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Thesis Abstract

Since the discovery of metallic glass alloys in 1959, there has been a continuous
drive from the scientific community to understand and predict the glass forming ability
of new alloys. This drive has led to the evolution of alloys from the first metallic glasses,
which required ultra-rapid quenching and could only be synthesized in thin ribbons or
fine powder, to bulk metallic glasses which can be synthesized into relatively large ingots
via more traditional metallurgical techniques. These glasses have demonstrated useful
properties in a variety of applications driving interest for the discovery of new metallic
glass alloys. To predict the glass forming ability of potential new alloys simple rules of
thumb that initially served as basic screening devices have evolved into more complex
modelling approaches. In the past decade advances in computing and the quantity of
available data, machine learning has increasingly been an appealing tool for making
predictions of metallic glass forming ability due to its ability to learn complex
relationships and make new predictions rapidly. This thesis develops two methods for

improving machine learning predictions of glass forming ability.

The first in through development of molecular dynamics features for use in
machine learning models. Previous machine learning efforts have utilized features which
are either very high quality but very inaccessible, or lower quality but very accessible. This
tradeoff has meant some models are extremely hard to make new predictions with
(inaccessible features), and others must sacrifice predictive ability (low quality features).
Using hi-throughput molecular dynamics simulations we obtain g features which improve

model’s predictive ability at a fraction of the cost of previously developed feature sets.



ii

The second focus of the work is developing methods for synthesizing experimental
databases for training models. Starting with an initial database of less than one hundred
experimental measurements of the critical cooling rate we use multiple techniques to
construct a final glass forming ability database of more than 3,000 values which is then
used to perform a wide search for new bulk metallic glasses. From this search seven alloys

are identified as being of particular interest as novel bulk metallic glasses.
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Chapter 1. General Introduction and Motivation

1.1. Chapter Summary

This thesis is comprised of a total of seven chapters. This chapter serves as an
introduction to the work, providing motivation for the studies discussed in later chapters.
Chapter 2 provides a more in-depth background on key methods used in this work.
Chapter 3 covers our work on developing computationally accessible features for use in
machine learning models of glass forming ability (GFA). Chapter 4 details methods for
synthesizing improved GFA databases for model training. We also propose and
demonstrate methodologies for predicting new bulk metallic glasses (BMG) from the
machine learning (ML) models trained. Chapter 5 gives a brief overview of other
collaborative research efforts that do not fall under the main focus of metallic glasses but
highlight additional machine learning results and lessons learned. Chapter 6 outlines a
number of research mentoring projects with a focus on mentoring undergraduate
researchers. These studies again have a focus on machine learning however do not fall
under the main focus of metallic glasses. Finally, Chapter 7 contains a summary of the

main studies in Chapter 3 and Chapter 4, and makes suggestions for possible future work.

1.2, What are metallic glasses?

Metallic Glasses (MGs) are amorphous solids identified by their lack of any long-
range order. They are traditionally synthesized by quenching a liquid metal rapidly to
avoid nucleation of crystalline phases, undergoing the glass transition, and resulting in
an amorphous solid. There are several other processes for forming a metallic glass such

as mechanical alloying [1] and sputtering [2,3] however in the context of this work we will
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focus on glasses that are synthesized directly from rapid quenching of a liquid melt. The
change in structure from previous crystalline metals opened up an entirely new class of

metal alloys with their discovery over 60 years ago.

MGs have been discovered with a number of unique properties that have driven
interest in developing the class of metals further. There are MGs with high strength and
high elastic limit, high resistance to wear and corrosion, soft-magnetic properties, and
excellent biocompatibility [4—13]. These properties have supported a wide range of
application spaces including biomaterials, magnetic devices, surface coatings, MEMS
devices, and structural materials [14—16]. However, even with the development of MGs
with functional properties they are still not widely used. This is primarily due to the
overall relatively poor glass forming ability (GFA) of metals compared to more common
glassy materials such as oxide glasses. This is further compounded by an extreme scarcity
of high GFA alloys. Therefore, a key challenge in MG materials discovery is identification
of MG forming compositions in existing glassy alloys and discovery of entirely new MG

alloys.

The GFA of an alloy is a general term for the ease of forming MGs. There are a
number of different metrics that can be used to quantify this property and they each have
tradeoffs in the fidelity of information they contain and their ease of acquisition. The most
direct measure of GFA is the critical cooling rate (Rc) shown schematically in Figure 1.1.
On a Continuous Cooling Transformation (CCT) diagram the slowest cooling rate which
avoids passing into the crystal region is called defined as Rc. Once below the glass
transition temperature (7y) the undercooling melt vitrifies, and the final glassy state is

obtained. Along with being the most direct metric, the Rc is also hardest GFA metric to
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measure directly, especially for materials with poor GFA. Rc values can range over many
orders of magnitude, from bulk metallic glasses (BMG) which have Rc values below 103
K/s, to melt-spun glasses that can go up to 10° K/s, to what would be considered non-
glass forming alloys with Rc values estimated around 10 K/s. Experimental techniques
to directly measure these values are limited to state-of-the-art calorimetry such as flash-

DSC which can access the necessary cooling rates to suppress crystallization.

3

m

Crystal

Temperature
o
@)

=

o9

Glass

Time

Figure 1.1. Schematic Continuous Cooling Transformation (CCT) curve for identifying
the critical cooling rate to avoid crystallization.

The critical casting diameter (Dc) is another common metric for quantifying GFA.
It is also referred to as critical casting thickness, depending on the geometry of the mold.
Similar in spirit to Rc it is the largest size of a MG that is able to be cast before nucleating

crystals. Traditionally this is done in a copper mold, though there are other methods and
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materials used as well. This also leads to the term bulk metallic glass (BMG). BMGs are
fairly arbitrarily defined to be MGs with a Dc values above 1 mm. Occasionally some
researchers may make different cutoffs for what they consider “bulk”, but 1 mm is the
most widely used cutoff. The Dc is a less direct measure of the intrinsic GFA of an alloy
because it includes heterogenous nucleation effects as well as homogenous nucleation.
However, it is significantly easier to obtain than Rc and therefore there are significantly

more measurements of it in the literature [17].

The last widely popular method for measuring GFA is tied to a third type of
experiment, melt-spinning. In melt-spinning a continuous stream of molten metal is
deposited on a large, spinning, chilled copper wheel. As the thin stream of metal cools a
continuous ribbon of materials is formed, and these glasses may also be called ribbon
glasses. There is some degree of change is effective cooling rate that can be achieved by
manipulated the flow rate of the metal and the wheel speed, but melt-spun glasses are
typically cooling at a rate of between 104 K/s and 10° K/s. Melt-spinning has been used to
perform wide searches for potential MGs due to the speed of sample synthesis. However,
it is the downside that it only gives a binary metric of GFA, in that either it did or did not

form a MG under the melt-spinning conditions.

1.3. Previous methods to understand glass forming ability
Methods for discovery of BMGs have generally fallen into two broad categories.
The first category is qualitative predictions of good glass forming ability (GFA) alloys and
regions through identification of various qualitative and semi-quantitative physics-based

criteria (e.g., deep eutectics) such as those outlined by Inoue et al [4]. This methodology
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has had many successes and is responsible for the discovery of many of the BMG alloys
known today. The second category is models that quantitatively predict a metric of GFA
such as the critical cooling rate (Rc) or the critical casting diameter (Dc). As our
understanding of glassy alloys, and the amount of available data increases, these
quantitative models are becoming more appealing as they can potentially reveal much

more detailed information about the GFA across alloys.

Quantitative GFA predictions take many forms but can be organized by their
choices of features, models, and target predictions. Features typically range from
approximately instantly accessible (e.g., elemental properties [18]) to moderately
accessible properties needing some calculation (e.g., thermodynamic properties
determined from CALPHAD [19], or liquid properties determined by molecular dynamics
[20]) to properties requiring extensive synthesis and characterization (e.g., glass
transition temperature [17] or fragility [21]). Models range from simple linear functions
(e.g., the Rcvs. omega correlations [17]) to fully non-linear machine learning models (e.g.,
D. vs features fit with boosted trees [22]). Target values range from qualitative categorical
predictions (e.g., is a glass under melt spinning [23]) to quantitative models of Rc [17]

and D¢ [22,24].
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Figure 1.2. Summary of predictive models by feature accessibility and predictive

value.

A summary of these distinctions is given in Figure 1.2 in which modeling effort are
divided on two axes, Feature accessibility and Predictive Value. As discussed in the
previous paragraph there has been success in probing the upper left quadrant of the plot
through developing features which require extensive time and effort to access. And there
has also been success in developing models which use only readily accessible features to
predict the lower right quadrant. However, there has not been success in pushing both of
these quadrants towards the upper right by maintaining high accessibility in features, and
direct predictions of glass forming ability. In this thesis we pursue two techniques to move
our models in this direction by developing more accessible features that can be obtained
from high throughput simulations, and extension of existing experimental databases

which has increased available training data for models by an order of magnitude.



Chapter 2. Computational Methods

In this chapter we will introduce the core computational techniques used in this
thesis. The primary simulation technique used is classical molecular dynamics by which
we can directly simulation the behavior of metallic glasses under a variety of conditions.
The method is used in Chapter 3 to both generate a computation database of critical
cooling rates as well as then extract properties of the resulting metallic glasses. The main
machine modeling results focus on two model types, random forest and LASSO regression

models. We will introduce their working principles and benefits.

2.1. Molecular Dynamics
Molecular dynamics (MD) is a computer simulation method for studying materials
on the atomic scale by dynamically evolving a many-body system. The method was
developed by Fermi et al. [25], Alder et al.[26], and Rahman et al. [27] who evolved the
method from studies of hard spheres to the first study on a real material, liquid argon.
MDs basic operating principle is to solve Newton’s equations of motion to model the
motion of classical particles such as atoms and molecules.

azn,

i = izj by + RS (2.1)

m

Where m; and ; are the mass and position of atom i, F;; is the interatomic force between
atom i and atom j, and Ff is any external force on atom i. By integrating numerically over
a small time step At atomic positions can be evolved over time to simulate the motion of

atoms. At is typically around 1 fs to ensure that each step is well below typic vibrational
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frequencies of the atoms being simulated. One common method for integration is the

Velocity-Verlet algorithm which takes the form of

7(t + At) = 7(t) + (DAL + % (At)? (2.2)

Fl(t)+Fl(t+At)

v, (t + At) = v,(t) + (At) (2.3)

where 7 is the velocity of atom i and F, is the total force acting on atom i.

With the previous three equations established the only major thing missing before
an MD simulation could be performed is defining the interaction between the atoms. In
classical MD this interaction is usually calculated from the gradient of the interatomic

potential energy
Fy = =VUy(7;) (2.4)

where U; j(ﬁ) is the interatomic potential energy between atom i and j. With this
formalism the forces can be calculated directly from the positions of all of the atoms,
closing the loop on an iterative stepping procedure that with a known set of positions and
velocities can calculate the forces on each atom and then update the positions and

velocities for the next time step.

For this work simulation have be run using Embedded Atom Potentials (EAM) [28]
are used to simulate metallic glass behavior under a variety of conditions. In the EAM

potential the potential energy of an atom i is given by



E; = dy (Zi;ﬁj ptj(rij)) +% Dizj Pryt; (i) (2.5)

where t; represents species of atom i, r;; is the distance between atoms i and j, Pt;is the
contribution to the electron charge density from atom j at the position of atom i, @, is the

embedding function energy that is required to place atom i into the electron cloud, and

®r,e; is a pairwise potential function. The fitting of these potentials is beyond the scope of

this thesis. See Chapter 3 for more details on the simulations performed.

2.2, Machine learning modeling

2.2.1. Random forest models
Random Forests (RF) are a popular ensemble machine learning model originally

proposed by Tin Kam Ho in 1995 [29] with the goal of improving upon the single decision
tree model. Decision trees, shown schematically in Figure 2.1, are attractive models due
to their high execution speed. However, they cannot be grown to arbitrary complexity
without suffering from a loss of generalizability and overfitting to training data.
Therefore, one of the primary goals of introducing the RF type model was to combat this
overfitting by training many individual decision trees which can compensate for each
individual tree’s errors, allowing the growth of more complex trees which can capture

more complex relationships between input features and target predictions.

The basic structure of a single tree can be described starting from the Root node at
the top of the tree. The model proceeds in one direction from top to bottom, making a
single split at each node that isn’t a leaf node. At the root node and each decision node a

feature is assigned to the node as well as a value to split on. This pair of feature and value
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(e.g., melting temperature < 1,000 K) can be referred to as a decision rule. A trained
model consists of a defined structure of Root, Decision, and Leaf nodes; with a decision
rule assigned to each Root and Decision node, and a prediction assigned to each Leaf
node. From this structure we can see how a prediction can be made from a single decision
tree by following the decision path outlined by a specific set of input features that are

tested at each node.

