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Abstract

In this thesis, we prove that if an asymptotically Euclidean manifold with nonnegative
scalar curvature has long time existence of Ricci flow, the ADM mass is nonnegative. In

addition, we give an independent proof of positive mass theorem in dimension three.
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Chapter 1

Introduction

A smooth orientable Riemannian manifold (M", g) (n > 3) is called an Asymptotically
Fuclidean (AE) manifold if for some compact K C M"™, M™\ K consists of a finite
number of components E1, ..., Ej such that for each F; there exists a C'*° diffeomorphism

®, : E; — R"\B(0, A;) such that under this identification,
gij = 51‘]' + O(T_Ui), 8‘k‘gw = O(T’_Ui_k) (11)

for any partial derivative of order k as r — oo, where r is the Euclidean distance function.
We call the positive number o; the order of end E;.

The ADM mass [5] from general relativity of an AE manifold (M, g) is defined as

m(g) = lim (aigij - ajgii) dAj7

r—00 S
T

where dA7 = 9,.dV,, and gg is the canonical Euclidean metric on R™.

The general positive mass conjecture is the following, see [26, Theorem 10.1].

Conjecture 1.1 (Positive Mass Conjecture). Let (M", g) be an AE manifold of dimen-
sion n > 3 with the order o > (n — 2)/2, and nonnegative integrable scalar curvature.

Then m(g) > 0 with equality if and only if (M, g) = (R™, gg).



With all the conditions in the conjecture, the ADM mass is finite and independent
of AE coordinates, see [6].

In dimension three, the positive mass conjecture was first proved by Schoen and
Yau [41] in 1979 by constructing a stable minimal surface and considering its stability
inequality. In addition, Schoen and Yau showed that their method could be extended
to the case when the dimension was less than eight [39,42]. In 1981, Witten [46] proved
the positive mass conjecture for spin manifolds of any dimension. In 2001, Huisken and
[lmanen [21] proved the stronger Riemannian Penrose inequality in dimension three by
using the inverse mean curvature flow. In 2015, Hein and LeBrun gave a proof of the
positive mass conjecture for Kdhler AE manifolds, see [23]. To the author’s knowledge,
there is no proof of the positive mass conjecture in general dimension.

A natural question arises, can we prove the positive mass conjecture by using other
geometric flows? Since Ricci flow is one of the most powerful geometric flows by which
Perelman have completely solved Thurston’s geometrization conjecture, see [33-35], it
is of interest to know how Ricci flow interacts with AE manifolds and the ADM mass.

Recall that Ricci flow is a geometric flow such that a family of metrics g(f) on a

smooth manifold M are evolved under the PDE

ig(t) = —2Re(g(t)). (1.2)

We will focus on the case when (M, ¢(0)) is an AE manifold.

It has been proved by Dai and Ma in 18] that Ricci flow preserves the ALE condition,



nonnegative integrable scalar curvature and the ADM mass. Hence, it is important
to understand the change of mass at possible singular times and infinity if long time
existence of Ricci flow is assumed.

One of the main theorems in this thesis shows that if we have long time existence
of Ricci flow, an AE manifold will converge to the Fuclidean space in some strong
sense. The proof is partially motivated by considering possible steady solitons on ALE
manifolds, see Appendix. The convergence at time infinity will indicate that the mass
is nonnegative along the flow.

We assume throughout this thesis that the scalar curvature R is nonnegative and
integrable, the manifold has only one end F Eland the order of the end o is greater than
(n—2)/2. Moreover, we fix a positive smooth function r(x) on M such that r(z) = |®(z)|
when = € F, where ® is the diffeomorphism in the definition of AE manifolds. We also
identify z € E with ®(z) € R"™ without explicitly mentioning .

Moreover, we assume that the order o < n — 2 since if an AE manifold is of order

greater than n — 2, then it is also of order n — 2.

Theorem 1.2. Let (M",g) be an AE manifold with above assumptions. If there exists
a solution g(t) (0 < t < o0) of the Ricci flow with g(0) = g, then the mass m(g) > 0

with the equality if and only if (M™,g) = (R", gg).

Under Ricci flow, it is possible that the metric becomes singular at some finite time.

In dimension three, we can continue Ricci flow by performing surgeries. We prove

'n fact, all the arguments below apply to the multi-end case with slight modifications.



that the mass and other related conditions are preserved under Ricci flow with surgery.
Moreover, if we choose surgery parameter function 6(¢) small enough, there are only
finitely many surgeries. The finiteness of surgeries is proved by carefully examining the
change of Perelman’s u-functional over surgery times. By choosing one appropriate Ricci
flow with surgery, we have the long time existence of Ricci flow after the last surgery

time and Theorem (1.2 applies.

Theorem 1.3. Whenn = 3, the mass m(g) > 0 with the equality if and only if (M3, g) =

(RgagE)'

For the remainder of the thesis, C' may vary from line to line. Moreover A = Ay,

V = V@ and dV = dV) unless otherwise specified.



Chapter 2

Mass under Ricci flow

We prove in this chapter that Ricci flow preserves the AE condition and the mass is
unchanged under Ricci flow. Different from the argument of Dai and Ma in [18], we fix
an AE coordinate system along the flow. The main tool we use is the following maximum

principle on the noncompact manifold with evolving metrics, see [12, Theorem 12.14].

Theorem 2.1. Suppose that g(t), t € [0,T], is a complete solution to the Ricci flow on

a noncompact manifold M with |Rm(g(t))| < ko for some ko > 0. Let
Lu = u; — Au — (X (t), Vu) — G(u,t),

where X (t) is a smooth family of bounded vector fields and the function G : Rx[0,T] — R
is locally Lipschitz in the R factor and continuous in the [0,T] factor. Suppose that u is

a smooth function such that
Lu<0 and |u(z,t)] < exp (b(dyy (0, z) + 1))

for some constantb. For anyc € R, let U(t) be the solution to the corresponding ordinary
differential equation:

dU
=G, U©)

|
e



If u(z,0) < ¢ for all x € M, then we have
ule, 1) < U()
for allx € M and t € [0,T] as long as the ODE exists.

Theorem 2.2. Let (M, g(t)) be a Ricci flow solution with bounded curvature on M X

[0,T] and (M, g(0)) is an AE manifold of order o > 0, then
(i) AE condition is preserved with the same AE coordinates and order.
(ii) If o > (n —2)/2 and R is integrable, the mass is unchanged.

Proof. (i): Since (M, g(0)) is an AE manifold, there exists an end E and a C'* diffeo-

morphism ¢ : £ — R™\B(0, A) such that under this coordinate system
gij = 0+ O(r™7), Mgy =O(r=) (2.1)

forall k =1,2,---
From this condition, it is easy to conclude that |[V*Rm(0)| = O(r—o=%2).

Since the Riemannian curvature is uniformly bounded on [0, T'], there exists an .S > 0
such that |Rm| < S on M x [0, T]. Now we consider the evolution equation of |Rm|* |14,

(2.57), (6.1)]
O;|Rm|* < AJRm|* + 16|Rm|* < A|JRm|* + 16S|Rm/*.

Let u = |[Rm|?¢71%% then dyu < Au on M x [0, T].

Next we prove that u has the same decaying condition as u(0), see also [18].



Let h(z) = r*™27 on M. We set w = hu and it satisfies
(0 — A)w < Bw — 2V log hVw

on M x [0,T], where B = WMZ#‘
We first show that under |[Rm| < S, B is uniformly bounded on M x [0, T].

Since |[Rm| < S, the metrics g(¢) are uniformly comparable to ¢g(0). That is,

C~'g(0) < g(t) < Cy(0) (2.2)
on M x [0,T].
Now we have the following evolution equations for |Vh|* = [Vyh|2, and Ah =
Agwh,
O,|Vh|? = 2Rc(Vh, Vh), (2.3)
0(Ah) = 2(Re, V2h). (2.4)

The proof of (2.3 is straighforward and the proof of (2.4) can be found in |14, Lemma
2.30].

Therefore, from the curvature bound and ([2.2)

|0 Vh[*] < CIVA[, (2.5)

|0:(AR)| < CIV?h| < C|V50)hlg(0), (2.6)



and by integration

|v9(t)h|§(t) < C|vg(0)h|§(0)7 (2.7)

|Agyh] < C1V 50yl g(0)- (2.8)

To estimate |Vy)hl2 ) and [V iy, we use the given coordinate system of g(0)

at infinity. From the definition of h and direct computations, it is easy to show that

‘Vg(O)hlz(o) < Cr®e, (2.9)
Vaohle < O™ (2.10)
Therefore we have
2 _ Vo h|? V2 .\h
Bl = ’2|Vh\h2 hAh‘ <C | g(O}z2 50) L C | g(O})l l9(0) <ort<C (2.11)

where the last inequality is true since r has a positive minimum.
From Theorem 2.1} we conclude that |w| < C and hence |[Rm| < Cr=277 on M x [0, T).
Claim:

|VFRm| < Cr—27F, (2.12)

Proof of the claim: We assume that the claim holds for all 0 < [ < k. Let hy, = rit20+2*

and wy, = hy|V¥Rm|?, then from the evolution equation of |[V*¥Rm|? [14, (6.24)]
k

0,/ V*Rm|* = A|V*Rm|* — 2|[V*"'Rm|* + Y~ V'Rm * V*~'Rm % V*Rm
1=0

k
< A|V*Rm|* + € ) |V'Rm||V*'Rm|| V*Rm| (2.13)

=0



we have

k
(0 — A)wy < Brwy, — 2V log Ve + C Y hy|V'Rm|[V*'Rm[|VF*Rm|  (2.14)
=0

2|Vhy|2—hpAhy,
h2
k

where By = is uniformly bounded as before. Moreover, by induction we

have

hi| V'Rm|| V' Rm||V*Rm| = h|Rm||V*Rm|* < Cwy
forl=0o0rl=Fk and
R V'Rm||V*'Rm||V*Rm| < hyr 2% V*Rm| = r*|V*Rm| < Cw,lc/2

for0 <l < k.

From (2.14])) we have
(9 — Ay < =2V log bV + Clug + wl’?).

From Theorem we conclude that wy, is uniformly bounded on M x [0, 7] since the

the solution of the following ODE

dgb_ /
I =C(p+¢"?),

#(0) =c (2.15)

is bounded on [0, T]. Therefore |[V*¥Rm| < Cr=2-F-.

For any vector field U on M, we have

|log g(x,t)(U,U) —log g(x,0)(U,U)|

" —2Rec(z, s)(U,U) ’ /t o
- ’ " ds| < C Rm|ds < Cr—°72. 2.16
[ s , IR (210
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Therefore

g(t)(U.U) = g(0)(U, U)(1 + O(r~*77)), (2.17)

and in particular,

gi(t) = gu(0)(1 + O(r~277))
=(1+00 7)1+ 0r2)

=1+0(r ) (2.18)

By the polarization identity and ([2.18)), we conclude that g;;(¢t) = O(r~7) when i # j.

Now from the evolution equation of the Christoffel symbol |14} (2.25)]
atrfj = —gkl(ViRﬂ + VjR,’l — VlRij)

and (2.12)), we conclude that TF; = O(r~°~*) and hence 0;Rjx = O(r=°~*) from the
relation V;Rj, = 0;Rjx — TRy — Ty Ry

Since 9,(9;g;1) = —20;Rj, it follows that 9;g;1(t) = O(r~7~1). Now by induction,
O g;; = O(r=2=F) for all k and hence (E, g;;(t)) is an AE coordinate system with the
same order o.

