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Abstract 

BRINGING FINER RESOLUTION TO WILDLIFE MONITORING: ACCOUNTING FOR 

MISPERCEPTION AND UNCOVERING SEASONAL VARIATION IN ECOLOGICAL 

PROCESSES 
 

John D. J. Clare 

Under the supervision of Professor Philip Andrew Townsend and Associate Professor Benjamin 

Zuckerberg  

At the University of Wisconsin-Madison 

 

We have entered the age of ecological macro and micromonitoring, as continued developments in 

tagging and remote sensing technologies provide ecologists with vast volumes of data at unprecedented 

combinations of scale and resolution. Yet although data collection is increasingly unbound, leveraging it 

to improve conservation and management implementation still poses challenges. Data volume often 

forces researchers to consider trade-offs between veracity (i.e., the accuracy of the data) and processing 

speed (i.e., how quickly data can be used). The extent and resolution of new sampling techniques can 

uncover new ecological patterns, but the novelty of such patterns can make it difficult to conceptualize 

useful models to describe them. Here, I try to take steps towards surmounting some of these issues. 

Chapters 1 and 2 focus on issues of data veracity. Although measurement and classification error 

are ubiquitous in ecological data, these problems have become more visible as researchers increasingly 

depend upon algorithms or recruited volunteer scientists to perform data collection and classification 

tasks. Chapter 1 describes a general framework to guide researchers undertaking data quality assessments 

and implementing remediation actions that is rooted in ecological inference rather than error incidence. 

Chapter 2 focuses on expanding the statistical tool-kit that ecologists can use to account for misclassified 

detection/non-detection data, and demonstrates that previously developed approaches focusing on 

occupancy estimation are easily extensible to essentially any parametric model class reliant on species 

occurrence data.   
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Chapters 3 and 4 focus on longer-standing ecological questions, but bringing new seasonal 

resolution to bare. Chapter 3 focuses on quantifying deer behavioral responses to predation risk, and seeks 

to disentangle competing hypotheses for how such responses are structured.  Deer respond to proximal 

measures of potential wolf predation risk in ways that might be expected to have cascading vegetation 

effects in some environmental contexts, but not others. In particular, deer responses were strongly 

mediated by seasonal environmental variables, suggesting a potential ‘phenology of fear’. Chapter 4 seeks 

to delineate wildlife communities and uncover the primary environmental factors that structure their 

occurrences. Snow appears to be a particularly powerful driver of species distributions, and wildlife 

responses to changes in snow-depth and vegetation greenness across the year drive distinct seasonal 

variation in patterns of species richness: such temporal variation (or partitioning of the “seasonal” niche) 

may play a key role in maintaining community diversity. 
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Introduction 
 

The past decade has born witness to massive changes in the nature of ecological data collection. With 

increases in sensing capacity driven by enhanced technology, the widespread recruitment of volunteer 

scientists, and increased collaboration and dedication to data-sharing, previously unparalleled capacity to 

describe biological patterns across massive spatial extents (e.g., nations, continents) and incredibly fine 

spatiotemporal resolutions (meters, days, hours, minutes) has become fairly routine. Capacity to capture 

biological nuance has also increased: for example, airborne and spaceborne sampling efforts can monitor 

canopy leaf chemistry or arctic foodwebs, while groups of dedicated volunteers can track the irregular 

migration paths of single organisms.  

 The excitement regarding the degree to which increased volume, extent, and resolution of 

biological data provided by automated recording units, volunteer scientists, and air or space-borne 

platforms can improve biodiversity conservation and management efforts partially derives from existing 

monitoring limitations. One of the most pronounced challenges for (and criticisms of) conservation and 

management is generating information that can reliably guide decisions (Aceves-Bueno et al. 2015, 

Artelle et al. 2018): nearly all traditional monitoring platforms suffer gaps across space, time, or taxa and 

are constrained to employ specific and potentially non-optimal spatial, temporal, and biological 

resolutions (Jetz et al. 2019). Such constraints propagate uncertainty across several steps of the decision-

making process ranging from recognizing the need to make decisions (e.g., realizing a population is in 

decline) through specifying and optimizing potential actions (e.g., selecting an effective action, Fuller et 

al. 2020, Wright et al. 2020). Using and networking new platforms provides opportunity to fill these 

information gaps and enhance the exent and resolution of biological monitoring, and potentially, 

conservation and management decision-making (Turner 2014, Townsend et al. 2020). 

 Unsurprisingly, agencies are increasingly using large and open remotely sensed biodiversity 

datasets (Sullivan et al. 2009, Ahumada et al. 2019) or developing their own platforms. One example of 

the latter is Snapshot Wisconsin (Locke et al. 2019, Townsend et al. 2020), a monitoring program run by 

the Wisconsin Department of Natural Resources in which volunteers are recruited to deploy and maintain 



2 
 

 
 

trail cameras across the state of Wisconsin and classify images on a combination of crowdsourced and 

agency-developed web-applications. Snapshot Wisconsin has proven to be a massive success with respect 

to volunteer recruitment and data collection, generating millions of classified images for use in support of 

management decision-making, and is a powerful demonstration that agencies can tractably develop and 

manage such programs. 

 Despite optimism, observation network approaches to biological monitoring pose their own 

technical and conceptual challenges. Although informatics—capacity to classify, store, collate, and 

otherwise make data analysis-ready—can pose severe barriers and receive the majority of attention from 

practitioners, other issues are equally germane (e.g., Lindenmayer et al. 2018, LaSorte et al. 2018, 

Bayraktarov et al. 2019). Data volume and uncertainty with respect to sampling parameters and data 

veracity mandate the development of statistical models that are efficient but also robust to cryptic but 

ubiquitous types of sampling, measurement, and process error. Because larger datasets can often be to fit 

models of considerable complexity, there is further need to ensure that model-based inference remains 

accessible and interpretable. Finally, improved ability to sample ecological patterns and process often 

reveals considerable conceptual limitations: what is a useful model for a phenomena that has not 

previously been studied? 

 The focus of this dissertation is to take steps towards addressing some of these challenges using 

Snapshot Wisconsin as a template for other ‘big data’ biological monitoring programs. Two chapters 

focus on technical challenges, and two focus on using the project’s larger sampling frame to make 

insights into previously ecological patterns. 

 The first chapter focuses on a mixture of informatics and statistical challenges. Traditional 

assessments of ecological study design have focused upon optimizing sampling to, for example, 

maximize statistical power and minimize expenditure (e.g., Clare et al. 2015). These considerations are 

often less germane for sensor or volunteer-based monitoring, where increasing sampling effort may 

induce little added expense (or indeed, sampling effort fall beyond researcher control). More pertinent 

questions focus on optimizing combinations of data veracity and the speed with which data is assimilated. 
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Concerns about elevated rates of measurement or classification error associated with volunteer-based data 

collection and algorithm-driven data interpretation have motivated many researchers to quantify the rate 

or incidence of such errors in empirical data. Yet commonly, these efforts fail to adequately define the 

inferential costs of the estimated error incidence, which makes it essentially impossible to define how 

accurate data need to be and whether existing data are sufficient or not. We lay out a repeatable 

framework for jointly assessing and remediating data errors based upon targets grounded in ecological 

inference rather than relatively uninterpretable error rates. We found that baseline error incidence 

associated with the species classification of Snapshot Wisconsin images renders estimation using 

occupancy models unreliable, but that the application of either design or model-based approaches to 

mitigate false-positive error permits acceptable inference. In doing so, we further found that attributes of 

different species may better explain errors than attributes of the classification task or platform: in 

particular, volunteers appeared predisposed to falsely identify rare species. Simulation results and 

assessements of previous efforts to quantify the indidence of species misclassification suggest that many 

(perhaps most) datasets likely require error remediation to estimate species distributions without bias. 

 Over the course of analyzing and writing this first chapter, it became clear that model-based 

solutions to misclassification/measurement error (i.e., explicitly modeling classification uncertainty 

within the statistical model of interest) were the most effective and least effort-intensive way to reduce 

biases. Design-based solutions (i.e. approaches focused on improving baseline classification performance 

or identifying and censuring problematic data prior to analysis) often require iterative steps including with 

assessing sensitivity to error, implementing the treatment, and assessing its efficacy. As ecological 

modeling efforts become increasingly bespoke and ambitious, this iterative process can become 

burdensome.  Yet by and large, ecological misclassification models were largely constrained to 

occupancy estimation. 

 In chapter 2, we describe ways in which several types of misclassification models developed for 

binary data within occupancy models (Miller et al. 2011, Chambert et al. 2015) to account for false- 

positive and false-negative errors are easily extensible across several model classes that employ this sort 
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of data. Using simulation, we demonstrate that parameters other than occupancy probabilities are biased 

by relatively small incidences of false positive error, that our proposed extensions greatly reduce bias 

even with relatively small amounts of ancillary (correctly classified) data, and that when false positive 

error has relatively low incidence, model misspecification of the false positive process can have limited 

consequence. The implication is that many studies (even those using potentially complex and bespoke 

integrated models) can account for false positive error in detection/non-detection or presence/background 

data relatively easily, although model-based solutions more finely-tuned to the specific sampling 

procedures and misclassification process are likely to be optimal. 

 Chapter 3 delineates a break from the technical focus of the previous chapters. Here, we 

evaluated white-tailed deer behavioral responses to metrics of potential predation risk. Motivated by 

conflicting expectations based upon previous empirical evidence and existing theory, we assessed support 

for 4 non-exclusive hypotheses for the system: that it is bottom-up driven (Ford and Goheen 2015), that 

deer exhibit weak and environmentally homogenous responses to active predators in the system (Schmitz 

2004), that deer exhibit stronger and more environmentally heterogeneous responses to risk because 

predators in the system tend to practice hunting modes more closely aligned with stalking as a result of 

Wisconsin’s largely forested landscapes (Flagel et al. 2016), or whether predators in the system, while 

exhibiting active hunting modes, tend to target specific linear features or other landscape attributes in 

ways that would produce more concentrated risk cues and stronger deer responses.  

We found that deer responses to metrics of potential predation risk (primarily from wolves) were 

environmentally heterogeneous, implying limited support for the first two hypotheses.  Wolves reduced 

the intensity of deer use more strongly in areas with greater surrounding forest cover, but wolves 

themselves not appear to visit such areas any more frequently. Thus, while wolf hunting strategies do not 

appear to center on seeking cover that might facilitate stalking, there was some evidence that deer 

percieved wolves as more dangerous in these areas. Instead, wolf occurrence patterns suggest that their 

hunting strategies focus upon using linear features that enable faster movement and presumably increase 

the likelihood of prey encounter (Dickie et al. 2016, Dickie et al. 2020), and deer allocated less time to 
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foraging in these locations. Moreover, deer avoidance of wolves was mediated by changes in snow depth 

and vegetation greenness, and graphical exploration of the effects suggest a seasonal cycle in in deer 

responses. 

These findings have several implications. First, they suggest that, as suggested by previous 

studies (Callan et al. 2013, Flagel et al. 2016), wolves could be enacting a non-consumptive tri-trophic 

cascade across the Great Lakes region. More broadly, they suggest that definitions of predator hunting 

mode and habitat domain may deserve more careful definition, and that predator hunting mode, per se, 

may not be a particularly powerful predictor of prey responses to predation risk without considering 

environmental context. Finally, seasonal variation in deer responses suggest an emergent line of research. 

Given the degree to which seasonality impacts the energetic landscape, and organism foraging decisions, 

life-histories, and physical states, ‘phenologies of fear’might be a widely realized phenomena. 

The final chapter focuses on understanding seasonal shifts in communities and elucidating species 

responses to a broad set of factors (snow conditions, plant phenology, land cover, and nighttime 

lights/urbanization) undergoing global changes. We use spatiotemporal multi-species occupancy models 

to estimate environmental associations, predict species distributions across the year, and generate insights 

into general community patterns. We find that only a few species (primarily organisms that practice 

torpor) exhibit pronounced broad-scale variability in their distributions over the year. Despite this, species 

richness was spatiotemporally variable (tending to peak in spring and again in fall), largely because 

species occupancies were driven by variation both static in snow depth and vegetation greenness. Indeed, 

across the community, snow depth had the most substantial (and generally negative) effect on species 

distributions. On average, species negatively impacted by snow were less negatively or positively 

associated with vegetation greenness, suggesting Wisconsin’s mammalian (and gallanecuous bird) 

community might be primarily defined along an axis describing seasonal adaptations. 

Given this, it is unsurprising that patterns in species distributions largely suggest a mix of 

primarily northerly or primarily southerly located organisms, and that annually integrated patterns in 

species richness suggest most species in parts of central Wisconsin. However, annually integrated species 



6 
 

 
 

richness was greater in areas with more pronounced variation between growing season and winter 

richness, and tended to less in areas where, on average, there was less seasonal variation in richness and 

tended to be greater richness at any given time.  

In sum, Wisconsin’s wildlife communities may be more strongly structured by seasonal variation 

than by other environmental factors. This adds to a growing body of evidence highlighting climate change 

as the primary driver of biotic change, and suggests that conservation and management bodies within 

Wisconsin should prioritize actions aimed at assessing biotic vulnerability to altered climatic conditions 

and developing strategies to mitigate or adapt to pending effects. A key driver of climatically-driven 

community shifts may relate to the breakdown of factors that seasonally partition species niches: such 

partitioning may be criticial for maintaining richer communities. 

The dissertation below presented as a series of articles for publication in different scientific 

journals; redundant information in introductory sections and any differences in formatting are intentional 

and conform to journal-specific standards. 
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Abstract  

Measurement or observation error is common in ecological data: as citizen scientists and automated 

algorithms play larger roles as processors of growing volumes of data to address problems at large scales, 

concerns about data quality and strategies for improving it have received greater focus.  However, 

practical guidance pertaining to fundamental data quality questions for data users or managers—how 

accurate do data need to be and what is the best or most efficient way to improve it?—remains limited. 

We present a generalizable framework for evaluating data quality and identifying remediation practices, 

and demonstrate the framework using trail camera images classified using crowdsourcing to determine 

acceptable rates of misclassification and identify optimal remediation strategies for analysis using 

occupancy models. We used expert validation to estimate baseline classification accuracy and simulation 

to determine the sensitivity of two occupancy estimators (standard and false-positive extensions) to 

different empirical misclassification rates. We used regression techniques to identify important predictors 

of misclassification and prioritize remediation strategies. More than 93% of images were accurately 

classified, but simulation results suggested that most species were not identified accurately enough to 

permit distribution estimation at our predefined threshold for accuracy (< 5% absolute bias). A model 

developed to screen incorrect classifications predicted misclassified images with > 97% accuracy—

enough to meet our accuracy threshold. Occupancy models that accounted for false positive error 

provided even more accurate inference even at high rates of misclassification (30%). As simulation 

suggested occupancy models were less sensitive to additional false-negative error, screening models or 

fitting occupancy models accounting for false positive error emerged as efficient data remediation 

solutions. Combining simulation-based sensitivity analysis with empirical estimation of baseline error and 

its variability allows users and managers of potentially error-prone data to identify and fix problematic 

data more efficiently. It may be particularly helpful for “big data” efforts dependent upon citizen 

scientists or automated classification algorithms with many downstream users, but given the ubiquity of 
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observation or measurement error, even conventional studies may benefit from focusing more attention 

upon data quality. 

Introduction 

Applied ecologists increasingly study phenomena and tackle problems occurring at massive spatial scales 

(e.g., LaSorte et al. 2018). This shift has partially been driven by increased rates of data collection 

provided by citizen scientists or automated recording devices (Sullivan et al. 2009, Steenweg et al. 2017), 

increased capacity to store and share data (e.g., Bonney et al. 2009), and new tools to process growing 

volumes of data more quickly (Swanson et al. 2016, Nourrouzzadeh et al. 2018). Reassigning data 

processing or classification previously performed by trained experts to groups of volunteers or machine-

learning algorithms can be time and cost-effective, but potentially introduces additional measurement or 

observation error that can result in biased or more uncertain inference (Dickinson et al. 2010, Gardiner et 

al. 2012, Kosmala et al. 2016, McShea et al. 2016, Abra et al. 2018). Ensuring sufficient data quality is an 

intrinsic component of most automated data processing efforts and established citizen science programs 

(Bonter et al. 2012, Kosmala et al. 2016), and carries important consequences for broad-scale biodiversity 

and ecological monitoring (Gardiner et al. 2012). 

To improve the quality of data processed by either citizen scientist or machine-learning 

algorithms, practitioners can choose from a few general approaches. Practitioners can reduce the 

complexity of the classification task or, more specific to citizen scientists, alter the classification interface 

(Kosmala et al. 2016). They can attempt to improve baseline performance by altering training protcols, 

like providing an algorithm or volunteer a larger pool of data to learn from, or increasing the number of 

parameters that an algorithm uses for classification (Nourrouzzadeh et al. 2018, Tabak et al. 2018). They 

can attempt to manipulate data accuracy after collection or classification, by, for example, determining 

indicators of unreliable data so that it can be censured from further analysis (Alldredge et al. 2007, Bonter 

et al. 2012, Swanson et al. 2016).  Implementing these actions and evaluating their success generally 

requires having reference data (produced by expert verification or under controlled experimental settings) 
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to gauge accuracy (Crall et al. 2011, Miller et al. 2015). Finally, researchers can use more sophisticated 

analyses that explicitly account for additional sampling error types or sources of error variability. These 

can be parameterized by assuming error types or variability exist without explicit knowledge of their 

structure (Royle and Link 2006, Bird et al. 2014), or parameters may be informed by the results of an 

experimental evaluation exercise or post hoc evaluation (Chambert et al. 2015, Ruiz‐Gutiérrez et al. 

2016).  

While data quality assurance is an important component of any ecological investigation, most 

empirical evaluations exhibit two major limitations. First, most studies that evaluate data quality use 

estimates of measurement error or changes in measurement error within the raw data to quantify baseline 

quality or the improvements induced by an intervention (but see Gardiner et al. 2012, Butt et al. 2013). 

However, the impetus for improving data quality is not to produce better or more accurate data for its own 

sake, but to improve ecological inferences made after analyzing the data. Metrics reported by many 

applications (e.g., misclassification rates, measurement variance) describe how accurate a given dataset is 

or has become, but do not necessarily effectively describe how useful it or has become for addressing 

focal questions. We contend that data quality is better conceptualized as a mixture of data accuracy and 

planned analyses, and should thus be defined as a threshold for accuracy that allows one to achieve a 

specific analytical objective.   

A second limitation, more specific to citizen science, is a focus on the efficacy of a single method 

for improving data quality (e.g., data screening, Bonter et al. 2012, Swanson et al. 2016; considering 

alternative analysis structures, Isaac et al. 2014) rather than considering multiple approaches (e.g., 

improving volunteer proficiency vs. using a more complex statistical model). Evaluating data quality 

carries costs associated with expert verification or experimental calibration, and evaluating subsequent 

remediation actions require further resources. Identifying potential action or actions with a strong 

likelihood of success is critical for efficiently achieving and maintaining data quality. Many citizen 

science projects employ multiple methods for ensuring data quality (Wiggins and Crowston 2015), which 
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both suggests that many projects currently have data that could be used to rank or prioritize potential 

remediation actions, and that many projects may be implementing inefficient remediation actions. 

These specific limitations can be summarized as questions that ecologists increasingly feel 

pressure to address when leveraging big data: how accurate does a dataset need to be and what is the best 

way to remediate existing error? As project managers attempting to implement a citizen science project 

designed to support natural resource management decisions, we found that although there was a great deal 

of literature that described specific components of data quality or remediation (Bird et al. 2014, 

Lewandowski and Specht 2015, Ruiz‐Gutiérrez et al. 2016, Swanson et al. 2016) or highlighted the 

general importance of these concepts (Kosmala et al. 2016), guidance for pragmatic implementation was 

limited. As researchers wishing to use the data, we wanted to ensure that the questions we (or future 

downstream users) wished to ask could be reliably answered. 

We present a generalizable framework for evaluating data quality and data remediation practices 

and apply it to improve the design and implementation of a broad-scale survey and monitoring effort 

using camera trap data collected and classified by citizen scientists. Our goals were to determine baseline 

data accuracy, determine data quality by evaluating how current levels of misclassification influenced 

species distribution inferences made using occupancy models (MacKenzie et al. 2002), and evaluate the 

potential efficacy of alternative strategies that might be employed to improve inferences. Our framework 

integrates the needs of project managers, data curators, analysts, and ecologists into a complete platform 

for assessing data quality. 

Methods  

Framework 

A complete data and remediation evaluation process will generally follow a six-step sequential 

framework (Figure 1). To evaluate data, investigators must 1) define desired data quality explicitly in 

terms of study objectives grounded in specific analyses or estimates, 2) estimate existing levels of 
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accuracy or error within the dataset, and 3) estimate a requisite level of accuracy or error within the raw 

data that allows study objectives to be achieved. Remediation evaluation includes 4) identifying possible 

actions, 5) exploring important sources of variation in error within a dataset to target a specific action or 

set of actions to evaluate, and 6) implementing and evaluating candidate actions to determine whether any 

meet the defined data quality objective. This process is likely to be iterative and adaptive over the 

duration of the study (Kosmala et al. 2016). Below, we describe each step and our implementation in 

more detail. 

Defining data quality 

We view the definition of data quality as the most fundamental component of any evaluation process. It 

requires investigators to codify research objectives and planned analyses: what is to be estimated, how is 

it going to be estimated, and how well does it need to be estimated? These decisions are analogous to 

standard study design decisions (e.g., choosing type I vs. type II errors) and will largely depend upon 

project goals and how specific components of any estimation process are prioritized or weighted. 

The Wisconsin Department of Natural Resources (WDNR) implemented Snapshot Wisconsin to 

support wildlife management decision-making by documenting rare or endangered species and providing 

information about the spatial and temporal population variability in species of managerial interest. There 

are several distinct analyses that are likely to be used to accomplish project objectives, we treat 

occupancy estimation as our planned analysis for evaluating data quality, as it is of direct interest for rare 

or incidental species, can provide insights into spatial variation in population size for low-density and 

solitary species (Linden et al. 2017), and may provide information about population changes over time if 

certain assumptions hold (Ellis et al. 2014). 

We defined adequate data (or adequate data improvement) as that which permitted us to estimate 

occurrence probability with less than 5% absolute expected bias and less than 10% root-mean-square 

error given that an occupancy model was correctly parameterized. We defined a second, less stringent, 
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definition of adequacy as being able to correctly estimate the directional effect of important predictors 

(here, predictors with log-odds effect of 1 or 2 per sd unit change) with > 95% power at α = 0.05. These 

definitions characterize project capacity to produce outputs that might serve as sufficient baselines for 

subsequent monitoring, or alternatively, capacity to identify regions where species were relatively more 

or less common and important distribution correlates (Guillera-Arroita et al. 2015).   

Estimating existing data accuracy  

Once data quality has been defined, determining whether existing data are sufficient requires both 

estimating existing rates of error using controlled experimental settings or post-hoc verification (Crall et 

al. 2011, Miller et al. 2015), and estimating requisite rates of error that translate to data of acceptable 

quality.  

We reviewed 19,212 images each classified by multiple volunteers on a crowdsourcing platform 

to determine the “true” species in each image (Appendix S2 contains more detail, also see Data S2). We 

used the results of this review to estimate species-specific probabilities that a species was classified as 

present when not (false-positive error probability) or was missed when present (false-negative error 

probability). We used a Bayesian approach to estimate these parameters, assuming correct (or incorrect) 

classifications yi ~ Bernoulli (θ), and defined a prior distribution for θ as Beta (1, 1). This conjugate 

parameterization permitted us to analytically derive the posterior distribution of error parameters 𝜃 as 

Beta (1 + ∑ 𝐼(𝑦𝑖 = 1)𝑛
𝑖=1 , 1 +  ∑ 𝐼(𝑦𝑖 = 0𝑛

𝑖=1 )).   

Estimating requisite data accuracy  

In some cases, deriving requisite data accuracy is as straightforward as evaluating moments or summaries 

of the data. For example, if data quality is defined as being able to achieve < 10% absolute bias in the 

prevalence of some binary phenomena using a logistic regression, then data are sufficient if the difference 

between false positive and false negative classification error is < 10%.  Because data produced by citizen 

scientists and automated detectors or algorithms is often aggregated in varied ways and analyzed using 
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more complex techniques that make it difficult to understand the relationship between sample error and 

estimator error, simulation may be required to translate data accuracy into data quality.  

We used simulation (see Data S1) to evaluate the sensitivity of two occupancy estimators to 

image misclassification and to determine target error thresholds that would permit sufficiently accurate 

estimates. Simulations were fixed as having 25 temporal replicates (each equivalent to a 24-hour period, a 

sampling interval commonly used in analyses of trail camera images) and 500 spatial replicates, levels of 

survey effort that approximate the minimum sampling effort we might use for an occupancy analysis. 

Site-specific values for occupancy and detection parameters were implemented as logit-linear values: 

logit (ψi,sim) = β0 + β1Xi,sim,1 + β2Xi,sim, 2, where β0 = either −1 or 1, β1 = −2, and β2 = 1; logit (pi,sim) = α0 + 

α1Xi,sim,1 + α2 Xi,sim,2, where α0 = either −2 or −3, α1 = −1, α2 = 1, and i indexes specific sites.  All 

covariate values were simulated as Normal (0, 1). Thus, at an average site where X1 and X2 = 0, expected 

occupancy probability (ψ) was roughly 26% or 73%, expected per-sample detection probability given 

presence (p) was roughly 5% or 12%, and expected cumulative detection probabilities over the 25 d 

sampling duration (P*) were roughly 76% or 94%. Average parameter values were selected to represent 

differences between relatively rare and common species based on derivations from previous camera-based 

occupancy studies in the state (Clare et al. 2015, Clare et al. 2016).  

Observations were initially generated as yi,sim ~ Bernoulli (zi,sim,× pi,sim), where zi,sim is the 

occupancy state for a site/simulation combination and was generated as zi,sim ~ Bernoulli(ψi,sim). We then 

induced additional false-negative and false-positive classification error within each simulated dataset: 3%, 

10%, or 30% of the true detections were thinned, and additional false-positive detections were distributed 

across all sampling intervals such that 3%, 10%, or 30% of all detections were false positives (Appendix 

S3). Assuming each sampling interval contains at most one true and one false positive detection, this 

translates empirical estimates of error percentages at the observational level to model inputs (see 

Appendices SI3 and SI4 for more discussion of this issue). We simulated 300 data sets for each 

combination of parameter values, and fit occupancy models to each dataset using Markov chain Monte 
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Carlo simulation (3 chains each consisting of 2000 adaptation steps and 3000 samples) using JAGS v3.4 

(Plummer 2003) through the R library ‘jagsUI’ (Kellner 2015). This analysis and all others were 

performed using R v3.2 (R Core Team 2015). We assumed convergence if �̂� < 1.1 (Gelman and Rubin 

1992) and traceplots indicated adequate mixing. We evaluated sensitivity to misclassification error using 

the mean error and relative bias of finite-sample occupancy estimates (the proportion of occupied sampled 

sites, PAO, Royle and Kery 2007), the relative bias of �̂�, and empirical power to detect the correct 

directional effect of beta parameters.  

For a subset of simulated scenarios (Appendix S3), we evaluated false positive occupancy models 

as statistical data remediation action following the observation-confirmation protocol described by 

Chambert et al. (2015). Chambert et al.’s (2015) model assume that at a subset of sites, all temporally 

replicated observations are confirmed after the fact as either containing no detections, only true positive 

detection(s), only false positive detection(s), or both true and false positive detections. The validation 

process allows estimation of parameters s0 and s1, which reflect the probabilities of recording > 0 false 

positive or true detections at a site during a specific sampling interval j. At sites lacking verification, the 

observation process is treated as yi,j~Bernoulli (zi × p11 + [1−zi] × p10), where p11 and p10 are true and 

false probabilities of detection derived from the parameters s0 and s1. We modified the original model 

description to reflect a more efficient and realistic validation process for our project by only subjecting 

sampling intervals containing positive detections to simulated validation and simulating the validation 

process as randomly occurring across sampling intervals rather than at all intervals at specific sites. 

Because the parameters s0 and s1 are unknown prior to model-fitting, and in most settings, investigators 

are more likely to have a sense of misclassification rates or probabilities within the raw data, we induced 

false-positive and additional false-negative error as before (equivalent false-positive and negative rates of 

3%, 10%, or 30%). We fixed the proportion of simulated samples that were validated as either 10%, 30%, 

or 50% of detections, and evaluated estimator sensitivity to error as described above.  We defined prior 

distributions as Uniform (0 ,1) for probability parameters or intercepts on the logit-1 scale, and Normal (0, 
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2.5) for coefficients. Model sensitivity point estimates and uncertainty intervals were derived using the 

mean and 95% highest density intervals of the posterior distribution. 

Identifying and narrowing candidate remediation actions  

Many (non-statistical) remediation actions can be used to achieve a desired level of data quality. Fully 

evaluating the efficacy of manipulating a project interface or altering training protocols can be time 

consuming. One way to narrow the list of potential remediation actions is to compare how effectively 

variables associated with different actions explain error. Because there may be many potential variables 

deserving consideration, initially focusing on factors that encompass several more detailed predictors can 

expedite the remediation process. 

We considered four general remediation strategies. First, there were differences in sampling 

protocols as the program evolved over time; images were uploaded and classified as sequential non-

overlapping batches (“seasons” hereafter). There were season-specific differences in image quality (lower 

in one season due to camera firmware settings), camera models (Reconyx HC600 and HC500 models vs. 

Bushnell Trophy Cam Pro models), camera placement strategies (seasons used variably focused upon 

sampling aquatic mammal monitoring or ungulates), how images were presented to online citizen 

classifiers (single photographs vs. sequences of 3-affiliated triggers), and minor changes to the user 

interface. If classification error varied strongly by season, it would suggest error was sensitive to changes 

in data collection protocols and how data were presented for classification. This would further imply that 

modifications to the interface or overarching project protocols deserved prioritization as means to reduce 

dataset error, and that specific terms associated with protocol differences could be used to screen data or 

model misclassification. 

Second, we hypothesized that intrinsic differences in the placement of specific cameras might be 

a cause of data classification error. This would suggest that changes to the specific guidelines for camera 
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placement, or including random error terms for distinct camera locations or locational covariates (e.g., 

camera-specific height) when trying to predict misclassification could be useful strategies.   

Finally, we hypothesized that error structure might result from inherent interspecific differences 

in false-negative error (difficulty correctly identifying certain species) or false-positive error (volunteers 

more likely to default to certain species given uncertainty). If error was better explained by the true 

species in the image, it would indicate that additional training aimed at helping volunteers distinguish 

species might be most useful, as the true species in an image is typically unknown without further 

evaluation and thus impractical to use a term to predict error. If classification error was best predicted by 

the crowd-reported consensus, it would indicate that a strategy focusing on predicting misclassification 

error including terms for the reported consensus species (as well as terms associated with other general 

factors considered) might be optimal. Alternatively, it might suggest that interface modifications that 

allowed volunteers to report metrics of classification uncertainty might be useful. 

We fit generalized linear models with a binary response (crowdsourced consensus classification 

correct or not) and a single factorial predictor (season, camera site, true species identification, or the 

consensus species). We used Akaike’s Information Criterion (AIC) to rank the prioritization of each 

general remediation strategy deserving more detailed follow-up analysis (Burnham and Anderson 2002). 

Data here were 17,139 images that we considered identifiable (i.e., the “true” species was not unknown) 

that had sufficient metadata to allow more targeted follow up analysis. 

Implementing and evaluating remediation action 

After narrowing the list of remediation strategies, next steps often include identifying specific variables to 

manipulate, implementing an action or correction, and then evaluating whether the action improves data 

quality. For example, had “season” been identified as the most important variable for explaining 

misclassifications in our data, we would have evaluated variability in error as a function of specific 

interface components, altered components in the classification interface strongly associated with error, 
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and reviewed subsequent crowdsourced classifications to determine the whether those changes had been 

effective. In some cases, the steps above can be considered simultaneously. In this case, the single best 

explanatory factor for misclassification was the reported species identity, and simulations suggested that 

the influence of additional false negative error was negligible (see Results). Thus, developing a screening 

model to predict misclassified images for subsequent review or censure served jointly as a more detailed 

exploration of error and as a remediation action that we could directly evaluate based upon model 

performance.  

We split the data into training (10,270 images, 60%) and testing partitions (6,869 images, 40%), 

and considered several specific predictors that we hypothesized were directly contributing to image 

misclassification (Table 1). These included predictors reflecting the proportion of volunteers whom 

selected the consensus classification (the strength of consensus), variation in camera placement settings, 

date effects to capture seasonal variation in the appearance of species, time effects to capture diel 

variation in lighting and camera flash mode, and image settings or qualities. Finally, we considered a 

predictor that would capture variation in error as a function of volunteers viewing images at random: 

sudden changes in the reported chronicity of species at a specific camera location. We fit candidate 

generalized linear (mixed) models that either shared intercepts and slopes across species (sensu Swanson 

et al. 2016), allowed intercepts to randomly vary across species, or allowed intercepts and slopes to 

randomly vary across species using Hamiltonian Markov Chain Monte Carlo via R library “rstanarm” 

(Gabry and Goodrich 2016). We used default priors (intercept and coefficient priors for scaled data were 

respectively N(0, 10) and N(0, 2.5)), and simulation settings consisted of 4 chains with 1000 burn-in and 

1000 posterior samples, or if necessary for convergence, 4000 burn-in and 4000 posterior samples each.   

We compared models and assessed screening performance using out-of-sample measures of the 

Receiver Operating Characteristic area under the curve (AUC), partial area under the curve up to a false 

positive threshold of 0.1 (pAUC, McClish 1989), the maximum value of Matthews correlation coefficient 

(MCC) at any cut-point (Matthews 1975), and the positive predictive value (PPV) at a classification cut-
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point of 0.5. These metrics (implemented for the full test partition and different subsets of interest) 

provide direct information about the accuracy of the data that might enter an occupancy model after a 

potential screening process and was implemented information about how many true positive detections 

might be discarded during a screening process. Point estimates and uncertainty intervals were derived 

from the mean and 95% highest density intervals of the posterior predictive distribution. We used test 

subsets to explore trade-offs between false-positive and false negative error relative to our simulation 

results (i.e., how many true detections would be lost during a screening process to achieve an acceptable 

level of false positive error?). 

Results 

Estimating existing data accuracy  

Across the full dataset, the accuracy of crowdsourced species classifications was 93.4%, but false positive 

and false negative error varied considerably across species (Figure 2). More commonly encountered 

species were generally subject to less false-positive and false-negative error (Figure 3). Exceptions 

include lagomorphs, as brown phenophase snowshoe hare (Lepus americanus) were commonly 

misclassified as cottontails (Sylvilagus floridanus, Table S1 and Figure S3 in Appendix S1), and 

“unknown” species-without consensus (often clearly identifiable to experts).  

Estimating requisite data accuracy  

Simulation results suggested that all false positive rates considered led to overestimation of species 

distribution using the base occupancy model and shrank estimates of occurrence associations (Figure 4). 

These were more pronounced when species were more easily detected and narrowly distributed.  Still, our 

criteria for data adequacy (expected absolute bias < 0.05) was met when false positive rates were 3%, and 

most models fit to simulated data estimated the directional covariate effect correctly (empirical power was 

as low as 96%, but most commonly 100%). In contrast, additional false negative error had little influence 

on estimator performance (Appendix S1, Table S3). Importantly, if a 3% false positive proportion was 
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used to define adequate data quality, only 4 species appeared to be classified with sufficient baseline 

accuracy (Figure 2). Occupancy models accounting for false-positive error provided unbiased inference 

across the error rates considered (Figure 5). Estimator performance improved as more sampling intervals 

were validated (Figure 6), but the rate of improvement decreased as more samples were validated. That is, 

the largest gains in performance were associated with shifting from a standard occupancy model to one 

accommodating false-positive error. 

Identifying and narrowing candidate remediation actions  

Interspecific factors (the true species or reported species in the image) explained far more 

misclassification variability than differences in season or camera location (ΔAIC > 1000, Table S4 in 

Appendix S1), indicating species identity was more strongly associated with classification error than 

elements of the classification interface or camera placement. The reported putative species within the 

image explained error more effectively than the true species (AIC ωi = 1), implying more interspecific 

variability in false-positive error than false-negative error and that implementing data screening to flag 

potential false positive classifications was a potentially useful remediation strategy.  

Implementing and evaluating remediation action 

The best performing misclassification screening model performed very strongly on out of sample data 

(AUC = 0.97, 95% CRI = 0.96−0.97; pAUC = 0.80, 95% CRI = 0.77−0.83; PPV = 0.97, 95% CRI = 

0.97−0.98; MCC = 0.68, 95% CRI = 0.66−0.69, Table S5 in Appendix S1), suggesting that across all 

species, censuring images predicted to be misclassified provided adequate data without substantial 

removal of correct classifications. It included random intercepts and coefficients (using reported 

consensus species as the grouping effect) associated with a quadratic effect of day of year, the proportion 

of users voting for the consensus, and the effect of sudden changes in the chronology of species at 

specific camera station (definitions in Table 1). The probability of the crowdsourced consensus being 

correct increased as more volunteers agreed on the consensus species and was less likely if the species 
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reported at a specific camera changed over rapid intervals (e.g., bear present, deer present, bear present 

within one minute; Figure 7).   

Screening performance varied substantively across organismal groups (Appendix S1, Table S6). 

We were better able to discriminate between true and false classifications of common species that were 

intrinsically classified with greater accuracy. For example, to achieve a false positive rate of less than 3% 

within test-partitioned black bear (Ursus americanus) pictures required censuring less than 2% of the 

data; to achieve the same false positive threshold for canids required censuring 52.3% of the recorded 

observations and discarding more than 40% of the true positive classifications in the process (i.e., 

enacting an additional false-negative error beyond what was simulated). Post-hoc simulations 

corresponding to this scenario (70% of true detections removed and 3% false-positive detections induced) 

suggested the base occupancy estimator still performed adequately under simulated sampling conditions 

after severe data censuring (mean error = 0.02, RMSE < 0.04). 

Discussion  

Ecologists have always faced sampling limitations and imperfections. Emprical comparisons of sampling 

methods (Clare et al. 2017), power analysis and related simulation approaches (Ellis et al. 2014), and 

other techniques are commonly used to determine how to allocate sampling effort or resources most 

efficiently. Determining how much data are needed and how more data can be collected have historically 

been preeminent study design foci, and they remain important considerations. Although our titular 

questions are analogous, they have seen have seen less attention by practitioners as a whole (Miller et al. 

2015), which is problematic because measurement or observation error is found within nearly every study 

in which it is directly evaluated (e.g., McClintock et al. 2010, Butt et al. 2013).  Our specific results are 

most germane for the growing number of independent efforts that use automated detection devices, 

citizen scientists, or both (e.g., there are more than 20 trail camera projects hosted by Zooniverse). 

However, ensuring data quality is more broadly important for broad-scale or even global efforts that are 
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scarcely feasible without the participation of citizen scientists or the use of automated detection or 

classification techniques (Chandler et al. 2017, Steenweg et al. 2017, Kissling et al. 2018).  

So, how accurate do data need to be? We have contended throughout that this depends upon 

specific research or monitoring objectives and as such, is likely to be distinct to specific studies. 

