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Abstract | | | 

Increased impervious areas resulting from urbanization cause an increase in stormwater 

runoff and a decrease in infiltration to the groundwater table. Infiltration basins are often 

required to recharge a portion of the pre-development infiltration volume. The localized 

recharge by these relatively small basins can cause a groundwater mound to form below the 

, basin. Mound formation is important as it may reduce the ability of the soil to filter pollutants, 

and may reduce the infiltration rate of the basin. Therefore, an accurate understanding of 

groundwater mound formation is important in the proper design of infiltration basins. | 

The goal of this study was to understand groundwater mounding and the potential for 

contaminant transport resulting from recharge beneath stormwater infiltration basins. The 

specific objectives were to monitor changes in groundwater levels and soil moisture content 

in response to infiltrating stormwater from an infiltration basin, and to calibrate and validate a 
groundwater flow and contaminant transport model. 

A 0.10 hectare (0.25 acre) infiltration basin serving a 9.4 hectare (23.2 acre) residential 

subdivision in Oconomowoc, Wisconsin was used in this study. Subsurface conditions 

included sand and gravel material and a groundwater table at 2.3 meters (7.5 ft) below grade. 
Three storm events, 4.93 cm, 2.84 cm, and 4.28 cm, on 08/24/06, 10/04/06, and 04/03/07, 
respectively, were modeled using the two-dimensional numerical model HYDRUS. Inverse , 

modeling was performed with HYDRUS to estimate soil and aquifer parameters. A good fit 

was achieved between modeled and observed data for the timing and magnitude of the _ 
maximum rise in the water table. Predicted soil hydraulic parameters matched well with 

measured and literature values. The model was found to be most sensitive to the thickness 
of the basin sedimentation layer and the hydraulic conductivity. | 

The calibrated model was then used to evaluate hypothetical basin operation scenarios for 

various basin sizes, soil types, ponding depths, and water table depths, with parameters 

obtained from WDNR post-construction stormwater standards 1002 and 1003. The 
groundwater mound intersected the basin floor in most scenarios with loamy sand and sandy 

loam soils, an unsaturated thickness of 1.52 meters (5 ft), and a ponding depth of 0.61 

meters (2 ft). No groundwater table response was observed with ponding depths of 0.305 
meters (12 in) and 0.152 meters (6 in) with an unsaturated zone thickness of 6.09 meters (20 | 

_ ft). The mound height was most sensitive to hydraulic conductivity and unsaturated zone 

thickness. A 7.62 cm (3 in) sediment layer delayed the time to reach maximum mound 
height, but had a minimal effect on the magnitude of the mound. Mound heights increased 

as infiltration basin size increased. |



Introduction 

Background and Purpose | 

As urbanization continues to expand the limits of corporated areas, previous farmland, 
grassland, and wooded areas are converted to impervious roads, buildings, and parking lots. 

These land use changes cause an increase in surface runoff and a decrease in infiltration and | 

: groundwater recharge. The combined effects of reduced groundwater recharge and increased 

groundwater pumping to sustain a larger population has lowered groundwater levels in aquifers 
and reduced baseflow to lakes and streams. As an example, the Yahara River at McFarland, 
Wisconsin, has suffered a greater than 50% reduction in base flow due to human activities, 

according to the Dane County Regional Planning Commission (DCRPC, 1999). Base flows are 

of important environmental and economical concern for several reasons. Base flows must be 

capable of absorbing pollution from sewage treatment plants and non-point sources, supporting 
aquatic life dependent on stream flow, and replenishing water supply reservoirs for municipal 

use in the seasons when water levels tend to be lowest and water demands highest (USEPA, 
1999). 

To mitigate the effects of reduced recharge, Wisconsin regulations require that the average 

annual infiltration volume for new residential and non-residential areas must be 90% and 60%, 
respectively, of the infiltration volume under pre-developed conditions (WDNR, 2004a). 

Infiltration basins are a commonly used stormwater management practice to enhance 

_ groundwater recharge. Infiltration, or artificial recharge basins, have long been used to 
augment groundwater supplies by using surplus rainfall runoff water and treated sewage 

effluents (Pettyjohn, 1968). | 

Infiltration basins are depressions in the landscape that function by holding stormwater for 

durations long enough to allow the water to infiltrate into the soil. The infiltration basin area is 
: typically small compared to the contributing area. This localized, or focused recharge from the 

basin has the potential to increase the groundwater table in the immediate vicinity of the basin. 

The height of the groundwater mound underneath an infiltration basin is important to understand | 
and be able to predict. If the groundwater table rises near the ground surface, the infiltration 

| rate will be reduced, causing greater water losses to the atmosphere by evapotranspiration and 

reducing the volume recharged to the aquifer. | 

The groundwater table rising close to the ground surface also has important water quality 

, implications. In addition to causing increased runoff volume, urbanized areas also contribute 
various pollutants including volatile organic compounds (VOCs), pesticides, nutrients, metals, 

pathogens, and other oxygen-demanding substances to runoff (USEPA, 1999). These 
pollutants are then transported by runoff into the infiltration basin, so that the basin might in 

effect act as a “point source’ of pollution to the groundwater. The unsaturated soil beneath the 

basin acts as a natural filter for many of these pollutants. As the rising groundwater mound 
reduces the unsaturated zone thickness, the filtering effect of the soil will be minimized, and the | 

pollutants will have a direct pathway to the groundwater aquifer. 

Therefore, the interaction between the surface and groundwater is important for the proper | 

design, installation, and management of infiltration basins. If the effect of various soil and 

aquifer parameters on the height and shape of the groundwater mound formation is known, 

infiltration basins could be designed to minimize potential groundwater impacts and allow proper | 
infiltration rates. 
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The interactions between stormwater and the groundwater beneath infiltration basins are 

complex and not well understood. Analytical solutions to estimate maximum groundwater 

~ mounding have been shown to suffer from many limiting assumptions. The most significant | 

sources of error with analytical solutions involve vadose zone storage, the assumption of 

homogeneous conditions, and neglecting transient flow effects (NDWRCDP, 2005). Numerical 

models can account for these factors but often suffer from complexity and the need for 

additional site-specific data. Predictions for mound height have generally been much higher 

with analytical methods than with numerical methods (NDWRCDP, 2005). As over estimation of | 

mound height can have basin siting implications, an accurate estimation of mound formation is | 

important. 

_ Objectives 

The goal of this study was to increase our understanding of the causes of groundwater 

mounding beneath stormwater infiltration basins. By understanding the relative importance of | 

factors affecting groundwater mounding, the potential mound formation at future sites can be 

evaluated with greater confidence. The main objectives of the project were: 1) To monitor | 

groundwater levels and changes in soil moisture in the unsaturated zone in response to 

infiltrating stormwater from an infiltration basin, 2) To calibrate and validate a groundwater flow 

and contaminant transport model using data obtained under objective one, and 3) To use the 

model to extrapolate field data to other hydrogeologic settings. | 

This report presents an overview of methods to estimate groundwater mounding, followed by 

| characterization of the study site and model design, and concludes with modeling results from | 

| the study site, as well as modeling results from hypothetical basin operation scenarios. | 

Groundwater Mounding | 

Groundwater mounding can occur when stormwater infiltration rates exceed the soil’s capacity 

to carry water down to the water table and laterally away from the site via unconfined flow. The 

potential for mounding increases when the materials have low hydraulic conductivity, the water 

table is near the surface, the gradient is low, and the saturated and unsaturated zones are thin | , 

(NDWRCDP, 2005). Evaluation for the potential for groundwater mounding can require different : 

levels of effort depending on characteristics of the subsurface, available site information, and 

the consequences of system failure. 

As a very simple estimate of basin separation to the groundwater table, a minimum of four feet 

of soil medium in the unsaturated zone is recommended for every foot of water in the basin | 

(Guo, 2001). This conservative estimate is derived from the concept of soil storage associated 

with porosity, and is obtained by dividing the maximum expected ponding depth by the specific 

yield of the receiving soil. Bouwer (1990) suggests that because the capillary fringe in 

permeable materials usually is less than 0.3 meters (1.0 ft) high, the depth to groundwater 
should be at least 0.5 - 1.0 meters (1.6 - 3.3 ft) below any basin clogging layer that may exist. If 

no clogging layer exists, then the depth to groundwater should be more than twice the width of . 

the recharge basin. A simple emperical estimate of mound height is given in the hydraulics 

literature (Parmley, 2001) as: | 

a Olog(R/ uw? = ( Qa) Dan | (1) 
1.3C 
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where, H = initial saturated thickness + mound height (L), Q = flow (VT"), R= distance from 

basin center to zero mound height (L), r= basin radius (L), C = coefficient of permeability (VT 

‘A"), and h = initial saturated thickness (L). 

The next level of effort to estimate groundwater mounding involves analytical modeling. While 

analytical models have the advantage of being more straight-forward and less time consuming 

to use, they suffer from a number of simplifying assumptions. The more commonly used 

analytical solutions and their simplifying assumptions are discussed in the following section. 

Finally, numerical modeling can be used to estimate groundwater mounding. Numerical 

modeling requires more knowledge of the site conditions, as well as experience with numerical 

methods, soil physics, and hydrogeology. However, the power and flexibility of numerical 

modeling allows for this method to overcome many of the limitations associated with analytical 

methods. A brief description of numerical models capable of estimating groundwater mounding 

is presented in the following section. 

Mounding Estimation by Analytical Methods 

Hantush Solution 

One of the best known analytical solutions for predicting groundwater mound development was 

presented by Hantush (1967). Hantush solved the linearized form of the saturated, radial, 

groundwater flow equation subject to infiltration from a rectangular or circular area. The solution 

is for transient groundwater mound development beneath a recharge area with a constant rate 

of infiltration, and requires inputs of saturated hydraulic conductivity, storativity, and initial 

saturated thickness. Rao and Sarma (1981) demonstrated the utility of Hantush’s mound 

function in representing observed groundwater mounds. Since Hantush’s solution contains an 

error function and is therefore not very convenient to use, an algebraic approximation for 

Hantush’s mound function was developed by Swamee et al. (1997). 

area of Z 
waste water 

application x 

Pa 
vertical infiltration 

VyvvVVVVY 
nn 

ground D, W 
surface initial water table _ aes I 

hr Amax wat, Oe Paes reese 

hi eas a 
———oreoeervoaoa—.> 12a: s, 

x or WwW, 

y L 
Figure 1. Conceptual Model for Hantush Solution Adapted for WSAS (NDWRCDP, 2005). 

Hantush’s solution for a rectangular source has been adapted for use in the wastewater soil 

adsorption system (WSAS) industry (Figure 1 & Equation 2) (NDWRCDP, 2005). The solution 

assumes a homogeneous and isotropic aquifer, bounded by a horizontal water table overlying a 
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horizontal impermeable base. The maximum mound height, Zmax OF Nmax, occurs at the center of 

the basin, and is estimated as: 

| hyot| os 
2 = a? + Leet) gg"| 1 _._” _||-1, (2) 

28, 4K pMavet AK Pant | 

. Sy | Sy , 

where: Zmax = Navg - hi (L); q = effective wastewater infiltration rate per unit area of infiltration 

zone (A); h;= initial saturated thickness (L), havg = iterated head at location and time of interest: 

0.5(h,(0)+h(t)); (L), Kn = horizontal hydraulic conductivity (LT'), |= % overall infiltration area 

length, % L; w = % overall infiltration area width, “% W; Sy = specific yield (0.001 used for 

conservative, long-term solution); t = time since infiltration began (10 yrs used for conservative, 

long-term solution), and | 

1 
* a B -- 2 2 . . - 

S = lexf — erf| —= |dt if a“ + B“ < 0.04, use following approximation: 

JOO" Te Fe on 
‘ 4. _ 

| S = =—af 3+W(a? + B?)- tant 2 4 Ftant & | (3) 
: 0 B a a B 

5 = AK Ayet | 

S, | 

[+x 7 wt | 
a= —= (x= 0 for Zna) B= — = (y = 0 for Zmax) 

A spreadsheet has been developed to solve for maximum mound height, using the , 

approximation for S found in Equation 3, and is available at www.ndwrcdp.org/publications. 

Finnemore Solution | 

: Finnemore and Hantzche (1983) describe a simplification of Hantush’s method by reducing the 

solution to the following single equation for calculating groundwater mounding: : 

n 0.5n 1-0.5n | 

L 1) | 

ky ic{ =] (=) = MH 
| 4) \Kh S, | 

where, Zm = maximum mound height (L), | = average volume recharge rate of wastewater entry 

into unit area (LT'), C and n = constants that depend on the length to width ratio of the source 

(see table in Finnemore and Hantzsche (1983)), L = disposal field length (L), K = hydraulic 

conductivity (LT*), h = initial aquifer thickness + (72)Zm (L), t = time since beginning of water 

application (T), and S, = specific yield (dimensionless). Equation 4 neglects unsaturated flow, 

and is limited to cases where there is a single permeable layer with a lower impermeable 

- boundary. The equation has a further assumption that there is a minimum specified distance 

between the water table and infiltrative surface of two to five feet. 
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Since Equation 4 is not straightforward to solve, Finnemore (1993) developed a simplified long- 
term solution for a trench system (Figure 2) with limited input parameters. The method is best 
suited for longer application times of 10-20 years, which mimics a steady state condition. This 
method would be best applied to a wastewater disposal field, and not to the highly transient 
conditions observed under a stormwater infiltration basin. Finnemore (1993) demonstrated the 
impact of subdividing a single disposal field into widely separated, smaller fields on mound 
height. The author reported that replacing a single disposal field by two widely separated fields, 

_ each with half of the area, reduces the mound height to 55-65% of that of the single field. 

