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Abstract 

 

Predicting polymeric material behavior during processing and predicting final part properties 

continues to be a strong research focus within the scientific community as it involves taking into 

consideration a wide range of time-dependent variables. By use of data-driven modeling, the 

materials development process can be accelerated, and the highly predictive modeling techniques 

can facilitate the development of smart manufacturing systems.  

This dissertation worked on solving polymer engineering problems by use of data-driven modeling 

techniques. The first strategy was using data-driven modeling to provide a predictive model with 

statistical insights of the injection molding process to ensure part quality is maximized for a highly 

viscoelastic material blend. By injection molding highly viscoelastic materials, the probability of 

part defects is increased, therefore, it was crucial to use advanced computational techniques to 

understand the nuances of this highly non-linear process and to predict the outcome before creating 

material waste from faulty trials. 

The second strategy was in the use of data-driven modeling for reverse engineering purposes, 

specifically within materials development. By combining experimental characterization and data-

driven modeling, algorithms were developed and compared to prove how highly predictive models 

can be used as reverse engineering toolboxes. This ultimately informed users of the optimal 

formulation which would reach the specified target material properties. 

The final strategy explored using data-driven modeling to validate the high influence of viscous 

heating within the pressure melt removal process, therefore, work was done in implementing a 

viscous heating system within a fused filament fabrication (FFF) 3D printer to accelerate the 3D 

printing process. The instrumented FFF 3D printer proved capable of accelerating print speeds and 

improving mechanical performance of 3D printed parts, working towards solving two of the largest 

bottlenecks within additive manufacturing: lead times and part quality. Given the unique 

capabilities of the data-driven modeling, the novel 3D printer was tested and evaluated via data-

driven modeling to provide statistical information regarding which processing parameters were the 

most influential for improving overall performance of the 3D printing system.  

The results of this work provide a basis for future research endeavors related to combining data-

driven modeling and polymer science, such as in optimizing the newly developed viscous heating 

3D printer. 

Keywords: Data-driven Modeling, Polymer processing, Materials Development, FFF 
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Introduction 

 

 

 

The ability of acquiring experimental data has become more economically feasible, and for that 

reason machine learning scientist positions have been recently created with more frequency. 

Machine learning scientists focus on acquisition of data, processing and in the implementation of 

these big data sets within data-driven modeling algorithms to provide predictions for industry. It 

is important to note that one does not necessarily have the ability to predict all types of events, 

ranging from sale projections to scientific projections relating to material behavior if one has a lot 

of data. A crucial aspect of these data-driven modeling implementation studies is in the proper 

selection of training parameters that one will extract from real experimental set ups or simulation. 

Users must be able to select the training parameters that are the most influential for the output, and 

the appropriate algorithm for the specific data set to ensure noise is reduced and convergence rate 

is maximized, respectively. Regarding polymer science and machine learning, a bridge between 

both disciplines needs to exist in order to acquire valuable data, and to minimize the amount of 

experimentation needed to train a robust algorithm.   

Data-driven modeling has the ability, if implemented appropriately, to predict material behavior, 

polymer process performance, formulations, and to provide controls information for close-loop 

systems in charge of optimizing process performance based on real experimental data, to name a 

few. Implementing data-driven modeling, such as machine learning within the above-mentioned 

cases is crucial as the plastics industry highly depends on one’s experience to minimize loss-time. 

For example, a custom polymer blend formulator is compensated heavily for their experience as 

their knowledge will be leveraged to ensure they understand the effects one additive may incur on 
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the overall blend and the interacting effects each additive has on one another. Before industry 

started proposing eco-friendly initiatives to reduce their carbon footprint, the formulator’s priority 

was to purely optimize performance and to not prioritize sustainability. Now with industry 

embracing sustainable materials development, they now must maximize performance while also 

minimizing the inclusion of additives detrimental to the environment. Such duty to now optimize 

two variables has turned into an exceedingly complex task, as these effects may incur non-linear 

effects to performance. For that reason, machine learning is a valuable tool which with the 

appropriate training data, one could model and predict material behavior for large amounts of 

theoretical experiments without having to physically conduct the experiments.  

The aim of this work is to enable polymer engineers to predict highly non-linear occurrences with 

the aid of data-driven modeling toolboxes by providing algorithms, varying in complexity, capable 

of reverse engineering current materials, predicting defects during polymer processing, and 

employing a predictive system within fused filament fabrication (FFF) 3D printing which informs 

users of ongoing defects during 3D printing.   
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1. Background 

 

 

 

1.1 Modeling Approaches  

Machine Learning (ML) is a computational method in which mimics human learning by combining 

statistics and optimization methods. Using such methods allows for algorithms to classify or 

predict very complex events, and to uncover valuable information regarding influential factors to 

those outcomes [1]. Key insights extracted from the algorithms serve as guides for decision-

making within the application and further acquisition of data allows for continuous improvements, 

accelerating the optimization of the system [2]. There exist various types of machine learning 

algorithms, but most fall within the two types of categories: Supervised learning or unsupervised 

learning.  

Supervised learning involves a predictive algorithm that uses data that has the outcomes defined 

for training purposes. As seen in the flow chart below (Figure 1), a portion of the data is set aside 

for testing purposes while the remainder of the data is used for training where the model 

continuously adjusts its rules (for example: weights and biases) until the error between the 

predicted and actual value is minimized [3]. Unsupervised learning uses machine learning 

algorithms to analyze and group unlabeled data. The algorithm is in charge of identifying patterns 

and establishing connections between data without a user to aid in this classification [3].  
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Figure 1. Schematic of machine learning basic theory 

1.2 Best Practices for Machine Learning Algorithm Development  

The excitement in industry with applying machine learning algorithms has led many to treat 

machine learning like a black box where one simply inputs large amounts of data into an artificial 

neural network (ANN) and calls it a day. A developer needs to choose the appropriate machine 

learning algorithm based on the size of the data, the desired outputs, and the type of inputs fed into 

the model. Once the testing algorithms are chosen, it is important to develop an unbiased training 

and testing strategy to ensure that underfitting and overfitting is avoided.  

In general, overfitting is when a model has the ability to predict the training data too well. After 

training, it is unable to neglect noise and predicts inaccurate outputs. This occurrence can be 

avoided by not including data which has high variance and by introducing early stops within the 

model to ensure training is sufficient enough for prediction but not long enough in which the model 

learns from noise. Overfitting can also be avoided by implementing cross-validation (CV), which 

involves partitioning the data into 𝑛 equal parts and conducting 𝑛 independent trials where each 

part is used once for testing (Figure 2).  
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Figure 2. Schematic explaining the theory of cross validation  

Underfitting arises when training does not converge and is not able to predict training data 

effectively.  This issue may be addressed by increasing the model complexity, increasing the 

number of input parameters and by increasing the amount of data used in training to ensure it has 

enough information.  

1.3 Linear and Logistics Regression  

Linear regression is the simplest machine learning algorithm to implement as it involves finding a 

linear relationship between experimental data. Given an accurate model, this supervised machine 

learning model is primarily used to provide forecasting information based on user inputs and the 

parameters used for regression give insight into relationships between input and output variables 

[4]. Linear regression is described using the function seen in Equation 1 below, whereas the 

summation results in the weighted sum of its 𝑛 features. Moreover, 𝛽0 represents the intercept, 𝛽𝑖 

represents the feature weights, and 𝜀 corresponds to the difference between the computed 

prediction and the known outcome. 

 𝑦 = β0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + ε (1) 

 

Logistics regression machine learning algorithms are primarily implemented in classification 

problems where the output can be described in binary format. In logistics regression, a weighted 
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sum of the inputs is passed through a sigmoidal activation function (Figure 3) whereas a 0 and 1 

output is possible, ultimately allowing the user to represent a “No” with a zero and a “Yes” with 

the number one [5]. The classification model follows Equation 2 below and follows similar 

nomenclature to what is appreciated in Equation 1 above.  

 
𝑃(𝑦 = 1) =

1

1 + exp⁡(−(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛))
 

(2) 

 

Figure 3. Sigmoidal function logic theory 

Both Linear and Logistics regression models provide simple but resource-efficient predictive 

models which provide users with statistical information regarding significant input variables.  

1.4 Response Surface Methodology 

Introduced by George E. P. Box and K. B. Wilson in 1951, the Response Surface Method (RSM) 

uncovers the interconnectivity between various controllable factors and several response variables 

using nonlinear modeling. It should be acknowledged that RSM serves as an approximation 

method that provides a relatively simple method for modeling, estimating, and optimizing based 

on target parameters [6-8]. By use of mathematical and statistical techniques, an empirical model 

is created from experimental data and is used to evaluate the fit to a statistical model (linear, 

quadratic, cubic or two-factor Interaction), as described in Equation (3) below. 
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(3) 

 

Using natural rubber formulation as an example, the independent variables A, B, and C may 

represent additives used within the formulation, such as: sulfur content, paraffin oil content, and 

void content, respectively. The output response Y represents the material property one aims to 

optimize. The coefficients (a0 − a6) determined by the model within the linear and quadratic 

sections dictate the influence each respective variable has on the output, Y, while the Two-Factor 

coefficients (a7 − a9) of the quadratic model above quantify the level of influence that interactions 

between two variables have on the output [6-9]. As mentioned above, formulating is a balance 

between various additives and RSM allows for the user to determine, to some degree, the 

interaction effects between two controllable variables.  

Once the model is created, RSM allows for the optimization of a blend based on target responses, 

maximizing a specific response, or minimizing a specific response. The options available via RSM 

are of value as some additives may result in a dramatic increase in raw material expenditure, 

therefore, one can have a combination of various formulations which maximize certain 

controllable factors and minimize others to ensure cost rises are mitigated. Additionally, each 

target response may be given an importance value ranging from 0.1 to 10 if the user is more 

interested in some responses compared to others. If all target responses are of equal importance, 

then the default value should be 1. Moreover, if one target response is crucial for the user, the 

importance value can be increased up to a value of 10. Furthermore, weights may be assigned to 

each target response with values ranging from 0.1 to 10. The weights influence the desirability 

function shape between the lower/upper bounds and the target. Figure 4 below shows how different 

weights may influence the desirability function shape, where it can be seen that a larger weight 

creates a sharper, and quicker convergence to the target response.  
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(a) (b) (c) 

Figure 4. Desirability functions for different goals and how weights influence their respective 

shapes. (a) Minimize the response, (b) Achieve target value, and (c) Maximize the response 

Although the quadratic function is mathematical, the statistical analysis of this regression model 

is key for interpreting the model. Minitab® 20 may be used for the RSM study whereas a 95% 

confidence level may be selected as the threshold for statistical significance. The Pareto chart of 

the Standardized Effects lists the standardized coefficients to understand which terms have the 

highest influence on each given response. By observing the magnitude of the standardized effect, 

the user can understand which controllable factors are the most influential and if a combination of 

controllable factors creates significant change to the output response. The dashed line within the 

Pareto chart indicates a significance level of α = 0.05, therefore, anything to the right of the line 

suggests a term that is statistically significant to the response [6-8,10]. 

Additionally, the Coded Coefficients, such as the coefficients and p-value for each respective 

controllable factor allow the user to determine if a specific term is significant. If 𝑝 − value⁡ ≤ α, 

the association is statistically significant, and if 𝑝 − value > α, the association is not statistically 

significant. Finally, the Model Summary is described by the standard deviation of the distance 

between fit values and input data values (S), the percentage of variation within the model response 

(R2), the adjusted R2 which is the variation in the response adjusted for the number of predictors 

in the model relative to the number of observations (Radjusted
2 ), and the R2 of the predictions which 

indicates how well the model predicts the removed observations (Rpredictions
2 ). It is important to 

note that if Rpredictions
2  is substantially less than R2 then this may indicate that the model tends to 

overfit.  
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1.5 Support Vector Machine 

Support vector machine (SVM) is a supervised machine learning algorithm best suited for 

classification and regression-type analyses. This method functions by partitioning data into 

clusters which separate outcomes from one another [11]. Figure 5.a and 5.b below show how 1-D 

and 2-D hyperplanes partition datasets effectively, allowing for accurate classification.  

 

Figure 5. A graphical depiction of a (a) 1-D hyperplane partition and a (b) 2-D hyperplane 

partitioning 

It allows for linear classification but is also capable of non-linear classification by introducing the 

“Kernel Trick”, a method in which the input data is mapped onto a high-dimensional feature space 

[12], ultimately transforming the shape of the response curve. Figure 6.a and 6.b below shows a 

graphical representation of what the Kernel Trick can do when a dataset is deemed unclassifiable 

within a two-dimensional space. Figure 6.a shows scattered data within a 2-dimensional space 

which cannot be partitioned by a simple hyperplane. The algorithm will result in large amounts of 

misclassifications if the threshold is defined as a hyperplane. By using the polynomial Kernel trick, 

the shape of the data is altered and allows for a hyperplane to effectively partition the data within 

the three-dimensional space, as seen in Figure 6.b. The Kernel Trick is a valuable tool for polymer 

scientists formulating new materials as an additive does not always have an increasing/decreasing 

effect [13]. This is apparent for cases in which one assumes that increasing the amount of carbon-

black (CB) reinforcement in a natural rubber (NR) formulation will result in an only increasing 

elongation at break, when evidently it is not the case as it has been proven that surpassing the 30 
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parts per hundred (pph) of natural rubber concentration begins to steadily decrease the elongation 

at break as the heavy load of reinforcement no longer has enough polymer material to adhere to, 

causing a weaker brittle fracture [14]. 

 

Figure 6. An unclassifiable (a) 2-D problem transformed into a (b) 3-D problem via the Kernel 

Trick 

SVM is one of the most common types of machine learning algorithms implemented as it is 

effective with small datasets and can be implemented within higher dimensional spaces. The 

partitioning hyperplane follows the form of Equation 4 seen below, whereas alike linear regression, 

the weights and biases that make up the partition provide a quantitative insight into which input 

parameters have the most influence on the overall system.  

 

𝑦 = ⁡ [

𝑤1
𝑤2

⋮
𝑤𝑛

] [𝑥1 𝑥2 ⋯ 𝑥𝑛] + 𝑏 

𝑥𝑖 = feature⁡variable 

𝑤𝑖 = feature⁡weight 

𝑏 = bias 

(4) 
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1.6 Artificial Neural Networks  

Neural Networks (NN), also known as Artificial Neural Networks (ANNs) are inspired by the 

human brain as they mimic the way in which neurons signal one another to make decisions [15]. 

Artificial neural networks, which have added nonlinearity compared to SVM, are a powerful 

modeling method that can approximate highly nonlinear functions [16]; it can be used to explore 

complex relationships between experimental design parameters and material properties. The basic 

architecture of a fully connected ANN can be seen in Figure 7, and consists of an input layer, 

hidden layer(s), and an output layer. The designer can increase or decrease the number of hidden 

layers and nodes within the network, ultimately allowing for the development of a complex ANN. 

This modification of an ANN architecture is crucial as it may lead to a faulty algorithm that overfits 

data. 

 

Figure 7. Simple artificial neural network structure 

The input layer includes a node for each parameter that influences the final outcome. The 

connecting line between the input layer node and hidden layer node is initially assigned a random 

weight, while the hidden layer includes several nodes specified by the user, which also is randomly 

assigned a bias. Furthermore, the output layer includes the classification node(s) where the 

expected outcomes are extracted experimentally or computationally. Ultimately, the way an ANN 

functions is by multiplying each input node parameter by the weight of the connecting line and 

adding this value to that hidden layer node's specific bias value. This value is then passed through 

a nonlinear activation function, added to the weight assigned to the connecting line between the 
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hidden layer node and the output layer node, and then added together. The summation is then 

compared to the experimental data point in the form of a loss function that penalizes for incorrect 

prediction. To minimize the loss function (difference between the output and the experimental 

data), the backpropagation algorithm [16-17] would occur by specifying the gradient of the loss 

function with respect to all the weights as well as biases; this is followed by the gradient descent 

optimization step that slightly changes the weights and biases' values in the loss decreasing 

direction based on the calculated gradient. Unlike the common way to compute gradient where an 

analytical expression is first established, the backpropagation algorithm utilizes the chain rule of 

calculus to simplify the procedure. And as a result, the gradient is broken down into the product 

of several partial derivatives whose numerical values are easier to evaluate and less 

computationally expensive [16]. This re-assigning of weights and biases is considered the learning 

phase, which requires multiple iterations and data points to create a valid representation of the 

model. Once the learning phase is complete, the model stores the weights and biases for subsequent 

runs to predict events given specific inputs which it has not seen.  