However, our implementation provides some insights with regards to one of the most ubiquitous data 

processing tasks (species identification), one of the most common goals in ecology (estimating species 

distributions), and one of the most widely used models for estimating species distribution. The first data 

quality concern associated with estimating species distributions is that although professionals, volunteers, 

crowdsourced aggregates, and machine learning algorithms commonly identify species accurately overall 

(> 95%, e.g., McClintock et al. 2010, Swanson et al. 2016, Nourouzaddeh et al. 2018), overall species 

identification accuracy is often weighted by a few very common and easily identified species and the 

accuracy of individual species is highly variable. The range of misclassification we considered here (3 – 

30%) is not unique to our study; similar rates of misidentification are documented across a range of 

methodologies for classifying trail camera images (McShea et al. 2016, Swanson et al. 2016, 

Nourouzaddeh et al. 2018, Tabak et al. 2018) or recorded calls (Simons et al. 2007, McClintock et al. 

2010, Farmer et al. 2012, Mac Aohda et al. 2018, Priyadarshani et al. 2018). This suggests that despite the 

overall accuracy of many datasets processed by humans with limited training (volunteer or not) or 

automated algorithms, there is a non-trivial risk of substantially overestimating the distributions of many 

species using many commonly used data types. Furthermore, motivation to further expedite data 

processing has motivated development of compound approaches in which citizen scientist classifications 

are used to train algorithms (Willi et al. 2018), which is likely to further compound existing errors. In 

short, the aggregated accuracy measures often reported are not necessarily accurate gauges of data 

accuracy itself. 

The subsequent problem is that associations between data accuracy and estimator accuracy can be 

extremely variable, and as such, even if data accuracy is correctly described, it can be a poor index for 
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data quality. There are several underlying reasons for this. First, estimator sensitivity to error depends 

upon how error is being measured or parameterized. There can be substantively less bias when false 

positive error constitutes 3% of all detections rather than, say, happening at 3% across sites and sampling 

intervals. This is likely one reason that our simulations suggest the occupancy estimator is less sensitive 

to false positive error than previous empirical or simulation studies (Miller et al. 2013, Miller et al. 2015, 

Ruiz‐Gutiérrez et al. 2016); false-positive parameters are often distinct from than how species 

identification accuracy is typically reported, and our estimates of s0 were generally far smaller than the 

fraction of detections that were simulated as false positives. Secondly, although we generally ignore it 

here, model sensitivity also depends upon how observations are aggregated for analysis (see Appendix 

S3).  Third, the relationship between an estimator’s relative bias or error and data error varies as a 

function of the attributes of the sampled species; less widespread species were more sensitive to false 

positive error in our simulations. Finally, different estimators exhibit entirely distinct sensitivities to 

different amounts or types of error. For many models, the association between data error and estimator 

error may be nonlinear and disproportionate.  For example, 5% more detections may translate to 25% 

more animals estimated to exist (Clare et al. 2018).  For other models, the overall amount of detections 

rather than their locations may be more important. Although classification error appears to have 

reshuffled species observations across locations, the overall prevalence of species within our dataset was 

largely preserved (Table S1 and Figure S1 in Appendix S1). Had we considered a random encounter 

model (Rowcliffe et al. 2008) as our planned analysis, we may have come to different data quality 

conclusions. 

So, if data will be less reliable and models not as robust as desired, what can be done? In the 

worst-case scenario, data accuracy or reliability cannot be quantified and no auxiliary information that 

might inform the estimation of error has been collected. Here, practitioners can default to cautious 

interpretation and conservative analyses (Bird et al. 2014, Isaac et al. 2014). Our results suggest that even 

with severe observation error less occurring at random, patterns in estimated occurrence can still be 
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monotonically correlated with the true state, and such information may still be useful for spatially 

delineating areas of managerial concern (Guillera-Arroita et al. 2015). Alternatively, following previous 

recommendations (Miller et al. 2015), practitioners can fit estimators in which all observations are treated 

as uncertain and false positive errors are a latent component of the model (Royle and Link 2006). These 

considerations also deserve attention from users of professionally collected or classified data, which is 

typically comparably accurate and less thoroughly vouched (Lewandowski and Specht 2015, Kosmala et 

al. 2016). 

Simply having some measurement of data uncertainty, such as the confidence of an identification 

algorithm or agreement between multiple human classifiers, allows investigators to use more (and more 

effective) remediation actions. Uncertainty measures can be used to delineate between more and less 

reliable data prior to a species distribution analysis (e.g., a data censure), within an analysis as a distinct 

data type (e.g., the multiple detection state model described by Miller et al. 2011), or as a covariate for 

error for latent error (analogous to metrics of observer proficiency used by Johnston et al. 2018). The 

efficacy of these remediation actions depends upon how strongly confidence correlates with accuracy. 

Within our study, agreement among citizen scientists was associated with but not equivalent to the 

expected accuracy of the classification (see also Swanson et al. 2016). The confidence of a trained 

algorithm when applied to distinct data can be similarly unreliable (Tabak et al. 2018).   

In general, investigating data accuracy more directly and deeply provides researchers more 

opportunities for effective remediation. Investigators using experiments or post-hoc data verification to 

quantify error and variability in error will have more information about how general project components 

that can be manipulated (volunteers, protocols, interfaces) differentially contribute to error, and will be 

able to make more informed and effective decisions about how to manipulate these. In our case study, the 

classification “season” explained less variability in classification error than the other general project 

components, suggesting that potential manipulations associated with differences in the platform across 

seasons (e.g., minor changes to filter options, or as a more expensive example, switching to different 
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camera models) held limited potential. Evidence for interspecific variation as a major driver of 

classification accuracy informed the use of specifies-specific random effects terms within screening 

models that greatly outperformed models without random effect terms. In turn, predictors identified as 

useful while exploring variation in error can also be directly incorporated within false-positive occupancy 

models (Chambert et al. 2015, Ruiz‐Gutiérrez et al. 2016), and can make these models even more 

effective.  

  Perhaps our most strident motivation entering this study was the contention that data quality and 

remediation should be evaluated within a single process. It is difficult to fix data without knowing how it 

is going to be used. The viability of data censuring (rather than adopting the more intensive task of 

directly reviewing all questionable data) was directly contingent upon evidence suggesting relative 

estimator insensitivity to additional false negative error. Simultaneously assessing data quality and 

remediation (and evaluating multiple remediation actions) also caries synergistic benefits. Models that are 

effective for screening misclassifications are also likely to be useful parameterizations for false positive 

error within an occupancy model. Similarly, exploring data-censoring models and sources of error 

provided insights into the potential of different interface manipulations. Quantifying inter-specific 

variability in error and user agreement as useful indicators of accuracy directly informed protocol changes 

such as highlighting commonly confused species (Figure S3 in Appendix S1) within the classification 

interface and focusing communications with volunteers towards providing feedback on species identified 

as easily confused or difficult to classify. The effects of these actions have not been evaluated but 

enacting them required trivial effort. While the best strategy for our stated objective appears to be using 

occupancy models incorporating false-positive error such extensions have not been described for many 

other potential analyses, and data censuring or other actions may circumstantially be more effective. 

Although we have focused on remediation as a matter of ensuring data quality for a specific problem, 

effective remediation efforts may require multiple actions to provide investigators the flexibility to 
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achieve different objectives (Kosmala et al. 2016), and implementing specific actions effectively can 

make subsequent actions easier to implement. 

Similarly, we we believe that combining data and remediation evaluations can have synergistic 

benefits for data users and managers.  Certainly, researchers whom explicitly attempt to quantify data 

needs will have a stronger understanding of what questions can be answered, and projects that quantify 

data accuracy have a better sense of which data are worth collecting, but perhaps the greatest benefits may 

come from sharing such information across platforms. Projects that present quantitative information about 

data reliability make it easier for researchers to select suitable data or choose suitable questions, and 

researchers that share specific data needs make it easier for projects to set concrete targets, and in turn, 

may make it easier for researchers to acquire sufficient data. 

Evaluating data quality and varied remediation actions is not without cost. Analyzing simulations, 

verifying data, and conducting calibration experiments all require time and expense, and some projects 

may have few samples that can be verified. Quantifying data accuracy is likely the most costly 

component, and we acknowledge that the classification of trail camera images can be evaluated relatively 

expediently, whether via post-hoc verification of images or by calibrating volunteer performance on 

known samples (sensu Ruiz‐Gutiérrez et al. 2016). Tabak et al. (2018) report experts were able to classify 

200 images per hour; anecdotally, careful verification of images seems to be somewhat slower (30 to 50 

sequences of three images per hour). Still, verifying thousands of classifications, even if individual 

samples can be quickly processed, is not a trivial undertaking, and we expect that many efforts have been 

dissuaded from performing data evaluations by the perceived amount of requisite effort. The optimal size 

of a data evaluation sample is difficult to generally quantify, because it depends on the desired inferential 

objectives and properties of error within the data. If data collection is complete, the ideal size of the 

validation or calibration sample may be that which provides the investigator sufficient confidence that 

data are adequate (e.g., 95% CI associated with error estimates in the baseline data or associated with a 

screening model’s predictions indicate that baseline or censured data are sufficient to use). Projects with 
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ongoing data collection are likely to benefit from evaluating data iteratively (Kosmala et al. 2016), and 

the requisite sample should take into account the ability to detect changes in baseline performance as 

procedures change over time.  

But although specific guidelines for designing data evaluation efforts are difficult to provide, we 

wish to emphasize that a verification or calibration sample does not need to be enormous to effectively 

characterize error, and that any effort allocated towards evaluating data quality represents improvement 

over allocating no effort. In fact, there are almost certainly diminishing returns associated with increasing 

the size of a data evaluation sample. The difference in precision between estimates of the overall 

probability of a white-tailed deer, snowshoe hare, or sandhill crane image being a false positive 

(respectively, 95% CRI = 0.015 – 0.020, 0.001 – 0.024, and 0.001 – 0.077) was disproportionate to the 

difference in effort (11,650, 272, and 45 images evaluated, respectively). The primary difference between 

validating 50 simulated sampling intervals vs. 750 simulated sampling intervals when fitting an 

occupancy model incorporating false positives was a small gain in estimate precision. That is, a 15-fold 

increase in effort allocated towards validating sampling intervals or a 40-fold increase in effort allocated 

to validating deer images vs. snowshoe hare images made little difference.  Gains associated with using 

more complex models to screen or describe error similarly diminished.  For example, incorporating 

random intercepts for species led to substantive gains in out-of-sample predictive performance for 

screening models, but gains associated with further considering random slope terms were far smaller 

(Appendix S1, Table S5). We discuss further ways in which our own data evaluation effort may have 

been implemented more efficiently in Appendix S2. 

Citizen scientists, automated detectors, classification algorithms, and a commitment to data 

sharing have the collective capacity to revolutionize the scope and scale of ecological inquiry. Applied 

ecologists now have means to efficiently produce or concatenate data permitting sound inference at both 

fine resolution and across extents not only meaningful to management decision making, but more broadly, 

cross-jurisdictional extents that reflect the massive scales that many important ecological drivers and 
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biodiversity threats operate at (Princé and Zuckerberg 2015, Steenweg et al. 2017). Whether the 

contributions made by many existing or developing studies or monitoring programs leveraging these 

techniques achieve the ambitions of these programs will partially depend upon how willingly and widely 

principles of data quality described herein are adopted. 
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Table 1. Candidate covariates considered within generalized linear mixed-modeling of crowdsourced 

species classification error of trail camera images. 

Predictor Description 

User 

ProportionA 
Proportion of users voting for consensus species 

jdayA Julian Day 

dectimeA Decimal hour photo was taken (military time) 

TWSCA Time-weighted species changeB  

Height Camera height above ground level (ft) 

Distance Camera distance to target trail (ft) 

Evenness Pielou Evenness Index of individual classifications 

Sequence type Dummy variable for presentation as a sequence (vs. individual image) 

Resolution Dummy variable indicating a low resolution image 

 

ACovariate was used within candidate model for predicting classification error. Other covariates in table 

were considered, but not ultimately included within the modeling effort due to limited support in 

exploratory analyses or collinearity with other predictors. 

BTime-weighted species change (TWSC) is derived based upon the chronology of crowd-reported species 

at a specific camera location. Let ix,b serve as an indicator variable representing whether the reported 

species in sequential image x and image x-1 are different (1) or the same (0), with ix,a serving analogously 

for image x and x + 1, and let tx,b and tx,a respectively represent the decimal time (in hours) separating 

image x and image x-1 and for image x and x + 1. TWSC is calculated as 𝑖𝑥,𝑏 ×  
1

𝑡𝑥,𝑏
+ 𝑖𝑥,𝑎 ×  

1

𝑡𝑥,𝑎
.  A larger 

value of TWSC indicates a sudden change in the species recorded at a specific camera location (the 

maximum value occurs when images A, B, C are each separated by the minimum trigger interval of 15 s 

and record species A, B, A or B, A, B). 
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Figure 1. Conceptual diagram of the sequential process described for evaluating data quality and data 

remediation actions described within the main text.  

 

 

 

 

 

 

 



37 
 

 
 

 

Figure 2. False negative (left) and false positive (right) probabilities estimated with expert validation of 

crowdsourced trail camera image classification.  Whiskers represent 95% credible intervals. The gray 

shaded area on the right panel contains a threshold for false positive error that simulation suggested was 

requite for < %5 bias using the standard occupancy estimator, and highlights that using baseline 

classification results without addressing false positive error was likely to lead to substantial bias for many 

species. 
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Figure 3. Negative association between species prevalence in the dataset (total number of images; log-

transformed) and false positive (black) and false negative (red) classification error probabilities, which 

suggests that the distribution of rare or cryptic species was more likely to be estimated with substantial 

bias. Error bars represent 95% credible intervals. Solid lines and shaded area denote fitted additive model 

with smoothing selected using cross-validation, and 95% CI strictly for visualization purposes. 
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Figure 4. False positive classification error is the strongest determinant of mean error or bias (A) and 

relative bias (B) in finite sample estimates (PAO indicates proportion of area occupied). Solid line in A 

represents the predefined threshold described in the text. Occupancy coefficient estimates are displayed in 

panels C and D, and false positive error shrinks coefficients towards zero (true values indicated with solid 

lines). These effects are strongest when actual occurrence is lower (logit-1[ψintercept] = 0.26 vs. 0.74) and 

detection probability is higher (logit-1[pintercept] = 0.12 vs. 0.05). X-coordinates are jittered for 

visualization. 
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Figure 5. Standard occupancy models assuming only false-negative error are strongly biased as the 

proportion of false positive observations within the sample increases (A). Models that also incorporate 

false-positive error estimated using sample validation are generally accurate even when error rates are 

30% (B). False positive models were unbiased when 10%, 30%, or 50% of the samples were verified (C) 

across all levels of baseline (3%, 10%, and 30% false-positive error all plotted here). 
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Figure 6. Point estimate bias (A) and root-squared error (B) of finite-sample occupancy estimates 

decreased as more simulated samples were verified, but also that the expected decrease in either loss 

function decelerated. Using a model incorporating false-positives inflates estimate uncertainty (C; 

standard error is approximated by standard deviation of the posterior distribution). Points corresponding 

to 0 verified samples reflect estimates from the standard occupancy model, while results corresponding 

to > 0 verified samples reflect estimates from an occupancy model incorporating false positive error. Red 

points in panels A and B reflect mean values when no samples were verified. In panel C, black points 

reflect mean values when no samples were verified, and red and blue dots correspond to simulation 

settings where the probability of detection was 0.047 (red) and 0.12 (blue). 
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Figure 7. Marginal modeled effects suggest that the consensus crowdsourced classification was more 

likely to be correct as the proportion of users voting for the consensus species increased (left panel), 

interspecifically variable depending upon the Julian day on which the image was taken (center), and less 

likely to be accurate if the classifications immediately previous and/or subsequent at a given camera 

station reported different species in quick succession (right). Each line represents response of a different 

animal species: each effect is depicted with other terms held at species-specific means. Rug plots along 

the bottom depict the distribution of species-specific mean values; vertical line depicts the mean value 

across the entire dataset. In the left panel, the divergent response associated with a human classification is 

likely a function of different retirement rules associated with human images. 
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Appendix S1: Supporting Tables & Figures.  

Table S1. Baseline estimates of species-specific false positive error probability (1-Pr[Correct 

Classification|Species reported]) and false negative error probability (1- Pr[Correct Classification|Species 

actually in image]) based upon crowdsourced consensus classification of trail camera images. 

Species Selection Choice 

False Positive 

Probability (95% 

CRI) 

False Negative 

Probability (95% 

CRI) 

True 

# 

Reported 

# 

Taxidea taxa American Badger 0.714 (0.359-0.957) 0.714 (0.359-0.957) 5 5 

Martes americana American Marten 0.600 (0.194-0.932) 0.667 (0.284-0.947) 4 3 

Neovison vison American Mink 0.727 (0.528-0.887) 0.333 (0.085-0.651) 7 20 

Castor canadensis Beaver 0.159 (0.091-0.242) 0.051 (0.014-0.110) 76 86 

Ursus americanus Black Bear 0.027 (0.014-0.044) 0.140 (0.111-0.172) 498 440 

Lynx rufus Bobcat 0.074 (0.028-0.140) 0.148 (0.082-0.229) 86 79 

Puma concolor Cougar 0.750 (0.292-0.992) 0.500 (0.025-0.975) 0 2 

Canis latrans Coyote 0.228 (0.162-0.302) 0.326 (0.256-0.402) 154 134 

Felis catus Domestic Cat 0.600 (0.194-0.932) 0.333 (0.013-0.842) 1 3 

Canis familiaris Domestic Dog 0.120 (0.027-0.270) 0.154 (0.045-0.312) 24 23 

Sylvilagus 

floridanus Eastern Cottontail 0.674 (0.582-0.758) 0.167 (0.076-0.283) 41 105 

Cervus elaphus Elk 0.005 (0.002-0.010) 0.150 (0.131-0.169) 1321 1129 

Pekaniai pennanti Fisher 0.188 (0.043-0.405) 0.594 (0.422-0.755) 30 14 

Urocyon 

cinereoargenteus Gray Fox 0.251 (0.177-0.335) 0.287 (0.210-0.370) 119 113 

Canis lupus Gray Wolf 0.357 (0.221-0.506) 0.438 (0.302-0.578) 46 40 

Multiple Grouse 0.040 (0.001-0.142) 0.368 (0.225-0.525) 36 23 

Homo sapiens Human 0.194 (0.077-0.347) 0.107 (0.024-0.243) 26 29 

Ondatra 

zibethicus Muskrat 0.143 (0.004-0.459) 0.250 (0.037-0.579) 6 5 

NA No Animal Present 0.243 (0.225-0.261) 0.023 (0.016-0.030) 1634 2110 

Didelphis 

virginiana Opossum 0.333 (0.053-0.716) 0.200 (0.006-0.602) 3 4 

Multiple Other Bird 0.064 (0.026-0.116) 0.096 (0.050-0.157) 112 108 

Multiple Other Domestic 0.250 (0.008-0.708) 0.250 (0.008-0.708) 2 2 

Multiple Other Small Mammal 0.305 (0.195-0.427) 0.226 (0.125-0.347) 51 57 

Erethizon 

dorsatum Porcupine 0.078 (0.026-0.155) 0.385 (0.291-0.484) 94 62 

Procyon lotor Raccoon 0.048 (0.033-0.064) 0.086 (0.067-0.107) 765 734 

Vulpes vulpes Red Fox 0.175 (0.123-0.239) 0.160 (0.108-0.221) 159 162 

Lutra canadensis River Otter 0.023 (0.006-0.050) 0.045 (0.020-0.079) 177 173 

Grus canadensis Sandhill Crane 0.021 (0.001-0.077) 0.042 (0.005-0.113) 46 45 

Lepus americanus Snowshoe Hare 0.006 (0.000-0.024) 0.481 (0.424-0.538) 293 152 

Sciurid spp. Squirrel or Chipmunk 0.040 (0.029-0.052) 0.133 (0.115-0.153) 1214 1096 

Mephitis mephitis Striped Skunk 0.273 (0.067-0.556) 0.111 (0.003-0.369) 7 9 

Meleagris 

gallopavo Turkey 0.013 (0.005-0.025) 0.039 (0.024-0.058) 480 467 

Mustela spp. Weasel 0.600 (0.194-0.932) 0.600 (0.194-0.932) 3 3 

Odocoileus 

virginianus White-tailed Deer 0.018 (0.015-0.020) 0.017 (0.015-0.019) 11638 11650 

Lepus townsendii 

White-tailed 

Jackrabbit 0.938 (0.782-0.998) 0.500 (0.025-0.975) 0 14 

Marmota monax Woodchuck 0.143 (0.004-0.459) 0.333 (0.085-0.651) 7 5 
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Figure S1.  The association between the species-specific true prevalence in the full data set and reported 

prevalence based upon crowdsourced consensus classifications is linear and very close to 1:1 (top); 

excluding white-tailed deer, the association suggests that rare species were slightly overstated and 

widespread species slightly understated by crowdsourced consensus. Blue lines and shaded areas 

represent generalized additive model predictions and confidence intervals with smoothing based upon 

cross-validation. 
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Figure S2.  Crowdsourced vs. professional classification errors within a subset of the total dataset for 

which they could be compared. The crowd introduced more unobserved species than professionals and 

generally exhibited slightly more error than professionals, although even professionals did not classify 

many species accurately enough to meet our predefined threshold.
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Figure S3. The proportion of images by species that were designated a particular species as assigned by a 

crowdsourced consensus. The prominence of the diagonal (not exact because certain species were not 

encountered within the dataset but were crowd-assigned) indicates that crowdsourced classification was 

generally correct, but interspecifically variable; the off-diagonal values highlight interspecific variability 

in   classification confusion.
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Table S2. Datasets (Season) containing the images used to evaluate crowdsourced classification accuracy. 

Wisconsin Wildlife Watch S2 was not used for additional data screening analysis due to lack of relevant 

metadata associated with confidentiality conditions for the data collection process. 

Season 
# 

Images 

Camera Make/Image 

Resolution 

Image 

Presentation 

Within Sample 

Accuracy  

Wisconsin Wildlife Watch 

S1 
3847 

Reconyx/High Single Image 
95.37% 

Wisconsin Wildlife Watch 

S2 
2182 

Reconyx/High Single Image 
93.12%  

Snapshot Wisconsin S1 12341 
Bushnell/Low Sequence of 

3 
92.36% 

Snapshot Wisconsin S2 313 
Bushnell/High Sequence of 

3 
99.68% 

Snapshot Wisconsin S3 638 
Bushnell/High Sequence of 

3 
98.27% 
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Table S3. Occupancy estimator performance across full range of simulation settings. If % detections 

verified is not indicated with a dash, the fitted model incorporated false positive observation error as well. 
 

     

Mean 

Error RMSE Relative Bias Power 

ψaverage paverage 
% 

FP 

% 

Additional 

FN 

% 

Verified 
PAO PAO PAO β1 β2  β1 β2 

0.26 0.12 3 3 - 0.05 0.05 0.12 0.27 -0.26 1.00 1.00 

0.73 0.12 3 3 - 0.04 0.04 0.06 0.21 -0.21 1.00 1.00 

0.26 0.047 3 3 - 0.03 0.03 0.07 0.19 -0.18 1.00 1.00 

0.73 0.047 3 3 - 0.02 0.03 0.03 0.16 -0.14 1.00 1.00 

0.26 0.12 10 10 - 0.15 0.15 0.39 0.53 -0.53 1.00 1.00 

0.73 0.12 10 10 - 0.12 0.12 0.19 0.45 -0.44 1.00 1.00 

0.26 0.047 10 10 - 0.08 0.08 0.21 0.44 -0.43 1.00 1.00 

0.73 0.047 10 10 - 0.07 0.07 0.11 0.37 -0.37 1.00 1.00 

0.26 0.12 30 30 - 0.36 0.37 0.96 0.72 -0.72 0.99 0.99 

0.73 0.12 30 30 - 0.28 0.28 0.45 0.65 -0.65 0.96 0.97 

0.26 0.047 30 30 - 0.25 0.25 0.66 0.67 -0.67 1.00 1.00 

0.73 0.047 30 30 - 0.20 0.20 0.33 0.60 -0.60 0.98 0.97 

0.26 0.12 10 30 - 0.13 0.13 0.35 0.52 -0.51 1.00 1.00 

0.73 0.12 10 30 - 0.12 0.12 0.19 0.45 -0.45 1.00 1.00 

0.26 0.047 10 30 - 0.08 0.09 0.22 0.45 -0.45 1.00 1.00 

0.73 0.047 10 30 - 0.07 0.08 0.12 0.40 -0.38 1.00 1.00 

0.26 0.12 30 10 - 0.35 0.35 0.92 0.71 -0.71 1.00 1.00 

0.73 0.12 30 10 - 0.27 0.27 0.44 0.64 -0.63 1.00 1.00 

0.26 0.047 30 10 - 0.24 0.24 0.63 0.66 -0.65 1.00 1.00 

0.73 0.047 30 10 - 0.20 0.20 0.32 0.59 -0.59 0.99 0.99 

0.26 0.12 10 3 - 0.13 0.13 0.34 0.49 -0.50 1.00 1.00 

0.73 0.12 10 3 - 0.12 0.12 0.19 0.45 -0.44 1.00 1.00 

0.26 0.047 10 3 - 0.08 0.08 0.21 0.41 -0.41 1.00 1.00 

0.73 0.047 10 3 - 0.07 0.08 0.12 0.37 -0.36 1.00 1.00 

0.26 0.12 30 3 - 0.35 0.35 0.91 0.71 -0.70 1.00 1.00 

0.73 0.12 30 3 - 0.28 0.28 0.45 0.63 -0.63 0.99 0.99 

0.26 0.047 30 3 - 0.24 0.24 0.63 0.65 -0.66 1.00 1.00 

0.73 0.047 30 3 - 0.19 0.20 0.31 0.59 -0.59 1.00 1.00 

0.26 0.12 3 30 - 0.04 0.04 0.09 0.27 -0.28 1.00 1.00 

0.73 0.12 3 30 - 0.03 0.04 0.05 0.22 -0.22 1.00 1.00 

0.26 0.047 3 30 - 0.02 0.03 0.06 0.20 -0.21 1.00 1.00 

0.73 0.047 3 30 - 0.02 0.03 0.03 0.17 -0.17 1.00 1.00 

0.26 0.12 3 10 - 0.04 0.04 0.10 0.25 -0.26 1.00 1.00 

0.73 0.12 3 10 - 0.03 0.04 0.06 0.22 -0.21 1.00 1.00 

0.26 0.047 3 10 - 0.02 0.03 0.06 0.19 -0.19 1.00 1.00 

0.73 0.047 3 10 - 0.02 0.03 0.03 0.15 -0.15 1.00 1.00 

0.73 0.047 3 70 - 0.02 0.04 0.04 0.23 -0.21 1.00 1.00 
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Table S3 (Continued) 
 

     

Mean 

Error RMSE Relative Bias Power 

ψaverage paverage 
% 

FP 

% 

Additional 

FN 

% 

Verified 
PAO PAO PAO β1 β2  β1 β2 

0.26 0.047 3 3 10 0 0.02 0 -0.03 0.03 1 1 

0.73 0.12 3 3 10 0 0.01 0 0 0.02 1 1 

0.26 0.047 3 3 30 0 0.02 0 -0.03 0.04 1 1 

0.73 0.12 3 3 30 0 0.01 0 -0.02 0.02 1 1 

0.26 0.047 3 3 50 0 0.02 0 -0.02 0.04 1 1 

0.73 0.12 3 3 50 0 0.01 0 -0.02 0.01 1 1 

0.26 0.047 10 10 10 0 0.02 0.01 -0.02 0.03 1 1 

0.73 0.12 10 10 10 0 0.02 -0.01 -0.01 0.02 1 1 

0.26 0.047 10 10 30 0 0.02 0 -0.03 0.04 1 1 

0.73 0.12 10 10 30 0 0.01 0 -0.01 0.02 1 1 

0.26 0.047 10 10 50 0 0.02 0 -0.03 0.05 1 1 

0.73 0.12 10 10 50 0 0.01 0 -0.01 0.02 1 1 

0.26 0.047 30 30 10 0.01 0.03 0.02 -0.04 0.04 1 1 

0.73 0.12 30 30 10 0 0.02 0 -0.02 0.04 1 1 

0.26 0.047 30 30 30 0 0.02 0.01 -0.02 0.03 1 1 

0.73 0.12 30 30 30 0 0.02 -0.01 0 0.02 1 1 

0.26 0.047 30 30 50 0 0.02 0 -0.04 0.05 1 1 

0.73 0.12 30 30 50 -0.01 0.02 -0.01 0 0.01 1 1 
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Table S4. Candidate factorial predictors (Predictor) evaluated as potential random grouping factors for 

subsequent modeling of classification error within trail camera images, Akaike Information Criterion 

(AIC), and model support (wi). 

Predictor AIC ΔAIC wi 

Crowd Reported 

Species 
4591 0 1 

True Species 5842 1250 0 

Camera 

Location 
7262 2670 0 

Season 7558 2966 0 
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Table S5. Candidate models used to identify accurately classified trail camera images, and predictive 

performance upon withheld data (AUC = area under the Receiver Operating Characteristic curve, pAUC 

= corrected area under the ROC curve with false positive rates ranging from 0 to 0.1, MCC=Matthews 

correlation coefficient, PPV = positive predictive value). Bold values associated with the selected model 

model. AAll model terms with a squared superscript were entered as a quadratic, e.g., jday2 denotes that 

jday+jday2 were used.  

Model AUC pAUC MCC PPV 

1|species 0.863 0.259 0.491 0.949 

1|species +User 

Proportion+TWSC+jday2+ dectime2A 
0.965 0.786 0.659 0.972 

1|species +User 

Proportion+TWSC2+jday2+ dectime2 
0.964 0.784 0.656 0.973 

1|species +User Proportion 0.961 0.776 0.646 0.971 

1|species +User Proportion+jday2 0.963 0.783 0.649 0.971 

1|species +User 

Proportion+TWSC+jday2 
0.966 0.795 0.656 0.973 

1|species +User Proportion+TWSC 0.965 0.79 0.653 0.973 

1|species +User Proportion+TWSC2 0.964 0.787 0.651 0.973 

1|species +User Proportion+ jday2+ 

dectime2 
0.962 0.77 0.653 0.972 

1|species+User Proportion + 

TWSC2+jday2 
0.965 0.794 0.653 0.972 

(1+ User Proportion+TWSC)|species 0.964 0.786 0.653 0.973 

(1+ User Proportion+TWSC)|species+ 

TWSC2 
0.963 0.778 0.652 0.972 

(1+ User Proportion+TWSC2)|species 0.962 0.771 0.651 0.973 

(1+ User Proportion)|species 0.961 0.771 0.647 0.972 

(1+ User Proportion+ jday2)|species 

+ TWSC 
0.968 0.804 0.675 0.973 

(1+ User Proportion+ jday2)|species 0.965 0.787 0.668 0.972 

(1+ User Proportion)|species + TWSC 0.964 0.786 0.654 0.973 

(1+ User Proportion)|species + TWSC2 0.964 0.781 0.653 0.973 

(1+ User Proportion+ jday2)|species + 

TWSC2 
0.967 0.801 0.672 0.973 

1+User Proportion+TWSC+jday2+ 

dectime2 
0.908 0.424 0.554 0.959 

1 +User Proportion+TWSC2+jday2+ 

dectime2 
0.908 0.419 0.55 0.959 

1+User Proportion 0.892 0.311 0.53 0.954 

1+User Proportion+jday2 0.881 0.201 0.535 0.956 

1+User Proportion+TWSC+jday2 0.912 0.457 0.553 0.959 

1+User Proportion+TWSC 0.912 0.463 0.554 0.959 

1+User Proportion+TWSC2 0.912 0.463 0.547 0.959 

1+User Proportion+ jday2+ dectime2 0.892 0.317 0.532 0.956 

1+User Proportion+ jday2+ TWSC2 0.906 0.404 0.548 0.959 
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Table S6. Performance of candidate models across subsets of the test partition. Bold values are associated 

with the selected model; note that the selected model is not always the best across all metrics. 

 

 

Model 
PPV 

Deer 

PPV 

Bear 

PPV 

Canid 

PPV 

Rare 

MCC 

Deer 

MCC 

Bear 

MCC 

CanidA 

MCC 

RareB 

1|species +User 

Proportion+TWSC

+jday2+ dectime2 

0.985  0.971 0.861 0.887  0.454 0.745  0.522  0.682  

1|species +User 

Proportion+TWSC2

+jday2+ dectime2 

0.985  0.981  0.865  0.889  0.449  0.862  0.522  0.692  

1|species +User 

Proportion 

0.984  0.981  0.861  0.881  0.430  0.740  0.447  0.742  

1|species +User 

Proportion+jday2 

0.984 0.981  0.855 0.881  0.427  0.862 0.444 0.743 

1|species +User 

Proportion+TWSC

+jday2 

0.986  0.971) 0.870 0.883  0.471  0.808  0.502  0.674  

1|species +User 

Proportion+TWSC 

0.985  0.971 0.873  0.881  0.481  0.808  0.522  0.664  

1|species +User 

Proportion+TWSC2 

0.985  0.971  0.875 0.883 0.481 0.862  0.525 0.677 

1|species +User 

Proportion+ jday2+ 

dectime2 

0.984  0.980 0.855  0.889  0.427  0.740  0.464  0.745 

1|species+User 

Proportion + 

TWSC2+jday2 

0.985  0.971  0.872  0.885  0.475  0.862  0.508  0.688  

(1+ User 

Proportion+TWSC)

|species 

0.986  0.980  0.867  0.879  0.479  0.740  0.489  0.692  

(1+ User 

Proportion+TWSC)

|species+ TWSC2 

0.986  0.981  0.868  0.882  0.480  0.862  0.492  0.703  

(1+ User 

Proportion+TWSC2

)|species 

0.986  0.981  0.865  0.881  0.479  0.740  0.478  0.710  

(1+ User 

Proportion)|species 

0.984  0.981  0.860  0.879  0.430  0.740  0.444  0.726  

(1+ User 

Proportion+ 

jday2)|species + 

TWSC 

0.986 0.980) 0.877  0.873  0.491  0.740  0.525  0.653  

(1+ User 

Proportion+ 

jday2)|species 

0.985  0.981  0.868  0.877  0.449  0.862  0.479  0.719  

(1+ User 

Proportion)|species 

+ TWSC 

0.986  0.980  0.873  0.881  0.479  0.740  0.521  0.662  

(1+ User 

Proportion)|species 

+ TWSC2 

0.986  0.981  0.873  0.881  0.481  0.862  0.522  0.671  
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Table S6 (Continued) 

 

AIncludes coyote, gray fox, gray wolf, red fox. 
BIncludes bobcat, beaver, domestic cat, domestic dog, fisher, white-tailed jackrabbit, American marten, 

American mink, Virginia opossum, river otter, porcupine, striped skunk, and weasel species. 

 
 

Model 
PPV 

Deer 

PPV 

Bear 

PPV 

Canid 

PPV 

Rare 

MCC 

Deer 

MCC 

Bear 

MCC 

CanidA 

MCC 

RareB 
(1+ User 

Proportion+ 

jday2)|species + 

TWSC2 

0.986 0.981 0.877 0.875 0.492 0.862 0.522 0.664 

1+User 

Proportion+TWSC

+jday2+ dectime2 
0.986 1 0.873 0.767 0.462 0.808 0.459 0.463 

1 +User 

Proportion+TWSC2

+jday2+ dectime2 
0.987 0.99 0.874 0.763 0.465 0.745 0.459 0.449 

1+User Proportion 0.984 0.99 0.869 0.763 0.43 0.74 0.418 0.444 

1+User 

Proportion+jday2 
0.985 0.99 0.868 0.776 0.44 0.74 0.465 0.444 

1+User 

Proportion+TWSC

+jday2 
0.986 1 0.878 0.763 0.47 0.808 0.51 0.43 

1+User 

Proportion+TWSC 
0.986 1 0.878 0.763 0.47 0.808 0.498 0.433 

1+User 

Proportion+TWSC2 
0.987 0.99 0.88 0.769 0.479 0.74 0.507 0.433 

1+User 

Proportion+ jday2+ 

dectime2 
0.984 0.99 0.868 0.789 0.437 0.74 0.42 0.449 

1+User 

Proportion+ jday2+ 

TWSC2 
0.987 0.99 0.879 0.767 0.477 0.74 0.53 0.43 
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Appendix S2 – Details associated with data evaluation 

Description of the verification process 

The images collected by Snapshot Wisconsin trail cameras are processed (or classified) on a 

crowdsourcing platform hosted by the Zooniverse (www.snapshotwisconsin.org, and precursor 

www.wisconsinwildlifewatch.org). We used post-hoc evaluation of processed data to estimate the 

baseline accuracy with which volunteers classified species within trail camera images. The classification 

interface consisted of a single image or a series of three images (hereafter jointly referred to as images or 

sequences) that a volunteer could view and classify as containing one or more of 42 potential species, 

with subsequent classification options related to species-specific counts, behaviors, and or types. Our 

evaluation focused upon species identification because it the only task germane to estimating occurrence. 

Volunteers received guidance from reference photographs, descriptions, and a series of filters that could 

be implemented to show only species with selected sizes, body shapes, or coloration (Swanson et al. 

2016). Images were randomly viewed and classified by multiple volunteers until specific retirement 

criteria were met (1 volunteer reported a human present, first 3 volunteers or 5 total volunteers reported 

the image as having no animals present, 7 volunteers selected the same species within the photo, or once 

15 volunteers had contributed classifications). We defined the crowd consensus classification as the 

species that received the most votes. We considered ties to be equivalent to a consensus of unknown 

species, although volunteers lacked an explicit option to classify an image as unknown because previous 

research suggested this option was overused (Swanson et al. 2016).  

The 19,212 images considered here were classified by volunteers on the Zooniverse platform 

following these rules/interface. WDNR professional staff (n = 13) independently classified 12,232 images 

through an internal agency classification interface that featured the same classification options as the 

Zooniverse platform except that 1) professionals were allowed to tag an image as containing an unknown 

or unidentifiable species, and 2) images were viewed chronologically at specific camera locations rather 

than at random. Each image was classified by a single WDNR professional. Previous studies have defined 

experts and professionals interchangeably (Lewandowski and Specht 2015): we distinguish experts 

http://www.snapshotwisconsin.org/
http://www.wisconsinwildlifewatch.org)/
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(individuals with extensive experience classifying trail camera images from within the region) from 

professionals (professional employees of a natural resource agency with a background in ecology but 

variable task-specific experience or proficiency).We did not treat professional classifications as truth 

because not all agency professionals had previous experience classifying trail camera images, and 

classification occurred over prolonged continuous periods that may have induced observer fatigue 

(Swanson et al. 2016).  