Finnemore (1995) developed a software program, MOUNDHT, to estimate mound height based | 
on Hantush’s solution. The program was written in FORTRAN-77, and was developed to rapidly 
perform the necessary iterations and to evaluate the exponential integrals (well functions) in the 
Hantush solution for longer periods. A Washington State Department of Transportation (WDOT, 
(2000) study describes an application of the public domain program, including model input and 
output parameters. 

Recharge area | | 
flength L) : : 

Ground surface jeg | | 

| - io | ” | | | / Unsaturated zone, | : 

——} ee Ground-water mound 7 ee y 

) Ne Saturated zone | 

TEP OPTOCITOOUV OTIC AEDT PTH OPV EOHTTEET FLITE OTTO 

impermeable boundary 

Figure 2. Finnemore 1993 & 1995 Conceptual Model. | 

_ Khan etal. Solution | 

Khan et al. (1976) developed the following solution for mounding for large wastewater soil 
adsorption systems. _ | 

K . . oy ype. | : 
H=w\*2{4 1) 4 = (5) 

. K, \ K, K, W | 

where H = mound height above impermeable layer (L), W = trench width (L), K; = hydraulic 
conductivity of more permeable material (LT"), Ko = hydraulic conductivity of less permeable 
material (LT'), q = infiltration rate (LT), and x = distance from basin center (L). The solution is 
well-suited for mounding on relatively impermeable layers in the unsaturated zone, but does not 
address unsaturated flow physics. It also assumes that the width of the system is much smaller 
than the length, that ponding does not occur, and that the water table is deep and does not | 
cause mounding (the impermeable layer is the sole cause of mounding). 

Other Analytical Solutions | | 

Morel-Seytoux (1990) developed a solution for groundwater mounding that addressed the 
issues of specific yield, vertical flows, anisotropy, and transient basin operations associated with 
the Hantush equation. This was done by including both saturated and unsaturated flow 
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modeling, and by including a tailing distribution on the uniform infiltration rate (NDWRCDP, | 

2005). However, the solution suffered from several limitations, including lack of mound 

definition, a priori knowledge of temporal patterns of recharge, restrictions of basin size, and 

linearizations related to a simplified flow-path delineation (Sumner et al., 1999). Further 

improvements to the model relaxed these limitations, but suffered from the one-dimensionality 

of the simulation within the unsaturated zone, which did not allow for lateral spreading of 

infiltrating water. | | 

Guo (1998) presented a two-dimensional surface-subsurface model to estimate the required 

subsurface geometry for an infiltration trench. However, applications of this two-dimensional 

model to a circular basin resulted in as much as twice the overestimation of the hydraulic 

conductivity in order to match predicted to observed mound heights. 

Analytical Solutions for Mounding on Perched Layers | 

In addition to the water table, layers of less permeable material in the unsaturated zone can also 

cause mounding. The Khan et al. (1976) solution is well-suited for determining mound heights 

on impermeable perched layers, and Bouwer et al. (1999) presented the following equation for 

determining mound height on an impermeable layer: | 

e -1 

| L, =L,— | (6) 
| 1— a 

K, 

where L, = height of perched mound above restricting layer (L), Lr = thickness of restricting layer 

(L), i = infiltration rate (LT"'), K, = hydraulic conductivity of restricting layer (LT"), and K, = 

hydraulic conductivity of soil above restricting layer (LT). This solution assumes that the 

pressure head is zero for water at the bottom of the restricting layer, which is valid if the material 

below the restricting layer is relatively coarse. | 

Analytical Model Assumptions and Limitations | 

The Hantush solution is based on the following assumptions: 1) a priori known infiltration rate, 2) 

a priori known transit time for infiltration to reach the water table, 3) infiltration reaching the 

water table with no storage losses, 4) no delayed drainage from the unsaturated zone upon end 

of basin loading, 5) a circular or rectangular basin area that is identical to the area of recharge | 

at the water table, 6) less than 50% rise in the water table relative to the initial saturated 

| thickness, 7) one-dimensional radial flow below the water table, 8) and no leakage from the 

surficial aquifer to the underlying strata (Sumner et al., 1999). All but the last three assumptions 

are liabilities of estimating groundwater mounding based on solutions of the saturated : 

groundwater flow equation (Sumner et al., 1999). | 

Morel-Seytoux (2000) also discusses the short-comings of the mound solution by Hantush: 1) 

as a result of infiltration, the fillable pore space above the rising water table is lower than the | 

specific yield, and it varies with time and space, 2) the Dupuit-Forchheimer assumption (flow _ 

lines are horizontal and horizontal hydraulic gradient is equal to the slope of the free surface 

and is invariant with depth) is not valid due to vertical gradients under the spreading basin, 3) 7 

the infiltration hydrograph is delayed and attenuated to become the recharge hydrograph, 4) as 

the infiltration rate is discontinued at the surface, water in the unsaturated zone will not 

instantaneously drain, and the recession curve of the mound will be slower than under the 

Hantush assumptions, 5) most aquifers are anisotropic, with the vertical hydraulic conductivity ) 

being an order of magnitude smaller than the horizontal, 6) the recharge process is transient, 7) 

Groundwater Mounding & Contaminant Transport Beneath Stormwater Infiltration Basins 7 

University of Wisconsin — Madison Department of Biological Systems Engineering | | 

August 2007



infiltration rates within a recharge event are not constant, and 8) soil conditions are not 
homogeneous, and less permeable layers will affect recharge and mound heights. 

| Although these simplifying assumptions show the limitations of analytical models, their 
expediency warrants their use before numerical modeling is considered (NDWRCDP, 2005). | 

Mounding Estimation by Numerical Methods | 

When there is the potential for problematic mounding determined from either a preliminary site 
assessment or from analytical modeling, the use of numerical modeling is required. Using 
numerical methods to solve the variably saturated flow equation can allow for the evaluation of 
complex conditions including variable infiltration rates, dynamic water tables, anisotropic and 
heterogeneous conditions, and unsaturated flow (NDWRCDP, 2005). Because the unsaturated 

| _ zone offers storage capacity that is not considered by analytical models, an analytical model is a 
worst-case predictor for modeling, generally producing a higher mound than with numerical 
modeling (NDWRCDP, 2005). Sumner et al. (1999) showed that differences between the 
analytical and numerical solution of the variably saturated flow equation increased for shorter 
loading times, greater depth to groundwater, larger heterogeneity, and inclusion of fine-grained 
layers. | 

The reliability of model predictions depends on how well the model approximates the field 
situation (Anderson et al., 1982). Fewer simplifying assumptions need to be made when solving 
the variably saturated flow equations numerically than analytically, allowing fora more accurate _ 
representation of field conditions. Due to the greater need for site-specific input parameters, 
however, the most important task in using numerical models is the ability to accurately 
characterize the aquifer beneath and adjacent to the infiltration area (NDWRCDP, 2005). 
Numerical modeling involves identifying three aspects: a governing equation, boundary | 
conditions, and initial conditions. These items are discussed briefly below; a more thorough 
discussion is found in the Materials and Methods section of this report. | 

Water movement through variably saturated conditions is commonly analyzed by solving 
Richard’s equation (Equation 7, Materials & Methods) (Richards, 1931). Modeling unsaturated 
flow is more complex than modeling saturated flow due to the need to specify the relationship 
between moisture content and tension, between hydraulic conductivity and tension, and 
because the governing equation is highly nonlinear (Anderson et al, 1992). The instability 
caused by the nonlinearity of the flow equation can cause the model to calculate unrealistic 
oscillating values of pressure head. The instability must be minimized when solving the | 
mathematical model using a number of numerical techniques. 

Two common numerical techniques used to solve Richard’s equation are finite element and 
finite difference models (Anderson et al., 1982). In both cases, a system of nodal points is 
superimposed over the problem domain. The numerical solution yields values for only this finite 
number of predetermined points. The smaller the distance between the nodal points, the closer 
the approximation comes to the analytical solution (Anderson et al., 1982). Determining nodal 
point spacing is a compromise between representing site detail and computational efficiency, 
and strongly influences numerical results (Anderson et al., 1992). Using a small node spacing 
is one way to minimize instability inherent in the nonlinear flow equation. 

The finite difference method is usually implemented with rectangular cells centered around the 
nodal points. Aquifer properties and head are assumed to be constant within each cell, and 
heads are computed only for the nodes at the center of the cell. The finite element method is 
commonly implemented with triangular elements defined by nodes at each of the three corners. 
The heads are computed at each nodal point, and the head within each element is defined in _ 
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terms of the nodal values by interpolation functions (Anderson et al., 1982). The flexibility of the 

finite element method is useful in solving moving boundary problems such as a moving water 

table occurring under an infiltration basin. 

Correct selection of boundary conditions is a critical step in model design (Anderson et al., | 
1992). Numerical models provide a solution for a finite area with a given set of input data. 

Unlike analytical models, numerical models cannot extend to infinity. Every boundary of the 

model must be assigned a flow, head, or pressure. These boundary conditions are ideally set at 

| natural hydrologic boundaries such as water bodies or units of low hydraulic conductivity. 

Often, however, artificial boundaries must be selected in order to maintain the desired level of 
detail or to maintain a reasonable computer execution time, while not imposing unnatural effects 

on modeling results. 

Due to the dynamic nature of recharge through infiltration basins (short, irregularly-spaced 

events), modeling groundwater mound formation must be done under transient conditions. 
| Transient simulations analyze time-dependent problems, and produce a set of heads for each 

time step (Anderson et al., 1992), in contrast with steady-state simulations that generate only | 
one set of heads. Transient problems require storage characteristics of the aquifer, initial | 

conditions of head distribution, and time steps to be specified. During transient simulations, 

water is released from or taken into storage within the porous material. When this transfer 

stops, the system reaches steady state and heads stabilize. The relevant storage parameter for 
unconfined aquifers, typical of those receiving recharge from infiltration basins, is specific yield. 

Specific yield will be discussed in detail in the Factors Affecting Mound Height sub-section of 

this report. | 

Initial conditions refer to the head distributions in the system at the start of the simulation, and 

thus are boundary conditions in time (Anderson et al., 1992). It is common to assign hydrostatic | 

equilibrium conditions for the initial conditions in a variably saturated flow model (Simunek, 

2006). Soil above the water table is at a negative pressure head relative to atmospheric 
pressure. Under hydrostatic equilibrium conditions, the pressure head decreases linearly with 

distance above the water table, where pressure head is equal to zero. This condition occurs 
when a system is fully drained. Following a recharge event, pressure heads would be lower 

(closer to zero) than the equilibrium pressure head conditions. — 

Just as with node spacing, time step selection strongly influences numerical results (Anderson, 
et. al, 1992). Using a small time step is another method of minimizing instability inherent in the 

nonlinear flow equation. A balance between solution accuracy (smaller time steps) and 
computational efficiency (larger time steps) must be sought, with time steps on the order of 

seconds often required. 

Numerical Model Review | 

Numerical codes for solving the variably saturated flow equation were reviewed. A summary of 

capable codes for determining groundwater mounds is provided below along with our rationale 

for model selection. | | 

TOUGH2 is a general-purpose numerical simulation program for multi-phase fluid and heat flow 

in porous and fractured media (Pruess et al., 1999). It was developed in the Earth Sciences 
Division of Lawrence Berkeley National Laboratory for applications in vadose zone hydrology, | 

among others. The latest version of TOUGH2, Version 2.0, was released in December 1999, 

and the model is available for purchase from the Department of Energy. A graphical user 

interface (GUI), called PETRISM, is available at www.petrasim.com. TOUGH2 is a two 
dimensional finite difference model that performs forward modeling only. A version of the 

| program, iTOUGHZ2, solves the inverse problem by automatically calibrating a TOUGH2 model 
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against observed data. TOUGH2 was not chosen for this study because other models were - 

available of similar capability that provide for both the direct and inverse solution, as well as a 
GUI, all in the same software program. | | 

FEMWATER is a three-dimensional finite element, variably saturated, density driven, flow and 

transport model. FEMWATER was originally written by G.T. Yeh at Penn State University (Yeh 
et al., 1992). The model is public domain, available from the U.S. EPA at 

www.epa.gov/ceampubl/qwater/femwater. Groundwater Modeling Systems (GMS) is a GUI for 

the model, available at www.ems-i.com. FEMWATER was not chosen for this study due to 

reported difficulties and program crashes within the GMS environment, as well as the high cost. 

of the GUI. Version 6.0 of GMS, released in June 2007, has addressed the operating issues. 