(77): From the definition of the mass

mlg(t) = tim [ (Bigiy(t) — 9,9:(1)) d.

7—00 S
-
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Since we have a common coordinate system at infinity,

m/(g(t)) = lim [ (9ig};(t) — 9;9/(t)) dA?

T—00

T—00

T

= lim [ V,R(t)dA’.

T—00 S
T

Now from [28, Lemma 11],

r—00

lim IVR(t)|do =0
Sy

for t > 0, so m'(g(t)) = 0 for t > 0.
On the other hand, it is easy to show that m(g(t)) is continuous at 0, see [28, Corollary

12], hence the mass is unchanged. O

Remark 2.3. The proof of Theorem actually shows that if ¢;;(0) — &;; € C*_, then
gij(t) — d;5 € C*~2 for any integer k > 4 and ¢t > 0. In addition, using the argument
in [18] we can prove that if g;;(0) — 6;; € C2_, then g;;(t) — d;; € C1% for t > 0. The

definition of the weighted space can be found in Section 5.

Let (M,g(t)),0 <t < T be a Ricci flow solution with bounded curvature on M X
[0, 7] such that (M, g(0)) is an AE manifold. By our assumption, the scalar curvature
R(z,0) > 0. From the evolution equation of R, that is, ;R = AR + 2|Rc|* > AR and

Theorem [2.1 R(z,t) > 0 on M x [0,7].
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Now from the strong maximum principle under Ricci flow [14, Lemma 6.57], either
R(z,t) > 0 for (z,t) € M x (0,T] or R(z,t) =0 on M x [0,7T].
In the first case, we redefine the Ricci flow ¢1(t) = g(t +€1) where €; € (0,7 is fixed
such that the corresponding scalar curvature R;(z,0) > 0 for all z € M.

In the second case, the evolution equation of R implies that Rc(0) = 0, that is,

(M, g(0)) is Ricci-flat. Now we have

Theorem 2.4. If (M, g) is a Ricci-flat AE manifold, then (M, g) is isometric to (R", gg).

We fix a point p on M and let d(z) = dy(x,p) be the distance function to p. We first

prove the following two lemmas.

Lemma 2.5.

(2.19)

where r=r(x).

Proof. From the definition of AE manifolds, there exists a large positive number 7y such

that

(1+Cr ) gp(z) < g(z) < (1+Cr7)gp(2). (2.20)

for all r(x) > ro.
Given r; > ro and large r(x), let {y(t), t € [0,d(z)]} be the minimizing geodesic from
p to x. Then there exists an r, € [0,d(x)] such that r(y(r,)) = r and r(y(t)) > r; for

t € [ry,d(z)]. We assume that 7, € [C; ', Cir1] where C; depends on ;.
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Now we estimate the distance between 7(r,) and x under gg. We have

d(x) d(z)
rm—ms/ wwmwsa+wr%/ wmw@sa+&fmw
(2.21)

where we have used (2.20) to estimate |y'(¢)|,,. Then we obtain from ({2.21)) that
r(z) < (14 Cri%)d(x) + 7. (2.22)

On the other hand, let {~,(t), t € [0,a]} be the minimizing geodesic from v(r,) to z

under gp. Similarly we have

ﬂ@—us[%wmﬁsu+w#([%wmmﬁsa+m3wm+n>
(2.23)

and hence
dlx) <A +Cri)r(z)+rm)+r. <1+ Cri%)r(x) + (1 4+ Cri7 + Cy)ri. (2.24)

Combining (2.22) and ([2.24]), we have
r(z)

I o ¢+ . Y
(14+Cry9) 1§1;§ﬁ&f%§11giip%§1+0ﬁ . (2.25)

Since 1 can be chosen as large as we want,

r(z) _
A ) (2.26)

and the proof of the lemma is complete. n
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Lemma 2.6.

lim Vol,B(p, d(z))

ro+oo  w,r"(x)

=1, (2.27)
where w, is the volume of the unit ball in R™.
Proof. For the AE manifold, there exists an ry > 0 sufficiently large such that
(14+Cr ) tgp(z) < g(z) < (14 Cr ) ge(z) (2.28)
and hence
(1+ Cr=7)~'Voly, (x) < Vol,(x) < (1 + Cr=?)Vol,, () (2.29)

for any r(z) > ro.
For any r(z) > 1o, from Lemma [2.5| there exists a function €(r) > 0 with ¢(r) — 0

as r — +oo such that
e < r(z) < e, (2.30)
Now we fix an r; > 9. Then for any r(x) > r1, we have

Wy, ((e‘g(r)r)” —r7) = Voly,, (B(0, e~“Mr)\ B(0, 1)) (2.31)
< (1+ Cry”)Vol, (B(0, e “rN\B(0, 1))

< (14 Cry?)Vol,(B(p,d))
where the last inequality is true since by (2.30), B(0,e~"r)\B(0,r,) C B(p,d). Hence

w,, (e~ )" < (14 Cry%)Voly(B(p, d)) 4+ wyrt. (2.32)
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On the other hand,

Vol, (B(p, d)\B(p, ee(”)rl)) < Vol, (B(0,e“r)\B(0,71)) (2.33)
< (1+ Cr{?)Voly, (B(0, M)\ B(0, 1))

= (1 + Cry%)w, ((er)" —r})
and hence
Vol,(B(p,d)) < (1 + Cry)w, (e“™r)™ + Vol (B(p, e"r)). (2.34)

Combining (2.32)) and ([2.34)), we have

(14 Cry?)~ ' <liminf Vol, B(p. d(x)) < lim sup Vol B(p, d(x))

r—-+00 Wy, T™ r—+o00 Wy ™

<14Cr°  (235)

By taking 1 to +00, we conclude that

lim Vol,B(p, d(z))

r—+00 Wy, T"™

=1, (2.36)

Proof of Theorem[2.f} From Lemma [2.5 and [2.6] we have

po Vol B(pd(x)) . Voly, B(p,r(x))

d(z)—+oo wndn r(x)—+oo Wy, T™

=1. (2.37)

Then from a corollary of Bishop-Gromov volume comparison theorem [14, Corollary

1.134], we conclude that (M, g) is isometric to (R™, gg).
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Chapter 3

Perelman’s py~-functional

Recall that Perelman’s W entropy [33] is defined as

e_f

Wig, f.7) :/(T(|Vf|2+R)+f—n)) el (3.1)

for smooth function f and 7 > 0. Let u = e~/ (3.1]) becomes

W(g,u,7) = / (7(4|Vul® + Ru?) — v logu? — nu?) (4nr) "2 dV (3.2)

Moreover, For a general (possibly incomplete) Riemannian manifold (M, g), u-functional

is defined as

w(g,7) = inf {W(g,un’) | ue WOI’Q(M) and / u2(47r7')_"/2 dV = 1} . (3.3)

M

Note that when M is complete, Wh2(M) = Wy*(M). Moreover, from the definition
we have ug(g,7) > (g, 7) for any open set U C M.
We have the following monotonicity result under Ricci flow for the complete non-

compact manifold,
plg(t2), 7(t2)) = plg(t), 7(t1))

for all 0 < t; <ty < 7 where 7(t) = 7 —t,0 < 7 < T. Here we assume that Ricci

flow exists for [0,7] and |Rm| is uniformly bounded in spacetime. The proof of the
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monotonicity formula can be found in [16, Theorem 7.1, (ii)]. Although in [16] they
have only proved the case for the conjugate heat kernel, the same proof works for all f
which satisfies [33} (3.3), (3.4)].

It is proved in [44], that p(g,7) is finite if g has bounded geometry, that is, the
curvature is bounded and the injective radius is positive. In particular, for any AE
manifold the p-functional is finite.

Moreover, it is shown in [48] that for a manifold with bounded geometry, W(g, u, 1)

has a smooth positive minimizer if p(g, 1) is less than the corresponding value at infinity.

Note that by our definition of W,

W(g,u,1) = L(g,v) — glog 4T —n
where the functional L(g,v) is defined in [48, (1.1)] and v = u(47)~"/*. Therefore,
(g, 1) = A(M) — glog dr —n (3.4)
where, see [48, Definition 1.1],
A(M) = inf {L(v,g) \ /MUQ dVy, = 1} .

To be more precise, if for any sequence p, — oo on the manifold M such that
(M, g, pn) converges smoothly in the Cheeger-Gromov sense to (Moo, goo, Poo) and pups(g, 1) <
tnto, (9oos 1), then pps(g, 1) has a smooth positive minimizer.

In the case of Euclidean space, it follows from log-Sobolev inequality of L. Gross [19]

that
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Theorem 3.1.

Wi(ge, f,7) =0 (3.5)

for any smooth f such that [g, e~ (dnT)™24dV,, = 1.

The proof can be found in [36, Lemma 8.17].

It is immediate from that W(gg,u,7) > 0 where equality holds if u? =
6_%. Therefore, pgn(gp,7) = 0. For an AE manifold M", we have (M, g,p,) SN
(R™, g, poo) for any sequence p, — oo by Cheeger-Gromov compactness theorem.
Therefore W(g,u, 7) has a smooth positive minimizer if u(g,7) = u(t71g,1) < 0 from

the above result. Note that 771¢ is still an AE metric.

We have the following lemma.

Lemma 3.2. Assume that (M;, g;) converges to (Mu, o) smoothly in the Cheeger-

Gromov sense and (g0, T) is finite, then

11(Goo, T) > limsup pu(g;, 7).

i—00
Proof. For any ¢ > 0, we can find a u € Wol’2(Moo) such that W(geo, 4, 7) < j1(gso, T) + €.
For large i, we can find u; € W,*(M;) which are the pull-back functions of u and
lim; 00 W(gi, i, 7) = W(geo, 1, T) by the convergence.

Therefore we have

limsup p(g;, 7) < lim W(gs, us, 7) < pi(goo, T) + €.
12— 00

1—00

Since the above holds for any € > 0, we have limsup,_, . 1t(gi, 7) < 11(goo, 7). O
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It follows immediately from the above lemma that p(g,7) < 0 for any AE manifold

since (M, g,pn) o (R™, gp, pso) for any p,, — 0.

The Euler-Lagrange equation for the minimizer of u(g, ) is
7(—4Au + Ru) — ulogu® — nu = u(g, 7)u. (3.6)

For the general Ricci flow on the noncompact manifold we have the following result

and the proof is almost identical with the compact case, see [33, Section 3.1],

Theorem 3.3. If (M", g) is a manifold with bounded geometry such that a solution g(t)
of bounded curvature to the Ricci flow with g(0) = g exists for t € [0,T), then for any

7€ (0,T), u(g,7) <0 unless (M™, g) is isometric to (R™, gg).
Proof. Let 7(t) =7 —t, y € M and consider the corresponding fundamental solution
vz, t) = (A7 (t)) ™ 2e @b, te|0,7) (3.7)

to the adjoint heat equation

v
E——AU—FRU

with limg = v(-,t) = d,.
The existence of the fundamental solutions to the adjoint heat equation on noncom-
pact manifolds and its basic properties can be found in |13, Chapter 24, 25].

