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Chapter 1

Introduction

While many phenomenological continuum constitutive models for granular and particulate

materials exist, these models do not usually directly relate the microstructural behavior of

the particles to the macroscopic particulate material behavior. As a result, these constitutive

models are only valid over the range of scenarios for which they were calibrated and tested.

This is problematic for predictively modeling the behavior of particulate materials in atypical

environments. Such environments include but are not limited to: (1) new geomaterials

created from partially or totally recycled materials, such as asphalt (Camargo et al., 2013),

(2) manufacturing processes involving non-geological particulate materials, such as in the

pharmaceutical industry (Ketterhagen et al., 2009), (3) high strain-rate environments such

as high speed ballistic penetration and explosion in sand, of current interest to both the U.S.

Navy and U.S. Air Force (Cooper, 2011).

The need for predictive constitutive models for particulate materials in high strain-rate

environments, as well as the current state-of-the-art in this area, was discussed at the recent

International Workshop on Particulate Materials in Extreme Environments (PMEE 2010)

held at the Lawrence Livermore National Laboratory, Livermore, CA, on September 20-24,

2010, hosted by the Air Force Office of Scientific Research (AFOSR). We were invited to
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this conference, where we presented the results of Chapter 9 of this thesis [Fleischmann

et al. (2013c)] in a talk entitled “Are 2-D DEM Simulations Good Enough?”. This talk

proved to be provocative (which was our intention, as the title of the talk suggests), and a

lengthy discussion between workshop attendees ensued. Despite some differences of opinion

as to the relative value of 2-D versus 3-D DEM simulations, it was universally acknowledged

that until unambiguous, quantitative links are demonstrated between the micromechanical

behavior of particulate materials and their macroscopic behavior, the development of reliable

elastoplastic continuum constitutive models for particulate materials applicable in extreme

and other atypical environments will not be possible.

This thesis provides a solid beginning at answering this need, by developing unambiguous,

quantitative links between micromechanical properties of non-cohesive particulate materials,

such as local packing geometry, inter-particle contact stiffness, and inter-particle friction co-

efficient, and their macroscopic material properties in both the elastic and plastic ranges at

low strain-rates. In particular, in Chapters 3 and 4 [Fleischmann et al. (2013a) and Fleis-

chmann et al. (2013b)] we derive unambiguous, quantitative relationships between the local

packing geometry and inter-particle contact stiffnesses of statistically isotropic particulate

materials composed of uniform spheres on the microscale and the elastic modulus E and

Poisson’s Ratio ν for the particulate material on the macroscale. We also show that pre-

vious attempts at deriving such relationships in the elastic range (as recent as the within

the last decade) have failed to correctly account for the effect of particle rotation on the

microscale, which can lead to zero-energy modes that can significantly effect the behavior of

a particulate material even in the (nominally) elastic range.

We significantly advance the state-of-the-art by demonstrating a number of links between

the micromechanical behavior of particulate materials and their macroscopic mechanical

behavior that were hitherto unknown, including the effects of particle rotation, as well as

by providing unambiguous derivations of macroscopic mechanical behavior of statistically
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isotropic particulate materials in both the elastic range and at yield, based on the analysis and

homogenization of specific local packing geometries under clear micromechanical assumptions

involving straightforward force and moment equilibrium rather than the (more nebulous)

energy methods employed almost exclusively elsewhere in the literature. These advances

have lead to the publication of three papers in two well-respected journals in the fields

of micromechanics and geomechanics: the Journal of the Mechanics and Physics of Solids

[Fleischmann et al. (2013a) and Fleischmann et al. (2013b)], and the International Journal

of Geomechanics [Fleischmann et al. (2013c)].

In Chapters 5–8, we turn our attention from the elastic range to the plastic range, with

a micromechanics-based analysis of yield in isotropic non-cohesive particulate materials.

First, we determine yield surfaces in 3-D principal stress space using a numerical method

known as the discrete element method (DEM) in Chapters 5 and 6. Direct micromechanics

derivations follow in Chapters 7 and 8, which are based on analyses of specific local packing

geometries and their associated slip planes. As in the elastic range, we perform these direct

micromechanics derivations for both the cases when particle rotation is either allowed or not

allowed, and this provides valuable insights into the specific effects that particle rotation has

on particulate material behavior.

We have informed and validated all of our micromechanics derivations using the 3-D

discrete element method (DEM), performing a total of over 2 500 individual computer simu-

lations of true triaxial and direct shear tests on virtual material specimens of 3 000 – 50 000

particles (cohesionless spherical elements). The beauty of DEM is that the simulations can

be run with particle rotation either prohibited or unrestrained, which provides a valuable

tool for comparison. Moreover, the micromechanical properties of the spherical elements,

in particular the inter-element normal and tangential contact stiffnesses Kn and Kt and the

inter-element friction coefficient µ, are known exactly, and the behavior of each element can

be monitored precisely throughout the simulations. In this way, element trajectories, as
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well as per-element quantities such as friction work and angular velocity, can be monitored

throughout the simulations, and the distributions of these quantities can be visualized within

the particulate material specimens. The discrete element method, along with the relative

merits of 2-D versus 3-D DEM simulations, is discussed in detail in Chapter 9 [Fleischmann

et al. (2013c)], and more briefly in Section 2.3.
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Chapter 2

Literature Review

2.1 Constitutive Modeling of Particulate Materials Based

on Micromechanics: Elastic Range

A number of researchers have contributed to the published literature on determining effective

elastic moduli for particulate/granular materials based on micromechanics. Early work was

done by Duffy and Mindlin (1957) and Deresiewicz (1958a) on regular face-centered cubic

and simple cubic arrays of uniform spheres (see Sections 3.3.1 and 3.3.2 of this thesis). More

recent work has been done by Walton (1987), Chang et al. (1995), Cambou et al. (1995),

and Emeriault and Cambou (1996). A good reference for results obtained before 1998 is

Cambou (1998).

Let Kn and Kt be the normal and tangential inter-particle contact stiffnesses for a partic-

ulate material composed of uniform spheres, so that the normal and tangential inter-particle

contact forces are given by Fn = Knδn and Ft = Ktδt, where δn and δt are the normal and

tangential displacements at the point of contact between two spheres. If the macro-scale

effective Poisson’s ratio and bulk modulus of the particulate material are denoted by ν and

κ, then Chang et al. (1995) derive the following relationships for an isotropic particulate
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material composed of uniform spheres of diameter D.

α =
1− 4ν

1 + ν
, Kn =

9

βD2
κ, (2.1)

where α = Kt/Kn is the ratio of the tangential to the normal inter-particle contact stiffnesses,

and β is the number of contacts per unit volume in the particulate material. Equation (2.1)

was previously derived by Walton (1987), and it was also rederived by Cambou et al. (1995).

Equation (2.1) depends on the so-called Voigt or kinematic homogenization hypothesis, which

maintains that the local strain in an aggregate (in this case particulate) material subjected

to uniform strain is the same as the far field strain in that material. Chang et al. (1995)

also derive another set of relationships under the so-called Reuss or static homogenization

hypothesis, which maintains that the local stress in an aggregate material subjected to

uniform stress is the same as the far field stress in that material. Under the Reuss hypothesis,

Chang et al. (1995) derive

α =
1− 2ν

1 + 3ν
, Kn =

9

βD2
κ, (2.2)

for an isotropic particulate material composed of uniform spheres of diameter D, where

α = Kt/Kn is the ratio of the tangential to the normal inter-particle contact stiffnesses,

and β is the number of contacts per unit volume in the particulate material. Chang et al.

(1995) also derive more complicated expressions for the case of arbitrary anisotropy in the

particulate material. In an earlier study, Chang and Misra (1989) derived the anisotropic

stress-strain relations for regular packings of disks (rhombic and hexagonal) in 2-D and

spheres (simple cubic only) in 3-D. Equation (2.2) was also rederived by Liao et al. (1997)

under what they called the best fit hypothesis. For alternative derivations of equations

(2.1) and (2.2), see Section 3.4 of this thesis. Figure 2.1 shows the relationship between

α = Kt/Kn at the inter-particle level and Poisson’s ratio ν for the macroscopic particulate

material predicted by equations (2.1) and (2.2). The Voigt and Reuss curves in Figure 2.1
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cross at α = 1 and ν = 0.

Figure 2.1: Theoretical prediction of Poisson’s ratio ν as a function of α = Kt/Kn for a
statistically isotropic particulate material derived by Chang et al. (1995) under the Voigt
and Reuss hypotheses, given by equations (2.1) and (2.2).

Cambou et al. (1995) rederive equation (2.1) for an isotropic particulate material, but

they obtain an expression that is different from (2.2) under their version of the static hy-

pothesis, in which they assume that the average distribution fi of the inter-particle contact

forces at the local level within a particulate material can be expressed as a function of the

orientation direction ni and the far field (non-local) stress σij as

fi = ζσijnj +
1− ζ

2
[5njσjknk − σjj]ni (2.3)

where ζ is an internal parameter of the particulate material, which is related to its packing

structure. Equation (2.3) was first proposed by Delyon et al. (1990), and it is based on

the representation theorems (e.g. Spencer (1987)) under the assumptions that fi is linear

with respect to σij and isotropic with respect to ni. Cambou et al. (1995) use the symbol

µ for ζ, but we have renamed it to avoid confusion with either the shear modulus of the

material constituting the spheres, the overall shear modulus of the particulate material, or
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the inter-particle friction coefficient, all of which are often called µ. According to Sidoroff

et al. (1993), static equilibrium then requires that

σij = βD

∫
Ω

finj dΩ, (2.4)

where dΩ = sinθ dϕ dθ is the differential solid angle of the unit sphere Ω, σij is the far field

stress in the particulate material, β is the average number of contacts per unit volume (as

before), and D is the diameter of the spheres. Under the hypotheses expressed in equations

(2.3) and (2.4), Cambou et al. (1995) derive

ν =
2ζ2 + α (5− 10ζ + 3ζ2)

4ζ2 + α (20− 20ζ + 6ζ2)
, Kn =

9

βD2
κ, (2.5)

for an isotropic particulate material composed of uniform spheres of diameter D, where

α = Kt/Kn is the ratio of the tangential to the normal inter-particle contact stiffnesses and

β is the number of contacts per unit volume in the particulate material. Emeriault and

Cambou (1996) derive more complicated expressions for an arbitrary anisotropic particulate

material. Figure 2.2 shows the relationship between α = Kt/Kn at the inter-particle level

and Poisson’s ratio ν for the macroscopic particulate material predicted by equation (2.5).

Note that the values of Kn and α = Kt/Kn in equations (2.1), (2.2), and (2.5) need not

be constant, as they are in the case of a linear elastic inter-particle contact law. According

to Hertz-Mindlin contact theory, if two spheres of radius R are compressed by a normal force

Fn directed along their line of centers, then Kn and α = Kt/Kn are given by

Kn =
E ′a

1− ν ′2
, α =

2(1− ν ′)
2− ν ′

, (2.6)

where E ′ and ν ′ are the elastic modulus and Poisson’s ratio for the material constituting

the spheres (not the particulate material), and a is the radius of the circular contact area
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Figure 2.2: Theoretical prediction of Poisson’s ratio ν as a function of α = Kt/Kn for a
statistically isotropic particulate material derived by Cambou et al. (1995) under their static
hypothesis, given by equation (2.5), for different values of the internal material parameter ζ.

between the spheres given by

a =

(
3(1− ν ′2)

4E ′
FnR

)1/3

. (2.7)

In general, the inter-particle normal force Fn in equation (2.7) will depend in some way on

the confining pressure σ0 on the particulate material, either in an average sense or depending

on the local packing structure, and the inter-particle contact law can be linearized about

that value of Fn. For example, for a regular face-centered-cubic array of uniform spheres of

radius R, we can obtain constant values of Kn and α = Kt/Kn by letting Fn = F0 =
√

2R2σ0

in equation (2.7), and for a regular simple-cubic array of uniform spheres of radius R, we

can obtain constant values of Kn and α = Kt/Kn by letting Fn = F0 = 4R2σ0 in equation

(2.7).

A useful relationship between the number of contacts per unit volume β and the void
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ratio e within a randomly packed assembly of uniform spheres of radius R is

β =
3nc

8π(1 + e)R3
, (2.8)

where nc is the average coordination number in the particulate material, i.e., the average

number of contact points per particle. For the derivation, see Nemat-Nasser (2004). Exper-

imental work by Oda (1977) suggests that the average coordination number nc in random

mixtures of (non-uniform) spheres is roughly a function of the void ratio e. Some empirical

formulas relating the coordination number n̂ to the void ratio e of a particulate material are

given in equations (2.9) - (2.12) below, taken from Field (1963), Yanagisawa (1983), Chang

et al. (1990), and Ouchiyama and Tanaka (1980), respectively.

nc =
12

1 + e
, (2.9)

nc = 3.183(2.469−e), (2.10)

nc = 13.28− 8e, (2.11)

nc =
32

13

(
7− e
1 + e

)
. (2.12)

Recent work on determining the effective isotropic elastic moduli for particulate/granular

materials based on micromechanics has also been done by Trentadue (2004), Suiker and de

Borst (2005), Duffaut et al. (2010), and Kruyt et al. (2010). Trentadue (2004) improves the

inter-particle contact law given by equations (2.6) and (2.7) by employing Hertz-Cattaneo-

Mindlin contact theory, which includes “micro-slip” at inter-particle contact points. To a

first approximation, however, the effective elastic constants obtained by Trentadue match

those obtained by Chang et al. (1995) under the Reuss hypothesis and Liao et al. (1997)

under the best fit hypothesis, which are given by equation (2.2). Trentadue treats only the

case of a statistically isotropic particulate material.
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Suiker and de Borst (2005) rederive the relations expressed by equation (2.1), along

with additional relations for higher order elastic constants corresponding to several strain-

gradient micro-polar continuum models. Then they compare the predictions of these models

with the wave propagation characteristics of a two-dimensional discrete hexagonal lattice.

Their analysis follows that of Chang and Liao (1990) and Chang and Gao (1995) in assuming

that discrete particle rotations can be approximated by a continuous particle rotation field,

similar to the strain field of classical continuum theory. This particle rotation field is then

represented by a Taylor expansion, which can be truncated at whatever order is desired for

the strain-gradient continuum model. This approach is problematic in that it cannot capture

zero-energy strains or mechanisms due to particle rotation at the microscale. In Chapter 4

of this thesis [Fleischmann et al. (2013b)], we demonstrate both theoretically and via DEM

simulations that mechanisms due to particle rotation can and do exist in a randomly packed

particulate material, even in the elastic range. Moreover, particle rotation at the local level

can be involved in a global elastic strain of the particulate material (i.e., reversible strain at

the global level), while, as Goddard (2008) shows, these particle rotations do not contribute

to the quasi-static stress power. An attempt at resolving this difficulty in the context of a

Cosserat-type continuum framework has been made by Kruyt (2003), but only qualitative

results are obtained. Kruyt (2010) extends the work of Suiker and de Borst (2005) to

determine the dispersion relations for wave propagation in regular three-dimensional lattices

of spherical particles (simple cubic, body centered cubic, and face centered cubic), assuming

both normal and tangential inter-particle contact forces (linear spring contact model) and

explicitly accounting for the rotational degrees of freedom of the particles.

Duffaut et al. (2010) modify the results of Walton (1987), which are the same as the

relations given by equation (2.1), by introducing a parameter to measure micro-slip at inter-

particle contacts. This was also done by Bachrach et al. (2000). The motivation for this

modification came from an observed discrepancy between the experimentally measured value
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of ν for a random packing of glass beads and the theoretical prediction of Walton (1987)

in the vicinity of α ≈ 0.9. In particular, equation (2.1) underpredicts Poisson’s ratio very

significantly when compared to experimental measurements on a random assembly of glass

beads, for which Hertz-Mindlin contact theory predicts α ≈ 0.9. Bachrach et al. (2000)

suggested that the cause for this discrepancy may be due to slipping at the inter-particle

contacts. In Sections 4.5 and 4.6 of this thesis, however, we demonstrate that inter-particle

slip cannot account entirely for the discrepancy between the experimental and predicted

values of Poisson’s ratio noted by Bachrach et al. (2000) and Duffaut et al. (2010), and we

argue that the effect of particle rotation, in particular the mechanisms or zero-energy strains

produced by particle rotation in a random assembly of uniform spheres, provide a better

explanation for this discrepancy.

In a recent study, Lee et al. (2011) use the Hashin-Shtrikman-Willis variational principle

(Hashin and Shtrikman, 1962, Willis, 1977) to obtain overall elastic moduli for heterogeneous

polydisperse particulate materials in three-dimensions, where the statistical information for

the particulate assemblies (idealized as non-uniform spheres) is based on three-dimensional

microtomographic (micro-CT) data. Since the second-order Hashin-Shtrikman-Willis vari-

ational principle used by Lee et al. (2011) requires the integration of complex integrands

involving the interaction of the Green’s function with first and second order probability

functions in three-dimensions, the authors focus on efficient numerical integration techniques

necessary for computing the Hashin-Shtrikman-Willis bounds for these tomographically gen-

erated systems. The approach of Lee et al. (2011) is powerful, but it is also computationally

expensive, and it relies on detailed statistical information for the particulate material fab-

ric. However, while we have criticized the use of variational principles to obtain overall

elastic moduli for particulate materials because of their general inability to account for the

zero-energy strains produced by particle rotation, this may be resolved by the use of the

Hashin-Shtrikman-Willis variational principle as extended by Šejnoha and Zeman (2002)
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and Procházka and Šejnoha (2004) to include “eigenstrains”, or stress-free strains, which are

precisely the zero-energy strains that we have found are critical for understanding the effect

of particle rotation on the elastic behavior of particulate materials. Thus, this approach may

provide a means for an effective extension of our work in Chapters 3 and 4 of this thesis

[Fleischmann et al. (2013a) and Fleischmann et al. (2013b)].

2.2 Constitutive Modeling of Particulate Materials Based

on Micromechanics: Plastic Range

Several of the same researchers who have used homogenization techniques to obtain effective

elastic moduli for particulate materials based on micromechanics have tried to apply similar

methods to obtain micromechanics-based elastoplastic models for particulate materials. For

example, Emeriault et al. (1996) base their analysis on the static homogenization assumption

of Cambou et al. (1995) and Emeriault and Cambou (1996), expressed in equations (2.3) and

(2.4), and they derive the yield surface for a particulate material based on the inter-particle

slip condition Ft = µFn, where Ft and Fn are the magnitudes of the inter-particle tangential

and normal contact forces, respectively, and µ is the inter-particle friction coefficient. For

an isotropic particulate material, they find that the relationship between the inter-particle

friction coefficient µ = tanφµ (where φµ is the microscopic “friction angle” at the inter-

particle contacts) and the macroscopic friction angle φ for the particulate material at yield

is

sinφ = tanφµ
tanφµ(3− ζ) +

√
4ζ2 + tan2 φµ(5− 3ζ)2

2ζ2 + tan2 φµ(4ζ2 − 13ζ + 11) + tanφµ
√

4ζ2 + tan2 φµ(5− 3ζ)2
, (2.13)
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where the yield of the particulate material on the macroscale follows the well-known Mohr-

Coulomb criterion:

|σ1 − σ2|
2
√
σ1σ2

≤ tanφ,
|σ1 − σ3|
2
√
σ1σ3

≤ tanφ,
|σ2 − σ3|
2
√
σ2σ3

≤ tanφ, (2.14)

where σ1, σ2, and σ3 are the principal stresses within the particulate material. For a deriva-

tion of the Mohr-Coulomb yield criterion as given by equation (2.14), see Appendix D.

Emeriault et al. (1996) also derive more complicated yield surfaces for anisotropic particu-

late materials. The internal parameter ζ appearing in equation (2.13) is the same as that

appearing in equation (2.3) of Section 2.1. Figure 2.3 shows the relationship between φµ and

φ expressed in equation (2.13) for a range of ζ.

Figure 2.3: The relationship between the inter-particle friction angle φµ = tan−1 µ, where µ
is the inter-particle friction coefficient, and the macroscopic friction angle φ for an isotropic
particulate material at yield, derived by Emeriault et al. (1996) under the static hypothesis
of Cambou et al. (1995), given by equation (2.13), for different values of the internal material
parameter ζ described in Section 2.1.

Chang and Hicher (2005) propose a homogenization process for obtaining a macroscopic

elastoplastic rate-independent incremental stress-strain relation for a particulate material

based on the Reuss hypothesis or best fit hypothesis of Liao et al. (1997), assuming a semi-



15

phenomenological microscopic elastoplastic material behavior. In particular, they assume

that dilation can be represented at the particle scale by

dδpn
dδpt

=
Ft
Fn
− tanφ0, (2.15)

where dδpn and dδpt are the plastic parts of the relative normal and tangential displacements

between two (pseudo)particles, Fn and Ft are the corresponding normal and tangential con-

tact forces, and φ0 is a material parameter that according to Chang and Hicher can in most

cases be considered equal to the inter-particle friction angle φµ. They also assume that the

yield function at the particle scale can be represented by

f(Fn, Ft, κ(δpt )) = Ft − Fnκ(δpt ), (2.16)

where κ(δpt ) is an isotropic hardening parameter of the form

κ =
kp0 tanφpδ

p
t

|Fn| tanφp + kp0δ
p
t

, (2.17)

where φp and kp0 are two more material parameters. The parameter kp0 is the initial slope of

the κ versus δpt curve, and κ approaches tanφp for δpt >> Fn. It must be noted that, although

these relations are assumed to exist between individual particles at the particle scale, they

do not really represent the micromechanics of the particle interactions themselves, but rather

use macroscopic properties of the granular material to describe inter-particle interactions at

the particle scale in an “average” sense. For example, neither equation (2.15) nor (2.17) are

derived from inter-particle contact mechanics. Under these assumptions, Chang and Hicher

(2005) derive an “inter-particle” elastoplastic stiffness tensor Kc
ij so that, for a given contact

c, the increment in the contact force dF c
i can be written as a function of the increment in
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the contact displacement dδcj as

dF c
i = Kc

ijdδ
c
j . (2.18)

Using equation (2.18), Chang and Hicher (2005) follow the static (best fit) homogenization

process of Liao et al. (1997) to obtain an elastoplastic incremental stress-strain relation

dεij =Mijkldσkl, (2.19)

where the fourth-order tensor of second-order elastoplastic compliancesMijkl is given by

Mijkl = Λ−1
imΛ−1

knV
∑
c

(Kc
jl)
−1lcml

c
n, (2.20)

where the sum is performed over all contacts c in a representative volume V , lci is the branch

vector that connects the centroids of the two particles in contact at c, and Λij =
∑

c l
c
i l
c
j is the

fabric tensor for the representative volume. Chang and Hicher (2005) evaluated the sum in

equation (2.20) numerically. In order to make the volume representative, they assumed that

the orientations of the contacts were at Gauss integration points in spherical coordinates.

They claimed that sufficient accuracy was obtained by considering orientations corresponding

to 74 fully symmetric integration points. They tested their model against experimental

data in the quasi-static range, and they found reasonable agreement. However, because

of its dependence on phenomenological relationships such as those expressed in equations

(2.15) and (2.17) that do not really exist at the inter-particle level, in that they are not

derived from particle interactions, the model of Chang and Hicher (2005) is not really based

on micromechanics. Hicher and Chang (2007) have also proposed a micromechanics-based

elastoplastic model for unsaturated particulate/granular materials that is rate-dependent,

but like their rate-independent model, it depends heavily on assumed microscopic behavior

that is largely phenomenological.
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Another approach to obtaining a micromechanics-based elastoplastic model for particu-

late materials is taken by Mehrabadi et al. (1993). They derive an incremental elastoplastic

continuum constitutive model for a two-dimensional assembly of disks based on the assump-

tion that the microstructure of the particulate assembly can be represented by a probability

density function of the inter-particle contact normal vectors. No other information about the

particulate material fabric is included in their analysis. In this way, they attempt to simplify

the evolution law for the deformation history of the material fabric, which is an essential

part of any micromechanics-based elastoplastic constitutive model for a particulate material.

Their local yield criterion is taken to be Ft = µFn, where Ft and Fn are the magnitudes of the

inter-particle tangential and normal contact forces, respectively, and µ is the inter-particle

friction coefficient. The local stress tensor is linked to the inter-particle contact forces in a

representative volume through equation (2.24) below, and a phenomenological evolution law

for the distribution of contact normal vectors is proposed. Mehrabadi et al. (1993) apply a

homogenization method based on Taylor (1938), which is an extension of the Voigt homog-

enization method discussed in Section 3.4.1 of this thesis (and derived in Appendix C) to

plasticity, to obtain a macroscopic incremental (rate-independent) continuum constitutive

relation for their particulate system. They also briefly discuss the possibility of applying the

self-consistent homogenization method proposed by Hill (1965) to their system. Mehrabadi

et al. (1993) obtain predictions of shearing deformation from their model that are in qualita-

tive agreement with experimental observations of particulate materials. However, they make

no quantitative comparisons of the predictions they obtain from their model with experimen-

tal or numerical (DEM) results. Balendran and Nemat-Nasser (1993) use physical insights

gained from the model of Mehrabadi et al to develop a semi-phenomenological elastoplas-

tic model for two-dimensional particulate materials, and show that this model is in better

agreement with experimental results than the model of Mehrabadi et al. (1993). The model

of Balendran and Nemat-Nasser (1993) is extended to three dimensions by Nemat-Nasser
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and Zhang (2002).

A different approach to obtaining a micromechanics-based elastoplastic model for a two-

dimensional particulate material is taken by Borja and Wren (1995), who give more attention

to capturing the specific effects of the variations and evolution of the microstructure of the

material fabric during plastic deformation. They begin by viewing a representative region

of a two-dimensional particulate material as a macro-element, and then they derive a local

elastoplastic constitutive law for this macro-element. This local elastoplastic constitutive law

is based on individual inter-particle contact behavior within the macro-element, consisting of

straightforward linear elastic normal and tangential inter-particle contact force-displacement

laws Fn = Knδn and Ft = Ktδt and inter-particle slip when the frictional slip condition

Ft = µFn is met, where µ is the inter-particle friction coefficient. Then they derive a macro-

scopic elastoplastic constitutive law by assuming that the particulate material is composed

of repeating cells of this macro-element. Borja and Wren (1995) performed numerical simu-

lations using their model with various ordered and disordered macro-elements consisting of

58, 60, 64, and 196 disks, and they found that their model was able to reproduce important

qualitative particulate material behavior such as anisotropy, hardening, and dilation. Their

results were not quantitatively compared to any other results, obtained by experiment or by

DEM. The method of Borja and Wren (1995) is an early example of what today would prob-

ably be called a multiscale method. More recently, Andrade and Tu (2009) have employed a

similar multiscale method to model the elastoplastic behavior of a three-dimensional partic-

ulate material using a cubical macro-element consisting of disordered spheres in conjunction

with DEM.

Henderson et al. (2001) derive two anisotropic elastoplastic models for particulate mate-

rial compaction that are based on micromechanics. They obtain their models by employing

both the Voigt and Reuss homogenization processes, following the theoretical development

of those processes for particulate materials made by Emeriault and Cambou (1996). They in-
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clude plastic behavior in the inter-particle contact law, but they do not include inter-particle

sliding, because they intend their model to be applicable only to compaction, for which

case they assume inter-particle sliding to be negligible. Henderson et al. (2001) compared

the predictions of their resulting models with experimental data, and they found that the

predictions based on the Reuss approach were more physically realistic than those based

on the Voigt approach. They also found that by adjusting parameters in the inter-particle

contact law the predictions based on the Reuss approach could be made to match experi-

mental die-pressing data almost perfectly. The model of Henderson et al is limited in that

it only applies to the special case of compaction where there is no inter-particle sliding, but

it illustrates the failure of the Voigt approach to give quantitatively adequate predictions,

even in this (relatively simple) special case.

Anandarajah (2004) and Anandarajah (2008) has developed a model for the elastoplastic

deformation of a particulate material that is based on the collapse of force chains in the

material. In this model, force chains are assumed to run parallel to the principal stress

directions in the particulate material, and the behavior of the force chains is extrapolated

from the behavior of simple cubic (SC) and face centered cubic (FCC) representative “micro-

elements” of spheres, in which the spheres are allowed to roll and slide relative to one another.

Anandarajah (2008) compares the results obtained by this model to results obtained from

DEM simulations of triaxial tests on 2 914 uniform spheres, and found qualitative agreement.

In particular, the critical state line (CSL), which is the relation between the consolidation

pressure and void ratio in a particulate material for which no volume change (dilation) occurs

during shear deformation, was compared between the model and the DEM simulations, and

qualitative agreement was observed.

Recently, Kuhn (2010) has proposed a model for the evolution of a particulate material

fabric during plastic deformation. In particular, Kuhn’s model predicts the evolution of

the induced anisotropy due to changes in the average inter-particle contact orientations and
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average inter-particle contact forces within a particulate material fabric during plastic defor-

mation. Kuhn (2010) also performed three-dimensional DEM simulations on 20 assemblies

of 4 096 spherical particles subjected to triaxial compression and compared the results of

his model to local measurements taken from the DEM simulations. By adjusting material

parameters in his model, Kuhn was able to attain quantitative agreement between the DEM

measurements and the predictions from the model in regions of uniform plastic deformation

within the particulate material fabric.

2.3 Constitutive Modeling of Particulate Materials Based

on Micromechanics: Discrete Element Method

The discrete (or distinct) element method has been used effectively to numerically model the

quasi-static and dynamic behavior of particulate materials since its introduction by Cundall

and Strack (1979). Two good references for the current state of the art of the discrete element

method, with particular application to geomaterials, including particulate materials, are Jing

and Stephansson (2007) and O’Sullivan (2011). In its most basic form, the discrete element

method models a particulate medium using a massive collection of distinct rigid elements

having simple shapes, such as spheres. Contact between the DEM elements may be modeled

by nonlinear Hertz-Mindlin theory, or by the simple linear spring arrangement shown in

Figure 2.4. To model friction, the contact history between pairs of elements in contact must

be stored. Contact between DEM elements is “soft” (or “penalized”) in the sense that elements

are allowed to overlap slightly with a repulsive contact force applied in proportion to the

overlap. Let un be the radial overlap distance between two contacting spherical elements,

let vn and vt be the relative normal and tangential velocities at the point of contact, and let

ut be the elastic part of the total accumulated tangential displacement between the surfaces

of the two spheres since the contact was initiated, projected onto the plane of contact and
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scaled as necessary to satisfy the frictional sliding criterion |Ft| ≤ µ|Fn| shown in Figure 2.4.

Then, according to the linear spring model, the normal and tangential force vectors Fn and

Ft at the point of contact are given by equations (2.21) and (2.22), respectively, where Kn

and Kt are the normal and tangential elastic contact spring stiffnesses, respectively, n is the

unit normal vector along the line connecting the centers of the contacting spheres (in the

appropriate direction), γn and γt are normal and tangential viscoelastic damping constants,

and meff = mimj/(mi + mj) is the effective mass of the two spheres i and j (Silbert et al.,

2001).

Fn = Knunn− γnmeffvn (2.21)

Ft = −Ktut − γtmeffvt. (2.22)

Figure 2.4: Left: Linear spring contact model for spherical DEM elements. Right: Tangential
linear contact force-displacement law for spherical DEM elements.

The use of a linear spring contact model allows us to apply the results of Tavarez and

Plesha (2007) and O’Sullivan and Bray (2004) to obtain estimates of the critical time-step

size for the explicit time integration scheme. Critical time-step sizes suggested by O’Sullivan

and Bray (2004) for 2-D and 3-D DEM simulations are given by equation (2.23). These

estimates are based on the standard stability criterion for the central difference explicit

integration scheme applied to linear systems, ∆t < (2/ωmax)
(√

1 + ξ2 − ξ
)
, where ωmax
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is the maximum natural frequency of the stiffness and mass matrices associated with the

system, and ξ is the fraction of critical damping in the system at ωmax (Cook et al., 2002).

For DEM, ωmax must be estimated, because internal forces are evaluated in an element-by-

element fashion, and hence the stiffness matrix for the system is not formed. The estimate

in equation (2.23) ignores the mass proportional damping included in equations (2.21) and

(2.22), which has the effect of only slightly decreasing the stability of the system for most

problems, since the fraction of critical damping due to mass proportional damping at high

frequencies is typically low.

∆t
(2-D)
crit ≈ 0.3

√
mmin

Kmax
∆t

(3-D)
crit ≈ 0.2

√
mmin

Kmax
(2.23)

The critical time-step sizes given by equation (2.23) include a “safety factor”. For original

derivations of alternative estimates of the critical time-step size for 2-D and 3-D DEM based

on the Gerschgorin bound, see Appendix E.

For our DEM simulations, we use a modified version of LAMMPS, the Large-scale

Atomic/Molecular Massively Parallel Simulator developed at Sandia National Laboratories,

which is more commonly used for molecular dynamics simulations than for DEM simulations.

For a description of the core features of LAMMPS, see Plimpton (1995). We have added

features such as the capability to model non-rigid element clusters and particle damage, as

in Jensen et al. (1999), Jensen et al. (2001a), Jensen et al. (2001b), and Tavarez and Plesha

(2007). A few of the advantages of LAMMPS are that it is open-source, it is easy to expand

and modify, and it is optimized for massive parallel computing (see LAMMPS). For 2-D and

3-D visualization of our DEM specimens, we use the open source codes VMD (Humphrey

et al., 1996) and ParaView (see ParaView). Since none of the DEM simulations performed

for this thesis use element clusters to model individual particles, particles consist of individ-

ual (cohesionless) spherical elements only. Hence, in reference to DEM in this thesis, we use
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the terms “particle” and “element” interchangeably.

A large number of researchers have used DEM to validate continuum constitutive models

for particulate/granular materials since the 1980’s, and a few of these have used DEM to

inform the development of their continuum constitutive models based on micromechanics. An

early example of this is the work of Bathurst and Rothenburg (1988), who performed DEM

simulations on two-dimensional specimens of 1 000 disks to validate their micromechanics-

based constitutive relations. The relations obtained by Bathurst and Rothenburg between

the elastic constants ν and κ and the inter-particle contact stiffnesses Kn and Kt correspond

to the relations obtained under the Voigt hypothesis, given by equation (2.1), with some

differences caused by the fact that their relations were derived for a two-dimensional assembly

of disks rather than for a three-dimensional assembly of spheres. For the results of the Voigt

and Reuss (or best fit) homogenization hypotheses applied to two-dimensional assemblies of

disks as well as three-dimensional assemblies of spheres, see Liao et al. (1997). Bathurst and

Rothenburg performed DEM simulations of constrained biaxial compression tests on their

specimens and measured Poisson’s ratio ν for different inter-particle contact stiffness ratios

α = Kt/Kn. They found good agreement between the measured values and the theoretically

predicted values. In particular, for α ≈ 1, Bathurst and Rothenburg found that ν ≈ 0.

They also found that particle rotation in their specimens during the DEM simulations was

negligible. It is noteworthy that the DEM specimens used by Bathurst and Rothenburg

were nearly close-packed. In Sections 3.5 and 4.5 of this thesis, we report results that we

have obtained from our own DEM simulations of constrained triaxial compression tests on

three-dimensional specimens consisting of 3 430 and 29 660 uniform spheres, and we note that

particle rotation can in fact significantly alter the value of Poisson’s ratio ν, particularly for

α ≈ 1 and greater. This phenomenon appears to be linked to the degree to which inter-

particle contacts at the local level are “asymmetric”, and it can be related to a single internal

parameter ξ of the particulate material. See Chapters 3 and 4 of this thesis [Fleischmann
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et al. (2013a) and Fleischmann et al. (2013b)] for details.

Chang and Misra (1990) also explored the micromechanical properties of random as-

semblies of disks and spheres using DEM. They considered only densely packed specimens,

with void ratios of e ≈ 0.1 for the two-dimensional specimens and e ≈ 0.5 for the three-

dimensional specimen. The DEM specimens consisted of very few elements, with 276 uniform

and 405 non-uniform disks in the two-dimensional specimens and 95 non-uniform spheres

in the three-dimensional specimen. Like Bathurst and Rothenburg, Chang and Misra claim

that particle rotation is “negligibly small” in the elastic range. They do not make clear what

“negligibly small” means, except by appealing to a chart that shows that the maximum par-

ticle rotation in the specimens is less than approximately 10−3 radians, but whether or not

this amount of particle rotation is truly negligible in the elastic range is not addressed. They

do make the point that the mean particle rotation is very nearly zero, but again whether

or not one can conclude from this that the “contribution of rotation is relatively small,” as

Chang and Misra conclude, is again not addressed.

Liao et al. (1997) performed DEM simulations on assemblies of 800 to 900 uniform circular

disks to test two-dimensional versions of the relations in equations (2.1) and (2.2) and another

set of relations derived under what they called the piece-wise fit hypothesis. They performed

simulations using disks with α = Kt/Kn ranging between 0 ≤ α ≤ 1 and measured Poisson’s

ratio and Young’s modulus, and they found that the DEM results lay between the theoretical

results obtained by the Voigt and piece-wise fit hypotheses.

Calvetti and Emeriault (1999) used DEM to measure the distribution of contact forces

in a random assembly of 1159 circular disks of a linear size distribution subjected to biaxial

loading. They used these simulations to evaluate the accuracy of theoretical predictions of

the elastic constants for the assemblies, such as those given by equation (2.5), based on the

homogenization methods of Cambou et al. (1995) and Emeriault and Cambou (1996). They

found that these results accurately predicted the elastic behavior of the assemblies if the
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disks were constrained to have no rotation, but that the results failed to accurately predict

the elastic behavior of the assemblies if the disks were allowed to rotate. Their observations

mirror our own observations for three-dimensional assemblies of spheres subjected to triaxial

loading, which are given in Sections 3.5 and 4.5 of this thesis.

Kruyt and Rothenburg (2002) used DEM to validate the upper and lower bounds they

obtained for the effective elastic moduli for two-dimensional isotropic assemblies of non-

rotating particles. One bound was the two-dimensional version of equation (2.1), and the

other bound was obtained numerically based on the local packing structure of the individual

specimens, according to a method similar to the piece-wise fit hypothesis of Liao et al. (1997).

The DEM specimens consisted of 50 000 randomly packed circular disks with log-normal size

distributions. They measured the bulk and shear moduli of the specimens for values of

α = Kt/Kn ranging between 0 ≤ α ≤ 1, and they found that the DEM results lay between

the theoretical bounds, as expected.