Experts (n = 1, or 2 if the first was uncertain; authors JC & CA-D) verified 1,051 images where 

the crowdsourced classification differed from the professional classification, 381 images where 

crowdsourced and professional classifications agreed upon a rarely detected or indistinct species 

(anything but white-tailed deer, turkey, elk, raccoon, sciurid, or black bear), and the expert’s classification 

was treated as truth (7 of these consensus images were incorrect). We define JC and CA-D as experts 

given extensive previous experience classifying trail camera images (c 500,000) primarily collected 

within Wisconsin. Experts further reviewed a sample of 300 images where crowdsourced and professional 

classifications converged upon more commonly detected or distinct species: none of these were incorrect, 

and we operationally assume that joint classifications of these species are correct. This assumption is 

likely not strictly true, but we do not believe we are substantively overestimating classification accuracy 

given that consensus between professionals and experts for “more difficult” species was 98.2 % accurate 

(374/381 images correct), and assuming the 300 images sampled are reasonably representative, there is 

less than 5% probability that the underlying accuracy of the image populations is < 99 % if error follows a 

beta distribution. When unsure, CA-D and JC defaulted to an unknown classification, and we assume 

these images are correctly classified. We assume that images experts defined as unknown were truly 

unidentifiable (although technically this is a false-negative error, error could not be assigned to any given 

species). 

JC further jointly classified 6,980 images with a crowdsourced classification on the Zooniverse 

platform. Because these classifications contributed to image retirement, we removed the expert vote 
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before determining the crowd consensus. We assume these classifications exhibit no false positive error 

because JC only classified images when confident.  

Thus, we define the true species in an image as the expert classification for 8,712 out of 19,212 

(45.3%), and otherwise as professional classifications that also concurred with crowdsourced 

classifications upon a fairly common or distinguishable species (white-tailed deer, turkey, elk, raccoon, 

sciurid, or black bear) that a more limited expert validation suggested were reliably classified (10,500 

images, 54.7%).  

Additional comments related to the case study’s verification process. 

Table S1 (Appendix S1) provides estimates of crowdsourced classification false positive and false 

negative error by species. Although the overall accuracy of crowdsourced classifications across all data 

considered was 93.2%, there was stronger agreement between crowdsourced classifications and gold-

standard expert classifications using the same interface (96.1% crowd accuracy). Within the pool of 

images (n = 12341) evaluated both by professionals and crowdsourcing, professional species-level 

classifications were 94.1% accurate, and crowdsourced classifications were 93.4% accurate. Because 

classifications were performed under different circumstances/interfaces, we emphasize that these values 

can only be compared cautiously. We suspect that viewing images serially carries a substantive advantage 

in terms of classification accuracy but warn that it makes dealing with misclassification more complex 

(see Appendix S3). Figure S2 (Appendix S1) provides a side by side comparison of crowdsourced and 

professional classification error within the dataset that was not gold standard. Professional and 

crowdsourced species-specific classification accuracy generally correlated (Figures S2 and S3 in 

Appendix S1). Professionals used the “unknown” option available to them and were slightly less likely to 

falsely introduce species than the crowd, although this did lead to (in many of these cases, the image was 

identifiable). Importantly, professional classification was also variable across species. We reiterate 

previous warnings that relying upon paid employees (commonly students or technicians) with some 



57 
 

 
 

natural resource training to classify trail camera images or collect other ecological data does not 

invariably produce reliable data.  

 Although rare species were subject to greater false positive and false negative crowdsourced 

classification error, there was strong correlation between the true prevalence of species within the dataset 

and the reported prevalence of species within the dataset (i.e., correlation between the number of true 

images for different species and the number of consensus classifications by species; r > 0.99, Figure S1 in 

Appendix S1), and there was little association between the true prevalence of a species within the dataset 

and the degree to which crowdsourced classifications overstated or understated overall prevalence (i.e., 

the correlation coefficient for the number of true images and the ratio of true images and consensus 

classifications  < 0.02).  

 But although crowdsourced classifications did not appear to systemically over or under report 

the prevalence of certain species, error rates were greater for less-prevalent species, and generally 

speaking, interspecific confusion appeared to increase as species prevalence decreased (Figure S3, 

Appendix S1). In some cases, there appeared to be strong confusion between a limited number of species 

(for example, snowshoe hare were commonly misclassified as cottontail, woodchucks were exclusively 

misclassified as beavers), but other species were subject to less specialized misclassification (porcupine, 

for example, were misclassified as several species). Although professional classification accuracy as a 

whole was comparable to crowdsourced accuracy, one notable difference between professional and 

crowdsourced classifications was that professionals tended to default towards classifying an image as 

unknown or having nothing in it: as a result, there was much less meaningful false-positive error 

associated with professional classifications. Although Swanson et al. (2016) recommend that trail camera 

crowdsourcing interfaces avoid providing volunteers with an “unknown” or “unidentifiable” classification 

option (i.e., forcing choice sensu Raddick et al. 2013), we suggest that the value of such an option 

depends upon the costs associated with false-positive vs. false negative errors. 
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 In the main text we note that the reported species within the image was the best factorial 

predictor of false-positive error considered. In the main text, we note that this suggests that volunteers 

may default to certain species when unsure of its identity. Anecdotally, we believe that observers may 

generally default to extremely common species when images contained few obvious cues (e.g., bears or 

elk very close to cameras seemed to be classified as deer more frequently than expected), or towards more 

charismatic species (e.g., images of deer or bobcats reported as cougars).  One potential action (not 

implemented) that might help with this is providing volunteers the option to report a measure of 

confidence when classifying (Anton et al. 2018), which might help managers distinguish between 

informed and speculative decisions. 

 However, misclassification did vary across all factors considered (the true species in the 

image, the specific camera location, the season; for example, accuracy varied by 7% across seasons, 

although this was the least supported candidate factor, Table S4 in Appendix S1). Evaluating data quality 

is probably most effective as an iterative process (noted by Kosmala et al. 2016 and within the main text). 

In the initial stages of data evaluation, it may be more desirable and easier to target a single approach 

where returns appear to be greatest, but as more data is verified, more refined strategies can be developed 

and identified.  

 The same issue arises when implementing an action to improve data quality. For analysis 

presented in the main text, we removed predictors that captured design issues that were no longer 

germane or exhibited limited predictive performance within initial analyses using gradient-boosted 

models (Friedman 2001). We ultimately used parametric models to evaluate data screening as a 

remediation action because random effects structures associated with parametric models more naturally 

accommodate variance across unbalanced factors (species) with vastly differing sample sizes than 

recursive-partitioning methods, the models are more transferable (Wegner and Olden 2012), and they 

provided better performance than machine-learning methods. Although we chose to employ a single 

model with random effects for data screening given its performance across the dataset for the time being, 
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its performance varied across species (see Tables S5 and S6 in Appendix S1 for model results). Provided 

enough samples have been verified, it seems likely that data screening algorithms may be most effective 

when different species are screened using distinct and independent models.  

Investigating reliability of crowdsourced count classifications 

Although we do not explore this in the main text, many studies rely upon distinct data classification tasks 

(e.g., species and count, species and state, etc.). Within the full dataset, we found that consensus between 

crowdsourced and either expert or professional counts was 95.9%; if consensus was greater if multi-

modal crowdsourced counts were all assumed to be the lower candidate number (96.5%) than the larger 

candidate (95.9%).  Here, explicit task and interface differences make defining the “truth” difficult. Some 

agency staff viewing images (again, 3-trigger sequences) defined the count as it might be perceived on the 

crowdsourcing platform: the number of individuals within the specific sequence. Other staff seemed to 

define counts more contextually, and when viewing a serial set of images, appeared to define the count as 

the total number of unique individuals seen within the series. It is not clear which interpretation is 

necessarily correct. 

 Miscounting appeared to positively covary with misclassifying (i.e., the probability that both 

species and animal were classified correctly was 88.3 %; the expectation under independence is 86.7%). 

This is partially structurally unavoidable because a classifying an image’s species as “nothing present” 

naturally undercounts the number of animals in the image. Discounting these 0’s, crowd-sourced counts 

were still slightly lower, which is probably preferable to a mixture of zero-inflation and overcounting 

from the perspective of trying to model error in count data.  

 Regardless, the combination of count error and classification error presents challenges for 

practitioners explicitly attempting to use counts within a modeling exercise. We were unable to develop 

any screening/censure model that was more accurate than the baseline data, so censuring putative 

“miscounts” would have induced more error into the dataset than initially existed. Strength of 
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crowdsourced count consensus and variance in the reported count appeared to be important (positively-

associated) predictors of count reliability, but the most important predictor was the “true” count (smaller 

numbers of animals were counted more reliably), which is not a useful indicator for screening data. 

Furthermore, for our own project (and many others on the Zooniverse platform) the number of animals 

(or animal states) is a forced-choice task analogous to species classification; that is, the true and reported 

count follow a categorical/multinomial distribution, which is different than how counts are assumed to be 

distributed within many ecological models.  

Improving the efficiency of data evaluation efforts. 

Our data evaluation process was far from perfect, and we make brief suggestions to improve future efforts 

here. Stratifying verification or calibration across different categorical responses or predictors (e.g., 

species, observers) may be important if these factors are strongly imbalanced. A single data task (e.g., 

species identification) may contribute to multiple downstream predictors or responses (e.g., several 

distribution models). Investigators should keep the analytical usage of the data in mind when designing 

data evaluation efforts, and seek to maximize replication at the appropriate hierarchical unit: all else being 

equal, characterizing variance within a few responses or predictors may be less important than 

characterizing variance between these factors. Furthermore, if the assumed response distribution has 

unequal variance, it may be beneficial to exert more effort towards evaluating error in categorical parts of 

the parameter space with greater intrinsic uncertainty because estimates (on the real scale) will naturally 

be more diffuse: i.e., for a binomial task, focusing more effort towards species or individuals (etc.) with p 

= 0.5. These issues coalesced within our study and may have a more general linkage for species 

identification tasks: a random sample of observations will provide an imbalanced sample of species, and 

the species most commonly sampled (or used for training an algorithm) will be identified most accurately 

(Swanson et al. 2016, Nourouzzadeh et al. 2018). Imbalance within our data and our non-stratified 

verification sampling strategy provided us the most power to estimate error parameters and explain 

variation in error for the organisms that were already most accurately identified and least required a large 
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sample to precisely estimate error parameters. We have focused ongoing verification efforts towards rarer 

species with greater intrinsic rates of error. Savvy investigators may be able to formalize adaptive 

sampling principles to guide data evaluation.   
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Appendix S3, Section 1: Additional Simulation Study Details. 

We briefly outline our simulation implementation here (code is found within). As noted in the main text, 

we first generated a “true” detection history based upon input values for p and ψ by simulating true 

presence and absence across sites and simulations as zi,sim ~Bernoulli(ψ i,sim), and yi,j,sim ~ Bernoulli(p i,sim × 

zi,sim). We derived the empirical proportion of samples in which there was a detection as �̅�sim and 

generated a “ghost” false positive detection history as xi,j,sim~Bernoulli(�̅�sim  × fp), where fp is the user-

controlled proportion of false positive detections within a dataset. Thus, the actual sample-based false 

positive detection probability as defined by Chambert et al. (2015) is much lower than fp (instead, this 

something more similar to an observation level false positive probability). We implement false-positives 

in this fashion because either site-based or sample-based false positive detection probabilities described 

by Royle and Link (2006), Miller et al. (2011), Chambert et al (2015), etc. are estimands that are difficult 

to estimate without fitting a model (because these reflect the probability of detecting an organism at a site 

where it is not present, or the probability of detecting an organism falsely during any sampling interval, 

and species presence is not known, while the definition of sampling alters the sample-specific false 

positive parameter); instead, some overall assessment of observation accuracy is more likely to be known. 

However, the actual proportion of false-positive detections within a dataset cannot be known without 

validating all samples (Gardiner et al. 2012), and so we incorporated Binomial variance across 

simulations to reflect sampling uncertainty in the actual proportion of false positive detections. We 

implemented additional false-negative error associated with misclassification by randomly manipulating 

all true positive observations within a dataset to absences as Bernoulli(fn), where fn is a user-defined 

input (i.e., yi,j,sim| yi,j,sim= 1 is thinned as Bernoulli(1– fn)). The “actual” detection history used to evaluate 

the standard occupancy estimator described by MacKenzie et al. (2002) was then derived as the maximum 

of the thinned yi,j,sim and xi,j,sim. 

We employed a similar generating process to evaluate the observation confirmation false positive 

occupancy estimator described by Chambert et al. (2015).  The hierarchical model can be described as: 
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zi ~ Bernoulli(ψ) 

yij ~ Bernoulli(zip11+(1 – zi)p10) 

zs ~ Bernoulli(ψ) 

vst ~ Categorical(Ω) 

Here, indices i and j refer to sites and sampling intervals where data has not been verified, and s and t 

index sites and sampling intervals at stations where data has been completely verified. The vector Ω 

describes the probability that a sampling intervals has been verified as containing no observation, a true 

detection only, a false detection only, and both true and false detections within an interval and can be 

derived as [{zs(1 – s1)+(1 – zs)s0} {zss1 + zs(1 – s0)} {(1 –  zs)s0 + zss0(1 – s1)} {zss0s1}]. Parameters p11 and 

p10 are derived as p11 = s1 + s0 – (s1s0), and p10 = s0.  (Note that we use different ordering for v within the 

markdown document that contains code for replication). 

We altered the model such that y and v have the same indexing. We envision that most 

verification within our study, and perhaps many others, will happen across a variety of sites haphazardly 

rather than a complete verification at a subset of sites: verifying observed absences could become very 

inefficient if many other species are observed, or vegetation is repeatedly triggering a camera, etc. 

However, y and v must be mutually exclusive, because the observations within a sampling interval are 

either verified or not (i.e., an observed value of v must correspond to missing data within y and vice 

versa). We generated v as encompassing a fixed proportion of positive detection samples within each 

simulation (e.g.., taking 10% of all positive values of y for simulated verification and replacing these 

values with missing data). This means that within the simulations, v only took on categorical values 

corresponding to the validated sample containing only a false positive detection, only a true positive 

detection, or both a true positive detection and a false positive detection. Importantly, Ω must be defined 

to include a probability that v might contain neither true nor false detections--although this was never a 

simulated outcome--because it was requisite for valid estimation of detection parameters associated with 
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y. These slight alterations do not appear to alter the efficacy of the estimator (Table S4 in Appendix S1 

contains summary statistics pertaining to estimator performance for all scenarios considered). 

Appendix S3, Section 2: “Observation” level error and false positive models  

It is possible that a given sampling interval at a specific site may contain multiple observations depending 

upon how intervals are defined, how an organism is being recorded/detected, how common a species is, 

and other factors. We ignored this heterogeneity within our simulation study—in essence, we treated the 

verified data as including a single image that was correctly classified, a single image that was incorrectly 

classified, or one of each—for simplicity. As shown in Figure S1, if true detections are associated with a 

large number of constituent true positive outcomes observed within a sampling occasion, and false 

positive detections continue to happen at random, the bias associated with a given proportion of false 

positive observations increases. In contrast, if false positive observations “cluster” within sampling 

occasions more than true-positive observations, bias associated with misclassification is reduced. 

Although the data are not formally presented here, the organisms within our study that tend to produce 

clustered observations within sampling intervals were identified accurately enough to withstand any 

effects associated with a misbalanced distribution of true and false positive observations within sampling 

intervals. However, we emphasize that our simulation results pertaining to the sensitivity of the base 

occupancy estimator under varied proportions of false-positive observations should be interpreted 

cautiously. The observation confirmation model described by Chambert et al. (2015) and used here 

remains useful when sampling occasions contain multiple observations, and presented results remain 

valid provided that all observations within sampling occasions are used for verification. However, as 

sampling intervals typically contain an increasing number of observations, both the estimator itself and 

the verification process may become more inefficient, as it will require more effort to verify all 

observations in a given sampling interval, and because the observed categorical value of v is likely to 

depend upon the number of observations.  
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Thus, in some cases, it may be preferable for convenience or estimation purposes to model false 

positives directly at the observation level. Perhaps the most straightforward way to do so is to model the 

encounter process as the observation level, and an advantage of this approach is that coefficient estimates 

(and uncertainty intervals) produced by an observation screening exercise are directly translatable and 

could be used to produce informed priors within an occupancy (or other) model. Chambert et al. (2018) 

describe an observation level model for acoustic detectors in which true and false positive observations 

arise from distinct Poisson processes within sampling intervals. In contrast, remote cameras typically 

produce highly overdispersed observation totals within intervals because observations results from 

Markovian movement and/or Markovian residence due to bait responses. The most effective way to 

formulate an encounter model for camera observations may be as a Markov modulated process (either in 

discrete time, Hines et al. 2010, or continuous time, Guillera-Arroita et al. 2011). Extending these models 

to account for false positive observations could be a useful research avenue, particularly if investigators 

are interested in evaluating variability in space-use at high temporal resolution (Dorazio and Karanth 

2017). 

It is also possible to deal with error at the observation level error while maintaining an estimator 

rooted in repeated observations summarized within sampling intervals. Chambert et al. (2015) briefly 

discuss possible extensions to deal with varying numbers of observations within intervals, and we 

formalize a description here. As with the standard occupancy model, let zi denote the binary occupancy 

state at site i and assume it is distributed as Bernoulli (ψ); let p denote the probability of detecting an 

organism conditional upon it being present at site i during sampling interval j. Let v denote a sequence of 

o verified observations, where v = 1 indicates a correctly reported observation, and v = 0 indicates a false 

observation. A false positive observation occurs with probability (1 – r1), such that vsite[o] ~ Bernoulli (zi × 

p). Let s0 and s1 represent the respective probabilities that all observations within a sampling interval are 

false positive or the unconditional probability of recording > 0 true positive observations within a 

sampling interval at a site. Respectively, these can be derived as s0,i,j = I(𝑛𝑜𝑏𝑠𝑖,𝑗) × (1 – r1)𝑛𝑜𝑏𝑠𝑖,𝑗, where 
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nobsi, j is the number of recorded observations within interval j at site i, and I(𝑛𝑜𝑏𝑠𝑖,𝑗) denotes an indicator 

function that takes a value of 1 if nobsi, j > 0 and a value of 0 otherwise; and s1,i,j  = zi × p; unverified 

presences or absences yi,j ~ Bernoulli(s1,i,j  + s0,i,j). That is, a verified observation vsite[o]  can be a true 

positive if and only if the species is present at the site, detected during the interval, and not falsely 

identified, and a species can be recorded at a non-verified sampling occasion at a specific site either if the 

species is present, detected, and correctly identified within > 0 detections, or if all observations are false-

positive. Sample code in the BUGS language is provided below. Although the existence of multiple 

observations within a sampling interval is treated as a nuisance, because error is modeled at the 

observation level, the coefficients associated with a data screening exercise could be translated into model 

terms here, too: e.g., logit(r0,o) = 𝜷𝑿𝒐, with derivation of the sample level false positive parameter 

requiring a vector or matrix of predictors associated with each of nobsi,j. 

One critical underlying assumption in effectively all described models accounting for false-

positive detections explicitly is that these errors are independent. As noted in SI2, serial image 

classification may be more accurate because it provides context for distinct observations. But as a trade-

off, it may complicate models for dealing with misclassification: i.e., it may requisite to treat observation 

error as Markovian process if images or related observations are classified serially rather than 

independently.  
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Figure S1. The sensitivity of the base occupancy model to different proportional levels of false positive 

observations within a dataset depends upon how observations are allocated within sampling intervals. 

Blue dots show the sensitivity of the estimator when 3% of detections are false positive, but there is at 

most 1 true and 1 false positive observation per interval (the settings used throughout the paper); black 

stars show that the model is more sensitive to the same proportion of error when, for example, true 

positive observations are distributed within sampling intervals as z[i]*p[i]*(Poisson(2)+1), while false 

positive observations occur at most one time within a sampling interval. 
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###Psuedocode in BUGS language for an observation confirmation false positive 

###occupancy model described above in section 2. 

model{ 

    psi0~dbeta(1,1) 

    B0<-logit(psi0) 

    B1~dnorm(0, .1) 

    p0~dbeta(1, 1) 

    A0<-logit(p0) 

    A1~dnorm(0, .1) 

    r1~dbeta(1, 1) 

    for (i in 1:nsites){ 

      logit(psi[i])<-B0+B1*Psi.cov[i] 

      logit(p[i])<-A0+A1*p.cov[i] 

      z[i]~dbern(psi[i]) 

      for (j in 1:nvisits){ 

        s0[i, j]<-ifelse(nobs[i, j] > 0, (1-r1)^nobs[i, j], 0)  

###prob all observations in the sampling interval for site i are 

###false positive 

        s1[i, j]<-z[i]*p[i] ###standard prob of detection 

        y[i, j]~dbern(s1[i, j]+s0[i, j]) 

###Note, if y[i, j] contains verified sample that has been confirmed as a 

###true positive, than the datum should be removed from the likelihood to 

###avoid double usage (i.e., set to NA): that the species has been detected 

###and confirmed is contained within v. If y[i, j] contains a verified sample 

###that has been confirmed as a false positive but there are other samples  

###within y[i,j], the confirmed sample should be subtracted from nobs[i,j], 

###but the cell should still contain values (it is still possible that one 

###observation was not false positive.  

      } #j loop 

    }#i loops 

        for (o in 1:nobs){ 

        v[o]~dbern(s1[site[o]]*r1)  

###This is probability of conditionally detecting and not falsely 

###identifying an organism within a single sample 

 

###Note, if the observations are from sites or sampling intervals that are 

###distinct from y and not of direct inferential inference, this could be 

###formulated as v[o]~dbern(r1) such that the occupancy state or p 

###of this site are not considered. Such might be the case if false positives 

###are evaluated using calibration with test “sites” for which investigators 

###do not wish to infer occurrence. 

        }#o loop 

}#model end 
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Chapter 2 - Generalized model-based solutions to false positive error in species detection/non-

detection data. 

John D. J. Clare, Philip A. Townsend, and Benjamin Zuckerberg 

Department of Forest and Wildlife Ecology, University of Wisconsin – Madison, Madison, Wisconsin 

 

Citatation: 

Clare, J. D. J, P. A. Townsend, and B. Zuckerberg. 2020. Generalized model-based solutions to false  

positive error in species detection/non-detection data. Ecology. DOI:10.1002/ecy.3241 

  



71 
 

 
 

Abstract 

Detection/non-detection data are widely collected by ecologists interested in estimating species 

distributions, abundances, and phenology, and are often subject to imperfect detection. Recent model 

development has focused on accounting for both false positive and false negative errors given evidence 

that misclassification is common across many sampling protocols. To date, however, model-based 

solutions to false positive error have largely addressed occupancy estimation. We describe a generalized 

model structure that allows investigators to account for false positive error in detection/non-detection data 

across a broad range of ecological parameters and model classes, and demonstrate that previously 

developed model-based solutions are special cases of the generalized model. Simulation results 

demonstrate that estimators for abundance and migratory arrival time ignoring false positive error exhibit 

severe (20-70%) relative bias even when only 5-10% of detections are false positives. Bias increased 

when false positive detections were more likely to occur at sites or within occasions in which true positive 

detections were unlikely to occur. Models accounting for false positive error following the site 

confirmation or observation confirmation protocols generally reduced bias substantially, even when few 

detections were confirmed as true or false positives or when the process model for false positive error was 

misspecified. Results from an empirical example focusing on gray fox (Urocyon cinereoargenteus) in 

Wisconsin, USA reinforce concerns that biases induced by false positive error can also distort spatial 

predictions often used to guide decision-making. Model sensitivity to false positive error extends well 

beyond occupancy estimation, but encouragingly, model-based solutions developed for occupancy 

estimators are generalizable and effective across a range of models widely used in ecological research. 
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Introduction 

Detection/non-detection data are widely collected by ecologists interested in monitoring populations or 

elucidating habitat associations (MacKenzie et al. 2002). It is now widely recognized that species 

detection/non-detection or occurrence data and many types of ecological survey data suffer from 

imperfect detection: the actual occurrence of species or individuals is rarely perfectly observed. Concerns 

about false negative error, the failure to detect an individual or species when present, have been 

recognized for decades and have motivated the development of a broad range of models that explicitly 

account for it (e.g., MacKenzie et al. 2002, Royle and Nichols 2003).  

False positive error, another type of imperfect detection within species occurrence data, can occur 

when a non-target species or another phenomena (e.g. extrinsic sound) is misclassified as the focal 

species of interest (McClintock et al. 2010). Molecular assays for infectious agents face similar issues, as 

sample contamination or non-specific amplification can result in false positive test results (Brost et al. 

2018). Across a variety of species and sampling protocols, the incidence of false positive error has been 

estimated as varying from nearly negligible to constituting 20% of observations or more (e.g., 

McClintock et al. 2010, Swanson et al. 2016).  Simulation results have shown that even relatively few 

false positive detections can severely bias estimates of species occupancy when models account for false 

negatives but ignore false positives (Miller et al. 2011, Ruiz-Gutiérrez et al. 2016).  

The prevalence of false positive error has spurred investigators to adopt a variety of strategies 

aimed at ameliorating potential biases. For species detection/non-detection data, strategies include a 

complete data review after collection, data collection or processing methods aimed at reducing the 

incidence of false positives, and model-based approaches. Implementing complete data reviews requires 

all data to be reviewable and can be burdensome or infeasible for large datasets (Gardiner et al. 2012, 

Ruiz-Gutiérrez et al. 2016). Specific data collection or processing protocols aimed at reducing the 

incidence of false positives include performing partial data reviews to develop indicators or algorithms for 

identifying false positives, simplifying classification tasks, or providing additional guidance or training to 
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human or computer-based classifiers (Miller et al. 2012a, Swanson et al. 2016, Kosmala et al. 2016). 

Although these approaches can greatly improve data quality, they exhibit certain inefficiencies. It can be 

time-consuming to quantify how accurately data have been classified, what level of classification 

accuracy is sufficient for a specific research objective, and whether manipulating training or classification 

protocols result in sufficient classification accuracy. 

Model-based solutions are a more efficient way to ameliorate false positive error, and several 

variants for detection/non-detection data have been described specifically for occupancy models (Royle 

and Link 2006, Miller et al. 2011, Chambert et al. 2015, Ferguson et al. 2015, Ruiz-Gutiérrez et al. 2016, 

Brost et al. 2018). The original occupancy model described by MacKenzie et al. (2002) conceptualizes 

observed absences as a mixture of true and false negatives. Occupancy models that account for false 

positive error conceptualize detections as a mixture of true and false positives. Under the ‘full’ estimator 

described by Royle and Link (2006) all observed occurrences are of unknown reliability, and 

disentangling the false negative and false positive mixtures requires constrained priors. Subsequent 

developments leverage auxiliary data collected under different protocols to improve discrimination 

between true and false positives. Investigators following the ‘site confirmation’ protocol are able to 

unambiguously classify some detections as true positives (e.g., via a posteriori confirmation or by paired 

sampling with using a method free from false positive error), while other detections are ambiguously true 

positives or false positives (Miller et al. 2011, Ferguson et al. 2015).  The ‘observation confirmation’ 

protocol is an extension upon the site confirmation protocol in which some detections can be 

unambiguously classified as true positives or false positives (e.g., via a posteriori laboratory tests, 

Chambert et al. 2015). The ‘calibration’ protocol involves assessing classification performance within 

settings in which the ecological state variable is experimentally controlled (e.g., playback experiments or 

negative laboratory controls, Ruiz-Gutiérrez et al. 2016, Brost et al. 2018). These model-based solutions 

alleviate bias in occupancy estimators while sparing time associated with performing complete data 

reviews, making changes to classifier training, or developing and calibrating error indicators. 
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The development and application of model-based solutions to false positive error has largely 

focused on occupancy estimation. However, species detection/non-detection data are increasingly used to 

estimate state variables other than occupancy, including abundance, phenology, and associated dynamics 

(Royle and Nichols 2003, Roth et al. 2014, Chandler and Clark 2014, Ramsey et al. 2015, Rossman et al. 

2016).  Presumably, these estimators are similarly biased by false positive error, and these biases could 

severely hamper a broad set of ecological decisions ranging from assessing the recovery of protected 

populations to delineating seasonal protections for migratory species.   

 Here, we show that previously-developed model-based solutions to false positive error can be 

described as specific cases of a generalized model to account for false positive error in detection/non-

detection data. We use simulation to quantify the bias caused by false positive detections across 

estimators of different state variables like abundance or phenological phenomena such as migratory 

arrival or emergence from hibernation, and to demonstrate that model-based solutions commonly improve 

inference across a range of estimation problems. Although generalization is not restricted to any protocol, 

we primarily focus on study designs following the observation confirmation protocol (Chambert et al. 

2015), which is the most applicable when researchers use sampling techniques that produce data that can 

be reviewed and verified a posteriori.  

Methods and Results 

Generalizing Model-based Solutions for False Positives  

Let y denote a matrix of binary observations corresponding to the detection or non-detection of a species 

at i = 1, 2,…R locations over j = 1, 2,…T discrete sampling occasions. If a species or more specific 

species-state of interest such as a juvenile is observed, yi,j  = 1, and yi,j  = 0 otherwise. We proceed 

assuming that y is repeated detection/non-detection data. However, the concepts apply across data with 

different dimensions or for data collected slightly differently. For example, y could denote a vector of 
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presence-background data, where yi = 1 indicates that the species was detected or occurred at location i, 

and where yi = 0 indicates that location i is part of the randomly selected background sample.  

Parametric models for detection/non-detection data typically assume yi,j ~ Bernoulli (θ), where θ 

is the unconditional probability of detection at a specific place and time. This probability is equivalent to 

the union of the respective unconditional probabilities of true positive detection (θtp) and false positive 

detection (θfp).  If θfp = 0, θ ≡ θtp and the union between true and false positive detections does not need to 

be explicitly specified. For example, MacKenzie et al. (2002) define the unconditional probability of 

detection θi = zi × p, where zi is the latent binary occupancy state of site i distributed as Bernoulli (ψ), ψ is 

a probability of occupancy that might vary in relation to site level covariates, and p is the probability of 

detecting an organism at a site given that it is present and might vary in relation to either site and occasion 

level covariates. An equivalent but less compact description is that θfp = 0, θtp,i  = zi × p, and yi,j ~ Bernoulli 

(θtp ∪ θfp). If θfp  > 0, decomposing θ into true and false positive probabilities is critical for unbiased 

estimation of θtp, which is typically the focus of ecological inquiry.  A model-based solution to false 

positive error within species detection/non-detection data is simply any model that explicitly assumes  

     yi,j ~ Bernoulli (θtp ∪ θfp)     (1) 

and estimates these probabilities or their constituent parameters. Specific solutions may differ with 

respect with respect to how θtp, θfp, and their union are defined, and other estimation details.  

The union between θtp and θfp may take a few forms. The first is what we refer to as an inclusive 

union or form. In certain sampling situations, false positives might be possible at both the site level 

(detections at unoccupied sites) and the observation level (false detections at occupied sites). Further, it 

might be possible for a target species or entity to be truly and falsely detected at the same location during 

the same sampling occasion. In particular, if a spatial or temporal interval is used to define an occasion 

(e.g., 1 km of transect, a 24 hr interval), the target species may be detected correctly or falsely multiple 

times. When collapsing this count of detections into binary data denoting > 0 detections or not, any yi,j = 1 
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may include true and/or false positives. Assuming true and false positives occur independently or are 

conditionally independent given a set of covariates, θtp ∪ θfp = θtp + θfp – (θtp × θfp). In turn, the distribution 

of the collapsed detection/non-detection data can be described as: 

yi,j ~ Bernoulli (θtp + θfp – [θtp × θfp])      (2) 

The union above is a factorization of 3 distinct probabilities (Chambert et al. 2015, Brost et al. 2018): the 

probability of  > 0 true positives only (θtp × [1– θfp]), the probability of > 0 false positives only (θfp × [1– 

θtp]), and the probability of  > 0 true positives and > 0 false positives (θtp × θfp).  For example, at a single 

camera trap during a day-long sampling occasion, the target species might be recorded and correctly 

identified, a non-target species might be recorded and misidentified as the target, or both. An occupancy 

model accounting for inclusive false positive error is a particular case of (1) in which θtp,i ∪ θfp = θtp,i + θfp 

– (θtp,i × θfp),  θtp,i = zi × p, and where θfp is a constant or some combination of parameters to be estimated.  

In other situations where site-level and observation-level false positives are possible, true and 

false positives might be mutually exclusive events, in which a detection can only be a true positive or a 

false positive. Here, the product θtp × θfp = 0, so θtp ∪ θfp = θtp + θfp and: 

yi,j ~ Bernoulli (θtp + θfp)                (3) 

 We refer to this as an “observationally exclusive” union or form. For example, a camera trap might be 

programmed to take a single time-lapse image per day-long sampling occasion, in which case the target 

species might be detected and correctly classified, or some other species might be detected and 

misclassified as the target species, but not both (assuming 1 organism within the image). An occupancy 

model accounting for observationally exclusive false positive error is a particular case of (1) in which θtp,i 

∪ θfp = θtp,i + θfp, θtp,i = zi × p and θfp  is a constant or combination of parameters to be estimated. Note that 

one can use (3) rather than (2) even if false positive error is inclusive, provided one interprets a false 

positive as any yi,j = 1 where zero observations are true positive. In this case, θfp represents the 
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unconditional probability that all observations at some location and occasion are false positives. 

Interpretation and estimation of θtp is unchanged.  

A specific form that is most commonly used within model-based solutions for false positive error 

makes assumptions we refer to as “conditionally exclusive”. As with the observationally exclusive union, 

yi,j  ~ Bernoulli (θtp + θfp). What differentiates this form is that θtp and θfp are not only mutually exclusive 

within any cell yi,j, but that there are spatial or temporal conditions under which only true positive 

observations are possible, and if these conditions are not met, all observations are false positive. This 

formulation is commonly employed within occupancy models accounting for false positive error 

following the full, site-confirmation, or calibration protocols. Probabilities ptp and pfp (often referred to as 

p11 and p10)  are conditional upon whether site i is occupied (zi = 1) or not (zi  = 0), respectively (e.g., Miller 

et al. 2011). These are particular cases of (1) in which θtp,i ∪ θfp,i = θtp,i  + θfp,i, θtp,i  = zi × ptp, and θfp,i  = (1 – 

zi)  ×  pfp.  Although the assumption that only site-level false positives can occur is probably violated in 

many sampling situations, occupancy estimation is not strongly biased by such violations (although 

coverage suffers; Ferguson et al. 2015, Brost et al. 2018).  

Estimating θtp and θfp following the observation confirmation protocol 

The observation confirmation protocol requires investigators to review and confirm all detections within 

some subset of occasions at some subset of sites a posteriori. Confirmed data v are classified such that vi,j 

= 1 if all detections at a site and occasion were confirmed to be true positives, vi,j = 2 if all were confirmed 

as false positives, and vi,j = 3 if confirmation reveals both true and false positive detections. If the species 

is not detected at all and there is nothing to verify, vi,j = 0.  

Chambert et al. (2015) assume vi,j ~ Categorical (Ωi) and condition vector Ωi upon whether the 

species occurs at site i or not. Let stp and sfp denote the respective probabilities that a sampling interval 

contains > 0 true positive detections at an occupied site or  > 0 false positives. If zi = 1 (species occurs), it 

may not be detected, it can be truly detected only, falsely detected only, or detected both ways, and Ωi = 
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[{(1 – stp) × (1 – sfp)} {(stp × (1 – sfp)} {(1 – stp) × sfp} {stp × sfp}]; brackets {} are used to delineate the 

distinct scalars in Ωi. If zi = 0, the only possible outcomes are no detection or a false positive detection. 

Removing conditioning upon a specific occupancy state and substituting θtp,i  for zi × stp and θfp for sfp 

yields that Ωi = [{(1– θtp,i) × (1– θfp)} {θtp,i  × (1– θfp)} {(1– θtp,i) × θfp } {θtp,i × θfp}]. The first scalar is 

equal to the probability of non-detection, and the latter three are the probabilities of specific detection 

outcomes factorized in (2).  

In turn, Chambert et al. (2015) assume unconfirmed detection/non-detection data yi,j ~ Bernoulli 

(zi × [stp+ sfp – (stp × sfp)] + [1 – zi] × sfp). If present (zi = 1), a species can be detected (yi,j = 1| zi = 1) either 

truly, falsely, or both: stp+ sfp – stp × sfp  denotes the factorization of these conditional probabilites. If the 

species is not present (zi = 0), it can only be falsely detected (yi,j = 1| zi = 0). Substituting θtp,i, for zi × stp 

and θfp for sfp yields that yi,j ~ Bernoulli (θtp,i + θfp – [θtp,i × θfp]). This is exactly (2).  

That is, an occupancy model following the observation confirmation protocol is a special case of 

(2) where θtp,i  = zi × stp and θfp =  sfp. Note that stp is equivalent to what MacKenzie et al. (2002) call p. A 

hierarchical description of the complete data likelihood is then: 

    zi ~ Bernoulli (ψ) 

θtp,i =  zi × p 

Ωi = [{(1 – θtp,i) × (1 – θfp)} {θtp,i × (1– θfp)} {(1– θtp,i) × θfp} { θtp,i × θfp}] 

vi,j ~ Categorical (Ωi)  

yi,j ~ Bernoulli (1 – Ω1,i ) 

A point which we will return to is that θtp,i is the same as the unconditional probability of detection—Pr 

(yi,j = 1)—presented by MacKenzie et al. (2002).  

First we acknowledge some superficial differences between the presentation here and by 

Chambert et al. (2015; Table 1). They denote stp and sfp as s1 and s0, respectively. They present p10 as the 
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probability yi,j = 1| zi = 0, but is redundant (p10  =  s0 [or sfp] =  θfp) and only one term is needed. Similarly, 

stp (or s1) is redundant with the original model’s p (MacKenzie et al. 2002). Chambert et al. (2015) derive 

p11 = stp+ sfp – (stp × sfp) to describe Pr(yi,j = 1| zi = 1), but this derivation is not strictly necessary. 

Importantly, notation s0, p10, and p11 also lacks a consistent interpretation within the existing literature 

(Table 1). The site confirmation and calibration protocols typically condition s0 and p10 on absence, and 

p11 strictly represents a true positive probability conditional upon presence. The observation confirmation 

protocol defines s0 as an unconditional probability of falsely detecting a species and defines p11 as the 

probability of detection (either true or false positive) at occupied sites (Chambert et al. 2015).   

We assume inclusive false positive error in the extensions described below, but an 

observationally exclusive formulation could be implemented by assuming θtp,i × θfp = 0, and reducing Ωi 

to describe three detection states corresponding to no detection, a true positive only, or a false positive 

only (Appendix S1, Figure S1): Ωi = [{1 – (θtp,i + θfp)} {θtp,i} {θfp}].  

Extension to Non-occupancy Models 

If assuming an inclusive or observationally exclusive union between true and false positives and 

following the observation confirmation protocol, the only difference between the occupancy model 

described above and a different model accounting for false positive error relates to how θtp is defined 

(Figure 1; Appendix S1, Figure S1). Extension to other model classes requires deriving θtp as the 

unconditional probability of detection presented in the original model description, and appropriately 

specifying θtp’s constituent processes. We present two examples below. 

Royle-Nichols Model 

Royle and Nichols (2003, RN model hereafter) describe the unconditional probability of detection 

(i.e., θtp,i) as 1 – (1 – r)𝑁𝑖, where r is the probability of detecting an individual during a sampling interval, 

and Ni, distributed as Poisson (λ), denotes the abundance of a species at site i. The hierarchical likelihood 



80 
 

 
 

for a version assuming inclusive false positive error following the observation-confirmation protocol is 

then:  

Ni ~ Poisson (λ)  

θtp,i =  1 – (1 – r)𝑁𝑖 

Ωi = [{(1 – θtp,i) × (1 – θfp)} {θtp,i× (1– θfp)} {(1– θtp,i) × θfp} {θtp,i × θfp}] 

vi,j ~ Categorical (Ωi)  

yi,j ~ Bernoulli (1 – Ω1,i ) 

The only differences between this model and the occupancy model presented in the previous section are 

within the first two lines: a process model for Ni replaces a process model for zi, and θtp,i is derived as a 

function of r and Ni rather than zi and p.  

