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Abstract

Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel
cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply
chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent,
isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology
that incorporates sophisticated graph theory and operations research techniques can overcome these
deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the
Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key
agent-DRE interaction mechanisms are described, which enable complex entity interaction through the
use of physics and socio-economic models. The translation of an exchange instance to a variant of the
Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive
investigation of solution performance and fidelity is then presented. Finally, recommendations for future
users of Cyclus and the DRE are provided.
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1 Introduction

1.1 The Nuclear Fuel Cycle

The nuclear fuel cycle can be described as a set of facilities that interact with one another to either

provide or consume fuel services. Facilities in the fuel cycle act together to provide fuel to nuclear power

plants which, in turn, generate energy. The used fuel produced by the power plants is then returned to

servicing facilities to either be recycled or disposed. The overall goal of the system is to produce power at

a competitive price while managing externalities of the process, the chief of which is spent nuclear fuel.

Myriad strategies exist to achieve this aim which can be classified along a spectrum of the degree to which

fuel is recycled. In general, fuel cycles that do not recycle fuel are concerned most with cost, whereas fuel

cycles that fully recycle fuel are concerned most with issues of sustainability and inter-generational equity.

It is the goal of fuel cycle simulation to rigorously explore this option space.

1.1.1 The Open Fuel Cycle

The open, or once-through, fuel cycle is relatively simple and is in place in most nation states that currently

utilize nuclear power. In practice, the primary fuel element used in this type of cycle is uranium; however,

processed fertile material, such as thorium, can also be used. The fuel cycle is considered open because

fuel that is used in a reactor is stored indefinitely once its reactivity has dropped below useful levels.

Beginning the fuel cycle process, uranium ore is initially extracted from the ground using one of

a variety of techniques including open pit mining, underground mining, and in situ leaching. The

uranium ore is then milled to form yellowcake, U3O8. The tailings, or byproducts, of this process are

slightly radioactive and are therefore considered to be low-level waste (LLW) by the Nuclear Regulatory

Commission (NRC) (see [7]).
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Figure 1.1: The once-through fuel cycle as shown in [19]. Fuel in spent fuel pools eventually will be sent
to a geologic repository, although none are yet operating in the world.

Certain reactors are designed to use naturally enriched uranium. For these reactors, yellowcake can

be directly converted to naturally enriched uranium oxide, UO2. For the majority of power reactors,

however, the uranium must be enriched with higher-than-natural levels of uranium-235. In order to

do so, yellowcake is sent to a conversion facility, which converts it from U3O8 to UF6. The uranium

hexafluoride is then enriched to the required level in an enrichment facility, of which three classes exist:

gaseous diffusion, the original enrichment technology; centrifugal diffusion, the current enrichment

technology; and Atomic Vapor Laser Isotope Separation (AVLIS), a newer technology not currently in

commercial production. The enriched uranium hexafluoride is then sent to a fuel fabrication facility

where it is returned to yellowcake form before being reduced to uranium oxide. The uranium oxide is then

sintered into pellets and loaded into fuel assemblies to be placed in a reactor. This process, in conjunction

with uranium mining, is termed the front end of the nuclear fuel cycle.

Once fuel has been processed in a reactor, it is cooled off in pools for a number of years, and then

stored in dry casks before eventually being sent to a final geologic repository. The physical location of

the fuel may vary during dry cask storage between the reactor site or some other interim storage site.

Graphically, the open fuel cycle is shown in Figure 1.1, where fuel in spent fuel pools eventually will be

transferred to a geologic repository.
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1.1.2 The Closed Fuel Cycle

The closed fuel cycle is one that includes the recycling of used, or spent, fuel to be reused in a reactor.

Recycling used nuclear fuel is expensive due to the costs associated with handling highly radioactive

material (e.g., capital costs of hot cells, etc.). However, there are at least two overarching benefits that

contribute to lowering the overall cost of the fuel cycle: increasing repository capacity and increasing fuel

utilization.

Spent fuel that exits the average light water reactor (LWR) has an approximate composition as shown

in Table 1.1. Of the elements that comprise used fuel, uranium, plutonium, and the mixed actinides (MA)

are all capable of producing power through the fission process. The fission products, however, contain

isotopes with high neutron capture cross sections, which therefore act as poisons to the nuclear chain

reaction. Achieving theoretical 100% fuel utilization would thus require storing indefinitely only the

fission products and any other byproducts of the fuel cycle, rather than additionally having to store other

elemental groups produced by nuclear fission, e.g., minor actinides. Furthermore, repository capacity

is determined not only by total mass or volume, but also by heat load and radiotoxicity, making the

concentration of high-activity isotopes one of the limiting factors in a repository’s capacity. Fission

products are generally short-lived (in comparison to transuranic elements, i.e., uranium, plutonium,

and the MAs). Accordingly, for repositories with long-term heat load limited capacities, minimizing the

amount of transuranics increases the amount of material that can be stored in a given repository.

Element Group wt %
Uranium ∼95

Plutonium ∼1
Mixed Actinides ∼0.1
Fission Products ∼4

Table 1.1: Elemental Breakdown of Spent Fuel Exiting a Typical LWR

The act of reprocessing spent fuel is comprised of a number of subprocesses. Once fuel has left the

reactor core, it is stored in a spent fuel pool for a some number of years, typically around five, in order to

provide enough time to lower decay heat to acceptable levels for handling of the fuel. It can then be directly

sent to a reprocessing facility or be sent for some period of time to dry-cask storage. Reprocessing nuclear

fuel is a chemical extraction process and therefore is limited by chemical extraction techniques. In general,

there are two types of such processes: low-temperature methods using organic solvents (e.g., PUREX),
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Figure 1.2: The closed fuel cycle as shown in [19].

and high-temperature methods using molten salts and metals, called pyroprocessing. The extraction

techniques separate the spent fuel into chemically-similar groups which can vary based on the technique

used, but generally align with those shown in Table 1.1. The separated streams are then sent either to a

repository as high-level waste (HLW) or to an appropriate fuel fabrication facility. Graphically, the closed

fuel cycle is shown in Figure 1.2.

The elemental groups used in fuel fabrication will depend on the fuel cycle that is developed. Current

large-scale industrial reprocessing plants, i.e., La Hague in France, THORP in the U.K., Mayak in Russia,

and Rokkasho in Japan (still technically under construction [4]), utilize the PUREX process to extract

uranium and plutonium. The plutonium is then oxidized and mixed with depleted uranium from the

enrichment process to produce mixed-oxide fuel (MOX). Other sources of uranium can be used to fill MOX

fuel, such as recycled uranium from reprocessing, as neutronics-related reactivity and safety constraints

allow. Other fuel cycles utilize the mixed actinides elemental group as well. Generally, plutonium is

included with the mixed actinides, which results in a elemental category called the transuranic (TRU)

elements. These fuel cycles generally include fast reactors that convert their TRU inventory into either

more TRU (i.e., they have a conversion ratio (CR) of greater than 1), less TRU (CR < 1), or they maintain

the amount of TRU entering and exiting their system (CR = 1). Fast reactors with CR > 1 are termed

breeder reactors.
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It should be noted that with any reprocessing capability, nonproliferation issues arise. Nuclear weapons

have historically been produced using either enriched uranium or reprocessed plutonium; however it is

possible to produce one with any mix of appropriate materials. Accordingly, any fuel cycle that exposes

bare plutonium streams has an inherently higher nonproliferation risk than one that does not, and such

risks must be weighed accordingly. However, the primary nuclide that drive such plutonium-based

weapons is 239Pu . Additional isotopes, e.g., 240Pu , are considered “impurities” that dilute the efficacy

and reliability of plutonium-based weapons. In general, fuel exiting a full LWR cycle have very poor

plutonium profiles for the purpose of weapon utilization.

1.1.3 The Modified-Open Fuel Cycle

The modified open fuel cycle is effectively a hybrid of the open and closed fuel cycles. The Blue Ribbon

Commission’s Reactor and Fuel Cycle Technology Subcommittee tackled a definition as follows:

We have defined this category to encompass a very wide range of possible fuel cycles

with multiple possible combinations of different reactor, separations, and fuel fabrication

technologies. Our definition includes any fuel cycle in which some of the spent fuel is processed

rather than being directly disposed of after a single pass through a reactor. [13]

1.2 Nuclear Fuel Cycle Simulation

Fuel cycle simulation is a field with a variety of actors, including governments, universities, and interna-

tional governance organizations. Accordingly, a variety of modeling strategies have been applied to the

nuclear fuel cycle. Such strategies span a wide range of fidelity, both at the facility level and the material

level. For instance, some simulators describe reactors by fleet (or types) and solve material balances for the

entire fleet in aggregate [54, 63] while others instantiate individual (or discrete) facilities [50]. Similarly,

some simulators make detailed calculations of fuel depletion due to reactor fluence [14] whereas others

simply use pre-tabulated values that depend (generally) on burnup values for thermal reactors and

conversion ratios for fast reactors.

There are, broadly, three decision categories that are of concern to fuel cycle simulation. The first is

facility deployment, i.e., how, why, and when certain facilities are deployed. In the current simulation

development environment, the most common reactor deployment mechanism is allowing a user to define
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an energy growth curve and, for each type of reactor in the simulation, a percentage of that total energy

demand to be met by the reactor type. However, the nuclear fuel cycle is a special case of supply-demand

modeling where certain facilities (e.g., fast reactors) require fuel that has been processed by other facilities

(e.g., thermal reactors). Accordingly, simulation developers must make a choice regarding the ability for

facilities to be built if fuel may not be available for their use. Certain simulators explicitly disallow this

behavior by determining reactor build decisions based on look-ahead algorithms [51], others explicitly

allow it, while still others offer a hybrid approach that allow a look-ahead function based on a certain

amount of fuel that will eventually be needed over a reactor’s lifetime [22]. The eventual choice of this

decision making process greatly affects simulation outcomes in any scenario in which there is competition

for recycled fuel. Because these simulation tools are built to analyze the dynamic symbiotic relationship

between different reactors in a cyclical process (e.g., thermal and fast reactors), among other scenarios,

this simulation development decision is arguably very important to simulation outcomes.

The second simulation design decision category is the level of fidelity with which to model the physical

and chemical processes involved in the nuclear fuel cycle. Broadly, physical fidelity includes two processes,

isotopic decay and isotopic transmutation due to residency in a reactor. Physical fidelity is an important

concern because fuel cycle simulation measures individual isotopic masses at each point in the fuel cycle,

and the isotopic profiles of those mass streams change due to physical processes.

Isotopic decay is important to consider because some isotopes decay on time scales on the order of or

smaller than the simulation time. 241Pu , for instance, has a half life of ∼14 years. Simulators fall into

two camps, those that include decay and those that do not. Interestingly, the MIT development team

claims that the lack of modeling decay does not affect the simulation as long as all transuranic isotopes

are lumped together [30]. Other codes include isotopic decay in order to inform output metrics such as

repository heat capacity.

Reactor physics, i.e., the process by which the transmuted isotopic profile of fuel due to reactor

residency is determined, is also an important physical consideration. The rigorous solution of reactor

physics equations is an entire field in nuclear science unto itself, and is thus not normally treated by

fuel cycle simulators. In most cases for the current suite of simulators, some amount of calculation is

performed before a simulation is run, and isotopic profiles are determined via look-up tables. Some

simulators, however, choose to perform transmutation calculations in situ, during the simulation.

The third simulation-level design decision concerns the connections between facilities and the type
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of material that flows along those connections. In general, connections between facilities can either be

static or dynamic, and can either be fleet-based or facility-based. A static connection implies that material

will always flow between two types of facilities, whereas a dynamic connection implies that a facility’s

input or output connection may change. For those simulators that model fleets of facilities with static

connections, the modeling technique is relatively trivial: a fleet of servicing facilities are directly connected

to their serviced facilities. If more than one type of facility is being serviced (e.g., TRU-based fuels going

to thermal and fast reactors), then either a user or the simulation engine must define the percentage of

capacity going towards each type of serviced facility [54].

Most simulators to date have taken the fleet-based, static-connection approach to modeling fuel

cycles which lacks the ability to be easily extended and improved upon, a key feature of a research

code. This work enables the dynamic connection approach in the Cyclus nuclear fuel cycle simulator .

Dynamic connections between facilities allow for more complicated scenarios, e.g., scenarios with regional

influences or scenarios in which competition for resources exists, to be modeled. The dynamic exchange

of resources, however, introduces two complications. The first is that a given need, e.g., for fuel, can be

met by multiple commodities. As an example, consider fuel for thermal reactors. Thermal reactors can be

fueled by either uranium oxide (UOX) or mixed uranium-plutonium oxide (MOX). Furthermore, MOX

fuel is composed of plutonium (and some minor actinides, such as americium) from spent thermal fuel as

well as uranium (the source of which can be depleted enrichment tails, depleted recycled uranium or

natural uranium). The second is that the isotopics comprising fuel orders are fungible. A nuclear reactor

generates power by fissioning nuclei. Whether the fissile nuclei involved is 235U , 239Pu , or 233U makes

little difference from a power-generation standpoint – each generates power. However, each is involved

with a different nuclear fuel cycle.

Supporting economic and social models is rare among simulators. Only one simulator purports to

have any in situ economic decision making [22]. A single other simulator reports including any socio-

geographic concerns [9]. Any supply-demand framework that enables< economic, geographic, or other

behavior models is a novel step forward in the realm of computational fuel cycle simulation and analysis.

The core concept that connects both the design decisions regarding fidelity and facility connections

is the notion of material quality. Because of the nature of nuclear reactors, the simulation of their fuel

usage must consider the isotopic profile of material being produced and consumed. This additional

concern greatly complicates the modeling of fuel cycles and must be taken into account. Each of the issues
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addressed by the fidelity decision, decay, transmutation, and fuel fabrication, are all operations on the

isotopic profile of material.

1.3 Tools Used

1.3.1 Agent-Based Supply Chain Models

Supply and demand in nuclear fuel cycle simulation drives the flow of resources between entities. The

exchange of resources is the primary entity interaction mechanism during a simulation. The supply and

demand of a given fuel cycle becomes highly complex when including the recycling of material. Even with

such a complication, the notion of a generic fuel cycle, i.e., from the perspective of facilities that supply

and demand material, quickly begins to look like a supply chain model. There is a growing literature of

agent-based supply chain modeling [18, 34, 37, 57, 64]. The general premise of these types of models is

that individual facilities have a notion of their needs (i.e., their demands) and can express to the system

these needs at the required time. There is heavy use of inventory policy to determine the correct amount

of material inventory that is needed and the correct time to request a resupply. Such an approach has not

heretofore been attempted for the nuclear fuel cycle and would support a variety of use cases outlined in

section 1.2. For example, reactor facilities could be allowed to be fueled by multiple fuel types (e.g., UOX

or MOX), and decide which type to choose based on the simulation environment.

1.3.2 Cardinal Preferences and Game Theory

The notion of social modeling in fuel cycle simulation, e.g., employing regional bias, has to date been a

secondary concern. Some semblance of this capability is needed if one is to incorporate outside effects

on a domestic fuel cycle model. Furthermore, a robust capability is required if one wishes to actually

investigate dynamic interactions between regional entities. Again, a full treatment of this sort of regional

interaction would require international relations models, most of which can be found in the cross-cutting

disciplines of economics, political science, and game theory. The primary solution technique in game

theory is Nash Equilibrium. It describes an optimal solution as follows: given a set of players, states,

preferences, and actions, all players choose an action such that any single player’s deviation from that

actions results in a state of lower preference for that player (thus no player has an incentive to deviate)

[44]. There also exists a body of literature that examine Nash Equilibria in the context of optimal flow
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models [43, 47, 55]. However, the complexity of such models quickly brings them out of the scope of our

needs, i.e., dynamic modeling of multi-lateral scenarios ranging 100+ years in a “reasonable” amount of

computation time.

The game theoretic notion of preferences can be quite useful in fuel cycle simulation, however. Specifi-

cally, cardinal utility, or cardinal preferences [56] provides a relative measure of preference such that any

two preferences can be directly compared, provided an arbitrary scaling, similar to the comparison of

costs in a system. The notion of preference also nicely extends the work of Oliver’s affinity metric [48].

Costs in a nuclear fuel cycle simulation have reasonably large uncertainty [53] and are generally applied

to the output of a simulator as a post-processing step. Furthermore, for many fuel cycle simulation cases,

a cost proxy is directly applicable, because actual cost values may be very hard to compute or determine

within a simulation. For example, an analyst may know intuitively that reactors prefer recycled fuel to

fresh fuel in order to maximize resource utilization. Especially for initial analyses, informing potential

resource flows via preferences, rather than costs, is simpler, quicker, and more intuitive. Further, the

notion of preference cleanly maps onto geopolitical models, such as preferential trading, whereas cost

usage can require significant additional work to be meaningful. Enabling both preference and cost-based

models can provide sufficient simulation fidelity to appropriate analysts.

1.3.3 Transportation Problems & Mathematical Programming

The previous sections have outlined a specific need for nuclear fuel cycle simulation: determining the flow

of resources in a system of supply and demand, given a variety of possible capacities and informed by

economic and social models. Constrained network flow determination is a canonical problem in computer

science and operations research. Further, there is a rich history and capability of modeling such problems

using mathematical programming.

A network flow model is represented by a graph, G(N,A), comprised of nodes N and arcs A. If flow

can occur between some node i and some other node j, then it flows along arc (i, j). An example of a

network-flow graph is shown in Figure 1.3.
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Figure 1.3: An example node-arc network configuration. Arrows denote possible flow directions. Arc
notation examples are provided for arcs (1,4) and (4,6).

Given a graph instance, an optimal flow between nodes can be found provided objective coefficients

and constraints. Decision variables for this optimization problem comprise the optimal flow assignment. If

all decision variables are linear, then the resulting formulation is termed a Linear Program (LP), and can

be solved using related techniques. A full discussion of LPs and their solution techniques is provided in

Appendix A. If any decision variables are integer, then the resulting formulation is termed a Mixed-Integer

Linear Program (MILP). For instance, binary variables can be used in network-flow problems to denote

whether an arc has flow or not. A full discussion of MILPs and their solution techniques is provided

in Appendix B. Many different types of problems can be solved using this structure. This work utilizes

transportation problems, a specialization of the network-flow problems.

Transportation problems model the flow of a commodity between source nodes and sink nodes. In

other words, source nodes and sink nodes comprise two distinct subsets, N1, N2, the union of which

comprises all nodes in the transportation graph, N . These properties can be described in set notation.

N1 ⊂ N (1.1)

N2 ⊂ N (1.2)
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N1 ∪N2 = N (1.3)

From the node-arc graph point of view, this strict subset division allows for the transportation problem

to be modeled as a bipartite graph, an example of which is shown in Figure 1.4.

Figure 1.4: An example node-arc transportation network configuration. Arrows denote possible flow
directions. Note that all nodes either belong to the set of sources (left) or set of sinks (right).

Many variations of the transportation problem exist. The minimum-cost transportation problem is

a useful example. In such a formulation, each arc has an associated unit cost associated with the cost

of transporting a unit of a commodity along it, ci,j . Additionally, supplier and consumer nodes have

an associated supply, si, or demand, di, which provide a notion of node capacity. The minimum-cost

transportation problem can be formulated as a linear program as shown in Equation 1.4.
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min
x

∑
(i,j)∈A

ci,jxi,j (1.4a)

s.t.
∑

j∈N2

xi,j ≤ si ∀i ∈ N1 (1.4b)

∑
i∈N1

xi,j ≥ dj ∀j ∈ N2 (1.4c)

xi,j ≥ 0 ∀(i, j) ∈ A (1.4d)

An intuitive constraint on the problem to guarantee a feasible solution is that the total demand in the

system must be no greater than the total supply in the system, shown in Equation 1.5.

∑
j∈N2

dj ≤
∑

i∈N1

si (1.5)

A given problem instance may violate Equation 1.5 and thus be infeasible. Feasibility in this sense can

be guaranteed by adding an artificial supply node. Such a node can have infinite supply capacity but at

(effectively) infinite cost. The problem can then be solved, and any flow leaving the artificial node in the

optimal solution can be dealt with accordingly, e.g., it can be ignored.

A more complex transportation-problem formulation can support systems in which supply or demand

can be met by multiple commodities. Variables and constants in the multi-commodity formulation are

generally analogs of their counterparts in the single-commodity problem. There is a unit cost ch
i,j for

commodity h to traverse arc (i, j). A supplier of commodity h has a certain supply capacity sh
i which

cannot be surpassed and consumers of commodity h have a certain demand level which must be met, dh
i .

In the simplest extension from the single-commodity to multi-commodity transportation problem, arc

constraints for all commodities are combined, i.e., there is a single capacity ui,j for a given arc (i, j). A

classic application of this enhanced complexity deals with data networks. Multiple classifications of data

exist, but they all must traverse the same network infrastructure. Accordingly, the infrastructure can only

accommodate a certain quantity of total flow among all communication types. The formulation of the

multi-commodity flow problem is shown in Equation 1.6. Note the commodity coupling in Equation 1.6d.
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min
x

∑
i∈I

∑
j∈J

∑
h∈H

ch
i,jx

h
i,j (1.6a)

s.t.
∑
j∈J

xh
i,j ≤ sh

i ∀ i ∈ I, ∀ h ∈ H (1.6b)

∑
i∈I

xh
i,j ≥ dh

j ∀ j ∈ J, ∀ h ∈ H (1.6c)

∑
h∈H

xh
i,j ≤ ui,j ∀ (i, j) ∈ A (1.6d)

xk
i,j ≥ 0 ∀ (i, j) ∈ A,∀ h ∈ H (1.6e)

It can be possible to reduce instances of the multi-commodity transportation problem. In the case in

which is no arc that shares multiple commodities, the multicommodity connection constraints disappear,

and the single multi-commodity problem can be broken intom different single-commodity transportation

problems, where m is the cardinality of the set of commodities, H . Such reductions are important because

optimization problems will generally scale poorly with problem size.

Optimization problems are solved by solving a number of decision problems. Decision problems are

generally computationally hard. Decision problems ask yes or no questions, e.g., “is there a flow path with

a flow larger than x?”. An optimization problem asks instead “what is the flow path with the largest flow?”.

Any problem can be associated with one of four categories of computational complexity: Polynomial-time

(P), Non-deterministic Polynomial-time (NP), Non-deterministic Polynomial-time Complete (NP-C),

and Non-deterministic Polynomial-time Hard (NP-hard).

A classic example of a polynomial-time algorithm is naive matrix inversion, known to be of order n3

(i.e., O(n3)) for a given n× n matrix. A decision problem, on the other hand, is considered to be in (NP)

if for any proposed solution, there is a short certificate.

Definition 1.1. A certificate is a method to verify that a solutions provides a positive or negative response to the

question at hand. A certificate is considered short if it is polynomial in size and can be verified in polynomial time.

A decision problem, Q, is considered to be inNP-C, if Q ∈ NP and any problem, P ∈ NP is polynomial-

time reducible to Q. That is, instances of P can be reformulated as instances of Q in polynomial time.

The most popular candidate of this polynomial reduction is the Satisfiability Problem, known to be in
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NP-C [20, 41]. Finally, a problem Q, is inNP-hard, if any problem P ∈ NP is polynomial-time reducible

to Q, but Q 6∈ NP . If a decision problem is in NP-C, then the corresponding optimization problem is

NP-hard. The relationship between these set of problem complexities, reflecting current understanding,

is shown graphically in Figure 1.5.

Figure 1.5: The relationship between the various types of computational complexities.

Certain optimization problems can be solved with specialty algorithms that greatly decrease solution

times. However, because optimization problems are NP-hard, no guarantee can be made in general

regarding their scalability. Worst case scenarios result in exponential scaling with problem size. Further,

in practice, MILPs experience much worse solution time behavior than do LPs. In short, reducing problem

size is an important strategy for solving optimization problems more quickly.

1.4 Statement of Work

Deciding how a simulation is structured from an interactions standpoint is a delicate balance of known

necessity and perceived future needs. There are basic decisions to make, such as modeling material

transfer as either discrete or continuous. Discrete transfers more closely match reality and may provide

insights in that regard, however they require more of their modeling apparatus due to messaging needs

and other structures. More complex decisions include how one wants to determine connections between
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facilities, and whether such connections are assigned statically and incorporated into the simulation

architecture or determined dynamically.

In his conclusions of a MIT benchmarking exercise, Guerin states that “operation of a fuel cycle model

is as much art as science” [31], an opinion that likely stems from this “freedom”. These simulation-engine

decisions comprise the art-related portion of fuel cycle simulation, but developers have a goal of making

these decisions in as informed a way as possible using domain-level knowledge with respect to our known

and perceived requirements. In general, this work tries to minimize the sheer number of choices one

makes in this regard, instead relying on well known and well documented practices of computer scientists

and systems engineers. In short, the goal of this work focuses on extending the current state of the art in

nuclear fuel cycle simulation and associated analysis.

To date, no nuclear fuel cycle simulator has been implemented using agent-based simulation design

principles. Cyclus , the fuel cycle simulator in which this work is being implemented, was initially

developed without a solid simulation infrastructure design principles. The initial thrust of this work

comprises the development of Cyclus as an agent-based simulator. In order to do so, agent-to-agent

interaction mechanisms must be defined and designed. Furthermore, a clear time-stepping procedure

must be identified that provides a sufficient amount of entity-interaction opportunities to agents in a

simulation.

Perhaps the least well-treated aspect in current nuclear fuel cycle simulation is resource allocation

decision making. As stated previously, the vast majority of current simulators treat this process very

simply: statically connect facility types a priori. The primary thrust of this work is the extension of the

current state of the art by designing and implementing a general framework that dynamically determines

the flow of resources in an arbitrary nuclear fuel cycle.

Any such mechanism must meet a number of design criteria. First, it must be fuel cycle agnostic: any

possible facility connections must be supported. The mechanism must take into account the isotopic

profiles of the commodities produced and consumed by agents in a simulation. Any system in which

fuel recycling exists will, by definition, have some supply constraints. Therefore, the framework must

support both the existence capacitated supply and demand as well as its communication between agents

and with the framework. Further, constraints must be able to be influenced by sophisticated physical,

chemical, and supply chain models. Further extending the state of the art, the framework must also allow

for economic, social, and geographic models to inform the exchange of resources between simulation
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entities. Finally, the framework must support quantized transfers of resources. Nuclear reactors cores

in practice are comprised of individual fuel assemblies. Any framework must support the modeling of

individual fuel assemblies, enabling a high level of simulation detail as well as nonproliferation analyses.

It is the goal of this corpus of effort to design and implement such a mechanism using agent-based

supply chain simulation techniques and mathematical programming methods. Once a supply-demand

framework is developed, its performance must be analyzed. Fuel cycle simulation can require varying

levels of computational fidelity. Some scoping studies may wish to sample a large option space with

low fidelity, while others may wish to sample a small option space with high fidelity. The performance

trade-off between feasible and optimal solutions to resource flows must be understood. Because the

Cyclus ecosystem is still nascent, sophisticated agent models have yet to be developed. Accordingly, a

methodology for generating instances of nuclear fuel cycles is required. A large collection of instances

must then be executed with all available supply-demand solution techniques, those that find optimal

solutions and those that report some best-guess feasible solution.

Upon completion of this work, fuel cycle simulation modelers and analysts will be provided a robust

tool that greatly increases the fidelity and flexibility with which arbitrary fuel cycles can be modeled.

The state of the art of NFC simulation will be furthered, and novel scenarios that involve sophisticated

interactions such as the competition for resources, dynamic commodity consumption, and geopolitical

relationships can finally be supported.
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2 Simulation and Agent Based Modeling in

Cyclus

Developing a simulator of any complex system is an involved process requiring a solid methodological

base. A reasonable approach is to define precisely the simulation framework, including a definition of

how time moves forward and what events can occur. This chapter lays the foundation for the simulation

of nuclear fuel cycles in Cyclus. Section 2.1 begins the discussion by broadly describing methodological

principles on which Cyclus has been developed. The use of agent-based modeling techniques is presented

in section 2.2, and an agent deployment methodology with a proof-of-principle benchmark is presented.

Finally, section 2.3 treats the most complex simulation interaction in Cyclus, Dynamic Resource Exchange

(DRE), describing its methodology, discussing its implementation, and presenting a set proof-of-principle

results.

2.1 Simulation Principles

Cyclus is designed to dynamically model the flow of resources and deployment of facilities in the Nuclear

Fuel Cycle (NFC). As such, Cyclus is a simulator which models the NFC as a system. System simulation is

a rich field of study, spanning a variety of disciplines, as described in section 1.3.1.

By Law’s definition [40], Cyclus is a dynamic, discrete-event simulation that uses a fixed-increment

time advance mechanism. In general, fixed-increment time advance simulations assume a time step (∆t).

Further they assume that all events that would happen during a time occur simultaneously at the end of

the time step. This situation can be thought of as an event-based time advance mechanism, i.e., one that

steps from event to event, that executes all events simultaneously that were supposed to have occurred in

the time step.
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A Cyclus simulation models a collection of entities which either trade resources, manage other entities,

or perform both actions. The most basic entity in a Cyclus simulation is a Facility. Facilities can be used to

model processes with arbitrary levels of physical fidelity, and can interact with the simulator and other

entities with arbitrary levels of behavioral fidelity. As such, Cyclus can also be described as an agent-based

model (ABM). Accordingly, the entities in a given simulation can be interchangeably referred to as agents.