Decision

Decision

Figure 2.1. Schematic decision tree structure identifying Root, Decision, and Leaf nodes.

With this structure we can then see how a RF model and all of its subcomponent
decision trees are trained. The simplest set of training steps for each tree is to first start
at the root node and consider every possible combination of features and values as the
decision rule for that node and pick the one that minimizes a chosen error metric (e.g.,
mean squared error for regression) for all of the training data. With that decision rule
locked in, proceed to the next layer of the tree and repeat the search again for the reduced

set of training data that applies to each node. Then stop once a stopping criterion is met
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(e.g., maximum tree depth, minimum number of training points at the node). With this
procedure error is minimized at each layer in the tree in a greedy search to try to minimize
the overall error. It is important to notice however that with the procedure above each of
the trees trained in the RF model would be identical. This is where two additions to the
RF model formalism come into play. These are the concepts of bagging and random
selection of Features introduced by Breiman and Cutler [30,31]. Bagging is the process of
training each individual decision tree on a different subset of the total training set with
replacement. Random selection of features is the same, but a random subset of features
is chosen each time to train on. These additions seek to minimize the correlation between
each tree in the forest allowing the model to better compensate for overfitting in

individual trees.

With these methods for setting up the structure and training of random forest
models it is useful to highlight some best practices and guidance for using RF models.
One of the biggest benefits to working with RF models is their ease of optimization. In all
of the results shown in this thesis a strategy of training complex trees with few or no limits
on their growth has led to the best performance. In all cases a rough grid search was
applied over relevant hyperparameters and they all led to reduced performance when
growth was limited. In practice this means hyperparameters such as the maximum depth
of trees that would control growth and need to be finely optimized in a single decision
tree, can be set to their upper / lower bound in the case of RF models (e.g., Max depth =
None). This ability to quickly get a well behaved model means RFs can be extremely
appealing when trying to quickly assess differences in other aspects of machine learning

such as differences in feature sets, data sets, or prediction types.
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2.2.2., LASSO models
The Least Absolute Shrinkage and Selection Operator (LASSO) is an extension to

linear regression models proposed in 1995 by Robert Tibshirani [32]. As originally
proposed The LASSO minimizes the residual sum of squares subject to the sum of the

absolute value of the coefficient being less than a constant. The LASSO model minimizes
" lly = BXII3 + 211Blly (2.6)

where A is regularization parameter, B is the vector of coefficients, y is the vector of target

values, and X is the matrix of features and values for each data point. The left side of Eqn.
£BIB = &, (Zii] Pt (rij)) + % Yixj Prye; (r;;)  (2.5isthe basic form of linear regression.

The addition of the regularization term on the right allows coefficients to shrink to and
become explicitly 0, enabling the LASSO model to essentially perform an internal feature
selection where it can ignore some features from the training data. This can improve
interpretability of models as it is more readily apparent which features are the cause of
model performance. This property is leveraged in Chapter 3 to identify promising

computational features for predictions of glass forming ability.

LASSO is not the only extension of linear regression models that can perform some
type of feature selection. Two other common techniques that are used are ridge regression
and subset selection. Subset selection is the basic idea of fitting multiple linear regression
models on various subsets of the overall feature set and identifying the best subset to fit a
linear regression model to. At its simplest subsets can be tried in a greedy search starting
from 1 feature and adding more, or starting with a full feature set and removing one at a

time. These methods are referred to as “greedy” searches, and my iteratively comparing
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performance after each addition / subtraction of features, an optimal set is hopefully
obtained. The other primary method is using a ridge regression model. This model is
structurally almost identical to the LASSO model apart from one difference. Instead of

adding a regularization term in the form of an L1 norm, instead the L2 norm is used on

the right-hand side of Eqn. 727z8BR||y — BX||3 + A||B]|, (2.6. This single change has
the effect of allowing the LASSO model to explicitly set feature coefficients to 0, while the

ridge regression model can set very low but non-zero coefficients.

Based on these properties of the LASSO model they are also fairly well behaved
and there is not a significant time investment needed to obtain a well-fit model. Compared
to the previous section on random forests the LASSO generally takes a similar amount of
time to work with. The LASSO model is generally faster than a comparative RF model due
to the simplicity of the model structure. This is especially true if the RF model has a large
number of individual trees (e.g., > 200). However, the addition of the regularization
hyperparameter means there is a necessary optimization step needed to identify the best
performing value of 2. However, because there is just a single hyperparameter it is fairly
trivial to perform a detailed grid search of values, assessing performance at each value to
identify the optimal regularization. This ease of training, along with internal feature
selection, and feature importance estimation, all within a very simple model structure are

the main reasons it was used in the work in Chapter 3.
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Chapter 3. Development of Computationally Accessible

Molecular Dynamics Features

Note: This chapter has been published as B. Afflerbach, L. Schultz, J.H. Perepezko,
P.M. Voyles, I. Szlufarska, and D. Morgan, “Molecular simulation-derived features for
machine learning predictions of metal glass forming ability”, Computational Materials

Science 199 (2021) and has been adapted for use in this thesis.

3.1. Chapter Abstract

We have developed models of metallic alloy glass forming ability based on newly
computationally accessible features obtained from molecular dynamics simulations.
Since the discovery of metallic glasses, there have been efforts to predict glass forming
ability (GFA) for new alloys. Effective evaluations of GFA have been obtained but
generally relied on knowledge of alloy characteristic temperatures like the glass
transition, crystallization, and liquidus temperatures but are of limited utility because
these features require synthesizing and characterizing the alloy of interest. More recently,
machine learning approaches to predict GFA have employed more accessible model
features such as the elemental properties of constituent elements. However, these more
accessible features generally provide less predictive accuracy than their less accessible
counterparts. In this work we showed that it is possible to increase the predictive value of
GFA models by using input features obtained from molecular dynamics simulations. Such
features require only relatively straightforward and scalable simulations, making them
significantly easier and less expensive to obtain than experimental measurements. We

generated a database of molecular dynamics critical cooling rates along with associated



15
candidate features that are inspired from previous research on GFA. Out of the list of 9
proposed GFA features, we identify two as being the most important to performance
through a LASSO model. Enthalpy of crystallization and icosahedral-like fraction at 100
K showed promise because they enable a significant improvement to model performance
and because they are accessible to flexible ab initio quantum mechanical methods readily
applicable to almost all systems. This advancement in computationally accessible features
for machine learning predictions GFA will enable future models to more accurately

predict new glass forming alloys.

3.2. Introduction

Since the discovery of the first melt quenched metallic glass in 1960, there has been
a continuous search for new glassy alloys [35]. This search has yielded glassy alloys of
scientific and commercial interest [5,14,15]. While successful, the rate of discovery of new
alloys has been slow and only a small fraction of the possible search space has been
explored [36]. The search for new glassy alloys can be broadly classified into two main
methodologies. The first employs qualitative predictions of glass forming ability (GFA)
using a variety of criteria such as searching for deep eutectics and identifying alloys with
large atomic size mismatches [4]. The second methodology is focused on quantitative
predictions of GFA which is measured by two main metrics: the critical casting diameter
(Dc) or the related critical cooling rate (Rc). This study focuses on the second category of

quantitative models, which give direct predictions of a GFA metric.

Quantitative models for GFA have taken different forms during their development

and can be compared based on two factors: the accessibility of features used as inputs for
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the model and the predictive value of the model. When looking at a typical materials
discovery workflow, the accessibility of model inputs is important as it can define the size
and scope of the search space that is available. The highest level of accessibility is for
features of a target alloy that are known without requiring any significant computation or
experiments. For example, recent machine learning based models that only rely on
elemental properties of constituent elements use such highly accessible features
[18,23,24,37]. At the lowest level of practical feature accessibility are properties that
require synthesizing and experimentally characterizing properties of the target alloy in
the glassy state (which we will simply call measured properties). Examples of these
include various characteristic temperatures of a glass such as the glass transitions
temperature (7Ty), the crystallization temperature (7%), and the liquidus temperature (77).
While informative, these features are significantly harder to obtain and present
challenges in a materials discovery workflow because of the necessity to synthesize a glass
prior to evaluating its GFA. The predictive value of a model covers both the quality of
predictions (domain and accuracy) of a model as well as what GFA metric a model is
designed to predict. The two most direct and most common metrics of GFA are the critical
casting diameter (Dc) and critical cooling rate (Rc). Both offer high value as they are direct
measures of GFA. Another measure of GFA with lower predictive value is the ability of an
alloy to form a glass under specific cooling conditions. For example, recent machine
learning models to predict GFA have predicted a probability of forming a glass under melt
spinning conditions, which can be very useful, but is not as direct a measure of GFA as a

prediction of Dc or Rc [23].
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Across this spectrum of input features and predictive value most models fall into

two camps. They either use easily accessible features and sacrifice predictive value or they
use features that are relatively inaccessible and can maximize predictive value. If more
accessible features were available that maintained their information related to GFA, it
would potentially be possible to generate machine learning models that have the best of
both camps, i.e., easy predictions that are highly accurate. The spectrum of models along
these feature accessibility and prediction value metrics is summarized in Figure 1.2, and
the goal of this work is to help develop models that are in the upper right quadrant.
Models that fall in the bottom left quadrant would generally be uninteresting and not

useful, and current models fall either in the top left or bottom right quadrants.

&
Hard features Easy features
@ R:/Dg . :
Tju High value High value
=
S Meit
H  spun
E glass ;
a Hard features Easy features
Low value Low value
>
Experiment: T, Simulation: Molecular Available: Elemental
T, - Dynamics properties

Feature Accessibility

Figure 3.1. Outline of Feature Accessibility and Predictive Value Spectrum. (Reproduced
from Chapter 3).

To find a middle ground in which predictive value is maintained while increasing
feature accessibility, we used high throughput computational simulations to generate a

range of features. These features are all generated by performing Molecular Dynamics
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(MD) simulations to quench a variety of metal alloys to extract information from the
quench run or the resulting amorphous structure. In an ideal world, we would be able to
perform these simulations on alloys with experimentally measured GFA metrics to use as
the training and testing data. However, the overlap between alloys with measured GFA
metrics and available interatomic potentials is relatively small. Therefore, we calculated
the Rc values directly from MD simulations by performing a series of quenches at varying
cooling rates to obtain the GFA data for training and testing. This approach comes with a
few limitations. Due to simulation time limitations, the accessible cooling rates are 109
K/s and above. This high value means that conclusions obtained here will be limited to
low GFA alloys. However, the hope is that lessons learned in this range may give insight
into GFA for higher GFA alloys as well. The second limitation is that available interatomic
potentials are not necessarily fit to amorphous structures and may misrepresent them in
some way. Because all the data calculated will be using the same types of potentials, the
Rc values and features are at least fully self-consistent, although they may not match

experimental values.

3.3. Methods
A computational critical cooling rate database was generated using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) molecular dynamics software

found at http://lammps.sandia.gov [38]. The critical cooling rates were estimated by

performing temperature ramps from 2500K to 100K in 50K steps. The hold time at each
step was varied to achieve cooling rates ranging from 104 K/s to 10t K/s. Eleven binary

systems were investigated: Al-Ag, Al-Cu, Al-La, Al-Sm, Al-Zr, Cu-Mg, Cu-Ni, Cu-Zr, Mg-


http://lammps.sandia.gov/
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Y, Ni-Zr, and Pd-Si. These binaries were chosen from available binary EAM potentials due
to overlap with existing known glass forming systems as well as to maximize variety of
elements included[39]. For each binary system, compositions near the edges of the binary
were simulated with a maximum of 10% of the minority element. This was done because
we can only calculate Rc if it is within the cooling rate range given above, which
corresponds to what are generally considered bad glass formers. Bad glass formers are
expected to occur near pure elements. For each composition and cooling rate, 10 cooling
runs were performed to account for the stochastic nature of crystallization during cooling.
To find Rc we used the following approach. First, we identified the slowest cooling rate at
which more than 50 percent of cooling runs amorphized, denoted Rc (2), The cooling rate
on sampling step slower than Rc (2) was denoted Rc (1). We then assumed that the
fraction of runs that yielded amorphous material was a linear function of Rc between Rc
(1) and Rc (2) and solved for the cooling rate that gave exactly 50% of runs amorphizing.
This was taken as Rc. From the compositions and cooling rates simulated, 78 critical

cooling rates were found and used in a critical cooling rate database.