Phenological ‘Arrival’ Model 

Incorporating false positives within an occupancy model designed to estimate the timing of some 

ephemeral phenomena such as migration arrival or emergence from torpor (Roth et al. 2014; PA model 

hereafter) follows Chambert et al.’s (2015) description except that organisms can only be truly detected 

during sampling occasions at occupied sites after arrival. Thus, θtp must be described using indexing for i 

locations and j time periods (i.e., θtp,i,j). Let arrival time at site i be denoted as xi and assume that xi ~ 

Poisson (φ). To simplify presentation, we define xi in terms of sampling intervals j rather than specific 

dates. The hierarchical likelihood is: 

zi ~Bernoulli(ψ) 

xi ~ Poisson (φ) 

θtp,i,j = zi × p × I(j ≥ xi) 

Ωi,j = [{(1 – θtp,i,j) × (1 – θfp)} {θtp,i,j × (1– θfp)} {(1– θtp,i,j) × θfp} {θtp,i,j × θfp}] 
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vi,j ~ Categorical(Ωi,j)  

yi,j ~ Bernoulli (1 – Ω1,i,j) 

Here, I(j ≥ xi) is an indicator function denoting whether occasion j is equal or greater than the specific 

time of species arrival at site i. Again, the specification of a process model for xi and the redefinition of θtp 

are the only differences between the model above and the model presented by Chambert et al. (2015). 

 Only a small sample of the possible extensions are described above. Appendix S1 contains other 

examples and describes how to account for false positives across model types when using different 

approaches to estimate false positives. 

Exploring Model Sensitivity to False Positive Incidence and the Number of Verified Samples 

We undertook a simulation study to evaluate the baseline sensitivity of the RN and PA models to different 

amounts of false positive error and the performance of extensions using the observation confirmation 

protocol to account for false positives. We describe the simulation settings and present results below. 

Throughout, we fixed the simulated sampling effort as 200 sites with 20 sampling occasions each.  

RN Model 

We first considered six different simulation scenarios representing combinations of across two abundance 

levels and three different incidences of false positive error. We generated 300 replicate datasets per 

scenario with site-specific abundances Ni,sim ~ Poisson (λi,sim) and log (λi,sim) = β0 + β1X1,i,sim, where X1,i,sim ~ 

N (0, 1), β0 = 0 or -1.5 (3 scenarios each), and β1 = 1; sim indexes a particular simulation replicate. Thus, 

at a site with an average simulated covariate (X1,i = 0), expected abundance was respectively roughly 0.23 

animals or 1 animal. These values were chosen because the RN model tends to perform best when site-

specific abundance is low (Kéry and Royle 2016, p. 302) and it is perhaps most commonly applied to 

low-density species. We first generated ‘true’ detection data as Bernoulli (pi,sim), where pi,sim = 1 – (1 – 
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ri,sim)𝑁𝑖,𝑠𝑖𝑚, logit (ri,sim) = α0 + α1X2,i,sim, X2,i,sim ~ N (0, 1), α0 = –1.73, and α1 = 1. Thus, an individual at an 

average site was expected to be detected with a probability of about 0.15 per sampling occasion.  

Within these scenarios (Appendix S2, Table S1), we generated false-positive detections as 

occurring at random across all site intervals within a simulation (i.e., inclusive false positives). The 

probability of a false-positive detection within a cell was derived such that out of all detections, 

approximately 1%, 5%, or 10% were false positives with random Binomial sampling variance (absolute 

values of θfp,sim ranged from < 0.001 to roughly 0.025). We defined θfp proportionally here rather than 

explicitly exploring specific values for the parameter itself because few studies provide empirical 

estimates of unconditional false positive probabilities, many report percentages of observations that are 

true or false positives (e.g., Simons et al. 2007, Norouzzadeh et al. 2018), and proportional definitions are 

also commonly used to define thresholds for “accurate” data (e.g., 95% accuracy; Swanson et al. 2016).  

Within each scenario, we sampled cells at random to create the verified data vi,j,sim. We considered 

10 levels for the number of site × occasion cells in which all detections were verified = {10, 20, 30, 40, 

50, 60, 70, 80, 90 100}, with each scenario including 30 simulated datasets for each verification level. 

Each of the 1800 generated datasets (300 replicate datasets for each of the six simulation scenarios) was 

used to fit both a standard RN model and an extension accounting for false positive error. For each 

estimator, we evaluated performance using mean error (absolute bias), root squared error, standard 

deviation of the posterior distribution, coefficient of variation, and frequentist coverage (% of 95% CIs 

that included the true value) for β, α, and the finite sample population size (�̂�tot, derived as ∑ 𝑁�̂�
𝑅
𝑖=1 ; we 

used relative [%] bias rather than mean error for this parameter). Because absence cannot be confirmed, 

allocating non-detections between v and y is an arbitrary decision: Pr(vi,j = 0) = Pr(yi,j = 0), and we left all 

non-detections within y (Clare et al. 2019). We fit all models here and below using JAGS v 4.0 (Plummer 

2003) to perform Markov-Chain Monte Carlo simulation through R v 3.4 (R Core Team 2017), although 

neither Bayesian estimation nor the complete data likelihood are prerequisite (code using maximum-

likelihood estimation is available from the lead author).  



83 
 

 
 

As expected, the RN model became increasingly biased as false positives constituted a greater 

proportion of detections (Figure 2; Appendix S2).  Random misclassification across all time periods and 

locations constituting 1%, 5% or 10% of all detections led to respective relative biases of roughly 10%, 

40%, and 70% across both simulated expected abundance levels. Models accounting for false positive 

error exhibited less bias and root mean squared error regardless of the size of the verified sample. 

Estimator performance asymptotically improved as more samples were verified, with minimal 

improvement once detections within between 30 - 50 site × occasion cells were confirmed (Figure 2, 

Figure S1, Appendix S2).  

PA Model 

Our exploration of the PA model was similar (Appendix S2, Table S5 outlines simulation scenarios). We 

first considered three scenarios with the following parameterization: logit (ψi,sim) = β0 + β1X1,i,sim, X1,i,sim ~ 

N (0, 1), β0 = 0, and β1 = 0.5; logit (pi,sim) = α0 + α1X2,i,sim, X2,i,sim ~ N (0, 1), α0 = –2, α1 = 0.5, and average 

arrival time φ = occasion 6. True observations yi,j,sim were generated as Bernoulli (zi,sim × pi,sim × I(j ≥ 

xi,sim)), where zi,sim ~ Bernoulli (ψi,sim), and site and simulation specific arrival time xi,sim ~ Poisson (φ). That 

is, the occupancy probability at an average site was 0.50 and the probability of true detection conditional 

on arrival and occupancy at an average site was roughly 0.12. As before, we simulated 300 replicates per 

scenario, false positive detections constituted 1%, 5%, or 10% of all detections, and the size of vi,j,sim 

ranged from 10-100. We fit both the standard PA model and the false-positive extension to each 

simulation replicate. We evaluated estimator properties with respect to α, β, �̂� and a finite sample 

estimate of the proportion of occupied sites (𝑃𝐴�̂�, derived for each simulation as ∑ 𝑧�̂�
𝑅
𝑖=1 ). 

 Results for the PA model largely mirrored those for the RN model. Across the range of false 

positive detection proportions, bias in the estimated proportion of area occupied and arrival time when 

false positive errors were ignored ranged from 3% - 20%, and 3% - 40%, respectively (Figure 3, top 

panels). The extended model greatly reduced bias with any amount of verification effort, with little 

further reduction once 30 samples were confirmed (Figure 3; Appendix S2, Figure S2). Estimates of the 
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proportion of area occupied were more uncertain when accounting for false positive error, but more 

precise for arrival time when accounting for false positive error (Figure 3, bottom right), suggesting that 

false positive error was inducing overdispersion in arrival estimates relative to Poisson expectations.  

Evaluating the suitability of site confirmation models 

We briefly explored the consequences of lacking the ability to confirm false positives, and 

incorrectly assuming all false positives were conditionally exclusive (i.e., assuming false positives only 

occurred at unoccupied sites or sites prior to arrival, and ignoring false positives occurring at occupied 

sites or occurring concurrently with true positives). Following Chambert et al. (2015), we reconfigured 

the simulated data described above so that it mimicked the data collected under the site confirmation 

protocol by considering only confirmed true positives. We fit the RN and PA models using site 

confirmation approaches that incorrectly assumed false positives only occurred at unoccupied sites or 

occupied sites prior to arrival. These models were also generally unbiased given 30 – 50 confirmed true 

positives (Appendix S2, Figures S3 and S4, Tables S2 and S6). However, the site confirmation variant of 

the RN model occasionally (92 out of 1800 simulations) had difficulty converging, particularly when few 

true positives were confirmed and simulated abundance was small. The site confirmation RN model also 

exhibited less than nominal frequentist coverage of finite-sample population size, apparently driven by 

increased root mean squared error (Appendix S2, Table S3 and S4). 

Model Sensitivity to Variability in False Positive Error  

False positive detections probably rarely happen randomly across space or time because the 

misclassified entities (other species or extrinsic phenomena) are not typically randomly distributed. 

Misclassification in detection/non-detection data is essentially spatiotemporal error in observed species 

occurrence, and the effects of false positive error upon models using detection/non-detection data are 

analogous to the effects of spatial error upon models using presence/background or used/available data 

(Johnson and Gillingham 2008). If false positives always occur within the same sites and occasions as 
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true positives, inference regarding the true positive process is not affected. In general, one would expect 

false positive error to result in larger bias if there were greater spatial or temporal (and by extension, 

environmental) separation between true and false positive detections. 

RN Model 

We considered two subsequent scenarios (Table S1, Appendix S2) where β0 = -1.5 and β1 = 1 with α 

defined as before, and logit(θfp,i) = -6 +{-1, 1}X1,i,sim. As previously, log (λi,sim) = β0 + β1X1,i,sim. Thus, false 

positive observations were either more or less likely in locations with greater expected abundance and 

probability of true positive observations. The verification protocol was simulated as previously. 

Empirically, simulated false positive observations constituted about 6% of all observations. We fit three 

models to each scenario: one that assumed θfp = 0, one that (incorrectly) assumed θfp was a constant in 

order to evaluate the consequences of ignoring variation in false positive error, and one that (correctly) 

modeled θfp,i as varying in relation to X1,i,sim.  

Abundance estimates using the standard RN model were more biased when false positive 

detections were more likely to occur at locations where the focal species was less abundant and where 

true positive detections were less likely (Appendix S2, Figure S5). Abundance estimates produced by 

extensions accounting for false positive error were nearly unbiased (< 5% relative bias) regardless of the 

generating model for false positive error, whether it was correctly specified within the fitted model, or the 

number of confirmed samples (Appendix S2, Figure S5). Again, the performance of models accounting 

for false positive error asymptotically improved when more samples were confirmed. Although models 

with a misspecified model for false positive error improved more slowly, all models were essentially 

unbiased once 100 samples were confirmed.  

PA Model 

We varied when and where false positive errors occurred relative to the baseline settings within six 

further scenarios (Table S5, Appendix S2). In the first four scenarios, we defined θfp,i,j,sim  = logit-1(-6 +{–
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1, 1}X1,i,sim) for j > 4 and θfp,i,j,sim = 0 for j ≤ 4, and α0 = {–2, –1}. In the second two, θfp,i,j,sim = logit-1(-6 

+{–1, 1}X1,i,sim)  for j > 2 and θfp,i,j,sim = 0 for j ≤ 2, and α0 = –2. Other values followed the previous 

description. That is, we used a shared covariate to make false positives either more or less likely to occur 

at occupied sites, and altered the timing of false positives so that rather than happening at any time, they 

initiated either 1 or 3 occasions before the average time of arrival. Empirically, these different 

formulations for false positive error resulted in false positives accounting for between 3% (α0 = -2 and 

θfp,i,j,sim  = 0 for j ≤ 4)  and 7% (α0 = -1 and θfp,i,j,sim = 0 for j ≤ 2) of all detections. As with the RN model, 

we fit models that assumed θfp = 0, models that (incorrectly) assumed θfp was a constant, and models that 

(correctly) assumed θfp varied in relation to X1,i,sim.  

The performance of the PA models accounting for false positive error largely mirrored results 

seen with the RN model: there was little difference in model performance regardless of whether the 

probability of false positive error was mis-specified as a constant or allowed to vary spatially, and any 

differences shrank as the number of verified samples increased (Appendix S2, Figures S6 and S7). For 

models ignoring false positive error, estimates of the proportion of area occupied became more biased as 

simulated false positive error started earlier and when false positives were more likely in places where 

true positives were less likely (Appendix S2, Figure S6). Moreover, occupancy estimation became more 

biased when the conditional probability of truly detecting a species was lower, indicating some potential 

sensitivity to small-sample bias.  

When false positives were ignored, estimates of arrival time were insensitive to spatial patterns in 

error, but estimator bias increased as the simulated initiation of false positives occurred earlier relative to 

the average true arrival time (Appendix S2, Figure S7). In fact, when false positives were simulated as 

starting only one sampling occasion before true positives, the estimator ignoring false positives exhibited 

less bias and smaller RMSE with respect to arrival time than the generating estimator. We believe this to 

be a specific case of offsetting biases induced by false negative and false positive error (see discussion in 

Appendix S2). 
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Application: Predicting Gray Fox Relative Abundance across Wisconsin 

Models for detection/non-detection data are often used to predict state variables spatially in order to 

prioritize management or conservation actions (e.g., Guélat and Kéry 2018). As a case study, we focus 

upon the relative abundance of gray fox (Urocyon cinerargenteus) in Wisconsin, USA, where its 

distribution is poorly understood. We used data from a monitoring program where trail camera images are 

imperfectly classified via a crowdsourcing platform (Clare et al. 2019) to investigate spatial patterns in 

fox relative abundance using the RN model. We modeled variation in fox expected abundance using a 

model accounting for false positive error and one ignoring it. We used indicator variable selection (Kuo 

and Malick 1998) to identify important predictors and regularize the log-linear coefficients within each 

model, and made statewide predictions for each by applying the model-averaged posterior predictive 

distribution across a 2 x 2 km lattice (more detail in Appendix S3).  

 Out of the images we reviewed, 67% were correctly classified; after further aggregation within 

179 distinct 24-hr sampling occasions (i.e., all detections within 179 occasions were reviewed), 60% 

consisted of only true positives, and 40% consisted of only false positives (either coyote, Canis latrans or 

red fox, Vulpes vulpes). Indicator variable selection provided less support for the inclusion of abundance 

covariates within the standard model than the model accounting for false positive error, and the latter 

model suggested that false positive error varied spatially in relation to the prevalence of surrounding 

cropland (Appendix S3, Tables S1 and S2). Consequently, predictions from the standard model exhibit 

different spatial patterning (Figure 4; although the statistical correlation between pairwise pixel estimates 

was fairly strong; r = 0.80). Furthermore, the point estimate for expected state-wide population size 

derived via summation across the cells used for prediction was > 300% larger when false positives were 

ignored (Appendix S3), although estimates overlapped substantially due to imprecision induced by spatial 

smoothing and the sparsity of observations. Although the estimated probability of a false positive 

detection per sampling interval was very small (at an average site, 0.0015, 95% CRI 0.0012 – 0.0018, 
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Appendix S3), this estimate suggests there were  > 100 false positive detections given 91,276 total 

sampling occasions within the dataset. 

Discussion 

Our results reiterate that when unaccounted for, false positive detections can compromise a broad range of 

ecological applications and inferences. As expected, simulation results demonstrate that estimates of 

abundance and phenology can be biased by even moderate amounts of false positives. Although not tested 

via simulation, our case study suggests that biased parameter estimation can further lead to skewed spatial 

predictions. Estimation of abundance, which lacks a natural limit, appears particularly sensitive to false 

positive error. When false positives were randomly generated, inclusive, and constituted 10% of all 

detections, the RN model (and a related unmarked spatial capture-recapture model, Appendix S1) 

exhibited 70% relative bias. For comparison, we have observed that occupancy models achieve this level 

of bias only when false positive detections generated exactly in the same manner constitute 30% of all 

detections (Clare et al. 2019), and equal incidence of observationally or conditionally exclusive false 

positive detections would be expected to induce yet greater bias (e.g., Miller et al. 2011). Given that 

detection/non-detection data often form the backbone of efforts to assess and monitor species populations 

or phenologies across large scales (e.g., Jetz et al. 2019, Robinson et al. 2019, Sun et al. 2019), techniques 

to ameliorate these errors are an important need. Luckily, our results suggest that existing model-based 

solutions designed for occupancy estimation are effective across a broad range of model classes that rely 

on detection/non-detection data. 

We focused on model-based approaches following the observation confirmation protocols. 

Researchers with the capability to confirm some subset of observations as true and false positives are 

broadly equipped to deal with false positive error across different model classes by re-specifying θtp to 

reflect the unconditional probability of detection within the model class of interest, specifying a process 

model for θfp, and collecting the necessary auxiliary data. We also demonstrated the extensibility of site 

confirmation approaches, and believe the calibration protocol is similarly flexible (Appendix S1). Two 
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primary factors underlying the efficacy of these solutions relate to the number of confirmed or calibrated 

detections and how correctly the models for true and false positives are specified. We discuss these 

factors below, but preface by acknowledging that the extensibility of model-based approaches makes it 

challenging to broadly quantify the requisite confirmation effort or model structure for all possible 

applications. We encourage further simulation across a broader set of model classes (e.g., involving 

dynamics, data integration, or disease infection intensity; Miller et al. 2012b, Chandler and Clark 2014, 

Rossman et al. 2016) and protocols to help clarify these considerations.  

The amount of auxiliary data required for unbiased estimation of the ecological state variables of 

interest largely likely depends upon several factors. Our simulation results suggest that when false 

positive error occurs at random and constitutes 10% or less of all detections, unbiased estimation 

following the site or observation confirmation protocols may only require confirmed detections within 30 

- 50 site by occasion intervals. Brost et al. (2018) demonstrate that the calibration protocol can be 

similarly reliable given 50 trials with known negatives. As the incidence of false positive error is often 

less than 10% (e.g., McClintock et al. 2010), many applications may not require an exhaustive 

confirmation sample. More detections may need to be confirmed or calibrated to achieve unbiasedness if 

false positives are more common or the observed data is sparse (Ruiz‐Gutiérrez et al. 2016). Because 

sampling efficiency and the incidence of false positive error is often difficult to gauge a priori, 

investigators may be better suited by confirming as many samples as feasible during initial project phases 

in order to buffer against uncertainty (Clement 2016). As such, perhaps the most important factor to 

consider when choosing a protocol to account for false positive error is which approach is likely to 

generate the largest amount of auxiliary data with the least effort or expense (Chambert et al. 2015, Ruiz‐

Gutiérrez et al. 2016). Note that a single ‘confirmation’ under the observation confirmation protocol 

requires that all observations at a site and specific occasion have been confirmed as true, or that all have 

been confirmed as false positives, or that > 0 true and false positive observations have been confirmed. A 

confirmation following the site confirmation protocol is simply any site by occasion in which > 0 true 
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positives have been confirmed: this data may be substantially easier to generate in certain sampling 

situations.  

A connected reason to assimilate more auxiliary data is to better model variation in where and 

when false positives occur. Modeling variation in θfp using covariates or spatiotemporal dependence terms 

can account for potential estimator biases associated with missing heterogeneity (Miller et al. 2015), and 

can be critical for reliably predicting spatial patterns or trends in species distributions (sensu Guélat and 

Kéry 2018, case study here). Furthermore, as our simulations demonstrate, understanding the covariance 

between true and false positive detections can provide insights into the amount of estimator bias likely to 

be induced by false positives. Although the observation confirmation protocol appeared robust to mis-

specifying the false positive process when confirmation followed a random sample and the true positive 

process was correctly modeled, it seems unlikely that all applications will be as robust. Appropriately 

modeling variation in true and false positive processes may be particularly critical if the data at hand 

provide little capacity to differentiate true and false positives. For example, fully latent estimators are 

particularly sensitive to model structure (Miller et al. 2015). We note these performed well when applied 

to RN and PA models when provided informed priors for false positive parameters and all generating 

processes were properly parameterized (Appendix S2). However, while we agree with Miller et al. (2015) 

that such approaches deserve more consideration if no other options are available, we strongly 

recommend data confirmation or calibration if possible, as they provide some buffer against the risk of 

choosing poor prior distributions or specifying poor models for false positive error.  

Assumptions regarding where and when false positives can occur may also deserve further 

consideration.  Because the false positive process can be directly quantified, the observation confirmation 

and calibration protocols allow investigators to assume true and false positive observations are either 

inclusive or conditionally exclusive. The site confirmation protocol appears to require further constraints 

to address observation level false positives (Appendix S1). Assuming that false positives can only occur 

in situations where true positives are impossible constrains the range of possible observation outcomes, 
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adding precision and making certain approaches identifiable. However, violations of the assumption may 

carry costs. Here, the PA model was unaffected, but uncertainty intervals for finite-sample population size 

using the site confirmation RN model were permissive. Brost et al. (2018) found that occupancy 

estimation remained nearly unbiased but exhibited poor coverage because estimates of true positive 

detection given occurrence were positively biased. There are likely to be situations where such 

assumption violations bias ecological parameters as well as observational parameters. For example, if 

using the RN model to infer abundance at a set of locations that all happened to be occupied, assuming 

only site-level false positives might not be effective. 

The models described here are designed to account for varied types of false positive error across a 

range of sampling techniques (Chambert et al. 2015). A cost of this generality is that they are not tuned 

for specific sampling problems. For example, they do not distinguish between different types of 

misclassification (e.g., pairwise misclassifications of different species, which would be useful for multi-

species models and inference), and do not leverage other specific information such the count of 

observations within an occasion (e.g., Conn et al. 2013, Chambert et al. 2018). Where appropriate, these 

fine-tuned solutions may be preferable, and can often also be extended to other estimation problems by 

refining the state process.  

Our motivation for pursuing generalizable model-based solutions was grounded in concerns 

regarding the efficiency of implementing alternative solutions within our own work. Simulation results 

here reinforce our concerns. Bias associated with false positive error depends on the model employed, the 

incidence of error, and where and when false positives occur. As such, it may only be safe to ignore false 

positive detections when making ecological inference if they have extremely low incidence or generally 

happen at the same time and place as true positive detections. These conditions are difficult to ascertain 

without collecting information about classification performance that itself could be used to develop a 

model-based solution (Ruiz‐Gutiérrez et al. 2016, Clare et al. 2019). The ability to leverage the efficiency 
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of model-based solutions across a broader range of model classes should make it substantially easier for 

investigators to account for the false positive errors that pervade ecological data. 
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Table 1. Variables and symbology used within the original descriptions of the observation-confirmation 

occupancy model and our reformulation here, and where applicable, differences between the observation 

confirmation protocol and other protocols. 
Symbol Description 

zi Latent binary occupancy state of site i 

yij Binary detection/non-detection at site i, occasion j; detections not verified and 

potentially include false positives. 

vij Categorical data derived from post-hoc verification of all observations at site i, 

occasion j: true positive detection(s) only, false positive detection(s) only, true and 

false positive detection(s), no detection. 

p10 A parameter describing the probability that yij = 1|zi = 0 (i.e., detection at 

unoccupied sites). Because detections at unoccupied sites can only be false 

positive, p10 = s0. 

p11 A parameter describing the probability that yij = 1|zi =1 (i.e., detection at occupied 

sites). When following the observation conformation protocol, this includes true 

and false positives (p11 = stp + sfp − [stp × sfp]). When following the site 

confirmation or calibration protocols, p11 is equal to stp (or the parameter p used in 

a standard occupancy model), because all detections at occupied sites are assumed 

to be true positive detections. 

stp (s1) Following observation confirmation and calibration protocols, a parameter that 

describes the probability of a true positive detection (i.e.,  > 0 confirmed true 

positive observations within vij) given that a site is occupied. Equivalent to the 

parameter p used in a standard occupancy model.  

sfp (s0) Following observation confirmation protocol, a parameter describing the 

unconditional probability of a false positive detection (i.e.,  > 0 confirmed false 

positive observations within vij). Under calibration protocol, may be conditional 

upon site being unoccupied (Chambert et al, 2015). Brost et al. (2018) describe the 

parameter unconditionally and as equivalent to θfp, but call it φ. 

θtp Following description here, a derived parameter describing the unconditional 

probability of a true positive detection within both yij and vij. θtp,i = zi × s1 (or zi × 

p). 

θfp Following description here, a parameter describing the unconditional probability of 

a false positive detection within both yij and vij. 
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Figure 1. Schematic outlining how the observation confirmation protocol can be implemented to deal 

with false positive error across several model classes. The protocol presupposes that multiple observations 

at any site and occasion—which may include both true and false positives following eq. (2) —are 

collapsed into binary detection/non-detection (A). At left, detections at a subset of sites and sampling 

occasions are confirmed a posteriori: the example here depicts that at a specific site and sampling 

occasion, both true (2 bear images) and false (1 coyote image) positives occur, and the confirmed 

observations are collapsed into categorical data: here, vij = 3. Unconfirmed data yij (example at right) is 

either classified as 0 (no detection) or 1(detected). The probability that yij = 1 is equivalent to the sum of 

the probabilities that the observations constituting a detection at site i and occasion j consist of entirely 

true positives (vij =1), entirely false positives (vij = 2), or a mix of both (vij = 3). The probabilities 

underpinning y and v reflect mixtures of the unconditional probabilities of true (θtp) and false positive (θfp) 

detection (B). The unconditional probability of a true positive detection is the same as the unconditional 

probability of detection—i.e., Pr(yij =1)—defined within the base model of interest (C). In turn, because 

true and false positives are assumed to be independent, the unconditional probability of a false positive 

detection can be modeled as a constant or as functionally varying in relation to site, occasion, or site-by-

occasion covariates irrespective of the model for θtp. See Appendix S1, Figure S1 for analogous figure 

following eq. (3). 
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Figure 2. Performance of the Royle-Nichols model ignoring false positive error and of the model 

extension for false positive error with regard to finite-sample population size under varying levels of 

random false positive error (% of total detections = 1, 5, or 10) and verification effort (the number of 

sampling occasions in which all observations were verified). Standard error = standard deviation of the 

posterior distribution. The number of verified samples is truncated at 50 for visualization purposes (but 

see Appendix S2, Figure S1). Smoothers depict means across different verification levels. 
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Figure 3. Performance of a standard phenological occupancy model ignoring false positive error and the 

model extension for false positive error with regard to proportion of area occupied and the time of arrival 

under varying levels of random false positive error (% of total detections = 1, 5, or 10) and verification 

effort (the number of sampling occasions in which all observations were verified). Standard error = 

standard deviation of the posterior distribution. The number of verified samples is truncated at 50 for 

visualization purposes (but see Appendix S2, Figure S2). Smoothers depict means across different 

verification levels. 
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Figure 4. Predictions of gray fox abundance across Wisconsin, USA in 2017 using a Royle-Nichols 

model assuming no false positive error (left) and using an extension accounting for false positive error 

(right). 
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Appendix S1. Extensions: other model types, other false positive protocols. 

Extension of other protocols. 

The main text focuses on leveraging the observation-confirmation protocol to deal with false positive 

error. Figure S1 presents an overview of an implementation assuming observationally exclusive false 

positive error. However, it is important to note that other protocols used to estimate false positive 

parameters can also be effective across different model types. 

  We describe here alternative formulations following different described protocols for dealing 

with false positive error when estimating relative abundance using the model of Royle and Nichols 

(2003). The hiearchical likelihood for the base model is: 

Ni ~ Poisson (λ)  

pi = 1 – (1 – r)𝑁𝑖 

yi,j ~ Bernoulli (pi)                                                      (1) 

The likelihood for the observation-confirmation extension described in the main text is: 

Ni ~ Poisson (λ)  

θtp,i =  1 – (1 – r)𝑁𝑖 

Ωi = [{(1 – θtp,i) × (1 – θfp)} {θtp,i × (1– θfp)} { θfp× (1– θtp,i)} { θfp× θtp,i }] 

vi,j ~ Categorical (Ωi)  

yi,j ~ Bernoulli (1 – Ωi,i )                                                    (2) 

Within most of the alternative models to account for false positive error, true and false positives 

are typically assumed to be conditionally exclusive. Throughout, we will denote the site-specific 

probability of a false positive (conditional on θtp,i = 0) as pfp, while continuing to present θfp,i as the 
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unconditional site-specific probability of detection. For the RN model, perhaps the most logical way to 

make θfp and θtp conditionally exclusive (such that false positives can only occur where true positives are 

impossible) is to constrain θfp to only occur at locations where abundance is zero. A formulation in the 

spirit of Royle and Link (2006) follows:  

Ni ~ Poisson (λ)  

θtp,i = 1 – (1 – r)𝑁𝑖 

θfp,i = I(Ni = 0) × pfp 

pfp < r 

yi,j ~ Bernoulli (θtp,i +  θfp,i)                                                (3) 

Here, I(Ni = 0) denotes an indicator function for whether the abundance of site i = 0, The constraint pfp  < r, 

where r is the probability of detecting a single present organism, mirrors the constraint in the original 

model for occupancy estimation that pfp < ptp.  

 Within the site-confirmation protocol (specifically, the multiple detection states version presented 

by Miller et al. 2011 and Chambert et al. 2015), the observed observations yi,j follow a categorical 

distribution pertaining to whether no species was observed (yi,j = 0), a species was observed but not 

confirmed (yi,j = 1), and a species was unambiguously observed (yi,j = 2). The parameter b describes the 

conditional probability that a positive observation is unambiguous. The likelihood for a Royle-Nichols 

variant of the multiple detection states model can be described as:  

Ni ~ Poisson (λ)  

θtp,i = 1 – (1 – r)𝑁𝑖 

θfp,i = I(Ni = 0) × pfp 

Ωj =[{(1 – (θtp,j+ θfp,i)} {(θtp,j × (1 – b) + θfp,i)} {θtp,j × b}] 
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yi,j ~ Categorical (Ωj)                                                         (4) 

 

Another variant of the site-confirmation protocol, the multiple detection methods model (Miller et 

al. 2011, Chambert et al. 2015), assumes that one sampling method (M1) generates detections yi,j that 

might either be true or false positives, and a second independent method (M2) operating during occasions 

s provides detections wi,s that can only be true positives. Let the distinct probabilities of truly detecting a 

single animal for M1 and M2 be denoted as r1 and r2. The hierarchical formulation is then: 

Ni ~ Poisson (λ)  

θtp,i,1 = 1 – (1 – r1)𝑁𝑖 

θtp,i,2 = 1 – (1 – r2)𝑁𝑖 

θfp,i = I(Ni = 0) × pfp 

yi,j ~ Bernoulli (θtp,i,1+ θfp,i) 

wi,s ~ Bernoulli (θtp,i,2) )                                                    (5) 

 Finally, following the calibration protocol (Chambert et al. 2015), an investigator might have 

collected reference detection data under experimental conditions in which the state is known (or at least, 

the exclusive conditions for θtp and θfp are known): x1 and x0 respectively denote the total number of true 

and false positive detections in the reference data set, and n1 and n0 the number of trials in which true 

positive detections were possible or not—an example trial might be the presentation of a single image or 

recording in which the species of interest is present or not present. One way to specify the Royle-Nichols 

model likelihood hierarchically following the calibration protocol is:  

Ni ~ Poisson (λ)  

θtp,i = 1 – (1 – r)𝑁𝑖 
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θfp,i = I(Ni = 0) × pfp 

x1 ~Binomial(n1, r) 

x0 ~Binomial(n0, pfp) 

yi,j ~ Bernoulli (θtp,i+ θfp,i)                                                  (6) 

 

The key to implementing using these different protocols within different model classes while 

assuming that true and false positives are conditionally exclusive is only slightly more complex than 

extending models assuming inclusive error. One must redefine θtp,i following the original model 

description, condition θfp,i so that a false positive is only possible under conditions when a true positive 

detection is impossible and alter the statements associated with the auxiliary data (if available) 

appropriately. For example, under Roth et al’s. (2014) PA model, true positive detections are only 

possible at occupied sites once the species has arrived—in other words, θtp,i,j = zi × p × I(j ≥ xi). If the 

probability of a false positive detection is conditional upon a true positive detection being impossible, 

then false positives can either occur at unoccupied sites (zi = 0), or at occupied sites prior to the species 

arrival (zi = 1, but j < xi). That is, θfp,i,,j = ((1 – zi) × pfp) + zi × I(j < xi) × pfp. Appendix S4 presents code 

used to fit the RN and PA models accounting for false positive error following the site confirmation 

(multiple detection states) protocol assuming that true and false positives are conditionally exclusive. 

Importantly, it seems that the assumption that true and false positives are conditionally exclusive 

may not be strictly necessary for the full latent or calibration models. For example, the latent estimator we 

fit using informed priors (see main text, Appendix S2, and Appendix S4) relaxed the assumption that all 

false positives were site-level. We believe that fitting this model shares a similar constraint with the full 

estimator of Royle and Link (2006) in that the conditional probability of a true positive (if the species can 

be detected) must be greater than the probability of a false positive (here, unconditional), because all 

detections are of unknown quantity. Note, however, that we did not strictly enforce this constraint: rather, 
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our simulation settings typically gave rise to situations in which θfp was less than the average value of r or 

p, and thus our priors tended to reflect the constraint (more details in Appendix S4). Applied to the RN 

model, the likelihood looked like: 

Ni ~ Poisson (λ)  

θtp,i = 1 – (1 – r)𝑁𝑖 

θfp  < r 

yi,j ~ Bernoulli (θtp,i + θfp – [θtp,i × θfp])                                       (7) 

 

Similarly, the calibration-based estimator described by Brost et al. (2018) assumes inclusive 

error. This model relies on auxiliary detections in controlled settings where true positive detections cannot 

occur. Brost et al. (2018) present a situation in which only false positives can be experimentally 

calibrated, which is a reasonable circumstance for laboratory studies, but we assume below one also 

might have calibrated true positives. For the RN likelihood, each positive trial reflects the ability to detect 

a single organism (i.e., it is implied N = 1). The likelihood is: 

Ni ~ Poisson (λ)  

θtp,i = 1 – (1 – r)𝑁𝑖 

x1 ~Binomial(n1, r) 

x0 ~Binomial(n0, θfp) 

yi,j ~ Bernoulli (θtp,i + θfp – [θtp,i × θfp])                                        (8) 

Based upon some exploratory analysis, extending the site confirmation models to accommodate 

inclusive or observation level false positives appears to require further constraints on some combination 
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of b, pfp, and ptp as there is some confounding between the probability that a true positive occurred but 

was not confirmed and the probability that a false positive detection occurred. 

Observation Confirmation Protocol for the Spatial Royle-Nichols Model 

The spatial Royle-Nichols model (Ramsay et al. 2015) uses zi to denote whether individuals i = 1,2…M 

exist within a geographic space ||S|| with probability ψ. The state variable of interest, population size N in 

||S||, is estimated as �̂� = ∑ 𝑧𝑖
𝑀
𝑖=1 , and population density is derived as �̂�/Area||S||. Individuals have distinct 

activity centers located within ||S|| and the coordinates of these activity centers are denoted as si; 

individuals are detected at any of j detectors on given sampling occasions k with probability pi,j. The 

unconditional probability of detection is a function of whether an individual exists, the distance between 

an individual’s latent activity center and the location of the detector, di,j, and the parameters g0 and σ that 

respectively relate to the probability of individual detection at di,j = 0 and the rate at which individual 

encounter probability decays, and can be expressed as pi,j = g0(–di,j/2σ2) × zi. Individuals are not 

distinguished, so these parameters are inferred by marginalizing across the latent individual encounter 

histories at a specific detector such that the unconditional probability of detection is described as θtp,j =1 – 

∏ (1 − 𝑝𝑖,𝑗)𝑀
𝑖=1 . The hierarchical likelihood is: 

zi ~ Bernoulli (ψ)      

pi,j = g0(–di,j/2σ2) × zi 

θtp,j = 1 – ∏ (1 − 𝑝𝑖,𝑗)𝑀
𝑖=1  

Ωj = [{(1 – θtp,j) × (1 – θfp)}{θtp,j × (1– θfp)} { θfp × (1– θtp,j)} { θfp × θtp,j }] 

Here, vj,k ~Categorical (Ωj) and yj,k ~ Bernoulli (1 – Ω1,j). Critically, θtp,j has no support at 0, and as a 

result, without re-specifying the SRN model (e.g., by truncating the detection distance at a certain point), 

true and false positives cannot be conditionally exclusive. Although not directly considered within the 

manuscript, code required to simulate and fit extended SRN models is found in within Appendix S4. As a 
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general proof of concept that the model is sensitive to false positive error and an extended version can 

reduce bias, we present very limited simulation results here.  

We simulated 100 replicate datasets to demonstrate proof of concept. Sampling parameters 

included a population size of 50 organisms; ||S|| defined as a 20 × 20 unit square; detection parameters g0 

= 0.15 and σ = 0.5; 196 detector locations within a 14 × 14 square grid with 1 unit spacing, and 20 

sampling intervals: only the location of individual activity centers varied across simulation replicates. 

False positive observations (as 10% of all detections) and a verification sample were simulated following 

practices described in the main text; the size of the verification sample varied as {10 20 30 40 50} 

replicated 20 times each. We compared the standard model and the false positive extension on the basis of 

relative bias of �̂�. The estimator ignoring false positive error was strongly biased (% bias = 81) at a 10% 

false positive rate; the extended model was not unbiased—perhaps due to small sample size 

considerations—but exhibited better performance (% bias = 25). Clearly, more research is needed to 

understand the general sensitivity of the SRN model to false positive error. Given the narrow range of 

parameter space within which the base model is unbiased even without false positive error (Ramsey et al. 

2015), we expect that it is more likely to see usage as a component within integrated models (Sun et al. 

2019), and we suggest that it may be more fruitful to explore sensitivity to false positives within this class 

of model. 

Sometimes the assumed form (union) does not matter: spatiotemporal occupancy models 

Finally, we wish to acknowledge that there are some models for which the assumed form for false 

positive error or the protocol employed to estimate false positive error should make little to no difference 

at all. An excellent example is the spatiotemporal occupancy model described by Hepler et al. (2018). 

This model leverages spatiotemporal autoregressive parameters, and the occupancy state at every site i 

may change across all time periods t; zi,t is assumed distributed as Bernoulli(ψi,t) and detection/non-

detection assumed distributed as Bernoulli(zi,t × p), where each term’s interpretation is consistent with its 

interpretation within a standard closed occupancy model.  As noted in the main text, false positives 
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happening at the same time and place as true positives do not change the detection/non-detection data, 

and a model that assumes inclusive false positive error will provide exactly the same estimates of θtp as a 

model that assumes observationally exclusive false positive error. Because the model of Hepler et al. 

(2018) operates under the assumption that the state variable is distinct for each site by occasion, a 

conditionally exclusive model form (e.g., false positives are only possible conditional on zi,t = 0) ends up 

exactly equivalent to an observationally exclusive model form, and all three model forms will result in the 

same estimate of θtp. 
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Figure S1. Schematic how the observation confirmation protocol can be implemented to deal with false 

positive error across several model classes when assuming observationally exclusive false positive error 

(c.f. Figure 1, and following eq. 3 in the main text): the figure largely mirrors Figure 1 in the main text. 