Jenkins et al. (2005), following earlier work by Jenkins et al. (1989), have used DEM

simulations to show that local variations in strain from the the average strain in a particulate

material can lead to large discrepancies in the theoretically predicted values of the shear

modulus (or Poisson’s ratio) for the particulate material when compared to the measured

values. They argue that this local variation is due to a strain “relaxation” between particle

pairs deviating from the average strain in the particulate material, which is similar to the

argument we make for local strain “mechanisms” due to particle rotation in Chapter 4 of this

thesis. They show that this local strain relaxation can decrease the theoretical prediction of

the effective shear modulus from equation (2.1) (in terms of the bulk modulus κ and Poisson’s

ratio ν) by up to 70%. In contrast, they find that the bulk modulus κ is relatively insensitive

to local strain variation, which corresponds to our own observations – see Chapters 3 and 4 of

this thesis [Fleischmann et al. (2013a) and Fleischmann et al. (2013b)]. Each DEM specimen

for Jenkins et al. (2005) consisted of 10 000 randomly packed spheres of two different radii
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in equal numbers.

O’Sullivan et al. (2004) performed a combined experimental and DEM analysis of three

dimensional regular arrays of 1 500–2 000 uniform and non-uniform spheres. In their study,

they recorded both pre- and post-yield responses of face-centered cubic and rhombic packings

of spheres under both triaxial and plane strain loading conditions. They found that DEM was

capable of accurately reproducing the experimental results obtained from steel spheres, for

which the inter-particle friction angle was measured to be φµ ≈ 5.5◦. They also noted that the

post-yield responses of the DEM specimens was sensitive to the coefficient of friction assumed

at the particle-boundary interface along the specimen boundaries. During their triaxial DEM

simulations, the variation in the average coordination number within the specimens as well

as the angle of mobilized friction φm = sin−1 [(σ1 − σ3)/(σ1 + σ3)] were recorded as functions

of axial strain, where σ1 and σ3 denote axial and lateral stresses, respectively. Following up

on this work, O’Sullivan and Cui (2009) performed experimental and DEM triaxial tests on

irregular packings of approximately 15 000 spheres, using circumferential periodic boundary

conditions for the DEM simulations. They found remarkable agreement between plots of the

stress ratio versus axial strain obtained from their DEM simulations and experimental triaxial

tests, for monotonic and cyclic loading. Moreover, they recorded the variation in the average

contact force and coordination number, the average motion of particles, and the evolution

of the fabric tensor for the DEM specimens during initial loading and the unload-reload

cycles. From their DEM results, O’Sullivan and Cui (2009) were able to identify the gradual

formation of force-chains (identified as larger forces supported by vertically oriented inter-

element contacts) as axial strain in the triaxial simulations progressed. During subsequent

unload-reload cycles, they found that the reduction in the deviator stress during unloading

was accompanied by a redistribution of the relative magnitudes of the inter-particle contact

forces, but not in a substantial redistribution of the inter-particle contact network geometry.

That is, there was no significant collapse of the “strong force networks” or force-chains that
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had developed during initial loading.

Durán et al. (2010) have used three-dimensional DEM simulations to systematically

compare the different micromechanical formulations of strain that have been used by var-

ious researchers for particulate/granular materials, and to assess their accuracy. While

the micromechanical formulation of local stress in a particulate/granular material is well-

established, their is no corresponding well-established formulation of local strain. Consider

a particle A in a particulate material and one of its contacting neighbors B, shown in Fig-

ure 2.5. For the contact c between the particle A and the particle B, let the branch vector

lci be the vector from the center of the particle A to the center of the contacting neighbor,

and let the vector f ci be the contact force on the particle A from the particle B, as shown

in Figure 2.5. Then the average local stress tensor over a representative volume including at

Figure 2.5: Illustration of an inter-particle contact c between two particles within a partic-
ulate material, with the branch vector lci and the contact force vector f ci shown.

least two particles can be expressed as

σij =
1

Vσ

∑
c

f ci l
c
j , (2.24)

where the sum is over the contacts between the particles within the representative volume,
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and Vσ is the volume of the region containing those particles. Note that the tensor product

f ci l
c
j is unique for a given contact c regardless of which particle plays the role of particle A

in Figure 2.5. For the derivation of equation (2.24), see Nemat-Nasser (2004). Equation

(2.24) seems to have been first derived by Love (1927), and it has been rederived many

times since. It can be derived either from equilibrium and the Gauss theorem, or by the

principle of virtual work. While the use of equation (2.24) is well established in the literature,

different formulations for the local strain in a particulate material have been proposed. For

example, Bagi (1996) uses the following formulation for the average local strain tensor over

a representative volume.

εij =
1

Vε

∑
e

∆ueid
e
j , (2.25)

where the sum is over the edges of the tetrahedra defining the Delaunay tessellation of the

centers of the particles within the representative volume, and Vε is the volume of those

tetrahedra. For convex particles, the edges e will include all of the actual contacts, but they

will also include so-called “virtual” contacts necessary to complete the Delaunay tessellation.

The vector dei is the so-called complementary area vector of the edge e, and the vector ∆uei

is the relative displacement between particles connected by the edge e. The drawback of

Bagi’s strain is that it depends on Delaunay tessellation, which is an O(N logN) procedure.

Liao et al. (1997) use the following formulation for the average local strain tensor over a

representative volume.

εij =
∑
c

∆uci l
c
kΛ
−1
jk , (2.26)

where the sum is over the contacts between the particles within the representative volume,

Λ−1
ij is the inverse of the fabric tensor Λij =

∑
c l
c
i l
c
j for the representative volume, ∆uci

is the relative displacement between particles in contact at c, and lci is the branch vector.

Cambou et al. (2000) use the following formulation for the average local strain tensor over
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a representative volume.

εij =
∑
e

∆uei l
e
k(Λ

∗
jk)
−1, (2.27)

where the sum is over the edges of the tetrahedra defining the Delaunay tessellation of the

centers of the particles within the representative volume, as in equation (2.25), (Λ∗ij)
−1 is

the inverse of the extended fabric tensor Λ∗ij =
∑

e l
e
i l
e
j for the representative volume, ∆uei

is the relative displacement between particles connected by the edge e, and lei is the branch

vector between particles connected by the edge e. Durán et al. (2010) have shown that,

under certain assumptions such as the co-linearity of the complementary area vector dei and

the branch vector lei , equation (2.27) can be derived from equation (2.25). Durán et al.

(2010) compared the predictions of local strain given by equations (2.25) – (2.27) to the

macroscopic strain produced during 3-D DEM simulations of isotropic and triaxial loadings.

They found that the formulation of strain due to Liao et al. (1997) given by equation (2.26)

was unable to reproduce the macroscopic strain. The formulation of strain due to Cambou

et al. (2000) given by equation (2.27) performed better, with errors of less than 5%. The

formulation of strain due to Bagi (1996) given by equation (2.25) performed best, and was

able to reproduce the macroscopic strain within 1% to 2% accuracy. The DEM simulations

of Durán et al were performed on a specimen consisting of 250 000 spheres with a log-normal

size distribution and volumetric packing density of 0.65.

Kruyt et al. (2010) extend the work of Kruyt and Rothenburg (2002) and Jenkins et al.

(2005) to obtain upper and lower bounds for the effective elastic moduli for two-dimensional

isotropic assemblies of rotating particles. They use the discrete minimum potential energy

principle reported by Kruyt and Rothenburg (2004), and in that regard their approach is sim-

ilar to other variational approaches found in the literature, which we have already critiqued

for their general inability to account for the mechanisms or zero-energy strains produced by

particle rotation. What is novel, and in our opinion very important, in the approach of Kruyt
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et al. (2010), however, is the fact that they use force and moment equilibrium equations at

the microscale to determine the rotation fields for small sub-assemblies of elements, which

are in turn used in the variational approach at the macroscale. Sub-assemblies of various

“orders” are considered, which include progressively more levels of particle neighbors (two-

dimensional disks), and these sub-assemblies include what the authors call “near-singular”

configurations of disks. Thus, despite the fact that Kruyt et al. (2010) still rely on an energy-

based approach to obtain the effective elastic moduli, their approach is capable of capturing

zero-energy strains due to particle rotation at the microscale. Kruyt et al. (2010) validate

their analytical results with two-dimensional DEM simulations on specimens of 50 000 disks.

Chapters 3 and 4 deal with the same issues, but in three-dimensions and using homogeniza-

tion methods that do not depend on the principle of minimum potential energy. It should

be noted that we were unaware of the work of Kruyt et al. (2010) when we wrote (and pub-

lished) Chapters 3 and 4 [Fleischmann et al. (2013a) and Fleischmann et al. (2013b)] of this

thesis. However, we believe that the approach of Kruyt et al. (2010), though at this point still

only performed for two-dimensional disks, may eventually provide a reasonable alternative

to our approach. At this point, however, essential differences in two and three dimensional

particulate material behavior, discussed in Chapter 9 [Fleischmann et al. (2013c)], preclude

the possibility of direct quantitative comparison of our results with theirs.

It is worth noting that alternatives to the explicit discrete element method have been

proposed, for example by Holtzman et al. (2009) and Holtzman et al. (2010), who introduce

a variational approach based on the conjugate gradient algorithm that uses the principle of

least work or minimum potential energy to find sequential (quasi-static) equilibrium states

of a particulate material specimen subjected to incremental displacements of its boundaries.

Their method avoids the issue of the critical time step, which can make DEM simulations

time consuming (as in any explicit time integration method). Of course, since their method

is implicit, it is subject to the well-known disadvantages of implicit methods (such as ill-
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conditioning). Holtzman et al. (2009) use their method to determine the shear and bulk

moduli of 3-D specimens of approximately 5 000 spheres. Their model’s prediction of the

bulk modulus compares favorably with experimental data for glass beads, but their prediction

of the shear modulus does not. This is unfortunately the common shortcoming of most

theoretical treatments of particulate materials in the elastic range. We conjecture that the

failure of the variational model to accurately predict the shear modulus is due to the fact that,

since this model is based on the minimization of virtual work, it may not properly account

for zero-energy rotations in the elastic range. The significance of zero-energy rotations in

the elastic range is discussed in detail in Chapter 4 of this thesis.

DEM can be used in some novel and unexpected ways, such as in Silbert (2010), where

the author uses DEM to measure the Green’s function response to local force perturbations

of regular packings of frictionless spheres (in the elastic range). However, DEM is most often

employed to simulate the loading conditions encountered in the field of geomechanics, and its

use is increasing among researchers in that field (O’Sullivan, 2011). A thorough (and useful)

study of the macro and micro behavior of particulate materials under a variety of loading

conditions (conventional triaxial, plane strain, and direct shear) typically encountered in the

field of geomechanics, employing 3-D DEM simulations on specimens of over 15 000 particles,

is performed in the 511-page doctoral dissertation of Zhao (2009).
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Chapter 3

Direct Micromechanics Derivation and

DEM Confirmation of the Elastic Moduli

of Isotropic Particulate Materials,

Part I: No Particle Rotation 1

3.1 Abstract

We derive the macroscopic elastic moduli of a statistically isotropic particulate aggregate ma-

terial via the homogenization methods of Voigt (1928) (kinematic hypothesis), Reuss (1929)

(static hypothesis), and Hershey (1954) and Kröner (1958) (self-consistent hypothesis), orig-

inally developed to treat crystalline materials, from the directionally-averaged elastic moduli

of three regular cubic packings of uniform spheres. We determine analytical expressions for

these macroscopic elastic moduli in terms of the (linearized) elastic inter-particle contact

stiffnesses on the microscale under the three homogenization assumptions for the three cu-

1This chapter closely follows Fleischmann et al. (2013a).
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bic packings (simple, body-centered, and face-centered), assuming no particle rotation. To

test these results and those in the literature, we perform numerical simulations using the

discrete element method (DEM) to measure the overall elastic moduli of large samples of ran-

domly packed uniform spheres with constant normal and tangential contact stiffnesses (linear

spring model). The beauty of DEM is that simulations can be run with particle rotation

either prohibited or unrestrained. In this first part of our two-part series of papers, we per-

form DEM simulations with particle rotation prohibited, and we compare these results with

our theoretical results that assumed no particle rotation. We show that the self-consistent

homogenization assumption applied to the locally body-centered cubic (BCC) packing most

accurately predicts the measured values of the overall elastic moduli obtained from the DEM

simulations, in particular Poisson’s ratio. Our new analytical self-consistent results lead to

significantly better predictions of Poisson’s ratio than all prior published theoretical results.

Moreover, our results are based on a direct micromechanics analysis of specific geometrical

packings of uniform spheres, in contrast to all prior theoretical analyses, which were based

on difficult-to-verify hypotheses involving overall inter-particle contact distributions. We

continue the analysis begun in this first part for the case of unrestrained particle rotation in

Part II, Chapter 4 [Fleischmann et al. (2013b)].

3.2 Introduction

We derive the overall elastic moduli for a statistically isotropic particulate aggregate ma-

terial consisting of randomly oriented arrangements of uniform spheres. At the points of

contact between these spheres, we assume that there are both normal and tangential contact

stiffnesses, the values for which can be obtained from Hertz-Mindlin contact theory. More-

over, we assume these contact stiffnesses are constant within the range of deformation to

which the linear elastic moduli apply. Our approach employs the classical homogenization
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methods originally developed to determine theoretically the elastic moduli for a statistically

isotropic aggregate material composed of randomly oriented locally cubic crystalline material

grains, such as a metal. These homogenization methods were derived by Voigt (1928), Reuss

(1929), and Hershey (1954) and Kröner (1958), introducing what are sometimes referred to

as the kinematic, static, and self-consistent homogenization hypotheses, respectively. One

novel aspect of our approach is that we apply these methods to determine the overall ten-

sor of elastic moduli C for a statistically isotropic particulate material, such as sand or

powder, based on the local tensors of elastic moduli C for three cubic packings (simple,

body-centered, and face-centered) of uniform spheres. In this way, we obtain relationships

between the elastic moduli of a statistically isotropic particulate material on the macroscale,

and the (linearized) elastic inter-particle contact stiffnesses on the microscale, under each of

these three homogenization assumptions and for each of the three cubic packings.

Our results based on the Voigt hypothesis for all three local packings reproduce the results

obtained by Walton (1987) and Chang et al. (1995) for an isotropic particulate material

under their kinematic hypothesis (analogous to our Voigt hypothesis, but with an assumed

uniform distribution of inter-particle contacts, and not based on any specific local packing

geometries). Our results based on the Reuss hypothesis also reproduce those obtained by

Chang et al. (1995) under their static hypothesis (analogous to our Reuss hypothesis, but

again with an assumed uniform distribution of inter-particle contact forces) for one local

packing geometry only, specifically simple cubic (SC). Our approach also allows us to obtain

new results based on the Reuss hypothesis for the face-centered cubic (FCC) and body

centered cubic (BCC) local packing geometries, as well as for all three cubic packings via the

self-consistent hypothesis of Hershey and Kröner. Moreover, our results are based on direct

micromechanical analyses of specific local packing geometries, specifically in that we compute

the local tensors of elastic moduli Cijkl (for the Voigt approach) and compliances Dijkl (for

the Reuss approach) for each local packing geometry, and our assumptions regarding these
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microstructural geometries are very clear and specific. This is in contrast to prior researchers

who based their theoretical analyses on hypotheses involving overall inter-particle contact

distributions assumed to be isotropic in an absolute, rather than a statistical, sense.

After obtaining closed-form analytical expressions for the overall elastic moduli (bulk

modulus and Poisson’s ratio) of the particulate material in terms of the normal and tangen-

tial stiffnesses of the contacts between the particles in the material, we perform numerical

simulations using the discrete element method (DEM) to measure the overall elastic mod-

uli for specimens of randomly packed uniform spheres with constant normal and tangential

contact stiffnesses (linear spring model), and we compare these results with the theoretical

results obtained under the three homogenization assumptions for each of the three cubic

packing geometries. In this first part of our two-part series of papers, we perform DEM sim-

ulations with particle rotation prohibited, and we compare these results with our theoretical

results assuming no particle rotation. We show that our new theoretical results from the

self-consistent hypothesis applied to the BCC packing assuming no particle rotation agree

most closely with DEM simulations in which particle rotation is prohibited.

We find that, when compared to the measured values of the overall elastic moduli obtained

from DEM simulations on specimens of randomly packed uniform spheres, our self-consistent

results from the body-centered cubic packing predict values of the elastic moduli, and in

particular Poisson’s ratio, that are significantly more accurate for the case of no particle

rotation than those currently in the literature. We continue the analysis begun in this first

part for the case of unrestrained particle rotation in the second part of this two-part study,

Chapter 4 [Fleischmann et al. (2013b)], to which we refer simply as Part II in the sequel.
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3.3 Overall Elastic Moduli for Regular Arrays of Uniform

Spheres

For a material with cubic symmetry, the fourth-order tensor of second-order elastic moduli

Cijkl can be written with respect to an arbitrary rectangular Cartesian basis as

Cijkl = C2δijδkl + 2C3Iijkl + (C1 − C2 − 2C3)Aijkl, (3.1)

where

C1 = C1111 = C2222 = C3333, (3.2)

C2 = C1122 = C1133 = C2233, (3.3)

C3 = C1212 = C1313 = C2323, (3.4)

are the three independent cubic elastic moduli, Iijkl is the symmetric fourth-order unit tensor

Iijkl =
1

2
(δikδjl + δilδjk), (3.5)

and

Aijkl = aiajakal + bibjbkbl + cicjckcl, (3.6)

where the vectors ai, bi, and ci are the orthogonal unit vectors along the principal cubic axes

of the material.

Deresiewicz (1958a) reported some of the earliest results concerning the micromechanics

of a particulate material. These results were obtained by Duffy and Mindlin (1957) and

Deresiewicz (1958b), in which Hertz-Mindlin contact theory was used to analyze both face-

centered cubic and simple cubic regular arrays of uniform spheres, shown in Figure 3.1.
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According to Deresiewicz, if two like spheres of radius R are compressed statically by a force

Figure 3.1: Elementary cells of face-centered cubic (left) and simple cubic (right) regular
arrays of uniform spheres, where D is the diameter of the spheres.

Fn directed along their line of centers, then the spheres contact one another on a planar

circular area of radius q, where

q =

(
3(1− ν2)

4E
FnR

)1/3

, (3.7)

where E and ν are the elastic Young’s modulus and Poisson’s ratio for the material con-

stituting the spheres. According to Deresiewicz, the initial normal and tangential contact

stiffnesses between the spheres are then given by

Kn =
2µq

1− ν
, Kt =

4µq

2− ν
, (3.8)

where µ is the elastic shear modulus of the sphere material, and the normal and tangential

contact forces are given by Fn = Knδn and Ft = Ktδt, where δn and δt are normal and

tangential contact displacements, respectively.

Note that Hertz-Mindlin contact theory is nonlinear, because the normal and tangential

inter-particle contact stiffnesses Kn and Kt given in equation (3.8) depend on the normal
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contact force Fn via equation (3.7). However, for the purpose of analyzing the linear elastic

behavior of a statistically isotropic aggregate of uniform spheres, we assume these contact

stiffnesses are constant within the range of deformation to which the linear elastic moduli

apply, about an initial nonzero isotropic compressive stress. In the following subsections,

we linearize the Hertz-Mindlin contact law to obtain cubic elastic moduli for three specific

arrays of uniform spheres: face-centered cubic (FCC), simple cubic (SC), and body-centered

cubic (BCC).

3.3.1 Face-Centered Cubic (FCC) Array of Uniform Spheres

Given a regular face-centered cubic array of uniform spheres subjected to an initial isotropic

compressive stress σ0 and having the incremental constitutive relation

dσij = Cijkldεkl, (3.9)

Duffy and Mindlin (1957) obtained the following results:

C1 =
4− 3ν

2− ν

[
3µ2σ0

2(1− ν)2

]1/3

, C2 =
ν

2(4− 3ν)
C1, C3 =

1

2
C1, (3.10)

where the cubic elastic moduli C1, C2, and C3 are defined by equations (3.2), (3.3), and (3.4),

and µ and ν are the shear modulus and Poisson’s ratio of the sphere material. The initial

isotropic compressive stress σ0 gives rise to an initial normal contact force Fn = F0 =
√

2R2σ0

between the spheres. From equation (3.7), this produces an initial contact radius q0. This

contact radius can be used to linearize the force-displacement laws at the contacts between

the spheres by providing constant values for Kn and Kt. Solving equations (3.8) with q = q0
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and (3.10) simultaneously for C1, C2, and C3 in terms of Kn, Kt, and R, we obtain

C1 =
1√
2R

(Kn +Kt), C2 =
1

2
√

2R
(Kn −Kt), C3 =

1

2
C1, (3.11)

for the three independent cubic elastic moduli for a regular face-centered cubic (FCC) array

of uniform spheres of radius R with normal and tangential contact stiffnesses Kn and Kt,

respectively.

3.3.2 Simple Cubic (SC) Array of Uniform Spheres

Given a regular simple cubic array of uniform spheres subjected to an initial isotropic com-

pressive stress σ0, Deresiewicz (1958b) obtained the following results:

dεii = 2RNidσii, i = 1, 2, 3 (no sum), (3.12)

dεij = R

[(
Ti
σij
τjk

)
dτjk +

(
Tj
σji
τik

)
dτik

]
, i, j, k = 1, 2, 3 (no sum),

i 6= j 6= k, (3.13)

where Ni and Ti are the normal and tangential compliances relative to the plane whose

normal is parallel to the i direction, and τjk = (σ2
ij + σ2

ik)
1/2 with i 6= j 6= k denotes the

resultant shear stress on the plane whose normal is parallel to the i direction. To linearize

equation (3.13), we consider only small variations in shear stress from the initial state of zero

shear stress, so that σij = dσij and τjk = dτjk. Furthermore, we assume that the contact

compliances Ni = 1/Kn and Ti = 1/Kt are constant, with Kn and Kt given by equations

(3.8) with q = q0, where q0 is obtained from equation (3.7) with the initial normal contact
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force given by Fn = F0 = 4R2σ0. Equations (3.12) and (3.13) then become

dεii = 2R
1

Kn

dσii, dεij = 2R
1

Kt

dσij, i, j = 1, 2, 3 (no sum),

i 6= j. (3.14)

Given the incremental constitutive relation (3.9) with the cubic elastic moduli C1, C2, and

C3 defined by equations (3.2), (3.3), and (3.4) as before, we obtain

C1 =
1

2R
Kn, C2 = 0, C3 =

1

4R
Kt, (3.15)

for the three independent cubic elastic moduli for a regular simple cubic (SC) array of uniform

spheres of radius R with normal and tangential contact stiffnesses Kn and Kt, respectively.

3.3.3 Body-Centered Cubic (BCC) Array of Uniform Spheres

The cubic elastic moduli given in equations (3.11) for face-centered cubic arrays of uniform

spheres and in equations (3.15) for simple cubic arrays of uniform spheres can also be obtained

more simply by assuming constant normal and tangential contact stiffnesses between the

spheres from the start, and calculating the deformation of elementary cells of the FCC and

SC lattices subjected to a general state of stress. In this way, we obtain

C1 =
1

2
√

3R
(Kn + 2Kt), C2 =

1

2
√

3R
(Kn −Kt), C3 =

1

2
(C1 + C2), (3.16)

for the three independent cubic elastic moduli for a regular body-centered cubic (BCC) array

of uniform spheres of radius R with normal and tangential contact stiffnesses Kn and Kt,

respectively, as shown in Figure 3.2.

See A for derivations of equations (3.11), (3.15), and (3.16) using the normal and tan-
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gential linear spring contact model illustrated in Figure 3.2 (right).

Figure 3.2: Elementary cell of a body-centered cubic regular array of uniform spheres with
constant normal and tangential contact stiffnesses Kn and Kt, where D is the diameter of
the spheres.

3.4 Isotropic Effective Elastic Moduli

In this section, we apply the kinematic, static, and self-consistent homogenization hypotheses

of Voigt (1928), Reuss (1929), and Hershey (1954) and Kröner (1958) to determine the overall

tensor of elastic moduli C for a statistically isotropic particulate material based on the local

tensors of elastic moduli C for the three cubic packings considered in Section 3.3 (obtained

either by linearizing the results of Duffy and Mindlin (1957) and Deresiewicz (1958b), or

by applying the method of A). Thus the overall tensor of elastic moduli we obtain in e.g.

the case of FCC packings would be exact if the particulate material consisted of many

randomly-oriented subportions, each of which contained particles only in FCC packings;

similar statements apply to the other two cubic packings treated. This is illustrated in

Figure 3.3. The results would therefore be expected to be accurate and useful practically if

in an actual granular material, one of these three cubic packing types predominates. Also,
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as we will see, multiple macroscopic results turn out to be identical for all three packing

geometries.

Figure 3.3: Assumption of the homogenization process: the statistically isotropic particulate
material consists of many randomly-oriented subportions, each of which contains particles
in one of the three cubic packings.

3.4.1 Voigt Hypothesis

Voigt (1928) assumed that when an aggregate material is subjected to a state of uniform

strain, the individual components of the aggregate will be in the same strain state. It follows

that the isotropic fourth-order tensor of effective elastic moduli Cijkl of an isotropic aggregate

is simply the orientational average of the elastic modulus tensor of the components:

Cijkl =
1

8π2

∫
Ω

Cijkl dΩ, (3.17)

where dΩ = sinθ dϕ dθ dψ is the differential solid angle of the unit sphere Ω, and ϕ, θ, and

ψ are the Euler angles (e.g., Lubarda, 2002). Equation (3.17) gives, upon integration,

Cijkl =
1

5
(C1 + 4C2 − 2C3)δijδkl +

2

5
(C1 − C2 + 3C3)Iijkl, (3.18)

where C1, C2, and C3 are the cubic elastic moduli for an individual component, and Iijkl is

the symmetric fourth-order unit tensor defined in equation (3.5). If we define the effective
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isotropic elastic moduli C2 = C1122 and C3 = C1212, then equation (3.18) implies that

C2 =
1

5
C1 +

4

5
C2 −

2

5
C3, (3.19)

C3 =
1

5
C1 −

1

5
C2 +

3

5
C3, (3.20)

which are the well-known Voigt estimates of the effective elastic moduli for an isotropic

aggregate of cubic crystals (e.g., Hearmon, 1961, Lubarda, 1997).

Although equations (3.19) and (3.20) were originally derived for isotropic polycrystalline

materials, the same principle applies to an isotropic particulate material, provided that

the packing of the particles can be considered locally cubic and that the applied loading

is of a type that keeps all spheres in contact. We will explore the justification of this

assumption in a later section. If we employ the cubic elastic moduli C1, C2, and C3 obtained

in Section 3.3, given by equations (3.11), (3.15), and (3.16) for the FCC, SC, and BCC

packings, respectively, in equations (3.19) and (3.20), we obtain identical results for each of

the three local cubic packings:

FCC, BCC, SC: C2 =
βD2

15
Kn (1− α) , C3 =

βD2

30
Kn (2 + 3α) , (3.21)

where α = Kt/Kn is the ratio of the tangential to the normal inter-particle contact stiffness,

D is the diameter of the spheres, and β is the number of contacts per unit volume in the

particulate aggregate, which for the FCC, BCC, and SC regular arrays of uniform spheres is

βFCC =
6
√

2

D3
, βBCC =

3
√

3

D3
, and βSC =

3

D3
. (3.22)

The isotropic effective elastic moduli C2 and C3 are related to the more familiar bulk
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modulus κ and Poisson’s ratio ν of the particulate material on the macroscale as

κ =
1

3

(
3C2 + 2C3

)
, ν =

C2

2(C2 + C3)
. (3.23)

From equations (3.21) and (3.23), we obtain the following relations between the normal and

tangential inter-particle contact stiffnesses Kn and Kt (and α = Kt/Kn) and the parameter

β on the microscale, and the overall elastic moduli κ and ν of the particulate material on

the macroscale, under the Voigt hypothesis for all three local cubic packings:

FCC, BCC, SC: κ =
βD2

9
Kn, ν =

1− α
4 + α

. (3.24)

It is noteworthy that the relations expressed in equations (3.21), and equivalently in

equations (3.24), do not depend on the particular packing (FCC, BCC, or SC) used to

obtain the cubic elastic moduli C1, C2, and C3 beyond the single parameter β. Moreover, β

only influences the bulk modulus κ, and not Poisson’s ratio ν, which is (quite surprisingly)

completely independent of the geometry of the local packing.

It is also noteworthy that the relations expressed in equations (3.21) and (3.24) are

identical to those obtained by Walton (1987) and Chang et al. (1995), under what they

called the kinematic hypothesis. In the results of Walton (1987) and Chang et al. (1995),

equations (3.21) and (3.24) were derived for any value of the parameter β (and so presumably

for any local packing geometry) based on certain assumptions regarding the form of the

(globally isotropic) inter-particle contact distribution. Our approach differs substantially

from theirs, in that we have performed direct micromechanics analyses of three specific local

geometrical arrangements of spheres, while in their approach the form of the overall isotropic

distribution of inter-particle contacts is assumed a priori, and it has no direct link to any

particular local packing geometry. The difference in these approaches will become more clear

when we consider homogenization under the Reuss hypothesis in the next section.
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Our choice of using the bulk modulus κ and Poisson’s ratio ν to characterize the isotropic

tensor of effective elastic moduli Cijkl (rather than, for example, the bulk modulus κ and

shear modulus µ), here and in our subsequent analyses, was motivated both “a priori” by a

desire to compare our results with other results in the literature such as Chang et al. (1995),

and “a posteriori” because of the convenient (and somewhat surprising) way in which κ and

ν “split” the microscale variables: κ depends only on β, D, and Kn (and not on Kt), and ν

depends only on α = Kt/Kn (and not on β or D).

3.4.2 Reuss Hypothesis

If we assume that when an aggregate material is subjected to a state of uniform stress the

individual components of the aggregate will be in the same stress state, we obtain different

estimates of the effective isotropic elastic moduli for the aggregate material. This approach

was taken by Reuss (1929). It follows that the effective elastic compliances of an isotropic

aggregate are the orientational averages of the elastic compliances of the components:

Dijkl =
1

8π2

∫
Ω

Dijkl dΩ, (3.25)

where Dijkl is the fourth-order tensor of elastic compliances for an individual component.

For a material with cubic symmetry having D1 = D1111, D2 = D1122, and D3 = D1212, Dijkl

can be written with respect to an arbitrary rectangular Cartesian basis in the same form as

Cijkl in equation (3.1), except with D’s replacing the C’s. Thus, equation (3.25) gives, upon

integration, results of the same form as those given in equations (3.18), (3.19), and (3.20),

except again with D’s replacing the C’s. From these results and the relationships between

the cubic elastic moduli C1, C2, and C3 and the cubic elastic compliances D1, D2, and D3,
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it follows that

C2 =
(C1 − C2)(C1 + 2C2) + 2C3(3C2 − C1)

3C1 − 3C2 + 4C3

, (3.26)

C3 =
5C3(C1 − C2)

3C1 − 3C2 + 4C3

, (3.27)

which are the well-known Reuss estimates of the effective elastic moduli for an isotropic

aggregate of cubic crystals (e.g., Hearmon, 1961, Lubarda, 1997).

Again, we employ the cubic elastic moduli C1, C2, and C3 obtained in Section 3.3,

equations (3.11), (3.15), and (3.16) for the FCC, SC, and BCC packings, respectively, in

equations (3.26) and (3.27). Unlike the case of the Voigt hypothesis just treated, however,

we do not obtain the same estimates for all three local cubic packings. For the locally FCC,

BCC, and SC packings, we obtain:

FCC: C2 =
βD2

6
Kn

(1− α)(3 + 5α)

(7 + 13α)
, C3 =

5βD2

12
Kn

(1 + α)(1 + 3α)

(7 + 13α)
, (3.28)

BCC: C2 =
βD2

9
Kn

(1− α)(4 + 5α)

(4 + 11α)
, C3 =

5βD2

6
Kn

α(2 + α)

(4 + 11α)
, (3.29)

SC: C2 =
βD2

3
Kn

(
1− α
3 + 2α

)
, C3 =

βD2

6
Kn

(
5α

3 + 2α

)
. (3.30)

From equations (3.23), (3.28), (3.29), and (3.30), we obtain the following relations between

the normal and tangential inter-particle contact stiffnesses Kn and Kt (and α = Kt/Kn) and

the parameter β on the microscale, and the overall elastic moduli κ and ν of the particulate

material on the macroscale, under the Reuss hypothesis for the locally FCC, BCC, and SC
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packings:

FCC: κ =
βD2

9
Kn, ν =

3 + 2α− 5α2

11 + 24α + 5α2
, (3.31)

BCC: κ =
βD2

9
Kn, ν =

4 + α− 5α2

8 + 32α + 5α2
, (3.32)

SC: κ =
βD2

9
Kn, ν =

1− α
2 + 3α

. (3.33)

It is noteworthy that the relationship between Kn and the bulk modulus κ expressed

in all three equations (3.31), (3.32), and (3.33), derived under the Reuss hypothesis, is the

same as that expressed in equation (3.24), where it was derived under the Voigt hypothesis.

This is because κ = (1/9)Ciijj = (1/9)Ciijj is actually a scalar invariant of equation (3.1),

and hence it is independent of the orientation of the principal axes in equation (3.6).

It is also noteworthy that the relations expressed in equations (3.30) and (3.33) are

identical to those obtained by Chang et al. (1995) for an isotropic particulate material

having what they claimed to be an arbitrary local packing (e.g., for any value of β), under

what they called the static hypothesis. Unlike Chang et al. (1995), however, under the

Reuss hypothesis we obtain a different relation between α and ν for each of the three local

cubic packings. All three relations between α and ν obtained under the Reuss hypothesis

are shown graphically in Figure 3.4, along with the relation given by equation (3.24) for all

three local cubic packings under the Voigt hypothesis. We note that, although the results of

Chang et al. (1995) under the static hypothesis considered as an upper bound on Poisson’s

ratio are not contradicted by our analysis in this section, our results in this section clearly

show that the results of Chang et al. (1995) are not valid for a globally isotropic particulate

material with an arbitrary local packing geometry. This demonstrates the value of a direct

micromechanics analysis of specific local packing geometries, such as we have performed. In

fact, if particle rotation is correctly accounted for, the results of Chang et al. (1995) and the

results of this section for the SC local packing fail to provide an upper bound on Poisson’s
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ratio, as we will show in Part II by a direct micromechanics analysis of particle rotations

and by discrete element simulations with unrestrained particle rotation.

Figure 3.4: Macroscopic Poisson’s ratio ν as a function of α = Kt/Kn for a statistically
isotropic particulate aggregate material derived under the Voigt and Reuss hypotheses using
locally cubic elastic moduli obtained from FCC, BCC, and SC regular arrays of uniform
spheres.

3.4.3 Self-Consistent Hypothesis

Yet another approach to finding the effective elastic moduli for a statistically isotropic ag-

gregate of non-isotropic components with local cubic symmetry was taken by Hershey (1954)

and Kröner (1958). This approach is generally called the self-consistent method; it assumes

the strain in a single component of an aggregate can be written as

ε0ij = Hijklεkl, (3.34)

where ε0ij is the (local) strain in the component and εij is the far field uniform strain in the

aggregate. Note that the Voigt method assumes ε0ij = εij. For the self-consistent method,
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the fourth-order tensor Hijkl is given by (e.g., Lubarda, 1997)

Hijkl = Iijkl + h(δijδkl + 2Iijkl − 5Aijkl), (3.35)

where

h =
(C1 + 2C2 + 6C3)(C1 − C2 − 2C3)

3
[
8C

2

3 + 9C1C3 + (C1 − C2)(C1 + 2C2)
] , (3.36)

and Iijkl and Aijkl are given by equations (3.5) and (3.6), respectively. Thus, we now have

Cijkl =
1

8π2

∫
Ω

Ĉijkl dΩ, (3.37)

where Ĉijkl = CijmnHmnkl. By equating the linear invariants Ciijj = Ĉiijj and Cijij = Ĉijij,

one obtains the following equations for C2 and C3:

3C2 + 2C3 = C1 + 2C2, (3.38)

8C
3

3 + (5C1 + 4C2)C
2

3 − C3(7C1 − 4C2)C3 − C3(C1 − C2)(C1 + 2C2) = 0. (3.39)

The cubic expression for C3 given by equation (3.39) was originally derived by Kröner (1958).

The advantage of the self-consistent method is that if we instead assume that the stress

in a single component of the aggregate can be written as

σ0
ij = Gijklσkl, (3.40)

for an appropriately defined fourth-order tensor Gijkl, where σ0
ij is the local stress in the

component and σij is the far field uniform stress in the aggregate, and we follow a similar

analysis by defining D̂ijkl = DijmnGmnkl and equating the linear invariants Diijj = D̂iijj and

Dijij = D̂ijij, we obtain equations for D2 and D3 that are consistent with the equations
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for C2 and C3 given by equations (3.38) and (3.39); see, e.g., Lubarda (1997). This is in

contrast to the method employed by Reuss, which assumes σ0
ij = σij.

As in Sections 3.4.1 and 3.4.2, we can use equations (3.38) and (3.39) with the cubic

elastic moduli C1, C2, and C3 obtained in Section 3.3 to obtain C2 and C3 under the self-

consistent hypothesis. As in Section 3.4.2, these depend on the geometry of the local packing.

Employing equations (3.11), (3.16), and (3.15) for the locally FCC, BCC, and SC packings,

respectively, in equations (3.23), (3.38) and (3.39), we obtain the following relations between

the normal and tangential inter-particle contact stiffnesses Kn and Kt (and α = Kt/Kn) and

the parameter β on the microscale and the overall elastic moduli κ and ν of the particulate

material on the macroscale under the self-consistent hypothesis:

FCC: κ =
βD2

9
Kn, α =

2 + 5ν − 5ν2 − 8ν3 −
√

36− 144ν + 88ν2 + 280ν3 − 291ν4 − 134ν5 + 169ν6

−4− 3ν + 6ν2 + 5ν3 , (3.41)

BCC: κ =
βD2

9
Kn, α =

11 + 30ν − 27ν2 − 46ν3 − 3
√

81− 228ν + 202ν2 + 352ν3 − 735ν4 − 92ν5 + 484ν6

4 (−4− 3ν + 6ν2 + 5ν3)
, (3.42)

SC: κ =
βD2

9
Kn, α =

(1− 2ν)2(3− ν)

(1 + ν)2(3− 4ν)
, (3.43)

where α is written in terms of ν in this case only because the expressions are far more

concise than the corresponding expressions for ν in terms of α. The self-consistent results

for ν in terms of α for all three local cubic packings are shown graphically in Figure 3.5,

along with the single Voigt relation given by equation (3.24) for all three local cubic packings.

