cache, plan generation, optimization, and execution.

Realizing this architecture raises three challenges: (1) how to select a subset of trees for the

blocking step? (2) how to execute the remaining trees in the matching step? and (3) how to

execute a set of DTs, by extracting the rules, defining operators, then generating, optimizing, and

executing a plan? I now discuss our solutions to these challenges. First I discuss (3), then build on

it to discuss (1) and (2).

4.6 Optimizing and Executing a Set of Decision Trees

I now describe how to efficiently executing a set of DTs. I consider the following concrete

problem (and show later how it can be used for blocking and matching):
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Figure 4.5: The process of executing a random forest in Smurf.

Definition 3 (Executing a set of DTs over two sets of strings). Let G be a set of decision trees.

Given two sets of strings A and B, return all pairs (a, b) ∈ A × B that is a match output by at

least a tree in G, and associate with each such pair a set E of the IDs of all trees in G that output

that pair.

To solve the above problem, I begin by extracting each path from the root of a tree in G to

a “match” node as a matching rule. Each rule ri is of the form pi1(a, b) ∧ . . . ∧ pimi
(a, b) →

predict (a, b) as match, where each predicate pij(a, b) is of the form described in Definition 1.

Figure 4.4.a shows two matching rules extracted from tree t1 in Figure 4.3.a.

Let R be the set of all matching rules extracted from the trees in G. Executing G reduces to

executing the rules in R, then union their outputs (but annotate each pair in the output with the IDs

of all the rules that predict that pair to be a match).

As discussed earlier, executing the rules in isolation is inefficient. So I seek to execute them

jointly, by sharing computation. To do so, I define a set of operators, convert the set of rules into a

plan composed of these operators, develop optimization techniques, then search a large plan space

to select a plan that uses these techniques to minimize runtime. I now discuss these steps.

4.6.1 Operators and Default Plan Generation

I define the following four operators (and motivate them below):
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joinp(A,B): This operator takes two sets of strings A and B and a predicate p, and returns all

pairs (a, b) ∈ A× B that satisfies p. For example, given predicate jaccard word(a, b) > 0.5, this

operator returns all pairs (a, b) with Jaccard score above 0.5.

filterp(C): This operator returns all string pairs c ∈ C that satisfies predicate p. It assumes

that feature f in p has not been computed for the pairs in C. So given a pair c ∈ C, it computes

f for c, then outputs c if c satisfies p. For example, given jaccard word(a, b) > 0.5, this operator

computes feature jaccard word for each c ∈ C, then outputs c if c satisfies the predicate.

selectp(C): This operator is the same as filterp(C), but it assumes feature f in p has been

computed for all pairs in C. So it simply evaluates p for each c ∈ C and outputs c if p evaluates to

true.

featuref(C): This operator assumes feature f has not been computed for pairs in C. So it

computes f for all pairs in C then returns those pairs.

Operator joinp(A,B) performs a single-predicate SSJ, and has been studied intensively [104].

Operator filterp(C) is typically applied to string pairs coming out of a joinq(A,B) operator, as

we will see below. To motivate operators selectp(C) and featuref (C), suppose in a plan (defined

below) we execute a joinq(A,B) operation to obtain a set of pairs C, then execute both operations

filterjac word>0.6 and filterjac word<0.8 on C. Then we would compute feature jac word twice.

To avoid this, we can execute operation featurejac word once, followed by two select operations

selectjac word>0.6 and selectjac word<0.8.

Default Plan: I now discuss how to convert a set of rules into a default plan (later I show how

to rewrite this plan into a set of plans, then select the best one). First, we convert each rule into

a plan. Specifically, given each rule p1(a, b) ∧ . . . ∧ pm(a, b) → match, we construct a plan

A,B → joinp1 → filterp2 → . . .→ filterpm → C. This plan performs joinp1 on sets of strings

A andB (using indexes, see Section 4.2), applies filterp2 to the output of the join, applies filterp3

to the output of filterp2 , etc., until producing the output C. We then merge the individual plan by

adding a node to union their outputs, to obtain a “global” default plan.
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Example 4.6.1. We convert the set of two rules r1 : (edit dist < 5) ∧ (jac 2g > 0.5)→ match

and r2 : (dice 3g > 0.7)∧ (edit dist < 7)→ match into the default plan in Figure 4.6.a (ignore

the dotted boxes and the notations P1, P2 for now).

A plan is thus a directed acyclic graph (DAG), where the root nodes (those with no incoming

edges) denote input data (e.g., sets A and B), the leaf nodes (those with no outgoing edges) denote

output data (e.g., C), the remaining nodes denote the four operators described above plus the set

union operator, and the edges denote the flow of data among the operators.

4.6.2 Strategies for Reusing Computation

Given a planGmany possible strategies exist for reusing computation withinG. As a first step,

in this work I propose four such strategies. The key idea is to identify plan fragments that often

share computation, then analyze how to merge them to enable reuse. We focus in particular on a

common kind of fragment called reusable paths:

Definition 4 (Reusable path). Given a plan G, which is a DAG, a reusable path P is a path in

graph G of the form o1 → o2 → . . . → on, such that (a) each node oi is an operator and has

exactly one incoming edge and one outgoing edge in graph G, and (b) P is the longest such path,

i.e., we cannot extend path P before o1 or after om to obtain a longer path that still satisfies (a).

When there is no ambiguity, I will use “path” instead of “reusable path”. I refer to nodes o1

and om as the root and leaf nodes of a path, respectively, and the node with an edge leading to o1 as

the parent node of the path. Figure 4.6.a shows two reusable paths P1 and P2 (denoted with dotted

boxes).

I now describe four reuse strategies for paths: join reuse, inter-path filter reuse, intra-path filter

reuse, and filter ordering.

1. Join Reuse: This strategy merges two paths with joins to enable join reuse. Consider the two

paths P1 and P2 in Figure 4.6.a. Path P1 performs joinedit dist<5, while P2 performs joindice 3g>0.7.

These two joins are different and cannot be shared. Observe however that P2 contains a node

filteredit dist<7. We can push this node down to become the root node of P2, then merge it with
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Figure 4.6: Default plan generation, join reuse, and inter-path filter reuse.

the root node joinedit dist<5 of P1, to obtain the plan fragment in Figure 4.6.b, which reduces the

number of joins from two to one. To realize this idea, I first define

Definition 5 (Predicate containment). Let p1 and p2 be two predicates defined over the same feature

f , E denote a set of string pairs and pi(E) denote the result of applying pi over E. I say that (a)

p1 is contained in p2, denoted p1 v p2, iff for any E, p1(E) ⊆ p2(E), and (b) p1 is equivalent to

p2, denoted p1 ≡ p2, iff p1 v p2 and p2 v p1.

For example, for predicates p1 : jac 3g(a, b) > 0.5 and p2 : jac 3g(a, b) > 0.7, we have

p2 v p1.

Join reuse then works as follows. It takes as input two paths P1 and P2 such that (a) both roots

are join operations, and (b) the parents are the same input (e.g., two sets of strings A and B). We

first find a node ni containing predicate p(ni) in P1, and a node nj containing predicate p(nj) in

P2 such that either p(ni) ≡ p(nj), p(ni) v p(nj) or p(nj) v p(ni). If ni, nj exist, then we push

them down the paths to become the two new roots (the old roots become new filter nodes). Then

we merge the two paths. Specifically, if p(ni) ≡ p(nj), then we delete nj and append the rest of

path P2 to ni. If p(ni) v p(nj), then we modify ni to be a selection operator and append it as a

child of nj (see Figure 4.6.b), and so on (see Algorithm 4.1 for the pseudo code).

Note that the above describes one join reuse rule. If multiple combinations of ni, nj exist, then

each combination gives rise to a join reuse rule. Later we use these rewrite rules to generate a

space of alternative plans.

2. Inter-path Filter Reuse: In this strategy I consider two paths that share the same parent,

identify filters (across the paths) that perform common computation, then merge/modify them to
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Algorithm 4.1 Join Reuse

1: Input: Two paths P1 and P2 such that the root of P1 and P2 are join operators and their parents are the same

input. Nodes n1 in P1 and n2 in P2 such that p(n1) ≡ p(n2), p(n1) v p(n2) or p(n2) v p(n1).