SUTRA is a model for variably saturated, variable density groundwater flow with solute or 

energy transport (Voss et al., 2002). The code includes both two and three dimensional 

capabilities. It is a public domain model available from the United States Geological Survey 

(USGS) at www.water.usgs.gov/nrp/qwsoftware/sutra/sutra.html. Utility codes, called SutraGUI, | 
are included for pre- and post-processing. Together, all of the utility codes and SUTRA are 

called SutraSuite. A commercially available GUI, called Argus ONE, is required to operate the 

pre- and post-processing codes. Argus ONE is available at www.argusint.com. SUTRA was 

| not chosen for this study due to the complexity involved with obtaining and integrating the 

various codes and the GUI. Other programs of similar modeling capability were available 
without this drawback. 

FEFLOW is a finite element, three dimensional, variably saturated flow and contaminant : 

transport model (Diersch, 2005). The program contains a GUI and has the capability of 
automatic calibration using PEST (Parameter Estimation). The program is available 
commercially at www.feflow.com. FEFLOW was found to be fully capable of analyzing 

groundwater mounding, however FEFLOW was not chosen for this study due to the high cost of 
the program, and because the unsaturated flow component of the model was not as robust as 
the selected model. 

VS2DT is a two dimensional, finite difference, variably saturated flow and solute transport model 
(Lappala et al., 1987). The model is public domain, available from the USGS at 

http:/Awwworr.cr.usgs.gov/projects/GW_Unsat/vs2di1.2/index.html. The model comes with an 

easy-to-use GUI for pre- and post-processing. VS2DT was not chosen for this study due to 
limited post-processing options and the lack of inverse modeling and calibration capabilities. 

MODFLOW (Harbaugh et al., 2000) is used more than any other numerical groundwater code 
(NDWRCDP, 2005). MODFLOW is a three-dimensional finite difference, saturated flow code. 

The code is public domain, available from the USGS at 
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html. A number of GUls are | 
commercially available to assist with operating the code. Since MODFLOW is a saturated flow 

code, recharge applied at the ground surface directly enters the aquifer with no unsaturated 
zone effects. An unsaturated zone flow package (UZF1) was recently developed for 

MODFLOW-2005. The one dimensional form of Richard’s equation is approximated by a 

kinematic-wave equation in this module. The UZF1 package is a substitution for the recharge 
and evapotranspiration packages of MODFLOW-2005. The UZF1 module for MODFLOW was 

not chosen for this study because it only became publicly available shortly after this study 

began, and because of the one-dimensional limitation for unsaturated flow. , 

HYDRUS (Simunek, 2006) is a two dimensional, finite element, variably saturated flow and 

contaminant transport model. A three dimensional version was released in 2006 with major 

upgrades in March of 2007. A one dimensional version is available in the public domain. All 
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versions are available at www.pc-progress.cz. HYDRUS includes a parameter optimization 

algorithm for inverse estimation of a variety of soil hydraulic and solute transport parameters. | 

The model is supported by GUI for data pre-processing, generation of the finite element mesh, | 

and graphic presentation of results. The two dimensional version of HYDRUS was selected for | 

this study. The three dimensional version would have been used had it been available at the | 

| time of model selection. HYDRUS was selected because: 1) it was designed specifically for } 

infiltration and recharge simulation in the variably saturated flow regime, 2) it contains an 

extensive database of unsaturated soil hydraulic parameters, and 3) it utilized a robust 

| parameter estimation technique for inverse estimation of soil hydraulic parameters. 

Factors Affecting Mound Height 

The shape of groundwater mounds depend on the size and shape of the infiltration basin, 

infiltration rate and hydraulic properties of the soil medium (Ferguson, 1990). Currently, in 

Wisconsin, the infiltration basins are sized according to Wisconsin Department of Natural 

Resources (WDNR) Conservation Practice Standard 1003 — Infiltration Basin (WDNR, 2004b). 

- This standard allows for a maximum ponding time of 24 hours and maximum ponding depths of 

0.60 meters (24 inches). Design infiltration rates are given in WDNR Conservation Practice 

- Standard 1002 - Site Evaluation for Stormwater Infiltration (WDNR, 2004c). 

Basin Design : 

Rastogi et al. (1998) investigated the influence of basin shape on the underlying aquifer system. 

Basins of square, circular, hexagonal, triangular, and rectangular shapes, having equal areas 

and transmitting equal recharge rates, were investigated. The investigators found that a 

rectangular basin shape produced a lower mound height compared with the other shapes, and 

that the groundwater mound increased with a decreasing basin perimeter. The circular 

recharge basin had the smallest perimeter (792.6 m) and the highest mound (4.24 m) compared 

with the rectangular basin with the largest perimeter (1,200 m) and smallest mound (3.55 m). 

However, a linear relationship between mound height and basin perimeter could not be 

established. Bouwer et al. (1999) found that mound heights can be reduced by arranging 

basins in long, narrow recharge strips instead of compact round or square areas, and by 

| dispersing the basins over larger areas. Zomorodi (2005) concluded that the rate of 

groundwater rise is independent of the basin length as long as the length exceeds four times the 

basin width. 

Infiltration Rate . | 

‘For surface infiltration systems in uniform soils without surface clogging, infiltration rates will be 

approximately equal to the vertical hydraulic conductivity of the soil (Bouwer et al., 1999). 

Ponding will occur when the infiltration rate is less than the saturated hydraulic conductivity of 

the receiving soil (NDWRCDP, 2005). 

Infiltration rates follow Darcy’s Law, which equals the product of the saturated hydraulic 

conductivity and the flow gradient (Hillel, 2004). Without ponding, the maximum gradient is 

unity, where the hydraulic head equals the elevation head. The maximum infiltration rate in this 

case equals the saturated hydraulic conductivity. However, ponding will occur if the saturated 

hydraulic conductivity is less than the infiltration rate. When ponding occurs, the low | 

conductivity layer causing the ponding can infiltrate water at a rate higher than the saturated 

hydraulic conductivity because the ponding causes a gradient greater than unity. The gradient 

will equal the head difference between the top of the pond and the bottom of the low | 

conductivity layer, divided by the thickness of the layer. . 
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Infiltration rates depend on initial soil wetness and suction, as well as on the soil structure, | 
texture, and layering (Hillel, 2004). Infiltration rate into a dry soil generally decreases with time 
to a minimum value equal to the saturated hydraulic conductivity, due to decreasing gradients in 
soil-water pressure within the zone of infiltration (Hillel, 2004). If the soil surface is initially dry 
and then is suddenly saturated by ponding, the difference in hydraulic potential between the 
saturated surface and the relatively dry soil just below it creates a steep matric suction gradient. 

| As the wetted zone deepens, the same difference in potential acting over a greater distance 
results in a diminishing gradient and a reduced infiltration rate. | 

| Under ponding conditions, infiltration generally does not remain constant as assumed in the 
Hantush equation (Equation 2). Infiltration varies temporally as previously described, and with 
ponding depth due to changes in gradient. Solution of the unsaturated/saturated flow equation 
allows for a pressure head to be specified at the basin floor, equal to the ponding depth. Since 
ponding depth is easier to design for and control than infiltration rate, using ponding depth to 
estimate aquifer response to basin recharge is the recommended approach (Sumner et al., 
1999). This approach is also more realistic in that the infiltration rate is allowed to vary in 
response to changes in ponding depth. Sumner et al. (1996) states that if the ponded depth is 
large relative to the sum of the thickness of the surface control layer (i.e., sediment layer) and 
surface matric potential, the infiltration response to a change in ponded depth will approach 1:1 
proportionality. If ponding depth is small in relation to this sum, the infiltration response to a 
change in ponded depth will be negligible. 

Once the infiltrating front reaches the groundwater table and a mound develops, the infiltration __ 
rate decreases further due to a back pressure effect in the growing groundwater mound. The 
operation of a basin during loading has been found to be more controlled by seepage 
recharging to groundwater than by the infiltration rate into soil (Guo, 2001). 7 

Unsaturated Zone Effects 

Neglecting unsaturated zone effects produced errors in estimating groundwater mounding of up 
to 800% compared to methods that include vadose zone storage (Sumner et al., 1999). The 

| error was due in large part to water being released from the vadose zone over a period of time 
longer than the length of basin loading (Figure 3). Water entered the pore storage during basin 
loading and then was released slowly during basin rest. In contrast, when the Hantush method 
is used, water is delivered to the water table at the full infiltration rate as at land surface until the 
end of basin loading. Once basin loading is complete, water delivered to the water table is 
stopped immediately. This discrepancy caused by the storage effects were greatest during 
highly transient events, such as short basin loading periods typical of infiltration basins (Sumner 

, | et al., 1999). As the time of basin loading increases, the system approaches steady state, and 
the storage effects become negligible. A relatively thick vadose zone would amplify the delayed 
drainage effects, due to the larger capacity for water storage. The soil storage effect was found 
to not be as significant during mound recession as during mound formation (Guo, 2001). 
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Figure 3. Recharge Volume Comparison (Sumner et al., 1999). 

Specific Yield 

Specific yield is a storage term that accounts for the release of water from storage. Specifically, 

it is the ratio of the volume of water a soil will yield by gravity drainage to the volume of the soil 

(Healy et al., 2002). Values of specific yield range from 0.1 to 0.4, with 0.25 — 0.30 for coarse 
sand and gravel (Anderson et al., 1992). Groundwater mound heights generally decrease as 

specific yield increases (Rai et al., 2001). Specific yield is different than the porosity term 

commonly used in analytical equations for mound rise. 

Specific yield increases as depth to the water table decreases (Healy et al., 2002). Specific 

yield also increases with time due to delayed drainage from the unsaturated zone. Aquifer 

analyses that do not take into account unsaturated flow will predict values of specific yield that 

are unrealistically low (Healy et al., 2002). These limitations will cause overestimation of mound 

height. Conditions with a shallow water table where the capillary fringe intersects the land 

surface were found to be problematic using the Hantush method because of the difficulty in 

estimating the effective specific yield. The specific yield in this case would vary spatially and 

temporally and would not be simply equal to the difference of the saturated moisture content 

and field capacity (Sumner et al., 1999). 

Aquifer Thickness and Transmissivity 

Groundwater mounding decreases as the saturated thickness increases (NDWRCDP, 2005). A 

greater saturated thickness has a greater transmissivity (the product of hydraulic conductivity 

and saturated thickness), and more capacity to convey recharge water away from under the 
basin. Mounding decreases more rapidly with increased saturated thickness for higher 

hydraulic conductivity values because a given rise in head increases transmissivity more in a 

high hydraulic conductivity material (NDVWRCDP, 2005). Zomorodi (2005) concluded that the 

rate of mound rise does not depend on saturated thickness of the aquifer as long as the 
thickness exceeds the width of the basin. 

The assumption of constant transmissivity and use of transmissivity for an entire unconfined 

aquifer thickness can lead to error in estimating mound height. The assumption of constant 

transmissivity is acceptable only if the mound height is small compared with the thickness of the 

aquifer (Guo, 2001). A difficulty in obtaining meaningful mounding estimates from analytical 

solutions (where transmissivity is assumed to be constant) is getting a representative value of 

aquifer transmissivity (Bouwer et al., 1999). Accurate predictions of transmissivity for rising 

groundwater levels are difficult to make and require considerable judgment. The most reliable 

transmissivity data come from existing recharge systems and calibrated aquifer models, 

followed by Theis-type pumping tests, step-drawdown and other pumped well tests, and slug 

tests (Bouwer et al., 1999). In thick, unconfined aquifers, streamlines of recharge flow are 

concentrated in the upper portion of the aquifer, with less flow in the deeper part of the aquifer 

(Bouwer et al., 1999). The streamlines in the groundwater mound also tend to be more vertical. 
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Consequently, the use of transmissivities of the entire aquifer for mound calculations could then 
under-estimate the mound height. Bouwer (1962) showed that for rectangular recharge areas, 

the thickness of the active, upper portion of the isotropic aquifer is about equal to the width of 
the recharge area. In an anisotropic system, the effective thickness will be less than the width 

of the recharge area. | 

Hydraulic Conductivity and Anisotropy | 

A decrease in hydraulic conductivity increases mound height. Hydraulic conductivity is the most 

influential parameter on mound height (NDWRCDP, 2005). This is problematic since hydraulic 

conductivity is difficult to accurately measure. Freeze and Cherry (1979) indicate that the value 
of hydraulic conductivity can vary by two orders of magnitude for a particular soil type. 

Hydraulic conductivity can vary by an order of magnitude spatially due to heterogeneities within 
an apparently homogeneous soil. Therefore, it is recommended to evaluate mounding using a 

range of hydraulic conductivities above, and most importantly below, the expected value 

(NDWRCDP, 2005). oe 

| The assumption of an isotropic hydraulic conductivity (required in an analytical solution) can 

also be a source of error in predicting mound height. Typically, the vertical hydraulic 
| conductivity (K,) is less than the horizontal hydraulic conductivity (K,). The assumption of | 

isotropic hydraulic conductivity can over-predict mound height if the vertical hydraulic 

conductivity (Ky) is used, and under-predict mound height if the horizontal hydraulic conductivity 
(K,) is used. For analytical solutions, an equivalent homogeneous hydraulic conductivity value 

-can be found by using the square root of the product of the horizontal and vertical hydraulic 
conductivity values ([Kn*K,]°”) (NDWRCDP, 2005). Numerical solutions can account for 

anisotropy in the hydraulic conductivity. 