Cyclus has an additional notion of an archetype. An archetype is the implementation of an entity, whereas

an agent is the in situ instantiation of a entity. The remainder of this document will use the term archetype

when referring to the implementation of an entity and will use the term agent when referring to an entity

acting in a simulation.

2.1.1 Events

Two key types of events occur in every Cyclus simulation:

• agent entry into and exit from the simulation

• the exchange of resources between agents

Agent entry and exit events are scheduled by another managing agent, or are scheduled as an initial

condition to the simulation. The managing agent and managed agent form a parent-child relationship.

Upon entering the simulation, the child entity is constructed and notified of its entry; the parent is

then notified. Upon exiting the simulation, the parent is notified; the child entity is then notified and

deconstructed. Unlike many of the simulators described in section 1.2, the Cyclus simulation kernel

naturally treats each agent individually, rather than grouping agents by an attribute and treating like-

facilities in an aggregate manner.

While the determination of supply and demand is complex and described further in section 2.3, the

execution of resource exchange is rather straightforward and a primary event in a Cyclus simulation.

When an agent’s demand for a resource is matched with another agent’s supply of a resource by the

Cyclus kernel, a transfer is initiated. Each transfer is treated as discrete, individual trade between two

agents.
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2.1.2 Timesteps

Simulation entities can have arbitrarily complex state which is dependent on the results of resource

exchange and the present discernible status of other agents in the simulation at a given time step. Fur-

thermore, resource exchange necessarily must involve all existing agents in the simulation. Therefore, a

well-defined timestep, incorporating agent entry, exit, resource exchange, and agent response to system

state must be defined. Cyclus implements a timestep mechanism that deviates slightly from Law’s de-

scription of fixed-increment time advance by preserving a specific ordering of event triggers. Importantly,

the following invariant is preserved: any agent that exists in a given time step experiences the entire time step

execution stack.

This leads to the following phases of time step execution:

• agents enter simulation (Building Phase)

• agents respond to current simulation state (Tick Phase)

• resource exchange execution (Exchange Phase)

• agents respond to current simulation state (Tock Phase)

• agents leave simulation (Decommissioning Phase)

The Building, Exchange, and Decommissioning phases each include critical, core-based events, and

are called Kernel phases. The Tick and Tock phases do not include core-based events, and instead let agents

react to previous core-based events and inspect core simulation state. Furthermore, they are periods in

which agents can update their own state and are accordingly considered Agent phases.

Technically, whether agent entry occurs simultaneously with agent exit or not does not matter from a

simulation-mechanics point of view, because the two phases have a direct ordering. It will, however, from

the point of view of module development. It is simpler to think of an agent entering the simulation and

acting in that time step, rather than entering a simulation at a given time and taking its first action in the

subsequent time step.

In the spirit of Law’s definition of a fixed-increment time advance mechanism, there is an additional

important invariant: there is no guaranteed agent ordering of within-phase execution. This invariant allows for:

• a more cognitively simple process
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• paralellized implementation

2.2 Agents and Agent Based Modeling in Cyclus

Cyclus has worked to formally move from a modeling paradigm that does not differentiate between

individual facilities, as has been the case historically in FCS, to one that does. Modeling individual facilities

in the NFC requires a nuanced approach to determine facility behavior, because such behavior can depend

on intricate physical parameters of resources in the simulation as well as complex social-behavioral models

of facility interaction.

Agent-based models are defined primarily by two concepts: agents and the simulation environment.

Agents in Cyclus are designed to be able to incorporate arbitrary complexity in both physical process

models as well as behavioral models. A three-tiered taxonomy has been developed to achieve this aim,

specializing agents as either Facilities, Institutions, or Regions. Section 2.2.1 fleshes out a discussion of

this design.

The simulation environment in Cyclus is defined by supply and demand. There is a notion of supply

and demand for facility capacity. For example, there can be a demand for power production which drives

the deployment of power producing facilities. There is also a notion of supply and demand for resources.

Sufficiently treating resource supply and demand is the primary argument for implementing Cyclus

as an ABM simulator. In the NFC, resource supply and demand is a function of both resource quantity

and quality, that is, the isotopic composition of material resources. In the extreme in which a high level of

detail is required in the notion of resource quality, e.g. tracking an arbitrary number of isotopes, adopting

techniques that allow decision-making based on that level of detail is desirable. Modeling the nuclear fuel

cycle represents such a level of detail. For example, even in the case of a once-through fuel cycle, many

reactors of the same type (e.g., PWRs), may require different resource qualities (i.e., Uranium enrichment).

As the complexity of a quality metric increases, an aggregate approach becomes less desirable as it loses

such detail through aggregation. Furthermore, by disassociating simulation logic from entity logic, agents

of arbitrary fidelity levels can be used in the same simulation. For instance, a reactor agent that tracks a

small subset of isotopes can be used in tandem with a reactor agent that tracks a large set of isotopes.

In summary, the arbitrary levels of complexity that can be required for a flexible NFC simulator

suggests that ABM is a reasonable tool to use. The remainder of this section describes how agents are
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provided agency in Cyclus and specifically how agents interact with respect to supply and demand of

facility capacity. A proof-of-principle benchmark comparison to a systems dynamics simulator is shown

in section 2.2.3. Agent interaction with respect to supply and demand of resources is more complicated

and therefore treated separately in section 2.3.

2.2.1 Agent Taxonomy

The Cyclus kernel implements a basic Agent class that provides the minimal interface for agents to be

instantiated within a simulation. A Trader interface provides a communication layer required for agents

to be included in the exchange of resources. Three useful derived classes are provided to be used as

basic abstractions of entities in the NFC. Facility agents in Cyclus implement both interfaces, while

Institution and Region agents implement only the Agent interface. A summary of the conceptual

placing of each archetype in a Cyclus simulation is provided below.

2.2.1.1 Facilities

Facilities in Cyclus are either consumers or suppliers of commodities, and some may be both. Supplier

agents are provided agency by being able to communicate to the market-resolution mechanism a variety

of production capacity constraints in second phase of the information gathering methodology. Consumer

agents are provided agency by being able to assign preferences among possible suppliers based on the

supplier’s quality of product. Because this agency is encapsulated for each agent, it is possible to define

strategies that can be attached or detached to the agents at run-time. Such strategies are an example of the

Strategy design pattern [60].

2.2.1.2 Institutions

Institutions in Cyclus manage a set of facilities. Facility management is nominally split into two main

categories: the commissioning and decommissioning of facilities and supply-demand association. The

goal of including a notion of institutions is to allow an increased level of detail when investigating

regional-specific scenarios. For example, a consumer facility may prefer to be supplied by a supplier

facility in its institution rather than one associated with a different institution. Furthermore, there are

international governmental organizations, such as the IAEA, that have proposed managing large fuel

cycle facilities that service many countries in a given global region. A fuel bank is an example of such
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a facility. Accordingly, institutions in Cyclus are able to augment the preferences of supplier-consumer

pairs that have been established in order to simulate a mutual preference to trade material within an

institution. Of course, situations arise in real life where an institution has the capability to service its own

facilities, but choose to use an outside provider because of either cost or time constraints. Such a situation

is allowed in this framework as well. It is not clear how such a relationship should be instantiated and to

what degree institutions should be allowed to affect their managed facilities’ preferences. This issue lies

squarely in the realm of simulation design decisions, part of the art of simulation. Accordingly, through

the course of research, the possible design space will be analyzed in order to determine best practices for

this type of design.

2.2.1.3 Regions

Regions in Cyclus provide the forcing function for simulations by requiring that certain parameters

be met, e.g., power capacity, fuel cycle service capacity, etc. For example, in the case of nuclear power

capacity, a region knows that it needs additional reactors to be built, but leaves the building of those

reactors to the institutions that operate in the region. It is important to note here that this abstraction

allows for different deployment algorithms to be tested and exchanged in the Cyclus framework without

necessitating changes to the simulation engine, as is the case with other simulators described in section

1.2.

Regions, like Institutions, are able to affect preferences between supplier-consumer facility pairs in the

market information gathering process. The ability to perturb arc preferences between a given supplier

and a given consumer allows fuel cycle simulation developers to model relatively complex interactions at

a regional level such as tariffs and sanctions.

2.2.2 Methods of Agency

Agency is provided in two primary modes: determining facility deployment and informing resource

exchange mechanisms.

Facility deployment involves some combination of an Institution agent, a Facility agent, and a

Region agent. Institution agents represent a simulation entity abstraction that can deploy Facility

agents. Region agents represent a simulation entity abstraction that have a demand for certain commodities

that Facility agents provide, for example, reactor-like Facility agents provide electrical power.
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Facility agents are further provided agency by informing market mechanisms of the supply and

demand of resource quantity and quality. Cyclus initially used a simple interface and algorithm for

determining resource transactions. Individual markets were defined as agents themselves much like

Facility, Institution, and Region agents. Many limitations were identified at the time, however, and

the market-as-agent approach was eventually abandoned. An enumeration of the observed limitations is

described further in section 2.2.4.

The primary source of agency is provided to Facility agents through the Trader interface in or-

der to negotiate the quantity and quality of potential resource transactions. Region, Institution, and

Facility agents are then provided agency in the negotiation of preferences of potential transactions,

where preference is a proxy for price.

2.2.3 Proof of Principle

Agents were developed to show an initial proof of principle that fuel cycle simulation can be implemented

using an agent-based modeling methodology. By definition, dynamic simulators model the deployment

of facilities and measure the flow of resources between facilities in the system over time. In the extreme

case of unconstrained supply and no competition for resources, resource exchange decisions can be made

arbitrarily. In such cases, therefore, only facility deployment agency is required. An initial benchmark

case was performed to confirm expected deployment behavior and basic resource routing.

2.2.3.1 Benchmark Cases

The INPRO Business As Usual (BAU) benchmark [6] for the once-through fuel cycle was chosen for three

reasons. First, it was the simplest benchmark that demonstrated deployment behavior. Second, no supply

or demand constraints were present, so a basic supply-demand framework would suffice. Finally, results

from another fuel cycle simulation code, VISION [36], was available for comparison. The INPRO BAU

benchmark identified two cases, high electricity demand and moderate electricity demand, as shown in

Fig. 2.1. Both cases require that demand met by a composition of 94% Light Water Reactors (LWRs) and

6% Heavy Water Reactors (HWRs). LWRs are fueled with 4% by weight UO2 while HWRs use natural

Uranium fuel.

The goal of this proof-of-principle study was to showcase the capability for a developer to generate

the required Facility, Institution, and Region archetypes, and that such archetypes could be deployed in
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Figure 2.1: The energy demand specification for the INPRO BAU scenarios.

the Cyclus simulation framework and generate satisfactory results. Comparison metrics are based on

similar metrics used in the origin INPRO benchmarking exercise, including deployment patterns, natural

uranium consumed, and used fuel produced by all reactors.

2.2.3.2 Agent Archetypes Developed

Each implemented agent is available in the Cycamore repository [61].

GrowthRegion

The GrowthRegion is a Region archetype developed to assist in facility deployment logic. The GrowthRegion

takes as input a listing of commodities for which it has a demand. For example, the GrowthRegion agents

in this benchmark demand electrical power. The demand curves for commodities is defined by symbolic

functions. Currently, linear functions, exponential functions, and piece-wise combinations of both are

supported.

At any time step in which there exists a demand gap, i.e., there exists more demand than supply, a

build decision is made. This decision is modeled as the following minimum cost facility deployment
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integer program:

min
n

∑
i∈I

ci ∗ ni (2.1a)

s.t.
∑
i∈I

φi ∗ ni ≥ Φ (2.1b)

ni ∈ [0,∞) ∀ i ∈ I (2.1c)

ni integer ∀ i ∈ I (2.1d)

where Φ is the unmet demand, I is the set of facilities capable of meeting the demand, and, for each

facility in I , ci is the cost of building, and φi is the nameplate capacity. Finally, ni is the optimized number

of facilities to build of type i.

ManagerInst

The ManagerInst is an Institution archetype also developed to assist in facility deployment. While the

GrowthRegion places a build order, the ManagerInst fulfills the order. Further, the ManagerInst deter-

mines the set of facilities, I , shown in in Eqn. 2.1, which can be built. Note that the set I can change over

time. Once a deployment decision is made, the GrowthRegion makes a facility deployment request of the

ManagerInst which then deploys the chosen facility.

BatchReactor

While a reactor model existed prior to this work, it did not provide the functionality to interchange batches

of fuel, as required by the INPRO benchmark. A batch of fuel is a fraction of a full reactor core that is

extracted and replaced when a reactor is refueled. In general, LWRs replace between a third and a quarter

of their assemblies during refueling based on the fuel management scheme used.

The BatchReactor used in this work had configurable properties as displayed in Table 2.1. The values

used based on the defined INPRO benchmark are described in Table 2.2.

EnrichmentFacility

The EnrichmentFacility archetype was developed to provide enrichment-related output for the sim-

ulation, namely the amount of separative work units (SWU) and natural uranium used during a given
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Parameter Description
Process Time Active fuel time in the reactor
Refuel Time Time to refuel the reactor
N Batches Number of batches in the reactor
Batch Size Quantity of a batch

Power Capacity Nameplate Capacity for Power
Power Cost Cost to build a new reactor

Table 2.1: Configurable input for the BatchReactor archetype.

Parameter LWR Value HWR Value
Process Time 10 10
Refuel Time 2 2
N Batches 4 4
Batch Size 7.87E4 1.39e5

Power Capacity 1000 600
Power Cost 1000* 600*
(*) Note that the Cost used is arbitrary and set
equal to the capacity so that a minimum capacity
is built per Eqn. 2.1.

Table 2.2: Configurable input values for reactors used in the INPRO once-through benchmark.

time step. For the INPRO cases, it can be defined quite simply using the values shown in Table 2.3. The

feed assay and product assay, both required for determining output metrics, are defined by the isotopic

compositions of resource input, i.e., natural uranium, and resource output, i.e., the isotopic composition

of requested fuel.

Parameter Description Values
Input Recipe A description of input isotopics Natural Uranium
Tails Assay The U-235 assay of tails. 0.003

Table 2.3: Configurable input values for the EnrichmentFacility used in the INPRO once-through
benchmark.

2.2.3.3 Results

In aggregate, Cyclus performed well relative to the other benchmarks. Fig. 2.2 shows the reactor deploy-

ment curves for each simulator for the moderate growth scenario while Fig. 2.3 shows reactor deployment

for the high scenario. The slight differences are attributed to VISION’s look-ahead functionality which

builds the required facilities one time step after they are needed, whereas Cyclus builds facilities on the

timestep in which they are needed. One can observe that a simple one timestep translation will result in
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Figure 2.2: The reactor deployment schedule by reactor type for the moderate demand scenario.

identical output.

Cumulative natural uranium utilization curves for the moderate and high cases are shown in Figures 2.4

and 2.5, and cumulative used fuel inventory curves are shown in Figures 2.6 and 2.7. Slight discrepancies

are noted between Cyclus and VISION. These discrepancies are attributed to the implementation of core

batch recycling in each of the respective codes. The differences between Cyclus and VISION are magnified

because the curves show cumulative metrics. In other words, results at time t1 are added the results at

time t2 and so on. Therefore, a series of small discrepancies appears to be compounded by using this

metric. It is not the metric of choice for general comparisons, but has been used because it was the metric

of choice of the benchmark exercise. It is not immediately obvious why there is a greater discrepancy

regarding output fuel quantities than natural uranium utilization. Further benchmarking exercises with

support from a VISION developer would be required to fully investigate the issue.

2.2.4 Multiple Market Limitations

The proof of principle benchmark described in section 2.2.3 utilized the agency provided for facility

deployment rather than the agency provided for both deployment and resource exchange. In general

informing resource exchange regarding quantity and quality of resources as well as socioeconomic effects
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Figure 2.3: The reactor deployment schedule by reactor type for the high demand scenario.

Figure 2.4: The total natural uranium used for the moderate demand scenario.
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Figure 2.5: The total natural uranium used for the high demand scenario.

Figure 2.6: The amount of used fuel produced for the moderate demand scenario.
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Figure 2.7: The amount of used fuel produced for the high demand scenario.

is a hard problem.

Cyclus was originally designed to use an additional agent archetype called a Market. Markets were

envisioned to represent markets for specific commodities. For example, the simulation described in

section 2.2.3 used three commodity markets: natural uranium, enriched uranium fuel, and used fuel.

This approach is valid in the absence agent-specified supply or demand constraints and competition

for resources in multiple markets (e.g., for fungible resources). However, the inclusion of either of these

features requires a much more involved process.

If supply or demand constraints are to be modeled, each associated Market agent must have both

a corresponding communication interface and an implementation that accounts for such constraints.

While quantity constraints are not unreasonable to implement and support, quality constraints are

much more difficult. Furthermore, communicating such constraints is difficult. Whereas the Market

agent can implement a solver algorithm, constraints are more naturally defined by the trader interacting

with the Market agent. For example, consider the enriched uranium market used in section 2.2.3. While

the simulation used an agent abstraction for an enrichment facility and fuel fabrication plant, another

simulation may wish to model facilities that downblend HEU, rather than enrich LEU. Such a process

will have different constraints. Importantly, those constraints are a function of the Facility archetype,
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not of a Market archetype.

Assuming that supply or demand is constrained by either resource quantity or quality, competition for

the resource in question can arise. When competition for resources exist, there must be some mechanism

that determines which transactions are to be executed, i.e., which agents should trade which resources.

Determining supply and demand under competition is a well studied problem with many possible

formulations and solution frameworks.

Fungibility is the property of a good or commodity to be capable of being substituted in place of one

another [45]. For example, a light water reactor generates power by fissioning nuclei in the thermal energy

spectrum. Whether those nuclei are 239Pu , 235U , or 233U makes little difference from a power generation

perspective. In other words, those nuclei are fungible for light water reactors, given some safety and cycle

length considerations. A similar issue arises from a supplier’s perspective. Consider a MOX fuel supplier

and two requesters: a fast reactor and a thermal reactor. Given the isotopic makeup of Plutonium in the

MOX fuel, the supplier’s fuel could be potentially be used in either reactor type. Again, Plutonium in this

example is a fungible resource. Importantly, the notion of fungibility in a NFC context can refer to both

individual isotopes, collections of isotopes, or complete fuel forms. Accordingly, a facility may demand

multiple fungible commodities, which must be accounted for by a given market clearing mechanism.

The one-market-per-commodity approach does not treat competition, constrained supply and demand,

and fungibility particularly well. Constraints are handled poorly because constraints are best determined

by the supplying and demanding agents rather than the market. Separated markets must, of course, be

solved separately. Therefore, competition and fungibility are treated poorly, because information involving

multiple commodities is not taken into account during the solution of a single market. Accordingly, a

solution framework and methodology that incorporates agent querying of supply, demand, and constraints

and resolves markets in parallel is required to properly treat resource exchange in the nuclear fuel cycle.

2.3 Dynamic Resource Exchange

Dynamic Resource Exchange (DRE) is the functional bedrock on which Cyclus simulations are built. It

defines the interaction mechanisms and methodologies for agents, specifically agents whose archetypes

have implemented the Trader interface. This section begins by providing a motivating problem statement

in section 2.3.1. It then details the methodology for querying supply and demand during the information
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gathering phase of the DRE in section 2.3.2. The solution phase, in which the defined DRE is translated

into a form of the Multicommodity Transportation Problem (MCTP) and solved, is then described in

section 2.3.3. Finally, two proof of principle simulations with novel fuel cycle DREs are presented in

section 2.3.5.

This section represents the culmination of significant previous effort [25, 27, 28]. What follows consti-

tutes the refinement of previous descriptions of the DRE methodology with lessons learned from initial

implementation and usage.

2.3.1 Problem Statement

As a next-generation nuclear fuel cycle simulation framework, Cyclus maintains a primary goal of

modeling flexibility. As facility, institutional, and regional archetypes are proposed, they should be

relatively easily implemented and utilized in the Cyclus simulation framework. Furthermore, the level

of modeling abstraction for different facilities in a fuel cycle will be different based on the needs of

archetype developer. Any supply-demand resolution framework, therefore, must be able to support

arbitrary facilities.

As stated previously in section 2.2.4, a number of considerations must be taken into account in such a

framework. Supply and demand must be able to be solved globally at any given time step. Therefore, the

framework must support an arbitrary number of facilities. Further, resources must be able to be treated in

a fungible manner. The framework must be able to handle arbitrary resource definitions and incorporate

arbitrary, agent-defined constraints.

In order to address each of these concerns, the concept of a Dynamic Resource Exchange (DRE) was

developed and implemented. That process was motivated by the following problem statement:

If facilities are treated as individual black boxes and connections between facilities are de-

termined dynamically, how does one match suppliers with consumers considering quantity

and quality-based supply constraints, quantity and quality-based demand constraints, supply

response to quality-based demands, and issues of fungibility?
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Figure 2.8: Schematic illustrating the DRE’s information gathering procedure.

2.3.2 Information Gathering

The DRE begins at any given time step with three phases, the terminology of which is influenced from

previous supply chain agent-based modeling work [37]. Importantly, this information-gathering step

is agnostic as to the supply-demand matching algorithm used, it is concerned only with querying the

current status of supply and demand in the simulation. The collective information gathering procedure is

shown in Figure 2.8.

The first phase allows consumers of commodities to denote both the quantity of a commodity they

need to consume as well as the target isotopics, or quality, by posting their demand to the market exchange.

This posting informs producers of commodities what is needed by consumers, and is termed the Request

for Bids (RFB) phase. Consumers are allowed to over-post, i.e., request more quantity than they can

actually consume, as long as a corresponding capacity constraint accompanies this posting. Requests can

be denoted as exclusive. An exclusive request is one that must either be met in full or not at all. Exclusive

requests allow the modeling of quantized, packaged transfers, e.g., fuel assemblies.

Consumers are allowed to post demand for multiple commodities that may serve to meet the same

combine capacity. For example, consider an LWR that can be filled with MOX or UOX. It can post a demand
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for both, but must define a preference over the set of possible commodities that can be consumed. Such

requests are termed mutual requests. Another example is that of an advanced fuel fabrication facility, i.e.,

one that fabricates fuel partially from separated material that has already passed through a reactor. Such

a facility can choose to fill the remaining space in a certain assembly with various types of fertile material,

including depleted uranium from enrichment or reprocessed uranium from separations. Accordingly, it

could demand both commodities as long as it provides a corresponding constraint with respect to total

consumption. A set of exclusive requests may also be grouped as mutual requests, in which case the set is

termed mutually exclusive.

At the completion of the RFB phase, the market exchange will have a set of request portfolios. Each

each portfolio consists of a set requests. Arbitrary constraints over the set of requests can be provided that

are functions of quantity or quality. Each request may have an associated preference. For requests that

mutually satisfy a given demand, a preference distribution over those requests informs the solver as to

which should be satisfied first, given constraints. Finally, each request portfolio has a specific quantity

associated with it.

The second phase allows suppliers to respond to the set of request portfolios, and is termed the Response

to Request for Bids (RRFB) phase (analogous to Julka’s Reply to Request for Quote phase [37]). Each request

portfolio is comprised of requests for some set of commodities. Accordingly, for each request, suppliers of

that commodity denote production capacities and an isotopic profile of the commodity they can provide.

Suppliers are allowed to offer the null set of isotopics as their profile, effectively providing no information.

Suppliers are also allowed to denote responses as exclusive, as is done in the RFB phase. Supply responses

can also be grouped into mutual responses, and sets of responses may be mutually exclusive. This

functionality again supports the notion of quantized orders, e.g., in the case of fuel assemblies.

A supplier may have its production constrained by more than one parameter. For example, a processing

facility may have both a throughput constraint (i.e., it can only process material at a certain rate) and an

inventory constraint (i.e., it can only hold some total material). Further, the facility could have a constraint

on the quality of material to be processed, e.g., it may be able to handle a maximum radiotoxicity for any

given time step which is a function of both the quantity of material in processes and the isotopic content of

that material. Multiple of such constraints are allowed. At the completion of the RRFB phase the possible

connections between supplier and producer facilities, i.e., the arcs in the graph of the transportation

problem, have been established with specific capacity constraints defined both by the quantity and quality
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of commodities that will traverse the arcs.

The final phase of the information gathering procedure allows consumer facilities to adjust their

set of preferences and for managers of consumer facilities to affect the consumer’s set of preferences.

Accordingly, the last phase is termed the Preference Adjustment (PA) phase. By allowing facility managers,

i.e., a facility’s institution and region, to also adjust preferences, socio-economic models are allowed to

inform the exchange of resources. For example, a region can detect a trans-regional trade between one of

its facilities and a facility in another region. If a tariff model is employed, the trade preference and be

diminished or even removed.

For facilities, preference adjustments occurs in response to the set of responses provided by producer

facilities. Consider the example of a reactor facility that requests two fuel types, MOX and UOX. It may

get two responses to its request for MOX, each with different isotopic profiles of the MOX that can be

provided. It can then assign preference values over this set of potential MOX providers. Another prime

example is in the case of repositories. A repository may have a defined preference of material to accept

based upon its heat load or radiotoxicity, both of which are functions of the quality, or isotopics, of a

material. In certain simulators, limits on fuel entering a repository are imposed based upon the amount

of time that has elapsed since the fuel has exited a reactor, which can be assessed during this phase. The

time constraint is, in actuality, a constraint on heat load or radiotoxicity (one must let enough of the fission

products decay). A repository could analyze possible input fuel isotopics and set the arc preference of

any that violate a given rule to 0, effectively eliminating that arc.

2.3.3 The Nuclear Fuel Cycle Transportation Problem

Supply and demand in a nuclear fuel cycle context is inherently a multicommodity problem. A light water

reactor can be fueled by both UOX and MOX fuel, for instance. How it is fueled is a result both of fuel

availability and associated preferences. Allowing for complex physical and chemical constraints on both

processes and inventories, as well as including economics-based approaches for determining exchange

preferences is a complicated affair. Determining the optimum solution to such a system is even more

complicated. Accordingly, sophisticated tools in both the operations research and agent based modeling

realms have been leveraged to accomplish the task.

An instance of supply and demand defined by the DRE information gathering step can be solved

in a variety of ways. It can be cast to a constrained, bipartite network, and any heuristic that provides a
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feasible solution to such networks are valid. The system can be solved optimally, however, by formulating

the system as a mathematical program. This section describes a Multicommodity Transportation Problem

variant used for this approach, entitled the Nuclear Fuel Cycle Transportation Problem (NFCTP). A linear

program (LP) formulation and a mixed-integer linear program (MILP) formulation are provided. A greedy

heuristic is also designed and implemented.

The LP formulation can be solved quickly, but allows split orders. In other words, the LP formulation

solves a relaxation of the defined instance that does not take into account exclusive requests or bids. The

nuclear fuel cycle deals with bundled orders, such as nuclear fuel assemblies, thus this modeling paradigm

is only an approximation. The MILP provides a more realistic exchange, but can take much longer to

solve.

2.3.3.1 Terminology

Objects and data structures generated in the information gathering procedure are used in the formal

definition of the NFCTP. Each portfolio can be considered separately. The set of supply portfolios is

denoted as S and the set of request portfolios is denoted asR, and each agent may have multiple portfolios

in a given exchange. Each supply portfolio is comprised of sM supply nodes, and each request portfolio is

comprised of rN nodes. The set of supply nodes is denoted I , and the set of request nodes is denoted J .

The total number of supply and request nodes is then

|I| =
∑
s∈S

sM (2.2)

and

|J | =
∑
r∈R

rN . (2.3)

Each portfolio has a set of commodities, H , associated with it. These are denoted Hs for supply

portfolios and Hr for request portfolios. Furthermore, each portfolio has a set of constraints, K, associated

with it. Each constraint has a constraining value, bk
s and bk

r , respectively. Additionally, each unique

combination of portfolio and constraint has an associated constraint coefficient conversion function, denoted

βk
s for supply portfolios and βk

r for request portfolios. Each constraint coefficient conversion function

takes as an argument a proposed resource qi,j . Request portfolios are provided a quantity constraint by



37

default for which coefficients are unity. For a set of mutual requests, M , where each request has a request

quantity, xm, the coefficient is defined by the ratio between the the average request quantity over all

mutual requests and xm

βr,m = x̄M

xm
. (2.4)

The constraint conversion functions are utilized in the NFCTP by applying them to the proposed

resource transfers, creating constraint coefficients. Coefficients for supply constraints are defined as

ak
i,j = βk

s (qij
). (2.5)

Coefficients for request constraints are defined as

ak
j,i = βk

r (qij ). (2.6)

Finally, for each supply-request node pair, there is an associated preference, pi,j . The set of all prefer-

ences is denoted P . Similarly, flow between a node pair is denoted xi,j , and the set of all flows is denoted

X . The possible flow on an arc is provided an upper bound by the request node quantity, x̃j .

2.3.3.2 Exchange Graph

Upon completion of the information gathering phase, a bipartite network is formed. This network is called

the exchange graph. The network consists of sending (bid) nodes, I , and receiving (request) nodes, J . For

each request node, j, there may be many bid nodes; however, there is a one-to-one mapping between bid

nodes and request nodes. In other words, a given bid node, i, is a unique response to a request node, j.

An example of a bare exchange graph graph is shown in Figure 2.9.

In the bipartite graph, portfolios act as partitions that group nodes together. Node groups share

common constraints, and request node groups share a common notion of satisfiable quantity, i.e., a default

mass-based constraint. An example of a partitioned exchange graph is shown in Figure 2.10.