Then by the monotonicity of the entropy,

p(g,7) = p(g, 7(0)) < W(g(0), f(0),7(0)) < lir?;;lp W(g(t), f(t),7()) <0 (3.8)
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where the proof of the last limit in (3.8 can be found in [16, Theorem 7.1]. If u(g,7) = 0,

Wi(g(t), f(t),7(t)) = 0 since it is monotone. Therefore from the formula

dW(g(), f(1),7(t))
dt

g 2 67.](‘

—27'/M)Rc+v2f—

we have

Rc+V2f—%EO (3.10)

for t € [0, 7], so g(t) is a shrinking soliton with singular time 7. From
T(t)m]\z}x|Rm(g(t))| = const

for t € [0, 7], we conclude that |Rm(g(t))| = 0. In particular g is Ricci-flat and we have
from ((3.10))

2 —_— —
Vi 27

= 0. (3.11)
Set f = 47 f, then V2f = 2g and hence f is a convex function.

Let O be a fixed point, then for any point x € M we have a minimizing geodesic

s(t), 0 <t < d(z,O) such that |$(¢)| = 1. Then we have

d*f(s(t))

2z = V' (Vd, Vd) = 2(Vd, Vd) = 2. (3.12)
Therefore,
YD) (979d) = 21+ (V] V) (3.13)

From ({.17) we have f(s(t)) = f(O) +t(Vf, Vd)i— + t>. In other words, f is quadrati-

cally increasing and therefore it has a minimal point O;. By choosing O = Oy, we have
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f(z) = f(O1) + d*(x,0,). In particular, by taking trace of we have
Ad* = 2n.
Therefore (M™, g) is isometric to (R", gg) by Bishop-Gromov comparison theorem [14,
Theorem 1.128, 1.132] since g is Ricci-flat. O
Now we have the following crucial result.

Theorem 3.4. If (M™, g) is an AE manifold such that the scalar curvature R > 0, then
lim, . u(g,7) = 0.

Proof. 1f the conclusion does not hold, we can find a sequence 7, — +o00 and limy_, (g, 7%) =
oo, SO that ps is either a finite negative number or p,, = —o0.

We have previously shown that p(g, 7) has a positive minimizer uy and it satisfies
T (—4Auy + Ruy,) — ug logu; — nuy = (g, 7o) up (3.14)

and

/ ul (4rm,) M2 dV = 1. (3.15)
M

Claim 1. uy are uniformly bounded.

We first prove a lemma.
Lemma 3.5. For u € WY2(M), the following Sobolev inequality holds

(/ wnz dv) t < O/ (4|Vul®> + Ru?) av (3.16)
M M

where the constant C' depends on the dimension, curvature bound, injective radius lower

bound, AE coordinate system and infinimum of R on a compact set.
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Proof. Let M™ = K| | E be the disjoint union of a compact set K and AE end E and
K5 a compact set such that K CC K;. We choose a cutoff function ¢y supported on K,
and ¢g =1 on K. Let ¢ =1 — ¢y.

For any u € Wh2(M), we have
[ull 20 = li¢ou + Grull 2o < [poull 20, + [|Pruf 2n .

By the L? Sobolev inequality on manifold with bounded geometry, see |3, Theorem

2.21],

<c / (IV (d0u) |2 + G2u?) dV
M

<c / (IVdoul® + [doVul> + ¢2u?) dV
K

<C [ ([Vu+u?) av

Ky

< 0/ (4|Vul* + Ru?) av. (3.17)
K

The last inequality holds since we assume R > 0.

On the AE end E, by enlarging K and K if necessary, we can assume the L? Sobolev
inequality of the Euclidean type holds. To be precise, on R" we have the L? Sobolev
inequality [1]:

n-2
(/ s dng> " <o [ Vol v, (3.18)
for any u € C}(R") and some constant C' > 0.

Since FE is the AE end, by shrinking it if necessary, we can assume that there exists
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a C' > 0 such that
c~tav,, <dv < Cdv,,
C¢_1|ngu|2 < |Vu|2 < C|V9Eu|2‘

Hence, for any u € C3(F)

(=) s e fora)”
E n
< C/ |V, pul?dV,, < C/ |Vul?dV,, (3.19)
Rn R
<C | |Vulrdv < C’/ |Vu|?dV.
E

Rn

So we have

([wa=av) " <o [ Wowra

< c/ ([Vrul? + | Vul?) dV
M
§C’/ |Vu|2dV+C'/ u? dV
M K
< C/ (4|Vul* + Ru?) dVv. (3.20)
M
Combining (3.17)) and (3.20)), (3.16]) holds. O

We can now prove the claim by using the Moser iteration. This is known to experts
but we write it down for the convenience of readers. For the sake of simplicity, we will
not write down the subscript k explicitly throughout and set pu = u(g, 7%).

Proof of Claim 1, see also [48, Lemma 2.1]. From (3.14) we have

n +

2
4Au — Ru+ —ulogu + Pu=o.
T
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Since p < 0, we have
2 n
4Au — Ru+ —ulogu + —u > 0. (3.21)
T T
By a direct computation, for p > 1
4AUP = 4p(p — D)uP 2| Vul* + dpuPt Au > dpuP Au
2
> Py logu — P + pRu”. (3.22)
T T
We set w = uP and ¢ to be a test function. From ((3.22)) we have
2 2p 2,2 np 2,2 2 12
4 [ (V(we?),Vw)dV < — [ w*¢*logudV + — [ w*¢p*dV — | pRw ¢ dV.
T T
On the other hand, since
(V(we?), Vw) = [V(wg)|* — [V¢|*w?
we have
2 2, 2 2p 2,2 np 2 42 2 2
4 | [V(we)|7dV <4 | |Vo|*wdV+— | w*¢*logudV+— [ w*¢p”dV— | pRw¢°dV.
T T
(3.23)

There is a constant ¢; > 0 such that
2
logu < un + ¢.

Hence

2 2 2

—p/w2¢210gudV§ —p/w2gb dV—i—ﬂ/ 202 dV
T

-
S%(/(w@"znldv) </u dV> +@/w2¢2dv

- \/4;7;279 ( / (we) 1 dV> Ty @ / w¢? dV (3.24)
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since (3.15)) holds.
From Holder’s inequality || fh|[1 < ||f|l,]|h]l, by choosing f = h = (w¢)=1, p = %
and ¢ = @, we have
e ST 3
< / (we)'T dv) < < / (W)= dv> ( / w2 dv)

n—2

2n " 1
<) < / (W) dv) . / WQ AV, (3.25)

where the last line is from Young’s inequality for a positive A to be determined below.

So from ([3.24)),
2p 9 .2 CoAp / 2n o
= 1 dV < n—2 dV
. /wqﬁ ogu =7 (we)n—2
Cop 2 .2 2¢1p 2,2
— d — d 2
+4>\\/? wo V—l—T/wngV (3.26)

where ¢y = 2v/4m.

From lemma (3.5)), (3.23)) (3.26)), we have

& (fwoar) ™ < [amwwop + rwop) av
§4/|V¢|2w2 dv+¥/w2¢21ogudv+?/w2¢2 dv

g4/yv¢\2w2 qv 4 2V (/(wqj)f_’z dV) ’

\/F
C2p 2,2 2c1p 2,2
dv 4+ — av
+ W / w o + - / wp
n ? w2 dV. (3.27)
If we choose A satisfies 02_)\]9 = —, thatis, A = i then from (3.27)), there exists

VT o200 2Ccop’
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a Cy > 0 such that

(/(wgb)f"z dv)” < (Jo/ Vo |*w? dV + COTPQ/@U%? dv. (3.28)

For any point 2 on M, we choose ¢, such that it is supported on B (x, VT(1+ 1/2’“))
C2k
and ¢ = 1 on B (z,/7(1 + 1/28T1)) such that [Vey| < NG
p=

From ([3.28) we have

n—2

2

n—z

Ur™) ™ 5 (Jemrar)
B(a,/7(14+1/2541))
C,
<CO/|V¢k|2 2dV + op” /w%zdv

w? dV. (3.29)

2k, .2
T B(z,/7(1+1/2k))

and choose p = pk, from (3.29) we have

If we set pg =
n—2
(/ QP(I;-H dV) n S 01(2]90) / 2pg d‘/, (330)
(z,v/T(1+1/2kF1)) T B(x,\/T(1+1/2F))
or equivalently,
Lk 2k N
</ w2’ dV) mi < m (/ u2Pt dV) " (3.31)
B(a,\/T(1+1/2F1)) T% B(z,v/T(141/2F))
Let £k =0,1,..., and by iteration,
OZkgo % Zkzo % C
max u? < —* pgl (/ u? dV) e (/ u? dV) (3.32)
220 Bla2v7) 72 \JB(w2v7)
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i 1l _n 2k
since ) ;g TS and ) ;- ,i converges. As

/ u2dV§/ quV:(47rT)%’
B(a,2/7) M

we conclude from (3.32)) that

maxu® < Cy
M

for some constant C3 > 0.
Hence all uy, are uniformly bounded.
Since every minimizer is exponentially decaying, see |48, Lemma 2.3], there is a

maximum point py, for ug. Since Aug(py) < 0, at pr, we have in (3.14)
T Ruy, — uy log ui —nuy — prup < 0.

As ug > 0, we have

R e )

2 2

As we have proved that uy is uniformly bounded, u; cannot tend to —oo. In other words,
oo 1s finite.

From (3.15)) we have

/uidV—i—/ude—(élﬂTk)g.
K E

Since wuy are uniformly bounded and K has finite volume, the first integral is uniformly

bounded. Hence there is a ¢y € (0, 1] satisfying

/ ui dV > co(4nmy)?. (3.33)
E
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We define functions ay(z) = w(\/7ex), a new metric on E as §;;(z) = ¢i;(/T),
1
Vvdet g

the corresponding Laplace operator Ay = J;/det g3 9; and scalar curvature

1
R(z) = —R(\/Txx).
Tk
The metric g on F, after a diffeomorphism, is nothing but 7, . So by the AE condi-

tion, (£, g) converges in the Cheeger-Gromov sense to (R™\{0}, gg) and the convergence

is smooth away from the origin.

Now ([3.14)) becomes
— 4A iy + Riy, — g log @2 — nil = i, (3.34)

All 4y can be regarded as functions defined on R"™ except for a ball with center 0.
We next prove that there is a limit in WH%(R") for the sequence {1y }.

Since py are bounded, from (3.14)) and (3.15)) we have, for details see [44, (29)],
Th / |V (4rmp) ™2 dV < C (3.35)
M

where the bound C' is independent of k.
Therefore, for any annulus C, 4 = {z € R" | a < |z] < A}, we have a uniform

constant C'; > 0 such that

/ w2dvV <
Ca,A

and

/ Vg2 dV < ¢
Ca,A

for k sufficiently large.
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In other words, 1, are bounded in W12(C, 4) and hence a subsequnce of {i} con-
verges weakly to a function u., in WH?(C, 4) and by Sobolev immbedding converges
strongly to us in LP(C, 4) if 1 < p < 2n/n — 2. Choosing two sequences a,, — 0 and
A, — oo for m = 1,2,..., by the diagonal argument replacing {u;} by a subsequence
if necessary, we have a function u., defined on R™\{0} such that for every compact set
C in R"\{0}, there is an N > 0 such that {ug, & > N} converges weakly to u., in
Wh2(R™\{0}) and strongly in LP(R"\{0}) if 1 < p < 2n/n — 2.