2: Output: Root of the merged plan fragment

3:

4: Move n1 as root of P1

5: Move n2 as root of P2

6: if p(n1) ≡ p(n2) then

7: Move path rooted at child of n2 as child of n1

8: Delete n2

9: return n1

10: else if p(n1) v p(n2) then

11: Modify n1 to be select operator

12: Move path rooted at n1 as child of n2

13: return n2

14: else if p(n2) v p(n1) then

15: Modify n2 to be select operator

16: Move path rooted at n2 as child of n1

17: return n1

18: end if

reuse the computation. I distinguish two cases:

(a) Reusing filters with the same feature: To motivate, consider the two paths P3 and P4 in Figure

4.6.c, which share the same parent joincosine 3g>0.6. Both paths execute filteredit dist<5. So we can

push this filter down to be the root of each path, then merge them, to produce the plan fragment in

Figure 4.6.d, which performs the above filter only once.

More generally, this strategy works as follows. Given two paths P1 and P2 sharing the same

parent, if we find a filter node ni containing predicate p(ni) in P1, and a filter node nj containing

predicate p(nj) in P2 such that p(ni) and p(nj) are defined over the same feature f , then we rewrite

P1 and P2 by pushing ni and nj down to be the root nodes of the paths. Next, we merge ni and

nj . If p(ni) ≡ p(nj), then we delete nj and append the rest of P2 to ni. If p(ni) v p(nj), then we
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modify ni to be a selection operator and append it as a child of nj . If none of these holds, then we

add a new feature node nf that computes the feature f as a child of the parent node, move ni and

nj to be nf ’s children, then make ni and nj into select nodes.

(b) Reusing filters with correlated features: To motivate, consider again the plan in Figure 4.6.d.

Consider the path P5 consisting of the sole operation filterdice 2g>0.8 and the path P6 consisting

of the sole operation filterjac 2g>0.5. These two filters do not share the same feature, and hence

cannot benefit from the reuse strategy in Case (a). However, these features are correlated, in

that they perform some common computation. Indeed, dice(X, Y ) = 2|X ∩ Y |/(|X| + |Y |) and

jac(X, Y ) = |X ∩ Y |/|X ∪ Y |. So they both compute the overlap feature |X ∩ Y |.

To reuse this computation, we can modify the plan fragment in Figure 4.6.d into that in Fig-

ure 4.6.e. In this new plan fragment, we first execute featureoverlap 2g, then execute the above

two filters. However, we rewrite these filters with new features. Consider filter filterdice 2g>0.8.

Feature dice 2g of this filter performs a full computation of the Dice score, i.e., computing the

overlap, among others. But now featureoverlap 2g already computes the overlap. As a result, we

define a new feature dice 2g v2, which also computes the Dice score, but assumes that the overlap

information already exists (and stored with the incoming string pair). As a result, it does not com-

pute the overlap again, thereby saving time compared to the old feature dice 2g. Thus, we rewrite

filterdice 2g>0.8 into filterdice 2g 2v>0.8, and similarly rewrite filterjac 2g>0.5 into filterjac 2g 2v>0.5

(see Figure 4.6.e). Algorithm 4.2 provides the pseudo code of this reuse strategy.

3. Intra-path Filter Reuse: This strategy is similar to inter-path filter reuse, but applies to filters

within a single path. Here I can also distinguish two cases:

(a) Reusing filters with the same feature: Within a single path, we also often have multiple filters

with the same feature. (Such paths encode rules extracted from decision trees, and these rules

often have multiple predicates with the same feature.) In such cases, we can reuse computation

across these filters. For example, the path in Figure 4.7.a has two filters involving feature edit dist.

Clearly we can rewrite the second filter as a select operation, because edit dist has been computed

in the first filter (see Figure 4.7.b).
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Algorithm 4.2 Inter-path Filter Reuse

1: Input: Two paths P1 and P2 with same parent. Nodes n1 in P1 and n2 in P2 such that n1 and n2 are filter

operations such that p(n1) and p(n2) are defined over the same or correlated features.

2: Output: Root of the merged plan fragment

3:

4: Move n1 as root of P1

5: Move n2 as root of P2

6: set measures⇐ {cosine,Dice, Jaccard, overlap, overlap Coeff.}

7: if p(n1) ≡ p(n2) then

8: Move path rooted at child of n2 as child of n1

9: Delete n2

10: return n1

11: else if p(n1) v p(n2) then

12: Modify n1 to be select operator

13: Move path rooted at n1 as child of n2

14: return n2

15: else if p(n2) v p(n1) then

16: Modify n2 to be select operator

17: Move path rooted at n2 as child of n1

18: return n1

19: else if sim(f(n1)) ∈ set measures and sim(f(n2)) ∈ set measures and tok(f(n1)) == tok(f(n2)) then

20: Create a feature node nf that computes overlap feature

21: Modify f(n1) and f(n2) to be their corresponding new feature that assumes that overlap is precomputed

22: Modify n1 and n2 to be select operators

23: Move paths rooted at n1 and n2 as children of nf

24: return nf

25: else

26: Create a feature node nf that computes feature f

27: Modify n1 and n2 to be select operators

28: Move paths rooted at n1 and n2 as children of nf

29: return nf

30: end if
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Figure 4.7: Intra-path filter reuse and ordering.

(b) Reusing filters with correlated features: Within a single path, we also often have filters that

have different, but correlated features. We can also share computation among these filters, in a

way similar to the case of inter-path filter reuse. Consider for example the path in Figure 4.7.c.

Here features overlap word and jac word are different, but correlated: computing the Jaccard

score requires computing the overlap. As a result, we can rewrite operation filterjac word>0.6

as filterjac word v2>0.6 (see Figure 4.7.d), where feature jac word v2 is a new feature that also

computes the Jaccard score, but assumes that the overlap has been computed and stored with the

incoming string pair.

4. Filter Ordering: Within a path the filters can be re-ordered (i.e., moved around) without

affecting the output of the path. Different orderings however can significantly affect the runtime of

the path. Consider again the path in Figure 4.7.d. Here filterjac word v2>0.6 is quite fast, because

it assumes the overlap information has been computed (by the upstream filteroverlap word>3). On

the other hand, filterdice 3g>0.7 is slow. If we re-order these two filters, to obtain the path in Figure

4.7.e, then the slow filterdice 3g>0.7 is applied to fewer string pairs, and thus the entire path may

execute much faster. As a result, in this strategy given a path we seek to find a good ordering of its

filters. This raises two challenges: how to estimate the runtime of an ordering and how to search

the large space of possible orderings. I now describe our approach.

Given a set of filters U = {u1, ..., um} in path P , our goal is to find an optimal sequence of the

filters such that the time taken to execute the sequence over a set of input string pairs is minimized.

This problem is NP-hard as shown in [11]. Specifically, [11] shows how the problem of ordering

pipelined filters for stream processing (when the stream and filter characteristics have stabilized)

reduces to the min-sum set cover problem, which is known to be NP-hard [67].
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Algorithm 4.3 Intra-path Filter Reuse

1: Input: Path P . Nodes n1 and n2 in P such that n2 appears after n1 in P and are defined over the same or

correlated features .

2: Output: Root of the rewritten path

3:

4: if f(n2) assumes overlap is precomputed then

5: return P

6: end if

7: if f(n1) == f(n2) then

8: Modify n2 to be select operator

9: else if f(n1) assumes overlap is precomputed or f(n1) is overlap feature then

10: Modify f(n2) to be the new feature that assumes overlap is precomputed

11: else

12: Create a feature node nf that computes overlap feature

13: Move the path rooted at n1 as child of nf

14: Modify f(n1) and f(n2) to be their corresponding new feature that assumes overlap is precomputed

15: end if

16: return P

The problem in [11] is equivalent to ours. To elaborate, [11] considers the problem of optimally

ordering a set of n filters {u1, u2, ..., un} in conjunction, where each filter ui takes a tuple t in a

stream as input and returns either true or false. If ui returns false for tuple t, then ui is said to

drop t. A tuple is emitted in the final result if and only if all n filters return true. The goal is to

optimally order the n filters so that the expected time to process an incoming tuple t is minimized.

This problem is equivalent to our problem of finding an optimal sequence of filter operators where

each filter operator either drops or allows a string pair.