Because of defined constraints, there may not be sufficient supply in the simulated exchange. To ensure

a feasible solution, an unconstrained false supply node is added to the exchange graph. Additionally,

false nodes are added to each request portfolio and are connected to the false supply source. These arcs
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RequestsBids

Figure 2.9: A bare example exchange with supply nodes colored orange on left and request nodes colored
blue on right. As shown, there can be multiple supply nodes connected to a request node, but each supply
node corresponds uniquely to one request node. It is a specific response to that request, as outlined in the
RRFB phase.

are denoted as false arcs. The preferences given to each false arc, pf , is defined to be lower than the lowest

preference in the system, P .

pf < minP (2.7)

The total number of arcs in the system, |At|, is then increased by the number of request portfolios, i.e.,

|At| = |A|+ |R| (2.8)

Because preferences are defined as in Equation 2.7, any false arc will only be engaged if no other

possible arc can be engage, due to capacity constraints. If any flow is assigned to false arcs after the

exchange graph is solved, that flow is ignored when initiating transactions. Figure 2.11 shows a fully
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Figure 2.10: The same exchange shown in Figure 2.9 with the inclusion of portfolio partitions. In this
example, there are three supplier agents and two consumer agents. The second consumer has two
requests (for different commodities) which may satisfy its demand. The second supplier can supply the
commodities requested by both consumers and has provided two bids accordingly.

defined exchange graph.

2.3.3.3 Arc Properties

The result of the DRE is flow determined along arcs, where arcs connect supply nodes to request nodes. A

number of properties are defined on arcs, namely commodities, constraint coefficients, and preferences.

Commodities

During the information gathering step in section 2.3.2, consumers and suppliers are queried based

on commodities. A consumer is allowed to request multiple commodities, and a supplier is allowed to

supply multiple commodities. However, each possible resource transfer, i.e., each arc, is based on a single

commodity. Accordingly, it is possible to color each arc, given a commodity-to-color mapping.
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Figure 2.11: The same exchange shown in Figure 2.10 with the inclusion of false arcs. The false supplier
and consumer nodes are shown with a dashed outline. Similarly, false arcs are dashed. Note that the false
nodes have no associated portfolio structure – there are no constraints associated with false nodes and
arcs. The inclusion of a false supplier and consumer guarantees a feasible solution.

For example, consider an exchange similar to that shown in Figure 2.10 with two fuel commodities (A,

B), two requesters (R1, R2), and two suppliers (S1, S2, S3) in the configuration described by Tables 2.4

and 2.5.

Supplier Commodities
S1 A
S2 A, B
S3 B

Table 2.4: A mapping from suppliers to commodities supplied.

Given the color map A: green, B: brown, the resulting exchange graph can be colored as shown in
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Consumer Commodities
R1 A
R2 B

Table 2.5: A mapping from requesters to commodities requested.

Figure 2.12: The same exchange shown in Figure 2.10 arcs colored by commodity based on Tables 2.4 and
2.5. A green arc corresponds to commodity A; a brown arc corresponds to commodity B.

Figure 2.12.

The notion of commodities is critical during the information gathering step as it is the basic classification

used in communicating supply and demand. It is also useful when an exchange graph is formed, because

the graph may be able to be partitioned by collections of commodities. However, once minimally connected

exchange graphs are established, solution mechanisms do not employ the notion of commodities. Rather,

quantities, constraints, and preferences are used.

Constraint Coefficients

Constraint coefficients are determined for an arc based on the proposed resource to be transferred along

that arc, the requester’s constraint conversion functions, and the suppliers constraint conversion function.
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An example of supply-based constraints is provided to help clarify its purpose.

Consider a supplier enrichment facility, s, which produces the commodity enriched uranium (EU).

This facility has two constraints on its operation for any given time period: the amount of Separative Work

Units (SWU) that it can process, bSW U
s , and the total natural uranium (NU) feed it has on hand., bNU

s . The

constraint set for s is then

Ks = {SWU,NU}. (2.9)

Note that neither of these capacities are measure directly in the units of the commodity it produces,

i.e., kilograms of EU.

Consider a set of requests for enriched uranium that this facility can possibly meet. Such requests have,

in general, two parameters: Pj , the total product quantity (in kilograms), and εj , the product enrichment

(in w/o 235U ).1 For the purposes of this constraint set, the quality of material in question is its enrichment,

i.e.,

qj ≡ εj . (2.10)

These values are set during a prior phase of the overall matching algorithm, and can therefore be

considered constant. Further, note that, in general, an enrichment facility’s operation, or rather its capacity,

is governed by two parameters: εf , the fraction of 235U in its feed material, and εt, the fraction of 235U

in its tails material. These parameters determine the amount of SWU required to produce some amount

of enriched uranium, shown in Equation 2.11 as well as the amount of natural uranium, or feed, required,

as shown in Equation 2.12.

SWU = P (V (εj) + εj − εf

εf − εt
V (εt)

− εj − εt

εf − εt
V (εf ))

(2.11)

F = P
εj − εt

εf − εt
(2.12)

1The notation for enrichment, εj , is chosen over its normal form, xp, to limit confusion with the notation of material flow, xh
i,j .
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P in Equations 2.11 and 2.12 is the amount of produced enriched uranium, F is the amount of feed, or

natural uranium, and V (x) is the value function,

V (x) = (1− 2x) ln
(

1− x
x

)
(2.13)

Utilizing the above equations, one can denote the functional forms of the arguments of this facility’s

two capacity constraints.

βNU
s (εj) = εj − εt

εf − εt
(2.14)

βSW U
s (εj) = V (εj)

+ εj − εf

εf − εt
V (εt)

− εj − εt

εf − εt
V (εf )

(2.15)

These constraints correspond to the per-unit requirements for enriched uranium of natural uranium

feed and SWU. Finally, we can form the set of constraint equations for the enrichment facility by combining

Equations 2.10, 2.14, and 2.15.

∑
j∈J

βNU
s (εj) xs,j ≤ bNU

s (2.16)

∑
j∈J

βSW U
s (εj) xs,j ≤ bSW U

s (2.17)

Preferences & Costs

In any network flow problem, of which transportation problems are a subset, the objective coefficients

associated with transporting commodities is what drives the solution. Given the nature of supply and

demand constraints, the transportation problem naturally lends itself to a minimum cost formulation. A

preference-based formulation has been presented thus far due to the difficulties of employing reasonable

cost coefficients, as was discussed in section 1.3.2. While directly using costs should be available to users,

in practice using a more abstract notion of preferences is simpler.
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Formally, a preference function, pi,j(h), is defined which is a cardinal preference ordering over a

consumer’s satisfying commodity set.

pi,j(h) ∀i ∈ I ∀h ∈ Hr (2.18)

A preference is assigned to each arc in the NFCTP, and are a function both of the consumer, j, and

producer, i, and the proposed resource transfer from consumer to producer. The dependence on producer

encapsulates the relationship effects due to managerial preferences. The preference set used in the NFCTP

formulation follows directly from the Preference Adjustment phase described in section 2.3.2.

The notion of a preference is a positive one, that is, an optimal solution maximizes the product of

preference and flow in the system. However, the transportation problem requires a cost-based objective

function. Because preferences are a proxy for cost and there is a desire to support cost-based DREs in the

future, a preference-to-cost translation function is utilized. A cost translation function, f , is defined that

operates on the commodity preference function to produce an appropriate cost for the NFCTP.

f : pi,j(h)→ ci,j (2.19)

For the purposes of this work, any operator that preserves the preference monotonicity and cardinal

ordering is suitable. The inversion operator has been chosen because it preserves required features and

also allows for easy translation from preference to cost as well as translation from cost to preference.

f(x) = 1
x

(2.20)

If cost data and a valid cost assignment methodology is developed in the future, costs may be used

directly, and the preference-to-cost translation may be ignored.

2.3.3.4 Linear Programming Formulation

Combining the previous discussions, the LP Formulation of the NFCTP, denoted the NFCTP-LP, can

be constructed. In general, the NFCTP is a minimum cost transportation problem that includes custom

constraints as described in previous sections. Including all of the discussion in the previous sections, the

formulation is straightforward and shown in Equation 2.21.
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min
x

z =
∑
i∈I

∑
j∈J

ci,jxi,j (2.21a)

s.t.
∑
i∈Is

∑
j∈J

ak
i,jxi,j ≤ bk

s ∀ k ∈ Ks,∀ s ∈ S (2.21b)

∑
j∈Jr

∑
i∈I

ak
i,jxi,j ≥ bk

r ∀ k ∈ Kr,∀ r ∈ R (2.21c)

xi,j ∈ [0, x̃j ] ∀ i ∈ I, ∀ j ∈ J (2.21d)

The variables and sets used to define Equation 2.21 have been described in detail in previous sections.

A short synopsis of the sets used is provided in Table 2.6, and a corresponding synopsis of the variables

used is provided in Table 2.7.

Set Description
S suppliers
R requesters
I all supply nodes
Is nodes for a supplier s
J all request nodes
Jr nodes for a requester r
Ks constraints for a supplier s
Kr constraints for a requester r
X the feasible set of flows between producers and consumers

Table 2.6: Sets Appearing in the NFCTP-LP Formulation

Variable Description
ci,j the unit cost of flow from producer node i to consumer node j
xi,j a decision variable, the flow from producer node i to consumer node j
ak

i,j the constraint coefficient for constraint k on flow between nodes i and j
bk

s the constraining value for constraint k of supplier s
bk

r the constraining value for constraint k of requester r
x̃j the requested quantity associated with request node j

Table 2.7: Variables Appearing in the NFCTP-LP Formulation

Notably, a feasible solution to the formulation provided in Equation 2.21 is guaranteed due to the

presence of false arcs. Accordingly, the DRE using this formulation will never fail within a simulation.
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2.3.3.5 Mixed Integer Linear Programming Formulation

The previous linear program (LP) formulation of the Generic Fuel Cycle Transportation Problem fully

describes many of the types of transactions that arise at any given time step. However, it does not allow

the critical case of reactor fuel orders, which comprise a large amount of material orders within the

simulation context. Specifically, it allows reactor fuel orders to be met by more than one supplier with an

arbitrary amount of the order met by each supplier. Put another way, the LP formulation does not contain

the discrete material information required to model the transaction of fuel assemblies.

In order to provide this capability of quantizing orders, binary decision variables must be introduced.

The addition of integer variables changes both the complexity of the formulation and the complexity of

the solution technique. Such a change requires a Mixed Integer-Linear Program (MILP) formulation and

solution via the branch-and-bound method which solves NP-Hard combinatorial optimization problems.

Binary Variables

The primary difference between the LP and MILP formulations is the inclusion binary decision variables

yi,j . A variable yi,j has a value of 1 if flow occurs between producer node i and consumer node j. If flow

occurs, its quantity will be equal to the equivalent flow upper bound along that arc, x̃j , which denote the

quantity of a quantized order.

Binary variables, representing quantized flow, are directly related to the notion of exclusive bids and

requests discussed in section 2.3.2. In the MILP formulation, an arc (i, j) is considered exclusive if either

node i or node j was defined as exclusive in the information gathering phase of the DRE. Accordingly, it

is useful to partition all arcs based on this characteristic. Given the set of arcs A, a partition exists such

that A can be separated into exclusive arcs, Ae, and non-exclusive arcs, or arcs that allow partial flow, Ap.

A = Ap ∪Ae (2.22)

Similarly, each partition can be further subdivided into partitions based on supplier and requester.

A =
⋃

r∈R

Apr ∪Aer (2.23)
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A =
⋃
s∈S

Aps ∪Aes (2.24)

Mutually Exclusive Constraints

Mutual requests and responses were described in section 2.3.2. These are defined as a set of requests or

responses, of which only one may be satisfied. This is represented in the formulation as a constraint on

the associated variables. Again, if a variable yi,j is set to 1, flow is sent along arc (i, j). If it is 0, no flow

occurs. A mutually exclusive constraint simply says that only one arc in a mutual set may have a value of 1.

The set of mutually satisfying arcs is denoted Ms and Mr for suppliers and requesters, respectively.

The associated constraints are then defined by Equations 2.25 and 2.26.

∑
(i,j)∈Ms

yi,j ≤ 1 ∀ s ∈ S (2.25)

∑
(i,j)∈Mr

yi,j ≤ 1 ∀ r ∈ R (2.26)

Formulation

Using the above arc partition notation allows for a much simpler written formulation of the MILP that

looks quite close to the related LP formulation shown in Equation 2.21. The full formulation of the NFCTP

is shown in Equation 2.27. The sets and variables involved in Equation 2.27 are described in Tables 2.8

and 2.9.



48

min
x,y

z =
∑

(i,j)∈Ap

ci,jxi,j +
∑

(i,j)∈Ae

ci,j x̃jyi,j (2.27a)

s.t.
∑

(i,j)∈Aps

ak
i,jxi,j +

∑
(i,j)∈Aes

ak
i,j x̃jyi,j ≤ bk

s ∀ k ∈ Ks,∀ s ∈ S (2.27b)

∑
(i,j)∈Ms

yi,j ≤ 1 ∀ s ∈ S (2.27c)

∑
(i,j)∈Apr

ak
i,jxi,j +

∑
(i,j)∈Aer

ak
i,j x̃jyi,j ≥ bk

r ∀ k ∈ Kr,∀ r ∈ R (2.27d)

∑
(i,j)∈Mr

yi,j ≤ 1 ∀ r ∈ R (2.27e)

xi,j ∈ [0, x̃j ] ∀ (i, j) ∈ Ap (2.27f)

yi,j ∈ {0, 1} ∀ (i, j) ∈ Ae (2.27g)

Set Description
S suppliers
R requesters
Ap arcs that allow partial flows
Ae exclusive flow arcs
Aps

arcs that allow partial flows for supplier s
Aes exclusive flow arcs for supplier s
App arcs that allow partial flows for requester r
Aep

exclusive flow arcs for requester r
Ms arcs (i, j) associated with mutually exclusive supply for supplier s
Mr arcs (i, j) associated with mutually exclusive requests for requester r
X the feasible set of flows between producers and consumers
Y the binary variable set of flows between producers and consumers

Table 2.8: Sets Appearing in the NFCTP Formulation

Variable Description
ci,j the unit cost of flow from producer node i to consumer node j
xi,j a decision variable, the flow from producer node i to consumer node j
yi,j a decision variable, whether flow exists from producer node i to consumer node j
ak

i,j the constraint coefficient for constraint k on flow between nodes i and j
bk

s the constraining value for constraint k of supplier s
bk

r the constraining value for constraint k of requester r
x̃j the requested quantity associated with request node j

Table 2.9: Variables Appearing in the NFCTP Formulation
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The examples of the various constraints from the previous section also apply here. The only difference

is the notion of the binary variables, yi,j , which act as on/off switch as to whether a consumer’s entire

requested amount of a resource is met by a supplier or not.

Using this advanced formulation adds significant complexity to the resolution method at every time

step. However, should a user wish to find a feasible solution in a shorter amount of time, simple heuristics

exist. Such a heuristic used in Cyclus is provided in section 2.3.3.6, and further heuristic development is a

fruitful area of future work.

Note that each constraint coefficient for binary variables can be rewritten as Equation 2.28 and each

objective coefficient can be rewritten as Equation 2.29.

ak′
i,j = ak

i,j x̃j (2.28)

c′i,j = ci,j x̃j (2.29)

Using both updated definitions, a simpler formulation can be written and is shown in Equation 2.30.

min
x,y

z =
∑

(i,j)∈Ap

ci,jxi,j +
∑

(i,j)∈Ae

c′i,jyi,j (2.30a)

s.t.
∑

(i,j)∈Aps

ak
i,jxi,j +

∑
(i,j)∈Aes

ak′
i,jyi,j ≤ bk

s ∀ k ∈ Ks,∀ s ∈ S (2.30b)

∑
(i,j)∈Ms

yi,j ≤ 1 ∀ s ∈ S (2.30c)

∑
(i,j)∈Apr

ak
i,jxi,j +

∑
(i,j)∈Aer

ak′
i,jyi,j ≥ bk

r ∀ k ∈ Kr,∀ r ∈ R (2.30d)

∑
(i,j)∈Mr

yi,j ≤ 1 ∀ r ∈ R (2.30e)

xi,j ∈ [0, x̃j ] ∀ (i, j) ∈ Ap (2.30f)

yi,j ∈ {0, 1} ∀ (i, j) ∈ Ae (2.30g)
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2.3.3.6 A Heuristic Solution

With full simulation domain knowledge of supply and demand, including false arcs, a feasible solution

can be found. By definition a feasible solution is a solution to the possible flow of resources, but not

necessarily an optimal solution. Many heuristics may be applied to bipartite graphs with constrained flows.

A simple greedy heuristic is presented here and implemented.

The maximum flow along an arc, xmax, depends on the constraints associated with each node on

the arc. For nodes i and j belonging to portfolios s and r, respectively, the maximum allowable flow is

defined as

xmax = min{min{ b
k
s

ak
i,j

∀k ∈ Ks}, min{ b
k
r

ak
i,j

∀k ∈ Kr}}. (2.31)

The Greedy Exchange Heuristic matches maximum flow along arcs, up to the requested amount

defined by each request portfolio, qr, after having sorted all arcs. The constraining values of each arc, bk,

are updated upon declaration of a match (via an AddMatch function) in Algorithm 1.

Data: A resource exchange graph with constraints and preferences.
Result: A valid set of resource flows.
sort request partitions by average preference;
forall the r ∈ R do

sort requests by average preference;
matched← 0;
while matched ≤ qr and ∃ a request do

get next request;
sort incoming arcs by preference;
while matched ≤ qr and ∃ an arc do

get next arc;
remaining← qr - matched;
to_match← min{remaining, xmax};
AddMatch(arc, to_match);
matched←matched + to_match;

end
end

end
Algorithm 1: Greedy Exchange Heuristic
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2.3.3.7 Departure from the MCTP

The classic MCTP includes the coloring of flows based on commodity type. For example, for a commodity,

h, the unit cost of flow would be ch
i,j rather than ci,j . This is included because multiple commodities can

flow along the same arc in the MCTP. In other words, the node-arc incidence matrix includes an extra

commodity dimension.

The multicommodity nature of the NFCTP is included in constraints, rather than arcs. Because each

node pairing, (i, j), corresponds to a specific, proposed resource transfer, it can only have one commodity

associated with it. Instead, the constraint set, K, is applied over multiple arcs, where each arc is assigned

its own commodity.

Take the enrichment facility example, expanding on the previous discussion. Note that an enrichment

facility takes feed uranium and then enriches its 235U content. This feed uranium can come from different

sources which have different feed enrichments. In practice, the most likely sources of feed uranium

are natural uranium (NU) or recycled uranium (RU), a product of reprocessing light water reactor fuel.

Recycled uranium may be advantageous to use if it has a higher weight percent of 235U than does natural

uranium. We can now state the set the values for Hr for this facility:

Hr = {NU,RU} (2.32)

One or more constraints would then accompany any requests. For example, one could constraint total
235U content needed, which would include both NU and RU flows.

2.3.4 Implementation

The DRE and its solution framework are implemented in three layers. The first layer includes information

for specific Resource types. For example, a Material-based exchange is used for agents to communicate

supply and demand information regarding Material objects. The resource layer is the point of entry and

exit of the DRE framework. It is the agent-facing interface of the DRE: supply and demand is provided to

the DRE as input during the information gathering step, and trades to be executed are provided to agents

as output.

The second layer, called the exchange layer, is a Resource-agnostic implementation of a specialized

bipartite graph. Supply/demand constructs in the first layer are translated into stateful objects repre-
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Figure 2.13: The full DRE workflow is shown. The information gathering phase results in the resource
layer. The resource layer is translated to the exchange layer; a decision is made whether to continue
translation or to directly solve, marked by the number 1. If the exchange is not solved, it is translated into
an instance of the NFCTP resulting in the formulation layer. A choice of solver is made, marked by the
number 2, and the instance is solved. The solution is back-translated through the exchange and resource
layers. The result is a series of resource trades to be executed in the simulation.

senting nodes, arcs, constructs that carry constraint information, et cetera. The collection of objects and

structures combine to create an ExchangeGraph. Any custom, Cyclus-aware solver can be applied to an

ExchangeGraph to determine a feasible solution to the DRE.

In order to use sophisticated, 3rd party LP and MILP solving libraries, the ExchangeGraph must be

translated into an appropriate data structure representing an instance of the NFCTP, resulting in the

formulation layer. The Open Solver Interface (OSI) [24] is used to create the necessary formulation structures,

including a constraint matrix and objective coefficient vector. The NFCTP instance is then solved.

After a feasible, perhaps optimal, solution to the NFCTP is found, whether in the exchange or formu-

lation layer, the solution is back-translated to the resource layer. The agents associated with successful

supply-demand connections are informed, and trades of resources between agents are executed. A graphic

of the entire workflow is shown in Figure 2.13.
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2.3.4.1 Resource Layer

The resource layer utilizes templated classes in order to reduce the amount of code required for implemen-

tation. Each object is templated on the concrete Resource type, e.g., the Material and Product classes.

The fundamental data structures in the resource layer reflect the constructs of the information gathering

procedure described in section 2.3.2.

In the RFB phase of the DRE, agents populate RequestPortfolios with Requests and Capacity-

Constraints. A Request defines a desired Resource, communicating quantity, quality, and preference.

Any number of CapacityConstraints may be added to a RequestPortfolio. A CapacityConstraint

defines a capacitating value and a conversion function that takes as an argument a Resource and returns a

value in units of the conversion function. For RequestPortfolios, constraints are assumed to be demand

constraints, i.e., take the form of a greater-than constraint. In the RRFB phase of the DRE, agents populate

BidPortfolios with Bids and CapacityConstraints. Agents can inspect the population of Requests and

associated Resources. A Bid targets a specific Request, responding with a proposed Resource to transfer

to the requester. CapacityConstraints are applied to all Bids in a portfolio. For bidders, constraints are

assumed to be less-than constraints. Before continuing, requesting agents and their managers are allowed

to alter the preference associated with each Request-Bid pair in the PA phase of the DRE. When a solution

to the DRE is found, bidders associated with successful Request-Bid pairs are informed, and a trade of

the bidder’s Resource is initiated.

Future work can be focused on providing more features to the DRE implementation. A natural

extension of the present work is to support both kinds of constraints, greater and less-than, in Portfolio

data structures. Additionally, the PA procedure could use a negotiation model that involves both suppliers

and requesters in order to define a final preference for an arc. Such an extension would allow for more

seamless and natural usage of arc costs in addition to preferences.

2.3.4.2 Exchange Layer

The exchange layer is constructed by an ExchangeTranslator object that translates the resource layer

objects into an instance of an ExchangeGraph. Request and bid objects are translated to ExchangeNodes,

and portfolio objects are translated to ExchangeGroups. Constraint coefficient and preference informa-

tion is recorded on ExchangeArcs, which store a reference to a supply ExchangeNode and a demand
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ExchangeNode. Finally, constraint values are stored on the appropriate ExchangeGroup object.

An ExchangeContext object is tasked with storing a mapping from Request and Bid objects to their

associated ExchangeNode. Importantly, the exchange layer does not depend on resource type, i.e., the

resource type is abstracted away during translation. Finally, a general solver can be implemented that oper-

ates on the ExchangeGraph. A solution to the ExchangeGraph instance is a mapping from ExchangeArcs to

flow quantities that does not violate the provided constraints. After a solution is found, it is back-translated

to the resource layer.

2.3.4.3 Formulation Layer

While a solver may operate on the exchange layer, an instance of an ExchangeGraph can be translated

fully into the NFCTP. Once in an LP or MILP form, the DRE instance can be solved by sophisticated 3rd

party libraries. In order to interface with a large number of the possible solvers, including COIN-OR and

CPLEX, the COIN-OR OSI API [24] is utilized.

The translation from the exchange layer to formulation layer is managed by the ProgTranslator

class. A variable in the NFCTP is associated with each ExchangeArc, with variable bounds set by request

values on ExchangeNodes; a binary variable is used if the arc is exclusive, otherwise a linear variable

is used. Capacity coefficients and preference values defined for ExchangeArcs are translated into an

objective coefficient vector and constraint matrix. The right-hand-side b constraint vector is determined

by ExchangeGroup constraining values.

A solution to the NFCTP instance is determined by the identified solver, assigning values to linear

and integer variables. Linear variable values map directly to assigned resource flow quantity. If a binary

variable is set to unity in a solution, the maximum possible flow value is assigned, analogous to x̃j in

the NFCTP formulation. The variable-flow value assignment is then back-translated into an equivalent

ExchangeArc-flow value assignment by the ProgTranslator.

2.3.5 Proof of Principle

In order to demonstrate the correctness of the methodology and implementation, two test cases were

developed and analyzed. These test cases are entire Cyclus simulations in which the full DRE procedure is

executed at each time step. Both scenarios validate the ability of the DRE to model preferences, preference

adjustment, and unresolved markets. The first scenario is a simulation including quantity-based constraints
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MOX_Source

UOX_Source

Reactor1

Reactor2

Reactor3

Figure 2.14: Schematic illustrating the first fuel cycle scenario. The thickness of the arrows represents the
preference value and the grey color indicates that a material transfer is possible.

and dynamic commodity-based preferences. The second scenario illustrates a simulation that involves

quality constraints and dynamic quality-based requests. In each scenario, fuel quantities are treated using

arbitrary units without loss of generality. For the purposes of the enrichment example, a unit of fuel is

equivalent to a kilogram.

Each scenario is comprised of archetypes defined in Cycamore [61]. The minimal Institution and

Region archetypes are used because no complicated facility deployment logic is needed. The facility

archetypes used include the SourceFacility, BatchReactor, and EnrichmentFacility.

Finally, each instance of the DRE is solved using the greedy heuristic described in section 2.3.3.6. In

each case, requests and supplies are not exclusive, and thus multiple sources of supply may be matched

to a request. In general, these exchanges are very small and have a unique objective solution which

corresponds to the solution determined by the greedy heuristic.

2.3.5.1 Test Cases

2 Sources, 3 Reactors

As shown in Figure 2.14, this scenario includes three BatchReactors and two SourceFacilities. The BatchReac-

tors, denoted as Reactor1, Reactor2, and Reactor3, each have a unique fuel preference. One SourceFacility

supplies MOX while the other supplies UOX; these are denoted as MOX_Source and UOX_Source, respec-

tively. Any reactor may be fueled from MOX or UOX fuel; both fuel types are fungible in this scenario.
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In this example case Reactor1, Reactor2, and Reactor3 are deployed sequentially over 3 time steps.

Each of these has a full core when built and requires 1 unit of fresh fuel at each subsequent time step.

Both source facilities have a capacity of 2.5 units each time step.

The simulation begins with the following facilities: MOX_Source, UOX_Source, and Reactor1. At time

step 2, Reactor2 is deployed, followed by Reactor3 at time step 3. Reactor1 and Reactor2 both are

given a stronger preference for MOX requests than Reactor3. At time step 4, Reactor1, Reactor2, and

Reactor3 all request to refuel with MOX. At time step 5, Reactor1 changes its preference to UOX. Table

2.10 summarizes the reactor preferences as a function of time.

Table 2.10: Time sequence of reactor preferences and the total MOX requested. The MOX capacity for
each time step is 2.5 units.

Time
step Reactor1 Reactor2 Reactor3

Total MOX
Requested
[units]

Fuel Preference Fuel Preference Fuel Preference
1 MOX 1.0 none none 0.0
2 MOX 1.0 MOX 1.0 none 1.0
3 MOX 1.0 MOX 1.0 MOX 0.5 2.0
4 MOX 1.0 MOX 1.0 MOX 0.5 3.0
5 UOX 2.0 MOX 1.0 MOX 0.5 2.0
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Enrichment, 2 Reactors

As pictured in Figure 2.15, this scenario includes one EnrichmentFacility and two BatchReactors. The Enrich-

mentFacility, denoted as Enrichment, has a designated capacity at each time step. The two BatchReactors,

denoted as Reactor1 and Reactor2, request a given amount and quality of enriched uranium upon

refueling.

The Enrichment facility is constrained by a constant capacity of 10 SWU per time step. For this entire

simulation, trade between Enrichment and Reactor1 is preferred over trade between Enrichment and

Reactor2 with preference values of 1.0 and 0.5, respectively. Each reactor requests 1 unit of enriched

uranium at each time step.

Initially, both reactors are present in the simulation and have a full core of 3% enriched uranium. On

time step 1, Reactor1 requests uranium enriched to 5% U-235 while Reactor2 requests uranium at a 3%

enrichment level. At time step 2, Reactor1 reduces its enrichment request to 3%. Table 2.11 summarizes

the reactor requests as a function of time.

Enrichment

Reactor1

Reactor2

Figure 2.15: Schematic illustrating the second fuel cycle scenario. The thickness of the arrows represents
the preference value.
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Table 2.11: Time sequence of reactor preferences and the total SWU requested. The SWU capacity for
each time step is 10.

Time
step Reactor1 Reactor2 Total SWU

Requested
Recipe Preference Recipe Preference

0 3% U-235 3% U-235 0
1 5% U-235 1.0 3% U-235 0.5 10.6
2 3% U-235 1.0 3% U-235 0.5 6.8
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2.3.5.2 Results

The cases outlined in section 2.3.5.1 have been designed to provide different conditions at each point in

time. The results for these cases are discussed below. In each of these cases, the total Cyclus run time was

∼0.1 seconds and the output database size was ∼68 kB.

Note that the resource flows in Figures 2.16-2.22 have been generated automatically from Cyclus

output using Cyan [17]. Due to this, these figures only show facility agents which participated in a

resource exchange. For instance, Figure 2.16 does not show the UOX_Source facility, even though it is

present in the simulation.