A comparison between the ν(α) curves for an isotropic particulate material with a locally

BCC packing structure under all three homogenization hypotheses (Voigt, Reuss, and self-

consistent) is given in Figure 3.6. In Section 3.5 we show that the self-consistent results for

ν(α) given in equation (3.42) and shown in Figure 3.6 for a locally BCC packing agree best
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with the results obtained by the discrete element method for a random packing of uniform

spheres in which particle rotation is prohibited.

Figure 3.5: Macroscopic Poisson’s ratio ν as a function of α = Kt/Kn for a statistically
isotropic particulate aggregate material derived under the Voigt and self-consistent hypothe-
ses using locally cubic elastic moduli obtained from FCC, BCC, and SC regular arrays of
uniform spheres.

3.5 Validation by the Discrete Element Method

To test the analytical results of Section 3.4, we performed numerical simulations using the

discrete element method (DEM) to measure the macroscopic elastic moduli for randomly

packed aggregates of uniform spheres having constant normal and tangential contact stiff-

nesses Kn and Kt, respectively (linear spring contact model). We report the results that we

have obtained from six DEM specimens. Specimens 1, 2, and 3 each contained 3 430 ran-

domly packed uniform spheres, and Specimens 4, 5, and 6 each contained 29 660 randomly

packed uniform spheres. The specimens are shown in Figure 3.7.

We performed our DEM simulations using the open source code LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) developed at Sandia National Laboratories.
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Figure 3.6: Macroscopic Poisson’s ratio ν as a function of α = Kt/Kn for a statistically
isotropic particulate aggregate material derived under the Voigt, Reuss, and self-consistent
hypotheses using locally cubic elastic moduli obtained from a BCC regular array of uniform
spheres.

Figure 3.7: Specimens of randomly packed uniform spheres used in the DEM simulations.
Specimens 1, 2, and 3 contain 3 430 spherical elements, and Specimens 4, 5, and 6 contain
29 660 spherical elements.
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It is a fast, robust, and user-expandable code that can be employed for both molecular

dynamics and DEM simulations (see http://lammps.sandia.gov). For a description of the

core features of LAMMPS, see Plimpton (1995). To create the specimens, a large volume

with cubic shape was populated by a specified number of uniform spherical discrete elements.

The elements were given random initial velocities and were then gradually confined by a

shrinking cube until a roughly uniform initial compressive stress was achieved in all three

directions. For Specimens 1 and 4, inter-particle friction was set to zero throughout the

consolidation process. For Specimens 2, 3, 5, and 6, inter-particle friction was present for

the initial portion of the consolidation process, and it was set to zero only after the boundary

of the confining volume was in its final position, to obtain a dense packing. This resulted in

a less ordered packing structure for Specimens 2, 3, 5, and 6 compared to Specimens 1 and

4 (see Figure 3.9).

For all six specimens, after the consolidation process was completed, the inter-particle

coefficient of friction was set to infinity to ensure that no inter-particle slip occurred during

the DEM simulations. No friction was present on the boundary of the confining volume

during the simulations. The resulting initial volumetric packing densities of the six specimens

were 0.64, 0.62, 0.62, 0.69, 0.68, and 0.68, respectively. All six of these volume densities

correspond to a dense sand (with void ratio e ≈ 0.5) of roughly uniform particle size (with

coefficient of uniformity Cu ≈ 1), such as Ottawa standard sand (e.g., Bardet, 1997). Note

from Figure 3.9 that the packing of the spheres in each of these six specimens was essentially

random. In particular, the appearance of regular (hexagonal) packings on the surfaces of

the specimens in Figure 3.7 is a surface phenomenon only, caused by the fact that there is

no friction between the spheres and the surfaces of the confining volume.

To measure Poisson’s ratio ν for each specimen, the upper surface of the confining volume

was lowered with a prescribed quasi-static velocity until an axial strain of dεz = −0.001 was

obtained. During this time the other five surfaces of the confining volume remained fixed.
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Despite these surfaces remaining fixed, however, the centers of the spheres in contact with

them experienced small but significant displacements normal to the surfaces, due to the

compliance of the contacts. Therefore, we monitored dεx, dεy, and dεz, which were measured

to the centers of the spheres in contact with the confining surfaces, and we measured the

increments in stress dσx, dσy, and dσz on all of the surfaces of the confining volume. Using

this information, we were able to compute Poisson’s ratio for each specimen in two different

ways:

ν1 =
dσx − dσz

(
dεx
dεz

)
dσy + dσz − (dσx + dσy)

(
dεx
dεz

) , (3.44)

and ν2 by replacing x with y and y with x (and 1 with 2) in equation (3.44). Note that,

although two values of Poisson’s ratio are obtained: ν1 and ν2, the derivation of equation

(3.44) assumes material isotropy, which naturally is not perfectly realized in any DEM spec-

imen. For an isotropic specimen, the values of ν1 and ν2 would be equal. Thus, comparing

ν1 and ν2 provides one simple, qualitative test of the isotropy of our specimens. The same

DEM simulations were repeated for each specimen with spheres having a ratio of contact

stiffnesses α = Kt/Kn ranging between α = 0.0 (no friction) and α = 2.0, with α varied in

increments of 0.2.

If we assume Hertz-Mindlin contact, then equation (3.8) implies that α = 2(1−ν)/(2−ν),

where ν is Poisson’s ratio for the material constituting the spheres (not for the particulate

material as a whole). Thus, for a stable elastic material, Hertz-Mindlin contact predicts

2/3 ≤ α ≤ 4/3. However, since particles are rarely perfectly spherical in a general particulate

material, it is useful to consider values of α that vary beyond the boundaries predicted

by Hertz-Mindlin contact theory. Since in the discrete element method the linear spring

stiffnesses Kn and Kt are user-defined, DEM allows us to test a much larger range of values

of α than physical experiments on a handful of particulate materials would permit.

In the DEM simulations of this first part of our two-part series of papers, the spheres were
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allowed full three-dimensional translational freedom of motion, but rotation was prohibited.

This was done to facilitate a direct comparison with the theoretical results of Sections 3.3

and 3.4, as well as those of Walton (1987) and Chang et al. (1995), all of which were

derived assuming (effectively) no particle rotation. (Note that, although Chang et al. (1995)

attempted to include the effect of particle rotation in their analyses, they did so in the

context of a “quasi-micro-polar” continuum theory in which the rotation field was assumed

to be continuous, and this effectively eliminated the possibility of particle rotations that

could lead to zero-energy strains or rotation mechanisms in the particulate material at the

local level, as discussed in Part II.) The results are shown in Figure 3.8. Data points for both

of the measured values of Poisson’s ratio ν1 and ν2 given by equation (3.44) are included

in all of the figures as solid squares and solid diamonds. The difference between these data

points provides a rough measure of the anisotropy of the specimens, at least in the directions

normal to the specimen boundaries. Note that in most of the figures, these data points lie

roughly on top of one another.

Figure 3.8 also shows the Voigt, Reuss, and self-consistent curves given by equations

(3.24) [Voigt: FCC, BCC, SC], (3.33) [Reuss: SC], (3.42) and (3.43) [self-consistent: BCC

and SC, respectively]. Note that the relationship between Poisson’s ratio ν and α = Kt/Kn

that is given by equation (3.42), the self-consistent result for the local BCC packing, agrees

with the values obtained from the DEM simulations better than any of the other theoretical

predictions we have considered, including those of Chang et al. (1995), for the case of no

particle rotation. As we will see in Part II, when particle rotation is allowed the discrepancy

between the DEM measurements of Poisson’s ratio and the theoretical predictions of Chang

et al. (1995) only increase.

Note that the theoretical relationship between the bulk modulus κ, the normal inter-

particle contact stiffness Kn, and the average number of contacts per unit volume β is the

same under all three homogenization hypotheses of Section 3.4. To test this, we measured
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Figure 3.8: Macroscopic Poisson’s ratio ν versus α = Kt/Kn obtained from DEM simulations
on six specimens of randomly packed uniform spheres with constant normal and tangential
contact stiffnesses Kn and Kt, in which the spheres were not allowed to rotate. Also shown
are the theoretical curves given by the Voigt, Reuss, and self-consistent equations (3.24)
[Voigt: FCC, BCC, SC], (3.33) [Reuss: SC], (3.42) and (3.43) [self-consistent: BCC and SC,
respectively].
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the bulk modulus of the six DEM specimens described in this section independently of

Poisson’s ratio by subjecting the specimens to a uniform volumetric strain, and measuring

the stress increments on the surfaces of the confining volume. The measured values of

the bulk modulus in terms of the normal contact stiffness Kn and the diameter of the

spheres D for the six DEM specimens were found to be κ1 = 0.58Kn/D, κ2 = 0.47Kn/D,

κ3 = 0.49Kn/D, κ4 = 0.66Kn/D, κ5 = 0.57Kn/D, and κ6 = 0.58Kn/D, respectively. The

average number of contacts per unit volume in the six DEM specimens were measured to

be β1 = 5.4/D3, β2 = 4.4/D3, β3 = 4.5/D3, β4 = 6.2/D3, β5 = 5.4/D3, and β6 = 5.5/D3,

respectively. Thus, the theoretical value of κ = KnβD
2/9 predicted by equations (3.24),

(3.31) – (3.33), and (3.41) – (3.43) for the six DEM specimens is κ = 0.60Kn/D for Specimen

1, κ = 0.49Kn/D for Specimen 2, κ = 0.50Kn/D for Specimen 3, κ = 0.69Kn/D for

Specimen 4, κ = 0.60Kn/D for Specimen 5, and κ = 0.61Kn/D for Specimen 6, which differ

from the measured values by about 3%, 4%, 2%, 5%, 5%, and 5%, respectively.

We also monitored friction work between the spheres throughout the DEM simulations,

and we verified that there was no inter-particle slip during the DEM simulations (i.e., friction

work was zero). This is in agreement with the assumptions made in the theoretical derivations

of Sections 3.3 and 3.4, and in the prior theoretical studies of Walton (1987) and Chang et al.

(1995). No inter-particle slip is also in agreement with the notion of elastic behavior. It is

noteworthy, however, that in physical experiments on sand or other particulate materials, it

is almost impossible to verify that no inter-particle slip takes place, which makes the notion

of an elastic range for a particulate material somewhat ambiguous. This is one reason why

the DEM simulations are necessary to confirm our theoretical analyses, since we can be sure

that we are strictly within the elastic range.



59

3.6 Discussion

A number of issues related to the effects of particle rotation will arise in Part II, and so we

leave the bulk of our discussion until then. We can, however, already consider the validity

of our assumption of locally cubic packing structure in particulate materials, which was im-

plicit in the analyses of Section 3.4. We first note that our results under the Voigt hypothesis

did not, in the end, depend on what type of local cubic packing was assumed, but only on

the number of contacts per unit volume β and the inter-particle contact stiffnesses Kn and

Kt. We also note that equations (3.21) and (3.24) reproduce exactly the results of Chang

et al. (1995), which were obtained without assuming a locally cubic packing structure in the

particulate material. This suggests that these results did not depend on any specific assump-

tion regarding the local packing structure. Under the Reuss and self-consistent hypotheses,

however, there was substantial dependence on the local packing structure (see Figures 3.4

and 3.5).

In Section 3.5, we found that βD3 = {5.4, 4.4, 4.5, 6.2, 5.4, 5.5} for Specimens 1 – 6,

respectively, where D denotes the diameter of the particles in the specimens. From equation

(3.22), we have βFCCD3 ≈ 8.5, βBCCD3 ≈ 5.2, and βSCD3 = 3. Thus, the average number of

contacts per unit volume in each of the six DEM specimens corresponds most closely to that

of the BCC packing. This is in general agreement with what was observed in Section 3.5: the

theoretical relationship between Poisson’s ratio ν and α = Kt/Kn given by equation (3.42),

which is the self-consistent result for the local BCC packing, agrees best with the values

obtained from the DEM simulations. The value of βD3 does not give much information

about the local packing structure of the specimens, however.

One way to identify the local packing structure in the specimens is to use a radial distri-

bution function. The radial distribution function g(r) counts the average number of particles

at a distance r from the center of each particle, normalized by the volume of the differential
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shell of thickness dr in which the particle is located. While commonly used in molecular

dynamics, the radial distribution function is not ideally suited for discrete systems in general,

since for a regular lattice the curve g(r) will consist of spikes, and the height of these spikes

will depend on the size of the differential shell element, with the height going to infinity as

dr → 0. For our purposes, however, the radial distribution function will be useful, since

we can compare the positions and relative heights of the spikes for the six DEM specimens

versus the three regular cubic packings, with dr = 10−2D fixed for consistency. Note that

the radial distribution function is independent of angle, so it will not be altered if the prin-

cipal axes of the local cubic packings are not oriented along the same directions. Thus, we

expect the radial distribution function to give some indication of the extent to which the

local packing geometry of a DEM specimen is cubic, even if that specimen is an isotropic

aggregate of locally cubic packings.

Figure 3.9 shows the radial distribution functions for each of the six DEM specimens,

as well as the radial distribution functions for the SC, BCC, and FCC regular arrays of

uniform spheres. Note that the packing structure of all six specimens is significantly less

ordered than that of the regular cubic arrays. This is a confirmation that the overall packing

structure of the specimens is indeed random. Note also, however, that the radial distribution

functions for Specimen 1 and Specimen 4 exhibit marked spikes at the same radial distances

as the radial distribution function of the FCC packing (with an extra spike at r/D ≈ 1.9

corresponding to the BCC packing), which supports our hypothesis that the local packing

structure of these specimens is at least approximately cubic in nature. Despite the fact that

the radial distribution functions for Specimens 2, 3, 5, and 6 do not suggest a locally cubic

packing structure, we have seen that the self-consistent equation (3.42) agrees with the ν(α)

curves for these specimens very well.

Finally, we consider whether or not the DEM specimens used in Section 3.5 can truly

be said to be statistically isotropic. Hill (1956) suggests that for a homogenization process
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Figure 3.9: Radial distribution functions g(r) for DEM Specimens 1 – 6, and the SC, BCC,
and FCC regular arrays. In our calculations of g(r) we have used dr = 10−2D, where D is
the diameter of the spheres.
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like those of Section 3.4 to be valid, the smallest dimension of the material specimen in

question should be approximately 1 000 times larger than the largest dimension of its es-

sential micro-constituent, which for the analyses of Section 3.4 is an elementary cell. For

the DEM simulation specimens with 3 430 and 29 660 spheres of diameter D, the length

of the specimens were approximately 15D and 30D, respectively. Since the edge-length of

an elementary cell of an SC, BCC, or FCC packing of uniform spheres is between D and
√

2D, the DEM specimens in question are far from satisfying Hill’s condition. Unfortunately,

to accurately simulate a statistically isotropic specimen with an essential micro-constituent

dimension between D and
√

2D according to Hill’s condition would require more than 107

spheres, which is beyond our computational resources.

3.7 Conclusions

We have applied the homogenization methods of Voigt (1928) (the kinematic hypothe-

sis), Reuss (1929) (the static hypothesis), and Hershey (1954) and Kröner (1958) (the

self-consistent hypothesis) to obtain the effective isotropic elastic moduli for a statistically

isotropic assembly of spheres having constant normal and tangential inter-particle contact

stiffnesses, using the elastic moduli derived from regular cubic lattices. In contrast to pre-

vious work in the literature, our results are based on direct micromechanical analyses of

specific local packing geometries. Our results reproduce those of Walton (1987) and Chang

et al. (1995) under the kinematic hypothesis for all of the local packing geometries that we

considered (FCC, BCC, and SC), and the results of Chang et al. (1995) under the static

hypothesis for the simple cubic (SC) local packing geometry. Our approach also allowed us

to obtain new results from the static hypothesis for FCC and BCC local packing geometries,

as well as new results for all three local packing geometries from the self-consistent homog-

enization hypothesis. Our results also show that the results of Chang et al. (1995) under
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the static hypothesis at best give only an upper bound on Poisson’s ratio for the case of no

particle rotation, and do not hold for arbitrary local packing geometries.

To test our theoretical results, we performed DEM simulations on six randomly packed

specimens of uniform spheres, having constant normal and tangential contact stiffnesses Kn

and Kt, respectively (linear spring contact model). In this Part I of our two-part series of

papers, our theoretical analyses and our DEM simulations were all performed with particle

rotation prohibited. There were several major advantages to using DEM to test our the-

oretical results, as opposed to, for example, using experiments on physical particles such

as glass beads. First and foremost for this Part I, we could prohibit particle rotation in

the DEM simulations, providing a direct test of the validity of our theoretical analyses and

those published previously with no particle rotation assumed. Moreover, we were able to

reproduce our theoretical assumption of constant contact stiffness exactly, without having

to make any assumptions regarding the actual contact behavior of the physical particles,

thus eliminating one source of uncertainty. We were also able to assign precise values to the

normal and tangential contact stiffnesses, and thus measure Poisson’s ratio for a large range

of specific values of α = Kt/Kn, and we could verify that no inter-particle slip took place

during our DEM simulations.

While the effects of particle rotation will be explored in Part II, we already note that our

theoretical results obtained under the self-consistent homogenization assumption, particu-

larly that based on the body-centered cubic local packing geometry, are capable of providing

remarkably good agreement with the results we obtained from our DEM simulations with

no particle rotation, even when compared to the best theoretical estimates currently in the

published literature. We continue our analysis with the case of particle rotation in Part II.
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Chapter 4

Direct Micromechanics Derivation and

DEM Confirmation of the Elastic Moduli

of Isotropic Particulate Materials,

Part II: Particle Rotation 1

4.1 Abstract

In Part I, Chapter 3 [Fleischmann et al. (2013a)], we performed theoretical analyses of three

cubic packings of uniform spheres (simple, body-centered, and face-centered) assuming no

particle rotation, employed these results to derive the effective elastic moduli for a statis-

tically isotropic particulate material, and assessed these results by performing numerical

discrete element method (DEM) simulations with particle rotations prohibited. In this sec-

ond part, we explore the effect that particle rotation has on the overall elastic moduli of

a statistically isotropic particulate material. We do this both theoretically, by re-analyzing

1This chapter closely follows Fleischmann et al. (2013b).
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the elementary cells of the three cubic packings with particle rotation allowed, which leads

to the introduction of an internal parameter to measure zero-energy rotations at the local

level, and numerically via DEM simulations in which particle rotation is unrestrained. We

find that the effects of particle rotation cannot be neglected. For unrestrained particle ro-

tation, we find that the self-consistent homogenization assumption applied to the locally

body-centered cubic packing incorporating particle rotation effects most accurately predicts

the measured values of the overall elastic moduli obtained from the DEM simulations, in par-

ticular Poisson’s ratio. Our new self-consistent results and theoretical modeling of particle

rotation effects together lead to significantly better theoretical predictions of Poisson’s ratio

than all prior published results. Moreover, our results are based on a direct micromechanics

analysis of specific geometrical packings of uniform spheres, in contrast to prior theoretical

analyses based on hypotheses involving overall inter-particle contact distributions. Thus,

our results permit a direct assessment of the reasons for the theory-experiment discrepancies

noted in the literature with regard to previous theoretical derivations of the macroscopic

elastic moduli for particulate materials, and our new theoretical results greatly narrow such

discrepancies.

4.2 Introduction

In the first of this two-part series, Chapter 3 [Fleischmann et al. (2013a)], to which we refer

simply as Part I in the sequel, we performed theoretical analyses of three cubic packings

of uniform spheres (simple, body-centered, and face-centered) assuming no particle rota-

tion. We used the resulting tensors of cubic elastic moduli C to obtain tensors of effective

elastic moduli C for a statistically isotropic particulate material with locally cubic packing

structure, using the homogenization methods of Voigt (1928) (kinematic hypothesis), Reuss

(1929) (static hypothesis), and Hershey (1954) and Kröner (1958) (self-consistent hypothe-
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sis). While the assumption of no particle rotation can be justified for certain regular cubic

packings as the number of elementary cells becomes large (as we confirm herein), it cannot be

justified in general for statistically isotropic assemblies that have only a locally cubic packing

structure. In this second part of our two-part series, we re-analyse the three cubic packings

with the effect of particle rotation included. We prove by several simple theoretical examples

that particle rotation can produce zero-energy strains or mechanisms in a particulate mate-

rial, and that they significantly alter the predicted value of Poisson’s ratio for a particulate

material in the elastic range. To account for the effect of particle rotation, we introduce a

micromechanics-motivated internal parameter that leads to new theoretical predictions for

the elastic moduli under all three homogenization assumptions.

After obtaining closed-form analytical expressions for the overall elastic moduli (bulk

modulus and Poisson’s ratio) of the particulate material in terms of the normal and tangen-

tial stiffnesses of the contacts between the particles in the material, we perform numerical

simulations using the discrete element method (DEM) to measure the overall elastic mod-

uli for specimens of randomly packed uniform spheres with constant normal and tangential

contact stiffnesses (linear spring model), and we compare these results with the theoretical

results obtained under the three homogenization assumptions for each of the three cubic

packing geometries. In Part I, our DEM simulations were performed with particle rotation

prohibited. In this second part, our DEM simulations are performed under identical condi-

tions as in Part I, but with particle rotation unrestrained. The overall elastic moduli are

again measured from the DEM simulations, and the results are compared both to those of

the DEM simulations performed in Part I and to the theoretical results obtained in this

second part, which include the effects of particle rotation. We show that our new theoretical

results from the self-consistent hypothesis applied to the BCC packing including particle

rotation agree most closely with DEM simulations in which particle rotation is unrestrained,

and that these are significantly different from the results obtained in Part I when particle
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rotation was prohibited.

Our method of including the effects of mechanisms produced by particle rotation is in

contrast to the work of other researchers, such as Chang et al. (1995) and Chang and Gao

(1995), who include particle rotation only within the context of micro-polar or quasi-micro-

polar continuum theory. The micro-polar or quasi-micro-polar continuum approach cannot

capture the zero-energy strains or mechanisms produced by particle rotations, and therefore

cannot accurately predict Poisson’s ratio for an isotropic particulate material. We find that,

when compared to the measured values of the overall elastic moduli obtained from DEM

simulations on specimens of randomly packed uniform spheres, our analytical self-consistent

results from the body-centered cubic packing that include the effect of particle rotation

predict values of the elastic moduli, and in particular Poisson’s ratio, that are significantly

more accurate than those currently in the literature.

4.3 Overall Elastic Moduli for Regular Arrays of Uniform

Spheres Incorporating the Effect of Particle Rotation

In Section 2 of Part I, we derived the three independent cubic elastic moduli C1, C2, and

C3 for three regular cubic packings of uniform spheres: face-centered cubic (FCC), simple

cubic (SC), and body-centered cubic (BCC), under the assumption that no particle rotation

occurred during deformation. These cubic elastic moduli were given in terms of the radius

of the spheres R and the normal and tangential inter-particle contact stiffnesses Kn and Kt.
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They are repeated here for reference:

FCC, no particle rotation:

C1 =
1√
2R

(Kn +Kt), C2 =
1

2
√

2R
(Kn −Kt), C3 =

1

2
C1, (4.1)

BCC, no particle rotation:

C1 =
1

2
√

3R
(Kn + 2Kt), C2 =

1

2
√

3R
(Kn −Kt), C3 =

1

2
(C1 + C2), (4.2)

SC, no particle rotation:

C1 =
1

2R
Kn, C2 = 0, C3 =

1

4R
Kt, (4.3)

The assumption that the particles (spheres) do not rotate turns out to be quite signif-

icant. Despite this fact, the assumption of no particle rotation can be justified for certain

regular cubic arrays in the limit as the number of elementary cells becomes large, due to the

symmetry of the inter-particle contacts; we provide explicit DEM verification of this later in

this section. However, if a statistically isotropic particulate material has only locally cubic

packing structure, then the assumption of no particle rotation can no longer be justified.

What is even more problematic from the point of view of continuum modeling is that some

of these particle rotations may be mechanisms. In other words, some quasi-static particle

rotations may result in zero energy change in the system, but still cause plastic (irreversible)

strain. This violates Drucker’s postulate. Moreover, particle rotation at the local level may

be involved in a global elastic strain of the particulate material, while, as Goddard (2008)

shows, these particle rotations do not contribute to the quasi-static stress power. Mecha-

nisms due to particle rotation can occur anywhere that there are local asymmetries in the

distribution of inter-particle contacts. In the following subsections, we consider the effect of

particle rotation in each of the three elementary cells shown in Figure 4.1.
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Figure 4.1: Elementary cells of face-centered cubic (left), body-centered cubic (center), and
simple cubic (right) regular arrays of uniform spheres.

4.3.1 Face-Centered Cubic (FCC) Array of Uniform Spheres

If we consider a single elementary cell of an FCC array of uniform spheres (Figure 4.1,

left), then for loading parallel to the principal axes, if the spheres are not allowed to rotate,

Poisson’s ratio is

νFCC =
C2

C1 + C2

=
1− α
3 + α

(4.4)

with C1 and C2 given by equation (4.1) and α = Kt/Kn. Figure 4.2 plots equation (4.4), as

well as measurements of Poisson’s ratio ν as a function of α for the single elementary cell

obtained from numerical simulations using the discrete element method. For one set of DEM

simulations, the spheres were not allowed to rotate, while for the other set, rotation was un-

restrained. In all of the DEM simulations, the lateral surfaces of the cell were constrained

while an axial strain was applied quasi-statically along one of the principal axes (the z axis),

and Poisson’s ratio was computed from the principal stress increments dσx, dσy, and dσz

according to equation (3.44) of Part I. No friction was present on the boundary of the ele-

mentary cell during the deformation. As Figure 4.2 shows, when the spheres are not allowed

to rotate, the DEM results for Poisson’s ratio are in perfect agreement with the theoretical

predictions of equation (4.4). When the spheres are allowed to rotate, however, the DEM
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results for Poisson’s ratio no longer agree with the theoretical predictions of equation (4.4),

but are consistently (and significantly) higher. Note that we were able to verify that there

was no inter-particle slip in all of the DEM simulations referred to in Figure 4.2.

Figure 4.2: Poisson’s ratio ν as a function of α = Kt/Kn for a single elementary cell of
an FCC array of uniform spheres. The data points represent values obtained by numerical
simulations performed using the discrete element method (DEM) in which the particles were
either allowed or not allowed to rotate. The theoretical curves are from equations (4.4) and
(4.4)∗ [which is equation (4.4) with α replaced by α∗ = ξα] with ξ = 11/15 ≈ 0.733.

It is not difficult to theoretically determine the effect of particle rotation on the cubic

elastic moduli of a single FCC elementary cell with no friction between the spheres and the

boundary of the cell. First, we note that equation (4.1) can be re-derived for the case of no

particle rotation by considering a single FCC elementary cell subjected to a state of pure

uniaxial strain ε11 = −δ11/(
√

2D) (with ε22 = ε33 = 0). It can be shown by an analysis of

the inter-particle normal and tangential contact forces within the FCC cell that the forces

normal to the cell faces are F11 = −2(Kn + Kt)δ11 and F22 = F33 = −(Kn −Kt)δ11, where

contributions from inter-particle contacts on the faces and interior of the cell have been

included, and where, since the “material” cube is measured only to the centers of the outer

spheres, the normal and tangential stiffnesses of the contacts on the faces contribute half of
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their full values. From these the expressions for C1 and C2 in terms of Kn and Kt given in

equation (4.1) can be derived in a straightforward way, since σ11 = F11/(2D
2) = C1ε11, and

σ22 = σ33 = F22/(2D
2) = F33/(2D

2) = C2ε11. Similarly, the expression for C3 in terms of

Kn and Kt given in equation (4.1) can be derived by considering a single FCC elementary

cell subjected to a state of pure shear.

If a single FCC elementary cell in which particle rotation is unrestrained is subjected

to a state of pure uniaxial strain along one of its principal axes, then due to the symmetry

of the loading, only the spheres at the eight corners of the cell will experience rotation.

Note that in the FCC packing, each corner sphere is in contact with three face-centered

spheres: two on faces parallel to the axis of deformation and one on a face normal to the

axis of deformation. If each corner sphere remains in contact with all three face-centered

spheres throughout the deformation, then an analysis of the stiffness matrix for the FCC

elementary cell with rotational degrees of freedom leads to F11 = −2(Kn + ξKt)δ11 and

F22 = F33 = −(Kn− ξKt)δ11 with ξ = 11/15. This analysis is given in detail in B. It follows

that the cubic elastic moduli for the FCC elementary cell with unrestrained particle rotation

are

C1 =
1√
2R

(Kn + ξKt), C2 =
1

2
√

2R
(Kn − ξKt), C3 =

1

2
C1, (4.5)

with ξ = 11/15 ≈ 0.733.

If the deformation in the single FCC elementary cell we have just described is sufficiently

large, then infinitesimal gaps will form between the corner spheres and the face-centered

spheres on faces normal to the axis of deformation. In this case, if particle rotation is

unrestrained and no tangential force is applied to the boundaries of the cell, it can be shown

by a similar analysis that the cubic elastic moduli for the FCC elementary cell are again

given by equation (4.5), but now with ξ = 0.5. If particle rotation is prohibited, then gaps

on the faces normal to the deformation may still form, but they do not affect the cubic elastic
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moduli (i.e., ξ = 1).

Our theoretical analysis is confirmed by the DEM simulations described at the beginning

of this section. If we substitute the expressions for C1 and C2 given by equation (4.5) into

equation (4.4), and call the resulting expression equation (4.4)∗ where α∗ = ξα replaces α,

then the ν(α) curve predicted by equation (4.4)∗ with ξ = 0.733 agrees perfectly with the

curve that was obtained numerically by DEM simulations in which particle rotation was

unrestrained, as shown in Figure 4.2.

We commented earlier that the assumption of no particle rotation is valid for certain

regular cubic arrays in the limit as the number of elementary cells becomes large. This is

in fact true for the regular FCC array even when the number of elementary cells is only

moderately large. We have confirmed this by DEM simulations on 2× 2× 2, 3× 3× 3, and

7 × 7 × 7 arrays of FCC elementary cells, containing totals of 63, 172, and 1 688 uniform

spheres, respectively. The results are shown in Figure 4.3. For a 7×7×7 FCC array, the data

points obtained from DEM simulations in which particle rotation was unrestrained match

those obtained from a single FCC elementary cell in which particle rotation was prohibited,

which is predicted by equation (4.4) or by equation (4.4)∗ with ξ = 1, as shown in Figure 4.3;

this is the minimum array size for which this match occurs.

4.3.2 Body-Centered Cubic (BCC) Array of Uniform Spheres

If we consider a single elementary cell of a BCC array of uniform spheres (Figure 4.1, center),

then for loading parallel to the principal axes, if the spheres are not allowed to rotate,

Poisson’s ratio is

νBCC =
C2

C1 + C2

=
1− α
2 + α

(4.6)

with C1 and C2 given by equation (4.2). It is quite easy to show theoretically that if particle

rotation is allowed for a single BCC elementary cell loaded parallel to the principal axes with
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Figure 4.3: Poisson’s ratio ν as a function of α = Kt/Kn for 2×2×2, 3×3×3, and 7×7×7
arrays of FCC elementary cells, containing totals of 63, 172, and 1 688 uniform spheres,
respectively. The data points represent values obtained by numerical simulations performed
using the discrete element method (DEM) in which particle rotation was unrestrained. The
theoretical curves are from equation (4.4)∗ [which is equation (4.4) with α replaced by α∗ =
ξα] with ξ = 0.92, ξ = 0.97, and ξ = 1. The 7× 7× 7 array is the minimum size for which
ξ = 1.

no friction on the boundary of the cell, then νBCC = 0.5 regardless of α. This is confirmed by

DEM simulations analogous to those performed on the single FCC elementary cell considered

in Section 4.3.1. Figure 4.4 plots equation (4.6), as well as measurements of Poisson’s ratio

ν as a function of α for the single elementary cell obtained from numerical simulations using

the discrete element method. For one set of DEM simulations, the spheres were not allowed

to rotate, while for the other set, rotation was unrestrained. No friction was present on

the boundary of the elementary cell during the deformation. As Figure 4.4 shows, when

the spheres are not allowed to rotate, the DEM results for Poisson’s ratio are in perfect

agreement with the theoretical predictions of equation (4.6). When the spheres are allowed

to rotate, however, the DEM results for Poisson’s ratio no longer agree with the theoretical

predictions of equation (4.6), but are consistently (and significantly) higher. Note that we

were able to verify that there was no inter-particle slip in either of the DEM simulations
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referred to in Figure 4.4.

Figure 4.4: Poisson’s ratio ν as a function of α = Kt/Kn for a single elementary cell of
a BCC array of uniform spheres. The data points represent values obtained by numerical
simulations performed using the discrete element method (DEM) in which the particles were
either allowed or not allowed to rotate. The theoretical curves are from equations (4.6) and
(4.6)∗ [which is equation (4.6) with α replaced by α∗ = ξα] with ξ = 0.

Indeed, for any sort of deformation, if the spheres in a BCC elementary cell are free to

rotate and there is no tangential force applied to the boundaries, there will be no inter-

particle tangential displacement regardless of Kt. This follows immediately from moment

equilibrium applied to the eight spheres on the boundaries of the cell. Thus, the effect

of particle rotation for a single BCC elementary cell with particle rotation unrestrained is

equivalent to the inter-particle tangential stiffness being zero. In analogy to the cases of the

FCC and SC elementary cells, we can write the modified cubic elastic moduli for a single

BCC elementary cell incorporating particle rotation as

C1 =
1

2
√

3R
(Kn + 2ξKt), C2 =

1

2
√

3R
(Kn − ξKt), C3 =

1

2
(C1 + C2), (4.7)

with ξ = 0.

Our theoretical analysis is confirmed by the DEM simulations described at the beginning
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of this section. If we substitute the expressions for C1 and C2 given by equation (4.7) into

equation (4.6), and call the resulting expression equation (4.6)∗ where α∗ = ξα replaces

α, then the ν(α) curve predicted by equation (4.6)∗ with ξ = 0 agrees exactly with the

curve that was obtained numerically by DEM simulations in which particle rotation was

unrestrained, as shown in Figure 4.4. It is noteworthy that, due to geometric nonlinearities,

if the pre-compression on the single BCC elementary cell in the DEM simulations results in

an initial overlap of the spheres of 0.01D, where D is the sphere diameter, then the DEM

results for Poisson’s ratio are actually ν = 0.508. However, if the pre-compression on the

single BCC elementary cell is reduced so that the initial overlap of the spheres is 0.001D,

then the DEM result for Poisson’s ratio becomes ν = 0.5008, and this result can be brought

arbitrarily close to the theoretical result of ν = 0.5 by further reducing the initial overlap of

the spheres.

Unlike the case of the FCC elementary cells, however, it takes a significant number of

BCC elementary cells to restrain particle rotation. Figure 4.5 shows the results of DEM

simulations on 9 × 9 × 9, 18 × 18 × 18, and 27 × 27 × 27 arrays of BCC elementary cells,

containing totals of 1 729, 12 691, and 41 635 uniform spheres, respectively. For a 27×27×27

BCC array, the data points obtained from DEM simulations in which particle rotation was

unrestrained match approximately those obtained from a single BCC elementary cell in which

particle rotation was prohibited (the match is good for α ≤ 1.0, but it diverges slightly for

α > 1.0), which is predicted by equation (4.6) or by equation (4.6)∗ with ξ = 1, as shown in

Figure 4.5; this is the minimum array size for which this approximate match occurs.

4.3.3 Simple Cubic (SC) Array of Uniform Spheres

A single elementary cell of a SC array of uniform spheres (Figure 4.1, right) shows no Poisson

effect when loaded parallel to the principal axes (because C2 = 0). However, particle rotation

can affect the shear behavior of a single SC elementary cell when asymmetries exist in the
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Figure 4.5: Poisson’s ratio ν as a function of α = Kt/Kn for 9 × 9 × 9, 18 × 18 × 18,
and 27 × 27 × 27 arrays of BCC elementary cells, containing totals of 1 729, 12 691, and
41 635 uniform spheres, respectively. The data points represent values obtained by numerical
simulations performed using the discrete element method (DEM) in which particle rotation
was unrestrained. The theoretical curves are from equation (4.6)∗ [which is equation (4.6)
with α replaced by α∗ = ξα] with ξ = 0.9, ξ = 0.98, and ξ = 1. The 27 × 27 × 27 array is
the minimum size for which ξ ≈ 1.

distribution of inter-particle contacts, which result in shearing mechanisms. To illustrate this

point with a simple example, consider an elementary cell of a simple cubic array of uniform

spheres subjected to pure shear for which particle rotation is allowed to occur, as shown in

Figure 4.6. If all of the inter-particle contacts in the SC elementary cell shown in Figure 4.6

are active, then a simple calculation shows that the shear strain is 2εxy = ∆/2R, and the

shear stress is σxy = 4Ktδt/(4R)2, where δt = ∆ − 2Rθ and R is the radius of the spheres.

Moment balance at the particle level requires that Ktδt = Kt2Rθ, from which it follows that

∆ = 2δt. Thus, it follows in this case that C3 = σxy/(2εxy) = Kt/(4R), which is the same as

the value reported for the SC elementary cell in equation (4.3) obtained assuming no particle

rotation. Note that in this case the distribution of inter-particle contacts in Figure 4.6 is

symmetric.

Next consider the same SC elementary cell subjected to pure shear shown in Figure 4.6,
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Figure 4.6: An elementary cell of an SC array of uniform spheres subjected to pure shear.
If all inter-particle contacts are active, then C3 = Kt/(4R), which is the same as when no
particle rotation is allowed, and corresponds to ξ = 1.0 in equation (4.8). However, if a
single infinitesimal gap is introduced between the two visible spheres at the bottom of the
cell so that one inter-particle contact in the y-z plane is lost, then C3 = 0.5Kt/(4R), which
corresponds to ξ = 0.5 in equation (4.8).

but this time with a single infinitesimal gap introduced between the two visible spheres at the

bottom of the cell, so that there is no resistance to relative rotation at what would otherwise

have been the contact point between those two spheres in the y-z plane. It follows that,

while the shear strain is the same as it was in the preceding paragraph when all of the inter-

particle contacts were active, and moment equilibrium at the particle level still requires that

Ktδt = Kt2Rθ (in the absence of moments at the inter-particle contacts), the shear stress

now becomes σxy = 2Ktδt/(4R)2, from which it follows that C3 = 0.5Kt/(4R), which is

half of the value reported for the SC elementary cell in equation (4.3) assuming no particle

rotation. Note that in this case the distribution of inter-particle contacts in Figure 4.6 is no

longer symmetric.