The degree of impact of anisotropy on mounding is site specific and depends on the saturated 

thickness as well as the value of hydraulic conductivity relative to basin loading and the 
proximity to hydraulic boundaries (NDWRCDP, 2005). An anisotropy ratio of at least 2:1 is likely 
in most soils (NDWRCDP, 2005). The influence of anisotropy is also more significant in thicker | 

aquifers. Transmissivity controls the increased gradient needed to carry water away from the 

recharge area. However, horizontal hydraulic conductivity spans a much larger range of values 

than saturated thickness, making it more important to the magnitude of mounding than 

saturated thickness (NDWRCDP, 2005). | 

- Water Table Slope 

The assumption of a flat water table (required in an analytical model) can lead to errors in 

estimating mound height. In a thin aquifer, mounding will increase as the slope of the water 

table decreases. In a thick aquifer, mounding will decrease with a decrease in water table 

slope, since only a small gradient is required to transmit the recharged water in a larger flow 
field (NDWRCDP, 2005). | | 

Rastogi et al. (1998) reported greater mound heights underneath the downgradient side of a 

recharge basin compared to the upgradient side, and that the bulk of the recharge contribution 

is stored downgradient. It was suggested that the mound slope was perpendicular to the 
predominant flow direction. . . ) 

All infiltrated water eventually moves downgradient, essentially decreasing the flow area under a 

basin by a factor of two (NDWRCDP, 2005). The decrease in flow area may be offset by the 

increased gradient, depending on aquifer thickness, regional flow table, and increased loading. 

Therefore, the impact of water table slope on mounding is not intuitively obvious, and should be 
~ modeled numerically to determine the effects of the competing processes (NDWRCDP, 2005). 
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2 Case Study | | 

A literature review found few studies on the application of numerical modeling specific to | 
s recharge or infiltration basins. The most comprehensive study found in the literature is 

summarized below. , 

a The USGS conducted field experiments at a one acre rapid infiltration basin in Orange County 
Florida, in 1992 (Sumner et al., 1996). The site consisted of 37 feet of unsaturated zone and 52 : 

feet of saturated zone. Soils were a poorly graded sand with some clay, and had horizontal and 

q vertical hydraulic conductivities of 150 and 45 feet per day, respectively. The basin was flooded 

al in a cycle for 17 hours followed by a rest period of four to nine hours. Ponded depth in the basin 
was maintained at an average of four inches, and the system produced an infiltration rate of 5.5 

q feet per day. A network of monitoring wells in and around the basin recorded groundwater 

al levels during and after basin loading. | | | 

The two dimensional, variably saturated flow model VS2DT (Lappala et al., 1987) was applied 

P| to describe the flow system beneath the basin under observed and hypothetical basin 
operations, and to estimate hydraulic properties of the soil. The model design included a spatial 

grid discretization of 0.5 feet vertical by 3.0 feet horizontal beneath the basin. Three model 

layers were used to account for various layering of fines mixed with the sand. | 

Boundary conditions were set to no-flow at the basin center (assuming radial symmetry), no flow 

at the base, and a constant head at a distance of 1,000 feet from the basin, where no change in 

a water level was observed. A pressure head equal to the average ponding depth of four inches | 

was set for the basin floor. Initial conditions were set with a water table at 37.5 feet below 

grade. Since tensiometric data indicated that the unsaturated zone had not drained to an 

> equilibrium condition, an equilibrium head distribution was only set to a height of 1.5 feet above 

the water table. Above this height, matric potential was set to a constant value of 1.5 feet. 

The model was calibrated by altering infiltration rate, hydraulic heads, moisture front transit time, 

4 laboratory-derived soil-moisture curves, field-observed soil/aquifer textural patterns and 
tensiometric data, and literature-derived estimates of subsurface hydraulic properties. A model | 

was developed that approximately replicated the field measurements. The model was found to 

‘ be most sensitive to vertical and horizontal hydraulic conductivity, and residual and saturated 

moisture content. 

The flow model indicated that infiltration capacity is unaffected by small (less than 10 feet) 

4 increases in depth to the water table. However, water table elevation increases of 15 and 20 
feet produced a reduction in the infiltration capacity of the basin by 8 and 25%, respectively. 

Increasing the ponded depth from 4 to 12 inches increased basin capacity by less than 6 and 

, 11%, respectively. | 

About 1.5 days were required for the initial infiltration front to reach the water table, and a 
maximum mound height of seven feet was recorded during a two week loading period. Pore 

. water velocity was found to be 20 feet per day, predominantly in the vertical direction. As the 

infiltrating front reached the water table, pore-water velocity was estimated to have changed to 
10 feet per day, and predominantly in the horizontal direction. The large radial component of 

a flow below the water table implied that infiltrated water moves preferentially in the shallow part 

of the saturated zone after reaching the water table. 

al | 
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Methods and Materials | | 

Study Site 

The infiltration basin studied serves a residential subdivision located in Oconomowoc, . 
Wisconsin (Figures 4 & 5). The Wood Creek subdivision is a 9.4 hectare (23.2 acre) single- 

family development completed in 2003 (Figure 6 & 7). A single infiltration basin receives runoff 

from the subdivision via storm sewer. The basin is located in the NE% of the SW% of Section 

2/, T8N, R17E, Waukesha County, Wisconsin. | 

The landscape in the area was largely formed during the Wisconsin Glaciation, and is | 

characterized by stratified silt, sand and gravel deposited by meltwater (Clayton, 2001). The 

surface soils in the immediate vicinity of the infiltration basin are characterized as a silt loam 

(USDA, 2007). Regional hydrogeology is characterized by a shallow groundwater table and 

many surface water bodies. Rosenaw Creek, designated as a cold water trout stream, is 

located approximately 150 meters (500 feet) to the northeast of the infiltration basin. | 

Runoff from the subdivision is directed via storm sewer to a 0.10 hectare (0.25 acre) infiltration | 

basin (Figure 8). The basin is rectangular in shape, with dimensions of 35 meters (115 ft) long 
by 30.5 meters (100 ft) wide by 1.37 meters (4.5 ft) deep. Water enters the basin through a 

single 0.61 meter (24 inch) diameter storm sewer. Prior to entering the infiltration basin, 

stormwater flows through a 0.10 hectare (0.25 acre) vegetated area to allow sediment to settle. 

Water enters the infiltration basin over a rock gabion. The basin outlets through a single weir 

outlet structure on the east side of the basin. The basin was designed such that the maximum 
ponding depth for the 1-year, 24-hour storm is 0.46 meters (1.5 feet). 
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Monitoring wells were installed inside and adjacent to the basin to facilitate collection of 

groundwater level data and to characterize subsurface conditions (Figures 9 &10). Three 

monitoring wells (MW1 — MW3) had been installed prior to this study. These wells were 

required as part of the basin permit to monitor thermal impacts of infiltrating water. Three 

additional monitoring wells (MW4 — MW6) were installed by Midwest Engineering Services 

(MES) (Waukesha, WI) on March 29, 2006. Four more monitoring wells (MW6 — MW9) were 

installed by Soils and Engineering Services (Madison, WI) on September 9, 2006. These wells 

were installed in conjunction with a water quality study conducted at the basin by the Wisconsin 

Department of Agriculture, Trade, and Consumer Protection (WDATCP). A single well (MW10) 

was installed inside the basin by MES on January 4, 2007. 

The wells were installed per NR 141 — Groundwater Monitoring Well Requirements. Monitoring 

well construction forms (Form 4400-113A) were completed for each well (Appendix A). All wells 

were installed with hollow stem augers with dimensions of 19.3 cm (7.6 in) outside diameter and 
10.8 cm (4.3 in) inside diameter. The 5.1 centimeter (2 inch) diameter polyvinyl! chloride (PVC) 

wells were installed to approximately 4.57 meters (15 feet) beneath the basin floor elevation. 

The wells were constructed with a 3.05 meter (10 foot) screened section intersecting the water 

table found at approximately 2.3 meters (7.5 feet) below grade (Figure 11). Monitoring well 

MW10 was installed to 3.5 meters (11.5 feet) below grade with a 0.91 meter (3 foot) screen. 

This well was installed for purposes of slug testing, where a completely submerged screen is 

required. Wells inside the basin were extended above grade to prevent ponded water from 

entering the well cap. Wells outside the basin were terminated below grade and protected with 

a flushmount cover. All well tops were capped (vented to atmosphere) and surveyed to the 

nearest 0.25 centimeter (0.10 inches) with a level. The local topography was surveyed to the 
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nearest 0.31 centimeter (0.12 inches) with a total station. All elevations were referenced to a 
local datum. 
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_ Soils were characterized during the drilling process by split-spoon sampling in two foot intervals, 

and by observing drill cuttings. Select samples were analyzed for particle size distribution 

(Table 1) by the University of Wisconsin Soil and Plant Analysis Lab (Madison, WI) using the 
hydrometer method (Bouyoucos, 1962). A single sample from monitoring well MW10 was taken 

to MES (Waukesha, WI), and analyzed for particle size by the ASTM D422 method. 

Table 1. Textural Properties of Materials Within and Outside Infiltration Basin. 

Description (m) (%) (%) (%) (%) 

[| NW% | Basinfloor [0-0115| Loam | oO | 47 | 40 | 13 | 
| Sw% | Basinfloor [0-0.115| SiltLloam | 0 | 21 | 56 | 23 
[SE% | Basinfloor [0-0.115| Siltloam | 0 | 27 | 52 | 21 
[Center [| Basinfloor [0-0115| Loam | Oo | 29 | 48 | 23 | 
[Average | Basin flooravg. |0-0.115| Loam | oO | 31 | 49 | 20 — 

basin sand & gravel | 2/.3 fine 

we ee | | eer 8 eee basin loam ) | 

mar emer ote [Ot Le loam | 
1 - Sample with gravel analyzed with ASTM D422 by Midwest Engineering Service, Waukesha, WI. | 
2 — Other samples analyzed by hydrometer method (Bouyoucos, 1962) by Soil and Plant Analysis Lab, Madison, WI. 

A sedimentation layer, between 0 — 0.115 meters (0 - 4.5 inches) thick, exists at the infiltration 

basin surface (Figure 11). This layer is likely a clogging layer formed by sedimentation of 
particulate matter from stormwater entering the basin. Soil from below the sedimentation layer 

to approximately 4.57 meters (15 feet) below grade is a poorly graded gravel with some sand 

and little fines. Below 4.57 meters, a much less permeable silty clay loam material exists. 
Drilling and well installation did not occur beyond this layer, as wells could be constructed at this 
depth and still straddle the shallow water table per NR 141, and because the silty clay loam was 

| thought to be a confining layer. The boring for monitoring well MW5 was advanced deeper prior 
to well installation to determine the thickness of this confining layer. The silty.clay loam 

| extended to 6.1 meters (20 feet) below grade where the boring was terminated. 

Immediately outside the basin, a silty clay loam extends from the surface to approximately 1.37 

~ meters (4.5 feet) below grade before the more permeable sand and gravel layer was 
encountered. Further outside the basin to the northeast and east, the silty clay loam extends 
from the ground surface to the termination of the borings at approximately 4.57 meters (15 feet) 

below grade, as observed in monitoring well MW9. _ 

All wells were developed per NR 141.21, and monitoring well development forms (Form 4400- 

- 113B) were completed for each well (Appendix A). Development was performed by surging with 

a bailer, and then extracting water by either bailing or pumping. A minimum of 10 well volumes 

of water was removed, or until sediment-free water was produced. 

Groundwater beneath the basin was at approximately 2.28 meters (7.5 feet) below grade at the 
time of the boring installation. Periodic groundwater level measurements were manually | 

recorded to the nearest 0.305 centimeter (0.01 foot) at all well locations with a Solinst Model 

101 electronic tape (Ontario, Canada). Regionally, groundwater flows from the northeast to the 

southwest at a gradient of approximately 0.01 m/m (Figure 12). The gradient was higher 

outside the basin than underneath the basin, where the groundwater table was almost flat. Little 

seasonal variation was found in the flow direction. A series of regional groundwater flow maps 

a (Appendix B) show water levels to fluctuate seasonally by approximately 0.60 meters (2.0 feet). 
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Estimates of hydraulic conductivity were obtained in both the sand and gravel material and in - 

the surficial silty clay loam outside the basin. A Guelph permeameter was used to obtain field 

measurements of saturated hydraulic conductivity in the silty clay loam. The permeameter is a 

constant head device that uses the Mariotte siphon principle to measure the steady-state rate of 

water recharge into unsaturated soil from a cylindrical well hole 0.06 meters (2.38 in) in 

- diameter and 0.20 meters (8 in) deep. Measurements were made every 15 meters (50 feet) 

along the eastern and southern edges of the infiltration basin. Saturated hydraulic 

conductivities range from 8.35x10° to 2.81x10™ cm/s. — 

Estimates of saturated hydraulic conductivity in the sand and gravel material were obtained by 

the Bouwer and Rice slug test method (Schwartz et al., 2003). Slug tests were conducted at | 

monitoring well MW10, located to the southeast of the center of the basin, as this was the only 

- well that was installed with a completely submerged screen necessary for the test. A total of 11 | 

tests were performed on January 9, and April 21, 2007 (Table 2). A single slug test was a 

performed at monitoring well MW1 and MW9 on January 9, 2007, and at monitoring well MW2 

on April 21, 2007, as the well screens were submerged at these times. | 

The slug tests were performed by inserting a solid slug into the well and observing groundwater 

level change. Groundwater level changes were recorded with a Solinst Levelogger (Ontario, 

_ Canada) pressure transducer/datalogger set to record in 0.5 second intervals. In monitoring 

well MW10, water level returned to background conditions in approximately four seconds. In 

monitoring wells MW1, MW2, and MW49, water levels returned to background conditions in | 

approximately 10 minutes. Details on the slug test procedure and computations are given in 

Appendix C. | 

Hydraulic conductivities in monitoring well MW10, representative of the sand and gravel 

material, range from 2.14x107 to 2.87 cm/s, with an average of 3.49x10"' cm/s (Table 2). In the 

silty clay loam to the northeast of the basin (MW1, MW2, MW9), hydraulic conductivities ranged 

from 1.78x10° to 6.99x10~ cm/s. 