The work [67] proves that any polynomial time algorithm to solve the min-sum set cover prob-

lem can at best provide a constant-factor approximation algorithm guarantee. To this end [11]

proposes a 4-approximation greedy algorithm to optimally order pipelined filters for data streams.

We apply this greedy algorithm to our problem. Specifically, let w(ui) be the average time to apply

filter ui over a string pair and sel({u1, .., ui}) be a selectivity factor of the set of filters u1, ..., ui.
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We begin by choosing filter ui that maximizes (1− sel({ui}))/w(ui), then choose filter uj(j 6= i)

that maximizes (1−sel({ui, uj}))/w(uj), and so on. The chosen filters form the selected sequence

(in that order). [11] shows that this solution finds a sequence whose estimated runtime is at most

four times the estimated runtime of the optimal sequence.

Extending Reuse Strategies to Feature Operations: Finally, it is easy to see that the reuse

strategies described above can also be easily extended to cover feature operations, because each

feature operation can be viewed as a filter operation with a trivial selection that lets all input tuples

go through. We have

Proposition 2. The above reuse strategies are correct in that if we have applied any of them to

transform a plan G1 into a new plan G2, then G1 and G2 are equivalent, i.e., they produce the

same output on any two sets of strings A and B.

4.6.3 Searching for the Best Plan

I now describe how to search for the best plan. Note that the reuse strategies in the previous

section give rise to a set of rewrite rules, each of which rewrites a plan into a potentially better

plan.

So a simple search strategy is to start with the default plan G (see Section 4.6.1), apply all

possible rewrite rules repeatedly, until we cannot apply any more rules, to obtain a place space G.

Example 4.6.2. Suppose that (a) we can apply only two rules to G, producing two new plans G1

and G2, (b) we can apply only one rule to G1, producing a new plan G3, and (c) we can apply no

other rules to any plan. Then G = {G,G1, G2, G3}.

In the next step, we estimate the runtime of each plan in G (see Section 4.6.4), and select

the fastest plan. G however is often huge (e.g., hundreds of millions to billions of plans for our

experiments), rendering this strategy impractical.

Staged Search: As a result, I explore the following staged search strategy. Given the default plan

G, we apply (a) all possible join reuse rules repeatedly (until we cannot apply any further), then



89

(b) all possible inter-path filter reuse rewrite rules, then (c) all possible filter ordering rules, and

finally (d) all possible intra-path filter reuse rules.

The rationale for this ordering of the rules is as follows. First, joins are very expensive. So we

want to do (a) first, to consider all possible join reuse opportunities. We can delay (c) and (d) to

the end, because they are local rules and do not increase the estimated runtime of any target plan

(as I discuss below). This leaves inter-path filter reuse rules to be executed in (b). Finally, we do

(c) before (d) because it is not difficult to prove that if there is any intra-path filter reuse we want

to perform for a path, we can always perform it (or another reuse with equivalent effect) after we

have performed filter ordering for the path.

Let U be the resulting plan space. We can reduce U somewhat, by observing that applying filter

ordering or intra-path filter reuse rules does not increase the estimated time of the plan. Formally,

Proposition 3. Suppose applying a filter ordering or intra-path filter reuse rule as described in

Section 4.6.2 to a plan P yields a new plan P ′. Then the runtime of P ′ does not exceed that of P ,

where the runtimes are estimated using the procedure in Section 4.6.4.

As a result, if we rewrite a plan P into P ′ using one of the above rules, we can drop P from U .

We then estimate the runtime for each plan in U and select the fastest plan.

Incremental Staged Search: Unfortunately, the plan space U is still huge (e.g., 100+M plans

in our experiments). As a result, we perform an incremental staged search that explores a much

smaller space yet finds good plans (see Section 4.8).

Specifically, let R be a set of n matching rules to be executed. We first sort the rules in R in

some order r1, . . . , rn (discussed below). Next, we convert the set of the first two rules r1 and r2

into a default plan P12, then perform staged search (as described earlier) on it to find the best plan

P ∗12. Next, we convert rule r3 into a default plan P3, merge it with plan P ∗12 (by adding a node that

unions their output), to form a new plan P123. Then we perform staged search on P123, to find the

best plan P ∗123. During this search, however, we fix the plan fragment P ∗12, applying rewrite rules

only to the rest of plan P123. Next, we convert rule r4 into a default plan P4, then merge it with

P ∗123, etc., until we have processed the last rule rn.
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I now discuss how to sort the rules inR. The key idea is to give the maximal amount of freedom

in selecting a join operator to the rule whose minimal estimated runtime is higher than that of other

rules. As a result, we sort the rules in the decreasing order of their minimal estimated runtime.

Specifically, for each rule ri ∈ R, we first enumerate all plans where a predicate in ri becomes

a join operator and the remaining predicates become filter operators. Then for each such plan P

we perform all filter ordering and intra-path filter reuse rewriting, which can only help reduce P ’s

runtime (see Proposition 3). Finally, we estimate the runtimes of these plans (see Section 4.6.4),

then select the lowest runtime to be the minimal estimated runtime of rule ri.

4.6.4 Plan Cost Estimation

As the final piece in the optimization puzzle, I describe estimating plan costs, i.e., runtimes. In

our context, a plan P is a DAG of operators (see Section 4.6.1). To execute P , we read the sets

of strings A and B from disk into memory, execute the DAG in memory, then write the output to

disk. As a result, we will only estimate the CPU time of executing the DAG (the I/O time is the

same for all plans), which is the sum of the CPU times of all operations in the DAG.

Thus, we need to estimate the CPU time for each operation in the DAG. There are five types

of operator: select, feature, filter, join, and union. Since unions take negligible time, we only need

to estimate time for the first four types of operator. For each operator type, we need to estimate

its runtime as well as the size of the output relative to the size of the input (which we need for

estimating the runtime of any operator that consumes the output of this operator).

In what follows I briefly describe the cost model that estimates these two quantities for each

operator type.

selectp(C): applies a predicate p to each pair in C to obtain an output Cout. Then we estimate

the output size as |Cout| = ρp · |C|, where ρp is a selectivity factor for predicate p. We estimate

the runtime of this operator as α · |C|, where α is the average time to apply p to a pair (this time

involves just a single comparison, hence it is very small and assumed to be the same regardless of

p). The cost model of this operator thus requires estimating ρp and α.
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featuref(C): computes feature f for each pair in C. Thus the output size is the same as the

input size. The runtime is estimated as βf · |C|, where βf is the average time to compute feature f

for a string pair.

filterp(C): computes a feature f (specified by predicate p) and applies p to each pair in C,

then output only those pairs satisfying p. We estimate the output size to be ρp · |C|, where ρp is a

selectivity factor for predicate p, and the runtime to be (βf + α) · |C| (because for each pair in C

it takes time βf to compute feature f and time α to apply p.

joinp(A,B): returns all pairs in A × B that satisfy predicate p. Thus, we estimate the output

size as ρp · |A×B|, where ρp is the selectivity factor of predicate p. Estimating the runtime of this

operator is more involved. Given two sets of strings A and B, this operator first builds an index

I on A. Then for each string b ∈ B, it probes I to obtain a relatively small set of strings Q(b) in

A. Finally, it processes each pair (b, q), where q ∈ Q(b), by computing feature f for the pair (the

feature mentioned in predicate p), applying predicate p, then outputting the pair if it satisfies p.

Thus, the runtime of this operator consists of the times for index building, index probing, and

processing of string pairs. We estimate the index building time to be δp · |A| and the index probing

time to be µp · |B|. Let Q = ∪b∈B Q(b). Then the processing time is (βf + α) · |Q| (because for

each pair in Q it takes βf time to compute feature f , then α time to apply predicate p). Finally,

we estimate Q = γp · |A× B|, where γp is a reduction factor showing how much the index-based

probing “shrinks” the set of string pairs A×B.

I now describe how Smurf estimates cost model parameters α, βf , γp, ρp, δp, and µp. We begin

by taking a small random sample of string pairs X (of size currently set at 30K) from the sample

S used when learning the join condition.

Estimating α: The average selection time per string pair α is a constant which is independent of

the predicate being applied. We estimate α by measuring the time to apply an arbitrary predicate

(with feature precomputed) over each pair in X , and taking the average.

