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abstract

Rapid advances in proteomic technologies have facilitated new and unprecedented bio-

logical studies. Despite these advances, both the preparation and analysis of large data

sets require improvement to derive meaning. This dissertation addresses sample prepara-

tion and computational improvements to expedite the analysis of particularly challenging

biological samples. Chapter 1 provides an overview of the current methods employed to

robustly quantitate proteins using mass spectrometry. In Chapter 2, proteomic technologies

are applied to clinical blood samples from twins in a high-throughput fashion. These results

are integrated with the metabolomic phenotype to create a multi-faceted model of red

blood cell behavior in storage, and predict its efficacy for transfusion. For Chapter 3, the

analysis shifts to the model organism Saccharomyces cerevisiae and particularly its response

to a zinc deficient environment. In Chapter 4, immunoaffinity enrichment is employed to

study the low abundance modification ubiqutination. This modification plays an important

role in the symbiotic relationship between a model legume and a nitrogen-fixing bacterium.

Finally, in Chapter 5, an isotope labeling method is applied to trace protein turnover across

tissues in a mouse. Chapter 6 provides an overview of the work contained herein and

potential future directions for the field.
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Chapter 1

introduction
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Background

In the last decade mass spectrometry has revolutionized the types of questions scientists

interested in studying an organism can ask. Technical innovations have facilitated rou-

tine sequencing of thousands of proteins from simple organisms and cell lines in record

time1–3. However, applying these technologies to many eukaryotic tissues poses remaining

challenges such as broad dynamic range or limited sample quantity. Access to this wealth

of data furthermore permits new analyses and opportunities beyond the identification

and quantitation of proteins. By combining high throughput computation and mass spec-

trometry instrumentation, we can generate the most complete snapshot of an organism’s

phenotype. This chapter will provide an overview of the complexity challenges facing

those that study the proteome, as well as instrumentation and data analysis tools that are

currently used to surmount them.

Biological flow of information

Genetic information classically flows from DNA to RNA to protein transmitting the data

needed to maintain life as described by the central dogma of biology. The sequencing of the

human genome and the subsequent rapid sequencing of nearly 15,000 additional organisms

permitted the use of mass spectrometry experiments to rapidly probe their proteomes4,5.

The human genome contains approximately 20,000 genes with most estimates ranging

from 19,000-22,0006. This was a surprisingly small number at the time as estimates prior to
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the completion of the human genome proposed ∼ 100,000 genes7. However, further genome

sequencing revealed the number of genes in an organism only weakly correlates with its

complexity. For example, many plants contain significantly more genes than humans8.

Despite this surprising lack of genes, humans have exceptionally large genomes with 3.2E9

base pairs contained within 23 chromosomes9. Much of the genome actually contains

non-coding repeats (>50% ) and regions which regulate genes through non-coding RNA

or other regulatory elements4.

Sequencing the genome of an organism provides information on all of the proteins that

it is able to synthesize and any mutations that may be present. However, simply because the

sequence of a protein is present in the genome does not mean that the gene is transcribed

and translated into a functional protein. While mass spectrometry can be used to measure

proteins, RNA can also be directly measured with RNAseq and transcriptomics. This gives

a measurement of which genes are being transcribed. Transcriptomics and proteomics

have shown surprisingly poor correlation suggesting that substantial regulation occurs

at the translational level10–14. Some of this discrepancy is explained by many mRNAs

undergoing additional regulation, with not all initiating translation and others serving

unique regulatory roles15,16. Proteomics allows the direct quantitation of the molecular

machines that carry out the business of life. For this reason it can be a valuable complement

to RNAseq experiments, and also illuminating on its own.

Proteomics faces additional technical challenges compared to the sequencing of nu-

cleotides. The structure of proteins contains much greater chemical diversity and thus are
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Figure 1.1: Central dogma of biology. Genetic information classically flows from DNA to
RNA to protein transmitting the data needed to maintain life as described by the central
dogma of biology.
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more difficult to sequence than DNA and RNA. Additionally, no method currently exists

to amplify low abundance proteins in the same way that PCR can be used with DNA. For

these reasons proteomics is challenging, but remains a valuable way to capture important

physiological changes.

Proteome Complexity

Genes that are transcribed into RNA and translated into protein make up the proteome and

the total cohort of molecules that can be potentially measured with protein technologies.

Of the ∼ 20,000 human genes, evidence for ∼ 17,000-18,000 proteins has been observed17,18.

Despite the relatively small number of genes in the human genome, a number of factors

combine to exponentially increase the number of proteoforms, or different protein forms

produced from the genome, which can be detected with the mass spectrometer19,20. First,

single amino acid polymorphisms (SAPs) arise from canonical differences in gene sequence

that result in the replacement of one codon with another. These SAPs are derived from

single nucleotide polymorphisms (SNPs) in the genome although many more SNPs exist

that do not contribute to an amino acid substitution and thus are invisible to proteomic

methods. It is estimated that the human genome contains 10 million SNPs which contribute

to the vast diversity we observe in the human population21. Of these 10 million SNPs,

approximately 1.3 million result in an amino acid substitution in a coding region22.

The second contributor to proteoform heterogeneity is alternative splicing. Transcribed

RNA in eukaryotes consists of regions of introns and exons, and during splicing introns
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are removed and exons are combined to create mature mRNA. In many cases splicing can

be used to create a range of unique proteins by altering exon composition from the same

mRNA23. Alternative splicing occurs in approximately 50% of eukaryotic proteins and

contributes ∼ 2.8 isoforms per protein24–26. While splicing was initially thought to be a

potential explanation for the relative dearth of genes in the human genome, proteomic

evidence suggests that most genes are only present in a single form27,28. Studies that have

searched for alternative isoforms have mainly identified hundreds of alternative isoforms

with one study observing 2,00027–29. This is especially surprising as transcriptomics has

identified thousands of splice variants which continue to be unobserved at the protein

level? . The purpose of these alternative transcripts that are not translated in observable

quantities remains unanswered. Some may be only expressed in special circumstances,

tissues, or may have a different purpose than generating a protein product28,30. While

splicing clearly contributes to the complexity of the proteome, it does not lead to orders of

magnitude increase in protein diversity.

Post-translational modifications layer another type of diversity to the proteome following

translation. Phosphorylation, ubiquitination, acetylation, and glycosylation are some of the

more well studied, although more than 300 different modifications have been observed31,32.

These modifications are frequently used to activate a protein or otherwise alter its activity in

the form of localization, protein-protein interactions, or a signal for degradation. A full 5% of

the genome is dedicated to enzymes that post-translationally modify other proteins33. With

these additions to the ∼ 20,000 genes, the number of predicted proteoforms rapidly explodes
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with estimates ranging between 100,000-1,000,00024,34,35. This leviathan of proteoforms

requires our utmost technological prowess in order to effectively parse.

Clearly the proteome is an intricate collection with seemingly endless variation and

complexity. Each proteoform in a system may then be expressed at a different abundance in

the cell. In a human cell line, protein abundances vary between one and ten billion copies,

or seven orders of magnitude36,37. Assuming that the most abundant proteins are the most

likely to be identified, this complicates identification of the many low abundance proteins

in a system. In certain cell types and tissues this problem is compounded further. For

example, in plasma the variation spans ten orders of magnitude, and in red blood cells 92%

of the protein dry weight is hemoglobin38,39. However, the low abundance proteins in these

systems often pose the most interesting biological questions necessitating the development

of new methods to manage complexity. For some tissues such as plasma, specialized

depletion columns exist to remove the most abundant proteins from the sample40. Tackling

these challenges that arise with difficult biological materials is necessary in order to reap

the greatest benefits from recent technical advancements in mass spectrometry.

Protein Preparation for Mass Spectrometry

Many other factors can determine the functional activity of a system besides protein abun-

dance. Proteins may be further modified with the addition of post-translational modifica-

tions (PTMs), such as with the addition of a phospho group to activate a kinase cascade.

In this case, simply monitoring the protein abundance would fail to capture the important
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change that is occurring. Other ‘omic’ tools such as phosphoproteomics, metabolomics, or

lipidomics can measure these changes with the goal to directly monitor the relevant changes

that are taking place. For these reasons when designing an experiment it is essential to

carefully consider the question that is posed and choose the best tools and methods to

address it.

In order to access the proteome for analysis, cells of the organism of interest must first

be lysed. The goal of this process is to equally extract all protein classes, while minimizing

protein degradation by non-specific proteases. This can be accomplished with the use

of physical forces such as bead-beating, milling, sonication, or French press. Otherwise

chemical based techniques can be used to disrupt the cell membrane, such as chaotropes

or detergents. Care must be taken with the selection of detergents to solubilize proteins

as many commonly used detergents are not compatible with mass spectrometry. Some

such as digitonin, sodium deoxycholate, sodium dodecyl sulfate, and RapiGest are re-

movable by precipitation or filter aided sample preparation (FASP)41–43. Protease and

phosphatase inhibitors may be used to prevent off-target cleavage44. Following denaturing,

reduction agents are added to reduce disulfide bonds as well as alkylating reagents such as

iodoacetamide or chloroacetamide to prevent their reformation.

In order to profile the greatest number of proteins, most experiments opt to digest

proteins into peptides. This is referred to as a ‘bottom-up’ approach in contrast to ‘top-

down’ mass spectrometry in which intact proteins are analyzed. Top-down proteomics has

the advantage of enabling the identification of all concomitant modifications present on a
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proteoform45. However, bottom-up proteomics results in a more experimentally tractable

analysis and is best suited for the comprehensive profiling of large numbers of proteins.

Proteins in a sample are digested into an average of 61 peptides per protein significantly

increasing the complexity of the mixture46.

Trypsin which cleaves at the C-terminus of lysine and arginine residues, is one of the

most commonly used enzymes . It has been modified to avoid self-degradation, is highly

aggressive, and stable under a wide range of conditions47,48. The selection of an enzyme

for digestion will determine what peptides are generated and consequently available for

sequencing. Typically, peptides from 7-35 amino acids are able to be successfully sequenced

by the mass spectrometer49. An in silico tryptic digest of the human proteome indicates

peptides will have an average length of nine residues and at least one basic residue making

them well suited to MS analysis50. If an experiment is directed to identify a particular

PTM it is important to consider whether that site occurs on a tryptic peptide. The use of

alternative proteases has been shown to increase sequence coverage and can access protein

regions which may lack lysines and arginines49,51. Following protease digestion, salts are

removed from the sample typically using solid phase extraction52.

If the study is designed to investigate PTMs, enrichment techniques are often used at

this point of the sample prep53,54. Many PTMs only exist in low abundance in the proteome

and are thus not easily observed. Charge state, structure, or other physical properties may

be used to enrich for modifications. For example, antibodies have been developed for many

modifications such as ubiquitination, acetylation, and arginine methylation which rely
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on immunoaffinity55–57. Phosphorylation enrichments often employ an interaction with

the negative charge on the phospho group such as metal based techniques with titanium

or iron58. The carbohydrate binding proteins lectins can be used to enrich for a range of

glycosylated proteins59. Thanks to these and other enrichment techniques the range of

PTMs accessible to analysis by mass spectrometry is rapidly blossoming. Future analyses

of under-studied and low-abundance PTMs will rely on the development of new and

improved enrichment methods.

The simultaneous analysis of all peptides in a sample would generate spectra with

overwhelming complexity. For this reason it is necessary to employ a chromatographic sep-

aration prior to injection of peptides on the instrument. The coupling of reverse phase (RP)

separation with MS forming an LC-MS system is currently one of the most widespread prac-

tices60. Peptides are bound to the column based on their hydrophobicity and can be eluted

over a gradient by increasing the percentage of organic solvent. The quality of separations

has recently come under increased scrutiny as a critical component for generating quality

results61,62. While the ability to rapidly sequence peptides has previously been limited

by the scan speed of the mass spectrometer, new leaps in instrumental technology mean

this is no longer the constraining factor63. Improvements in peptide separations results in

increased signal and decreased peak width allowing more peptides to be separated and

sequenced by the instrument64.

For many applications, injection of a single complex peptide mixture combined with

LC-MS is adequate to achieve the desired proteomic depth and sequence coverage. When
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improved protein identifications are desired, orthogonal separations can be employed to

further reduce sample complexity. The sequential combination of RP and strong cation

exchange (SCX) particles in multi-dimensional protein identification technology (MuDPIT)

gave a dramatic boost to the number of peptides that could be identified in one experiment65.

This was a significant improvement over 2D gel electrophoresis experiments in which

protein containing bands were excised and analyzed66,67. Today, both on-line and off-line

separation techniques are used to reduce sample complexity prior to injection on an LC-MS.

SCX and high pH reverse phase separations are used to partition peptides into multiple

samples or fractions which are then analyzed separately on the instrument68–70. These

techniques reduce sample complexity and increase analysis time resulting in a significant

increase in protein identifications.

The interface between the LC and the MS is an integral component in order to transition

peptides from the liquid phase to the gas phase for analysis. Electrospray ionization and

matrix assisted laser desorption/ionization (MALDI) are two of the most common ways

to get ions into the gas phase. John Fenn and Koichi Tanaka were honored for these

developments with the receipt of the Nobel Prize for the “development of soft ionization

methods for the analysis of biological molecules" in 2002. These methods paved the way

for analysis of biomolecules and allowed for the subsequent rapid development of the field

of proteomics71,72.
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Mass Spectrometry Instrumentation

Mass spectrometry measures the mass to charge (m/z) of gas phase ions enabling their

identification through accurate mass measurements. For this reason, almost any material

that can be ionized can be analyzed with a mass spectrometer. Various mass analyzers can

be implemented to measure peptides including the quadrupole mass filter, quadrupole

linear ion trap (LTQ), time-of-flight (TOF), Orbitrap, and Fourier-transform ion cyclotron

resonance (FT-ICR)73. Mass analyzers employ different physical properties of ions in order

to identify the mass-to-charge. These analyzers can be combined in numerous combinations

to create a variety of hybrid and tribrid instruments74,75.

Typical proteomics experiments employ a two part tandem MS method. First, an initial

survey scan is taken to identify the mass to charge of the peptide. Then, a peptide is selected

for sequencing and isolated. It is then subjected to fragmentation, and analyzed with a

second MS scan (MS2 or MS/MS). This scan will determine the mass to charge of fragment

ions, and allow the identity of the peptide to be determined. The sequence of the peptide

can be solved by the difference in mass to charge of the peaks in the MS2. These differences

correspond to the mass of an amino acid and allow the peptide sequence to be read in the

mass of the fragments.

Peptides can be fragmented using a variety of disassociation techniques depending

on the type of analysis that is being performed. Collisional induced disassociation (CID)

and higher-energy C-trap disassociation (HCD) generate b and y ions and are widely
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Figure 1.2: Peptide sample preparation for mass spectrometry. For a bottom-up workflow,
tissues or cells are digested into peptides and de-salted. Optional steps depicted in red
include PTM enrichment, labeling for quantification, and pre-fractionation. Peptides are
then separated with chromatographic separations, ionized to the gas phase, and injected into
the mass spectrometer. Survey scans are then collected, followed by peptide fragmentation,
MS2 analysis, and quantification.
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used for peptide sequencing (Michalski et al., 2012). Electron transfer disassociation (ETD)

fragments peptides along the amide bond producing c and z ions76. ETD is also prevalent,

especially in the study of post-translational modifications77,78.

Once peptides have been fragmented, tandem MS/MS scans can be collected using

data dependent acquisition (DDA) mode or data independent acquisition (DIA). Using

DIA, successive mass to charge windows are isolated and all of the peptides contained are

fragmented together. This allows the potential identification of more peptide species in a

spectrum and has experienced a surge of popularity in recent years79,80. DDA intentionally

selects peptides from a spectrum for sequencing, usually based on their relative abundance.

Peptides that have been sequenced are then excluded from repeat analysis for a set time

period. Otherwise preset mass to charge values can be analyzed for a targeted analysis81.

Targeted methods afford a high level of reproducibility and sensitivity with data acquisition.

Survey and tandem scans may be collected successively in the same mass analyzer or

concurrently in separate analyzers to maximize collection speed. The acquisition of survey

and tandem scans continues throughout the gradient elution which commonly ranges from

one to three hours.

A routine peptide analysis can easily result in the acquisition of over 150,000 tandem

MS spectra. The analysis of this wealth of data clearly requires the use of high throughput

analysis and computation. These scans can be sequenced de novo where peptide sequences

are determined directly from the mass spectra, however this is typically limited to niche ap-

plications82. Most often the spectra are searched against a database containing all potential
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proteins that are expected to be found in the sample. This list of proteins is digested in silico

with the appropriate enzyme to generate a list of peptides that the spectra are compared to.

Each match is given a score and filtered to output a list of final peptide identifications83.

To segregate true positive identifications from false positives, false discovery rate (FDR)

correction is employed and allows the number of false positives to be limited to a known

quantity84,85. A decoy database is usually constructed by reversing all the protein sequences

creating false identifications which are also included when searching the data86,87. The

scores of all peptides are then ranked and a threshold can be set which minimizes the

number of false positives while retaining the maximum number of true identifications.

Typically this threshold is set at 1% false positives. This method is effective because a false

identification has an equal probability of matching to the forward database as the reverse

database.

Peptide matches must then be assembled into proteins as the final output for the search.

This can be complex as the sequence of many peptides may be present in multiple proteins

making it impossible to determine from which protein they originated. To circumvent this,

peptides are grouped according to the principle of parsimony, or Occam’s razor88. Using

this principle, the minimum number of proteins necessary to account for the observed

peptides are assumed to be present in the sample. When insufficient data is present to

distinguish two proteins, they are reported together as a single protein group.
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Quantitation

To turn qualitative identifications into quantitative values numerous techniques can be

employed depending on the type of experiment. It is important to note that all of these

quantitation methods only provide relative quantitation between samples. Measuring

absolute quantitative values is possible, but requires the addition of isotopically labeled

internal standards and the use of a standard curve for high quality measurements89. For

these reasons it is usually not done on the proteome scale.

Metabolic and isobaric labelling both rely on the addition of heavy isotopes into the

sample90. One key difference is the time during sample preparation at which the labels

are introduced. Isobaric or isotopic tags may be added to peptides once they are digested.

When using metabolic labeling, the samples are grown with the addition of heavy label,

often in the form of an amino acid, in the cell culture or diet. Metabolic and isotopic labelling

both permit sample multiplexing91. This can increase reproducibility as numerous samples

are analyzed together and also reduces instrument time.

Incorporating the label early in sample preparation allows the samples to be combined

early and minimizes variation in sample preparation. Stable isotope labeling by amino

acids in cell culture (SILAC) incorporates stable isotope containing amino acids in newly

synthesized proteins56. When combined with ‘light’ cell populations, the peptides contain-

ing labeled amino acids remain distinguishable in the mass spectrometer and can be used

for relative quantitation. This approach can also be applied as the stable isotope labeling of
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mammals (SILAM), although creating a heavy labeled food source for mammals poses a

greater technical challenge92. Additionally, obtaining complete labeling for some tissues in

mouse requires multiple generations and thus can be almost prohibitively expensive93.

When analyzing samples generated using a SILAC or SILAM method the generated mass

spectra will appear significantly more complex. This is caused by the fact that two isotopic

clusters are present for each peptide instead of one. Each copy of the labeled peptide can be

potentially subjected to fragmentation and tandem MS introducing a layer of redundancy

to data acquisition. It is likely that fewer total peptides and proteins will be identified

due to superfluous sampling of isotopically labeled peptides94. Still, these methods are

some of the most reliable at eliminating technical variation and provide accurate relative

quantitation.

The other primary option for sample labeling is isotopic tagging. These methods may

result in peptides with different masses as previously described, or the incorporated labels

may be isobaric and chromatographically indistinguishable. When using isobaric tags, once

the labeled peptides undergo fragmentation, reporter ions of unique masses are released

allowing for quantitation. This circumvents the problem described above as each peptide

appears as a single peak in the survey MS scan90. However, since the label is introduced

following the digestion of protein into peptides, there is greater opportunity for variation

to be introduced between samples. Options such as isobaric tags for relative and absolute

quantitation (iTRAQ), tandem mass tags (TMT), and others allow for multiplexing up to

11 samples95,96. These techniques can be used in conjunction with other analytical methods,
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Figure 1.3: Methods for quantitative mass spectrometry. Metabolic, isobaric, and label
free quantitation are three main options to obtain quantitative results using mass spectrom-
etry.
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such as enrichment for PTMs.

Experimenters can also opt to avoid sample labeling entirely instead choosing a label-

free method for quantitation. In this method, peak area from the survey scans are integrated

across retention time to generate peak intensities97. Label free data can also be acquired

with the use of spectral counting or sequential window acquisition of all theoretical mass

spectra (SWATH)98,99. These methods have the advantage of obvious ease of sample prepa-

ration as no additional labeling steps are required. Additionally with proper technique,

excellent reproducibility can be still be achieved between samples100. This method has been

successfully applied to very large scale experiments and with proper batch controls and

replicates can facilitate broad comparison across many samples101–103.

Data Integration and Analysis

Once quantitative proteomic data has been acquired, significant analysis remains in order

to interpret and synthesize results. This task quickly grows in size when multiple types

of ‘omic’ or phenotype data are available. Depending on the experiment, proteomic data

may be integrated with genomic data for large scale quantitative trait loci (QTL) map-

ping studies, assembled into an interactome, or another analysis that requires additional

computation104,105. Now that proteomics has far surpassed the analysis of hundreds of

proteins, high throughput computing is a necessity to extract meaning from data sets. To

meet these needs, statistical programming languages, such as R, are increasingly used for

data analysis. As a result, numerous packages have been developed for public use that
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focus on the analysis of data produced by mass spectrometry106,107.

Another key point for collecting informative data is proper experimental design to

address the questions that are being asked. Of the experimental methods that have been

described heretofore, different choices would be made depending on the type of biology

being investigated. Two broad classes of experiments that can be done with mass spec-

trometry are hypothesis driven and hypothesis generating. Proteomics is inherently adept

at hypothesis generating as great quantities of data are produced in an unbiased fashion.

These types of experiments encourage broadening research interests to proteins implicated

in new biology. Historically, scientists have continually studied a surprisingly consistent set

of proteins despite new proteins continually implicated in disease108. However, this benefit

can easily become paralyzing as large quantities of data are difficult to parse, and forming

informed hypotheses from data requires expertise in the relevant biology. For this reason,

many successful projects are born from collaborations between mass spectrometry and

biological groups. It is crucial that all members of the team are active in conceptualizing the

experiment to ensure that both technical and biological controls are in place. Hypothesis

driven experiments often benefit from more intentional experimental design, either in the

use of a targeted method, or special considerations with sample preparation. Without these

considerations, it is easy for valuable time to be wasted collecting data that cannot address

the question. As the interdisciplinary nature of science continues to grow, clear and concise

communication will always be needed to reap the benefits.
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Overview of Projects

The chapters included herein demonstrate the versatility of mass spectrometry based

proteomics to address diverse biological challenges. Often material for analysis poses

additional complications due to its complexity or high dynamic range. Chapter 2 outlines

an example of this problem in which proteomic technologies are applied to clinical red blood

samples collected from a cohort of twins. With this unique sample set, protein concentration

heritabilities were calculated and integrated with metabolite concentration heritabilities.