Table 2. Hydraulic Conductivities from Slug Tests. 

K (com's) 
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Monitoring Equipment | 

A WL400 pressure transducer (Global Water; Gold River, CA) was installed near the bottom of 
monitoring wells MW3-MW8._ A transducer was also installed at the center of the basin at the 
location of monitoring well MW4 to measure ponding depth. The transducers have an operating 
range of 0 — 4.57 meters (0-15 feet), with an accuracy of +/- 0.1%. The transducers were 
installed between 0.91-1.52 meters (3-5 feet) beneath the water table. The Solinst Levelogger 
(Ontario, Canada) used for the slug tests was installed in monitoring well MW2, and set to 
record in 10 minute intervals. The depth of the transducers beneath the PVC well top was 

| recorded. This allowed the transducer elevation to be tied in to the local survey datum, as the 
PVC well top elevations were recorded relative to this local datum. The transducers were 
connected to a CR10X datalogger (Campbell Scientific; Logan, Utah) set to record water levels 
every 10 minutes. A TE525-L tipping bucket (Campbell Scientific; Logan, Utah) with 0.0254 
millimeters (0.01 inches) per tip was installed to record precipitation. 

In addition to the water level measurements, soil moisture was recorded at two locations using 
_ 616-L water content reflectometers (Campbell Scientific; Logan, Utah). The reflectometers were : 

installed near monitoring well MW4 at the center of the basin, at depths of 0.91 meters (3 feet) 
and 1.52 meters (5 feet) below grade. They were installed by placing them in the center of a 
hollow stem auger and letting the natural formation collapse around them as the augers were 
removed. The reflectometers could not be calibrated to the site-specific soil prior to installation, 
and the large amount of gravel and cobble present would have made calibration difficult. 
Therefore, the reflectometers were only used to determine the timing of the wetting front 
movement. Soil moisture was recorded every 10 minutes and stored in the datalogger. 

Model Background | | 

__HYDRUS-2D was used to simulate water movement through the unsaturated zone and 
7 groundwater system (Simunek, 2006). The governing equation for water flow through variably — 

saturated porous media that HYDRUS solves is a modified version of Richards equation 
(Richards, 1931). HYDRUS solves Richards equation using a Galerkin-type linear finite 
element scheme. The two-dimensional Darcian flow of water in a variably saturated rigid 
porous medium is given by the following form of the Richards equation (HYDRUS, 2006): 

= 2 k{ ke oh ke')|-9 (7) 
| ot OX: OX; 

: where @ is the volumetric soil water content (L°L™), h is the pressure head (L), Sis a sink term 
| (e.g., root water uptake; T'), x; are spatial coordinates (L), kf and K;,“ are components of the 

dimensionless anisotropy tensor K“, and K is the unsaturated hydraulic conductivity function 
[K(h) = K,K,(h) ] (L T') where K;, is the saturated hydraulic conductivity (L T'), and K, is the 
relative hydraulic conductivity. In this study, Kt was assumed to be isotropic, and the sink term 
was set to zero since the soil in this study had little vegetation. The unsaturated soil hydraulic 
properties, 9(h) and K(h), in Equation 7 are highly nonlinear functions of the pressure head 
(HYDRUS, 2006). Different analytical models are available to relate water content to pressure 
head and pressure head to hydraulic conductivity. In this study, the soil water retention curve, 

| 0(h), was described using a form of the van Genuchten (1980) equation: 

6(h) oP forh <0 
1+ lah| | (8) 
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O(h)=@ forh20 | 

where 6, is the residual soil moisture content (L°L*), 6, is the saturated soil moisture content 
(L°L*), his the pressure head (L), a is the inverse of air-entry pressure (L"), nis the slope of 

moisture characteristic curve (dimensionless), and m equals 1 — 1/n (dimensionless). Equation | 

- 8 uses the statistical pore-size distribution model of Mualem (1976) to describe the unsaturated 

soil hydraulic conductivity function, K(h): | 

| K(h) = KsSe' h —(1- Se" "p ( (9) | 

where / is the pore connectivity parameter (dimensionless), taken to be 0.5, and S, is the 

relative saturation (dimensionless), which is equal to (0 - @,) / ( @; - ,). | | 

HYDRUS is capable of inverse modeling, or estimating model parameters by matching a | 

mathematical model to observed data points. The inverse method is based on minimizing an 

objective function, which expresses the difference between observed and predicted values. The 
objective function is minimized using the Levenberg-Marquardt nonlinear minimization method, | 

, which is a weighted least-squares approach based on Marquardt’s maximum neighborhood 

method. Confidence intervals can be generated for the optimized parameters, and a correlation 

matrix of the optimized parameters is produced. 

Results and Discussion 

Storm Event Information | 

The hydrology of the watershed is such that approximately 2.54 centimeters (1.0 inch) of rainfall 

is required over a relatively short time period in order to produce measurable and sustained 

ponding in the basin. Three storm events (Table 3) caused significant ponding in the basin over 

the time period of this study. For storms #1 and #2, total ponding time was approximately 18 
hours (Figures 13 & 14). The groundwater mound in monitoring well MW4 (basin center) also 

| began to recede in this time period. Due to a prolonged rain event with multiple high intensity 
periods, storm #3 showed a prolonged ponding duration of approximately 30 hours (Figure 15 & 
16). | 

Table 3. Storm Event Data Used for Modeling. 

Store Storm #2 Storm #3 
| Date | szame | 10/04/06 04/03/07 

Total Rainfall (om) 
Maximum Ponding Depth (m) 0.410 0.386 | 0.472 | 

Maximum Groundwater Rise (m) 0.384 0.397 0.616 
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Figure 13. Ponding Depth and Water Table Response - 08/24/06 (Storm #1). 
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Figure 14. Ponding Depth and Water Table Response - 10/04/06 (Storm #2). 
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Figure 15. Ponding Depth and Water Table Response - 04/03/07 (Storm #3). 
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Figure 16. Ponding Following 04/03/07 Storm. 

Model Design : 

A 100 meter (328 feet) transect was modeled, starting at the center of the basin and extending 

outside the basin to the southeast (Figure 17). This transect is roughly perpendicular to the 

regional groundwater flow direction. This transect was chosen due to the number of monitoring 

wells in this direction available for comparing heads. 

Groundwater head data were used to set model boundary conditions, which define the flow field 

at the edges of the model (Figure 18). At the infiltration basin floor, a variable head boundary 
condition was used. The ponding depth, recorded in 10 minute intervals at the basin center, 

was used for this time-varying boundary. The ponding data was smoothed using a moving 

average with a 20 minute window that includes three data points. When no ponding was 

present, the boundary automatically switched to an atmospheric boundary condition, equal to 

either the precipitation rate, or zero during periods with no precipitation. 

A no-flow boundary condition was set at the center of the basin due to assumed symmetry of 

the mound. The bottom was set to a no-flow boundary condition. The difference in hydraulic 

conductivity between the sand and gravel and silty clay loam layers was estimated to be more 

than two orders of magnitude. This estimate was based on slug tests in the sand and gravel, 

and literature values of hydraulic conductivity based on particle size analysis of the silty clay 

loam. A no-flow boundary may be assumed when the hydraulic conductivity difference is two 

orders of magnitude or greater (Anderson, 1992). 

Outside the basin, at a distance of 100 meters (328 feet) from the basin center, a constant head 

boundary was set equal to the background water table elevation before the storm event. This 

boundary was set far enough outside the basin to minimize any effects the constant head may 

have on the flow field under the basin. The background water table over the 100 meter transect 

was assumed to be flat. While no monitoring well exists 100 meters from the basin center, 

. groundwater levels were inferred based on head data in MW3, and on the observation of a flat 

water table underneath and adjacent to the basin in directions perpendicular to groundwater 

flow. A no-flow boundary condition was set in the unsaturated zone at the 100 meter boundary 

outside the basin. A no-flow boundary was used for the surface boundary outside the basin, 

Groundwater Mounding & Contaminant Transport Beneath Stormwater Infiltration Basins 27 
University of Wisconsin — Madison Department of Biological Systems Engineering 
August 2007



rather than entering precipitation data. This was done as initial model results showed that 

precipitation caused a minimal infiltration depth due to the low conductivity material in this area. 

Combined with the extra 1.37 meters (4.5 feet) of unsaturated soil in this area, the precipitation 

did not impact the water table. The precipitation was therefore eliminated to allow for more 
efficient model operation. 
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Figure 17. Two Dimensional Transect Modeled with HYDRUS. 
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Figure 18. Model Boundary and Initial Conditions. 

The initial condition for the saturated zone was set based on the water table elevation before the 

storm event. As previously discussed, the background water table was assumed to be flat 

along the modeled transect. The initial condition in the unsaturated zone was assumed 

| hydrostatic, or the negative pressure head in the unsaturated zone was set to equal the 
distance above the water table. The hydrostatic assumption would be valid in a well-drained 

| material with extended time periods between storms, as was the case for the storms modeled 

for this study. | 

The finite element mesh in HYDRUS was set to an eight centimeter resolution immediately : 

under the basin to allow for the thin sediment layer to be added. Elsewhere in the model the 

resolution was set to one meter. This resulted in 3,151 element nodes and 6,300 element 
meshes. The initial and minimum time steps were 0.6 seconds, and the pressure head | 
tolerance was one cm. | | | 

The HYDRUS code is coupled with Rosetta Lite Dynamically Linked Library (Rosetta) to predict 

hydraulic properties of soil. Rosetta implements pedotransfer functions which predict van 

| Genuchten’s water retention parameters and the saturated hydraulic conductivity in a 

hierarchical manner from soil textural class, particle size distributions, bulk density, and points 

from a water retention curve. Three different soil types were included in the model: the surficial 
silty clay loam outside the basin, the loam sedimentation layer on the basin floor, and the sand 

and gravel material beneath the basin. For the loam and silty clay loam material, particle size 

analysis data were entered into Rosetta and the parameters predicted by Rosetta were entered 

into HYDRUS as fixed values. Since the sand and gravel material fell outside the range of 
| materials in the Rosetta database, these parameters were estimated by the inverse solution. - 

Table 4 lists the hydraulic parameters predicted by Rosetta, as well as the initial estimates 
provided for the sand and gravel material used in the inverse solution. | 
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Table 4. Hydraulic Parameters Used in HYDRUS. | 

Material 0, a Kea a 
- 1/m) (cm/sec) | 

Silty clay | 0.0885 | 0.473 | 0.78 | 1.52 | 1.30x10* 10.5 | 
loam | | | | 

0.0650 | 0.416 1.85 x 104 
Sand& | 0.0655 | 0.231 | 258 | 3.42 | 808x107 |05|. | 

| gravel ' | 
1 — Values given are initial estimates used in the inverse solution 

For storms #1 and #2, readings at 10 minute intervals for a period of 24 hours (a total of 144 

calibration points) were used for the inverse solution calculations. Twenty-four hours allowed 

: for the full precipitation time, for ponding to completely disappear, and for the groundwater 

mound to reach the maximum value and begin to recede. For storm #3, a period of 36 hours 
was used. The groundwater elevation data from MW/4 was smoothed using a moving average 

with the window set to three. The inverse solution was set to run for a maximum of 10 
iterations. Pore connectivity (/) was held constant at 0.5. No constraints were placed on any 
other parameters. | 

| Model Calibration 

The thickness of the sediment layer at the basin floor was determined using data from storm #1. 

The thickness was varied until the total flux through the infiltration basin floor matched the 
observed flux. Observed fluxes were calculated by summing the total ponded depth, the total — 
precipitation before ponding, and an estimate of infiltration during ponding before the maximum 
ponding depth was reached. This calibration process resulted in a sediment thickness of 10.5 
cm (4.13 in). | 

Once the sediment thickness was set, the hydraulic properties of the sand and gravel material 

were determined. To do this, the model was calibrated against observed pressure heads from | 

the center monitoring well (MW4). The initial hydraulic parameters for the sand and gravel 

| material (Table 4) used for the inverse solution were first chosen based on literature values. 

They were then refined by running direct solutions with storm #1 data, until the general shape of 

the water table response was fitted. The hydraulic parameters for the sand and gravel material 

were then further refined by the inverse method within HYDRUS. 