The example above presupposes that any detection at a site during a specific interval can be classified as 

either false positive or true positive, but not both (A, c.f. Figure 1, which presupposes that the 

observations within a specific interval at a specific site may be all true positives, all false positives, or a 

mixture of the two). At left, detections at a subset of sites and sampling occasions are confirmed a 

posteriori: the example here depicts that a detection on occasion 1 was confirmed as a false positive (vi,1 = 

2), and a detection at the same site on occasion 2 was confirmed as a true positive (vi,2 = 1). Note that in 

contrast, Figure 1 depicts a set of observations occurring at the same site during a single sampling 

occasion (rather than multiple occasions). The unconfirmed data yij (example at right) is either classified 

as 0 (no detection) or 1(detected), and the example on the right shows the unconfirmed analogue to the 

data on the left (i.e, yi,1 = 1, yi,2 = 1). The probability that yij = 1 is equivalent to the union of the 

probabilities that a detection is a true positive (vij =1) or a false positive (vij = 2). The probabilities 

underpinning y and v reflect mixtures of the unconditional probabilities of true (θtp) and false positive (θfp) 

detection (B).  C follows description from Figure 1. It would be perfectly reasonable to use the model 

structure depicted here to analyze the data in Figure 1 if one defined a false positive detection (vij = 2) as 

occurring when all observations in vij were confirmed as false positive, and if one defined a true positive 

detection (vij = 1) as occurring when >0 observations in vij were confirmed as true positive. 
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Appendix S2. Additional details associated with simulation study.  

Most information here relates to tables and figures referred to within the main text. We briefly expand 

upon the description of the site-confirmation simulation described in the main text, elaborate upon the 

presumed offsetting biases observed when fitting the PA model of Roth et al. (2014), and also describe 

the results of a study focusing on model transferability and informed priors (with implications for fully 

latent estimators) here. 

Enacting the site-confirmation protocol 

 Chambert et al. (2015) recognized that data collected under the observation confirmation protocol could 

be analyzed using a site confirmation approach if confirmed false positives were discarded and only 

confirmed true positives were used (the ‘multiple detection state’ model described by Miller et al. 

[2011]).  Their simulation results demonstrate that both estimators are unbiased when false positives and 

true positives are simulated as being conditionally exclusive at the site level, but that the observation 

confirmation protocol is slightly more precise, and the likelihood is more unimodal.  

 We followed Chambert et al. (2015) in implementing the site-confirmation model referred to 

within the main text. From the base scenarios (constant false positive error) and simulation replicates 

described in the main text, we removed all confirmed false positives, and reclassified all observations 

within y to enforce consistency with the multiple detection states model so that yi,j,sim = 0 if there was no 

detection, yi,j,sim = 1 if there was a simulated detection but no simulated confirmation of at least 1 true 

positive, and yi,j,sim = 2 if there was a simulated detection and a simulated confirmation that at least one 

observation was true positive. The likelihood used is described in Appendix S1, and sample code is 

presented in Appendix S4. Figures S3 and S4 depict results, and results are also included within the 

germane tables below. For each of the 6 RN scenarios, parameters associated with between 6 and 26 

simulated datasets failed to converge (n provided in each table), even with prolonged run-times. This is 

potentially consistent with Chambert et al.’s (2015) observation that the site confirmation model had 
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multiple optima and was sensitive to starting values; the effect appeared more pronounced for scenarios 

4- 6, in which observations were fairly sparse. The PA model exhibited no convergence problems. Note 

that all values in each table represent an average across all numbers of verified samples (non-converged 

simulated datasets are censored). 

A note on the offsetting biases observed within the PA model.  

In the main text, we note that PA models ignoring false positive error estimated arrival time with slightly 

less bias than models accounting for it when false positive error was considered impossible prior to 

occasion 5 and when average site-specific arrival was occasion 6. This was a somewhat surprising result. 

We fit each dataset simulated under this scenario to a standard PA model after getting rid of all simulated 

false positives: the standard PA model when there were no false positives was still slightly more biased 

than the standard PA model when false positives were included within the dataset (see Table S6). Given 

that the simulations performed within Roth et al. (2014) suggest the estimator is unbiased given a large 

sample and larger values of p, we believe this result arises because the small biases associated with false 

positives slightly prior to the time of arrival are being offset by small-sample biases associated with false 

negative error (i.e., with low p, the observed time of arrival is often much later than the actual arrival). 

Evaluating the transferability of θfp using informed priors (and implications for fully latent models) 

An appealing property of the generalized inclusive structure is that the unconditional θfp is a component of 

the model that does not necessarily need to be changed every time θtp is re-specified. This reflects the 

reality that for any specific detection/non-detection data, correctly classified data and misclassified data 

were generated from the same processes underlying the distribution (abundance, phenology, etc.) and 

perception of the focal organism relative to potential sources of misclassification. This suggests that if 

data or computational resources (and we note that incorporating data to help account for false positive 

error increases the number of nodes within the graphical model) are lacking, one might be able to use an 

informative prior for θfp given previous estimates of the parameter from a distinct (and more quickly fit) 
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model, or estimates from a comparable dataset. To briefly explore transferability across models, we fit the 

original observation confirmation occupancy model described by Chambert et al. (2015; i.e., θtp,i = zi × pi) 

to every simulated dataset described previously, and then fit a model with the correct (i.e., RN or PA) 

structure for θtp,i and for which θfp (or any variability in θfp,i) was strictly informed by a prior distribution 

derived from the posterior distribution of the false positive parameter estimated by the Chambert et al. 

(2015) occupancy model (code in Appendix S4).  

 Using an informed prior for false positive error generally resulted in parameter estimates that 

were strongly correlated with estimates produced when confirmation results were directly incorporated 

into the likelihood, particularly for the RN model (Figure S8), and estimator performance scarcely 

differed (Appendix S2, Tables S1 – S9). Discrepancies did not appear to be related to the size of the 

verification sample; instead, relative to including confirmed observations in the likelihood, using an 

informed prior tended to result in slightly smaller estimates of proportion of area occupied and slightly 

larger estimates of arrival time (Figure S9).  

 Thus, results suggest that with reasonably well informed priors, a correctly-specified model for 

both the true positive and false positive process, and, we think, under the condition that the probability of 

a false positive detection is generally smaller than the probability for a true positive detection (as 

simulated here, values of θfp were far less than the constant r or p [or if varying across sites, their average 

values]), a fully latent estimator is extensible and effective for several model classes. It also suggests 

certain paths for increased efficiency if the model class in question is computationally demanding: one 

could estimate the unconditional probability of a false positive detection (and perhaps select an 

appropriate model structure for false positive error) within an occupancy model framework, and then use 

the results to set an informed prior within the model of interest. Although not depicted here, we note that 

estimates of θfp did change slightly across model structures–e.g., the posteriors from an RN model did not 

look exactly like the prior (itself, the posterior from an occupancy model), which suggests there is some 

waterbed effect associated with θfp and θtp such that slight changes to the specification of one will impact 
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the estimate of the other. The slight changes between the occupancy structure and the RN or PA model 

structures (again, using the same [generating] covariates) did not appear particularly consequential within 

the models considered. However, we caution that further exploration is warranted to understand the 

transferability of θfp estimates and how robust fully latent estimators are to poorly specified models. 
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Figure S1. Performance of the Royle-Nichols model ignoring false positive error and the model extension 

for false positive error with regard to finite-sample population size under varying levels of random false 

positive error (% of total observations = 1, 5, or 10) and verification effort (# of verified samples, as in 

main text). Standard error  = standard deviation of the posterior distribution. The sole distinction from 

Figure 2 in main text is that the number of verified samples is not truncated at 50. Smoothers fit to means. 
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Figure S2. Performance of a standard phenological occupancy model ignoring false positive error and the 

model extension for false positive error with regard to proportion of area occupied and the time of arrival 

under varying levels of random false positive error (% of total observations = 1, 5, or 10) and verification 

effort (# of verified samples). Standard error  = standard deviation of the posterior distribution. The sole 

distinction from Figure 3 in main text is that the number of verified samples is not truncated at 50. 

Smoothers depict mean values. 
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Figure S3. Performance of the Royle-Nichols model ignoring false positive error and the model extension 

for false positive error following the site confirmation protocol with regard to finite-sample population 

size under varying levels of random false positive error (% of total observations = 1, 5, or 10) and 

verification effort (# of verified samples). Standard error = standard deviation of the posterior 

distribution. Results based on the same simulation data used within Figure S1 and Figure 2 in the main 

text, but manipulated to remove confirmed false positives. Smoothers depict mean values. 
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Figure S4. Performance of a standard phenological occupancy model ignoring false positive error and the 

model extension for false positive error following the site confirmation protocol with regard to proportion 

of area occupied and the time of arrival under varying levels of random false positive error (% of total 

detections = 1, 5, or 10) and verification effort (the # of sampling occasions in which all observations 

were verified). Standard error = standard deviation of the posterior distribution. Results based on the same 

simulation data used within Figure S2 and Figure 3 in the main text, but manipulated to remove 

confirmed false positives. Smoothers depict mean values. 
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Figure S5. Performance of the standard Royle-Nichols model (when 0 observations are confirmed; 

green/gray) and model extensions for false positive error with regard to finite-sample population size 

under different directional covariance between true and false positive detections, and when different 

models for false positive error (either a misspecified constant model in blue/magenta or the generating 

model in yellow/orange) were fit. Standard Error = standard deviation of the posterior distribution. Data 

used includes scenarios 7 and 8 described below in Table S1. Horizontal bars at left depict the mean 

values for each model. Lines and shading (often overlapping) depict smoothed means and SE. 
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Figure S6. Performance of the standard phenological occupancy model (when 0 observations are 

confirmed, grey/green) and the model extension for false positive error with finite-sample population size 

with regard to proportion of area occupied under different directional covariance between true and false 

positive detections, and when different models for false positive error (either a misspecified constant 

model in blue/magenta or the generating model in yellow/orange) were fit.  Standard Error = standard 

deviation of the posterior distribution. Data used includes scenarios 4-9 described below in Table S5. 

Horizontal bars at left depict the mean values for each model. Smoothers depict mean values at different 

levels of verification 
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Figure S7 Performance of the standard phenological occupancy model (when 0 observations are 

confirmed, grey/green) and the model extension for false positive error with finite-sample population size 

with regard to expected arrival time under different directional covariance between true and false positive 

detections, and when different models for false positive error (either a misspecified constant model in 

blue/magenta or the generating model in yellow/orange) were fit.  Standard Error = standard deviation of 

the posterior distribution. Data used includes scenarios 4-9 described below in Table S5. Horizontal bars 

at left depict the mean values for each model. Smoothers depict mean values at different levels of 

verification. 
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Figure S8. Correlation between true values, estimates made when incorporating confirmed observations, 

and estimates made when using an informed prior rather than incorporating confirmed observations in the 

likelihood. 
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Figure S9. Noise in the correlations between estimates of PAO and arrival generated when including 

confirmed data in the likelihood vs. using an informed prior is not related to the size of the confirmation 

sample. 
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Table S1. Scenarios considered when evaluating the Royle-Nichols and extended models. β describes 

abundance terms, α describes detection terms. X1 is a vector of simulated covariates that influences 

abundance, and for some scenarios, the likelihood of false positive observation. 

Scenario β0 β1 α0 α1 False Positive Model 

1 0 1 –1.73 1 θfp = 0.10 of θfp+ θtp 

2 0 1 –1.73 1 θfp = 0.05 of θfp+ θtp 

3 0 1 –1.73 1 θfp = 0.01 of θfp+ θtp 

4 –1.50 1 –1.73 1 θfp = 0.10 of θfp+ θtp 

5 –1.50 1 –1.73 1 θfp = 0.05 of θfp+ θtp 

6 –1.50 1 –1.73 1 θfp = 0.01 of θfp+ θtp 

7 –1.50 1 –1.73 1 logit(θfp,i) =  -6 + 1X1,i 

8 –1.50 1 –1.73 1 logit(θfp,i) =  –6 - 1X1,i 
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Table S2. Mean error for parameters and relative bias of finite-sample population size for the standard 

and extended RN models across all scenarios and amounts of verification. 

    Mean Error (Mean Absolute Bias) 
Relative Bias 

(%) 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑁 ∗̂ 

Standard 

1 0.71 -0.13 -0.58 -0.2 86 

2 0.42 -0.08 -0.35 -0.12 45 

3 0.1 -0.02 -0.08 -0.03 10 

4 0.71 -0.2 -0.48 -0.19 79 

5 0.37 -0.1 -0.28 -0.12 38 

6 0.08 -0.03 -0.07 -0.01 9 

7 0.28 0.00* -0.23 -0.1 37 

8 0.61 -0.32 -0.35 -0.16 51 

False 

Positive 

Extension 

1 -0.01 0.01 -0.01 0.00 2 

2 -0.02 0.01 0.00 0.00 1 

3 -0.01 -0.01 0.00 0.00 1 

4 -0.02 -0.01 -0.01 0.01 2 

5 -0.06 0.02 0.00 0.00 1 

6 -0.03 0.01 -0.01 0.02 1 

7 -0.03 0.00 -0.01 0.01 2 

8 -0.06 0.00 0.00 0.01 -1 

1A -0.04 0.02 0.00 0.01 0 

2A -0.04 0.02 0.01 0.01 0 

3A -0.02 0.00 0.01 0.00 0 

4A -0.02 -0.01 -0.01 0.01 2 

5A -0.06 0.02 0.00 0.00 1 

6A -0.03 0.01 0.00 0.02 1 

7A -0.03 -0.01 -0.01 0.01 1 

8A -0.07 0.00 0.00 0.01 -1 

7B -0.01 0.04 -0.02 0.00 6 

8B -0.06 -0.03 0.01 0.01 -2 

1C (292) D 0.00 -0.02 0.08 -0.05 1 

2C (291) D -0.01 -0.01 0.05 -0.03 1 

3C (293) D 0.00 -0.01 0.02 -0.01 0 

4 C (282)D -0.01 -0.01 0.03 -0.01 5 

5 C (274)D -0.06 0.01 0.02 -0.01 4 

6 C (277)D -0.03 0.01 0.00 0.01 3 
AFit using an informed prior for θfp derived from estimates from an occupancy model following the 

observation confirmation protocol. 
BA slightly mis-specified model that assumes θfp is constant. 
CFit following the site-confirmation protocol. 
DThe number of simulated datasets for which fitted models exhibited convergence (300 = max) 

*Throughout, 0.00 used as a stand-in for absolute values < 0.01., or absolute % < 1 
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Table S3. Frequentist coverage of 95% CRI associated with parameters and finite-sample population size 

for the standard and extended RN models across the scenarios and amounts of verification considered. 

    Coverage 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑁 ∗̂ 

Standard 

1 0 0.40 0.00 0.22 0.00 

2 0.093 0.76 0.18 0.56 0.08 

3 0.840 0.91 0.87 0.89 0.87 

4 0.066 0.56 0.09 0.52 0.01 

5 0.456 0.82 0.46 0.74 0.19 

6 0.906 0.93 0.90 0.88 0.90 

7 0.636 0.94 0.57 0.78 0.25 

8 0.066 0.29 0.24 0.63 0.06 

False 

Positive 

Extension 

1 0.98 0.95 0.95 0.93 0.95 

2 0.99 0.94 0.96 0.95 0.95 

3 0.98 0.95 0.97 0.96 0.96 

4 0.97 0.94 0.96 0.95 0.96 

5 0.97 0.96 0.96 0.92 0.96 

6 0.98 0.93 0.93 0.92 0.97 

7 0.97 0.93 0.94 0.95 0.95 

8 0.98 0.92 0.96 0.96 0.92 

1A 0.98 0.95 0.95 0.94 0.92 

2A 0.99 0.95 0.96 0.95 0.96 

3A 0.99 0.94 0.96 0.96 0.96 

4A 0.98 0.94 0.97 0.95 0.96 

5A 0.98 0.96 0.96 0.93 0.94 

6A 0.98 0.92 0.92 0.92 0.98 

7A 0.97 0.94 0.94 0.96 0.95 

8A 0.97 0.93 0.95 0.95 0.92 

7B 0.97 0.93 0.94 0.96 0.9 

8B 0.97 0.91 0.96 0.95 0.92 

1C(292) D 0.91 0.93 0.88 0.89 0.74 

2C(291) D 0.94 0.94 0.91 0.94 0.73 

3C(293) D 0.95 0.95 0.96 0.96 0.73 

4C(282)D 0.94 0.93 0.96 0.96 0.65 

5C (274)D 0.92 0.95 0.95 0.93 0.67 

6C (277)D 0.95 0.94 0.92 0.91 0.65 
AFit using an informed prior for θfp derived from estimates from an occupancy model following the 

observation confirmation protocol. 
BA slightly mis-specified model that assumes θfp is constant. 
CFit following the site-confirmation protocol. 
DThe number of simulated datasets for which fitted models exhibited convergence (300 = max) 

*Throughout, 0.00 used as a stand-in for absolute values < 0.01., or absolute % < 1 
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Table S4. Root mean squared error for parameters and relative bias of finite-sample population size for 

the standard and extended RN models across the scenarios and amounts of verification considered. 

    RMSE 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑁 ∗̂ 

Standard 

1 0.71 0.14 0.58 0.2 280 

2 0.42 0.09 0.36 0.13 150 

3 0.1 0.07 0.11 0.07 39 

4 0.786 0.21 0.49 0.21 59 

5 0.377 0.14 0.28 0.16 28 

6 0.173 0.12 0.13 0.12 9.0 

7 0.29 0.11 0.24 0.15 27 

8 0.61 0.32 0.36 0.20 37 

False 

Positive 

Extension 

1 0.11 0.07 0.10 0.07 33 

2 0.11 0.06 0.10 0.07 29 

3 0.10 0.06 0.08 0.06 25 

4 0.17 0.12 0.12 0.11 7.2 

5 0.17 0.12 0.12 0.11 6.7 

6 0.16 0.12 0.12 0.11 6.0 

7 0.17 0.13 0.12 0.11 7.2 

8 0.19 0.13 0.12 0.11 6.6 

1A 0.12 0.07 0.10 0.07 32 

2A 0.11 0.06 0.10 0.07 28 

3A 0.10 0.06 0.09 0.06 25 

4A 0.18 0.12 0.12 0.11 7.4 

5A 0.17 0.12 0.12 0.11 6.9 

6A 0.16 0.12 0.12 0.11 6.5 

7A 0.17 0.13 0.13 0.11 7.3 

8A 0.19 0.13 0.12 0.11 6.9 

7B 0.17 0.13 0.12 0.10 8.1 

8B 0.19 0.14 0.12 0.11 6.9 

1C (292)D 0.12 0.07 0.13 0.08 51 

2C (291)D 0.11 0.06 0.11 0.06 52 

3C (293)D 0.09 0.07 0.09 0.06 47 

4C (282)D 0.18 0.12 0.12 0.11 16 

5C (274)D 0.18 0.12 0.12 0.11 14 

6C (277)D 0.16 0.12 0.12 0.11 13 
AFit using an informed prior for θfp derived from estimates from an occupancy model following the 

observation confirmation protocol. 
BA slightly mis-specified model that assumes θfp is constant. 
CFit following the site-confirmation protocol. DThe number of simulated datasets for which fitted models 

exhibited convergence (300 = max) 

*Throughout, 0.00 used as a stand-in for absolute values < 0.01., or absolute % < 1 
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Table S5. Scenarios considered when evaluating the arrival model of Roth et al. (2014) and extended 

models. β describes occupancy terms, α describes detection terms. X1 is a vector of simulated covariates 

that influences abundance, and for some scenarios, the likelihood of false positive observation. φ denotes 

the simulated expected occasion of arrival. X1 is a vector of simulated covariates that influences the 

probability of occupancy, and for some scenarios, the likelihood of false positive observation. 

Scenario β0 β1 α0 α1 φ 

Start of 

False 

Positives 

False Positive Model 

1 0 0.5 -2 0.5 6 >0 θfp = 0.10 of θfp+ θtp 

2 0 0.5 -2 0.5 6 >0 θfp = 0.05 of θfp+ θtp 

3 0 0.5 -2 0.5 6 >0 θfp = 0.01 of θfp+ θtp 

4 0 0.5 -2 0.5 6 5 logit(θfp,i) =  -6 + 1X1,i 

5 0 0.5 -2 0.5 6 5 logit(θfp,i) =  –6 - 1X1,i 

6 0 0.5 -2 0.5 6 3 logit(θfp,i) =  -6 + 1X1,i 

7 0 0.5 -2 0.5 6 3 logit(θfp,i) =  –6 - 1X1,i 

8 0 0.5 -1 0.5 6 5 logit(θfp,i) =  -6 + 1X1,i 

9 0 0.5 -1 0.5 6 5 logit(θfp,i) =  –6 - 1X1,i 
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Table S6. Estimator error and relative bias associated with parameters using the standard and extended 

arrival occupancy models across the scenarios in table S5. 

    Mean Error (Mean Absolute Bias) Relative Bias (%) 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑃𝐴�̂� �̂� 

Standard 

1 0.36 0.03 -0.22 -0.04 16 -42 

2 0.18 0.02 -0.13 -0.02 9 -22 

3 0.07 0.03 -0.04 -0.01 3 -3 

4 0.19 0.17 -0.01 -0.02 8 -1 

5 0.24 -0.21 -0.04 -0.02 11 -1 

6 0.18 0.17 -0.04 -0.03 8 -1 

7 0.28 -0.24 -0.1 -0.03 13 -1 

8 0.11 0.13 -0.04 -0.01 5 0 

9 0.17 -0.15 -0.07 -0.01 8 1 

False 

Positive 

Extension 

1 0.03 0.07 -0.01 0.00* 0.01 2 

2 0 0.05 -0.01 0.00 0.01 2 

3 0.01 0.03 -0.02 -0.01 0.00 2 

4 0.05 0.09 -0.01 0.00 0.02 1 

5 0.02 -0.01 0.00 0.00 0.01 2 

6 0.00 0.06 0.00 0.00 0.00 2 

7 0.02 0.00 -0.11 0.00 0.01 2 

8 0.00 0.07 0.00 0.00 0.01 2 

9 0.01 0.02 -0.01 0.01 0.00 2 

1A 0.03 0.08 -0.01 0.00 0.01 2 

2A -0.06 0.06 -0.01 0.01 -0.02 2 

3A -0.1 0.05 -0.01 0.00 -0.04 3 

4A 0.06 0.11 -0.01 0.00 0.03 1 

5A 0.05 0.04 0.01 0.01 0.04 3 

6A -0.02 0.06 -0.01 0.00 0.03 2 

7A 0.06 0.05 -0.01 0.01 0.03 3 

8A 0.04 0.04 -0.01 0.00 0.02 2 

9A 0.03 0.02 0.02 0.00 -0.05 2 

4B 0.06 0.13 0.00 0.00 0.03 1 

5B 0.06 -0.1 -0.01 0.00 0.03 2 

6B 0.01 0.13 0.01 0.00 0.00 1 

7B 0.05 -0.11 -0.02 0.00 0.02 2 

8B 0.02 0.10 0.00 0.00 0.01 1 

9B 0.03 -0.03 -0.01 0.01 0.01 2 

1C 0.02 0.08 0.04 -0.02 0.02 1 

2C -0.01 0.05 0.02 -0.01 0.02 0 

3C -0.01 0.04 0.00 -0.01 0.02 -1 
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Table S6 (Continued) 

 

    Mean Error (Mean Absolute Bias) Relative Bias (%) 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑃𝐴�̂� �̂� 

Standard 

Estimator, 

fit only 

using 

simulated 

true 

positivesD 

 

1 0.04 0.07 -0.01 0 0.02 2 

2 0.02 0.04 -0.01 0 0.02 2 

3 0.04 0.04 -0.02 0.01 0.02 2 

4 0.05 0.05 -0.02 0.01 0.02 1 

5 0.02 0.05 0 0 0.01 2 

6 0.03 0.04 0 0 0.01 2 

7 0.03 0.03 -0.02 0 0.01 2 

8 0 0.04 0 0 0 2 

9 0.01 0.04 -0.01 0.01 0 2 

1 0.04 0.07 -0.01 0 0.02 2 

 
 

AFit using an informed prior for θfp derived from estimates from an occupancy model following the 

observation confirmation protocol. 
BA slightly misspecified model that assumes θfp is constant. 
CFit following the site confirmation protocol. 
DThis is the standard estimator fit only to simulated true positives, and as noted in the appendix text, there 

appears to be some small-sample bias associated estimates of arrival time. 

*Throughout, 0 (or 0.00) used to denote an absolute value smaller than 0.01 after rounding (or < 1 if %). 
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Table S7. Frequentist coverage of 95% CRI associated with parameters using the standard and extended 

arrival occupancy models across the scenarios in table S5. 

    Coverage 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑃𝐴�̂� �̂� 

Standard 

1 0.54 0.94 0.41 0.9 0.25 0.1 

2 0.84 0.94 0.71 0.93 0.64 0.35 

3 0.94 0.93 0.94 0.95 0.93 0.82 

4 0.85 0.90 0.92 0.92 0.65 0.91 

5 0.81 0.76 0.91 0.94 0.53 0.93 

6 0.84 0.87 0.94 0.93 0.71 0.50 

7 0.67 0.74 0.85 0.97 0.40 0.53 

8 0.89 0.86 0.87 0.91 0.26 0.92 

9 0.82 0.84 0.78 0.90 0.08 0.95 

False 

Positive 

Extension 

1 0.96 0.93 0.95 0.96 0.97 0.93 

2 0.96 0.93 0.96 0.95 0.95 0.95 

3 0.95 0.92 0.97 0.95 0.96 0.94 

4 0.95 0.94 0.92 0.96 0.94 0.93 

5 0.96 0.95 0.93 0.95 0.94 0.93 

6 0.95 0.93 0.95 0.94 0.97 0.96 

7 0.94 0.94 0.95 0.97 0.96 0.94 

8 0.95 0.93 0.95 0.95 0.97 0.90 

9 0.96 0.95 0.93 0.96 0.97 0.94 

1A 0.97 0.93 0.97 0.95 0.97 0.94 

2A 0.95 0.93 0.96 0.94 0.94 0.94 

3A 0.91 0.93 0.97 0.96 0.91 0.92 

4A 0.94 0.94 0.93 0.95 0.96 0.94 

5A 0.92 0.94 0.95 0.94 0.96 0.92 

6A 0.93 0.95 0.96 0.93 0.95 0.95 

7A 0.94 0.94 0.95 0.94 0.96 0.94 

8A 0.92 0.94 0.94 0.96 0.96 0.90 

9A 0.94 0.93 0.94 0.95 0.96 0.93 

4B 0.94 0.9 0.92 0.95 0.93 0.92 

5B 0.94 0.9 0.93 0.95 0.92 0.93 

6B 0.95 0.92 0.94 0.94 0.98 0.95 

7B 0.93 0.9 0.95 0.97 0.93 0.93 

8B 0.93 0.91 0.95 0.95 0.93 0.91 

9B 0.96 0.94 0.93 0.95 0.97 0.92 

 1C 0.96 0.93 0.93 0.95 0.98 0.93 

 2C 0.96 0.94 0.95 0.94 0.96 0.94 

 3C 0.97 0.94 0.97 0.95 0.96 0.93 

AFit using an informed prior for θfp derived from estimates from an occupancy model following the 

observation confirmation protocol. 
BA slightly mis-specified model that assumes θfp is constant. 
CFit following the site confirmation protocol. 
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Table S8. Root mean squared error associated with parameters using the standard and extended arrival 

occupancy models across the scenarios in table S5. 

    RMSE 

 Estimator Scenario �̂�0 �̂�1 �̂�0 �̂�1 𝑃𝐴�̂� �̂� 

Standard 

1 0.36 0.18 0.224 0.08 0.08 2.52 

2 0.23 0.17 0.15 0.08 0.05 1.36 

3 0.17 0.16 0.1 0.08 0.03 0.4 

4 0.23 0.21 0.09 0.08 0.04 0.23 

5 0.25 0.24 0.1 0.07 0.06 0.24 

6 0.22 0.22 0.09 0.08 0.04 0.64 

7 0.3 0.26 0.12 0.08 0.07 0.65 

8 0.15 0.18 0.06 0.06 0.03 0.15 

9 0.19 0.18 0.09 0.06 0.04 0.14 

False 

Positive 

Extension 

1 0.16 0.19 0.09 0.08 0.03 0.28 

2 0.16 0.17 0.09 0.08 0.03 0.25 

3 0.16 0.17 0.08 0.08 0.02 0.24 

4 0.18 0.18 0.1 0.08 0.03 0.25 

5 0.16 0.17 0.1 0.07 0.03 0.27 

6 0.17 0.18 0.09 0.08 0.02 0.23 

7 0.17 0.17 0.09 0.08 0.03 0.26 

8 0.13 0.15 0.06 0.06 0.01 0.15 

9 0.12 0.13 0.06 0.06 0.01 0.17 

1A 0.17 0.2 0.09 0.08 0.03 0.28 

2A 0.18 0.18 0.09 0.08 0.03 0.27 

3A 0.19 0.17 0.09 0.08 0.03 0.27 

4A 0.19 0.19 0.1 0.08 0.03 0.25 

5A 0.18 0.18 0.1 0.07 0.03 0.27 

6A 0.19 0.18 0.09 0.08 0.02 0.24 

7A 0.19 0.18 0.09 0.08 0.03 0.27 

8A 0.14 0.15 0.07 0.06 0.01 0.17 

9A 0.14 0.14 0.06 0.06 0.01 0.18 

4B 0.18 0.2 0.1 0.07 0.03 0.24 

5B 0.16 0.19 0.1 0.07 0.03 0.27 

6B 0.18 0.2 0.09 0.08 0.02 0.23 

7B 0.17 0.19 0.09 0.08 0.03 0.26 

8B 0.13 0.16 0.06 0.06 0.01 0.15 

9B 0.12 0.14 0.06 0.06 0.01 0.17 

1C 0.17 0.19 0.1 0.08 0.03 0.29 

2C 0.16 0.18 0.09 0.08 0.03 0.25 

3C 0.16 0.17 0.08 0.08 0.02 0.25 

 

AFit using an informed prior for θfp derived from estimates from an occupancy model following the 

observation confirmation protocol. 
BA slightly mis-specified model that assumes θfp is constant. 
CFit following the site confirmation protocol. 
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Appendix S3. Details associated w/ case study. 

The data used here were trail camera images classified via crowdsourcing from 91,276 24-h 

periods at 944 distinct locations across the state in 2017 between Julian days 150 and 320 (Figure S1). We 

defined sampling occasions as 24-hr periods, and reviewed all reported images reported as gray fox 

classifications (n =247 images) from 179 occasions at 127 locations; 90 other occasions at 55 distinct 

locations included putative but unconfirmed gray fox detections (Figure S1). Covariates for expected 

abundance are noted in Table S1 and were extracted from a circular buffer of 1 or 5 km radius 

surrounding the camera locations. Spatial smoothing was implemented via a 2-dimensional cubic spline 

(Guélat and Kéry 2018) across latitude and longitude with 20 knots placed across the state. The detection 

probability of an individual animal at different sites was modeled as varying in relation to whether the 

camera was placed on a maintained trail or not and as a quadratic function of the distance between the 

camera and the location the camera was targeting (as reported by volunteers), and false positive error 

probability was modeled as a logistic function of the proportion of cropland within a circular buffer with 

5 km radius to account for what we expected to be increased prevalence of species confused with gray 

foxes (red fox, coyote) relative to foxes themselves. The prediction grain (a 2 x 2 km lattice) was chosen 

to approximate gray fox home range sizes in Wisconsin, which are believed to be slightly larger than the 

home ranges reported slightly further south (e.g., Haroldson and Fritzell 1984, Duell et al. 2017). 

In Clare et al. (2019), we noted that perhaps the most useful predictor for classification error 

across a range of species was the degree of unanimity in the crowdsourced classifications (e.g., 100% of 

votes for gray fox = more likely to be gray fox than 50% votes). We do not use this term here to avoid the 

inelegance of having to define/impute values associated with crowdsourced agreement within sampling 

occasions in which the gray fox was not detected, although following the logic that greater confidence 

leads to lower probability of a false positive, imputing these values as 1.0 (i.e., 100% agreement) seems 

like a reasonable hack. Similar inelegancies associated with agreement arise for sampling occasions with 

multiple images; one way to model this that might be reasonable might be to define a covariate (or the 
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false positive probability) as 1 – ∏ (1 − 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑝)
𝑛𝑝𝑖𝑐𝑡𝑢𝑟𝑒𝑠
𝑝=1 . For example, in a case with 2 pictures in 

with 50 and 40 % agreement, the value of the operator = 0.7, in a case with 1 picture with 90% 

agreement, the value = 0.1, which seems to correctly imply a false positive is more likely in the first case 

because there are more images with less confidence. Of course, in situations with 0 pictures, the operator 

breaks down, and the value might need to be fixed at one. 

Of the reviewed images, we confirmed 67% as correct classifications, with the rest either 

misclassifications of coyote (Canis latrans) or red fox (Vulpes vulpes). Once aggregated within sampling 

occasions, 60% (108) of the occasions consisted exclusively of true positives, and 40% (71) included 

exclusively false positives; no confirmed sampling intervals included a mixture of true and false positive 

observations. This might suggest some potential lack of independence between true and false positive 

outcomes, but we ignore that here because volunteers view images on the crowdsourcing platform at 

random, which makes it difficult to imagine that misperception has any serial structure or exhibits any 

other form of dependence. We note that both true and false positives were reported at 6 locations. 

Estimates are summarized in Tables S2 and S3. 
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Figure S1. Location of sampling locations, confirmed observations, and unconfirmed detections used in 

the case study (A); covariates associated with model fitting (B and C). Reported gray fox (D) 

observations were commonly truly either coyote (E) or red fox (F). 
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Table S1. Covariates used in case study analysis. 

Name Description Source 
Real 

Parameter 

Evergreen % Evergreen Forest in 1 km radius buffer 

surrounding camera location 

NLCD 2011A λ 

Snowdepth Mean Snowdepth in 1 km radius buffer 

surrounding camera location between 2010 

and 2017 

SNODASB λ 

Edge 

Density 

(Landscape) edge density within 1 km radius 

buffer surrounding camera location 

NLCD 2011 λ 

Cropland % Cropland in 1 km radius buffer surrounding 

camera location 

NLCD 2011 λ, θfp 

Grassland % Grassland in 1 km radius buffer 

surrounding camera location 

NLCD 2011 λ 

Deciduous % Deciduous forest in 1 km radius buffer 

surrounding camera location 

NLCD 2011 λ 

Trail Binary; camera placed on maintained trail (vs. 

game trail or non-trail);  

 r 

Distance Distance between camera and target location 

(m); modeled as quadratic 

 r 

 

AHomer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J. 

and Megown, K., 2015. Completion of the 2011 National Land Cover Database for the conterminous 

United States–representing a decade of land cover change information. Photogrammetric Engineering & 

Remote Sensing 81:345-354. 
BBarrett, A. 2003. National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation 

System (SNODAS) Products at NSIDC. NSIDC Special Report 11. Boulder, CO, USA: National Snow 

and Ice Data Center. Digital media. 
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Table S2. Parameter estimates, variable inclusion probabilities (w), and 95% credible intervals (LCI, 

UCI) from a RN model for gray fox relative abundance ignoring false positive error. 

Parameter Estimate LCI UCI 

Intercept, λ -1.069 -2.573 1.107 

Evergreen -0.381 -2.988 2.148 

Snowdepth 0.003 -6.171 6.197 

Edge Density -0.031 -6.218 6.088 

Cropland -0.009 -6.125 6.166 

Grassland 0.011 -6.174 6.117 

Deciduous -0.011 -6.051 6.054 

Evergreen, wA 0.889 0 1 

Snowdepth, wA 0.034 0 1 

Edge Density, wA 0.028 0 1 

Cropland, wA 0.042 0 1 

Grassland, wA 0.068 0 1 

Deciduous, wA 0.048 0 1 

EvergreenB -0.344 -0.653 0 

SnowdepthB -0.001 0 0 

Edge DensityB 0 0 0 

CroplandB 0.003 0 0.060 

GrasslandB 0.008 0 0.153 

DeciduousB -0.005 -0.091 0 

Logit Intercept, r -4.359 -4.587 -4.143 

Trail -0.166 -0.504 0.172 

Distance 0.266 0.067 0.471 

Distance2 -0.133 -0.234 -0.045 

Spline Coefficient[1] 0.010 -0.503 0.753 

Spline Coefficient[2] -0.023 -0.618 0.423 

Spline Coefficient[3] 0.008 -0.267 0.648 

Spline Coefficient[4] -0.028 -0.490 0.218 

Spline Coefficient[5] 0.001 -0.542 0.506 

Spline Coefficient[6] 0.011 -0.505 0.608 

Spline Coefficient[7] -0.010 -0.559 0.519 

Spline Coefficient[8] 0.034 -0.334 0.337 

Spline Coefficient[9] 0.016 -0.478 0.602 

Spline Coefficient[10] 0.037 -0.443 0.642 

Spline Coefficient[11] -0.111 -0.85 0.162 

Spline Coefficient[12] 0.023 -0.482 0.624 

Spline Coefficient[13] -0.004 -0.488 0.400 

Spline Coefficient[14] 0.003 -0.524 0.582 

Spline Coefficient[15] 0.052 -0.353 0.702 

Spline Coefficient[16] 0.011 -0.496 0.588 

Spline Coefficient[17] 0.025 -0.444 0.649 

Spline Coefficient[18] 0.010 -0.516 0.589 

Spline Coefficient[19] 0.030 -0.443 0.694 

Spline Coefficient[20] 0.040 -0.423 0.672 
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Table S2 (Continued) 

AInclusion probability—marginal posterior probability that term was included within the model 
BRegularized coefficient. Unregularized coefficients include draws from the prior when the model term 

was not included within the model; regularized coefficients represent the iterative product of the raw 

coefficient and the indicator for inclusion.  
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Table S3. Parameter estimates, variable inclusion probabilities (w), and 95% credible intervals (LCI, 

UCI) from a RN model for gray fox relative abundance accounting for false positive error. 