Finally, consider the same SC elementary cell subjected to pure shear shown in Figure 4.7,

in which an infinitesimal gap exists between all pairs of particles having their contact plane

with unit normal in the x-direction. This arrangement provides no resistance to shear stress,

and so C3 = 0.
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Figure 4.7: An elementary cell of an SC array of uniform spheres subjected to pure shear, with
no inter-particle contacts in the y-z plane. For this arrangement C3 = 0, which corresponds
to ξ = 0 in equation (4.8).

These simple examples suggest that if we consider the possibility of zero-energy shearing

mechanisms due to particle rotation and asymmetry in the distribution of inter-particle

contacts, the cubic elastic moduli for a single SC elementary cell become

C1 =
1

2R
Kn, C2 = 0, C3 =

1

4R
ξKt, (4.8)

where 0 ≤ ξ ≤ 1 is an internal parameter measuring the presence of shearing mechanisms

due to particle rotation and asymmetries in the distribution of inter-particle contacts. In

the preceding three examples, we found by direct analysis that ξ = 1.0, ξ = 0.5, or ξ = 0,

respectively, depending on the number of inter-particle contacts providing resistance to shear

deformation. Note that in all three of these examples the resistance of the elementary cell

to normal stress (and hence the value of C1) is the same.
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4.4 Isotropic Effective Elastic Moduli Incorporating the

Effect of Particle Rotation

In Section 3 of Part I, we derived relations between the overall elastic moduli κ and ν of a

statistically isotropic particulate material on the macroscale, and the normal and tangential

inter-particle contact stiffnesses Kn and Kt (and α = Kt/Kn) and the average number of

inter-particle contacts per unit volume β on the microscale, for all three local cubic packings

under the Voigt, Reuss, and self-consistent hypotheses. If equations (4.5), (4.7), and (4.8)

are used for the cubic elastic moduli instead of equations (4.1), (4.2), and (4.3), then the

only change in the relations obtained in Section 3 of Part I is that Kt is replaced by an

“effective” K∗t = ξKt, and α is replaced by an “effective” α∗ = ξα = K∗t /Kn, where 0 ≤ ξ ≤ 1

is an internal parameter measuring the presence of shearing mechanisms due to particle

rotation and asymmetries in the distribution of inter-particle contacts. Note thatKn remains

unchanged. If ξ = 0 then all inter-particle contacts contain shearing mechanisms, and Kt

becomes zero. If ξ = 1 then there are no shearing mechanisms, and Kt is unaltered.

Thus, we obtain the following relations between the normal and tangential inter-particle

contact stiffnesses Kn and Kt (and α = Kt/Kn) and the parameter β on the microscale, and

the overall elastic moduli κ and ν of the particulate material on the macroscale, under the

Voigt, Reuss, and self-consistent hypotheses for the locally FCC, BCC, and SC packings:

Voigt, Reuss, self-consistent: FCC, BCC, SC: κ =
βD2

9
Kn, (4.9)

Voigt: FCC, BCC, SC: ν =
1− α∗

4 + α∗
, (4.10)
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Reuss: FCC: ν =
3 + 2α∗ − 5α∗2

11 + 24α∗ + 5α∗2
, (4.11)

Reuss: BCC: ν =
4 + α∗ − 5α∗2

8 + 32α∗ + 5α∗2
, (4.12)

Reuss: SC: ν =
1− α∗

2 + 3α∗
, (4.13)

self-consistent: FCC: α∗ =

2 + 5ν − 5ν2 − 8ν3 −
√

36− 144ν + 88ν2 + 280ν3 − 291ν4 − 134ν5 + 169ν6

−4− 3ν + 6ν2 + 5ν3 , (4.14)

self-consistent: BCC: α∗ =

11 + 30ν − 27ν2 − 46ν3 − 3
√

81− 228ν + 202ν2 + 352ν3 − 735ν4 − 92ν5 + 484ν6

4 (−4− 3ν + 6ν2 + 5ν3)
, (4.15)

self-consistent: SC: α∗ =
(1− 2ν)2(3− ν)

(1 + ν)2(3− 4ν)
, (4.16)

where α∗ = ξα = ξKt/Kn, and where α∗ is written in terms of ν in the self-consistent case

only because the expressions are far more concise than the corresponding expressions for ν

in terms of α∗.

In Section 4.3.1, for a single FCC cell with unrestrained particle rotation and no tangential

force applied to the boundaries, we found by direct analysis that ξ = 0.733 or ξ = 0.5,

depending on whether or not certain infinitesimal inter-particle gaps exist. We also found by

DEM simulations on 2× 2× 2, 3× 3× 3, and 7× 7× 7 arrays of FCC cells with unrestrained

particle rotation that ξ = 0.92, ξ = 0.97, and ξ = 1, respectively, as shown in Figure 4.3.

In Section 4.3.2, for a single BCC cell with unrestrained particle rotation and no tangential

force applied to the boundaries, we found by direct analysis that ξ = 0. We also found by

DEM simulations on 9 × 9 × 9, 18 × 18 × 18, and 27 × 27 × 27 arrays of BCC cells with

unrestrained particle rotation that ξ = 0.9, ξ = 0.98, and ξ = 1, respectively, as shown in

Figure 4.5. For both the FCC and BCC arrays, the minimum number of cells was found that
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effectively restrained particle rotation (i.e., resulted in ξ = 1), and this is the number that

was reported. Note that significantly more cells were required to restrain particle rotation

in the BCC array than were required in the FCC array. In Section 4.3.3, for a single SC

cell subjected to pure shear with unrestrained particle rotation, we found by direct analysis

that ξ = 1.0, ξ = 0.5, or ξ = 0, depending on the number of infinitesimal inter-particle

gaps introduced. Note that if ξ = 0 then equations (4.12), (4.13), and (4.16) predict that

ν = 0.5 for all values of α. This suggests that in the presence of sufficiently many shearing

mechanisms, the particulate material acts effectively as a fluid, with no resistance to shear

stress. The case of ξ = 0 is illustrated by the SC elementary cell considered in Figure 4.7,

and by the single BCC elementary cell with unrestrained particle rotation. It should be

noted, however, that these two illustrative cases are not isotropic. For further discussion of

the arrangement shown in Figure 4.7, see Bardet and Vardoulakis (2001) and Kruyt (2003).

While it is clear that (infinitely) many rotational mechanisms exist in a single BCC el-

ementary cell when no tangential force is applied to the spheres in contact with the cell

boundary, for such mechanisms to exist in a statistically isotropic aggregate of BCC elemen-

tary cells, it would be necessary for some kind of local asymmetry to exist in the inter-particle

contact distribution. Such local asymmetry could be caused by a series of aligned BCC ele-

mentary cells. Note that a diagonal alignment of BCC cells would result in what is called a

“force-chain” in the geomechanics literature. The existence of force-chains in particulate ma-

terials is well known, as noted by Mitchell and Soga (2005). Force-chains, sometimes called

strong force networks, refer to isolated paths of high inter-particle contact forces within a

particulate material under load. The areas outside of these force-chains, sometimes called

weak clusters, experience much smaller inter-particle contact forces. Many researchers, such

as Cundall and Strack (1979) and Oda (1997), have observed that during plastic shear,

particles within force-chains do not slide, but rather the columns of particles within the

force-chains buckle. In an elastic context, the buckling of local force-chains in a particulate
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material (which implies the existence of local mechanisms due to particle rotation) would

result in an increase in Poisson’s ratio when compared to a particulate material without such

mechanisms, as predicted by equations (4.10) – (4.16) when ξ < 1.

It is intriguing to consider the relationship between the parameter ξ and other internal

geometrical parameters of a (statistically isotropic) particulate material, such as the average

number of contacts per unit volume β, or the average coordination number nc, which is

related to β (see, e.g., Nemat-Nasser, 2004). Note, however, that in equation (4.9), the value

of β is unaffected by ξ. This is because the particle rotations and infinitesimal gaps considered

in the preceding subsections did not affect the normal component of the inter-particle contact

forces, and so did not change the bulk modulus κ. Hence, the average number of contacts

per unit volume β should still include the “missing” contacts that in some of these examples

gave rise to ξ < 1. Thus, the internal parameter ξ cannot depend exclusively on either β or

nc. Rather, we hypothesize that the internal parameter ξ for an overall isotropic particulate

material is related to local asymmetry in the inter-particle contact force distribution. Finding

a relationship between the internal parameter ξ and a quantifiable measure of asymmetry

in the inter-particle contact force distribution of a particulate material at the local level,

which must involve the fabric tensor of the particulate material (e.g., Durán et al., 2010), is

a subject of continuing research.

Recent work in determining the effective isotropic elastic moduli for a particulate (or

granular) material based on micromechanics, with an attempt to include the effect of particle

rotation, has been performed by Suiker and de Borst (2005). They rederive the relations

expressed by the Voigt equation (4.10) with ξ = 1 (but without the internal parameter), along

with additional relations for higher order elastic constants corresponding to several strain-

gradient micro-polar continuum models. Then they compare the predictions of these models

with the wave propagation characteristics of a two-dimensional discrete hexagonal lattice.

Their analysis follows that of Chang and Liao (1990) and Chang and Gao (1995) in assuming
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that discrete particle rotations can be approximated by a continuous particle rotation field,

similar to the strain field of classical continuum theory. This particle rotation field is then

represented by a Taylor expansion, which can be truncated at whatever order is desired

for the strain-gradient continuum model. This approach is problematic in that it cannot

capture the zero-energy strains or mechanisms due to particle rotation at the microscale.

Both the simple example of this section and the DEM results of Section 4.5 demonstrate

that mechanisms due to particle rotation can and do exist in a random assembly of spherical

particles, and these mechanisms affect the elastic properties of the material (specifically

Poisson’s ratio), despite the fact that they do not contribute to the quasi-static stress power

(Goddard, 2008). As will be shown in the following section, none of these prior theoretical

models incorporating particle rotation can come close to matching our DEM simulations for

precisely these reasons, whereas the theoretical models derived here can.

4.5 Validation by the Discrete Element Method

To test the analytical results of Section 4.4, we performed numerical simulations using the

discrete element method (DEM) to measure the macroscopic elastic moduli for randomly

packed aggregates of uniform spheres having constant normal and tangential contact stiff-

nesses Kn and Kt, respectively. We report the results that we have obtained from six DEM

specimens. Specimens 1, 2, and 3 each contained 3 430 randomly packed uniform spheres,

and Specimens 4, 5, and 6 each contained 29 660 randomly packed uniform spheres. The

specimens are shown in Figure 7 of Part I.

We performed the DEM simulations using the open source code LAMMPS, described in

Part I. The setup procedure and initial geometries of the six DEM specimens used in this

part of our two-part series are identical to those of the six DEM specimens used in Part I.

For a discussion of the initial packing geometries, including the average number of contacts
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per unit volume and the radial distribution functions for the specimens, see Section 3.5 and

Figure 3.9 of Part I.

To measure Poisson’s ratio ν for each specimen, we followed the procedure described by

the paragraph including equation (3.44) in Part I. To explore the effect of particle rotation in

the DEM simulations of this second part of our two-part series, the spheres were allowed full

three-dimensional translational and rotational freedom of motion. The results are shown in

Figure 4.8. Data points for both of the measured values of Poisson’s ratio ν1 and ν2 given by

equation (3.44) of Part I are included in all of the figures as solid squares and solid diamonds.

The difference between these data points provides a rough measure of the anisotropy of the

specimens, at least in the directions normal to the specimen boundaries. Note that in most

of the figures, these data points lie roughly on top of one another.

Figure 4.8 also shows the Voigt (4.10), Reuss (4.13), and self-consistent (4.15), (4.16)

curves, with ξ = {0.75, 0.6, 0.55, 0.85, 0.8, 0.75} for Specimens 1 – 6, respectively, where the

values of the internal parameter ξ were chosen to fit the DEM data points. Also shown

in Figure 4.8 by dotted lines are all of the same curves with ξ = 1, which correspond to

the curves shown in Figure 8 of Part I. Note that when the rotation of the spheres is not

restrained, the value of Poisson’s ratio in all six specimens is strictly and significantly greater

than zero when α = 1.0 (Kt = Kn). This is in disagreement with the results of Section 3.3

in Part I, which do not account for the effect of particle rotation, as well as the results of

Chang et al. (1995) for both an isotropic and a general anisotropic particulate material (not

necessarily having a locally cubic packing structure) under both the kinematic and static

hypotheses, all of which predict ν = 0 when α = 1.0. This phenomenon is captured, however,

by equations (4.10), (4.13), (4.15), and (4.16), with ξ < 1.0. In particular, the relationship

between Poisson’s ratio ν and α = Kt/Kn that is given by equation (4.15), the self-consistent

result for the local BCC packing, with ξ = {0.75, 0.6, 0.55, 0.85, 0.8, 0.75} for Specimens 1 –

6, respectively, agrees with the values obtained from the DEM simulations better than any
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of the other theoretical predictions we have considered thus far.

We also monitored friction work between the spheres throughout the DEM simulations,

and we verified that there was no inter-particle slip during the DEM simulations, regard-

less of whether or not particle rotation was allowed (i.e., friction work was zero). Thus,

inter-particle slip, and consequently plastic deformation, was not involved in the descrep-

ancy between the values of Poisson’s ratio predicted by the Voigt (4.10), Reuss (4.13), and

self-consistent (4.15), (4.16) equations, with ξ = 1, which also correspond to the equations

of Section 3 in Part I, and the values that were measured from the DEM simulations when

particle rotation was allowed. As noted above, this discrepancy increased as α increased,

but was remedied when the Voigt, Reuss, and self-consistent equations where used with

ξ = {0.75, 0.6, 0.55, 0.85, 0.8, 0.75} for Specimens 1 – 6, respectively. Note that, because

Chang et al. (1995) predict ν = 0 when α = 1.0 not only for a statistically isotropic par-

ticulate material, but also for a general anisotropic particulate material, their theoretical

predictions cannot be reconciled with our DEM results when particle rotation is involved.

We postulate that the internal parameter ξ measures zero-energy rotations or mechanisms in

the particulate material at the local level (as it was directly shown to do in the explicit cases

analyzed in Sections 4.3.1 - 4.3.2), which exist even when the particulate material is statis-

tically isotropic and when no inter-particle slip occurs, and which, as we discussed at the

end of Section 4.4, are not accounted for in the quasi-micro-polar and micro-polar theories

of Chang et al. (1995), Chang and Gao (1995), Suiker and de Borst (2005), and others.

Our postulation of the existence of zero-energy rotations or mechanisms in a statistically

isotropic particulate material [which we have directly confirmed: see the last two paragraphs

of this section] is similar to the postulation made by Jenkins et al. (2005), who, following

earlier work by Jenkins et al. (1989), have used DEM simulations to show that local deviations

in strain from the the average (macroscopic) strain in a particulate material can lead to large

discrepancies between the theoretically predicted values of the macroscopic shear modulus
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Figure 4.8: Macroscopic Poisson’s ratio ν versus α = Kt/Kn obtained from DEM simu-
lations on six specimens of randomly packed uniform spheres with constant normal and
tangential contact stiffnesses Kn and Kt, in which the spheres were allowed to rotate.
Also shown are the theoretical curves given by equations (4.10) [Voigt: FCC, BCC, SC],
(4.13) [Reuss: SC], (4.15) and (4.16) [self-consistent: BCC and SC, respectively], with
ξ = {0.75, 0.6, 0.55, 0.85, 0.8, 0.75} for Specimens 1 – 6, respectively. Observe that the an-
alytical self-consistent homogenization result for the local BCC packing, equation (4.15),
agrees most closely with the DEM simulations.
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(or Poisson’s ratio) for the particulate material and the numerically measured values. They

argue that this local deviation is due to strain “relaxation” between particle pairs, which

is similar to our argument for local strain “mechanisms” due to particle rotation. Jenkins

et al. (2005) show that this local strain relaxation can decrease the theoretical prediction of

the effective shear modulus obtained from equation (3.24) of Part I, or equations (4.9) and

(4.10) with ξ = 1 (where the shear modulus is obtained in terms of the bulk modulus κ and

Poisson’s ratio ν), by up to 70%. In contrast, they found that the bulk modulus κ is relatively

insensitive to local strain variation. This is in perfect agreement with our observations in

Section 4.4 and in this section regarding Poisson’s ratio. The DEM specimens used by

Jenkins et al. (2005) consisted of 10 000 randomly packed spheres of two different radii in

equal numbers.

We have confirmed the existence of rotational mechanisms within our DEM specimens

by monitoring the angular velocities of individual particles throughout the DEM simulations

described in this section. We found that particles in some of the specimens experienced

angular velocities in excess of ten times the average angular velocity of the particles in those

specimens during a simulation. This can be quantified by the ratio 〈Ω〉max/〈Ω〉avg, where Ω

is the magnitude of the angular velocity of an individual particle in a specimen, the angled

brackets 〈〉 denote root-mean-square time average over the course of a simulation, and the

subscripts “max” and “avg” denote maximum and rms-average values over all particles in the

specimen. We computed this ratio for each specimen during the simulation with α = 1.0, and

the resulting values were 〈Ω〉max/〈Ω〉avg = {10.3, 8.37, 9.31, 32.9, 70.0, 36.4} for Specimens 1

– 6, respectively.

Figure 4.9 shows clusters of particles in Specimens 2 and 6 that experienced angular

velocities in excess of two times the rms-average particle angular velocity at a particular

time during the DEM simulations with α = 1.0. The particles with Ω > 2Ωavg are shown

as spheres in Figure 4.9, while the other particles (i.e., with Ω ≤ 2Ωavg) are shown as dots.
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The spheres are shaded according to the magnitude of their angular velocities. Particles

with Ω > 5Ωavg and Ω > 10Ωavg are magnified and shown next to Specimens 2 and 6,

respectively. Figure 4.9, together with the measured values of 〈Ω〉max/〈Ω〉avg for all of the

specimens, shows that rotational mechanisms were present during the simulations. There

appears, however, to be no correlation between 〈Ω〉max/〈Ω〉avg and the internal parameter ξ

for our DEM specimens.

Figure 4.9: Rotational mechanisms in DEM Specimens 2 and 6. The particles represented
as spheres in each specimen experienced rotations in excess of 2 times the rms-average
particle rotation in the specimen. The magnified spheres next to Specimens 2 and 6 represent
particles that experienced rotations in excess of 5 and 10 times the rms-average particle
rotation, respectively.

4.6 Discussion

If we assume Hertz-Mindlin contact, then equation (3.8) of Part I [Chapter 3] implies that

α = 2(1−ν)/(2−ν), where α = Kt/Kn and ν is Poisson’s ratio for the material constituting

the spheres (not for the particulate material as a whole). Thus, for a particulate material

composed of uniform spheres, if the spheres are composed of a stable elastic material then
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α is bounded by 2/3 ≤ α ≤ 4/3, and if the spheres are composed of a stable elastic material

with 0 ≤ ν ≤ 1/2 then α is bounded by 2/3 ≤ α ≤ 1. For materials with ν ≈ 0.3 (such

as quartz), Hertz-Mindlin contact implies that α ≈ 0.8. Thus, the accuracy of theoretical

models for values of α in the vicinity of 0.8, and more generally for values of α between 2/3

and 1, is of great practical importance. Figure 4.10 shows the ν(α) curve for Specimen 3

in the region 2/3 ≤ α ≤ 4/3 with unrestrained particle rotation, along with the theoretical

curves given by the Voigt (4.10), Reuss (4.13), and self-consistent (4.15), (4.16) equations,

with ξ = 0.55 and ξ = 1.

Also shown in Figure 4.10 for comparison is an experimental data point for spherical glass

beads. For glass beads, ν ≈ 0.2, and Hertz-Mindlin contact theory predicts α ≈ 0.9. Thus,

the Voigt (4.10), Reuss (4.13), and self-consistent (4.15), (4.16) equations with ξ = 1, which

also correspond to the equations of Section 3 in Part I derived assuming no particle rotation,

all predict that Poisson’s ratio for an isotropic packing of spherical glass beads should be

ν ≈ 0.02. However, according to Bachrach et al. (2000), the experimentally measured value

of Poisson’s ratio for a random packing of spherical glass beads is ν ≈ 0.15, over seven times

larger than the theoretical predictions of Section 3 in Part I. Note from Figure 4.10, however,

that the values of ν predicted by the Voigt (4.10), Reuss (4.13), and self-consistent (4.15),

(4.16) equations of Section 4.4 with ξ = 0.55 are much closer to the experimentally measured

value of ν, ranging between ν ≈ 0.11 and ν ≈ 0.14 for α ≈ 0.9. It should be noted that the

value of the internal parameter ξ = 0.55 was chosen to match the DEM data points obtained

from Specimen 3, and by adjusting the internal parameter ξ any of the modified curves could

be made to pass through the single experimental data point for glass beads. Specimen 3 was

chosen in Figure 4.10 for illustrative purposes, because it shows the largest effect of particle

rotation of the six DEM specimens tested, and because the values of Poisson’s ratio in the

vicinity of α ≈ 0.9 are the closest to that measured experimentally for spherical glass beads.

Unfortunately, although it is illustrative, the experimental data point for glass beads
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Figure 4.10: Macroscopic Poisson’s ratio ν for α = Kt/Kn bounded by 2/3 ≤ α ≤ 4/3,
which is the range of possible values for α assuming Hertz-Mindlin contact between spheres
composed of a stable elastic material. DEM data points are from Specimen 3 with unre-
strained particle rotation. Also shown are the theoretical curves given by equations (4.10)
[Voigt], (4.13) [Reuss: SC], (4.15) and (4.16) [self-consistent: BCC and SC, respectively],
with ξ = 0.55 and ξ = 1. Also shown is an experimental data point for glass beads, for
which the value of α ≈ 0.9 is uncertain because it assumes no inter-particle slip. A range of
experimentally measured values of Poisson’s ratio for quartz sand is also shown, for which
the value of α ≈ 0.8 is uncertain for the same reason.
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provides limited information for the purpose of testing our theory. This is because, as

noted by Bachrach et al. (2000), we do not know whether or not there was inter-particle

slip between the glass beads during the experiment, and hence we do not know whether

the value of α ≈ 0.9 predicted by Hertz-Mindlin contact theory (assuming no inter-particle

slip) is correct for the glass beads. The same is true of the experimentally measured values

of Poisson’s ratio for quartz sand, which typically fall in the range 0.1 < ν < 0.2 (e.g.,

Mitchell and Soga, 2005). This is one reason the discrete element method was essential

to test the validity of our theoretical results, since the value of α for any given physical

particulate material (such as glass beads) is not known exactly, and at best provides only

one data point, while using DEM we could adjust α over a large range of exactly known

values by adjusting the inter-particle tangential contact stiffness Kt. Nevertheless, we note

from Figure 4.10 that the range of experimentally measured values of Poisson’s ratio for

quartz sand with α ≈ 0.8 compares well with our DEM simulation results obtained from

Specimen 3.

Bachrach et al. (2000) noted the discrepancy between the experimentally measured value

of ν for a random packing of glass beads and the theoretical prediction of Walton (1987),

which is identical to equation (4.10) with ξ = 1. Bachrach et al. (2000) suggested that

the cause for this discrepancy may be due to slipping at the inter-particle contacts. A

similar approach was taken by Trentadue (2004), who replaced the Hertz-Mindlin contact

law in equation (3.8) of Part I with a Hertz-Cattaneo-Mindlin contact law, which includes

a parameter ζ to account for micro-slip at inter-particle contacts, and by Duffaut et al.

(2010), who also modified the results of Walton (1987) by introducing a parameter to account

for micro-slip at inter-particle contacts. While slipping at inter-particle contacts may be

partially responsible for the very large discrepancy between the experimentally measured

value of ν ≈ 0.15 for a random packing of glass beads and the values predicted by the

methods of Section 3 in Part I (with no particle rotation), slipping at inter-particle contacts
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cannot explain the discrepancy between the values of ν that were measured from our DEM

simulations and the values predicted by the methods of Section 3 in Part I, since we can verify

that no slipping occurred between any of the particles in our DEM simulations. Indeed, by

using DEM simulations to explore the effect of eliminating particle rotation, we believe we

have identified an important contributing factor to the discrepancy between theoretical and

experimentally measured values of Poisson’s ratio in particulate materials, particularly in

the vicinity of α ≈ 1.

Another approach to the homogenization of particulate materials was taken by Cambou

et al. (1995). Like Walton (1987) and Chang et al. (1995), Cambou et al. (1995) did not

analyze specific local particle arrangements, but instead assumed a form for the distribution

of inter-particle contact forces a priori. However, in addition to rederiving equation (3.24)

of Part I or equation (4.10) with ξ = 1 under the Voigt hypothesis, Cambou et al. (1995)

introduced an internal parameter µ in their “static localization method” (analogous to ho-

mogenization under the Reuss hypothesis) that measures the fraction of the deviatoric stress

in the particulate material supported by the normal components of the inter-particle contact

forces, from 2/5 for µ = 1 to 1 for µ = 0. Specifically, they assumed the average distribution

fi of the inter-particle contact forces at the local level within a particulate material can be

expressed as a function of the orientation direction ni and the far field (non-local) stress σij

as

fi = µσijnj +
1− µ

2
[5njσjknk − σjj]ni. (4.17)

Equation (4.17) was first proposed by Delyon et al. (1990), and it is based on the represen-

tation theorems (e.g., Spencer, 1987) under the assumptions that fi is linear with respect to

σij and isotropic with respect to ni. Static equilibrium then requires that

σij = βD

∫
Ω

finj dΩ, (4.18)
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where dΩ = sinθ dϕ dθ dψ is the differential solid angle of the unit sphere Ω, σij is the far

field stress in the particulate material, β is the average number of contacts per unit volume,

and D is the diameter of the spheres. Under the hypotheses expressed in equations (4.17)

and (4.18), the relationship obtained by Cambou et al. (1995) between Poisson’s ratio ν and

α = Kt/Kn by their static localization method is

ν =
2µ2 + α (5− 10µ+ 3µ2)

4µ2 + α (20− 20µ+ 6µ2)
. (4.19)

Emeriault and Cambou (1996) derive more complicated expressions for an arbitrary anisotropic

particulate material. If µ = 1, then equation (4.19) is identical to equation (4.13) with ξ = 1,

which is the same as the relation obtained by Chang et al. (1995) under their static hypoth-

esis. Note that if µ = 0, then none of the deviatoric stress in the particulate material is

carried by the tangential components of the inter-particle contact forces. Thus, the role of

µ in the analysis of Cambou et al is similar to the role of ξ in our analysis. For µ < 1,

equation (4.19) does in fact predict a value of Poisson’s ratio that is strictly greater than

zero when α = 1.0, which is in general agreement with what we have observed in our DEM

simulations. However, as Figure 4.11 shows, for no value of µ can the ν(α) curve given by

equation (4.19) be made to match the curve obtained from our DEM simulations as closely

as the curve given by equation (4.15).

While the internal parameter ξ cannot depend exclusively on the average number of

contacts per unit volume β for reasons discussed in Section 4.4, we note that for the six DEM

specimens described in the preceding section, there is, in fact, a strong correlation between ξ

and β. Figure 4.12 illustrates this correlation. It is noteworthy that the correlation between ξ

and β observed in the DEM specimens appears to be independent of the number of spheres in

the specimens (i.e., 3 430 or 29 660). This suggests that the particle rotation effects observed

in the DEM simulations described in Section 4.5 are not simply due to boundary effects, nor
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Figure 4.11: The relationship between Poisson’s ratio ν and α = Kt/Kn as obtained by
Cambou et al. (1995) by their static localization method, given by equation (4.19), for a
range of values of their internal parameter µ. Also shown are the DEM data points from
Specimen 3 with unrestrained particle rotation, and the curve given by the self-consistent
equation (4.15) with ξ = 0.55.

to the fact that the specimens are too small to represent a statistically isotropic particulate

material. The best-fit line to the data points in Figure 4.12 is given by

ξ = 0.164βD3 − 0.143 (4.20)

with an R2 value of 0.905.

4.7 Conclusions

Building on the work of Part I, we have explored the effects of particle rotation on the elastic

moduli of a statistically isotropic particulate material with locally cubic packing structure.

We found that particle rotation effects must be properly accounted for to accurately predict

the values of Poisson’s ratio that were measured by our DEM simulations on six randomly

packed specimens of uniform spheres, having constant normal and tangential contact stiff-
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Figure 4.12: Correlation between the internal parameter ξ and the average number of con-
tacts per unit volume β for the six DEM specimens tested in Section 4.5, where D is the
diameter of the spheres.

nesses Kn and Kt, respectively.

There were several advantages to using DEM to test our theoretical results, as opposed to,

for example, using experiments on physical particles such as glass beads. First, we were able

to reproduce our theoretical assumption of constant contact stiffness exactly, without having

to make any assumptions regarding the actual contact behavior of the physical particles,

thus eliminating one source of uncertainty. We were also able to assign precise values to the

normal and tangential contact stiffnesses, and thus measure Poisson’s ratio for a large range

of specific values of α = Kt/Kn. Finally, we were able to adjust the DEM simulations to

either allow or prohibit particle rotation, and in this way study the effect of particle rotation

on the values of Poisson’s ratio. Specifically, we were able to prove that particle rotation was

responsible for the values of Poisson’s ratio predicted by the DEM simulations in the vicinity

of α = 1 being significantly higher than the theoretical predictions of Walton (1987) and

Chang et al. (1995), which do not account for the mechanisms (i.e., zero-energy deformations)

produced by particle rotation. In particular, the results of Chang et al. (1995) under the

static hypothesis do not provide an upper bound on Poisson’s ratio if particle rotation is
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allowed. This is despite the fact that Chang et al. (1995) attempted to include the effects of

particle rotation via a “quasi-micro-polar” continuum theory. The inability of their approach

to match the DEM simulation results appears to be due to the fact that the micro-polar or

quasi-micro-polar continuum approach cannot capture the zero-energy strains or mechanisms

produced by particle rotations, which we have shown can and do exist in random assemblies

of uniform spheres where there are local asymmetries in the distribution of inter-particle

contacts.

We also showed that this discrepancy between the theoretical and DEM predictions of

Poisson’s ratio could not be caused by inter-particle slip, since no inter-particle slip took place

in our DEM simulations. This is a significant observation, since Bachrach et al. (2000) have

hypothesized that inter-particle slip could be the cause for the (same) discrepancy between

the theoretical prediction of Poisson’s ratio by Walton and the experimentally measured

value of Poisson’s ratio for a random packing of uniform glass beads with α ≈ 0.9. While

inter-particle slip may have taken place and contributed to the discrepancy, it cannot serve as

the sole explanation, since the discrepancy still exists when no inter-particle slip takes place.

It might also be noted that the results of such a comparison with experiment are difficult to

interpret, since the theoretical value of Poisson’s ratio depends on α, and α depends on the

contact model assumed, which may itself be imperfect for the glass beads.

Based on a micromechanics analysis of the effect of particle rotation and the effect of the

mechanisms caused by particle rotation in each of the three cubic elementary cells (FCC,

BCC, and SC), we showed how our theoretical results could be modified by the introduction

of an internal parameter ξ, which gave rise to an effective tangential stiffness K∗t = ξKt,

and hence an effective α∗ = ξα, where 0 ≤ ξ ≤ 1 is a measure of the presence of shearing

mechanisms due to particle rotation induced by local asymmetries in the distribution of

inter-particle contacts. If ξ = 0 then all inter-particle contacts contain shearing mechanisms,

and α∗ = 0. If ξ = 1 then there are no shearing mechanisms, and α∗ = α. With this modifi-
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cation, our theoretical results obtained under the self-consistent homogenization assumption,

particularly that based on the body-centered cubic local packing geometry, are capable of

providing remarkably good agreement with the results we obtained from our DEM simula-

tions, especially when compared to the best theoretical estimates currently in the published

literature.



99

Chapter 5

Determination of Yield Surfaces for

Isotropic Non-Cohesive Particulate

Materials by the Discrete Element

Method, Part I: No Particle Rotation

5.1 Abstract

We perform numerical simulations using the discrete element method (DEM) to determine

yield surfaces for large samples of randomly packed uniform spheres with constant normal

and tangential contact stiffnesses (linear spring model) and uniform inter-particle friction

coefficient µ. The beauty of DEM is that the simulations can be run with particle rotation

either prohibited or unrestrained, which provides a valuable tool for comparison, and the

micromechanical properties of the spheres, especially the inter-particle friction coefficient µ,

are known exactly. Since each discrete spherical element represents an individual particle,

we use the terms “element” and “particle” interchangeably. For the results presented in this
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chapter, all DEM simulations were performed with particle rotation prohibited. In Chapter 6,

DEM simulations are performed with particle rotations allowed.

5.2 Introduction

In the field of geomechanics, particularly in the study of soils, the most important mechanical

property is the yield criterion. This is because, for most applications, the mechanical behavior

of a geomaterial within the elastic range is of less importance than the point at which the

geomaterial yields. For particulate geomaterials, this yielding usually takes the form of

inter-particle sliding rather than destruction of the individual particles. Notable exceptions

apply. For example, the elastic behavior of a geomaterial is crucial in the determination

of the seismic wave speed (Bachrach et al., 2000), as we note in Chapter 4 of this thesis

and Fleischmann et al. (2013b). Also, individual particle damage has been observed in

physical experiments, including both direct shear and triaxial tests, particularly for large-

scale geomaterials such as railway ballast (Indraratna et al., 1998), and this “micro-scale”

particle damage can affect the geomaterial’s plastic (particularly post-yield) behavior (Jensen

et al., 2001b). However, yielding due to inter-particle sliding remains the predominant mode

of failure for particulate geomaterials in common applications.

The need for a mechanical characterization of isotropic particulate materials extends

beyond the field of geomechanics. In this context, the yield criterion remains crucial in the

standard formulation of an elastoplastic continuum constitutive model, as it does for any

material. In the classical elastoplastic formulation, the yield (or failure) criterion defines

a material’s transition from elastic to plastic mechanical behavior. Typically, yield criteria

take the form of three-dimensional surfaces in either principal stress space or principal strain

space (e.g., Lubarda, 2002, Simo and Hughes, 1998). We use the more common principal

stress space characterization of yield criteria.
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In this chapter, we report results from numerical simulations using the discrete element

method (DEM), which were performed on six randomly packed specimens of 3 430–29 660

uniform spherical elements with uniform inter-element (Coulomb) friction. For the purpose

of comparison, the DEM simulations of this chapter and the next were performed on the

same (geometric) DEM specimens as those used in Chapter 3 [Fleischmann et al. (2013a)] and

Chapter 4 [Fleischmann et al. (2013b)]. Since each spherical element represents an individual

particle, we use the terms “element” and “particle” interchangeably. Numerous simulations

were performed on each specimen for a wide range of values of the inter-element friction co-

efficient µ. The numerical simulations corresponded to quasi-static constant-volume (three-

dimensional) true triaxial tests. By varying the (quasi-static) strain rates and monitoring

the stresses in the three triaxial directions throughout these simulations, we obtain complete

yield surfaces for each of the six specimens for a wide range of values of µ.

From these yield surfaces, we obtain relationships for all six DEM specimens between

the inter-particle friction coefficient µ on the microscale and the material friction angle φ

on the macroscale. We find that for a given value of the inter-particle friction coefficient

µ, the values of the material friction angle φ exhibit very little scatter. (We examine the

relationship between µ and φ in greater detail in Chapters 7 and 8.) We compare the yield

surfaces obtained by DEM to those predicted by several well known yield-criteria, and find

that the Lade-Duncan yield criterion provides the best characterization of the data points,

particularly those corresponding to DEM simulations of extension. We also monitor inter-

particle friction work within each specimen during the DEM simulations, both globally and

on an element-by-element basis, and we examine the relationship between the friction work

and the inter-particle friction coefficient.

In this chapter, as we did in Chapter 3 [Fleischmann et al. (2013a)] for the elastic range,

we report results obtained from DEM simulations in which particle rotation was prohibited.

In Chapter 6, we report results analogous to the results of this chapter, obtained from DEM
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simulations with unrestrained particle rotation, as we did in Chapter 4 [Fleischmann et al.

(2013b)] for the elastic range.

5.3 Yield Criteria

The Mohr-Coulomb yield (or failure) criterion is the oldest and still one of the most used

yield criteria for particulate materials in general, and geomaterials in particular. For non-

cohesive particulate materials, the classical Mohr-Coulomb yield criterion is characterized

by the following three-dimensional surface in principal stress space:

|σi − σj|
2
√
σiσj

= tanφ, i 6= j, i, j = 1, 2, 3, (5.1)

where φ is the (macroscopic) friction angle for the particulate material. For particulate

materials, the friction angle φ is a “strength” characteristic, somewhat analogous to yield

stress. For non-cohesive particulate materials, φ is also called the “angle of repose”. In

equation (5.1) it is assumed that the principal stresses σ1, σ2, and σ3 all have the same

sign, which must be the case if the particulate material is non-cohesive. In the geomechanics

literature, σ1, σ2, and σ3 are generally assumed to be positive in compression, but equation

(5.1) is true independent of this convention. If equality “=” is replaced by inequality “<”,

then equation (5.1) defines the elastic range (in principal stress space) for a non-cohesive

isotropic particulate material with friction angle φ. For a derivation of equation (5.1), see

Appendix D.

The Mohr-Coulomb yield criterion is not typically characterized as we have done in

equation (5.1). Rather, it is more typically characterized in terms of the hydrostatic pressure

p = (σ1 + σ2 + σ3)/3 and the Lode angle θ (e.g., Bardet, 1997). The Lode angle is an angle

on the plane of constant hydrostatic pressure p in principal stress space, which is called the
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π-plane. There are different versions of the Lode angle in the literature, and we will use the

definition in which θ is measured from one of the principal stress directions projected onto

the π-plane, as shown in Figure 5.1. Due to material frame invariance, the Mohr-Coulomb

Figure 5.1: The intersection of the Mohr-Coulomb yield surface with the plane of constant
hydrostatic pressure p (called the π-plane) in principal stress space, with the principal stresses
σ1, σ2, and σ3 positive in compression. The Lode angle θ is measured from any of the principal
stress directions projected onto the π-plane.

yield criterion (and all yield criteria) must be independent of the labeling of the principal

stresses σ1, σ2, and σ3. Thus, as shown in Figure 5.1, the Mohr-Coulomb yield criterion

must exhibit 120◦ rotational symmetry, as well as reflective symmetry about each of the

three projected principal stress directions on the π-plane. Therefore, the specific principal

stress direction from which the Lode angle θ is measured is arbitrary, and the Lode angle

varies between 0 ≤ θ ≤ 60◦.