Using the inverse solution, modeled pressure heads at the center of the basin were in close 
agreement with measured values for storm #1 (RMSE = 0.021 m; Figure 19), storm #2 (RMSE = 

0.016 m; Figure 20), and storm #3 (RMSE = 0.026 m; Figure 21). The magnitude and timing of 
maximum mound rise was predicted well for all three storms (Table 5), with < 1.3% difference 

between observed and modeled mound heights. Maximum mound heights occurred between 

9.5 and 12.0 hours after the initial water table rise. The assumption of a constant head 
boundary condition 100 meters away from the basin center was shown to not influence mound 
height; an observation well located approximately two meters from the boundary did not show 
an increase in head. | 
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The modeled initial water table rise was between 20 - 40 minutes later than observed for all 

three storms. This discrepancy may be attributed to preferential flowpaths in the field, either 

natural or created during well installation. 
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Figure 19. Observed & Modeled (Inverse Solution) Pressure Heads at Basin Center - Storm #1. 
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Figure 20. Observed & Modeled (Inverse Solution) Pressure Heads at Basin Center - Storm #2. 
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Figure 21. Observed & Modeled (Inverse Solution) Pressure Heads at Basin Center - Storm #3. 

The modeled total water flux (infiltration depth) through the infiltration basin floor matched well 
with the observed flux for storm #1 (Table 5). The sediment thickness was calibrated using 
storm #1 data prior to running the inverse solution, so total fluxes from the inverse solution were 

expected to produce a close fit. With the calibrated sediment thickness of 10.5 cm (4.13 in), the 

maximum modeled infiltration rate for storm #1 was 4.19 cm/hr, and then decreased over a 
period of 18 hours as the ponding depth decreased. The modeled total flux through the 
infiltration basin floor was 11 and 26% higher than observed for storms #2 and #3, respectively. 

These discrepancies might be explained in part by error in estimating the actual fluxes occurring 

in the field. The duration between the first recorded ponding and maximum ponding was four 
and 11.5 times longer for storms #2 and #3, respectively, compared to storm #1. Ponding for 

storm #3 also lasted for approximately 10 hours longer than for storm #1 and had two peak 
ponding depths with a recession between. These conditions present more opportunity for error 
in estimating total flux into the system. 

Table 5. Water Table Response, Infiltration Volume, and Model Mass Balance Error. 

Storm #1 Storm #2 Storm #3 

08/24/06 10/04/06 04/03/07 

P| ts | Moder | 6 vit | obs | Moder | 26 nit | obs | Moet | 96 vit | 
[intial Groundwater Rise (min) | 190 | 220 | 15.7 | 340 | 380 | 11.7 | 210 | 230 | 96 | 

Max. Groundwater Rise (min) 810 -1.2 910 | 200 | -1.1 0.0- 

1030 13.2 

Max. Mound Height (m) 0.377 | 0.380 | os | 0.392 | 0.388 | -1.0 | 060s | 0.597 

Total Infiltration Depth (m*/m?) | 0.450 | 0.443 0.484 | 0.538 0.710 | 0.897 

Final Mass Balance Eror(%) | - | 013 | - | - [oss] - | - Jooss| - | 
Model Validation 

The hydraulic parameters of the sand and gravel material fitted by the inverse solution are 

within the ranges reported in literature (Table 6). To validate model performance, the fitted 
hydraulic parameters for storm #1 were used to predict mound characteristics for storm #2, and 
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visa versa. The modeled pressure heads were in close agreement with measured values for 

storm #1 (RMSE = 0.031 m; Figure 22) and storm #2 (RMSE = 0.026 m; Figure 23). The timing 

and magnitude of mound rise matched reasonably well with observed values (Table 7). 

Table 6. Fitted Hydraulic Parameters (with Inverse Solution) for Storms 1-3. 

oO, Os a n Ks 

(v/v) viv) 1/m) unitless) cm/sec, 

001-010 | 02-04 1.0x 10°-33 
| initia | __ 0.066 oz | 28 | 342 | os | 

#1: 08/2406 | 0.011 0.243 
#2: 10/04/06 | __0.057 0.277 
#3:04/03/07 | 0.089 0.286 

4 —van Genuchten Parameters from Rosetta Lite DDL Database. 
2 -Hydraulic Conductivity Values from Fundamentals of Groundwater (Schwartz & Zhang, 2003). 
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Figure 22. Water Table for Storm #1 Modeled Using Storm #2 Hydraulic Properties. 
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Figure 23. Water Table for Storm #2 Modeled Using Storm #1 Hydraulic Properties. 
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| Table 7. Water Table Response, Infiltration Volume, and Model Mass Balance Error 
for Storm #1 & #2 with Hydraulic Parameters Interchanged. 

Storm #2 Parameters | Storm #1 Parameters | 

ff ts | Moder | 26 itt | obs | Model | % Ditt 

Max. Groundwater Rise (min) | 810 | 730 | -98 | 910 | 970 | 66_ 
Max. Mound Height (m) 0.377 | 0.389 0.392 | 0.391 | 

Total Infiltration Depth (m*/m’) | 0.450 | 0.479 0.472 | 0.472 oo 

Final Mass Balance Error(%) | - | 0.23 | - | - | o24| - 
The hydraulic parameters of the sand and gravel material fitted by the inverse solution for storm 

#3 did not produce a good fit when used to model storms #1 and #2. The maximum predicted 

mound heights for storms #1 and #2 were approximately 20% higher when the hydraulic. 

parameters from storm #3 were used. The hydraulic conductivity for storm #3 is lower than for 

the other storms, which would lead to higher mound heights. In an effort to obtain a better fit, an 

inverse solution was run for storm #3 with the hydraulic conductivity held constant at the fitted 

| value for storm #1 (1.13 cm/sec). The resulting fitted hydraulic parameters for storm #3 again 

over-predicted mound height when used in storm #1. Differences in field conditions between 

storm #3 and the first two storms include the background water table being 0.64 m and 0.55 m 

higher than for storms #1 and #2, respectively, and the soil moisture being slightly higher. Both 

conditions reduce vadose zone effects on mound height by minimizing travel time and storage 
capacity, which lead to a higher groundwater mound. However, the higher initial saturated , 

_ thickness during this storm would serve to reduce groundwater mounding. 

The modeled and observed heads begin to diverge following the initial mound recession 

| (Figures 19 — 21). The model predicts the mound to recede faster than the observed heads. 
This is likely caused by regional aquifer effects, and not a condition of mound hydraulics under 

the basin. Geology in the region surrounding the basin varies quite widely, with areas of silty 

clay loam present in addition to the sand and gravel observed under the basin (Clayton, 2001; 
NRCS, 2007). The finer grained material was evident as close as monitoring wells MW2 and 

MVW9, where silty clay loam extended from the surface to 4.57 meters (15 feet) below grade. If 
| this material also existed downgradient of the basin, it would restrict drainage of the 

groundwater mound, causing the water table to remain elevated for a longer period of time. 

Sensitivity Analysis 

The fitted hydraulic parameters, head, and precipitation data for storm #1 were used to perform | 

a sensitivity analysis. Of the hydraulic properties estimated for the sand and gravel material, 

mound height was most influenced by hydraulic conductivity; mound heights decreased as 
hydraulic conductivity increased (Figure 24). Mound heights increased rapidly below a hydraulic 
conductivity of approximately 1.5 cm/s. | 

The predicted hydraulic conductivity of the sand and gravel material is approximately one order 

of magnitude greater than the average values determined by slug tests. It is possible that the 
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saturated hydraulic conductivity in the vadose zone is higher than the saturated hydraulic 

- conductivity in the saturated zone due to fines being washed from the vadose zone during 

| infiltration events. The differences between observed and modeled hydraulic conductivity are 

| also within the two orders of magnitude variation for a given soil type reported by Freeze and 

Cherry (1979). Increasing anisotropy (the ratio of horizontal to vertical hydraulic conductivity) 

decreased mound height (Figure 25), particularly for anisotropy less than 10. Increasing 

horizontal hydraulic conductivity beyond this ratio had little effect; mound height decreased from | 

0.072 m to 0.013 m as anisotropy increased from 10 to 100. 

After hydraulic conductivity, mound height was most sensitive to saturated thickness. Mound 

height decreased as the initial saturated thickness increased (Figure 26). A thicker aquifer 

provides for a larger flow area available to transport water away from under the basin. 
Increasing the unsaturated zone thickness had less of an impact on mound height (Figure 27). 

As the unsaturated zone thickness increased, the larger storage capacity reduced the mound 

| height, and also delayed mound formation. The relatively small difference in mound height with 

change in thickness is likely a result of the high conductivity of the sand and gravel material. 
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Figure 24. Effects of Hydraulic Conductivity on Mound Height - Storm #1. | 
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Figure 26. Effects of Initial Saturated Thickness on Mound Height - Storm #1. 
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Figure 27. Effects of Unsaturated Thickness on Mound Height - Storm #1. 

The initial conditions (matric potential) of the unsaturated zone had little effect on mound height 

(Figure 28). This is likely due to the very flat soil-moisture curve of the largely gravel and cobble 

material (Figure 29). Finally, the thickness of the sediment layer on the infiltration basin floor 
had a significant effect on the volume of water infiltrated and on the groundwater response. 

| Reducing the sediment layer by 50% (10.5 cm to 5.25 cm) caused the water table to rise to the 

bottom of the basin floor, increasing from a mound height of 0.38 m to 2.4 m. 
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Figure 28. Effects of Matric Potential on Mound Height. 
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Figure 29. Soil — Water Characteristic Curve for Sand & Gravel. | 

Model Application - | 

Once calibrated, the model was used to determine the effects of different basin designs, aquifer 
characterisitcs, and basin loading conditions on mound height (Figure 30). Guidelines for this 

evaluation were taken from the Wisconsin Department of Natural Resources Standards 1002 
(Site Evaluation for Stormwater Infiltration) and 1003 (Infiltration Basin Standard), and in 
consultation with Mr. Roger Bannerman, WDNR Water Resources Management Specialist 

. (personal communication with Mr. Roger Bannerman, 2007). | 

Two infiltration basin sizes were modeled. A 45.7 m (150 ft) by 45.7 m basin was chosen as a 
typical infiltration basin size. A 9.15 m (30 ft) by 9.15 m basin was chosen as a typical rain | 

garden size. Three ponding depths typical of infiltration devices were used: 0.61 m (24 in), | | 
| 0.305 m (12 in), and 0.15 m (6 in). The 0.61 m (24 in) depth is maximum ponding depth allowed 

in WONR Standard 1003. Ponding was modeled with a constant head boundary using the 

average ponding depth. For example, a ponding depth of 0.305 m was used when the design 

depth of 0.61 m of ponding was being simulated. Ponding was applied for a duration such that 
the total flux into the system equaled the design ponding depth. For the example of simulating a 
ponding depth of 0.61 m, ponding was stopped once the total flux through the basin floor 
reached 0.61 m°/m’. | 

| Two different soil materials, a sandy loam and a loamy sand, were used in the model. These 
| _ materials are commonly used in the construction of infiltration devices. Infiltration rates given | 

for these soils in WDNR standard 1002 were applied to the model; 1.27 cm/hr (0.5 in/hr) for 
sandy loam and 4.14 cm/hr (1.63 in/hr) for loamy sand. Saturated and unsaturated zone | 

thicknesses were of 1.52 m (5 ft), 3.05 m (10 ft), and 6.09 m (20 ft) were used for both zones. 

Finally, two surface sedimentation layer thicknesses (0.0 cm and 7.62 cm (3 in)) were used to 
simulate the changes in infiltration rates that will likely occur over the life of a basin. 

| | 
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Figure 30. Model Application Parameter Combinations. 

Model results from all scenarios in the flowchart in Figure 30 are summarized in Tables 8 and 9. 

Select results are found in Figures 31 - 36. Unlike the Wood Creek Basin site, these 

hypothetical model applications with loamy sand and sandy loam were more sensitive to 

unsaturated than saturated thickness (Figures 31 & 32). These materials have a higher specific 

yield and lower infiltration rate than the material at the Wood Creek site. These factors serve to 

attenuate the infiltrating stormwater front. This slower release of water from the unsaturated __ 

zone over a longer time period decreases mound height. | 

Mound height was affected by both basin size and ponding depth. Mound heights increased as 

both basin size and ponding depth increased (Figure 33). Increasing basin size by a factor of 

five (9.15 m to 45.7 m) increased mound heights by a factor of 2.6, 3.5, and 2.6 for ponding 

depths of 0.15 m, 0.305 m, and 0.61 m respectively. | 
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Figure 31. Model Application - Effects of Unsaturated Thickness on Mound Height. 
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| Figure 32. Model Application - Effects of Saturated Thickness on Mound Height. | 
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| Figure 33. Model Application - Effects of Ponding Depth on Mound Height. 

Mound heights were largely unaffected by a 7.62 cm (3 in) sediment layer applied to the basin 

floor (Figure 34). This is in stark contrast to the Wood Creek basin, where a small change in 

sediment thickness significantly affected mound heights. This discrepancy is likely due to the 

differences in saturated hydraulic conductivity used in the sediment layer and underlying soil for 

the different scenarios. While the same sediment material (loam) was used for all models (0.5 
cm/hr), the underlying soil at the Wood Creek site had a much higher saturated hydraulic 
conductivity (360 cm/hr) compared to the loamy sand (4.1 cm/hr). 