1.7 Gaussian Process Regression 

Gaussian process regression (GPR) [18] is another class of supervised learning algorithms. Unlike 

ANNs, GPR makes probabilistic predictions in the form of mean and variance, and therefore 

uncertainties of the predictions can be calculated. With such information, one can potentially 

design additional experiments that target the region with high uncertainty. Another advantage of 

GPR lies in its “non-parametric” nature, and minimal hyperparameters need to be learned. 

Compared with ANNs whose number of parameters can easily add up to thousands and millions 

when increasing layers, GPRs usually carry fewer hyperparameters to tune. In general, GPR loses 

efficiency for high-dimensional data but works well with small datasets. Mathematically, GPR 

utilizes a Gaussian process prior that is specified by the means and covariance matrices of the 

training and validation/testing data. The covariance matrices (hyperparameters) are optimized 

during the training process and serve as a way to approximate the similarity between a test input 

and the training inputs, which eventually leads to the prediction of the test output based on the 

training outputs through matrix operation [18].  

As illustrated in a one-dimensional example in Figure 8 below, GPR learns from the given data 

points (training data) and predicts the “y” values with a mean and variance. The region with 
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training data shows a narrower variance than the region without training data. Based on the mean 

and variance, a sample curve (dashed line) can be drawn from the predicted distribution.  

 

Figure 8. An illustration of GPR and how more data increases the predictive capabilities 

1.8 Progress in Machine Learning within Polymer Science 

The complex relationship between highly viscoelastic materials and the end-product after 

production is not completely understood, therefore, traditionally physics-based simulations are 

designed to give the user an approximation of what might be the outcome [19]. As customary for 

all simulation approaches, the simulation is only good if it agrees with experimental data, therefore, 

one must have full understanding of what fitting parameters are suitable for each of the physics-

based models being applied. One example: when using the iARD-RPR model in Moldex3D for a 

mold-filling simulation of a fiber-reinforced thermoplastic part, it is critical to understand how all 

three fitting parameters (Cm, Ci, and⁡K) influence the fiber orientation distribution. For this 

application, there are sets of rules that users must abide by, for example, the Cm represents the 

fiber-matrix interaction coefficient which must be within a certain range when working with short 

fibers [20-21]. This know-how in setting a proper simulation is what defines whether your 

simulation will compute to a result similar to what is occurring in the real-world. For that reason, 

the implementation of sensors within a process and characterization of the end product allows for 

the acquisition of valuable data which can be fed into a specific data-driven modeling algorithm 

capable of predicting the outcome of interest.  
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The implementation of machine learning within polymer processing has reached various areas 

within additive manufacturing in regard to extrusion behavior [22,23], prediction of injection 

molding events [24–26], and post-production material behavior [27–30]. The common 

denominator for above-mentioned applications is that they require real experimental data to aid in 

the creation of representative models. 

As injection molding is one of the most utilized manufacturing processes throughout industry, the 

final part can have various defects, including warpage, short shot, thermal degradation, parting 

lines, and flash [31-34]. Previous work included using the Taguchi optimization method to 

quantitatively determine how influential specific processing parameters were in regard to warpage 

in injection molded parts within Moldflow simulations [35-37]. Similarly, optimization methods 

have also introduced machine learning within the framework of the optimizer. However, it is vital 

to understand that optimization methods that depend exclusively on CAE simulation data are not 

100% accurate as they do not fully capture all the physics involved in polymer processing. For that 

reason, research has been conducted in predicting occurrences within injection molding by 

developing predictive frameworks [38-39] and including real experimental data as training data.  

For example, Saad Mukras’ optimization framework, based on the Kriging Model, predicted cycle 

time, warpage, and volumetric shrinkage with an error of 6.7%, 3.2%, and 8%, respectively, by 

analyzing samples from real injection molding trials [40]. For that reason, it is evident that an 

optimization approach that accompanies real experimental data has the ability, if set up correctly, 

to have higher accuracies compared to one with no real experimental data. Additionally, 

researchers such as Yarlagadda have taken it a step further and applied these neural network 

optimization methods within controlling systems to automatically adjust injection molding 

machine parameters [41, 22].  
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2. Manufacturing Process Outcome Prediction via 

Machine Learning 

 

 

 

2.1 Introduction 

Seeking materials with high strength and compliance characteristics has led scientists to develop 

materials that combine a high strength material with a material that can withstand significant 

deformations. Of these engineered materials, model polypropylene (PP) blends create a balanced 

material that exhibits high impact strength at low temperatures while still exhibiting high-

performance properties at elevated temperatures. These superior low-temperature properties are 

attributed to the elastomer modification's cross-linked nature, which gives it the ability to be 

processed like thermoplastic materials. The morphology of these model polypropylene materials 

are a blend of external elastomers or reactor-based materials, which are subject to change 

depending on the flow conditions. Flow conditions ultimately alter the elastomeric compound's 

orientation within the cavity, and the alignment of those molecules creates various surface 

properties, such as glossy or matte finishes [42].  Not only are aesthetic defects caused by the 

morphology of the compounded material, but the mechanical performance of such parts is also 

influenced by crystal orientations [43]. Mechanical defects can occur in live hinges and weld lines, 

whereas the strength of the overall part may become compromised at these locations. 

Moreover, the crystallinity of the elastomer material contributes to the material's mechanical 

properties, where Wu and coworkers were able to demonstrate the relationship between the chain 

structure and toughness of the polymer-elastomer blend [44]. Although elastomer modifications 

improve the material's impact strength, it causes a decrease in the flexural modulus, which can be 
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addressed by adding high-density polycomonomer (HDPE) into the system [45-46]. An example 

of such material that can withstand large deformations is elastomers, as the curled polymer chains 

can stretch until above 400% elongation [47]. Although a valid idea to use a polypropylene-

elastomer composite as a material with high strength and high compliance attributes, 

manufacturability is the next challenge to face since using non-Newtonian fluids with high 

viscosities has never been straightforward [48]. A balance between stiffness and elasticity is 

necessary to ensure that the material can acquire the benefits of elastomers in regard to elasticity 

while avoiding processability issues because of its high viscosities due to high molecular weight 

[49].  

Furthermore, the probability of flow instabilities occurring during polymer processing increases 

as you include highly viscoelastic materials, and finding the correct balance between flow rates 

and processing temperatures is crucial as many instabilities occur at different regions within the 

shear rate vs. shear stress regime. Navigating through these regimes requires a solid understanding 

of that specific material where time-temperature-superposition (TTS) could help determine the 

locations where smooth and defect-free flows are present [50-51]. Given that irregular flow 

patterns may cause sharkskin defects in extrusion, it is crucial to understand how these irregular 

flows may also occur within the mold filling process, which can create defects within the part.  

This work focuses on how machine learning can predict surface defects using processing 

parameters and viscoelastic properties as the input. Furthermore, it is proven how optimization 

approaches can be implemented to create a simplified and more robust predictor.   

This work focuses on the development of a neural network (NN) for surface defect prediction in 

injection molding of model polypropylene. Feature optimization allows us to conclude that 

rheological parameters such as the melt flow index (MFI) and relaxation time (𝜆) can improve 

predictive accuracy. Furthermore, Bayesian optimization (BO) is implemented to optimize the NN 

structure. The optimization approach allowed for a cross-validation (CV) accuracy of 90.2% ± 

4.4% with only five input parameters, while the seven-input parameter optimized structure arrived 

at a CV accuracy of 92.4%±11.4%. Although the full-feature structure optimized with Bayesian 

optimization concluded with slightly higher accuracy, the error range dramatically increased, 

meaning that this structure tends to overfit. 
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2.2 Materials and Characterization Methods 

Materials and Data 

The Saudi Basic Industries Corporation, known as SABIC, provided sets of model samples with 

varying elastomer content, processing agent content, and varying comonomer content. Besides 

their material makeup, every injection molding piece was processed at 240°C and processing 

speeds 𝑢𝐷, 𝑢𝐸  or 𝑢𝐹 corresponding to 20 mm/s, 50 mm/s and 160 mm/s, respectively. The injection 

molding processing parameters in Table 1 below were kept constant in the study.  

Table 1. The injection molding parameters kept constant for all trials on the Arburg 60T injection 

molding machine (Molded by Intertek, the Netherlands).  

Processing Parameter Value 

Hopper Temperature [°C] 40 

Zone 1 Temperature [°C] 200 

Zone 2-4 Temperature [°C]  240 

Holding Pressure [bar] 200 

Back Pressure [bar] 40 

Cooling Time [sec] 33 

Screw Rotation [RPM] 318 

  

Additional to processing parameters, the injection-molded plates were also produced with two 

different gate geometries, a fan gate and a pin gate, to characterize how gate restriction altered the 

system. SABIC also provided melt flow index (MFI) measurements per ISO 1133. Injection-

molded plate photographs were provided and were analyzed via MATLAB. The pixel intensity 

was measured throughout the length of the part where an intensity value of 0 equated to a smooth 

surface and an intensity value closer to 255 referred to a section of discoloration or a defect in this 

case. As the image analyzer scanned a region with defects, the pixel intensity value would rise 

towards 255 and return towards a value of 0 once it arrived at a section with no defect. The 

oscillatory behavior of these pixel intensity values was then classified as the appearance of defects, 

while a scan with no oscillation was considered a smooth and defect-free part.  
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Material Characterization 

Netzsch DSC214 Polyma was used to determine the glass transition temperature (Tg)of the 

respective composite by heating up to 300°C at 5 
𝐾

𝑚𝑖𝑛
.  Samples were tested to ensure 240°C was 

an appropriate processing temperature in which the onset and peak of the endotherm were 

measured using Proteus software to determine the glass transition region.  The TA Rheometer AR 

2000EX was used to conduct stress sweeps and relaxation experiments to quantify the machine 

learning model's input parameter.   

Machine Learning Algorithms 

Logistic Regression (LR) and Support Vector Machine (SVM) algorithms were used as baseline 

models for exploratory data analysis to establish a basic understanding of the relationship between 

the parameters and the occurrence of surface defects [52-53]. Since both models are linear 

regression-based models, the learned weights were used to indicate the significance of the 

corresponding parameters. This interpretation was further supported by the domain knowledge on 

injection molding and served as a parameter selection process for neural network input. Although 

neural networks are robust, they do not guarantee the physical interpretability of the model, which 

may intake redundant or noisy information from the dataset but still converge to local minima. 

Therefore, selecting parameters using a much simpler model before sending the parameters to the 

neural networks can be viewed as a method to incorporate prior knowledge that constrains the 

neural network and drives model interpretability and consistency with the physical intuition. 

2.3 Methodology 

When working with neural networks, the input parameters must influence the outcome. If the 

outcome is independent of the input parameter, noise results from it, and backpropagation becomes 

a computationally heavy process that may decrease your prediction accuracy. Determining the 

input parameters was done by conducting rheological tests and a literature review to ensure that 

each input parameter was influential to the outcome. Additionally, a Dimensional analysis, also 

known as Buckingham Pi-Theorem, is a procedure that reduces the input variables of a system by 

grouping them to create dimensionless numbers. Considering m physical quantities governed by 

n, the number of fundamental dimensions present in those physical quantities, one can reduce the 

system to a set of (m – n) independent dimensionless groups [54]. This analysis technique provides 
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a method for determining what properties may drive the occurrence of surface defects. As 

mentioned above, a Differential Scanning Calorimetry (DSC) test was conducted to ensure that 

the melting temperature was well below the processing temperature of 240°C. Once confirmed 

that the processing temperature was suitable, 240°C was used with all the rheological 

measurements, which also corresponded to the temperature used in injection molding trials.  

Furthermore, a relaxation test consists of a step shear strain input regarding relaxation tests while 

logging the shear stress response with respect to time. The corresponding relaxation time is the 

time required for the stress response to reach 1% of the max stress response experienced at the 

beginning of the input strain [55]. To ensure full contact throughout the measurement, it is crucial 

to select a proper shear strain input to prevent slippage.   

The TA Rheometer AR 2000ex was then used to conduct stress sweep tests at 240°C with an 

oscillatory torque input sweeping from 100 𝜇Nm to 700 𝜇Nm at an input frequency of 1 Hz. These 

tests highlighted the strains needed to reach a non-linear range and a range in which slippage 

occurred. Once all measurements were completed with 5 repetitions per sample to ensure proper 

reproducibility, the smallest strain percentage was then selected, and half of that value was to be 

used as the input strain percentage for the relaxation tests. The preliminary experiments showed 

that all relaxation tests would be conducted at 240°C and with a shear strain input of 0.25% to 

prevent slippage between plates, where Figure 9 shows a relaxation test for a given material. The 

figure on the right illustrates the normalized plot, and the relaxation time is defined as the time 

needed for the normalized stress to reach 0.01, 1% of the maximum shear stress. 

 

Figure 9. Example of relaxation tests and its normalized version 
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Once all the materials provided by SABIC were characterized, the next goal would be to use SVM 

and LR models as a method for quantifying how influential each parameter is to creating surface 

defects. The weights assigned by these models give insight about which parameters are the most 

influential and help determine the optimal neural network structure by including nodes that have 

a significant weight assigned to it. Once the quantity of input nodes are selected, the neural network 

architecture needs to be created to train, validate and test with experimental data. 

Bayesian optimization was used to determine the optimal neural network structure to prevent a 

random assortment of iterations. Unlike the grid search or random search [56] methods where the 

hyperparameters are determined by either an exhaustive (grid search) or random (random search) 

tryout of the searchable space, Bayesian optimization incorporates Gaussian processes to model 

the probability distribution (mean and variance) of the model performance at any given set of 

hyperparameters [57]. At each iteration, the optimization algorithm proposes a new set of 

hyperparameters using the Gaussian process prior calculated from the existing data and evaluates 

the model performance using the proposed hyperparameters. One of the significant advantages of 

Bayesian optimization is its tendency to converge to the optimal hyperparameters with fewer 

computational resources and less time compared to the grid search method. The random search 

method may outperform Bayesian optimization, but there is usually a lack of information to narrow 

down the search space due to the complete random process of selecting hyperparameters. In this 

study, the number of hidden layers and neurons was altered to optimize the model architecture.  

The optimal hidden layer structure would then be applied to the neural network to validate and test 

the overall network performance.  

24 samples were set aside as the testing data, which were not used during model training or 

validation. The remaining 213 samples were used for NN model development. These samples were 

first divided into a training set and a validation set for hyperparameter tuning. After the optimal 

NN architecture was obtained, the same samples were used for a more robust evaluation of the 

model performance through cross-validation (CV). To test how the proposed NN architecture 

performs on new data, the model was retrained on all the training and validation samples, and the 

test data set aside earlier were used to calculate the prediction accuracy.  
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Keras Tuner (version 1.0.1) was used to realize the process of hyperparameter tuning with 

Bayesian optimization described above. Tensorflow (version 2.0.0) with Keras API was used to 

build the neural network models. 

2.4 Results and Discussion 

Dimensional Analysis 

Dimensional analysis (DA) is a technique capable of highlighting parameters that are influential 

in the specific system. This system is made up of eight (m) input variables and four (n) basic 

dimensions, as seen in Table 2 below. With 𝑢, 𝑘, 𝜇 and 𝜌 being the repeated variables, this 

dimensionless analysis results in five dimensionless number or Pi-groups related to this process. 

Equations 5-13 depict the overall process of how the final Pi-group is determined. Equation 1 

shows how the first Pi-group comprises the repeating variables raised to a unique exponential 

power multiplied by one of the non-repeated variables, 𝑇. 

Table 2. Parameters used for the dimensional analysis.  