Ten highly accessible features are considered as inputs for machine learning
models. The first nine (excluding the ELEM features discussed more below) are from
simulations or could be obtained from simulations. These nine features will be referred
to as the “GFA features” or “GFA feature set” going forward. The features are all inspired
from previous research in modeling GFA. Some are directly taken from previous
literature, and some are modified to fit into a high-throughput simulation workflow. A

summary of the GFA and ELEM features can be found in Table 3.1.
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Table 3.1. Summary of GFA features generated for machine learning models.

Feature Source

1. glass transition temperature (T,) cooling
2. liquidus temperature (T)) phase diagram
3. reduced glass transition previous features 1 and 2
temperature (7)
4. atomic packing density (APD at cooling
100K)
5. icosahedral-like (ICO-like) fraction 1.2 T4 hold
(at 1.2 T,)
6. icosahedral-like (ICO-like) fraction cooling
(at 100K)
7. diffusivity (at 1.2 T, [D]) 1.2 T, hold
8. variance of Voronoi Polyhedra (Var) cooling
9. enthalpy of crystallization energy minimization
10. elemental features (ELEM) MAST-ML

We obtained the glass transition temperature Ty from the 104 K/s rate cooling run
for all systems. Ty values obtained at this high cooling rate are known to have a significant
shift from experimental glass transition temperatures which may limit usefulness of this
computational Ty, but there may be useful information that can be extracted.
Furthermore, getting an estimate of Ty is necessary for several of the other features which

are defined in relation to Tg.

The liquidus temperature (77) is the second feature that has been used in some of
the earliest models to predict GFA[40]. This feature was extracted from existing phase
diagrams and not directly computed. While obtaining values in this way requires

experiments at some point, they can be extrapolated from existing data so effectively that
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we consider them to be highly accessible. The liquidus values could also be simulated with

MD with reasonable fidelity if needed.

The reduced glass transition temperature (Trg = Ty / T1) is one of the oldest features
used to predict GFA [40]. Using this simple combination of the previous two features, we
can potentially learn if this ratio improves learning compared to the base features that
compose it. If a highly complex machine learning model was generated, we might expect
this relationship to be learned. However, because a simple model is being used, providing

the relationship directly may improve the model.

The atomic packing density (APD) feature has been shown to affect the mechanical
properties of metallic glasses and has been loosely been tied to GFA [41—43]. The APD is
calculated from the resulting amorphous structure after the 75 K/ps cooling runs and is
averaged over the 10 runs. Similar to other features, the final structure was taken after a
final energy minimization of that resulting structure. Metallic atomic radii and empirical
atomic radii where used for the APD calculations are taken from the pymatgen materials

analysis library [44].

The Icosahedral-like (ICO-like) fraction has been used as a feature linked to glass
forming ability in a variety of systems [45—48]. In this work, we calculated two variations
of ICO-like fraction. The first was obtained at 1.2 times the T, feature calculated
previously. The second was taken from a snapshot of the final structure after cooling to
100K at the 75 K/ps cooling rate. In both cases, static energy minimization was performed
in order to more clearly observe the underlying structure. In our definition of ICO-like
fraction, we used the definition proposed by Bokas et al [42]. Icosahedral like clusters are

identified based on Voronoi polyhedral indices of each atom and the ICO-like distinction
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is a slightly broader inclusion than the pure <0,0,12,0> indices. The fraction is the sum

of atoms classified as ICO-like divided by the total atoms in the simulation.

The diffusivity (D) feature is the average self-diffusivity of the atoms in the system,
regardless of composition. It was found by performing an additional temperature hold at
1.2 Ty. This feature is different than previous features because it is not trying to mimic a
feature directly suggested by previous research. Instead, D is calculated as a way to
include a kinetic feature whereas many of the others included are structural. A multiple
time origins approach was used to calculate self-diffusion using the Einstein relation on

mean squared displacement [49,50].

The Variance of Voronoi Polyhedra (Var) is a feature recently explored by Wang et
al. [20] as a way to analyze the liquid structure and gain information about GFA. The
variance of cluster fractions is defined as:

0% = w (3.1)
where X; is the fractional contribution of a cluster type to the structure, u is the
average of the cluster fractions, and Nc is the number of cluster types included in the
calculation. As N. increases, cluster types with progressively lower fractions are included
in the metric. This leads to a natural maximum in a plot of variance with respect to
number of clusters included. In our work, this maximum variance is used as the variance

metric as opposed to variance at a fixed number of clusters as was done by Wang et al.

[20]. This modification was done because otherwise the metric varied widely from system
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to system with respect to the number of polyhedral averaged making it impossible to

select a specific converged value for Ne.

The Enthalpy of Crystallization (AH..ysq) is a feature inspired by related
investigations of the competition between crystalline and amorphous phases [37,51,52].
In previous work, enthalpies have been obtained experimentally. Here we calculated a
simple approximation of the enthalpy difference by taking the difference between the final
amorphous structure obtained after the 75 K/ps cooling runs and 3 candidate crystal
structures. AH ,ystq; is then defined as the minimum enthalpy difference between the
amorphous structure and the three crystals. The three crystal structures generated are
BCC, HCP, and FCC solid solutions of the relevant composition. Elements are randomly
assigned to lattice positions in the appropriate ratios and the lattice volume is relaxed

while fixing atoms on their lattice sites.

The Elemental Feature (ELEM) set is a set of elemental features compiled by Ward
et al. and has been shown to be useful in a variety of applications in predicting materials
properties purely from compositional information [24]. We used this feature set in
combination with the MAterials Simulation Toolkit — Machine Learning (MAST-ML)
[53,54] to generate a list of compositional features that includes the composition average,
arithmetic average, minimum, maximum, and difference of the elemental features. Thus,
this feature entry in Table 3.1 actually corresponds to a long list of features that require

no simulations to generate.

One common GFA criteria that was not included is the onset of crystallization
temperature (Tx) [17,55—58]. This feature has not been simulated for a few different

reasons which make it impractical to obtain in high-throughput fashion. The first is that
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Tx is known to be highly sensitive to the heating rate. Previous experimental
investigations such as those by Zhuang et al. have shown that changes in heating rate from
5 K/s to 80 K/s can result in a change of around 20K in Tx [59]. The simulated heating
rates, which if assumed to be on the same scale as the slowest cooling rates achieved in
this work, would be eight orders of magnitude faster than those experiments and likely
lead to large errors in Tx. In some cases one can extrapolate from computational time
scales to experimental time scales through generating Time-Temperature-
Transformation (TTT) curves from isothermal holds at multiple temperatures, such as
those completed by Louzguine-Luzgin, and Bazlov [60]. However, this approach requires
many simulations for each material, and the approach has only been demonstrated on
pure elements Iron and Copper. For any alloys with better GFA it is expected that
simulation time for these holds would increase dramatically. Because of these concerns
Tx was not pursued as a feature in this work. However, in the future it may be possible to

add this to the feature set explored here.

All the models built used the MAST-ML machine learning toolkit which uses sci-
kit learn implementations, models, and analysis tools [53,54]. The following model types
of varying complexities were investigated: LASSO, Ridge Regression (RR), Random
Forest (RF), and Gaussian Kernel Ridge Regression (GKRR). For each model, the
hyperparameters were optimized via grid search and the performance was estimated with
5-fold cross validation. Using the GFA feature set, all models gave 5-Fold root mean
squared errors within observed variance due to random splitting of train and test splits.
Therefore, one model was chosen to report results on in this investigation. The LASSO

model was chosen for its simplicity and ease of interpretability. Two models were built.
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The first model, referred to as the baseline model, uses only the ELEM set. The second

model uses both ELEM and the range of GFA inspired features discussed above.

3.4. Results and Discussion

The results from training on the ELEM features model are shown in Figure 3.2.
The parity plot shown is the average result from 20 individual 5-Fold cross validation
splits and the error bars are the standard deviation of predictions across those 20 splits.
The lack of correlation between the predictions and true values makes it immediately
clear that the model does not perform well and has essentially no predictive value beyond
getting the average value. The Root Mean Squared Error (RMSE) divided by the standard
deviation in the training set (oy) value approaches one, demonstrating that errors in

predictions are on the same scale as the spread in the training data.
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Figure 3.2. 5-Fold cross validation predictions of the baseline LASSO model. Error bars
show the standard deviation in predictions over 20 cross validation runs. Error metrics
are averages of individual statistics from each cross validation run.

Figure 3.3 shows the results of the model with the full feature set (ELEM and GFA
features). Qualitatively, it is clear that the model has improved. The RMSE divided by oy
has dropped considerably when compared to the elemental-only model. Now, the RMSE

is about half of the spread in the data. The R2 value has also increased to 0.77 from 0.20.
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Figure 3.3. 5-Fold cross validation predictions of the model using the GFA feature set.
Error bars show the standard deviation in predictions over 20 cross validation runs. Error
metrics are averages of individual statistics from each cross validation run.

An addition to discussion of model performance we would also like to address
several limitations with this model. The first is that it is important to note that the
extremely high cooling rates accessible to MD simulations mean that the model only has
access to training data on poor glass formers. Therefore, any predictions of good glass
forming materials such as melt-spun glasses or bulk metallic glasses would be large
extrapolations from the training data over multiples orders of magnitude in Rc. Due to
the large extrapolation needed we expect any predictions of even moderately good glass

formers would have large uncertainties associated with them. Furthermore, available
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interatomic potentials limit access to a majority of good glass forming systems which
would be of the most interest to predict and compare to known GFA metrics. One binary
system where we do have access to interatomic potentials is the Cu-Zr binary. Predicting
Rc for the CusoZrso alloy gives an Rc value of 0.19 K/ps which is equivalent to -0.71 on the
log scale in Figure 3.3. While this prediction in lower than all the training data range it is
still about 13 orders of magnitude faster than the known Rc value of 250 K/s [61]. This
result is expected and highlights that the focus of results for training this model is not in
making significant new predictions but in learning which features were important for

model performance within the model’s training domain.

We explored which features contributed the most to the predictive improvement.
During model training, no feature selection was performed ahead of model training. The
fitting process of the LASSO model performs an internal feature selection and produced
a total of 48 features with non-zero coefficients. Looking at the magnitude of coefficients
obtained during model fitting, we determined that a small number of features played a
dominant role in the performance of the model. The magnitude of coefficients for the ten
most important features is shown in Table 3.2. Note that all features have been
normalized to have a minimum value of 0 and a maximum value of 1 in order to directly
compare coefficients. Within 10 features, the coefficient drops by almost an order of
magnitude. As a quick test for significance of features, a model was generated using only
these top 10 features and it showed a RMSE of 0.25 + 0.04 which is essentially identical
performance to the full model shown in Figure 3.3. Six out of the top ten features came
from the GFA features, demonstrating that the additional GFA features are critical to the

improved model performance.



29

Table 3.2. Magnitudes of LASSO coefficients for the top 5 features in the second model
that used both elemental features as well as the calculated GFA features are tabulated.

Feature Name LASSO Coefficient Feature Class

enthalpy of crystallization 2.22 GFA

icosahedral-like (ICO-like) fraction 1.08 GFA
(at 100K)

mendeleev number (Average) 0.93 ELEM

glass transition temperature (Tg) 0.44 GFA

diffusivity (at 1.2 T, [D]) 0.44 GFA

boiling temperature (average) 0.33 ELEM

APD (at 100K) 0.31 GFA

BCC crystal volume per atom 0.31 ELEM
(average)

icosahedral-like (ICO-like) fraction 0.29 GFA
(at 1.2 T)

number of unfilled valence orbitals 0.28 ELEM
(average)

Figure 3.4 shows the four features with highest coefficients plotted against Rc.
Qualitative differences between the effectiveness of the four features can be readily seen.
First, the AH.,ytq; feature shows a significantly better relationship than the other three
features, with an RMSE (R2) of 0.36 (0.52). The Icosahedral-like Fraction also shows
some significant correlation, with an RMSE (R2) of 0.46 (0.22), but the Mendeleev

Number and Tg show no simple linear correlation.
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Figure 3.4. The top four features are plotted individually against the critical cooling rate.
(a) Enthalpy of crystallization, (b) Icosahedral-like Fraction at 100K, (¢c) Mendeleev
Number (average), (d) Trg.

The two GFA features with the largest coefficients, the enthalpy of crystallization
and the ICO-like fraction, are particularly interesting because they are quite easy to obtain
computationally. Once a rapidly quenched structure is obtained, the ICO-like fraction
feature can be directly calculated with minimal computational cost. The enthalpy of
crystallization feature requires 3 extra calculations. However, each of these three
calculations is a static energy minimization and not a computationally intensive
molecular dynamics run. The accessibility of these two features means that both are
practically obtainable via ab initio quantum mechanical methods and are not limited to

simulations using interatomic potentials.