This data set was used to generate a model to understand blood metabolism in storage and

predict its transfusion efficacy. Chapter 3 focuses on the model organism Saccharomyces

cerevisiae and specifically its response to a zinc deficient environment. Chapters 2 and 3

both implement label-free quantitation to compare relative protein abundances. In Chapter

4 we turn our attention to a symbiotic system composed of the nitrogen fixing bacterium

Sinorhizobium meliloti and its host, the model legume, Medicago truncatula. Post-translation

modifications play an important role in symbiosis, and this chapter focuses on the role of

ubiquitination. To quantify ubiquitination, we rely on enrichment strategies in conjunction

with isobaric labeling. For Chapter 5, we employ heavy labeled amino acids in a SILAM

analogous method to calculate protein half-lives on a large-scale in a mouse model. Nine

mouse tissues were analyzed with a computational pipeline to measure half-lives. This

dataset was subsequently examined to determine physical and biological factors which

may contribute to protein half-life.
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red blood cells
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Abstract

Each year over 90 million units of blood are transfused worldwide. Our dependence on this

blood supply mandates optimized blood management and storage. During storage, red

blood cells undergo degenerative processes resulting in altered metabolic characteristics

which may make blood less viable for transfusion. However, not all stored blood spoils at

the same rate, a difference that has been attributed to variable rates of energy usage and

metabolism in red blood cells. Specific metabolite abundances are heritable traits; however,

the link between heritability of energy metabolism and red blood cell storage profiles is

unclear. Herein we performed a comprehensive metabolomics and proteomics study of red

blood cells from 18 mono- and di-zygotic twin pairs to measure heritability and identify

correlations with ATP and other molecular indices of energy metabolism. Without using

affinity-based hemoglobin depletion, our work afforded the deepest multi-omic charac-

terization of red blood cells to date (1,280 membrane proteins and 330 metabolites), with

119 membrane protein and 148 metabolite concentrations found to be over 30% heritable.

We demonstrate a high degree of heritability in the concentration of energy metabolism

metabolites, especially glycolytic metabolites. In addition to being heritable, proteins and

metabolites involved in glycolysis and redox metabolism are highly correlated, suggesting

that crucial energy metabolism pathways are inherited en bloc at distinct levels. We conclude

that individuals can inherit a phenotype composed of higher or lower concentrations of

these proteins together. This can result in vastly different red blood cells storage profiles
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which may need to be considered to develop precise and individualized storage options.

Beyond guiding proper blood storage, this intimate link in heritability between energy and

redox metabolism pathways may someday prove useful in determining an individual’s

predisposition towards metabolic diseases.
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Introduction

The potency of harvested red blood cells (RBCs) depends on their ability to survive and

maintain function during storage. RBC viability primarily depends on their ability to resist

programmed cell death-related fragmentation and phagocytosis by maintaining proper

energetics and avoiding hemolysis, in which they break down into microvesicles and toxic

byproducts including iron, heme, hemoglobin, and oxidized lipids. The released iron can

feed bacterial infections and free hemoglobin can interfere with nitric oxide signaling1,2. A

number of small and retrospective studies have suggested that prolonged RBC storage is

associated with negative clinical outcomes; however, three larger randomized clinical trials

showed no negative effects of longer-stored RBCs3–6. In short, the viability of stored RBCs

is variable and not fully understood, but the accumulation of biophysical and metabolic

changes known as storage lesions are linked to the ability to maintain flux through metabolic

pathways during storage7,8.

Post-storage RBC adenosine triphosphate (ATP) concentration is the single best pre-

dictor of RBC in vivo recovery in autologous blood transfusions9–12. Specifically, high ATP

concentrations are correlated with low levels of hemolysis and other storage lesions in RBCs.

Interestingly, post-storage ATP levels vary greatly between individuals but are consistent

on repeat measure within an individual. This observation suggests that post-storage ATP,

and thus stored RBC viability, may be influenced and/or determined by inheritance13–15.

In prior analyses of these samples and in additional studies of mono- and di-zygotic twins,
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some metabolite concentrations including glucose 6-phosphate, fructose 1,6-bisphosphate,

glutathione, and glutathione disulfide were determined to be heritable in stored RBCs13,14,16.

The metabolite concentrations of ribulose 5-phosphate, sorbitol, and xylulose 5-phosphate

are heritable suggesting a genetic control of glucose metabolism14–16.

Since RBCs eject all organelles, including the nucleus and mitochondria upon maturing,

they have no ability to synthesize proteins in response to environmental stimuli. The

lack of mitochondria in mature RBCs also leaves these cells unable to rely on oxidative

phosphorylation; instead, RBCs are reliant on glycolysis for energy production. These

unique metabolic attributes of RBCs provide a highly instructive model for unraveling how

genetic regulation of metabolic pathways can impact blood storage viability.

Herein, we describe a multi-omics analysis of genetic and environmental factors dic-

tating RBC variability. Our approach involved an extensive proteomic and metabolomics

analysis of RBCs derived from a cohort of 18 mono- and di-zygotic twin-pairs.

The primary challenge of performing proteomic analyses on red blood cells is the wide

dynamic range characterized by an abundance of hemoglobin. This was surmounted by

focusing our analysis on the membrane fraction of red blood cells. While other studies

have relied on time intensive affinity enrichment, utilizing the membrane fraction granted

us the second greatest proteomic depth achieved in red blood cells which allowed us to

process a multitude of clinical samples. Furthermore, much of the complexity and diversity

in red blood cells is associated with the membrane including many energy metabolism

components17–19.
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Despite the simplified composition of mature RBCs, i.e., no nucleus or mitochondria,

detection and quantification of the RBC proteome presents a few challenges. First, RBCs

must be purified from other blood cells. During this process, typically differential centrifu-

gation, care must be taken to limit contamination, especially from the abundant plasma

proteins. The next, and most significant, obstacle is the large dynamic range of protein

abundance within the RBC20,21. Although the actual dynamic range of the RBC proteome

is not yet known, the technical challenges are analogous to measuring the proteome of

plasma, which has a dynamic range approaching twelve orders of magnitude22. Also

similar to the plasma proteome, in which a single protein (albumin) constitutes 55% of the

total protein content, hemoglobin comprises 97% , by mass, of the RBC proteome, making

protein depletion a necessary consideration23. Of the remaining 3% , carbonic anhydrase

accounts for 1/3, so that the remaining 2% of total protein mass is made up of several thou-

sand different proteins. Identifying these low abundance proteins from the background

presented by hemoglobin and carbonic anhydrase, is challenging24,25. Several methods

attempt to counter this obstacle by use of various types of affinity or ion exchange separation

techniques26–28. Even when employing these methods, most RBC proteome analyses yield

detection of less than 1,000 proteins, with the exception of one which identified 1,57829.

Most of these studies, especially those with the deepest coverage, require extensive

protein and/or peptide fractionation which, in turn, yields considerable increases in analysis

time – both sample preparation and instrument acquisition. Recent years have ushered in an

era of proteomics where advances in peptide separation and mass spectrometer performance



40

has accelerated the rate and depth of proteome analysis30. We reasoned that application of

this technology, combined with straightforward reversed-phase proteome fractionation,

could expedite sample preparation and afford reasonably deep RBC proteomic analysis

in short order, thus, affording the throughput for quantitative comparison of clinical RBC

samples.

Using our method, we show that in RBCs the concentrations of components in crucial

energy metabolism pathways are inherited en bloc at distinct levels. This results in different

RBC storage phenotypes which can be used to further understanding of changes during

storage and develop improved storage guidelines and methods. Furthermore, this rich

dataset will provide a valuable resource for continuing studies of RBCs and the heritability

of disease.

Materials and Methods

Twin Subject enrollment and sample collection. This report is a continuation of twin

studies reported previously and utilized the same study subjects14,16,31,32. The study was

approved by the Human Subjects office of The University of Iowa Carver College of Medicine.

Written informed consent was obtained from all participating subjects. Subjects were

qualified for participation by meeting criteria for autologous blood donation according to

standard operating procedures of The University of Iowa DeGowin Blood Center. Twin

pairs were not required to donate samples at the same time and each individual donated a

single blood unit. Standard health history and demographic information were obtained
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at the time of enrollment and informed consent. Reported height and weight were used

to calculate body mass index (BMI). BMI was derived from the formula: BMI = weight

(kg) / (height(m))2. Each subject donated one unit of whole blood which were processed

according to standard operating procedures into a leukocyte-reduced RBC unit in CP2D/AS-

3 extended storage media (Haemonetics Corp, Braintree, MA). During processing, integral

leukocyte reduction filters were retained for extraction of DNA.

Sample Preparation. Samples of AS-3 preserved RBC units were prepared from the main

unit on each day of sampling. The AS-3 preserved RBCs were sampled by sterile docking

of tubing to the RBC unit, back-filling the tubing with RBCs and sectioning into segments.

This procedure was performed on the first day after donation (day 0), and every 14 days

thereafter until day 56. This resulted in 5 time points at day 0, 14, 28, 42, and 56.

Segments were drained into 5 mL Eppendorf tubes; after mixing an aliquot is removed

for complete blood count (CBC) testing using a hematology analyzer (Sysmex XE-2100™

Automated Hematology System, Sysmex Corp, Kobe, Japan). The remaining sample was

centrifuged at 500 g for 5 min, after which the storage media (AS-3) was removed. Samples

were further processed and used for measurement of ATP, GSH, and GSSG in RBCs as

previously described14,16.

Whole venous blood (EDTA, Vacutainer® purple top blood collection tube, 8 mL)

collected from participants prior to blood donation was centrifuged at 500 g for 5 min,

followed by removal of the plasma and buffy coat. RBCs were washed twice with cold iso-
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tonic saline solution. After washing, a 30 µ L aliquot of the packed red blood cells (pRBCs)

was removed for complete blood count (CBC) analysis (Sysmex XE-2100™ Automated

Hematology System, Sysmex Corp, Kobe, Japan). A 100 µ L aliquot of pRBCs was lysed

with 900 µ L of nanopure water. Samples were thoroughly mixed and stored at -80 ◦ C

prior to proteomic and metabolomic analyses.

Zygosity testing DNA for zygosity testing was obtained from leukocyte reduction filters

by rinsing filters with 15 mL DPBS. The rinse volume was centrifuged at 500 g for 10 min

and the cell pellet was resuspended in 2 mL of DPBS. DNA was extracted from the cell

pellet using a nucleic acid extraction instrument (AutoGen QuickGene 610L, AutoGen,

Holliston, MA) and kit (Fuji QuickGene DNA Whole Blood Kit, AutoGen, Holliston, MA).

Genotyping was performed using a previously developed panel of 24 single nucleotide

polymorphisms (SNPs) (10). SNP genotyping was performed using PCR assays (TaqMan,

Applied Biosystems, Foster City, CA) on a Genotyping System (EP1 SNP, Fluidigm, San

Francisco, CA) with a Dynamic Array Integrated Fluidic Circuit (GT48.48, Fluidigm, San

Francisco, CA). Monozygotic (MZ) twins were identified by 90 % or greater genotype

concordance; all other twin pairs were identified as dizygotic (DZ).

Global metabolomics profile analyses The untargeted metabolic profiling method em-

ployed for this analysis combined three independent platforms: ultrahigh performance

liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) optimized for basic
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species, UHPLC/MS/MS optimized for acidic species, and gas chromatography/mass

spectrometry (GC/MS). Samples were analyzed using procedures described in van ‘t Erve

et al. (14).

Sample Preparation for Proteomic Analysis Proteolytic Digestion: A 50 µ L aliquot of

red blood cells lysed in 500 µ L DI water was centrifuged at 4◦ C for 30 minutes at 5 G.

The supernatant was discarded and the pellet was re-suspended in 100 µ L lysis buffer

(8 M Urea, 100 mM Tris, 10 mM TCEP, 40 mM chloroacetamide). The samples were then

diluted with 50 mM Tris pH 7.5 until the pH reached 7.5 (∼ 1 mL). Trypsin digestion was

performed overnight at room temperature with trypsin (Promega, Madison, WI) added

at a 1:50 (w/w) enzyme to protein ratio with an estimated protein quantity of 500 µ g. A

second trypsin digestion was performed the following morning at 1:200 (w/w) enzyme to

protein ratio for 1 h. Each digest was quenched by the addition of TFA and desalted over

tC18 Sep-Pak cartridges (Waters, Milford, MA).

High pH fraction collection: Samples were fractionated using high pH reverse phase

separation to increase proteomic depth. The solvent system consisted of mobile phase A

(20 mM ammonium bicarbonate) and mobile phase B (20 mM ammonium bicarbonate

80% acetonitrile) which was run on an Ultimate 3000 UPLC system (Dionex Sunnyvale,

CA) with a reverse phase C18 column. Gradient elution was performed at 400 µ L min-1

with the gradient increased from 0 to 6% B over 5 minutes followed by an increase to 80% B

until 24 minutes and a wash at 100% B for 3 minutes. Eight fractions were collected from
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each sample which were subsequently pooled resulting in four total fractions per sample.

nLC-MS/MS Analysis Samples were analyzed using a LC/MS instrument comprising

an Orbitrap Elite hybrid mass spectrometer (Thermo Fisher Scientific). Reverse phase

columns were prepared in house using a 75-360 µm inner-outer diameter bare-fused silica

capillary with laser pulled tip. The column was packed with 1.7 µm diameter, 130 Åpore

size, Bridged Ethylene Hybrid C18 particles (Waters) to a final length of 35 cm. The column

was installed on a Dionex Ultimate 3000 UPLC system and heated to 60◦ C using an in

house designed column heater for all runs33,34. Mobile phase buffer A was composed of

water, 0.2% formic acid, and 5% DMSO. Mobile phase B was composed of acetonitrile, 0.2%

formic acid, and 5% DMSO. 1 µ g of sample was injected as determined by quantitative

colorimetric peptide assay (Pierce Rockford, IL). Gradient elution was performed at 300 nL

min-1 with the gradient increased linearly from 0 to 60% B over 103 minutes followed by a

linear increase to 100% B until 106 minutes and a wash at 100% B for 4 minutes. Survey

scans of peptide precursors were collected from 300-1500 Th with an AGC target of 1,000,000

and a resolution of 60,000 followed by data dependent CID MS/MS scans of the 20 most

intense peaks in the quadrupole linear ion trap mass analyzer. Precursors with charge

states equal to 1 or unassigned were rejected and a 45 second dynamic exclusion was set to

expedite identifications.
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Data Analysis Label free quantification was performed using Maxquant software version

1.5.2.835 and the Andromeda search engine36. The results were searched against a Homo

sapiens database containing 90,482 reviewed proteins plus isoforms downloaded from

Uniprot on June 23, 2015. Enzyme specificity was set to fully tryptic with up to two missed

cleavages and carbamidomethylation of cysteines as a fixed modification. Oxidation of

methionines and protein N-terminal acetylation were set as variable modifications. The

match between runs feature was utilized to decrease missing data values within the data

set (35). Precursor mass tolerance was 20 ppm and product ions were searched at 0.5 Da

tolerances. Peptides were filtered to a 1% FDR and combined to protein groups based on

the rules of parsimony, with at least two peptides per protein. Pearson correlations were

calculated between each protein and metabolite detected using Perseus software37,38.

Experimental Design and Statistical Rationale Five di-zygotic twin pairs and thirteen

mono-zygotic twin pairs were used in the study. No biological replicates were available since

each individual was only required to donate blood at one time. Proteome and metabolome

analyses were performed in randomized order to eliminate systematic biases.

Heritability calculations Heritability estimates were calculated for each protein and

metabolite concentration measured, and for each measured time point when applicable.

The first step to calculating heritability is using the one-way model of intraclass correlation

coefficient (ICC) to determine the similarity of a measure in a twin pair: ICC = (MSbetween
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- MSwithin) / (MSbetween + MSwithin), where MSbetween is the estimate of the mean-square

variance between all twin-pairs and MSwithin is the estimate of the mean-square variance

within the sets of pairs in that group (13). The ICC is used to compare the variation

within specific pairs to that of the population as a whole, and falls on a scale of -1 to +1.

Higher positive values indicate that there is less variation within the pairs of subjects than

there would be within randomly paired subjects. Positive values approaching 0, as well

as negative ICC values, indicate that the variation within pairs of subjects is similar to the

variation expected within random pairs. A highly heritable trait between MZ twins would

be expected to have an intraclass correlation coefficient near +1. Once ICC values were

calculated, heritability was estimated using the method derived by Newman et al., h2 =

(ICCMZ - ICCDZ) / (1 - ICCDZ)39.

Results and Discussion

To rapidly remove hemoglobin from RBCs, we separated RBCs obtained from whole blood

via differential centrifugation. Samples were then centrifuged again, to isolate the mem-

brane fraction, which was kept for further proteomic analysis while the supernatant (con-

taining predominantly hemoglobin) was discarded40. While enriching for the membrane

fraction will bias our analyses toward the detection of membrane bound proteins, many

proteins of interest in red blood cells are associated with the membrane including some gly-

colytic proteins18,19,41. Following this extraction, proteins were digested with trypsin, and

the resultant peptides separated into eight fractionations via high pH reversed-phase liquid
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chromatography (RPLC). These fractions were recombined, generating four fractions per

sample. Each fraction was then analyzed using a 120 minute nanoLC-MS/MS method. In

total, each sample required eight hours of mass spectrometer analysis, yielding an average

of 3,678 peptide spectral matches (PSMs), 2,357 unique peptides, and 606 proteins per RBC

sample.

Once the challenging problem of depleting hemoglobin had been overcome, we turned

our attention to clinical RBC samples from 36 individuals including five di-zygotic and 13

mono-zygotic twin pairs. Twins were permitted to donate blood at separate times under

separate conditions which serves to strengthen our confidence in heritability calculations.

A 50 µ L aliquot of washed, lysed RBCs from each patient was analyzed as described above.

Across all 36 patients we detected 1,280 proteins with an FDR less than 1% . Of these, 105

proteins were detected in all patients, however of the proteins in our model and those

further analyzed in energy metabolism pathways all were present in at least 27 individuals.

The large majority (92% ) of these proteins were identified with at least two peptides

uniquely mapping to their sequence. The mean protein sequence coverage was 19.4% . Our

data shows significant overlap with previous results – among our 1,280 identified proteins,

941 have previously been observed (73% ). When performing heritability calculations

measurements were required to be present for five out of five dizygotic twin samples and

10 out of 13 monozygotic samples.
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Metabolomic Analysis As a relative newcomer in the ‘omics’ era, metabolomics lags

behind proteomics in the robust quantification of thousands of compounds. Discovery

metabolomics aims to identify the entire metabolome present in cells; however, the greatest

hurdle is the identification of unknown features. Using such discovery metabolomics assay

∼ 300 unique metabolites were quantified from these same samples.

Briefly, the discovery metabolic profiling method combined three independent plat-

forms: ultrahigh performance liquid chromatography/tandem mass spectrometry (UH-

PLC/MS/MS) optimized for basic species, UHPLC/MS/MS optimized for acidic species,

and gas chromatography/mass spectrometry (GC/MS). This method resulted in the quan-

tification of 328 metabolites including lipids, xenobiotics, dipeptides, and many metabolites

from prominent energy pathways (Supplemental Table 4). Together,our proteomic and

metabolomic datasets comprise the largest multi-omic dataset of red blood cells.

Correlation Analysis To identify potentially co-regulated proteins and metabolites Pear-

son correlation analysis and hierarchical clustering were performed between all proteins

and metabolites yielding 58,000 correlations either greater than 0.75 or less than -0.75 which

corresponds to 5% of the total correlations measured.

These clusters were found to contain unique protein groups containing proteosomal,

fatty acid metabolism, or energy metabolism proteins. Of particular interest is a cluster con-

taining numerous proteosomal proteins as well as those involved in glutathione metabolism

and glycolysis (Figure 1). We also observe glycolytic and glutathione metabolism proteins



49

Figure 2.1: Red blood cell proteins and metabolites show clusters of high correlation.
Pearson correlation values were calculated between every combination of proteins and
metabolites and plotted using Perseus. KEGG pathway enrichment of various clusters
was measured using enrichr and the negative log of the p-value for pathways of interest
is reported in the bar charts to the right, where the color of the bars corresponds to the
section of the dendrogram where the pathways are enriched.
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clustering with pyruvate metabolism and carbon fixation. All of these pathways were

significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) terms using the

online software enrichr42.

Glycolytic protein and metabolite levels were normalized using feature scaling to exam-

ine variation within glycolysis. By comparing normalized protein or metabolite levels in

glycolysis we note that variation within the glycolytic pathway occurs en bloc at various

levels (Figure 2). The distribution of variation within glycolytic proteins and metabolites

indicates that metabolites are more tightly conserved than proteins (Figure 2 C, D). Gly-

colytic proteins and metabolites each cluster together and display a high number of positive

correlations supporting our conclusion that variation in glycolysis occurs en bloc.

Heritability Among 18 twin pairs, zygosity testing identified 13 MZ and 5 DZ twin pairs.

The means of age, weight, and BMI were not significantly different between MZ and DZ

twin groups (Table 1). As previously reported, a high degree of estimated heritability for

height (96 % ), weight (97 % ), and BMI (63 % ) was observed in this study population

(31). The similarity of these results to estimates in a previous report studying 30,111 twin

pairs in 8 countries supports the validity of the sample population for determination of

heritable traits43.

Of the proteins and metabolites measured, 119 protein and 148 metabolite concentra-

tions were found to be over 30% heritable, and 73 and 104 were greater than 50% heritable

respectively (Figure 3) (Supplemental Table 3). Previous studies using this twin cohort
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Figure 2.2: Relative abundance of glycolytic proteins and glycolytic metabolites is con-
served among twin pairs. The average protein (A) and metabolite level (B) in three
representative monozygotic twin pairs show variation in glycolytic activity within the
population, indicating abundances of these proteins are influenced en bloc. All protein and
metabolite levels were normalized to the percentage of maximum protein and metabolite
level (see example calculation) using feature scaling. Pyruvate was excluded from the
metabolites as it was found to not correlate with the other members. The difference between
each protein (C) and metabolite (D) is reported in a histogram. Sequential proteins and
metabolites in glycolysis were subtracted to give a scaled difference components of the
pathway. The peak is centered at zero for proteins and metabolites indicating that individ-
uals inherit high or low levels of glycolytic compounds together. Glycolytic metabolites
appear to be more tightly conserved than protein.
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Figure 2.3: A total of 1,280 proteins and 330 metabolites were detected in red blood
cells. Of these, 119 and 148 were found to be over 30% heritable, respectively. To calculate
heritability in proteins, measurements were required to be present in all three out of five
dizygotic twin pairs and 10 out of 13 dizygotic twin pairs. (C) Proteins and metabolites
greater than 30% heritable from glycolysis and glutathione metabolism are reported.
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have used 30% heritability as a limit for consideration. In particular, we noted that the

concentration of the key regulatory enzyme liver type phosphofructokinase (PFK) is 57%

heritable as well as the concentration of phosphoglycerate mutase which is 29% heritable.

Muscle and platelet PFK isoforms were also detected in our dataset, but were not detected

in sufficient samples to determine heritability. Additionally the concentration of bisphos-

phoglycerate mutase (BPGM), a key enzyme for regulating the oxygen loading capacity

of hemoglobin in red blood cells was 50% heritable. No other glycolytic proteins were

found to be heritable; however, we were interested to observe that heritable proteins were

found at important regulatory steps and branch points in the pathway. The heritability of

glycolysis is further supported by high heritability estimates of the metabolites fructose 1,6-

bisphosphate, 3-phosphoglycerate, DHAP, 2,3-DPG, phosphoenolpyruvate, and pyruvate.

Within glutathione metabolism, GST, GCLC, GPx4, and several hemoglobin subunits were

found to be heritable as well as many metabolites including glutamate, cysteinylglycine,

GSSG, GSH, and ribose-5-phosphate (Figure 3).

High levels of heritability are similarly observed within glutathione metabolism and

the pentose phosphate pathway. For example, concentrations of the proteins glutathione

peroxidase, glutathione S-transferase, and glutamate cysteine ligase were heritable as well as

the metabolite concentrations of ribose-5-phosphate, glutathione, and glutathione disulfide.

These heritable metabolite concentrations are in accordance with those detected in previous

red blood cell studies14.

Many of the proteins and metabolites implicated in glutathione metabolism are also
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correlated and cluster with those discussed previously in glycolysis. This is not surprising,

as maintaining redox balance is of key importance to red blood cells and helps preserve

sufficient NAD concentration to continue glycolysis. Glycolysis and glutathione metabolism

are highly correlated and contain heritable concentrations of proteins and metabolites,

implying they are inherited together at varying degrees (Figure 4).