Other yield criteria for non-cohesive particulate materials exist, such as the Drucker-

Prager criterion, which is simply a cone in principal stress space with vertex at the origin

and axis along the line σ1 = σ2 = σ3. The Drucker-Prager criterion can be characterized in

principal stress space by the surface I1 − a
√
J2 = 0, where I1 = 3p = σ1 + σ2 + σ3 is the

first stress invariant, J2 = [(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]/6 is the second deviatoric
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stress invariant, and a is a material parameter. The intersection of the Drucker-Prager yield

surface with the π-plane is a circle. Both the Mohr-Coulomb and the Drucker-Prager yield

surfaces scale linearly with the hydrostatic pressure p, as shown in Figure 5.2.

Mohr-Coulomb

Drucker-Prager

Figure 5.2: The Mohr-Coulomb and Drucker-Prager yield surfaces in principal stress space
for a non-cohesive particulate material, with the principal stresses σ1, σ2, and σ3 positive in
compression.

Other (phenomenological) yield criteria include the Lade-Duncan and Matsuoka-Nakai

criteria (Bardet, 1990). The Lade-Duncan criterion is characterized in principal stress space

by the surface I3
1 − bI3 = 0, where I3 = σ1σ2σ3 is the third stress invariant, and b is a

material parameter. The Matsuoka-Nakai – also called the Spatially Mobilized Plane or

SMP (Matsuoka and Sun, 2006) – criterion is characterized in principal stress space by the

surface I1I2 − cI3 = 0, where I2 = σ1σ2 + σ2σ3 + σ3σ1 is the second stress invariant, and c is

a material parameter.

A host of phenomenological variations on these yield criteria can be defined, all of which

lie between the Mohr-Coulomb and Drucker-Prager criteria, and all of which have slightly
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different Lode angle dependences (Bardet, 1990). Typically, the material parameters for

these yield criteria (e.g., φ, a, b, and c) are chosen so that the yield surfaces coincide at a

Lode angle of θ = 0, since this is the location in principal stress space corresponding to the

standard triaxial test, for which σ1 6= σ2 = σ3 = constant.

5.4 Methodology

For this chapter, we performed a total of 1 296 numerical simulations using the discrete

element method (DEM) to determine yield surfaces in principal stress space for randomly

packed aggregates of uniform spheres having constant normal and tangential contact stiff-

nesses Kn and Kt, respectively (linear spring contact model), and uniform inter-particle

friction coefficient µ, with particle rotation prohibited. We report the results that we have

obtained from the same six DEM specimens that were tested in Sections 3.5 and 4.5 of this

thesis, and in Fleischmann et al. (2013a) and Fleischmann et al. (2013b). Specimens 1, 2,

and 3 each contained 3 430 randomly packed uniform spheres, and Specimens 4, 5, and 6 each

contained 29 660 randomly packed uniform spheres. The specimens are shown in Figure 3.7

of Section 3.5, which is repeated here as Figure 5.3 for convenience.

As in Chapters 3 and 4, we performed our DEM simulations using LAMMPS, the open-

source “Large-scale Atomic/Molecular Massively Parallel Simulator” software developed at

Sandia National Laboratories (Plimpton, 1995), which is described briefly in Section 3.5 and

in more detail in Section 9.3. We have modified our own version of LAMMPS in several

ways: some major, such as adding the capability of monitoring inter-element friction work

following Jensen et al. (2001b); some minor, such as removing an artificially imposed limit

on the maximum value of the inter-element friction coefficient (of µ = 1.0) that was in place

in the standard code.

The setup procedures and initial geometries of the six specimens used in this section are
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Figure 5.3: Specimens of randomly packed uniform spheres used in the DEM simulations.
Specimens 1, 2, and 3 contain 3 430 spherical elements, and Specimens 4, 5, and 6 contain
29 660 spherical elements.
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identical to those of the six specimens used in Section 3.5 and Fleischmann et al. (2013a) and

Section 4.5 and Fleischmann et al. (2013b). For a discussion of the initial packing geome-

tries, including the average number of contacts per unit volume and the radial distribution

functions for the specimens, see Section 3.5 and Section 3.6, or Fleischmann et al. (2013a).

For convenience, we repeat here the initial volumetric packing densities of the six specimens,

which were 0.64, 0.62, 0.62, 0.69, 0.68, and 0.68, respectively. All six of these volume den-

sities correspond to a dense sand (with void ratio e ≈ 0.5) of roughly uniform particle size

(with coefficient of uniformity Cu ≈ 1), such as Ottawa standard sand (e.g., Bardet, 1997).

Figure 3.9 of Section 3.6 shows that the packing of the spheres in each of these six specimens

is essentially random.

To compute yield surfaces for the specimens, true triaxial simulations were performed

under constant volume conditions, in which the upper wall of the confining cube was low-

ered or raised at a constant strain rate ε̇z = ±0.01, and the lateral walls of the confining

cube were expanded or contracted at various predetermined lateral strain rates. To ob-

tain a single yield surface, sixteen DEM simulations were performed with lateral strain

rates of ε̇x = {∓0.005,∓0.0057,∓0.0064,∓0.0071,∓0.0079,∓0.0086,∓0.0093,∓0.01} and

ε̇y = {∓0.005,∓0.0043,∓0.0036,∓0.0029,∓0.0021,∓0.0014,∓0.0007, 0} in such a way that

the (small strain) volumetric strain rate was zero: ė = ε̇x + ε̇y + ε̇z = 0. In this way, an

approximately constant volume condition was maintained. The variation in the lateral strain

rates was necessary to obtain different values of the intermediate principal stress during the

simulations, so that each simulation could produce a data point for the yield surface at a

different Lode angle on the π-plane. Note that all of these strain rates are low enough that

the particulate material response can be considered quasi-static. The walls of the confining

cube were frictionless, and the total force on each wall was measured continually through-

out the simulations, so that the stresses σx, σy, and σz on the walls of the confining cube

were known at all times. The simulations were run to a total axial strain of εz = ±0.1 (or
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10% axial strain in either compression or extension, depending on the simulation). In all

of the DEM simulations performed for the present chapter, the spheres were allowed full

three-dimensional translational freedom of motion, but particle rotation was prohibited. For

Chapter 6, DEM simulations analogous to those of this chapter were performed with particle

rotations allowed.

The sixteen DEM simulations described in the preceding paragraph were performed on

each of the six specimens with nine different values of the inter-element friction coefficient

µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, requiring a total of 144 DEM simulations per

specimen. During these sixteen simulations, which were performed on a particular speci-

men with a particular inter-element friction coefficient, the measured principal stress triple

(σ1, σ2, σ3), with σi = σx, σj = σy, and σk = σz, where i, j, k ∈ {1, 2, 3} with i 6= j 6= k, could

be converted into six unit vectors in principal stress space (for the six different assignments

of i, j, and k) and projected onto any π-plane, which is a plane in principal stress space

for which σ1 + σ2 + σ3 is constant. Thus, six data points could be plotted on the π-plane

for every measured stress triple (σx, σy, σz). For consistency, the data points for all of the

DEM simulations were projected onto the same π-plane, although the actual hydrostatic

pressure p = (σ1 + σ2 + σ3)/3 for the individual simulations varied. Note that for the yield

surfaces we obtain in this way to be comparable, we must implicitly assume that the yield

surface depends linearly on the hydrostatic pressure p, and that the particulate material has

no strength when p = 0. We will return to this assumption in the discussion section that

follows.

To determine the yield surface, the 16(×6) data points were plotted on the π-plane for

axial strains (|εz|) of {1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%} (in either compression or extension).

The yield surface was then found by determining the set of data points on the π-plane

for which the principal stresses were maximum, after which the principal stresses either

remained fixed or began to decrease. It was found that the maximal yield surface occurred
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at 4%–6% axial strain for Specimens 1–3 (with 3 430 particles), and at 6%–8% axial strain

for Specimens 4–6 (with 29 660 particles), after which time the yield surface either remained

approximately fixed or began to collapse.

By way of example, Figure 5.4 shows the data points on the π-plane obtained from DEM

simulations performed on Specimen 1 with inter-element friction coefficients of µ = 0.2

(top) and µ = 0.5 (bottom) for axial strains of 1%–8% in either compression or extension,

depending on the data point. The symmetry due to material frame invariance (i.e., the cyclic

renaming of the principal stress directions) is included in the figure, resulting in 16× 6 = 96

data points on the π-plane for each value of the axial strain. For convenience, the principal

stress directions are shown positive in compression, which is commonly done in the field

of geomechanics. Also shown on Figure 5.4 are the yield surfaces according to the Mohr-

Coulomb yield criterion with (macroscopic) friction angles φ = 34◦ (top) and φ = 53◦

(bottom), chosen to match the data points at a Lode angle of zero.

Figures 5.5–5.9 show the corresponding results for Specimens 2–6, respectively, with

inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom). Analogous DEM

simulations and analyses were performed for all six specimens for all nine values of the inter-

element friction coefficient µ, and the matching “material” or macroscopic friction angle φ

(at a Lode angle of zero) corresponding to the classical Mohr-Coulomb yield criterion was

determined for each (with an accuracy of approximately ±0.25◦).
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Figure 5.4: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 1 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation prohibited. Right: Maximal yield surfaces. The
solid line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction
angle of φ = 34.0◦ (top) and φ = 53.0◦ (bottom), chosen to match the data points at a
Lode angle of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either
compression or extension (depending on the Lode angle).
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Figure 5.5: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 2 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation prohibited. Right: Maximal yield surfaces. The
solid line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction
angle of φ = 32.5◦ (top) and φ = 52.5◦ (bottom), chosen to match the data points at a
Lode angle of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either
compression or extension (depending on the Lode angle).
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Figure 5.6: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 3 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation prohibited. Right: Maximal yield surfaces. The
solid line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction
angle of φ = 32.5◦ (top) and φ = 53.0◦ (bottom), chosen to match the data points at a
Lode angle of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either
compression or extension (depending on the Lode angle).
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Figure 5.7: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 4 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation prohibited. Right: Maximal yield surfaces. The
solid line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction
angle of φ = 31.0◦ (top) and φ = 50.0◦ (bottom), chosen to match the data points at a
Lode angle of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either
compression or extension (depending on the Lode angle).
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Figure 5.8: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 5 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation prohibited. Right: Maximal yield surfaces. The
solid line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction
angle of φ = 32.5◦ (top) and φ = 52.0◦ (bottom), chosen to match the data points at a
Lode angle of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either
compression or extension (depending on the Lode angle).
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Figure 5.9: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 6 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation prohibited. Right: Maximal yield surfaces. The
solid line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction
angle of φ = 32.5◦ (top) and φ = 51.5◦ (bottom), chosen to match the data points at a
Lode angle of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either
compression or extension (depending on the Lode angle).
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One of the enhancements we have added to our version of LAMMPS is the monitoring of

inter-particle friction work, as defined by Jensen et al. (2001b). In particular, if contacting

discrete elements i and j experience relative sliding, then the magnitude of the tangen-

tial component of the inter-element contact force is F ij
t = µN ij, where N ij is the normal

component of the inter-element contact force and µ is the inter-element friction coefficient.

The friction work for the element pair ij over a given time interval ∆t = [tk, tk+1] is then

U ij
f = F ij

t ∆sij, where ∆sij is the magnitude of the incremental relative tangential sliding

displacement at the contact point between elements i and j corresponding to the time in-

terval ∆t. This expression assumes ∆t is small, as in the size of the critical time step for

DEM (Appendix E). Note that when the discrete elements are allowed to rotate (as they

are by default, although particle rotation is not allowed in the current chapter), ∆sij will

include a contribution due to the rotation of the elements i and j. Given the definitions in

this paragraph, the total friction work in a DEM specimen can be computed at any time

during a simulation as

Uf =
∑
∆t

N−1∑
i=0

N∑
j=i+1

U ij
f , (5.2)

where the first sum is taken over all time steps prior to the time at which Uf is being

computed, and N is the total number of discrete elements in the specimen.

Using this capability, the total accumulated friction work Uf for each specimen for each

value of the inter-particle friction coefficient µ was recorded throughout the DEM simulations.

By way of example, Figure 5.10 shows the total friction work Uf (Joules) as a function of

strain at Lode angles of θ = 0 and θ = 60◦ for Specimen 1 with inter-element friction

coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), for axial strains of 1%–8% in either

compression (θ = 0) or extension (θ = 60◦). Figures 5.11–5.15 show the corresponding

results for Specimens 2–6, respectively, with inter-element friction coefficients of µ = 0.2

(top) and µ = 0.5 (bottom).
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Figure 5.10: Total accumulated friction work Uf as a function of strain for Specimen 1 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. The two curves correspond to the data points on the yield surfaces
shown in Figure 5.4 at Lode angles of θ = 0 and θ = 60◦.
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Figure 5.11: Total accumulated friction work Uf as a function of strain for Specimen 2 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. The two curves correspond to the data points on the yield surfaces
shown in Figure 5.5 at Lode angles of θ = 0 and θ = 60◦.
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Figure 5.12: Total accumulated friction work Uf as a function of strain for Specimen 3 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. The two curves correspond to the data points on the yield surfaces
shown in Figure 5.6 at Lode angles of θ = 0 and θ = 60◦.
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Figure 5.13: Total accumulated friction work Uf as a function of strain for Specimen 4 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. The two curves correspond to the data points on the yield surfaces
shown in Figure 5.7 at Lode angles of θ = 0 and θ = 60◦.
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Figure 5.14: Total accumulated friction work Uf as a function of strain for Specimen 5 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. The two curves correspond to the data points on the yield surfaces
shown in Figure 5.8 at Lode angles of θ = 0 and θ = 60◦.
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Figure 5.15: Total accumulated friction work Uf as a function of strain for Specimen 6 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. The two curves correspond to the data points on the yield surfaces
shown in Figure 5.9 at Lode angles of θ = 0 and θ = 60◦.
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5.5 Results

Figures 5.16–5.21 show the 54 yield surfaces that were obtained from the DEM simulations

described in Section 5.4, performed on Specimens 1–6 with nine different values of the inter-

element friction coefficient 0.01 ≤ µ ≤ 0.8, with particle rotation prohibited. Also shown

are the corresponding Mohr-Coulomb yield surfaces, with the macroscopic friction angle φ

chosen in each case to match the data points at a Lode angle of zero.

Figure 5.22 shows the resulting relationship between the macroscopic (material) friction

angle φ corresponding to the classical Mohr-Coulomb yield criterion and the microscopic

(inter-particle) friction angle φµ = tan−1 µ for each specimen, where µ is the inter-element

friction coefficient (0.6◦ ≤ φµ ≤ 39◦). Recall that the material friction angle φ was chosen

to make the Mohr-Coulomb yield surface match the yield surface determined by DEM at a

Lode angle of zero, with an accuracy of approximately ±0.25◦. Note that for each of the six

specimens represented in Figure 5.22 there are nine data points, corresponding to the nine

different values of the inter-element friction coefficient, and each of these data points came

from one of the yield surfaces shown in Figures 5.16–5.21, each of which required sixteen

DEM simulations. Thus, Figure 5.22 represents a total of 864 DEM simulations.

To extend the relationship between φµ and φ shown in Figure 5.22 for values up to

φµ ≈ 90◦, an additional 432 DEM simulations were run on the smaller Specimens 1–3

with inter-element friction coefficients µ = {0.9, 1.0, 1.2, 1.5, 2.0, 3.0, 5.0, 10.0, 100.0}. The

resulting extended relationship between φµ and φ for Specimens 1–3 is shown in Figure 5.23.

In the interest of space, we have not included figures showing the individual yield surfaces

for µ > 0.8 for Specimens 1–3 analogous to Figures 5.16–5.18. There is little to learn from

seeing these yield surfaces, beyond the values of φ chosen to match the data points at a Lode

angle of zero, which are shown in Figure 5.23, since for φµ ≥ 56◦ (µ ≥ 1.5) the yield surfaces

are near-perfect triangles.
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Figure 5.16: Yield surfaces obtained by DEM simulations performed on Specimen 1 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
prohibited. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {10.5, 24.5, 34.0, 41.5, 47.5, 53.0, 58.5, 63.0, 68.0}◦ chosen
to match the data points at a Lode angle of zero.
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Figure 5.17: Yield surfaces obtained by DEM simulations performed on Specimen 2 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
prohibited. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {10.0, 23.5, 32.5, 40.0, 46.5, 52.5, 58.0, 63.0, 68.0}◦ chosen
to match the data points at a Lode angle of zero.
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Figure 5.18: Yield surfaces obtained by DEM simulations performed on Specimen 3 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
prohibited. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {9.5, 24.0, 32.5, 40.0, 46.5, 53.0, 58.5, 63.5, 68.5}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 5.19: Yield surfaces obtained by DEM simulations performed on Specimen 4 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
prohibited. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {8.0, 22.5, 31.0, 38.0, 44.0, 50.0, 55.0, 59.0, 63.5}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 5.20: Yield surfaces obtained by DEM simulations performed on Specimen 5 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
prohibited. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {8.0, 23.5, 32.5, 39.5, 46.5, 52.0, 57.0, 61.5, 66.0}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 5.21: Yield surfaces obtained by DEM simulations performed on Specimen 6 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
prohibited. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {8.5, 23.5, 32.5, 39.5, 46.0, 51.5, 56.5, 61.0, 65.5}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 5.22: The relationship between the inter-particle friction coefficient µ or the inter-
particle friction angle φµ = tan−1 µ and the macroscopic or material friction angle φ based
on the yield surfaces shown in Figures 5.16–5.21, obtained from the 864 DEM simulations
described in this section for six specimens of 3 430–29 660 randomly packed uniform spheres,
with particle rotation prohibited.

The total accumulated friction work Uf in each specimen was recorded throughout the

DEM simulations, as described in Section 5.4. Figures 5.10–5.15 of Section 5.4 show that

for a given DEM specimen with a given inter-element friction coefficient µ, the relationship

between Uf and strain depends on the Lode angle θ. Moreover, the relationship between Uf

and strain is not linear. However, for the purpose of comparison, at a given Lode angle, the

average rate of friction work can be determined (by linear regression for 0% ≤ |εz| ≤ 8%)

for each DEM specimen for each value of the inter-element friction coefficient µ. Figure 5.24

shows the resulting relationship between the average rate of friction work (Joules/in/in) and

the microscopic friction angle φµ = tan−1 µ, where µ is the inter-element friction coefficient,

for Specimens 1–3 with 0.01 ≤ µ ≤ 100.0, (with particle rotation prohibited), at Lode angles

of θ = 0 (top) and θ = 60◦ (bottom). Figure 5.25 shows the corresponding relationships for

Specimens 4–6 with 0.01 ≤ µ ≤ 0.8.



131

Figure 5.23: The relationship between the inter-particle friction coefficient µ or the inter-
particle friction angle φµ = tan−1 µ and the macroscopic or material friction angle φ, obtained
from 864 DEM simulations described in this section for three specimens of 3 430 randomly
packed uniform spheres, with particle rotation prohibited.

5.6 Discussion

The validity of Figures 5.22 and 5.23 depend on several assumptions implicit in our method of

projecting stress triples (σ1, σ2, σ3) onto the π-plane from the origin in principal stress space.

First, we assume a priori that the particulate materials represented by Specimens 1–6 have

essentially zero strength when the hydrostatic pressure p = 0. Since the hydrostatic pressure

is nonzero in all of our DEM simulations, this assumption is not tested by our simulations.

However, the assumption of zero strength when p = 0 is equivalent to the assumption that

the particulate material being modeled is non-cohesive. Since our DEM simulations include

no inter-element cohesive forces, this assumption is reasonable. Note from Figures 5.22 and

5.23 that the strength of the particulate material (as represented by the material friction

angle φ) does not go to zero as the inter-particle friction coefficient µ (and φµ) goes to zero.

Chapter 7 provides a micromechanics-based explanation of this phenomenon.
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Figure 5.24: The relationship between the inter-particle friction angle φµ = tan−1 µ (where
µ is the inter-element friction coefficient, 0.01 ≤ µ ≤ 100.0) and the average rate of friction
work in Specimens 1–3 at Lode angles of θ = 0 (top) and θ = 60◦ (bottom), with particle
rotation prohibited.
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Figure 5.25: The relationship between the inter-particle friction angle φµ = tan−1 µ (where
µ is the inter-element friction coefficient, 0.01 ≤ µ ≤ 0.8) and the average rate of friction
work in Specimens 4–6 at Lode angles of θ = 0 (top) and θ = 60◦ (bottom), with particle
rotation prohibited.
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Second, since the hydrostatic pressure on the specimens was not constant during the

simulations, our method assumes implicitly that the yield surface is linearly related to the

hydrostatic pressure p, as noted in Section 5.4. In fact, for a given specimen with a given

inter-element friction coefficient µ, the variation in p = (σ1 + σ2 + σ3)/3 was observed and

recorded during the sixteen DEM simulations with varying ε̇1, ε̇2, and ε̇3 (needed to obtain

the data points for the yield surface, as described in Section 5.4). For Specimens 1–6, with

0.1 < µ < 1.0 and 1% ≤ εi ≤ 8%, the variation in p during the sixteen DEM simulations was

approximately (1) 1MPa < p < 4MPa, (2) 0.4MPa < p < 3MPa, (3) 0.5MPa < p < 3MPa,

(4) 3MPa < p < 5MPa, (5) 2MPa < p < 4MPa, and (6) 2MPa < p < 4MPa. For all six

specimens, the largest pressure discontinuity between simulations occurs at the transition

from compression to extension, which occurs between adjacent data points on the yield

surfaces (projected onto the π-plane) at a Lode angle of θ ≈ 20◦.

Note that, despite this observed variation in p from specimen to specimen during the

simulations, the data points in Figures 5.22 and 5.23 from all six specimens are quite closely

clustered for each value of µ (or φµ). This provides some evidence in support of our as-

sumption of linearity, at least within the range of p experienced by our specimens during

our DEM simulations. Moreover, the observable “continuity” of each yield surface (projected

onto the π-plane), which is obtained from the sixteen DEM simulations performed on a given

specimen with a given value of µ, provides further evidence in support of our assumption

of linearity. That is, since the value of the hydrostatic pressure p was observed to “jump”

by a factor of approximately 100%–500% in all six specimens (e.g., from 4MPa to 1MPa in

Specimen 1, from 3MPa to 0.5MPa in Specimen 3, and from 4MPa to 2MPa in Specimen

5) between “adjacent” DEM simulations at θ ≈ 20◦ (at the transition from compression to

extension), the fact that most of the yield surfaces shown in Figures 5.16–5.21 exhibit little

or no discontinuity at a Lode angle θ ≈ 20◦ is a strong confirmation of our assumption of

the linearity of the yield surfaces for the range of pressures noted for each specimen in the
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preceding paragraph. It cannot be expected that the relationship between the yield surface

and p would be precisely linear, however, and so exceptions are to be expected. One of the

most notable exceptions appears in Specimen 3 with µ = 0.2 at a Lode angle of θ = 18◦, as

shown in Figure 5.26.

Figure 5.26: Observable discontinuity in the data points on the π-plane obtained from one
set of DEM simulations performed on Specimen 3 with an inter-element friction coefficient
of µ = 0.2. The discontinuity occurs at a Lode angle of θ = 18◦, where there is a jump in
the hydrostatic pressure from p ≈ 0.8MPa to p ≈ 1MPa at adjacent data points.

Figures 5.16–5.21 show the Mohr-Coulomb yield surfaces with material friction angles

φ chosen to match the yield surfaces determined by DEM for each specimen for each value

of µ at a Lode angle of θ = 0. Other yield surfaces for non-cohesive particulate materials

include the Drucker-Prager, Lade-Duncan, and Matsuoka-Nakai surfaces (Bardet, 1990), as

described in Section 5.3. Figures 5.27–5.32 show the yield surfaces determined by DEM for

Specimens 1–6 with µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.

Also shown in Figures 5.27–5.32 are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)

and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the

DEM data points at a Lode angle of zero.
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Figure 5.27: Yield surfaces obtained by DEM simulations performed on Specimen 1 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)
and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the
data points at a Lode angle of θ = 0.
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Figure 5.28: Yield surfaces obtained by DEM simulations performed on Specimen 2 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)
and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the
data points at a Lode angle of θ = 0.
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Figure 5.29: Yield surfaces obtained by DEM simulations performed on Specimen 3 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)
and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the
data points at a Lode angle of θ = 0.
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Figure 5.30: Yield surfaces obtained by DEM simulations performed on Specimen 4 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)
and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the
data points at a Lode angle of θ = 0.
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Figure 5.31: Yield surfaces obtained by DEM simulations performed on Specimen 5 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)
and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the
data points at a Lode angle of θ = 0.
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Figure 5.32: Yield surfaces obtained by DEM simulations performed on Specimen 6 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation prohibited. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)
and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the
data points at a Lode angle of θ = 0.
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Note that the Matsuoka-Nakai and Mohr-Coulomb yield surfaces coincide at Lode angles

of θ = 0 and θ = 60◦, while the Lade-Duncan and Mohr-Coulomb yield surfaces only

coincide at a Lode angle of θ = 0, where all four yield surfaces in Figures 5.27–5.32 were

forced to coincide by our choice of material parameters. Recall from Section 5.3 that both

the Matsuoka-Nakai and Lade-Duncan yield surfaces lie between the Mohr-Coulomb and

Drucker-Prager yield surfaces, the last being a circle on the π-plane in principal stress space.

Figures 5.27–5.32 show that the relative performance of the yield surfaces depend on both

the specimen geometry (packing) and the inter-particle friction coefficient µ. For Specimens

1 and 4, the data points tend to lie between the Lade-Duncan and Matsuoka-Nakai surfaces.

For Specimens 2, 3, 5, and 6, on the other hand, the data points tend to lie between the Lade-

Duncan and Drucker-Prager surfaces. For all six specimens, the data points correspond most

closely with the Lade-Duncan yield surface, and this correspondence improves as µ increases.

The correspondence with the Lade-Duncan yield surface is most pronounced for Specimens

1, 4, and 5, for all values of µ.

It must be emphasized that the material friction angles φ of Figures 5.22 and 5.23,

chosen to match the yield surfaces of Figures 5.16–5.21 at a Lode angle of θ = 0, are the

peak friction angles for the particulate material being modeled by DEM, sometimes denoted

φp in the geomechanics literature (e.g., Bardet, 1997). Another important strength property

of particulate materials is the residual friction angle φr, which is generally different from the

peak friction angle φp. See Section 9.6 of Chapter 9 of this thesis (Fleischmann et al., 2013c)

for a discussion of typical values of the peak and residual friction angles for well-graded sand

as an example.

In particulate materials, irreversible strain generally occurs before the peak friction angle.

Indeed, if “elastic” is strictly defined as the range for which strain energy is fully reversible,

then the strain at which a particulate material leaves the elastic range can be very small

indeed. It is well known to researchers in the field of geomechanics that there is very little
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“elastic range” for dry sand, since instabilities in the material fabric can produce a small

amount of irreversible strain almost immediately upon loading. According to Mitchell and

Soga (2005), irrecoverable strains can develop in uncemented normally consolidated sands

at strains as low as ε = 0.007%. Figures 5.10–5.15 show that friction work (and hence

irrecoverable strain) occurs at or before |εz| = 1% for all six specimens, with µ = 0.2 or

µ = 0.5 and θ = 0 or θ = 60◦. On the other hand, Figures 5.4–5.9 show that yield associated

with the peak friction angle φ occurs at approximately 4% ≤ |εz| ≤ 6% for Specimens 1–3

and at approximately 6% ≤ |εz| ≤ 8% for Specimens 4–6, after which time the yield surface

either remains approximately fixed or begins to collapse.

Another (perhaps more familiar) way of presenting the information that is contained in

Figures 5.4–5.9 is to graph the ratio of axial stress to lateral stress versus axial strain for DEM

simulations corresponding to various Lode angles. In the DEM simulations corresponding

to Lode angles of θ = 0 and θ = 60◦, σaxial = σz, εaxial = εz, and σlateral = σx = σy.

Recall from Section 5.4 that the macroscopic (peak) friction angles φ for each specimen for

each inter-element friction coefficient µ were chosen to match the data points obtained from

the DEM simulations corresponding to a Lode angle of θ = 0. Figures 5.33–5.38 show the

stress-strain curves for Specimens 1–6, respectively, with an inter-element friction coefficient

of µ = 0.2 (top) and µ = 0.5 (bottom), at Lode angles of θ = 0 and θ = 60◦. Recall from

Section 5.4 that the DEM simulations are of true triaxial tests performed under constant

volume conditions.

The magnitude of the axial strain |εz| corresponding to the peak friction angle φ also

corresponds to the peak value of the stress ratio σaxial/σlateral in Figures 5.33–5.38. Thus,

these figures confirm that the axial strain corresponding to the (peak) material friction

angle ranges from approximately 4% ≤ |εaxial| ≤ 6% for Specimens 1–3 and approximately

6% ≤ |εaxial| ≤ 8% for Specimens 4–6. This agrees with the maximal yield surfaces identified

from the data points in Figures 5.4–5.9. Note that the stress-strain curves in the range
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1% < |εaxial| < 4% do not represent the elastic behavior of the particulate material, since

plastic strain is already occurring in this range, as confirmed by the existence of non-zero

friction work in the specimens for |εaxial| > 1%.

Regarding the average rate of friction work in Specimens 1–3, shown in Figure 5.24, it is

significant that while the rate of friction work in Specimen 1 is significantly larger – roughly

40% larger at a Lode angle of θ = 0 – than the rate of friction work in either Specimens 2 or

3 for 0 < φµ ≤ 56◦ (0 < µ ≤ 1.5), Figure 5.23 shows that the material friction angles φ for

Specimens 1–3 (at a Lode angle of θ = 0) are very close to the same over the same range of

φµ (µ), with a variation of at most 5%. Taken together, Figures 5.23 and 5.24 seem to imply

that the material friction angle and the rate of friction work in a specimen are uncorrelated.

The same is true of Specimens 4–6, since, while Figure 5.25 shows that the friction work rate

in Specimen 4 is roughly 30% larger (at a Lode angle of θ = 0) than that of either Specimens

5 or 6, Figure 5.22 shows that the material friction angles φ for Specimens 4–6 (at a Lode

angle of θ = 0) exhibit a variation of less than 6%.

As we have noted in other chapters, such as Chapters 3 and 4, one of the great advantages

of using the Discrete Element Method is the amount of data that one can obtain and analyze

at the element level. For example, in addition to the cumulative friction work, we can

also visually inspect the friction work experienced by every individual element in a DEM

specimen at any time during a simulation. In this way, it is possible to determine whether

failure (sliding) occurs primarily along identifiable slip planes within a specimen, or whether

failure (sliding) is randomly dispersed throughout the specimen during yielding. Figure 5.39

shows the friction work experienced by each element in Specimen 5 at 4% axial strain in

compression during the DEM simulation corresponding to a Lode angle of θ = 0 on the yield

surface shown in Figure 5.8 (bottom) with an inter-element friction coefficient of µ = 0.5.

On the left side of Figure 5.39, the gray scale of each element denotes the friction work

experienced by that element, varying from white for elements experiencing no friction work
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Figure 5.33: Stress ratio as a function of axial strain for Specimen 1 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.
The two curves correspond to the data points on the yield surfaces shown in Figure 5.4 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 5.34: Stress ratio as a function of axial strain for Specimen 2 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.
The two curves correspond to the data points on the yield surfaces shown in Figure 5.5 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 5.35: Stress ratio as a function of axial strain for Specimen 3 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.
The two curves correspond to the data points on the yield surfaces shown in Figure 5.6 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 5.36: Stress ratio as a function of axial strain for Specimen 4 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.
The two curves correspond to the data points on the yield surfaces shown in Figure 5.7 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 5.37: Stress ratio as a function of axial strain for Specimen 5 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.
The two curves correspond to the data points on the yield surfaces shown in Figure 5.8 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 5.38: Stress ratio as a function of axial strain for Specimen 6 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation prohibited.
The two curves correspond to the data points on the yield surfaces shown in Figure 5.9 at
Lode angles of θ = 0 and θ = 60◦.
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to black for elements experiencing friction work greater than or equal to 40 Joules. On the

right side of Figure 5.39, only the elements experiencing friction work greater than or equal

to 40 Joules are shown.

Several distinct slip planes can be identified in the specimen shown in Figure 5.39, and

these slip planes are highlighted by white dotted lines on the right side of the figure. The

orientations of the specimen shown in Figure 5.39 were chosen to facilitate the visual identi-

fication of these slip planes. While Figure 5.39 shows that at least three distinct slip planes

exist in Specimen 5 at 4% axial strain in compression (at a Lode angle of θ = 0), the figure

also shows that significantly many smaller local slip-systems also exist, and these appear to

be randomly distributed throughout the specimen. The same general trends can be seen in

Figure 5.40, which again shows the friction work experienced by each element in Specimen

5 with µ = 0.5, but this time at 4% axial strain in extension during the DEM simulation

corresponding to a Lode angle of θ = 60◦. On the left side of Figure 5.40, the gray scale

of each element varies from white for elements experiencing no friction work to black for

elements experiencing friction work greater than or equal to 30 Joules. On the right side of

Figure 5.40, only the elements experiencing friction work greater than or equal to 30 Joules

are shown.

Since the information conveyed by Figures 5.39 and 5.40 is primarily visual, it is difficult

to quantify. However, by inspecting various specimens, we have found that the picture

conveyed by Figures 5.39 and 5.40 is typical of the larger 29 660-element specimens (4–

6), with several identifiable slip planes, but also with significantly many smaller local slip-

systems that appear to be randomly distributed throughout the specimen. The smaller

3 430-element specimens (1–3), on the other hand, do not show any clear slip planes. In all

six specimens, the friction work tends to begin to accumulate in clusters of elements near

the centers of the specimens, after which the region of the specimen experiencing friction

work grows outward toward the surfaces of the specimens.
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Figure 5.39: Friction work (designated by gray scale) experienced by each element in Speci-
men 5 at |εz| = 4% axial strain (compression) during the DEM simulation corresponding to
a Lode angle of θ = 0 on the yield surface shown in Figure 5.8 with an inter-element friction
coefficient of µ = 0.5, with particle rotation prohibited. Black elements experience friction
work greater than or equal to 40 Joules. Visually identifiable local slip planes are highlighted
by white dotted lines on the right.
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Figure 5.40: Friction work (designated by gray scale) experienced by each element in Speci-
men 5 at |εz| = 4% axial strain (extension) during the DEM simulation corresponding to a
Lode angle of θ = 60◦ on the yield surface shown in Figure 5.8 with an inter-element friction
coefficient of µ = 0.5, with particle rotation prohibited. Black elements experience friction
work greater than or equal to 30 Joules. Visually identifiable local slip planes are highlighted
by white dotted lines on the right.
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The fact that failure appears to be primarily a local phenomenon in the specimens we

have tested in this chapter is encouraging for the development of a micromechanics-based

continuum constitutive model for particulate materials, since all continuum constitutive

models depend on the assumption that at some scale there exists a representative volume

element and associated definitions of local stress and strain tensors that can be related to

global stress and strain tensors via methods of homogenization.

5.7 Conclusion

We have performed DEM simulations on six specimens of randomly packed uniform spheres

having a uniform inter-particle friction coefficient µ. Multiple simulations were performed

for each specimen, with µ ranging from 0.01 ≤ µ ≤ 100.0 for Specimens 1–3 (with 3 430

elements) and 0.01 ≤ µ ≤ 0.8 for Specimens 4–6 (with 29 660 elements). For each specimen

and for each inter-element friction coefficient µ we performed sixteen DEM simulations under

various true triaxial (constant-volume) strain conditions in order to obtain data points for the

yield surface in principal stress space for a full range of values of the Lode angle 0 ≤ θ ≤ 60◦

on the π-plane. This amounted to a total of 1 296 simulations, which were performed using

a modified version of the open-source code LAMMPS (Plimpton, 1995, LAMMPS) running

on a 12-processor Mac Pro workstation.

The main results of this chapter are the yield surfaces shown in Figures 5.16–5.21 for

Specimens 1–6, respectively, and the resulting relationships between the inter-particle friction

coefficient µ or the inter-particle friction angle φµ = tan−1 µ on the microscale and the

material friction angle φ on the macroscale for each specimen, which are shown in Figures 5.22

and 5.23. We will return to this relationship in Chapter 6 for the case of particle rotation,

and in Chapters 7 and 8 where we derive relationships between φµ and φ by analytical

means based on micromechanics. We note here that the data points obtained from all
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six randomly packed specimens of 3 430–29 660 elements exhibit very little scatter, with a

maximum variation of about 8%.

Comparing the shapes of the yield surfaces obtained from our DEM simulations to those

predicted by the Mohr-Coulomb, Drucker-Prager, Lade-Duncan, and Matsuoka-Nakai (SMP)

criteria for given values of the material friction angle φ, we found that the DEM data points

are best represented for all values of the Lode angle θ by the Lade-Duncan yield criterion,

in particular for θ = 60◦, which corresponds to extension.

Also noteworthy is the fact that the average rate of friction work in the specimens does

not appear to be correlated to the material friction angle φ (or to the inter-particle friction

coefficient µ). In particular, in Specimen 1 we see an average rate of friction work that is

over 50% greater than in Specimens 2 and 3, while the material friction angles for all three

specimens is virtually the same for every value of the inter-particle friction coefficient µ.

The same observation can be made regarding Specimens 4–6. Friction work on an element-

by-element basis was also useful for visually identifying slip systems within the specimens,

both at the onset of yield and during plastic deformation, as we illustrate for Specimen 5 in

Figures 5.39 and 5.40.

As in Chapter 3 [Fleischmann et al. (2013a)], all of the results in this chapter were

obtained from DEM simulations in which particle rotation was prohibited. We continue

our analysis with the case of unrestrained particle rotation in Chapter 6, which follows. A

micromechanical analysis of the DEM results presented in this chapter is given in Chapter 7,

assuming no particle rotation, and the corresponding micromechanical analysis for the case

of particle rotation is given in Chapter 8.
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Chapter 6

Determination of Yield Surfaces for

Isotropic Non-Cohesive Particulate

Materials by the Discrete Element

Method, Part II: Particle Rotation

6.1 Abstract

In Chapter 5, we used the discrete element method (DEM) to determine yield surfaces for

large samples of randomly packed uniform spheres with constant normal and tangential

contact stiffnesses (linear spring model) and uniform inter-particle friction coefficient µ with

particle rotation prohibited. In this chapter, we continue the analysis begun in Chapter 5

for the case of unrestrained particle rotation. We compare the resulting yield surfaces to

the Mohr-Coulomb, Drucker-Prager, Lade-Duncan, and Matsuoka-Nakai yield surfaces, and

determine the relationship between the resulting material friction angle φ on the macroscale

and the inter-particle friction coefficient µ on the microscale. In all of the DEM simulations
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performed for this chapter, the spheres were allowed full three-dimensional translational and

rotational freedom of motion.