The enthalpy of crystallization is an estimate of the driving force for crystallization.

Previous studies estimated this driving force using empirical and semi-empirical models
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such as those by Miedema [51,52]. This work demonstrates how a computational analog
to this driving force, directly comparing simulated enthalpies of rapidly quenched
amorphous structure and a reference crystal, can capture key thermodynamic

information about glass forming ability from a fairly simple and fast simulation.

The ICO-like fraction has been studied experimentally and with ab initio
calculations and has recently been effectively correlated with trends in glass formation
ability within the Al-Sm-X, Cu-Zr, Cu-Zr-Nb, Ce-Ga-Cu, and Ni-Nb systems [47,62—64].
These studies have typically been focused on single systems and correlating GFA trends
within the system with this local structure feature. This work demonstrates how the ICO-
like fraction gives structural information that correlates with trends in GFA between alloy

systems and not only GFA within select systems.

3.5. Ab-initio enthalpy of crystallization

Note: This section is not included in the paper this chapter is adapted from.

One of the biggest limitations to the developed enthalpy of crystallization feature
in this chapter is its inherent reliance on the EAM potentials used to calculate it. While
these potentials are fast and can enable the kinds of high throughput simulations
performed, they also come with the downside that they need to be fit specifically for each
alloy that needs to be investigated. This fitting process requires significantly more time
than any of the other steps in the model training and predictions process and would
quickly become the rate limiting step in any approach to use these features as is.
Therefore, there is significant motivation to develop the features further so that they rely

less on steps that require time consuming human interaction.
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An initial study was performed to transfer the enthalpy of crystallization feature

from classical MD to ab-initio MD. For 53 alloys with measured Rc values the enthalpy of
crystallization feature was simulated using the Vienna ab initio Simulation Package
(VASP) [65]. Ab-initio methods have a significant benefit in that the pseudopotentials
that describe the simulated atoms and electrons do not need to be refit for every new alloy,
entirely removing any limitation to transitions between alloys. However, they were not
pursued originally due to limitations in computational speed. In order to generate the full
quench simulation to a similar amorphous structure to the classical MD simulation the
simulation size had to be reduced from 19,000 atoms to 1,000 atoms. Furthermore, the
quench rate and temperature step had to be increased from 50K to 200K. This enabled
us to obtain an amorphous structure from the quench, however these changes may have

had significant effects on the resulting structure.

The direct relationship of the calculated enthalpies with experimental Rc values is
shown in Figure 3.5 Overall it still seems like there may be some relationship there,
however quantitative metrics have dropped noticeably compared to Figure 3.4.
Specifically, RMSE and MAE have increased by almost an order of magnitude. In contrast
the R2 and RMSE/oyvalues have remained fairly constant due to the significant increase

in the range of experimental Rc values compared to the computational database.
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Figure 3.5. Ab-initio enthalpy compared to experimental Rc values. RMSE/oy is 0.83,
RMSE is 2.81, MAE is 1.78, and R2 is 0.50.

To replicate the previous results from section 3.4 two more LASSO models were
trained and assessed using 5-fold CV. Figure 3.6 shows the results of the baseline set of
elemental property features. Compared to the previous models the elemental property
features are capturing more information about the Rc though the error metrics of R2 =
0.58, RMSE = 1.93, MAE = 1.21, and RMSE/cy = 0.713 combined with qualitative
observations of the very large outliers in poor predictions mean this model is still not
predating Rc well. This holds true for Figure 3.7 as well, which shows results for a LASSO
model trained with both the elemental property features and the enthalpy of
crystallization feature. Key error metrics are R2 = 0.59, RMSE = 2.01, MAE = 1.28, and

RMSE/oy = 0.732.
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Figure 3.6. 5-Fold cross validation predictions of the baseline LASSO model. Error bars
show the standard deviation in predictions over 20 cross validation runs. Error metrics
are averages of individual statistics from each cross validation run.
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validation runs. Error metrics are averages of individual statistics from each cross
validation run.

This initial study to transfer the enthalpy of crystallization feature to ab-initio
methods did not yield promising results. However, there are several causes for the lack of
performance. First, the significant compromises to the quench and simulation size
discussed before. Furthermore, it’s important to note that the enthalpy feature also relies
on an accurate estimate of the competing crystal reference state in its calculation. Similar
to the previous work in this chapter crystal references were approximated as solid
solutions of FCC, BCC, and HCP crystals. While this may have worked well when the
previously compositions were all close to the boundaries of the composition (<10% minor
alloying element), many of these alloys were in the center of the composition range
meaning competing crystals are likely intermetallic compounds. Future development to
calculate more accurate crystal reference states may be necessary before the enthalpy of

crystallization feature can be accurately simulated.

3.6. Conclusions
Using a simulated database of Re, we demonstrated how computationally
generated features inspired by previous GFA research can be used to improve a model’s
ability to predict Rc of an alloy. It was found that enthalpy of crystallization and ICO-like
fraction contributed most to the improved performance of the model. Both features can
be practically extracted from ab initio quantum mechanical simulations, allowing them to
be applied to a wide range of materials. We believe that using these simulated features in

future models for GFA could significantly increase their accuracy while allowing for
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readily obtainable input features. We are pursuing such studies now to build on the

present work.
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Chapter 4. Synthesis of Datasets for Predicting Critical
Cooling Rates

Note: This chapter has been submitted for peer-reviewed publication in Nature

Communications and has been adapted for use in this thesis.

4.1. Chapter Abstract

We use a random forest model to predict the critical cooling rate (Rc) for glass
formation of various alloys from features of their constituent elements. The random forest
model was trained on a database that integrates multiple sources of direct and indirect Rc
data for metallic glasses to expand the directly measured Rc database of less than 100
values to a training set of over 2,000 values. The model error on 5-fold cross validation is
0.66 orders of magnitude in K/s. The error on leave out one group cross validation on
alloy system groups is 0.59 log units in K/s when the target alloy constituents appear more
than 500 times in training data. Using this model, we make predictions for the set of
compositions with melt-spun glasses in the database, and for the full set of quaternary
alloys that have constituents which appear more than 500 times in training data. These
predictions identify a number of potential new bulk metallic glass (BMG) systems for
future study, but the model is most useful for identification of alloy systems likely to
contain good glass formers, rather than detailed discovery of bulk glass composition

regions within known glassy systems.
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4.2. Introduction

Bulk metallic glasses (BMGs) are a class of materials with exceptional properties

that support a wide range of application spaces including biomaterials, magnetic devices,
and in surface coatings [14,15]. A key challenge in BMG materials discovery is
identification of BMG forming compositions in existing glassy alloys and discovery of
entirely new BMG alloys. Methods for discovery of BMGs have generally fallen into two
broad categories. The first category is qualitative predictions of good glass forming ability
(GFA) alloys and regions through identification of various qualitative and semi-
quantitative physics-based criteria (e.g., deep eutectics) such as those outlined by Inoue
et al [4]. This methodology has had many successes and is responsible for the discovery
of many of the BMG alloys known today. The second category is models that
quantitatively predict a metric of GFA such as the critical cooling rate (Rc) or the critical
casting diameter (Dc). As our understanding of glassy alloys, and the amount of available
data increases, these quantitative models are becoming more appealing as they can

potentially reveal much more detailed information about the GFA across alloys.

Quantitative GFA predictions take many forms but can be organized by their
choices of features, models, and target predictions. Features typically range from
approximately instantly accessible (e.g., elemental properties [18]) to moderately
accessible properties needing some calculation (e.g., thermodynamic properties
determined from CALPHAD [19], or liquid properties determined by molecular dynamics
[20]) to properties requiring extensive synthesis and characterization (e.g., glass
transition temperature [17,22,66] or fragility [21]). Models range from simple linear

functions (e.g., the Rcvs. Q correlations [17]) to fully non-linear machine learning models
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(e.g., Dc vs features fit with boosted trees [22]). Target values range from qualitative
categorical predictions (e.g., is a glass under melt spinning [23,67,68]) to quantitative
models of Rc [17] and D. [22,24,69,70]. A comprehensive review is not practical here, so
we focus on the present status of efforts most similar to ours, where the focus is on
instantly accessible elemental property features and quantitative prediction of Rc or De.
We are not presently aware of any study that has successfully built a demonstrably
effective predictive model for new BMG systems from simple elemental features. A few
notable successes have been the work of Ren et al. and Ward et al., demonstrating a
significant ability to predict categorical results of glass forming under melt-spinning, and
optimizing GFA of existing known glass formers [24,71]. They fit to over 6,000 melt
spinning experiments and achieved a AUC of 0.80 in their ROC curve [71]. Zhang et al.
propose a combination of these ideas, using a two-step approach to layer classification
predictions with subsequent Dc predictions from a similarly accessible feature set [72].
These works show the power of elemental property features but do not provide an
approach to predict new BMG systems. In terms of predicting Rc and Dc there have been
striking successes for Rc predictions from characteristic temperatures (liquidus, glass
transition, and crystallization temperatures), with Long, et al. reporting an R2 of 0.93 vs.
the QQ parameter, which is a simple function of characteristic temperatures [17]. Dc has
generally been harder to predict quantitatively [17] although Johnson et al. [21] showed
an outstanding result R2 value of 0.98 in their predictions for D as a linear function of
reduced glass transition temperature and fragility. These results suggest Rc is easier to
model than Dc. These results also suggest that quantitative models of Rc and Dc are
possible, although they have only been achieved by using very expensive features that

require extensive synthesis and characterization for every new system. However, the
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above work also suggests that elemental properties can capture physics of GFA,
particularly when combined with the ability of modern machine learning methods to
model nonlinear relationships and automatically select features. Taken together these
observations raise the tantalizing possibility that an accurate model of Rc as a function of

elemental features might be achievable.

The absence of a model relating Rc to elemental properties is easily understood as
a result of the lack of adequate training data. There are approximately 102 Rc values from
direct experimental measurements available. In addition, researcher interest in BMGs
and limitations on measuring Rc (typically below 104 K/s) means most data is focused on
alloys with known BMGs compositions, and often within composition ranges associated
with the BMG formation. A machine learning model that is trained solely on this data will
be heavily biased towards predicting that everything is a BMG, limiting the model’s utility
in identifying new BMG alloys. Limited and biased data are two critical issues holding
back machine learning predictions of Rc from simple features like elemental properties.

Similar arguments hold for D., although there are closer to 1,000 data points available

[73].

Here we try to develop the first model for Rc as function of elemental features, with
a focus on expanding the database of Rc from its directly measured values, as this
database is too small to support robust machine learning models. This expansion is
accomplished in three steps. First, available D. data is converted to approximate Rc values
using curve fitting to a functional form inspired by simple assumptions about heat
transfer during cooling and average thermodynamic properties of metals. Second,

available characteristic temperature data is used in combination with previously
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developed models to estimate Rc for a range of alloys. And third, available melt spinning
data is assigned approximate values for Rc. The goals of adding these different set of data
are to provide more varied compositional space, increase the amount of training data, and
expand the range of Rc values available for training. These methods expanded the amount
of training data available by over an order of magnitude compared to direct
measurements of Rc. Using this new dataset, a random forest (RF) model has been trained
and evaluated for accuracy in predicting Rc and has also been used to predict the GFA in

new BMG systems.

4.3. Methods
The starting Rc database was obtained primarily from Long et al. who gathered 53
experimental measurements of critical cooling rate [17]. One data point (pure nickel) was
removed from this database due to being approximated by different methods. 25 more
Rc measurements not in Long et al.’s database were found from eight more papers for a
total of 77 experimental Rc measurements [74—81]. Rc values are converted to a log scale
for easier representation across the wide range of orders of magnitude. Values range from

102 to 1077 K/s with an average of 10196 K/s. We will call this data set 1 (DS1).

DS1 was expanded three ways. First, we estimated Rc from experimental
measurements of critical sizes from casting. We have used measurements of both critical
casting diameter Dc and critical casting thickness Zc, and we denote both as Dc. Both of
these values are converted to Rc values using a generalization of the formalism outlined

by Johnson et al. [82] which suggests the relationship
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R = 5. (4.1)

DCB

Johnson et al.’s proposed equation sets A=10 and B=2 based on assumptions about
average thermodynamic properties across all metals. A fit of log(Rc) vs. log(Dc) (Figure
4.1) gives A=631 (log(A)=2.8), B=1.8. This fit was used to approximate Rc values from all
Dc and Zc values without a Rc in DS1. The A and B values shift quite significantly from
the values estimated by Johnson et al. This difference is likely due to the previous
assumptions ignoring surface interactions between the melt and the mold during casting.
The application of Eqn. 4.1 in this first method added 342 approximate Rc values (which
we call Data Set 2 (DS2)) and brings the number of training values up from 77

experimental Rc values to a total of 419 training values.
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Figure 4.1. Comparison of a subset of training data with both experimentally measured
RC and Dc values. The line of best fit and its equation are shown. The fit has R2 of 0.80,
RMSE of 0.55 K/s, and MAE of 0.44 K/s.