Estimating βf : We estimate the time factor βf for each feature f by measuring the time to apply

f to each pair in X , and taking the average.
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Estimating γp: We estimate the reduction factor due to index-based probing γp for each predicate

p as follows. We begin by applying the prefix filter for p to each pair in X (i.e., for a given pair

(a, b), check if the prefix of a and b share at least one token) to obtain a set of string pairs Y (that

satisfy the filter). We then estimate γp as | Y | / | X |.

Estimating ρp: We now discuss how to estimate the selectivity of each predicate p, ρp. We do

not precompute ρp for each predicate p, as we do not assume the predicates are independent. For

example, if we apply a sequence of two filters containing predicates p1 and p2, respectively, over

an input set of pairs C, we cannot compute the output size of applying the sequence of filters as

ρp1 ∗ ρp2∗ | C | since p1 and p2 may not be independent.

To address this, for each predicate pi we compute the coverage of pi over sampleX , cov(pi, X),

which is the set of pairs inX that pi would satisfy. Then we can estimate the selectivity of pi, ρp, to

be | cov(pi, X) | / | X |. And we can compute the selectivity of applying a sequence of predicates

p1, p2, to be | cov(p1, X)∩ cov(p2, X) | / | X |. Hence we only keep track of the coverage of each

predicate and estimate the selectivities of predicates on the fly. To estimate selectivities efficiently,

Smurf maintains the coverages of predicates in the form of bitmaps.

Estimating δp: To estimate the index building time, we need to estimate δp which is the average

time spent per string in A when building the index. To do so, we take a small random sample of

strings Y from A (where | Y | is min{0.1 ∗ | A |, 1K}), then measure the time it takes to index

each string a ∈ Y (i.e., the time taken to insert each token in the prefix of a into the index), and

take the average.

Estimating µp: To estimate the index probing time, we need to estimate µp which is the average

time spent per string in B when probing the index. To do so, we take a small random sample of

strings Z from B (where | Z | is min{0.1 ∗ | B |, 1K}), then measure the time it takes to probe

each string b ∈ Z (i.e., the time taken to probe each token in the prefix of b) in the index built over

strings in sample Y (used for estimating δp above), and take the average.
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Figure 4.8: An example of a final execution plan.

4.6.5 Plan Execution

I now describe how a plan G is executed over two sets of input strings A and B. First, we

perform pre-processing, e.g., traversing G to collect information, tokenizing the strings in A and

B, materializing the tokens to disk, etc.

Next, we traverse G depth first, and execute its nodes in that order. For the plan in Fig-

ure 4.8, for example, starting with the inputs, we first execute node joinjac word>0.7, then node

filtercosine 3g>0.5, then filterdice 2g>0.8, and so on. For a node with more than one children, we

cache its output until all child nodes (i.e., those needing this output) have been executed. Executing

nodes of types filter, feature and select is straightforward, as we just apply such operations to

each string pair. Executing a join node over two sets of strings A and B is more involved. Here

we use the index-based filtering approaches discussed in Section 4.2 to avoid enumerating A×B.

Recall that prior work has developed many efficient filtering techniques [98, 94, 99]. The cur-

rent Smurf implements the ppjoin filtering algorithm [98] for set-based similarity measures (e.g.,

Jaccard, overlap, Dice, etc.) and edjoin algorithm [99] for edit distance.

Caching: In certain nodes of the plan G, which compute a set-based similarity feature, the input

strings need to be tokenized into sets of tokens. We can tokenize the strings when executing each

node in G containing such a feature. But this is expensive as we repeatedly tokenize the strings.

To address this, we traverse through G to identify a set of tokenization types W needed to execute

G (e.g., 3-gram, whitespace, etc.), then for each type w ∈ W we tokenize the strings in A and B

and materialize the tokens to disk.

Then each node in G loads the appropriate tokens from disk, if needed. A better solution

however is to cache the tokens in memory if possible, thereby avoiding I/O when executing each
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node. To do so, we proceed in this order: (1) If the tokenized output needed to execute G fits in the

available memory, we load them into the memory. (2) If the tokenized output needed to execute

a subtree in G fits in the available memory, we load them into the memory before executing the

subtree. (3) Otherwise we do not cache any tokenized output.

4.7 Efficient Blocking and Matching

Recall that to perform SSJ over two sets of strings A and B, we first interact with the user to

learn a random forest F , then execute F over A and B. In particular, I break the execution of F

into two steps: blocking and matching. I now describe how to perform these two steps efficiently

(using the solution to efficiently execute a set of DTs described in the previous section). Algorithm

4.4 describes the pseudo code for executing a random forest over two sets of strings.

4.7.1 The Blocking Step

Suppose the learned random forest F has n trees. For ease of exposition, suppose we need at

least dn/2e trees in F to match, in order for F to match (our solution generalizes straightforwardly

to the case where we need αn trees to match, where α is pre-specified). Then we can easily prove

that

Proposition 4. If the blocking step executes at least (bn/2c + 1) trees, then any string pair not

output by this step (i.e., not output by any of these trees) cannot be a match.

To minimize the run time of blocking, we will execute exactly (bn/2c + 1) trees in this step

(Section 4.8.1 shows that executing more trees actually incurs longer total join execution time.)

Specifically, let T be the set of all trees in random forest F . We will select a subset T ′ ⊆ T

of (bn/2c + 1) trees for blocking, such that the time taken to apply the trees in T ′ to A and B

to produce a set of pairs J , plus the time taken to apply the remaining trees in T \ T ′ to set J is

minimized. Let these two times be time(T ′) and time(T \T ′), respectively. We estimate time(T )

by applying the procedure in Section 4.6.3 to generate a good execution plan P for the set of trees
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Algorithm 4.4 Executing a Random Forest

1: Input: Sets of strings A and B, random forest F of n trees

2: Output: Set of predicted matches C

3:

4: T ⇐ Set of decision trees in F

5: for tree t ∈ T do

6: Rt⇐ Extract matching rules from t

7: end for

8: T ′ ⇐ Select a set of (bn/2c+ 1) trees from T

9: R⇐
⋃

t∈T ′ Rt

10: G⇐ Generate a plan to execute R

11: D⇐ Execute G over A and B

12: Initialize C ⇐ {c ∈ D | c already has at least dn/2e votes}

13: D⇐ D \ C

14: S̄ ⇐ Order the trees in T \ T ′

15: ubound⇐ | S̄ |

16: for tree t ∈ S̄ do

17: if D is empty then return C

18: Gt ⇐ Generate a plan to execute Rt

19: Et⇐ Execute Gt over D

20: ubound⇐ ubound - 1

21: for pair c ∈ Et do vc ⇐ vc + 1 end for

22: for pair c ∈ D do

23: if vc ≥ dn/2e then

24: D⇐ D \ {c}

25: C ⇐ C ∪ {c}

26: else if vc + ubound < dn/2e then

27: D⇐ D \ {c}

28: end if

29: end for

30: end for

31: return C
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T , then take the estimated runtime of P (using the cost estimation procedure in Section 4.6.4) to

be time(T ). We estimate time(T \ T ′), the matching time, as described in the next subsection.

The problem is that there are too many possible subsets of trees of size (bn/2c+ 1) (
(

n
bn/2c+1

)
such subsets). So we cannot enumerate and estimate time(T ′) + time(T \ T ′) for all of them,

then select the one with the lowest total time. As a result, we select T ′ using greedy search. First,

we assign T ′ to be the set of all trees T . Then in each iteration we remove the tree t from T ′ that

results in the largest reduction of time(T ′) + time(T \ T ′), until we have removed (dn/2e − 1)

trees. Let T ′∗ be the remaining set of trees. We perform blocking using T ′∗, i.e., we generate an

efficient execution plan for T ′∗ (see Section 4.6) then execute it on A and B.

4.7.2 The Matching Step

Suppose that executing T ′∗ trees in the blocking step produces a set of pairs J . I now consider

how to execute the remaining trees on J . We begin by noting that the optimization procedure in

Section 4.6, which finds a good plan to execute a set of trees over two sets of strings A and B, can

easily be adapted to find a good plan to execute a set of trees over a set of string pairs J .