2 Sources, 3 Reactors

Initially present are the source facilities and Reactor1. Reactor1 has a preference for accepting MOX

fuel over UOX. The MOX_Source capacity of 2.5 units is more than enough to handle the 1 unit of MOX

requested by Reactor1. This matching may be seen in Figure 2.16. The MOX_Source only provides the 1

unit of material requested by Reactor1. It, correctly, does not oversupply.

At time step 2 in this simulation, Reactor2 is deployed and also requests fuel with the preference for

MOX. Figure 2.17 displays that the MOX_Source indeed has the required capacity to meet the requests

of both of the reactors. This may seem trivial at first glance but it is important to emphasize that the

resource exchange solver was not altered in any way to handle both time steps 1 and 2. Furthermore, the

solver on time step 1 had no future knowledge that Reactor2 would be deployed on time step 2. This is

significantly different than the traditional system dynamics approach.

On time step 3, Reactor3 is deployed. This facility still prefers to accept MOX fuel over UOX fuel. At

this point, 3 units of MOX are requested (1 unit from each facility) but the MOX_Source may only provide

Figure 2.16: Time step 1 for the 2 Sources, 3 Reactors case.
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Figure 2.17: Time step 2 for the 2 Sources, 3 Reactors case.

Table 2.12: Resource exchange preferences for agents on time steps 3 and 4 for reactors in the 2 sources, 3
reactors case.

t = 3 t = 4
Agent UOX MOX UOX MOX
Reactor1 0.0 1.0 2.0 1.0
Reactor2 0.0 1.0 0.0 1.0
Reactor3 0.0 0.5 0.0 0.5

Figure 2.18: Time step 3 for the 2 Sources, 3 Reactors case.

2.5 units. Because of this, the UOX_Source, which has been present in the simulation since the beginning,

now enters the exchange to make up for the missing 0.5 units of fuel not obtainable from the MOX_Source.

Reactor3 is selected to receive the UOX fuel rather than Reactor1 and Reactor2. These preferences are

detailed in Table 2.12. In time step, 3 because all agents tie for UOX, Reactor1 and Reactor2 tie for MOX,

and the Reactor3 preference for MOX is less than the others, Reactor3’s full request for MOX is not met

and it must top-up with UOX. This situation is displayed in Figure 2.18.

Finally, on time step 4 the preference of Reactor1 for UOX changes from 0.0 to 2.0. This alteration

causes the tie previously present for UOX to be broken. Furthermore, the value of 2.0 makes this the

most preferred arc in the system so it is attempted to be satisfied first. As may be seen in Figure 2.19, the

UOX_Source capacity of 2.5 units is more than enough to satisfy the request from Reactor1 for 1 unit of
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Figure 2.19: Time step 4 for the 2 Sources, 3 Reactors case.

Figure 2.20: Time step 1 for the Enrichment and 2 Reactors case.

UOX. Since Reactor1 does not diminish the capacity of the MOX_Source both Reactor2 and Reactor3 are

able to obtain their first choice fuel.

This simple 2 source, 3 reactor simulation shows how the resource exchange can dynamically and

correctly adapt to the both facility deployments and the preferences that these agents have for requested

resources.

Enrichment and 2 Reactors

Initially, Enrichment, Reactor1, and Reactor2 are all present. The reactors both begin with cores com-

posed of 3% enriched uranium.

Figure 2.20 shows the result of the resource exchange for time step 1. Here the SWU capacity of

Enrichment is not sufficient to meet the requests for 5% and 3% enriched fuel simultaneously but is

enough to meet either of them individually. Therefore, the bid for at least one of the reactors must be

partially unmet. Due to the preferences, the requests of Reactor1 will be met first. Thus in Figure 2.20

Reactor1 receives 1 unit of 5% enriched fuel. However, Reactor2 only receives ∼80% of its request for

3% enriched uranium. This is not enough to run on and so this material is saved for the future.

On time step 2, Reactor1 now switches from requesting 5% enriched fuel to requesting 3% enriched
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Figure 2.21: Time step 2 for the Enrichment and 2 Reactors case.

Figure 2.22: Time step 3 for the Enrichment and 2 Reactors case.

fuel. However, the reactor archetypes are implemented such that if they have stored fuel from a previous

time step, they will instead only request a mass needed to create 1 unit of fuel. Therefore, Reactor2 only

requests ∼0.2 units from Enrichment. Reactor1 continues to request 1 unit of material and this is met

because the SWU capacity constraint is not exceeded. These resource flows may be seen in Figure 2.21.

No further adjustments of requests were made on time step 3. Thus the results displayed in Figure

2.22 represent the same dynamic resource exchange procedure in time step 2. The key differences here

however are that now the system has returned to a steady state and - unlike in time step 1 - the SWU

capacity of Enrichment is enough to meet the 2 units of 3% enriched fuel coming from both reactors. Thus

Reactor1 and Reactor2 each receive the kilogram of fuel that they request. Without further adjustments

this system will continue ad infinitum.

2.4 Summary

This chapter introduced a novel way to employ agent-based modeling techniques in the nuclear fuel cycle.

Section 2.1 first described how a simulation is structured, focusing on where agent interactions occur in a

given time step. A discussion of how the notion agency is applied to fuel cycle entities and a proof-of-

principle simulation was shown in section 2.2. Finally, a detailed description of a novel supply-demand,



63

agent-based framework, the DRE, was presented in section 2.3. The DRE is a critical advancement in

the realm of nuclear fuel cycle simulation, enabling arbitrary facility-based constraints, competition for

fungible resources, and the application of socio-economic models.
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3 Experimentation Methodology

The NFCTP is the first attempt at solving the supply and demand of the nuclear fuel cycle in a dynamic

manner within a NFC simulation. Accordingly, there is no precedent for investigating the performance and

efficacy of a given approach. This chapter describes an experimental methodology to assess the NFCTP

in which rules for generating instances of exchanges are defined, exchanges are generated, exchanges are

executed, and results are analyzed. The goal of this work is twofold: demonstrate the generation of a large

number of exchange instances under reasonable assumptions, and analyze the effects and performance of

different solvers applied to those exchange instances.

The chapter begins with a discussion of the generation of exchanges, in section 3.1. Two species of

exchanges are included: one in which reactors are requesting fuel, and one in which reactors are supplying

used fuel. In NFC parlance, these are called the front end of the fuel cycle and back end of the fuel cycle.

Notably, both of these exchanges occur in the same time step.

Generating and solving instances of exchanges at a large scale is a difficult problem. The Cyclopts

(Cyclus Optimization Studies) framework was implemented for this purpose, consisting of both a Python

and C++ layer. The Python layer is largely responsible for generating exchanges and interfacing with an

associated persistence mechanism. The C++ layer is compiled and linked against the Cyclus kernel shared

object library, libcyclus, and is responsible for calling directly into the kernel’s resource exchange API.

section 3.2 describes the implementation of Cyclopts and its varied modes of operation.

3.1 Generating Exchanges

Instances of resource exchanges are required to analyze the effects and performance of the NFCTP

formulation and its solvers. In the absence of large Cyclus simulations with interesting facility and

relationship models, instances must be generated given some set of rules and parameters. Two distinct
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species of exchanges are generated, those related to the front end of the nuclear fuel cycle and those related

to the back end of the nuclear fuel cycle. Broadly, the front end of the fuel cycle is concerned with fueling

reactors, and the back end is concerned with either recycling or disposing of used fuel exiting reactors.

Common features to both types of exchange generation are described in section 3.1.1.

Previously, section 2.3, described the methodology for solving a single exchange. If a large exchange is

separable, i.e., it can be completely separated into two or more smaller exchanges, sub-exchanges can be

solved independently. Section 3.1.2 provides an argument for why it is valid to split exchange instances

into, at minimum, the front and back ends of the NFC.

Exchange generation, absent full-scale simulation, is a naturally parameterized process. Some genera-

tion parameters are common to any NFCTP instance, and are described in section 3.1.3. Specific species

may additionally define their own set of parameters. Section 3.1.4 describes the parameters generation

methodology associated with front-end exchanges. Section 3.1.5 follows with a similar discussion for

back-end exchanges.

3.1.1 Common Features

3.1.1.1 Fuel Cycles and Commodities

Three types of fuel cycles are generated: a once-through fuel cycle, labeled OT; a plutonium-recycle

fuel cycle, labeled MOX; and a plutonium and thorium-recycle fuel cycle, labeled MOX-ThOX. As fuel

cycles increase in complexity, the number of commodities that exist increases, as shown in Table 3.1. The

commodities are referred to by abbreviation: Uranium Oxide (UOX), Mixed Plutonium Oxide for Thermal

Reactors (TMOX), Mixed Plutonium Oxide for Fast Reactors (FMOX), Thorium Oxide for Fast Reactors

(FThOX).

Table 3.1: A mapping between fuel cycles to the commodities that exist in each one.

Fuel Cycle Commodities
OT UOX

MOX
UOX

TMOX
FMOX

ThOX

UOX
TMOX
FMOX
FThOX
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3.1.1.2 Reactors

Reactors are modeled as either thermal or fast reactors. It is necessary to estimate the amount of fuel

exchanged by reactors each time step. Accordingly, thermal reactors are simplified models of AP-1000

reactors [1], and fast reactors are simplified models of BN-600 reactors [35]. Using the dimensions in Table

3.2, one can estimate that the AP-1000 core volume is approximately 12.5 times larger than the BN-600

core.

Table 3.2: Primary Reactor Parameters

Reactor Core Height (m) Core Diameter (m) Number of Assemblies
AP1000 4.27 3.04 157
BN600 0.75 2.05 369

Reactors operate in a batch mode, where each batch is approximately one quarter of the reactor core, an

assumption which similar to other analyses [49]. Additionally, a single AP-1000 fuel assembly is assumed

to contain 450 kg of material [39]. Therefore, a single batch of thermal reactor fuel is assumed to be

450 kg

assembly
∗ t

1000 kg ∗ 157assemblies
core

∗ 1
4core =∼ 17.6t. (3.1)

The amount of fuel required and number of assemblies by each reactor type is shown in Table 3.3. The

number of assemblies is taken as the ratio of total number of assemblies and number of batches per core

rounded to the nearest integer. The batch size for the BN600 reactor is estimated by dividing the AP1000

batch size by the relative core volume.

Table 3.3: Reactor Batch Size

Reactor Type Quantity (t) Number of Assemblies
AP1000 17.6 39
BN600 1.41 92

The reactors that operate in a given exchange is also a function of the fuel cycle being modeled. In a

OT fuel cycle, only thermal reactors exist. In the MOX case, fast reactors that prefer MOX-based fuel are

added and denoted as FMOX reactors. Finally, in the MOX-ThOX case, an additional class of fast reactor is

added that prefers ThOX-based fuels and is denoted as FThOX. A summary of available types of reactors

as a function of the fuel cycle being modeled is shown in Table 3.4, and a summary of the reactor models

used for each reactor type is shown in Table 3.5.
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Table 3.4: A mapping between fuel cycles to the reactor types that exist in exchange instances.

Fuel Cycle Reactor Types
OT Thermal

MOX
Thermal
FMOX

ThOX

Thermal
FMOX
FThOX

Table 3.5: A mapping between surrogate reactor models and reactor types.

Reactor Model Reactor Types
AP1000 Thermal

BN600 FMOX
FThOX

Reactors may be fueled by different fuel types, i.e., fuel commodities. The set of commodities that

reactors can use is a modeling assumption and a proxy for how reactors may behave in simulations; this

particular reactor-to-commodity mapping may not be true for other analysts’ fuel cycle models. However,

it is appropriate to make certain broad assumptions for such an exploratory study. A mapping of reactors

to acceptable commodities is provided in Table 3.6. Note that there is still a preference distribution

associated with each reactor-commodity pair as well as constraint coefficient effects. Accordingly, each

reactor-commodity pair provides a unique effect on an exchange instance.

Table 3.6: A mapping between reactor types and the commodities allowed to fuel each reactor type.

Reactor Types Fuel Commodities

Thermal
UOX

TMOX
FMOX

FMOX

UOX
TMOX
TMOX
FThOX

FThOX

UOX
TMOX
TMOX
FThOX

Finally, each reactors in the system is representing an individual agent in a given simulation. Agents

are assumed to have some differentiating behavior. In order to model this effect, each reactor is assigned

a random variable, x ∈ [0, 1), that represents a unique measure of quality of fuel requested by reactors.
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This stochastic property is expounded upon further in section 3.1.4 and 3.1.5.

3.1.1.3 Support Facilities

In a front-end exchange, fuel suppliers exchange material with reactors. In a back-end exchange, repro-

cessing and storage facilities exchange material with reactors. In either case, facilities that are not reactors

are referred to as support facilities, as they support the reactors which generate power. Support facilities

for front-end exchanges are described in section 3.1.4.1, and support facilities for back-end exchanges are

described in section 3.1.5.1.

3.1.1.4 Preferences

Preferences for all transactions have a default value, pc(i, j), based on the proposed commodity to be

transferred between a supplier, i, and consumer, j. However, a large exchange with a small preference

distribution results in problem degeneracy. Further, a primary application for Cyclus is the modeling of

regional and location effects on fuel cycles. Accordingly, a location proxy is provided for preferences, as

shown in Equation 3.2, in order to simulate both location-based preferences and non-degenerate exchange

instances.

Preferences can also be a function of facility location. Each facility is assigned a location value, loci ∈

[0, 1). The domain is then divided evenly into ten regions, where the first region comprises all location

values in [0, 0.1), et cetera. For example, a facility at location of 4.6 is in the fifth region. δreg and δloc are

binary variables which are activated based on the parameters described in section 3.1.3. If δreg is zero,

no location-based preferences are used. If δloc is zero, only coarse, region-based preferences are used. In

both cases, preferences are a function of the Euclidean distance between regional and location values.

The inverse exponential functional form was chosen in order to model a preference gradient that decays

as distance increases.

pl(i, j) = δreg
exp(−|regi − regj |) + δloc exp(−|loci − locj |)

1 + δloc
(3.2)

The preference for a given arc is then a weighted, linear combination of location and commodity

preferences as shown in Equation 3.3. The weighting factor, rl,c, is a parameter of exchange generation

and described further in section 3.1.3.
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p(i, j) = pc(i, j) + rl,cpl(i, j) (3.3)

3.1.2 Splitting Exchanges

A well known simplification of the Multicommodity Transportation Problem occurs when supply and de-

mand is separate for separate commodities. The large multicommodity problem can then be decomposed

into n single commodity subproblems, where n is the number of commodities. Each subproblem can be

solved separately from the others.

An analog exists in the NFCTP when the Exchange Graph is separable. A bipartite graph with directed

arcs, A, consisting of sending nodes, U , and receiving nodes, V , is separable if there a partition

A = A1 ∪A2 (3.4)

U = U1 ∪ U2 (3.5)

V = V1 ∪ V2 (3.6)

such that no node in U1 is connected to a node in V2 and no node in U2 is connected to a node in V1. The

graph shown in Figure 3.1 is an example of a separable bipartite graph.

The Exchange Graph of the NFCTP, however, has additional structure in the form of portfolios and

thus has a stricter notion of separability. Specifically, the partition must also separate the set of supplier

portfolios, S, and requester portfolios, R, as in Equations 3.7 and 3.8, respectively.

S = S1 ∪ S2 (3.7)

R = R1 ∪R2 (3.8)

Figure 3.2 depicts a separable Exchange Graph, for example, while Figure 3.3 shows an Exchange

Graph where the underlying bipartite graph is separable, but full separability is broken by the overlaid
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Figure 3.1: A separable bipartite graph with the partition shown as a red dashed line.

portfolio structure.

The Exchange Graph resulting from the information gathering phase of the DRE will be minimally

separable into front-end and back-end exchanges if two conditions are true:

1. Reactor output commodities can not be sent to both other reactors and supporting facilities.

2. Supporting facility output commodities can not be sent to both other supporting facilities and

reactors.

In the first case, separability is broken by a supplier providing bids across a separating partition.

A minimal example is shown in Figure 3.4. This case can arise if reactors can somehow directly refuel

other reactors. In the NFC domain, such an arrangement only occurs in an abstraction of a self-recycling

system in which there is a dedicated recycling complex associated with a fast reactor. It is reasonable for a
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Figure 3.2: A separable Exchange Graph with nodes grouped by portfolio and the separating partition
shown as a red dashed line.

self-recycling reactor system to be implemented in such a way that it does not participate in the DRE for

self-refueling purposes. Accordingly, this condition is expected to be met in most use cases of the DRE.

In the second case, separability is broken by a requester requesting commodities across a separating

partition. Again, a minimal example is shown in Figure 3.5. This case can arise in practice when modeling

an NFC system where both a reactor and a repository compete for some commodity. While this is a

valid modeling case under certain assumptions and simplifications, it is not very realistic. In general fuel

that can be used by a reactor has been processed differently than material to be sent to a repository. If

an instance of a DRE does not meet this requirement, it will not be able to be subdivided into smaller

instances.

Because the majority of fuel cycles analyzed will meet both conditions, most of DRE instances will be

able to be separated into at least two distinct instances which can solved independently of one another.



72

Figure 3.3: An Exchange Graph with nodes grouped by portfolio that is not separable because a portfolio
crosses the node partition.

One instance will be associated with the front end of the fuel cycle where reactors are requesting fuel.

The other instance will be associated with the back end of the fuel cycle, where reactors are supplying

used fuel.

Separability is important to this work for two reasons. First, as described in section 1.3.3, an unman-

ageable problem instance that is separable can result in two (or more) manageable problem instances. If

a truly inseparable cycle is modeled in practice, and it is found to be an intractable problem, heuristic

solutions can be used. Second, because a given fuel cycle can be separated into its front-end and back-end

components, the remainder of this works performs analyses on each component independently.
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Figure 3.4: An Exchange Graph where separability broken by a supplier. This occurs in NFC modeling if
assumption 1 is broken.



74

Figure 3.5: An Exchange Graph where separability broken by a requester. This occurs in NFC modeling if
assumption 2 is broken.
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3.1.3 Exchange Parameters

The generation of exchanges requires a set of parameters. For instance, a critical parameter is the number

of reactors in an exchange. Exchange generation parameters can be divided into two classifications,

fundamental parameters and instance parameters. All exchange species share some fundamental parameters

and instance parameters, a discussion of which is the focus of this section. Species also define their own set

of instance parameters to complete the full set of parameters needed to define an instance of an exchange.

3.1.3.1 Fundamental Parameters

The fundamental parameters are related to the common features of all instances described in section 3.1.1.

Each fundamental parameter is a switch that sets the level of fidelity of a given exchange. As such, they

are each denoted as fx, where the x subscript describes the parameter.

The most critical parameter is related to the “fidelity” of the fuel cycle being modeled, ffc. A value of

zero indicates modeling the OT fuel cycle, one is used for the MOX fuel cycle, and two the ThOX fuel

cycle. The parameter-to-fuel-cycle is summarized in Table 3.7. As fuel cycle fidelity increases, the number

of commodities increases, and thus the number of possible connections between suppliers and consumers

that exist increases, because some entities trade in multiple commodities.

Table 3.7: A mapping between fuel cycles and ffc values.

Fidelity (Fuel Cycle) ffc
UOX 0
MOX 1
ThOX 2

The second parameter is reactor fidelity, frx. Reactors can make requests or provide supply based

either on their entire batch or for each assembly in a batch. An frx value of zero indicates reactors trading

full batches, and a value of one indicates reactors trading individual assemblies. Trading individual

assemblies is of higher fidelity because the number of possible trades, and thus variables in the NFCTP

formulation, increases by an order of magnitude. The parameter-to-reactor-fidelity mapping is shown in

Table 3.8.

Finally, the fidelity with with objective value coefficients are generated can be varied. This parameter

is denoted floc because it governs the degree to which location is taken into account in Equation 3.2. The

mapping between floc and parameters in Equation 3.2 is shown in Table 3.9. As floc increases, the size of
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Table 3.8: A mapping between reactor fidelity and frx values.

Fidelity (Reactor) frx
Batches 0

Assemblies 1

the distribution of possible objective coefficient values increases. When floc is zero, the number of possible

objective coefficient values is equal to the product of the number of requester types and the number of

commodities. Increasing floc by one, the total possible values increases by a factor of ten, because there

are ten possible regional-preference values. Finally, when floc is two, the number of possible objective

values is uncountably infinite [16].

Table 3.9: floc Effects on Objective Coefficient Values in Equation 3.2.

Fidelity (Location) floc δreg δloc
No region or location data 0 0 0

Region data 1 1 0
Region and location data 2 1 0

3.1.3.2 Instance Parameters

Fundamental parameters represent switches that change the notion of the fidelity of the exchange being

generated, for example the difference between a once-through fuel cycle and a fuel cycle with recycling.

Instance parameters, on the other hand, change the shape and size of instances in a given population. In

addition to an instance’s shape and size, instance parameters can also affect coefficient generation. While

fundamental parameters are related basic modeling assumptions, instance parameters are related to the

specifics of an instance, given those basic modeling assumptions. Both species of exchange instances share

some instance parameters, namely those related to the population of reactors in a given exchange and

objective coefficient generation.

Reactor Population

Instances are broadly defined by a parameter representing the number of reactors that exist in an exchange

instance, nrx. Next, the split between thermal and fast reactors is defined by a parameter defining the

ratio of thermal reactors to all reactors in the system, rrx,Th. Assuming ffc > 0, the number of thermal

and fast reactors is given by
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nrx,Th = rrx,Thnrx, (3.9)

and

nrx,f = nrx − nrx,Th. (3.10)

If ffc is zero, a OT fuel cycle is modeled, thus nrx is equal to nrx,th as there are only thermal reactors in

the exchange. If a MOX fuel cycle is modeled, the number of FMOX reactors, nrx,FMOX, is trivially equal

to the number of fast reactors. However, for a ThOX fuel cycle, i.e., ffc > 1, the number of FMOX and

FThOX reactors is determined by a parameter defining the ratio of Thorium-fueled fast reactors to the

total population of fast reactors, rrx,FThOX, such that

nrx,FThOX = rrx,FThOXnrx,f (3.11)

and

nrx,FMOX = (1− rrx,FThOX)nrx,f . (3.12)

In the event that the determined number of reactors is non-integral, the value is rounded to the nearest

integer, with an imposed minimum value of unity.

Objective Coefficients

As shown in Equation 3.3, the value of an objective coefficient has two components, preference due to a

commodity, pc, and preference due to the relative location between two entities, pl. It is not obvious to what

degree, if any, the relative values of the two components affect formulation performance. Accordingly, a

ratio parameter, rl,c, is introduced to allow for investigating such effects.

3.1.3.3 Parameter Summary

A summary of species-independent parameters is provided in Table 3.10.
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Table 3.10: Parameter Description Summary for Species-Independent Parameters.

Parameter Type Description
ffc Fundamental The fuel cycle “fidelity” of an instance (which fuel cycle is being mod-

eled).
frx Fundamental The reactor fidelity of an instance (whether individual assemblies are

modeled or whole batches are modeled).
floc Fundamental The location fidelity of an instance (to what degree is facility location

included in objective coefficients).
nrx Instance The number of reactors in an instance.
rrx,Th Instance The ratio of thermal reactors to all reactors in an instance, if appropri-

ate.
rrx,FThOX Instance The ratio of ThOX-based fast reactors to all fast reactors, if appropriate.
rl,c Instance The weight given to location preference with respect to commodity

preference.

3.1.4 Front-End Exchanges

A front-end exchange is one in which reactors request fuel and supporting facilities supply fuel resources.

Given a specified reactor population, a supporting facility population is determined, as described in

section 3.1.4.1. Conceptually, the information gathering procedure for this exchange begins with the RFB

phase where reactors make requests for commodities with a given quantity and enrichment. Enrichment

in this case is a simple resource quality proxy for an isotopic vector. Supporting facilities are then polled

to provide a response to these requests during the RRFB phase. Managers of reactors would then adjust

preferences based on implemented strategies. The remainder of this section describes how front-end

exchange generation models the information gathering procedure, starting with the generation of requests

in section 3.1.4.2, followed by the generation of supply responses in section 3.1.4.3. The PA phase is

modeled using the location proxy described in section 3.1.1.4. Throughout the discussion on generating

front-end exchanges, instance parameters are defined. A summary of all front-end specific instance

parameters is described in section 3.1.4.4.

3.1.4.1 Support Facility Population

It is assumed that there is a single type of support facility, or supporter, for each type of commodity used

in the fuel cycle. Further, each supporter is paired with a reactor type, i.e., there is a reactor type which is

the primary consumer of each supporter type. The primary consumer-supplier relationship is modeled

within the formulation by choosing preferences such that there is a maximum preference for the provided
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relationship (described in the following sections). A summary of these relationships is provided in Table

3.11.

Table 3.11: A mapping between commodities and the supporter type of that commodity.

Commodities Supporter Primary Consumer
UOX UOX Thermal

TMOX TMOX Thermal
FMOX FMOX FMOX
FThOX FThOX FThOX

The number of each type of supporter in a front-end exchange instance is a function of of the number

of primary consumers as well as configurable parameters. Supporter types are divided into two groups:

those who primarily support thermal reactors and those who primarily support fast reactors. The number

of thermal fuel supporters is determined to be the product of the number of thermal reactors and a ratio

parameter, rs,Th, i.e.,

ns,Th = rs,Thnrx,Th. (3.13)

The number of TMOX supporters, assuming ffc > 0, is then determined by a parameter defined as the

ratio of TMOX to UOX supporters, rs,TMOX,UOX, such that the number of UOX and TMOX supporters is

ns,UOX =
ns,Th

1 + rs,TMOX,UOX
(3.14)

and

ns,TMOX = ns,Th − ns,UOX. (3.15)

The number of fast reactor fuel supporters is determined directly from the number of associated fast

reactors in the exchange using ratio parameters, rs,FMOX and rs,FThOX. Assuming ffc > 0, the number of

FMOX supporters is given as

ns,FMOX = rs,FMOXnrx,FMOX. (3.16)

Similarly, assuming ffc > 1, the number of FThOX supporters is given as
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ns,FThOX = rs,FThOXnrx,FThOX. (3.17)

3.1.4.2 Request Generation

Reactors make mutual requests for all commodities that they can consume as described in Table 3.12.

Again, a mutual request set is a group of requests of which any single request will meet a given demand.

When reactors request a single batch, i.e., when frx is zero, a single request is made per commodity. When

requesting na assemblies, a request is made per assembly per commodity, with the number of assemblies

denoted previously in Table 3.2. A single request portfolio encompasses all requests, with a portfolio

quantity equal to the reactor’s batch size.

It is assumed that fuel is requested at some enrichment level dependent on the reactor type. Each

reactor in an exchange will choose a batch enrichment level given a uniform distribution. Recycled fuel is

modeled as being composed of a target element oxide and topped up with natural uranium oxide; the

mixing ratio is again based on reactor type. For recycled fuel, the associated enrichment level describes

the enrichment of the fissile isotope in the target element. For example, MOX fuel with 45% enrichment

implies that of the elemental Plutonium in the mixture, 45% is comprised of isotopic 239Pu . Finally, each

reactor has a preference assignment over its set of consumable commodities.

Thermal reactors can consume UOX fuel as well as both MOX variants. It is assumed that thermal

reactors would prefer to consume thermal MOX fuel in order to maintain any equilibrium status of the

cycle. UOX fuel is next preferred. Finally “fast” MOX is modeled as a type of fuel that is usable by thermal

reactors, i.e., it has thermally-fissile plutonium; however it is assumed that the property of the plutonium

vector is more amenable to fast-spectrum reactors. Therefore it is least preferential. Preference values

for each commodity are summarized in Table 3.12. A normal operating enrichment range of [3.5, 5.5]

is used for UOX fuel. MOX-based fuels are assumed to be comprised of 7% Plutonium-oxide with 93%

Uranium-oxide top up [12] and an enrichment range of [55, 65] [10]. In practice, many reactor concepts

restrict the fraction of an LWR’s core that can be made up of MOX fuel rather than UOX fuel due to a

reduced safety margin. Accordingly, a tuneable parameter is added to the model, fmox, which denotes

the fraction of a request that can be made up of MOX-based fuel. This fraction is only relevant if reactors

are operating in assembly mode, i.e., if frx is unity.

MOX and ThOX fast reactors utilize the same governing request parameters but have a different
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preference distribution over commodities. It is assumed that a Thorium-based fast reactor prefers Thorium-

based fast reactor fuel over MOX-based fast reactor fuel and vice versa. Additionally, both fast reactor types

can utilize thermal MOX fuel or medium-enriched UOX, but prefer fast reactor-based fuels. Preference

values for each commodity type and reactor are summarized in Table 3.12. Both fast reactor types select

a UOX enrichment in [15, 20][10], with an upper limit set by LEU legal enrichment limits. All recycled

fuels commodities are assigned an enrichment range of [55, 65] [10] and have a composition of 20% of

the target element (Plutonium or Thorium), with the given enrichment of it’s primary fissile isotope (
239Pu or 233U ), and 80% Uranium top up [10]. Note that no large-scale fast reactors have been fueled by

Thorium-based fuels. Accordingly, Thorium-related values are broad generalizations. The purpose of

including another fuel type is to expand on the complexity of possible connections between facilities in a

given fuel cycle, while including somewhat realistic constraining values. The constraining values used by

any individual analyst will vary, perhaps greatly, and thus only reasonable values are required by this

study.

A summary of chosen chosen request parameters based on reactor and commodity types is shown in

Table 3.12.

Table 3.12: A summary of reactor request parameters.