6.2 Introduction

As we note in the Introduction to Part I, Section 5.2, the yield surface for an isotropic

particulate material, which is usually characterized by the material friction angle φ, is of

great practical importance. Not only is the yield surface a critical component of the classical

formulation of an elastoplastic continuum constitutive model for a particulate material, the

shear strength, determined by the material friction angle φ, is possibly the most important

mechanical characteristic of a geomaterial in practice.

In Chapter 5, we used the discrete element method (DEM) to determine yield surfaces

for particulate material specimens of 3 430–29 660 randomly packed uniform spheres with

constant normal and tangential contact stiffnesses (linear spring model) and uniform inter-

particle friction coefficient µ with particle rotation prohibited. We performed 1 296 individual

DEM simulations to obtain full yield surfaces for each specimen for a wide range of inter-

particle friction coefficients µ: 0.01 ≤ µ ≤ 100.0 for Specimens 1–3 (with 3 430 elements) and

0.01 ≤ µ ≤ 0.8 for Specimens 4–6 (with 29 660 elements). We used these yield surfaces to

determine the relationship between the resulting material friction angle φ on the macroscale

and the inter-particle friction coefficient µ (or the inter-particle friction angle φµ = tan−1 µ)

on the microscale for each DEM specimen. We also monitored inter-particle friction work

within each specimen, and noted the presence of slip planes.

For the results reported in Chapter 5, all of the DEM simulations were performed with

particle rotation prohibited, as was the case in Chapter 3 for the elastic range. The restriction

of no particle rotation is unique to DEM (it cannot be enforced in physical experiments), and

the results provide us with valuable micromechanical insight, particularly when we compare
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the results for which particle rotation was prohibited to the results for which particle rotation

was unrestrained, as was done in Chapters 3 [Fleischmann et al. (2013a)] and 4 [Fleischmann

et al. (2013b)] for the elastic range. In this chapter, we report results obtained from DEM

simulations in which particle rotation is unrestrained.

6.3 Methodology

The methodology for this chapter is completely analogous to that of Chapter 5, with the

sole exception that in the DEM simulations performed for the current chapter, the rotation

of the spheres was not (artificially) restrained. That is, the spheres were allowed full three-

dimensional translational and rotational freedom of motion, analogous to the simulations of

Chapter 4 in the elastic range.

Thus, for the current chapter we performed an additional 1 296 numerical simulations

using the discrete element method (DEM) with unrestrained particle rotation to determine

yield surfaces in principal stress space for randomly packed aggregates of uniform spheres

having constant normal and tangential contact stiffnesses Kn and Kt, respectively (linear

spring contact model), and uniform inter-particle friction coefficient µ. The simulations

were performed on the same six DEM specimens used in Chapters 3, 4, and 5 of this thesis.

Specimens 1, 2, and 3 each contained 3 430 randomly packed uniform spheres, and Specimens

4, 5, and 6 each contained 29 660 randomly packed uniform spheres. The specimens are shown

in Figures 3.7 and 5.3. The DEM simulations were performed using LAMMPS (Plimpton,

1995), which is described briefly in Sections 3.5 and 5.4, and in more detail in Sections 2.3

and 9.3, of this thesis.

Analogous to Figure 5.4, Figure 6.1 shows the data points on the π-plane obtained from

DEM simulations performed on Specimen 1, with unrestrained particle rotation, with inter-

element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom) for axial strains of
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1%–8% in either compression or extension, depending on the data point. For convenience,

the principal stress directions are shown positive in compression, which is commonly done

in the field of geomechanics. Also shown on Figure 6.1 are the yield surfaces according to

the Mohr-Coulomb yield criterion with (macroscopic) friction angles φ = 24.0◦ (top) and

φ = 33.0◦ (bottom), chosen to match the data points at a Lode angle of zero.

Figures 6.2–6.6 show the corresponding results for Specimens 2–6, respectively, with inter-

element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom). Once again, analogous

DEM simulations and analyses were performed for all six specimens, with unrestrained par-

ticle rotation, for all nine values of the inter-element friction coefficient µ, and the matching

“material” or macroscopic friction angle φ (at a Lode angle of zero) corresponding to the

classical Mohr-Coulomb yield criterion was determined for each (with an accuracy of ap-

proximately ±0.25◦). It was found that the maximal yield surfaces occurred at 4%–6% axial

strain for all six specimens, after which time the yield surfaces either remained approximately

fixed or in some instances began to collapse. See Section 5.4 for a detailed description of the

DEM simulations used to generate the data points in Figures 6.1–6.6.

Also analogous to Section 5.4, the total accumulated friction work Uf for each specimen

for each value of the inter-particle friction coefficient µ was recorded throughout the DEM

simulations. By way of example, Figure 6.7 shows the total friction work Uf (Joules) as a

function of strain at Lode angles of θ = 0 and θ = 60◦ for Specimen 1 with inter-element

friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), for axial strains of 1%–8% in either

compression (θ = 0) or extension (θ = 60◦). Figures 6.8–6.12 show the corresponding results

for Specimens 2–6, respectively, with inter-element friction coefficients of µ = 0.2 (top) and

µ = 0.5 (bottom). See Section 5.4 for a detailed description of the DEM simulations used to

generate Figures 6.7–6.12.
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Figure 6.1: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 1 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation allowed. Right: Maximal yield surfaces. The solid
line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction angle
of φ = 24.0◦ (top) and φ = 33.0◦ (bottom), chosen to match the data points at a Lode angle
of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either compression
or extension (depending on the Lode angle).
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Figure 6.2: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 2 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation allowed. Right: Maximal yield surfaces. The solid
line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction angle
of φ = 23.0◦ (top) and φ = 30.5◦ (bottom), chosen to match the data points at a Lode angle
of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either compression
or extension (depending on the Lode angle).
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Figure 6.3: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 3 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation allowed. Right: Maximal yield surfaces. The solid
line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction angle
of φ = 23.0◦ (top) and φ = 31.0◦ (bottom), chosen to match the data points at a Lode angle
of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either compression
or extension (depending on the Lode angle).
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Figure 6.4: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 4 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation allowed. Right: Maximal yield surfaces. The solid
line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction angle
of φ = 24.0◦ (top) and φ = 34.5◦ (bottom), chosen to match the data points at a Lode angle
of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either compression
or extension (depending on the Lode angle).
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Figure 6.5: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 5 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation allowed. Right: Maximal yield surfaces. The solid
line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction angle
of φ = 25.0◦ (top) and φ = 34.0◦ (bottom), chosen to match the data points at a Lode angle
of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either compression
or extension (depending on the Lode angle).
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Figure 6.6: Left: Data points on the π-plane obtained from one set of DEM simulations
performed on Specimen 6 with an inter-element friction coefficient of µ = 0.2 (top) and
µ = 0.5 (bottom), with particle rotation allowed. Right: Maximal yield surfaces. The solid
line in both diagrams is the Mohr-Coulomb yield surface with a macroscopic friction angle
of φ = 24.5◦ (top) and φ = 33.5◦ (bottom), chosen to match the data points at a Lode angle
of zero. The data points for 1%, 2%, . . . , 8% designate the axial strain in either compression
or extension (depending on the Lode angle).
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Figure 6.7: Total accumulated friction work Uf as a function of strain for Specimen 1 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. The two curves correspond to the data points on the yield surfaces shown
in Figure 6.1 at Lode angles of θ = 0 and θ = 60◦.
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Figure 6.8: Total accumulated friction work Uf as a function of strain for Specimen 2 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. The two curves correspond to the data points on the yield surfaces shown
in Figure 6.2 at Lode angles of θ = 0 and θ = 60◦.
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Figure 6.9: Total accumulated friction work Uf as a function of strain for Specimen 3 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. The two curves correspond to the data points on the yield surfaces shown
in Figure 6.3 at Lode angles of θ = 0 and θ = 60◦.
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Figure 6.10: Total accumulated friction work Uf as a function of strain for Specimen 4 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. The two curves correspond to the data points on the yield surfaces shown
in Figure 6.4 at Lode angles of θ = 0 and θ = 60◦.
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Figure 6.11: Total accumulated friction work Uf as a function of strain for Specimen 5 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. The two curves correspond to the data points on the yield surfaces shown
in Figure 6.5 at Lode angles of θ = 0 and θ = 60◦.
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Figure 6.12: Total accumulated friction work Uf as a function of strain for Specimen 6 with
an inter-element friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. The two curves correspond to the data points on the yield surfaces shown
in Figure 6.6 at Lode angles of θ = 0 and θ = 60◦.
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6.4 Results

The figures in this section are direct analogues of the figures in Section 5.5, except with

unrestrained particle rotation (i.e., particle rotation allowed). Figures 6.13–6.18 show the 54

yield surfaces that were obtained from the DEM simulations described in Section 6.3, per-

formed on Specimens 1–6 with nine different values of the inter-element friction coefficient

0.01 ≤ µ ≤ 0.8, with particle rotation allowed. Also shown are the corresponding Mohr-

Coulomb yield surfaces, with the macroscopic friction angle φ chosen in each case to match

the data points at a Lode angle of zero. For comparison, Figures 6.19–6.24 show the yield

surfaces given in Figures 5.16–5.21 with particle rotation prohibited and in Figures 6.13–

6.18 with particle rotation allowed, for Specimens 1–6, respectively. In all cases, the smaller

yield surfaces in Figures 6.19–6.24 correspond to unrestrained particle rotation (from Fig-

ures 6.13–6.18), and the larger yield surfaces correspond to particle rotation prohibited (from

Figures 5.16–5.21).

Figure 6.25 shows the resulting relationship between the macroscopic (material) friction

angle φ corresponding to the classical Mohr-Coulomb yield criterion and the microscopic

(inter-particle) friction angle φµ = tan−1 µ for each specimen, where µ is the inter-element

friction coefficient (0.6◦ ≤ φµ ≤ 39◦). Recall that the material friction angle φ was chosen to

make the Mohr-Coulomb yield surface match the yield surface determined by DEM at a Lode

angle of zero, with an accuracy of approximately ±0.25◦. For comparison, Figure 6.26 shows

the relationships given in Figure 5.22 with particle rotation prohibited and in Figure 6.25 with

particle rotation allowed. As in Section 5.5, additional simulations were run on the smaller

Specimens 1–3 with inter-element friction coefficients in the range 0.9 ≤ µ ≤ 100.0 to extend

the relationship between φµ and φ shown in Figure 6.25 for values up to φµ ≈ 90◦. The

resulting extended relationship between φµ and φ for Specimens 1–3 is shown in Figure 6.27.
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Figure 6.13: Yield surfaces obtained by DEM simulations performed on Specimen 1 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {10.5, 20.0, 24.0, 28.0, 30.5, 33.0, 35.0, 36.5, 38.0}◦ chosen
to match the data points at a Lode angle of zero.
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Figure 6.14: Yield surfaces obtained by DEM simulations performed on Specimen 2 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {10.0, 18.0, 23.0, 26.0, 28.5, 30.5, 32.0, 33.0, 34.0}◦ chosen
to match the data points at a Lode angle of zero.
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Figure 6.15: Yield surfaces obtained by DEM simulations performed on Specimen 3 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {9.5, 18.5, 23.0, 26.5, 29.0, 31.0, 32.5, 34.0, 35.0}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 6.16: Yield surfaces obtained by DEM simulations performed on Specimen 4 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {8.0, 17.5, 24.0, 28.5, 31.5, 34.5, 36.5, 38.5, 40.0}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 6.17: Yield surfaces obtained by DEM simulations performed on Specimen 5 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {8.0, 19.0, 25.0, 28.5, 31.5, 34.0, 36.0, 37.5, 39.0}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 6.18: Yield surfaces obtained by DEM simulations performed on Specimen 6 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed. Also shown for comparison are the Mohr-Coulomb yield surfaces with values of
the macroscopic friction angle φ = {8.5, 19.0, 24.5, 28.5, 31.5, 33.5, 35.5, 37.0, 38.5}◦ chosen to
match the data points at a Lode angle of zero.
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Figure 6.19: Yield surfaces obtained by DEM simulations performed on Specimen 1 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed (smaller yield surfaces, from Figure 6.13) or prohibited (larger yield surfaces, from
Figure 5.16), shown together for comparison.
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Figure 6.20: Yield surfaces obtained by DEM simulations performed on Specimen 2 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed (smaller yield surfaces, from Figure 6.14) or prohibited (larger yield surfaces, from
Figure 5.17), shown together for comparison.
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Figure 6.21: Yield surfaces obtained by DEM simulations performed on Specimen 3 with
3 430 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed (smaller yield surfaces, from Figure 6.15) or prohibited (larger yield surfaces, from
Figure 5.18), shown together for comparison.
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Figure 6.22: Yield surfaces obtained by DEM simulations performed on Specimen 4 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed (smaller yield surfaces, from Figure 6.16) or prohibited (larger yield surfaces, from
Figure 5.19), shown together for comparison.
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Figure 6.23: Yield surfaces obtained by DEM simulations performed on Specimen 5 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed (smaller yield surfaces, from Figure 6.17) or prohibited (larger yield surfaces, from
Figure 5.20), shown together for comparison.
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Figure 6.24: Yield surfaces obtained by DEM simulations performed on Specimen 6 with
29 660 randomly packed uniform spheres with inter-element friction coefficients (from upper
left to lower right) of µ = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, with particle rotation
allowed (smaller yield surfaces, from Figure 6.18) or prohibited (larger yield surfaces, from
Figure 5.21), shown together for comparison.
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Figure 6.25: The relationship between the inter-particle friction coefficient µ or the inter-
particle friction angle φµ = tan−1 µ and the macroscopic or material friction angle φ based
on the yield surfaces shown in Figures 5.16–5.21, obtained from the 864 DEM simulations
described in this section for six specimens of 3 430–29 660 randomly packed uniform spheres,
with particle rotation allowed.

Since the total accumulated friction work Uf in each specimen was recorded throughout

the DEM simulations, as described in Section 6.3, the average rate of friction work could be

determined (by linear regression for 0% ≤ |εz| ≤ 8%) for each DEM specimen for each value

of the inter-element friction coefficient µ, as in Chapter 5. Figure 6.28 shows the resulting

relationship between the average rate of friction work (Joules/in/in) and the microscopic

friction angle φµ = tan−1 µ, where µ is the inter-element friction coefficient, for Specimens

1–3 with 0.01 ≤ µ ≤ 100.0, (with particle rotation allowed), at Lode angles of θ = 0 (top)

and θ = 60◦ (bottom). Figure 6.29 shows the corresponding relationships for Specimens 4–6

with 0.01 ≤ µ ≤ 0.8.
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Figure 6.26: The relationship between the inter-particle friction angle φµ = tan−1 µ and the
macroscopic or material friction angle φ from Figure 6.25 with particle rotation allowed and
from Figure 5.22 with particle rotation prohibited, shown together for comparison.

Figure 6.27: The relationship between the inter-particle friction coefficient µ or the inter-
particle friction angle φµ = tan−1 µ and the macroscopic or material friction angle φ, obtained
from 864 DEM simulations described in this section for three specimens of 3 430 randomly
packed uniform spheres, with particle rotation allowed.
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Figure 6.28: The relationship between the inter-particle friction angle φµ = tan−1 µ (where
µ is the inter-element friction coefficient, 0.01 ≤ µ ≤ 100.0) and the average rate of friction
work in Specimens 1–3 at Lode angles of θ = 0 (top) and θ = 60◦ (bottom), with particle
rotation allowed.
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Figure 6.29: The relationship between the inter-particle friction angle φµ = tan−1 µ (where
µ is the inter-element friction coefficient, 0.01 ≤ µ ≤ 0.8) and the average rate of friction
work in Specimens 4–6 at Lode angles of θ = 0 (top) and θ = 60◦ (bottom), with particle
rotation allowed.
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6.5 Discussion

We begin with the important observation that, since the spheres in the DEM simulations

performed for this chapter were allowed full rotational as well as translational freedom of

motion, the results of this chapter are more representative of the true physical behavior of a

particulate material composed of uniform spheres than are those of Part I, Chapter 5. As may

be expected, the material friction angle φ for each specimen for each value of the inter-particle

friction coefficient µ is significantly lower when particle rotation is allowed as compared to

when particle rotation is prohibited. This can be observed in a direct comparison of the yield

surfaces shown in Figures 5.16–5.21 in Section 5.5 and Figures 6.13–6.18 in Section 6.4, and

even more clearly in a comparison of the relationship between the inter-particle friction angle

φµ = tan−1 µ and the material friction angle φ shown in Figures 5.22 and 5.23 in Section 5.5

and Figures 6.25 and 6.27 in Section 6.4.

The relationship between the “micro” and “macro” friction angles φµ and φ shown in

Figures 6.25 and 6.27 can be directly compared to the relationship derived by Emeriault et al.

(1996), which is given by equation (2.13) in Section 2.2. Figure 6.30 shows the relationship

between φµ and φ determined by the DEM simulations of this chapter (with particle rotation

allowed) and the relationship derived by Emeriault et al. (1996) for three different values

of their internal material parameter ζ. (For curves corresponding to other values of ζ, see

Figure 2.3 in Section 2.2.) Note that the material parameter ζ is called µ in Emeriault et al.

(1996), but we have renamed it both in equation (2.13) and in this chapter (for obvious

reasons). The meaning of the material parameter ζ is explained in Section 2.1 of this thesis.

First, we note that the correspondence between our DEM data points and the curves derived

by Emeriault et al. (1996) for the three values of ζ shown in Figure 6.30 is reasonably good

overall. However, we also note that no single value of ζ produces a curve that provides a

very good match with the DEM data points for any specimen for all values of φµ at the same
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Figure 6.30: The relationship between the inter-particle friction coefficient µ or the inter-
particle friction angle φµ = tan−1 µ and the macroscopic or material friction angle φ obtained
from the DEM simulations described in this section (with particle rotation allowed), along
with the curves derived by Emeriault et al. (1996), given by equation (2.13) in Section 2.2,
for three values of the internal material parameter ζ.
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time. We will return to this point in Chapter 8 of this thesis.

Figures 6.13–6.18 show the Mohr-Coulomb yield surfaces with material friction angles

φ chosen to match the yield surfaces determined by DEM for each specimen for each value

of µ at a Lode angle of θ = 0. Other yield surfaces for non-cohesive particulate materials

include the Drucker-Prager, Lade-Duncan, and Matsuoka-Nakai surfaces (Bardet, 1990), as

described in Section 5.3. Figures 6.31–6.36 show the yield surfaces determined by DEM for

Specimens 1–6 with µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.

Also shown in Figures 6.31–6.36 are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left)

and Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the

DEM data points at a Lode angle of zero. Figures 6.37–6.39 show the same information for

Specimens 1–3 with µ = 0.8 (top) and µ = 1.2 (bottom).

Since the DEM simulations performed for this chapter are more physically realistic than

those performed for Chapter 5 in the sense that particle rotation is unrestrained, it is in-

teresting to see which of these yield surfaces provides the best overall fit to the DEM data

points in Figures 6.31–6.36, and to compare these figures to Figures 5.27–5.32 in Chapter 5

with particle rotation prohibited. First, the same trends are observable for Specimens 1–3

regardless of whether particle rotation is allowed or prohibited: for Specimen 1, the data

points tend to lie between the Lade-Duncan and Matsuoka-Nakai surfaces; for Specimens 2

and 3, the data points tend to lie between the Lade-Duncan and Drucker-Prager surfaces.

For Specimens 4–6 with particle rotation allowed, the data points match the Lade-Duncan

yield surface almost exactly for all values of µ. For Specimens 1–3, the correspondence with

the Lade-Duncan yield surface improves as the inter-particle friction coefficient µ increases,

particularly for µ > 0.5, as shown in Figures 6.37–6.39.

A comparison of Figures 6.31–6.36 with Figures 5.27–5.32 shows that particle rotation

does not seem to play a significant role in the relative performance of the yield surfaces

for our DEM specimens, and that the Lade-Duncan yield surface provides a very good
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Figure 6.31: Yield surfaces obtained by DEM simulations performed on Specimen 1 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.32: Yield surfaces obtained by DEM simulations performed on Specimen 2 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.33: Yield surfaces obtained by DEM simulations performed on Specimen 3 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.34: Yield surfaces obtained by DEM simulations performed on Specimen 4 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.35: Yield surfaces obtained by DEM simulations performed on Specimen 5 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.36: Yield surfaces obtained by DEM simulations performed on Specimen 6 with
inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.37: Yield surfaces obtained by DEM simulations performed on Specimen 1 with
inter-element friction coefficients of µ = 0.8 (top) and µ = 1.2 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.38: Yield surfaces obtained by DEM simulations performed on Specimen 2 with
inter-element friction coefficients of µ = 0.8 (top) and µ = 1.2 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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Figure 6.39: Yield surfaces obtained by DEM simulations performed on Specimen 3 with
inter-element friction coefficients of µ = 0.8 (top) and µ = 1.2 (bottom), with particle
rotation allowed. Also shown are Mohr-Coulomb, Drucker-Prager, Lade-Duncan (left) and
Matsuoka-Nakai (right) yield surfaces, with material parameters chosen to match the data
points at a Lode angle of θ = 0.
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characterization of the DEM data points regardless of whether particle rotation is allowed

or prohibited.

As one might expect, the total accumulated friction work Uf in each specimen is smaller

when particle rotation is allowed than when particle rotation is prohibited. This can be

seen by a direct comparison of Figures 6.7–6.12 with Figures 5.10–5.15. The form of the

Uf versus |εz| curve is essentially the same regardless of whether or not particle rotation is

allowed. As noted in Section 5.6, the material friction angle φ is the peak friction angles for

the particulate material specimens (Bardet, 1997). As in the case of no particle rotation,

these peak friction angles do not correspond to the initiation of irreversible strain, which

occurs with the initiation of friction work at or before |εz| = 1% for all six specimens, with

µ = 0.2 or µ = 0.5 and θ = 0 or θ = 60◦, as shown in Figures 6.7–6.12, while yield associated

with the peak friction angle φ occurs at approximately 4% ≤ |εz| ≤ 6% for all six specimens,

as shown in Figures 6.1–6.6. This is expected for non-cohesive particulate materials, since, as

noted in Section 5.6, irrecoverable strains can develop in uncemented normally consolidated

sands at strains as low as ε = 0.007% (Mitchell and Soga, 2005).

Analogous to Figures 5.33–5.38 for the case of no particle rotation, Figures 6.40–6.45

show the stress-strain curves for Specimens 1–6, respectively, with particle rotation allowed,

with inter-element friction coefficients of µ = 0.2 (top) and µ = 0.5 (bottom), at Lode angles

of θ = 0 and θ = 60◦, for which σaxial = σz, εaxial = εz, and σlateral = σx = σy. Note that

the peak friction angle φ corresponds to the peak value of the stress ratio σaxial/σlateral in

the stress-strain curves of Figures 6.40–6.45. Thus, the stress-strain curves confirm that the

axial strain corresponding to the (peak) material friction angle ranges from approximately

4% ≤ |εaxial| ≤ 6% for all six specimens, which agrees with the maximal yield surfaces

identified from the data points in Figures 6.1–6.6.

Regarding the average rate of friction work in the DEM specimens during the simulations,

which is shown in Figure 6.28 for Specimens 1–3 and in Figure 6.29 for Specimens 4–6, several
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Figure 6.40: Stress ratio as a function of axial strain for Specimen 1 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.
The two curves correspond to the data points on the yield surfaces shown in Figure 6.1 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 6.41: Stress ratio as a function of axial strain for Specimen 2 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.
The two curves correspond to the data points on the yield surfaces shown in Figure 6.2 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 6.42: Stress ratio as a function of axial strain for Specimen 3 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.
The two curves correspond to the data points on the yield surfaces shown in Figure 6.3 at
Lode angles of θ = 0 and θ = 60◦.



206

Figure 6.43: Stress ratio as a function of axial strain for Specimen 4 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.
The two curves correspond to the data points on the yield surfaces shown in Figure 6.4 at
Lode angles of θ = 0 and θ = 60◦.
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Figure 6.44: Stress ratio as a function of axial strain for Specimen 5 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.
The two curves correspond to the data points on the yield surfaces shown in Figure 6.5 at
Lode angles of θ = 0 and θ = 60◦.



208

Figure 6.45: Stress ratio as a function of axial strain for Specimen 6 with an inter-element
friction coefficient of µ = 0.2 (top) and µ = 0.5 (bottom), with particle rotation allowed.
The two curves correspond to the data points on the yield surfaces shown in Figure 6.6 at
Lode angles of θ = 0 and θ = 60◦.
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observations can be made. First, as noted in Section 5.6 for the case of no particle rotation,

the rate of friction work and the material friction angle in the specimens appear to be

uncorrelated, since there is a significantly larger variation in the rate of friction work between

Specimen 1 and either Specimens 2 or 3, and between Specimen 4 and either Specimens 5 or

6, than there is in the material friction angle φ for the same sets of specimens. In particular,

at φµ = 26.6◦ (µ = 0.5), between Specimens 1 and 2 the variation in the average rate of

friction work is 72% while the variation in the material friction angle φ is 8%. Second,

regarding the rate of friction work for Specimens 1–3 shown in Figure 6.28, for θ = 0, the

friction work rate as a function of φµ is nearly symmetric about φµ = 45◦. This symmetry

was not observed for the case of no particle rotation in Figure 5.24, and it is less pronounced

for θ = 60◦ in Figure 6.28. However, regardless of Lode angle and whether or not particle

rotation is allowed, the average rate of friction work goes to zero as µ→∞ (φµ → 90◦), while

the material friction angle remains finite: either φ = 90◦ with particle rotation prohibited,

or 40◦ < φ < 47◦ with particle rotation allowed.

Figures 6.46 and 6.47 show the friction work experienced by each element in Specimen

5 at 4% axial strain in compression and extension, respectively, during the DEM simulation

corresponding to Lode angles of θ = 0 and θ = 60◦, respectively, on the yield surface shown

in Figure 6.5 (bottom), with an inter-element friction coefficient of µ = 0.5. On the left side

of Figures 6.46 and 6.47, the gray scale of each element denotes the friction work experienced

by that element, varying from white for elements experiencing no friction work to black for

elements experiencing friction work greater than or equal to 40 Joules in Figure 6.46 and

30 Joules in Figure 6.47. On the right side of Figures 6.46 and 6.47, only the elements

experiencing friction work greater than or equal to 40 Joules or 30 Joules, respectively, are

shown. Comparing Figures 6.46 and 6.47 with Figures 5.39 and 5.40, we observe that the

general appearance of the per-element friction work distribution within Specimen 5 is similar

whether or not particle rotation is allowed. However, there are some distinctions. Note that
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Figure 6.46: Friction work (designated by gray scale) experienced by each element in Speci-
men 5 at |εz| = 4% axial strain (compression) during the DEM simulation corresponding to
a Lode angle of θ = 0 on the yield surface shown in Figure 6.5 with an inter-element friction
coefficient of µ = 0.5, with particle rotation allowed. Black elements experience friction work
greater than or equal to 40 Joules. At this strain (4%), no local slip planes can be visually
identified by per-element friction work.
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Figure 6.47: Friction work (designated by gray scale) experienced by each element in Speci-
men 5 at |εz| = 4% axial strain (extension) during the DEM simulation corresponding to a
Lode angle of θ = 60◦ on the yield surface shown in Figure 6.5 with an inter-element friction
coefficient of µ = 0.5, with particle rotation allowed. Black elements experience friction work
greater than or equal to 30 Joules. At this strain (4%), no local slip planes can be visually
identified by per-element friction work.
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the orientations of Specimen 5 in Figures 6.46 and 5.39 and in Figures 6.47 and 5.40 are

intentionally the same, to facilitate comparison. A close comparison shows that elements in

some regions of Specimen 5 that experience significant friction work when particle rotation

is prohibited experience little or no friction work when particle rotation is allowed. Also,

fewer (if any) slip planes can be visually identified by per-element friction work when particle

rotation is allowed, and friction work appears to occur instead along “chains” of elements.

This is in general agreement with the observations of Oda (1997), who observed that failure in

real sand seems to occur when force-chains or “strong force networks” of contacting particles

become unstable and “buckle”, which would result in friction work being highest along these

buckling force-chains due to elements in the force-chains sliding relative to adjacent elements

outside of the force-chains, in so-called “weak clusters”.

Since particle rotation was allowed in the DEM simulations performed for this chapter,

we can also examine the angular velocities of individual particles within the specimens. As

we did for the elastic range in Section 4.5, we can compute the ratio 〈Ω〉≤ |εaxial|
max /〈Ω〉≤ |εaxial|

avg

for each specimen for a range of values of the axial strain |εaxial|, where Ω is the magnitude

of the angular velocity of an individual particle in a specimen, the angled brackets 〈〉≤ |εaxial|

denote root-mean-square time average over the course of a simulation up to the axial strain

|εaxial|, and the subscripts “max” and “avg” denote maximum and rms-average values over

all particles in the specimen. Figures 6.48 and 6.49 show this ratio as a function of axial

strain |εaxial| for Specimens 1–3 and Specimens 4–6, respectively, during the DEM simulations

corresponding to Lode angles of θ = 0 (top) and θ = 60◦ (bottom) on the yield surface shown

in Figure 6.5 with an inter-element friction coefficient of µ = 0.5. Figures 6.48 and 6.49 show

that the maximum angular velocity of particles within Specimens 1–3 can be anywhere from

10 to 60 times the average particle angular velocity, and the maximum angular velocity

of particles within Specimens 4–6 is frequently in excess of 100 times the average particle

angular velocity, for both θ = 0 and θ = 60◦.
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Figure 6.48: The ratio of maximum to rms-average angular velocity of particles, where
the angled brackets 〈〉≤ |εaxial| denote root-mean-square time average over the course of a
simulation up to the axial strain |εaxial|, as a function of |εaxial| for Specimens 1–3 with
inter-element friction coefficient µ = 0.5 at Lode angles of θ = 0 (top) and θ = 60◦ (bottom).
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Figure 6.49: The ratio of maximum to rms-average angular velocity of particles, where
the angled brackets 〈〉≤ |εaxial| denote root-mean-square time average over the course of a
simulation up to the axial strain |εaxial|, as a function of |εaxial| for Specimens 4–6 with
inter-element friction coefficient µ = 0.5 at Lode angles of θ = 0 (top) and θ = 60◦ (bottom).
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For the simulations performed for this chapter, the Discrete Element Method also allows

us to examine the rotation of individual particles, as we did in Figure 4.9 of Section 4.5.

Figures 6.50 and 6.51 show the rotational kinetic energy of elements in Specimen 5 at an

axial strain of |εz| = 4% during the DEM simulation corresponding to Lode angles of θ = 0

and θ = 60◦, respectively, on the yield surface shown in Figure 6.5 (bottom), with an inter-

element friction coefficient of µ = 0.5. Black elements have rotational kinetic energy greater

than or equal to 100 nano-Joules in both figures. For reference, the mass of each element

(sphere) in all six specimens is 5.24 g. Note that the per-element rotational kinetic energy

is small because the DEM simulations are quasi-static.

Figures 6.50 and 6.51 confirm the existence of force-chains in Specimen 5 at |εz| = 4%

axial strain. Note that contacting elements in strong force networks will experience larger

rotational kinetic energy than elements in the surrounding weak-clusters as the force-chains

become unstable and buckle. Numerous such chains of elements can be seen in Figures 6.50

and 6.51 on the right. Note that no clear slip planes can be seen in Figures 6.50 and 6.51.

This suggests that the buckling of force-chains is the dominant mode of failure during the

initiation of yield. A comparison of Figure 6.50 with 6.51 also shows that more particle

rotation occurs in Specimen 5 during compression than during extension.

As axial strain increases, slip planes begin to appear. Figures 6.52 and 6.53 show the

rotational kinetic energy of elements in Specimen 5 at an axial strain of |εz| = 7% during the

DEM simulation corresponding to Lode angles of θ = 0 and θ = 60◦, respectively, on the yield

surface shown in Figure 6.5 (bottom), with an inter-element friction coefficient of µ = 0.5.

Black elements have rotational kinetic energy greater than or equal to 200 nano-Joules in

Figure 6.52, and 100 nano-Joules in Figure 6.53. Figures 6.52 and 6.53 reveal that at an axial

strain of |εz| = 7%, particle rotation in Specimen 5 occurs primarily on well-defined global

slip planes, during both compression (θ = 0) and extension (θ = 60◦). These slip systems

remain active in Specimen 5 over a range of axial strain of approximately 7% ≤ |εz| ≤ 9%.
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Figure 6.50: Rotational kinetic energy (designated by gray scale) of each element in Specimen
5 at |εz| = 4% axial strain (compression) during the DEM simulation corresponding to a
Lode angle of θ = 0 on the yield surface shown in Figure 6.5 with an inter-element friction
coefficient of µ = 0.5. Black elements have rotational kinetic energy greater than or equal
to 100 nano-Joules. At this strain (4%), no local slip planes can be visually identified by
per-element rotational kinetic energy.
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Figure 6.51: Rotational kinetic energy (designated by gray scale) of each element in Specimen
5 at |εz| = 4% axial strain (extension) during the DEM simulation corresponding to a Lode
angle of θ = 60◦ on the yield surface shown in Figure 6.5 with an inter-element friction
coefficient of µ = 0.5. Black elements have rotational kinetic energy greater than or equal
to 100 nano-Joules. At this strain (4%), no local slip planes can be visually identified by
per-element rotational kinetic energy.
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Figure 6.52: Rotational kinetic energy (designated by gray scale) of each element in Specimen
5 at |εz| = 7% axial strain (compression) during the DEM simulation corresponding to a
Lode angle of θ = 0 on the yield surface shown in Figure 6.5 with an inter-element friction
coefficient of µ = 0.5. Black elements have rotational kinetic energy greater than or equal
to 200 nano-Joules. At this strain (7%), a well-defined global slip plane (shaded) can be
visually identified by per-element rotational kinetic energy.
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Figure 6.53: Rotational kinetic energy (designated by gray scale) of each element in Specimen
5 at |εz| = 7% axial strain (extension) during the DEM simulation corresponding to a Lode
angle of θ = 60◦ on the yield surface shown in Figure 6.5 with an inter-element friction
coefficient of µ = 0.5. Black elements have rotational kinetic energy greater than or equal
to 100 nano-Joules. At this strain (7%), a well-defined global slip plane (shaded) can be
visually identified by per-element rotational kinetic energy.
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Referring to Figure 6.44, the (peak) material friction angle φ is reached in Specimen 5 for

both θ = 0 and θ = 60◦ at |εz| ≈ 6% axial strain with the maximum value of the stress ratio

σaxial/σlateral. Thus, we note from Figures 6.50–6.53 that the mode of failure in Specimen 5

for both θ = 0 and θ = 60◦ seems to change dramatically from the buckling of force-chains

during the initiation of yielding, at an axial strain of |εz| = 4%, shortly before the (peak)

material friction angle φ is reached, to sliding along well-defined global slip planes during

sustained yielding, at an axial strain of |εz| = 7%, immediately after the (peak) material

friction angle φ is reached.

6.6 Conclusion

In this chapter, we have extended the results of Chapter 5 to include the effects of particle

rotation. We have determined yield surfaces on the π-plane for a full range of Lode angles

0 ≤ θ ≤ 60◦ for six DEM specimens consisting of 3 430–29 660 randomly packed uniform

spheres with uniform inter-element friction coefficient µ, with 0.01 ≤ µ ≤ 100.0 for the 3 430-

element specimens and 0.01 ≤ µ ≤ 0.8 for the 29 660-element specimens. The data points

on the π-plane were obtained for each specimen for each inter-element friction coefficient

from sixteen DEM simulations of true triaxial tests under constant-volume conditions, which

amounted to 1 296 simulations (in addition to the 1 296 simulations performed for Chapter 5,

performed using a modified version of the open-source code LAMMPS (Plimpton, 1995,

LAMMPS) running on a 12-processor Mac Pro workstation.

As in Chapter 5, the main results of this chapter are the yield surfaces themselves,

shown in Figures 6.13–6.18 for Specimens 1–6, respectively, and the resulting relationships

between the inter-particle friction coefficient µ (or the inter-particle friction angle φµ =

tan−1 µ) on the microscale and the (peak) material friction angle φ on the macroscale for

each specimen, which are shown in Figures 6.25 and 6.27. We will return to this relationship
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in Chapter 8 where we derive relationships between φµ and φ by analytical means based on

micromechanics.

A comparison of the shapes of the yield surfaces obtained from our DEM simulations with

those predicted by the Mohr-Coulomb, Drucker-Prager, Lade-Duncan, and Matsuoka-Nakai

criteria for given values of the material friction angle φ shows that the DEM data points

are best represented for all values of the Lode angle θ by the Lade-Duncan yield criterion,

in particular for θ = 60◦ (extension). A comparison of the yield surfaces obtained in this

chapter with those obtained in Chapter 5 shows that the relative performance of the yield

criteria for each specimen is essentially the same regardless of whether particle rotation is

allowed or prohibited in the DEM simulations.

We took advantage of the discrete element method to explore friction work on an element-

by-element basis within each specimen, and to compute the average rate of friction work in

each specimen as a function of the inter-element friction coefficient µ, which is shown in

Figures 6.28 and 6.29. We found that the average rate of friction work within the specimens

can vary by more than 50% without significantly altering the material friction angle φ. We

also monitored particle rotation, and plotted the ratio of maximum particle angular velocity

to average particle angular velocity in each specimen for an inter-element friction coefficient

of µ = 0.5, which according to Mitchell and Soga (2005) is a typical value of the inter-particle

friction coefficient for quartz sand, both wet and dry. We found that the maximum angular

velocity of particles within the specimens was frequently over 100 times the average angular

velocity.