Second, we used the o parameter proposed by Long et al to make approximations
for Rc for all datapoint for which we have measured Tg, Tx, and Ti[17]. Specifically, we
take all Tg, Tx, and T1 data we have available, determine ®, and then use the linear
relationship between ® and Rc to from Long et al to predict Rc. As an additional
verification of the o parameter, for the 25 additional points added to Long et al.’s original
data, their © values were calculated and are shown in the supplementary information as
a test set specifically for the o relationship. All the new values fell within the spread of the
previous data, further demonstrating the ability of this parameter to effectively transform
characteristic temperatures into estimated critical cooling rate values. Refitting the ®
relationship proposed by Long, et al. only resulted in minor changes so to avoid a
proliferation of almost identical models we simply used the fitting parameters established

by Long et al. This second method added 141 approximate Rc values (which we call Data
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Set 3 (DS3)) for compositions that do not overlap with previous datapoints, bringing the

total to 560 compositions with approximate Rc values.

Finally, we leveraged melt spinning experiments, which categorize compositions
as amorphous, partially amorphous, and crystalline under high-rate cooling. Based on
what is known about typical cooling rates during melt spinning, these categories
correspond to approximate constraints on Rc. Due to the overlap of the expected Rcvalues
for amorphous melt spinning data (such alloys likely have Rc < ~105 K/s) with
significantly higher quality measurements and approximations of Rc from the previous
methods, the amorphous category data was excluded from the final dataset. This
exclusion is done because introducing such a high amount of very approximate data in
the range where we have much higher quality data would likely drown out any signal from
experimental BMG values. We therefore assigned approximate Rc values only to the
partially amorphous and crystalline categories and included them in our fitting.
Specifically, we assigned the partially amorphous and crystalline cases Rc values of 1055
and 107 K/s, respectively. When a cooled system comes out partially amorphous it is likely
that the actual cooling rate was a little slower than R. since some of the system had time
to crystallize. Furthermore, the cooling rate for melt spinning is known to be in the range
104 and 10° K/s, or based on averaging the logs, about 105 K/s. Therefore, for systems that
are partially amorphous it is likely that the true Rc range is somewhat shifted toward
higher values than the range 104 and 106 K/s, say 1045 and 1095 K/s. We represent this
range by averaging the logs to give 1055 K/s. The value of 107 K/s for the fully crystalline
was chosen to be a about one order of magnitude above the fastest cooling rate likely

obtained in melt-spinning data to represent the fact none of these alloys formed
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amorphous structures. The exact Rc value chosen for the crystal forming alloys did not
have a significant effect on machine learning performance as we have an extremely small
amount of direct experimentally measured Rc values in this range that would be affected
by the specific number assigned to this data. Therefore, the main effect of including it and
assigning a value is to allow the model to differentiate between the better glass formers

found elsewhere in the dataset, and these poor glass formers.

The melt-spinning data is obtained from a review paper which provides over 8,000
melt-spun compositions[83]. From this dataset we used 1248 compositions which formed
crystalline metals after melt-spinning, and 720 compositions which were categorized as
partially amorphous. Although the Rc values from this data are highly approximate, they
are quite distinct from the bulk of the higher-fidelity training data developed above and
are therefore expected to constrain the fits without polluting fitting to higher fidelity data.
Figure 4.2 shows that the crystalline and partially amorphous data do not overlap
significantly with the rest of the training data. This process added 1,565 approximate Rc
values (which we call Data Set 4 (DS4)) for compositions that do not overlap with previous
datapoints, bringing the total to 2,125 compositions with approximate Rc values. This is
an increase of almost 30 times greater than the initial set of measured Rc values. We call

this final integrated Data Set 5 (DS5).
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Figure 4.2. Distribution of Rc values in final training dataset (DS5)

Using the complete DS5 of Rc data a random forest model was built and trained to
predict Rc. The random forest model is trained using the MAST-ML machine learning
software package which builds machine learning workflows using the underlying scikit-
learn python package [53,84]. Inputs to the model are obtained from compositional
information and elemental features using the MAGPIE approach proposed by Ward et al.
[18,24]. Elemental features for each composition are generated as composition averages,
maximum, minimum, and difference. This feature set is chosen to be maximally
accessible as all the features can be generated almost instantaneously directly from
available elemental databases. Several other model types were also investigated along
with the random forest model but showed worse performance. Specifically, gradient
boosted trees and Kernel Ridge Regression models showed reduced performance under
cross validation testing with a 5-fold cross validated RMSE of 0.732 and 0.803,

respectively (compared to 0.36 for random forest, discussed below). We assessed the
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predictive ability of the model through random and leave-one-group-out cross validation
(CV). The random cross validation was done by repeating 5-fold cross validation 10 times
(for a total for 50 left folds of data) and the predicted values for each excluded point were

averaged.

4.4. Results and Discussion

The average predicted vs. true values are shown in the parity plot in Figure 4.3. We
calculated the following statistics from the 5-fold CV test: R2 = 0.97 + 0.01, root mean
squared error (RMSE) = 0.36 + 0.09, mean absolute error (MAE) = 0.08 + 0.02, RMSE
normalized by the standard deviation of all the log(Rc) values (RMSE/cy where oy = 2.22)
= 0.16 + 0.04 respectively. The error bars represent the standard error in the mean of
each statistic when averaged over all 50 CV folds. Although our model uses only elemental
features, the errors are comparable to or better than the best previous models for Rc using
characteristic temperatures. Specifically, the ® model for predicting Rc from
characteristic temperatures given in Long, et al. showed R2 = 0.90 and RMSE = 0.67 log
units [17]. These statistics are influenced by the large amount of melt spinning data which
is somewhat unusual due to it being assigned the same Rc value. If the melt spinning data
is excluded from the statisticc RMSE value increases to 0.70 which is still essentially

equivalent to the best previous characteristic temperature based models.
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Figure 4.3. 5-fold cross validation performance of random forest model

While the random CV is a useful standard test of model accuracy it is not a good
test of the ability of the model to predict new chemistries. This limitation of the random
CV score arises because the data set often has multiple entries on closely related
compositions due to the nature of experimental research on GFA, so excluded points in
the validation data are likely to have similar compositions in the training data. The
random CV score therefore likely overestimates how well the model will perform on new

chemistries.

To assess errors on new chemistries we performed a leave-out-one-group CV,
where we grouped together similar compositions and left them out one by one, training
on the remaining data. Groups were defined by each unique alloy system. As each group

was left out the training data the average RMSE were recorded and are summarized in
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Figure 4.4. Groups are sorted by the minimum number of overlap instances with the
training data between all elements in the group. For example, the elemental overlaps for
an excluded Cu-Zr alloy would be the lower value between the number of Cu and Zr
containing alloys were left in the training set. The dashed-dotted lines show the average
RMSE of all groups within each bin from 0-250, and 250-821 on the x-axis. The dashed

line shows the average across all points.
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Figure 4.4. Leave out group cross validation sorted by amount of overlap with training
data. The blue dashed line shows the average RMSE of 0.88 log units. The orange dashed-
dotted line shows averages for each bin of data from 0-250 (0.89) and 250-821 (0.58).

Figure 4.4 shows how the model is performing on average and how it performs
when there are many or few representatives of the elements being predicted. The average

RMSE (MAE) of 0.88 (0.82) log units is noticeably larger than the random CV RMSE
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(MAE) of 0.36 (0.08) log units. This increase is due to the larger amount of
compositionally similar data being left out when an entire alloy system is removed. Due
do the nature of experimental data generation many systems have measurements taken
single digit atomic percents away from each other, which may cause the random CV
method to overestimate performance. RMSE (MAE) errors still stay below an order of
magnitude (one log unit) suggesting that in an average way the model is at least
moderately robust to leaving out significant chemical information. One might expect that
the model will perform best when there is the most training data. This effect is not
particularly apparent from Figure 4.4 but the data does seem to cluster into two groups,
below about 250 and above, and the RSME goes from 0.89 to 0.58 in going from the low
to high group. This result suggests that establishing a cutoff of around 250 elemental
overall instances for elements in any predicted alloy systems may help improve the

reliability of predictions.

Using the cutoff of 250 instances of overlap we can propose two searches for
making predictions with the random forest model to identify new BMG systems. The first
search is to use the model to predict likely BMGs from known glass formers from melt-
spinning data. As discussed during the database generation section there is a set of melt-
spinning data that was left out of model training due to overlap with the higher fidelity
experimental data. We will look for BMGs within this group of alloys. We define a BMG
as Rc < 103 K/s. This data has 3,755 compositions that were classified as glass formers
under melt-spinning conditions. Of those points there were 63 compositions predicted as
Rc < 103 K/s by our model and therefore predicted to be good BMG candidates. These

predictions are shown in Figure 4.5. Predicted critical cooling rates of melt-spun glasses.



51
Points are color coded by interest of the alloy composition. Red points being the least
interesting, and yellow points being the more promising as new BMG systems. with more
details on the specific alloy systems given in Table 4.1. The probability of the prediction
being a BMG is estimated directly from the random forest confidence interval of each
prediction using a one-sided Z-test. An analysis of these estimated confidence intervals is

included in the supplementary information in the section Error Bar Analysis.
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Figure 4.5. Predicted critical cooling rates of melt-spun glasses. Points are color coded by
interest of the alloy composition. Red points being the least interesting, and yellow points
being the more promising as new BMG systems.

While the machine learning model can potentially provide helpful guidance in
discovering new BMGs, its predictions must be considered by human researchers to
assess their value to the community. With this in mind, each prediction in Figure 4.5 is
color coded based on our personal assessment of the novelty of the alloy system for the

BMG community. The color scheme is used in Table 4.1 as well. Red systems are likely
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the least interesting due to being a known BMG system in our training data. These
predictions only demonstrate that the model will predict nearby compositions to training
data. Yellow systems are not directly known BMG systems; however, they have nearby
BMG quaternaries or ternaries with one additional minor alloying element. This limits
the novelty of these predictions since we would expect the higher component systems to
have better glass forming ability than the predicted lower component alloys. One of these
systems, Al-Ca-Ga, is slightly different in that its nearby system is the binary Al-Ca system
that is also included in Table 4.1 which has less components. Of the yellow systems, Al-
Ca-Ga is therefore the most potentially interesting as following the same logic this higher
number of components in general may increase GFA compared to the known Al-Ca BMG
system. Finally, there are several green systems that are potentially the most interesting
due to not having any nearby known ternary or quaternary BMG systems. They can all be
broadly grouped into the category of Au-B-rare earth. Predictions for these systems fell
slightly above the previously established 103 K/s cutoff and are identified with an asterisk.
This extension to higher Rcvalues was considered because previous established estimated
errors in predictions still place these systems in the range of being potential glass formers.
Based on our literature review this combination of elements appears to be new, with some
of the closest systems being the Au-Si-X BMG systems introduced by Schroers et al.[85].
Our predicted alloys essentially replace the Si in the Au-Si-X BMG with another nearby
metalloid, B. However, while rare earth elements have been used in BMGs there is not
any previous literature combining gold and boron with rare earth elements of which we
are aware. Therefore, these types of systems are suspected to be novel and worth
additional consideration. As an additional check for potential interest in these systems we

consider to what extent they are consistent with previously established empirical rules for
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finding metallic alloys with high glass forming ability. While these criteria have many
forms the following properties of systems proposed by Inoue et al. [12] are generally
desirable: (1) multicomponent alloy consisting of more than 3 elements, (2) significantly
different size mismatch exceeding 12% among the main 3 constituent elements, (3)
negative heats of mixing among their main elements. We also add to this a fourth criteria,
which is generally harder to assess without detailed thermodynamics models, which is
that the system shows deep eutectics. All alloys are ternaries so do not quite satisfy the
first criteria, but we know that BMG ternaries can be formed. All three systems easily
satisfy the second criterion due to the large size difference between Boron and the Rare-
earth elements. All three systems also satisfy the third criteria. Heats of mixing are
calculated for each predicted composition from an extended regular solution model
following the methodology and binary interactions from Takeuchi and Inoue [86].
Mismatch percentage along with the estimated heats of mixing, are shown in in Table 4.1
for the average of predicted compositions in each system. With respect to the fourth
criteria, available binary phase diagrams from the ASM Alloy Phase Diagrams Database
were analyzed which reveal eutectics in all of the binary subcomponents of the Au-B-X
ternary alloys [87]. Specifically, eutectics occur near Au20Bso, near the edges of the B-X
binaries as well as B;0Gdso, and at many compositions in the Au-X binaries. While we do
not have access to full ternary phase diagrams to investigate in more detail, agreement
with many previously established criteria for discovery of BMG alloys makes these three

systems interesting candidates for further study.