Reactor Type Commodity Enrichment
Range

Target Element
Fraction (%), fel

Commodity
Preference, pc

Thermal
UOX [3.5, 5.5] 100 0.5

TMOX [55, 65] 7 1
FMOX [55, 65] 7 0.1

FMOX

UOX [15, 20] 100 0.1
TMOX [55, 65] 20 0.5
FMOX [55, 65] 20 1
FThOX [55, 65] 20 0.25

FThOX

UOX [15, 20] 100 0.1
TMOX [55, 65] 20 0.25
FMOX [55, 65] 20 0.5
FThOX [55, 65] 20 1

3.1.4.3 Supply Generation

With all requests known, each supporting supply facility responds to all requests for their assigned

commodity, creating an associated supply node and an arc between the supply node and request node.

Constraint coefficients are determined for each arc based on the requested enrichment associated with that
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arc. Furthermore, a right-hand side (RHS), bk
s , is provided for each constraint in addition to a coefficient

conversion function.

Each supplier has two types of constraints for which coefficients must be calculated: a process constraint

and an inventory constraint. A process constraint models a situation in which the amount of supplied

fuel is constrained physically; only so much fuel can be made in one time step. An inventory constraint

models a situation in which a supplier is constrained by the available material inventory on hand. Both

constraints are a function of requested quantity and fuel enrichment.

UOX Constraints

A UOX supplying facility is assumed to be constrained by a SWU process constraint and a natural

Uranium inventory constraint. Assuming general operating parameters, including a tails assay of 0.3 and

a feed assay of natural Uranium, 0.711, constraint coefficients can be applied to arcs. The SWU coefficient

conversion function is previously described in Equation 2.15 while the natural Uranium conversion

function is described in Equation 2.14. Therefore, for UOX supplying facilities,

βproc
s (ε) = βSWU

s (ε) (3.18)

and

βinv
s (ε) = βNU

s (ε). (3.19)

In order to determine a constraining RHS, the proposed Eagle Rock Enrichment Plant is chosen as

a model. It purports to have a SWU capacity of 3.3E6 Million SWU per year. Accordingly, the process

constraint RHS is chosen to be an approximate monthly value,

bSWU
s =∼ 2.75E5 SWU

month
. (3.20)

Any inventory constraint will be based on the present state of a facility at a given simulation time

step. Therefore, a sufficiently reasonable value must be provided without actual simulation data. Because

two constraints are added, investigating their relative effects is of interest, which leads to a strategy for

generating an inventory constraining value by deriving it from the process constraining value. In order to
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make such comparisons, the two RHS values must be equivalent in both units and with respect to the

expected coefficient values associated with each constraint. Accordingly, a translation constant is defined

to achieve both aims. The translation , τs, constant is taken to be a ratio of constraint coefficients for the

average enrichment of a support facility’s primary consumer, i.e.,

τs = βinv
s (ε̄r)

β
proc
s (ε̄r)

. (3.21)

Thus, a UOX supporting facility uses a average enrichment, ε̄r, of 4.5 because that is the median of the

thermal reactor enrichment range. Further, a ratio coefficient parameter, rinv,proc, is added in order to

investigate interesting cases from a formulation point of view. If rinv,proc > 1, then the process constraint

RHS is smaller and thus the process constraint is more likely to be engaged in an feasible solution than

the inventory constraint. On the other hand, if rinv,proc < 1, the inventory constraint is more likely to be

engaged. The determination of the inventory RHS is identical for all supporting facilities and is defined

in Equation 3.22.

binv
s = rinv,procτsb

proc
s . (3.22)

Recycled Commodity Constraints

Due to the lack of commercially viable, well documented fast reactor fuel suppliers, a simple linear

surrogate model is assumed for an inventory constraint. The primary inventory of any recycling facility

is the amount of fissile material it has on hand. Therefore, using constants defined in Table 3.12, the

coefficient function conversion function is chosen to be

βinv
s (ε) = felε. (3.23)

There are many possible process constraints that could be used, such as heat production or radiotoxicity;

however, each of these requires a detailed isotopic composition to be relevant. Accordingly, a commodity-

informed mass throughput constraint is used. Per the current IAEA practice [33], and extrapolating

the same effect for reprocessing 233U , a factor of 100 is added for for Plutonium and Thorium-based

commodities. The process constraint coefficient function is defined as
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βproc
s = 100fel. (3.24)

From previous conversations with industry representatives [46], a reasonable size for a processing

plant is 800 tonnes per year, which is similar to the Rokkasho plant in Japan [33]. Given the request

parameters defined in Table 3.12, an 800 t Uranium / 8 t Plutonium facility could service on the order

of 2-3 fast reactors or ∼2 thermal reactors with 1
3 a request as MOX. The yearly process limit is again

translated to a monthly limit, resulting in a constraint RHS value of

bproc
s =∼ 66.7 t

month
. (3.25)

The inventory constraint RHS is determined identically to the UOX case.

3.1.4.4 Parameter Summary

A summary of front-end exchange species-dependent instance parameters is provided in Table 3.13.

Table 3.13: Parameter Description Summary for Front-End Exchange Instance Parameters.

Parameter Description
fmox The fraction of thermal reactor requests that can be met with mox fuel.
rs,Th The ratio of thermal support facilities to thermal reactors.

rs,TMOX,UOX The ratio of TMOX to UOX support facilities.
rs,FMOX The ratio of FMOX support facilities to FMOX reactors.
rs,FThOX The ratio of FThOX support facilities to FThOX reactors.
rinv,proc The ratio of the inventory RHS to the process RHS.

3.1.5 Back-End Exchanges

A back-end exchange models the transfer of used fuel from reactors to supporting facilities, such as

reprocessing facilities and repositories. During the information gathering process, supporting facilities

make requests for commodities that can either be used directly in the recycling process or need to be

stored, temporarily or permanently. Reactors then respond based on output fuel to each request during

the RRFB phase. Throughout the discussion on generating back-end exchanges, instance parameters are

defined. A summary of all back-end specific instance parameters is shown in Table 3.15.
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3.1.5.1 Support Facility Population

Four classes of supporting facilities are modeled in back-end exchanges: a thermal fuel recycling facility, a

facility that recycles fast MOX fuel, a facility that recycles fast ThOX fuel, and a repository. As thermal

fuel recycling facilities are the only thermal supporting facilities, the number of such facilities in a given

back-end exchange is trivially ns,Th. As is the case with front-end exchanges, there is a class of supporting

facility for each fast fuel commodity. The methodology for determining the population of each facility

type is identical to front-end exchanges:

ns,FMOX = rs,FMOXnrx,FMOX (3.26)

and

ns,FThOX = rs,FThOXnrx,FThOX. (3.27)

Back-end exchanges include repositories, a facility type not present in front-end exchanges. A simple

ratio parameter, rrepo is applied based on the total number of other supporting facilities, i.e.,

ns,repo = rs,repo(ns,Th + ns,FMOX + ns,FThOX). (3.28)

3.1.5.2 Request Generation

It is assumed that any recycling facility will accept UOX fuel. However, MOX recycling facilities can not

process ThOX-based fuels, and ThOX facilities can not process MOX-based fuels. Additionally, fast MOX

facilities prefer fast MOX fuel, while thermal facilities prefer thermal MOX fuel. Finally, repositories

can accept all commodities; however, it is a consumer of last resort. The assigned preference value as a

function of commodity type and supporting facility type, pc is shown in Table 3.14.

Table 3.14: pc Value Mapping between Back-End Supporting Facilities and Commodities.
hhhhhhhhhhhhhhhhhSupporting Facility

Commodity
UOX TMOX FMOX FThOX

TMOX 1 1 0.5 N/A
FMOX 0.5 1 1 N/A
FThOX 0.3 N/A N/A 1
Repo 0.1 0.1 0.1 0.1
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A single request for the facility’s processing capacity is made for each commodity. Recycling facilities

define their request quantity using the same 800 ton per year limit discussed in section 3.1.4. Repositories,

however, use a limit based on the Yucca Mountain statutory limit of 77,000 tons and assuming a 30-year

operating lifetime, i.e., period of time in which fuel can enter the facility. Thus, a repository’s monthly

request quantity is determined to be ∼ 215t.

A fissile quantity constraint is added for each recycling facility. The fissile constraint models a situation

in which recycling facilities have a demand for fissile material. The amount of fissile material required by

recycling facilities is based on their primary consumer. It is determined to be the product of the facility’s

mass constraint and the mean amount of fissile material in a primary consumer’s request per unit mass,

as shown in Equation 3.29. This constraint can be considered as “recycling facilities request fissile material

quantities as if all reactors in the system are average primary consumers”.

bfiss
r = ε̄felb

mass
r . (3.29)

The fissile constraint coefficient is simply the amount of fissile material for a given supply, as described in

Equation 3.30.

βfiss
r (ε) = εfel. (3.30)

3.1.5.3 Supply Generation

A key difference between the front-end and back-end exchanges is that in front-end exchanges, reactors

request fuel, and thus can make a single request per commodity per assembly. In back-end exchanges,

commodities must be assigned to each assembly. Accordingly, a key parameter in back-end exchanges is

the commodity distribution for assemblies. A normalized uniform distribution parameter is provided for

each reactor type with a value for each commodity type that reactor can consume as defined in Equation

3.31.
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dTh = [xUOX, xTMOX, xFMOX], xi ∈ [0, 1)

dFMOX = [xUOX, xTMOX, xFMOX, xFThOX], xi ∈ [0, 1)

dFThOX = [xUOX, xTMOX, xFMOX, xFThOX], xi ∈ [0, 1)

(3.31)

If an exchange is in batch mode, i.e., frx is zero, then this distribution acts as a selection distribution,

where each xi represents a probability that the batch will be of that commodity. If in assembly mode, then

commodities are assigned to each assembly given the relative xi values. The assignment of commodities

to number of assemblies for a given reactor type is done by rounding the product of xi and the total

number of assemblies, starting with the lowest value of xi. The final assignment is then taken as the

difference between the total number of assemblies and the previously assigned values.

For example, consider a fast reactor with a distribution dTh = [ 3
4 ,

1
4 , 0] and number of assemblies

na = 39. The assembly-commodity breakdown would be calculated as

nFMOX = round(xFMOXna) = 0

nTMOX = round(xTMOXna) = 10

nUOX = na − nTMOX − nFMOX = 29.

Once a commodity is assigned either to a single batch or a selection of assemblies, the remaining

supply generation methodology is identical. If frx is zero, the following discussion uses the term assembly

to mean either an individual assembly or a batch. That is, a reactor in a back-end exchange has a single

assembly to supply. If frx is one, then it has na assemblies to supply, where na is defined in Table 3.3 for

each reactor type.

In order to assign enrichment values to each assembly, a single random value is chosen, x ∈ [0, 1).

Each assembly is then assigned an enrichment based on the assembly’s commodity and enrichment range,

as defined in Table 3.12. This modeling assumption supports a situation in which, for a given batch,

equivalent fissile enrichments were used across commodities. For example, consider a Thermal reactor

with x chosen to be 0.55. All UOX assemblies would be assigned an enrichment value of 4.6, and each
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MOX-based assembly would be assigned an enrichment value of 60.5.

A bid portfolio is assigned to each assembly. Given the commodity of each assembly, a supply response

is provided to each supporting facility that requests that commodity. For example, given a UOX assembly,

a reply is sent to each supporting facility, as all supporting facilities accept UOX, shown in Table 3.14. The

set of supply responses associated with a single assembly is denoted a mutual set. That is, each supply

node corresponds to a single assembly that should not be split between supporting facilities.

3.1.5.4 Parameter Summary

A summary of back-end exchange species-dependent instance parameters is provided in Table 3.15.

Table 3.15: Parameter Description Summary for Back-End Exchange Instance Parameters.

Parameter Description
dTh thermal reactor assembly distribution
dFMOX fast mox reactor assembly distribution
dFThOX fast thox reactor assembly distribution
rrepo repository to supporting facility ratio

3.2 Experimental Tools

In order to explore the large number of possible exchange instances described in section 3.1, a sophisticated

instance generation and solving framework is needed. This section describes the design principles and

implementation details of a new software package called Cyclopts (Cyclus Optimization Studies). Cyclopts,

written primarily in Python with a C++ layer used to interface with Cyclus, provides a general framework

for sampling a parameter space, defining problem instances for a given point in parameter space, and

solving a problem instance under a variety of conditions. While this section focuses on the Cyclopts

workflow, implementation, and high-throughput computing (HTC) capabilities, details specific to the

database layout and command line interface (CLI) are treated lightly. A full treatment of the the database

layout is provided in Appendix C, and the CLI is detailed in Appendix D.

3.2.1 Terminology

Cyclopts supports a two-tier definition of problem instances, borrowing terms from biological classification.

Problem families describe a general form of problem instance. For example, the Traveling Salesman Problem
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(TSP) could be implemented as a problem family. In this analysis, a single problem family, the NFCTP, is

investigated. The NFCTP can be considered a problem family because any given instance of the NFCTP

will have the same general structure. Whether or not the LP or MILP formulation is used is dependent on

whether or not arcs in the Exchange Graph are labeled as exclusive or not. If there are no exclusive arcs,

the LP formulation is used; otherwise, the MILP formulation is used.

Each problem family can have any number of species. One can conceptualize the relationship as a tree

structure, in which families are parent nodes and species are child nodes. A problem species defines

the methodology for generating instances of a problem family. Using the TSP example above, a problem

species may be “the greater Atlanta metropolitan area”, for which the effect of regional gas prices may be

studied. For the NFCTP study, front-end and back-end exchanges form two separate species. Each species

can have unique parameters in addition to family-related parameters, as is the case for the two species

studied.

3.2.2 Design

The full Cyclopts stack is comprised of three phases: generation of parameter space, generation of instances,

and execution of instances. The workflow begins with user input detailing a range of values for a set

of parameters. Cyclopts then translates the input into a parameter space by enumerating all possible

combinations of parameters. For example, if parameters x and y have defined values of [1, 2] and [3, 4, 5],

respectively, Cyclopts will generate a parameter space comprised of six points in (x, y) notation: (1, 3),

(1, 4), (1, 5), (2, 3), (2, 4), and (2, 5). Each point is then then provided to a problem species in order to

generate one or more problem instances. Species are expected to define defaults for all parameters as user

input may define values for only a subset of available parameters.

Given a point in parameter space, an instance can be generated. If there are any stochastic effects

during instance generation, many instances may be generated. Again, because parameters are species

dependent, the logic of instance generation from a set of parameters is the task of a problem species.

Following instance generation, instances can be executed. Cyclopts supports multiple solution options by

design. The same instance may be solved with both a heuristic and a full optimization solver, for example.

Once an instance of a problem is defined, it is independent of any species-level effects. Accordingly,

instance execution and related logic is the domain of problem families.
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Figure 3.6: A graphical representation of the Cyclopts object tree-structure. For any parent node, there is
a one-to-many mapping of children nodes. The node types in the tree structure are defined in Table 3.16.
The actions associated with moving between each level are explained in Table 3.17.

A summary of the high-level Cyclopts workflow and entities is presented in Figure 3.6. Note that

objects generated as the workflow moves from parameter space to instance solution form a tree structure.

Table 3.16: Cyclopts object tree structure node types as shown in Figure 3.6.

Label Node Type Description
A Root A definition of the full parameter space as provided by a user.
B Parameter A fully defined point in the parameter space.
C Instance A fully defined instance of a given problem.
D Solution A solution to an instance of a problem determined by an appropriate solver.
E Post-process Post-processed information, given all parent nodes.
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Table 3.17: Cyclopts actions generating child nodes as shown in Figure 3.6. The Cyclopts entity, e.g., the
family or species, associated with each action is also listed.

Label Action Entity Responsible
1 Translate a parameter space into all possible points. Cyclopts Core
2 Convert a parameter point into a number of problem instances. Problem Species
3 Execute a problem instance given a solver and record the

solution.
Problem Family

4 Post-process a solution and instance, recording relevant infor-
mation.

Problem Family & Species

3.2.3 Persistence Mechanisms

While the root node in Figure 3.6 is generated from a user-provided input file, each subsequent level in

the hierarchy represents a stateful object: a point in parameter space, a problem instance, and a solution.

Each stateful object can be written to and read from disc. Cyclopts also incorporates a post-processing

step, during which all related objects may be analyzed and aggregate data may be collected and written

to disc. While any input/output (I/O) persistence mechanism is valid, Cyclopts is currently implemented

using the Hierarchical Data Format (HDF5) [59] via PyTables [8].

Data in HDF5 is stored hierarchically, similar to a file system. At the root node of the file-system-like

structure, a group is defined for problem family and problem species data, named Family and Species,

respectively. A dataset for aggregate results named Results is also defined. A path in HDF5 is designated

in a UNIX-like manner. For example, the path to Family would be /Family, indicating that the group

is directly under the root node, /. Further, groups are defined for each kind of family and species. The

DRE problem family records data in the group /Family/ResourceExchange, front-end exchanges record

data in the group /Species/StructuredRequest, and back-end exchanges record data in the group

/Species/StructuredSupply.

Each stateful object is given a Universally Unique Identifier (UUID) by which it can be identified for

future reading and analysis. The UUID is used in two distinct capacities: as a primary key in a dataset for

future identification or as the name of a group. Whether to aggregate data in one large dataset or divide

data into datasets for each object is a design decision informed by practical performance. A study of the

trade-offs between each approach is presented in section C.5. As a result of that study, for objects that are

both read and written, the latter approach is taken.

A description of all data gathered for each family and species for conversion, execution, and post-
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processing, as well as a I/O performance study, is detailed in Appendix C.

3.2.4 Implementation

Cyclopts defines abstract application programming interfaces (APIs) for both families and species in the

ProblemFamily and ProblemSpecies classes, respectively. While many parts of an API are related to the

workflow discussed in section 3.2.2, others are related to the persistence mechanisms discussed in section

3.2.3. The full API is described in detail in the Cyclopts documentation [26]. The ExchangeFamily class im-

plements a concrete, NFCTP-specific ProblemFamily interface. The StructuredRequest class implements

a concrete, front-end-exchange interface of the ProblemSpecies class. Similarly, the StructuredSupply

implements a back-end interface to the class.

Given a point in parameter space, both the StructuredSupply and StructuredRequest generate an

instance of an ExchangeGraph per the rules described in section 3.1. Cyclopts is nominally written in

Python and Cyclus is written in C++. In order to construct objects that can interact with Cyclus, an

interoperability layer is required.

A series of C++ wrapper objects, namely arc, node, and group objects, are defined which mirror the

constituents of an ExchangeGraph, as described in section 2.3.4. These objects are then translated into

Cython [11] by use of the XDress software package [52]. Python can directly call into Cython libraries,

similarly, Cython can directly call C and C++ libraries. Hence, an interoperability layer is established.

3.2.4.1 Solvers and Performance Timing

Once an instance of an ExchangeGraph has been generated, it can be solved. Cyclopts supports three

types of solvers: Coin linear programming (Clp), Coin branch and cut (Cbc), and the GreedySolver, an

implementation of the Greedy Heuristic in Cyclus. If either the Greedy or Cbc solvers are invoked, an

appropriate instance of a ExchangeSolver is constructed with the exclusive orders flag turned on. If the

CLP solve is invoked, an associated ExchangeSolver instance is constructed with the exclusive orders flag

turned off. In short, Cbc and Greedy solvers solve the MILP formulation of the NFCTP, and the CLP

solver solves the LP formulation.

Given an instance of an ExchangeGraph and ExchangeSolver, the Solve method of the ExchangeSolver

is invoked. Before and after the Solve function call, the CoinCpuTime() function is called and the result

is stored. The difference between the two resulting values is recorded as the time required to determine a
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solution. The implementation of the CoinCpuTime() function is open and easily available [24]. It simply

adds the seconds and microseconds fields of the ru_utime structure populated by the standard UNIX

getrusage() function.

3.2.5 High Throughput Computing

Cyclopts can be executed locally using the cyclopts exec command-line interface (CLI) described

in Appendix D. When exploring a large parameter space, of which each point can generate a large

number of unique instances, local execution on a single machine is insufficient. In order to overcome this

limitation, support for HTCondor-based systems has been implemented in Cyclopts and available using

the cyclopts condor-submit CLI. HTCondor [58] is a high throughput computing (HTC) framework

that supports sophisticated job scheduling over a very large, distributed network of individual and

clustered computers.

HTC systems are ideal for analyses in which many independent executions must be performed. Upon

completion, the results may be aggregated and analyzed. The resource-exchange use case fits such a

design specification with a single caveat: because it is a first-of-a-kind performance analysis, timing

results are crucial. Therefore, the systems on which instances are executed must be equivalent in order

to compare different timing results. Support is provided in Cyclopts for identifying execute nodes that

conform to a series of architecture and related constraints in order to support this analysis limitation.

3.2.5.1 Remote Execution and Operation

In order to efficiently schedule a large number of optimization problems, the WorkQueue framework

[15] is utilized. WorkQueue is a HTCondor-aware master-worker implementation. A master process

exists at some location and manages the scheduling jobs to be run. Workers, in the form of persistent

HTCondor jobs, ask the master for the next job to be run after a previous job has been completed. A

master-worker system is especially useful in HTCondor environments in which resources are limited and

must be specifically targeted, as is the case with the aforementioned timing studies.

Cyclopts launches a master process that requires a series of execute nodes to target, a problem instance

database, and a list of solvers to execute on each instance. A copy of the instance database is sent to every

targeted execute node. Note that an execute node may have many execution threads, each of which can

be used to execute instances individually. The master manages an instance queue from which jobs are
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provided to workers. Upon completion, a worker will request a new instance of the master. The full set of

instances in a database are hence efficiently executed.

3.2.5.2 Packaging and Environment

A common issue in remote execution environments is package dependency. When access to an execution

node is provided, a user must assume that only the barest of environments exist. For example, if a user

is provided an Ubuntu-based execution node, the user generally must assume that it is a fresh Ubuntu

installation. Accordingly, package management in a highly distributed, heterogeneous environment is a

difficult problem.

Luckily, solutions exist for distributed package management. Cyclopts utilizes the Code, Data, and En-

vironment (CDE) [32] tool to manage its execution environment. CDE provides a virtualized environment

based on the local execution of a command. Using CDE with the given command, all libraries and utilities

used during the process execution are monitored. Upon process exit, every object in the filesystem that

was invoked is copied into a virtual environment. That virtual environment can then be packaged and

distributed. Upon landing on a foreign system, a user can enter the CDE environment and execute the

supported command.

Cyclopts provides a CLI, cyclopts cde, that will package Cyclopts itself into a virtual environment

and ship the environment to a HTCondor submit node. As part of the Cyclopts HTCondor job execution,

the CDE environment is copied to each execute node. It is therefore easy to incorporate changes in a local

copy of Cyclopts to the corresponding remote execution.
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4 Experiments & Results

Given a parameterized framework for generating instances of resource exchanges, experiments are

designed and executed to explore the efficiency and quality of solutions provided by different solvers.

Section 4.1 describes the experimentation apparati, including the computational tools, solvers and relevant

output. Two experimental campaigns were conducted. A scaling campaign, described in section 4.2, was

performed in order to investigate formulation behavior as a function of problem size. Section 4.3 then

describes the results of a stochastic campaign. Finally, a summary of findings is provided in section 4.4.

4.1 Experimental Setup

An experiment consists of a set of resource-exchange graph instances executed with a collection of

configured solvers. When a solution is found, the solution (i.e., the flow vector), the time required to reach

the solution, the objective value (i.e., the dot-product of cost and flow vectors), and the simulation objective

value (i.e., the dot-product of preference and flow vectors), are recorded. Because solution time is a quantity

of interest, all instances in an experiment must be executed on homogeneous architecture. Furthermore, all

experiments must be executed on equivalent systems in order to quantify valid comparisons in solutions

times across experimental campaigns.

Six execution nodes on UW-Madison Center for High-Throughput Computing (CHTC) HTCondor

system form the homogeneous environment used to conduct the experiments herein described. Each

execute node is comprised of a 2.90 GHz eight-core Intel Xeon E5-2690 [2] processor with 128 GB of

RAM. Processor hyper-threading was disabled for the duration of the experimental campaign to allow

comparisons between solution times.

For each experimental study, an input database consisting of persisted resource exchange graph

instances is generated. A copy of the database is transferred from a user’s submit node to each of the
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Figure 4.1: The time points for comparing different solutions using Equation 4.1.

six execution nodes. A WorkQueue master process is initiated. For every execute node, workers are

initialized using WorkQueue’s condor_submit_workers CLI. The master maintains a queue of instances

to be solved, assigning instances to workers as workers become available. Upon completion, the input

database is removed from each execution node, and the results are collected from the user’s submit node.

The resulting database is then post-processed and analyzed.

4.1.1 Solvers and Formulations

Three solvers are executed for each resource exchange graph instance: the Greedy Heuristic, described in

section 2.3.3.6, COIN’s LP solver (Clp), and COIN’s branch-and-cut solver (Cbc). Each problem instance

is constructed as an ExchangeGraph, i.e., at the exchange layer shown in Figure 2.13 and Figure 4.1. The

Greedy Heuristic is applied directly to the ExchangeGraph. The Clp and Cbc solvers require a translation

to the formulation layer. The Clp solver is applied to the LP formulation of the NFCTP and the Cbc solver

is applied to the MILP formulation. The solution time, ts of a given solver is defined as the time required

to return a vector of arc flows given an ExchangeGraph instance as shown in Figure 4.1.

ts = tf − ti (4.1)

The Greedy Heuristic has linear-like scaling. Each request portfolio is treated in the algorithm. For each
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request node in the portfolio, incoming arcs are sorted, which is a O(n logn) operation. The algorithm

terminates when each request portfolio has either been satisfied or found to be unsatisfiable. In the worst

case, every node is perused, resulting in O(n log n
N ), with n arcs and N nodes. This scaling is better than

O(n logn) because arcs in the system are partitionable. As both Clp and Cbc solve NP-Hard problems,

there is no a priori expected performance behavior. However, LP problems solved with the Simplex method

are known in practice to scale by the number of constraints in the system. As described in Appendix A,

the method iterates over vertices of the polytope defining a instance’s feasible space, which are defined by

constraints. MILP problems must be solved by enumeration, as shown in Appendix B, thus their scaling

is chiefly a function of the number of instance variables.

4.1.2 System Parameters

Section 3.1.3 describes the parameters defining both Front and Back-End exchanges. Each combination of

fundamental parameters represents a significant modeling assumption. Therefore, every experiment is

conducted for every combination of fundamental parameters, comprising eighteen combinations in total.

For each exchange type, a reference instance parameter vector is chosen.

Reference instance parameter vectors for front and back-end exchanges are shown in Tables 4.1 and

4.2, respectively. Reactor population and core composition values were chosen in line with what a user

might reasonably find in a simulation, such as a 75%-25% thermal-to-fast reactor split and 33% possible

MOX-fuel residency in thermal reactors. Support facility population values were chosen to model a

“worst case” simulation. A “best case” simulation is one in which reactor supply and demand is evenly

distributed. For instance, a supporting facility with monthly capacity values that can support two reactors

a month is capable of supporting twenty-four reactors a year. A “worst case” simulation is one in which

there are time steps where all reactors interact with the DRE simultaneously. Such a simulation will have

a number of supporters commiserate with the total number of reactors. These parameter vectors are

associated with such “worst case” time steps.

4.1.3 Analysis Metrics

The most obvious metrics to compare between solutions is the solution time, ts, and objective function

value z,
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Table 4.1: Reference Values for Front-End Exchange Instance Parameters.

Parameter Reference Value
rrx,Th 0.75

rrx,FThOX 0.25
rl,c 1
fmox 0.33
rs,Th 0.08

rs,TMOX,UOX 1.
rs,FMOX 0.2
rs,FThOX 0.2
rinv,proc 1

Table 4.2: Reference Values for Back-End Exchange Instance Parameters.

Parameter Reference Value
rrx,Th 0.75

rrx,FThOX 0.25
rl,c 1
fmox 0.33
rs,Th 0.08

rs,TMOX,UOX 1.
rs,FMOX 0.2
rs,FThOX 0.2
rs,Repo 0.2
dTh UOX: 2/3, TMOX: 1/3, FMOX: 0
dFMOX UOX: 1/4, TMOX: 0, FMOX: 3/4, FThOX: 0
dFThOX UOX: 1/4, TMOX: 0, FMOX: 0, FThOX: 3/4

z =
∑

(i,j)∈A

ci,jxi,j . (4.2)

For any given instance, the optimal objective value, z∗, is associated with a set of flows, X∗. By definition,

an optimal solution, i.e.,

z∗ =
∑

(i,j)∈A

ci,jx
∗
i,j . (4.3)

will have a lower system cost than or an equivalent system cost to any feasible solution. There may be

multiple possible optimal solutions. By necessity, any solution to the NFCTP will include flows along

false arcs if such flows exist. One can also consider solution metrics that only account for arcs that exist

in a simulation, Asim. Because the simulation operates in preference-space, a “simulation objective” is
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defined as

zsim =
∑

(i,j)∈Asim

pi,jxi,j , (4.4)

and the simulation objective associated with an optimal solution is defined as

z∗sim =
∑

(i,j)∈Asim

pi,jx
∗
i,j , (4.5)

Each of the above metrics compare aggregate values between solutions. For any two solutions to

identical problem instances, though, more detailed comparisons could be made. The individual flow

values, and values derived therefrom, can be compared directly using well-known normative measure.

One example is the root mean square (RMS) of constituents of the objective function, shown in Equation

4.6.