Variable Symbol Dimension 

Fluid Viscosity 𝜇 𝑀

𝐿𝑇
 

Thickness of Plate 𝑡 𝐿 

Length of Part 𝑙 𝐿 

Injection Speed 𝑢 𝐿

𝑇
 

Process 

Temperature 
𝑇 𝜃 

Melt Density 𝜌 𝑀

𝐿3
 

Relaxation Time 𝜆 𝑇 

Thermal 

Conductivity 
𝑘 𝑀𝐿

𝑇3𝜃
 

 

 Π1 = 𝑇𝑢𝑎𝑘𝑏𝜇𝑐𝜌𝑑 (5) 
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The basic dimensions replace the variables, and the exponential power constant remains in each.  

 
Π1 = 𝜃 (

𝐿

𝑇
)
𝑎

(
𝑀𝐿

𝑇3𝜃
)
𝑏

(
𝑀

𝐿𝑇
)
𝑐

(
𝑀

𝐿3
)
𝑑

⁡⁡⁡ 
(6) 

 

Afterward, each fundamental dimension is raised to the zeroth power on the left side of the 

equation, and the right side of the equation includes each fundamental dimension raised to the 

power of a combination of all the unique constants present in each repeating variable.  

 𝑀0𝐿0𝑇0𝜃0 = 𝑀𝑏+𝑐+𝑑𝐿𝑎+𝑏−𝑐−3𝑑𝑇−𝑎−3𝑏−𝑐𝜃1−𝑏 (7) 

 

Finally, we can solve for each exponential constant as there are 4 equations and 4 unknowns, where 

one of the equations can be seen below. 

 𝑀0 = 𝑀𝑏+𝑐+𝑑 → 0 = 𝑏 + 𝑐 + 𝑑 (8) 

 

After solving the linear system of equations, each exponential constant is solved and is shown 

below in equation 9. 

 𝑎 = −2, 𝑏 = 1, 𝑐 = −1, 𝑑 = 0 (9) 

 

This ultimately allows us to compile our first Pi – group, which can be rearranged to represent the 

Brinkman Number, a parameter that characterizes the viscous dissipation of a material 

experiencing flow (Equation 11).  

 
Π1 = 𝑇𝑢−2𝑘1𝜇−1𝜌0 =

𝑇𝑘

𝑢2𝜇
 

(10) 

 𝟏

𝚷𝟏
=
𝑢2𝜇

𝑇𝑘
= 𝐁𝐫𝐢𝐧𝐤𝐦𝐚𝐧⁡𝐍𝐮𝐦𝐛𝐞𝐫 

(11) 

 

Furthermore, the remaining Pi-groups can be determined using the technique mentioned above and 

can be seen below.  
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Π2 = 𝑡𝑢1𝑘0𝜇−1𝜌1 =

𝑡𝑢𝜌

𝜇
 

(9) 

 
Π3 = 𝜆𝑢2𝑘0𝜇−1𝜌1 =

𝜆𝑢2𝜌

𝜇
 

(10) 

 𝚷𝟑

𝚷𝟐
=
𝜆𝑢2𝜌

𝜇
∙
𝜇

𝑡𝑢𝜌
=
𝜆𝑢

𝑡
= (𝐃𝐞𝐛𝐨𝐫𝐚𝐡⁡𝐍𝐮𝐦𝐛𝐞𝐫)𝐮 

(11) 

 
𝚷𝟒 = 𝑙𝑢1𝑘0𝜇−1𝜌1 =

𝑙𝑢𝜌

𝜇
= 𝐑𝐞𝐲𝐧𝐨𝐥𝐝𝐬⁡𝐍𝐮𝐦𝐛𝐞𝐫 

(12) 

 

Upon review, the Deborah number appears in 
𝚷𝟑

𝚷𝟐
 and gives us an inclination that this is a crucial 

parameter in this system. The Deborah number considers rheological and processing parameters 

in the system; therefore, these results support the hypothesis that rheological data is crucial for the 

development of an accurate NN.  

SVM and LR Model 

Both the SVM and LR models agreed on which parameters were the most influential for these 

models. Table 3 below shows the weights assigned to each respective input parameter where the 

larger weight values relate to a more considerable influence on surface defect prediction. Given 

our input parameters, both models indicate that elastomer content and gate geometry are the least 

influential, while the processing agent content, MFI, comonomer content, and injection speed are 

the most influential regarding this aesthetic defect.  
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Table 3. SVM and LR results depicting weights assigned to input parameters based on the 

influence. 

Input Parameter LR 

Weight 

SVM 

Weight 

Processing Agent 

Content 

0.207 0.416 

Comonomer Content 0.198 0.397 

MFI 0.185 0.375 

Injection Speed 0.128 0.260 

Gate Geometry 0.030 0.062 

Elastomer Content 0.008 0.014 

 

This model is not stating that elastomer content and gate geometry is not an influential parameter 

of the injection molding process since it has been proven that selecting the gate geometry is 

instrumental in designing the injection molding setup as it brings about burn marks [58], 

delamination [59], flash [60], jetting [61], sink marks [62], weld lines [63] or warpage [64]. It is 

also known that a more restrictive opening leads to the increase of principle stress differences [54]. 

These models purely state that both parameters are not as influential when creating the model and 

that other parameters, such as processing agent content, are more influential in these models. 

Additionally, given that MFI is a rheological parameter, relaxation time was assumed to be an 

influential parameter and allowed testing to begin on the parallel plate rheometer.  

Validation of Support Vector Machine and Logistics Regression Parameters 

Upon analysis of the injection-molded plates containing the processing agent, it was evident that 

the surface defect formation was significantly reduced with increased injection speed. Figure 10 

depicts the overall trend of defects from injection-molded plates as you increased injection speed.  
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Figure 10. Images of samples processed at varying processing speeds with processing agent. 

The processing agent is a common injection molding additive used to improve the polymer's 

flowability by breaking down the polymeric chains. The degradation of polymeric chains reduces 

the molecular weight distribution of the material, and as proven by Tzoganakis and coworkers, 

this shift in molecular weight distribution leads to an increase in melt flow index [65]. The increase 

in melt flow index may be acquitted to the decrease in shear viscosity, confirmed by Ghosh and 

coworkers, where an increase in this agent content leads to a decrease in viscosity. Moreover, it 

was studied that the increase of processing temperature leads to the further reduction of shear 

viscosity [66].  
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Figure 11. Tests showcasing the increasing effect of processing agent on MFI.  

A decrease in chain lengths, from the processing agent, results in decreased relaxation time as the 

chains can slide past one another more freely with such additive. This effect is visible in Figure 

12, where an increase in processing agent content reflects a decrease in 𝜆, relaxation time.  
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Figure 12. Relaxation tests showing the decreasing effect of processing agent on λ. 

Higher stresses are present at higher processing speeds, and with elastomer being present in the 

system, the high tan𝛿 of elastomer leads to increased dissipation of energy while being under 

shearing stress [67]. A high tan𝛿 translates to a large loss modulus given a fixed storage modulus. 

This means that it can absorb energy and dissipate it in other forms. This dissipation of energy 

translates to the expulsion of heat caused by increased energy inputted into the system. As stated 

before, the change in the system's thermal state results in the further reduction of viscosity because 

of the processing agent effect. This decrease in viscosity, resultant of the increase in velocity, halts 

the creation of these aesthetic defects. This confirms the validity of including processing agent 

content as an input parameter to the neural network as a change in agent content can reduce the 

viscosity and further reduce viscosity if processing speeds are increased.  

Large amounts of comonomer within the model blend correspond to higher viscosities at the 

specific processing temperature. This behavior is apparent in Figure 13, where the x-axis is the 

comonomer content increasing left to right, the y-axis is the relaxation time, and the red box plots 

represent unique experiments with varying comonomer content. 
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Figure 13. Relaxation tests results showing the positive influence of comonomer content on λ. 

This increase in relaxation time suggests that the material experiences increased viscosity with 

comonomer content, and higher stresses are present for the given strain input. This observation 

was logged in the preliminary stress sweep experiments where the stress response was plotted 

against strain %; we can then calculate the slope and relate those slopes to subsequent samples. 

Table 4 highlights the following observation of increased stress response with corresponding strain 

input solidifying the fact to include comonomer content within the machine learning algorithms.  
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Table 4. Results showing that an increase in comonomer content results in the material's inability 

to deform. 

Comonomer 

Content [%] 
Slope [%] 

 

 

 

52 

43 

61 

67 

71 

121 

 

Additionally, it was observed that defects appeared as you increased injection speed when the 

processing agent was not present. The increase in velocity did not permit sufficient time for the 

model blend to relax, resulting in rheological instabilities, thus bringing about surface defects.  

Preliminary Machine Learning Iterations 

The preliminary SVM and LR model allowed for a quantitative method for assessing this dataset's 

ability to use a classification machine learning algorithm. SVM and LR captured the complex 

occurrence of these surface defects with 73% classification accuracy. They served as a baseline 

study for determining the influential parameters in this system, which would ultimately be used 

for the successive deep learning neural network.  

With the SVM and LR model determining that gate geometry and elastomer content were the least 

influential input parameters, it was crucial to determine if both input parameters introduced noise 

to the system and reduced the convergence rate. For this reason, MATLAB was used to run the 

optimizable SVM learner to determine how reducing the number of input nodes altered the 

classifier's performance. Table 5 below shows the results of the 8-fold cross-validation (CV) tests 

where test 1 includes all seven input parameters, test 2 includes all seven input parameters except 

for gate geometry and elastomer content, test 3 includes all seven parameters except for gate 
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geometry, elastomer content, and relaxation time, and test 4 includes all seven input parameters 

except for gate geometry, elastomer content and MFI. 

Table 5. 8-fold cross-validation accuracy reached with partial input parameters. 

Test CV accuracy [%] 

1 85.9 

2 86.9 

3 84.0 

4 85.4 

 

Test 2 resulted in achieving the highest classification accuracy and corroborating with the initial 

SVM and LR weights where it stated that gate geometry and elastomer content were not as 

influential for this machine learning algorithm. Additionally, the SVM classifier's confusion 

matrix can be seen below (Figure 14) and shows how most of the misclassification in validation 

occurs in predicting the "no surface defect." 

 

Figure 14. The confusion matrix of the optimized SVM classifier 
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Final Neural Network Testing 

Applying what was observed in SVM and LR to the NN structure, two tests were conducted to 

validate the hypothesis that eliminating gate geometry and elastomer content would improve the 

NN accuracy. Test 1 would include all input parameters, while test 2 would include all input 

parameters except for gate geometry and elastomer content. The NN structure would then be 

optimized with Bayesian optimization, where Figure 15 depicts the NN architecture for test 1 after 

optimization, and Figure 16 shows the overall NN structure for test 2 after Bayesian optimization. 

The tuned hyperparameters include a number of hidden layers (1 to 4), number of hidden nodes 

(32 to 256), and data normalization method (none, normalization, or standardization). The weights 

were initialized using the Glorot uniform initializer (Keras default), drawing samples from a 

random uniform distribution within a limit; the biases were initialized as zero [68]. 

 

Figure 15. The neural network architecture for test 1 after Bayesian optimization 
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Figure 16. The neural network architecture for test 2 after Bayesian optimization 

From the Bayesian optimization, although the optimized NN has a simple architecture with only 2 

hidden layers, it achieved an improved 8-fold CV accuracy of 90.2%±4.4%. The trained model's 

ability to generalize to new data was tested using the test dataset that was set aside during training 

and CV. The test accuracy reached 90.5% (precision=91.7%, recall=91.7%), with only 1 

misclassified data entry in each class, as summarized in the confusion matrix in Figure 17.a. When 

using all data inputs, the optimal NN architecture exhibited increased complexities, with 5 hidden 

layers and more hidden neurons than the NN architecture with reduced feature selection, resulting 

in a total of 91,425 trainable parameters. The 8-fold CV accuracy is 92.4%±11.4% (Figure 17.b). 

Although the average CV accuracy increased slightly, the error range almost tripled, indicating a 

higher tendency of overfitting. The test accuracy stayed the same with a value of 90.5% on the 

same test samples (precision = 85.7%, recall=100%). 
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Figure 17. The confusion matrix for test (left) 1 and (right) test 2 

Sensitivity analysis was also performed to obtain the gradients of the neural network output with 

respect to the test samples' input features using backpropagation. The calculated gradient value 

suggests how a change of input features may change the output, with a more positive and larger 

gradient contributing more to the occurrence of surface defect and vice versa. As depicted in Table 

6 below, on average, comonomer content, processing agent content, and rheological parameters 

illustrated greater contributions to the NN output than the other features, similar to what was 

observed in the SVM and LR analyses. 

Table 6. Sensitivity analysis results 

Input Parameter NN Gradient 

Elastomer Content 2.40 ∙ 10−5 

Comonomer Content −4.30 ∙ 10−4 

Processing Agent 

Content 
9.09 ∙ 10−5 

Injection Speed −4.35 ∙ 10−5 

Gate Geometry −6.26 ∙ 10−5 

Lambda 9.10 ∙ 10−5 

MFI 4.37 ∙ 10−5 
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3. Materials Development Optimization via Data-

Driven Modeling 

 

 

 

3.1 Introduction   

The use of naturally derived or sustainable polymers is continuing to gain increasing attention due 

to the long-term environmental harm that their synthetic analog imposes. These synthetic polymers 

over the last few decades have become the most practical and economical solution for a huge 

variety of applications across multiple industries given their cost savings [69-71]. Industry now is 

being encouraged to embrace polymers that create a negative carbon footprint. An example of such 

a biopolymer is natural rubber, which is derived from the Hevea Brasilensis tree as latex [72-75]. 

With the appropriate additives, natural rubber can be manipulated to acquire distinct properties for 

specific applications. Previous studies have shown how increasing sulfur content increases 

crosslink density and hardness, leading to a less viscoelastic material [76-78]. From these studies, 

Zhao and coworkers were able to demonstrate that the Shore A and 300% modulus of NR 

vulcanizates both increased linearly with crosslink density, but dynamic properties still vary in a 

non-linear fashion [76]. Plasticizers are another commonly used additive in charge of decreasing 

viscosity and improving processability, meanwhile decreasing tensile properties, tear strength, 

resilience, and compression set [79-81]. Furthermore, regarding lightweighting, sodium 

bicarbonate is an additive commonly used for such applications as the elevated temperatures 

during vulcanization trigger degradation of the additive, resulting in the release of carbon dioxide. 

The release of gasses within the blends creates the foaming effect where a porous inner structure 

is produced [82-83]. It is important to recognize that introducing a foamed structure to a testing 
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specimen under compression behaves very differently from a foamed testing specimen under 

tension. The act of compressing testing a foamed polymer structure results in an atypical 

compression curve where there are three zones, the initial zone with a higher tangent modulus, the 

elastic buckling zone, and the densification zone. The densification region is where the cellular 

structure begins to collapse on itself, and the stresses begin to grow as gas and polymer are 

compressed.  

It is also important to note that all additives have interacting effects and that varying chemical 

grades also bring about variation to your blend material properties. The sensitivity of material 

properties due to additives is a complex issue that deems formulating blends a highly complex 

task. For that reason, this study focuses on data-driven modeling within the formulation process.  

With polymers exhibiting time and temperature-dependent behavior, it is crucial to quantify the 

long-term and short-term behavior of the polymer of interest to fully understand its material 

behavior. For that reason, viscoelastic properties (relaxation behavior and tan δ), hardness, and the 

quantity of voids in the sample were selected as the measured properties as they characterize the 

morphology, short-term behavior, and long-term behavior of polymers [55,67,84]. 

Relaxation measurements allow for long-term behavior analysis as it can also be interrelated to 

creep behavior [67,85-86]. Moreover, dynamic properties are crucial for understanding mechanical 

behavior for high-performance applications undergoing cyclical loading [87-90]. For example, 

footwear materials undergo cyclical loading between 1 Hz –5 Hz while materials within the 

automotive industry may experience cyclical loading within a frequency range of about 0 and 300 

Hz [91]. Furthermore, it should be noted that with the automotive industry embracing the 

electrification of automobiles, it should be expected to encounter higher-frequency vibrations 

within the automobile, supporting the need to understand the frequency-dependent behavior of 

polymers implemented in automotive design [91]. Additionally, with foaming technologies 

entering high-performance applications due to their role in light-weighting, it is no surprise that 

the addition of air bubbles within a polymer matrix will alter material performance [83,92-93].  