54

Table 4.1. List of alloy systems predicted as BMGs. Systems are color coded by potential
to be novel BMG (see discussion in text for color coding).

Mixing Enthalpy

Known BMG  Size Mismatch (Kj/mol)
Cu Hf Nb No 22% -10.1
Cu Nb Zr No 23% -14.3

CuPZr No 32% 27.4
Al Ca Ga No 39% -22.9

To give more insight into the model’s predictions, the Rc for systems in Table 4.1
were predicted over the alloy’s full binary and ternary composition ranges and the full
predictions for the Au-B-Pr system are shown as an example in Figure 4.6. We can see
from this example that a large portion of the ternary system is predicted near or below
the 103 K/s cutoff for predicted bulk formation. This result, combined with the small
dynamic range of predictions, with the majority of the ternary predicted within one order
of magnitude, suggests we cannot claim to make a prediction of any specific region within
the ternary being the most promising. This trend holds across most new predictions,
suggesting that for new systems the model predictions can at best identify candidate BMG
systems, rather than pinpoint promising BMG regions within systems. This limitation is

unfortunate but may be less problematic in the future as the community is developing
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new combinatorial approaches to experimentally investigate large composition ranges of
a system. For example, researchers were recently able to synthesis and characterize Rc

over a large region of the Al-Ge-Ni ternary using high-throughput methods [81].

Log(R¢)
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Figure 4.6. Predictions in 1% composition increments of the Au-B-Pr system.

A second search was performed to explore more widely for potential BMG systems.
In the first test above potential systems and compositions were obtained only from known
melt-spinning glasses. In this second test we considered every possible quaternary
system composed of elements that meet the criterion of more than 250 overlap instances
with the training set. There are 10 elements that meet this criterion in the training set: Al,
Cu, Ni, Fe, B, Zr, Si, Co, Mg, and Ti. Making every single potential quaternary gave 286
potential quaternary systems. In each system a 10% composition grid was generated for
the initial set of predictions. Due to the large number of predictions made multiple steps
were taken to filter the predictions to a more manageable number. First all three of the

previously discussed criteria proposed by Inoue were filtered against and systems which
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did not meet the criteria were removed. Notably this means all ternary and binary systems
were removed at this stage. Predicted systems were also filtered against known BMG
systems in the training data. Predicted compositions were also individually compared to
BMG training compositions and removed if they were within 10% elemental composition
of any BMG training point. There are 44 systems which meet these criteria, and they are

summarized in Table 4.2.

Table 4.2. Predictions of GFA for systems constructed from elements with >250 overlap
instances in training data. Systems are color coded by potential to be novel BMG (see
discussion in text for color coding).

Minimum Mixing Minimum Rc

Idx  Alloy System Size Mismatch Enthalpy (Kj/mol) Prediction log(K/s)
1 CuFeSizr 0.24 -85.88 1.53

2 CoCuMgZr 0.25 -27.64 1.58

3 CuMgSizr 0.24 -80.12 1.63

4 CuFeMgZzr 0.24 -14.8 1.65

5 CuNiSiZr 0.26 -90.88 1.66

6 CoCusSizr 0.25 -89.2 1.72

7 BCuFeZr 0.81 -53.88 1.86

8 BFeMgZr 0.81 -49.68 1.88

9 BCuSizr 0.81 -91.48 1.89

10 BCuMgZr 0.81 -46.04 1.89

11 BCuTizr 0.81 -60.92 1.95

12 BCuNiZr 0.81 -58.52 1.98

13 CuMgTiZr 0.23 -11.32 2.00

14 BCoCuZr 0.81 -56.4 2.04

15 CuMgNiZr 0.26 -34.2 2.13

16 BCoFeZr 0.81 -61.16 2.20

17 Femgsiz 024 8216 222
18 BFeTiZr 0.81 -66.84 2.34
19 BaNm 065 6224 236

20 CoFeSizr 0.25 -92.36 2.40




37
38

40

42

43
44

CoCuMgTi
BCuFeMg

BCoFeTi

BCoFeMg

MgNiTiZr
CuFeMgSi

0.17
0.70

0.70
0.26
0.16

-11.52
-27.8

-62.92

-34.28

-30.16
-38.68

21 CuFeTiZr 0.24 -19 2.40
22 BCusSiTi 0.65 -81.2 2.43
23 BCuMgSi 0.70 -47.64 2.56
24 CoCuTiZr 0.25 -28.48 2.57
25 BCuFeTi 0.65 -50.04 2.58
26 BFeMgSi 0.70 -56.28 2.60
27 BCuMgTi 0.70 -51.16 2.62
|28 coremgzr 025 2824 262
29 BFeMgTi 0.70 -55.76 2.67
30 BCoCuTi 0.65 -57.24 2.67
31 CoMgNiZr 0.26 -37.48 2.68
32 BFeSiTi 0.65 -80.76 2.70
33 CoMgSiZr 0.25 -85.8 2.70
34 BCoCuMg 0.70 -29.24 2.73

2.80
2.81

2.93
2.97
3.00
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As with the previous set of predictions we have grouped systems based on relative

novelty. We will not discuss all systems in detail but will highlight several trends within

the predicted systems as well as commenting on specific systems which may be the most

novel. The 16 yellow systems are identified as containing the well-known Cu-Zr binary.

Investigating their predictions further showed all predictions had increasing Rc moving

away from the Cu-Zr binary suggesting that these alloys are mainly being predicted due
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to adjacency to the binary. However, they still may be somewhat interesting due to
changes in other materials properties while having similar Rc.. Another trend in
predictions is systems that suggest replacements or additions to known ternary or
quaternary systems. System 19, B-Cu-Ni-Ti, is somewhat similar to the known Cu-Ni-Ti
ternary and Zr-Cu-Ni-Ti quaternary BMGs systems [82,88]. One potential limitation with
these systems however is with the combination of B and Ti which, as pointed out by Lin
et al. may reduce GFA due to precipitation of very stable borides. They claim reduced GFA
in the Zr-Cu-Ni-Ti-B quinary compared to the quaternary without Boron. System 36, Al-
Co-Ti-Zr, is somewhat similar to the known Al-Co-Zr system [89], but may provide some
different properties. Furthermore, there is a septenary BMG system including all of Al-
Co-Ti-Zr elements, further suggesting that these elements may have good glass forming
ability [90]. Because Al-Co-Ti-Zr is both a sub alloy of a BMG and has sub alloys that are
BMGs it is a particularly promising system to consider. System 41, Co-Si-Ti-Zr, is one of
the more distinct combinations, with no known BMGs in ternaries or quaternaries with
simple replacements/additions of single elements. The most similar BMG forming alloy
we could identify is reported by Ramasamy et al. in which they replace Nb with Zr In the
Fe-Co-B-Si-Nb system to create Fe-Co-B-Si-Zr and report a decrease in GFA due to the
replacement [91]. Finally, we identify several systems including Fe-Zr. The Fe-Zr alloy is
a well-studied metallic glass though not a BMG [92]. And similar to previous systems
there is a known higher component BMG system in the Fe-Co-Ni-Zr-Mo-B system[13].
Systems 19, 36, 41, and the Fe-Zr containing alloys make up all the 7 green systems in
Table 4.2. Predicting across such a wide composition space we identified systems that

build off of binary BMGs, proposed substitutions to ternary and quaternary glasses, and
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also predict entirely knew alloys with no nearby known glass formers. Making predictions

with such variety can hopefully inspire new synthesis and discovery of BMG alloys.

With these searches complete we take a step back to analyze in more detail our
confidence in the predictions of new BMG compositions. Although our model is formally
regression fit to Rc, in predicting new BMGs we have effectively used it as a classifier
which predicts either BMG or not BMG if the predicted Rc is > 103 K/s or < 103 K/s,
respectively. We can therefore ask the classification model question, what is the
probability of an alloy actually being a BMG given that the model has predicted it to be a
BMG (i.e., what is our precision)? The precision (and recall) can be estimated for our
particular data by finding the true positive rate (TPR) and false positive rate (FPR) from
the left-out data in the 5-fold CV tests performed in Figure 4.3. This yields very
encouraging results, with TPR = 0.963 and FPR = 0.013. In other words, for alloys left
out in a fold, the criteria Rc is < 103 K/s for being a BMG correctly identifies an alloy with
a known R. < 103 K/s 0.963 fraction of the time and finds an alloy with Rc > 103 K/s 0.013
fraction of the time. However, the database used here is quite different from the
composition space we explore when we looked at all quaternaries made from 10 elements
in the second search above. In particular, the database we are using has far more BMGs
than likely in the random search, which changes the probability of correctly identifying a
BMG. It is therefore necessary to correct the probability of finding a BMG derived for our
database for the fact that BMGs are quite rare in our new search space. We therefore used

Bayes Theorem to estimate a more accurate probability of correctly predicting a BMG

from the space of relevant systems in our 10 element search. Eqn. Pr(BMG|BMGyeq) =
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TPR*Pr (BMG)

TPR-PEBMG) + FPR(1_PrBHG)) (4.2 below shows the details of Bayes theorem applied to the

present calculation

TPR+Pr (BMG)
TPR+Pr(BMG)+FPR*(1-Pr(BMG))'

Pr(BMG|BMGpyreq) = (4.2)

Here Pr(BMG|BMG,,.,) is the probability of finding a BMG given that we predict a BMG,
which is what we seek, and Pr(BMG) is the probability of finding a BMG from a random
alloy. TPR and FPR are estimated above. Pr(BMG) is more difficult to obtain so we
propose here a few methods. The first 3 methods build from DS5 and count all the BMG
datapoints within the dataset. We then identify all elements which compose these BMG
alloys, 41 elements total, and define a total composition space of every elemental
combination up to quinary alloys in 1% composition increments. Doing this gives 838
BMG alloys in DS5 out of a total compositional space of 3.45%10!2 potential alloys, for a
probability of finding a BMG at random of 2.43x1010. This first method assumes that the
828 BMG alloys in the dataset account for all the actual BMG alloys in this entire
compositional space, which is a very pessimistic assumption, and therefore serves as a
lower bound on this estimate. Methods 2 and 3 modify this initial estimate as a probability
ten times and one-hundred times this to represent possibilities that the current 838
known BMG alloys only comprise 10% or 1% of the actual number due to currently
undiscovered alloys which could still be found in a random search. To give an upper
bound on this type of analysis we also propose a fourth method taken from an estimation
performed by Li et al. in which they performed a theoretical search for bulk glass formers

using a number of previously established rules of thumb for identifying BMGs [36]. In
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their study they estimated about 1% of syntheses of potential glassy alloys results in
discovery of a BMG. This 1% estimate therefore represents the probability of randomly
discovering a new BMG given that you are an expert researcher using knowledge to pick
initially promising materials. Values and results for these four methods are shown in
Table 4.3. Probability estimates and results for a Bayesian analysis of probabilities of

finding BMGs.Table 4.3.

Table 4.3. Probability estimates and results for a Bayesian analysis of probabilities of
finding BMGs.

Probability
of Randomly ML True ML False Probability of

Method Finding Positive Rate Positive Rate | ML Prediction
Number BMG on Database on Database

1 2.43e-10 0.963 0.013 1.77e-8

2 2.43e-9 0.963 0.013 1.77e-7

3 2.43e-8 0.963 0.013 1.77e-6

4 0.01 0.963 0.013 0.42

As noted above, the model has a TPR of 0.963 and a FPR of 0.013 on the database
we have used for cross validation, which suggests that the trained ML model should be
quite good at identifying BMG alloys from data like that used in the cross validation.
However, when factoring in the overall very small population of BMG alloys within a likely
search space using Eqn. 4.2 above, the probability that any predicted BMG alloy will
actually be a BMG when synthesized becomes very low for methods 1, 2, and 3. These
probabilities range from an approximate 10-8 to 10-® depending on which the assumption
for how many BMGs within the elemental set from DS5 have been found. This result
highlights that even with fairly good cross-validated performance statistics, machine

learning models are not sufficient for the discovery of new materials if the material is rare
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in the search space and no human guidance is given. If now we consider method 4, in
which we replace our estimate of finding a BMG with that estimated for a search space
selected by domain experts, we calculate the probability that our model correctly
identifies a new BMG when it predicts one to be 42%. What this result implies is that the
machine learning model is likely almost useless for finding BMGs when used on random
alloys, but potentially quite useful when used on a set of alloys prescreened by human
experts using qualitative rules of thumb. In general, this result suggests that a hybrid
approach in which machine learning models are not blindly trusted, but merged with
existing domain knowledge and human selection, can massively improve the likelihood

of materials discovery.