The best marker for 42 days post-storage ATP concentration in glycolysis and glutathione

metabolism is carbonic anhydrase 1 (CA1) which has a -0.56 correlation with ATP. This

correlation strengthens with increased time in storage: -0.10 at day 0, -0.22 at day 14, -0.25

at day 28, and -0.56 at day 42. CA1 catalyzes the conversion of CO2 and H2O to produce

carbonic acid, which is de-protonated at neutral pH, generating a proton and lowering the

pH of stored blood.

The acidification of blood during storage is a well-characterized phenomenon and the

resulting decreased pH inhibits PFK44. PFK inhibition caused by acidic conditions resulting

from CA1 may explain the correlation we observe between higher CA1 concentrations and

lower post-storage ATP. The newest blood storage solution, AS-7, buffers blood acidification

with the addition of bicarbonate to increase post-storage ATP concentration and in vivo

recovery44–46. Maintaining a high pH during storage is thus imperative for ATP production,

and supported by the correlation we have shown between CA1 and post-storage ATP.

Model of post-storage ATP An important goal of transfusion medicine is to improve post-

storage ATP levels in blood, as RBC ATP concentrations correlate positively with transfused
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Figure 2.4: A high number of positive correlations are observed between both proteins
and metabolites in the glycolytic and glutathione metabolism pathways . A Pearson
correlation greater than 0.5 or less than -0.5 is required to show a connection. Heritability of
these pathways can be observed in the shade of the node outline as well as by the gradient
outside the network. This figure was created using Cytoscape™(58).
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RBC recovery.46,47. Using our large scale data set we considered two potential phenotypes

of high or low concentrations of ATP at day 42 of storage. The ‘high’ and ‘low’ post-storage

ATP phenotypes can be correlated with proteins known to effect ATP concentrations and

generate a model to understand post-storage ATP levels. We include five key parameters in

this model including PFK, CA1, band 3, BPGM, and pH. Strikingly, concentrations of all

protein components of this model were found to be at least 45% heritable. Band 3, BPGM,

and CA1 correlate negatively with day 42 post storage ATP levels (-0.41, -0.39, -0.56) and

together may shuttle flux away from glycolysis and ATP production. We also observe

positive correlations between pH and ATP early in storage as discussed previously (Figure

5) which appears to weaken over time. Day 0 ATP correlates positively with pH at day 7,

day 14, and day 28 (0.48, 0.80, 0.51) while day 42 ATP correlates positively with pH at day

7 and day 14(0.56, 0.57). No positive correlations between pH and ATP are observed at day

42 or 56. However, PFK concentrations correlate positively with pH later in storage at day

42 and 56 (0.45, 0.42) and are associated with increased ATP generation in glycolysis.

Conclusion

Our approach to RBC proteome characterization provided an expedient and robust analysis

of low abundance RBC membrane proteins, and produced the most thorough analysis of

the RBC membrane proteome to-date without the use of affinity based depletion strategies.

We expect that further efforts to deplete hemoglobin would result in increased identification

of low abundance proteins, but this would also increase processing time per sample. Using
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Figure 2.5: Post-storage ATP levels are determined by several key factors . (A) Low ATP
levels following 42 days of storage are correlated with high levels of band 3, BPGM, and car-
bonic anhydrase. Band 3 binds glycolytic proteins decreasing flux through glycolysis while
BPGM shunts intermediates to the luebering-rapoport pathway away from the generation
of ATP. Similarly, high levels of carbonic anhydrase produce acidic conditions and subse-
quently inhibit PFK. In support of this we observe negative correlations between carbonic
anhydrase and pH level during storage. Low post-storage ATP is additionally correlated
with low pH. Correlation values of greater than 0.3 were required for consideration. (B)The
opposite model leads to the generation of high ATP levels following 42 days of storage. The
size of the protein in each case is representative of the concentration associated with each
phenotype.
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a unique data set of twin samples we determined heritability of over 700 proteins and

metabolite concentrations.

Within our data set we took particular interest in the interactions between energy and

glutathione metabolism. Forty-nine correlations greater than 0.5 are present between the

proteins and metabolites of these pathways along with only five negative correlations.

The negative correlations included three correlations between pyruvate kinase and other

glycolytic proteins, between post-storage ATP and CA1, and between G6P and the delta sub-

unit of hemoglobin. The hemoglobin subunits were included with glutathione metabolism

because of their role in oxygen binding and ability to generate superoxide and hydro-

gen peroxide through hemoglobin48. Similarly, the anion transport protein band 3 was

included with glycolytic proteins and metabolites because of its role binding glycolytic pro-

teins in an oxygen dependent manner19,49. We thus propose that glutathione metabolism

and glycolysis are highly connected pathways and may be linked by a similar regulatory

mechanism.

Due to their role as oxygen carriers and thus the large quantity of oxyhemoglobin, red

blood cells have an especially high burden of oxidizing species such as superoxide and

hydrogen peroxide. Red blood cells limit the accumulation of these species by maintaining a

large pool of reducing equivalents generated from glucose through the pentose phosphate

pathway. In the lungs where O2 levels are high, RBCs are exposed to higher levels of

oxidative stress necessitating increased flux through the pentose phosphate pathway to

generate reducing equivalents and supply the glutathione cycle. Meanwhile, in peripheral
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tissues with low O2 levels, erythrocytes must pass through narrow capillaries causing

distortion from mechanical stress and cation leaks19. This causes an increased demand

for ATP to restore intercellular ion balance. Band 3 specifically binds PFK, GAPDH, and

ALDOA in the presence of oxyhemoglobin and diverts flux towards the pentose phosphate

pathway to generate NADPH. As we would expect, band 3 correlates negatively with

several glycolytic metabolites, including phosphoenolpyruvate and 2,3-DPG (-0.36 and

-0.34 respectively). It also positively correlates with several glycolytic proteins, which is

compatible with higher concentrations of band 3 being necessary to bind higher levels of

glycolytic proteins.

Supporting this model we also observe high levels of correlation between glutathione

metabolism and the pentose phosphate pathway. These are intimately linked pathways

as the reductive equivalent NADPH generated by the pentose phosphate pathway is nec-

essary to reduce glutathione disulfide generated during removal of hydrogen peroxide.

Gluconolactonase is positively correlated with GPx1, GPx4, as well as glutamate cysteine

ligase. Also, glutathione is correlated with 6-phosphogluconate, gluconolactonase, and

6-phosphogluconate dehydrogenase demonstrating that the pentose phosphate pathway is

essential for the continuation of glutathione metabolism.

Many of the concentrations of proteins and metabolites in these pathways were also

found to be heritable. Within glutathione metabolism, glutamate, GPx4, glutamate-cysteine

ligase, glutathione, and glutathione disulfide concentrations were all found to be over 45%

heritable. Furthermore, in glycolysis, concentrations of the regulatory enzyme PFK as



60

well as BPGM and the metabolites pyruvate, phosphoenolpyruvate, 3-phosphoglycerate,

1,3-bisphosphoglycerate, DHAP, and FDP were all found to be over 50% heritable (Figure

3). It is also noteworthy that one of the most heritable protein concentrations we observed

was carbonic anhydrase, at 85% , which is an important regulator of pH and therefore PFK

activity. Based on the strong correlation observed between these pathways, and the high

levels of heritably throughout, we infer that glutathione metabolism, pentose phosphate

pathway, and glycolysis are coupled pathways that can be inherited en bloc at various levels.

Together our results suggest a model in which inheritance of higher concentrations

of band 3 and CA1 reduce flux through the glycolytic pathway by greater binding and

inactivation of PFK and by allosteric inhibition of PFK through lower pH. In addition,

inheritance of higher concentrations of BPGM may decrease ATP production by competing

with PGK for an ATP-producing step in glycolysis. Higher inherited concentrations of PFK

may increase flux through the glycolytic pathway. The combined effect of inheritance of

these enzyme concentrations accounts both for the en bloc inheritance of glycolytic pathway

intermediates, and the heritability of ATP concentration at day 42 and day 28 of storage.

The heritable concentrations of many molecules in the pentose phosphate and glutathione

pathways may also be predicted by this model.

Our model has implications in the management of blood storage as it confirms that

energy metabolism and ATP concentrations are heritable traits. In the future we can

imagine blood donors being tested once for levels of key heritable markers to determine

a blood storage profile and optimum storage period. Based on our results, some donors
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actually show an increase in ATP concentrations early in storage suggesting this blood

could theoretically be stored longer than individuals that show a continual decrease in

ATP. Individuals that have increasing ATP during storage also show correlations with

higher PFK and lower BPGM. This could prevent potential ATP loss by the diversion of

1,3-bisphosphoglyverate to produce 2,3-bisphosphoglycerate. Furthermore, individuals

that have decreasing ATP during storage have lower PFK and higher BPGM concentrations.

These correlations are suggestive of heritable markers which could someday be used to

predict post-storage ATP levels in blood donors.

The negative correlation identified between CA1 and post-storage ATP is significant

in that it provides one reasonable explanation for ATP decreases that occur in storage.

RBC units are stored in gas permeable bags allowing CO2 to diffuse into the bag causing

acidification and inhibiting PFK. This will decrease the natural rate of energy metabolism

and subsequently ATP production. Atmospheric conditions have been shown capable of

regulating RBC metabolism in storage previously in the case of oxygen saturation49. Our

results suggest that the addition of CA1 inhibitors to stored blood, or the selection of donors

known to have low inherited levels of CA1 are potential facile methods to increase the

quality and lifetime of stored blood. The importance of pH modulation in blood storage was

observed to be of key importance in the development of the newest blood storage solution,

additive solution-7, which was primarily improved by increased buffering capacity45.

RBC blood bank storage is not an activity that occurs in nature, so the strong genetic

components suggests that it intersects with a deeper problem in evolutionary biology



62

such as the tradeoff involved in oxygen-based energetics with the risks of oxygen-induced

biochemical damage. Keeping RBC glycolytic flux high is known to be advantageous in

RBC storage and function and probably represents one of the poles of the deeper tradeoffs

in cellular or whole body energetics. The implications for RBC storage are that it is possible

to both identify markers to identify individual blood donors with better blood storage or to

support identified aspects of metabolism in all donors that make all cells store better.

The heritability we observed in many pathways within erythrocytes may have ramifi-

cations in metabolic disease. Diseases such as Alzheimer’s disease and cancer are known

to involve aberrations of energy metabolism50–55. Current disease models suggest that a

low glycolytic capacity may confer a risk of Alzheimer’s disease but protect against cancer.

Since we have determined many components of glycolysis to be heritable in erythrocytes,

we hypothesize that other cell types are similarly affected, and individuals who inherit low

levels of glycolytic proteins and metabolites may be more prone to developing Alzheimer’s

disease later in life. Similarly, people who inherit high levels of glycolysis may be inclined

to develop cancer. Inverse comorbidity has been documented between these diseases,

supporting our hypothesis that inheritance of energy metabolism along a spectrum may

contribute to the incidence of cancer or Alzheimer’s disease56.

Supplemental Information Allraw files and annotated spectra for single peptide protein

identifications from these experiments are available on Chorus (Project ID 1114). Annotated

spectra of proteins identified by a single peptide can be viewed on MS Viewer with the key
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Chapter 3

the cellular economy of the saccharomyces cerevisiae zinc
proteome
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Abstract

Zinc is an essential cofactor for many proteins. A key mechanism of zinc homeostasis

during deficiency is “zinc sparing" in which specific zinc-binding proteins are repressed to

reduce the cellular requirement. In this report, we evaluated zinc sparing across the zinc

proteome of Saccharomyces cerevisiae. The yeast zinc proteome of 582 known or potential

zinc-binding proteins was identified using a bioinformatics analysis that combined global

domain searches with local motif searches. Protein abundance was determined by mass

spectrometry. In zinc-replete cells, we detected over 2500 proteins among which 229 were

zinc proteins. Based on copy number estimates and binding stoichiometries, a replete

cell contains ∼ 9 million zinc-binding sites on proteins. During zinc deficiency, many zinc

proteins decreased in abundance and the zinc-binding requirement decreased to ∼ 5 million

zinc atoms per cell. Many of these effects were due at least in part to changes in mRNA

levels rather than simply protein degradation. Measurements of cellular zinc content

showed that the level of zinc atoms per cell dropped from over 20 million in replete cells

to only 1.7 million in deficient cells. These results confirmed the ability of replete cells

to store excess zinc and suggested that the majority of zinc-binding sites on proteins in

deficient cells are either unmetalated or mismetalated. Our analysis of two abundant zinc

proteins, Fba1 aldolase and Met6 methionine synthetase, supported that hypothesis. Thus,

we have discovered widespread zinc sparing mechanisms and obtained evidence of a high

accumulation of zinc proteins that lack their cofactor during deficiency.
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Introduction

Zinc is an essential catalytic and/or structural cofactor for many proteins. Approximately 9%

of genes in eukaryotic organisms and ∼ 5% of prokaryotic genes encode proteins that bind

zinc to become functional1. The abundance and importance of zinc-dependent proteins is

reflected in the concept of the “zinc quota" . The zinc quota is defined as the amount of zinc

in a cell grown under a given condition2. The “minimum zinc quota" is the lowest amount

of zinc per cell that allows for optimal growth. The minimum zinc quota varies widely for

different organisms and has been experimentally determined to be ∼ 105 atoms of zinc per

cell in E. coli, ∼ 107atoms in yeast, and ∼ 108 atoms in mammalian cells2–5. Many studies

have indicated that the level of labile or exchangeable zinc in cells is very low and the great

majority is tightly bound by the proteins that require this metal for function6–8.Therefore,

the minimum zinc quota is likely dictated by the number of zinc-binding sites on proteins

that require the metal for optimal cellular physiology.

Organisms have evolved with many mechanisms of zinc homeostasis. During times

of excess zinc exposure, these mechanisms limit uptake and promote efflux to maintain

the intracellular metal content at tolerable levels9,10. They also control the generation of

intracellular zinc stores in the form of either organellar or buffered cytosolic (e.g. metal-

lothionein) pools that are available for later use2,11. During zinc deficiency, homeostatic

mechanisms work to maintain zinc levels at the minimum zinc quota12. These mechanisms

increase zinc uptake, decrease zinc efflux, and mobilize the release of zinc from intracellular
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storage sites. An additional mechanism of zinc homeostasis during deficiency has been

called “zinc sparing" , i.e. reducing the levels of specific zinc-binding proteins to decrease

the cellular zinc requirement13. In some cases, reduced production of a zinc-dependent

protein is compensated by increased synthesis of a zinc-independent paralog. In many

bacterial species, for example, several zinc-dependent ribosomal subunits are repressed

during deficiency and corresponding zinc-independent subunits are upregulated to take

their place14–16. In this way, cells can reduce their total requirement for zinc and prioritize

the distribution of the limited supply of this nutrient to more critical sites and functions.

In Saccharomyces cerevisiae, the Zap1 transcription factor is the central regulator of

zinc homeostasis12,17. Zap1 is a transcriptional activator protein whose activity is low

in zinc-replete cells and high in deficient cells. Zap1 increases the expression of many

genes including those that encode zinc uptake transporters in the plasma membrane. In

addition, Zap1 increases expression of organellar transporters that control the levels of

zinc in intracellular compartments such as the vacuole and the endoplasmic reticulum. In

addition to maintaining zinc homeostasis, Zap1 also regulates genes involved in adapting

cellular processes to the challenges of zinc deficiency. For example, the CKI1 and EKI1

genes are induced by Zap1 to maintain phospholipid synthesis18,19. The CTT1 catalase

gene is also induced by Zap1 and this response is likely to eliminate the oxidative stress

that arises during zinc deficiency20,21.

Among the adaptive responses to zinc deficiency, Zap1 induces expression of the TSA1

gene. Tsa1 is a dual function protein that acts as a peroxidase and as a “holdase" -type
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protein chaperone22. Tsa1 function is essential for growth of zinc-deficient cells. Our

initial studies indicated a role of the Tsa1 peroxidase activity in protecting zinc-deficient

cells against an elevated level of reactive oxygen species21. Subsequently, we found that

the Tsa1 protein chaperone activity was more important than the peroxidase function for

zinc-deficient growth23. Zinc-deficient cells lacking Tsa1 chaperone activity accumulated

elevated levels of stress-responsive protein chaperones, suggesting elevated unfolded

protein accumulation and a corresponding heat shock response. Also consistent with this

hypothesis, zinc-deficient tsa1∆ cells accumulated distinct cytoplasmic foci marked by

the Hsp104 disaggregase chaperone. These foci resembled the “IPOD" compartment that

accumulates in cells accumulating abundant unfolded proteins24. Our findings for Tsa1

suggested that zinc-deficient cells accumulate unfolded zinc-dependent proteins because

they lack their metal cofactor needed for folding and stability. Under these conditions, the

holdase function of the Tsa1 chaperone may stabilize zinc apoproteins and shield them

from misfolding and aggregation until zinc supplies increase.

Zap1 also controls an important zinc sparing mechanism involving the abundant zinc-

binding alcohol dehydrogenases Adh1 and Adh325. Under zinc-replete conditions, the

ADH1 gene is expressed and its protein product accumulates to high levels. Under deficient

conditions, the ADH1 promoter is repressed by an intergenic noncoding regulatory RNA

under the control of Zap1. This mechanism allows for a transcriptional activator to repress

expression of a target gene. The less abundant Adh3 alcohol dehydrogenase is regulated in

a similar manner. At the same time, Zap1 induces expression of the ADH4 gene. ADH4
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encodes an alternative alcohol dehydrogenase that accumulates to lower levels than Adh1

and whose activity is dependent on zinc or possibly iron26,27. While Adh1 and Adh3 require

two zinc atoms per monomer for function, Adh4 requires only one metal ion and is not as

highly expressed as Adh1, thereby providing for a net reduction in the zinc requirement of

the cell during deficiency regardless of which metal it uses.

Zap1-independent mechanisms of zinc sparing in S. cerevisiae have also been discovered.

For example, RNA polymerase I (RNAPI) is targeted for degradation in zinc-deficient cells28.

In replete cells, RNAPI large subunit Rpa190 is ubiquitinated and retained in the nucleus

and nucleolus where it transcribes ribosomal RNA genes. Under zinc-deficient conditions,

Rpa190 becomes deubiquitinated, RNAPI is exported from the nucleus and taken up into

the vacuole where it is degraded by vacuolar proteases. Similarly, the zinc-binding vacuolar

alkaline phosphatase Pho8 is also targeted for degradation in zinc-deficient cells through

a mechanism that is independent of Zap129. The zinc released into the vacuole by these

mechanisms is likely transported back to the cytosol where it is used by other proteins for

their function.

In this study, we performed an analysis of the yeast proteome in replete cells and cells

transitioning to conditions of severe zinc deficiency. A major goal of this study was to

identify additional examples of zinc sparing in the yeast zinc proteome. A second goal was

to test the hypothesis raised by our studies of Tsa1 that zinc-deficient cells accumulate high

levels of zinc apoproteins that require protein chaperones for their stability in the absence

of their metal cofactor. We describe an extensive catalog of predicted zinc proteins in the
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yeast proteome and their abundance and distribution in zinc-replete conditions. During

the transition to deficiency, we found that decreased accumulation of zinc-binding proteins

is widespread and many effects are mediated at least in part by changes in mRNA levels

rather than simply degradation of apoproteins. In addition, we present evidence that the

accumulation of apoproteins is high during deficiency and that the majority of zinc sites in

a cell are not occupied by zinc under these conditions. Thus, we provide unique insights

into the economy of zinc in a eukaryotic cell.

Materials and Methods

Strains and growth conditions Yeast were grown in rich (YPD), synthetic defined (SD),

or low zinc medium (LZM), as previously described30. LZM contains 20 mM citrate and

1 mM EDTA to buffer pH and zinc availability. Glucose (2% ) was the carbon source for

all experiments. LZM + 1 µM ZnCl2 was routinely used as the zinc-deficient condition,

and LZM + 100 µ M ZnCl2 as the replete condition. The yeast strains used in this work

were BY4743 (MATa/MATα his3/his3 leu2/leu2 ura3/ura3 lys2/LYS2 met15/MET15), BY4742

(MATa his3 leu2 ura3 lys2), BY4741 (MATα his3 leu2 ura3 met15), and BY4741 fba1DAmP

(Thermo Fisher Scientific)31.

Cataloging the zinc proteome of yeast Using the approach described in Valasatava et al.,

we created two libraries of Hidden Markov Model profiles: a library of zinc-binding Pfam

domains, and a library of zinc-binding structural motifs32–34. The Pfam domain library was
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created by merging two lists: first, a list of Pfam domains with known 3D structure that

contain a zinc-binding site extracted from MetalPDB in which each of these domains could

be associated with the residues responsible for zinc binding and with their positions within

the domain sequence and second, a list of Pfam domains without a known 3D structure but

annotated as zinc-binding obtained by text mining of the annotations in the Pfam database32.

The procedure resulted in a set of 573 Pfam domains: 541 with an associated zinc-containing

3D structure, and an additional 32 annotated as zinc-binding domains. The library of zinc-

binding structural motifs was created by splitting into fragments the zinc-binding sites

stored in MetalPDB as of June 2017, as described in Rosato et al.35. Only one representative

was kept for zinc-binding sites that, though found in different PDB structures, fall in the

same position of the same protein domain. Sites that are not physiologically relevant based

on literature inspection (e.g., zinc-substituted structures, spurious sites) were manually

removed from the dataset. This procedure resulted in a library of 6450 zinc-binding motifs

derived from 2651 zinc-binding sites. An additional library of 339 zinc-binding motifs was

compiled separately because the native metal ion of their corresponding proteins is still

under investigation.

The zinc proteome of yeast was obtained by using the hmmscan tool to search each yeast

sequence for the profiles contained in the two libraries33. A yeast sequence was identified as

a potential zinc-binding site if at least one of the following conditions was verified: (A) the

profiles of all the fragments of a given site matched the sequence with an e-value lower than

10− 3 and the corresponding ligands are conserved in the sequence. (B) The profile of a
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domain with associated ligands matched the sequence with an e-value lower than 10− 5 and

the ligands are conserved in the sequence. (C) The profile of a domain with no associated

ligands matched the sequence with an e-value lower than 10− 7. These predictions were

integrated by adding the proteins annotated as zinc-binding in the UniProt database36. In

total, 571 yeast proteins were identified as zinc binding using the 6450 motifs. An additional

set of 45 potential zinc-binding proteins were identified with the 339 input sites as able

to bind zinc but for which the identity of the native metal ion is still unknown. For each

of these proteins, the subcellular location and enzyme EC number were retrieved from

UniProt. For each site contained in these proteins, the information on zinc function, number

of zinc ions per monomer, and structural zinc-site classification was imported from the site

in the library that yielded the best match in the search, and then manually checked37.

Mass spectrometry analysis and protein copy number estimations Mass spectrometry

for proteomics analysis was performed on four biological replicates each for times 0, 4, 8,

and 12 h of zinc deficiency and three biological replicates for 16 h of deficiency. Frozen cell

pellets of various cell counts were lysed in 300 µ l cold methanol. Precipitated proteins were

separated by centrifugation for 10 minutes at 13,400 g and 4 ◦ C. The protein pellet was

resuspended in 200 µ l lysis buffer (8 M urea, 20 mM TCEP, 80 mM chloroacetamide, 100

mM Tris pH 8) and diluted with 1 ml 100 mM Tris pH 8. Protein digestion was performed

overnight with trypsin (4 µ g) before centrifuging for 5 minutes at 10,000 g. The resulting

supernatant was de-salted with Strata C18 solid phase extraction cartridges and quantified



78

using Pierce Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific). Peptides

were then dried in a vacuum centrifuge before resuspension in 0.2% formic acid.

Samples were analyzed using a LC/MS instrument comprising an Orbitrap Fusion

Lumos tribrid mass spectrometer (Thermo Fisher Scientific). Mobile phase A consisted of

0.2% formic acid in water and mobile phase B consisted of 0.2% formic acid in acetonitrile.