An exploration of friction work and rotational kinetic energy of individual particles within

one of the specimens allowed us to observe modes of failure, both at the initiation of yield

and during sustained yielding. We found that before the peak material friction angle is

reached, the primary mode of failure appears to be the buckling of force-chains, with no

well-defined slip planes present in the specimen, while after the peak material friction angle
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is reached, the failure mode shifts to sliding along well-defined slip planes. This can be seen

in Figures 6.50–6.53 showing the rotational kinetic energy of the particles in Specimen 5

(consisting of 29 660 spheres) at axial strains of 4% and 7%, before and immediately after

the (peak) material friction angle is reached (at an axial strain of approximately 6%). The

transition from local force-chain buckling before the peak material friction angle is reached

to sliding along well-defined slip planes after the peak material friction angle is reached is

clearly illustrated by comparing these figures.
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Chapter 7

Micromechanical analysis of Yield in

Isotropic Non-Cohesive Particulate

Materials, Part I: No Particle Rotation

7.1 Abstract

We now turn our attention to a direct micromechanics derivation of the yield surface for a

statistically isotropic non-cohesive particulate material to correspond with the yield surfaces

obtained by DEM simulations in Chapter 5. We base our derivation on a direct microme-

chanical analysis of three local packing geometries: face-centered cubic (FCC), simple cubic

(SC), and body-centered cubic (BCC), as we did for the elastic range in Chapter 3. In this

chapter, as in Chapter 3 and the DEM simulations performed for Chapter 5, we assume

that no particle rotation occurs. In Chapter 8, as in Chapter 4 and the DEM simulations

performed for Chapter 6, we will remove this restriction. By itself, the assumption of no

particle rotation is generally unrealistic, but it is useful to lay a theoretical foundation for

the case of particle rotation that follows in Chapter 8.
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7.2 Introduction

In Chapter 5, we used the Discrete Element Method (DEM) to determine complete yield

surfaces in three-dimensional principal stress space (on the π-plane) for a series of specimens

of 3 430–29 660 randomly packed uniform spheres. In these DEM simulations, the inter-

particle contact forces are modeled as linear springs in both the normal and tangential

directions before the initiation of sliding, with Fn = Knδn and Ft = Ktδt for Ft < µFn and

δn > 0 (i.e., no inter-particle cohesion), and with the initiation of inter-particle tangential

sliding occurring when the Coulomb friction criterion Ft = µFn is reached, where µ is the

inter-particle friction coefficient. For each specimen, sets of DEM simulations of true triaxial

tests were performed to obtain complete yield surfaces on a π-plane for a full range of Lode

angles 0 ≤ θ ≤ 60◦. The same DEM simulations were repeated for each specimen for a

wide range of inter-particle friction coefficients: with 0.01 ≤ µ ≤ 100.0 for the 3 430-element

specimens (Specimens 1–3) and 0.01 ≤ µ ≤ 0.8 for the 29 660-element specimens (Specimens

4–6). See Section 5.4 for a description of these simulations.

From the yield surfaces in Chapter 5, we obtained a relationship between the inter-particle

friction coefficient µ and the peak material friction angle φ for each specimen (corresponding

to a Lode angle of zero, or compression). This relationship can be expressed in terms

of an inter-particle friction angle φµ = tan−1 µ and the peak material friction angle φ.

Alternatively, the same relationship could be expressed in terms of the inter-particle friction

coefficient µ and a material or macroscopic friction coefficient µmacro = tanφ associated with

the peak material friction angle φ. The resulting relationship between φµ and φ for the case

of no particle rotation is shown in Figure 5.22 for all six specimens for 0.01 ≤ µ ≤ 0.8 and

in Figure 6.27 for Specimens 1–3 for 0.01 ≤ µ ≤ 100.0.

In this chapter, we perform a micromechanical analysis of the initiation of yield along

slip planes in three specific local packing geometries of uniform spheres: face-centered cubic
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(FCC), simple cubic (SC), and body-centered cubic (BCC). We use these results to ana-

lytically relate the inter-particle friction coefficient µ to the material friction angle φ in a

statistically isotropic assembly of (non-cohesive) uniform spheres under the static homoge-

nization hypothesis. The implicit assumption in such an analysis is that in a statistically

isotropic assembly slip occurs locally in one or more randomly oriented locally-cubic packings

of spheres along one or more of the slip planes associated with these locally-cubic packings.

This approach is analogous to the approach successfully employed for the elastic range in

Chapters 3 and 4 [Fleischmann et al. (2013a,b)].

The usefulness of our analytical approach rests on its ability to model true isotropic par-

ticulate materials. To judge whether or not our approach succeeds in doing this, we compare

the φ versus φµ curves determined theoretically in this chapter to those obtained for the

DEM specimens of Chapter 5. We find that the relationship between φµ and φ derived theo-

retically for a locally FCC (but globally isotropic) particulate material provides a reasonably

good match for all six DEM specimens, particularly Specimen 4 consisting of 29 660 spheres.

We also introduce a generalized model based on a micromechanical characterization of the

geometry of any local slip system, which generalizes the slip systems of the local FCC, BCC,

and SC packings. We find that this generalized model can be adjusted to match the DEM

data points even more closely (with particle rotation prohibited).

In analogy with Chapter 3 for the elastic range, the DEM simulations of Chapter 5

were performed with particle rotation prohibited, and the corresponding micromechanical

analysis of this chapter likewise assumes that no particle rotation takes place during yielding.

By itself, the assumption of no particle rotation is generally unrealistic, but it is useful for

comparison with and to lay a theoretical foundation for the case of particle rotation that

follows in Chapter 8.
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7.3 Yield on Slip Planes for Regular Arrays of Uniform

Spheres

In this section, we determine the slip planes and yield conditions for three regular cubic

arrays of uniform spheres: face-centered cubic (FCC), simple cubic (SC), and body-centered

cubic (BCC). For analyses of the elastic behavior of the same three cubic arrays, including the

definitions of the fourth-order tensor of second-order elastic moduli Cijkl and the linearization

of the inter-particle contact force laws, see Section 3.3.

7.3.1 Face-Centered Cubic (FCC) Array of Uniform Spheres

In a regular face-centered cubic array of uniform spheres subjected to an initial isotropic

compressive stress σ0, the initial normal contact force between the spheres is Fn = F0 =
√

2r2σ0 (Deresiewicz, 1958a). This initial normal contact force Fn can be used to linearize

the inter-particle Hertz-Mindlin contact force-displacement law by providing constant values

for the inter-particle normal and tangential contact stiffnesses Kn and Kt from equations

(3.7) and (3.8) of Section 3.3.

Figure 7.1 shows an elementary cell of the face-centered cubic (FCC) array of uniform

spheres with the visible spheres numbered, and three of the 12 crystallographically similar

slip planes. Figure 7.2 shows all 14 spheres in an FCC elementary cell in four separate layers

viewed in a direction normal to the three slip planes shown in Figure 7.1. The numbering of

the spheres in Figure 7.2 corresponds to the numbering of the visible spheres in Figure 7.1.

The unit vector normal to the slip planes shown in Figure 7.1 is ûn = (̂i+ ĵ + k̂)/
√

3. The

preferential slip directions on the slip planes for each layer shown in Figure 7.2 relative to
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Figure 7.1: Left: Elementary cell of the face-centered cubic (FCC) array of uniform spheres
analyzed in this section. Right: Three of the 12 crystallographically similar slip planes for
the FCC regular cubic array.

Figure 7.2: Four separate layers of spheres in an FCC elementary cell viewed in a direc-
tion normal to the three slip planes shown in Figure 7.1. The numbering of the spheres
corresponds to the numbering of the visible spheres in Figure 7.1.



228

the layer underneath it, viewed in the −ûn direction, are given by

û1 = − 2√
6
î+

1√
6
ĵ +

1√
6
k̂, (7.1)

û2 =
1√
6
î− 2√

6
ĵ +

1√
6
k̂, (7.2)

û3 =
1√
6
î+

1√
6
ĵ − 2√

6
k̂. (7.3)

The unit vectors û1, û2, and û3 are the preferential slip directions on the three slip planes

shown in Figure 7.1 (right) with unit normal vector ûn = (̂i+ ĵ + k̂)/
√

3, and are shown in

Figure 7.3 next to an FCC elementary cell viewed in the −ûn direction. The preferential slip

directions and unit normal vectors for the other nine crystallographically similar slip planes

are obtained by renaming the coordinate axes.

Figure 7.3: The preferential slip directions for each layer of an FCC elementary cell relative
to the layer underneath it, viewed in a direction normal to the three slip planes shown in
Figure 7.1. The numbering of the spheres corresponds to the numbering of the spheres in
Figure 7.1 and Figure 7.2.

Note that when layers of spheres above and below a slip plane in an FCC elementary cell

slide relative to one another in one of the preferential slip directions û1, û2, or û3, they will

experience motion normal to the slip plane in the ûn direction as well as in the slip direction

ûi. This motion normal to the slip plane results in dilation. Also note that both the normal

and tangential inter-particle contact forces between the contacting spheres contribute to the
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resultant forces in both the ûi and ûn directions, tangent and normal to the slip plane.

Figure 7.4 shows the path of a single sphere A in one of the layers of spheres on one of the

slip planes in an FCC elementary cell shown in Figures 7.2 and 7.3 as the sphere begins

to slide over two spheres B and C in the layer of spheres underneath it, in the preferential

slip direction ûi, on a slip plane with unit normal ûn. The contact radius between sphere A

Figure 7.4: The path of a single sphere A in one of the layers of spheres in an FCC elementary
cell shown in Figures 7.2 and 7.3 as it slides over two spheres B and C in the layer underneath
in the preferential slip direction ûi on a slip plane with unit normal ûn. The initial motion
of sphere A is in the û′i direction.

and each of the spheres B and C projected onto the ûi–ûn plane shown in Figure 7.4 on the

right is rc =
√

3 r/2, and the distance that sphere A must travel in the ûi direction before a

maximum dilation is reached is d = r/
√

3. The unit vector û′i in the direction of the initial

motion of sphere A can be written in terms of the unit vectors ûi and ûn as

û′i = sin
(
cos−1(1/3)

)
ûi + (1/3)ûn, (7.4)

which gives û′1 = (−î + ĵ + k̂)/
√

3, û′2 = (̂i − ĵ + k̂)/
√

3, and û′3 = (̂i + ĵ − k̂)/
√

3. The

initial dilation angle ψ between the unit vector û′i and the slip plane with unit normal ûn is

therefore

ψ = cos−1 û′i · ûi = sin−1(1/3) ≈ 19.47◦. (7.5)
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According to Vermeer and de Borst (1984), this is only slightly larger than the typical initial

dilation angle for dense sand of 15◦.

Consider two layers of spheres in an FCC array of uniform spheres on a slip plane sub-

jected to normal and tangential stresses σn and σt in the ûn and ûi directions, respectively.

Note that we need only consider the free-body diagram of sphere A in contact with spheres

B and C in Figure 7.4 as sphere A begins to slide over spheres B and C in the direction û′i to

determine the ratio of forces in the ûi and ûn directions, and hence the ratio of stresses σt and

σn, necessary for force equilibrium on the slip plane at the initiation of yield. Let Fn and Ft

denote the normal and tangential inter-particle contact forces, respectively, between sphere

A and each of the spheres B and C, which by symmetry must be the same. If we assume

that at the initiation of yield Ft = µFn, where µ is the inter-particle friction coefficient, then

the free-body diagram of sphere A shows that the ratio of stresses tangent and normal to

the slip plane at the initiation of yield is

µFCCslip =
σt
σn

=
cos(30◦) sinψ + µ cosψ

cos(30◦) cosψ − µ sinψ
=

√
3 + 4

√
2µ

2
√

6− 2µ
(7.6)

which characterizes the local material friction coefficient µFCCslip for each slip plane in a regular

FCC array of uniform spheres at the initiation of yield in terms of the inter-particle friction

coefficient µ, with particle rotation prohibited.

7.3.2 Simple Cubic (SC) Array of Uniform Spheres

Figure 7.5 shows an elementary cell of the simple cubic (SC) array of uniform spheres with

the visible spheres numbered, and one of the three crystallographically similar slip planes.

The unit vector normal to the slip plane shown in Figure 7.5 is ûn = k̂, and the preferential

slip direction is any direction in the x-y plane. The unit normal vectors and preferential slip

directions for the other two crystallographically similar slip planes are obtained by renaming
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Figure 7.5: Left: Elementary cell of the simple cubic (SC) array of uniform spheres analyzed
in this section. Right: One of the three crystallographically similar slip planes for the SC
regular cubic array.

the coordinate axes. The slip systems for the SC packing involve no initial dilation. Hence,

ψ = 0.

Clearly, if Fn and Ft denote the normal and tangential inter-particle contact forces, then

force equilibrium on the slip plane requires simply that σt/σn = Ft/Fn. If we assume that

at the initiation of yield Ft = µFn, where µ is the inter-particle friction coefficient, then the

ratio of stresses tangent and normal to the slip plane at the initiation of yield is

µSCslip =
σt
σn

= µ (7.7)

which characterizes the local material friction coefficient µSCslip for each slip plane in a regular

SC array of uniform spheres at the initiation of yield in terms of the inter-particle friction

coefficient µ, with particle rotation prohibited.
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7.3.3 Body-Centered Cubic (BCC) Array of Uniform Spheres

Figure 7.6 shows an elementary cell of the body-centered cubic (BCC) array of uniform

spheres with the visible spheres numbered, and one of the six crystallographically similar

slip planes. The unit vector normal to the slip plane shown in Figure 7.6 is ûn = (̂i+ ĵ)/
√

2,

Figure 7.6: Left: Elementary cell of the body-centered cubic (BCC) array of uniform spheres
analyzed in this section. Right: One of the six crystallographically similar slip planes for the
BCC regular cubic array.

and the preferential slip directions on that slip plane are û± = ±(−î + ĵ)/
√

2. The unit

normal vectors and preferential slip directions for the other five crystallographically similar

slip planes are obtained by renaming the coordinate axes. Note that for sliding on the

“standard” slip planes in the BCC array there is no initial dilation. Hence, ψ = 0.

If we consider the free-body diagram of sphere 9 in contact with spheres 1 and 5 in

Figure 7.6 as spheres 1 and 5 begin to slide over sphere 9 in the direction û±, we can

determine the ratio of forces in the û± and ûn directions, and hence the ratio of stresses

σt and σn, necessary for force equilibrium on the slip plane at yield. Let Fn and Ft denote

the normal and tangential inter-particle contact forces, respectively, between each of spheres

1 and 5 and sphere 9, which by symmetry must be the same. If we assume that at the
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initiation of yield Ft = µFn, where µ is the inter-particle friction coefficient, then the free-

body diagram of sphere 9 shows that the ratio of stresses tangent and normal to the slip

plane at the initiation of yield is

µBCCslip =
σt
σn

=
µ

cos(sin−1(1/
√

3))
(7.8)

which characterizes the local material friction coefficient µBCCslip for each slip plane in a regular

BCC array of uniform spheres at the initiation of yield in terms of the inter-particle friction

coefficient µ, with particle rotation prohibited.

7.4 Yield in Statistically Isotropic Aggregates of Uniform

Spheres

For a statistically isotropic polycrystalline material, once the yield stress τY associated with

each slip system of the local crystals has been determined, homogenization processes anal-

ogous to those employed in Section 3.4 can be used to determine the initial yield surface

for the material, provided the local crystals are randomly oriented and every orientation is

equally represented. Such homogenization processes for locally cubic materials were origi-

nally developed by Taylor (1938), Bishop and Hill (1951a), and Bishop and Hill (1951b) to

determine the plastic behavior of metals having locally cubic crystalline grains. Hill (1965)

used the self-consistent method to analytically determine implicit equations for the polycrys-

talline elastoplastic moduli based on the corresponding moduli of the constituent crystals.

Similar analyses had been performed earlier by Kröner (1961) and Budiansky and Wu (1962).

Hutchinson (1970) used the analytical results of Hill (1965) to compute the yield surface for

a statistically isotropic aggregate of FCC crystalline grains.

In the analysis of this chapter, we will employ the static homogenization method. Under
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the static hypothesis, it is assumed that when an aggregate material is subjected to a uniform

state of stress the individual material subportions will experience the same state of stress. In

the elastic range, this assumption leads to the homogenization method of Reuss (1929), which

was successfully employed for statistically isotropic particulate materials in Section 3.4.2

of Chapter 3 [Fleischmann et al. (2013a)]. Taylor (1938) applied the static hypothesis to

determine the yield criterion for a polycrystalline aggregate material in terms of the yield

conditions on the slip systems in the local crystals. If the strength of the individual (randomly

oriented) crystalline grains in a polycrystalline aggregate are pressure-independent, then the

Tresca yield criterion holds for the aggregate material, which states that yield occurs when

1

2
|σi − σj| = τY , i 6= j, i, j ∈ {1, 2, 3}, (7.9)

for any combination of the principal stresses σ1, σ2, and σ3. Assuming that the orientations

of the local crystals are randomly oriented and every orientation is equally represented, then

under the static hypothesis the macroscopic yield stress for the aggregate material is simply

equal to the (minimum) yield stress associated with the slip systems in the constituent

crystalline grains, or

τY = τY . (7.10)

According to Hutchinson (1970), equation (7.9) is still valid under the assumptions of the

self-consistent method, except the relationship between the macroscopic yield stress τY in

the aggregate material and the (minimum) yield stress τY along the local slip systems is more

complicated, and it generally involves the elastic properties of both the local and aggregate

materials (Hill, 1965).

For a non-cohesive particulate material whose strength is pressure-dependent, the Tresca

yield criterion generalizes to the Mohr-Coulomb yield criterion, derived in Appendix D.

According to the Mohr-Coulomb yield criterion, yield in a statistically isotropic particulate
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aggregate material is governed by the maximum ratio of tangential to normal stress σt/σn

on any spatially-oriented plane in the aggregate material, which occurs when

|σi − σj|
2
√
σiσj

= µmacro, i 6= j, i, j ∈ {1, 2, 3}, (7.11)

for any combination of the principal stresses σ1, σ2, and σ3, where µmacro is the macroscopic or

material friction coefficient for the particulate aggregate material (called µ in the derivation

of Appendix D). In the study of particulate materials, the macroscopic friction coefficient

µmacro is usually represented by a macroscopic or material friction angle φ = tan−1 µmacro,

which is also the angle of repose of the particulate aggregate material.

If all local packing geometries and associated slip planes are randomly oriented and

equally represented in a particulate aggregate material, then, under the static hypothesis,

yield in the particulate aggregate material will occur when the maximum ratio of tangential

to normal stress σt/σn on any spatially-oriented plane in the aggregate material is equal to

the smallest ratio σt/σn = µslip that causes sliding on any slip system in the local packings

of uniform spheres, or

µmacro = µslip, (7.12)

as illustrated in Figure 7.7, where µslip is given in terms of the inter-particle friction coefficient

µ for each of the local cubic packings in Section 7.3.

Figure 7.8 shows the resulting relationship between the inter-particle friction coefficient

µ expressed as an inter-particle friction angle φµ = tan−1 µ and the material friction angle

φ = tan−1 µmacro for locally FCC, BCC, and SC statistically isotropic particulate aggregate

materials with µmacro = µFCCslip , µmacro = µBCCslip , and µmacro = µSCslip, given by equations (7.6),

(7.8), and (7.7), respectively. Note that the predicted curve for a locally FCC particulate

aggregate material and the DEM data points obtained in Chapter 5 for Specimen 4 consisting

of 29 660 spheres (with particle rotation prohibited) match quite well for 0.2 ≤ µ ≤ 0.8
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Figure 7.7: Static homogenization hypothesis for yield: the statistically isotropic particulate
material consists of many randomly-oriented subportions with specific local packings and
associated local slip planes.

(10◦ ≤ φµ ≤ 40◦). The curves predicted for locally BCC and SC particulate aggregate

materials, on the other hand, are far from the DEM data points.

It should be noted that the average number of inter-particle contacts per unit volume

for all six DEM specimens tested in Chapters 3–6 were initially closest to that of the BCC

packing (βBCC ≈ 5.2/D3, where D is the diameter of the particles), as noted in Section 3.6.

We also saw in Figure 3.8 of Section 3.5 that the elastic behavior of all six DEM specimens,

in particular the relationship between Poisson’s ratio for the particulate material and the

ratio of tangential to normal inter-particle contact stiffnesses α = Kt/Kn, are modeled most

closely by the self-consistent homogenization hypothesis applied to a statistically isotropic

aggregate of local BCC packings of uniform spheres. However, Figure 7.8 shows clearly that

the yielding behavior of the same six DEM specimens, in particular the relationship between

the inter-particle friction angle φµ (or coefficient µ = tanφµ) and the particulate material

friction angle φ, are not well modeled by the (static) yielding behavior of a statistically

isotropic aggregate of local BCC packings of uniform spheres. The FCC curve in Figure 7.8

is clearly superior, although it also fails to capture the material friction angle φ when µ = 0

(and φµ = 0◦), which is also the initial dilation angle ψ of the DEM specimens.
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Figure 7.8: The relationship between the inter-particle friction coefficient µ expressed as an
inter-particle friction angle φµ = tan−1 µ and the material friction angle φ = tan−1 µmacro

predicted for a statistically isotropic particulate aggregate material composed of locally FCC,
BCC, and SC regular arrays of uniform spheres, assuming no particle rotation. Also shown
are the data points obtained in Chapter 5 for Specimens 1–6 (shown previously in Figures 5.22
and 5.23) from DEM simulations with particle rotation prohibited.
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Note also that for the initiation of sliding on the standard slip planes in the three local

cubic packings considered in Section 7.3, only the FCC packing produces dilation, with an

initial dilation angle of ψ ≈ 19.47◦. For the initiation of yield on the standard slip planes in

both the SC and BCC packings, ψ = 0. The initial volumetric packing densities of all six

of the DEM specimens tested in Chapters 3–6 were approximately 0.66, with a void ratio

e ≈ 0.5, which is typical of dense sand having uniform, well-rounded particles (e.g., Bardet,

1997). (For comparison, the volumetric packing density of an FCC packing is roughly 0.74,

that of a BCC packing is roughly 0.68, and that of an SC packing is roughly 0.52.) Since

dense sands experience dilation, with a typical initial dilation angle of ψ ≈ 15◦ (Vermeer

and de Borst, 1984), we therefore may expect our randomly-packing DEM specimens to

experience dilation as well. Indeed, the initial dilation angle ψ in our DEM specimens is

easily measured, since it is equal to the friction angle φ in the absence of inter-particle

friction. Thus, Figure 7.8 shows that the initial dilation angle ψ for all six DEM specimens

is approximately ψ ≈ 10◦.

Thus, considering the initial dilation angle of our DEM specimens, it is clear why the FCC

curve in Figure 7.8 models the DEM data more closely than the BCC or SC curves, since

of the three local cubic packings only the FCC packing produces initial dilation. Another

possible explanation for the superiority of the FCC curve in Figure 7.8 is that the friction

angles φ obtained for the DEM specimens in Chapter 5 are peak friction angles, rather than

friction angles associated with the true initiation of yield, as noted in Chapter 5. Thus,

since the local FCC packing is the most “stable” of the three local cubic packings, as slip

begins to occur in a particulate material during the initiation of yield, the spheres may tend

to realign themselves into a packing similar to the FCC packing along slip planes, or more

likely into an “intermediate” packing geometry between the SC, BCC, and FCC packings,

regardless of the initial packing geometry of the spheres. Note that the characterization of

the peak friction angle rather than the initiation of yield is typical for particulate materials,
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since, as noted in Section 5.6, the true initiation of “yield” in particulate materials typically

occurs at very small strains, with irrecoverable strains developing in uncemented normally

consolidated sands at strains as low as ε = 0.007% (Mitchell and Soga, 2005).

The considerations of the preceding two paragraphs serve to motivate the introduction of

a generalized local packing model, capable of reproducing all three of the local cubic packings

analyzed in Section 7.3, but also capable of representing local packing geometries having a

full range of initial dilation angles ψ. To this end, we generalize the contact geometry between

spheres A, B, and C shown in Figure 7.4 for the FCC packing to allow any orientation of

spheres on an arbitrary slip plane, as shown in Figure 7.9. In this model, we use two angles

Figure 7.9: The path of a single sphere A in one of the layers of spheres as it slides over two
spheres B and C in the layer underneath in the preferential slip direction ûi on an arbitrary
slip plane with unit normal ûn. The initial motion of sphere A is in the direction normal to
the plane containing the centers of spheres A, B, and C.

θ1 and θ2 to characterize the geometry of spheres A, B, and C, in contact on an arbitrary

slip plane, as sphere A begins to slide over spheres B and C. The angle θ2 = ψ is the initial

dilation angle, and the angle θ1 characterizes what we call the “v-belt effect” in Chapter 9

[Fleischmann et al. (2013c)], which is an intuitive way of understanding (nominally 2-D)

yielding in a physically three-dimensional particulate material.

As in Section 7.3.1, we need only consider the free-body diagram of sphere A in contact

with spheres B and C in Figure 7.9, as sphere A begins to slide over spheres B and C in the
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direction normal to the plane containing the centers of spheres A, B, and C, to determine

the ratio of forces in the ûi and ûn directions, and hence the ratio of stresses σt and σn,

necessary for force equilibrium on the slip plane at the initiation of yield. Let Fn and Ft

denote the normal and tangential inter-particle contact forces, respectively, between sphere

A and each of the spheres B and C, which by symmetry must be the same. If we assume

that at the initiation of yield Ft = µFn, where µ is the inter-particle friction coefficient, then

the free-body diagram of sphere A shows that the ratio of stresses tangent and normal to

the slip plane at the initiation of yield is

µslip =
σt
σn

=
cos θ1 sin θ2 + µ cos θ2

cos θ1 cos θ2 − µ sin θ2

(7.13)

which characterizes the local material friction coefficient µslip for an arbitrary slip plane

in an array of uniform spheres at the initiation of yield in terms of the inter-particle

friction coefficient µ and the angles θ1 and θ2 = ψ, with particle rotation prohibited.

Note that equation (7.13) generalizes equations (7.6), (7.7), and (7.8), with θ1 = 30◦ and

θ2 = sin−1(1/3) ≈ 19.47◦ for the FCC packing, θ1 = sin−1(1/
√

3) ≈ 35.26◦ and θ2 = 0 for

the BCC packing, and θ1 = θ2 = 0 for the SC packing.

Zhou and Dinsmore (2009) have performed a statistical study of the distribution of inter-

particle contact forces in random assemblies of spheres in three dimensions and disks in

two dimensions (under a variety of stress conditions). This study reveals an approximately

uniform distribution of inter-force angles θ measured between adjacent normal inter-particle

contact forces in a three dimensional random assembly of uniform spheres between the geo-

metric bounds of θmin = 60◦ and θmax = 180◦, with a slight peak at each of the two geometric

bounds. Zhou and Dinsmore (2009) hypothesize that the peak at θmax = 180◦ is due to the

presence of force chains, which for the sake of stability favor straight propagation through

the particulate assembly. This translates to 30◦ ≤ θ1 ≤ 90◦ in Figure 7.9. Hence, if we
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assume that a statistically isotropic assembly of uniform spheres is composed of equally

represented subportions having local packing geometries given by the generalized model of

equation (7.13) with 30◦ ≤ θ1 ≤ 90◦ uniformly distributed, we may use θ1 = θ1 = 60◦

in equation (7.13), which gives the following generalized model for a statistically isotropic

assembly of uniform spheres:

µmacro = µslip =
σt
σn

=
sinψ + 2µ cosψ

cosψ − 2µ sinψ
(7.14)

where µ is the inter-particle friction coefficient, ψ is the initial dilation angle, and the material

friction angle is given by φ = tan−1 µmacro.

Figure 7.10 shows the relationship between φµ = tan−1 µ, and φ = tan−1 µmacro given by

equation (7.14) with ψ = 10◦, along with the DEM data points obtained in Chapter 5 for

Specimens 1–6 (with particle rotation prohibited). Note that the relationship between φ and

φµ obtained in Chapter 5 for all six DEM specimens of randomly packed uniform spheres

(with particle rotation prohibited) is predicted quite well by equation (7.14) with an initial

dilation angle of ψ = 10◦ in the range 0 ≤ µ ≤ 1 (0 ≤ φµ ≤ 45◦), particularly for Specimens

1–3. This is quite remarkable considering the fact that the only parameter chosen by us

to match the data points was the initial dilation angle ψ, which was chosen to match the

(approximate) material friction angle φ at µ = 0 (φµ = 0) for all six DEM specimens.

Finally, it is worth noting that in the case where the distribution of θ1 in Figure 7.9 is not

uniform or is not bounded by 30◦ ≤ θ1 ≤ 90◦ (as in an assembly of spheres with non-uniform

size), then equation (7.13) should be used with values of θ1 = θ1 6= 60◦ based on the specific

distribution of θ1 in the assembly. Figure 7.11 shows various curves predicted by equation

(7.13) with θ2 = ψ = 10◦ and θ1 = {30, 40, 50, 60, 70, 80}◦, along with the DEM data points

obtained in Chapter 5 for Specimens 1–6 (with particle rotation prohibited), for comparison.
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Figure 7.10: The relationship between the inter-particle friction coefficient µ expressed as
an inter-particle friction angle φµ = tan−1 µ and the material friction angle φ = tan−1 µmacro

predicted for a statistically isotropic particulate aggregate material by the generalized model
given by equation (7.14) with ψ = 10◦, assuming no particle rotation. Also shown are the
data points obtained in Chapter 5 for Specimens 1–6 (shown previously in Figures 5.22 and
5.23) from DEM simulations with particle rotation prohibited.
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Figure 7.11: The relationship between the inter-particle friction coefficient µ expressed as
an inter-particle friction angle φµ = tan−1 µ and the material friction angle φ = tan−1 µmacro

predicted for a statistically isotropic particulate aggregate material by the generalized model
given by equation (7.13) with θ2 = ψ = 10◦ and θ1 = {30, 40, 50, 60, 70, 80}◦, assuming no
particle rotation. Also shown are the data points obtained in Chapter 5 for Specimens 1–6
(shown previously in Figures 5.22 and 5.23) from DEM simulations with particle rotation
prohibited.
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7.5 Conclusion

We analyzed the conditions for yield on the standard slip planes in local face-centered cubic

(FCC), body-centered cubic (BCC), and simple cubic (SC) regular packings of uniform

spheres to determine local material friction coefficients µslip governing yield on the standard

slip planes in each of the local packings in terms of the inter-particle friction coefficient

µ, given by equations (7.6), (7.8), and (7.7) for the local FCC, BCC, and SC packings,

respectively. We used these results to analyze the yield conditions for a statistically isotropic

particulate aggregate material composed of randomly packed uniform spheres.

Assuming that a randomly packed particulate material can be idealized as an aggregate

material consisting of randomly-oriented subportions with specific local packings (either

cubic or generalized) and applying the static homogenization hypothesis, we have assumed

that the macroscopic material friction coefficient for the aggregate material µmacro is equal

to the local material friction coefficient µslip for the slip planes in the (predominant) local

packing, where the material friction angle for the statistically isotropic particulate material

is φ = tan−1 µmacro. Thus, µmacro (and hence φ) is related to the inter-particle friction

coefficient µ via µslip for each of the local packings.

If a statistically isotropic particulate material consists of randomly-oriented subportions

or “grains” of particles arranged (at least predominantly) in one of the three cubic packings

or the generalized local packing discussed below, then the slip planes for the local packings

will also be randomly-oriented. Thus, despite the fact that we consider yield of the local

packings along specific, predetermined slip planes, we do not thereby constrain the statis-

tically isotropic particulate aggregate material to yield along slip planes with any specific

spatial orientation. The same observation was made for statistically isotropic polycrystalline

aggregate materials on the molecular scale by Taylor (1938).

We found that the relationship between the inter-particle friction coefficient µ expressed
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as an inter-particle friction angle φµ = tan−1 µ and the macroscopic or material friction

angle φ = tan−1 µmacro predicted for a statistically isotropic particulate aggregate material

composed of locally FCC regular arrays of uniform spheres (with µmacro = µFCCslip ) provided a

good approximation to the same relationship obtained from DEM simulations performed on

six specimens of 3 430–29 660 randomly packed uniform spheres in Chapter 5, with particle

rotation prohibited, as shown in Figure 7.8.

We also introduced a generalized model given by equations (7.13) and (7.14) relating µslip

to the inter-particle friction coefficient µ for inter-particle contacts on an arbitrary slip plane

with two geometric parameters θ1 and θ2, where θ2 = ψ is the initial dilation angle, and

θ1 characterizes what we call the “v-belt effect” in Chapter 9 [Fleischmann et al. (2013c)],

which is an intuitive way of understanding (nominally 2-D) yielding in a physically three-

dimensional particulate material. This model generalizes the results for all three local cubic

packings, and it allows us to match the DEM data points from Chapter 5 even more closely

by choosing appropriate values for θ1 and θ2 in equation (7.13) – or just the initial dilation

angle ψ if equation (7.14) is used for a statistically isotropic assembly of uniform spheres –

as shown in Figure 7.10.

Like the DEM simulations performed for Chapter 5, the theoretical derivations of this

chapter were carried out with particle rotation prohibited. To model the results obtained

from the DEM simulations performed for Chapter 6, we continue our analysis with the case

of particle rotation in Chapter 8.
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Chapter 8

Micromechanical analysis of Yield in

Isotropic Non-Cohesive Particulate

Materials, Part II: Particle Rotation

8.1 Abstract

We extend the theoretical results of Chapter 7 (Part I) to include the effect of particle ro-

tation, as we did in Chapter 4 for the elastic range. In particular, we analyze the motion

of particles on the standard slip planes of the face-centered cubic (FCC), simple cubic (SC),

and body-centered cubic (BCC) arrays of uniform spheres, including the effect of particle

rotation. This leads to a generalized model relating the inter-particle friction coefficient µ

and the material friction coefficient µmacro or the material friction angle φ = tan−1 µmacro

for a statistically isotropic (non-cohesive) particulate material consisting of uniform spheres.

We compare this relation with the relation obtained from the DEM simulations performed

for Chapter 6, in which particle rotation was unrestrained, and we find that the match is

excellent. In particular, our relation provides a significantly better match with the DEM
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data points of Chapter 6 than the relation derived by Emeriault et al. (1996). Also, our

derivation shows that the material friction angle φ depends in part on the elastic proper-

ties of the spheres, in particular on the ratio of the tangential to the normal inter-particle

contact stiffness α = Kt/Kn. This dependence is not included in the relation derived by

Emeriault et al. (1996). Moreover, we show that the relation between φµ and φ depends

on the parameter ξ that was introduced by us in Chapter 4 [Fleischmann et al. (2013b)] to

characterize the effect of particle rotation in the elastic range, and this dependence becomes

pronounced as µ → ∞ (φµ → 90◦). In Chapter 4 [Fleischmann et al. (2013b)], we showed

that the parameter ξ can be understood as providing a quantitative measure of the presence

of zero-energy modes or mechanisms in a particulate material.

8.2 Introduction

In Chapter 6, we used the Discrete Element Method (DEM) to determine yield surfaces for

six specimens of 3 430–29 660 randomly packed uniform spheres with constant normal and

tangential inter-particle contact stiffnesses Kn and Kt (linear spring model), and uniform

inter-particle friction coefficients µ. The DEM simulations were performed on each specimen

for a wide range of inter-particle friction coefficients, with 0.01 ≤ µ ≤ 100.0 for the 3 430-

element Specimens 1–3 and 0.01 ≤ µ ≤ 0.8 for the 29 660-element Specimens 4–6. The

resulting yield surfaces allowed us to determine the (peak) material friction angle φ for each

DEM specimen for each value of the inter-particle friction coefficient µ at a Lode angle of

zero on the π-plane, corresponding to the (maximum) stress ratio σaxial/σlateral at yield in a

true-triaxial compressive test, and this resulted in a relationship between the inter-particle

friction coefficient µ on the microscale (which can also be expressed as an inter-particle

friction angle φµ = tan−1 µ) and the material friction angle φ on the macroscale (which can

also be expressed as a macroscopic friction coefficient µmacro = tanφ).
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In this chapter, we perform a micromechanical analysis of the initiation of yield along

the standard slip planes in three regular cubic arrays of uniform spheres: face-centered

cubic (FCC), simple cubic (SC), and body-centered cubic (BCC), including the effect of

particle rotation. We perform a direct micromechanics derivation of the yield conditions

for the standard slip systems in a local FCC packing of uniform spheres, and we generalize

this derivation to include slip planes in arbitrary packing geometries. Applying the static

homogenization hypothesis, we propose a generalized model relating the material friction

angle φ in a statistically isotropic (non-cohesive) particulate aggregate material composed of

uniform spheres to the inter-particle friction coefficient µ, incorporating the effect of particle

rotation. The resulting relation between the inter-particle friction coefficient µ (or the inter-

particle friction angle φµ = tan−1 µ) and the material friction angle φ (or the macroscopic

friction coefficient µmacro = tanφ) depends on the material initial dilation angle ψ, as it did

in Chapter 7 with particle rotation prohibited. However, with the effect of particle rotation

included, this relation also depends on the number of “active” layers in the slip systems, as

well as on the elastic properties of both the local and aggregate particulate materials. In

particular, the relation between µ and φ depends on the ratio α = Kt/Kn and on the internal

parameter ξ introduced in Chapter 4 [Fleischmann et al. (2013b)] to quantify the presence

of zero-energy modes or shear mechanisms in the aggregate material. These dependences

become increasingly pronounced as µ→∞ (φµ → 90◦).

Comparing the theoretical relation between the inter-particle and material friction angles

φµ and φ derived in this chapter with the results obtained by the discrete element method

for the six DEM specimens of Chapter 6 (with particle rotation allowed), we find excellent

agreement. In particular, our relation provides a significantly better match with the DEM

data points of Chapter 6 than the relation derived by Emeriault et al. (1996), also based on a

static homogenization hypothesis, which is to our knowledge the only other micromechanics-

based derivation of this relation in the literature.
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8.3 Yield on Slip Planes for Regular Arrays of Uniform

Spheres Incorporating the Effect of Particle Rotation

In this section, we consider how particle rotation affects the yield conditions derived in

Section 7.3 on the slip planes for three regular cubic arrays of uniform spheres: face-centered

cubic (FCC), simple cubic (SC), and body-centered cubic (BCC).

8.3.1 Face-Centered Cubic (FCC) Array of Uniform Spheres

Figure 7.1 in Section 7.3.1 shows an elementary cell of the face-centered cubic (FCC) array of

uniform spheres with the visible spheres numbered, and three of the 12 crystallographically

similar slip planes. Figure 7.2 in Section 7.3.1 shows all 14 spheres in an FCC elementary

cell in four separate layers viewed in a direction normal to the three slip planes shown in

Figure 7.1. The numbering of the spheres in Figure 7.2 corresponds to the numbering of

the visible spheres in Figure 7.1. The preferential slip directions ûi on the slip planes shown

in Figure 7.1 (right) with unit normal vector ûn are shown in Figure 7.3 next to an FCC

elementary cell viewed in the −ûn direction. The initial dilation angle for these slip systems

is ψ = sin−1(1/3) ≈ 19.47◦.