4.5. Conclusions

A machine learning model predicting critical cooling rates directly from
compositional information was trained and evaluated. The training data for the model
was acquired from experiments of varying leveling of fidelity with various approximations
being used to combine the data in a single dataset of critical cooling rates. The model
shows promising predictive ability in alloys with significant elemental representation in
the training data. However, predictive ability where this overlap is low drops off
considerably and the likelihood for large errors in predictions increases. Furthermore,
predictions of specific composition regions within an alloy system are usually within the
uncertainty of predictions which suggests that the model is likely best used for identifying
potential BMG systems as opposed to searching within new systems for optimal BMG

regions. Viewing the results through the lens of Bayesian statistics demonstrates that
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although results seem promising the ability for these types of models to reliably predict
new BMG models is significantly limited by the overall low likelihood of finding BMGs.
Therefore, there is still need for improvements and tight integration with human guidance

before machine learning models can be used to rapidly discover new BMGs.
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Chapter 5. Other Collaborative Machine Learning Work

In addition to the main focus of this work on developing machine learning models
for the prediction of critical cooling rates of metallic glasses there have also been a number
of collaborative efforts which have helped to build skills and knowledge that have
supported the work in Chapter 3 and Chapter 4. This chapter will briefly summarize those
works, with a focus on how they have contributed to the development of the main work of

this thesis.

5.1. Exploring characteristic temperatures to predict metallic
glass forming ability

Note: This section has been published as L.E. Schultz, B. Afflerbach, C. Francis,
P.M. Voyles, 1. Szlufarska, D. Morgan, Exploration of characteristic temperature
contributions to metallic glass forming ability, Comput. Mat. Sci. 196 (2021). 110494.

doi:10.1016/j.commatsci.2021.110494, and has been adapted for use in this thesis.

Various combinations of characteristic temperatures, such as the glass transition
temperature, liquidus temperature, and crystallization temperature, have been proposed
as predictions of the glass forming ability of metal alloys. We have used statistical
approaches from machine learning to systematically explore a wide range of possible
characteristic temperature functions for predicting glass forming ability in the form of
critical casting diameter (Dc). We explored an extensive search of features based on
powers and ratios of sums and differences of characteristic temperatures (CTs), multiple
machine learning models, and used nested cross validation to avoid data leakage when

assessing the models. We found only weak ability for the models to predict Dc and found
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that to achieve significant improvement from increasing the database size would likely
require a few multiples of the present database size. Given that we are already using the
largest aggregated database to date, such an increase in amount of data would likely
require a very large experimental effort or application of new high-throughput

approaches. We

We also found that using just Tg, Tx, and TI directly was not statistically different
than using features based on the powers and ratios of their sums and differences. These
results suggest that further efforts adding terms within the examined space of features
will not yield better predictive performance outside their training set compared to using
the CTs directly. Some success was found in predicting Dc above or below its median value
from the CTs, suggesting that they can provide some valuable D¢ information. For
example, models using these CTs could be used to screen small glassy samples and
determine if larger glasses might be produced. Nevertheless, it appears that Dc cannot be
quantified with regression models built with the set of CTs examined. Previous linear
models using CTs appear to have had more success when quantifying Rc than Dc. This
suggests that further exploration of Rc models might be more fruitful than Dc models.
However, more complex models and more thorough assessment are limited by the
amount of Rc data. Therefore, significant effort should be made to expand the amount of

available Rc data available for future work.
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5.2. Error assessment and optimal cross-validation approaches
in machine learning

Note: This section has been published as H.J. Lu, N. Zou, R. Jacobs, B. Afflerbach,
X.G. Lu, D. Morgan, “Error assessment and optimal cross-validation approaches in
machine learning applied to impurity diffusion”, Comput. Mater. Sci. 169 (2019).

doi:10.1016/j.commatsci.2019.06.010, and has been adapted for use in this thesis.

In the past decade machine learning models have become widely used in materials
science and engineering to identify trends in existing data and then make predictions to
generate large databases, providing powerful tools for accelerating materials discovery
and design. However, there is a significant need to refine approaches both for developing
the best models and assessing the uncertainty in their predictions. In this work, we
evaluate the performance of Gaussian kernel ridge regression (GKRR) and Gaussian
process regression (GPR) for modeling ab-initio predicted impurity diffusion activation
energies, using a database with 15 pure metal hosts and 408 host-impurity pairs. We
demonstrate the advantages of basing the feature selection on minimizing the Leave-
Group-Out (LOG) cross-validation (CV) root mean squared error (RMSE) instead of the
more commonly used random K-fold CV RMSE. For the best descriptor and
hyperparameter sets, the LOG RMSE from the GKRR (GPR) model is only 0.148 eV (0.155
eV) and the corresponding 5-fold RMSE is 0.116 €V (0.129 V), demonstrating the model
can effectively predict diffusion activation energies. We also show that the ab-initio
impurity migration barrier can be employed as a feature to increase the accuracy of the
model significantly while still yielding a significant speedup in the ability to predict the
activation energy of new systems. Finally, we define r as the magnitude of the ratio of the

actual error (residual) in a left-out data point during CV to the predicted standard
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deviation for that same data point in the GPR model and compare the distribution of r to
a normal distribution. Deviations of r from a normal distribution can be used to quantify
the accuracy of the machine learning error estimates, and our results generally show that
the approach yields accurate, normally distributed error estimates for this diffusion data

set.

5.3. Exploring effective charge in electromigration using
machine learning

Note: This section has been published as Y.-C. Liu, B. Afflerbach, R. Jacobs, S.-K.
Lin, D. Morgan, “Exploring effective charge in electromigration using machine
learning”, MRS Commun. 9 (2019). doi:10.1557/mrc.2019.63, and has been adapted for

use in this thesis.

The effective charge of an element is a parameter characterizing the
electromigration effect, which can determine the reliability of interconnection in
electronic technologies. In this study, a machine learning linear regression model was
developed to explore the effective charge (z*) for electromigration of impurities in binary
dilute alloy systems and pure metals at the homologous temperature of 0.9 + 0.06. The
most effective descriptors included (1) the electrical conductivity of the host element, (2)
the electrical conductivity of the impurity element, (3) the periodic table column
difference between the host and impurity, (4) the electronegativity difference between the
host and impurity and (5) the maximum value of p valence electrons between the host
and impurity, and were selected by a combination of a sequential forward selection

algorithm and manual selection based on domain-specific knowledge of the physics
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governing z*. Standard statistical analyses including the p-value, variance inflation factor,
and Wald test show that these five descriptors made a significant contribution to the
model, that multicollinearity of descriptors is not an issue, and that the most important
descriptor is the electrical conductivity of the host, respectively. 20 iterations of 5-fold
CV, leave-out alloy-group CV, and leave-out element-group CV yielded average values as
follows: 5-fold CV - RMSE/o = 0.37 + 0.01, R2 = 0.86, leave-out alloy-group CV - RMSE/c
= 0.22 + 0.18, R2 = 0.86, and leave-out element-group CV - RMSE/o = 0.30 + 0.23, R2
= 0.89, together indicating some significant predictive ability of the present model. A
leave-out element-group test and a randomized test suggest the predictive ability to
unknown systems, and ensures the present fitting has physical meaning, respectively. The
descriptor list suggests that if the host is a good conductor and the impurity is not, with a
small difference of the electronegativity between the impurity and the host, the effective
charge of the impurity is expected to be a negative value. The periodic table column
difference and the number of p valence electrons of the impurity makes the effective
charge value more negative. The descriptors provided new information for the
understanding of the origin of effective charge. Predictions of the effective charges of
impurities across the periodic table within 6 often-used hosts including Al, Ag, Au, Co, Cu
and Sn were made with the present model. A semi-quantitative model is obtained in the
present work and the approach can be easily applied to develop improved models as new
data becomes available in the future. The present machine learning model can potentially
be utilized to accelerate the design of materials used in electrical interconnections and

other applications where EM may play a role.
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5.4. The Materials Simulation Toolkit for Machine Learning
(MAST-ML): an automated open source toolkit to accelerate
data drive materials research

Note: This section has been published as R. Jacobs, T. Mayeshiba, B. Afflerbach,
L. Miles, M. Williams, M. Turner, R. Finkel, D. Morgan, “The Materials Simulation
Toolkit for Machine learning (MAST-ML): An automated open source toolkit to
accelerate data-driven materials research”, Comput. Mater. Sci. 176 (2020).

doi:10.1016/j.commatsci.2020.109544, and has been adapted for use in this thesis.

As data science and machine learning methods are taking on an increasingly
important role in the materials research community, there is a need for the development
of machine learning software tools that are easy to use (even for nonexperts with little
programming background), provide flexible access to the most important algorithms, and
codify best practices of machine learning model development and evaluation. Here, we
introduce the Materials Simulation Toolkit for Machine Learning (MAST-ML), an open-
source Python-based software package designed to broaden and accelerate the use of
machine learning in materials science research. MAST-ML provides predefined routines
for many input setups, model fitting, and post-analysis tasks, as well as a simple structure
for executing a multi-step machine learning model workflow. Furthermore, we see MAST-
ML as part of an ecosystem of open-source software contributions in the field of materials
informatics. While MAST-ML currently leverages key functionality of some existing
packages like matminer, MAST-ML is constantly under development, with both new
features unique only to MAST-ML and broader integration with other existing and
emerging software packages planned for the future. Overall, it is our desire to design tools

that enable acceleration of innovative data-driven materials research. For this work
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specifically development of MAST-ML has supported the custom cross validation
routines, error assessment / correction, and feature generation / engineering needed to
properly assess predictive ability of the machine learning models employed in Chapters

3-6.
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Chapter 6. Materials Informatics Education and

Undergraduate Research

Another addition to the focus of this thesis is a significant effort to develop and
lead undergraduate research projects related to materials informatics as a whole. The
Informatics Skunkworks is an undergraduate research group led by Professor Dane
Morgan with the goal of providing authentic research experiences to undergraduates in
the area materials informatics. With his support multiple opportunities have been
pursued to both lead undergraduate projects as well of develop educational materials that
support this effort. This work has provided opportunities to develop materials informatics
knowledge and professional development skills in project management that have proved
invaluable. There are three studies discussed in section 6.1, each of which highlights a
development of materials informatics knowledge. These studies have not matured into
published results, and therefore will be discussed at a high level with a focus on key
insights that have impacted other parts of this thesis. Section 6.2 highlights the
development of supporting educational materials that have been taught to over 100

undergraduate students participating in the Informatics Skunkworks Program.

6.1. Mentoring undergraduate research with the Informatics
Skunkworks

6.1.1. Predicting the ductile to brittle transition
temperature in irradiated steels.
Hardening of reactor pressure vessel alloys is a concern for nuclear reactor safety

and lifetime extension. Commercial nuclear reactors had an initial license of 40 years, and

most have now been licensed for 60 years with [93]. With Over half of the plants
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beginning commercial operation between 1985 and 1996 there is additional interest in
pursuing further lifetime extensions. However, there is significant difficulty in reliably
predicting reactor safety and integrity past the 60-year window. In this study A gaussian
process regression (GPR) was fit to predict alloy hardening as a function of alloy
composition, temperature, flux, and fluence. Of particular interest is identification of
domains of applicability of the trained model. Training data is obtained from three
regions of irradiation flux, which is necessary for obtaining high total experimental doses
of irradiation. However, predictions are of particular interest at lower flux which mirrors
more closely to real world conditions in RPVs. There is also significant interest in
predictions at larger total fluence, which is equivalent to longer irradiation time. Both of
these tasks are in essence performing an extrapolation rather than interpolation from the
training data which is something that machine learning models in general tend to struggle
with. Therefore, GPR was chosen as a model in part due to its ability to automatically
provide error estimation along with all predictions made by the model. These error
estimations were then used to quantify when the model was uncertain of new predictions.
Intermediate results from this study have helped feed into recent additions to the MAST-
ML software package to support analysis of domains of applicability and assessing model

error estimations.