Now let U be the set of the remaining trees to be executed on set J . Similar to how we execute

trees in the blocking step, here we can simply use the above optimization procedure to generate a

single plan P that executes all the trees in U in a combined fashion (i.e., reusing computation). A

better solution however is to apply the trees sequentially to avoid applying all trees in U to all pairs

in J .

Example 4.7.1. Consider a forest F of 10 trees, where at least 5 trees must match in order for F to

match. Then the blocking step executes 6 trees to produce a set of pairs J . Consider a pair p1 ∈ J

matched by 4 trees in blocking. Then we can declare p1 a match as soon as one of the remaining

4 trees matches p1. Consider a pair p2 ∈ J matched by just one tree in blocking. Then we can

declare p2 a non-match as soon as one of the remaining 4 trees predicts it a non-match.

Thus we will order and execute the trees in U sequentially. In particular, we want to find the

tree sequence that minimizes the total execution time. This problem is NP-hard. As a result, we

employ a greedy approach.
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Specifically, let M be the output of applying a tree sequence 〈t1, . . . , ti〉 to set J , i.e., (a) M

contains all pairs in J for which we still cannot make a match/non-match decision, and (b) J \M

contains all pairs in J for which we have already made a match/non-match decision (after executing

sequence 〈t1, . . . , ti〉, see Example 4.7.1). Then we refer to |J \M |/|J | as the pruning rate of the

sequence 〈t1, . . . , ti〉 and denote this rate as d(〈t1, . . . , ti〉). Let w(ti) be the average runtime of

tree ti on a string pair.

Intuitively, we want to be able to make match/non-match decisions as soon as possible, for as

many pairs as possible. So we want to start with the trees with the highest pruning rates. But

we need to balance this against the runtimes of those trees. Thus, we select the tree sequence as

follows. First, we select a tree ti that maximizes d(〈ti〉)/w(ti). Then we select another tree tj that

maximizes d(〈ti, tj〉)/w(tj), etc., until we have selected all trees in U . This forms the sequence Ū

to be executed in the matching step.

Finally, recall from Section 4.7.1 that when considering whether to select a subset of trees

T ′ for blocking, we need to estimate the total runtime of executing the remaining trees, U =

T \ T ′, in the matching step. To do this, we first find a good tree sequence Ū , as described

above. Let Ū = 〈t1, . . . , tk〉. Then we estimate the runtime of Ū on set J as |J | · z, where

z = w(t1) + (1− d(〈t1〉)) ·w(t2) + (1− d(〈t1, t2〉)) ·w(t3) + · · · + (1− d(〈t1, . . . , tk−1〉)) ·w(tk).

Recall from Section 4.5.1 that we perform blocking on two sets A and B to obtain a set I

of matches and a set J of candidates. Then we perform matching on J to obtain a set K of

matches. The following theorem shows the correctness of the blocking and matching algorithms,

as described above:

Theorem 1. Let C∗ be the set of all pairs in A × B predicted match by a random forest F . Then

I ∪K = C∗.

4.8 Empirical Evaluation

I evaluate Smurf using the five datasets described in the first four columns of Table 4.2. Ad-

dresses describes street addresses extracted from Yelp and Yellow Pages. Researchers describes

the names of researchers at a university. Citations and Products are derived from the datasets used



98

Table 4.2: Accuracy of Smurf vs. the best single predicate on five datasets.

in [22], and Names describes full names from the US Census Bureau [4]. The column “# Matches”

lists the number of gold matches in each dataset.

Best Single-Predicate Join Conditions: For each dataset, we find the best single-predicate join

condition by an exhaustive search. Specifically, we consider 25 features, each created by pairing

one of six common tokenization method (e.g., 2-gram, 3-gram, word, numeric, etc.) with one of

five common similarity measures (e.g., Jaccard, edit distance, cosine, etc.). For each feature f , we

consider all predicates of the form f ≥ t, where t ranges from 0.1 to 1 in increments of 0.01 (edit

distance was converted into a similarity measure for this purpose). We then find the predicate with

the highest F1 accuracy (shown in Column “Predicate” of Table 4.2).

Smurf: Smurf was implemented in Cython. We consider random forests with ten trees (the

default in many learning packages, e.g., scikit-learn), but experiment with a varying number of

trees below, and learn the random forest on each dataset by simulating a user who labels the string

pairs. All experiments were run on a machine with Ubuntu 14.04.4 with two Intel Xeon E5-2630

CPUs (8 cores, 2.4GHz) and 32GB memory.

4.8.1 Accuracy and Runtime

Accuracy: In Table 4.2, the columns under “Smurf” and “Best single predicate” show the accu-

racy in P,R, F1 of Smurf and the best single predicate (BSP), respectively. The results show that

Smurf significantly outperforms BSP, by 10.5-22.4% absolute increase in F1 in four cases, and by

1.15% in one case (see the last column of the table). Column “# Pairs” (under “Smurf”) shows the

number of pairs 374-400 that the user has to label to learn the join condition using active learning
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(for Researchers, active learning stopped earlier, when all unlabeled pairs have entropy 0). We

found that real-world users typically need 1-3 seconds to label a pair of strings in our datasets, or

15-20 minutes to label 400 pairs.

Extensive examination reveals that the accuracy improvement was indeed due to Smurf’s abil-

ity to use more than one predicate. For example, in Addresses, the best single predicate (shown

in Table 4.2) uses Jaccard score over numeric tokens extracted from the address string (i.e., house

number, zip code). But this means it also matches address pairs with the same house numbers

and zip codes, but different streets (e.g., 100 E Main St, Austin, TX 83703 and 100 S Doty

St, Austin, TX 83703). In contrast, Smurf learns rules such as cosine num(a, b) > 0.93 ∧

dice qg3(a, b) > 0.83→match.

Here, dice qg3(a, b) > 0.83 computes the Dice score over 3-gram tokens of the addresses,

and cosine num(a, b) > 0.93 computes the cosine score over the numeric tokens of the address.

Together, they state that two addresses match if their strings are highly similar (3-gram token-wise)

and their numbers are also highly similar. This dramatically increases the precision from 61.33%

to 96.97%.

In Names, about 40% of the names are short names (i.e., less than 10 characters). The best

single predicate is jaccard qg2(a, b) ≥ 0.46, which fails to match most short names (by setting a

“too high” threshold). In contrast, Smurf uses two rules:

r1 : jaccard qg2(a, b) > 0.47 ∧ len(a) > 9.5→match

r2 : jaccard qg2(a, b) > 0.28 ∧ len(a) ≤ 9.5→match

Rule r1 states that if the first name is long (len(a) > 9.5), then use a high threshold (0.47) for

jaccard qg2(a, b). Rule r2 states that if the first name is short, then lower that threshold to 0.28.

This allows Smurf to correctly match many short names, increasing recall from 65.82% to 99.82%.

In Products, the best single predicate (very conservatively) declares two product titles matched

if their 2-gram tokens are very similar (using overlap coeff qg2(a, b) ≥ 0.93). In contrast, Smurf

states that if two titles are only somewhat similar in their alphabetic tokens (using jaccard alph(a, b
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Figure 4.9: Runtimes of Smurf versus baselines that use existing solutions on rule execution.

) > 0.42), but the numbers extracted from them (which are typically model numbers) are very simi-

lar (using predicate overlap coeff num(a, b) > 0.92), then they also match. This increases recall

from 44.63% to 64.04%.

Runtime: As discussed in Section 4.5.1, no published work has optimized the execution of a set

of matching rules. But two recent works, Falcon and RAR [23, 57], have optimized the execution

of a single rule. We use these works to build four baselines for comparison. BasicTrees does not

do blocking. It executes all trees in the random forest onA andB. To do so, it extracts the matching

rules of the trees, executes all of them, then merges their outputs. To execute a rule r, it creates and

executes an optimized plan for r as described in Section 4.6.1. As such, BasicTrees is equivalent

to Falcon variation that uses ApplyGreedy [23]. (I also experimented with the ApplyAll variation

[23] but it was outperformed by ApplyGreedy in our settings and hence is not discussed further.)