A 75 minutes gradient ranging from 0% to 50% B was used spanning a total runtime of

90 minutes. Analytes were injected onto a 1.7-micron C18 column packed in-house to a

length of 35 cm and heated to 60 ◦ C. Survey scans of peptide precursors were collected

from 350–1350 Th with an AGC target of 1,000,000 and a resolution of 60,000 in the orbitrap

followed by HCD MS/MS turbo scans taken in the ion trap.

The resulting LC-MS proteomic data were processed using Maxquant software version

1.5.2.8 and searched against a Saccharomyces cerevisiae database downloaded from Uniprot

on 8/10/16. The digestion enzyme was set to trypsin with up to two missed cleavages, car-

bamidomethylation of cysteines as a fixed modification, and oxidation of methionines and

protein N-terminal acetylation as variable modifications. The match between runs feature

was utilized to decrease missing data values within the data set. Precursor mass tolerance

was 20 ppm and product ions were searched at 4.5 ppm tolerances. Peptides were filtered

to a 1% FDR and combined to protein groups based on the rules of parsimony. Protein

copy number calculations were performed in Perseus using the Proteomic Ruler plugin38.

This method uses the peak intensities of histone proteins, which are proportional to DNA

content, to estimate protein abundance on a per cell basis. Statistically significant effects
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were defined as those proteins with 1.5-fold or greater changes and a p-value of <0.05 after

Benjamini–Hochberg correction. The proteomics data was deposited in CHORUS under

Project ID number 1530. Hierarchical cluster was performed using Euclidean distance with

Perseus39. Gene Ontology analysis of four clusters produced from hierarchical clustering

was performed using DAVID40.

Quantitative RT-PCR analysis Quantitative analysis of gene expression by RT-PCR was

performed as previously described41. Assays were performed on three biological replicates.

Gene expression was calculated relative to the average Ct values for three control genes

(TAF10, ACT1 and CMD1) selected from multiple candidate genes tested for their highly

stable expression under the conditions used in our experiments (data not shown).

ICP-AES analysis Culture aliquots were washed three times in cold water, pelleted, and

frozen in liquid nitrogen. Total zinc was determined using inductively-coupled plasma

atomic emission spectrometry (ICP-AES) on six biological replicates for each timepoint.

Cell pellets were desiccated by incubation at 60 ◦ C for 12–18 h and subsequent dry weights

recorded. The dried yeast pellets were acid digested in 250 µ l OmniTrace 70% HNO3

(EMD Chemicals) at 60 ◦ C for 12–18 h with 150–200 rpm orbital shaking. The acid lysates

were then diluted to 5% HNO3 with OmniTrace water (EMD Chemicals) and analyzed

by ICP-AES (5100 SVDV, Agilent Technologies). The ICP-AES instrument was calibrated

using National Institute of Standards and Technology (NIST)-traceable elemental standards
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and validated using NIST-traceable 1577b bovine liver reference material. The detection

range for zinc was 0.005–5 parts per million with inter-assay precision <10% . Cesium (50

ppm) was used for ionization suppression and yttrium (5 ppm) was used as an internal

standard for all samples. All reagents and plasticware were certified or routinely tested

for trace metal work. Zinc content was determined using native software (ICPExpert) and

normalized to the cell number in each sample.

Protein extraction and immunoblotting Yeast protein extracts were prepared for im-

munoblotting with a TCA extraction protocol as previously described42. SDS-PAGE and im-

munoblotting was conducted using a Li-Cor Odyssey infrared dye detection system as pre-

viously described42. Antibodies used were anti-HA (12CA5, Roche product 11583816001),

anti-Fba1 (a gift from Dr Magdalena Boguta), and anti-Pgk1 (Abcam product 22C5D8, lot

# GR166098)43. IR 680 dye-labeled secondary anti-mouse antibody (product 680LT, lot #

C30605-02) was obtained from Li-Cor.

Assay of Fba1 aldolase activity Fba1 enzyme activity was determined using either perme-

abilized yeast cells or cell lysates. An assay developed by Freire was modified for use with

96-well plates44. After harvest, cells were washed once with equal volume of ice-cold deion-

ized water containing 1 mM EDTA, twice with ice-cold deionized water, and resuspended

in 0.1 M MES-NaOH pH 6.5 buffer. Cell densities of each sample were normalized to A595

= 1.5, and 0.01% digitonin (w/v) was added to permeabilize the cells. After incubating at
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30 ◦ C in a shaking water bath for 10 minutes, cells were placed on ice and then washed

twice, resuspended with ice-cold 25 mM KH2PO4/K2HPO4 pH 7.4 buffer to a density of

A595 = 0.5. A standard assay of aldolase activity contained 10 units of triose-phosphate

isomerase (TPI), 4 units of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in a 25

mM KH2PO4/K2HPO4 pH 7.4 buffer containing 5 mM sodium arsenate, and 5 mM of NAD+

and 20 µ l of permeabilized cells. The assay was started by adding 5 mM of the substrate,

fructose 1,6-bisphosphate (FBP), and incubated at 30 ◦ C in a temperature-controlled plate

reader. The absorbance at 340 mm of NADH generated by the assay was recorded at 1

minute intervals for up to 20 minutes. The recorded A340 values were graphed and the

linear portion of the graph was used to calculate the rates of Fba1 aldolase activity using an

NADH standard curve following normalization to the cell density (A600) in each reaction.

Alternatively, some assays were conducted using 1–10 µ g of protein lysate per reaction and

activity was normalized to total protein level. Cell pellets were resuspended in 0.5 ml of 25

mM KH2PO4/K2HPO4 pH 7.4 buffer containing 1 mM PMSF and 1 × EDTA-free protease

inhibitor mix (Roche) and transferred to 1.5 ml tubes. A 0.2 ml volume of glass beads was

added and the cells disrupted by vortexing for 5 minutes at 4 ◦ C. The homogenate was

centrifuged at 16,000 × g for 10 minutes at 4 ◦ C and the supernatant stored on ice. The

protein concentration was determined using a Bio-Rad DC kit against a BSA standard. To

determine specific activity of Fba1 (in nmol NADH per minute per µ g Fba1 protein), A340

absorbance values were converted to NADH concentration using a standard curve and

resulting activity values (nmol NADH per minute per µ g total protein) were normalized to
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Fba1-HA protein level as determined by immunoblotting, taking into account the value for

Fba1 abundance in zinc replete cells that we determined by mass spectrometry (i.e. 1% of

total protein). This normalization was not performed in cases where Fba1 abundance was

known to be stable during the experiment (e.g.). For some experiments, zinc was stripped

from Fba1 by treating permeabilized cells with 50 mM EDTA and 5 mM FBP in a 30 ◦ C

shaking water bath for 30 minutes. The cells were then washed five times with ice-cold

25 mM KH2PO4/K2HPO4 buffer containing 1 µ M EDTA to prevent any zinc remetalation.

Zinc was added back to aliquots of stripped cells by treating with 20 µ M ZnCl2 in 30

◦ C shaking water bath. The cells were then washed three times with ice-cold 25 mM

KH2PO4/K2HPO4 buffer containing 1 µ M EDTA and resuspended at A595 = 0.5 for the

assay.

Plasmid constructions All plasmids were constructed by homologous recombination in

yeast. Plasmids expressing Fba1 with a triple repeat of the hemagglutinin antigen (HA) epi-

tope fused to the C-terminus were constructed by PCR-amplification of wild-type or mutant

FBA1 promoter and coding sequence and fused to the HA tags and terminator of the low

copy episomal plasmid YCp-ZRC1-HA digested with BamHI and EcoRI. To generate a wild-

type tagged plasmid, a fragment was amplified with the oligonucleotides Fbacds-ha (5’-

TAGCCCGCATAGTCAGGAACATCGTATGGGTATAAAGTGTTAGTGGTACGGAAAGT-3’)

and Fba1pr5’(5’-CACGACGTTGTAAAACGACGGCCAGTGAATTCTGACGCAAGCCCTA

AGAA-3’) and used to gap repair YCp-ZRC1-HA. To introduce the H265A mutation, a 5’-
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most fragment was generated using the oligonucleotides H-Arev (5’-TGGAATTCTTGGACA

GTAGAACCGGAACCACCGGCGAAGACCAAGA-3’) and Fba1pr5’, and a 3’-most frag-

ment with H-Acomp (5’-GGTGGTTCCGGTTCTACTGT-3’) and Fbacds-ha. The two frag-

ments were combined with gapped YCp-ZRC1-HA for yeast transformation. To construct

the H111A and E183A mutants, a PCR fragment was amplified from the correspond-

ing mutant versions of pFL44L-FBA1 using the oligonucleotides Fba1pr5’ and Fbacds-ha

prior to gap repair. All plasmids were fully sequenced to verify the mutations. Func-

tionality of the wild-type epitope-tagged plasmid was verified by complementation of

aldolase enzyme activity when expressed in an fba1DAmP mutant strain (data not shown).

Fba1-3xHA accumulated to a similar level as untagged Fba1 when both forms were coex-

pressed and detected with anti-Fba1, and the tagged protein had similar specific activity

to untagged (data not shown), indicating that the epitope tags had no major effect on

stability or function. The Met6-HA construct and inactivated mutant versions were con-

structed similarly to Fba1-HA using gap repair. The wild-type Met6 plasmid (YCpMet6-

HA) was constructed by amplifying Met6 from BY4742 genomic DNA using met6cds3’

(5’-CACGACGTTGTAAAACGACGGCCAGTGAATTCCACAGCCATTCAACTCAG-3’) and

Met6cds3’ (5-TAGCCCGCATAGTCAGGAACATCGTATGGGTAATTCTTGTATTGTTCACGGA-

3’) primers, followed by gap repair of YCp-ZRC1-HA digested with EcoRI and BamHI. To

construct the H655A mutant, a fragment containing the mutation was generated by PCR am-

plification of YCpMet6-HA using the oligonucleotides met65’-1 (5’-GGCTGACAAGGATTCTCT-

3’) and met6H-A3’ (5’-CATCAGCATCCAAAGCCTTGATATGGTTTGGATCCAAGTCAGAGTA
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ACAGAAAGCAGAGTGTATTTGAGTCTTGTT3’). This fragment was used to gap repair

YCpMet6-HA digested with SacI and BamHI. To construct the D612A mutant, a fragment

was amplified from YCpMet6-HA with the met65’-1 and met6DA3’ (CTTCTCTTAAAGCTG-

GTTCAgCAACTTGGATAACCTTGATACCGGCAGCT) oligonucleotides, and a second

fragment was amplified with the met6da5’ (TATCCAAGTTGcTGAACCAGCTTTAAGA-

GAAGGTTTACCATTGAGAGAAGGTA) and met6cds3’ oligonucleotides. The two frag-

ments were combined and used to gap repair YCpMet6-HA digested with SacI and BamHI.

Wild-type and mutant plasmids were fully sequenced, and the effect of the mutations on

activity was verified by complementation of the methionine auxotrophy of a met6 deletion

mutant.

NEM/PEG maleimide analysis To identify cysteine residues showing zinc-dependent

reactivity with N-ethylmaleimide (NEM) in vivo, 5 ml cultures of yeast were grown in

zinc-replete (LZM + 100 µ M ZnCl2) or deficient (LZM + 1 µ M ZnCl2) medium to log

phase (A595 0.3–0.4) and harvested by centrifugation. Cells were washed twice with ice-cold

1 × PBS + 1 mM EDTA and resuspended in 5 ml PBS + 1 mM EDTA. A solution of 1 M

NEM in 100% ethanol was added to 5 ml of cells to give a final concentration of 5 mM

NEM. For a negative control, the same volume of 100% ethanol was added to an identical

aliquot of cells. After 30 min incubation at 30◦ with shaking, the cultures were harvested

by centrifugation and washed twice with 1 × PBS. Protein was extracted using the TCA

method and redissolved in buffer A (200 mM Tris base, 1% SDS, 1 mM EDTA)42. After
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measurement of protein concentration (DC protein assay, Bio-Rad), aliquots of protein

were processed to modify cysteines with mPEG-5 kDa (Sigma) as previously described42.

Briefly, aliquots of 500 µ g protein were treated with 20 mM DTT for 10 min at 65 ◦ C to

reduce disulfide bonds, then reprecipitated by adding 1/10 volume 100% TCA. Precipitated

samples were centrifuged and washed twice with acetone to remove TCA, then redissolved

in buffer B (100 mM Tris-Cl pH 7.4, 2% SDS, 1 mM EDTA) + 5 mM PEG-maleimide (mPEG).

After overnight incubation at 30 ◦ C, 10–30 µ g of each protein sample was analyzed by

SDS-PAGE and immunoblotting to determine the degree of mPEG modification of cysteine

residues. To determine the degree to which cysteines were normally oxidized in vivo (and

thus unavailable for reaction with NEM), some control samples were not treated with DTT

prior to mPEG treatment.

Results and Discussion

Cataloging the zinc proteome of S. cerevisiae To determine the effects of zinc status on

the abundance of zinc-binding proteins, we first cataloged the proteins that coordinate that

ion. Proteins encoded by the yeast genome that are predicted to bind zinc were identified by

a bioinformatics analysis that combined global domain searches with local motif searches.

Based on this analysis, we identified 571 known or likely zinc-binding proteins in yeast.

To this group, we added several transporter proteins (Zrt1, Zrt2, Fet4, Pho84, Zrt3, Zrc1,

Cot1, Zrg17, Msc2) that have been implicated to transport zinc either exclusively or among

known substrates. Also included was Zps1, an accessory protein for zinc uptake that is the
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S. cerevisiae ortholog of C. albicans “zincophore" Pra145. The yeast genome also encodes two

metallothioneins, Cup1 and Crs5, that confer copper resistance. While both also bind zinc

in vitro, only Crs5 contributes to zinc resistance when metal levels are high46,47. Therefore,

Crs5 was included in the zinc proteome and Cup1 was not. These additions raised the total

number of predicted zinc-binding proteins in yeast to 582. We refer to this catalog of known

or likely zinc-binding proteins as the “zinc proteome" . Their number represents ∼ 10%

of the total yeast proteome and this is similar to the prevalence of zinc-binding proteins

encoded by other eukaryotic genomes1. In addition, 45 other proteins were identified that

may bind zinc based on structural data but these proteins lacked published references to

support that zinc is the native metal ion. Therefore, we were unable to assess the functional

relevance of zinc binding by members of this group.

The catalog of yeast zinc proteins is a useful tool to study the role of zinc in a eukaryotic

cell. We examined the zinc proteome of yeast from a number of perspectives to characterize

the diverse functions, types of zinc binding, and subcellular distributions of these proteins

(Figure 1 A-D). summarizes classifications of the predicted zinc proteome based on the

number of genes in each category that encode those proteins. When classified by the general

function of the zinc cofactor, the most abundant group of these genes encode proteins with

structural zinc sites (70% ) followed by proteins that bind zinc as a catalytic cofactor (18%

) (Figure 1A). Some genes, specifically members of the alcohol dehydrogenase family,

encode proteins that bind two zincs with one serving a structural role and the other acting

in catalysis; these comprise 2% of the total. The remainder encode zinc transport proteins
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(2% ) and genes whose protein products met our search criteria but the function of their

metal cofactor has not yet been determined (8% ).

Focusing on the 116 genes encoding proteins for which zinc plays a catalytic role

(including those having both catalytic and structural zinc sites), enzymes in all six general

enzyme classes were found (Figure 1B). The majority of these genes encode hydrolases with

smaller numbers of the other classes represented. Similar distributions of genes in these

enzyme classes has been found for the predicted zinc proteomes of other organisms48. For

proteins in which zinc plays structural roles, several commonly shared motifs were observed

(Figure 1C). These included the C2H2-like zinc fingers and Zn2Cys6 zinc fingers most often

found in DNA-binding transcription factors37. Additional structural zinc-binding motifs

observed included zinc ribbons, treble clef motifs, and zinc necklace domains34. Some

proteins bind multiple zinc atoms and have more than one type of site.

While it has been long recognized that zinc-binding proteins are present in many

different compartments, the distribution of specific proteins has not been determined

for an entire zinc proteome. Because previous studies have determined the subcellular

distribution of the majority of yeast proteins, we could assign subcellular locations to all

but 8% of the predicted zinc proteome49,50. The majority of zinc proteome genes (74% )

encode nuclear and/or cytosolic proteins (Figure 1D). Less common were genes encoding

proteins found in the secretory pathway (ER, Golgi, endosome), mitochondria, vacuole,

peroxisomes, plasma membrane, and cell wall.
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Figure 3.1: The zinc proteome of S. cerevisiae. The zinc proteome was classified based on
general cofactor function (A and E), enzyme classification (B and F), structural zinc-binding
site (C and G), and subcellular localization (D and H). In panels A–D, proportions were
determined based on the number of genes encoding proteins in each group. In panels E–H,
proportions were determined based on protein copy number in each group in replete cells.
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Mass spectrometry analysis of the predicted zinc proteome in replete cells To estimate

the absolute abundance of zinc-binding proteins in replete cells, quantitative label-free

mass spectrometry was performed on total protein samples from cells grown to exponential

phase under zinc-replete conditions (i.e. LZM supplemented with 100 µ M ZnCl2)51,52.

The resulting peak intensities were converted to protein copy number per cell using the

“Proteomic Ruler" method53. Of the ∼ 6000 total genes in yeast, we obtained copy number

estimates of 2582 gene products in zinc-replete cells. The median coefficient of variation

was 12% for each set of replicates demonstrating the high quality of the mass spectrometry

data (Fig. S1, ESI). From these data, we estimated the total number of proteins per cell

to be ∼ 9.2 × 107, which is similar to estimates made using other methods54,55. Of the 582

proteins in the predicted zinc proteome, we estimated the copy number of 229 (39% ).

These proteins added up to 7.6 × 106 zinc-binding proteins per cell or ∼ 8% of the total

protein number. Those zinc proteins not detected in this analysis likely represent proteins

of low abundance and therefore would not contribute greatly to this estimate of total zinc

protein number.

In zinc-replete cells, the abundance of zinc proteins delineated by general functional

classifications was roughly similar to the distribution based on gene number (Figure 1E).

The majority of zinc protein molecules in a cell had structural sites followed by enzymes

that use zinc for catalysis. The proteins with both catalytic and structural sites made up

a much larger fraction of the total zinc protein abundance (17% ) than reflected by their

gene number (2% ) due to the high level of alcohol dehydrogenases (Adh1, Adh3, etc.). An
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impact of the high abundance of alcohol dehydrogenases was also observed when grouping

by enzyme class with oxidoreductases (including the alcohol dehydrogenases) making

up a much larger proportion of protein copy number (41% ) than was observed based on

gene number (11% ) (Figure 1F). Similarly, lyase protein copy number was more abundant

(38% ) than their gene number (9% ) largely due to the high abundance of the glycolytic

enzyme aldolase (Fba1). While hydrolases are very numerous at the gene level, they were

consistently of low abundance and accounted for only 9% of detectable proteins that use

zinc as a catalytic cofactor.

Considering structural motifs, zinc ribbons were a large fraction primarily due to the

high number of ribosomal subunits with this motif (Figure 1G). The high abundance

of alcohol dehydrogenases also had a large impact on the fraction of proteins with zinc

necklace motifs. Also indicated by the data is the low relative abundance at the protein

level of many other classes of zinc motifs. For example, many of the DNA-binding C2H2

and Zn2Cys6 zinc finger proteins were not detected by mass spectrometry suggesting their

abundance is very low. Finally, when considering the subcellular distribution of zinc-

binding proteins, the vast majority are found in the cytosol (Figure 1H). While cytosolic

zinc proteins represent only 17% of genes, 89% of zinc protein abundance is cytosolic (not

including the 2% of proteins with both nuclear and cytosolic distributions). The nucleus,

mitochondria, and other compartments contain far lower levels of zinc-binding proteins.

The detectable zinc-binding proteins ranged from fewer than 10 to over 106 copies

per cell. Most of these proteins were of relatively low abundance (<10,000 copies per
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cell) and only a few were of very high abundance (>100,000 copies per cell) (Figure 2A).

When these protein copy numbers were translated into number of zinc-binding sites based

on their predicted stoichiometries of metal binding, it was clear that a small number of

highly abundant proteins dominate the total zinc requirement of a replete cell (Figure

2B). In fact, the twenty most abundant zinc proteins accounted for almost 90% of the total

zinc requirement of the cell (Figure 2C). These included Adh1 alcohol dehydrogenase,

Fba1 aldolase, several zinc-binding ribosomal subunits, Sod1 superoxide dismutase, and

Met6 methionine synthetase. Based on our analysis, the total number of zinc-binding

sites in a replete cell was calculated to be 9 × 106. Notably, this number is very close to

the experimentally determined minimum zinc quota of a yeast cell. Note that transporter

proteins were not included in this estimate of zinc-binding sites because they only transiently

interact with zinc. Unsurprisingly, neither Crs5 nor Cup1 metallothioneins were detected;

these proteins are induced by copper treatment and are expressed at very low levels in

untreated cells56.

The response of the yeast proteome to zinc deficiency To determine the effects of zinc

deficiency on the total proteome and specifically the zinc proteome of yeast, label-free

quantitative proteomics was performed on total protein samples from cells transitioning

from growth in zinc-replete to deficient conditions. Cells grown to exponential phase in

a zinc-replete medium (LZM + 100 µ M ZnCl2, i.e. the same cells sampled above) were

transferred to a zinc-deficient medium (LZM + 1 µ M ZnCl2) and cells were harvested
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Figure 3.2: Abundance classes of the zinc proteome in replete cells.. (A) The number of
genes encoding proteins in each abundance class is plotted. (B) The number of predicted
zinc atoms bound by proteins in each abundance class is plotted. (C) The 20 proteins most
abundant proteins in the zinc proteome are plotted with their predicted number of bound
zinc atoms. Some ribosomal subunits are encoded by gene pairs, e.g. RPS27A and RPS27B,
whose proteins are not distinguishable by mass spectrometry; these are labeled without
specific reference to the paralogous genes. The error bars represent ± 1 S.D. calculated
from 4 biological replicates
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after 4, 8, 12, and 16 hours after that transition. These times correspond to approximately 2,

3, 4 and 5 generations of growth. LC-MS peak intensities were converted to protein copy

number using the Proteomics Ruler method.

The effect of zinc deficiency on the total proteome is plotted in Fig. 3. Cluster analysis

was performed to identify cohorts of similarly affected proteins and four clusters were iden-

tified. Proteins not included in these four clusters did not share significantly enriched gene

ontology (GO) terms. Clusters 1 and 2 consisted of proteins that decreased in abundance

during zinc deficiency with cluster 1 showing a larger fold decrease. Cluster 3 increased

during zinc deficiency while cluster 4 showed a small increase or no change. Fig. 3 displays

some of the significant GO terms that were found for these clusters. A complete list of GO

terms is available in Table S4 (ESI). In cluster 1, down-regulated proteins were related to

ribosomal proteins, ribosome biogenesis, and cytoplasmic translation. Cluster 2 included

many terms found in cluster 1 including protein biosynthesis, ribosome biogenesis, trans-

lation, and also unfolded protein binding and chaperone proteins. These results suggest

that zinc deficiency causes a systemic decrease in protein synthesis and protein chaperone

capacity. Cluster 3 contains up-regulated proteins related to oxidation–reduction processes,

mitochondrial function, and vesicle-mediated transport. Up-regulated proteins in cluster 4

are related to proteasome activity, actin binding, and glycolysis. Many of these changes

may help mitigate the deficit of zinc.

Many of the effects of zinc deficiency on the total proteome are likely due to indirect

consequences of metal status. To focus on responses that are directly controlled by zinc
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Figure 3.3: The response of the total proteome to the transition from zinc-replete to
deficient conditions.. Zinc-replete cells were transferred to a zinc-deficient medium and
harvested for proteomics analysis after 4, 8, 12, and 16 h. The resulting changes in protein
abundance relative to replete conditions for 2119 proteins are plotted as a heat map. Cluster
analysis was performed and four clusters (1–4) were identified. Gene ontology (GO)
analysis of each cluster was then performed and significant terms observed are plotted with
the − log of their p-values in each histogram color-coded for their corresponding cluster.