Parameter Estimate LCI UCI 

Log intercept, λ -2.366 -4.415 1.022 

Evergreen -0.641 -4.228 4.132 

Snowdepth 0.033 -6.062 6.118 

Edge Density 0.217 -5.297 5.485 

Cropland -0.088 -5.914 5.913 

Grassland -0.011 -6.025 6.122 

Deciduous -0.272 -5.292 5.111 

Logit Intercept, s0 -6.486 -6.670 -6.311 

Cropland, s0 0.289 0.135 0.439 

Evergreen, wA 0.731 0 1 

Snowdepth, wA 0.102 0 1 

Edge Density, wA 0.451 0 1 

Cropland, wA 0.198 0 1 

Grassland, wA 0.088 0 1 

Deciduous, wA 0.493 0 1 

EvergreenB -0.642 -1.664 0 

SnowdepthB 0.021 0 0.362 

Edge DensityB 0.207 0 0.779 

CroplandB -0.068 -0.590 0 

GrasslandB -0.017 -0.313 0 

DeciduousB -0.244 -0.861 0 

Logit Intercept, r -3.514 -3.825 -3.237 

Trail -0.384 -0.983 0.195 

Distance 0.668 0.344 1.019 

Distance2 -0.218 -0.495 0.191 

Spline Coefficient[1] 0.008 -0.565 0.519 

Spline Coefficient[2] -0.030 -0.657 0.511 

Spline Coefficient[3] -0.114 -0.632 0.184 

Spline Coefficient[4] 0.016 -0.285 0.366 

Spline Coefficient[5] 0.003 -0.607 0.595 

Spline Coefficient[6] 0.013 -0.596 0.637 

Spline Coefficient[7] -0.007 -0.618 0.598 

Spline Coefficient[8] 0.005 -0.528 0.410 

Spline Coefficient[9] 0.013 -0.591 0.635 

Spline Coefficient[10] 0.032 -0.526 0.660 

Spline Coefficient[11] -0.079 -0.718 0.352 

Spline Coefficient[12] 0.010 -0.606 0.622 

Spline Coefficient[13] -0.009 -0.538 0.534 

Spline Coefficient[14] -0.003 -0.620 0.605 

Spline Coefficient[15] 0.004 -0.610 0.587 

Spline Coefficient[16] 0.001 -0.604 0.610 

Spline Coefficient[17] -0.002 -0.628 0.593 

Spline Coefficient[18] 0.002 -0.610 0.613 
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Table S3 (Continued) 

Parameter Estimate LCI UCI 

Spline Coefficient[19] -0.003 -0.629 0.590 

Spline Coefficient[20] 0.008 -0.600 0.602 

 

AInclusion probability—marginal posterior probability that term was included within the model 
BRegularized coefficient. Unregularized coefficients include draws from the prior when the model term 

was not included within the model; regularized coefficients represent the iterative product of the raw 

coefficient and the indicator for inclusion.  
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Chapter 3 – A phenology of fear? Static and seasonal predictors mediate white-tailed deer 

responses to metrics of predation risk from wolves. 
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Abstract 

Quantifying non-consumptive predator effects upon prey, cascading effects upon vegetation, and 

elucidating general rules for their occurrence and strength is important for ecological applications ranging 

from forest or rangeland managagement to endangered species conservation. Despite substantial research 

effort along each front, a variety of challenges have complicated efforts to confront theory with empirical 

data, particularly with large mammalian predators and prey. Here, we assess the responses of white-tailed 

deer to wolves and other predators using a large and year-round network of trail cameras in a system 

where empirical research suggests wolves are triggering a non-consumptive trophic cascade that the 

existing body of theory suggests should be unlikely. We use a broad suite of risk and response metrics to 

consider support for multiple competing hypotheses regarding the state of the system and to assess the 

dynamics of habitat-mediated responses to predation risk. Deer responded to risk metrics in contrast with 

the expectations of a purely bottom-up system, although results indicate that predictors derived from 

satellite-based vegetation indices may poorly describe foraging resources. Deer responses to measures of 

predator occurrence were often environmentally mediated, suggesting proactive risk responses 

unexpected if wolves behaved as archetypical active predators. Deer activity decreased given the near-

term occurrence of wolves, particularly in areas with greater surrounding forest cover, but wolves did not 

appear to use these areas more frequently following expectations of archtypical stalking predators. Deer 

allocated less time to foraging along linear features given near-term wolf occurrence (and wolves used 

these features more frequently), but were more likely to aggregate and forage in areas recently used by 

wolves given deeper snow where previous research suggests an inflated likelihood of mortality. Overall, 

results are consistent with the contention that wolves are triggering a non-consumptive trophic cascade in 

the Great Lakes region of North America, but suggest that predator hunting mode may be less important 

than environmental context when predicting responses to predation risk, and that the landscape of fear 

may follow a distinct phenology driven by temporal variation in foraging resources and the nutrional and 

behavioral states of both predators and prey. 
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Introduction 

Predators impact prey in three primary ways: by killing and eating them, scaring them away from 

beneficial resources like food, or elevating chronic stress responses that reduce fitness (e.g., Brown and 

Kotler 2004, Sheriff et al. 2009, MacLeod et al. 2018, Creel 2018). The direct and indirect effects of 

predators on their prey may have further cascading effects on other ecosystem attributes such as 

vegetation structure (e.g., Estes et al. 2011). As such, understanding and quantifying how predators affect 

prey has important implications for understanding biotic interactions, ecosystem function, and how 

removing or restoring predator populations might influence managerial or conservation goals (Creel and 

Christianson 2008, Smith et al. 2010, Ritchie et al. 2012, Prugh et al. 2019, Gaynor et al. 2020). 

A well-developed body of theory has sought to explain and predict how predators impact prey, 

how prey respond to predation risk, and how these processes impact ecosystem processes. Prey are 

expected to behaviorally respond to the threat of predation if 1) they can perceive risk; 2) a behavioral 

response reduces risk; 3) the risk varies over space or time; and 4) there are costs to constitutive defenses 

(Lima and Bednekoff 1999, Creel 2018). However, responses to predation risk exhibit variable costs and 

benefits. Predictable and surmountable risks may produce stronger proactive responses in prey, such as 

shifting space use, altering periods of activity, aggregating in larger groups, or increasing baseline 

vigilance (Schmitz et al. 2004, Creel et al. 2018). Some of these proactive responses, such as shifts in 

space use or reduced foraging, may carry substantial fitness costs and have cascading effects upon 

vegetation (Schmitz et al. 2004, Creel and Christianson 2008, Creel 2018). Other proactive responses 

(circadian shifts in activity) may induce smaller fitness costs and result in negligible effects upon 

vegetation (Kohl et al. 2018). If prey cannot predict risk or proactive responses are otherwise ineffective, 

prey are expected to respond to predators more proximally or reactively (i.e., after the initial encounter), 

with such responses broadly expected to have limited fitness costs or cascading effects (Lima and 

Bednekoff 1999, Schmitz 2004, Creel 2018).  
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Variation in risk and its predictability is primarily ascribed to a combination of three factors: 

predator hunting mode, predator habitat domain relative to prey, and the degree to which spatiotemporal 

environmental variability enhances (or dampens) risk by increasing predator lethality or the likelihood of 

encounter (Schmitz et al. 2004, Preisser et al. 2007, Palmer et al. 2017, Moll et al. 2017, Kohl et al. 

2018). Sit-and-wait, sit-and-pursue, and other stalking hunting modes are believed to produce more 

predictable and variable risks that elicit stronger anti-predator responses (Schmitz et al. 2004, Preisser et 

al. 2007). These hunting modes often depend upon a narrow environmental domain where foraging or 

other resources are sufficient to attract prey to use it despite added predation risk (Sih 2005, Smith et al. 

2020). As predators concentrate their space use in environmental features with greater prey resources 

(winning the so-called ‘space-race’; Sih 2005), they produce more concentrated risk cues (Preisser et al. 

2007, Miller et al. 2014). Prey respond to this predictable risk by reducing resource use or intake (Luttbeg 

et al. 2020), which is more likely to carry foraging costs (Brown and Kotler 2004, Creel 2018) and lead to 

cascading effects upon vegetation (Schmitz et al. 2004). In contrast, active, chase-and-pursue predators 

are not typically bound to a narrow environmental domain (although they may preferentially use or be 

more effective in some habitats, Kauffman et al. 2007) and are expected to leave more diffuse cues that 

prey should be less likely to proactively respond to (Lima and Bednekoff 1999, Preisser et al. 2007, 

Luttberg et al. 2020). 

How predators affect prey, how prey respond to risk, and how prey responses to risk may in turn 

affect vegetation are questions of great importance for managing wildlife populations and other natural 

resources (Gaynor et al. 2020). For example, white-tailed deer (Ocodeilius virginianus) are a valuable 

game species that heavily influence their environments via herbivory or other activities associated with 

heavy use, and have been implicated in undesirable changes to forest vegetation across the northeastern 

United States (Horsely et al. 2003, Ferker et al. 2014, Bradshaw and Waller 2016, Sabo et al. 2017). 

Recent research within the Great Lakes region suggests that reduced deer foraging pressure in areas 

occupied or heavily used by wolves (Canis lupus) may be having cascading vegetation effects (Callan et 
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al. 2013, Flagel et al. 2016) that are desirable for both conservation and commercial objectives (Horsely 

et al. 2003, Rooney et al. 2004). For example, Callan et al. (2013) found that local forb species richness 

was greater in plots within wolf pack territories that had been occupied longer. Flagel et al. (2016) found 

that deer visitation rates and foraging behaviors were markedly reduced in areas of heavy wolf use, that 

sapling height and forb species richness were greater in areas of heavy wolf use, and that differences in 

sapling height and forb richness between control and exclosed plots disappeared in areas heavily used by 

wolves.   

Despite being a major research focus for theoretical and applied ecologists, quantifying and 

predicting prey responses to predation risk remains challenging. This poses further challenges for the 

study of trophic cascades and the broader ecosystem impacts of predation (Ford and Goheen 2015). 

Experimental tests (e.g., Schmitz 1998, Miller et al. 2014, Luttbeg et al. 2020) have upheld theoretical 

predictions regarding how prey should respond to different forms of risk, but their transferability to 

natural systems has been questioned (Peers et al. 2018, Smith et al. 2019). Conversely, observational 

studies commonly produce conflicting results that may reflect either real variation between systems and 

limitations to the existing theory, methodological or scalar inconsistencies (Moll et al. 2017, Prugh et al. 

2019), or may be a product of inability to directly assess certain key interactions (Ford and Goheen 2015). 

For example, the results of Callan et al. (2013) are consistent with a food-web driven from the bottom-up 

(Ford and Goheen 2015), while Flagel et al.’s (2016) suggestion that deer respond to predation risk from 

wolves because the latter operate more like stalking predators conflicts with existing beliefs related to 

wolf hunting mode within other systems (Kaufmann et al. 2010, Middleton et al. 2013, Kohl et al. 2018, 

Mumma et al. 2018, Dickie et al. 2020). Moroever, Flagel et al. (2016) focused upon an area smaller than 

a wolf pack territory, leading to uncertainty regarding whether these compelling patterns hold over a more 

meaningful spatial extent, and neither they nor Callan et al. (2013) assessed the effects of alternative 

predators. 
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A final complication is that the landscape of fear (and the reciprocal landscape of forage, 

Gallagher et al. 2016) is often dynamic (Palmer et al. 2017, Kohl et al. 2018). Most experimental studies 

sample responses to predation risk under experimental conditions where risk and resource trade-offs are 

essentially static; while most observational studies either limit sampling to a relatively narrow temporal 

domain or average over potentially important temporal variation in favor of assessing spatial variation in 

responses (Palmer et al. 2017, Kohl et al. 2018). It is believed that the foraging costs of effects of 

predation risk are highly context-dependent (Wirsing et al. 2020). Such context includes the behavioral 

and nutritional states of predators and prey, potentially emphemeral environmental factors that facilitate 

rates of encounter, lethality, or prey escape, and the foraging resources that prey must forgo when 

investing in anti-predator behavior (Brown and Kotler 2004, Moll et al. 2017, Wirsing et al. 2020). Of the 

potential temporal axes that might be used to describe the dynamics of fear, perhaps none is more 

germane to each of these components than seasonality, which may influence forage availability, rates of 

predator encounter and lethality, and strongly shapes the condition and life-history of predators and prey. 

Here, we take advantage of occurrence and behavioral data collected across a large environmental 

gradient using a network of trail cameras maintained across a calendar year by volunteers to gain insights 

into how deer behaviorally respond to wolves or other predators, which carries implications for assessing 

existing theoretical predictions and inferring whether wolves are causing a trophic cascade. We ground 

our study in competing (but not mutually-exclusive) hypotheses (Figure 1). First, observed associations 

between wolves and vegetation may be driven by bottom-up processes (Figure 1A, Callan et al. 2013, 

Ford and Goheen 2015). Alternatively, associations between wolves and vegetation may result from a 

trait-mediated (behavioral) trophic cascade. This cascade may occur because: a) despite wolves operating 

as unpredictable and generalist active predators, even the weak cascading effects expected in these 

circumstances are detectable (Figure 1B); b) deer respond strongly to wolf risk cues because wolves 

behave as stalking predators in the region (Flagel et al. 2016, Figure 1C); c) some other component(s) of 

wolf hunting mode—e.g., attraction to travel corridors that increase the likelihood of encountering prey 
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(Dickie et al. 2020)—creates strong and predictable risk cues that deer respond to (Figure 1D). A further 

possibility is that the patterns observed by Callan et al. (2013) and Flagel et al. (2016) result from a 

consumptive (density-mediated) trophic cascade (i.e., predation reduces deer densities and leads to 

vegetation release). Generalist active predators are perhaps more likely to generate consumptive trophic 

cascades (Schmitz et al. 2004, Middleton et al. 2013), but as we shortly describe, this seems unlikely in 

this system.  

Indeed, that none of the hypotheses is clearly favored by existing evidence, theory, or general 

understanding of the system and species in question is a primary motivation for the study with clear 

implications for cascading effects on ecosystem function. Under a bottom-up driven system, one would 

expect a positive association between predator space use and prey resources. However, this sort of 

indirect resource matching is also consistent with the expectations of a predator winning the predator-prey 

space race (Sih 2005), a strategy more strongly associated with predators that employ sit-and-pursue, 

stalking, or other more sedentary hunting modes (Luttbeg et al. 2020, Smith et al. 2020). If wolves 

operate as ambush predators in more densely forested regions, one would expect that wolves would be 

more likely occur within forested areas that increase the lethality of their attacks, and that deer would 

exhibit proactive risk reduction responses (e.g., avoidance) to areas of greater forest cover within the 

range of the predator species but not outside of its range, and that deer would respond more strongly to 

proximal wolf risk cues within forested areas than outside of them (Lima and Dill 1990, Moll et al. 2017, 

Creel 2018). Although wolf-killed deer in some regions are concentrated within denser vegetation (e.g., 

Kunkel and Pletscher 2001), differences between wolf depredation locations and random locations or 

locations used by deer in northern Wisconsin are primarily explained by snow depth rather than land 

cover (Olson 2019). If wolves behave consistently with the archetypical expectations for active predators 

with a broad habitat domain, then few marked environmental patterns in wolf space use or deer responses 

to wolf risk metrics are expected (Schmitz et al. 2004). Finally, wolves might be active predators with 

foraging strategies that center on using linear features to increase rates of movement and the likelihood of 
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encountering prey (Whittington et al. 2011, Dickie et al. 2017, Mumma et al. 2018, Dickie et al. 2020). 

Such behavior has not been formally integrated into the broader theory, but suggests that active predators 

could also be capable of generating concentrated risk cues expected to trigger stronger prey responses, 

and there is evidence that prey may perceive and respond to these cues (Demars and Boutin 2018, Dickie 

et al. 2020). As an orthogonal line of inquiry, we were interested in the degree to which predator-deer 

interactions exhibited seasonal variation, as would be expected given the seasonality of many risk and 

forage metrics in this system. 

Methods 

Study Area and Ecological Context 

We focus on deer responses to metrics of predation risk associated with three predators across Wisconsin 

and a small portion of Michigan, USA. Deer across the Great Lakes region of North America are widely 

hunted and contend with 4 mammalian predators: wolves, coyotes (C. latrans), black bears (Ursus 

americanus), and bobcats (Lynx rufus). Harvest is the primary cause of adult mortality across most of the 

region (DelGiudice et al. 2002, Norton 2015).  The combined predation from coyotes and wolves during 

particularly snowy years in regions with above average snowfall may induce nearly as much mortality as 

human harvest (DelGiudice et al. 2002), in most parts of Wisconsin during most years, predation is a 

minor cause of mortality relative to hunting, and overall rates may be overstated due to difficulty 

distinguishing between predation and scavenging events (Norton 2015). Even in the harshest climatic 

zones within the region, deer population growth rates are better explained by winter severity than wolf 

population size (Post and Stenseth 1998), and the size of Wisconsin’s deer herd within the part of the state 

most heavily occupied by wolves exhibits no clear trend over the previous 20 years despite marked 

increases in wolf population size (Wojcik and Stenglein 2020, Wiedenhoft et al. 2020). In the northern 

(more forested and snowier) parts of the region, predation is a major cause of fawn mortality, but is 

primarily attributable to black bears, coyotes, and bobcats, while in milder and more agricultural areas, 
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other natural causes of mortality such as malnutrition appear to be more common (Carstensen et al. 2009, 

Warbington et al 2017, Kautz et al. 2019). Consequently, it is believed that wolves have only limited 

consumptive effects upon deer populations and has been suggested that any cascading effects within the 

region would be more likely to arise from non-consumptive effects (Rooney and Waller 2009, Flagel et 

al. 2016).  

Data Collection and Analysis 

We used images collected across the 2017 calendar year by Snapshot Wisconsin, a state-wide trail camera 

monitoring program managed by the Wisconsin Department of Natural Resources (Locke et al. 2019, 

Townsend et al. 2020), to analyze patterns in predator occurrence, and deer occurrence, counts, and 

behaviors. The initial dataset included images sampled across 216,774 camera days at 1,213 locations. 

We thinned locations so that they had 1.5 km nearest neighbor distance to minimize spatiotemporal 

dependence that would be difficult to account for. A major component of our analysis focused on 

estimating autoregressive occurrence effects, and we censored data without a previous time-series step 

(24-hr period) rather than use imputation techniques. This left 816 camera locations sampling over 

151,980 camera days for most analyses.  

Project cameras are set to take an image triplicate (hereafter, sequences) when a triggering event 

occurs, with a minimum 15 s delay between triggers. Species in image sequences were classified by a 

combination of trail camera hosts using an agency-developed platform and on a crowdsourcing platform 

hosted by the Zooniverse. Species classification accuracy of deer and black bears across both platforms is 

approximately 99%, and we ignored any potential misclassification within the analyses here because 

simulation has suggested it is not likely to influence results (Clare et al. 2019, 2020). Coyotes and wolves 

are classified less accurately, and each putative image of these two species (n = 11,000) was given further 

expert review: the few images that could not be reconciled (n < 50) were censured from analysis. 
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Volunteers using Snapshot Wisconsin’s crowdsourcing platform can optionally classify image 

sequences with tags denoting the image contains foraging, vigilant, moving, resting, or interacting deer. 

The tag(s) apply to the image sequence rather than to specific animals within the image. As has been 

previously noted, such data is analogous to traditional behavioral observation methods such as scan 

sampling (Gallo et al. 2018). The crowdsourcing platform provides guidelines for behavioral 

classification largely following the process of Olson et al. (2019), and independent assessments have 

strongly agreed (> 90%) with the crowdsourced classification (Townsend et al. 2020, Appendix S6). 

Because behavioral classification of deer within images only occurs on the crowd-sourcing platform, and 

these analyses had smaller overall sampling parameters (27,345 camera days at 719 camera locations). 

We strictly focus on images of a single deer (n = 113,654 image sequences) given that it was challenging 

to assign specific behaviors to separate individuals in an image sequence, and because we expected that 

behavior would be dependent upon group size (Olson et al. 2019).  

Risk Metrics  

Following the definitions of Moll et al. (2017), we identified metrics of risk describing “risky places” 

(predator occupancy), “risky times” (near-term predator detection), “risky habitats” that either enhanced 

predator lethality or encounter rate (forest cover, snow depth, camera placement along linear features), 

and measures of productivity or land cover diversity that might capture bottom-up associations. 

Responses to risky places or habitats are indicative of more persistent risk cues, and responses to these 

factors are expected to carry larger foraging costs and result in stronger cascading effects upon vegetation 

(Schmitz et al. 2004, Moll et al. 2017, Creel 2018). However, prey responses to risky habitat should also 

depend on the degree to which prey can effectively surmount associated risk: it may be easier to avoid a 

static land cover feature than an ephemeral environmental feature like snow cover. Risky times capture 

more proximal risk (Moll et al. 2017) to which responses should have smaller foraging costs and weaker 

cascading effects.  
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We focused on three predator species: wolves, coyotes, and black bears, ignoring bobcats to 

reduce model complexity as they appear to be the least significant deer predator in Wisconsin (Norton 

2015). We did not expect deer to respond equally to each predator, instead predicting deer would respond 

most strongly to wolves as the most dangerous but least frequently encountered due to low density (Lima 

and Bednekoff 1999), next strongly to coyotes given the threat they pose to adults but also the frequency 

of encounter, and least strongly to bears that essentially only kill fawns during a ‘hiding’ stage 

(Warbington et al. 2017) when the latter are not readily detected on camera. 

We assembled covariates (Table S1) measured directly at the camera location by camera hosts 

(placement along a linear feature or not; Trail), or extracted using the ‘raster’ package from the cell 

containing the camera location (snow depth and varied vegetation greenness measures) or within a 

circular buffer (250 m or 5 km) surrounding the camera location (land cover covariates). These included 

daily snow depth data from SNODAS (Snow; National Operational Hydrologic Remote Sensing Center 

2004), and measures of wooded land cover (Forest) and land cover richness (Richness) from the 2016 

National Land Cover Database (Homer et al. 2018), and varied measures of the enhanced vegetation 

derived from 16-day MODIS reflectance measurements at 500 m resolution (product MCD43A4).  

We derived interpolated daily EVI (DailyEVI) estimates using a double-logistic smooth (Beck et 

al. 2006). From the daily EVI estimates, we derived an estimate of annually integrated EVI (IntEVI, for 

2016) by summing the daily estimates between the estimated start and end of the growing season, 

estimates of the daily EVI of a given pixel relative to the daily EVI of pixels within its queen’s 

neighborhood (RelEVI), and estimates of the daily rate of change in EVI (DeltaEVI) as the first derivative 

of the smoothed daily EVI curve. Changes in EVI were further transformed into estimates of the daily 

instantaneous rate of green-up (IRG = DeltaEVI if DeltaEVI > 0, or else 0).  

We assume that EVI variables broadly approximate patterns in plant productivity and food 

resources, and that predator and deer occurrence and behavior are associated with annual measures of 

productivity (IntEVI), measures of greenness on the day of observation (daily EVI) or greenness relative 
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to other proximal locations (RelEVI), and the rate of change in vegetation greenness (DeltaEVI). We 

purposely chose a limited set of spatial or temporal scales for these covariates that either reflect the native 

measurement scale (e.g., 500 m x 500 m MODIS pixels or in situ camera metadata), align with the scale 

of a particular response (e.g., a 5 km radius buffer approximating the home range of a bear or wolf pack 

or a 250 m radius buffer approximating the scale at which deer might perceive predators), or represent a 

plausible scale for management manipulations (e.g., forest cover within a 250 m radius buffer). We did 

not intend our scales to be an exhaustive search for the scale-of-effect. 

Analysis of Predator Space Use 

We fit zero-inflated binomial (occupancy) models (MacKenzie et al. 2002) to estimate occupancy 

and the daily probability of detection (occurrence) of wolves, black bears, and coyote using Hamiltonian 

Markov Chain Monte Carlo simulation fit with Stan using the library ‘rstan’ (Carpenter et al. 2017, Stan 

Development Team 2018). In most applications, occupancy models are applied to rigorously estimate a 

binary occupancy state (zi), a probability of occupancy (ψi), and important predictors across sites i =1, 

2,…R while accounting for imperfect detection; we employed the models largely to make inference about 

finer-grained patterns of occurrence while accounting for the fact that some cameras fall outside the 

species ranges (i.e., p|zi). Because our interest was inference rather than minimizing predictive error, we 

fit a single model for each species roughly following a degrees-of-freedom spending approach to 

determine a tenable model complexity for the organism in question (Giudice et al. 2012). We defined 

sampling occasions as single days because we expected that the patterns in occurrence and co-occurrence 

between predators and prey would be most meaningful at fine temporal grains (Valeix et al. 2009). 

Analysis of diel activity patterns, following Rowcliffe et al. (2014), indicated that each species was 

generally crepuscular, and so there was little benefit to realigning days to reflect different 24-hour 

intervals. As the occupancy of a camera viewshed is not strictly closed, we interpret the latent occupancy 

state as an approximation of whether a camera location falls within the home range of an individual 

organism (MacKenzie and Royle 2005). 
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We modeled bear and wolf occupancy as logit (ψi,species) = β0,species+ β1,speciesForest5kmi+ 

β2,speciesIntEVIi+f1(xi,yi) to test the hypothesis that these predators were more likely to occupy more 

productive areas (as might be expected if the system was purely bottom-up), while accounting for spatial 

structure in their distributions related to forest cover and broader spatial effects: f1(xi,yi) denotes a spatial 

B-spline smooth with 20 basis functions. We modeled coyote occupancy as logit (ψi) = β0+ β1IntEVIi, as 

coyotes were observed across a far greater geographic range of locations exhibiting less obvious spatial 

structure, and previous modeling efforts have found few useful predictors of coyote occupancy (e.g., 

Clare et al. 2016). We derived the posterior mean of the latent occupancy states, or pr(zi|yi), for each 

species within the associated Stan program following formulas provided by MacKenzie et al. (2006, p. 

124).  

The detection models for these species were our primary focus as tools for making inference 

about finer-grained space use strategies. In particular, we were interested in the degree to which bear, 

wolf, and coyote occurrence might suggest their use of features that: facilitated predation (daily snow 

depth or forest cover); elevated the probability of encounter with deer (linear features); were associated 

with deer use (whether deer were recently detected) or resources targeted by deer (increased plant 

productivity). Given pronounced differences in the approximate effective sample size for each species 

(ranging from 229 observed daily wolf occurrences to 5969 observed daily coyote occurrences), we 

varied model complexity across species.  

We specified the model for bear detection, given occupancy, as: 

logit (pi,j,bear) = α0+ α1Foresti+ α2Traili+ α3YBeari,j-1+ α4Richnessi + α5DailyEVIi,j + α6RelEVIi,j +       

α7IRGi,j + α8Dayj+ α9Dayj
2+ α10Deeri,j + α11Deeri,jForesti + α12Deeri,j Traili + α13Deeri,jIRGi,j + εi 

For coyotes: 
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logit (pi,j,coyote) = α0+ α1Foresti+ α2Traili+ α3YBeari,j-1+ α4Richnessi + α5DailyEVIi,j + α6RelEVIi,j + 

α8Snowi,j + α9Dayj+ α10Dayj
2+ α11Deeri,j + α12Deeri,jForesti + α13Deeri,j Traili + α14Deeri,jSnowi,j +  α15Deeri,j 

IRGi,j  + εi 

For wolves: 

logit (pi,j,wolf) = α0+ α1Foresti+ α2Traili+ α3YWolfi,j-1+α4Richnessi+ α5DailyEVIi,j+ α6Snowi,j+ α7Deeri,j 

Above, (e.g.) YBeari,j-1 denotes whether a bear (coyote, wolf) was detected during the previous 

occasion, which we include to account for potential temporal autocorrelation in detection between 

subsequent 24-hr periods, and because we posited that predators using space in an autoregressive fashion 

might be more likely to deposit cues to which deer might respond. Deeri,j denotes whether deer were 

detected on the same occasion and or the previous occasion (i.e., a count of 0, 1, or 2), which we consider 

a reasonable proxy for contemporaneous deer occurrence in close vicinity to the camera location. 

Although we initially considered estimating separate terms for deer detection on the same occasion or 

previous occasion, we pooled the detection totals to simplify the model structures. Term εi denotes a logit-

normal random effect at the camera level: εi ~ Normal (0, σ). Interactions between near-term deer 

occurrence and the instantaneous rate of green-up consider the hypothesis that bears or coyotes might 

more closely track deer during fawning periods, while other interactions were intended to assess the 

degree to which predators might track deer occurrence more or less strongly across different 

environmental contexts. 

Deer Response Metrics 

We considered four potential metrics describing deer responses to risk: a probability of daily occurrence, 

and conditional on occurrence, the expected number of image sequences per day containing deer 

(hereafter ‘counts’), and the probability that deer within image sequences were either foraging or 

exhibiting vigilance. Although changes in occupancy are sometimes used to infer species interactions, 

deer were detected at 804 out of 816 camera locations, and we did not view it as likely that the species 
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was structurally absent from any location nor meaningful to try to model site-structured zero inflation 

within the detection history as a function of risk. We modeled occurrence and counts (given > 0 

sequences) separately analogous to a hurdle model (Swanson et al. 2016), given some challenges finding 

a reasonably-fitting combined count model and reflecting that occurrence and count metrics capture 

slightly different elements of deer space use. The frequency of binary occurrence may relate more to how 

regularly move through the camera viewshed (Stewart et al. 2018), while counts better describe the 

intensity of viewshed use; we found that large image counts were often associated with prolonged periods 

of relatively sedentary behaviors within the viewshed that would be expected to potentially impact 

vegetation (Sabo et al. 2017). Although previous efforts have sought to directly quantify the duration of 

an individual’s residency directly (Flagel et al. 2016), we found that this was often impossible to do 

without arbitrarily establishing rules for what constituted a new ‘event’ or ‘encounter’ or making tenuous 

assumptions about individual identify. Observations of foraging and vigilance behaviors are conditional 

on visitation and image counts, and so these metrics describe the allocation of different activity types 

within the camera viewshed. 

We assumed daily deer occurrence was a Bernoulli random variable with probability pi,j,deer, and 

specified the model for occurrence probability as: 

logit (pi,j,deer) = α0+α1YDeeri,j-1+ f1(Longi,Lati) + f2(Dayj)+ f3(DayjLongiyLati) + εi + Δi,j 

Term f1(Longi,Lati) denotes a marginal smoothing terms over space (the tensor product of two cubic 

splines with 5 basis function each), f2(Dayj) denotes a marginal smooth over time (a cyclical cubic 

regression spline function with 15 basis functions), and f3(DayjLongiLati) was the tensor interaction of the 

two marginal smooths.  These functions provided the model an explicit spatiotemporal structure to 

account for broad sources of variation not captured by the predictors, while the camera-specific random 

effect εi was used to account for unmeasurable fine-scale variation at the camera location. YDeeri,j-1 is a 

first order autoregressive term describing deer observed occurrence on the previous day. The term Δi,j 

denotes the vector product of coefficients and a set of variables including the proximal occurrence of 
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coyotes, bears, and wolves on the same or previous day, the estimated latent occupancy state of wolves 

(WolfOccupancyi), the previously described environmental variables, and a set of interactions between 

environmental variables or environmental variables and metrics of predator occurrence or occupancy 

(fully listed in Table S2). The environmental variables we considered to potentially interact with predator 

occurrence or occupancy were Forest, Trail, DailyEVI, and Snow. We ignored the latent occupancy states 

of coyotes and bears because the former was nearly ubiquitous, and because the latter was spatially 

structured in a manner that was largely redundant with the spatial smoothing effects (Figure S1).  

Again, the model specification was meant to allow us to broadly test all components of our 

hypotheses of interest (Figure 1) and other factors rather than minimize predictive error. Under a purely 

bottom-up system, deer would be expected to be more likely to occur, aggregate, and forage in areas with 

greater resource availability irrespective of any predation risk. Assuming the metrics of forage availability 

derived from EVI adequately describe forage resources, we would consequently expect deer to respond to 

their main effects or interactions between these variables. Assuming the non-consumptive effects in the 

system here reflect the classical assumptions of predator-prey systems with chase and pursue predators 

where both species have broad habitat domains, deer would be primarily expected to primarily respond to 

very proximal predation risk metrics that might be captured as the main effects of near-term occurrence of 

the individual predator species or might be too proximal to be measured here. If predators actually 

exhibited stalking behaviors and preferentially used areas with cover that facilitated hunting, we would 

expect deer to respond to interactions between predator use or occupancy and forest cover. Finally, if 

predator space use created concentrated environmental risk cues in other environmental contexts 

associated with greater lethality (snow), likelihood of encounter (linear features), or with different 

foraging benefits (greater EVI), we expected that deer would respond to interactions between these 

variables and occurrence or occupancy. 

Our model for deer counts followed the structure of the model for deer occurrence, except that: 

α1YDeeri,j-1 was replaced with α1CDeeri,j-1, where CDeeri,j-1 was the standardized count of deer at the 
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camera location on the previous occasion; and we estimated expected deer count using a log-link and 

assuming a Negative Binomial response distribution. We modeled foraging and vigilance tags as quasi-

binomial counts using the logit-link following Eq. 4 such that yforaging,i,j ~ Quasi-binomial 

(Numberimagesi,j, pforaging,i,j). Model terms followed the occurrence and count models, although here we 

did not include an autoregressive term. All deer models were fit in R using the library “mgcv” (Wood 

2011) with the ‘bam’ function (Wood 2017) and goodness of fit was assessed using diagnostics and charts 

provided by the ‘gam.check’ function. 

Results 

Predator Space Use 

As expected, bears (�̂� = 0.90, 0.24 – 1.64) and wolves (�̂� = 0.80, 0.20 – 1.40) were more likely to occupy 

locations with a high proportion of surrounding forest cover. Integrated EVI had mixed effects on 

predator occupancy: bears were less likely to occupy more productive sites (�̂� = -0.38, -0.80 – 0.00), 

coyotes were more likely (�̂� = 0.37, 0.03 – 0.48), and wolves exhibited little association (�̂� = 0.14, -0.17 

– 0.43), suggesting that as a collective, predator species were not strongly associated with plant 

productivity as would be expected under a bottom-up driven system. Patterns in camera-specific latent 

occupancy states largely reflect existing understanding of the species distributions (bears and wolves 

more likely to occur in northern Wisconsin, with coyotes more ubiquitous, Fig. S1), although gaps in 

estimates of wolf occupancy that fall within what is generally understood to be their range across much of 

the northern part of the state suggest that there may be many locations within their broader range that 

wolves do not use. 

Wolves were more likely to be detected on trails (�̂� = 1.10, 0.78 – 1.43) and less likely to be 

detected as the concurrent daily EVI increased (�̂� = -0.29, -0.45 – -0.13), with weaker evidence that 

detection was more likely given detection during the previous occasion (�̂� = 0.70, -0.30 – 1.53). There 

was weak indication that wolf detection was more likely if deer were recently detected (�̂� = 0.15, -0.03 – 
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0.33), while land cover richness, forest cover, and snow depth had little effect (Table S3). Thus, there was 

no evidence that wolves targeted forested areas purported to either facilitate stalking or prey capture, nor 

that wolf occurrence was driven by bottom-up productivity at fine temporal scales, as they appeared to 

move less frequently during more productive times of year and/or avoid more productive locations.  

Rather, wolves primarily appeared to target linear features, perhaps moving serially (i.e., exhibiting 

repeated use of certain locations) and perhaps weakly tracking deer occurrence. 

Similarly, coyotes were more likely to be detected given previous occurrence (�̂� = 0.83, 0.75 – 

0.91) and along linear features (�̂� = 0.83, 0.61 – 1.04). To a lesser degree, their occurrence was positively 

associated with near-term deer occurrence (�̂� = 0.26, 0.21 – 0.30). Coyotes occurrence was negatively 

associated with greater forest (�̂� = -0.17, -0.27 – - 0.06), and they were observed slightly less frequently 

as snow depth, vegetation greenness, or the instantaneous rate of green-up increased: in general, they 

appeared to be more active during the beginning and end of the year (Table S4). No interaction with deer 

occurrence appeared meaningful. 

Bear detection was similarly serial (�̂� = 0.91, 0.73 – 1.00), and otherwise most strongly driven by 

vegetation greenness (�̂� = 0.87, 0.78 – 0.96) and a quadratic effect of day of year (Table S4). Bears were 

also more likely to be detected as local-scale (250 m) forest cover increased (�̂� = 0.32, 0.11 – 0.56), on-

trail (�̂� = 0.37, 0.02 – 0.72), and if deer were detected on the same or previous day (�̂� = 0.17, 0.06 – 

0.28). Other parameters of interest were estimated as having weak and uncertain effects (Table S5).  

Deer Responses 

Deer occurrence and counts generally exhibited strong spatiotemporal structure with marginal smooths 

suggesting a broad spatial gradient in decreasing occurrence and counts running from SW to NE 

Wisconsin (Figure S2 A and B), a pattern broadly consistent with estimates of deer abundance derived 

from harvest-based techniques (Townsend et al. 2020). Occurrence peaked in mid spring and again 

around the time of the rut, reaching a minimum during mid-to-late winter; counts peaked during the 
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winter, suggesting that deer generally used less space more intensively during this period (Figure S3, A 

and B). As expected, both deer occurrence (�̂� = 0.86, 0.84 – 0.89) and deer counts (�̂� = 0.17, 0.17 – 0.18) 

were strongly positively associated with the occurrence or count on the previous day. The likelihood of 

deer foraging within an image sequence tended to increase throughout the winter months from a low near 

the beginning of the year until a peak in later April, with a second peak in early September, when hard 

mast such as acorns typically begin to fall across the state (Figure S3C). 

Deer occurrence, intensity of use, and behaviors were influenced by attributes of plant phenology 

and greenness, although effects were typically modest (Figure 3, Tables S5 – S8). Deer were more likely 

to occur as the concurrent daily greenness increased, particularly at locations with greater overall annual 

productivity, with similar but weaker patterns observed for deer counts. Similarly, the probability of deer 

foraging increased with higher concurrent greenness at locations that also exhibited greater integrated 

EVI, but the association reversed at locations with lower integrated productivity. The influence of relative 

EVI on deer occurrence and counts was weaker and mediated by other productivity variables, tending to 

have a more positive influence when the concurrent or integrated EVI was less. Thus, deer occurred more, 

used more heavily, and spent more time foraging in the most annually productive locations (typically 

deciduous forests) during periods of peak productivity, with dampened temporal patterns in less annually 

productive areas such as coniferous forests. Deer vigilance was more likely as the greenness on the day of 

observation increased, less likely as annually integrated vegetation increased, and both associations 

strengthened as the greenness on the day of observation relative to surrounding pixels increased. Thus, 

deer were most likely to exhibit vigilance during periods of peak greenness in less annually productive 

areas, particularly in locations exhibiting more concurrent greenness than surrounding pixels.  

Deer responses to metrics of predator risk were variable. Deer detection was more likely given 

the near-term occurrence of all predators (Figure 4A). Other responses to bear or coyote-related metrics or 

interactions were typically weak (Figure 4, Tables S5-S8). There was some indication that both deer 

counts and deer vigilance decreased given near-term bear occurrence, particularly in locations with higher 
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surrounding forest cover (Fig 4 B and D). As well, deer vigilance appeared to increase given near-term 

coyote occurrence at off-trail locations (Figure 4D), suggesting that deer tended to increase their vigilance 

in response to coyote or bear occurrence in locations that these predators generally use less frequently. 

Although deer foraging probability was statistically significantly affected by interactions between coyote 

occurrence and both daily EVI and snow depth, the strength of the estimated effects was extremely weak 

(Figure 4C). 

Wolf-related risk metrics tended to have larger influence on deer responses (Figure 4, Tables S5-

S8). Near-term wolf occurrence reduced the probability of foraging, particularly on-trail (Figure 4C), 

while the effects of near-term occurrence upon deer counts became increasingly negative as EVI and 

snow depth decreased, and as forest cover increased (Figure 4 B). This combination of terms suggests that 

the effect of proximal wolf occurrence upon deer counts exhibits a complex “phenology” depending upon 

environmental attributes (Figure 5 A-C, F). At camera locations ‘occupied’ by wolves, there was an 

increased negative effect of deeper snow on deer counts and a weaker positive effect of EVI (Figure 4B): 

locations occupied by wolves tended to exhibit greatly reduced deer counts during the winter relative to 

locations unoccupied by wolves (Figure 5 D-E). Moreover, wolf occupancy flipped an otherwise positive 

association between deer vigilance and daily EVI, and dampened the negative influence of snow depth on 

foraging likelihood (Figure 4 C and D).  