RAR is similar to BasicTrees, but when executing an individual rule it uses the holistic prefix

index solution of [57]. SmartTrees and SmartRAR are versions of BasicTrees and RAR that use

blocking. They first execute a set of (bn/2c + 1) trees (the same set of trees used by Smurf for

blocking) to A and B to obtain a set of pairs J , then apply the remaining trees to J . They differ

from Smurf only in that they do not execute the rules of the trees in an optimized fashion (i.e., no

reuse, see Section 4.5.1).
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Table 4.3: Selecting a subset of trees for blocking.

Figure 4.9 compares the runtimes as we increase the dataset size. Here a value 4x on the

x-axis means that we replicate the original dataset 4 times, by using random perturbations (e.g.,

inserting/deleting characters) of the original strings.

The results show that Smurf significantly outperforms the four baselines, and this gap increases

as the dataset size increases, e.g., at dataset size of 10x, Smurf performs 6-32 times better than

BasicTrees (i.e., Falcon), 3-25 times better than SmartTrees, 4-54 times better than RAR, and

2-13 times better than SmartRAR. It is clear that executing the trees in a joint fashion (to reuse

computations), as Smurf does, is absolutely critical for scaling.

4.8.2 Performance of the Components

Blocking: Blocking drastically reduces the number of pairs to be considered, from 56M-727M

forA×B to 4,887-25,763 pairs. Using blocking, SmartTrees significantly outperforms BasicTrees,

and similarly SmartRAR outperforms RAR (see Figure 4.9).

Table 4.3 examines how well Smurf selects a subset of trees for blocking. It shows the runtime

(in secs) of Smurf vs three Smurf variations. Smurfrand uses a random subset of (bn/2c+ 1) trees

for blocking. Smurfsel selects the first (bn/2c+1) trees in decreasing order of their pruning power.

Smurftime selects the first (bn/2c+ 1) trees in increasing order of their average execution time (as

we want to reduce the blocking time). The results show that Smurf always outperforms the three

variants, often by a large margin (e.g., by 38-51% for Citations), suggesting that Smurf selects

good subsets of trees for blocking.
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Table 4.4: Runtimes of the components (in seconds).

Matching: I found that executing the trees in the matching step in a sequential, instead of

combined, fashion reduces runtime by 8-20%, suggesting that sequential execution is effective. To

examine how well Smurf orders the trees, I compare it with three variations that order the trees

(a) randomly, (b) in decreasing order of their pruning power, and (c) in increasing order of average

execution time. For Addresses and Citations, Smurf is the best (9-15% faster compared to the

second best). For Researchers Smurf is the second best (11% slower than the best). This suggests

that Smurf selects a reasonable sequence of trees.

Optimization: Table 4.4 examines the effect of executing a set of trees in a joint optimized

fashion, on the 10x versions of the datasets. Columns “BT” and “ST” show that BasicTrees and

SmartTrees incur significant runtimes, and that optimization (i.e., Smurf) drastically reduces these

times to 158-3,333 secs (see Column “O”), a major reduction of 72-96%.

The next four columns show the runtimes when I turn off each type of optimization: join reuse

(O1), inter-path filter reuse (O2), ordering filters (O3), and intra-path filter reuse (O4). Comparison

with Column “O” shows that all four optimization types are useful, and that the effects of some are

quite significant (e.g., O1 on all the data sets, O3 on Researchers and Citations).

4.8.3 Sensitivity Analysis

I now examine the main factors affecting the performance of Smurf on the three data sets:

Addresses, Researchers, and Citations. The results are similar for the remaining two data sets.
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Figure 4.10: Effect of number of iterations, number of trees and sample size on F1.

Number of Iterations: I now examine how varying the maximum number of iterations during

active learning affects the accuracy of Smurf. Figure 4.10.a shows that as we increase this number

from 10 to 50, F1 fluctuates in a small range for all three data sets. This suggests that capping the

number of iterations at 20, as Smurf does, is a reasonable solution to avoid a large number of pairs

being labeled and yet achieve good accuracy.

Number of Trees: Figure 4.10.b shows that as we increase the number of trees in the random

forest from 1 to 25, F1 increases significantly from 1 to 5 trees, and then fluctuates in a small range

for all three datasets. This suggests that using a random forest outperforms using a single decision

tree, and that using a forest of ten trees (as Smurf does) is a reasonable default choice.

Sample Size: Figure 4.10.c shows that as we increase the sample size (used for learning the

random forest) from 50K to 250K pairs, F1 increases slightly then fluctuates in a small range. This

suggests that a sample size of 100K (as used in Smurf) is a good default size.

Number of Trees Used for Blocking: Recall that blocking must use at least (bn/2c+1) trees. So

in our context it can use 6-10 trees (as n = 10). As we increase the number of trees from 6 to 10,

Smurf’s runtime increases significantly, e.g., by 398% for Addresses, 28% for Researchers, and

121% for Citations. This suggests that using the minimally required number of trees for blocking

(as Smurf does) is the best strategy.
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Maximum Depth of a Decision Tree: We found that as we increase the maximum depth of

decision trees from 1 to 10, F1 accuracy remains stable on Citations. But on Addresses and Re-

searchers it increases significantly until the depth of 3 (from 77% to 90% for Addresses, and 73%

to 95% for Researchers), and then fluctuates in a small range.

4.9 Related Work

String Similarity Joins: SSJs have been widely studied [98, 12, 49, 60] (see [104] for a survey).

To avoid examining all pairs of strings, prior works use inverted indexes [83], prefix filter [17],

size filter [9, 12], position filter and suffix filter [98], among others. Work has examined SSJs

within a database [44, 17, 10] and developed scalable parallel solutions (e.g., using MapReduce

[90, 65, 24, 27]). Recent work has also examined top-k SSJs [100, 105]. Current SSJ work however

has only examined single-predicate join conditions (e.g., [98, 90]). In contrast, Smurf considers

more powerful multi-predicate join conditions in form of random forests.

Learning Join Conditions: Few works address learning join conditions for SSJ. The work [14]

learns a single-predicate join condition using active learning. In contrast, Smurf learns a random

forest join condition. The works [23, 42] use active learning to learn a random-forest blocker for

entity matching. Smurf adapts their solution to SSJ contexts. Recent works [56, 85] have studied

how to learn other ML models such as generalized linear models over a join without having to

materialize the join output.

Scaling up Random Forests: Most works on scaling RFs focus on efficiently learning RFs over

large datasets [69, 87, 103]. In contrast, Smurf considers efficiently executing random forests. The

work [33] develops pruning techniques for reducing the prediction time of ensemble models, but

assumes a set of feature vectors as input.

Execution of Matching Rules and Multi-Query Optimization: The works [23, 57] have ex-

amined how to efficiently execute a single matching rule (for entity matching). In contrast, Smurf

examines how to efficiently execute a set of rules, by reusing computation. This combined execu-

tion of rules is reminiscent of multi-query optimization in RDBMSs, which optimizes the execution
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of a set of queries [86]. Similar to Smurf, prior works on multi-query optimization also represent

each query as a DAG and combine the DAGs into a single DAG by exploiting the common sub-

expressions in the queries [86, 79]. But the two contexts are sufficiently different, so that the ideas

underlying multi-query optimization cannot be straightforwardly adapted to our SSJ contexts.

Additional Related Work: The problem of selecting a subset of trees for blocking is reminiscent

of the problem of selecting a optimal set of SSJ filters (such as size filter, prefix filter) when

executing a single-predicate join condition [88]. However, the SSJ filters considered in [88] form

a conjunction, whereas in our blocking step the trees form a disjunction (i.e., we need to output the

string pairs predicted as a match by at least one tree). Finally, the problem of finding an optimal

tree sequence for matching is similar to the problem of ordering pipelined filters [11]. However,

our problem is more complex, a special case of which is the problem in [11].

4.10 Conclusion

Current SSJ work is limited in that it has considered only single-predicate join conditions. I

have shown that using multiple predicates for join conditions can significantly improve SSJ accu-

racy. I have described Smurf, a solution that uses active learning to learn a join condition that is

a random forest containing multiple predicates, then executes the random forest on the input sets

to match strings. Our key technical contribution is a solution to efficiently execute such random

forests over two sets of strings.