By the standard LP regularity property of elliptic equation , see |21, Theorem
9.11], the convergence is in Cp.% (R™\{0}) for some a > 0. Therefore if k — oo in (3.34),
we have

— AN U — Uoo 10G UL — MUy = Jloolo - (3.36)

By the standard regularity property of elliptic operator and bootstrapping, see [21
Theorem 6.17], we know that u, € C*(R"\{0}) and either uy = 0 or us > 0 by the
strong maximum principle [39].

Moreover we have

[ v, < @nt, (3.37)
Rm\{0}

and there exists a C' > 0 such that

/ Vun|2dV,, < C. (3.39)
R™\{0}

Claim 2. us, € WHA(R™).

Proof of Claim 2. We first prove a lemma.
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Lemma 3.6. For a function f € CY(R™\{0}), if | f(z)| < Clz|~* for some a <n —1

and small © and |V f| is integrable on the punctured ball B(0,1)\{0}, then the function

3 f(x), = #0;
f(x) =
0, x=0
has the weak derivative
Oif(x), x#0;
gi(z) =
0, x=0
fori=1,2,....n
Proof. For any ¢ € C§°(R"),
foipdV,, =lim foipdV,,
Rn =0 Jre\ B(0,r)

= —lim O0ifodVy, + lim fou' do
=0 Jre\ B(0,r) =0 Js(0,r)

— _/ giqﬁd‘/;mjtlim/ fou'do
n r—0 5(0,r)

where v’ is the ith component of the inner normal vector of S(0,r). The first integral
in the last line is finite since g; is integrable by our assumption.

From the condition,

/ fou'do
S(0,r)

Since a < n — 1 we conclude that

< C'r" ! max |f] < C'OrtTte.
zeS(0,r)

lim fov'do =0
r—0 S(O,T‘)
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and the lemma follows. O

Applying Moser’s iteration to (3.36]) as the proof of Claim 1, we have for any 0 <

r<1and |p| =r,
, _C '’

2
max u: < — us dV, < —.
B/ > T 1" Jpgey T

Hence we have

C
Uoo(T) < ERE

for |z| < 1. Therefore, by combining (3.38)) we can apply Lemma to conclude that

U can be extended to R"™. Moreover from (3.37) and (3.38)), us,, € W12(R™).

Case 1: us > 0.

From (3.37) we have
0< / u? (4n) "2 dV,, =2 < 1.
So if we set o, = Uno/c1, from (3.36]) we have

/ (4| Viio|? — 2 log %, — nii?, ) (4m) " dV,,

1
=2 (4| Voo |? — u? logu?, — nuio)(47r)’”/2 dV,, +logci
1 JRn
=lloo +logc? <0 (3.39)

since pioo < 0 and ¢ < 1. But it contradicts the fact that pgs(gg, 1) = 0.
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Case 2: us = 0.

In this case it means that iy (x) = ug(y/Tkz) converges uniformly to 0 on any compact
set of E.

We can assume that

lim su max ur(x) = 0.
mSUp Jha, B

Otherwise, if there exists a sequence {py }ren such that @ (pg) > ¢ > 0, by our assump-
tion pr — oco. On the other hand, (M, gy, px) converges smoothly to (R", g, ps) and
hence g (z) converges to ul, which is not identically zero. Then like case 1, we have a
contradiction.

Choose a small constant a > 0 such that

3

w2 dv > %O(Amrk) (3.40)

/E\B(Oﬂaﬁ)
This is possible since holds and u,, are uniformly bounded.
Choose a function ¢ such that ¢ € C°(R™\B(0,a)) and ¢ = 1 on R"\ B(0, 2a). Then
we have, like (3.23))
[ (U9t + (& = n)(om)? - (o) og a2) (4m) 2 d7
= / AV a2 (Am) 2 dV + py, / (¢t )2 (4m) /2 AV (3.41)

SC’/ @2 (4m) "2 AV + /(Qﬁﬂk)z(47r)_"/2 v
Ca,2a

But from our assumption u; converges to 0 uniformly on Cj 9,, there exists a sequence
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{ex} \( 0 such that

/ (4@(@1’“”2 + (R —n)(¢in)” — (dix)? log(¢ﬂk)2) (4m) "2 AV < e+ /(¢ﬂk)2(47r)_"/2 dv

(3.42)
if k is sufficiently large.
On the other hand,
(47)% > /aid? > /(¢ﬂk)2d17 z/ @2 dV > D(4r)i,
R"\ B(0,2a) 2
So if we set
[t av =)t
Py, o
and v, = —, then n;, € [2,1] and
Nk
/1#2(4@_"/2 AV = 1.
From (3.42) we have,
[ (@090 + (= myud -~ vilog o) (4m) "2 av
<y 2en + e+ logng < mpPe + e < Aoy e + (3.43)

When F is sufficiently large, 4cy?e; + 1y, is negative. Since {1/}, } converges to 0 uniformly
on R", it is easy to check that 4|6¢k|2 + (R — n)yp? — 2 logep? is positive when k is
large.

Thus we have derived a contradiction and the proof of Theorem [3.4]is complete. [

With the same proof as Theorem [3.4] we have the following uniform version which

will be used in Section 7.
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Theorem 3.7. Let (M, g;) be a family of AE manifolds of the same order o > 0

7

with positive scalar curvature. For some compact sets K; C M, we have a family of

diffeomorphisms ®; : M\ K; — R™"\ B(0, A) such that under these identifications,
’(.gl)uv - (5uv‘ < Corigia |a‘k‘(gz>uv’ < Ckriaika 1 < u,v <n (344)

for some constants Cy,k = 0,1,... which are independent of i. Moreover, there exist

compact sets K| containing K; such that dis,, (K;, K[) > dy and

n—2

</ uf%dv> <C Vul?dV
M;— K] M;—K/

for some dy > 0,C > 0 and any u € CY(M; — K!). In addition, if |Rm

ing,, > do, Vol (Kj) < Vo and infpex: Ry, (p) > ro for some positive constants Ry, T, o
and Vy, we have
li (g;,T) =
lim o (95, 7) = 0

for all g; uniformly.

Remark 3.8. We can get a uniform constant for Lemma |3.5|since the Sobolev constant

only depends on the bounds of curvature and injective radius. The volume control of

K is used to prove (3.33]).

Next, we use Theorem to prove the no local collapsing theorem in the case of AE
manifold. Recall that a Riemannian manifold is k-noncollapsed on all scales if for any
metric ball B(z,r) satisfying |Rm| < r2 for all y € B(xz,r), we have

VolB(z, ) S

K.
rn
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Following the celebrated work of Perelman, we have

Theorem 3.9. Let g(t), t € [0,00), be the Ricci flow solution on an AE manifold M™

with R > 0, then there exists a k > 0 such that g(t) is k-noncollapsed on all scales.

Proof. Since Ricci flow preserves the AE condition. So there exists a k1 > 0 such that

for any t € [0,1], r > 0, we have

VolB
VolBy(z,r) o (3.45)
rn
where By (z,r) is a metric ball in (M™, g(t)).
For t € [1,00), 7 > 0 and p € M such that [Rm| < 72 in By (z,r) we have the

following inequality whose proof can be found in [14, Proposition 5.37]

VOlBg(t) (I, T)
Tn

w(g(t),r?) < log + C(n). (3.46)

Then by (3.46)), Theorem and the continuity and monotonicity of (g, 7), there

exists a constant C' depending on ¢(0) that

VolBy (@, 1)

C < p(9(0),r* +1) < plg(t),r?) < log ——7

+ C(n).

We conclude that there exists k9 > 0 such that

Vol By (z, 1)

Tn

> Ro. (347)

Combining (3.45) and (3.47), we can find x = min(k1, k2) > 0 such that g(¢) is

r-noncollapsed on all scales. O
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Chapter 4

Analysis of singularity at time
infinity

For the Ricci flow (M, g(t)), t € [0,00), there are two different types of singularity at
infinity classified by Hamilton, see [22].

Case 1 (Type IIb): sup s [g,00)t/Rm| = oco.

In this case, we take any sequences of times 7T; — oo and then choose p; = (z;,t;) €

M"™ x [0,T;] such that

ti(T; — t;)|Rm|(zs,t;) =  sup  t(T; — t)|Rm|(x, ). (4.1)
M™% (0,T;]

It can be seen from the above choice that t; — +o00. Indeed, from the definition of Type
IIb, we can find two sequences L; — +oo, y; € M such that lim; , ., L;|Rm|(y;, L;) =

+oo and L; < T;/2. Then we have

1
sup t(T; — t)|Rm|(x,t) > L;(T; — L;)|Rm|(y;, L;) > =T;L;|Rm|(y;, L;). (4.2)
M7 % (0,T3] 2

Then it is clear from (4.1)) and (4.2)) that ¢; — +oo.

If we set Q; = |Rm|(x;,1;), it can be proved that (M, g;(t), p;) converges smoothly in
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the Cheeger-Gromov sense to a complete eternal Ricci flow solution (Mu, goo(t), Peo ), t €
(—OO, +oo) where gi(t) = Qig(ti + Q;lt).

Then for any 7 > 0,

11(9o0(0),7) > limsup pu(Qig(t:), 7)

1—>00

)

> limsup p(g(t;),

> limsup 11(g(0), —

+1) =0 (4.3)
where the first inequality follows from Lemma [3.2] the last from the monotonicity of u
and the equality is from Theorem [3.4]

From Theorem [3.3] it must be the case that M™ is isometric to R"™. But this is
impossible since |Rm|y_ (0)(Zo0) = lim; o0 [Rm|g, 0y (2:) = 1.

Case 2 (Type IIT): sup (o 0)t|Rm| < oo0.

In this case, suppose p; = (x;,t;) is a sequence of points and times with ¢; — oo and
ti|Rm|(z;, ;) = t;sup|Rm|(z, ;) > ¢
xeM

for some ¢ > 0. Then like the first case (M, g;(t) = Qig(t; + Q;'t), pi), t € [~1;Q;,0),
converges to (Muo, goo(t), Too), t € (—c, +00), where g;(t) = Qig(t; + Q;'t). Again we
derive a contradiction.

Therefore, we have proved that the singularity at infinity is of type III, and

lim ¢ sup|Rm(t)| = 0. (4.4)
t—ro0 M
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We choose an € € (0,1) to be determined later. From (4.4) we assume for ¢ large

enough,

€
sup|Rm| < ——. 4.5
Mpl | < 177 (4.5)

So by a translation of time, we assume holds for any t > 0.

Next, we prove a gradient estimate and Harnack inequality for the solution of heat
equation under the condition of . The proof is a long time version of the Li-Yau
estimates, see [27].

2

Set ug = r~“~7 where r is the function defined in the introduction. We consider the

positive solution u of the heat equation

uy = Au (4.6)

with the initial condition u(0) = uo.
It can be proved by using the maximum principle as in the proof of Theorem [2.2]
that for any 7' > 0, ¢t € [0, T, u(t) and |Vu|(t) have the same decaying rates as u(0) and

|V g0)u|(0), respectively. To be precise, there exist ¢;(7) > 0 and co(7") > 0 such that

cl(T)r 277 < ut) < ep(T)r 277, (4.7)

el (T)r=277 < |Vul(t) < ep(T)r 7.