The above-mentioned material characteristics deem formulating a highly complex process as one 

additive may increase one material property but non-linearly decrease another. It is a process that 

requires the formulator to balance the interacting effects of all additives, while ensuring that the 

cost of the overall blend is minimized without sacrificing quality. This study will focus on 
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providing industry with three data-driven formulation methodologies, varying in complexity 

(Response Surface Method, Artificial Neural Networks, and Gaussian Process Regression) to 

explain how certain algorithms can offer additional information to the process besides treating the 

algorithm like a black box. The final goal of this study is to use the algorithms as a method for 

reverse engineering current materials based on their viscoelastic properties (relaxation, dynamic, 

and hardness). The reverse engineering aspect of this study is crucial for formulators as they can 

feed the algorithm a starting point to their design of experiments. 

3.2 Materials and Characterization Methods 

Material Compounding 

SOAN Laboratories provided the Polymer Engineering Center (PEC) with Betapreno, one of their 

ammonia-free natural rubber (NR) materials produced in Victoria, Colombia. Table 7 below 

depicts the additives used within this study to understand the influence of commonly used additives 

on the mechanical behavior of natural rubber blends, primarily its viscoelastic properties. Blends 

were prepared in an internal batch mixer, C.W. Brabender 3-Piece bowl mixer, using Banbury 

blades. Table 8 below shows each blend prepared within this study, where the last two blends were 

outputted by the predictive algorithms as target blends, used to improve the prediction accuracy of 

the machine learning algorithm. All blends were mixed at 21 °C and 50 RPMs until a homogeneous 

mixture resulted in the plateau of the torque response logged by the Intelli Plasti-Corder Torque 

Rheometer mixer attachment. Additives were tested at varying load ranges to capture the effect of 

a low load amount to a large load amount. This was done to ensure the algorithm captures the 

limiting effect of an additive as properties do not always trend in the same manner as you increase 

the amount of additive [94-97]. Jacob and coworkers showed that increasing reinforcement 

increased the tensile strength of the natural rubber blend only if the loading was below 30 pph 

(parts per hundred of rubber) [13]. After exceeding 30 pph of fiber loading, the tensile strength 

would begin to decrease with fiber loading. Capturing this phenomenon is crucial as the algorithm 

needs to understand when loading becomes detrimental to certain properties. It is also important 

to note that only a small number of blends were created to prove that a small DOE (design of 

experiments), given the right data, will be able to aid in the creation of an accurate predictive 

algorithm.  
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Table 7. Materials employed within this study 

Material Provider Purpose 

Raw Natural Rubber SOAN Laboratories Raw Material 

Sulfur Fisher Scientific Cross-linking Agent 

Sodium Bicarbonate Sigma-Aldrich Foaming Agent 

Stearic Acid Fisher Scientific Activator 

Paraffin Oil Fisher Scientific Plasticizer 

TMTD Fisher Scientific Accelerator 

Zinc Oxide Fisher Scientific Accelerator 

 

Table 8. Blend formulation DOE whereas each blend has 5 pph of Zinc Oxide, 1 pph of Stearic 

acid, 1 pph of TMTD and 8 pph of Sodium Bicarbonate. 

Blend No. 
Sulfur 

(pph) 

Paraffin Oil 

(pph) 

1 2.5 80 

2 2.5 50 

3 1.5 40 

4 1.5 80 

5 1.5 20 

6 0.5 20 

7 0.5 0 

8 2.5 0 

9 4 0 

10 * 0.6 39 

11 * 0.3 59 

* These are blends outputted by the ANN algorithm to improve accuracy. 
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Rheological Characterization 

A TA Instruments AR-2000EX parallel plate rheometer was employed to quantify the 

vulcanization reaction of each natural rubber blend.  By using the ASTM D2084 standard, the 

reaction was characterized to determine the optimal vulcanization time, t90, at 150 °C. 

Furthermore, to prevent slippage-induced measurement error, parallel plate rheometry was 

conducted using serrated parallel plates. After rheological testing, the samples were placed in 

cylindrical molds and vulcanized in the Carver 3889 compression molding machine. 

Lissajous Curve Characterization 

The NETZSCH Eplexor® 500 N Dynamic Mechanical Analyzer (DMA) was utilized for the 

characterization of Lissajous curves to extract the tan⁡δ for each specific sample. For this dynamic 

study, a 10% static compressive strain was imposed on a cylindrical sample with 10 mm diameter 

and 10 mm height, and a ±5% dynamic strain was applied at 1 Hz. The large levels of strains 

classify these testing conditions as a large amplitude oscillatory test (LAOS) which creates a valid 

representation of what stresses and strains are experienced during walking. The shape of the 

Lissajous curve gives us an insight into the level of non-linearity present when loaded cyclically, 

and also gives us the tan⁡δ, a measurement represented by the lag between the stress and strain 

response during testing, correspondingly the ratio between the Loss Modulus and Storage 

Modulus.  

Relaxation Curve Characterization  

Similarly, to dynamic testing, relaxation behavior was characterized with the NETZSCH Eplexor® 

500 N DMA by imposing a 30% compressive static strain for 10 min and logging the stress 

response from the material with respect to time. Strain of 30% was selected as the testing condition 

since 10% resulted in the same normalized curve, where a large signal-to-noise ratio is present, as 

seen in Figure 18. As the material is quickly loaded in compression to the predefined strain, the 

stress reaches the maximum point and begins to decay with time.  
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Figure 18. The 10% and 30% relaxation tests showcasing their respective signal-to-noise ratios.  

Given that full relaxation of a cross-linked polymer is not frequently attainable at time scales below 

10 h, as seen in Figure 19 below, characterization of the relaxation curve was done by tabulating 

the maximum stress during relaxation testing and by fitting the decay of the curve with a power 

function. Most polymers during relaxation can be modeled with a power function (Equation (10)) 

where nrelax, is used to quantify the rate at which stress decays [67]. By analyzing the magnitude 

of nrelax, it can be deduced that if a |nrelax| is large, then the decay occurs more rapidly compared 

to a material with a smaller |nrelax|. 

 σrelax,normalized = A⁡ ∙ time−nrelax (13) 
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Figure 19. The method used to extract long-term material behavior from relaxation data  

Morphological Characterization 

Before mechanical testing, the ZEISS Metrotom 800 μCT (Carl Zeiss AG, Oberkochen, Germany) 

was used to scan the cylindrical specimen by using the scanning parameters mentioned in Table 9. 

Table 9. µCT scanning parameters. 

Variable Symbol 

Voltage [kV] 75 

Current [μA] 100 

Integration Time [ms] 1000 

Gain [-] 8 

Number of Projections [-] 1000 

Resolution [μm] 4 
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Each scanned image represents a cross-section of the sample with pixel intensity values ranging 

from 0 to 255. A pixel intensity value of 0 corresponds to the color black while a pixel intensity 

value of 255 corresponds to the color white. A material with a higher density will have a much 

higher pixel intensity value compared to a void, which will output a lower pixel intensity value. A 

MATLAB program, as schematically shown below in Figure 20, was developed to threshold each 

image and to characterize the quantity of voids within each cross-section, allowing for a through-

thickness analysis of each cylindrical sample.  

 

Figure 20. Workflow for the MATLAB program responsible for void analysis. 

Durometer Characterization  

A durometer (Shore A) was used to characterize the hardness of each respective blend. In 

accordance with ISO Standard D2240-15, this Type A indenter shape includes a flat cone point 

(0.79 mm), and a 35° included angle with a range of 0~100 HA. 

3.3 Computational Methods 

Linear Regression 

Multivariate linear regression is one of the simplest models to construct a mathematical expression 

of the material property as a function of blend content. Each of the target properties—durometer 

reading, σrelax, nrelax, and tan⁡δ—is formulated by Equation (11): 

 Y = a0 + a1A + a2B + a3C (14) 
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In the model above, A corresponds to sulfur content, B to paraffin oil content, and C to the void 

content within the sample; the coefficients (or weights and biases) 𝑎i’s are determined by ordinary 

least squares [16]. The model was implemented using Scikit-learn [98] (version 0.24.2) with 

Python. 

Artificial Neural Networks 

In this study, an ANN architecture was constructed using Tensorflow [99] (version 2.0.0) and 

tuned for each of the four material properties, including durometer reading, σrelax, nrelax, and 

tan⁡δ. To save experimental costs, the dataset for training and validation was kept relatively small, 

which contains 326 data instances. As a result, the hyperparameters of the ANN models were tuned 

with several considerations that avoid overtraining, such as the incorporation of dropout layers and 

early stopping as well as the leverage between the number of model parameters and cross-

validation accuracy. To find the optimal set of hyperparameters, a grid search was performed. The 

grid search considers all the possible combinations of the discretized hyperparameters in the pre-

constructed search space—including learning rate (0.001, 0.003, 0.01), number of hidden layers 

(1, 2, 3), and number of neurons (16, 32, 64, 128, 256)—and evaluates the model performance 

with each NN architecture. The model parameters were optimized using the mean absolute error 

and the Adam optimizer [100]. 

The gradient-based sensitivity analysis gives insight on the influence of individual blend content 

on each of the material properties. In the sensitivity analysis, the gradients of the output (each 

material property) with respect to the input (blend content) are computed and summarized for each 

input variable. The gradient values can indicate how blend content contributes to certain material 

performance, which may lead to human-informed design logistics for new materials. 

Gaussian Process Regression 

In this study, the GPR model was implemented using Scikit-learn [98] (version 0.24.2); a basic 

radial basis function (RBF) kernel was used, and the hyperparameters (length scale parameters) 

were optimized during data fitting. Again, 5-fold cross-validation was used to evaluate the model 

performance. 
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3.4 Characterization Results and Discussion 

Influence of Voids on Viscoelastic and Static Properties 

The degradation reaction of sodium bicarbonate within the blend has the ability of creating a 

foamed part with varying levels of void amount depending on the additive load and charge within 

the compression molding mold [8]. The micrographs seen in Figure 21 below show the three 

examples of void amounts captured by the ZEISS 𝜇CT scanner where the amount of sodium 

bicarbonate was kept constant and charge weight within the mold was altered.  

 

(a)                                   (b)                                  (c)                                     (d) 

Figure 21. (a) 𝜇CT scan of a sample with 0% voids. (b) 𝜇CT scan of sample with 11.8% voids. 

(c) 𝜇CT scan of sample with 19% voids. (d) 𝜇CT scan of sample with 32.2% voids. 

It is evident that increasing void amount results in a decrease in solid material carrying load during 

testing [83,92-93]. For that reason, it is expected to see that a foamed structure consisting of the 

same formulation will result in a less rigid material, compared to one of lesser voids. Figure 22.a 

below shows the overlay of relaxation tests for the same formulation but at varying void contents 

and it can be observed that increasing voids results in a vertical shift of the overall curve. 

Furthermore, in Figure 22.b below, a clear linear relationship between the rigidity of the material 

and void amount can be seen if the maximum stress reached during testing is grouped with its 

respective void amount.  
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Figure 22. (a) An overlay of relaxation tests of blend 1 at varying levels of void content, and (b) 

the linear relationship between max stress experienced in relaxation testing and void content 

It can be observed that the rate at which stress decays is also influenced by the quantity of voids. 

Therefore, evaluation the nrelax of individual curves allows for the study of how voids influence 

the rate of stress decay, whereas it can be seen in Figure 23 how voids and nrelax have a linear 

decreasing relationship. This relationship states that as the amount of voids increases, the rate at 

which stress decays will be larger. 

 

Figure 23. The relationship between voids and the rate at which stress decays for blend 9 (left) 

and 10 (right), characterized by nrelax. 

To better understand at a quantitative level the amount of influence that parameters impose on a 

certain material property, the Pearson correlation coefficient is utilized to determine the level of 

significance between two specified variables. The coefficients are calculated using Equation 12 

below and results in a normalized heat map.  
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𝑟 =

∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2∑(𝑦𝑖 − 𝑦̅)2
 

𝑟 = Pearson⁡correlation⁡coefficient 
𝑥𝑖 = Values⁡of⁡the⁡x − variable⁡in⁡a⁡sample 

𝑥̅ = Mean⁡of⁡the⁡values⁡of⁡the⁡x − variable 

𝑦𝑖 = Values⁡of⁡the⁡y − variable⁡in⁡a⁡sample 

𝑦̅ = Mean⁡of⁡the⁡values⁡of⁡the⁡y − variable 

(15) 

 

Figure 24 below shows the normalized heat map where a Pearson correlation coefficient closer to 

−1 translates to a highly significant decreasing effect on the specific property, a value of +1 

translates to a highly significant increasing effect on the specific property, and a value near zero is 

interpreted as an insignificant parameter to the property of interest. There are three areas present 

within this heat map, the Input Blend Formulation coefficients which explain how the blends are 

not correlated with each other, the Output Material Property coefficients which dictate how each 

output property is interrelated with one another, and the Input Output Correlation coefficients that 

give insight into how additives influence the output viscoelastic properties. To mention a few, it 

can be seen that nrelax is negatively correlated with tan⁡δ and that σrelax is positively correlated 

with hardness of the material, captured by the durometer. It can be seen within the heat map that 

voids have a positive Pearson correlation coefficient value with tan⁡δ, therefore it is expected to 

see the rise of tan⁡δ with increased amounts of voids. 

 

Figure 24. The Pearson correlation coefficients for each parameter. 
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The positive correlation of void content on tan⁡δ specified by the Pearson correlation coefficient 

is confirmed in Figure 25.a below where blends 8 and 9 clearly show an increasing trend for tan⁡δ 

as void content increases. The above-mentioned trend is present in all blends, allowing for the 

prediction of tan⁡δ behavior for samples with zero percent void content to 40% void content by 

extrapolating data via linear regression techniques. As seen, the quantity of voids in the sample 

influences the stresses reached during relaxation testing, an indication of rigidity. This influence 

on rigidity is also captured in hardness measurements, a static method in which it can be seen that 

increasing void content results in a decrease in hardness. Figure 25.b below shows how hardness 

of blend 5 decreases in a linear fashion as void content increases.  

 

 

Figure 25. (a) The increasing relationship of void content on tan⁡δ and (b) the influence of void 

content on hardness. 

Influence of Sulfur on Viscoelastic and Static Properties 

An increased amount of sulfur within results in increased number of cross-links, decreasing the 

ability for molecular chains to move past one another [55,101]. If mobility is limited, then 

intermolecular forces will be present, restricting full relaxation, and the lag between the strain and 

stress response will be minimized [55,84]. All three relaxation curves in Figure 26 below represent 

blends that only differ in the quantity of sulfur within the formulation. With no plasticizer present 

within the formulation, it can be appreciated how increasing the sulfur amount in fact increases 

rigidity, as seen in (a) where the blend with 4.0 pph of sulfur reaches a maximum stress 1.6 times 
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larger than the blend with 0.5 pph of sulfur. Moreover, observing the normalized relaxation curves 

in (b) proves how decreasing molecular mobility creates a material that experiences less relaxation 

decay behavior. A decrease in relaxation decay behavior, a consequence of increased crosslink 

density, indicates that such material will take much longer to reach 1% of the maximum stress, to 

a material with lesser sulfur quantity.  

 

(a)                                                                                      (b) 

Figure 26. (a) The relaxation curves for blends 7, 8 and 9 while (b) represents the normalized 

curves. 