Discussion 

We found little evidence that wolves were associated with patterns in plant productivity as might be 

expected under a bottom-up driven system (Ford and Goheen 2015). Instead, our results broadly suggest 

that white-tailed deer respond to both proximal and more persistent metrics of predation risk from 

predators—primarily wolves—by locally reducing their activity or foraging (given usage), factors 

previously implicated as drivers of vegetation properties in the region (Ferker et al. 2014, Sabo et al. 

2017). This is consistent with the contention that wolf recovery has the potential to trigger a non-
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consumptive tri-trophic cascade across parts of the Great Lakes (Callan et al. 2013, Flagel et al. 2016), 

and suggests that said recovery could have some desirable consequences for forest management. 

We first acknowledge key uncertainties and limitations. Cameras sample small viewsheds, and 

the spatial scale of any avoidance or other behavioral responses is unclear. Moreover, because we did not 

directly sample vegetation itself, the extent of the vegetation responses reported by previous studies was 

not directly tested (Callan et al. 2013, Flagel et al. 2016). Such research is needed to assert whether a 

trophic cascade is occurring and quantify its strength (Ford and Goheen 2015). The nature and duration of 

our sampling further preclude any direct assessment of the actual foraging/fitness costs of these behaviors 

or broader population consequences. Limited association between the metrics of deer behavior and 

foraging resources considered suggest our study may have poorly quantified energetic considerations. 

Because the evidence here suggests that deer do respond to predation risk in ways that would lead to risk-

related non-consumptive cascading effects, we are less concerned about these shortcomings, but wish to 

highlight that satellite-derived vegetation indices exhibit three potentially surmountable limitations related 

to viewpoint and spatial and biological resolution. The nadir viewpoint employed in satellite imagery can 

conflate canopy and sub-canopy measurements, the spatial or temporal resolution of sampling is typically 

coarse, and vegetation greenness is a rough proxy for more nuanced chemical and nutritional metrics that 

might better describe foraging value. The use of hybrid products blending spatiotemporal resolution 

strengths, sub-canopy measures (potentially derived from trail cameras (Liu et al. in review), and more 

nuanced proxies for foliar chemistry derived from a greater number of spectra (Wang et al. 2020) could 

help clarify foraging resources and trade-offs. In turn, direct measures of deer condition (sensu Middleton 

et al. 2013) and longer term population monitoring might clarify the population consequences of these 

trade-offs, although we note that the evidence to date suggests that non-consumptive effects exert little 

influence on prey populations (Sherriff et al. 2020). Such information will be critical for assessing the role 

of non-consumptive effects within management decision-making focused on deer, predators, and 

forests.Regardless, our results do not contradict previous evidence for a trophic cascade (Callan et al. 
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2013, Flagel et al. 2016), and consequently, our objective to evaluate hypotheses pertaining to how such a 

cascade might be occurring remains pertinent. Theory predicts that non-consumptive cascading effects 

should be weaker given unpredictable risk from predators hunting actively over a broad habitat domain, 

because prey should exhibit more reactive responses to immediate risk (i.e., immediate predator presence) 

that are not concentrated in any specific habitat type (Schmitz et al. 2004, Creel 2018). All predators 

considered here exhibited varied detection attributes—namely, associations with linear features or forest 

cover, and autoregressive patterns that suggest serial space use—that could be predictable from the 

standpoint of prey, and the strongest deer responses were associated with interactions between predator 

(specifically, wolf) occurrence and environmental features rather than responses to predator occurrence 

irrespective of environmental context. Thus, predator-prey interactions here do not appear to follow the 

archetypical expectations of active predator-prey systems where each player has a broad habitat domain. 

Instead, results were more consistent with the hypothesis that wolf foraging strategies centered around 

targeting linear features expected to increase travel speed and the likelihood of encountering prey or other 

food resources per unit time (Avgar et al. 2011, Dickie et al. 2016). Deer tended to aggregate and forage 

less along these features, particularly given near-term wolf occurrence, evidence for a behavioral response 

to more concentrated risk cues along these features. This consistent with patterns of avoidance practiced 

by other prey in similar systems (Dickie et al. 2020) and the idea that prey should respond most strongly 

to spatiotemporal spikes in risk embedded within low baseline risk (Lima and Bednefoff 1999, Creel et al. 

2008). An important remaining challenge involves improving characterization or description of the linear 

features used or avoided by predators and prey. Here, we relied upon a binary classification provided by 

volunteer scientists maintaining specific camera locations because many cameras were deployed on 

private land and privately maintained trails are not well captured by existing GIS layers, and also because 

volunteer characterization of site descriptors may be more accurate when the task is simpler (Kallamansis 

et al. 2017).  
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Despite the suggestion by Flagel et al. (2016) that wolves might operate more as stalking 

predators in forested landscapes, there was no indication that wolves preferentially use forests in ways 

that might facilitate this. Although their occupancy was associated with broader surrounding forest cover, 

this likely reflects avoidance of or exploitation within areas in closer proximity to human settlements 

(Stenglein et al. 2015), given that their frequency of detection was not strongly associated with forests at a 

local scale. However, deer responded more strongly to near-term wolf occurrence as local forest cover 

increased. This may represent a response to increased wolf lethality in areas with more cover (Kunkel and 

Pletscher 2001, Hebblewhite et al. 2005), potentially because such cover inhibits escape (Gervasi et al. 

2013) or reduces visibility and the distance at which predators are perceived and encounters initiate. 

Although Olson (2019) found no forest-related patterns in the location of wolf-killed deer, this is expected 

if prey accurately perceive risk and have the capacity to respond to it (Gaynor et al. 2019, Smith et al. 

2020): the landscape of mortality should be distinct from the landscape of risk if prey mitigate risk via 

their responses (Moll et al. 2017). Indeed, it is possible that the landscape of mortality describes locations 

where prey are least afraid. That the landscape of deer mortality in this system is associated with snow 

depth (e.g., Olson 2019) may suggest that any added risk associated with deeper snow is more difficult or 

less worthwhile to mitigate, or that the location of mortality is otherwised decoupled from the landscape 

of fear. We return to these ideas shortly.  

That wolves, which are considered archetypically active and generalist predators, may be capable 

of generating acute risk cues in certain environments suggests a need to weigh environmental context 

more heavily within the study of predator-prey interactions (Wirsing et al. 2020). We pose two 

considerations. The first is that predator hunting modes and habitat domains may require more careful 

definitions. Predation risk arises from some combination of the per-capita likelihood and lethality of 

encounter and the duration of exposure to encounter (Lima and Dill 1990, Moll et al. 2017), and we 

suggest that environmental variation in these factors are what defines a predator’s hunting mode and 

habitat domain. In other words, habitat is definied by attributes that make a given hunting mode more 
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effective by increasing encounter likelihood or lethality. For sit and pursue or stalking predators, areas 

that increase the likelihood of encounter and lethality are often the same, because the strategy typically 

restricts predators to a narrow habitat domain and is only viable if prey have some attraction to locations 

where attacks are likely to be successful (Smith et al. 2019, Smith et al. 2020). This may make habitat 

domain easier to define. For actively hunting species, areas where the likelihood of enocounter is greater 

or lethality is greater may be distinct, and predators may make bifurcating selection decisions to 

maximize one component of habitat domain or another (Kittle et al. 2017).  While wolves in our system 

may potentially be more dangerous to deer in forests, patterns in their occurrence suggest a hunting 

strategy that hinges on increasing the likelihood of encounter along finer-grained travel corridors. From 

this perspective, despite their broad geographic range, the habitat domain of wolves here might be fairly 

narrow.  

The second consideration is merely that predator hunting mode, per se, may not predict 

behavioral responses as well as the combination of hunting mode and environmental settting. In fact, prey 

responses to predators with different hunting modes can either diverge or converge depending upon the 

surrounding environment (Wirsing et al. 2010, Wirsing et al. 2020). Although recent research in the 

Greater Yellowstone Ecosystem has coalesced around the idea that wolves should not generally be 

expected to induce strong effects upon prey given their hunting mode (Middleton et al. 2013, Kohl et al. 

2018), results here more closely align with those from other forested regions in boreal Canada (e.g., 

Leblond et al. 2016, Dickie et al. 2020). Thus, environmental similarity may play a key role in the 

transferability of predator-prey interactions across systems.     

The season of study may be a key type of environmental similarity to consider, as seasonality 

influences the physical and behavioral states of predators and prey in several ways that might impact risk 

perception and response. Indeed, although not the primary focus of our study, deer responses to proximal 

and longer-term wolf risk cues were mediated by dynamic environmental variables in ways that a) 

suggest deer were able to reliably discern seasonal variation in risk and their ability to control risk, and b) 
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implies that studies with a narrow temporal domain may not effectively describe predator-prey 

interactions. Deer counts were most strongly negatively impacted by near-term wolf occurrence towards 

the tails of the growing season. This is consistent with the forb responses that Callan et al. (2013) and 

Flagel et al. (2016) attribute to wolf-related effects: emergent and evergreen forbs are important parts of 

deer spring diets, while late-senescing forbs (primarily asters) are widely consumed by deer in autumn 

(McCaffery et al. 1974).  Less negative associations between deer counts and wolf occurrence as the 

concurrent EVI increased suggest that deer perceived wolves as less dangerous during summer months, 

when deer are in better physical condition and when wolves may be less lethal because they often travel 

individually (Peterson et al. 1984). In contrast, although deer mortality risk increases in areas with or 

during periods of deeper snow (Post and Stenseth 1998, Norton 2015, Olson 2019), deer counts and wolf 

occurrence were increasingly positively associated as snow depth increased. This may reflect energetic 

constraints associated with different risk reduction strategies, and more broadly suggests that wolf 

encounter during periods of deeper snow may be a risk that is difficult to control behaviorally (Gallagher 

et al. 2016, Creel 2018, Wirsing et al. 2020). One reason may be that deep snow simply shrinks the 

habitat domain of deer more than wolves, by more severely limiting deer movement and making near-

term avoidance of wolves more costly, particularly given that this is a period of nutritional stress. That 

deer use of locations occupied by wolves decreased with increasing snow-depth suggests a bifurcation of 

strategies. Some deer broadly relocate to areas relatively unused by wolves during times of deeper snow 

(Nelson and Mech 1984, Nelson and Mech 1991). Those that do not proactively avoid areas of wolf use 

during periods of low vegetation productivity and deeper snow may compensate for increased predation 

risk by using strategies that minimize energetic deficits (Gallagher et al. 2016), as deer using locations 

occupied by wolves spent more time foraging as snow depth increased relative to deer in locations 

unoccupied by wolves. The cost of doing so may be to become easier for wolves to both find and kill. It is 

also possible that deer experience the risks associated with deeper snow after the initial encounter with the 

predator: for example, if wolves kill deer in winter primarily by chasing them until deer encounter 
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pockets of deeper snow. This would make it difficult for deer to proactively respond to such risk (Creel 

2018). 

Ultimately, deer responses to metrics of potential predation risk here suggest some possibility that 

wolves may be an enacting a non-consumptive trophic cascade across parts of the Great Lakes region, but 

also raise new questions and pose new possibilities. Seasonal variation in deer responses suggest that our 

system may exhibit a distinct ‘phenology of fear’, where consumptive effects may have primacy during 

the winter in snowy areas, and non-consumptive effects may play a stronger role during other times of the 

year. Similar seasonal variation in encounter rate and avoidance has been observed previously between 

wolves and caribou (Whittington et al. 2011). Because resource-limited organisms are expected to make 

smaller investments in anti-predator behaviors (Bolnick and Preisser 2005, Wirsing et al. 2020), we posit 

such a fear phenology may be a general rule across environments with strong seasonal variation in forage 

availability.  This raises questions about what can be inferred from studies of fear landscapes during 

specific seasonal periods. With fear dynamics seeing growing research interest (Palmer et al. 2017, Kohl 

et al. 2018), there is a need to develop overarching hypothesis to explain such patterns: seasonal variation 

associated with a changing energy landscape could be a fruitful starting point. 
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Figure 1. Overview of the motivating hypothesis for the study. In A), the system is bottom-up driven, 

such that deer tend to be attracted to areas with greater resource availability and wolves are attracted to 

greater deer accessibility, and indirectly, regions with increased foraging resources for deer. In B), the 

system follows classical expectations for chase and pursue (active) predators: wolves seek out deer, and 

deer respond to wolves proximally (i.e., after perceiving them) and relatively uniformly across 

environmental conditions. In C) wolves operate as sit and pursue (stalking) predators within a forested 

environmental context, selecting for landscape attributes that provide stalking cover and increase the 

lethality of their attacks. In turn, deer respond proactively to concentrated risk cues associated with wolf 

selection for these attributes. In D), wolves are active predators, but their selection patterns (e.g., for 

landscape attributes that amplify the probability of encounter) leave concentrated risk cues that trigger 

stronger deer responses. 
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Figure 2. Camera locations and geospatial predictor variables used in the analyses. Land cover richness 

and forest proportion are static covariates, while the enhanced vegetation index (EVI) and snow depth are 

dynamic (daily) covariates from which other predictors were derived.  

 

 

 

 

 

 

 

 

 



174 
 

 
 

 

 

Figure 3. The effects of satellite-derived estimates of vegetation greenness derived concurrently within 

the pixel containing a camera location (DailyEVI), derived concurrently within a pixel containing a 

camera location relative to the queen’s neighborhood (RelEVI), and derived based upon the integrated 

daily enhanced vegetation index over the previous year between the estimated start and end of the 

growing season (IntEVI) upon the probability of daily deer occurrence/detection at a camera location (A), 

the expected daily count of image sequences at a camera locations (B), the probability that a single deer in 

a sequence was tagged as exhibiting foraging behavior (C), and the probability that a single deer within a 

sequence was tagged as exhibiting vigilance (D). Blue and red colors denote positive and negative 

estimates of effect, respectively. 
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Figure 4. The effects of varied risk metrics (Table S1 and S2) on the probability of daily deer 

occurrence/detection at a camera location (A), the expected daily count of image sequences at a camera 

locations (B), the probability that a single deer in a sequence was tagged as exhibiting foraging behavior 

(C), and the probability that a single deer within a sequence was tagged as exhibiting vigilance (D). Blue 

and red colors denote positive and negative estimates of effect, respectively. For aesthetic purposes, we 

only depict terms statistically significant at α = 0.05, although we present main effects if interaction terms 

did not overlap 0. 
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Figure 5.  Interactions between wolf occupancy/detection and dynamic environmental covariates create 

distinct ‘phenology’ effects on deer counts for five sample camera locations from the data (different line 

colors). Environmental covariates depicted across the year include (A) forest cover, (B) daily enhanced 

vegetation index, and (C) snow depth. (D) In sites occupied by wolves, deer detection counts given 

occurrence are expected to markedly decrease during periods of low EVI and deeper snow. (E) However, 

this pattern is much less pronounced in sites unoccupied by wolves (note different scale). (F) Conversely, 

the effect of proximal wolf occurrence upon expected deer counts is most strongly positive in relatively 

unforested areas during periods of deep snow or in unforested areas during the peak of the growing 

season, and is typically most negative in forested areas near the start and end of the growing seasons. 

Location of sample cameras depicted in in right panel (G)—note that wolves are not necessarily present at 

all sample locations, and the presented effects in panels D-F ignore site-specific random effects. 
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Appendix S1. Supporting Figures and Tables. 

 

 

Figure S1. Finite sample estimates of realized occupancy of (A) black bears, (B) coyotes, and (C) wolves 

at camera locations used within the study. 
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Figure S2. Marginal spatial smoother effects for deer occurrence (A), trigger counts (B), probability of 

foraging (C), and probability of vigilance (D). 
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Figure S3. Marginal temporal smoother effects for deer occurrence (A), trigger counts (B), probability of 

foraging (C), and probability of vigilance (D). 
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Table S1. Variables used as predictors within the analysis, description of their derivation, and which 

models they were employed within.  

Term Description Analyses used 

YDeer 
Binary, whether a deer was detected at a given camera 

location on the previous day. 
Deer occurrence 

YWolf 
Binary, whether a deer was detected at a given camera 

location on the previous day. 

Wolf 

occupancy/detection 

YBear 
Binary, whether a deer was detected at a given camera 

location on the previous day. 

Bear 

occupancy/detection 

YCoyote 
Binary, whether a deer was detected at a given camera 

location on the previous day. 

Coyote 

occupancy/detection 

CDeer 
Standardized count of deer image sequences at given camera 

location on the previous day. 
Deer counts 

Trail 
Binary, whether a camera was placed along a maintained 

trail/road or not. 
All 

Snow 
Daily concurrent snow depth derived from Snodas pixel 

containing camera after resampling to 500 m resolution. 
All 

Richness 
Land cover richness (derived from 2016 NLCD) within 250 m 

radius buffer surrounding camera location. 
All 

DailyEVI 

Daily enhanced vegetation index within MODIS pixel 

containing camera. Derived from MODIS reflectance (product 

MCD43A4), and smoothed using double-logistic function. 

All 

IntEVI 

Summation of the daily smoothed enhanced vegetation index 

between the start and end of growing season (as estimated 

using double-logistic smooth) at pixel containing camera 

during the previous year (2016). 

All 

RelEVI 

Daily enhanced vegetation index within MODIS pixel 

containing camera relative to the mean daily EVI of pixels 

within the Queen’s neighborhood. 

All Deer, Bear and 

Coyote 

occupancy/detection 

IRG 
Instantaneous rate of green-up derived from first derivative of 

daily EVI (either positive, or 0). 

Bear, Coyote 

occupancy/detection 

Deer 
Binomial count (0, 1, 2) of deer occurrence at camera location 

on the same day or previous day. 

Bear, Coyote, Wolf 

occupancy/detection 

Wolf 
Binomial count (0, 1, 2) of wolf occurrence at camera location 

on the same day or previous day. 
All deer models 

Coyote 
Binomial count (0, 1, 2) of coyote occurrence at camera 

location on the same day or previous day. 
All deer models 

Bear 
Binomial count (0, 1, 2) of bear occurrence at camera location 

on the same day or previous day. 
All deer models 

Wolf Occupancy Estimate of wolf occupancy state at camera location. All deer models 

Forest 
% Forest cover (classes deciduous forest, mixed forest, 

evergreen forest, wooded wetland, and shrubland) in circular 

buffer of 250 m (Forest) or 5km (Forest5km) radius. 

Forest: All 

Forest5km: Bear, 

Coyote, Wolf 

occupancy/detection 

 

 

 

 

 

 



181 
 

 
 

Table S2. Parametric terms estimated within deer models and underlying hypothetical justification. 

Term Justification 

YDeer/CDeer 
Expected deer occurrence/counts to exhibit temporal 

autocorrelation. 

Trail 
Proposed indicator of risk, but also might facilitate movement and 

increase detection rates. 

Snow 
Hindrance to deer movement and indicator of periods with low food 

availability and greater risk, anticipated to effect occurrence, 

counts, and foraging/vigilance behavior. 

Richness Indicator of diversity in foraging and shelter resources. 

RelEVI 
Indicator of resources (during summer, food, and during winter, 

evergreen shelter) relative to other patches deer might conceivably 

use. 

IntEVI 
Indicator of deer condition entering the study (note, derived from 

previous year’s phenology) and also overall annual productivity of 

given location. 

DailyEVI Indicator of seasonal forage availability. 

Wolf Proximal risk from wolves. 

Coyote Proximal risk from coyotes. 

Bear Proximal risk from black bears. 

Forest Previously proposed indicator of risk. 

Wolf Occupancy Longer-term risk from wolves. 

Richness x IntEVI 
Diversity of foraging resources (and possible phenological diversity 

associated with land cover diversity) may be more important in 

areas of lower overall productivity. 

RelEVI x IntEVI 
Resource availability relative to neighborhood may be less 

important if annually integrated productivity is relatively high. 

IntEVI x DailyEVI 
Expected that responses to temporal variability in resources might 

be more muted or amplified in areas of greater and lesser annually 

integrated resource availability. 

RelEVI x DailyEVI 
Resource availability relative to neighborhood may be more 

important during periods of overall resource scarcity. 

Snow x Wolf 
Because snow is strong predictor of deer mortality, expected deer to 

respond more strongly to risk proxies as snow depth increased 
Snow x Coyote 

Snow x Wolf Occupancy 

Trail x Bear 
Following hypothesis in main text: if active predators create 

concentrated cues along linear features, deer should respond to 

these cues when predators are present. 

Trail x Wolf 

Trail x Coyote 

Trail x Wolf Occupancy 

Forest x Bear 
Following hypothesis in main text: if predators are more lethal in 

areas with more cover, deer should respond to these cues when 

predators are present. 

Forest x Wolf 

Forest x Coyote 

Forest x Wolf Occupancy 

DailyEVI x Bear 

Expected resource availability/site foraging value would mediate 

deer reponses to proxies of predation risk 

DailyEVI x Wolf 

DailyEVI x Coyote 

DailyEVI x Wolf Occupancy 
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Table S3. Coefficient estimates and uncertainty intervals associated with wolf occupancy/detection 

model. 

Variable Process Mean 

Monte Carlo 

Error LCI UCI 

Intercept p -5.063 0.003 -5.316 -4.818 

Trail p 1.096 0.003 0.780 1.425 

YWolf p 0.703 0.008 -0.304 1.527 

Richness p -0.037 0.001 -0.208 0.135 

Forest p 0.080 0.002 -0.128 0.298 

Deer p 0.149 0.002 -0.029 0.335 

Snow p -0.040 0.001 -0.168 0.082 

DailyEVI p -0.286 0.001 -0.445 -0.135 

Intercept ψ -2.871 0.009 -3.812 -2.134 

Forest (5km) ψ 0.799 0.005 0.222 1.430 

IntEVI ψ 0.138 0.002 -0.170 0.425 
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Table S4. Coefficient estimates and uncertainty intervals associated with coyote occupancy/detection 

model. 

Variable Process Mean Monte Carlo Error LCI UCI 

Intercept p -3.775 0.005 -3.904 -3.645 

Forest p -0.159 0.003 -0.263 -0.058 

Trail p 0.821 0.008 0.565 1.035 

YCoyote p 0.827 0.001 0.752 0.906 

IRG p -0.095 0.001 -0.152 -0.039 

Richness p -0.101 0.003 -0.198 -0.006 

Snow p -0.128 0.001 -0.187 -0.070 

DailyEVI p 0.073 0.001 0.008 0.143 

RelEVI p 0.009 <0.001 -0.027 0.047 

Day of Year p 0.043 0.001 0.000 0.086 

Day of Year2 p 0.256 0.001 0.192 0.320 

Deer p 0.258 0.000 0.217 0.300 

Trail x Deer p 0.005 0.001 -0.073 0.084 

Snow x Deer p -0.021 0.001 -0.077 0.035 

Forest x Deer p 0.005 0.001 -0.033 0.041 

IRG x Deer p 0.042 <0.001 0.002 0.083 

DailyEVI x Deer p -0.006 <0.001 -0.043 0.030 

σ p 1.083 0.003 0.999 1.183 

Intercept ψ 2.529 0.015 2.054 3.217 

IntEVI ψ 0.369 0.005 0.031 0.713 
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Table S5.  Coefficient estimates and uncertainty intervals associated with black bear occupancy/detection 

model. 

Variable Process Mean Monte Carlo Error LCI UCI 

Intercept p -4.966 0.006 -5.233 -4.698 

Forest p 0.317 0.005 0.09 0.536 

Trail p 0.379 0.007 0.035 0.727 

YBEAR p 0.913 0.002 0.735 1.091 

IRG p -0.026 0.001 -0.100 0.043 

Richness p -0.064 0.003 -0.220 0.081 

Deer p 0.174 0.002 0.066 0.284 

DailyEVI p 0.872 0.001 0.788 0.959 

RelEVI p -0.087 0.001 -0.163 -0.008 

Day of Year p -0.194 0.001 -0.318 -0.067 

Day of Year2 p -0.709 0.003 -0.947 -0.506 

Forest x Deer p 0.010 0.002 -0.103 0.124 

Trail x Deer p -0.053 0.002 -0.224 0.129 

IRG x Deer p 0.000 0.001 -0.056 0.053 

σ p 1.038 0.003 0.922 1.165 

Intercept ψ 1.398 0.027 0.548 2.651 

Forest (5km) ψ 1.015 0.009 0.391 1.671 

IntEVI ψ -0.335 0.004 -0.726 0.027 
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Table S6. Coefficient estimates, standard error, Z score, and p-values for deer occurrence model. 

Variable Estimate SE Z Pr(>|z|) 

Intercept -0.776 0.038 -20.537 < 2e-16 

YDeer 0.843 0.013 65.941 < 2e-16 

Trail 0.095 0.078 1.221 0.222 

Snow 0.019 0.013 1.427 0.154 

Richness 0.019 0.035 0.530 0.596 

RelEVI -0.018 0.011 -1.603 0.109 

IntEVI 0.111 0.039 2.820 0.005 

DailyEVI 0.131 0.035 3.802 0.000 

Wolf 0.322 0.157 2.050 0.040 

Coyote 0.221 0.027 8.049 0.000 

Bear 0.176 0.075 2.354 0.019 

Forest 0.004 0.042 0.085 0.933 

Wolf Occupancy -0.124 0.110 -1.125 0.261 

Richness x IntEVI 0.024 0.030 0.819 0.413 

RelEVI x IntEVI -0.005 0.008 -0.618 0.537 

IntEVI x DailyEVI 0.018 0.009 2.010 0.044 

RelEVI x DailyEVI -0.017 0.008 -2.059 0.039 

Snow x Wolf 0.113 0.095 1.183 0.237 

Snow x Coyote -0.006 0.029 -0.216 0.829 

Trail x Bear 0.025 0.097 0.255 0.799 

Trail x Wolf -0.149 0.223 -0.668 0.504 

Trail x Coyote 0.012 0.044 0.280 0.779 

Forest x Bear 0.022 0.057 0.397 0.691 

Forest x Wolf -0.119 0.145 -0.826 0.409 

Forest x Coyote -0.005 0.021 -0.255 0.799 

DailyEVI x Bear -0.040 0.048 -0.825 0.409 

DailyEVI x Wolf 0.035 0.131 0.266 0.790 

DailyEVI x Coyote 0.034 0.021 1.618 0.106 

Snow x Wolf Occupancy -0.029 0.024 -1.213 0.225 

Trail x Wolf Occupancy 0.055 0.240 0.230 0.818 

Forest x Wolf Occupancy -0.077 0.095 -0.817 0.414 

DailyEVI x Wolf Occupancy 0.025 0.021 1.196 0.232 
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Table S7. Coefficient estimates, standard error, Z score, and p-values for deer count model. 

Variable Estimate SE Z Pr(>|z|) 

Intercept 1.454 0.019 75.087 < 2e-16 

YDeer 0.177 0.004 40.204 < 2e-16 

Trail -0.097 0.037 -2.597 0.009 

Snow -0.009 0.007 -1.190 0.234 

Richness -0.021 0.017 -1.244 0.213 

RelEVI 0.003 0.007 0.449 0.654 

IntEVI -0.030 0.020 -1.499 0.134 

DailyEVI 0.026 0.022 1.165 0.244 

Wolf -0.062 0.096 -0.640 0.522 

Coyote 0.007 0.015 0.496 0.620 

Bear -0.011 0.047 -0.239 0.811 

Forest 0.006 0.020 0.293 0.770 

Wolf Occupancy -0.056 0.053 -1.046 0.295 

Richness x IntEVI 0.006 0.015 0.406 0.685 

RelEVI x IntEVI -0.017 0.005 -3.323 0.001 

IntEVI x DailyEVI 0.023 0.006 3.988 0.000 

RelEVI x DailyEVI 0.003 0.006 0.477 0.633 

Snow x Wolf 0.127 0.045 2.838 0.005 

Snow x Coyote 0.011 0.013 0.820 0.412 

Trail x Bear -0.048 0.063 -0.759 0.448 

Trail x Wolf 0.152 0.164 0.928 0.353 

Trail x Coyote 0.026 0.024 1.092 0.275 

Forest x Bear -0.073 0.035 -2.067 0.039 

Forest x Wolf -0.253 0.088 -2.862 0.004 

Forest x Coyote -0.019 0.011 -1.680 0.093 

DailyEVI x Bear 0.008 0.031 0.252 0.801 

DailyEVI x Wolf 0.244 0.086 2.828 0.005 

DailyEVI x Coyote 0.017 0.012 1.413 0.158 

Snow x Wolf Occupancy -0.028 0.013 -2.185 0.029 

Trail x Wolf Occupancy -0.028 0.116 -0.241 0.810 

Forest x Wolf Occupancy 0.016 0.046 0.351 0.726 

DailyEVI x Wolf Occupancy -0.029 0.014 -2.116 0.034 
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Table S8. Coefficient estimates, standard error, Z score, and p-values for deer foraging model. 

Variable Estimate SE Z Pr(>|z|) 

Intercept -1.373 0.038 -35.903 < 2e-16 

Trail -0.166 0.044 -3.794 0.000 

Snow -0.055 0.013 -4.181 0.000 

Richness 0.004 0.020 0.183 0.855 

RelEVI -0.007 0.011 -0.627 0.530 

IntEVI -0.023 0.023 -1.021 0.307 

DailyEVI -0.006 0.030 -0.210 0.834 

Wolf -0.151 0.189 -0.799 0.424 

Coyote 0.006 0.020 0.311 0.756 

Bear 0.015 0.047 0.316 0.752 

Forest 0.029 0.022 1.330 0.184 

Wolf Occupancy -0.005 0.060 -0.082 0.934 

Richness x IntEVI 0.019 0.018 1.014 0.311 

RelEVI x IntEVI -0.010 0.008 -1.293 0.196 

IntEVI x DailyEVI 0.037 0.009 3.940 0.000 

RelEVI x DailyEVI 0.003 0.009 0.356 0.722 

Snow x Wolf 0.113 0.104 1.089 0.276 

Snow x Coyote 0.051 0.023 2.265 0.024 

Trail x Bear -0.054 0.076 -0.709 0.478 

Trail x Wolf -1.206 0.484 -2.491 0.013 

Trail x Coyote -0.051 0.034 -1.498 0.134 

Forest x Bear 0.021 0.041 0.501 0.616 

Forest x Wolf 0.178 0.226 0.789 0.430 

Forest x Coyote -0.021 0.016 -1.309 0.190 

DailyEVI x Bear -0.014 0.038 -0.371 0.711 

DailyEVI x Wolf 0.036 0.177 0.205 0.838 

DailyEVI x Coyote 0.040 0.017 2.393 0.017 

Snow x Wolf Occupancy 0.063 0.019 3.323 0.001 

Trail x Wolf Occupancy -0.064 0.136 -0.471 0.638 

Forest x Wolf Occupancy 0.004 0.053 0.076 0.940 

DailyEVI x Wolf Occupancy -0.037 0.023 -1.578 0.115 
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Table S9. Coefficient estimates, standard error, Z score, and p-values for deer vigilance model. 

Variable Estimate SE Z Pr(>|z|) 

Intercept -2.454 0.026 -93.732 <2e-16 

Trail -0.008 0.046 -0.165 0.869 

Snow -0.011 0.013 -0.829 0.407 

Richness -0.007 0.021 -0.336 0.737 

RelEVI -0.019 0.014 -1.409 0.159 

IntEVI -0.039 0.024 -1.639 0.101 

DailyEVI 0.033 0.017 1.922 0.055 

Wolf -0.003 0.279 -0.010 0.992 

Coyote 0.023 0.031 0.733 0.464 

Bear -0.061 0.077 -0.795 0.427 

Forest -0.022 0.024 -0.932 0.351 

Wolf Occupancy 0.033 0.064 0.513 0.608 

Richness x IntEVI -0.003 0.019 -0.138 0.891 

RelEVI x IntEVI -0.023 0.011 -2.137 0.033 

IntEVI x DailyEVI -0.013 0.013 -1.021 0.307 

RelEVI x DailyEVI 0.033 0.013 2.456 0.014 

Snow x Wolf 0.053 0.188 0.283 0.777 

Snow x Coyote 0.039 0.031 1.252 0.211 

Trail x Bear 0.005 0.125 0.042 0.966 

Trail x Wolf -0.089 0.458 -0.194 0.846 

Trail x Coyote -0.123 0.053 -2.298 0.022 

Forest x Bear -0.105 0.060 -1.741 0.082 

Forest x Wolf 0.264 0.316 0.833 0.405 

Forest x Coyote -0.005 0.025 -0.184 0.854 

DailyEVI x Bear 0.059 0.066 0.896 0.370 

DailyEVI x Wolf 0.089 0.257 0.345 0.730 

DailyEVI x Coyote 0.007 0.025 0.283 0.777 

Snow x Wolf Occupancy -0.028 0.029 -0.989 0.323 

Trail x Wolf Occupancy -0.102 0.142 -0.722 0.471 

Forest x Wolf Occupancy 0.011 0.057 0.187 0.852 

DailyEVI x Wolf 

Occupancy -0.084 0.035 -2.433 0.015 

 

 

 

 

 

 



189 
 

 
 

Chapter 4 – Snow and seasonality structure wildlife communities over the annual cycle. 
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Abstract 

Modeling and mapping species distributions and assemblages is a ubiquitous and core need for a variety 

of ecological applications. Given increased appreciation that wildlife distributions—and by extension, 

communities—can be highly dynamic, there is growing impetus to characterize these dynamics to gain a 

more complete understanding of species phenology and important environmental drivers. Here, we apply 

a spatiotemporal multi-species occupancy model to a community of mammals and gallinaceous birds 

sampled across the state of Wisconsin over a calendar year. Results suggest that although the species 

considered are essentially non-migratory, there are pronounced shifts in occupancy dynamics associated 

with changes in activity and movement. Moreover, dynamic environmental variables associated with 

plant vigor and snow depth better explained species distributions over the year than static variables. 

Seasonal variation in species richness was higher in regions with greater overall richness, suggesting that 

seasonal space use represents a potentially important niche axis. Results suggest that seasonal variation 

plays a strong role in structuring communities, and that expected changes to seasonal patterns in plant and 

snow phenology may reshape Wisconsin’s biodiversity more powerfully than other broad types of 

environmental change such as land cover conversion or increased urbanization.  
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Introduction 

Understanding and delineating patterns in species distributions and broader biodiversity attributes such as 

alpha and beta diversity is important for both basic and applied ecology (Elith and Leathwick 2009). 

Species occurrence, richness, the distinctiveness of species assemblages, and the environmental correlates 

of each are commonly used to guide or prioritize conservation efforts (Leathwick et al. 2010, Zipkin et al. 

2010). However, it is increasingly appreciated that wildlife distributions are fluid entities (Fink et al. 

2010, Conn et al. 2015, Zuckerberg et al. 2016), as individual organisms face and respond to intra-

annually varying environmental contexts and pressures. This has spurred calls to expand the scope of 

ecological studies to better describe patterns and processes over the full annual cycle (Marra et al. 2015). 

Empowered by tagging and sensing datastreams that provide continuous information at broad scales and 

growing commitment to data-sharing across distinct locations (Sullivan et al. 2009, Kays et al. 2015, 

Steenweg et al. 2017), ecologists are increasingly rising to the challenge and estimating seasonal variation 

in demographic rates, occurrence, and abundance.  

Characterizing spatiotemporal variation in distributions and vital rates is often needed to prioritize 

actions that target different life-history stages (Rushing et al. 2017, Hardy et al. 2020) or different regions 

and habitat types both permanently or ephemerally (Johnston et al. 2015, Zuckerberg et al. 2016, Schuster 

et al. 2019). To date, the vast majority of this research (but see Hardy et al. 2020) has focused on 

migratory avian species for which the spatial scale of individual movement across the year often vastly 

exceeds individual management jurisdictions. Communities of mid-sized to large mammals pose similar 

challenges in that many also seasonally range beyond protected areas or across jurisdictional boundaries 

(Newmark 2008, Bischof et al. 2020). However, most efforts to monitor mammal distributions year-round 

rely on tagging technologies and focus on a relatively small number of species and individuals. Although 

the importance of monitoring mammal communities rather than individual species to prioritize 

management actions is increasingly recognized (Rich et al. 2016), most community monitoring (indeed, 

most mammalian monitoring in general; Marra et al. 2015) continues to rely on ‘snapshot’ sampling 
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efforts with limited capacity to characterize intra-annual variation in species distributions or the 

composition of the broader community.  

Because of these limitations, conservation and management decision-making predicated upon 

assessments of mammalian biodiversity patterns should attempt to assess (or address) seasonal variation. 

A major component of this is to consider biodiversity responses to both static and dynamic elements of 

the environment. Across temperate latitudes, snow cover and plant vigor are key indicators of seasonal 

varation and species’ phenologies. Although the triggering cues vary, nearly all wildlife species in such 

environments have evolved to coarsely time emergence from hibernation, migration, and birthing with the 

initiation of spring vegetation green-up (Visser et al. 1998, Inouye et al. 2000, Merkle et al. 2016, Aikens 

et al. 2017).  At at finer grains, the the daily movements or activity of many species is linked to 

spatiotemporal patterns in greenness (Mueller et al. 2011, van Moorter et al. 2013). In turn, snow can 

provide a critical ephemeral habitat in its own right (Pauli et al. 2013) that strongly influences species 

behaviors and interactions (Post et al. 1999). It is possible that variation in these dynamic environmental 

variables—which, when considered, are typically aggregated into climatic averages—may describe 

species’ habitat requirements as well or more effectively than land cover composition and configuration.  

From an applied perspective, assessing seasonal variation in communities in relation to both 

dynamic and relatively static predictors may provide two major benefits. First, seasonal and annually-

integrated spatial patterns in community composition provide a basis to spatially or spatiotemporally 

prioritize conservation and management actions (Johnston et al. 2015, Schuster et al. 2019). Secondly, 

understanding the relative importance of different environmental factors upon species distributions can 

help agencies assess and rank the importance of different broad-scale drivers of biodiversity change 

ranging from land cover conversion to climate change (Sultaire et al. 2016).   

Understanding intra-annual variability in community composition also has more fundamental 

value. The study of phenology has largely focused upon cataloging shifts in the timing of specific 

activities and mismatches between species, as such changes are expected to eventually drive shifts in 
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community composition (Cohen et al. 2018, Simmonds et al. 2019). However, community composition 

should exhibit a regular phenology driven by species’ life histories and predictable seasonal 

environmental variation. Interspecific variation in organismal and environmental phenology is expected 

play a major role in structuring communities, as time (more specifically here, seasonality) constitutes a 

pre-eminent niche axis (Chesson 2000, Wolkovich and Cleland 2011). Presumably, greater interspecific 

partitioning in the seasonal use of certain locations is associated with greater annually integrated species 

richness.  

Here, we use data from a broad-scale monitoring program operating over a full calendar year in a 

strongly seasonal environment to gain insights into the intra-annual phenology of mammal communities. 

We use multi-species occupancy models with a spatiotemporal structure to i) estimate species occurrence 

probabilities over the year, ii) identify important environmental and anthropogenic predictors of both 

individual species and summarize broader community effects, and iii) derive and visualize community 

summary statistics to help inform initial biodiversity assessments.  