95

status, we examined the abundance of proteins known or hypothesized to be regulated

by the Zap1 transcription factor. Based on several published studies, Zap1 is thought to

regulate transcription of 87 genes in response to zinc deficiency20,57–62. For the majority

of those genes, including the zinc transporters ZRT1, ZRT3, and FET4, Zap1 activation

increases gene expression and protein abundance during zinc deficiency. For a small

number of other target genes, Zap1 represses gene expression and thereby reduces protein

accumulation during deficiency. Of the 87 known or predicted Zap1-regulated genes,

protein abundance was measurable for 39 of their encoded proteins and the effect of zinc

deficiency on their levels is depicted in Fig. 4. For most Zap1 target genes, the abundance

of their protein products increased in zinc deficiency, consistent with the action of Zap1

as a transcriptional activator. For some proteins, e.g. Ald3, Ctt1, Hsp26, and Adh4, the

response to deficiency was immediate and strong. For other proteins, the response was

much slower and/or of less dynamic range (e.g. Pep4 and Zrc1). In contrast, four proteins

(Adh1, Adh3, Rad27, Hnt1) showed decreased protein abundance during the transition

to deficiency. Adh1 and Adh3 were previously shown to be controlled by Zap1-regulated

non-coding RNAs that repress promoter function25. The mechanisms controlling Rad27

and Hnt1 are currently being studied. These varied results demonstrate the diversity of

responses of the proteins encoded by genes regulated by Zap1.

The response of the predicted zinc proteome to zinc deficiency Of the 229 zinc-binding

proteins that were measured in replete cells, 199 of those had sufficient data (measurements
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Figure 3.4: The response of proteins encoded by the Zap1 regulon to the transition from
zinc-replete to deficient conditions.. During the transition to zinc-deficient conditions,
the resulting changes in protein abundance relative to replete conditions for 39 proteins are
plotted as a heat map. Proteins affected similarly were identified by cluster analysis.
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at T0 and at least two subsequent time points) to assess the effects of zinc deficiency on

their abundance (Table S3, ESI). In addition, there were 13 zinc-binding proteins that were

not detected at T0 but were detected at two or more subsequent timepoints. Similarly, there

were 30 zinc-binding proteins detectable at T0 that were not detected at later time points

suggesting a marked loss of protein abundance. As shown in Fig. 5, of the proteins in the

predicted zinc proteome that were detected by mass spectrometry, many more proteins

decreased in abundance during the transition from zinc-replete to deficient conditions

than increased. Using a fold change of 1.5 or greater and a false discovery rate of 0.05,

we found 31 proteins that increased in abundance and more than twice that number

of proteins that decreased in response to zinc deficiency63. Among those proteins that

increased in abundance were several zinc transport proteins (Zrt1, Fet4, Zrt3, Zrc1, Zps1)

that are regulated by Zap1. The level of the Msc2 zinc transporter of the endoplasmic

reticulum, while not Zap1 regulated, also increased in zinc-deficient cells64. Also among

the increasing proteins was the Adh4 alcohol dehydrogenase, which is activated by Zap1

to likely replace the lost activity of the repressed Adh1 and Adh3 proteins. In addition,

many proteins involved in chromatin modification (e.g. Rpd3, Hda1, Hst2, Set3, Gis1,

Rsc3), components of the basal transcription machinery (e.g. Sua7, Brf1, Tfa1, Rpb9), and

numerous proteases (e.g. Ape2, Ape3, Dpp3, Rpn11) increased in abundance in response

to zinc deficiency. Furthermore, the gag-pol fusion proteins of transposable elements Ty1

and Ty2 increased. Increased levels of these Ty-encoded proteins have been observed under

other stress conditions65–67.
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Figure 3.5: The response of proteins in the zinc proteome to the transition from zinc-
replete to deficient conditions.. During the transition to zinc-deficient conditions, the
resulting changes in protein abundance relative to replete conditions for 159 proteins are
plotted as a heat map. Proteins affected similarly were identified by cluster analysis.
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Many more zinc-binding proteins that we detected decreased in abundance during

deficiency. These included zinc-binding ribosomal subunits and several ribosome biogene-

sis proteins (e.g. Bud20, Nmd3, Reh1), general translation factors (e.g. Tif5, Tif35, Sui3),

tRNA synthetases and tRNA modifying proteins (e.g. Ths1, Mes1, Dus3), several RNA

polymerase subunits and general transcription factors (e.g. Rpa12, Rpa135, Rpa190, Pri1,

Taf1) and six alcohol dehydrogenases (Adh1, Adh3, Adh5, Adh6, Bdh1, Sfa1). The effect

of zinc deficiency on the abundance of several specific examples is shown in Fig. 6. To

determine if any of the observed changes in protein abundance were the result, at least in

part, of altered transcription, we performed quantitative RT-PCR analysis of mRNA levels

of 28 of the affected proteins in replete cells and in cells after 8 and 16 h of zinc deficiency.

Those data are shown for specific examples in Fig. 6 and the full results are reported in. For

16 of the tested proteins, their decreased abundance during deficiency had some element

of transcriptional control (p < 0.05). For example, the effect of Zap1 on ADH1 and ADH3

expression in zinc deficiency were observed in the RT-PCR results (Figure 6). Our analysis

also suggested that the decreases of Adh5, Adh6, and Bdh1 alcohol dehydrogenases also

occur at least in part at the transcriptional level.

In contrast, the mRNA encoding 12 of the proteins that decrease in zinc-deficient cells

did not decrease during this transition. For example, RPA190 mRNA was not reduced

despite a large decrease in protein. This result is consistent with previous studies showing

that Rpa190 is targeted for degradation specifically under zinc-deficient conditions28. Other

examples of post-transcriptional effects newly identified in this analysis are Map1, Bud20,
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Figure 3.6: The effect of zinc deficiency on the abundance of example zinc proteins and
their mRNA.. For each, the effect on the transition from replete to deficient conditions is
plotted relative to protein copy number (left panels, gray columns) and mRNA abundance
(right panels, filled columns, a.u. = arbitrary units). Protein levels are from 3–4 replicates
per timepoint and the mRNA levels were determined by quantitative RT-PCR (n = 3). The
error bars indicate ± 1 S.D.
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Figure 3.7: Protein copy number and RNA abundance for example zinc proteome mem-
bers under zinc-replete (0 h) and deficient (8 and 16 h) conditions.. Protein copy num-
bers are from mass spectrometry analysis and mRNA abundance was determined by
quantitative RT-PCR (n = 3). The ratios of levels at 16 h and 0 h are reported and the
p-values were calculated using Student’s t-test
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and Ydj1. These data indicated that there is a transcriptional component to the decreased

accumulation of many, but not all, zinc proteins during the transition to zinc deficiency.

Estimates of in vivo zinc-binding site number and zinc content suggest significant deficits

in zinc metalation during deficiency One purpose of the widespread decrease in zinc-

binding proteins during deficiency may be zinc sparing, i.e. the regulated decrease in the

zinc requirement of the cell (Figure 7A). shows the relative zinc-sparing effects for zinc-

binding proteins grouped by their general function. Decreases in ribosome subunits and

ribosomal biogenesis factors and decreases in alcohol dehydrogenase abundance reduce

the zinc requirement to the greatest degree while other functional groups contribute to a

lesser extent. The hypothesis of targeted zinc sparing suggested that the decrease in zinc

proteins is significantly greater than the effects observed for the total proteome. During the

transition to zinc deficiency, the total proteome decreased 24% from 9.2 × 107 copies per

cell to 7.0 × 107copies (Figure 7B). Similarly, the copy number of non-zinc proteins also

decreased 24% from 8.4 × 107 copies per cell to 6.5 × 107. These decreases may reflect the

decreased translation capacity of zinc-deficient cells (Fig 3) and/or the results of autophagic

degradation, which was previously shown to be induced by zinc deficiency68–70. In contrast,

the effect of zinc deficiency on the zinc proteome was even more striking with protein copy

number dropping from 7.5 × 106 to 4.5 × 106 copies per cell (39% ). While regulation of

specific zinc proteins during the transition to deficiency may occur for many reasons, these

data suggest that widespread zinc-sparing mechanisms are at work to specifically decrease
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the zinc demand of a cell during deficiency.

Factoring in their predicted stoichiometries of zinc binding, the abundance of zinc

proteins in replete cells translates into 9 × 106 zinc-binding sites on proteins per cell (Figure

7C). By 16 h after the transition to zinc deficiency, the number of zinc sites decreased to

4.7 × 106 sites. Thus, the zinc requirement was found to drop after 16 h of zinc deficiency

by over 4 × 106 zinc sites per cell or ∼ 45% of the sites found in replete cells. To determine

the amount of zinc available in deficient cells to meet this demand, zinc abundance was

determined using ICP-AES. Total zinc in replete cells grown under these conditions was

measured to be 2.3 × 107 atoms per cell (Figure 7C). This value is approximately twice the

estimated number of zinc-binding sites on proteins. By 16 h of zinc deficiency, zinc levels

dropped to only 1.7 × 106 atoms per cell, i.e. ∼ 30% of the estimated number of zinc-binding

sites on proteins. These results suggested that despite the large decrease in zinc protein

number described above, a zinc-deficient cell grown under these conditions accumulates a

very high level of apoproteins or, alternatively, zinc proteins that are mismetalated with

some other cation.

Analyses of zinc-binding proteins indicate reduced zinc metalation during deficiency

To assess to what degree zinc metalation is disrupted during deficiency, we focused our

analysis on the Fba1 aldolase protein. This glycolytic enzyme is the second most abundant

protein in the zinc proteome of replete cells and the most abundant zinc protein in deficient

cells (Figure 2). Fba1 levels were similar in replete and deficient cells with approximately
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Figure 3.8: Zinc sparing is widespread in the zinc proteome.. (A) 120 members of the
zinc proteome that decrease during zinc deficiency were grouped by general function and
plotted as the number of zinc-binding sites in each group under replete (filled columns)
and deficient (i.e. 16 h) (gray columns) conditions. (B) The effect of zinc deficiency on the
copy number per cell of the total proteome (circles), the total proteome not including the
zinc proteome (triangles), and the zinc proteome (squares) is plotted. (C) The estimated
number of zinc atoms bound by the zinc proteome (squares) is plotted relative to the
number of zinc atoms per cell as determined by ICP-AES (circles). The error bars indicate
± 1 S.D. calculated from 3–4 biological replicates.
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1.1 × 106 copies per cell. Thus, the zinc requirement of this enzyme alone is over half of

the entire zinc content of a deficient cell. Given these factors, we hypothesized that most

Fba1 molecules are either unmetalated or mismetalated during zinc deficiency. To test this

hypothesis, we used an enzymatic assay of aldolase activity in permeabilized cells. We

confirmed the specificity of the assay for Fba1 aldolase activity using zinc-replete wild-

type cells and fba1DAmP mutant cells that have lower FBA1expression31. Immunoblots

indicated that the fba1DAmP strain accumulated ∼ 25% of the wild-type level of protein and

the measured enzyme activity showed a similar decrease (Figure 8A). FBA1 is essential for

viability so a null allele could not be used for this experiment.

To determine the effect of zinc status on Fba1 function, aldolase specific activity nor-

malized to Fba1 protein levels as determined by immunoblotting, was measured in cells

after growth in zinc-replete and deficient conditions (Figure 8B). Aldolase specific activity

was high in zinc-replete cells and greatly reduced in deficient cells. These results were

consistent with our hypothesis of reduced zinc metalation during deficiency. To further

test this hypothesis, we determined whether zinc added back in vitro restored aldolase

activity. EDTA treatment of permeabilized zinc-replete cells reduced aldolase activity and

zinc subsequently added back restored activity to the full activity of untreated cells (Figure

8C). In contrast, zinc addition to EDTA-stripped deficient cells for 5, 15, or 30 minutes did

not restore activity to replete levels. These data suggest that zinc-deficient cells contain a

pool of inactive aldolase that cannot be metalated efficiently with zinc. This conclusion

was further supported by analysis of Fba1 activity following zinc addition in vivo. When
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Figure 3.9: Effects of zinc status on Fba1 aldolase activity.. (A) Aldolase activity in
wild-type (BY4741) and fba1DAmP cells normalized to total protein. The inset shows an
immunoblot of Fba1 protein level detected with anti-Fba1 and anti-Pgk1 in 20 µ g of total
protein. (B) Aldolase specific activity in zinc-replete (R) and deficient (D) BY4741 cells
normalized to Fba1 protein levels. The inset shows an immunoblot of Fba1 protein level
detected as described for panel A. (C) Aldolase specific activity in permeabilized replete
(ZnR) and deficient (ZnD) cells before and after in vitro EDTA stripping and zinc resupply
for the times indicated. (D) Aldolase specific activity in zinc-replete and deficient cells
following zinc resupply in vivo with and without cycloheximide treatment (100 µ g ml− 1).
The error bars indicate ± 1 S.D. (n = 3).
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zinc-deficient cells were supplemented with zinc in vivo prior to permeabilization, much

of the missing Fba1-normalized activity was recovered after 1 h of zinc treatment and ∼

80% of full activity was observed after 8 h (Figure 8D). However, this restoration of activity

was completely blocked when the translation inhibitor cycloheximide was added prior to

zinc addition. These results suggested that the inactive Fba1 aldolase in zinc-deficient cells

cannot be activated with zinc supplementation and new protein synthesis is required to

restore full aldolase activity.

To assess the metalation state of aldolase in vivo, we adapted a method previously used

to probe zinc binding by proteins in vitro71–73.N-Ethylmaleimide (NEM) is a cell-permeable

reagent that alkylates free cysteine thiol groups in proteins. Reactivity of thiols with NEM

is greatly reduced by metal binding to those residues or, for non-ligand cysteines, when

the thiol group is inaccessible to solvent. Thus, reactivity to NEM can be used to assess

both zinc binding to cysteine ligands and zinc-dependent conformation changes that affect

the accessibility of non-ligand cysteines. In our modified procedure, cells growing in

culture are treated with NEM to modify reactive cysteine thiols in vivo, lysed, proteins

denatured, and then treated with PEG-maleimide, which modifies unreacted thiols that

had been protected from in vivo NEM modification. Thiols alkylated by NEM are no longer

reactive to PEG-maleimide whereas sites that were not alkylated become modified with

the PEG reagent. While NEM modification only slightly alters protein molecular mass and

is not detectable by immunoblotting, PEG-maleimide modification increases the apparent

molecular mass on SDS-PAGE by ∼ 15 kDa per moiety and is therefore readily detected by
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immunoblotting. Thiols that are oxidized in vivo are also not modified by NEM; these can be

identified as being protected from NEM modification in vivo, reactive to PEG-maleimide in

vitro following DTT treatment, but not reactive with PEG-maleimide without pre-treatment

with reductant.

Fba1 contains five cysteine residues. While none of these are directly involved in zinc

binding, we found that their accessibility to modification by NEM is altered by zinc status.

Without modification, Fba1 tagged with the hemagglutinin antigen epitope (Fba1-3xHA)

migrates at ∼ 40 kDa on SDS-PAGE (Figure 9A). When treated with PEG-maleimide alone

following denaturation, the Fba1-HA protein shifts in mobility to ∼ 115 kDa, corresponding

to the addition of five PEG moieties. When zinc-replete cells were treated with NEM in

vivo prior to PEG-maleimide treatment in vitro, 1–4 cysteines were protected from NEM

reaction to varying degrees with most copies having two NEM-resistant cysteines. In

zinc-deficient cells, NEM sensitivity increased as indicated by the decreased abundance of

2–4 × PEG-modified forms and increased abundance of proteins with 0–1 × PEG moieties

added. This result indicates a zinc-dependent conformational change in vivo that changes

the sensitivity of one or more cysteines to NEM. The effect on NEM sensitivity was observed

both with and without DTT treatment confirming that protection in vivo was not due to

thiol oxidation. To quantify these effects, band intensities were measured and the ratio of

0–1 × PEG-modified forms vs. 2–4 × PEG-modified forms was determined (Figure 9B).

This analysis demonstrated higher levels of PEG modification (i.e. NEM resistance) in

replete cells and lower levels (i.e. NEM sensitivity) in deficient cells. In contrast, no effect
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of zinc was observed on the NEM sensitivity of the single cysteine in Pgk1; this cysteine

is protected from NEM modification in vivo due to solvent inaccessibility but is modified

with PEG-maleimide following protein denaturation (Figure 9A). Modification of Pgk1

with PEG-maleimide is highly efficient and provides a positive control for this reaction.

To assess whether the conformational change observed for the wild-type Fba1-3xHA

protein was due to zinc binding in vivo, we mutated the histidine zinc ligand at position

111 to alanine (H111A). No zinc-responsive changes in NEM reactivity were then observed

(Figure 9C). A similar analysis of a mutation in glutamate 183 (E183A) supported this

conclusion. The E183A mutation disrupts enzyme activity without affecting metal binding.

Despite its lack of activity, the same zinc-dependent conformational change observed for

the wild type protein was seen with this mutant (Figure 9D). To further confirm that the

observed conformational changes were due to the presence or absence of zinc binding, we

performed the experiment in permeabilized replete cells using stripped and re-metalated

Fba1-3xHA. Without EDTA stripping, PEG-maleimide reactivity was high indicating NEM

resistance (Figure 9E). When Fba1-3xHA was stripped of metal with EDTA treatment, NEM

resistance was reduced and re-addition of zinc restored protection from NEM modification.

These effects are quantitated in Figure 9F and the reciprocal effect of EDTA and zinc on

Fba1 enzyme activity is shown. Again, no effect of EDTA or zinc treatment was observed

on the PEG sensitivity of Pgk1. These results support the conclusion that the change in

NEM sensitivity is directly due to zinc binding in the Fba1 active site.

To test whether the in vivo dependence of Fba1 reactivation on protein synthesis was
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Figure 3.10: In vivo analysis of zinc binding by Fba1.. (A) NEM/PEG-maleimide analysis
of wild-type (BY4742) cells expressing Fba1-3xHA or an untagged Fba1 allele. Zinc-replete
(+) or deficient (− ) cells were treated with and without NEM, proteins harvested, and
then treated with or without DTT prior to PEG-maleimide treatment. The positions of
molecular mass markers (kDa) and of unmodified and PEG-modified forms of Fba1-3xHA
are indicated. Pgk1, which has a single cysteine that is insensitive to zinc supply, was
used as a control for the efficiency of PEG labeling. (B) Quantitation of the results in
panel A. The ratios of unmodified + 1 × PEG-modified to 2× –5× PEG-modified forms
are shown and the error bars indicate ± 1 S.D. (n = 3). (C and D) NEM/PEG-maleimide
analysis of wild-type (BY4742) cells expressing Fba1-H111A-3xHA or Fba1-E183A-3xHA
as described for panel A. (E) NEM/PEG-maleimide analysis of permeabilized wild-type
(BY4742) cells expressing Fba1-3xHA following stripping with EDTA and reloading with
zinc. (F) Quantitation of the results in panel (E). The ratios of unmodified + 1× PEG-
modified to 2× –5× PEG-modified forms are shown (left panel) is compared with Fba1
activity determined from the same samples (right panel). The error bars indicate ± 1 S.D.
(n = 3). (G) NEM/PEG analysis of wild-type (BY4743) cells expressing Fba1-3xHA grown
in zinc-replete (ZnR) or deficient (ZnD) and following resupply with zinc (100 µ M in
LZM) in vivo for 1 and 8 h, with and without cycloheximide treatment (100 µ g ml− 1). The
ratios of unmodified + 1× PEG-modified to 2× –5× PEG-modified forms are shown and
the error bars indicate ± 1 S.D. (n = 3).
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due to slow re-metalation with zinc, we used the NEM/PEG-maleimide method. Cells were

grown in zinc-replete and deficient conditions. The deficient cells were then resupplied

with zinc for 1 or 8 h in the presence or absence of cycloheximide. In vivo NEM treatment

was carried out prior to zinc addition and at subsequent timepoints and the cells were

then processed for PEG-maleimide modification. In the absence of cycloheximide, full

re-metalation was apparent after 1 h of zinc treatment (Figure 9G). Surprisingly, apparent

re-metalation was also detected in cycloheximide-treated cells after 1 h and 8 h despite

the absence of increased activity. These results suggest that while a substantial fraction of

Fba1 protein is not metalated in zinc-deficient cells, it is re-metalated rapidly in vivo and

some other factor limits its activity. We hypothesize that the protein may be damaged or

modified in some way.

Our analysis of Fba1 identified a zinc-responsive conformational change that affects

the accessibility of non-ligand cysteines to NEM modification. To test for effects of zinc

status specifically on zinc-binding cysteine ligands in a protein, we tested the in vivo NEM

sensitivity of Met6 methionine synthetase. Met6 accumulates to ∼ 145,000 molecules per

cell in zinc-replete cells and ∼ 87,000 in deficient cells. Fungal methionine synthetases

contain three cysteine residues, two of which (C657 and C737) are homologous to the

highly conserved residues Cys659 and Cys739 shown to bind zinc in the C. albicans Met6

protein74. NEM treatment of zinc-replete cells followed by in vitro treatment with PEG-

maleimide demonstrated protection of 1, 2, or 3 cysteines, with most Met6 proteins having

three protected cysteines (Figure 10A). Under zinc-deficient conditions, most proteins had
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only one protected cysteine. This result is consistent with zinc binding protecting the two

cysteine ligands while the third thiol is constitutively protected in vivo. Omitting the in

vitro DTT reduction step had little effect on the pattern of bands detected indicating that

the protective effect of zinc was not conferred by Met6 cysteine oxidation.

This conclusion was supported by the analysis of a mutation that disrupts one of the

non-cysteine zinc ligands in the metal site. S. cerevisiae His 655 is homologous to H657 of the

C. albicans and S. pombe Met6 proteins, which was identified as zinc binding by structural

analysis75,76. An H655A mutation resulted in constitutive NEM sensitivity (Figure 10B).

In contrast, a mutation in Asp 612 (D612A, homologous to Asp614 in S. pombe), which

inactivates Met6 by disrupting homocysteine binding had no effect on cysteine sensitivity

to NEM in replete conditions, indicating unaltered zinc binding76. In deficient conditions,

the D612A mutant showed increased NEM protection when compared with the wild-type,

suggesting that substrate binding affects zinc lability. Overall however, these observations

indicate that the effect of the zinc ligand mutation on NEM sensitivity was not due simply

to loss of enzyme activity but reflected a loss of zinc from the active site. Our results are

consistent with Met6 accumulating in a zinc-metalated form in replete cells and is only

partially metalated in deficient cells.

In this report, we cataloged the zinc proteome of yeast, and determined the abundance of

many of its proteins, their response to zinc deficiency, and estimated the metalation state of

those proteins in zinc-replete and deficient cells. This analysis has provided unprecedented

insights into the cellular economy of zinc under replete and deficient conditions. The
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Figure 3.11: In vivo analysis of zinc binding by Met6.. (A) NEM/PEG-maleimide analy-
sis of wild-type (BY4742) cells expressing Met6-HA. Zinc-replete (+) or deficient (− ) cells
were treated with and without NEM, proteins harvested, and then treated with and without
DTT prior to PEG-maleimide treatment. The positions of molecular mass markers (kDa)
and unmodified and PEG-modified forms of Met6-HA are shown. Pgk1 was detected as a
control for PEG labeling efficiency. (B) Quantification of NEM/PEG-maleimide analysis
of wild-type (BY4742) cells expressing Met6-HA, Met6H655A-HA or Met6D612A-HA as de-
scribed for panel A. The ratios of unmodified + 1× PEG-modified to 2–3 × PEG-modified
forms are shown and the error bars indicate ± 1 S.D. (n = 3)
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majority of zinc proteins in yeast bind zinc as a structural cofactor and includes proteins

with C2H2 zinc fingers, Zn2C6 zinc fingers, zinc ribbon domains, and other motifs. These

proteins play key roles in gene regulation, transcription, translation, protein degradation,

and many other functions. The zinc proteome also plays many catalytic roles and includes

enzymes in all six general classes of enzymes. The catalog of the yeast zinc proteome we

generated illustrates the diversity of function of this essential cofactor within a eukaryotic

cell. We recognize, however, that this is likely not a perfect list of all zinc proteins in yeast.