Going forward, I plan to explore better and more optimization/execution techniques for random

forests, and to consider the machine cluster setting. I also plan to explore how the techniques

developed here can be applied to other settings, such as entity matching (e.g., over multi-attribute

tuples). Finally, it would be interesting to consider join conditions that involve other types of

learning, e.g., SVM, deep learning, among others.
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Chapter 5

Tool Development and Deployment

In this chapter, I describe the development and deployment experience of our solutions.

5.1 Tool for Expanding Regexes

I have implemented the solution for finding synonyms to add to disjunctions in a regex (de-

scribed in Chapter 2) as a Web-based app. The app was implemented in Java.

A user will provide an initial regex and a dataset as input to the app. The app will then process

and return a ranked list of top-k terms to add to the disjunction along with evidence in the dataset.

The user marks the terms as relevant or not, which is then used by the app to re-rank the remaining

terms and shows the next list of top-k terms. Figure 5.1 shows a screenshot of the app’s homepage

and Figure 5.2 shows a screenshot of the ranked list of synonyms shown by the app.

Deployment: The app has been used by analysts at WalmartLabs since June 2014. The time

spent by analysts reduced from hours to few minutes. Further it also resulted in a new direction of

work. Specifically, we extended the current approach to generate new product classification rules.

The existing product classification system at WalmartLabs consisted of a set of rules for each

product type, where each rule is of the form r → t which assigns the product type t to any product

whose title matches the regular expression r. One of the problems with the existing system was

that the coverage of the rules was low which resulted in many products not being classified. To

address this, we extended our solution to expand the existing classification rules to generate new

rules. We evaluated our approach on a set of training data that consists of roughly 885K labeled

products, covering 3707 types. Our approach generated 63K new rules, which was added to the
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Figure 5.1: A screenshot of the app’s homepage.

Figure 5.2: A screenshot of the ranked list shown by the app.

existing system. The new system was operational since June 2014, and the addition of these rules

resulted in an 18% reduction in the number of items that the system declines to classify.
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5.2 Deploying Falcon as a Cloud Service

In collaboration with Yash Govind, I have deployed the Falcon system (described in Chapter

3) as a cloud service and have open sourced the code. Specifically, I have deployed Falcon as

CloudMatcher, a cloud/crowd service for EM.

CloudMatcher is a fast, easy-to-use, scalable, and highly available service on the Web. Specif-

ically, to use this service, a user simply needs to go to CloudMatcher’s Web site, uploads two

tables to be matched, performs some basic pre-processing, then pushes a button. CloudMatcher

will perform EM end-to-end. To do so, it will use crowd workers on Amazon’s Mechanical Turk

(or some other crowdsourcing platform) to label tuple pairs (as match / non-match). The user just

has to pay for the labeling. Alternatively, instead of using crowdsourcing, the user can just label

these tuple pairs. At the end, CloudMatcher will return the desired matches. In the backend,

CloudMatcher performs EM using a machine cluster that we will maintain.

As described, when using CloudMatcher, the user does not need to install or learn how to use

any complicated system (using CloudMatcher should be very straightforward). The user does not

have to know EM (e.g., knowing string similarity measures). He or she will only perform simple

actions such as labeling a tuple pair as match / non-match. Alternatively, if the user is not even

willing to label the tuple pairs, then he or she can pay to “outsource” that work to a crowd of

workers (assuming that the data is not sensitive and that crowd workers can be quickly trained to

label tuple pairs). Finally, the system can scale to tables of millions of tuples and can automatically

add more machine resources as necessary. Figure 5.3 shows a screenshot of CloudMatcher’s

homepage.

Deployment: CloudMatcher has been developed for over 1.5 years, in a combination of Python

and Java, at cloudmatcher.io. It is not yet available to the general public (we still need to work out

issues such as how to let a “public” user pay easily and how to securely store his/her data).

CloudMatcher however has been applied to many datasets at UW-Madison, Johnson Controls

Inc. (JCI), and WalmartLabs, and has been opened to several other users, including biomedical
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Figure 5.3: A screenshot of CloudMatcher’s homepage.

researchers in a joint project between Marshfield Clinic and UW-Madison, and users at a non-

profit organization (NPO) tracking Wisconsin politics [43].

5.3 Tools for Matching Strings

I have developed two Python packages: py stringmatching and py stringsimjoin, which pro-

vide string matching capabilities. Specifically, py stringmatching consists of a variety of string

similarity measures, and py stringsimjoin consists of commands to perform string similarity joins.

In what follows I describe these two packages.

5.3.1 Tool for Computing String Similarity Measures

Many applications such as EM require string matching capabilities, and yet today there are

very few packages in the Python data eco-system that provide such capabilities. To address this, I

have implemented the package py stringmatching.

py stringmatching is a Python package that consists of a variety of string tokenizers (e.g.,

whitespace tokenizer, qgram tokenizer) and string similarity measures (e.g., edit distance, Jaccard

measure, TF/IDF) [1]. The goal is to build a comprehensive and scalable set of string tokenizers

and similarity measures for the Python data management eco-system.
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5.3.1.1 Limitations of Current Tools

In contrast to the wealth of research work, there has been relatively few implemented tokenizing

and string similarity measure packages. As of June 2016, we counted 2 non-Python packages and

7 Python packages for string matching. The main limitations of these packages are:

• Language: The two non-Python packages are in Java, and thus are hard to use in Python. To

use them, users would need to install and run JVM (Java Virtual Machine), a cumbersome

process.

• Coverage: The packages do not provide a comprehensive coverage of the most common

string similarity measures, and it is not clear if they have plans to provide comprehensive

coverage. For example, 4 out of 7 Python packages cover only edit distance variations,

while the remaining 3 packages do not implement certain common similarity measures (e.g.,

TF/IDF, Jaccard).

• Runtime Performance: The performance of certain measures is unsatisfactory. For example,

our experiments show that the runtime of edit distance can vary by as much as 180 times

across the packages. In particular, it appears that it is difficult to obtain satisfactory perfor-

mance for edit distance (say) using just Python (C and Cython appear to provide a far better

performance).

• Installation: Some of the packages are cumbersome to use. For example, to use Abydos,

the user needs to install the complete package, of which the module on similarity measure

constitutes just a small part.

• Licensing: Some of the packages use restrictive copyright licenses. For example, python-

Levenshtein (which has the best runtime performance for edit distance in our experiments)

uses GPL. Roughly speaking, any code using this code would also become GPL open-source

code. In contrast, we want to allow any code to use py stringmatching with acknowledgment.

For these reasons, we plan to use BSD 3-Clause license (which is also used by well-known

packages such as pandas and sklearn).
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• Extensibility: It is not clear if the existing packages are designed for extension, and if so, how

to extend them. In contrast, we envision that py stringmatching will have to be extended to

handle more tokenizers and similarity measures, and to be adapted to various domains. So

we plan to design py stringmatching to be extensible from the scratch. For example, we

design tokenizers and string similarity measures as classes as opposed to functions.

5.3.1.2 Goals

As a result, we want to develop a new Python package for string tokenizers and similarity

measures. Our goals are as follows:

• Develop a comprehensive package. It should at least cover all common tokenizers and simi-

larity measures, and then expand over time. Ideally it should subsume current packages.

• The package should be in Python with minimal dependencies, so that many other Python

packages can use it easily. For example, if some of our code is in Java, then we may have to

require the user to install and start the Java Virtual Machine (JVM) before using the package,

a cumbersome process that may not work on certain machines.

• The tokenizers and similarity measures should be as fast as possible.

• The licensing should allow liberal usage (with acknowledgment) yet shield us from legal

responsibilities.

• The package should be designed such that it can be easily extended.

5.3.1.3 Overview of py stringmatching

Currently we have implemented five tokenizer classes (organized into a class taxonomy): alphabetic-

, alphanumeric-, delimiter-, qgram-, and whitespace tokenizers. We have also implemented 23

similarity measures, organized into five groups:
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• Sequence-based Measures: affine gap, bag distance, editex, Hamming distance, Jaro, Jaro

Winkler, Levenshtein, Needleman Wunsch, partial ratio, partial token sort, ratio, Smith Wa-

terman, token sort.

• Set-based Measures: cosine, Dice, Jaccard, overlap coefficient, Tversky Index.

• Bag-based Measures: TF/IDF.

• Phonetic-based Measures: soundex.

• Hybrid Measures: Generalized Jaccard, Monge Elkan, Soft TF/IDF.