RMSz =
√

1
N

∑
i

c2
i (xi,1 − xi,2)2 (4.6)

While such an analysis is common in the realm of nuclear engineering, it is less appropriate for

comparing solutions to optimization problems. An instance of an optimization problem may be degenerate,

i.e., it may have multiple equivalent optimal solutions. Consider a two-arc system with arc costs of unity

and a total flow constraint of unity. A spectrum equivalent solutions exist between (0, 1) and (1, 0). When

comparing any solution, the difference in objective function value is, necessarily, zero. However, using an

RMS analysis, the solutions of (0, 1) and (1, 0) would report the largest possible error. Therefore, only

metrics that involve aggregate measures of solutions are used in the following analysis.

4.2 Scalability Campaign

Given the base parameter values described in Tables 4.1 and 4.2, exchanges were generated by scaling

the number of reactors in the system. The smallest system modeled included five reactors. The largest

exchanges included five-hundred reactors, a value chosen because there are approximately five-hundred

reactors currently operating (437) or under construction (71) in the world [5]. Therefore, the largest

exchanges modeled represent a time step in a simulation in which the world-wide fleet of reactors are all

supplying or consuming a batch of fuel.



100

Front and back-end exchanges are explored similarly in the scalability campaign. For all 18 combi-

nations of fundamental parameters and each solver, a set of reference cases are established, where the

only varying parameter is the number of reactors. Both the solution time and objective value metrics are

compared as the problem size increases. Additionally, the effect of convergence criteria for the Cbc solver

is investigated.

Individual figures for each experiment are provided for each fuel cycle modeled (ffc) and each solver.

Each figure summarizes the results for all combinations of frx and floc. The layout for each six-pane figure

is shown below.

frxtr: Full Batches
floc: None

frxtr: Full Batches
floc: Region

frxtr: Full Batches
floc: Region + Location

frxtr: Individual Assemblies
floc: None

frxtr: Individual Assemblies
floc: Region

frxtr: Individual Assemblies
floc: Region + Location

Figure Layout for a Fuel Cycle and Solver

Figure 4.2: The general figure layout displaying results for different fundamental parameter values.

4.2.1 Front-End Exchanges

4.2.1.1 Reference Case

Reference cases were generated for front-end exchanges by scaling the number of reactors in each exchange.

A step size of 5 reactors was used for the range of [5, 100] and a step size of 25 was used from (100, 500].

Both the number of variables and number of constraints in a problem are measures of problem scaling.

In the NFCTP, constraints are provided by trading entities, and the number of variables is equal to the
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number of arcs in a given exchange graph. Accordingly, understanding how each quantity scales with the

number of reactors is important.

Figure 4.3 shows how the number of arcs scale with problem size for the MOX fuel cycle, and Figure

4.4 shows the same results for the number of constraints. The number of constraints scales linearly, for

it is a purely function of the number of entities in an exchange. However, the number of arcs scales by

O(n2). During exchange generation, the number of suppliers is a function of the number of reactors.

Further, each reactor and each supplier have an arc connecting them if the reactor can consume the

supplier’s commodity. When the addition of a reactor also causes the addition of a support facility, based

on parameter vector values, arcs are added for the new reactor and for every reactor previously existing

in the system. Therefore, there is an an O(n2) relationship between reactors and arcs. Both relationships

hold true regardless of the fuel cycle being modeled, and, as can be seen, are also independent of other

fundamental parameters. The arc population magnitude, however, is a function of frxtr. For an frxtr of 1,

i.e., reactors order individual assemblies, the number of arcs per reactor is O(na). When reactors order

full batches, the number of arcs per reactor is O(1).
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Figure 4.3: Arc population scaling with the number of reactors with corresponding quadratic fits.
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Figure 4.4: Constraint population scaling with the number of reactors with corresponding linear fits.

Greedy Solver

Figures 4.5 to 4.7 show the Greedy Solver results as the number of arcs increases for the OT, MOX, and

ThOX fuel cycles, respectively. Plotted with each data set is a linear fit with associated slope value. As

discussed in section 4.1, one expects linear-like scaling, which is observed in practice. This scaling behavior

is consistent across all fundamental parameters. Of note, however, is that the scaling constant does increase

when moving from low-fidelity reactor models to higher-fidelity models.

Clp Solver

As discussed in section 4.1, LP solution scaling is more naturally observed as a function of the number of

constraints. Figures 4.8 to 4.10 show the Clp solution times as the number of constraints increases. As can

be seen, approximate O(n2) scaling is observed. Like the Greedy solver, this scaling is independent of

any fundamental parameters. Low-fidelity reactor problems solve very quickly (under a second). Larger,

high-fidelity reactor problems can take much longer to solve, i.e., tens of seconds. It does not appear that

solution time magnitudes are affected by the choice of location parameter.
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Figure 4.5: Greedy Solver results for the OT fuel cycle as the number of arcs increases.
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Figure 4.6: Greedy Solver results for the MOX fuel cycle as the number of arcs increases.



104

0.000 0.625 1.250 1.875 2.500
1e4

0.00

1.25

2.50

3.75

5.00 1e 1

m = 1.2e-05
0.000 0.625 1.250 1.875 2.500

1e4

0.00

1.25

2.50

3.75

5.00 1e 1

m = 1.4e-05
0.000 0.625 1.250 1.875 2.500

1e4

0.00

1.25

2.50

3.75

5.00 1e 1

m = 1.5e-05

0.0 0.3 0.6 0.9 1.2
1e6

0.00

0.62

1.25

1.88

2.50 1e1

m = 1.8e-05
0.0 0.3 0.6 0.9 1.2

1e6

0.00

0.62

1.25

1.88

2.50 1e1

m = 1.9e-05
0.0 0.3 0.6 0.9 1.2

1e6

0.00

0.62

1.25

1.88

2.50 1e1

m = 1.8e-05

Number of Arcs

T
im

e
 (

s)

Fuel Cycle: THOX/MOX Recycle, Solver: Greedy

Figure 4.7: Greedy Solver results for the ThOX fuel cycle as the number of arcs increases.
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Figure 4.8: Clp Solver results for the OT fuel cycle as the number of constraints increases.
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Figure 4.9: Clp Solver results for the MOX fuel cycle as the number of constraints increases.
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Figure 4.10: Clp Solver results for the ThOX fuel cycle as the number of constraints increases.
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Cbc Solver

The performance of the Cbc solver is much more sporadic than either the Clp or Greedy solvers. This is to

be expected, for MILP optimization problems are NP-Hard. Further, they are solved using enumeration

techniques that do not perform characteristically well, as the Simplex method does.

Cbc was limited to 3 hours for each problem, and a 1% ratio-gap convergence criteria was applied.

The term ratio gap is in reference to the current known upper and lower bound on the optimal objective

value. During the branch-and-bound algorithm, such bounds are maintained and updated between each

solution iteration (explained in more detail in Appendix B). The solver reports an optimal solution when

the criteria shown in Equation 4.7 is true.

zU − zL

zU
≤ 0.01 (4.7)

In each of the figures below, only instances reaching convergence are displayed in order to attempt

to ascertain any related trends. Figures 4.11 to 4.13 show timing results as a function of the number of

reactors in the system. Figures 4.14 to 4.16 show timing results as a function of the number of arcs in

the system. Note that in each case below, a log-linear graph is used. In each frame, the percentage of

converged instances is provided.

Immediately obvious, and slightly counter intuitive, is that the population of converged instances

is larger for assembly-based exchanges rather than batch-based exchanges, even though the number of

variables in the problem is much lower for batch-based exchanges. Additionally, the Cbc solver converged

in many fewer instances for low reactor fidelity in the OT fuel cycle than either MOX or ThOX cycles. Low-

fidelity once-through cases have the least amount of “choice” in the system. There is a single commodity,

consumer type, and supplier type. Regardless of fuel cycle, reactor fidelity, or objective coefficient strategy,

the Cbc solver experiences exponential scaling with problem size.

4.2.1.2 Solution Comparison

Solutions between any two solvers can be compared either in the formulation layer or in the exchange layer.

Comparison in the formulation layer is achieved by comparing objective function values (Equation 4.3),

whereas comparison in the exchange layer is achieved by comparing a measure the flows and preferences

for a given solution (Equation 4.5).



107

0 30 60 90 120

104

42.5%
0 30 60 90 120

104

35.0%
0 30 60 90 120

104

40.0%

0.0 62.5 125.0 187.5 250.0

105

67.5%
0.0 62.5 125.0 187.5 250.0

105

65.0%
0.0 62.5 125.0 187.5 250.0

105

65.0%

Number of Reactors

T
im

e
 (

s)

Fuel Cycle: Once Through, Solver: Cbc

Figure 4.11: Cbc Solver results for the OT fuel cycle as the number of reactors increases.
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Figure 4.12: Cbc Solver results for the MOX fuel cycle as the number of reactors increases.
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Figure 4.13: Cbc Solver results for the ThOX fuel cycle as the number of reactors increases.
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Figure 4.14: Cbc Solver results for the OT fuel cycle as the number of arcs increases.
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Figure 4.15: Cbc Solver results for the MOX fuel cycle as the number of arcs increases.
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Figure 4.16: Cbc Solver results for the ThOX fuel cycle as the number of arcs increases.
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The objective function includes the costs and flows on false arcs which inflates the objective function

value. While the false arcs are necessary for guaranteeing a feasible solution, their resulting flows are not

taken into account when the DRE back-translates from the formulation to the exchange layer. Accordingly,

z∗sim is used as the primary comparison metric. While z∗ ≤ z is true in cost space, z∗sim ≥ zsim is not

necessarily true in practice for MILP instances. Any MILP solver must use some convergence criteria,

which takes into account flow values along false arcs.

Comparisons are made between the Greedy solver and the Cbc solver, provided the Cbc solver

converged. A converged Cbc solution is guaranteed optimal within the provided tolerance, and is therefore

considered to be z∗ with a corresponding set of flows X∗. Because solutions increase in magnitude with

increasing problem size, a relative comparison is made, as shown in Equation 4.8. The resulting features

are similar across fuel cycles. Accordingly, an example for the MOX fuel cycle is shown in Figure 4.17.

z∗sim − zsim,Greedy

z∗sim
(4.8)
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Figure 4.17: Comparisons between relative simulation metrics between the Cbc solver and the Greedy
solver for MOX fuel cycles. Only converged Cbc solutions are compared.

Comparing the results in which there are no location-based preferences (green), there is a clear
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correlation between the number of variables and the relative benefit of using Cbc. The Greedy heuristic

performs better when the number of possible assignments is small. This is not unexpected; as the number

of decision variables increases, making optimal decisions should, in theory, result in a increasingly better

outcomes than making heuristic-based decisions.

Two features of interest arise when comparing the cases in which there is a coarse location preference

(blue) and a fine location preference (red). First, some values are negative, implying that the Greedy

solver provides a better preference-space solution than the Cbc solver. Importantly, this is true only in

preference space; the Cbc always performs better in cost space, by definition. The Greedy solver is allowed

to provide better answers in preference space for two reasons: the problem is highly constrained, and

false arcs have an arbitrarily high unit cost. Cbc converges when the criteria in Equation 4.7 is met. When

a problem is highly constrained, many false arcs will be activated, contributing a large amount to the

objective function. If the choice between two possible flows is sufficiently small, i.e., small relative to z∗,

then either solution may be returned upon convergence depending on the branch-and-bound search path.

Thus, good solutions in preference-space are somewhat lost in the “noise” of cost-space.

Second, this effect is reduced when the objective choice in cost-space increase, as shown in case of

fine location preference. In other words, the relative benefit of using a heuristic over a full Cbc solve

in preference space for the problems run above appears to be a function of the size of possible objective

coefficient values. Furthermore, the effect of objective coefficient population size decreases as problem size

increases. However, as can be seen from Figure 4.17, this benefit requires a relatively large, high-fidelity

reactor simulation, i.e., more than ∼80 reactors, to be consistently observed.

This behavior is more pronounced as the number of possible connections increases. Consider the

ThOX fuel-cycle results shown in Figure 4.18. Again, large variations are observed for instances with some

location preference with small reactor populations, especially for high-fidelity reactor instances. However,

as the reactor populations increase, Cbc solutions appear to asymptotically approach relative values close

to the base line set by simulations in which there are no location-based preferences.

The Greedy solver can provide quite good preference-space results relative to the Cbc solver when

an exchange is highly constrained and when the cost coefficient assigned to false arcs is relatively large.

This effect can be observed by adjusting the false-arc cost coefficient, e.g., as shown in Equation 4.9. Two

exchanges for which the Greedy solver performed better in preference-space were chosen to demonstrate

the effect. The results are shown in Table 4.3. Note that it every case, z is smaller for the Greedy solver
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Figure 4.18: Comparisons between relative simulation metrics between the Cbc solver and the Greedy
solver for ThOX fuel cycles. Only converged Cbc solutions are compared.

than Cbc; however, zsim for the Greedy solver is larger than the same value with a large Cbc false-arc cost

and smaller than values related to small Cbc false-arc costs.

cfalse = 1
pmax

+ 1 (4.9)

Table 4.3: Results from Reducing False-Arc Cost Coefficients.

Simulation ID Greedy Cbc, Large Cost Cbc, Small Cost
z (large/small) zsim z zsim z zsim

54a5a92ce1ad43e9a713abf114b58a06 5.2e8/1.9e6 1.41e5 5.0e8 1.38e5 1.8e6 1.98e5
938d808a4bd84346b54f38fcb4992386 3.97e8/1.40e6 1.08e5 3.81e8 8.8e4 1.38e6 1.12e5

4.2.1.3 Convergence Criteria

The Cbc solver is highly tuneable. As with many iterative solution techniques, the most critical tuneable

criteria affecting the balance between solution quality and solution time is the convergence criteria. It is

not clear to what degree solution quality will matter for users of Cyclus. Accordingly, a short exploratory
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experiment was conducted to examine to what degree convergence criteria affects solution time.

Cbc uses either an absolute or relative upper and lower-bound gap tolerance as possible convergence

criteria. All results discussed use the relative gap, termed ratio gap in Cbc parlance, as shown in Equation

4.7. For each of the 18 combinations of fundamental parameters, 10 instances of exchanges were executed,

spanning a reactor population range of 10 to 500. Figure 4.19 displays the results for runs with reactors

trading full batches for ratio gap values of 0.1, 1, and 10%. Figure 4.20 displays the results for runs with

reactors trading individual assemblies for ratio gap values of 1 and 10%.
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Figure 4.19: Effects of increasing convergence criteria on Front-End exchanges with reactors exchanging
batches. Each bar is divided into how many instances converged (green) and did not converge (blue).

Increasing the convergence criteria for smaller problems, i.e., those with reactors requesting a single

batch of fuel, has a greater effect than increasing the convergence criteria for larger problems. It is

somewhat surprising that the increase from a 1% relative bound gap to a 10% gap allows full convergence
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Figure 4.20: Effects of increasing convergence criteria on Front-End exchanges with reactors exchanging
assemblies. Each bar is divided into how many instances converged (green) and did not converge (blue).

in the smaller case and has no effect in the larger case. Considering the discussion in section 4.2.2.2, it is

likely that the large convergence effect is due increasing the “noise” effect of actual arcs. However, some

speed ups in solution times are expected when relaxing convergence criteria, and those speed ups will

likely be more profound in smaller-sized problems than larger problems based on this analysis.

4.2.2 Back-End Exchanges

Many of the results of the back-end exchanges mirror those of the front-end exchanges. Therefore, this

section will discuss only differences between the two cases. The fact that so many similarities exist is

somewhat striking, because from a simulation perspective, back-end exchanges are quite different than

front-end exchanges. First, a single request is made for each commodity type that can be consumed by
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support facilities. Therefore, many fewer requests exist in the system. Next, the supply of used fuel is

known. A new supporting facility type, repositories, are also added, resulting in a slightly higher total

arc population per reactor. As with the front-end exchanges, the arc population scales as O(n2), as can be

seen in Figure 4.21, and the constraint population scales as O(n).
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Figure 4.21: Arc population scaling with the number of reactors with corresponding linear fits.

4.2.2.1 Reference Case

Greedy Solver

The Greedy solver performs quite similarly to the front-end case. Its performance is again linear-like in

the number of arcs. An example of the MOX fuel cycle is shown in Figure 4.22. As can be seen, the linear

coefficient in back-end cases is approximately twice the coefficient of front-end cases. This observation

holds irrespective of fuel cycle.

Clp Solver

Back-end exchanges solved with Clp were found to behave similarly for each fuel cycle modeled. The

results for MOX-based exchanges is shown in 4.23 with quadratic fits. A key distinction is observed between
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Figure 4.22: Greedy Solver results for the MOX fuel cycle as the number of arcs increases.

back-end and front-end exchanges: while front-end exchanges follow tight O(n2) scaling in all cases,

back-end exchanges with higher-reactor fidelity clearly have a larger spread in this trend. Furthermore,

significantly higher run times are observed for back-end exchanges, with a maximum run time of ∼40

seconds for front-end exchanges and ∼150-300 seconds for back-end exchanges.

Cbc Solver

Cbc behavior is also similar to the front-end case. Importantly, exponential scaling with problem size is

again apparent, as can be seen in Figure 4.24. The primary difference between the two exchange types

is the increased population of converged solutions for high-fidelity reactor instances. Whereas reactor

fidelity was not a large factor with respect to convergence probability in front-end exchanges, it appears

to be a large factor for back-end exchanges.

4.2.2.2 Solution Comparison

Two notable features can be seen when comparing Greedy and Cbc solutions in Figure 4.25. The first is

that Cbc almost always performs better than Greedy in preference space. Further, z∗sim ≤ zsim,Greedy is true
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Figure 4.23: Clp Solver results for the MOX fuel cycle as the number of constraints increases.
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Figure 4.24: Cbc Solver results for the MOX fuel cycle as the number of arcs increases.
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only for very small exchanges. Additionally, Cbc preference space results relative to the Greedy solver are,

in general, better for low-fidelity reactor exchanges than high-fidelity exchanges.

Secondly, the simulation-objective gain from using Cbc appears to be problem-size independent when

there are a large number of variables in back-end exchanges. As can be seen high-fidelity reactor results

in Figure 4.25, when the number of reactors is large, a relative gain in simulation objective of 30%-40% is

realized by using Cbc. The final value is a function of the degree to which location-based preferences are

used.
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Figure 4.25: Comparisons between relative simulation metrics between the Cbc solver and the Greedy
solver for MOX fuel cycles. Only converged Cbc solutions are compared.

4.3 Stochastic Campaign

The generation of exchanges is designed as a stochastic process. Each reactor is assigned a target enrichment

per consumable commodity in a given range, and each facility is assigned a location value. Enrichment

stochasticity results in perturbed constraint matrix coefficients, and location stochasticity results in

perturbed objective coefficient if floc is set to include location-based preference.

In section 4.2, a single exchange instance was investigated for each solver as problem size scale
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was investigated. While clear patterns were inferred as a result of the study, stochastic effects were left

unexplored. Accordingly, a second study was undertaken in order to examine how sensitive both solution

values and execution time are to randomness in instance generation.

For this study, instances are generated for a single parameter vector. It is best to compare converged

Cbc solutions for confidence in the resulting objective value and in order to run all desired instances in a

reasonable amount of time. Accordingly, the total reactor population was set at 65 based on the scaling

study results. Specifically, this is approximately the largest reactor population for which all configurations

of parameters converged (see Figure 4.11). For each combination of fundamental parameters, 1000 instances

were generated and executed by each solver for both front and back-end exchanges.

In both sections, cumulative observations are presented. Figures are presented in two panes for a

given fuel cycle, with low-fidelity reactor instances on the left and high-fidelity reactor instances on the

right. In each pane, the results for all three location fidelity parameters are shown.

4.3.1 Front-End Exchanges

4.3.1.1 Fundamental Parameter Variation

The Greedy Solver and Clp both proved to have relatively stable solution times. The timing results are

similar across fuel cycles. Accordingly, MOX fuel cycle results are shown for the Greedy Solver in Figure

4.26, and Clp results are shown in Figure 4.27. Apart from solution time stability, the primary observation

for both the Clp and Greedy solvers is related to location fidelity effects. Although there is a ranking in

average solution time by location parameter for a given collection of fundamental parameters, that ranking

changes for each collection of parameters, as can be seen in the presented figures.

The Cbc solver showed much less stability in solution times. Further, behavior was found to be different

for each fuel cycle. Figures 4.28 to 4.30 show the timing results for the OT, MOX, and ThOX fuel cycles,

respectively.

Given the variety in stability by fuel cycle, viewing the underlying timing distributions can also

provide insight. Accordingly, Figure 4.31 shows all timing distributions for low-fidelity reactor models,

and Figure 4.32 displays the corresponding results for high-fidelity models.

A number of interesting features exist in the figures related to the Cbc timing study. Significantly,

reactors in batch-mode have poor convergence for once-through cycles, regardless of location parameter.
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Figure 4.26: Cumulative average solution time of the Greedy solver for the front-end MOX fuel cycle.
Low-fidelity reactor instances comprise the left pane, and high-fidelity reactor instances comprise the
right pane. Each colored line represents a different objective coefficient location fidelity.

This echoes observations in the scaling study. For the remaining fuel cycles, outliers consistently are

observed for low-fidelity reactor models, also regardless of location parameter. This effect is seen in the

cumulative observation figures most easily. Each occurrence of a timing outlier causes a large jump in the

observation. The converged, non-outlier instances with location-based preferences show single-mode

structure, whereas those without location preferences appear to be bi-modal.

Conversely, high-fidelity reactor instances were found to almost always converge. Outliers were found

in the once-through fuel cycle results, but not in other fuel cycles. Again, this behavior results in choppy

cumulative observations. Both the MOX and ThOX fuel cycles were shown to be comparatively stable.

Further, both cases have clear tri-modal solution-time populations.

4.3.1.2 Simulation Objective vs. Solution Time

The trade off of choosing to use a full-fledged optimization solver over a heuristic is one between solution

fidelity and solution time. Figure 4.33 shows a comparison between the Cbc and Greedy solvers. For

each instance, relative simulation-objective values were computed as shown in Equation 4.8. Similarly,
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Figure 4.27: Cumulative average solution time of the Clp solver for the front-end MOX fuel cycle.
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Figure 4.28: Cumulative average solution time of the Cbc solver for the front-end once-through fuel cycle.
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Figure 4.29: Cumulative average solution time of the Cbc solver for the front-end MOX fuel cycle.
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Figure 4.30: Cumulative average solution time of the Cbc solver for the front-end ThOX fuel cycle.
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Figure 4.31: The distribution of converged solution times for all low-fidelity reactor instances. Fuel cycle
fidelity increases from top to bottom, and location fidelity increases from right to left. Outliers have been
filtered out in order to show distribution shape. The instance population percentage, i.e., the percentage
not defined as outliers, is shown is provided in black, if relevant. The percentages of all converged instances
is shown in red, if relevant.

relative solution times were computed. The average result found for high-fidelity reactor instances solved

with Cbc was taken as a reference point, plotted at the origin in Figure 4.33. Values are plotted for each

combination of fundamental parameters. A data point’s position along the x-axis indicates the average

deviation from the high-fidelity model’s simulation objective, i.e., the dot product of preference and

system flow. The y-axis position indicates the average relative time difference.

In most every case, the results are as expected. The high-fidelity, Cbc-based solution provides a better

simulation objective for a more expensive time. In general, the Greedy always performs much faster than

Cbc, as expected from a heuristic. Except for the Once-through case, all Cbc solves require similar times,

and the highest fidelity simulation provides the answer with the highest objective measure. However,

as was seen in the scalability study, the Cbc does not always provide a better simulation-based metric

when large costs are concerned. Interestingly, the coarse-location fidelity Greedy solver results provided

a better average simulation objective.
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Figure 4.32: The distribution of converged solution times for all high-fidelity reactor instances. Fuel cycle
fidelity increases from top to bottom, and location fidelity increases from right to left. Percentages are
identical to Figure 4.31.

4.3.1.3 False Arc Cost Effects

As was shown for previously, providing a small pseudo cost results in a higher simulation-based objective

metric. For example, Figure 4.33 displayed results in which the Greedy solver provided a higher average

simulation-based metric than the Cbc solver. Figure 4.34 displays the underlying data with additional

data for small-cost Cbc solves. As can be seen, in the lower center pane, the average preference-flow metric

increases in a Cbc-high-cost, Greedy, Cbc-low-cost order.

4.3.2 Back-End Exchanges

As with the scalability study, back-end exchanges perform quite similarly to front-end exchanges. Ac-

cordingly, basic results are reviewed, and results that lead to recommendations are discussed in more

detail.

Both the Greedy and Clp solvers again proved to have relatively stable solution times. An example of

the Greedy solver observed solution times for the MOX fuel cycle is shown in Figure 4.35. Clp results are
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Figure 4.33: A comparison of simulation-objective values and solution times between instances solved
with Greedy and Cbc solvers. Reference values are comprised of high-fidelity reactor instances solved
with Cbc. Each other combination of fundamental parameter and solvers are then compared against the
reference. Note that the once-through fuel cycle pane does not include other Cbc solvers, because their
solution times were very long.

shown in Figure 4.36.

The Clp solution time required for high-fidelity reactor models with no location preference was found

to be significantly higher than for instances which included a location preference. A similar trend was

found for Cbc solutions, as shown in Figures 4.37 and 4.38 for the MOX and ThOX fuel cycles, respectively.

The timing discrepancy exists in low-fidelity reactor models in the Cbc case, and is also much more

pronounced. These results indicate that solution times, in certain instances, can be significantly reduced if

solvers can better differentiate between arcs based on objective coefficients. Therefore, a possible speed-up

strategy can include “salting” the preference vector by adding a random δp to each entry. Such a strategy

will likely be useful in only certain cases, and should be tested only if long run times are encountered.

4.4 Summary

The performance and output of the Greedy heuristic, Clp solver, and Cbc solver was tested on a large

number of exchange graph instances. Linear-like, i.e., O(n log n
N ), problem-size scaling was confirmed for
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Figure 4.34: Simulation-objective values for 100 instances solved with the Greedy solver, a Cbc solver
with a high false arc cost, and the Cbc solver with a low false arc cost.
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Figure 4.35: Cumulative average solution time of the Greedy solver for the back-end MOX fuel cycle.
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Figure 4.36: Cumulative average solution time of the Clp solver for the back-end MOX fuel cycle.
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Figure 4.37: Cumulative average solution time of the Cbc solver for the back-end MOX fuel cycle.
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Figure 4.38: Cumulative average solution time of the Cbc solver for the back-end ThOX fuel cycle.

the Greedy heuristic, O(n2)-like scaling was observed for most Clp-solved instances, and exponential

scaling was observed for instances solved with Cbc. The Greedy heuristic performs quite well even for

realistic, large NFCTP instances, solving in tens of seconds on the testing system. Cbc was found to be

largely sporadic. Many instances solved quite quickly; however, outliers were observed in almost all

experiments that greatly increased average solution time.

The translation between exchange graph to NFCTP-instance was found be quite sensitive. Both the

false arc cost and the cost translation function were found to have a large effect on preference-based

metrics. Some Cbc solutions with a high false arc cost were observed to be worse than Greedy solutions

in preference space. This effect was largely mitigated by reducing false arc cost.

This work has shown that resource exchange instances can be solved reliably and optimally in Cyclus

with open-source MILP solvers, even if those solutions may take a relatively long time. Many Cyclus

users will likely find heuristics to be acceptable for their work, especially for analyses requiring a large

number of fuel cycle simulations. Users will be empowered, however, to solve a reference simulation

optimally, for example, and compare results with simulations using a heuristic. The user can then either

continue to solve resource exchanges optimally with different options, such as running time restrictions
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or loosened convergence criteria, or change to a heuristic. This capability represents a novel step forward

in simply modeling nuclear fuel cycles as well as analyzing dynamic effects within a given fuel cycle.
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5 Summary

This body of work sought to enhance the state of the art in dynamic fuel cycle simulation. Prior to this effort,

most decision making related to a given simulation was made by a human analyst prior to simulation

execution. Further, even ex situ, human-based, decision making was limited to collections of entities and

macroscopic descriptions of commodities. Both of these effects resulted simulation platforms lacking

either physics fidelity, entity relation fidelity, or both.

The Cyclus dynamic fuel cycle simulator and this work are inextricably tied. While many of the

concepts and methods described herein may be applied to any implementation of a non-trivial supply-

demand model, the development of this work was spurred by the need for such methods implemented in

Cyclus .

Upon its inception, Cyclus had a variety of goals. An analyst’s ability to choose the level of physical,

social, and economic fidelity was of chief concern. This behavior is supported in Cyclus through a plug-in

framework of various archetypes. Thus, an analyst could use a high-fidelity reactor archetype or a low-

fidelity archetype, for instance. An equally important concept of Cyclus was the ability model a variety of

fuel cycles with similar archetypes. Therefore, the Cyclus kernel was required to abstract away fuel-cycle

specific behavior. Finally, the developers of Cyclus also desired to model regional interaction mechanisms,

such as tariffs or other international trade instruments. In short, it was required to solve the general case of

nuclear fuel cycle simulation.

5.1 Statement of Work

The goal of this work was, chiefly, to design, implement, and analyze a highly-flexible, physics and

economics-informed simulation engine. The engine was split into two primary conceptual categories:

entity deployment and entity interaction. Developing a sophisticated entity interaction mechanism was
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the chief focus of the majority of the presented oeuvre.