The blends mentioned in Figure 26 above did not contain plasticizer within the formulation and 

comparing blends with an equal amount of plasticizer with varying amounts of sulfur has the 

ability of creating a more complex material. It can be seen in Figure 27 below that increasing the 

sulfur load, for a blend with 80 pph of plasticizer, results in larger maximum stress reached during 

testing, but opposite to what was observed in Figure 26, the normalized relaxation curves do not 

follow the same trend. It is visible that increasing the sulfur amount from 1.5 pph to 2.5 pph, all 

with 80 pph of plasticizer has minimal influence on the rate at which relaxation occurs and a 

substantial effect on the rigidity of the material. 
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(a) (b) 

Figure 27. (a) The relaxation curves for blends 1 and 4 while (b) represents the normalized 

curve, showing a large similarity in regard to the stress decay behavior. 

With the Pearson correlation coefficient for sulfur on tan⁡δ being −0.8, it is expected to see a 

decreasing trend on tan⁡δ with increasing sulfur content. The expected trend can be appreciated in 

Figure 28 below where each blend has equal amounts of paraffin oil content but with varying sulfur 

content. A positive vertical shift in the curve can be appreciated as sulfur content decreases since 

it is known that heavily crosslinked polymers exhibit a decrease in molecular mobility [55,102]. 

 

Figure 28. Tests showing the influence of sulfur content and void content on tan⁡δ for blends 7, 

8 and 9. 
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Influence of Paraffin Oil on Viscoelastic and Static Properties 

Paraffin Oil is commonly used in the rubber industry to decrease the blend viscosity and to 

facilitate processing since the ultra-high molecular weight (UHMW) of natural rubber is extremely 

viscous [94,103]. At the given sulfur amount of 1.5 pph it is visible how the addition of paraffin 

oil creates a balancing effect to the stresses reached during testing. Unfortunately, this observation 

is not visible when the amount of sulfur is further increased to 2.5 pph of sulfur, the sulfur amount 

reaches a point in which it masks the effects of paraffin oil and limits the influence on rigidity. 

Figure 29 below shows the max stresses experienced during relaxation testing for blends with 2.5 

pph of sulfur while Figure 30 shows it for a blend with 1.5 pph of sulfur. Sulfur and paraffin oil 

have competing effects on the rigidity of the material, and it can be noted by tabulating the slopes 

of stress decay for each set of data points that slopes differ in trend depending on the amount of 

sulfur content.  

 

Figure 29. The relationship between paraffin oil content and 𝜎relax of NR blend with 1.5 pph of 

sulfur. 
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Figure 30. Plot describing the similarity of unique blends by varying void content. 

The tanδ for blend 3–5, in Figure 31a below, show how paraffin oil has an increasing effect on 

tan⁡δ until a threshold is reached. Once the amount of sulfur is increased from 1.5 pph to 2.5 pph, 

it can be seen in Figure 31b below that the increased sulfur amount overpowers the influence of 

paraffin oil, and the influence imparted by the plasticizer has an increasing effect on tan⁡δ. 

  

(a) (b) 

Figure 31. The influence of paraffin oil content on tan⁡δ for a blend with 1.5 pph (a) and 2.5 pph 

of sulfur (b). 
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3.5 Computational Results 

Response Surface Method Prediction Results 

Each output response has its respective model equation, as seen in Table 10 below, where each 

coefficient describes the level of influence that each linear, quadratic, and interaction parameter 

has on the performance of the system. With hardness and σrelax during relaxation being closely 

interrelated to the rigidity of the material, a transient property, the models for both responses reach 

high prediction accuracies compared to the other two viscoelastic properties where time-dependent 

behavior is characterized. The RSM model created from only 11 blends results in an average 

Prediction R2 of 0.89, and by comparing the proximity of each R2 within each respective model, it 

is evident that overfitting is not occurring in this model given that there is no large variation 

between all three R2 values.  

Table 10. Results from the RSM analysis where each accuracy is shown, as well as the influential 

constants within the model. 

Response 

Variable 
Model Equation 𝐑𝟐 𝐀𝐝𝐣𝐮𝐬𝐭𝐞𝐝⁡𝐑𝟐 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝⁡𝐑𝟐 

Durometer [Shore 

A]  

25.76 + 7.14A − 0.44B − 0.26C − 1.15A2

+ 0.002B2 + 0.0001C2 + 0.03AB
+ 0.01AC − 0.0005BC 

0.9689 0.9680 0.9667 

σrelax [kPa] 

440.12 + 268.26A − 10.80B − 9.90C − 26.37A2

+ 0.07B2 + 0.01C2 − 1.39AB
− 2.94AC + 0.14BC 

0.9906 0.9903 0.9900 

nrelax [-] 

−0.024 + 0.01674A − 0.00018B − 0.00049C
− 0.003A2 + 0.000001B2

+ 0.000008C2 + 0.0000034AB
+ 0.000025AC + 0.000000BC 

0.7533 0.7463 0.7367 

tan⁡ δ [-] 

0.119 − 0.0819A + 0.0004B + 0.00079C
+ 0.014A2 − 0.000002B2

− 0.000013C2 − 0.000083AB
− 0.000003AC − 0.000001BC 

0.8748 0.8712 0.8660 
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Standardizing the coefficients allows for the configuration of the Pareto Chart of the Standardized 

Effects where Figures 32-33 show the Pareto Chart for each respective output response within this 

study. A, B, and C all represent a controllable variable (factors), as seen in the legend on the right 

of each Pareto Chart. A linear term within the chart only includes one factor, such as A, 

representing the linear term of Sulfur. A quadratic term includes two factors, such as AA, and an 

interaction term within the chart is shown with two different factors, such as AB, which describe 

the interaction between Sulfur and Paraffin Oil.  

 

Figure 32. The Pareto Chart of Standardized Effects for (a) durometer reading and (b) 𝜎𝑟𝑒𝑙𝑎𝑥. 

The Pareto chart for σrelax and hardness both show that Paraffin Oil has the largest influence on 

the output response and that the response should closely follow a linear trend since the largest 

terms only have one factor. This linear relationship can be confirmed by looking at Figure 29 above 

where the linear trendline is present with an R2 of 0.99. Observing the Pareto charts for nrelax and 

tanδ both show how complex the model is as the top two most influential terms are quadratic 

terms. RSM suggests that if the coefficient of the squared term is significant, then one can conclude 

that the relationship between both controllable variables closely follows a curved response. This 

statement is supported in Figure 34 where the relationship of sulfur on nrelax does not follow a 

linear trend, but more of an asymptotic curve. 
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                                    (a)                                                               (b) 

Figure 33. The Pareto Chart of Standardized Effects for (a) nrelax and (b) tan⁡δ. 

 

Figure 34. The curved response of sulfur content on nrelax, further confirming the results in the 

Pareto chart. 

Artificial Neural Network Prediction Results 

The final ANN architectures selected are summarized in Table 11, and the parity plots of the 

experimental and predicted values from 5-fold cross-validation are illustrated in Figure 35. For 
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each of the four material properties, the R2 value increased compared to the linear regression 

baseline. It is worth noting that a simple NN architecture has the ability to capture material-

property correlation pertinent to the rubber blend content, especially for nrelax and tan⁡δ whose 

underlying functions are more nonlinear, as suggested by the significant improvements of the two. 

When compared with RSM, ANNs also showed improvements in prediction accuracies for nrelax 

and tan⁡δ. This again confirms that nrelax and tan⁡δ would benefit from a more nonlinear modeling 

approach. Although the selected ANN architecture for σrelax performed slightly worse than RSM, 

some of the more complex architectures (with over 1000 parameters) tested could reach a 

comparable R2 value. However, to avoid overtraining, the model complexity and accuracies were 

leveraged during the model selection process.  

Table 11. The predictive capabilities of the ANN and the overall architecture for each model. 

Target Material 

Property 

No. of Hidden 

Layers 

No. of Neurons 

in Hidden 

Layer 

Learning 

Rate 

Number of 

Learnable 

Parameters in the 

Model 

5-Fold CV 

𝐑𝟐 of ANN 

5-Fold CV 

𝐑𝟐 of 

Linear 

Regression 

Baseline 

Durometer 1 64 0.01 321 0.99 0.91 

𝛔𝐫𝐞𝐥𝐚𝐱 2 16, 16 0.01 353 0.96 0.90 

𝐧𝐫𝐞𝐥𝐚𝐱 2 16, 16 0.01 353 0.94 0.48 

𝐭𝐚𝐧⁡𝛅 1 32 0.003 161 0.98 0.67 
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Figure 35. The parity plots for all four ANN models. 

After the models were developed, the sensitivity analysis was performed on both the linear 

regression baseline and the ANNs. For linear regressions, the gradients were simply the weights, 

and for ANNs, the gradients were obtained from backpropagation. Figure 36 shows the averaged 

gradients from the individual folds of cross-validation. In general, the gradients from both the LR 

and ANN models have the same trend except for nrelax, where the paraffin oil content has a 

positive gradient in LR but negative gradient in ANN. The RSM analysis also suggests a negative 

gradient, which corroborates with relaxation theory as the plasticizer increases the free volume 

between the rubber molecules, further facilitating relaxation as you increase plasticizer content. 
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Figure 36. The results from the sensitivity analysis for both the linear regression baseline and the 

ANNs. 

Gaussian Process Regression Prediction Results 

The parity plots for GPR are illustrated in Figure 37, with the shaded region suggesting the bounds 

for 95% confidence intervals (obtained by 1.96 standard deviations given by GPR prediction). For 

each of the four material properties, the R2 value increased significantly compared to all the above 

methods, and the uncertainties are small in regions where the experimental data are abundant. In 

spite of the ability to make predictions with uncertainty, it is difficult to obtain physical insights 

from GPR due to its nonparametric nature. However, given the high cross-validation accuracy, 

GPR could potentially be used to generate synthetic data for the Bayesian optimization algorithm 

that aims to find the optimal blend content.  
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Figure 37. The parity plots describing Predicted vs. Experimental for GPR. 

3.6 Material Design Optimization 

With industries, such as the footwear industry moving towards sustainable material alternatives 

for midsoles, target properties could be selected based on an existing footwear material via 

characterization techniques. The respective methods would be implemented to predict the blends 

that would theoretically exhibit the target properties. In this section, we show that the previously 

developed predictive models can be used to aid reverse engineering. 

RSM provides an empirical model that allows users to utilize it as a method for reverse engineering 

based on target parameters. Similarly, the trained ANN and GPR could also be used for reverse 

engineering. Based on the target parameters, a score function was constructed based on the 

weighted Euclidean distance between the predicted and the target values. The optimal set of 

parameters is the ones that minimize the score function. The input rubber blend compositions are 

constrained by experimental considerations, such as upper and lower bounds that are physically 
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meaningful and precision limits of the characterization equipment. Table 6 below shows the blends 

outputted by each predictive method which exhibit the target properties mentioned within it.  

For ANN and GPR, since the input design space is relatively small, we generated all the possible 

input rubber blend compositions in the input design space within the feasible region. This is 

possible due to the consideration of experimental precision that makes the distribution of the 

design space rather discrete. Overall, around 6600 possible blend compositions and their 

corresponding predicted properties were obtained. The composition with the minimum score (loss) 

was identified as the optimal blend composition. 

The above reverse engineering method is relatively straightforward and fast to populate given this 

small design space. In fact, all the predicted values were generated within seconds. Nevertheless, 

when we have a large design space or when the input compositions are no longer discrete, this 

method may fail. Alternatively, we used Bayesian optimization (BO) [104] to find the optimal 

blend compositions. BO utilizes Gaussian processes (as in GPR) to solve the black-box 

optimization problem—in this case, a minimization problem with an objective function to 

minimize the score while satisfying the design parameter constraints [105]. The algorithm first 

establishes a surrogate model that computes a posterior distribution (mean and variance) of the 

objective function using a set of sample points. The surrogate model is then used to construct an 

acquisition function that estimates the distribution of the objective function for any test data. A 

recommended blend composition can be obtained by minimizing the acquisition function (where 

we used the score function); this blend composition is used to obtain a new observation data point 

(usually from an experiment or from some existing predictive model) to be incorporated for 

updating the surrogate model. After running these steps iteratively, the algorithm will converge to 

an optimal blend composition.  

In this study, instead of collecting data from experiments for each iteration, we used the previously 

trained GPR model to generate the new “observations” given its high CV accuracy. The BO was 

implemented using Scikit-learn [98] (version 0.24.2) and Scipy [106] (version 1.7.0). The resulting 

blend composition from BO is similar to the findings from the previous approach. Overall, even 

though BO bypasses the construction of specific predictive models for material properties, it can 

guide the design of new experiments and thus reduce the overall experimental costs. 
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Table 12. Summary of the blends that were classified as the optimal blend based on target 

properties. 

Modeling Method Prediction Results 

Target Properties 

σrelax: 90 

nrelax: −0.0527 

tan⁡δ: 0.066 

RSM 

Sulfur: 0.65 

Paraffin: 69.5 

Void: 30.0 

RSM-predicted Properties 

Durometer: 0.45 

σrelax: 90.26 

nrelax: −0.02875 

tanδ: 0.0982 

ANN 

Sulfur: 0.55 

Paraffin: 54 

Void: 17 

ANN-predicted Properties 

Durometer: 5.612 

σrelax: 82.45 

nrelax: −0.0399 

tanδ: 0.113 

GPR 

Sulfur: 0.55 

Paraffin: 57 

Void: 10 

GPR-predicted Properties 

Durometer: 6.187 

σrelax: 111.78 

nrelax: −0.0347 

tanδ: 0.114 
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Natural rubber formulation methodologies implemented within industry primarily implicate a high 

dependence on the formulator’s experience as it involves an educated guess-and-check process. 

The formulator must leverage their experience to ensure that the number of iterations to the final 

blend composition is minimized. The study presented in this paper includes the implementation of 

blend formulation methodology that targets material properties relevant to the application in which 

the product will be used by incorporating predictive models, including linear regression, response 

surface method (RSM), artificial neural networks (ANNs), and Gaussian process regression 

(GPR). Training of such models requires data, which is equal to financial resources in industry. 

To ensure minimum experimental effort, the dataset is kept small, and the model complexity is 

kept simple, and as a proof of concept, the predictive models are used to reverse engineer a current 

material used in the footwear industry based on target viscoelastic properties (relaxation behavior, 

tan δ, and hardness), which all depend on the amount of crosslinker, plasticizer, and the quantity 

of voids used to create the lightweight high-performance material. RSM, ANN, and GPR result in 

prediction accuracy of 90%, 97%, and 100%, respectively. It is evident that the testing accuracy 

increases with algorithm complexity; therefore, these methodologies provide a wide range of tools 

capable of predicting compound formulation based on specified target properties, and with a wide 

range of complexity. 
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4. Viscous Heating Fused Filament Fabrication 3D 

Printer 

 

 

 

4.1 Motivation for Optimizing Fused Filament Fabrication 3D 

Printing 

Fused Filament Fabrication (FFF), also referred to as Fused Deposition Modeling (FDMTM) is an 

additive manufacturing technology which deposits material layer-by-layer until creating a full 

three-dimensional structure. Figure 38 below graphically depicts the overall workings of such 

technology, whereas a plastic filament is pushed into a heated nozzle via a gear-driven pushing 

system. Once the solid filament comes into contact with the heated nozzle, melting begins to occur 

and the physical pressure exerted by the gears causes material to travel through the small die until 

being deposited onto the print bed.   

 

Figure 38: Graphical depiction of the 3D printing process via FFF 
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Such stratified build approach provides users with a method of manufacturing complex parts 

without the need for a complex and costly mold. Avoidance of acquiring molds is a crucial aspect 

within manufacturing as these mold costs are quite elevated [108-109]. If a user constantly creates 

mold design modifications, this increases overall expenses because of mold manufacturing and 

continuous machine setup. Additive Manufacturing (AM) has the benefit in that no molds are 

needed for production of parts. One essentially inputs the 3D model within a slicing engine, and 

the software provides the user with specific machine instructions. For this reason, industry has 

begun embracing additive manufacturing for various uses, such as for: producing tooling, end-of-

use products and for prototyping [110-112].  