Zinc may play regulatory roles as a second messenger to control different aspects of cell

physiology10,77. Given that such regulatory sites are probably of lower affinity and greater

lability, they may not have been identified in our analysis of stable motifs and domains.

Second, some enzymes (i.e. “cambialistic" proteins) are functional with different metal

cofactors and the specific metals that metalate those enzymes likely depend on the cellular

conditions of metal homeostasis and other factors78. Thus, to refer to such proteins as

“zinc proteins" may not accurately reflect their cofactor requirements. Despite these caveats,

however, the catalog of predicted zinc-binding proteins in yeast provides an essential tool

for future studies of zinc function, trafficking, and homeostasis.

Using mass spectrometry we measured the abundance of almost half of the entire yeast

proteome. Focusing on the zinc proteome, this analysis indicated the existence of 9 ×

106 total zinc sites in replete cells. This proteomics-based estimate is remarkably similar

to our experimentally determined measurement of the vacuolar and non-vacuolar pools

of zinc under these same growth conditions3. Cells grown in LZM supplemented with
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100 µ M ZnCl2 contain 2.3 × 107 zinc atoms per cell. When the Zrc1 and Cot1 vacuolar

zinc transporters were mutated so that zinc could no longer be stored in the vacuole, the

accumulation of zinc in the cell dropped to ∼ 1 × 107 zinc atoms per cell. This result

indicated that ∼ 60% of the total zinc in a replete cell grown under these conditions is stored

in the vacuole. Because labile zinc levels in cells are known to be very low, it is likely that

the non-vacuolar zinc atoms are bound by proteins and this conclusion is very consistent

with the number of zinc sites we found in these cells using proteomics. Our previous

studies also established that the minimum zinc quota of a yeast cell was ∼ 1 × 107 zinc

atoms per cell. This comparison suggests that the zinc proteome abundance of a replete cell

is tuned for optimal growth and even slight deficits that decrease full metalation inhibits

cell growth. One caveat to this analysis is that we were only able to measure the abundance

of about half of the proteins that comprise the zinc proteome. The proteins missing from

our analysis are likely to be of very low abundance and therefore may contribute little to

our calculations of the cellular zinc requirement. A result very different from ours was

obtained from a similar study of the Gram-negative bacterium Cupriavidus metallidurans

where it was found that replete cells contain a large excess of zinc-binding sites relative

to the minimum zinc quota79. A high number of zinc sites may add to zinc resistance of

this bacterium by serving as a sink for excess metal. Organisms such as S. cerevisiae are

not adapted to high zinc levels and we suspect it is more indicative of what occurs in most

other organisms. A viable alternative hypothesis is that C. metallidurans has an excess of

zinc sites to serve as a storage pool of the metal in the absence of intracellular organelles.
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The total proteome and the zinc proteome of replete cells changes markedly during the

transition to deficient conditions. Among the zinc proteins that increased in abundance

were several transporter proteins induced by Zap1 to maintain zinc homeostasis. We

also observed increased levels of several proteins involved in transcription and chromatin

modification. These changes may represent compensatory regulatory responses to loss of

these activities due to reduced metalation. The increased abundance of these zinc proteins

was more than offset by the decreased abundance of many other zinc proteins such that

the net effect was a decrease in the total zinc requirement of the cell by ∼ 45% . We had

anticipated that proteasome-mediated degradation of apoproteins may be a common effect

during the transition to zinc deficiency and there are some potential cases of this in our

results. For example, Map1 aminopeptidase levels drop dramatically in zinc-deficient

cells with no detectable change in mRNA abundance. In addition, macroautophagy is

induced during zinc deficiency and this process may decrease protein abundance more

generally68–70. However, it is clear that changes in mRNA levels play at least some role in

the down-regulation of numerous zinc proteins. While these regulatory effects may occur

for many reasons, we hypothesize that a common purpose is to reduce the zinc requirement

of the cell, i.e. zinc sparing.

One specific group of proteins that had a great impact on the cellular zinc requirement

are the alcohol dehydrogenases. There are 13 different zinc-dependent alcohol dehydroge-

nases in yeast and we could measure the abundance of seven, Adh1, Adh3, Adh4, Adh5,

Adh6, Bdh1, and Sfa1. All but Adh4 decrease in zinc-deficient cells for a net decrease in the
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zinc requirement of ∼ 9 × 105 zinc atoms per cell. As mentioned above, Adh4 is induced

and Adh1 and Adh3 are repressed by Zap125. How are the other four Adh enzymes shut

off in response to zinc deficiency? A clue for how Adh6 is regulated comes from our recent

analysis of transcription start sites in the yeast genome. Loss of ADH6 gene expression

coincides with the induction of an antisense transcript that initiates downstream of the

ADH6 open reading frame64. While we have not mapped the 3’ end of this antisense

transcript, it may pass through the open reading frame and ADH6 promoter and thereby

interfere with ADH6 transcription. This antisense transcript is likely to be Zap1-dependent

because there is a consensus Zap1 binding site, 5’-ACCTTAAAGGT-3’, located ∼ 130 bp

upstream of where the antisense RNA initiates transcription. Notably, a similar mechanism

of antisense regulation was discovered controlling the ADH1gene of S. pombe in response to

zinc63. While ADH5 and BDH1 also show decreased mRNA abundance, we have no clues

as yet of how that occurs. While we have not directly examined SFA1 mRNA levels, it was

not detected as zinc regulated in previous transcriptome studies20,57. These observations

suggest that Sfa1 protein levels decrease due to a post-transcriptional mechanism.

The broad effect of zinc deficiency on the abundance of proteins that comprise the

translational machinery of the cell is also striking. Several zinc-dependent ribosomal

subunits are decreased in expression. In addition, zinc-binding proteins of the ribosome

biogenesis (RiBi) regulon, including ribosome biogenesis factors, translation initiation

factors, and tRNA synthetases and modifying enzymes, also decrease80. Summing all of

these proteins, the estimated number of zinc-binding sites drops in deficiency by ∼ 2.2 ×
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106 zinc atoms per cell. This collectively represents about half of the zinc sparing that we

observed across the entire zinc proteome. This effect extends far beyond the zinc-dependent

proteins and includes a large number of zinc-independent translation machinery proteins

as well (Figure 3). It has been previously shown that expression of ribosomal proteins

and the RiBi regulon is controlled in response to growth rate such that slower growing

cells have reduced levels of these proteins than do faster growing cells80,81. Given that zinc

deficiency results in slower growth, the underlying mechanisms linking growth rate to

gene expression likely plays some role in their decreased abundance we observed in our

studies.

An additional mechanism regulating the translational machinery in response to zinc

deficiency is suggested by the studies from Chanfreau and colleagues who showed that

RNAPI is specifically targeted for degradation during zinc deficiency28. Decreased RNAPI

levels decrease 5.8S, 18S, and 25S rRNA synthesis, which would then trigger decreased

ribosomal protein and RiBi regulon expression. It was previously suggested that targeted

degradation of RNAPI was a zinc sparing response because of the zinc no longer required

for this specific RNA polymerase complex. Based on our results, we estimate that the

number of zinc atoms that are directly spared by degrading the five zinc-binding RNAPI

subunits would be ∼ 30,000 total. While not an insignificant amount, it represents only about

1% of the total zinc sparing that we observed. Mutant cells defective for RNAPI degradation

are hypersensitive to EDTA, suggesting a greater disruption in zinc homeostasis than is

expected from the level of zinc sparing provided by degrading this protein complex alone.
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Therefore, we suggest that the effect of RNAPI degradation on zinc sparing may be much

more extensive because of the resulting effects on the expression of ribosomal subunits and

the RiBi regulon. In other words, zinc-responsive RNAPI degradation may be the master

switch that controls the bulk of the zinc sparing response in zinc-deficient cells.

Despite the massive decrease in the number of zinc proteins that occurs during de-

ficiency, we found that the number of zinc atoms that cells accumulated under these

conditions was not sufficient to metalate even the reduced zinc requirement. In fact, we

estimated that 70% of the zinc sites on proteins in a zinc-deficient cell were either not meta-

lated (i.e. apoproteins) or mismetalated with a different cation. There is some question

about how many potential zinc-binding ribosomal subunits in eukaryotes actually bind

zinc in vivo82.Nonetheless, if those proteins are removed from our calculations, the level of

zinc atoms per cell are still insufficient for full metalation. Our previous studies of Tsa1

suggested that this protein’s chaperone function was critical to tolerate this stress and that

zinc apoproteins are the likely clients of Tsa123. We tested the hypothesis of accumulated

apoproteins for two abundant zinc proteins, Fba1 and Met6. Despite little change in protein

levels, Fba1 enzyme activity was greatly reduced in zinc-deficient cells compared to replete

cells. In addition, using a novel application of thiol-reactive agents to study in vivo metala-

tion, we found that Fba1 in cells underwent a conformational change that was dependent on

zinc availability and zinc ligands. These results suggested that Fba1 is not fully metalated

in zinc-deficient cells. It was therefore surprising that reintroduction of zinc appeared to

rapidly metalate the protein but did not restore enzyme activity to replete levels and new



120

protein synthesis was required to restore full activity. It is conceivable that the Fba1 protein

is somehow damaged or modified (e.g. by phosphorylation) in zinc-deficient cells such

that new Fba1 protein is required to restore activity. One possible mechanism of damage is

glycation which has been previously observed for yeast Fba183. Our studies of Met6 also

indicated the accumulation of apoproteins during zinc deficiency. For Met6, we could probe

reactivity of the cysteine ligands involved in direct zinc binding. These studies suggested

that the many Met6 molecules in a cell are also unmetalated. It is conceivable that Fba1

and/or Met6 are mismetalated but if so, binding of that other cation fails to produce the

same conformational change as zinc does for Fba1 and fails to protect the bound ligand from

reaction with NEM in Met6. It was also surprising that many chaperones, co-chaperones,

and chaperonin proteins (e.g. Ssa2, Ydj1, Scj1, Cct2) decreased in abundance during zinc

deficiency (Figure 3, cluster 2) when our other results indicated an increase in apoprotein

accumulation and unfolded protein stress. We note that many of the proteins that decreased

in abundance during deficiency are “foldase" -type chaperones while Tsa1 is a “holdase"

-type protein. These results make biological sense because apoproteins cannot be fully

folded without resupply of their metal cofactor and foldase chaperones would not suffice.

Conclusion

In this report, we have cataloged the zinc proteome of yeast and determined the effects of

zinc deficiency on the abundance of these proteins. This analysis highlighted the diverse

functions of zinc proteins and mapped in detail the subcellular requirement of this essential



121

metal nutrient. Our studies demonstrated that the majority of zinc proteins detected

decrease in abundance during deficiency and this apparent zinc-sparing response is due at

least in part to transcriptional regulation of many of their respective genes. Our results also

indicated that a surprisingly high number of zinc sites are not metalated with zinc during

deficiency. Future studies will address the role of Tsa1 as a chaperone of these abundant

zinc apoproteins. Future studies will also address the prevalence of zinc apoproteins more

broadly and determine whether all proteins are similarly affected by zinc deficiency or

whether some proteins can compete for zinc better than others. It will be exciting to learn

whether prioritization of zinc distribution occurs in zinc trafficking among apoproteins.
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di-glycine remnant enrichment reveals pub1-mediated oleosin
ubiquitination and lipid mobilization in the legume medicago

truncatula.
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Abstract

Ubiquitination is a crucial post-translational protein modification that is involved in protein

degradation and trafficking. Quantification of ubiquitination is technically challenging due

to its low abundance and transient nature in the cell. Legumes are agriculturally important

plants owing to their ability to form symbioses with rhizobial bacteria and mycorrhizal fungi.

Here, we provide the first reported quantification of ubiquitination in the model legume

Medicago truncatula. Plant U-box type E3 ubiquitin ligases (PUBs) are essential components

of ubiquitination. The pub1 mutant of M. truncatula has symbiotic defects, although the

biological role of PUB1 remains mostly unexplored. We optimized a protocol to compare

protein profiles between wild-type and pub1 mutant seedlings. First, we optimized the

enrichment for di-glycine peptides, which result from the tryptic digest of ubiquitinated

proteins. We then applied this method to compare ubiquitination between M. truncatula

wild-type and pub1 seedlings. One hundred and sixty-nine ubiquitination sites on 112

unique proteins were quantified using tandem mass tags. In conjunction with ubiquitination

sites, we quantified the proteome of each sample and identified 5,597 proteins. We detected

ubiquitination in several oleosin proteins that bind lipid droplets and discovered that PUB1

regulates their ubiquitination. We further observed that PUB1 governs the accumulation of

triglycerides, one of the chief constituents of lipid droplets, that associate with oleosins.

Our findings shed light on the biological role of PUB1 in M. truncatula and allude to the

possible involvement of this protein in lipid droplet mobilization.
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Introduction

Ubiquitin (Ub) is a small protein (8.5 kDa) that can become bound to other proteins on

their lysine residues to mark them for degradation by the 26S ubiquitin-proteasome system

(UPS), alter cellular localization, or regulate protein-protein interactions1. Ubiquitination

in the model plant Arabidopsis thaliana is well documented, where approximately 6% of

the gene products are associated with ubiquitination and proteasome-related functions2.

Protein degradation via the 26S proteasome system involves the sequential activities of

three enzymes- E1, E2, and E3. E1 activates the Ub molecule and subsequently transfers

it from the E1-Ub complex to E2. Finally, the E3 ligase forms an E2-E3-substrate complex,

preparing the substrate for degradation, which, in plants is primarily mediated by its

conserved E2-interacting, U-box domain3. Ubiquitination results in the C-terminus of Ub

getting conjugated to the target protein4. From the C-terminus, the final three amino acids

of Ub are glycine, glycine, and arginine. Hence, when Ub-conjugated proteins are subjected

to tryptic digest, a di-glycine remnant attached to the modified peptide is left, while the

remainder of the ubiquitin is removed. Recently, antibodies have become available that can

selectively enrich for these di-glycine peptides5.

Plant U-box type E3 ubiquitin ligases (PUBs) participate in a variety of biological

processes such as cell proliferation, immunity, hormone signaling and stress response6–9.

In the model legume Medicago truncatula as well as in Arabidopsis, 64 U-box proteins have

been predicted, in contrast to eight in humans, thus, highlighting the potential importance
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of PUBs in plants3,10. In addition to participating in ubiquitination, PUBs are involved in

vesicular trafficking by interacting with membrane proteins and phospholipids3.

Legumes are a group of plants whose roots form beneficial associations with sym-

biotic bacteria and fungi, developing the symbiotic root organ, nodule, and mycorrhiza,

respectively. PUBs and other classes of E3 ubiquitin ligases have been widely studied

in legumes, owing to their involvement in rhizobium-legume symbiosis11 In M. truncat-

ula, PUB1 and PUB2 play an essential role in rhizobium-legume symbiosis12–14; both are

phosphorylated by the receptor kinase Does not Make Infection 2 (DMI2), also known as

Nodulation Receptor Kinase (NORK)13,14. PUB1 is additionally phosphorylated by the

plasma membrane-localized Lysin motif (LysM) receptor-like kinase 3 (LYK3)12. NORK

and LYK3 are essential components of the initial stages of rhizobium-legume symbiosis.

PUB1 consists of a poorly-conserved U-box N-terminal Domain (UND), a highly con-

served U-box domain, which is followed by a variant region of ARMADILLO (ARM)

repeats12. The protein localizes to the plasma membrane and is composed of 694 amino

acid residues11,12. In addition to rhizobium-legume symbiosis, PUB1 also controls the

arbuscular mycorrhizal symbiosis. The substitution of an aspartate to an asparagine residue

in the U-box domain in the pub1 mutant led to an increase in rhizobial infection as well as

fungal colonization13. Despite a regulatory role in these symbioses, no substrate of PUB1

has yet been identified.

PUBs regulate a myriad of cellular processes in plants3. Other than in the context of

symbiosis, the biological role of PUB1 remains largely unexplored. To gain insight into the
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function of PUB1, we compared protein profiles between wild-type M. truncatula seedlings

and pub1 mutants. We first validated the Ub enrichment reproducibility to ensure that

biological comparisons can be reliably made and investigated the optimum quantity of

M. truncatula protein input to maximize site identifications. Additionally, we leveraged

the physical properties of the di-glycine peptides to tune our instrument parameters to

maximize identifications. Our work revealed that ubiquitination of several oleosin proteins

is selectively downregulated in the pub1 mutants, resulting in an increased abundance of

these proteins in the mutant. Triglycerides associated with oleosin proteins also increased

in abundance, supporting this result. To the best of our knowledge, this is the first study

on ubiquitination in M. truncatula.

Materials and Methods

Plant growth Medicago truncatula wild-type (Jemalong A17) and pub1 mutant seeds were

scarified with sulfuric acid for 15 minutes, surface sterilized with 30% Clorox for 10 minutes,

imbibed at room temperature for 4-5 hours and stratified at 4 ◦ C for 1-4 days. Overnight

germinated seedlings were plated on modified Fahräeus medium on top of a germination

paper. A week later, seedlings were treated with 10-8 M purified Nod factors from Sinorhi-

zobium meliloti GMI6390 or 0.005% ethanol as a control treatment in the dark for an hour.

Whole seedlings were then ground in liquid nitrogen and stored at -80 ◦ C until further

processing.



134

Seedling preparation and digestion Ground tissue samples were re-suspended in 5 mL 6

M guanidine, 100 mM Tris pH 8. The resulting slurry was probe-sonicated for approximately

two minutes until homogenous. Protein was extracted using a 90% methanol precipitation,

and the pellet was re-suspended in 3 mL lysis buffer (8 M Urea, 100 mM Tris, 20 mM TCEP,

80 mM Chloroacetamide). Protein digestion was performed overnight with LysC (1:200)

before diluting to 1.5 M urea and digesting with trypsin for an additional 3 hours (1:200).

Following digestion, the sample was centrifuged for five minutes at 10,000 G. Each sample

was subsequently split into three aliquots which were desalted with 100 mg Strata C18

solid phase extraction cartridges and dried in a vacuum centrifuge. The resulting protein

concentration was then measured using a Nanodrop One (Thermo Scientific).

Ubiquitin Enrichment and TMT Labeling To enrich for di-glycine peptides, the PTMScan

Ubiquitin Remnant Motif Kit from Cell Signaling Technology was employed, and all samples

and buffers were kept on ice during the method. From each sample, 10 mg of peptides were

re-suspended in immunoaffinity purification (IAP) buffer, and pH was adjusted to 7 with

1 M Tris (not pH adjusted). Peptides were then centrifuged at 20,000 G for 5 minutes to

remove insoluble material. Meanwhile, one vial of antibody beads was re-suspended in 1.5

mL IAP buffer. For each sample, 150 µ l beads were aliquoted to a 1.5 mL tube. Peptides

were then transferred to tubes containing beads and incubated for two hours at 4◦ C with

end over end rotation. Samples were then centrifuged at 2,000 G for one minute following

which beads were allowed to settle completely. The supernatant was removed and saved
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as the un-ubiquitinated portion of the proteome. The beads were then washed with 1 mL

cold IAP buffer, inverted five times, and then centrifuged at 2,000 G for one minute. After

removing the supernatant, the beads were washed twice more with 1 mL cold phosphate

buffered saline (PBS) as described previously. Following the third wash, 50 µ l elution

buffer (0.15% trifluoroacetic acid) was added, and the bottom of the tube was tapped

several times. The beads were allowed to sit for five minutes at room temperature and then

centrifuged at 2,000 G for one minute. The supernatant was collected, and elution was

repeated twice more as described. Each sample was then desalted using a 10 mg Strata C18

solid phase extraction cartridges and dried in a vacuum centrifuge.

To label samples, the TMT 10plex isobaric label kit provided by Thermo Fisher was used.

Two 8-plex labeling experiments were performed with two of the four replicates from each

sample included in each trial. 0.8 mg aliquots of labeling reagent were brought to room

temperature and spun down before re-suspending in 50 µ l 100% acetonitrile. Di-glycine

peptide samples were re-suspended in 100 µ l 200 mM triethylammonium bicarbonate

(TEAB) and combined with the label before vortexing for 6 hours at room temperature. A

test mix was prepared by combining 5 µ l of each sample with 50 µ l water and dried down.

The test mix was re-suspended in 0.2% formic acid (FA) and analyzed on an Orbitrap

Fusion Lumos (Thermo Fisher). Remaining samples were then mixed according to ratios

and desalted using 10 mg Strata C18 solid phase extraction cartridges.

Samples were fractionated using high-pH reverse-phase separation to increase pro-

teomic depth. The solvent system consisted of mobile phase A (10 mM ammonium formate
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pH 10) and mobile phase B (10 mM ammonium formate pH 10 80% methanol) which was

run on an Ultimate 3000 UPLC system (Dionex Sunnyvale, CA) with a reverse-phase C18

column. Gradient elution was performed at 800 µ l min− 1 with the gradient increased

from 0 to 6% B over 5 min followed by an increase to 80% B until 24 minutes and a wash at

100% B for 3 minutes. Sixteen fractions were collected from each pooled TMT experiment

and subsequently dried and re-suspended in 0.2% FA.

Mass spectrometry and high-performance liquid chromatography Samples were ana-

lyzed using an LC-MS instrument comprising an Orbitrap Fusion Lumos Tribrid mass

spectrometer and Ultimate 3000 RSLCnano liquid chromatography system (Thermo Fisher

Scientific). Mobile phase A consisted of 0.2% formic acid in water and mobile phase B

consisted of 0.2% formic acid in 70% acetonitrile. A 75-min gradient ranging from 0% to

70% B was employed spanning a total runtime of 90 min. Analytes were injected onto a 1.7

µm C18 column (75 µm i.d.) packed in-house to a length of 35 cm and heated to 45◦ C.

Survey scans of peptide precursors were collected every second from 300-1350 Th with an

AGC target of 1x106 and a resolution of 60,000 in the Orbitrap. Precursors were isolated

from a 1.6 Th window in the quadrupole, and HCD MS/MS scans at 35% collision energy

were collected in the orbitrap with an AGC target of 5x104 from 100-1200 Th.

The resulting LC-MS proteomic data were processed using Maxquant software version

1.5.2.8 and searched against a database downloaded from Medicago truncatula Genome

Database version 5.0 downloaded on 12/3/18. The digestion enzyme was set to trypsin with
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up to two missed cleavages and oxidation of methionine, a nd protein N-terminal acetylation

was set as variable modifications. Cysteine carbamidomethylation was established as a

fixed modification. Reporter ion MS2 quantification was used with the appropriate 8-plex

TMT labels. The match between the runs feature was utilized to decrease missing data

values within the data set. Precursor mass tolerance was 20 ppm, and product ions were

searched at 4.5 ppm tolerances. Peptides were combined with protein groups based on the

rules of parsimony. The data was filtered to a 1% FDR at the peptide-spectrum match and

protein levels. Fold change of ubiquitination sites was normalized to protein fold change

by subtracting the log 2 protein fold change from the ubiquitination site fold change.

Lipid Sample Preparation and Analysis Plant samples for lipid analysis were prepared as

described previously with the exception that samples of roots, shoots, and whole seedlings

were made separately for analysis. The ground tissue samples were re-suspended in 1.2

mL MTBE:MeOH (10:3 v/v) and combined with 100 µ L of 180-micron glass beads. The

samples were homogenized for 10 minutes with a Mixer Mill MM 400 (Retsch) at 25 Hz

and then vortexed for an additional 10 minutes. 225 µ L of water was added, and samples

were briefly vortexed before centrifuging for 20 minutes at 13,000 G and 4◦ C. For lipid

analysis 200 µ L of the organic phase was extracted and dried in a vacuum centrifuge before

re-suspending in 100 µ L of MeOH:Toluene (9:1 with molecular sieves).