The sediment layer did, however, affect the timing to maximum mound height. For the site 
conditions corresponding to Figure 34, the maximum mound occurred 600 hours after ponding 

was initiated without the sediment layer, compared to 678 hours with the sediment layer. Figure 

34 also shows that the differences in mound height with and without a sediment layer increase 
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as ponding depth decreases. The effects of the lower conductivity sediment layer are more 

apparent as the gradient across the layer (driven by ponding depth) decreases. 
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Figure 34. Model Application - Effects of Sediment Thickness on Mound Height. 

The effects of anisotropy and the initial conditions were also evaluated for the scenario with a 

45.7 m (150 ft) basin with loamy sand and 0.305 m (12 in) of ponding with no sediment. As 

seen with the Wood Creek basin, mound height decreases as anisotropy increases (Figure 35). 

The effects of anisotropy again are more apparent with a horizontal to vertical hydraulic 

conductivity ratio of 10:1 and below. 

The initial soil moisture conditions of the loamy sand had an impact on mound height (Figure 

36). Mound heights decreased with an increase in surface pressure head, or matric potential. 

Increases in matric potential correspond to decreases in soil moisture content. At low initial 

water contents the soil has a greater capacity to store infiltrating water. As previously 

discussed, attenuating the wetting front decreases mound height. 
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Figure 35. Model Application - Effects of Anisotropy on Mound Height. 
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Figure 36. Model Application - Effects of Matric Potential on Mound Height. 
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Table 8. Model Application Results for Loamy Sand. 

Max. Mound Height (m 

0.6097 0.3048 0.1524 

Basin Size: 45.7mx45.7m 

Sediment 0 en a 
Sat. Thickness: 6.09 m 

Unsat. Thickness: 6.09 m 0.375 0 0 

Unsat. Thickness: 3.05 m 1.075 0.303 0.028 

Unsat. Thickness: 1.52 m 1.80 (f) 0.75 0.216 

Sat. Thickness: 3.05 m 
Unsat. Thickness: 6.09 m 0.509 0 0 

Unsat. Thickness: 3.05 m 1.28 0.405 0.079 

Unsat. Thickness: 1.52 m 1.83 (f) 0.797 0.25 

Sat. Thickness: 1.52 m 

Unsat. Thickness: 6.09 m 0.622 0 0 

Unsat. Thickness: 3.05 m 1.35 0.446 0.113 

_____Unsat. Thickness: 1.52 m 1.83(f) 0.862 0.291 
Sedinentzetcn 

Sat. Thickness: 6.09 m 
Unsat. Thickness: 6.09 m 0.379 0 0 

Unsat. Thickness: 3.05 m 131 0.282 0.029 

Unsat. Thickness: 1.52 m 1.80 (f) 0.702 0.213 

Sat. Thickness: 3.05 m 
Unsat. Thickness: 6.09 m 0.476 0 0 

Unsat. Thickness: 3.05 m 1.28 0.364 0.01 

Unsat. Thickness: 1.52 m 1.83 (f) 0.792 0.26 

Sat. Thickness: 1.52 m 

Unsat. Thickness: 6.09 m 0.601 0 0 

Unsat. Thickness: 3.05 m 1.37 0.425 0.062 

Unsat. Thickness: 1.52 m 1.83 (f) 0.852 0.303 

Basin Size: 9.15 m x 9.15 m 
Sediment Oem 

Sat. Thickness: 6.09 m 
Unsat. Thicknéss: 6.09 m 0.072 0 0 

Unsat. Thickness: 3.05 m 0.334 0.071 0.002 

Unsat. Thickness: 1.52 m 1.03 0.276 0.068 

Sat. Thickness: 3.05 m 
Unsat. Thickness: 6.09 m 0.098 0 0 

Unsat. Thickness: 3.05 m 0.487 0.117 0.01 

Unsat. Thickness: 1.52 m 1.44 (f) 0.391 0.097 

Sat. Thickness: 1.52 m 
Unsat. Thickness: 6.09 m 0.156 0 0 

Unsat. Thickness: 3.05 m 0.603 0.149 0.008 

Unsat. Thickness: 1.52 m 1.55 (f) 0.492 0.13 

Sediment 762 cu 
Sat. Thickness: 6.09 m 

Unsat. Thickness: 6.09 m 0.075 0 0 

Unsat. Thickness: 3.05 m 0.336 0.07 0.002 

Unsat. Thickness: 1.52 m 0.976 0.27 0.06 

Sat. Thickness: 3.05 m 

Unsat. Thickness: 6.09 m 0.10 0 0 

Unsat. Thickness: 3.05 m 0.518 0.111 0.003 

Unsat. Thickness: 1.52 m 1.37 0.395 0.091 

Sat. Thickness: 1.52 m 
Unsat. Thickness: 6.09 m 0.161 0 0 

Unsat. Thickness: 3.05 m 0.63 0.144 0.022 

Unsat. Thickness: 1.52 m 1.63 (f) 0.497 0.13 

Notes: 

(f) = entire vadose zone flooded 
+ = simulation ended w/ max not reached 
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Table 9. Model Application Results for Sandy Loam. 

Max. Mound Height (m 

0.6097 0.3048 0.1524 

Basin Size: 45.7 m x 45.7 m _ 

Sediment Oem 
Sat. Thickness: 6.09 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 1.32 0.29 0 

Unsat. Thickness: 1.52 m 1.81 (f) 1.00 0.34 

Sat. Thickness: 3.05 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 1.51 + 0.36+ 0 

Unsat. Thickness: 1.52 m 1.82 (f) 1.04 0.39 

Sat. Thickness: 1.52 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 1.63 0.41+ 0 

Unsat. Thickness: 1.52 m 1.83 (f) 1.08 0.43 

Sedinent 762em 
Sat. Thickness: 6.09 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 1.37 0.31+ 0 

Unsat. Thickness: 1.52 m 1.81 (f) 1.00 0.32 

Sat. Thickness: 3.05 m 
Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 1.49 0.41+ 0 

Unsat. Thickness: 1.52 m 1.83 (f) 1.05 0.37 

Sat. Thickness: 1.52 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 1.60 0.48+ 0 

Unsat. Thickness: 1.52 m 1.83 (f) 1.09 0.41+ 

Basin Size:9.15mx9.15m 

Sedinenioen 
Sat. Thickness: 6.09 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 0.36 0.062+ 0 

Unsat. Thickness: 1.52 m 1.01 0.38 0.094 

Sat. Thickness: 3.05 m 
Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 0.52 0.12+ 0 

Unsat. Thickness: 1.52 m 1.42 (f) 0.53 0.13 

Sat. Thickness: 1.52 m 
Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 0.67 0.16+ 0 

Unsat. Thickness: 1.52 m 1.65 (f) 0.68 0.20 

Sat. Thickness: 6.09 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 0.37 0.069+ 0 

Unsat. Thickness: 1.52 m 1.0 0.41 0.10 

Sat. Thickness: 3.05 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 0.56 0.12 0.01 

Unsat. Thickness: 1.52 m 1.38 0.56 0.14 

Sat. Thickness: 1.52 m 

Unsat. Thickness: 6.09 m 0 0 0 

Unsat. Thickness: 3.05 m 0.73 0.15+ 0 

Unsat. Thickness: 1.52 m 1.63 (f) 0.74 0.19 

Notes:__ 
(f) = entire vadose zone flooded 

+ = simulation ended w/ max not reached 
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Tracer Study | 

| Tracer experiments are generally conducted to estimate the degree of hydraulic connection 
between various locations, to estimate physical transport parameters used in describing solute 

migration, to determine a solute-matrix interaction parameter, or to calibrate and validate a flow 

| or transport model (Seaman, et al., 2007). Tracers can be used to determine the effects of 
groundwater mounding on contaminant transport. A tracer applied to a groundwater mound 

would be expected to move away from the basin at a faster rate than without a mound, due to 

| the increased gradient caused by the mound. Derby (2001) showed that a surface applied 

potassium chloride tracer moved more rapidly to shallow groundwater under depression areas 

after infiltration of spring snowmelt and during rainfall events. oe 

A conservative, or non-sorbing tracer is transported advectively in the flow field and spreads by 

hydrodynamic dispersion, which is a combination of molecular diffusion and mechanical 
dispersion resulting from differences in pore water velocity and flow path (Seaman et al., 2007). 

Hydrodynamic dispersion (D), is given by: D = av + D’, where q, is the longitudinal dispersivity 

(L); vis the seepage velocity (LT); and D’ is the molecular diffusion coefficient (L?T'). Since 

| the seepage velocity is proportional to the hydraulic gradient, the gradient directly impacts the 

hydrodynamic dispersion term in the solute transport equation. A non-conservative, or sorbing 

tracer moves slower than the conservative tracer, producing a lower breakthrough concentration 

| due to tracer mass being lost in the soil matrix. © 

One of the initial project objectives was to conduct a tracer study at the selected study infiltration 

basin. However, due to a combination of uncertainty whether a tracer study would be applicable 

to site conditions, timing issues with regard to basin selection and monitoring well installation, 
and relatively few storms that would allow the study to be conducted, a tracer study was not 

performed at the Wood Creek basin. Once the Wood Creek site was found, a general 
understanding of basin hydraulics was first gained by observing a few storms. The relatively 

low mound heights observed and flat gradient under the basin observed during these storm | 
events caused uncertainty as to whether a tracer study would produce meaningful results. A 

relatively dry spring and early summer of 2007 provided very limited opportunities to conduct the 

study. | | 

We are currently conducting work that will serve as an alternative to a field tracer study. A 

literature review is being conducted of case studies involving tracer applications at sites with 
relatively flat groundwater gradients and with sand and gravel material. Once an appropriate 

case study is selected, we will model the conditions with a groundwater flow and contaminant 7 

fate and transport model (e.g., MT3D). The model will be calibrated using tracer breakthrough 
data at observation points downgradient of the tracer application. Once calibrated, a 
groundwater mound will be created by adding focused recharge to the area of tracer injection. 

The breakthrough curves (time vs. concentration) will be compared to determine the transport 
effects caused by the mound. The results from this analysis will also assist with evaluating _ 

whether enough of a response is expected at the Wood Creek site to warrant a field tracer | 

study. This study is in progress, and results will be reported in an addendum to this report. 

Conclusions and Recommendations | 

The goal of this study was to understand groundwater mounding and the potential for 
contaminant transport resulting from recharge beneath stormwater infiltration basins. A study 

was conducted on a 0.10 hectare (0.25 acre) infiltration basin serving a 9.4 hectare (23.2 acre) 

residential subdivision in Oconomowoc, Wisconsin. Subsurface conditions included sand and 
gravel material and a groundwater table at 2.3 meters (7.5 ft) below grade. Three storm events 
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| between August 2006 and April 2007 produced mounding and were modeled. Precipitation 

depths were 4.93, 2.84, and 4.28 cm. The storms produced ponding depths of 0.386 m — 0.472 

m (15 in — 18.5 in), causing a maximum water table rise under the basin center of 0.384 m — 

0.616 m (15 in — 24 in). | 

The storms were modeled using the two-dimensional, finite element, variably saturated flow and 

contaminant transport model HYDRUS. HYDRUS was selected because 1) it was designed 

specifically for infiltration and recharge simulation in the variably saturated flow regime, 2) it 

contains an extensive database of unsaturated soil hydraulic parameters, and 3) it utilized a © 

robust parameter estimation technique for inverse estimation of soil hydraulic parameters. | 

Inverse modeling was performed with HYDRUS to estimate soil and aquifer parameters of the 

sand and gravel material. Predicted pressure heads at the center of the infiltration basin were in 

close agreement with measured values for the period encompassing basin ponding and until 

initial mound recession (RMSE: 0.016 m — 0.026 m). Hydraulic parameters of aquifer material 

predicted using the inverse solution were within ranges reported in the literature. The 
magnitude and timing of maximum mound rise was predicted well for all storms. Differences in 

modeled and observed mound heights were <1.3% for all storms. Maximum mound heights 

occurred 9.5 — 12 hours after the initial water table rise. The modeled initial water table rise was 

between 20 - 40 minutes later than observed in the field for all three storms. This discrepancy 

was attributed to preferential flowpaths in the field, either natural or created during well 
installation. HYDRUS predicted a faster mound recession than observed in the field. This was | 

attributed to fine-grained material outside the basin reducing drainage away from underneath 

the basin. 

Model performance was validated by using fitted hydraulic parameters from storm #1 to predict 

mound formation in storm #2. Close agreement between modeled and measured values was 

observed (RMSE: 0.026 m — 0.031 m). Fitted parameters from the inverse solution for storm #3 

did not produce a good fit when used to model storms #1 and #2. The maximum predicted 
| mound heights for storms #1 and #2 were approximately 20% higher when the hydraulic — 

parameters from storm #3 were used. This discrepancy is attributed to a higher initial water 
table and soil moisture content for storm #3 (Spring 2007) compared with the other two storms | 

(Summer & Fall 2006). 