While AM provides users with design flexibility and with reduced capital costs, it comes with its 

own set of limitations and disadvantages. Time for manufacturing is one of the largest limitations 

that it has for full implementation within high-volume manufacturing. Currently, print speeds 

average around 60 mm/s and result in extensive print times ranging from hours to multiple days 

depending on the size of the part. This machine limitation is brought about by the physical 

limitation of the gears responsible for pushing the filament into the heated nozzle. The force 

exerted onto the nozzle reaches a threshold in which the gears begin to slip against the filament, 

ultimately halting all movement towards the nozzle [113-114]. This has led for the development 

of high force gearing mechanisms which can impart large amounts of force, but this ultimately 

leads to mechanical failure of the filament under compression. Secondly, the layer-by-layer build 

approach produces extremely anisotropic parts, leaving vulnerabilities within your final product 

[115-117]. The anisotropic behavior is exacerbated when working with fiber-reinforced materials, 

as it can be clearly seen (Figure 39) that depositing such materials causes fiber orientation to 

primarily be in the print direction [118-119].  
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Figure 39. micro-CT scan of Nylon with short glass fiber reinforced 3D printed beads. 

Creating a part with the majority of the fibers oriented in one direction produces a component with 

favorable strength-characteristics in the print direction, but ultimately reduces the strength 

perpendicular to the print direction. The highly anisotropic nature of 3D printed parts makes it 

difficult for prediction of part failure, therefore, this limitation has hindered its implementation 

within demanding engineering fields such as the aerospace and automotive industries. For these 

two reasons, the slow embrace of AM within industry has remained minimal and solving both 

crucial issues in FFF would alleviate the negative repercussions of AM.  

4.2 Introduction to Viscous Heating  

It was noted that the amount of force in which the gears can exert onto the filament is limited, 

which is directly related to the extrusion speed during the FFF 3D printing process. Increasing 

filament force directly increases extrusion speeds, therefore, a proposed solution to the slow 

printing speed issue lies in being able to print at the same given print speed but at lower forces. 

For this to happen, heat transfer must occur at a faster rate, ultimately allowing for melting to occur 

at a rapid pace. Now, the thermal conductivity of polymers hovers around 0.2 
W

mK
 while the thermal 

conductivity of steel is approximately 45 
W

mK
 [120-121]. Heat transfer driven by conductivity is 

quite limited for plastics given their extremely low thermal conductivity coefficients, therefore, 
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introducing viscous heating into the equation provides an accelerating effect to this heat transfer 

problem.  

 
𝜌𝐶𝑝

𝐷𝑇

𝑑𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑥2
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𝜕𝑢𝑥
𝜕𝑢𝑦

)(
𝜕𝑢𝑥
𝜕𝑢𝑦

) 
(16) 

 

One can harness viscous heating by introducing movement around the stationary plastic surface 

which is in contact with the heated metallic surface. Frictional heat caused by the interaction 

between the stationary surface and the moving surface produces viscous dissipation, which results 

in an added heat transfer mechanism within the system. It has been proven that viscous heating 

has the ability of increasing energy efficiency during the extrusion process as taking advantage of 

heat generated via heat dissipation lessens the amount of energy required from an external heating 

source [122]. This concept of viscous dissipation within conventional polymer processing has the 

ability of being applied within advanced manufacturing technologies such as within the FFF 3D 

printing process. The concept of applicability can be proven by constructing an experimental setup 

where a plastic rod is pushed onto a heated surface, all while introducing rotation to either the 

heated surface or to the plastic rod itself. From there, it can be investigated if the pressure melt 

removal process is accelerated when rotation is introduced. 

4.2.1 Proof of Concept 

Introducing viscous heating has the ability to eliminate one of the largest bottlenecks in FFF 3D 

printing, which is long lead times for production. Experiments have shown that melting speed is 

directly related to the amount of force used to drive the filament onto the heated nozzle surface, 

and that the amount of force applied onto the filament is one of the primary physical limitations 

for conventional FFF 3D printers [107].  There comes a point in which a larger amount of force is 

no longer attainable by the hardware, which is where this new viscous heating technology takes 

into full effect. The physics of such rotation have been proven by creating small experimental setup 

(Figure 40 and 41) where plastic rods are rotated at varying rotational speeds and pushed onto a 

heated platform to understand the influence of rod diameter, temperatures, forces and RPM on 

melting behavior.   
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Figure 40. The melting experiment of applying rotation to the plastic rod while exerting a 

downward force onto a heated surface. 

 

 

Figure 41. Small-scale experimental setup to prove the influence of viscous heating on melting 

behavior. 
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The primary components within this experimental setup include two 200W cartridge heaters 

placed inside the heated bed made up of Aluminum 6061. By having a K-Type thermocouple 

control the heated bed temperature, this allows for testing various isothermal conditions, ultimately 

mimicking the heated nozzle in the FFF 3D printing process. An adjustable collet was attached to 

the 24V Genmitsu CNC router motor to allow for plastic rods of varying diameters to be tested. 

Rotating the plastic rods at high RPMs would result in the rods being displaced in the radial 

direction because of the high centrifugal forces. For that reason, a low-friction PTFE guide was 

installed to ensure the plastic rods did not create frictional heat when coming into contact with the 

guide tube surface. The last component of the setup is the structure which holds the CNC router 

motor. The platform is held in place by four linear bearings which allow for the plastic rods held 

by the CNC router motor to move in the vertical direction towards the heated bed with minimal 

frictional losses.  

For this experimental study of the influence of viscous heating on the melt removal process, each 

plastic rod was cut to 100 mm lengths and was weighed before/after testing to calculate the amount 

of material melted for 1 minute of testing. Testing included warming up the heated surface to the 

pre-specified temperature and waiting 10 minutes before testing to ensure isothermal conditions 

were met. By placing a weight at the center of the CNC router platform one can control the force 

being exerted onto the plastic rod. After placing the corresponding weight onto the platform, the 

plastic rod was fixed into the collet and lowered until reaching full contact with the heated bed. 

Upon completion of the 1-minute test, the platform was lifted and the weight of the plastic rod 

which remained intact within the collet was measured. By using a power supply to modify the 

amperage and voltage going into the CNC router motor, this allowed for testing various rotational 

speeds within our design of experiments. It should be noted that a laser photo tachometer was used 

to monitor and to ensure a consistent rotational speed was sustained during each experimental 

condition.  

Design of Experiments for Melt Removal Process Setup 

The design of experiments is described below (Table 13) whereas Nylon was chosen because of 

its significance within industry and PEEK was chosen because of its difficulty for implementation 

within industry because of its high-melting transition. Each experiment was repeated at least 5 

times to ensure repeatability in results. 
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Table 13: Design of experiments for the small-scale experimental study referred to as the pressure 

melt removal experiment.  

Experimental Condition PEEK Nylon 66 

RPM [-] 0 – 12,500 0 – 10,000 

Force [N] 15, 36 15, 36 

Temperature [°C] 310, 330, 350 260, 275, 290 

Diameter [mm] 4.7625, 6.35 3.175, 4.7625, 6.35 

 

A laser photo tachometer was used to ensure constant RPMs were reached before testing and a K-

type thermocouple was also employed to ensure isothermal conditions were met inside the heated 

bed for 10 minutes before commencing testing.  

4.2.2 Influence of Viscous Heating to Melt Throughput 

As stated above, the primary goal of introducing viscous heating within the 3D printing process is 

to drive printing forces down, ultimately facilitating the faster movement of the filament through 

the nozzle. For this experimental setup, the objective was to prove that the introduction of rotation 

caused an increase in melting performance, and upon completion of testing with Nylon 66 plastic 

rods, it can be appreciated in Figure 42 below that increasing RPMs of the plastic rod had an 

increasing effect on melt throughput. For the set of experiments shown in Figure 42 below, plastic 

rods of varying diameter were rotated at RPMs ranging between 0 and 8000 RPMs. The amount 

of material melted at a one-minute interval was logged and it can be seen from the figure below 

that rotation brings about an increase in melting behavior. It can also be observed that the larger 

diameter rods experience an increased rate of melting as the experiment moves towards higher 

RPMs. Given that viscous heating utilizes the interaction between surfaces, this increase in rate of 

melting can be attributed to the increase in surface area from the larger diameter rods. By purely 

pressing the plastic rod against the heated bed at 280°C without rotation, all plastic rods with 

varying diameters reach a melt throughput of about 160 mg/min. Now, if comparing the static rod 

results with rotation, it can be seen that at 7000RPMs that the 6.35 mm, 4.6725 mm and 3.175 mm 

diameter rods reach a melt throughput of 482 mg/min, 389 mg/min and 263 mg/min, respectively. 
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These changes in melt performance translate to a 3x, 2.4x and 1.6x increase in melt performance 

for plastic rods with the following diameters: 6.35 mm, 4.7625 mm and 3.175 mm, respectively. 

Given the large number of experiments, only some of the experimental conditions will be discussed 

within this section. To provide an overall analysis of the influence of viscous heating, the Response 

Surface Method was employed to offer predictive capabilities and statistical insight to the 

underlying physics of this phenomenon. This statistical analysis is to be explained in the ensuing 

section. 

 

Figure 42. Pressure melt removal experiments of Nylon 66 at 280°C for varying rod diameters 

and rotational speeds. 

Similar trend to what is seen in Figure 42 above is observed when increasing the heated bed 

temperature to 295°C. Figure 43 below depicts the increasing effect of RPMs on melt throughput 

for the Nylon 66 rods and it also shows how increasing diameter also increases melt throughput 

rate.   
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Figure 43. Pressure melt removal experiments of Nylon 66 at 295°C for varying rod diameters 

and rotational speeds. 

As this technology is centered around minimizing forces, we can start to take a look into the effects 

of print forces and RPMs on melt throughput. Figure 44 below shows the comparison between 

tests with varying temperature, forces and RPMs for Nylon 66. Similar to what Colón and 

coworkers uncovered with the instrumented Fused Form FFF 3D printer, an increase in force 

results in an increase in melt throughput. This effect can be appreciated by the vertical shift present 

between the 15 N and 36 N test conditions, whereas the higher force results in a positive vertical 

shift within the plot. 
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Figure 44: Pressure melt removal experiments for the Nylon 66 3.175 mm diameter case at 

varying temperatures and at two distinct forces. 

As mentioned before, the experimental plan included testing PEEK as this material is known for 

its high-temperature transitions, making it difficult to incorporate within conventional 

manufacturing practices. Figure 45 below shows how PEEK can experience high throughput 

melting if rotation is introduced into the apparatus. It is evident that more material throughput will 

result from a system that is heated to a higher temperature or if the material is pushed onto the 

heated surface with a greater force, as seen in previous work [107]. The novelty of this system is 

that now there is a third variable, viscous heat, that can be introduced to further accelerate melting. 

Figure 45 below clearly shows how 750 mg of material is melted per minute when one exerts 36 

N of force and heats the material to 350°C. One is now able to achieve the same melting behavior 

if the force is kept at the same level, the temperature is decreased to 310°C and if the material is 

rotating at 3800 RPMs. Users are now also able to depend less on the heat generated from 

inefficient external heating systems and now utilize viscous heating, which localizes the heat 

generated by rotation onto the filament itself.  
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Figure 45. (a) Pressure melt removal experimental results using PEEK with a 6.35 mm rod and 

(b) 4.7625 mm diameter rod 

Similarly, to what is seen the case with the 6.35 mm diameter rod, a 4.7625 mm diameter rod 

experiences similar effects in that an increase in pushing force results in the positive vertical shift 

in the y-axis, translating to a higher melt throughput. Furthermore, an increase in RPMs and 

temperature results in the increase in melt throughput, ultimately proving that viscous heating has 

a positive influence on melting rate.  

4.2.3 Statistical Analysis of Viscous Heating  

By feeding the experimental data into a Response Surface Method (RSM) model, one can run a 

statistical analysis to understand which parameters are the most influential in driving change to the 

output. The resultant algorithms for the Nylon 66 and PEEK experimental conditions result in a 

91% and 97% prediction accuracy, respectively. It is evident that the Pareto chart below (Figure 

46) states that diameter and rotational speed are the most influential parameters for altering melting 

speed within the system and that rotational speed has a non-linear influence on melting behavior. 

This information is crucial for design adjustments within the prototype to ensure the appropriate 

hardware is selected which would allow for more sensitive process parameter adjustments to what 

is deemed most influential by the statistical analysis of the small-scale setup. 
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Figure 46. Pareto chart analysis of the input parameters for the PEEK melt throughput 

experiments 

Each material possesses its own set of material properties, therefore, running a statistical analysis 

on separate systems is necessary to ensure the model does not confuse data with noise. In order to 

fully determine the effects of material properties on its behavior within the viscous heating 3D 

printer, thorough characterization work would be required for all tested materials given that same 

materials of different grades may perform drastically different regarding thermal, rheological and 

frictional properties [123]. After a fully characterization study, an RSM analysis would inform the 

user of which material properties provide a more profound effect on the output response.  

Nevertheless, the Pareto chart seen in Figure 46 above lists the following 3 variables in order of 

importance: (1) RPM, (2) Force and (3) Diameter while Figure 47 below depicts the Pareto chart 

for the Nylon 66 material which outputs the variables in a different order of importance. The Pareto 

chart for the Nylon 66 experiments state that the following three variables are in order of 

importance (1) RPM, (2) Diameter and (3) Temperature.  
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Figure 47. Pareto chart analysis of the input parameters for the PA66 melt throughput 

experiments. 

Both models agree that RPM causes a non-linear effect on the output and that it is the most 

influential variable within the design of experiments, corroborating with our hypothesis that 

viscous heating arising from a rotating component has a profound effect on the system.  

This analysis allows us to study the input variables at a quantitative level to ensure that the 3D 

printer construction incorporates hardware which functions effectively. For example, the RSM 

model states that RPMs is the most influential for both materials, therefore, this insight shows that 

a robust motor must be installed within the apparatus which is capable of transferring load 

efficiently. The following section will describe the general machine construction. 

4.3 Rotating Nozzle Fused Filament Fabrication 3D Printer 

4.3.1 General Construction of 3D Printer 

The custom FFF 3D printer with capabilities of a rotating nozzle was built by Fused Form (Bogotá, 

Colombia) completely instrumented to record the force imparted by the pushed filament, 

temperature inside the nozzle, the change in extruded length over time and a tachometer to measure 

the rotational speed of the nozzle. The schematic of the instrumented extruder can be seen in Figure 
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48 below. It is important to note that the final design used for the rotating nozzle 3D printer is 

merely a rendition of what is found within the schematic in Figure 49. By using MATLAB as the 

acquisition interface in conjunction with the Arduino board, the 150 N ± 0.1N load cell acquired 

data at a sampling frequency of 5 Hz while the encoder had a sampling frequency of 6000 pulses 

per revolution.   

 

Figure 48. Schematic of the general construction of the modified extruder end used to provide 

extrusion length, force and temperature data during the 3D printing process [124]. 

The work within this study is not centered around hardware design and in the intricacies within 

the dynamic seal designed for minimizing material leakage during strenuous rotation. For that 

reason, only information at a high-level will be provided regarding the general construction of the 

3D printer. To allow for rotation, the instrumentation within the nozzle needed to be connected to 

a slip ring which would ultimately allow rotation without cables becoming entangled.  

An aluminum 6061 heat break was designed as a separation mechanism between the nozzle hot-

end and the slip ring to ensure that heat did not travel towards the slip ring, eventually 

compromising the structural integrity and performance of the slip ring. To facilitate rotation, a 

1100-peak-watt motor was used as the driving mechanism. It was designed as a side-mounted 

motor system, designed to indirectly transfer the power by use of a rubber cog belt. There exist no 

compact hollow-bore motor designs which would make this project economically feasible, 

therefore, an indirect driving system was chosen as it provides high torque and high-speed motors, 

all within a compact design.  
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Figure 49. Photo of the existing setup  

Figure 50 below shows a cross-sectional view of the extruder-end where the blue squared region 

(Figure50.a) depicts the stationary portion of the extruder and the green squared region is the 

rotating portion. Another crucial aspect of the design is in the guide tube seen within Figure 50.b 

below (red part) which is responsible for ensuring that the plastic filament does not come into 

contact with any rotating surface. The guide tube ensures that the interaction between the stationary 

filament surface and rotating nozzle surface only occurs in the yellow highlighted lines seen in 

Figure 50.b. Early contact with the rotating surface would result in premature melting, increasing 
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the risk of material leaking through any imperfections created within the machining of the 

components. 