5.3.2 Tool for String Similarity Joins

String similarity join (SSJ) finds all pairs of strings that refer to the same real-world entity,

between two collection of strings. For example, the string David Smith in one database may

refer to the same person as David R. Smith in another database. Similarly, the strings 1210 W.

Dayton St Madison WI and 1210 West Dayton Madison WI 53706 refer to the same physical

address. SSJ plays a critical role in many data integration tasks, including schema matching, entity

matching and information extraction.

In contrast to the wealth of research work on similarity joins, there are no packages available

in Python to perform similarity joins. To address this gap, I implemented py stringsimjoin, a

Python package that provides scalable implementation of string similarity joins over two tables,

for commonly used similarity measures such as Jaccard, Dice, cosine, overlap, overlap coefficient

and edit distance.

5.3.2.1 Overview

Given two tables A and B, this package provides commands to perform string similarity joins

between two columns of these tables, such as A.name and B.name, or A.city and B.city. An

example of such joins is to return all pairs (x, y) of tuples from the Cartesian product of Tables A

and B such that,
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• x is a tuple in Table A and y is a tuple in Table B.

• Jaccard(3gram(x.name), 3gram(y.name)) > 0.7. That is, first tokenize the value of the

attribute “name” of x into a set P of 3grams, and tokenize the value of the attribute “name”

of y into a set Q of 3grams. Then compute the Jaccard score between P and Q. This score

must exceed 0.7. This is often called the “join condition”.

Such joins are challenging because a naive implementation would consider all tuple pairs in

the Cartesian product of Tables A and B, an often enormous number (for example, 10 billion pairs

if each table has 100K tuples). The package provides efficient implementations of such joins,

by using a filter-verification approach which includes two steps: (1) Filter step: using effective

filtering algorithms to prune large numbers of dissimilar pairs and generating a set of candidate

pairs; and (2) Verification step: verifying each candidate pair by computing the real similarity and

outputting the final results.

Currently, py stringsimjoin supports similarity joins using five similarity measures: cosine,

Dice, edit distance, Jaccard, overlap and overlap coefficient. And, it implements 5 filtering algo-

rithms: overlap filter, size filter, prefix filter, position filter and suffix filter. Further, it also contains

profiling tools and utilities to convert columns between data types.

5.3.2.2 How-to Guide

py stringsimjoin provides an how-to guide for the users specifying a step by step procedure

to join two tables using a similarity measure. The guide states that to join two tables A and B, the

user should load the tables (Step 1), profile the tables (Step 2), create a tokenizer (Step 3) and then

perform the join (Step 4).

5.3.2.3 Challenges and Design Decisions

We now discuss some of the challenges encountered while implementing the package and the

various design alternatives considered.
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• Handling missing values: By “missing values” we mean cases where the values of the strings

are missing (e.g., represented as None or NaN in Python). For example, consider the row

“David,,38” in a CSV file. The value for the second cell of this row is missing. So when

reading this file into a data frame, the corresponding cell will have the value NaN. Note that

missing values are different from empty strings, which are represented as “”.

To handle missing values, we can first define multiple policies. One policy would be to

always throw an error if encountering a missing value. Another policy is to quietly return

a missing value. Two more common policies are “optimistic” and “pessimistic”. Consider

computing the similarity score between a missing value u and a string v. The optimistic

policy would return 1, on the ground that the missing string u can be the same as the string

v in the optimistic case. Similarly, the pessimistic policy would return 0.

In py stringsimjoin, we provide flags that the user can set to select between optimistic and

pessimistic policies to handle missing values, depending on the application.

• Interplay between filters and join: There are different types of filtering techniques such as

size filtering, prefix filtering, suffix filtering, etc., that can be employed to perform similarity

join. Specifically, any combination of filters can be employed to perform a join. Note that,

a different combination of filters does not affect the join output, it only alters the execution

time of the join.

Hence different combinations of filters can affect runtime of the join significantly. There are

two possible design choices for implementing filters. First option would be to implement

filtering algorithms within the join methods. Second option would to implement filters as

separate classes and the join methods can create filter objects as needed.

From the perspective of flexibility, the first option is bad because it does not allow the user to

specify which filters to use for performing the join. For example, if the default behavior of a

join method is to employ prefix and suffix filter for performing the join, but the user knows

that using position filter will be efficient for the data, then the user has no way to control

which filters are being used.
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Whereas, with the second option, the user can create a custom join workflow by creating a

position filter object, then apply the filter to the input tables and, finally applying a matcher

which computes the actual join condition. For this reason, we take the second option, imple-

menting filters as classes and making the join methods create filter objects as needed.

5.3.3 Deployment

The packages have been used in education, science and at companies. Specifically, it has been

used as a teaching tool for data science classes at UW-Madison, used for matching drugs in biomed-

ical field and used extensively at companies such as WalmartLabs, Johnson Controls, Marshfield

Clinic and Recruit Institute of Technology. Recently, py stringmatching and py stringsimjoin

have been deployed on Kaggle, a large and well-known data science and competition platform with

well over 0.5M users.
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Chapter 6

Conclusions

Entity matching (EM) identifies data instances that refer to the same real-world entity. This is

a critical problem in many application domains such as e-commerce, biomedical, scientific data,

military intelligence, etc.

Numerous EM solutions have been proposed over the past few decades [29, 19]. These so-

lutions however suffer from two main problems. First, they are not end-to-end. That is, the EM

workflow consists of multiple steps, such as cleaning, blocking, matching, sampling, labeling, de-

bugging, etc. Current work however has focused mostly on blocking and matching, ignoring the

remaining steps. Second, most current works are designed primarily for power users. They are

very difficult for lay users to use. In this dissertation I develop solutions to address the above two

problems. Specifically, I make the following contributions:

• First, I work together with several colleagues to develop Magellan, an end-to-end EM solu-

tion approach that focuses on all steps in the EM workflow. Within the context of Magellan,

I develop a solution to help users extract missing attribute values from textual data (so that

EM can be performed more accurately). As far as we can tell, no current work has considered

this problem for EM.

• Second, in collaboration with Sanjib Das, I propose Falcon, an end-to-end crowdsourced

EM solution on the cloud for lay users. Recently, in collaboration with Yash Govind, I

have deployed Falcon as a cloud-based service, CloudMatcher, thereby making EM for lay

users a reality. Falcon often needs to scale the execution of crowdsourced EM workflows

over tables of millions of tuples. To address this, I use RDBMS-style query execution and
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optimization over a Hadoop cluster. The Hadoop-based solution in Falcon to execute com-

plex rules over the Cartesian product of the two tables significantly advances the state of

the art. I develop three novel optimization techniques to mask machine time by scheduling

certain machine activities during crowdsourcing activities. Falcon can efficiently perform

crowdsourced EM over tables of 1.0M - 2.5M tuples at the cost of $54 - $65.5.

• Third, I propose Smurf, an end-to-end string matching solution that lay users can easily

use yet obtain significantly higher matching accuracy than current string matching solu-

tions. Smurf learns random forests (which uses a rich set of predicates) as match conditions,

and efficiently executes the random forest over the two sets of strings. To execute the ran-

dom forest fast, Smurf decomposes it into a blocking step and a matching step, then uses

RDBMS-style plan generation and optimization to execute sets of decision trees efficiently

in both steps, by reusing computation across trees.

• Finally, I implement the above solutions (mostly as open-source software) and deploy them

to solve real-world problems. The open-source implementation of several solutions in par-

ticular has been deployed on Kaggle, a large and well-known data science and competition

platform with well over 0.5M users.

Future Research Directions: This dissertation suggests several interesting future research direc-

tions. First, our solutions can be extended with more capabilities. For example, Falcon and Smurf

can be extended with better sampling algorithms, accuracy estimation capabilities, etc. Second, a

next logical research direction for EM is EM services on the cloud, which will raise novel chal-

lenges (e.g., pricing, resource allocation, scaling to large number of EM tasks, etc.). Third, we

handle only the EM scenario of matching two tables or two sets of strings. Exploring other EM

scenarios (e.g., linking tables to a knowledge base) will be interesting. Finally, using RDBMS-

style approaches to scale execution of a random forest (as in Smurf) can be extended to scale other

machine learning models.
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