6.1.2. Predictions of perovskite stability and bandgaps
Perovskite materials are a popular class of materials for many applications such as

catalysts, solid oxide fuel cells, and photovoltaics. There has been considerable effort to
use high throughput simulations of perovskite structures to calculate key parameters such
as the thermodynamic phase stability and bandgap of potential materials in order to

screen for potential new materials. However, the speed of these calculations using DFT is
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still too slow to perform extremely wide-ranging searches for all materials of interest. One
of the factors to simulation speed for bandgaps is type of functional used during the
simulation. Traditional functionals such as the generalized gradient approximation
(GGA) are known to often underpredict the bandgap of materials, though there are more
computationally expensive functionals such as the Heyd-Scuseria-Ernzerhof hybrid
functional (HSE) that can more accurately calculate them [94]. Therefore, this study
pursues two approaches to obtaining machine learning predictions of perovskite
bandgaps. The first is to directly predict simulated HSE bandgaps from compositional
and structural information of the perovskite. The second is to use a simulated GGA
bandgap value in addition to compositional and structural information as features for
machine learning predictions of the HSE bandgap. This idea of using a lower fidelity
dataset as input data to improve machine learning performance in predicting higher
fidelity data was essential in the development of the ideas and methodology of the work
in Chapter 4 in which we combine experimental data of varying levels of fidelity in order

to improve machine learning predictions of metallic glass forming ability.

6.1.3. Exploring dimensionless features
A common theme in materials informatics is using compositional information as

input for machine learning models. This methodology is highlighted by the work of Ward
et al. who used this approach to predict a number of materials properties with elemental
properties as the only source of input information [18]. This is an extremely powerful
approach to model training due to the accessibility of these features. Predictions can be
made instantaneously because all of the features are immediately accessible. This
synergizes well with machine learning models’ ability to make predictions rapidly and

maintaining this accessibility is a big driving force in model development. From their
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initial proposal these elemental property features have had defined multiple methods for
synthesizing the individual properties from each element in a composition into one
representation for the whole material. These include strategies such as taking the
minimum, maximum, difference, and average of the individual elemental properties. In
this study a new method is proposed to generate dimensionless combinations of the
individual elemental properties. Multiple models were built to replicate results from
previous machine learning work discussed in this thesis, and predictive performance was
compared between a feature set using the original features generated from the MAST-ML
software and the newly proposed dimensionless versions of the elemental property
features. Initial results show that for random leave out cross validation tests such as K-
fold cross validation both feature sets perform within error of each other. This suggests
that any information included in significant relationships between the elemental features
is already being successfully learned during the model fitting process. Future tests will
include tests on various complexities of models, as well as different cross validation

strategies.

6.2. Machine learning educational development through the
Informatics Skunkworks

One of the challenges with leading undergraduate research is in training new
students in the tools and techniques used in the research. As the Informatics Skunkworks
grew it became more and more necessary for there to be a standard set of educational
materials and curriculum for new students to complete in order to successfully participate

in research activities such as those discussed in the previous section. The core of this
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materials is a set of seven modules cover: python basics, overviews of common model
types, introductions to model assessment with cross validation, strategies for
hyperparameter optimization, and use of software packages like MAST-ML. The majority
of each module is focused on an activity which mirrors common research tasks that the
student may need to complete during their participation in the Informatics Skunkworks
Program. Many of these concepts are covered in Chapter 1 of this thesis as they also cover

the core concepts of the research presented here.

These materials have also been adapted for a number of outreach activities
including being taught during the research experiences for undergraduates (REU) and
research experiences for teachers (RET) summer programs enabling novice learners to
pick up the basics of machine learning and get hands on experience building and training
models. Modules have also been adapted and presented at two difference workshops on
machine learning to give an introduction to machine learning in materials science and

engineering. These workshops are highlighted in the List of Presentations.
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Chapter 7. Concluding Remarks

7.1. Summary

The focus of this thesis is to address the lack of quantitative predictive models for
the discovery of new metallic glasses (MGs) and bulk metallic glasses (BMGs) through
prediction of the most direct measure of glass forming ability, the critical cooling rate
(Rc). This lack of models has two contributing factors. First is a lack of high-quality and
accessible features which can be used to train models and then make useful predictions
of new alloys. Second, is a lack of experimental measurements of Rc, with existing data
being limited to the order of 100 datapoints. In this work we propose and demonstrate

methods to address both of these challenges.

To address the first challenge, we developed 9 computationally accessible features
which can be obtained from high throughput molecular dynamics simulations of rapidly
quenched alloys. These features were assessed on a computational database of Rc values
which rivals the number of direct experimental Rcvalues. These 9 computational GFA
features led to improved performance during 5-fold cross validation giving an average
root mean squared error (RMSE) of 0.25 in log(Rc). Additionally, two of the newly
developed features were identified as contributing the most to the improved performance;
enthalpy of crystallization and icosahedral-like fraction. Both of these features can be
obtained from a simulated amorphous structure improving accessibility over previously
used features such as characteristic temperatures Ty, Tx, Tr which require much more

time consuming experiments and or simulations to obtain accurately.

To address the second challenge of a lack of training data we develop new methods

for synthesizing experimental data. By combining experimental measurements of Rc from
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multiple experiment types we are able to expand the quantity of available training data by
over an order of magnitude. Using this expanded dataset, we then train and assess a
random forest model for the prediction of Rc from simple elemental features. Based on
leave out alloy cross validation the model shows predictive errors well below an order of
magnitude for alloys with significant elemental overlap in the training data. There are,
however, limitations in the model’s predictive ability. We note that when not predicting
near known glass forming alloys predicted BMG compositions often include a wide range
of compositions within an alloy system. Therefore, within each predicted new system it is
often hard or impossible to identify a small region to focus any follow up experimental
investigation on. Furthermore, when viewing the predictive power of the model through
the lens of Bayesian statistics it is apparent that simply blindly predicting new BMG alloys
is not a reasonable way to make progress as the conditional probability of any single
prediction of a new BMG actually being a bulk glass is less than one in a million. With this
in mind we then performed a wide search of all quaternary alloys that meet the previous
overlap criteria. From this set of predictions, we identified 7 systems that not only have
good ML predicted Rc values, but also met several other criteria for being potential BMG
alloys. This layered approach can hopefully more successfully identify novel BMG alloys

worth further study.
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7.2, Suggestions for future work

Two computationally accessible features were identified in the enthalpy of
crystallization and the icosahedral-like fraction of a simulated amorphous structure (See
Chapter 3 for details). These features strike an important middle ground in being much
more accessible than previous features such as characteristic temperatures, while still
maintaining more direct information about glass forming ability than previously utilized
accessible features such as elemental properties of materials [17,24]. However, there are
still limitations to these types of features. The first limitation is due to the EAM potentials
used during simulation. Because each interatomic potential needs to be specifically fit to
a single system, rapid generation of these features for potential new metallic glasses is not
possible. The most immediate avenue then to improving these features would be to
successfully simulate them using ab-initio methods. The pseudo-potentials used in these
methods are generated for each element and not for specific alloys, therefore it is a trivial
task to explore any potential new alloy system. Currently however, the computational
demands of these simulation methods may still put these features just a bit out of reach.
Based on the initial study discussed in Chapter 3.5 it appears that limitations to number
of atoms, and simulation time, along with complexities in approximating the correct
crystal reference state prevent the enthalpy of crystallization feature from containing any
useful information for predictions of GFA. However, as computational power continues
to grow these types of simulated GFA features will become even more accessible,

potentially improving the predictive power of future machine learning models.
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Chapter 8. Appendix I

Appendix I contains supplementary information for Chapter 4.
Complete Cross Validation Analysis

For each version of the dataset 5-fold cross validation was performed to assess
model performance. Because the different sub datasets are of different relative interest,
we also report performance statistics in the four tables below for each sub-dataset
included in DS1-DS4. Going down each row is adding more and more data to the training
set, while exploring each column shows performance of both the overall performance as
well as that for each dataset. Parity plots are also given in the four parity plots which show
more qualitatively how the model performance is evolving as more data is included.
Trends show how cross validation performance initially improves and then is maintained
with additional data, with the main benefits of adding DS4 being increased selectivity in
identifying potential BMGs. This is highlighted in Figure 8.5 in which we show how
predictions of the melt spun amorphous data evolves with the same dataset changes. As
more data in added predictions shift dramatically. Initially more than 50% of predictions
are BMGs, which would be highly unlikely. By adding the melt-spinning training points
the average prediction increases and the model becomes much more selective in which

materials it predicts as BMGs.

Data for predictions of each subset are included in the upper right triangle of each
table and bolded to represent that they are predictions of data not included in the cross

validation process at all.
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Table 8.1. Complete root mean squared error (RMSE) statistics for all versions of the

training data.

Dataset Avg RMSE | DS1 DS2 DS3 DS4

RMSE RMSE RMSE RMSE
DS1 1.21 1.21 0.796 1.611 3.387
DS1+DS2 0.669 1.221 0.461 1.653 3.433
DS1+DS2+DS3 0.719 1.082 0.478 0.928 3.143
DS5 =] 0.361 1.27 0.119 1.011 0.046
(DS1+DS2+DS3+DS4)

Table 8.2. Complete normalized root mean squared error (RMSE/o,) statistics for all
versions of the training data.

Dataset Avg DS1 DS2 DS3 DS4

RMSE/o, | RMSE/o, | RMSE/o, | RMSE/g, |RMSE/q,
DS1 0.481 0.481 1.192 0.851 4.758
DS1+DS2 0.539 0.486 0.6901 0.873 4.823
DS1+DS2+DS3 0.501 0.43 0.715 0.49 4.416
DS5 =1 0.163 0.506 0.177 0.534 0.065
(DS1+DS2+DS3+DS4)
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Table 8.3. Complete mean absolute error (MAE) statistics for all versions of the training

data.
Dataset Avg MAE | DS1 MAE | DS2 MAE | DS3 MAE | DS4 MAE
DS1 0.801 0.801 0.634 1.042 3.026
DS1+DS2 0.412 0.782 0.328 1.12 3.061
DS1+DS2+DS3 0.467 0.678 0.349 0.489 2.798
DS5 = | 0.082 0.81 0.035 0.67 0.003
(DS1+DS2+DS3+DS4)

Table 8.4. Complete coefficient of determination (R2) statistics for all versions of the

training data.

Training Dataset Avg R2 DS1R2 DS2 R2 DS3 R2 DS4 R2
DS1 0.768 0.768 -0.42 0.276 -21.639
DS1+DS2 0.709 0.764 0.523 0.238 -22.258
DS1+DS2+DS3 0.749 0.815 0.489 0.76 -18.499
DS5 =1 0.974 0.744 0.969 0.715 0.996
(DS1+DS2+DS3+DS4)

Parity plots for DS1 through DS4 are shown below with datapoints color coded by

data source.
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Figure 8.1. 5-Fold cross validation of the RF model color coded by data source. Model is

fit only to DS1.
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Figure 8.2. 5-fold cross validation of the RF model color coded by data source. Model is
fit to DS1 and DS2.
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Figure 8.5. Predicted Rc values for melt-spun glasses as more data is added to the model.

Error Bar Analysis

Random Forest models generated in mast-ml also report an estimated confidence

interval for each prediction which was used to generate probabilities that predictions of

bulk glass formers would be accurate. To gauge the accuracy of these estimates we can

generate a cumulative distribution function shown in Figure 8.6. This is generated during

the 5-fold CV test. The x-axis is normalized to the standard deviation of the data so that a

value of 1 on the x-axis represents an error of one standard deviation. The purple model

errors line shows the predicted error bars on the validation data and the green residuals
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line is the actual difference in predicted value and the labelled value. Comparing these
two lines we can see a slight increase in predicted errors around one standard deviation
on the x-axis. Overall, the errors and residuals line up very closely, demonstrating that on

average they should be fairly reliable.
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Figure 8.6. Cumulative distribution function comparing estimated model errors,
residuals, and a reference gaussian distribution.

Comparison of Omega parameter with additional data points

The omega parameter used in assembly of the machine learning dataset was
compared to 20 new datapoints that were produced since the original relationship was
proposed. These points are divided into two categories, those with similar elemental
composition to an existing point in Long’s dataset, and those that are not similar. Similar
datapoint were defined as those being within 5% total elemental substitution away from

an existing composition. All of the new points agreed very well with the existing
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relationship, demonstrating its ability to effectively convert known characteristic

temperatures as expressed through omega, to an estimated critical cooling rate.

14
@ Similar New Data (< 5%)
12 o Different New Data (>5%)
10| e Longetal °
0 Linear (L ]
@ s inear (Long et al.) %
X, o .
—_— 6 & ..."...
s & ‘oo
4 -
@ o £
I,
0 Q.:
e© ®
2 | o
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Omega

Figure 8.7. Comparison of Long's Omega relationship to new datapoints.
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