Let f =logu. Then f satisfies

fo=AF+|VFP

If we set H(x,t) = t(|Vf|* — 2f;), then we have the following lemma.

€
1+t

Lemma 4.1. Under the condition sup |Rm|(z,t) <
M

AH = Hy 2 =2V - VH+ S(VIP = f? = (VI —2£) = 3|V P -

Proof. We have

AH = tA(V ]2 = 2f).

By using the Bochner’s formula

AIVI? =2|V2f|?2 +2Rc(Vf, V) +2(VAF, V)

= 2|V f* + 2Re(Vf, V) = 2V(IVf[* = f), V)

2
> 2| V2 f|? — 1—+t|Vf|2 —2AV(Vf[ = £). V)

where the last inequality follows from our curvature estimate.

On the other hand,

Afy= (Af)i = 2Rify < (Af)e+2ARe + 5[V

39

4>

1+t (4:8)

(4.9)

(4.10)

(4.11)
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So we get

AH > 1 <|V2f|2 S S{TAVIP £ V) 2~ o[V - 4|Rc|2)

> (VP £ = 2691 = £, 95)
SV -2V - (4.2
Then we have
H, = [V f? 2+ 1|V~ 26
Therefore,
AH — H, > (9 = [ = 2V (VI = £), V)
TSP~ F— HIVFE 26— (VFF —26) 291~
=L (V5P = £ = 2V IF - £.6)
:
FAV IR~ (VI ~2£) =2V - {
= (V2= 2 = 2V ST = 1), V)
OV V) + 2ARIA(VS V)~ (VI 2) 2V -
S SRR 7 4 (7 P T IEJ7 C SPR )
O

Now we can use the above equation to derive the Li-Yau inequality by following the

same method in [43, Theorem 4.2] to conclude that

Vul>  u _ o«

2 (4.14)
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for some ¢; > 0. Note that in [43, (1.10)] the extra term 2nk when o = 2 can be bounded

in our case.

b
Y14t

With the gradient estimate (4.14)), we prove the following Harnack inequality for u.

Theorem 4.2. For any x,y € M"™ and 0 < t; < 1o,

—61/2 2
U(ya 2) > ( 2) e ( g(tl)(ﬂf,y) (1 t2 tl)QE) '

u(l’,t1> tl Q(tg —tl)

Proof. Suppose (t) : [t1,t2] — M is a geodesic with respect to the metric g(¢;) such

that

(1) = Jaew(@:Y)

. b <t<t,
ty — tere

() =2, () =y

Then we have

/lzdt (logu(~(t),t)) dt

0 oy
/ (alogu—i-Vlogu 8t) dt

log u? 9
Z |Vlogul* ogu| G +V1 og - 8_Z> dt using (4.14))
¢ 1 [ ]oy |
> C_l log (2) - _/ i (4.15)
2 t) 20, 10|,

Using the evolution equation of metric along Ricci flow and inequality (4.5)),

/ !
t1

from the estimate (4.5)).

Therefore (4.15) completes the proof. ]

2 2

dv

ot

vy

)26 dg(tl) (SL’, y>2
ot

dt = (1 +1t, —t
(L4t —t to —t

to
dt < 14ty — tl)%/

g(t) t1

g(t1)
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Remark 4.3. We note that the proof of the above estimates does not depend on the

order of decaying for the initial condition wuy.

Theorem 4.4. We have the following estimate. There exist 6 > 0 and C > 0 such that

Proof. We fix a constant p € (575, %), then from the decaying property (4.7) u” is

integrable and

d
7 </ u® dV) :/(puplut — RuP)dV < /puplAudV

= lim pu’ " YVu,Vr)do — lim p(p — DuP~2|Vul* dV

r—+00 T‘(CC) r—+00 T(J?)<

=r <r

=— /p(p — D)uP 2| Vul?dV <0 (4.16)
where the boundary term from the integration by parts vanishes since
|Vu|uP~! < Cp= 370t p=D(=270) < Cpm1mp(H0) o Cymlon (4.17)

and

i Yollr(@) =r}) _

r—too  nw,r"!

(4.18)

by our definitions of r and AE manifolds. Moreover (4.16) is true since p > 53— > 1 by
our assumption o < n — 2.

So from (4.16|) there exists co > 0 such that
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/up dV < ¢y (4.19)

on any time slice.

For a fixed x € M™ and any ¢t > 1 by using Harnack inequality Theorem we have
uP(y, 2t) > 272 exp(—p(1 + t) /2t )uP (x, t) (4.20)
for any y € By (x, (1 + t)%*f). Therefore,

oz [ wenWaw = [ w2 e )
M By (@,(14¢)27°)
22772 exp(—p(1 + )/24) Vol ( By (@, (14 1)) ) ¥ (a,1)
> esVoly Byt (e, (14 1)) (1) (4.21)
for some constant cg = 27P/2e7P < 274P/2 exp(—p(1 +t)/2t) for any ¢t > 1.

The evolution equation for the volume of any compact set K C M™" is

a /dV :/—Rdvz—_e/dv.
dt \ . .

So we have

VOlg(t)(K) > (1 + t)‘e\/olg(o)(K). (4.22)

On the other hand, by the same reason
dgy(,y) < (1 + ) dgo) (2, y) (4.23)

for any x,y € M"™.
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So from (4.21)) (4.22)) and (4.23)) we have
¢z >e3Volg(a (Bgu)(l’, (1+ tﬁ*)) uf(z,1)

>c5(1 + 2t) Vol (Bg(t) (z, (1 + t)%—e)) P, t)

263(1 + 225)76\/019(0)

/N

Byoy (@, (14+1)57%)) w(z,1)

>ca(1426) (1 + £)E 292 (1, 1) (4.24)

for some ¢4 > 0 by the AE condition of ¢(0).

Hence we have

e—(1/2—2¢e)n
u(z,t) <C(1+t) » . (4.25)
Then if € is sufficiently small which depends on p and n, then w < —1 and

e—(1/2—2¢€)n
p

we can choose 6 = —1 — > 0.
On the other hand if ¢t < 1 the conclusion is obvious since u is uniformly bounded

on compact time interval. ]

With Theorem [4.4] we prove the following estimate for the curvature operator.

C
01+60 for some constants Cy, o9 > 0.

Theorem 4.5. |Rm| < —————
(1+1)

Proof. Under Ricci flow, we have the following lemma by direct computations.

Lemma 4.6. Let T be a time-dependent tensor on M and w is a positive solution of

Oyu = Au, then

2 2 . 9 _ 9
<at_A)ﬂ:§W.V\T! VT - VuTP (@ - AT

u2

u? u?t u?
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Let W = ’R;;‘Q, then from the Lemma we have
W =AW + %Vu vy plVEm ;f”Rm’z +P
<AW + %Vu VW + P, (4.26)
where

8(Bijki + Bikji) Rijki

P = 2

and Bijkl = _Rpiquqlkp'

We have the following estimate for P.

16|Rm[®>  16e
< <

P
u? — 14+t

W (4.27)

where the last inequality is from (4.5)).
As in the proof of Theorem , 2Vu is bounded on M™ x [0, T} for any T' > 0. From

Theorem 2.1 we conclude that

- < O(1 4 1)t (4.28)
for some constant C' > 0.

Therefore, from Theorem [4.4] we know that there exists Cp > 0 such that

Rim| < Cou(l + )% < — 20

< m (4.29)

where we can take dp = d — 8¢ > 0 by choosing € to be small enough. m

Now from the proof of Theorem [.4] we know that for any oy slightly smaller than

u(x,t) < Ot=1=o0/2
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Therefore, |[Rm| < Ct~1=7°/2_ In other words, we have shown &y can be chosen to be any
number less than /2.

We have the following version of Shi’s estimate, see also [3§],
Theorem 4.7. For any k=0,1,...
V¥ Rm| < Oyt =1 7007k/2,

Proof. From the Theorem [4.5] the conclusion is true for £ = 0. We assume by induction
that it holds for any 0 <[ < k.

For any fixed s > 1, we let
F(x,t) = (t — s)*|V*Rm|* + Cy(t — s)* V¥ 'Rm|* + - - - + C}|Rm?
on M x [s,00). From the evolution equation of |V*Rm|?
k
0,/V*Rm|* = A|VFRm|* — 2[V*"'Rm|* + ) ~ V'Rm  V*"'Rm % V¥Rm

=0

k
< A|V*Rm|? - 2|V*"'Rm[* + C > [V'Rm||V*'Rm|[V*Rm|  (4.30)
=0

we have by the induction,
(t — )| V'Rm||VF"'Rm||V*Rm| < Ct7272%0(t — 5)*/2|V*Rm| < Ot 2720 F1/2
for 0 <l < k and
(t — s)*|V'Rm||VF'Rm||V*Rm| = (t — s)*|Rm||V*Rm|* < Ct "% F

forl=0o0r!l=%k.
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Therefore, we can find nonnegative constants C4,Cs, ..., Cy, such that F' satisfies

the following equation
OF < AF + Ot~ 2720 (pY/2 4 ¢1+do )

We consider the ODE

% _ Ct_2_250(¢1/2 + t1+6o¢)7

8(s) = O™~

where C' = C,C2. Now F(x,s) < ¢(s) since F(s) = Cx|Rm|? < Cs727 %0,
Since ¢(t) is increasing, ¢(t) > C's™272% > Ct=272% for ¢ > s and hence

% :Ct727260¢1/2 + Ct71750¢

<Ct %,

Then it is easy to show ¢(t) < CO's~27200Ct%0 < (15=2=200 for ¢ > g > 1.

Now from Theorem [2.1], we conclude that
F(25) < Cs™ 2720,

In other words,

s VFRm|?(2s) < Cps™272%,
Since s is an arbitrary positive number, we have
IVFRm|(t) < Ct~1-%0—k/2

which completes the induction process.

(4.31)

(4.32)

(4.33)
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Thus there exists a metric g, such that g(t) converges to g, smoothly as ¢t — co.

Moreover, argue as before

1(Goo, 7) > limsup p(g(t), 7) > limsup pu(g(0), 7 +¢t) =0

t—o0 t—o00

for any 7 > 0.
Then from Theorem (M" goo) = (R™, gg). In particular, M™ is diffeomorphic to

R™.
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Chapter 5

Proof of Theorem 1.2

In this chapter, we prove our first main theorem.
We first recall the definition of weighted function space, see for example [26]. Let

(M, g) be an AE manifold with the AE end E, the weighted space Cj(E) consists of C*

functions u for which the norm

k
I
i—0 M

is finite. The weighted Hoélder space C’g’o‘(E) is defined for 0 < o < 1 as the set of

u € C§(E) for which the norm

) _ o |VEu(z) — VFu(y
g = Dl +sup Guinfr). ()44 (k) = )

is finite.

Then we have the following convergence result in the weighted space.

Theorem 5.1. For any o’ € (%52,0), we have g;;(t) converges to g;;(o0) in C*, as

t — 0o. In particular, (g;(c0), E) is an AE coordinate system on M".