Lipid Data Analysis The resulting LC-MS raw files were converted to mgf files with

MSConvertGUI (ProteoWizard, Dr. Parag Mallick, Stanford University)and analyzed with
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Compound Discoverer (Thermo Scientific) to generate aligned and unaligned feature tables. The

aligned workflow was assembled as follows: input files, select spectra, align retention times, detect

unknown compounds, group unknown compounds, fill gaps, and mark background compounds.

The unaligned workflow included input files, select spectra, and detect compounds. For both

workflows the ‘detect unknown compounds’ parameters were set as follows: 10 ppm mass tolerance,

100% intensity tolerance, S/N threshold 3, [M+H]+1 and [M-H]-1 ions, and 100,00 minimum peak

intensity. For ‘fill gaps’, parameters were set to 10 ppm mass tolerance, 0.2 minute RT tolerance, and

1.5 S/N threshold.

Using the lipid software LipiDex, feature tables were searched against acetate and plant

lipid libraries based on the mobile phase utilized15. Finally, using LipiDex Peak Finder, MS2

identifications are matched with peaks using files generated from Compound Discoverer.

Features were required to be identified in a minimum of two files while keeping the defaults

of a minimum of 75% of lipid spectral purity, an MS2 search dot product of at least 500

and reverse dot product of at least 700, as well as a multiplier of 2.0 for FWHM window, a

maximum 15 ppm mass difference and 3.5 k∗ σ retention filtering.

Results and Discussion

To make biological comparisons between our samples, we required a di-glycine enrichment

method that was sufficiently reproducible. We compared the overlap of ubiquitination

sites detected in replicate injections and the overlap between multiple enrichments. 394

di-glycine sites were repeatedly observed in three injection replicates with approximately 75



139

unique sites found in each injection (84% overlap) (Figure 2a). The coefficient of variation

between injections was 10% . Ideally, one would have higher overlap enabling comparisons

between samples. To mitigate the low overlap between injection replicates, we utilized TMT

quantification which permits sample multiplexing and decreases injections.

When we compared reproducibility across multiple enrichments, we observed similar

overlap with 285 ubiquitination sites in all enrichments and between 31-146 unique sites in

each replicate. The coefficient of variation between enrichments was 21% (Figure 2b). It

is expected that the variation increased since we were comparing different enrichments

with separate injections. While the variation that is caused by separate enrichments cannot

easily be decreased, TMT quantification can be employed to reduce the number of injections

thereby decreasing variation between replicates.

We observed an inherent charge difference of modified peptides due to the presence

of a second N-terminus16. Di-glycine peptides possess on average a 3+ charge state com-

pared to the 2+ charge of unmodified peptides (Figure 3a). We leveraged this difference

with an instrument method that selects peptides with charge states 3-4 instead of 2-4 for

MS2 analysis. Figure 3b displays the resulting increase in identifications across all protein

quantities tested (replicate enrichments were only performed for the 10 mg protein quan-

tity). Focusing our instrument time on peptides with a higher charge state increases our

likelihood of selecting modified peptides with each scan.

To maximize the number of identified ubiquitination sites we performed enrichments

with input material ranging from 1-10 mg. Due to its low abundance and transient nature in
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Figure 4.1: Medicago truncatula seedlings were digested, enriched for di-glycine pep-
tides, and labeled with TMT tags before analyzing with a high-resolution Orbitrap Fu-
sion Lumos.. Whole seedlings were ground under liquid nitrogen and digested with LysC
and trypsin before analyzing with mass spectrometry and searching against a database
downloaded from theMedicago truncatulagenome database.
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Figure 4.2: Good overlap is observed between both injection and enrichment replicates..
Three injection replicates were performed back to back from a single enrichment sample,
and three enrichment replicates were each collected from 10 mg mouse brain protein
sample. (B) The coefficient of variation was calculated between each set of three replicates
as the standard deviation divided by the mean. The median standard deviation of injection
replicates is 10% and the median standard deviation of enrichment replicates is 21% .
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the cell, we expected large quantities of peptides to be necessary to detect the modification.

Other attempts to enrich for ubiquitinated peptides have used from 10-40 mg of starting

material17–20. We settled on an upper limit of 10 mg of material for our experiments due to

the protein yield from M. truncatula seedlings and time required to grow additional plants.

Figure 3b indicates a linear relationship between the input protein and the total number

of sites identified. For this reason, all of our enrichments were performed with 10 mg of

protein.

This method was then applied to M. truncatula wild type and pub1 seedlings treated with

and without rhizobial signal molecules called Nod factors. Four replicates of each condition

were prepared for a total of sixteen unique samples. Using our developed enrichment with

10 mg of protein for each sample and selecting for triply and quadruply charged precursors,

we identified 169 ubiquitination sites on 112 unique proteins (Supplementary Table 1). This

experiment was technically challenging due to the magnitude of input material required;

over 160 mg of protein was digested and prepared for enrichment. We avoided the use

of proteasome inhibitors such as MG-132 as these treatments can activate the symbiosis

pathway in the absence of any symbiont21. The use of inhibitors can also give a significant

boost to the number of sites identified by preventing degradation by the proteasome and

allowing the accumulation of ubiquitinated proteins16.

In addition to identifying ubiquitination sites, we also separately performed analyses

of the whole proteome of the same samples using label-free quantification. This resulted

in the identification of 5,597 proteins (Supplementary Table 2). A principal component
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Figure 4.3: Di-glycine peptides have a higher charge state on average which can be ex-
ploited when designing instrument methods.. Due to the additional N-terminus on di-
glycine peptides they possess an average charge state of 3+ instead of 2+. (B) Instrument
methods that select charge states from 3-4 result in more di-glycine identifications than
methods that select charge states 2-4. Di-glycine identifications linearly increase with the
amount of protein input in the assay. 10 mg of protein is the maximum we could feasibly
process for all samples. Injection replicates are only shown for the 10 mg protein input.
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analysis (PCA) revealed that the plant genotype contributed to the majority of protein

changes observed, (Fig. 4) while treatment with Nod factors had minimal effect22.

We detected a significant reduction in the ubiquitination of multiple oleosin proteins in

pub1 compared to the wild-type seedlings, both in the presence and absence of Nod factors

(Fig. 5 A, B). This reduction in ubiquitination corresponded with an increased protein

abundance (Fig. 5 C, D).

Oleosins are found in abundance in lipid droplets inside a cell23. Lipid droplets are

composed of a triglyceride matrix surrounded by a phospholipid monolayer penetrated

by oleosins. Given the decreased ubiquitination of oleosins in pub1, we profiled wild-type

and pub1 seedlings, shoots, and roots for lipids. Our choice of tissue samples enabled us to

determine where within the plant oleosins are accumulating. The lipidomics experiments

revealed that the biggest difference in the lipid profiles between the gentotypes is in the

roots, followed by shoots and then the seedlings. We detected several triglycerides in the

roots whose abundance was significantly higher in the pub1 mutant both in the presence

and absence of Nod factor (Figure 6 A,B). We also found phosphatidylcholine and phos-

phatitidyl glycerol to be significantly different between the genotypes in the roots. While

some triglycerides were up-regulated in all kinds of tissues profiled, the most significant

number of triglycerides were found to be changing in the root. The increased abundance

of multiple lipids in the pub1 mutant strongly support the involvement of PUB1 in lipid

droplet mobilization via ubiquitination of oleosins.

In the M. truncatula proteome atlas that we previously developed, we had detected
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Figure 4.4: Principal component analysis of protein samples indicates that the majority
of variation is caused by plant genotype.. A PCA plot was generated using Perseus and
shows no discernable difference between the samples treated with and without Nod factors.
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Figure 4.5: Volcano plots showing the significance and fold change of ubiquitination
sites and protein abundance changing in pub1 relative to the wild-type in the presence
(A,C) or absence (B,D) of Nod factor in whole ground seedlings. Ubiquitination on
oleosin proteins is significantly decreased in pub1 both in the presence and absence of Nod
factors, while protein abundance is increased.
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Figure 4.6: Volcano plot showing the significance and fold change of lipids changing in
pub1 relative to the wild-type in the presence (A) or absence (B) of Nod factor in plant
roots. Lipid droplet-associated triglycerides, which are bound by oleosins are significantly
up-regulated in pub1 both in the presence and absence of Nod factor.
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oleosins in the seed proteome as well as observed their phosphorylation24. Here, we found

evidence of the ubiquitination of oleosins. Oleosins are present throughout the plant

kingdom and are noted for their appearance in lipid droplet membranes, especially in

seeds. They stabilize lipid droplets by forming long hydrophobic hairpins penetrating the

triacylglycerol membrane of the droplets and also regulate lipid droplet synthesis23. During

seed development in M. truncatula, the expression of specific oleosin genes corresponds

to an increased lipid accumulation25. Post seed germination, lipid droplets are gradually

mobilized to supply for the energy demands of the growing seedling, and the oleosins are

degraded in this process26. In sesame, oleosins are ubiquitinated for degradation after seed

germination27. Lipid droplets are degraded by lipases to generate fatty acids which, in turn,

produce glucose via gluconeogenesis23. The fact that several oleosins are not degraded in

pub1 might indicate that these plants are not able to meet their energy requirements, and

as a consequence, development is delayed. Indeed, a 10% reduction in total root length two

weeks after inoculation with mycorrhizal fungi as well as in uninoculated plants have been

reported in the pub1 mutant13. This involvement of PUB1 in root growth is in accordance

with our lipid profiling results, where we found several triglycerides to be significantly

higher in the roots in the absence of PUB1, which in turn, might reflect inefficient lipid

mobilization in the mutant. No such function of PUB proteins is yet known in plants;

involvement of Ub-ligase in lipid droplet mobilization has been reported in the context of

Troyer syndrome in humans28.
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Conclusion

Large-scale studies on ubiquitination have been conducted in Arabidopsis thaliana 29,30. These

studies used the proteasomal inhibitor MG132, which has been shown to mimic the effect of

inoculation with rhizobia in the absence of this bacterium M. truncatula 21. To circumvent

this issue, here we developed an optimized method for the enrichment of ubiquitinated

peptides and applied this method to the study of M. truncatula seedlings. To minimize the

variation that we observed in injection replicates, we leveraged TMT quantification to label

enriched di-glycine peptide samples. An optimum protein input of 10 mg was selected,

and all of our samples were collected without the use of proteasome inhibitors which may

artificially perturb results. While collecting data on the mass spectrometer, we selected

peptides with a charge state 3-4 to increase the probability of choosing a di-glycine peptide.

These methods yielded 169 ubiquitination sites on 112 unique proteins from M. truncat-

ula and to our knowledge is the first study of ubiquitination in this organism. We further

observed decreased ubiquitination of several oleosin proteins and an increased abundance

of multiple triglycerides in the pub1mutant compared to wild-type plants. The frequent

association of PUBs with membrane proteins and lipids and the preponderance of oleosin

in the membranes of lipid droplets within a cell allude to the potential role of PUB1 in

lipid droplet mobilization. The precise mechanisms by which PUB1 regulates oleosin and

triglyceride degradation and whether they play a role in rhizobia-legume symbiosis are

important questions that remain to be addressed.
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Abstract

Protein turnover is a dynamic process determined by the rates of protein synthesis and

degradation and rates can vary over several orders of magnitude. Due to the ease of

incorporating metabolic labels, most large studies of turnover have focused on single-

celled organisms. Mammalian studies, however, have been smaller in scope or limited to

a handful of tissues. We calculated turnover rates in nine mouse tissues (totaling 8,149

unique proteins) and analyzed their dependence on physical and biological properties. Our

study is limited in our ability to calculate protein half-lives by the number of time points

available to perform curve fitting (four). This necessarily limits the range of half-lives we

can measure and we report here half-lives ranging from 4-20 days although many rates

outside this range were calculated and are reported as <4 or >20 days. Measuring these

proteins across multiple tissues, we found that tissue localization often determines protein

half-life. Our study shows that MS method can significantly impact measured half-lives,

and improving signal-to-noise ratio with peptide fractionation results in the calculation of

shorter and more accurate half-lives. This study catalogs a dimension of proteins regularly

absent from proteomic analyses and provides a resource for studying diverse areas of

biology, particularly those implicated in aging and disease.
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Introduction

A hallmark of aging, the decline of protein turnover rate results in abnormal accumulation of

protein inclusions and aggregates1–6. These and other disruptions to proteostasis contribute

to a growing list of disorders, including neurodegenerative diseases, cancer, diabetes,

drug withdrawal, and cardiovascular diseases7–12. Not surprisingly, then, protein half-life

is one of the best indicators for drug target likeness13,14. If a drug is intended to bind

a protein target and modulate activity then longer-lived proteins are most suitable for

targeting. But because disruptions to turnover dynamics sometimes do not result in altered

protein abundance, the altered protein half-life phenotype eludes detection in conventional

quantitative proteomic experiments15–19. A large-scale characterization of turnover rates

would therefore provide an opportunity to better understand the mechanisms of age-

related diseases. Further, we expect such a catalog of turnover rates to serve as a resource

for guiding target selection during drug development.

Using metabolic labeling and MS, we have assembled a global repository of protein

half-lives from nine mouse tissues. Mouse tissues collected from C57BL/6J mice by Baugh-

man et al. to monitor NeuCode label incorporation were re-purposed to calculate turnover

rates20. We leveraged this resource to interrogate functional and biological roles and, more

specifically, differential protein turnover between tissues of origin. Previous turnover stud-

ies have found that factors such as degradation motifs and cellular localization can regulate

protein half-lives21–23. Most studies of turnover on a whole-proteome scale have relied on
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cell culture and single-celled organisms, for which sample collection and labeling prove

relatively straight forward24–27. Further, most studies conducted on a whole animal model

are limited to three to four tissues15,28–32. The scope of our data allows us to further these

studies and investigate the role of many biological and physical characteristics. Additional

studies have been conducted in other model organisms, including Danio rerio, Arabidopsis

thaliana, Escherichia coli, Gallus gallus, and Myodes glareolus28,33–36. We have chosen to collect

these data from a whole mouse model: first, we are able to compare protein turnover rates

across tissues by analyzing a wide range of tissues, and second, the ubiquitous use of the

mouse for research promises wide utility for the scientific community.

Materials and Methods

Mice and labeling Male C57BL/6J mice (6 weeks; the Jackson Laboratory) were fed

laboratory control diet for two weeks before being fed a customized lysine-free diet (Harlan,

Madison, WI) combined with 1% natural light lysine (K000). Starting at ten weeks of age,

mice were fed ad libitum lysine-free diet containing 1% K602 (n = 12) or 1% K080 (n = 12)

(Cambridge Isotopes, Boston, MA).

A second mouse cohort were fed a custom leucine-free diet combined with 1% natural

light leucine (L000). After ten weeks mice were fed ad libitum leucine-free diet containing

1% L601 (n=12). Food consumption and body weight were monitored throughout the

experiment. Mice raised on isotope-labeled diets were sacrificed at four time points (3,

10, 20, 30 days). After sacrificing animals by cervical dislocation, tissues were dissected,
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washed in phosphate-buffered saline (PBS), and frozen in liquid nitrogen. These mice are

identical to those previously analyzed by Baughman and Rose et al. 201620.

Lysine mice preparation and digestion Tissue samples were pulverized using a Qiagen

TissueLyzer II in 1-2ml of 9M urea in 20mM Hepes with ½X tablet of Complete protease

inhibitor and 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate, and 1 mM

ß- glycerophosphate. Lysate was cleared by centrifugation at 20,000 g. Following protein

concentration estimation by BCA assay, a small amount (<1 mg) of each lysate was taken

for analysis. Protein disulfide bonds were reduced by addition of 5 mM dithiothreitol (DTT)

and incubation for 45 min at 37◦ C. Free thiols were alkylated by the addition of 15 mM

iodoacetamide and incubation in the dark at room temperature for 30 min. The alkylation

reaction was quenched by addition of 5 mM DTT. Proteolytic digestion was performed by

addition of Lys-C (Wako) at a 1:100 enzyme-to-protein ratio and incubation at 37◦ C for 2

hr. The urea concentration was then diluted to 4 M using 50 mM Tris, 3 mM CaCl2, and

another bolus of Lys-C was added at a 1:100 enzyme-to-protein ratio. The sample was then

incubated overnight at room temperature while rocking. The digestion was quenched by

the addition of TFA to 1% and then desalted with tC18 Sep-Pak cartridges (Waters).

Leucine mice preparation and digestion Tissue samples were pulverized using a Qiagen

TissueLyzer II in 1-2ml of 9M urea in 20mM Hepes with ½X tablet of Complete protease

inhibitor and 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate, and 1 mM
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ß- glycerophosphate. Lysate was cleared by centrifugation at 20000 g. Following protein

concentration estimation by BCA assay, a small amount (<1 mg) of each lysate was taken

for analysis. Protein was extracted using a 90% methanol precipitation and the pellet

was re-suspended in 150 µ l lysis buffer (8 M Urea, 100 mM Tris, 20 mM TCEP, 80 mM

Chloroacetamide) and diluted with 50 mM Tris to a Urea concentration of 1.5 M. Protein

digestion was performed overnight with trypsin (1:100) before de-salting with 10 mg Strata

C18 solid phase extraction cartridges and dried in a vacuum centrifuge.

Samples were fractionated using high-pH reverse-phase separation to increase pro-

teomic depth. The solvent system consisted of mobile phase A (20 mm ammonium bicar-

bonate) and mobile phase B (20 mm ammonium bicarbonate 80% acetonitrile) which was

run on an Ultimate 3000 UPLC system (Dionex Sunnyvale, CA) with a reverse-phase C18

column. Gradient elution was performed at 400 µ l min− 1 with the gradient increased

from 0 to 6% B over 5 min followed by an increase to 80% B until 24 min and a wash at 100%

B for 3 min. Forty fractions were collected from each sample which were subsequently

pooled, resulting in 20 total fractions per sample. In addition to the fractionated samples, an

un-fractionated analysis of the leucine labeled brain and liver was collected for comparison.

Lysine mice mass spectrometry and high-performance liquid chromatography Online

reverse-phase chromatography was performed using a nanoAcquity UPLC (Waters, Milford,

MA) or Easy-nanoLC 1000 (Thermo Fisher Scientific, San Jose, CA). Peptides were eluted

over an analytical column (75 µ m ID) heated to 60◦ C and packed with 30 cm of 1.7 µ
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m diameter, 130 Å pore size, Bridged Ethylene Hybrid C18 particles (Waters). Mobile

phase A was composed of water, 0.2% formic acid, and 5% DMSO. Mobile phase B was

composed of acetonitrile and 0.2% formic acid. The gradient was optimized to ensure

even elution of peptides over a 70 min period. Eluted peptide cations were converted to

gas-phase ions by ESI and analyzed on an Orbitrap Elite mass spectrometer (Thermo Fisher

Scientific). A survey scan was performed in the Orbitrap at 30,000 resolving power to

identify precursors to sample for data-dependent, top-20 ion trap CAD MS/MS (rapid scan

analysis). An additional quantitative 480,000 resolving power scan immediately followed

the survey scan. Ion trap MS/MS scans were performed while the FT transient was collected

by enabling “Preview Mode." Monoisotopic precursor selection was on and precursors with

unknown charge or charge of +1 were excluded from MS/MS. MS1 and MS/MS target-ion

accumulation values were set to 1x106 and 5x103, respectively. Dynamic exclusion was set

to 45 s for -25 ppm and +15 ppm around the selected precursor.

Leucine mice mass spectrometry and high performance liquid chromatography Sam-

ples were analyzed using a LC-MS instrument comprising an Orbitrap Fusion Lumos Tribrid

mass spectrometer and Ultimate 3000 RSLCnano liquid chromatography system (Thermo

Fisher Scientific). Mobile phase A consisted of 0.2% formic acid in water and mobile phase

B consisted of 0.2% formic acid in 70% acetonitrile. A 75-min gradient ranging from 0% to

60% B was employed spanning a total runtime of 90 min. Analytes were injected onto a 1.7

µm C18 column (75 µm i.d.) packed in-house to a length of 35 cm and heated to 45◦ C.
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Survey scans of peptide precursors were collected every second from 300-1350 Th with an

AGC target of 1x106 and a resolution of 240,000 in the orbitrap. Precursors were isolated

from a 1.6 Th window in the quadrupole and HCD MS/MS scans at 30% collision energy

were collected in the orbitrap with an AGC target of 1x104 from 100-1200 Th.

Data Analysis The resulting LC-MS proteomic data were processed using Maxquant

software version 1.5.2.8 and searched against a Mus musculus database downloaded from

Uniprot on 1/5/16. The digestion enzyme was set to LysC with up to two missed cleav-

ages and oxidation of methionines and protein N-terminal acetylation were set as variable

modifications. Leucine 601, and Leucine 601 with N15 loss were set as variable modifica-

tions for mice fed the heavy leucine diet. Mice fed either the K602 or K080 isotopologues

were searched with the appropriate amino acid as a variable modification. Cysteine car-

bamidomethylation was set as a fixed modification. The match between runs feature was

utilized to decrease missing data values within the data set. Precursor mass tolerance was

20 ppm and product ions were searched at 0.5 Da tolerances. Peptides were combined

to protein groups based on the rules of parsimony. The data was filtered to a 1% FDR at

the peptide-spectrum match and protein levels. This search was used for the calculation

of RIAinf as described below. The data were subsequently searched a second time in an

identical fashion with the exception of heavy lysine or leucine set as a fixed-label modifi-

cation to assess the extent of isotopologue incorporation into protein populations. These

results across temporal replicates served as inputs for non-linear regression analysis and
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the generation of protein turnover rates.

Calculation of precursor RIA and turnover rates A first-order curve was fitted to the

di-leucine and di-lysine peptides to obtain the theoretical maximum RIA plateau (RIAinf)

using non-linear regression. The horizontal asymptote, or RIAinf, was calculated for each

tissue and was used as an estimate for RIAp and the upper limit for non-linear curve fitting

when calculating turnover rates. The calculated RIAinf values for each tissue ranged from

0.8-1.2. In theory the RIAinf should never exceed one and any result above this is due to

experimental error. In the case where a RIAinf value was calculated as above one, the upper

limit was set as one when calculating protein turnover.

Once a value of RIAp was calculated, protein half-lives were calculated using all lysine

and leucine RIA values. RIA measurements at each time point were calculated from

MaxQuant results as the ratio of heavy-labeled protein intensity to total protein intensity.

The process of extracting heavy:total intensity ratios was automated with in-house software

written in C# . Non-linear curve fitting was performed in all of the tissues using the log-

logistic two parameter function (LL.2) in the drc R package37. This function accommodates

the delayed exponential behavior that is observed from the delay in delivering amino acids

from the digestion of the labeled food source31. A time point at zero days with an RIA value

of zero was imposed on all proteins and the upper-limit was set at the RIAinf calculated

for each tissue. A minimum of three of four time points were required for a protein to be

modeled and a maximum residual error was set at 0.15.
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Results and Discussion

Protein Half-Lives in Mouse Tissue We calculated protein half-lives from a SILAM ex-

periment by measuring the ratio of heavy amino acid incorporation20,38, collecting triplicate

samples after 3, 10, 20, and 30 days on the diet (Figure 1a). Using a shotgun proteomics

method on an Orbitrap Fusion Lumos39, we analyzed proteins from nine harvested tissues:

plasma, heart, brain, lung, kidney, intestine, liver, muscle, and islets. In what we will refer to

as the survey study, all tissues were analyzed using a 90-minute data-dependent acquisition

method without pre-fractionation40,41. To obtain additional proteomic depth, peptides

from brain and liver were further separated into 20 fractions using high-pH reverse-phase

chromatography. In all, 7,424 unique protein half-lives were measured from the in-depth

brain and liver study. The complete raw files and results are available for viewing in the

PRIDE database under identifier PXD011838.