 

(a)                                                        (b) 

Figure 50. (a) Overall cross-section of the design showing the static (blue) and rotating region 

(green). (b) Zoomed-in view of the region which shows the surface in which filament comes into 

contact with the rotating surface. 

4.3.2 Influence of Rotating Nozzle on Print Forces 

As the limiting factor for reaching high pushing forces is attributed to the filament pushing 

mechanism, the load cell within the instrumented 3D printer was crucial within the machine design 

to understand how a rotating nozzle influenced the force exerted onto the filament during 

extrusion. As seen in section 4.2.3, the rotation introduced viscous heating, ultimately accelerating 

the melting of the plastic rod. For these set of experiments, the viscous heating 3D printer was left 

to extrude in open-air, mimicking an extrusion process. By first conducting extrusion trials, this 

allowed for reducing variability caused by printing at various layer heights and the variability of 

depositing a bead onto a previously placed bead. To truly test the limits of the new 3D printer, 

tests were conducted on a short fiber-reinforced (~8%wt) Nylon filament (Matterhackers, USA). 

Tests were conducted by following the design of experiments seen below in table 14.  
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Table 14: Design of experiments for the extrusion trials using the viscous heating 3D printer. 

Experimental Condition PA-GF 

RPM [-] 0 – 5000 

Filament Speed [mm/min] 4, 6, 8 

Temperature [°C] 200, 220, 240, 260 

Diameter [mm] 1.75 

 

These tests allowed for the understanding of how each input variable influenced the force 

experienced by the filament for a material which exhibits high mechanical properties because of 

its glass-fiber reinforcement. Figure 51 below shows a segment of the data acquired during the 

extrusion trials. To highlight a few of the observations, it can be observed how increasing filament 

speed has an increasing effect on forces, and that increasing RPMs has a decreasing effect on 

forces experienced by the filament.  The decreasing effect that higher temperatures impose on print 

forces can be seen in Figure 52, whereas with aid of the color-scale, one can appreciate that 

increasing temperatures leads to a decrease in forces present within the nozzle. Instead of providing 

figures for the 15,471 datapoints collected from the instrumented 3D printer, these data points were 

used as training data for the RSM modeling technique to aid in the understanding of what is the 

most crucial component withing this design of experiments.  
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Figure 51. Raw experimental data points extracted from the instrumented 3D printer for tests at 

260°C 

  

Figure 52. All datapoints extracted from 0 RPM trials using the instrumented 3D printer to show 

the effect of temperature and filament speed on forces. 
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As used previously, an RSM analysis was conducted to predict experiments within the range of 

the design of experiments which were not conducted, allowing us to understand this multivariable 

problem. The RSM model summary can be seen in table 15 below, whereas it can be se seen that 

all R2 coefficients average out to a prediction accuracy of 87.66% and with an uncertainty of 

0.01%. By having all three R2 coefficients near one another, this indicates that the model is not 

vulnerable to overfitting. The model equation describes the regression model, which has RPMs 

represented as variable A, temperature is represented by the variable B and the filament speed is 

described by the variable C. Additionally, inspecting the variables’ coefficients allows us to 

recognize the importance of each parameter within the model. This technique also allows for the 

interaction effects of variables to be studied by assessing the last three parameters within the model 

equation. Additionally, the RSM model also allows for us to understand which variables exhibit 

non-linear effects on the output response.  

Table 15. Model summary of the RSM model which predicts extrusion forces within the 

instrumented viscous heating 3D printer 

𝐌𝐨𝐝𝐞𝐥⁡𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝐑𝟐 𝐑𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝
𝟐  𝐑𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧

𝟐  

𝟓𝟏𝟒. 𝟓𝟒 − 𝟎. 𝟎𝟒𝐀 − 𝟒. 𝟔𝟏𝐁 + 𝟔𝟕. 𝟑𝟕𝐂 + 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟏𝐀𝟐

+ 𝟎. 𝟎𝟎𝟗𝟔𝐁𝟐 + 𝟎. 𝟑𝟏𝐂𝟐 + 𝟎. 𝟎𝟎𝟎𝟏𝟔𝐀𝐁

− 𝟎. 𝟎𝟎𝟒𝟑𝐀𝐂 − 𝟎. 𝟏𝟗𝟕𝐁𝐂 

87.67% 87.67% 87.65% 

 

By using the equation of the output response, one can generate contour plots (Figure 53) showing 

the non-linear effect of RPMs on extrusion forces and translating this model to various temperature 

profiles to understand the effects of temperature on forces. 
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Figure 53: Contour plots displaying the effects of all input variables on the output response 

It can be clearly seen from Figure 53 above that RPMs decrease forces non-linearly and that 

increasing temperature provides a horizontal shift to the contour plots. It can be observed that one 

is capable of extruding with a filament speed of 8 mm/s at near-zero forces when having the nozzle 

rotate at 5000 RPMs at 240°C. In addition to the two-dimensional contour plots which describe 

the multivariable problem, three-dimensional surface plots can be generated for each respective 

temperature, as seen in Figure 54 below. This allows us to appreciate that there are no overlapping 

points within the RSM model, leading to the conclusion that a change in temperature translates to 

an approximate vertical shift in the surface plot. One observation to note is that at very low filament 

speeds there is an apparent increase in extrusion forces as the 4000 RPM threshold is surpassed. 

Since forces are already near zero at 4000 RPMs, the additional rotation most likely begins to 

introduce noise as the system is no longer able to reduce forces below 0 Newtons.  
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Figure 54. Surface plots from the RSM model extracted from the viscous heating 3D printer 

extrusion trials. 

Like section 4.2.3, the Pareto chart (Figure 55) provides insight regarding the importance of each 

input variable. For the extrusion trial study, the input variables in order of significance are the 

following: (1) RPM, (2) Filament Speed, and (3) Temperature. The rotational speed of the nozzle 

is the most influential component within this instrument setup. This statistical information 

provided by the Pareto chart informs the designer of what hardware components should be 

prioritized in regard to robustness.  Nevertheless, given the dynamic nature of the viscous heating 

3D printer, a quite powerful controller and motor is required if rotational speed of the nozzle is to 

be chosen as the adjustable parameter for improving print quality. For sake of manufacturability 

of the 3D printer, and feasibility of the slip-ring design, the filament speed is chosen as the 

adjustable parameter given the ease of implementation compared to RPM. 
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Figure 55. Pareto chart for the Nylon 66 glass-fiber reinforced extrusion trials using the 

instrumented viscous heating 3D printer 

4.3.3 Influence of Rotating Nozzle on Microstructure 

As mentioned above, the extremely anisotropic nature of FFF 3D printed parts creates the negative 

stigma of additive manufacturing implementation within high-performance manufacturing 

applications. For that reason, it is important to study the influence of the rotating nozzle on 3D 

parts, specifically gaining an insight regarding its microstructure. For full adoption of such 

technologies within manufacturing, it must be proven that the overall performance of the 3D 

printed parts produced with the viscous heating 3D printer results in superior properties compared 

to conventional FFF 3D printers where the nozzle remains in a still position. This section describes 

the characterization work related to microstructure analysis via micro-CT analysis. To begin 

scanning with the μCT, a rectangular sample was cut out (10mm x 10mm x 0.6mm) of the tensile 

testing coupon and four adjacent beads were analyzed within the region of interest to provide a 

representative analysis of the overall sample microstructure in regard to porosity, fiber orientation 

and fiber length for the 3D printed fiber-reinforced tensile testing coupons. It is important to note 
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that all tensile testing coupons were adapted from the ASTM D673 standard, whereas three layers 

were printed for each testing coupon. To allow for a consistent μCT scanning procedure, all 

samples were CT scanned using the parameters seen in Table 16 below. All microstructural 

analysis was completed using Volume Graphics’ Fiber Composite Material Analysis module by 

using the raw μCT images extracted from the ZEISS Metrotom 800 μCT (Carl Zeiss AG, 

Oberkochen, Germany). 

Table 16. µCT scanning parameters. 

Variable Symbol 

Voltage [kV] 80 

Current [μA] 80 

Integration Time [ms] 1000 

Gain [-] 8 

Number of Projections [-] 1000 

Resolution [μm] 4.85 

 

First-layer adhesion provided a challenge for nylon short-fiber reinforced prints given the poor 

glass fiber adhesion properties onto a glass substrate. Therefore, to minimize issues with adhesion, 

the first layer was printed with no rotation and the following two layers were printed with rotation 

enabled to study the influence of the rotating nozzle on microstructure.  

Rotating Nozzle Effects on Porosity 

Adhesion of the first layer onto the printing substrate demonstrated a challenge due to the poor 

adhesion properties between two glass materials: one being the glass fibers present within the 

nylon glass-fiber reinforced filament and the other being the glass print bed. For that reason, the 

first layer of the 3-layer tensile testing coupon was printed without enabling rotation of the nozzle. 

Once the first layer was properly adhered, rotation commenced, and the two final layers were 

printed with rotation enabled. 

The primary objective of this section is to show that a rotating nozzle does not impart additional 

porosity into the 3D printed part. By viewing Figure 56 below, two distinct curves are presented 
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simultaneously: the first dashed curve shows a test with rotation disabled and the solid curve 

represents a print with rotation enabled. Looking into the rotation-enabled print, it is important to 

note that 1 layer was printed without rotation. This translates to one third of the normalized 

thickness having been printed with no rotation. This one third is represented as the gray-shaded 

region within Figure 56 below and it can be clearly seen how the rotation-enabled print does not 

experience an increasing or decreasing effect on void content.  

 

Figure 56. Void analysis of two 3D printed components. Dashed line represents the component 

3D printed with a conventional FFF 3D printer setup and the solid line represents the 3D printed 

part with a rotating nozzle. 

The independence of porosity on rotation can be seen in all other experiments within the design of 

experiments, whereas Figure 57 below depicts all of the void analyses data points overlaid behind 

the rotation-disabled distribution. This porosity study found no direct correlation between the 

rotational speed of the nozzle, temperature and print speed within the design of experiments.     
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Figure 57. Void analysis on all samples to describe the independence of rotational speed of the 

nozzle on the void content within 3D printed samples. 

Rotating Nozzle Effects on Fiber Orientation 

As mentioned above, fiber orientation analysis is crucial for approximating mechanical 

performance as the orientation of fibers provides reinforcement in the fiber direction. In this work, 

the tensor representation proposed by Advani and Tucker [119,125] is used to quantify the fiber 

orientation distribution within the 3D printed components. If using a single glass fiber as an 

example and depicting it as a single rigid rod in a three-dimensional space, Figure 58 below 

describes how the angle pair (𝜃, ϕ), or unit vector 𝒑(𝜃, 𝜙) is used to describe the fiber’s orientation.  
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Figure 58. Visual representation of how the angle pair is used to describe the orientation of a 

single fiber per Advani and Tucker’s orientation method. 

For describing the entire fiber population within a designated volume, Advani and Tucker 

proposed a concise orientation characterization method which represents the fiber orientation 

distribution via the use of a tensorial description. The outcome of this operation results in the 

orientation tensor 𝑎𝑖𝑗, which is calculated by averaging all of the fibers’ orientation throughout the 

volume of interest using the equations seen below. 

a11 = ⟨cos2ϕsin2 θ⟩ a12 = ⟨cosϕ sinϕ sin2 θ⟩ a13 = ⟨cosϕ sinθ cosθ⟩

a21 = a12 a22 = ⟨sin2ϕsin2 θ⟩ a23 = ⟨sinϕ sinθ cosθ⟩

a31 = a13 a32 = a23 a33 = ⟨cos2 θ⟩

 

* The angle brackets 〈 〉 represents the average value of all fibers within the analysis 

 

The diagonal components (a11, a22, and⁡a33) within the 𝑎𝑖𝑗 orientation tensor describe the 

orientation of the fibers at the specific location, whereas the 1-direction represents the printing 

direction, the 2-direction is the cross-bead direction, and the 3-direction denotes the thickness 

direction. It should be noted that the sum of the diagonal components equates to the value of 1, 

and that the ratio between the three tensors (a11, a22, and⁡a33) provides insight into how isotropic 

the fibers are within the volume. Figure 59 below shows two examples of how the orientation 
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tensors are used to describe the orientation distribution within a sample. It can be seen how 

scenario 1 (Figure 59, Left) represents a volume with randomly aligned fibers while scenario 2, 

which has an a11 = 1, depicts a volume with all fibers aligned in the print direction.  

 

Figure 59. Orientation tensor examples described graphically with two case scenarios. (left) 

Describes the scenario with 𝑎11 = 𝑎22 = 𝑎33 = 1/3, and (right) depicts the scenario with 𝑎11 =

1, 𝑎22 = 𝑎33 = 0 

The schematic below (Figure 60) depicts the conventional FFF 3D printing process, whereas the 

orientation in which fibers are placed within the extrudate is portrayed graphically. Mulholland 

and coworkers showed that preferential orientation is in fact achieved when printing in 

conventional FFF 3D printers.  
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Figure 60. Graphical depiction of the conventional FFF 3D printing process 

 It was observed by the researchers that the majority of the fibers oriented in the printing direction 

[119], similar to what was observed in the viscous heating 3D printer while maintaining rotation 

of the nozzle disabled (Figure 61). It can be seen that the fiber orientation analysis for the nylon 

glass-fiber reinforced tensile testing coupon resulted in the majority of the fibers being oriented in 

the 1-direction, signaling that the fibers are primarily pointing in the printing direction.  
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Figure 61. Fiber orientation distribution for a 3D printed specimen with rotation of the nozzle 

disabled.  

The purpose of this section is to display the effects of a rotating nozzle on fiber orientation 

distribution. As mentioned above, the first layer was printed with the nozzle rotation disabled, and 

it can be clearly seen in an example analysis below (Figure 62) how the orientation tensor (𝑎11) 

reaches higher values within the gray region of the plot, compared to the rest of the plot. Again, it 

should be noted that the grey region represents the 1st layer of the print which has the nozzle in a 

stationary position.  
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Figure 62. Orientation analysis of a 3D printed specimen with rotation of the nozzle enabled for 

the last 2-layers of printing. 

Unlike the experiments where rotation is disabled and the majority of the fibers orient in the shear 

direction (extrusion direction) during the manufacturing process, the transition to a less anisotropic 

part begins as the rotation of the nozzle is enabled. The mentioned isotropic microstructural 

properties are evident within the fiber orientation distribution as the a11(print direction) and a22 

(cross-bead direction) fall within a similar order of magnitude. Both orientation tensors hover near 

the 0.4 value, while the a33 (thickness direction) orientation tensor slightly increases to ~0.09.  

The drastic transition from an a11-dominated part to a 3D printed part which possesses balanced 

a11 and a22 orientation tensors is attributed to the rotation of the nozzle constantly changing its 1-

direction axis as it is constantly rotating at elevated RPMs. Assuming a print speed of 60 mm/s 

and a nozzle rotational speed of 6000 RPMs, this would result in the nozzle achieving 100 full 

rotations after every 1 millimeter of travel. By reaching a high number of rotations per millimeter 

of travel, the nozzle has sufficient time to deposit material in a radial manner, ultimately ensuring 

that the fibers are aligned in a random fashion within the 1-direction and 2-direction. For that 
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reason, it is apparent that there is a lack of direct correlation between RPMs, print temperature and 

print speed with fiber orientation within the executed design of experiments. This random 

alignment of fibers is not the case when RPMs are quite low. When RPMs are lower in comparison 

to the linear travel speed of the print head, the influence of rotation on additives is more apparent 

[126]. This statement can be verified in Figure 63 below which shows the print direction fiber 

orientation (𝑎11) of experiments with rotation enabled represented as red circles. As a benchmark, 

the experiments without rotation are represented as the dark gray band where it can be seen that 

the a11orientation tensor reaches values near 0.9. 

 

Figure 63. The a11 orientation tensor for all 3D printed samples with the rotating nozzle enabled 

compared against the a11 orientation tensor of a 3D printed sample with a stationary nozzle. 