Proof. We first prove a lemma
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Lemma 5.2. There exist Cy,nr > 0 such that
IVERm|(z,t) < Cpt 1 Mr=h=" k. =0,1,...

for all (z,t) € M x [0,00).

Proof of the lemma: We choose o1, 0¢ such that ¢’ < 01 < 09 < ¢ and §y = 0¢/2 in
Theorem (4.7

We consider a domain Dy = {(x,t) € M x[0,00) | r(x) > t*} in the spacetime where
ar > 1/2 to be determined later.

For (z,t) ¢ D, from Theorem [4.7, we have
IVFRm| < Oyt ~1700/27k/2 < Oy g1 mep—h=o’ (5.1)

for some n;, > 0 when ay, is sufficiently close to 1/2.
For (z,t) € Dy, we have the following estimate.
Claim: |V*Rm|? < Cr=47201=2% on D,.

Proof of the claim: Let hy, = r*T291+2% and wj, = hy|V¥Rm|?, from (2.13]) we have

k
(0 — A)wy, < Bywy, — 2V log hyVwy, + C Y hy|V'Rm||[ V¥~ 'Rm|[V*Rm| (5.2)

=0

2|Vhy|2—hp Ahy,
hk

where By, = is uniformly bounded by r~—2 < ¢~2%,

For k = 0, we have
(0 — A)wy < =2V log hoVwy + Ct— 0w,

for some ), = min{2ag — 1,0¢/2} > 0.
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Moreover, on 0Dy we have
IRm| < Ct71790/2 = Cp=(Foo/D/e0 < Op=2-n (5.3)

for ag sufficiently close to 1/2.

Now we apply Theorem on Dy to conclude that the claim holds for £ = 0. Note
that even though in Theorem there is no boundary in spacetime for ¢ > 0, if we go
through the proof, see [12, Theorem 12.14], the contradiction is derived at an interior
point as long as the conclusion holds also on the boundary.

Now we assume that the claim holds for all 0 <[ < k, then by induction on Dj we
have

hio| V'Rm||[ V' Rm||V*Rm| = hy|Rm||V*Rm|? < 71770/,

for{ =0or [ =k and
hy,| V'Rm||V*'Rm||V*Rm| < Cr*|V*Rm| = Cr"’l’2w,1€/2 < C’zf’“’“”l’m’“w/,i/2

for0 <l < k.

Therefore from ([5.2) we have
(8, — Ay, < —2V log hy Vg + Ct % (wy 4+ w)/?)

for some 9, > 0.

On the other hand, on dD; we have by Shi’s estimate

|vk‘Rm| S th—k/Qt—l—O'o/Q — Ck,,,,—(1+k/2+o’0/2)/ak S CkT—Q—k‘—O'1 (54)
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when ay, is chosen to be sufficiently close to 1/2.
So from maximum principle, we conclude that wy is uniformly bounded on D, and
the claim holds for k as well.

Therefore, on D;, we have
IVFRm| < Cpr=27F71 < Ot~ —h=o’

for some 7, > 0 and ay, close to 1/2.

Thus the proof of lemma is complete.

With the same argument in Theorem [2.2] we conclude that g;;(t) converges to g;;(oc)
in C*, because the term ¢!~ guarantees that |V*Rm| is integrable with respect to
time at infinity. In other words, g;;(c0) is an AE coordinate system with a smaller order

o’ for the Euclidean space. [

Now we continue to prove Theorem [[.2] We choose a smooth function 7 such that
1n = 0 outside of the AE end E and n = 1 when r is large.
Let x(t) = (0;9:;(t) — 0;9:i(t))0; be a vector field on the AE end, by the definition of

mass,

m(g(t)) = lim [ x(t)1dVy,

r—00 Jor

= lim [ nx(t)adVy,

r—00 Jor

= [ wiv(x(t) + (o), Vi v (5.5)
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On the other hand, we have, see [26] (9.2)],
=" (0T, — Ty + Tyl — Ty Ty)
=0;(9,9:; — 039i) + E(9) (5.6)

where E(g) is some universal analytic expression that is polynomial in g, dg and 9%g

such that £ = O(r~27'~2). Moreover,

|E(g(t)) — E(g(0))| < Cllg(t) — g(c0) 2,772
By taking the difference of equations of R(t) and R(o0) = 0, we have
RI(0) =0,(0,9(1) ~ 0,9(1)) — 309y (00) — 0,00(00)) + Bg(1) — Elg(o0)) (5.7
=divx(t) — divx(oo) + E(g(t)) = E(g(c0))

and hence
|divx(t) — divx(co) — R(t)| < Cllg(t) — 9(00)||cgo,7”_2”'_2~ (5.8)
From ((5.5)) and (5.8)) we have

m(g(0)) = lim m(g(t)) = lim m(g(t)) —m(g(c0))

t—o00 t—o00

= lim [ p(divx () — divx(co)) + (x(t) — x(00), Vi) dVy,

> lim [ 0R(®) = Crlg(t) = glo0)ea v+ (x(t) = x(00), V) Vi,

(5.9)
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O_/

Now since o/ > 252, nr=2° =2 is integrable. In addition, x(t) — x(o0) converges to 0

on the support of Vi and [|g(t) — g(00)||¢c2 , tends to 0, so we have from (5.9),
m(g(0)) > lim [ nR(E) v, > 0. (5.10)
—00
Remark 5.3. From the above proof, we have shown

m(g(0)) = lim [ R(t)dV, (5.11)

t—o0

since ¢(t) converges to gg uniformly on any compact set.

If the equality holds, we have by (5.11)) lim; o, [ R(t) dV; = 0.

On the other hand

%(/Rdv) :/AR+2|Rc|2—R2dV

:/2|Rc|2 — R*dV

—9 2
>_ " /R2 dV  (from |Re|* > R—)
n

o n

> ﬁ/}zdv (5.12)

where the second inequlity holds since lim, o [y [VR(t)|do = 0 and hence [ ARdV =
0. The last inequality follows from Theorem [4.5

Taking the integration on both sides, lim;_,», [ R(t) dV; cannot be 0 unless R(t) = 0,
which is a contradiction by our original assumptions. In other words, the only possibility
for m(g(0)) = 0 is when (M", g) = (R™, gg).

Thus, we have completed the proof of Theorem [1.2]
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Chapter 6

Ricci low with surgery on AE

manifold

In this chapter, we define the Ricci flow with surgery on an AE manifold. Most definitions
and notations are from [34] [29] [8] and [24] with slight modifications. We assume from
now on M is an orientable Riemannian AE 3-manifold with R > 0 unless otherwise
specified.

First of all we fix a surgery model, see [34, Section 2] and [29, Chapter 12],

Definition 6.1. (surgery model) Consider My, = R? with its natural SO(3)-action,

then there is a complete metric ggan 0on Mgian such that
1. gstan 18 SO(3)-invariant.
2. gstan has nonnegative sectional curvature.

3. There is a compact ball B C Mg, so that the restriction of the metric ggan to the
complement of this ball is isometric to the product (S?% k) x (RT,ds?) where h is

the round metric of scalar curvature 1 on S2.
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4. There is a standard Ricci flow (Mggan, gstan(t)), 0 < t < 1 such that 1 is the singular

time.

For an AE manifold M3, under Ricci flow, we either have long time existence or the
metric goes singular at some finite time. In the latter case, we modify the resulting limit
by surgery, which cuts off high curvature parts and add standard capped tubes, so as to
produce a new manfiold with an AE end which serves a new initial condition for Ricci
flow. Now we clarify the process of surgery at the first singular time for example.

Let (M, g(t)),0 <t < T be the Ricci flow solution where T is the first singular time.

Let €2 C M be a subset defined by
Q= {z € M|limsup Ry(x,t) < oo}.
t—T
Then we have the following properties:

Theorem 6.2. 1. Ast — T the metric g(t)|q limit to g(T) uniformly in the C*-

topology on every compact sets of ).
2. Every end of a connected component of () is contained in a strong e-tube.

3. There exists 1 > 0 such that any x € Q x {T} with R(z) > r=2 has a strong

(C, €)-canonical neighborhood in M =M x [0, T) Uaxjo,ry (§2x [0,T7).

4. There exists a compact set K C M such that |Rm| is bounded on K¢ x [0,T). In

particular, K¢ C €.

5. The scalar curvature R(g(T)) is a proper function from @ — (0, 00).
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Proof. The proof of 1 —3 can be found in |29, Theorem 11.19]. 4 is proved by pseudolo-

cality, see |16, Theorem 1.1]. To prove 5, we need the following lemma.

Lemma 6.3. There ezists a compact set K such that g(T') has an AFE coordinate system

on K¢ =M — K.

Proof of the lemma: From [16, Theorem 1.1], there exist a compact set K and .S > 0
such that [Rm(xz,t)| < S on K¢x [0,T). Enlarge K if necessary, we can assume g;;(0) is
an AE coordinate system on K¢ and 0K is smooth. Then we can use the same argument
in Theorem [2.2 on the parabolic cylinder K¢ x [0,T") to conclude that ¢(7T") has an AE
coordinate system on K°.

Let {2, }nen be a sequence in € such that 0 < ¢ < R(x,,,T) < C for some constants
0 < ¢ < C. Since by the Lemma 6.3, g(T") has curvature bounded by Cr=277 all z,, are
contained in a compact set of M. Then we assume, by taking a subsequence if necessary;,
T, converges to a point x, in M. If z is not in 2, by Lemma in the next chapter,
we have R(x,,T) goes to infinity which is a contradiction.

Thus, the proof of Theorem is complete. ]
Remark 6.4. We call K¢ in Lemma [6.3] the AE end of Q.

We fix 0 < p < r where 7 is the constant from Theorem [6.2(3) and define 2, C Q be
the closed subset of all z € Q for which R(z,T) < p~2. For a component §2; of  which
contains no point of €2,, by the canonical neighborhood theorem, one of the following

holds, see |29, Lemma 11.28]:
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1. € is a strong double e-horn and is dffeomorphic to S? x R.
2. Q is a C-capped e-horn and is diffeomorphic to R? or a punctured RP3.
3. ) is a compact component and is diffeomorphic to S3/T"; ST x S§% or RP3#RP3.

Those are all possibilities if M is orientable.

Let Q°(p) be the union of all components of { containing points of €,, then Q°(p)
has finitely many components and is a union of the AE end and finitely many strong
e-horns each of which is disjoint from €2,. The finiteness of horns can be derived from
the properness of R(T) — (0,00) and the rest arguments can be found in [29, Lemma
11.30].

Next, we have the following lemma which asserts the existence of a strong d-necks

on which we will do surgeries.

Lemma 6.5. (8, Theorem 5.1] For any 6 > 0, there exist h € (0,9p) and a constant D =
D(6, p) such that the following holds: Let x,y,z € Q such that R(z,t) < p~2 R(y,t) =
h=2 and R(z,t) > Dh™2. Assume that there is a curve 7y in Q) connecting x to z via y.

Then (y,t) is center of a strong d-neck.

Now for the surgery parameters r,§ < 1 we set p = rd, then the scale h = h(p,r) =

h(6,7) and D = D(p,r) = D(6,r) are determined. Moreover, we require that

=0 (6.1)
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since the proof of lemma [6.5| argues by contradiction by choosing two independent se-
quences h; — 0 and D; — +o0.