Methods 

We use data produced as part of Snapshot Wisconsin (Locke et al. 2019, Townsend et al. 2020) across the 

2017 calendar year. While effort steadily increased over the course of the year as new cameras were 

deployed, deployment did not follow any pronounced spatial trend that might cause confounding between 

sampling effort and the environmental variables of interest. We focus on a community of 22 species (in a 

few cases, species combinations) that were regularly detected by the project (Table S1).  All triggering 

sequences of species known to be misclassified fairly commonly (i.e., incidence > 3-5%) were subjected 

to a complete post-hoc review, and for other species, we assume that the classifications provided by 

volunteer camera hosts or via crowdsourced consensus are accurate (Clare et al. 2019, subsequent 

unpublished data) aside from reviewing clear spatial or temporal outliers. Prior to analysis, we thinned 

camera locations that were within 1 km proximity to one another, leaving a total sampling effort of 

170,194 24-hr periods across 953 camera locations. 
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Analysis 

We analyzed the data by fitting a dynamic multi-species occupancy model (Dorazio et al. 2010). We 

defined sites (i = 1, 2, 3…R) by overlying a grid of 3 by 3 km cells across the state; note that a site (R = 

757) may include multiple camera locations c (c[i] ranged from 1-6, Figure 1). We defined primary 

periods (t = 1, 2, 3…T) as 28-d intervals (T = 13), each containing 7 secondary 4-d periods j. We 

restricted inference to the set of observed species (rather than augmenting the species pool with 

unobserved species sensu Dorazio et al. 2010) because the additional set of completely unobserved or 

unanalyzed species is poorly defined here (Guillera-Arroita et al. 2019). 

Following Rushing et al. (2019), for each species s at each site during each primary period, the 

binary occupancy state zs,i,t is assumed to be a Bernoulli random variable with probability ψs,i,t: 

zs,i,t ~Bernoulli (ψs,i,t) 

logit (ψs,i,t) = ft,s(longitudei, latitudei) + βsXi,t 

Above, βs denotes a vector of species-specific coefficients describing responses to the vector of 

environmental covariates Xi,t. Following custom for this model class, we assumed βs ~ Normal (μβ, σβ), 

where μβ and σβ were vectors describing the mean and standard deviation of species associations with 

specific covariates. Mean parameters were assigned prior distributions as Normal (0, 1.5), and standard 

deviations were assigned half-normal priors with scale 1.5. Covariates included a mix of time-varying and 

static predictors.  Mean snow depth was calculated across the 3 km cell and 28-d primary period derived 

from SNODAS (Barrett 2003, Snowi,t) and mean enhanced vegetation index across the same spatial and 

temporal window was derived from 16-d MODIS reflectance data (product MCD43A4) and smoothed 

using a double-logistic function (Beck et al. 2006, EVIi,t)—and static predictors. Static predictors included 

the proportion of forested land-cover types (classes evergreen forest, deciduous forest, mixed forest, 

wooded wetland, and shrubland) derived from the 2016 National Land Cover Database (Homer et al. 

2020, Foresti), the inverse Simpson index of land cover types (Simpsoni), and the annual mean of night-
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time light intensity (Lightsi, Roman et al. 2018). These covariates were selected to assess specific 

hypotheses related to the relative importance of vegetation structure, landscape heterogeneity, intensity of 

human development, and vegetation/snow seasonality upon species occurrence and community 

composition. Spatial analysis was performed in the R computing environment (R Core Team 2019) using 

libraries ‘raster’ and ‘velox’.  

Term ft,s(longitudei, latitudei) denotes a species-specific evolving spatial smoother employed to 

capture patterns in species occurrence not well-described by the environmental covariates (Rushing et al. 

2019). The smoothing function is the dot product of K basis functions g and coefficients v (Wood et al. 

2017):   

ft,s(longitudei, latitudei) = ∑ 𝑔𝑘(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖
30
𝑘=1 , 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖)𝑣𝑘,𝑡,𝑠  

Here, we employed a smoother with 30 degrees of freedom (K = 30), and radial cubic spline basis 

functions following Guelat and Kery (2018). Knot locations were selected using a space-filling algorithm 

using the library “fields”. During the first primary period, we assumed coefficients vk,1,s ~Normal (0, 𝜎𝑠
𝑣), 

where 𝜎𝑠
𝑣~Half-normal (𝜎𝑣) and 𝜎𝑣 was assigned a prior distribution of Uniform (0, 3). This reflects 

previous implementations (Crainiceanu et al. 2005, Guelat and Kery 2018) save that there is a partial 

pooling of spline coefficient standard deviations across species. Following Rushing et al. (2019), we 

assumed that during subsequent primary periods (t = 2, 3, 4…13) vk,t,s ~Normal(vk,t-1,s, 𝜎𝑠
𝑡), again enacting 

partial-pooling by assuming 𝜎𝑠
𝑡~Half-normal (𝜎𝑡) and assigning 𝜎𝑡 a prior distribution of Uniform (0, 3).  

Observations ys,c,t were entered at the camera-level (c) as binomial counts such that ys,c,t ~ 

Binomial(Nc,t, ps,c × zs,i[c],t), where Nc,t denotes the number of secondary periods that camera c was active 

during primary period t, i[c] denotes the site containing camera location c, and ps,c  denotes the probability 

of detecting species s at camera c if zs,i[c],t = 1. We modeled variation in ps,c as logit(ps,c) = α0,s+ α1,sTrailc+ 

α2,sWaterc+ εs,c. We assumed species-specific detection coefficients αs were distributed as Normal (μα, σα) 

and employed the same hyper-priors used for occupancy coefficients. Term εs,c denotes logit-normal error 
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for each species at each camera location distributed as Normal (0, 𝜎𝑠
𝑝

). Priors and hyper-priors associated 

with 𝜎𝑠
𝑝

follow previous descriptions.   

We fit models using Markov Chain Monte Carlo simulation using Stan (Carpenter et al. 2017) via 

the R library ‘rstan’ (Stan Development team 2018), marginalizing over the latent occupancy state 

following MacKenzie et al. (2002). We fit 4 chains with a burn-in of 1000 iterations and a sampling 

duration of 1000 iterations, and assessed convergence by visually inspecting chains and using standard 

statistical tests.  

Post fitting processing 

We derived the expected occupancy state of each species for each primary period across the state-wide 

grid using posterior prediction, and derived annually-integrated occupancy (i.e., the probability of 

occupancy during any of the primary periods) for each species as ψs,i,annual = 1 − ∏ 1 − 𝜓𝑠,𝑖,𝑡
13
𝑡=1 . We used 

these derivations to further derive annual and primary-specific predictions of species richness across the 

full network of sites. We used functional principal components analysis (Ramsay and Silverman 2005) 

with a B-spline basis function to partition variation in the collection of predicted richness time-series 

across sites using R library ‘fda’. 

 A note on the interpretation of occupancy 

Camera-trap observations arise from a combination of spatiotemporal variation in species abundance, 

movement, and camera perception (Burton et al. 2015). The interpretation of occupancy estimates derived 

from camera-trap sampling is challenging, particularly when multiple species are considered (e.g., 

MacKenzie and Royle 2005, Efford and Dawson 2012, Burton et al. 2015, Neilsen et al. 2018, Steenweg 

et al. 2018). Here, we defined sites as areal units sampled using (potentially multiple) point-detectors. It is 

tempting to imagine that occupancy in this context denotes whether an organism ever occurred within a 

given areal unit, but this is not strictly true: the statistical interpretation is whether (zi = 1) or not (zi = 0) 

there was some non-zero possibility of detecting the organism at cameras placed within the areal unit. 
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Thus, species exhibiting prolonged periods of inactivity may exist within a cell without ‘occupying’ it in 

the narrower statistical sense of the term. In addition, differences in movement extent and density across 

species, space, and time pose estimation challenges (Efford and Dawson 2012, Neilsen et al. 2018, 

Steenweg et al. 2018): a fast-moving and wide-ranging organism will encounter more point detectors than 

a relatively sedentary organism but, on a per-capita basis, will spend less time in front of any given 

detector. Thus, even if the two organisms occupy the same number of areal units at equal density, the 

estimated probability of occupancy will tend to be larger for the wider-ranging organism. Accordingly, 

differences in the estimated occupancy probabilities of cells across species, sites, or primary periods may 

reflect differences in within-cell space use: deep snow might greatly constrict the movement of certain 

species, making them appear to occupy fewer cells when they truly use less space within cells.  

Our interest here was primarily related to understanding (and visualizing) intra-annual patterns in 

species activity/distributions and making inference about species that are active players within the 

community. We consequently use an analytical approach that facilitates these comparisons. The cost of 

doing so is that the state variable of interest is not consistently interpretable. Steps to ensure more 

consistent interpretability—such as defining a site as a camera viewshed (Efford and Dawson 2012, 

Steenweg et al. 2018) or using dynamic detection covariates to try to account for periods of reduced 

activity or other factors—make visualization challenging and otherwise mask the patterns we were 

interested in uncovering. Note that as the sampling duration increases, there is some evidence that the true 

‘asymptotic’ occupancy state is better recovered (Steenweg et al. 2018), so it is likely that our annually-

integrated estimates of occupancy better describe species’ ranges. 

Results 

The fitted model exhibited adequate convergence based on visual and statistical assessments. 

Across the set of covariates considered, snow depth had the largest (and consistently negative, although 

most variable) effect upon species occupancy probability across the community (Figure 2, community-

level hyper-parameters are tabulated in Table S2). More granularly, the (negative) effects of snow-depth 
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were less pronounced for species recognized as snow-adapted (e.g., snowshoe hare and ruffed grouse) or 

for canid and mustelid predator species (Figure 3, parameter effects are presented in Tables S3 – S13). 

Unsurprisingly, snow depth had a more pronounced effect on species undergoing periods of prolonged 

winter inactivity (e.g., black bear, Ursus americanus), although several species that remain active through 

winter (white-tailed deer, Ocodeilus virginianus) were also negatively affected.  

The enhanced vegetation index also had negative effects, on average, across the community, but 

smaller interspecific variation in response: bears were uniquely positively associated with EVI, while 

most species were weakly negatively associated with site and primary-specific vegetation greenness. The 

proportion of forest cover had near net-zero community effect but relatively large interspecific variability 

(Figures 2 and 3): conforming to expectations, snowshoe hare (Lepus americanus) and porcupine 

(Erithizon dorsatum) were more likely to occupy site with increased increased forest cover while 

domestic cats (Felis catus) and red foxes (Vulpes vulpes) were more likely to occupy sites with less forest 

cover. The overall effects of nighttime light intensity and land cover diversity across the community were 

more muted and less variable. Gray fox (Urocyon cinereoargenteus) were uniquely positively associated 

with greater nighttime light intensity: all others species were negatively or not associated. On average, 

land cover diversity had positive effect, although all specific effect sizes were small. 

Post-hoc, we were interested in understanding covariance between environmental effects (e.g., 

the degree to the effect of one variable was associated with the effect of another). We estimated 

correlation coefficients for all possible pairwise combinations of covariate-specific effects across each 

posterior iteration in order to derive a posterior distribution for effect correlations.  The most strongly 

correlated effects were EVI and snow depth (Pearson r = –0.64, 95 % CRI = -0.80 – -0.44, Figure S1A), 

and forest cover and night-time light intensity (Pearson r = –0.39, 95 % CRI = -0.61 – -0.11, Figure S1B). 

Other pairwise combinations of coefficients exhibited weaker correlations (Table S14). Thus, species with 

strong negative responses to snow (forest cover) were likely to have less negative or positive associations 

with vegetation greenness (night-time lights). Overall patterns in predicted species distributions integrated 
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over the year reflect this, exhibiting a mix of northerly and southerly distributed species (Figure 4), 

although species richness appeared to be greater in the central and northern part of the state.  

Functional analysis of the site-specific predicted species richness time-series suggested that the 

primary variation in richness phenology could be partitioned into a function describing whether species 

richness was consistently greater than expected (explaining roughly 80% of the variance), and a function 

describing the degree to which the phenology of richness was more hump-shaped or flat (explaining 

roughly 14% of the variance, Figure 5A). The general phenology of species richness across the complete 

spatial domain suggests distinct peaks in spring and autumn. This pattern did not appear to arise from 

broad-scale species movements (no species occupancy patterns appeared to drastically shift spatially), but 

rather from phenological shifts in activity and smaller-scale movement across the year: species primarily 

differentiated with respect to whether their occurrence peaked during the growing season or along its 

shoulders (Figure S2). Visualized across space, the boundary between the state’s northern forests and 

other regions primarily demarcates shifts between more seasonally variable species richness and more 

consistently rich communities (Figure 5B).  Greater seasonal variation in species richness (PCA function 

2) was positively correlated with annually-integrated species richness (post-hoc Spearman rank 

correlation = 0.36, P < 0.01), while more consistently great richness was negatively correlated with 

annually integrated species richness (post-hoc Spearman ρ = -0.44, P < 0.01), suggesting areas with more 

pronounced differences between growing season and winter species richness tended to be used by a 

greater number of species over the course of a year, although the region of peak annually-integrated 

richness fell along a boundary between the two regions.  

Discussion 

We demonstrate here the capacity of modern ecological data-collection efforts empowered by community 

scientists and sensors to capture the phenology of community dynamics. The capacity to predict 

distributional variation over a broad swath of species across the year greatly expands the scope of 

conservation and management capacity to influence biodiversity outcomes. The environmental effects we 
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considered here were broadly intended to capture the presence of vertical structure (Forest), exposure to 

human activity (Lights), land cover diversity (Simpson), and both snow and vegetation phenology. Each 

factor has seen pronounced global change in recent years, as humans clear forests (Hansen et al. 2010), 

expand cities and increase artificial light (Longcore and Rich 2004), simplify landscapes via land use 

change (Homer et al. 2020), and alter plant and snow phenology (Cleland et al. 2007, Thompson et al. in 

press). Each of these environmental factors poses particular challenges for conservation and management 

organizations because they often have limited capacity to easily manipulate, for example, climate or land 

use (Townsend et al. 2020). Our results—namely, the primacy of seasonal predictors, and the limited 

correlation between patterns in species richness across different temporal extents—suggest that seasonal 

environmental factors and variation in species phenology may play important roles in shaping community 

composition, and that both seasonal effects and the temporal sampling frame may deserve greater 

consideration from practitioners seeking to make inference about wildlife communities.  

Snow depth was the strongest predictor of species occurrence across the annual cycle, and the 

combination of snow depth and EVI appears to provide the most useful bivariate axis for describing 

species environmental associations. This is remarkable for several reasons. First, both variables exhibit 

relatively strong spatiotemporal autocorrelation that is not expected to result in broad-scale movement 

dynamics (Mueller et al. 2011, Van Moorter et al. 2013), and because the coarse spatiotemporal 

smoothing we employed likely explains variance that might otherwise be captured by synoptic patterns in 

snow and vegetation greenness—our smoothing functions almost certainly capture variation that might be 

more proximally explained by longer-term patterns in plant productivity and winter severity. Second, our 

study was not restricted to species recognized as requiring or being sensitive to seasonal environmental 

variation such as emphemeral snow cover (Pauli et al. 2013, Sultaire et al. 2016), but instead largely 

describes a set of generalist species that exist across a far broader range of environmental conditions than 

considered here. Camera traps primarily sample animal movement integrated over the temporal extent of 

a study (Burton et al. 2015). While snow certainly provides a distinct habitat domain for winter specialists 
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that is poorly described by surface sampling, our results also broadly suggest that snow plays an 

important role in constricting the usable space for many species by limiting movement: in essence, the 

surface species pool may seasonally cotntract because there is less physical space to partition. 

We expect the effects of other environmental variables are best interpreted through this lens. 

Wildlife move less frequently and compress their activity into a smaller diel window in areas of greater 

human development (Tucker et al. 2018, Gaynor et al. 2019), which likely explains some portion of 

reduced richness estimates in areas with more artificial light. The effect of forest cover, which 

presumably captures elements of the vertical/structural niche-space, may be less important for the 

community of mammals considered here that are largely ground-bound. Instead, within-cell structural 

diversity may have been better captured by land cover diversity, a well-established positive driver of 

species richness that is believed to describe many potential niche axes (Stein et al. 2014). One important 

axis that may be captured by land cover diversity is phenological diversity: greater spatial heterogeneity 

in seasonal resource variation may allow individual consumers to accumulate more energy by moving 

less, and may also allow consumers with different specialties to better partition space over time 

(Armstrong et al. 2016). Notably, while the effect of land cover diversity on occupancy probability was 

positive, on average, specific effect sizes were generally small, suggesting that no species strongly 

depended upon or gained significant competitive advantage from increases in diversity, and that effects 

upon richness may have arisen from the increased likelihood of coexistence in these areas (Chesson 2000) 

In contrast, on average, species occurrence was negatively associated with plant greenness, a 

widely considered proxy for resource availability and ecosystem productivity, and given that nearly all 

individual species exhibited negative associations, there was little evidence that some subset of 

‘competitive’ species were better at exploiting available resources (sensu Mittelbach et al. 2001). 

Moreover, on average, temporal patterns in species richness dipped during periods of peak productivity. 

Here, consideration of the response variable (i.e., as a function of movement) and interspecific 

heterogeneity is warranted. Many species considered exhibited dips in occupancy probability during 
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peak-summer, which may both reflect a need to move less during periods of peak resource availability, or 

life history characteristics that constrain movement (i.e., offspring with limited mobility or constraint to a 

central foraging location, Sibly and Brown 2009).  

Because there are relatively fewer species that exhibit this phenology, it is interesting that 

annually-integrated species richness tended to be associated with a more pronounced summer peak in 

primary-specific richness, and that there was no clear indication. We believe a primary reason is that the 

densities of species primarily found in northern Wisconsin tend to be smaller and their annual space use 

larger than those in southern Wisconsin, on average. This is generally consistent with the idea that 

seasonal space use represents an important niche axis that might be partitioned among a smaller set of 

more abundant species, or a larger set of less abundant species (Chesson 2000, Hurlburt 2004).  

At a more synoptic grain than directly considered here, patterns in both annually-integrated 

richness and in seasonal richness variation appear to negatively align with patterns in anthropogenic 

modification to ecosystems via land use change and development (i.e., the human footprint index). It is 

tempting to ascribe community differences to human-driven reductions in the niche space (here, seasonal) 

available to partition (Tucker et al. 2018, Gaynor et al. 2019, Manlick and Pauli 2020). However, there 

are several confounding factors that complicate interpretation. Most broadly, many species distributions 

exhibit legacy effects associated with patterns in historical extirpation (or reintroduction), and it is unclear 

whether variation in space/time/dietary use results from human-modified systems or from compositional 

differences in the regional species pool: our results suggest that after controlling for broader spatial 

structure, there may be some benefit to moderate levels of land cover conversion. More specific to 

seasonality, the degree to which humans modulate resource phenology via land-use change, creating 

urban heat islands, or providing annually available resource subsidies vs. simply settling in more 

moderate systems is similarly unclear. These issues are symptoms of a broader challenge that pervades 

most attempts to characterize species distributions, niches, and niche axes. Studies with a narrow or 

poorly defined spatial or temporal domain will have difficulty distinguishing between equally viable 
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competing mechanisms. Although the temporal extent of our own study limits our own inferences, we 

believe our focus on more granular dynamics represents a step in the right direction. 
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Figure 1. Sampled sites, spatial spline knot locations, and location of inset image in blue (left): the inset 

location depicts sampled areal units and sampling points within units. Other panels denote variation in 

spatial covariates of interest—note that snow depth and the enhanced vegetation index values depicted are 

static measures roughly corresponding to the values within primary period 2 and period 6, respectively. 
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Figure 2.  The posterior distributions of community-level hyperparameters (left: average effect across 

species; right: and inter-specific standard deviation in effect size). Snow depth exhibits a large negative 

expected effect with great inter-specific variance, forest cover has a near-zero expected effect that also 

varies sizably across species, and the inverse Simpson index (of land cover types) has a small positive 

expected effect with limited inter-specific variation. 
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Figure 3. The effects of covariates of interest upon species-level occupancy probabilities. Note that 

effects with 95% credible intervals that overlapped zero are set to 0 and denoted in white. 
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Figure 4. Annually-integrated predictions of species richness (given the species considered) across 

Wisconsin (left) show greatest expected richness in the central and northern parts of the state. Specific 

predictions of annually-integrated occupancy probability across a set of species depicted at right. Many 

species tended to exhibit either northerly (e.g., black bear) or southerly (e.g., opossum) distributions, with 

a smaller set of species that were either ubiquitously or more erratically distributed.  
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Figure 5.  Two retained PCA functions (A) suggest that the primary axes for delineating spatial patterns 

in species richness time-series include overall richness per time period relative to expected values (top), 

and seasonal contrast between growing season richness and non-growing season richness (bottom). 

Spatial patterns in these functions (B, using green and blue bands to delineate functional values) suggest 

that Wisconsin’s northern forests exhibit more pronounced seasonal variation in species richness, while 

southern Wisconsin tends to exhibit a greater and more consistent number of species. 
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Appendix S1. Supporting Tables and Figures. 

 

Table S1. Species considered within this study 

Species Common Name  

Neovison vison American Mink 

Ursus americanus Black Bear 

Lynx rufus Bobcat 

Canis latrans Coyote 

Felis catus Domestic Cat 

Sylvilagus floridanus Eastern Cottontail 

Cervus elaphus Elk 

Pekaniai pennanti Fisher 

Urocyon cinereoargenteus Gray Fox 

Canis lupus Gray Wolf 

Bonasa umbellus Ruffed Grouse 

Didelphis virginiana Opossum 

Erethizon dorsatum Porcupine 

Procyon lotor Raccoon 

Vulpes vulpes Red Fox 

Lutra Canadensis River Otter 

Lepus americanus Snowshoe Hare 

Mephitis mephitis Striped Skunk 

Meleagris gallopavo Turkey 

Multiple Mustela spp. Weasel 

Odocoileus virginianus White-tailed Deer 

Marmota monax Woodchuck 
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Table S2. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

model hyper-parameters. 

Parameter Posterior Median 

MC 

Error LCI UCI 

𝜇𝛼0
 -1.72 0.01 -2.15 -1.27 

𝜎𝛼0
 1.04 0.00 0.79 1.45 

𝜇𝛼1
 0.48 0.00 0.29 0.66 

𝜎𝛼1
 0.42 0.00 0.30 0.61 

𝜇𝛼2
 0.18 0.00 -0.09 0.42 

𝜎𝛼2
 0.65 0.00 0.47 0.91 

𝜇𝛽1
 -0.49 0.00 -0.74 -0.27 

𝜎𝛽1
 0.54 0.01 0.36 0.84 

𝜇𝛽2
 -0.13 0.00 -0.26 -0.01 

𝜎𝛽2
 0.28 0.00 0.21 0.40 

𝜇𝛽3
 0.01 0.00 -0.19 0.21 

𝜎𝛽3
 0.48 0.00 0.34 0.69 

𝜇𝛽4
 0.09 0.00 -0.01 0.19 

𝜎𝛽4
 0.21 0.00 0.15 0.30 

𝜇𝛽5
 -0.12 0.00 -0.26 -0.01 

𝜎𝛽5
 0.24 0.00 0.15 0.39 

𝜎𝑣 1.06 0.01 0.82 1.47 

𝜎𝑡 0.06 0.00 0.05 0.08 
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Table S3. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

variance parameters for species-specific spatial smoothing terms (𝜎𝑣
𝑠). 

Species Posterior Median MC Error LCI UCI 

Bear 0.37 0.02 0.09 0.70 

Bobcat 1.21 0.03 0.64 2.09 

Cat 0.32 0.02 0.15 0.57 

Cottontail 0.68 0.02 0.45 1.01 

Coyote 0.74 0.03 0.44 1.15 

Deer 0.23 0.03 0.09 0.54 

Elk 3.11 0.05 1.74 6.23 

Fisher 0.53 0.02 0.28 1.27 

Fox, Gray 0.46 0.02 0.28 0.82 

Fox, Red 1.04 0.03 0.48 1.67 

Grouse 0.41 0.02 0.20 0.93 

Mink 0.38 0.02 0.12 1.07 

Opossum 1.52 0.03 0.95 2.61 

Otter 0.59 0.02 0.26 1.08 

Porcupine 0.78 0.02 0.32 1.67 

Raccoon 0.32 0.01 0.17 0.55 

Skunk 0.24 0.02 0.11 0.48 

Snowshoe Hare 0.72 0.03 0.43 1.16 

Turkey 0.42 0.03 0.23 0.76 

Weasel 0.18 0.01 0.05 0.41 

Wolf 0.67 0.03 0.36 1.10 

Woodchuck 0.49 0.02 0.15 1.01 
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Table S4. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

variance parameters for species-specific temporal variance in spatial smoothing terms (𝜎𝑡
𝑠). 

Species Posterior Median MC Error LCI UCI 

Bear 0.11 0.01 0.07 0.17 

Bobcat 0.04 0.01 0.02 0.07 

Cat 0.04 0.00 0.02 0.07 

Cottontail 0.04 0.00 0.02 0.06 

Coyote 0.03 0.00 0.02 0.06 

Deer 0.05 0.01 0.01 0.09 

Elk 0.06 0.01 0.02 0.10 

Fisher 0.08 0.01 0.05 0.13 

Fox, Gray 0.07 0.01 0.04 0.11 

Fox, Red 0.04 0.00 0.02 0.06 

Grouse 0.08 0.00 0.05 0.11 

Mink 0.06 0.01 0.02 0.11 

Opossum 0.07 0.00 0.04 0.11 

Otter 0.06 0.01 0.02 0.11 

Porcupine 0.07 0.01 0.03 0.12 

Raccoon 0.06 0.00 0.03 0.08 

Skunk 0.06 0.01 0.02 0.11 

Snowshoe Hare 0.05 0.01 0.02 0.09 

Turkey 0.07 0.00 0.04 0.10 

Weasel 0.03 0.01 0.02 0.08 

Wolf 0.04 0.01 0.02 0.09 

Woodchuck 0.15 0.01 0.09 0.25 
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Table S5. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific detection intercepts. 

Species Posterior Median MC Error LCI UCI 

Bear -1.82 0.00 -1.89 -1.75 

Bobcat -2.83 0.00 -2.98 -2.68 

Cat -1.67 0.00 -1.80 -1.53 

Cottontail -0.58 0.00 -0.63 -0.53 

Coyote -1.37 0.00 -1.41 -1.33 

Deer 0.79 0.00 0.77 0.81 

Elk -2.43 0.00 -2.65 -2.23 

Fisher -2.67 0.00 -2.92 -2.45 

Fox, Gray -1.59 0.00 -1.79 -1.42 

Fox, Red -1.25 0.00 -1.33 -1.16 

Grouse -3.03 0.00 -3.30 -2.80 

Mink -2.77 0.00 -3.11 -2.44 

Opossum -0.65 0.00 -0.71 -0.59 

Otter -2.32 0.00 -2.66 -2.00 

Porcupine -2.31 0.00 -2.44 -2.19 

Raccoon -0.50 0.00 -0.52 -0.47 

Skunk -2.11 0.00 -2.25 -1.98 

Snowshoe Hare -1.29 0.00 -1.37 -1.21 

Turkey -1.15 0.00 -1.20 -1.11 

Weasel -2.96 0.01 -3.63 -2.45 

Wolf -3.19 0.00 -3.45 -2.94 

Woodchuck -2.85 0.01 -3.25 -2.47 
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Table S6. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of maintained trails upon detection. 

Species Posterior Median MC Error LCI UCI 

Bear 0.42 0.00 0.28 0.56 

Bobcat 1.04 0.00 0.85 1.23 

Cat 0.81 0.00 0.60 1.01 

Cottontail 0.39 0.00 0.29 0.49 

Coyote 0.84 0.00 0.77 0.92 

Deer 0.20 0.00 0.15 0.25 

Elk 0.57 0.00 0.22 0.88 

Fisher -0.40 0.00 -0.79 -0.04 

Fox, Gray 0.02 0.00 -0.37 0.40 

Fox, Red 0.22 0.00 0.05 0.38 

Grouse 0.62 0.00 0.27 0.94 

Mink -0.05 0.00 -0.48 0.34 

Opossum 0.39 0.00 0.28 0.50 

Otter 0.42 0.01 -0.07 0.88 

Porcupine 0.18 0.00 -0.07 0.45 

Raccoon 0.33 0.00 0.26 0.39 

Skunk 0.89 0.00 0.68 1.07 

Snowshoe Hare 0.75 0.00 0.61 0.90 

Turkey 0.66 0.00 0.58 0.74 

Weasel 0.37 0.01 -0.13 0.93 

Wolf 1.24 0.00 0.93 1.53 

Woodchuck 1.05 0.01 0.63 1.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



219 
 

 
 

Table S7. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of the presence of proximal water features on detection. 

Species Posterior Median MC Error LCI UCI 

Bear -0.01 0.00 -0.13 0.12 

Bobcat 0.24 0.00 0.04 0.44 

Cat -0.31 0.00 -0.50 -0.11 

Cottontail -0.10 0.00 -0.20 0.00 

Coyote -0.06 0.00 -0.13 0.02 

Deer 0.08 0.00 0.04 0.12 

Elk -0.59 0.00 -0.94 -0.26 

Fisher 0.06 0.00 -0.21 0.35 

Fox, Gray -0.09 0.00 -0.42 0.27 

Fox, Red -0.47 0.00 -0.63 -0.31 

Grouse -0.09 0.00 -0.38 0.21 

Mink 1.96 0.01 1.42 2.50 

Opossum 0.03 0.00 -0.08 0.13 

Otter 1.59 0.01 1.03 2.16 

Porcupine 0.44 0.00 0.24 0.64 

Raccoon 0.13 0.00 0.07 0.18 

Skunk -0.25 0.00 -0.45 -0.06 

Snowshoe Hare -0.21 0.00 -0.36 -0.06 

Turkey -0.15 0.00 -0.22 -0.08 

Weasel -0.11 0.01 -0.62 0.44 

Wolf 0.24 0.00 -0.04 0.51 

Woodchuck 0.57 0.01 0.14 1.03 
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Table S8. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific occupancy intercepts. 

Species Posterior Median MC Error LCI UCI 

Bear -3.34 0.01 -3.77 -2.99 

Bobcat -2.33 0.05 -3.02 -1.86 

Cat -2.65 0.00 -2.89 -2.44 

Cottontail -1.61 0.00 -1.75 -1.49 

Coyote 0.31 0.01 0.19 0.44 

Deer 2.51 0.00 2.38 2.65 

Elk -11.36 0.20 -15.38 -8.61 

Fisher -3.45 0.07 -4.44 -2.87 

Fox, Gray -3.75 0.01 -4.04 -3.47 

Fox, Red -1.94 0.01 -2.08 -1.77 

Grouse -3.60 0.05 -4.38 -3.00 

Mink -3.62 0.02 -4.07 -3.24 

Opossum -3.36 0.05 -4.09 -2.84 

Otter -4.42 0.03 -4.91 -3.97 

Porcupine -4.61 0.11 -6.48 -3.69 

Raccoon 0.20 0.00 0.12 0.30 

Skunk -2.04 0.01 -2.24 -1.85 

Snowshoe Hare -5.85 0.05 -7.47 -4.98 

Turkey -0.50 0.00 -0.61 -0.39 

Weasel -3.68 0.01 -4.22 -3.03 

Wolf -4.35 0.06 -5.73 -3.40 

Woodchuck -5.22 0.06 -6.36 -4.41 
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Table S9. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of snow depth on species occurrence. 

Species Posterior Median MC Error LCI UCI 

Bear -1.70 0.01 -2.40 -1.12 

Bobcat -0.31 0.00 -0.49 -0.13 

Cat -0.84 0.01 -1.25 -0.46 

Cottontail -0.21 0.00 -0.36 -0.04 

Coyote -0.13 0.00 -0.23 -0.02 

Deer -0.57 0.00 -0.71 -0.44 

Elk -0.44 0.00 -0.80 -0.11 

Fisher -0.03 0.00 -0.26 0.22 

Fox, Gray 0.04 0.00 -0.21 0.27 

Fox, Red 0.03 0.00 -0.11 0.17 

Grouse -0.11 0.00 -0.37 0.14 

Mink -0.55 0.01 -1.06 -0.13 

Opossum -0.58 0.00 -0.89 -0.31 

Otter -0.35 0.00 -0.72 -0.01 

Porcupine -1.24 0.01 -1.68 -0.82 

Raccoon -0.52 0.00 -0.64 -0.40 

Skunk -0.57 0.00 -0.85 -0.32 

Snowshoe Hare -0.08 0.00 -0.25 0.09 

Turkey -0.85 0.00 -1.00 -0.70 

Weasel -0.02 0.01 -0.43 0.33 

Wolf -0.04 0.00 -0.26 0.17 

Woodchuck -1.41 0.02 -2.54 -0.58 
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Table S10. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of EVI on species occurrence. 

Species Posterior Median MC Error LCI UCI 

Bear 0.65 0.00 0.45 0.86 

Bobcat -0.31 0.00 -0.46 -0.16 

Cat -0.06 0.00 -0.20 0.09 

Cottontail -0.36 0.00 -0.45 -0.26 

Coyote -0.21 0.00 -0.29 -0.12 

Deer 0.13 0.00 -0.01 0.26 

Elk 0.13 0.01 -0.15 0.38 

Fisher -0.46 0.00 -0.71 -0.21 

Fox, Gray -0.43 0.00 -0.67 -0.20 

Fox, Red -0.44 0.00 -0.55 -0.31 

Grouse -0.17 0.00 -0.41 0.08 

Mink -0.34 0.00 -0.56 -0.09 

Opossum -0.20 0.00 -0.35 -0.05 

Otter -0.29 0.00 -0.54 -0.04 

Porcupine -0.18 0.00 -0.39 0.03 

Raccoon -0.10 0.00 -0.18 -0.03 

Skunk 0.01 0.00 -0.12 0.13 

Snowshoe Hare -0.22 0.00 -0.45 -0.03 

Turkey -0.05 0.00 -0.14 0.04 

Weasel -0.04 0.00 -0.32 0.23 

Wolf -0.26 0.00 -0.48 -0.04 

Woodchuck 0.08 0.01 -0.29 0.44 
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Table S11. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of Forest on species occurrence. 

Species Posterior Median MC Error LCI UCI 

Bear 0.43 0.00 0.22 0.66 

Bobcat 0.34 0.01 0.10 0.57 

Cat -0.67 0.00 -0.87 -0.48 

Cottontail -0.30 0.00 -0.43 -0.17 

Coyote 0.20 0.00 0.07 0.33 

Deer 0.29 0.00 0.12 0.45 

Elk 0.41 0.01 -0.16 1.05 

Fisher -0.22 0.01 -0.50 0.06 

Fox, Gray -0.30 0.01 -0.57 -0.01 

Fox, Red -0.61 0.01 -0.78 -0.43 

Grouse 0.52 0.02 0.15 0.90 

Mink -0.41 0.01 -0.76 -0.06 

Opossum -0.14 0.00 -0.31 0.02 

Otter -0.74 0.01 -1.15 -0.37 

Porcupine 0.70 0.01 0.41 1.01 

Raccoon -0.18 0.00 -0.29 -0.07 

Skunk -0.20 0.00 -0.37 -0.02 

Snowshoe Hare 0.93 0.01 0.64 1.26 

Turkey 0.29 0.00 0.17 0.42 

Weasel -0.09 0.01 -0.46 0.28 

Wolf 0.40 0.01 0.06 0.74 

Woodchuck -0.35 0.01 -0.75 0.04 
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Table S12. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of the inverse Simpson index (of land cover classes) on species occurrence. 

Species Posterior Median MC Error LCI UCI 

Bear -0.10 0.00 -0.24 0.04 

Bobcat 0.20 0.00 0.06 0.35 

Cat -0.10 0.00 -0.24 0.05 

Cottontail 0.02 0.00 -0.07 0.12 

Coyote -0.19 0.00 -0.28 -0.11 

Deer 0.16 0.00 0.05 0.29 

Elk 0.43 0.00 0.17 0.71 

Fisher -0.02 0.00 -0.20 0.15 

Fox, Gray 0.15 0.00 -0.02 0.32 

Fox, Red 0.27 0.00 0.17 0.38 

Grouse 0.39 0.00 0.20 0.58 

Mink 0.19 0.00 -0.01 0.39 

Opossum -0.20 0.00 -0.32 -0.08 

Otter 0.22 0.00 0.00 0.45 

Porcupine 0.22 0.00 0.07 0.39 

Raccoon -0.04 0.00 -0.11 0.02 

Skunk -0.04 0.00 -0.17 0.08 

Snowshoe Hare 0.38 0.00 0.24 0.54 

Turkey -0.06 0.00 -0.14 0.02 

Weasel 0.03 0.00 -0.23 0.29 

Wolf -0.05 0.00 -0.24 0.12 

Woodchuck -0.03 0.00 -0.33 0.24 
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Table S13. Estimates, Monte Carlo error, and upper and lower 95% credible intervals associated with 

species-specific effects of night-time light intensity on species occurrence. 

Species Posterior Median MC Error LCI UCI 

Bear -0.01 0.00 -0.31 0.23 

Bobcat -0.45 0.01 -0.85 -0.14 

Cat -0.19 0.00 -0.33 -0.05 

Cottontail 0.10 0.00 0.01 0.18 

Coyote 0.11 0.00 0.00 0.23 

Deer -0.17 0.00 -0.27 -0.05 

Elk -0.14 0.01 -0.67 0.33 

Fisher -0.31 0.00 -0.65 -0.02 

Fox, Gray 0.37 0.00 0.18 0.54 

Fox, Red -0.12 0.00 -0.22 -0.01 

Grouse -0.24 0.01 -0.64 0.12 

Mink -0.05 0.00 -0.23 0.13 

Opossum 0.04 0.00 -0.06 0.13 

Otter -0.07 0.00 -0.31 0.16 

Porcupine -0.57 0.01 -1.09 -0.21 

Raccoon -0.07 0.00 -0.16 0.01 

Skunk -0.19 0.00 -0.35 -0.04 

Snowshoe Hare -0.35 0.01 -0.81 -0.01 

Turkey -0.22 0.00 -0.32 -0.13 

Weasel -0.15 0.00 -0.52 0.14 

Wolf -0.22 0.01 -0.63 0.12 

Woodchuck -0.03 0.00 -0.26 0.19 
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Table S14. Posterior pair-wise correlation between species-specific responses to the environmental 

variables considered here. 

Variable 1 Variable 2 Pearson r LCI UCI 

Snow EVI -0.62 -0.87 -0.18 

Snow Forest -0.09 -0.28 0.09 

Snow Simpson 0.24 0.02 0.45 

Snow Lights 0.10 -0.16 0.39 

EVI Forest 0.27 0.05 0.47 

EVI Simpson -0.16 -0.39 0.07 

EVI Lights 0.00 -0.30 0.26 

Forest Simpson 0.27 0.04 0.48 

Forest Lights -0.39 -0.62 -0.10 

Simpson Lights -0.30 -0.54 0.01 
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Figure S1. Posterior correlations between the occupancy effects of (A) EVI and snow-depth, and (B) 

night-time light intensity and the proportion of forest cover (right) indicates that, on average, species 

more positively associated with vegetation greenness were more negatively impacted by deeper snow, and 

that species positively associated with night-time light were generally less likely to occupy areas with 

greater forest cover. 
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Figure S2. Temporal trends in the area of occupancy for the species considered over the annual cycle, 

standardized (using log-odds) relative to the annual mean for each species. 