Confirming that a rotating nozzle produces a less anisotropic part regarding fiber microstructural 

properties, it is important to show how the evolved fiber orientation due to the rotating nozzle 

influences mechanical performance. As stated above, poor bead adhesion suppresses mechanical 

properties of 3D printed parts, therefore, the mechanical property evaluation of parts is to be 

discussed in a future section within this document.  
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Rotating Nozzle Effects on Fiber Length Degradation 

There is extensive evidence showing that the fiber length distribution of fiber-reinforced 

composites has a high correlation with mechanical properties. As the name suggests, reinforcement 

refers to the added stiffness in the direction of the fiber, and ensuring the fiber length is maintained 

during processing ensures that higher mechanical properties are preserved [114, 125, 127]. For 

that reason, studying the influence of the rotating nozzle on fiber length degradation during the 3D 

printing process needs to be investigated to ensure optimal processing conditions are used which 

minimize fiber length degradation.  

Manually measuring fiber length within discontinuous fiber composites is a time-consuming 

process as one cubic centimeter sample may contain millions of fibers [128]. By employing the 

fiber length measurement technique developed at the Polymer Engineering Center at the 

University of Wisconsin-Madison, measuring 10,000 to 100,000 fibers has become a 

straightforward and automated process as the pyrolyzed sample leaves behind lose fibers capable 

of being counted computationally [128]. The loose fibers are dispersed onto an optical glass sheet 

by using a custom chamber and an ionized air stream. Once scanned, the image undergoes 

thresholding using Photoshop and then analyzed using the Marching Ball algorithm based on the 

work of Wang [129], the results are reported using average values LN and LW, which represent the 

number-average fiber length and the weight-average fiber length, respectively. Both average fiber 

length values are expressed as 

 
LN =

∑Nili
∑Ni

 
(17) 

and the weight-average fiber length LW as 

 
LW =

∑Nili
2

∑Ni
 

(18) 

 

Researchers have reported that one of the largest influences to fiber breakage during the FFF 3D 

printing process is attributed to restrictive nozzle [130], but that overall, the conventional FFF 3D 

printing process does not cause significant fiber breakage during the extrusion-based 3D printing 

process [118,130]. Yang and coworkers observed an 11% decrease in fiber length when comparing 

the original filament to the extruded bead using a 0.4 mm diameter nozzle. A similar observation 
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was also seen within our viscous heating 3D printer print trials while disabling rotation of the 

nozzle, whereas the initial number-average fiber length of 0.266 mm decreased by 15% to a final 

value of 0.227 mm. It can be seen in Figure 64.a below that varying print temperatures at a print 

speed of 60 mm/s does not have strong influence on fiber breakage when rotation of the nozzle is 

disabled. Now, comparing prints done at 260°C with rotation of the nozzle enabled and at 2x the 

print speed, we can appreciate from those trials that there is no significant decrease in fiber length 

as we reach 3500 RPMs and as we double the average print speed (Figure 64.b). This achievement 

is important as the goal of this study is to accelerate 3D printing speeds, all while maintaining or 

improving on those baseline properties acquired from a non-rotating nozzle FFF 3D printer.  

 

(a)                               (b) 

Figure 64. (a) Fiber length at distinct print temperatures with rotation disabled, and (b) print 

trials at 260°C while varying rotational speed of the nozzle and print speed 

Now, investigating the influence of higher nozzle rotational speeds is also crucial as it is 

understood that increasing RPMs will drastically reduce the forces necessary for extrusion. Higher 

RPMs essentially allow for faster filament speeds which translates to faster print speeds. 

Unfortunately, it can be seen from Figure 65 below that fiber attrition is more prevalent when 

RPMs surpass 3500 RPMs. When comparing 0 RPMs to 5000 RPMs, it becomes apparent that a 

22% decrease in fiber length is experienced. This observation is only seen for this single 

temperature experimental data point and for one specific print speed. A more profound study is 

required to ensure this trend is visible at various print temperatures and print speeds.  
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Figure 65. Fiber attrition present in the viscous heating 3D printer at 5000 RPMs. 

4.4 Mechanical Performance of 3D Printed Components 

It is well known that the performance of an FFF 3D printed tensile testing coupon does not reach 

similar properties to an injection molded tensile testing coupon. The discrepancy present between 

both parts manufactured by distinct methods is a result of multiple variables and the relationship 

between printing parameters and final part properties are still not fully understood. During 

traditional FFF 3D printing of fiber-reinforced parts, it is known that adhesion between adjacent 

beads is reduced as fibers present at the bead surface prevents proper adhesion to the adjacent bead 

[131-132]. Figure 66 clearly illustrates the occurrence of 2 adjacent beads where we can 

distinguish voids between both beads and that fibers are in fact present at the joint between the 

beads.  
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Figure 66. Cross-sectional image of two beads 3D printed with rotation of the nozzle disabled, 

clearly showing the alignment of fibers in the print direction. 

Within Figure 66, the toolpath is denoted as the 1-direction (print direction), therefore it is known 

that the mechanical properties in the 1-direction will be superior to those in the 2-direction (cross-

bead direction). In a perfect case scenario, loading would only occur in the 1-direction and the 3D 

printed part would perform great, but unfortunately, the reality of manufactured components is 

that they will undergo various loading types and from loads originating from various directions, 

therefore, the probability of part failure is quite high when large loads are being experienced in the 

2-direction. For this reason, it is crucial that the 2-direction is reinforced in some manner. This 

section evaluates the mechanical performance in the cross-bead direction by comparing two print 

orientations (Figure 67): 0° which represents the scenario when loading is parallel to the print 

direction, and 90° which is when loading is perpendicular to print direction.  
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Figure 67. The bead orientations for two testing scenarios where the left is classified as the 90° 

print and the right figure is the 0° print. 

Evaluation of the mechanical properties was done by adapting the ASTM D673 standard in which 

the printing process mimics the 3-layer procedure done for the fiber microstructure 

characterization. For the analysis, the ultimate tensile strength reached during testing was reported 

to gain insight into the effects of nozzle rotation on mechanical performance as bead adhesion is 

one of the underlying reasons why implementation of FFF within mass manufacturing is not a 

common practice.  

It is expected that the 0° 0 RPM tests will have the highest ultimate tensile strength as ~90% of the 

fibers will be oriented in the load direction, but it is also hypothesized that the 90° 0 RPM test will 

have the weakest properties because there will effectively be no reinforcement in the cross-bead 

direction. The goal of this study is to present results which portray an improved overall 

performance, which translates in slightly diminished 0° sample performance but increased 90° 

sample performance by introducing rotation of the nozzle. By presenting an improved overall 

performance of the 3D printed part, this is working towards solving the second bottleneck of FFF 

3D printing which is highly anisotropic parts leading to part failure in the cross-bead direction. 

4.4.1 Influence of Rotating Nozzle on Ultimate Tensile Strength 

Upon inspection of the full three-dimensional reconstruction of the μCT images, it can be seen 

from Figure 68.a below that there is preferential orientation within the 0 RPM 3D printed part. All 
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fibers within Figure 68.a  can be seen oriented in the 1-direction (print direction), whereas a part 

printed with nozzle rotation enabled can be seen to have fibers oriented in all directions within the 

printing plane (Figure 68.b). Additionally, an interesting occurrence is observed (Figure 69) in that 

the fibers are seen migrating towards the adjacent bead when rotation is enabled, providing 

supporting evidence that there will be reinforcement in the 2-direction. The mentioned 

reinforcement is theorized to improve the 90° orientation sample performance as bead adhesion 

should hypothetically be improved.    

 

(a)                                                                      (b) 

Figure 68. (a) three-dimensional image reconstruction of the sample produced with rotation of 

the nozzle disabled. (b) the sample produced with rotation of the nozzle enabled. 
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Figure 69. Fiber migration towards the adjacent bead occurring when rotation is activated. 

After conducting testing, it can be seen that consistent results are acquired for all 90° orientation 

tests where 29.5 MPa is the average ultimate tensile strength during transient testing for all four 

testing conditions. It can also be seen in Figure 70 that the faster print speed of 120 mm/s is still 

able to reach similar mechanical testing properties to those printed at half the print speed. It should 

be reminded that average print speeds are near 60 mm/s, therefore, printing at 120 mm/s provides 

supporting evidence that this rotating nozzle mechanism can in fact be used to accelerate the 3D 

printing process within FFF.  
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Figure 70. Testing results for the 90° samples realized in accordance with ASTM D673. 

Now, comparing mechanical properties from samples printed with varying print temperatures, 

print orientations and rotational speeds, it can be appreciated that the 0° 0 RPM samples in fact 

result in the sample with highest mechanical strength (Figure 71). Ultimately a consequence of 

~90% of the fibers aligned in the load direction, it should be expected that no other sample will 

attain superior mechanical properties.  
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Figure 71. Mechanical tests of all 3D printed components showing the positive effects on overall 

mechanical performance of 3D printed parts.  

Relating samples from both printing temperatures, it can be seen that enabling nozzle rotation 

reduces the 0° sample strength by 17% but that the 90° sample strength is improved by 40%. As 

mentioned, it was expected to observe a decrease in 0° sample performance as only 40-45% of the 

fibers are oriented in direction of the applied load compared to a 0 RPM test which results in ~90% 

of the fibers oriented in the direction of loading. Therefore, the hypothesis that overall performance 

was improved has been verified as the overall performance was enhanced by 23%, with adjacent 

beads experiencing reinforcement effects due to fiber migration and fiber orientation in the cross-

bead direction.   
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5. Summary 

 

 

 

5.1 Contributions 

To this day, modeling material behavior of polymeric systems is a complex task which is highly 

influenced by numerous variables. For example, modeling mechanical response requires one to 

take into consideration the types of inclusions within the system, the rate at which loading is 

occurring, temperature, and pressure to name a few. The dependence on an abundant number of 

variables results in an engineering problem deemed too complex for traditional modeling 

approaches, such as FEA and physical models, to mention a few. For that reason, data-driven 

modeling has become a powerful tool to predict polymer behavior because of its ability to learn 

quickly from data, if used appropriately.  

This dissertation explored three major strategies to solve polymer engineering problems via data-

driven modeling. The first chapter involved using an image-based machine learning approach to 

predict injection molding part defects of highly viscoelastic polymer blends. The defects arise from 

rheological instabilities from the cross-linked material which has not had enough time to relax. 

Therefore, the development of a model which uses images, rheological parameters and material 

composition as inputs informed the user of the probability of molding defects with 92.4% cross-

validation (CV) accuracy.  

The second chapter explored was in the use of machine learning for materials development of 

novel high-performance materials, and the implementation for reverse engineering of materials 

based on target properties. Polymer formulation methodologies implemented within industry 

primarily implicate a high dependence on the formulator’s experience as it involves an educated 

guess-and-check process. The data-driven algorithm developed predicted the following with 100% 
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5-fold CV accuracy: short-term mechanical behavior, long-term viscoelastic behavior, transient 

and dynamic properties from only 11 experimental blends.  

The final chapter involved the unification of both above-mentioned methods to create a machine 

learning tool capable of informing the user of optimal processing conditions for a novel 

patented fused filament fabrication (FFF) 3D printer capable of significantly accelerating melting 

by leveraging the efficiency of viscous dissipation. The response surface methodology is capable 

of informing the user of the processing window and the forces present during the 3D printing 

process with 88% accuracy. In conjunction with in-situ imaging, processing parameters and 

rheological information, the goal of this long-term study is to assess part quality in real-time to 

allow for process optimization or for user intervention, depending on the severity of the issue. 

Data-driven modeling, such as Machine learning (ML), if implemented in a non-black-box fashion, 

can accelerate materials development and overall polymer process optimization. The result of this 

work provides a tool for future engineers and researchers to merge polymer science with data-

driven modeling to predict complex relationships between processing parameters, rheology, 

viscoelasticity, and material composition.  

5.2 Recommendations for Future Work 

Sections 4.1 to 4.4 has provided evidence that the rotating nozzle is capable of the following: 

- Decreasing pushing forces necessary for filament to be extruded through the rotating 

nozzle. 

- Decrease the level of anisotropy within a 3D printed part, improving the overall mechanical 

performance of the 3D printed components. 

- Allow for faster filament speeds, translating to shorter print times. 

Although faster printing speeds and improved level of anisotropy are crucial for full adoption of 

additive manufacturing at an industrial level, optimizing part quality is also a leading challenge 

within industry. For that reason, a real-time diagnostics system is proposed within this work to 

assess the quality of the extrudate and to classify whether or not under-extrusion is being 

experienced. This assessment tool is achievable by using convoluted neural networks, a common 

machine learning algorithm used in image recognition applications.  
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Yolo version 4 is a machine learning algorithm capable of single-object detection in which the 

number 1 translates to object detected and the number 0 translates to object not detected. It 

implements convoluted neural networks and the pretrained resnet50 model facilitates faster 

convergence to the final model weights and biases. Yolo v4 has preliminarily been implemented 

within this 3D printer by using two cameras positioned towards the rotating nozzle structure with 

the 3D printed component within its viewpoint as well. As under extrusion may appear as voids in 

the final 3D printed part, to reduce the risk of infill density being misclassified as the result from 

under extrusion, extensive amounts of training datapoints are needed to accurately predict small-

scale occurrences such as under extrusion. Training data will need to include images of 3D printed 

components that have under extrusion with varying infill densities. Enriching the current data set 

will ensure that the algorithm has enough data to learn. This is all to make sure that the defect-

prediction tool is capable of distinguishing the difference between voids caused by under extrusion 

and infill density. 

Provided that proper classification is achievable, in order to facilitate the development of a Smart 

3D printer, the following tasks are required: 

1) Producing a representative processing window for a wide range of materials by conducting 

print trials with varying RPM, print temperature, and filament speeds. 
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Figure 72. The processing window for the viscous heating 3D printer represented as a volume 

created from the RSM analysis. 

By implementing data-driven modeling, one is capable of extrapolating synthetic experiments 

and informing the user of the expected outcome. This in turn allows for one to have an informed 

decision in regard to selecting the upcoming design of experiments. Multiple materials are 

required to be tested because of the diverse material properties (for example: thermal 

conductivity, friction and thermal transitions) that polymers exhibit.  

2) Characterization the of microstructural properties for the design of experiments to capture 

the influence of print parameters on microstructure.  

This finding is crucial as it is expected that specific processing parameters will lead to a part with 

higher amounts of voids. It is theorized that higher RPMs will lead to faster print times but that it 

will also lead to higher amounts of vibration, resulting in a loss in mechanical properties. It would 

be ideal to capture the processing parameter ranges in which the there is a higher probability for 

improved mechanical performance.  

3) Development of failure criteria for the respective processing parameters. 
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It should be expected that specific processing conditions, such as extremely high RPMs and 

filament speeds will have a higher risk of producing extrusion defects as full relaxation of the 

extrudate will not be attainable. For that reason, it is beneficial to characterize an overall range in 

which the processing parameters result in a low probability of defects present within the 3D printed 

part. By superimposing the mechanical properties for each respective processing condition seen in 

Figure 72, one would have a volume which represents the optimal processing conditions which 

will result in optimal mechanical properties.  

4) Use optimal conditions as the controller for the autonomous 3D printer setup. 

For an autonomous system to adjust a processing parameter during manufacturing, the system  

must know beforehand what conditions will result in an improved extrudate quality. By having the 

representative volume mentioned in the previous section, the controller will know which areas 

within the volume have a higher probability of improving the print quality. It will be up to the 

image-based machine learning algorithm to detect via both cameras when defects occur and then 

the controller will inform the 3D printer of the specific filament speed adjustment needed for 

improved extrusion quality.  

The proposed work would result in a smart 3D printer capable of adjusting processing parameters 

during the manufacturing process to ensure optimal parts are manufactured with this new 

technology. This will also result in an FFF 3D printing process capable of drastically reducing 

manufacturing lead times and improving part quality by incorporating a rotating nozzle within 

machine construction. 

5.3 Research Products  

Patents 

Submitted Patent US23023023 – Rotating Nozzle Structure and Method 
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