From these data we calculated relative isotope abundance (RIA) at each time point by

calculating the ratio of heavy-labeled peptide to total peptide42. To correct for differences

in the ratio of isotope abundance in the precursor pool (RIAp) in each a tissue, di-leucine

and di-lysine peptides were analyzed to determine a horizontal asymptote. This asymptote,

or RIA∞ , is used as an approximation for the maximum abundance of heavy amino acid

in each tissue15,28. Protein half-life is defined as the time for half of the protein in a pool to

acquire the heavy labeled amino acid. Here they were calculated using the drc R package37

with the upper limit set to the calculated RIA∞ for each tissue and a stringent cut-off of
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0.15 residual error. To accurately perform the fit, we required that each protein be detected

in three of the four time points.

On average we measured 921 protein half-lives in each of the tissues (Figure 1b). Plas-

ma—a challenging mixture consisting of several high-abundance proteins43—contained

the fewest measured half-lives at 166. 130 protein half-lives were measured in eight of the

nine tissues with plasma, displaying the least overlap with the others. These data present

an excellent opportunity to compare protein half-lives across tissues and identify factors

that regulate turnover rate (Supplementary Table 2).

In the in-depth study we significantly increased the number of calculated turnover rates.

We selected brain and liver for this more in-depth analysis because they represent tissues

with fast and slow half-lives. In brain tissue we detected 10,375 proteins, of which 6,020

half-lives could be calculated and 5,098 passed our residual error cut-off (less than 0.15,

Figure 1d). In liver tissue we identified a total of 8,693 proteins. Of these, half-lives were

calculated for 5,768 and 5,322 had a residual error less than 0.15. In total over 7,424 unique

protein half-lives were measured between brain and liver while 2,946 were detected in both

(Supplementary Table 3).

Experimental Reproducibility Replicate experiments were conducted in mice fed differ-

ent isotopologues of heavy lysine. Mice were fed a diet of either heavy lysine with six C13

and two N15 atoms or eight H2 atoms to verify half-life measurements. Figure 2 demon-

strates that protein half-lives measured in all nine tissues have a Pearson correlation greater
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Figure 5.1: Protein turnover is calculated in nine tissues from mice using a diet includ-
ing heavy lysine or leucine. (A) Three mice were fed a diet of chow with either lysine or
leucine replaced with an amino acid containing heavy isotopes. Mice tissues were collected
after either 3, 10, 20, or 30 days on the diet. (B) Nine tissues were collected from mice:
plasma, heart, brain, lung, kidney, intestine, liver, muscle, and islets. (C) Turnover rates
were calculated using the drc R package. A fit was included in the dataset if the residual
error was less than 0.15. Proteins with relatively fast and slow turnover are shown for
demonstration. (D) Brain and liver tissues were then fractionated into 20 fractions and
analyzed using nLC-MS/MS, which measured half-lives in 5,098 and 5,322 proteins in brain
and liver, respectively.
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Figure 5.2: Protein half-lives calculated in mice that were fed lysine with six C13 and
two N15 (602) show strong agreement with half-lives calculated from mice fed a diet of
lysine containing eight H2 (080). Pearson correlations were calculated between the two
datasets and all nine tissues were found to be above 0.6.
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than 0.6 between isotopologue experiments and our method delivers reproducible results.

To comment on reproducibility across experiments, we compared our results to pre-

viously published studies of protein turnover. Due in part to the large differences in cell

division rate, we expect that our study of mammalian tissues will show minimal similarity

with studies conducted in cell culture. Indeed, protein half-lives measured in mammalian

tissues are more representative of human protein half-lives than those measured in yeast.

In a recent comparable study performed by Hammond and colleagues, bank voles were fed

a diet of heavy lysine for a SILAM experiment similar to ours28. Our data agree well with

Hammond and colleagues’ calculations of protein half-life in bank vole muscle, kidney, and

heart—tissues we also analyzed (Figure 3); Pearson correlations for the protein half-lives

range from 0.4-0.6. Additionally we observe good agreement of our half-life calculations

in brain and liver with Price et al. and Fornasiero et al. which were both conducted in

mouse44,45. Our calculations are most similar to Fornasiero et al. who used a similar exper-

imental of mice fed a heavy amino acid, whereas Price et al. fed a diet of N15 labeled algae

suggesting experimental method may contribute to technical differences.

Given the suitability of this comparison, we can also begin to consider the questions

Hammond et al. pose regarding evolutionary conservation and the allometric scaling of

half-life, as well as the scaling of biological processes with body size. Although further

studies in other species are needed to confirm it, the correlation we observe may indicate

that protein turnover is an evolutionarily conserved trait.
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Figure 5.3: Protein half-lives measured in muscle, kidney, brain, liver, and heart showed
good agreement with half-lives in mouse and bank vole measured by Hammond et al,
Price et al., and Fornasiero et al. Pearson correlations are shown between the five tissues
measured in three studies. Bank voles and mice analyzed by Hammond et al. and Fornasiero
et al. were fed a diet of heavy lysine using a SILAC method similar to this study. The mice
analyzed by Price et al. were fed a diet of N15 labeled spirulina.
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Tissue-Dependent Turnover From our survey study, i.e., nine tissues, we observe a wide

variation of median protein half-lives, ranging from four to >20 days. Our results confirm

known trends: for example, brain and muscle protein half-lives are significantly longer than

average protein half-lives across tissues, while liver half-lives are shorter45,46. In Figure 4a,

we classify global turnover trends in additional tissues, noting that proteins from intestine,

plasma, and islets have relatively short half-lives, while kidney and lung proteins have an

intermediate turnover rate.

Leveraging our analysis to track changes in protein half-life across tissues, we measured

130 protein half-lives in eight out of nine tissues. (Plasma was excluded due to its poor

overlap with other tissues). When tissues were sorted in order of increasing half-life, the

median slope shows an increase of 2.3 days per tissue (Figure 4b). This increase indicates

that protein turnover rate is highly dependent on the tissue where it is localized, and allows

us to conclude that the turnover rate of most proteins depends more on the tissue of origin

than the protein itself. That said, some proteins do display more consistent half-lives across

tissues. These proteins may require differentially regulated half-lives across tissues for their

function.

Determinants of Protein Half-life Using our in-depth brain and liver dataset, we set out

to interrogate what properties of proteins might explain variations in protein half-life. A

correlation between protein abundance and half-life has previously been reported in human

cells; however, other studies conducted in yeast found no correlation between abundance
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Figure 5.4: Protein turnover is highly dependent on tissue of origin. Box plot of distri-
butions of protein turnover for each tissue. Line = median, Box = inner 50% , whisker
range 10-90% , outliers are not shown.The median half-life for proteins in different tissues
ranges from four days in intestines to 26 days in muscle. (A) While most proteins display
tissue-dependent turnover as shown in the first three examples (B), others show a consistent
half-life across many tissues (C).



170

and turnover21,26. Figure 5b shows a significant correlation between protein abundance

and half-life, with more abundant proteins having a longer half-life.

Altogether, our mouse protein turnover atlas includes half-lives ranging from 0.0018

to 380 days; however, as previously noted we are only able to confidently report half-lives

ranging from 3-20 days. Further analysis of large scale turnover rates with a more com-

plete set of time points would assist in validating this range of half-lives. We analyzed

the functional and biological properties of proteins possessing different turnover rates

to identify potential explanations for half-life variation. We investigated sub-cellular lo-

calization, post-translational modifications, sequence motifs at the N and C-termini, and

functional properties of proteins. We found no significant correlation between aliphatic

index, protein length, molecular weight, positively or negatively charged amino acids,

and protein half-life using linear regression and ANOVA testing. Extinction coefficient,

isoelectric point, instability index, and GRAVY score along with the following amino acids

were all found to correlate with protein half-life: alanine, cysteine, glycine, methionine,

proline, and arginine. Spearman correlation coefficients are reported alongside values

calculated by Christiano and Martin-Perez et al (Supplementary Figure 1)26,47.We also

observed a trend in which proteins known to be ubiquitinated and phosphorylated as

annotated in Uniprot have shorter half-lives in brain and liver; however, these differences

were not statistically significant. (Supplementary Figure 2).

With the hypothesis that proteins in different organelles may possess varying half-lives,

we also investigated the effect of sub-cellular localization on protein turnover rate. A few
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Supplementary Figure S5.1: Spearman correlation between physcial properties and pro-
tein half-life. Spearman correlations between protein half-life and physical properties are
reported for this study and Christiano et al. and Martin-Perez et al. Correlations that are
statistically significant (p<0.05) are shown in bold.
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Supplementary Figure S5.2: No significant differences between half-lives of phospho-
rylated and ubiquitinated proteins with un-modified proteins were observed. Modified
proteins were identified from Uniprot and plotted in a histogram. In brain and liver ubiqui-
tinated and phosphorylated proteins had half-lives that trended shorter than un-modified
proteins.



173

differences between organelles stood out: nuclear and peroxisomal proteins displayed

some of the shortest half-lives in both brain and liver, while mitochondrial proteins trended

toward longer half-lives (Figure 5c). Overall, however, we find that half-lives in proteins

localized to different organelles are relatively consistent.

To examine the function of proteins with various turnover rates, we divided proteins

of our in-depth dataset at the first and third quartile by half-life, labeling the slowest 25%

of proteins “stable" and the fastest 25% “unstable." Using these groups, we performed

motif analysis at the N- and C-termini of stable and unstable proteins to identify conserved

sequences indicative of protein half-life using pLOGO48. Differences in the N-terminal

sequence did not explain half-life variation. An enrichment for lysine at the C-terminus

was observed in stable proteins in both liver and brain. Additionally, there is a slight

enrichment for proline as the eleventh from last amino acid in unstable proteins, and

proline is disfavored at this position in stable proteins (Supplementary Figure 3). Favored

in disordered regions of proteins, proline’s position may allow these proteins to be more

readily targeted for degradation49.

Next, we performed GO enrichment using DAVID with the all proteins in our data

set as background50,51. Statistically significant GO terms were detected in both the stable

and unstable cohorts of brain and liver. Stable proteins in brain and liver are enriched

for terms such as glycolysis/gluconeogenesis, TCA cycle, carbon metabolism, oxidative

phosphorylation, and cytoskeleton. Among unstable proteins, we observed enrichment for

pathways including kinases, DNA damage and repair, and helicases, as well as spliceosome,
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Supplementary Figure S5.3: Motif analysis of the C-terminus of stable and unstable
proteins in brain and liver generated using pLOGO. The proteins with half-lives in the
longest 25% were labelled stable and those in the fastest 25% were labeled unstable.



175

Figure 5.5: Liver and brain have differing rates of protein turnover and some variation
can be explained by differences in protein abundance and sub-cellular localization. Box
plot of distributions of protein turnover for fractionated liver and brain peptides. Line =
median, Box = inner 50% , whisker range 10-90% , outliers are not shown. The median
half-life of proteins in brain and liver is three and eight days respectively. (A) Protein
abundance or intensity correlates with protein half-life. (B) Proteins localized to different
organelles have small differences in half-life (C).
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peroxisome, and ubiquitin-mediated proteolysis (Figure 6). None of the significant GO

terms reported here for stable proteins were enriched in unstable proteins and vice versa.

Experimentally determined half-life values can vary with MS method Given we mea-

sured protein half-lives using two different MS methods for some brain and liver proteins

(i.e., overlapping proteins measured in the survey study and the in-depth study), we

compared median protein half-lives in leucine labeled mice collected from an in depth

study and a survey analysis. Figure 7a displays this comparison for overlapping proteins

from Leucine labelled livers analyzed with both the survey and in-depth method. To our

surprise, our half-life estimate is quite different depending on the MS method. Specifically,

measurements from the in-depth study estimated a given protein’s half-life to be much

shorter than the same measurement in the survey study (Figure 7b). Noting that the brain

and liver study employed two-dimensional chromatography rather than the single-shot

approach of the survey study, we reasoned that MS1 dynamic range could be driving these

differences. In fact, this is what we observe in many proteins; for example, heavy-labelled

h2afy peptide is clearly visible in the in-depth study after three days while it cannot be seen

in the survey study (Figure 7c). Pointedly, the total signal of this peptide is two orders

of magnitude higher in the in-depth study than the survey study due to the improved

dynamic range afforded by the two-dimensional chromatographic method. By improving

our ability to detect low abundance peptides, we improve our ability to accurately measure

the ratio of heavy peptide to light. Peptide ratios are used to calculate protein half-life
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Figure 5.6: Stable and unstable proteins are enriched for distinct GO terms. Stable pro-
teins are defined as those with a half-life above the third quartile; unstable proteins have a
half-life below the first quartile. Stable and unstable proteins were enriched for GO terms
using DAVID with a background set to the total proteins in our data set. GO terms that
were only significant in either stable or unstable proteins are reported here. All reported
p-values were corrected using Benjamini-Hochberg correction.
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making dynamic range an essential determinant of half-life. (Figure 7d).

Conclusion

We conclude that this variation in dynamic may also contribute to the discrepancies ob-

served in turnover experiments between labs. Any turnover rate calculated using MS

methods will be limited by instrument sensitivity and is best interpreted as an approxima-

tion and relative rate. Beyond that, experiments having overall low incorporation rates and

studies using limited chromatography to counter this will be most affected.

We measured protein half-lives in a whole mouse model spanning nine tissues and 8,149

unique proteins in total. Half-lives are reported from 4-20 days, however rates far outside

this range were calculated. Mice were fed a diet containing heavy amino acids and turnover

rates were calculated by measuring the ratio of heavy to light proteins over time. The data

were fit using an R package to generate protein half-lives in a high throughput fashion.

To generate a large atlas of protein half-lives in two diverse tissue types, we fractionated

brain and liver peptides. After filtering by residual error, we measured half-lives of over

5,000 proteins in both brain and liver. Performing a replicate experiment in mice fed a

diet containing a different isotopologue of heavy lysine allowed us to further validate our

data. The strong correlation observed across all the tissues indicates that our method can

reproducibly measure turnover rates.

Our data indicate that protein half-lives in different tissues vary widely. Specifically,

tissues with a faster metabolic rate, such as liver and intestine, have faster turnover than
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Figure 5.7: Protein fractionation results in the measurement of lower half-lives than
single shot analysis. Significantly lower half-lives were measured using a single-shot
method compared to fractionation. (A) Box plot of distributions of protein half-lives for
liver from survey study and in-depth study. Line = median, Box = inner 50% , whisker
range 10-90% , outliers are not shown. Proteins that were measured with both methods
appeared to have a longer half-life when using fractionation. (B) For example, in histone
protein H2afy we are able to detect heavy labeled peptide at day three in the fractionated
in-depth sample, whereas no signal for heavy peptide can be detected in the survey study
at day three. (C)The RIA plot for H2afy reflects this result. In the in-depth sample, heavy
amino acid has been incorporated in 30% of peptides, but we do not observe any in the
single-shot sample (D)
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tissues such as muscle, heart, and brain, which have a lower metabolic rate. While turnover

rates of the same protein across tissues depends primarily on tissue of origin, some proteins

show conserved half-lives across tissues. These proteins may be differentially regulated

across tissues resulting in consistent half-lives. We investigated the role of a number of

properties which may contribute to turnover rate. Protein abundance, for example, robustly

predicted protein half-life, with more abundant proteins having a slower rate of turnover.

A fast turnover of abundant proteins would require a high-energy expenditure of the cell,

which may explain this common trait among abundant proteins. Other factors such as

hydrophobicity, isoelectric point, and amino acid abundance also showed correlation with

turnover.

Our study shows that improving the signal-to-noise ratio with peptide fractionation

results in the calculation of shorter and likely more accurate protein half-lives. Using

two-dimensional chromatography, we detect heavy peptides as they first appear in the

protein. However, in our survey experiment, low-abundance heavy peptides are obscured

at early time pointes due to noise and spectral complexity. For this reason, we caution

studies with limited separations and/or low isotope incorporation rates.

We found stable enriched proteins for GO terms, including oxidative-phosphorylation,

mitochondria, citrate cycle, and ATP synthesis. These processes are of relatively constant

need to the cell and less likely to be up or down-regulated rapidly in a stable system. Un-

stable proteins contain terms likely subject to more dynamic regulation, such as steroid

metabolism, transcription regulation, mRNA splicing, tyrosine protein kinase, and blood
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coagulation. We expect signaling proteins to exist in the cell at lower copy numbers com-

pared to major metabolic pathways, supporting our previous findings regarding protein

abundance.

Despite the crucial role protein turnover plays in indicating cellular state, it remains

largely unexplored in the multi-omics era. The variation in turnover rates measured in

different studies suggest that protein dynamics are likely highly sensitive to changes in

cellular state. Our study finds that turnover rates depend on tissue of origin, which results

in differences in the turnover rate of a single protein in different locations. Our goal is to

provide a large atlas of turnover rates in a whole mouse model. This atlas can serve as a

benchmark for research investigating other growth conditions or treatments: more studies

are needed to investigate the effect of various stressors or disease states on protein turnover,

as it represents an important indicator of metabolic state and a hallmark of aging. Indeed,

turnover studies are complementary to other molecular readouts and may in fact prove

more sensitive to biological perturbations than protein abundance.
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Chapter 6

conclusions and future directions
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Project Summary The recent surge of technological advances in mass spectrometry has

enabled new biological studies that were recently unfeasible. These advances have allowed

once challenging experiments to become routine, and whole proteomes of simple organisms

can now be sequenced in several hours. In this thesis, mass spectrometry is applied

to diverse biological problems. Each requires unique optimization in terms of sample

preparation, instrumentation, computation, and analysis.

First, red blood cells were analyzed from a cohort of monozygotic and dizygotic twins

using proteomics and metabolomics. Maintaining blood efficacy during storage is critical

to the many life-saving blood transfusion procedures that are performed each year. A high-

throughput label free method was employed to quantify proteins in 18 twin pairs. One

challenge is the large dynamic range of red blood cells with over 90% of the protein com-

posed of hemoglobin. To circumvent this, cells were lysed and enriched for the membrane

component where most low abundance proteins of interest reside. The results were used to

calculate protein concentration heritabilities. Blood quality degradation during storage is

highly variable, and identifying heritable markers raises the possibility of cataloging blood

donors for longer or shorter storage based on their phenotype.

Next, yeast samples from the model organism Saccharomyces cerevisiae were measured

over a time course in a zinc deficient environment. This experiment also utilized a label free

quantitation method along with software to calculate copy number of proteins identified.
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One goal of this study was to identify which (if any) proteins exist as apo-proteins in a zinc

deficient environment. Since zinc atoms are often bound by cysteine residues in zinc fingers,

differential cysteine labeling was used to identify changes in metalation status. Whole cells

were first treated with the cell permeable reagent NEM which reacts with solvent accessible

cysteines. Cysteines that are binding zinc are unable to react with NEM while apo-proteins

will become labeled. The cells are then washed and lysed prior to reduction and alkylation

with CAA. Differential labeling between zinc replete and zinc deficient cells can indicate

which proteins are binding zinc. This experiment led to the identification of Fba1 and Met6

as apo-proteins during zinc deficiency which was validated as described in chapter 3.

Our focus was next turned to a plant based model system comprising the legume Med-

icago truncatula and the bacterium Sinorhizobium meliloti. While the ubiquitin ligase, PUB1,

has been identified as essential in initiating the symbiotic relationship formed between

these organisms, no Pub1 substrates have yet been identified. To study this low abundance

modification, enrichment methods and large quantities of protein were required. This

method was combined with TMT quantification to compare ubiquitination level. As a result,

a group of lipid binding proteins were identified as putative PUB1 substrates and this result

was further supported by lipidomic analyses.

Finally, protein turnover rate measurements were tackled in the context of a range of

mouse tissues. Initially, a data set was collected by Baughman et al. (2016, Cell Reports) to

assess whether the Neucode quantitative labels highlighted in the manuscript incorporate

at similar rates. The rates were found to be indistinguishable between isotopologues in
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nine mouse tissues that were collected from 3-30 days on the Neucode diet. It was later

realized that such a dataset would potentially allow for the calculation of protein turnover

rates. Further data was then acquired from the same stored mouse tissues. While re-

purposing animals for multiple experiments is always a noble cause, had this experiment

been designed to measure protein turnover the design would have been quite different. It

is recommended that fewer mice be collected at each time point, and additional time points

be collected starting at 0.5 days and ending at 40-50 days for a total of seven to nine time

points. Additionally, while protein-half lives are an intuitive and commonly reported result,

it is more correct to perform analyses with the resulting rate constants which prevents

compression of data.

The results described in chapter 5 were collected from the available mouse tissues and

show good agreement with previously published studies in both the calculated half-lives,

and the conclusions that are derived from them. We also observed that experimental

method can have a large effect on the rates measured. Turnover calculations directly

rely on the ratio between a ‘light’ and heavy’ labeled peptide, and thus the instrument

sensitivity and signal to noise are imperative in detecting low abundance peptides. Peptide

fractionation results in decreased spectral complexity and improved signal to noise. As a

result, half-lives measured using fractionation are shorter and we believe more accurate.

For these reasons this dataset could be a valuable resource and is believed to be the

largest compendium of protein turnover rates collected to date. However, its weaknesses in

design limit the range of rates that can be confidently calculated and casts doubt on the
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conclusions that are drawn from them.

Experimental Challenges The collection of such large quantities of data necessitates com-

putational approaches to data analysis. Beyond the identification and quantitation of

proteins, proteomics enables other analyses discussed here such as calculation of protein

concentration heritabilities, and turnover rates. Similar calculations have previously been

done on proteins of interest; however, proteomics facilitates expansion to a global scale.

These large scale calculations, combined with other phenotype data, help create the most

complete picture of an organism’s biology.

Addressing questions posed by biologists will always require adaptation and optimiza-

tion of sample preparation strategies to fit the organism or sample being analyzed. Different

cell types may be difficult to lyse, offer a limited sample quantity, or contain a large dynamic

range of proteins. Examples of many of these conditions were seen in the chapters contained

here.

Additionally, depending on the number of samples to be analyzed, the method may need

to be further optimized for use with high throughput analysis. Methods that may be feasible

when processing a dozen samples are not attainable when analyzing hundreds. Large scale

studies that require more than a week of instrument time behoove further consideration

in maintaining consistent and quality instrument performance. Drifts in retention time or

mass accuracy will cause difficulties in comparing samples in an experiment that ranges over

many months. Instrument performance must be carefully monitored in these experiments
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with calibrations and quality control methods to ensure reproducible data are collected.

Despite these efforts, post-acquisition data normalization is typically necessary to compare

data collected over an extended time period. Data are often normalized to a pooled wild

type, or time zero control that is analyzed across the experiment and prepped alongside

each batch of samples to control for technical variability. Drift between batches can be quite

large and entirely confound meaningful biological changes if not corrected appropriately.

Future Directions As proteomic analyses become more routine, large scale analyses of

hundreds of samples that currently requires a heroic effort will likely become increasingly

automated, especially in the area of sample preparation. Currently this transition is under-

way with single celled organisms and samples that can be prepared in cell culture. While

these techniques cannot manage more complicated experimental design or tissues, many

large experiments could be streamlined with their implementation, increasing reproducibil-

ity and conserving experimenter’s time. Mammalian and other heterogeneous tissues

pose additional challenges for lyseing on a large scale which will need to be addressed.

Additionally, many of the other techniques discussed here such as enrichment for PTMs

are currently not easily scaled to large numbers of samples.

Since the dawn of proteomics there has been a continual push to maximize protein iden-

tifications. For single celled organisms the sequencing of an essentially complete proteome

was achieved several years ago, and the same feat is close to being achieved in mammalian

cell lines. However, solely because the sequencing of a complete proteome is possible,
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does not mean that every experiment requires this depth of analysis. Many experimental

conditions result in dramatic changes in phenotype which can easily be cataloged with

fewer protein identifications. Accepting a lower threshold of protein identifications can

allow for significantly faster experimental analysis and would facilitate these large scale

analyses that are increasing in popularity.
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