A sensitivity analysis of system parameters showed that mound height was most influenced by 
hydraulic conductivity. Mound heights increased as hydraulic conductivity decreased; mound 

heights increased rapidly below a hydraulic conductivity of approximately 1.5 cm/s. Increasing 
anisotropy decreased mound height, particularly for anisotropy less than 10. To a lesser extent, 
mound height was sensitive to saturated thickness; mound height decreased as the initial 

saturated thickness increased. Increasing the unsaturated zone thickness had less of an impact 

on mound height; mound height increased slightly and was delayed as the unsaturated 

thickness increased. Mound heights were not sensitive to the initial soil moisture content 

(matric potential) of the sand and gravel material. The thickness of the sediment layer on the 

infiltration basin floor had a significant effect on the volume of water infiltrated and on the 
groundwater response. Reducing the sediment layer by 50% (10.5 cm to 5.25 cm) caused the | 

water table to rise to the bottom of the basin floor, increasing the mound height from 0.38 m to 
2.4m. | | 

The calibrated model was then used to evaluate hypothetical basin operation scenarios with 

| parameters found in WDNR post-construction stormwater standards 1002 and 1003. Various 
- basin sizes, ponding depths, soil types, and aquifer dimensions were investigated. The 

groundwater mound intersected the basin floor in most scenarios with loamy sand and sandy 

loam soils, combined with an unsaturated thickness of 1.52 meters (5 ft), and a ponding depth | 
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_of 0.61 meters (2 ft). No groundwater table response was observed with ponding depths of 

| <0.305 meters (12 in) with an unsaturated zone thickness of 6.09 meters (20 ft). The mound 

height was most sensitive to hydraulic conductivity and anisotropy (<10), followed by 

| unsaturated zone thickness. A 7.62 cm (3 in) sediment layer delayed the time to reach | 

maximum mound height, but had a minimal effect on the magnitude of the mound. Mound 

heights increased with an increase in infiltration basin size. Mound heights were more sensitive ) 
to matric potential than for the study site; mound heights increased as matric potential 
decreased. | 

Recommendations for future work include applying a three-dimensional model to the study site 
| and collecting water table response data from a site with more fine-grained material beneath the 

infiltration basin for additional model calibration and validation. Field application of appropriate 

tracers will allow assessment of the effect of mound formation on contaminant transport. 
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beaded only o 10 

‘ pumped onty o 51 12. Sedimertin well = es inches. «=, I, inches 
pumped slowly a bortom 
Other oO x 13. Water clarity © Clear 10 Clear Ey 20 

, Tatid 15 Twit 25 
3, Tune spens developing well dD min (Describe) (Describe) 

4. Depth of well (hom sop of well casisng) 1 SL, 2 te ns 

5. Inside diametee of well 2,0 iin ee 

6. Votame of water im Filter pack and well Ss 

casing ——~AA 
ne Fill in if drilling Maids were usedt and well bs. at sailld weete facitiny: 

7. Vokame pf walerromoved from well = | =, D gal. ~ 
14, Total suspended a Se ae EE gil 

8. Volame of water added (if any) —— Je. sole 
cai al 

9. Source of water added 15.cOD ee er Z| 

ss enn TG, Well developed by: Name (fint, Ged) md Fina 

10. Analysis performed on water addest? Ye Bono | Flest Name Last ene: 
(1 yes, attach reeules) 

Fines: 
17. Additional commeéris on development: 

ce eee ne rae IL hentby certify thatthe abave information is true ared ceerect to the best 

Name: SZ Ne SCBA! | of my know. 2 

seer 22% nf zopo Kosewty Aetaen' |PomtName_ piifae # Tyee 

ciyiseamitay: Lvwecoss, bf svg fim A lip 

NOTE: See instructions foe more information including a list Of comnly codex and weil type codes. 
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‘State of Wisconsin \ONITORING WELL DEVELOPMENT 
Deparment of Natural Resourses MONTTORD iG DEVEL AY 

Baute to; Watershed Wastewater [7] ‘Waste Management] 

Facility/Preject Name ounty N Well Name [wooo dee AAs Piette | aS 

1. Can this well be purged dry? O¥e No Before Development After Development 
, 11. Depth to Water 

2. Well developreean medion Grommpof gg JP Ee LLB A 
surged with beiler snd bailed ne well casing) 
surged with baller and pumped oO él 

surged with block nd bailed O 42 Dats peti ses £eee peasy £206 
surged with block and pumped O 62 mmddyyyy mmddyy ¥ ¥ 
surged with block, bugled andpomped =f) 70 Gam Oanm. 
compressed a D 20 Time etd:eppm 2:29 fom, 
baited only O 10 ~ 
peenped only oO 5s! 2. Sediment in well = __+-~inithes — T inebes 

a 5 Ea 3, Water clarity Ch ch iinet oO , Water claris lear fo jee 20 
° reugels vata 

4. Time spent developing well Yin, (Desetibe} (Describe) 

4. Depth of well (from top of well casing) a anf. 2 

5. Inside diameter of well ak. 2 Zin eee ea oeenenan 
& Volume of water in filter peck and well perrreernaannaier ee ain: 

casing a Lt at : 
Full in Wf cbilling fluids were used and well ix 2 solid waste facility: 

7. Volume of watersemaved from well «= 2 * 8 get, 
14, Total sespended er mg os ee BM 

& Volume of water added (iF any) —— fe veld 

9. Source of water added ~ 13.600 es ae BI a) 

rrr ttt 16, Weil Gewedoped by: Neese [first, het) and Fina 

10. Analysis performed on water aledl? 0 Yes g No | FirstName: Asie Lat Mame: Abra gy 
(if yes, atinch reealts) 

Fix ad pe paiicnd 
V7. Additional comments on develogunent: 

pete 5 Fasaley Contes renee Raspenaltls Pay Thevelyy eerily that the above informatica is tras and correct to the best | 
First Sgr! Last Viet f of my knowledge. 
Niet: x Names 

ractyrien: —GFY of Glonngure —__—| Sige Z 
Steves: W283 MN teBe  dicsernend few bf [Print Name; He Hoses 

City/State/Zip: Avtar Ui Sues Firm; UN — daar 

NOTE: See insiractions for more information including a list of county codes and weil type codes. 
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‘Stare of Wiscotas MONITORING WELL DEVELOPMENT 
Deperterent of Natural Resourses Form 6400-1138 Raw 258 

Baute.toc WaterabedWastowetcr [—) Waste Management {—] 

Romediation/Redevelopment(—] Other [] as 

hee Le Pwabeee — imo awe pear’ ___| Wishes “Rut 
ee eee 

1. Cun this well be purged dry? Ove 2° No Before Development After Development 
11, Depthia Warer 2 

2. Welt davelogenent method Gemmpot gL En UL A Sn 
surged with baller aod bailed x 41 well casing) 

urged with baller and pumped 61 

urged with block and ballest O 42 ae oF? 722 ot. LL ge sZe2e 
surged wish block and pumped O 62 amdd yyy y mm yyYy 
surged with block, baikd amdpamped [] 70 an. ce aan, 

compressed ale oO 2 Tine e232 bpm _# to Bee 
bailed only Oo 10 
pumped only GQ 41 12. Sedisnent in well _ TTL inehes — Tv imbes 

ee 5 & ae ta ci Clear eT Other oO; . Water elariny jeer 10 20 
a Tortid 1 5 TarhidO 25 

3. Time spent developing well _ £80 san. (Describe) (Deserine) 

4. Depth of well (rom top of well casimg) — L 6, 2 tt a 

§, Inside diameter of well 2 2S aS 

6. Volume of water in filter pack and well SS eee 

casing 1 £ a 
Fl ia if drilling fluids wore used and well is at solid waste facility: 

7. Volume af water removed from wet! SS, 0 gal. _ = 
44, Total suspended Bk ee ee 

A Volume of water added (if any) soe solids 

SOURS CE WNT SO entree 13, COD ee we ws UBD ee ns 4 me IIT 

a iG. Well developed try: Meme (first, test} acl Fens 

Wh Analysis performed om waser added? Ys 2 No First Name: file Last Narn: Monmee 
(IC yes, altach rosudis} 

17. Additiens] comanents on develupeacet: 

oe ee Theredy cestify that the shove information is trua xnd oorrect to the best 

Ret, See, ioe | my nr 
Feeliny’Fiew: oy ot thence, Sigeanere: eP — 

Street: hfz 33 NM defo Avbtemey! Plepay Print Marne: Zetec Adamerre 

CinyiuaeZip: _lbobaipve, di ps emer Hits 

NOTE: See inswactions for more information incloding a tist of county codes and well type codes. 
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Sere of Wisconsin MONITORING WELL DEVELOPMENT Deportmeee at Nanseal Resources Form 400-1198 Rov, 7-08 
Kove to: Waserched/Wastewaer [7] ‘Waste Management [7] 

Remedistioe/Redevelopment{—] Other[—] 
PacltyProjess Name [County Neme Wel Name ; ee fee ey ives Ln Miia 

1, Can this well be purged dry? OY O No Before Development After Development 
11. Degsh to Waser 

2. Well development method Commpol , $e Zon _ ff Loa 
surged with bailer and bailed O41 well cxting) 
surged with bailer and pumped O 61 

surpest with block aval bailed O 42 Duis boliterpeat dite s_Zeo7 
surged with block and pumped O 62 mm oyyyy mmddyy yy 
surged with block, bailed and pumped =o] 7 Oam. oan 
compressed ar a 20 Time ©. nt —— OPM __:__Dam. 
bailed only. 6 10 
pumped only Oo st 2, Sedimens in wel] ee we TC tniches own owes on CHES 

a 5 2 3. Wawer cla Clear Cloar EY Ode a Pater elacity 9 20 
nerve 1 5 Twtid 25 

3. Time spent developing well sea oe hn, {Describs) (Describe) 

4. Depth of well (foe top of weil cesleng) wm be eh 

5. Inside diameter of well mt, & Fin, 

6, Vobame of water it filter pack and well $$ eee 

caring ——ALe ea. 
Fill in if drilling flukts were used and well Isa solid waste facility: 

7. Vobarte of warer removed from well wn DE, gh —— — 
_ 14, Tota expended. — se MBA __ int 

8, Vokameof water added (if any} macs ee wali 

9. Souceefwaeendded Oo dS COD eee Sy raph 
—__---—-——_-[-—" it. Well developed bys Nace (firs, last) end Fin 
10, Analysis performed on water added? =) Yee No | est Nene: le? Last Name: Afrutsttx 

(if yea, attack resales) 

Finn: ef fd ~ #f4btegy 
17, Additional comments on development: 

Nace and Addisons ‘Comat (Owaet! Responsible Paty Thereby cestify that the atewe information it tree and corres to the best 
hale Sian! at Seen’ of my knowldgo, 

a 
Fecltity'Fiem: Cary of Soper Signature: 

Sureet: V233 M2080 frccuey favurry |PritaName:__ptflee thwesty 

CiiylsuneZig: PNR Wf SUEY Fim: fw henge 

NOTE: See instroctions for more informatioa including a list of county codes and well type codex. 

‘Phone uvauh asian &Mnuscdias WS Pececk ec ——————— ———— 
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Appendix B 

Regional Groundwater Flow Maps 
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Figure 1. Groundwater Flow Direction Map — 10/19/06. 
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Figure 2. Groundwater Flow Direction Map — 02/21/07. 
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Figure 3. Groundwater Flow Direction Map — 03/30/07. 
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Figure 4. Groundwater Flow Direction Map — 04/03/07. 
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Figure 5. Groundwater Flow Direction Map — 04/21/07. 
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Figure 6. Groundwater Flow Direction Map — 05/04/07. 
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| Appendix C | 

, Equations 
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Bouwer & Rice Slug Test Equations and Procedures 

—] | 

R, 1.1 A+ Bln(H -L,)/r, 
In— =| ——— . +. (1) 

r, In(L,, / r,) L,/r, 

where R, = radius of influence (L), ry = radius of well (L), Ly = well length in aquifer (L), A&B 

are dimensionless constants as function of L./rw, H = thickness of saturate material (L), and Le = 

screen length (L). Hydraulic conductivity is found by Equation 2. 

2 
r. In({R,/r,)1, 8) 

K= re In(R./r,)1) 0 | (2) 

2L, t s 

where the terms not previously listed are: K = hydraulic conductivity (LT*), t = time (T), So = 

initial water level change (L), and s = water level change (L) at time t. 

The following steps were followed to determine hydraulic conductivity with the Bouwer and Rice | 

method: | 

1) Plot water level change on a log scale versus time on a linear scale (Figure 13). 

2) Approximate the straight line portion of the plotted curve by a straight line method 

and extend the line to time t = 0. 

3) Calculate In(H — Ly)/rw for Ly # H. | 

4) Find dimensionless parameters A and B as a function of Le/Rw from the Bouwer and | 

Rice plot (Figure 12.8, pg. 281, Schwartz, et. al., 2003). 

5) Calculate In(Re/Tw). | 

6) Record initial water level change (s,), and drawdown and time for one other point on 

line from step 2. Calculate hydraulic conductivity. 

€, | Eo5 & eS 
SP 
Bee 
6 ~ | 

Oe + 3 

0 0.5 1 1.5 2 °°» 2.5 3 3.5 4 4.5 5 

Time (sec) | 

Figure 1. Bouwer and Rice Slug Test on MW10. 
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