We say (M, g4) is obtained from (2, g(7')) by (r,0)-surgery at time 7" if

1. M, is obtained from 2 by removing components disjoint from €2, and cutting

along a locally finite collection of disjoint 2-spheres, capping off 3-balls.

2. All z € M, \M(T) are contained in a surgery cap and the cutting and capping are

done on a strong d-neck centered at a point y with R(¢,T) = h™2.
3. (M4, gy) is pinched toward positive curvature.

Now we show (r,d)-surgery must exist, see [8, Lemma 7.6].

By Zorn’s lemma, on 2 there exists a maximal collection {N;} of pairwise disjoint
d-necks centered at y; with R(y;, T) = h=2. Then from lemma , every components
of 2\ U; N; has the scalar curvature either less than Dh™2 or greater than p=2. Then we
remove all the components of the second kind and do surgeries on those d-necks N;.

Now we let M, be the resulting manifold and R(g,) € (0, Dh™?]. From the con-
struction we know that each component of M, contains at least one point p at which
R(p,T) < p~2, hence there are at most finitely many components by the properness of
R. Moreover one of the component MY containing the AE end of M, is an AE manifold
with the same order o as M. In addition, the mass of (MY, g(T)) is well defined and is

equal to that of M, by the same argument in [18].
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In general, we can construct three weakly decreasing parameter functions r(t), 6(t), x(t),t €

[0,00) to regulate the surgery process such that r(¢) is a canonical neighnorhood scale
function. The following existence theorem is proved in [29, Theorem 15.9], see also [8,

Theorem 1.2].

Theorem 6.6. There exists a Ricci flow with surgery (M, gar) on [0, 00) with the initial
condition (M, g) and decreasing functions 6(t),r(t),x(t) : [0,00) — R* such that the

following holds,

1. (M, gpm) has curvature pinched toward positive;

2. the flow satisfies the strong (C,€)-canonical neighborhood theorem with parameter

r(t) on [0,00);
3. the flow is k(t)-noncollapsed on [0,00) on scales < € and

4. for any singular time t the surgery is performed with control §(t) at scale h(t) =

Next we show that surgery times do not accumulate.

Theorem 6.7. Let (M, G) be a Ricci flow with surgery on [0,00) with the initial con-
dition (M, g) with parameter functions §(t),r(t),x(t), we show that on each compact

interval I of [0,00), we have at most finitely many surgeries.

Proof. Since all the parameter functions are decreasing, we can choose uniform param-

eters 0,7 and x on I. Therefore functions A and D are uniformly determined as well.
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At each singular time ¢, by our construction R(x,t) < Dh™2. Since curvature is pinched
toward positive curvature, we can assume |[Rm| < CDh™2. Now from the evolution
equation of |Rm|?

O;|Rm|* < AJRm[* + 16|Rm*

the regular Ricci flow exists at least for time % from t. Since all constants are

uniformly chosen, there are at most finitely many surgeries performed on I. m

Remark 6.8. Theorem [6.7 holds for all Ricci flows with surgery with normalized initial

condition, which is satisfied after a scaling, if necessary, for our original manifold M.

From the construction of Ricci flow with surgery, each time slice (M (t), g(t)) consists
of an AE manifold and a finite number of compact components. Moreover, we can recover
the topology of M(0) = M by performing connected sum operations among M (t) and

finitely many S3/T" and S! x S? for any ¢ > 0.
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Chapter 7

Proof of Theorem (1.3

We first introduce the following definition.

Definition 7.1. For a Ricci flow with surgery M, a connected open subset X C M is
called a path of components if for every time ¢, the intersection X (¢) of X with each

time-slice M(t) is a connected component of M (t).

We set M to be the path of components of M such that My(t) is an AE manifold
for any ¢ > 0.
Next we quote a local regularity lemma.

Lemma 7.2. [25, Lemma 3.1] Let M be a Ricci flow with surgery, with normalized

1

o5, there are numbers p = p(T) € (0,1),0 = o(T) €

intial condition. Given T >
(0,1),50 = io(T) > 0 and Ay = Ax(T) < oo,k > 0, with the following property. If

t € (355, 1] and |R(z,t)] < pp(0)~2 —r(T)72, put Q = |R(z,t)| +r(t)~2. Then

1. The forward/backward parabolic ball Pi(x,t,aQ’%) is unscathed, that is, with no

intersection with the surgery cap.

2. |Rm| < AoQ,inj > i0Q~2 and |VFRm| < AQY5 on the union P+(1:,t,a@_%) U

P_(z,t, O'Q_%) of the forward and backward parabolic balls.
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Now we consider a sequence of { M} of Ricci flows with surgery, where we let 6;(0) —
0, hence p; and h; also go to 0. We first prove a stability result, which shows that on

the finite time interval, all surgeries are done in a compact set.

Theorem 7.3. Let { M} be a sequence of Ricci flows with surgery with M*(0) = M
and lim;_,, 6;(0) = 0. For any S > 0,T > 0, there exists a compact set K C M such

that for sufficiently large i, the cylinder K¢ x [0,T)] exists in M" and |Rm;| < S.

Proof. We prove it by contradiction.

Assume there is a sequence {z;}jeny on M with dy(z;,*) = 2r; where x is a fixed
point on M and r; — oo such that |Rm;|(x;,t;) > S for some t; € [0,T].

By the AE condition, balls (B, (z;,7;), g, z;) converges smoothly to (R", gg,0). Then
there exists a 6 > 0 sufficiently small such that B,(z;,r;) % [0,6] exists in M7 and for
any A > 0, restriction of g; on B,(z;, A) x [0,6] converges smoothly to the Euclidean
metric on By, (0, A) x [0,6].

Therefore for any A > 0, we assume |Rm| < §/2 on B,y(z;,A) x [0,6] for j suffi-
ciently large. From Lemma , there exists Q, 0, A, 0 = O‘Q_%, all of which depend
on S, T,r kK, (M,g), such that the forward parabolic ball P, (x;,6,6') and the backward
parabolic ball P_(z;,0,6') are unscathed and |V*Rm| < AkQHg with inj > ivQ~% on
By(xj, A) x [0 — 0,6+ 0] for j sufficiently large. By taking a diagonal subsequence, we
have By(xz;,r;) % [0,0+6'] converges smoothly to the Euclidean metric on R" x [0, 6+ 6'].

Now we can continue this process, since 6" does not depend on ¢?, to conlude that
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By(z;,7;) % [0,T] converges smoothly to the Euclidean metric on R" x [0, 7] and |Rm;| <

S/2 on By(x;,1) x [0,T]. This is a contradiction. O

From Theorem [3.3] we can find a constant ¢y > 0 such that pszyr(ge, 1) < —2¢,
where ¢, is the standard metric on the cylinder with scalar curvature R = 1. Therefore,
we choose the parameter € for the surgery as follows, for any e-neck with metric g and
center p, we have g2y (_c-11(R(p)g,1) < —e.

Let M be a Ricci flow with surgery such that r, p,h and ¢ are uniform surgery
parameters. If 7" is a surgery time, we consider the change of the p-functional from
(M(T),g(T)) to (M(T~),g(T~)). Henceforth, we assume that (M(T~),g(T~)) and
(M(T),g(T)) are pre-surgery and post-surgery Riemannian manifolds, respectively.

Now for a Riemannian manifold (M, g), we have the following definition,

Definition 7.4. [47, (2-11)]
Ao2(g) = inf {/ (o?(4|Vv]* + Rv®) — v*logv?) dV —nlogo|v € C®(M), ||v]|s = 1} :

By our definition of W(g,u,7) in (3.2)), it is straightforward to compute, by setting

u = v(4rc?)7 that
9 n
(g, 0%) = Ap2(g) —n — §log47r. (7.1)

In other words, u(g,0?) and \,2(g) are different by a constant.

If we set g1 = 0?g and let u; be a minimizer of A\;(g;), then we have, see [47, (2-12)]

4A1U1 - R1u1 + 2U1 log U + Au1 =0 (72)
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where A = A\1(g1)-

Now from [47, (2-13)] we have

? 24V,
Ao2(9(T7)) < A+ck (1 + dco ) Ju ui dVy,

h? ) 1— [,uidVy
where k is the number of surgery caps with scale h and U is any surgery cap.

To estimate the term [, uj dVj,, we have the following two lemmas, see [47, Lemma

2.2, 2.3).

Lemma 7.5.
2 {(p)—3 }
sup u; < cmax = 10
Qg o
Lemma 7.6. Let u be a positive solution to the inequality

4Au — Ru + 2ulogu + Au > 0.

Given a nonnegative function ¢ € C*°(M) with ¢ < 1, suppose there is a smooth function

f that, when R > 0 in the support of ¢, satisfies
4V F|* < R—2logtu—3|A|/2 in the support ofb.
Then
%IAIIIG%UII% <8 sup (€* (R — 2log™ u — 3|A|/2) + [le'Vo[1%,) [lull3-

Note that our Lemma is slightly different than Lemma 2.3 in [47] as we do not

assume A < 0. Since we impose a stronger restriction on 4|V f|?, the proof is identical.
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Now we fix a constant Ag = n + glog 41 — €y/2. It is from Lemma , and the

proof of [47, Theorem 1.6] that there exists a small constant ¢; > 0 such that if L < e,

then either A\,2(g(T~)) > Ag or ’
Aoz (9(T7)) < Ag2(g(T)) + ck(o + 1)°h°. (7.4)
Here the condition of g < ¢ is assumed to guarantee, see |47, (2-14)], that
() Ri(x) — 2log™ uy(x) — 3Mo/2 < Ry() (7.5)

5 S
on Qg.

In terms of p-functional, it shows that if i < €1, then either u(g(T),0?%) > —¢y/2 or
o
w(g(T7),0%) < p(g(T),0°) + ck(o + 1)°h°, (7.6)

Now we take a sequence of Ricci flow with surgery {M*} with a fixed AE manifold
(M, g) as the initial condition subject to a uniform r(¢) > 0 and surgery parameter
function §;(0) — 0.

From Theorem [3.4], there exits a constant 7' > 0 such that

par(g,7) > —€o/2 (7.7)

for any 7 > T
Then from Theorem there exists a compact set K C M such that |Rm;| < 1
on (M\K) x [0,T] and we can find a common AE coordinate system for all g;(T"). On

the other hand from maximum principle it is easy to show that M} (T)\(M — K) have
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uniform positive lower bound of scalar curvatures. Hence, from Theorem [3.7) there exists

T" > T such that
1 (gi(T), 7) > —€o/2 (7.8)

for any 7 > T" — T and i.

Now since all () and 6;(t) are decreasing, we can choose r > 0, §; — 0 as constant
parameters on the time interval [0, 7].

With all those preparations, Theorem follows immediately from Theorem and

the following theorem.
Theorem 7.7. There are finitely many surgeries for M}y for i sufficiently large.

Proof. Suppose the conclusion is false. Then we can assume for all 7, M has infinitely
many surgeries. In particular, we denote the first surgery time past T by T,ii for M},
and all previous surgery times by {T},T3,--- T} _,}. We also set (0;1)2 =T — T,iifj
for 1 <j <k andTg:O.