5.1.1 Modeling & Simulation

Significant design constraints were placed on the design of a entity interaction mechanism. First, it must

support arbitrary physics and chemical constraints, as well as general supply-chain constraints, such as

inventory and processing constraints. Further, it must model the competition of resources among entities

for which demand and supply of resources may be fungible. Finally, arbitrary social phenomenon must

be able to be translated to the interaction framework. The resulting interaction mechanism, termed the

Dynamic Resource Exchange (DRE), was informed chiefly from the fields of supply-chain management,

agent-based modeling, and mathematical programming.

The DRE allows agents to inform both system supply and demand of resources through a request-bid

framework. Physics fidelity is provided to agents in this framework by utilizing fully specified Resource

objects. For example, nuclear fuel demand can be specified directly by an ideal isotopic vector in a Material

object. Once supply and demand is known, social interaction models can be applied to affect resource

flow-driving mechanisms. For example, a tariff can be modeled by uniformly reducing preferences of

transactions between agents outside of a given Region. Presently, a cardinal preference model is used as

the flow-driving mechanism.

The DRE is comprised of three layers: a resource layers, with which agents interact, an exchange

layer, and a formulation layer. Supply, demand, and preferences are defined in the resource layer, for a

specific type of Resource object. The exchange layer provides a general resource exchange representation,

irrespective of a specific object type. The representation is comprised of a bipartite graph of supply

and demand nodes, supply and demand constraints, and a measure of preference for each proposed

connection between nodes. The DRE can be solved either in the exchange layer or by translating the

exchange into a minimum-cost, network-flow problem, resulting in the formulation layer. Translation to

LPs and MILPs are both supported, where MILPs are required if entities require individual, quantized

resources. Such a case arises when one would like to model individual reactor assemblies.

5.1.2 Experimentation

After the DRE framework was designed and implemented, it was tested and analyzed. The full Cyclus

simulator is still nascent with respect to full-featured archetypes that would utilize DRE-specific features.
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Therefore, instances of resource exchanges were required to be generated. The generation of instances is

based on a parameter vector, comprised of fundamental and instance parameters. Fundamental parameters

include which fuel cycle is being modeled and whether reactors request single batches of fuel or a collection

of individual assemblies of fuel. Instance parameters include the number of reactors being modeled

and the number of support facilities being modeled, among many others. Exchanges representing the

front-end and back-end of the nuclear fuel cycle were generated separately.

Generated exchanges were solved with the Greedy Heuristic in the exchange layer and the COIN-OR

Clp and Cbc solvers in the formulation layer. A number of key observations were ascertained by both

scaling and stochastic experimental campaigns. First, the Greedy solver exhibited O(n log n
N ) (linear-like)

scaling with problem size (i.e., the number of variables) for all configurations of exchanges, matching

theory. Somewhat surprisingly, the Clp solver was also shown to have efficient scaling behavior as well.

The theoretical complexity of the general case of simplex method is not known, although it is known

to be “efficient in practice” [29]. Further, solving relaxations of LPs is a fundamental step in branch-

and-bound algorithms for MILPs (e.g., those used in Cbc). Therefore, exploring the behavior of given

problem structures as LPs is of interest. In this work, Clp solves of front-end exchanges were found to

have O(n2) scaling in the number of constraints, regardless of fundamental parameter configuration.

Back-end exchanges also experienced O(n2) behavior for smaller problem sizes. At larger problem sizes,

especially for instances with high variability in objective coefficient distribution, the quadratic scaling

trend tended to break down.

Solving optimization problems is known to be NP-Hard, and solution times are known to scale

exponentially in the general case. This behavior was observed for the Cbc solver in both front and back-

end exchanges. A solution time limit of three hours was placed on Cbc calculations, and many cases

converged for both exchange types in the scaling campaign. Threshold problem sizes were observed in each

exchange type and fundamental parameter configuration. Maximum convergence probability was found

in high-fidelity reactor instances for non-once-through fuel cycles. Low-fidelity reactor, once-through fuel

cycle instances were found to have particularly poor convergence probability.

Performing comparative solution analyses between the Greedy and Cbc solvers illuminated the

importance of false-arc costs in the MILP formulation of the NFCTP. Specifically, multiple exchange

instances were observed to have better performance-space results using the heuristic over a full-fledged

optimal solve in cost-space. This behavior was found to be the result of using a large false-arc unit cost in
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the NFCTP formulation in conjunction with a relative optimal value convergence criteria. A relative-value

criteria is required in order to be used in a general simulation framework. Replacing the large cost with a

small cost, however, proved to reverse the observation in both the scaling and stochastic campaigns.

Finally, the use of location-based preferences was found to have little or no effect on Cbc solution

times in most cases. However, for back-end exchanges of MOX and ThOX fuel cycles, cases in which no

location-based preferences were applied were found to have significantly longer solution times than cases

in which they were applied. Therefore, applying a small objective perturbation may prove a reasonable

speed up strategy for some exchange structures.

5.1.3 Recommendations

Because of the development of the DRE, users may now apply physical, economic, and social models to

NFC simulation. The choice of solver will largely depend on the fidelity of the associated models and

underlying data. The Greedy solver will always provide a feasible solution to the given exchange instance,

applying any physical, chemical, or supply-chain constraints. Therefore, if a user has a low-fidelity

economic or social model, then the Greedy solver will likely meet the users needs.

With higher-fidelity economic and social models, obtaining a optimal solution becomes paramount.

While an LP, and thus Clp, can be used to model approximations of fuel cycles, to-date user and developer

experience has found the modeling of individual fuel assemblies to be conceptually simpler both to use

and code. In short, having a binary decision regarding a supplied resource is simpler than managing the

acceptance of an arbitrary number of partial resources, especially in a multi-commodity system. Requiring

optimal solutions and using quantized resource transfers necessitates using a MILP solver, such as Cbc.

Users can expect exponential solution time scaling when using Cbc. For a relatively small convergence

criteria, i.e., 1%, most front-end instances with a reactor population greater than 150 were found not

to converge within a 3-hour time limit. Back-end instances showed better convergence behavior with

problem size. The Cbc solver was found to perform better with higher reactor fidelity, a promising result

for this use case. With a small arc-cost implemented in the kernel by default, users may find greater

speed ups by loosening the default convergence criteria. However, tuning the specific convergence criteria

and setting a solution-time ceiling will be dependent on the an individual’s use case. Finally, after a

preference-perturbation option is implemented, users may find significant speed ups through its use.
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5.2 Suggested Future Work

Immediate future work involves implementing the solver options and related features that have been

used in this work. To date, the Cyclus code base includes only the option to utilize the Greedy solver. The

Cbc and Clp solver options have been implemented for this work privately, and should be straightforward

to incorporate more broadly. Further, exchange partitioning was a fundamental feature utilized in this

work that has not yet been implemented in Cyclus . Finally, the preference “salting” feature and related

user-facing interface will be implemented as well.

This work was motivated chiefly by a noted lack of features present in other fuel cycle simulators. The

DRE mechanism supports many identified features, namely competition among consumers, constrained

supply, and the inclusion of a framework that supports regional (e.g., geographic) effects. In order to

make use of the features made available by the DRE, however, appropriate Cyclus archetypes must be

implemented. Archetype developers are already implementing models that make use of the ability to

model constrained supply for work related to the DOE’s Fuel Cycle Options (FCO) campaign. Further,

the IAEA is known to support the DESAE simulator [9] in order to use its minimal regional-interaction

mechanisms. Implementing the appropriate archetypes to extend this use case is a clear use-case of poten-

tial future work that will immediately impact users. Making use of consumer and supplier competition,

although interesting, is less straightforward. Adequate background work will be required in order to

develop sufficient models that support both economic and nuclear engineering effects.

The DRE implements a one-phase, consumer-based, preference-setting interaction mechanism. Users

of the method have already expressed interest in anN -phase capability, in which suppliers could effectively

investigate the consumer’s preference function with respect to their available supply of resources. Such

capability can be provided by encapsulating and exposing the preference-setting interface. However,

delineating the interface between manager agents, will require sufficient attention to support all use cases.

In general, however, extending the DRE mechanism to support a multi-period bidding procedure is a

fruitful area for future work.

The solvers used in the DRE are also potential subjects of future work, based on future use cases and user

requirements. As implemented, the Greedy solver sorts exchange entities based on average arc preference.

Use cases may find other metrics to be superior given certain economic or social models. Furthermore,

the Greedy solver is but one heuristic approach. Other approaches may be implemented and tested for
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various use cases, as needed. Finally, a minimum-cost formulation was used in the formulation layer of

the DRE. Adding a maximum-preference formulation is both possible and relatively straightforward.

The work herein described utilized the both the Cbc and Clp solver via their provided driver APIs.

Many more switches are available to both, which may be investigated further should their relative

performance found to be lacking. Further, the Cbc solver can be specifically implemented for the Cyclus

use case, although this is highly discouraged by the Cbc development community.

Importantly, the Open Solver Interface (OSI) was used when developing the in-code model of the

NFCTP. While the Cbc solver was used because of its permissive license. Users with access to proprietary

MILP solvers, such as CPLEX, can reuse much of the available framework. Should such a use case be

requested, implementing interface extensions should be straightforward.

5.3 Closing Remarks

A novel way to model dynamic, nuclear fuel cycles has been proposed, designed, implemented, and

tested. New features include competition between suppliers and consumers, constrained supply and

consumption, and the inclusion of extra-facility effects, such as state-level relationships. This work provides

a general framework on which nuclear fuel cycles can be modeled. As the Cyclus ecosystem grows, the

features implemented herein will be used and tested. It is the sincere desire of the author that fuel cycles

with high potential to better the human condition can be identified more easily by sophisticated analysts

using Cyclus and the DRE framework more generally. Energy use has long been known to better quality

of life. Choosing the best way of developing and deploying the world’s energy infrastructure will be the

challenge of the current generation and for generations to come.
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A Linear Programming and the Simplex Method

Linear programming is a sophisticated technique to explore large, constrained option spaces to find
optimal solutions to systems of equations given some objective. The seminal paper on linear programming
techniques was provided by Kantorovich in 1940 [38]; however, this occurred during World War II, and
was thus kept secret. An efficient solution technique (called the Simplex Method was provided by Dantzig
in 1947 and published in 1951 [21], effectively opening the field. The realm of linear programming is well
studied in the field of optimization sciences.

A.1 Linear Programming

Linear programs (LPs) have a relatively simple general construction. There are a set of n decision variables
forming a vector, x, a cost vector, c, a constraint matrix, A, associated with m constraints and a right-hand-
side threshold vector, b. The standard form for linear programs is as follows.

min
x

z = c>x (A.1a)

s.t. Ax ≥ b (A.1b)

x ≥ 0 (A.1c)

It is important to note that LPs can be formulated in many ways, e.g. as minimization problems,
with equality constraints, etc. Most texts cover the standard transformations required to turn a given
formulation into the standard form. In general, any LP can be transformed into the standard form.

The m× n dimensional constraint matrix defines an n-dimensional option space. Any set of values
for the vector of decision variables, x, that does not violate a constraint (including those bounding the
variables) is termed a feasible solution. It is not only possible, but likely that a given problem formation has
many feasible solutions, in which case any feasible solution that optimally satisfies the objective function
(i.e., provides a global minimum in the case of the standard form) is termed an optimal solution. It is also
possible, for a given set of constraints, for there to be no feasible solutions and thus no optimal solution.
Such a problem formulation is termed infeasible. More commonly, the set of constraints forms a feasible
region. Take for example the following formulation:
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max 3x1 + 2x2 (A.2a)

s.t. − 2x1 + x2 ≤ 1 (A.2b)

x1 + x2 ≤ 5 (A.2c)

x1 ∈ [0, 4] (A.2d)

x2 ≥ 0 (A.2e)

which creates the feasible solution space shown in yellow in Figure A.1.

Figure A.1: An example of a feasible solution space.

The program can become infeasible by adjusting a constraint. Take for instance, an increased boundary
constraint for x2.

max 3x1 + 2x2 (A.3a)

s.t. − 2x1 + x2 ≤ 1 (A.3b)

x1 + x2 ≤ 5 (A.3c)

x1 ∈ [0, 4] (A.3d)

x2 ≥ 4 (A.3e)

This arrangement results in the infeasible linear program shown in Figure A.2, where the updated
constraint’s effect is shown in red.
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Figure A.2: An example of a infeasible solution space.

The standard form of a linear program shown in Equation A.1 is an example of a primal linear program.
A distinction is made between a primal linear program and its dual. Duality theory is involved and only
treated lightly in this review. The standard form of the dual of Equation A.1 is given in Equation A.4.

max
u

w = b>u (A.4a)

s.t. A>u ≤ c (A.4b)

u ≥ 0 (A.4c)

A few critical differences exist. First note that the objective directions are switched: if a primal form
has a minimization objective, its dual has a maximization objective. The constraint matrix is now m× n-
dimensional (it is in fact the original constraint matrix transposed). There is a new series of decision
variables that form the corresponding solution space, i.e., the positive vector u, as shown in Equation
A.4a. These variables are related to the original right-hand side of the constraint formulation, the vector b.
The costs of the original problem, c, now form the right-hand side of the dual’s constraint formulation,
Equation A.4b.

The concept of duality is critical in the field of mathematical programming because it provides well-
defined optimality characteristics of a given program. These are achieved via the Strong Duality Theorem
and Weak Duality Theorem, shown below as stated in [23].

Theorem A.1 (Weak Duality Theorem). If x is primal feasible and u is dual feasible, then the dual objective
function evaluated at u is less than or equal to the primal objective function at x.
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The Weak Duality Theorem provides inextricable linkage between a primal feasible solution and dual
feasible solution. If a dual feasible solution is found, it provides a lower bound on the optimal solution. If
a primal feasible solution is found, it provides an upper bound on the optimal solution. Both of these
criteria, in tandem, help to greatly reduce the required search space during optimization sweeps.

Theorem A.2 (Strong Duality Theorem). Exactly one of the following three alternatives hold:

1. Both primal and dual problems are feasible and consequently both have optimal solutions with equal extrema

2. Exactly one of the problems is infeasible and consequently the other problem has and unbounded objective
function in the direction of optimization on its feasible region

3. Both primal and dual problems are infeasible

The Strong Duality Theorem provides the backbone for much of linear programming theory and
application. It states that not only do feasible solutions to the primal and dual programs provide upper
and lower bounds on optimal values, but that, in fact, the optimal values are equal. This provides a criterion
to know when an optimal value is reached.

With this slight overview of the realm of linear programming, one can move on to solution techniques
for problems that can be represented as linear programs.

A.2 The Simplex Method

The Simplex Method is a popular algorithm to solve linear programs first published by Dantzig [21].
Conceptually, it is quite intuitive, especially from a geometrical point of view. Before continuing in more
detail, an overview of the method is provided via the example from the previous section.

Note that there are five vertices of the polygon (i.e., a polytope more generally) formed by the full set
of constraints:

1. (0, 0)

2. (0, 1)

3. ( 4
3 ,

11
3 )

4. (4, 1)

5. (4, 0)

The Simplex Method begins at a vertex, for example (0, 0), and evaluates the objective function.

f(0, 0) = 3 ∗ 0 + 2 ∗ 0 = 0 (A.5)

Neighbor vertices are then evaluated, in order to determine which provides the larger value (in the
case of maximizing objectives).
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f(0, 1) = 3 ∗ 0 + 2 ∗ 1 = 2 (A.6)

f(4, 0) = 3 ∗ 4 + 2 ∗ 0 = 12 (A.7)

The vertex (4, 0) provides a larger objective function value, so the algorithm moves to this vertex and
determines the next largest neighbor. In this simple example, there is only one choice, and it is trivially
larger.

f(4, 1) = 3 ∗ 4 + 2 ∗ 1 = 14 (A.8)

Accordingly the algorithm moves a second time, analyzing the neighboring vertices again.

f(4
3 ,

11
3 ) = 3 ∗ 4

3 + 2 ∗ 11
3 = 34

3 (A.9)

At this last move, a terminating condition has been achieved: a vertex has been found for which all of
its neighbors provide a lower value for the objective function, i.e.,

14 ≥ 12 and 14 ≥ 34
3 . (A.10)

Thus, the optimal value for (x1, x2) has been determined to be (4, 1). It is immediately obvious that the
simplex algorithm in this state is a hill climbing (or hill descending) algorithm. The chief reason why this
is possible (i.e., why one is guaranteed to find a globally optimum solution) is that the objective function
and constraints are convex functions of the decision variables. Convexification is required to find optimum
solutions to both linear and integer programs.

In general, the Simplex Method is efficient, i.e., for most cases solutions are found in less than expo-
nential time in the number of variables. There are certain program structures for which solution times
are exponential, however, and it in such cases, more advanced Interior Point techniques are required. In
general, Interior Point algorithms are often much faster than Simplex Algorithms [23], but are beyond the
scope of this review.

To begin a more robust discussion of the Simplex Method, one must introduce the notion of slack
variables. Slack variables are used to transform inequality constraints into equality constraints, effectively
taking the “slack” out of the system. Slack variables are always positive, thus one could use a slack
variable, s, to convert

∑
i

aixi ≤ b (A.11)

to

∑
i

aixi + s = b (A.12)
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and

∑
i

aixi ≥ b (A.13)

to

∑
i

aixi − s = b. (A.14)

The addition of slack variables allows one to rewrite an LP given in the standard form of Equation A.1
as the canonical form.

min
x,s

z = c>x+ 0>s (A.15a)

s.t. Ax− b = s (A.15b)

x, s ≥ 0 (A.15c)

Given that there areN decision variables andM constraints, the cardinality of x isN and the cardinality
of s is M . Furthermore, in the literature, the xi variables are termed nonbasic variables whereas the si

variables are termed basic variables.
For any LP in the canonical form, the Simplex Algorithm can be applied to it to determine optimal

values for its decision variables, or to determine that it is unbounded or infeasible. The basic structure of
the method is outlined below in Algorithm 2.

Data: Decision variables, an objective function, and a set of constraints.
Result: Optimal values for the decision variables or a flag denoting infeasibility or unboundedness.
Get initial vertex;
if no vertex is found then

feasible solution space is empty;
end
while not unbounded and not empty and not done do

Select column, i, via pricing;
if no column is found then

optimal condition found;
done;

end
Select row, j, via the ratio test;
if no row is found then

solution space is unbounded;
end
Perform a Jordan exchange on element (i, j);

end
Algorithm 2: The Simplex Algorithm

There are four core operations associated with the Simplex Algorithm:
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1. finding an initial vertex

2. column pricing

3. row selection

4. exchanging elements

If finding an initial vertex is not trivial (e.g., if the origin is not a candidate), then the operation to do
so requires use of the Simplex Method on a related LP where the origin is an available candidate. That
process will be described last.

The primary concept required to understand the Simplex Method’s operations is that of the basis. The
basis begins as the set of decision variables. The algorithm progresses by moving slack variables into the
basis, and it does so efficiently by analyzing the most “valuable” variables to target (i.e., which current
basis variable affects the optimal value the most).

Column pricing and row selection are the operations that select the current basis and nonbasis variables
to target. The Jordan exchange process translates the formulation into the new basis, exchanging basic
and nonbasic variables. This is perhaps more intuitive from a geometrical point of view. Consider some
starting vertex with many possible sides along which to move. The process of column pricing and row
selection chooses the side along which to move, and the Jordan exchange reorients the problem. Revisiting
the example problem, remember the first step. The vertex (4, 0) was determined to be the best direction in
which to move. After a Jordan exchange, the resulting LP would look like Figure A.3.

Figure A.3: The Reoriented LP after the first Jordan Exchange.

The column pricing operation selects the slack variable which will enter the basis. The most naive
implementation is to select the variable which will have the largest effect on the objective function, i.e.,
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which has the largest magnitude reduced cost. For instance, in Equation A.2a, x1 has a reduced cost of 3,
and x2 has a reduced cost of 2 (note that both costs are in the same positive direction as the objective, i.e.,
maximization). Accordingly, choosing x1 as the nonbasic exchange variable is a valid option. However,
any algorithm may be used to make this selection, as long as the reduced cost is positive.

Row selection, i.e., selecting the basic variable to enter the basis, is performed via a ratio test. Given
that a column j has been selected, the corresponding row is selected according to Equation A.16 in the
case of a maximization objective and Equation A.17 in the case of a minimization objective.

min
{
−bi

Ai,j
| Ai,j > 0

}
(A.16)

min
{
−bi

Ai,j
| Ai,j < 0

}
(A.17)

The Jordan Exchange operation, which transforms a matrix A 7→ A′ given a pivot (̂ı, ̂), is straightfor-
ward and is shown in Equation A.18.

a′ı̂,̂ = 1
aı̂,̂

for i = ı̂, j = ̂ (A.18a)

a′ı̂,j = −aı̂,j

aı̂,̂
for i = ı̂, j 6= ̂ (A.18b)

a′i,̂ = ai,̂

aı̂,̂
for i 6= i, j = ̂ (A.18c)

a′i,j = ai,j − ai,̂aı̂,j for i 6= ı̂, j 6= ̂ (A.18d)

Finally, one must determine a starting vertex. The original linear program is modified as shown in
§3.4 of [23]. For each row, i, if bi > 0, then add an additional variable, x0, to the constraint with coefficient
ai,0 = 1. An initial feasible point is then immediately available for x = 0 ∀ i 6= 0 and x0 = max(max(b), 0).
The Simplex Method is then applied, with x0 being the first variable to leave the basis. When x0 returns
to the basis, a suitable starting vertex results from the removal of x0.
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B Integer Programming and the
Branch-And-Bound Method

Integer programming expands upon the possible problems that can be modeled by linear programming.
Decision variables in linear programming are optimized on a continuum, i.e., all decision variables, x, are
real numbers, x ∈ Rn. Integer programming allows for certain decision variables, y, to take on integer-only
values, i.e., y ∈ Zn. Strictly speaking, a programming formulation for which all decision variables are
integer (i.e., integer and binary) is called an integer program (IP), whereas a programming formulation for
which some decision variables are integer while others are linear is called a mixed integer-linear program
(MILP). The discussion that follows is informed largely by Wolsey’s text [62] from which I cite many
definitions, etc. Additional clarification comes from course notes [42].

B.1 Integer Programming

Integer programming allows one to model specialized decision cases. Take for example one of the most
well-known problems in mathematical programming and optimization, the Knapsack Problem. A version
of the Knapsack problem is described as follows:

• A knapsack can hold at most b pounds.

• There are n possible items that can be placed in the bag.

• Each item is characterized by a preference, or benefit, ci, and a weight, ai

• One would like to maximize the benefit associated with a knapsack

The decision variables, yis, for the Knapsack Problem provide its integer nature. Any given item in the
above formulation can only be added once. Indeed, consider that for any viable solution, each item is in
one of two distinct states: included in the knapsack or excluded from the knapsack. This duality of states
provides a natural usage of binary variables, i.e., a variable that has only two states, 0 and 1. Accordingly,
the Knapsack Problem as an integer program is formulated as Equation B.1.
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max
∑
i∈I

ciyi (B.1a)

s.t.
∑
i∈I

aiyi ≤ b (B.1b)

yi ∈ {0, 1} ∀i ∈ I (B.1c)

Optimization problems are given as formulations, a series of inequality equations. Both domain
knowledge and geometrical investigation can provide better formulations than may be evident from an
initial formulation. Formally, a formulation forms a polyhedron.

Definition B.1. A subset of Rn described by a finite set of linear constraints P = {x ∈ Rn : Ax ≤ b} is a
polyhedron.

Definition B.2. A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn × Rp iff X = P ∩ (Zn × Rp)

As previously noted, more than one formulation can be viable for a given problem. Let us return to
the Knapsack Problem in Equation B.1. Consider a knapsack with b = 5 and items with a1 = 2, a2 = 3,
a3 = 4. The original formulation is as follows.

max
∑
i∈I

ciyi (B.2a)

s.t. 2y1 + 3y2 + 4y3 ≤ 5 (B.2b)

yi ∈ {0, 1} ∀i ∈ I (B.2c)

The set of feasible solutions here forms a polyhedron from the pointsY = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0).
The optimal solution will depend on values given to each item’s benefit, ci. However, the formulation
as provided defines a solution space larger than the specific points mentioned here. One could add a
constraint, say,

y1 + y3 ≤ 1 (B.3)

or

y2 + y3 ≤ 1. (B.4)

These two derived constraints state that the third item, if chosen, can not be included with either the
first or the second item. The resulting formulation is shown in Equation B.5.
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max
∑
i∈I

ciyi (B.5a)

s.t. 2y1 + 3y2 + 4y3 ≤ 5 (B.5b)

y1 + y3 ≤ 1 (B.5c)

y2 + y3 ≤ 1 (B.5d)

yi ∈ {0, 1} ∀i ∈ I (B.5e)

It is obvious that Equation B.5 is a different formulation than Equation B.2. For example, the point
(0.9, 0.5, 0.4) resides in the feasible solution space of Equation B.2 but is outside of the feasible solution
space of Equation B.5. Intuitively, a smaller solution space can be searched more quickly, thus tighter
formulations require less time to solve in general.

The notion of one formulation being “better” than another can be formally expressed.

Definition B.3. Given a feasible solution space set X ⊆ Rn and two formulations, P1 and P2, for X , P1 is a
better formulation than P2 if P1 ⊂ P2.

There is, of course, a limit to the formulations one can develop for a given problem. A fully-restricted
solution space, i.e., one that is as tightly bounded as possible, is called the problem’s convex hull.

Definition B.4. Given a set X ⊆ Rn, the convex hull of X , denoted conv(X), is defined as: conv(X) = {x :
x =

∑t
i=1 λixi,

∑t
i=1 λi = 1, λi ≥ 0 for i = 1, . . . , t over all finite subsets {x1, . . . , xt} of X}.

Because the extreme points of conv(X) all lie in X , the equivalent LP can be used instead of the
IP. Convex hull formulations are rarely seen in practice, however, because they require an exponential
number of additional constraints [62]. While the convex hull of a given problem may not be discovered
in practice, the feasible solution space most assuredly is reduced by most solution techniques. From a
geometrical point of view, this acts as cutting off solution space from some original larger space through
the addition of constraints as shown above. Accordingly, these additional constraints are termed cutting
planes.

B.2 The Branch and Bound Algorithm

One of the most popular solution techniques used to solve integer programs is an algorithm called Branch
and Bound (BNB). At its core, BNB is a divide-and-conquer search algorithm that uses an enumeration tree
to find optimal solutions to NP-hard IPs and MILPs. There are a number of ways to speed up the search
based on general techniques and problem-specific insights, a number of which have been discussed in
the previous section. This section highlights the basic nature of the algorithm and discusses lightly some
of the variety of solution strategies available. Again, the discussion here comes largely from [62] and [42].

BNB utilizes the relaxation of a given IP or MILP. A relaxation is a related reformulation of a given
problem that is generally easier to solve. In the case of a linear programming relaxation, integer variables
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in the IP or MILP are relaxed and allowed to be linear variables. Solving this formulation is advantageous
because it provides an upper bound for the IP or MILP. Similarly, solving a dual, given that it is feasible
and has a finite solution, or using some other heuristic provides a lower bound. These bounds allow the
search tree to terminate, or prune, a given branch.

A simple example greatly helps to show the process of the BNB algorithm. Let us use a specific
instance of Equation B.1. This example is contrite and does not involve pruning; it is useful simply to
show how branching occurs. Consider a knapsack with three items. The items have benefits of 0.5, 1, and
1.4, respectively and weights of 2, 3, and 4 pounds, respectively. The knapsack can hold 5 pounds. The
integer program is shown in Equation B.6 and the LP relaxation is shown in Equation B.7.

max ZIP = 0.5y1 + y2 + 1.4y3 (B.6a)

s.t. 2y1 + 3y2 + 4y3 ≤ 5 (B.6b)

y1, y2, y3 ∈ {0, 1} (B.6c)

max ZLP = 0.5y1 + y2 + 1.4y3 (B.7a)

s.t. 2y1 + 3y2 + 4y3 ≤ 5 (B.7b)

y1, y2, y3 ∈ [0, 1] (B.7c)

Solving the relaxation provides an upper bound of ZLP = 26
15 , a (non-integer) solution of y′ = (0, 1

3 , 1)
and a root node for the BNB search tree, shown in Figure B.1.

Figure B.1: The root node for the BNB algorithm associated with Equation B.6.

The algorithm then chooses a variable on which to branch. Formally branching divides the set of
feasible solution spaces in two. Given a solution space S, branching on a binary variable yi, produces two
new solution spaces.

S1 = S ∩ {y : yi = 0}

S2 = S ∩ {y : yi = 1}
(B.8)

If the variable is non-binary integer, given a non-integer feasible solution, y′, one produces the following
new spaces.
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S1 = S ∩ {y : yi ≤ by′ic}

S2 = S ∩ {y : yi ≥ dy′ie}
(B.9)

Arbitrarily, for this example case, one could choose to branch on y2. The resulting relaxations are
shown as Equation B.10 for y2 = 0 and Equation B.11 for y2 = 1.

max ZLP = 0.5y1 + 1.4y3 (B.10a)

s.t. 2y1 + 4y3 ≤ 5 (B.10b)

y1, y3 ∈ [0, 1] (B.10c)

max ZLP = 0.5y1 + 1 + 1.4y3 (B.11a)

s.t. 2y1 + 3 + 4y3 ≤ 5 (B.11b)

y1, y3 ∈ [0, 1] (B.11c)

Each of these new subproblems become active nodes and are added to the active list. Active nodes are
subproblem nodes that have been recognized by the algorithm and the next subproblem to solve is chosen
from the active list by some strategy. For this simple case, both subproblems are solved and the resulting
values are shown in Figure B.2.