If T, > T', as Ty, is a singular time, we can find a sequence of points {p} =

(%,t,) Joen in MG such that ti — Tp and if Q) = R(zl,t.), (M{(th), Qig(t,), z})

v Yv v) v
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converges smoothly as v — oo to a standard cylinder (5% x R, g.). Then we have

—2€9 >ps2xr(ge, 1)
> lim p(Q,i(t,), 1)
v— 00
= lim p(g:(t,)), 1/@,)
> lim (gi(T), /@, + £~ T)
=u(9:(T), Ty, = T) (7.9)
which contradicts ([7.8)) since T,z —T>T —T.
Therefore, we can assume all Tj < T".

By the same point-picking method as above, we have

M(Q(Tl:‘ifl)7 (01)2) = M(9<Tlii71)7Tlii - Tliifl) < —2¢ (7'10)

We assume that s is the largest integer among 1 to k; such that (0%)? < r?, where
r is the canonical neighborhood scale. As T' is a large number and r is small, T}, __ is
a singular time. Now we can find a point p which is the center of an e-neck such that
R(p) = (c%)™2. By our choice of ¢, we have u(g(T,ﬁ;s), (01)?) < —¢p. By using the

S

monotonicity formula,
:u(g(Tlii—(s—l-l))? (0-2—5—1)2) S —€o- (711)
Now let [ be the largest integer from s + 1 to k; such that
pa(T}, ), (01)7) < ~2e0/3. (7.12)

forany s+1 <5 <.
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If | # k;, then T,ﬁi_j is a surgery time for any j € [s + 1,1]. Recall that by our

assumption (0})* > r?. In this case, from (7.6) ,(7.10) and (7.12) we have

(T ), (05)%) < wlg(Ti, ), (0)") +ck(oj+1)°h; < u(g(Ty, ), (05)*)+Chhi (7.13)

J

since in this case p—z < Pi _ 0; < e if ¢ is sufficiently large and (0%)* < T".

O'j r

Now we estimate k. On Mé(Té; ;), we can find k disjoint e-tubes and each contains

-2

. ~. The total volume of all £ tubes are at least

an e-neck with center p and R(p) = p
ckp3. Since all surgeries are done in a compact set K whose volume is decreasing along

the flow, we have

k< Cp;>. (7.14)

Combining (7.13)) and ([7.14)), we have

i— i i i h
/’L(g<Tki—j7 (%’)2) < /L(9<Tkﬁj)a (Uj>2) + C_g- (7.15)
Now we take sum from s + 1 to [, then
. o h3
u(g(Ty_y; (07)7) < —€0 + Ckz‘p—é,- (7.16)

We know that from Theorem [6.7] the gap of two consecutive surgeries is at least
CD; 'h2, then

ki < CD;T'h; (7.17)

Hence from ([7.16)),

i— i /Dzhz
Wg(Ti0) (01)*) < —eo + CT'—5—. (7.18)

(2
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From our choice of parameters, i.e. (6.1]), lim; o, Dpﬁ';” = 0, so for ¢ sufficiently large,
CT’DpZ—gf” S €0 / 3.
Therefore we have u(g(T},_,), (07)?) < —2€y/3. Again by using the monotonicity

formula,
#(9(Ti,— 1)) (0141)7) < —260/3. (7.19)

But this contradicts the maximality of [.

Hence | must be k; and in this case

p(g(0), (04)*) < —2¢0/3. (7.20)

But this contradicts (7.7)) since (o}, )* > T

Thus, the proof of Theorem [7.7]is complete. ]

Proof of Theorem[I1.3: From Theorem [7.7] there exists a Ricci flow with surgery from
(M, g) such that there are only finitely many surgeries. Since the mass is preserved along
Ricci flow and surgery times, m(g) is nonnegative by Theorem . If the equality holds,

from Theorem (1.2 there is no surgery and (M, g) = (R, gg).

Corollary 7.8. [40, Corollary 6] Any orientable AE 3-manifold M with scalar curvature

R > 0 has the following diffeomorphism type
M = R3S T # . #S3 T #(S? x SH# .. #(5? x SY)

where there are finitely many connected sums.
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Proof. From Theorem [7.7, we have a Ricci flow with surgery M such that there are
only finitely many surgeries on M. After a large time 7', the Ricci flow on My(T')
has longtime existence, each of whose timeslice by Theorem is diffeomorphic to R3.
Moreover, at time 7', all other finitely many components of M(T') are compact manifolds
with R > 0. Therefore they must extinct after finite time. Therefore we can recover the

diffeomorphism type of M by performing connected sum of R? with finitely many S3/T

and S? x St O

Remark 7.9. Robert Haslhofer obtained the same result, see details in [40, Corollary

6], by using the min-max argument of Colding-Minicozzi [15].

A natural question is whether we have the same result if we only assume g;; — d;; €

c?,.
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Appendix A

Gradient Ricci solitons on ALE

manifolds

In this chapter we prove some results about Ricci gradient solitons on ALE manfolds.

Definition A.1. A smooth Riemannian manifold (M",g) is called an asymptotically
locally Euclidean (ALE) end of order ¢ > 0 if there exist a finite subgroup I' C O(n)
acting freely on R"\B(0, R), a compact set K C M"™ and a C* diffeomorphism & :

M™"\K — (R"\B(0, A))/T" such that under this identification,

gij = 0;; + O(r™7), (A1)

a|k|gij =0(r "), (A.2)

for any partial derivatives of order k£ as r — oo, where r is the Euclidean distance.
A complete, noncompact manifold (M", g) is called ALE if M™ can be written as the
disjoint union of a compact set and finitely many ALE ends [9] [45]. For an ALE end,
if the group I' in the definition is trivial, we call it a trivial end or AE end, otherwise
we call it a nontrivial end. As before, we assume that r is a positive function defined on

entire manifold M™.
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Definition A.2. [14, (4.1)] A metric g for a manifold M" is called a gradient Ricci

soliton if there is a smooth function f : M™ — R such that
A
Rc + Hess(f) + 59 = 0. (A.3)
It is called steady when A = 0, shrinking when A = —1 and expanding when \ = 1.

In [22] R. Hamilton proved the following identity for gradient steady Ricci solitons
R+ |VfP=A (A.4)

where A is a constant. Since on an ALE manifold the scalar curvature R = O(r=279),
|V f| is bounded from ([A.4). It can be proved, see for example in [14, Theorem 4.1], that
there exists an eternal solution ¢(t) (—oo < t < o0) of the Ricci flow with g(0) = g such
that g(t) = ¢(t)*g where ¢(t) is the 1-parameter family of diffeomorphisms generated
by Vf.

Since the solution ¢(t) is self-similar, its curvature operater |Rm(z,t)| is uniformly
bounded as |Rm(z,0)| is bounded for an ALE manifold. Moreover, R > 0 for every
ancient complete solution of Ricci flow, see [10, Corollary 2.5]. By the strong maximum
principle either R > 0 or M is Ricci-flat. In the first case, it implies in particular that
the constant A in is positive.

In addition, if the steady gradient Ricci soliton is nontrivial, the manifold has to be
one-ended, see [31, Corollary 1.1].

Now we have
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Theorem A.3. If (M", g) is an ALE manifold such that g is a gradient steady Ricci

soliton, then g is Ricci-flat.

Proof. (Nontrivial end) If M™ is not Ricci-flat, we assume that (A.4)) holds for a positive
A. Moreover we assume that [I'| > 1.
From (A4), we have |[Vf| < Az and hence f increases at most lincarly. We can

[f(@)] < C(L+r(z)) (A.5)

where r is the function in the definition of ALE manifolds.

Now if we take any sequence r; — 400, then (M, r;?g) converges to (R"/T, gg) in
the Gromov-Hausdorff sense. Moreover, the convergence is smooth away from 0 by the
Definition If we set f; = r; ' f, then it is straightforward to see from that f;
are locally uniformly bounded on R"/T.

Now by taking trace of , we have
R+Af=0. (A.6)
Rewrite in terms of r; 2g and f;, we have
Ay fi = ’I"?Agfi =rAgf = —r;R. (A.7)

From the elliptic equation (A.7)) and the fact that R decays more than quadratically,

fi converges to a function fg in C2(R™/T" — {0}). Moreover,

Agpfe =0, (A.8)
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By lifting everything from R"/T" to R", we know that since fg is a bounded harmonic
function near 0, it must be smooth on entire R, see [2, Theorem 3.9].

In addition,

‘Vgifi zi :T?‘ngiﬁz ‘Vgﬂ;:A_R- (A.9)

and hence by taking the limit we obtain

VoS = A (A10)
Now from (A.3),
|Hessgl.fi|gi = 7“1-2 |Hessgfi|g = r;|Rc|,. (A.11)
Therefore, by taking the limit,
[Hessg, f&[,, = 0. (A.12)

By considering and , we know that fr must be a nontrivial linear
function. But it is not possible as fg is also defined on R™/T.

(Trivial end):Assume that the ALE end E of M"™ is trivial. From Theorem , we
can assume for all 7 > 0, p(g,7) < 0 since the Ricci flow solution of the steady soliton
is eternal and M™ is not Ricci-flat.

For any 7 > 0, by the monotonicity formula, u(g(t),7 — t) is increasing for all

0 <t < 7. Therefore

wg(t), 7 —t) = p(o(t)g, 7 —t) = plg, 7 — 1)
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is increasing for all 0 < ¢ < 7. Since 7 can be any positive number, u(g, 7) is decreasing
for all 7 > 0. So it contradicts Theorem [3.4 Thus, the proof of Theorem is

complete. O
For a complete Ricci shrinking soliton, we have

Theorem A.4. If (M™,g) is an ALE manifold such that g is a gradient shrinking Ricci

soliton, then (M",g) = (R™, gg).

The proof of [A4] follows immediately from the next theorem since by the ALE

condition [Rm| < Cr—277,

Theorem A.5. Let (M™,g(t)),t € (—o0,0] be a non-flat k-noncollapsed type-1 ancient

D

solution, that is, |Rm|(x,t) <
1+ |t|

for allt < 0. Then we have

limsup |Rm|(z,0)d:(z,0) >0
do(z,0)—00

for a fixed point O.

Proof. We assume the contrary. Let {z;},en be a sequence of points going to infin-
ity such that |Rm](z;,0)\; — 0 where \; = d3(x;,O). Then from [17, Theorem 4.1],
(M, /\iig()\it), x;) converges smoothly to a nonflat shrinking soliton (M, geo(t), o) for
t <0.

By our assumption and the k-noncollapsed condition, (BA;19(0) (2:,1/2), A7 g(Nit), )
converges to (By_0)(Too, 1/2), g (t), ) for t < 0 from Cheeger-Gromov compactness

theorem. Then we have Rmy(0) = 0 on the metric ball By_)(7,1/2). Since any



7

shrinking soliton has nonnegative scalar curvature, by the strong maximum principle,
R (t) = 0 for any ¢t < 0 and hence Ricci-flat from 9;R = AR + 2|Rc|*>. Then from
Rco + Hess(fx) — %O = 0, we have Hess(fx) = %O Therefore (M, goo) = (R™, gE)
by the same argument in Theorem [3.3]

Therefore we have a contradiction. O

Remark A.6. It was proved in [11] that liminfy, o) R(2)d*(x,O) > 0 for any non-

flat shrinking soliton.

There are nontrivial examples of expanding soliton on ALE manifolds, see the con-

structions in [30].
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