Figure B.2: The first two branches of the BNB algorithm associated with Equations B.10 and B.11.

One could continue in this manner, branching on subsequent variables and enumerating all possible
solutions, to eventually reach the optimal solution of y∗ = (1, 1, 0). However, so far we have ignored
pruning, the act of terminating a branch of the search tree, knowing that no further useful information
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can be gained from its investigation. Pruning provides the “bounding” aspect of the Branch and Bound
algorithm.

At any point in the process of the BNB algorithm, there is a known global upper bound, U , to the
optimal solution and lower bound, L, to the optimal solution. Accordingly, a branch of the enumeration
search tree can be pruned in three instances:

1. The subproblem is optimal, given its subspace of the feasible option space.

2. The subproblem has a known upper bound that is lower than the global lower bound or the
subproblem has a known lower bound that is larger than the global upper bound.

3. The subproblem is infeasible.

With the above background, the actual BNB algorithm can be presented.
Data: Decision variables, an objective function, and a set of constraints.
Result: Optimal values for the decision variables or a flag denoting infeasibility or unboundedness.
Perform any preprocessing operations;
Derive a lower bound, L, via a heuristic;
Place original problem on the active list;
while The active list is not empty do

Use a strategy to select a candidate node (S) from the active list;
Solve the LP relaxation to get an upper bound for the candidate, U(S);
if U(S) > U then

U ← U(S);
end
if S is infeasible then

prune the branch;
end
else if U(S) > L then

L← U(S);
end
else if U(S) < L then

prune the branch;
end
else

branch on S;
add new subproblems to the active list;

end
Remove S from the active list;

end
Algorithm 3: The Branch and Bound Algorithm

There are three ways to assist, or speed up, the Branch and Bound algorithm as highlighted above:
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1. Preprocessing

2. Lower-bound heuristics

3. Node selection strategies

Preprocessing is a step provided by many solvers. It generally involves an investigation of the problem
instance in order to minimize future work. Preprocessing can affect solution bounds by tightening bounds
or providing cutoffs to the solver (i.e., preformed feasible solutions). It can speed up the internal Simplex
Method processing by informing the solver as to good simplex pricing strategies. The feasible solution
space can also be reduced by finding redundant constraints and providing cutting planes, as discussed in
the previous section. Finally, the preprocessing step can a priori fix certain decision variables. The variable
fixing algorithm is straightforward.

Data: An constraint matrix, A, objective coefficients, c, and decision variables x with decision
variable lower bounds, l, and upper bounds u.

Result: A (possibly empty) set of fixed variables.
foreach decision variable, xj , do

if ai,j ≥ 0 ∀ i and cj < 0 then
xj ← lj ;

end
else if ai,j ≤ 0 ∀ i and cj > 0 then

xj ← uj ;
end

end
Algorithm 4: The Variable Fixing Algorithm for a Maximization Objective Function

A variety of lower-bound heuristics exist. Some of the most popular involve solving heavily restricted
versions of the original problem or diving down the enumeration tree, rounding fractional integer values.
There are also problem-specific heuristics that depend on well-known problem structures.

Finally, there exist nominally three well-used node selection strategies. The first is called the Best
Node Search (BNS) which chooses the next best node in the active list based based on the node’s upper
bound. This requires large movement around the search tree, effectively solving dissimilar relaxations.
The second is the well-known Depth First Search (DFS). A DFS for an IP-enumeration tree is beneficial
because subsequent relaxations are related, which allows for warm start of the LP relaxations. Warm
starts allow subsequent relaxations to be solved quickly because good approximations to the optimal
solution can be provided. The final strategy is a BNS-DFS hybrid. The hybrid strategy involves estimating
an optimal value, performing a DFS until the relaxation’s optimal value is below that of the estimation,
and then choosing the next-best node to continue.



151

C Cyclopts HDF5 Database Layout

This appendix details the exact database layout used by Cyclopts for the ExchangeFamily, StructuredRequest
species, and StructuredSupply species.

C.1 Parameter Space

Both front-end and back-end species record the state of every point in a given parameter space in a data
set called /Species/<species type>/Points, where <species type> is either StructuredRequest or
StructuredSupply. Each point incorporates both fundamental and instance parameters as described in
section 3.1. The tables associated with parameter spaces are described in Tables C.1-C.2.

Table C.1: Data-type description of the /Species/StructuredRequest/Points dataset.

Name Data Type Description
paramid 16-character string The hex value of a UUID for a point in parameter space.
family 30-character string A description of the problem family

f_fc 1-byte integer As described in section 3.1
f_loc 1-byte integer As described in section 3.1

f_mox 4-byte float As described in section 3.1
f_rxtr 1-byte integer As described in section 3.1
n_reg 4-byte unsigned integer As described in section 3.1
n_rxtr 4-byte unsigned integer As described in section 3.1

r_inv_proc 4-byte float As described in section 3.1
r_l_c 4-byte float As described in section 3.1

r_s_mox 4-byte float As described in section 3.1
r_s_mox_uox 4-byte float As described in section 3.1

r_s_th 4-byte float As described in section 3.1
r_s_thox 4-byte float As described in section 3.1

r_t_f 4-byte float As described in section 3.1
r_th_pu 4-byte float As described in section 3.1

seed 8-byte integer The random seed used to generate an instance.
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Table C.2: Datatype description of the /Species/StructuredSupply/Points dataset.

Name Data Type Description
paramid 16-character string The hex value of a UUID for a point in parameter

space.
family 30-character string A description of the problem family

d_f_mox 4-length array of 8-byte floats As described in section 3.1
d_f_thox 4-length array of 8-byte floats As described in section 3.1

d_th 3-length array of 8-byte floats As described in section 3.1
f_fc 1-byte integer As described in section 3.1

f_loc 1-byte integer As described in section 3.1
f_mox 4-byte float As described in section 3.1
f_rxtr 1-byte integer As described in section 3.1
n_reg 4-byte unsigned integer As described in section 3.1
n_rxtr 4-byte unsigned integer As described in section 3.1

r_inv_proc 4-byte float As described in section 3.1
r_l_c 4-byte float As described in section 3.1

r_repo 4-byte float As described in section 3.1
r_s_mox 4-byte float As described in section 3.1

r_s_mox_uox 4-byte float As described in section 3.1
r_s_th 4-byte float As described in section 3.1

r_s_thox 4-byte float As described in section 3.1
r_t_f 4-byte float As described in section 3.1

r_th_pu 4-byte float As described in section 3.1
seed 8-byte integer The random seed used to generate an instance.

C.2 Problem Instances

Problem instances are generated by problem species and are executed by problem families. Accordingly,
both species and families can record information about instances. Front and back-end exchange species
each record two types of information: details about each arc in an instance and a summary of species-
specific information. The exchange family records information regarding each of the entities that comprise
an instance: nodes, groups of nodes (having been translated from portfolios), and arcs. Further, aggregate
summary information is also recorded.

C.2.1 Exchange Family

The exchange family records information regarding all major constructs in an exchange: nodes, groups, and
arcs. A summary table is written to /Family/ResourceExchange/ExchangeInstProperties. Nodes and
group data are recorded in an aggregate dataset located at /Family/ResourceExchange/ExchangeNodes,
node group data is located at /Family/ResourceExchange/ExchangeGroups, and arc data is collected in
the /Family/ResourceExchange/ExchangeArcs group. A dataset per instance UUID is used because it
has been found to have better performance in the post-processing phase. A summary of family-specific
instance data are detailed in Tables C.3-C.6.
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Table C.3: Datatype description of the /Family/ResourceExchange/ExchangeInstProperties dataset.

Name Data Type Description
paramid 16-character string The hex value of a UUID for a point in parameter space.

instid 16-character string The hex value of a UUID for an NFCTP graph instance.
species 30-character string A description of a problem species.
n_arcs 8-byte integer The number of arcs in an NFCTP instance.

n_u_grps 8-byte integer The number of supply groups in an NFCTP instance.
n_v_grps 8-byte integer The number of demand groups in an NFCTP instance.

n_u_nodes 8-byte integer The number of supply nodes in an NFCTP instance.
n_v_nodes 8-byte integer The number of demand nodes in an NFCTP instance.
n_constrs 8-byte integer The number of constraints in an NFCTP instance.
excl_frac 8-byte float The fraction of arcs in a NFCTP graph that are exclusive.

Table C.4: Datatype description of the /Family/ResourceExchange/ExchangeNodes dataset.

Name Data Type Description
instid 16-character string The hex value of a UUID for an NFCTP graph instance.

id 8-byte integer A uniquely identifying value.
gid 8-byte integer A unique value identifying an ExchangeGroup

kind 1-byte integer bitfield Whether an object is associated with supply or demand.
qty 8-byte float A quantity.
excl 1-byte integer bitfield Whether or not an arc is exclusive.

excl_id 8-byte integer A unique value identifying the mutually exclusive group an arc
belongs to.

Table C.5: Datatype description of the /Family/ResourceExchange/ExchangeGroups dataset.

Name Data Type Description
instid 16-character string The hex value of a UUID for an NFCTP graph

instance.
id 8-byte integer A uniquely identifying value.

kind 1-byte integer bitfield Whether an object is associated with supply
or demand.

caps 4-length array of 8-byte floats Capacity RHS values.
cap_dirs 4-length array of 1-byte integer bitfields Whether a constraint is greater or less-than

qty 8-byte float A quantity.

C.2.2 Exchange Species

Both exchange species record information about each arc in an exchange instance. A parent group for
arc data is defined under each species group. A group for each instance, whose name is the hex string
of the UUID, is defined under the associated arc group. Finally, arc information associated with each
instance is stored as a dataset in that instance’s group. For example, the arc data for a given UUID of
a front-end exchange is located as a dataset in the group /Species/StructuredRequest/Arcs/<UUID
hex>. Summary information related to each species is also recorded in a data set for each species type
located in the group /Species/<species type>/Summary. Tables describing species-specific instance
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Table C.6: Datatype description of the /Family/ResourceExchange/ExchangeArcs/<Instance UUID>
dataset.

Name Data Type Description
id 8-byte integer A uniquely identifying value.

uid 8-byte integer Supply node for an arc.
ucaps 4-length array of 8-byte floats Capacity coefficients for a supply node.

vid 8-byte integer Request node for an arc.
vcaps 4-length array of 8-byte floats Capacity coefficients for a request node.
pref 8-byte float Preference value of an arc.

data are detailed in Tables C.7-C.9.

Table C.7: Datatype description of the /Species/<Species Type>/Arcs/<Instance UUID> dataset.

Name Data Type Description
arcid 4-byte unsigned integer The hex value of a UUID for an arc.

commod 4-byte unsigned integer The commodity associated with an arc.
pref_c 4-byte float Commodity-based preference of an arc.
pref_l 4-byte float Location-based preference of an arc.

Table C.8: Datatype description of the /Species/StructuredRequest/Summary dataset.

Name Data Type Description
paramid 16-character string The hex value of a UUID for a point in parameter space.
family 30-character string A description of the problem family
n_r_th 4-byte unsigned integer As described in section 3.1

n_r_f_mox 4-byte unsigned integer As described in section 3.1
n_r_f_thox 4-byte unsigned integer As described in section 3.1

n_s_uox 4-byte unsigned integer As described in section 3.1
n_s_th_mox 4-byte unsigned integer As described in section 3.1
n_s_f_mox 4-byte unsigned integer As described in section 3.1
n_s_f_thox 4-byte unsigned integer As described in section 3.1

C.3 Solutions

For every solution, data is added to the Cyclopts /Results dataset. Problem solutions are determined
from problem instances, and are thus managed by a problem family. Aggregate solution information
is provided in a family dataset /Family/ResourceExchange/ExchangeSolutionProperties. The full
results of each solve, i.e., the amount of resources flowing across each arc, are recorded in a group specific
to each solution UUID. Tables related to instance solutions are described in Tables C.10-C.12.
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Table C.9: Datatype description of the /Species/StructuredSupply/Summary dataset.

Name Data Type Description
paramid 16-character string The hex value of a UUID for a point in parameter space.
family 30-character string A description of the problem family
n_r_th 4-byte unsigned integer As described in section 3.1

n_r_f_mox 4-byte unsigned integer As described in section 3.1
n_r_f_thox 4-byte unsigned integer As described in section 3.1

n_s_uox 4-byte unsigned integer As described in section 3.1
n_s_th_mox 4-byte unsigned integer As described in section 3.1
n_s_f_mox 4-byte unsigned integer As described in section 3.1
n_s_f_thox 4-byte unsigned integer As described in section 3.1
n_s_repo 4-byte unsigned integer As described in section 3.1

Table C.10: Datatype description of the /Results dataset.

Name Data Type Description
solnid 16-character string The hex value of a UUID for a solution to an Exchange-

Graph instance.
instid 16-character string The hex value of a UUID for an NFCTP graph instance.
solver 30-character string A description of the solver used.

problem 30-character string A description of the problem family.
time 8-byte float How long a solution took.

objective 8-byte float The objective value associated with a solution.
cyclopts_version 12-character string The version of Cyclopts used to generate a solution.

timestamp 26-character string A timestamp of when a solution was ran.

Table C.11: Datatype description of the /Family/ResourceExchange/←↩
ExchangeInstSolutionProperties dataset.

Name Data Type Description
solnid 16-character string The hex value of a UUID for a solution to an ExchangeGraph

instance.
instid 16-character string The hex value of a UUID for an NFCTP graph instance.

pref_flow 8-byte float The value of the product of preference and flow for arcs.
cyclus_version 20-character string The version of Cyclus used to generate a solution.

Table C.12: Datatype description of the /Family/ResourceExchange/ExchangeInstSolutions/<←↩
Solution UUID> dataset.

Name Data Type Description
arc_id 8-byte integer
flow 8-byte float

C.4 Post-Processing

Post-processing may be applied parameter, instance, and solution data. The exchange family, front-end
species, and back-end species each contain a PostProcess dataset. Dataset layouts associated with post
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processing are described Tables C.13-C.15.

Table C.13: Datatype description of the /Family/ResourceExchange/PostProcess dataset.

Name Data Type Description
solnid 16-character string The hex value of a UUID for a solution to an ExchangeGraph

instance.
pref_flow 8-byte float The value of the product of preference and flow for arcs.

Table C.14: Datatype description of the /Species/StructuredRequest/PostProcess dataset.

Name Data Type Description
solnid 16-character string The hex value of a UUID for a solution to an ExchangeGraph

instance.
c_pref_flow 8-byte float The value of the product of commodity-based preference and

flow for arcs.
l_pref_flow 8-byte float The value of the product of location-based preference and flow

for arcs.

Table C.15: Datatype description of the /Species/StructuredSupply/PostProcess dataset.

Name Data Type Description
solnid 16-character string The hex value of a UUID for a solution to an ExchangeGraph

instance.
c_pref_flow 8-byte float The value of the product of commodity-based preference and

flow for arcs.
l_pref_flow 8-byte float The value of the product of location-based preference and flow

for arcs.

C.5 Performance Studies

Chunk size is a critical parameter of HDF5 datasets that affects I/O performance. HDF5’s storage layout
is not contiguous; rather, data is separated into equal-sized chunks. Any reading or writing occurs on a
chunk of data, rather than accessing an entire dataset. Accordingly, choosing a reasonable chunk size
can greatly increase performance for known data access operations. In PyTables, the compression level of a
dataset is also a tune-able parameter that affects I/O performance. Compression, of course, reduces overall
database size. Therefore, an ideal compression is the largest possible that retains acceptable performance.

Originally, all Cyclopts datasets used a UUID-as-primary-key layout. For instance, rather than having
tables with a layout described in Table C.6, a single table with an extra column naming the instance
UUID was used. However, extremely long read times were encountered when post processing data. The
basic procedure for performing a post-process operation included reading all rows associated with a
UUID in an exchange species dataset, reading all rows associated with the same UUID in an exchange
family dataset, selecting a value from each row (resulting in two vectors), and performing a dot product
operation.
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Figure C.1: Post-processing performance for 25 entries of a small-sized database for a variety of compres-
sion levels and chunk sizes.

In order to investigate possible chunk size and compression optimizations, a small (∼MBs) dataset
and a large (∼ GBs) dataset were created. The post-processing step was then run on 25 instances in each
dataset. The operation was timed using the UNIX time command. An initial chunksize for each dataset
was chosen to be proportional to the ratio of a normal L2 cache to row size and a compression level of four
was selected per suggestions from the PyTables documentation [3]. For the performance study, chunk size
and compression level were varied around these recommended values in order to determine if any tuning
was available. The results of the study on the small dataset is shown in Figure C.1. The large dataset
results is shown in Figure C.2.

Assuming some level of compression, an ideal chunksize range is identified for the small database of
between ∼ 103 − 105 bytes. Further the small database example confirms that the study’s methodology is
well founded: an ideal chunksize range is established. A similar optimal chunk size range is found for
the large database. However, note that in this exercise, only ∼ 0.25% of instances are post-processed. An
optimal performance of > 80 seconds per instance is unacceptable.

A number of strategies exist for trying to increase performance. A classic strategy is pivoting the
group-dataset structure such that data queries are made upon an entire group rather than rows in a
dataset. In this example, such a pivot involves dividing the single, large dataset into n datasets, where n
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Figure C.2: Post-processing performance for 25 entries of a large-sized database for a variety of compres-
sion levels and chunk sizes.

is the number of unique primary keys, i.e., UUIDs.
Accordingly, an additional performance test was conducted with a new database layout. All datasets

on which queries are made were pivoted such that new group nodes were added for each UUID, and
all data for that UUID was appended to a dataset under the associated group. The post processing step
was divided into the read and vector-population operations associated with the exchange family and the
the read and vector-population operations associated with a species. The exact same operations were
applied to a large database with the column-based layout and a large database with the group-based
layout. Specific instances, increasing in size, were identified to be post-processed. The group-based results
were compared with the column-based results and are shown in Figure C.3. The speed of each operation
was compared directly for both layout strategies. The ratio of the group-strategy running time to the
column strategy running time was then plotted. Therefore, a low ratio implies a large time savings, and
a ratio close to unity implies almost no time savings. Times were calculated using the IPython magic
%timeit command.

As can be seen, the group-based strategy performs quite well, over an order of magnitude better than
the column-based strategy for species operations. Furthermore, species operations are shown to have
a much larger speedup relative to family operations. This artifact is due to the fact that at the time of
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Figure C.3: The ratio of group-based queries to column-based queries as a function of problem size. A
lower ratio indicates a faster process time for the group strategy over the column strategy.

this analysis, solution values were stored only if they were nonzero. When read, a data structure must be
allocated and populated for each non-zero index rather than simply copying a block on data on disc. The
writing of family-based solution values has since been updated to also write zero values to avoid this
issue.

For the purposes of this study, the dataset-group pivot served the required purpose. Post-processing
now performs satisfactorily for the operations needed and the database sizes experienced. However, if
future performance issues arise, other strategies may be investigated. Perhaps the most fruitful of these
will be returning to the single dataset layout and using PyTable’s indexing feature.
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D Cyclopts Command Line Interface

Cyclopts provides a rich command line interface (CLI) for instance generation, local execution, and remote
execution. The CLI includes a number of useful utilities, however this section will only present those
required for running the full Cyclopts workflow, both local and remote. The full set of CLI options is
presented in Listing D.1.

Listing D.1: All available Cyclopts CLI options (the result of cyclopts -h).
usage: Cyclopts [-h]

{convert,exec,pp,condor-submit,condor-collect,
condor-rm,cde,combine,col2grp,dump}
...

positional arguments:
{convert,exec,pp,condor-submit,condor-collect,condor-rm,cde,
combine,col2grp,dump}
convert Convert a parameter space defined by an input run

control file into an HDF5 database for a Cyclopts
execution run.

exec Executes a parameter sweep as defined by the input
database and other command line arguments.

pp Post process input and output.
condor-submit Submits a job to condor, retrieves output when it has

completed, and cleans up the condor user space after.
condor-collect Collects a condor submissions output.
condor-rm Removes processes on condor for a user.
cde Updates the Cyclopts CDE tarfile on a Condor submit

node.
combine Combines a collection of databases, merging their

content.
col2grp Moves input and output databases from id-column form

to id-group form.
dump Dumps information about an instance database.
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optional arguments:
-h, --help show this help message and exit

D.1 Local Execution

When working locally, the primary workflow is cyclopts convert, followed by cyclopts exec, finishing
with cyclopts pp. cyclopts convert converts a user-provided definition of a parameter space into an
instance database. cyclopts exec then executes some or all of those instances, resulting in a solution
database. Finally, cyclopts pp post-processes the instance and solution data. The options for each are
described in Listings D.2, D.3, and D.4, respectively.

Listing D.2: CLI options for cyclopts convert.
usage: Cyclopts convert [-h] [--cycrc CYCRC] [--profile] [--proffile ←↩

PROFFILE]
[--species_module SPECIES_MODULE]
[--species_class SPECIES_CLASS] [--rc RC] [--db DB]
[-n NINST] [--count] [-v] [--debug] [-u UPDATE_FREQ]

optional arguments:
-h, --help show this help message and exit
--cycrc CYCRC A global run control file, defaults to

$HOME/.cyclopts.rc useful for declaring global
family/species information.

--profile Enable profiling.
--proffile PROFFILE Name of profiling filename if profile is set.
--species_module SPECIES_MODULE

The module for the problem species
--species_class SPECIES_CLASS

The problem species class
--rc RC The run control file to use that defines a continguous

parameter space.
--db DB The HDF5 file to dump converted parameter space points

to. This file can later be used an input to an execute
run.

-n NINST, --ninstances NINST
The number of problem instances to generate per point
in parameter space.

--count Only read in the run control file and count the number
of possible samplers that will be created.

-v, --verbose Print verbose output during the conversion process.
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--debug Use objgraph and pdb to debug the conversion process.
-u UPDATE_FREQ, --update-freq UPDATE_FREQ

The instance frequency with which to update stdout.

Listing D.3: CLI options for cyclopts exec.
usage: Cyclopts exec [-h] [--cycrc CYCRC] [--profile] [--proffile PROFFILE]

[--family_module FAMILY_MODULE]
[--family_class FAMILY_CLASS] [--db DB]
[--solvers [SOLVERS [SOLVERS ...]]]
[--instids [INSTIDS [INSTIDS ...]]] [--rc RC]
[--outdb OUTDB] [--conds CONDS] [-v]

optional arguments:
-h, --help show this help message and exit
--cycrc CYCRC A global run control file, defaults to

$HOME/.cyclopts.rc useful for declaring global
family/species information.

--profile Enable profiling.
--proffile PROFFILE Name of profiling filename if profile is set.
--family_module FAMILY_MODULE

The module for the problem family
--family_class FAMILY_CLASS

The problem family class
--db DB An HDF5 Cyclopts database (e.g., the result of

'cyclopts convert').
--solvers [SOLVERS [SOLVERS ...]]

A list of which solvers to use.
--instids [INSTIDS [INSTIDS ...]]

A list of instids (as UUID hex strings) to run.
--rc RC The run control file, which allows idetification of a

subset of input to run.
--outdb OUTDB An optional database to write results to. By default,

the database given by the --db flag is use.
--conds CONDS A dictionary representation of execution conditions.

This CLI argument can be used instead of placing them
in an RC file.

-v, --verbose Print verbose output during execution.
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Listing D.4: CLI options for cyclopts pp.
usage: Cyclopts pp [-h] [--cycrc CYCRC] [--profile] [--proffile PROFFILE]

[--family_module FAMILY_MODULE]
[--family_class FAMILY_CLASS]
[--species_module SPECIES_MODULE]
[--species_class SPECIES_CLASS] [--indb INDB]
[--outdb OUTDB] [--ppdb PPDB] [--verbose_freq VERBOSE_FREQ←↩

]
[--limit LIMIT]

optional arguments:
-h, --help show this help message and exit
--cycrc CYCRC A global run control file, defaults to

$HOME/.cyclopts.rc useful for declaring global
family/species information.

--profile Enable profiling.
--proffile PROFFILE Name of profiling filename if profile is set.
--family_module FAMILY_MODULE

The module for the problem family
--family_class FAMILY_CLASS

The problem family class
--species_module SPECIES_MODULE

The module for the problem species
--species_class SPECIES_CLASS

The problem species class
--indb INDB An HDF5 Cyclopts input database (e.g., the result of

'cyclopts convert').
--outdb OUTDB An HDF5 Cyclopts output database (e.g., the result of

'cyclopts exec').
--ppdb PPDB An HDF5 Cyclopts post processed database (can be

combined with others via 'cyclopts combine'.
--verbose_freq VERBOSE_FREQ

Stdout is informed of progress at the given processed
instance frequency.

--limit LIMIT Post process only X instances (used for
profiling/testing).

A diagram explaining the role of the CLI workflow with respect to Cyclopts object tree (as seen in
Figure 3.6) is shown below in Figure D.1.
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Figure D.1: The Cyclopts object tree structure is shown with boxes around each group of objects that are
created given a CLI call. Note that the root node is determined from user-provided input.
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D.2 Remote Execution

In order to execute Cyclopts on a Condor system, the submit node must contain the Cyclopts environment.
That operation is supported by the cyclopts cde CLI, presented in Listing D.5. A job, the input of which
is an instance database, can be submitted using cyclopts condor-submit. Upon completion, results can
be collected with cyclopts condor-collect. The arguments for both are shown in Listings D.6 and D.7.

Listing D.5: CLI options for cyclopts cde.
usage: Cyclopts cde [-h] [--cycrc CYCRC] [--profile] [--proffile PROFFILE]

[--family_module FAMILY_MODULE]
[--family_class FAMILY_CLASS] [--source-path PREFIX]
[-u USER] [-t HOST] [--no-clean] [--keyfile KEYFILE]
[--fname FNAME]

optional arguments:
-h, --help show this help message and exit
--cycrc CYCRC A global run control file, defaults to

$HOME/.cyclopts.rc useful for declaring global
family/species information.

--profile Enable profiling.
--proffile PROFFILE Name of profiling filename if profile is set.
--family_module FAMILY_MODULE

The module for the problem family
--family_class FAMILY_CLASS

The problem family class
--source-path PREFIX The path to cyclopts source.
-u USER, --user USER The cde user name.
-t HOST, --host HOST The remote cde submit host.
--no-clean Do not clean up files.
--keyfile KEYFILE An ssh public key file.
--fname FNAME The function to wrap with cde.

Listing D.6: CLI options for cyclopts condor-submit.
usage: Cyclopts condor-submit [-h] [--cycrc CYCRC] [--profile]

[--proffile PROFFILE]
[--family_module FAMILY_MODULE]
[--family_class FAMILY_CLASS] [--rc RC]
[--db DB] [--instids [INSTIDS [INSTIDS ...]]]
[--solvers [SOLVERS [SOLVERS ...]]] [--count]
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[-u USER] [-t HOST] [--keyfile KEYFILE]
[-d REMOTEDIR] [-k {dag,queue}] [--log]
[-p PORT] [--nodes [NODES [NODES ...]]] [-v]

optional arguments:
-h, --help show this help message and exit
--cycrc CYCRC A global run control file, defaults to

$HOME/.cyclopts.rc useful for declaring global
family/species information.

--profile Enable profiling.
--proffile PROFFILE Name of profiling filename if profile is set.
--family_module FAMILY_MODULE

The module for the problem family
--family_class FAMILY_CLASS

The problem family class
--rc RC The run control file, which allows idetification of a

subset of input to run.
--db DB An HDF5 Cyclopts database (e.g., the result of

'cyclopts convert').
--instids [INSTIDS [INSTIDS ...]]

A list of instids (as UUID hex strings) to run.
--solvers [SOLVERS [SOLVERS ...]]

A list of which solvers to use.
--count Only count instances to be run.
-u USER, --user USER The condor user name.
-t HOST, --host HOST The remote condor submit host.
--keyfile KEYFILE An ssh public key file.
-d REMOTEDIR, --remotedir REMOTEDIR

The remote directory (relative to ~/cyclopts-runs) on
the submit node in which to run cyclopts jobs.

-k {dag,queue}, --kind {dag,queue}
The kind of condor submission to use.

--log Whether to keep a log of worker queue data.
-p PORT, --port PORT The port to use for a condor queue submission.
--nodes [NODES [NODES ...]]

The execute nodes to target.
-v, --verbose Print output during the submisison process.

Listing D.7: CLI options for cyclopts condor-collect.
usage: Cyclopts condor-collect [-h] [--cycrc CYCRC] [--profile]
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[--proffile PROFFILE] [--outdb OUTDB] [-u USER]
[-t HOST] [--keyfile KEYFILE] [-l LOCALDIR]
[-d REMOTEDIR] [--clean]

optional arguments:
-h, --help show this help message and exit
--cycrc CYCRC A global run control file, defaults to

$HOME/.cyclopts.rc useful for declaring global
family/species information.

--profile Enable profiling.
--proffile PROFFILE Name of profiling filename if profile is set.
--outdb OUTDB An HDF5 Cyclopts output database (e.g., the result of

'cyclopts exec').
-u USER, --user USER The condor user name.
-t HOST, --host HOST The remote condor submit host.
--keyfile KEYFILE An ssh public key file.
-l LOCALDIR, --localdir LOCALDIR

The local directory in which to place resulting files.
-d REMOTEDIR, --remotedir REMOTEDIR

The remote directory (relative to the users home
directory) in which output files from a run are
located.

--clean Clean up the submit node after.
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