Figure 8.1 shows a group of eleven spheres on three layers within a slip system with

preferential slip direction ûi and unit normal ûn viewed in the ûi–ûn plane. We will first

consider the case in which only the spheres on a single layer are free to rotate (spheres A,

E, F , G, and H in Figure 8.1). The uppermost layer of spheres in Figure 8.1 experiences a

displacement in the ûi direction while the bottommost layer of spheres remains fixed. Let

σn and σt be the stresses normal and tangent to the slip plane on the uppermost layer of

spheres, in the ûn and ûi directions, respectively. Then, as in Section 7.3.1, the ratio of
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Figure 8.1: Eleven spheres (lettered A–K for reference) on three layers in a standard slip
system of a FCC array of uniform spheres, (left:) viewed in the −ûn direction, and (right:)
viewed in the ûi–ûn plane, where the direction ûi is one of the three preferential slip directions
associated with the slip planes shown in Figure 7.1, which are shown in Figure 7.3, and the
direction ûn is normal to the slip plane.

stresses tangent and normal to the slip plane will be

µFCCslip =
σt
σn

=
Fn cos(30◦) sinψ + Ft cosψ

Fn cos(30◦) cosψ − Ft sinψ
, (8.1)

where Fn and Ft denote the normal and tangential inter-particle contact forces between

sphere A and spheres B and C in Figure 8.1, which by symmetry must be the same. In

Section 7.3.1 with particle rotation prohibited, we assumed that Ft = µFn at yield. With

particle rotation allowed, however, we cannot assume a priori that sphere A will slide relative

to spheres B, C, I, and J rather than rolling without slip relative to spheres B, C, I, and J

and sliding relative to spheres E, F , G, and H on the same plane.

Let F ′n and F ′t denote the normal and tangential inter-particle contact forces between

sphere A and each of spheres E, F , G, and H in Figure 8.1 (which are the same). Note

that the motion of the upper two layers of spheres in Figure 8.1 in the ûi direction will



252

cause contact between sphere A and spheres D and K to be lost at the moment motion

begins. Thus, we may ignore the contact forces between sphere A and spheres D and

K in our analysis of yield with particle rotation allowed, as we did in Section 7.3.1 with

particle rotation prohibited. In other words, we assume that strong force networks or force-

chains of types 〈I, J〉 → 〈A〉 → 〈B,C〉 and 〈G,H〉 → 〈A〉 → 〈E,F 〉 exist during the

motions analyzed in this section, and force-chains of type 〈D〉 → 〈A〉 → 〈K〉 do not exist

during this motion. Unlike Section 7.3.1, however, without further assumptions the free-

body diagram of sphere A is statically indeterminate. Thus, we solve the problem for two

separate boundary conditions: (1) constant normal stress, in which σn in the ûn direction is

constant, and (2) constant volume, in which motion is purely in the ûi direction. While the

constant normal stress boundary condition make the free-body diagram of sphere A statically

determinate, the solution of the constant volume boundary condition problem depends on

the force-displacement laws for the spheres, and in particular on the ratio of the inter-particle

tangential and normal contact stiffnesses α = Kt/Kn.

Constant Normal Stress

Figure 8.2 shows the free-body diagram of sphere A with constant normal stress boundary

conditions. If σn is to remain constant, then the motion of sphere A must be in the û′i

direction (at an angle ψ relative to the slip plane). We will assume initially that Fn = F0

and F ′n = η0F0. Moment balance for sphere A implies that Ft = F ′t . Thus, if η0 > 1,

sliding will occur between sphere A and spheres B and C in Figure 8.1, and equation (8.1)

is the same as equation (7.6) for the case of no particle rotation. If η0 ≤ 1, however, then

sliding occurs between sphere A and spheres E, F , G, and H in Figure 8.1. Thus, at yield

F ′t = µF ′n = µη0F0. We will assume η0 ≤ 1.

Before motion occurs, Ft = F ′t = 0, and we have σnA0 = 2F0 cos(30◦) cosψ for some

reference area A0 on the slip plane. At yield, moment equilibrium for sphere A implies that
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Figure 8.2: Free-body diagram of sphere A with constant normal stress boundary conditions.

Ft = F ′t = µη0F0, and we have σnA0 = 2Fn cos(30◦) cosψ − 2µη0F0. Since the normal stress

σn is constant, we can equate σn before and after yield to find Fn at yield, and equation 8.1

becomes

Constant Normal Stress: µFCCslip =
σt
σn

= tanψ + µη0 sec(30◦) sec2 ψ, (8.2)

which characterizes the local material friction coefficient µFCCslip for each slip plane in a regular

FCC array of uniform spheres at the initiation of yield under constant normal stress boundary

conditions in terms of the inter-particle friction coefficient µ, with particle rotation allowed.

Note that equation (8.2) is the equation of a line, with µFCCslip = tanψ at µ = 0. Figure 8.3

shows the resulting relationships between φµ = tan−1 µ and φFCCslip = tan−1 µFCCslip given by

equation (8.2) with η0 = {1, 0.5, 0.25}.
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Figure 8.3: The relationship between the inter-particle friction coefficient µ expressed as
an inter-particle friction angle φµ = tan−1 µ and the local material friction angle φFCCslip =
tan−1 µFCCslip given by equation (8.2), with η0 = {1, 0.5, 0.25}.

Constant Volume

Figure 8.4 shows the free-body diagram of sphere A with constant volume boundary condi-

tions. Note that, if the displacement of sphere A is in the ûi direction (on the slip plane),

then σn cannot remain constant. Consider the displacement ∆ûi shown in Figure 8.4. The

normal and tangential contact forces between sphere A and spheres B and C are Fn = Knδn

and Ft = Knδt, respectively, where δn and δt are the relative displacements between spheres

A and spheres B and C normal and tangent to the contact planes, and Kn and Kt are the

inter-particle contact stiffnesses in the normal and tangential directions, respectively, relative

to the inter-particle contact planes. (Note: δn and δt are not in the directions normal and

tangent to the slip plane like the stresses σn and σt.) As in the case of constant normal

stress, we will assume initially that Fn = F0 = Knδ0 and F ′n = η0F0. Once again, if η0 ≤ 1

sliding occurs between sphere A and spheres E, F , G, and H in Figure 8.1. Thus, at yield

F ′t = µF ′n = µη0F0.
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Figure 8.4: Free-body diagram of sphere A with constant volume boundary conditions.

If sphere A rotates clockwise through an angle θ during the displacement ∆ûi, then

employing small angle approximations we have δn = δ0 + (∆/2) cos(30◦) sinψ and δt =

∆ cosψ − rcθ, where rc = r cos(30◦), r is the radius of the spheres, and δ0 = F0/Kn. By

symmetry, if sphere A rotates clockwise through an angle θ, then spheres E, F , G, and H

must do so likewise. Thus, δ′t = 2rcθ, and moment equilibrium for sphere A implies that Ft =

Ktδt = F ′t = Ktδ
′
t = Kt2rcθ, which implies that ∆ = 3rcθ/ cosψ and θ = µη0F0/(2Ktrc),

giving

δn = δ0

(
1 +

3µη0

4α
cos(30◦) tanψ

)
and δt = δ0

µη0

α
, (8.3)

where α = Kt/Kn. With Fn = Knδn and Ft = Ktδt, equation 8.1 becomes

Constant Volume: µFCCslip =
σt
σn

=
cos(30◦) sinψ + µη cosψ

cos(30◦) cosψ − µη sinψ
, (8.4)
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with η given by

η =
F ′n
Fn

=
η0

1 + 3µη0
4α

cos(30◦) tanψ
, (8.5)

where α = Kt/Kn is the ratio of the tangential to the normal inter-particle contact stiffnesses

for the spheres. Equations (8.4) and (8.5) characterize the local material friction coefficient

µFCCslip for each slip plane in a regular FCC array of uniform spheres at the initiation of yield

under constant volume boundary conditions in terms of the inter-particle friction coefficient

µ, with particle rotation allowed. Figures 8.5 and 8.6 show the resulting relationships between

φµ = tan−1 µ and φFCCslip = tan−1 µFCCslip given by equations (8.4) and (8.5) with α = Kt/Kn = 1

and η0 = {1, 0.5, 0.25}, and with α = Kt/Kn = {1, 0.5, 0.25, 0.125} and η0 = 1, respectively.

Figure 8.5: The relationship between the inter-particle friction coefficient µ expressed as
an inter-particle friction angle φµ = tan−1 µ and the local material friction angle φFCCslip =
tan−1 µFCCslip given by equations (8.4) and (8.5), with α = Kt/Kn = 1 and η0 = {1, 0.5, 0.25}.

Finally, increasing the number of active (rotating) layers in the slip systems is essentially

equivalent to adding tangential springs with stiffness Kt in series. Thus, increasing the

number of active or rotating layers of spheres in a standard slip system of an FCC array of
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Figure 8.6: The relationship between the inter-particle friction coefficient µ expressed as
an inter-particle friction angle φµ = tan−1 µ and the local material friction angle φFCCslip =
tan−1 µFCCslip given by equations (8.4) and (8.5), with α = Kt/Kn = {1, 0.5, 0.25, 0.125} and
η0 = 1.

uniform spheres under constant volume boundary conditions by a factor of n is equivalent

to decreasing α in equation (8.5) by a factor of 1/n.

8.3.2 Simple Cubic (SC) Array of Uniform Spheres

Figure 7.5 in Section 7.3.2 shows an elementary cell of the simple cubic (SC) array of uniform

spheres and one of the three crystallographically similar slip planes. The slip systems for

the SC packing involve no initial dilation. Hence, ψ = 0. In Section 4.3.3, we analyzed the

shearing deformation of an SC array of uniform spheres along one of the standard slip planes

in the elastic range, including the effect of particle rotation. As we noted there, moment

equilibrium at the particle level requires that the inter-particle tangential contact force Ft

be the same between all of the contacting spheres. Thus, whether slip occurs first at the

contacts parallel or perpendicular to the slip plane depends on the ratio η = F ′n/Fn of the
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inter-particle normal contact forces between spheres on the slip plane to those off of the slip

plane. Since the slip systems in the SC packing involve no initial dilation, all inter-particle

normal forces will remain the same during the initiation of yielding (assuming only small

displacement from the initial regular packing geometry). Thus, η = η0 is constant. If the SC

array is initially composed of evenly spaced uniform spheres with the same normal contact

stiffnessKn, then η = η0 = 1, and slip will occur at contacts parallel and perpendicular to the

slip plane simultaneously. Assuming that η0 ≤ 1, yield will occur when Ft = µηFn = µη0Fn,

where µ is the inter-particle friction coefficient. Thus, we have

µSCslip = µη0, (8.6)

which characterizes the local material friction coefficient µSCslip for each slip plane in a regular

SC array of uniform spheres at the initiation of yield in terms of the inter-particle friction

coefficient µ, with particle rotation allowed.

8.3.3 Body-Centered Cubic (BCC) Array of Uniform Spheres

Figure 7.6 in Section 7.3.3 shows an elementary cell of the body-centered cubic (BCC) array

of uniform spheres and one of the six crystallographically similar slip planes. As noted in

Section 7.3.3, the slip systems for the BCC packing involve no initial dilation, and hence

ψ = 0. If particle rotation is allowed, then the spheres in a BCC array will provide no

resistance to relative motion in the direction tangent to the standard slip planes. Thus,

µBCCslip = 0 (8.7)

is the local material friction coefficient for the standard slip planes in a regular BCC array

of uniform spheres when particle rotation is allowed.



259

8.4 Yield in Statistically Isotropic Aggregates of Uniform

Spheres Incorporating the Effect of Particle Rotation

If we employ the static homogenization hypothesis µmacro = µslip that we used in Chapter 7,

then the Mohr-Coulomb yield criterion is again given by

|σi − σj|
2
√
σiσj

= µmacro = µslip, i 6= j, i, j ∈ {1, 2, 3}, (8.8)

for any combination of the principal stresses σ1, σ2, and σ3, and the material friction angle is

given by φ = tan−1 µmacro = tan−1 µslip. It follows that the relationship between φµ = tan−1 µ

and φ for a statistically isotropic locally FCC, BCC, or SC particulate aggregate material is

given by equations (8.2)–(8.5), (8.7), or (8.6), respectively, and is shown for a locally FCC

particulate aggregate material under constant volume boundary conditions in Figure 8.6 for

a range of α = Kt/Kn.

If we repeat the analysis of Section 8.3.1 for the arbitrary arrangement of particles on

the slip plane shown in Figure 7.9, with the effect of particle rotation included, we obtain

the following straightforward generalizations of equation (8.2) and equations (8.4) and (8.5)

for the constant normal stress and constant volume boundary conditions:

Constant Normal Stress: µmacro = µslip = tan θ2 + µη0 sec θ1 sec2 θ2, (8.9)

Constant Volume: µmacro = µslip =
cos θ1 sin θ2 + µη cos θ2

cos θ1 cos θ2 − µη sin θ2

, (8.10)

where η = F ′n/Fn is the ratio of the inter-particle normal contact forces between spheres on

the slip plane to those off of the slip plane, given by

η =
η0

1 + n3µη0
4α∗∗

cos θ1 tan θ2

, (8.11)
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where α∗∗ = ξ∗α = ξ∗Kt/Kn is the “effective” ratio of the tangential to the normal inter-

particle contact stiffnesses for the spheres in the slip system during yield, and n is the number

of active (rotating) layers in the slip system. Equations (8.9)–(8.11) characterize the local

material friction coefficient µslip for an arbitrary slip plane in an array of uniform spheres at

the initiation of yield under constant normal stress and constant volume boundary conditions

in terms of the inter-particle friction coefficient µ and the angles θ1 and θ2 = ψ, with particle

rotation allowed.

The internal parameter ξ∗ has the same meaning as the internal parameter ξ introduced

in Chapter 4 [Fleischmann et al. (2013b)] for the elastic range. That is, ξ∗ quantifies the

presence of zero-energy modes or shearing mechanisms in a particulate material due to par-

ticle rotation and asymmetries in the distribution of inter-particle contacts. We distinguish

ξ∗ at yield from ξ because we expect more shearing mechanisms to be present when the

peak material friction angle φ is reached than were present in the elastic range. If ξ∗ = 0,

then all inter-particle contacts contain shearing mechanisms during yield, and η = 0, which

results in µslip = tan θ2 = tanψ in equation (8.10), and the material friction angle is equal

to the initial dilation angle φ = ψ for all values of the inter-particle friction coefficient µ.

An example of this is yield on the standard slip planes in the local BCC packing, for which

ξ∗ = 0 and φ = ψ = 0. Another example is the case where only force chains of type

〈I, J〉 → 〈A〉 → 〈B,C〉 exist in the slip system shown in Figure 8.1, for which ξ∗ = 0 and

φ = ψ = sin−1(1/3) ≈ 19.47◦. If ξ∗ = 1, then no shearing mechanisms are present, and the

relationship between µslip and the inter-particle friction coefficient µ depends on θ1, θ2 = ψ,

α, and n, as it did for the local FCC packing in equations (8.4) and (8.5).

Note that equation (8.10) is a direct extension of equation (7.13) incorporating the effect

of particle rotation, and as before θ2 = ψ is the initial dilation angle, and θ1 character-

izes what we call the “v-belt effect” in Chapter 9 [Fleischmann et al. (2013c)], which is an

intuitive way of understanding (nominally 2-D) yielding in a physically three-dimensional
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particulate material. Equation (8.9) and equations (8.10) and (8.11) reproduce the equations

in Section 8.3 for µFCCslip with θ1 = 30◦ and θ2 = sin−1(1/3) ≈ 19.47◦, µSCslip with θ1 = θ2 = 0,

and µBCCslip with θ2 = 0 and ξ∗ = 0 (or η0 = 0). To avoid the introduction of a third angle in

the derivation of equation (8.9) and equations (8.10) and (8.11), we have assumed that the

(normal) contact angle between spheres on the generalized slip plane shown in Figure 7.9

relative to the preferential slip direction ûi is also equal to θ1.

As in Chapter 7, for a random assembly of uniform spheres, since the angle θ1 is geomet-

rically bounded and (approximately) uniformly distributed between 30◦ ≤ θ1 ≤ 90◦ (Zhou

and Dinsmore, 2009), we may use θ1 = θ1 = 60◦ in equation (8.9) and equations (8.10) and

(8.11). Moreover, it is reasonable to assume that η0 = 1 in a statistically isotropic assembly.

This gives the following simplified generalized model for a statistically isotropic assembly of

uniform spheres incorporating the effect of particle rotation:

Constant Normal Stress: µmacro = µslip = tanψ + 2µ sec2 ψ, (8.12)

Constant Volume: µmacro = µslip =
sinψ + 2µη cosψ

cosψ − 2µη sinψ
, (8.13)

where µ is the inter-particle friction coefficient, ψ is the initial dilation angle, and η is given

by

η =
1

1 + n 3µ
8α∗∗

tanψ
, (8.14)

where α∗∗ = ξ∗α = ξ∗Kt/Kn as before, and n is the number of active (rotating) layers in the

slip system. The material friction angle is given by φ = tan−1 µmacro.

As always, the merit of the generalized models given by equations (8.9)–(8.11) or by

equations (8.12)–(8.14) rests on their ability to model true isotropic particulate materials.

Figure 8.7 shows the relationship between the inter-particle friction coefficient µ expressed

as an inter-particle friction angle φµ = tan−1 µ and the material friction angle φ obtained
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from the DEM simulations of Chapter 6, performed on randomly packed assemblies of 3 430–

29 660 uniform spheres under constant volume boundary conditions with particle rotation

allowed. Also shown in Figure 8.7 are the curves predicted by equations (8.13) and (8.14)

with n = 3, ψ = 10◦, and ξ∗ = {0.06, 0.08, 0.09}. Figure 8.7 shows an exceptional match

Figure 8.7: The relationship between the inter-particle friction coefficient µ expressed as an
inter-particle friction angle φµ = tan−1 µ and the material friction angle φ obtained from the
DEM simulations of Chapter 6 performed under constant volume boundary conditions with
particle rotation allowed, along with the curves predicted by equations (8.13) and (8.14)
with n = 3, ψ = 10◦, and ξ∗ = {0.06, 0.08, 0.09}.

between the φ versus φµ curves predicted by equations (8.13) and (8.14) and the DEM data

points obtained in Chapter 6. The quality of this match is remarkable for the following

reasons:

First, while an examination of the form of equation (8.14) shows that infinitely many

combinations of n and ξ∗ could have produced the same curves shown in Figure 8.7, the

value of n = 3 is based on observations of actual slip planes in the DEM specimens during

yielding, shown for Specimen 5 in Figures 6.52 and 6.53, and the same value of n = 3 was

used for all six DEM specimens. Recalling that the values of the internal parameter ξ chosen
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in Chapter 4 [Fleischmann et al. (2013b)] to match the elastic behavior (specifically Poisson’s

ratio) of the same DEM specimens were ξ = {0.75, 0.6, 0.55, 0.85, 0.8, 0.75} for Specimens

1–6, respectively, the choice of n = 3 results in values of ξ∗ that are approximately 10% of the

respective values of ξ for the same specimens in the elastic range. In fact, an adequate match

to the data points for all six DEM specimens is obtained if we simply let ξ∗ = 0.1ξ. Given

this observation, the only remaining parameter in the generalized model given by equations

(8.13) and (8.14) needed to match the DEM data points is the initial dilation angle ψ = 10◦,

which is the same as the value chosen in Chapter 7 for the case of no particle rotation, and

which was chosen to match the material friction angle φ ≈ 10◦ at µ = 0 (φµ = 0) for all six

DEM specimens.

The fact that ξ∗ ≈ 0.1ξ agrees with our observations in Section 6.5, where we noted the

presence of force chain buckling during yielding before the peak friction angle φ was reached,

followed by the mobilization of slip planes (involving particle rotation) after the peak friction

angle was reached. The buckling of force chains implies a rearrangement of particles in favor

of lower energy, and this suggests an increase in the presence of shearing mechanisms, which

implies a decrease in ξ∗ compared to ξ in the elastic range. Thus, by the time the peak

friction angle φ is reached, a value of ξ∗ ≈ 0.1ξ is not unreasonable.

Finally, the curves predicted by equations (8.13) and (8.14) provide a significantly bet-

ter match to the DEM data points of Chapter 6 (under constant volume conditions with

particle rotation allowed) than those derived by Emeriault et al. (1996), which are given by

equation (2.13) in Section 2.2 of this thesis, for any value of their internal parameter ζ as

illustrated in Figure 8.8. The internal parameter ζ (or “µ”) of Emeriault et al. (1996) corre-

sponds roughly to our internal parameter ξ, as discussed in Section 4.6, where ζ is referred

to as “µ” as it is in Cambou et al. (1995) and Emeriault et al. (1996). Note that the model

of Emeriault et al. (1996) does not allow the material friction angle φ to be nonzero when

µ = 0, whereas we observe a nonzero value of φ = ψ when µ = 0 in all of our DEM specimens,
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Figure 8.8: The relationship between the inter-particle friction coefficient µ expressed as an
inter-particle friction angle φµ = tan−1 µ and the material friction angle φ obtained from the
DEM simulations of Chapter 6 performed on randomly packed assemblies of 3 430–29 660
uniform spheres under constant volume boundary conditions with particle rotation allowed,
along with the curves predicted by equations (8.13) and (8.14) with n = 3, ψ = 10◦, and
ξ∗ = {0.06, 0.08, 0.09} (solid lines), and the relation derived by Emeriault et al. (1996), given
by equation (2.13) in Section 2.2, with ζ = {0.3, 0.4, 0.5, 0.6, 0.7} (dotted lines).
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regardless of whether particle rotation is allowed or prohibited, as noted first in Section 5.6.

Moreover, the shapes of the curves predicted by the model of Emeriault et al. (1996) given

by equation (2.13) cannot match the DEM data points of Chapter 6 for both µ → 0 and

µ→∞ (φµ → 0 and φµ → 90◦) at the same time for any value of the internal parameter ζ.

On the other hand, the curves predicted by our generalized model given by equations (8.13)

and (8.14) have shapes that are able to match the DEM data points exceptionally well for

all values of the inter-particle friction coefficient µ given appropriate choices of the internal

parameter ξ∗ ≈ 0.1ξ and the initial dilation angle ψ.

It is worth noting that numerical (DEM) and experimental triaxial tests on regular

packings (face-centered cubic and rhombic) of 1 500–2 000 spheres have been performed by

O’Sullivan et al. (2004). In this study, the physical and numerical triaxial tests were per-

formed on regular FCC packings of uniform steel spheres with inter-particle friction angle

φµ ≈ 5.5◦ with the principal directions of the cubic packing aligned with the axial and lateral

directions of the triaxial apparatus. It was found that the mean peak angle of mobilized fric-

tion for these FCC specimens was φm ≈ 24◦, with φm = sin−1 [(σ1 − σ3)/(σ1 + σ3)], where

σ1 and σ3 were the measured axial and lateral stresses during the triaxial tests, respectively.

It is important to note that in this calculation, O’Sullivan et al. (2004) are not computing

the friction angle of the FCC packing on its preferred slip planes, as we do in Section 8.3.1,

since the orientation of the preferred slip planes (a geometric property of the packing) are

not likely to align with the orientation of the plane of maximum σt/σn (a function of the

loading) during the triaxial tests. This is in contrast with our analyses of the conditions for

sliding along the preferred slip planes in local regular packings, which is applicable only to

a statistically isotropic particulate material in which every orientation of the local (regular

or generalized) packings are equally represented, so that the plane of maximum σt/σn in

the specimen can always be assumed to coincide with some local preferred slip plane, as we

discuss in Section 7.4 when we introduce our (static) homogenization assumption.
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O’Sullivan and Cui (2009) performed numerical (DEM) and physical triaxial tests on

random assemblies of uniform and non-uniform chrome steel spheres with an inter-particle

friction coefficient of µ = 0.096 (φµ ≈ 5.5◦). In this study, for a random assembly of

approximately 15 000 spheres with a void ratio of approximately 0.62, a peak material friction

angle of φ ≈ 19◦ was measured both experimentally and by DEM, which we note is in

remarkable agreement with our own DEM results of Chapter 6 (with µ = 0.1) and with the

corresponding prediction of our generalized (constant volume) model with the parameters

chosen for Figure 8.7. O’Sullivan and Cui (2009) also monitor and record the variation in

the average contact force and coordination number, the average motion of particles, and the

evolution of the fabric tensor for their DEM specimens during monotonic and cyclic loading,

both pre- and post-yield. A discussion of post-yield behavior, however, takes us beyond the

scope of this chapter, in which we have dealt only with the initiation of yield.

8.5 Conclusion

We have obtained a generalized model incorporating the effect of particle rotation that

predicts the material friction angle φ = tan−1 µmacro or the material friction coefficient µmacro

for a statistically isotropic non-cohesive particulate material on the macroscale in terms of

the inter-particle friction coefficient µ or inter-particle friction angle φµ = tan−1 µ between

individual particles on the microscale. This was done by analyzing specific local packings, in

particular the local face-centered cubic (FCC) packing and its generalizations, to obtain µslip

on the local slip planes, and applying the very simple (static) homogenization hypothesis

µmacro = µslip.

Despite the simplicity of this homogenization hypothesis, we found that for constant vol-

ume boundary conditions the relationship between µmacro and µ depends both on the initial

dilation angle ψ of the particulate material and on the elastic properties of the individual
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particles, specifically on the ratio of the inter-particle tangential and normal contact stiff-

nesses α = Kt/Kn. This ratio is also of great importance to Poisson’s ratio for a particulate

material in the elastic range (Fleischmann et al., 2013b). In this respect, the constant vol-

ume model of this chapter is similar to results obtained for locally FCC metals using the

self-consistent homogenization hypothesis (Hutchinson, 1970). Moreover, introducing an in-

ternal parameter ξ∗ with the same intuitive meaning as the internal parameter ξ introduced

in Chapter 4 for the elastic range allowed us to obtain excellent agreement between the

generalized model given by equations (8.13) and (8.14) and the relationship between φµ and

φ obtained in Chapter 6 from DEM simulations performed on randomly packed assemblies

of 3 430–29 660 uniform spheres under constant volume boundary conditions with particle

rotation allowed, for all values of the inter-particle friction coefficient µ. It is particularly

noteworthy that our generalized model, which is based on a relatively simple and direct mi-

cromechanical analysis of translational and rotational particle motion and force equilibrium

on local slip planes, can provide this excellent match to the DEM data points of Chapter 6

for all values of µ, including the limiting behavior as µ→ 0 and µ→∞, while the model of

Emeriault et al. (1996), which is based on a more complicated derivation following that of

Cambou et al. (1995), discussed in Sections 2.1, 2.2, and 4.6, is unable to provide as good

a match to the DEM data points over the full range of µ for any value of their internal

parameter.

In addition to providing a clear micromechanical understanding of the form of the rela-

tionship between µ and µmacro, our generalized model may also provide a practically useful

predictive model. While the only material parameter needed in equation (8.12) for the con-

stant normal stress case is the initial dilation angle ψ, we can reduce the number of material

parameters in equations (8.13) and (8.14) for the constant volume case as well, given the

observation that we may heuristically let n = 3 and ξ∗ = 0.1ξ, with ξ given in terms of the

average number of contacts per unit volume β in the particulate material by equation (4.20),
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with β given in terms of the average coordination number nc and the void ratio e in the

particulate material by equations (2.8)–(2.12), and with α = Kt/Kn = 2(1 − ν)/(2 − ν),

where ν is Poisson’s ratio for the material constituting the spheres (not for the particu-

late material as a whole). Then equations (8.13) and (8.14) provide a relationship between

the inter-particle friction coefficient µ on the microscale and the material friction coefficient

µmacro or the material friction angle φ = tan−1 µmacro on the macroscale, for the case of con-

stant volume, in terms of the initial dilation angle ψ and the void ratio e for the particulate

material as a whole and Poisson’s ratio ν for the material constituting the spheres. More

work is clearly necessary, however, to gain a deeper understanding of the internal parameter

ξ∗ and to predictively characterize the number of active slip planes n in the constant volume

case, although for all six randomly packed DEM specimens consisting of 3 430–29 660 spheres

tested in Chapter 6, the value n = 3 provided a good match to the data points.



269

Chapter 9

Quantitative Comparison of

Two-Dimensional and

Three-Dimensional Discrete Element

Simulations of Nominally

Two-Dimensional Shear Flow 1

9.1 Abstract

We report results obtained from numerical simulations of direct (or ring) shear tests on

ASTM standard graded (Ottawa) sand using the discrete element method (DEM) with peri-

odic boundary conditions in both two and three dimensions. We quantitatively compare the

data obtained from these simulations to experimental data for ASTM standard graded sand.

Our results show that the three-dimensional effects of non-planar inter-particle contact forces

1This chapter closely follows Fleischmann et al. (2013c).
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and particle motion are significant in the three-dimensional DEM simulations, even during

nominally two-dimensional shear flow. Moreover, the three-dimensional DEM simulations

accurately predict the peak and residual friction angles of ASTM standard graded sand. On

the other hand, the two-dimensional DEM simulations fail to accurately predict the peak and

residual friction angles. We argue that the failure of the two-dimensional DEM simulations

and the success of the three-dimensional DEM simulations to provide quantitatively accurate

predictions of peak and residual friction angles is due largely to the respective absence or

presence of three-dimensional effects, including non-planar inter-particle contact forces and

non-planar particle motion, in these DEM simulations.

9.2 Introduction

The discrete (or distinct) element method has been used effectively to numerically model

the quasi-static and dynamic behavior of particulate materials, especially dry or saturated

sand, since its introduction by Cundall and Strack (1979). Because of the large amount of

experimental data available in the literature for comparison, the direct (box) shear test or the

ring shear test have been frequently modeled by DEM (see, e.g., Jensen et al., 2001a,b, Zhang

and Thornton, 2002, Liu et al., 2005, Liu, 2006, Cui and O’Sullivan, 2006, Cheng and Minh,

2009, Zhou et al., 2009, Wang and Gutierrez, 2009, Orlando et al., 2009, Yan and Ji, 2010).

Due to constraints in computational resources, many contemporary DEM simulations are still

performed in two dimensions, meaning that all motion and all DEM inter-element contact

forces have been constrained to exist only in the plane of the nominally two-dimensional

loading and shearing motion. For example, of the references cited above, only Cui and

O’Sullivan (2006), Orlando et al. (2009), and Yan and Ji (2010) perform three-dimensional

DEM simulations, while the rest perform two-dimensional DEM simulations. Compared

to DEM simulations performed in three dimensions, DEM simulations performed in two
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dimensions have the obvious advantage of decreasing the number of elements needed to model

a physical specimen of the same dimensions, thereby reducing the run-time of the simulation

correspondingly. Moreover, the complexity of certain optimized contact algorithms, such as

the cell-list algorithm, can be lowered significantly when all inter-element contacts lie in a

single plane (see, e.g., Frenkel and Smit, 2002), and the minimum stable time-step size for

a two-dimensional DEM simulation is significantly larger than for a three-dimensional DEM

simulation (O’Sullivan and Bray, 2004).

It seems reasonable to expect that the error introduced by the idealizations of a two-

dimensional DEM simulation would be minimal for nominally two-dimensional loading and

shearing motion, such as in a direct shear or ring shear test. However, our research has shown

that even for a ring shear test in which the particle size is much smaller than the size of

the specimen (thereby minimizing boundary effects) the residual friction angle predicted by

a two-dimensional and a three-dimensional DEM simulation differ substantially. We argue

that this is due largely to the non-negligible inter-particle contact forces and particle motion

that both occur in the nominally “out-of-plane” direction during a three-dimensional DEM

simulation. Such “out-of-plane” motion was observed experimentally in direct shear tests on

Ottawa sand by Guler et al. (1999) using image analysis techniques. We track such motion

of particles in our three-dimensional DEM simulation, and we show that the displacement of

particles within the shear zone in the “out-of-plane” direction can be more than 10% of their

displacement in the direction of shearing motion. Moreover, we show by an analysis of the

inter-particle contact forces in our DEM simulations that the geometry of the inter-particle

contacts in the three-dimensional simulation causes an increase in the apparent friction

during sliding motion when compared to the two-dimensional simulation, which leads to a

significant increase in the predicted value of the peak and residual friction angles. By analogy,

this increase is similar to the enhancement of friction provided by a “v-belt” and pulley system

when compared to a flat belt and pulley system. Comparing the peak and residual friction
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angles predicted by the DEM simulations to those of ASTM standard graded (Ottawa) sand,

we find that the three-dimensional DEM simulation gives quantitatively correct results, while

the results obtained from the two-dimensional DEM simulation are only qualitatively correct.

Taken together, our findings suggest that if quantitatively correct predictions of the behavior

of a particulate material are needed, then it is necessary to run fully three-dimensional DEM

simulations, even if the behavior in question is generally regarded as two-dimensional in

character, such as in the case of the direct box or ring shear tests.

9.3 Discrete Element Method

In its most basic form, the discrete element method models a particulate medium using a

massive collection of distinct rigid elements having simple shapes, such as circles (or bars)

in 2-D or spheres in 3-D. Contact between the DEM elements may be modeled by nonlinear

Hertz-Mindlin theory, or by a simple linear spring arrangement as shown in Figure 9.1.

Friction is modeled as shown in Figure 9.1 at the right. To model friction, the contact

Figure 9.1: Linear spring contact model (left) and tangential contact force-displacement law
(right) for spherical DEM elements with Coulomb friction.

history between pairs of elements in contact must be stored. Contact between DEM elements

is “soft” in the sense that elements are allowed to overlap before a corrective contact force is

applied. To be more specific, let un in equation (9.1) be the radial overlap distance between



273

two contacting spherical elements, let vn and vt in equations (9.1) and (9.2) be the relative

normal and tangential velocities at the point of contact, and let ut in equation (9.2) be the

elastic part of the total accumulated tangential displacement between the surfaces of the two

spheres since the contact was initiated, projected onto the plane of contact and scaled as

necessary to satisfy the frictional sliding criterion |Ft| ≤ µ|Fn| shown in Figure 9.1. Then,

using the linear spring model, the normal and tangential force vectors Fn and Ft at the

point of contact are given by equations (9.1) and (9.2), respectively, where Kn and Kt are

the normal and tangential elastic contact spring stiffnesses, n is the unit normal vector along

the line connecting the centers of the contacting spheres (in the appropriate direction), γn

and γt are normal and tangential viscoelastic damping constants, andmeff = mimj/(mi+mj)

is the effective mass of the two spheres having masses mi and mj (Silbert et al., 2001). Once

the inter-element contact forces are calculated, the translational and rotational motion of the

elements are obtained by applying an explicit time integration scheme, such as the central

difference algorithm described in Cook et al. (2002) or the Verlet algorithm described in

Frenkel and Smit (2002).

Fn = Knunn− γnmeffvn (9.1)

Ft = −Ktut − γtmeffvt (9.2)

For the simulations in this paper, we have chosen to use the linear spring model exclusively,

for the following two reasons. First, we believe that the simplicity of the linear spring contact

algorithm will bring into sharper focus the differences between the 2-D and 3-D simulations.

Furthermore, for deformations that feature large sliding displacements, such as shear zone

formation and subsequent slip, prior work has shown relative insensitivity of results to the

elastic portion of the DEM inter-element contact behavior (Di Renzo and Di Maio, 2004).

The use of the linear spring contact model allows us to apply the results of O’Sullivan

and Bray (2004) to obtain a reliable critical time-step size, which is given in terms of the
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minimum element mass mmin and the maximum inter-element contact spring stiffness Kmax

by equations (9.3) and (9.4) for 2-D and 3-D DEM simulations, respectively.

∆t
(2-D)
crit ≈ 0.3

√
mmin

Kmax
(9.3)

∆t
(3-D)
crit ≈ 0.2

√
mmin

Kmax
(9.4)

This estimate is based on the standard stability criterion for the central difference explicit

time integration scheme applied to linear systems, ∆t < (2/ωmax)
(√

1 + ξ2 − ξ
)
, where

ωmax is the maximum natural frequency of the stiffness and mass matrices associated with

the system, and ξ is the fraction of critical damping at ωmax (Cook et al., 2002). For DEM,

ωmax must be estimated, because internal forces are evaluated in an element-by-element

fashion, and hence the stiffness matrix for the system is not formed. The estimates in

equations (9.3) and (9.4) ignore the mass proportional damping included in equations (9.1)

and (9.2), which has the effect of only slightly decreasing the stability of the system for most

problems, since the fraction of critical damping due to mass proportional damping at high

frequencies is small. [For original derivations of alternative estimates of the critical time-step

size for 2-D and 3-D DEM based on the Gerschgorin bound, see Appendix E.]

For our DEM simulations, we use a modified version of LAMMPS, the Large-scale

Atomic/Molecular Massively Parallel Simulator developed at Sandia National Laboratories,

which can be used for molecular dynamics simulations as well as for DEM simulations (Plimp-

ton, 1995). A few of the advantages of LAMMPS are that it is open-source, it is easy to

expand and modify, and it is optimized for massive parallel computing. More information

about LAMMPS can be found at the LAMMPS www site (LAMMPS).
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9.4 Methodology

To explore three-dimensional effects in direct shear tests, we have performed both 2-D and

3-D DEM simulations of direct (ring) shear tests on Ottawa standard graded sand. Ottawa

sand particles typically have a Krumbein roundness and sphericity between 0.7 and 0.9 (Cho

et al., 2006). In general, values of Krumbein roundness and sphericity above 0.6 indicate

high roundness, values between 0.4 and 0.6 indicate medium roundness, and values below

0.4 indicate low roundness. A perfect sphere has a Krumbein roundness and sphericity of

exactly 1.0. We chose to model Ottawa sand in our DEM simulations because its physical

behavior is well known, and because its particles are well rounded, thus enhancing the ability

of spherical DEM elements to model its behavior.

The sand specimens in the 2-D and 3-D simulations each consisted of 50 000 spherical

DEM elements between upper and lower bounding surfaces, which were modeled as solid

rigid bodies composed of overlapping spheres. Figure 9.2 shows portions of the 2-D and

3-D specimens used in the DEM simulations, with the upper and lower bounding surfaces

shaded. Since the packing densities (or void ratios) of a 2-D specimen and a 3-D specimen

are not geometrically comparable, and since we desired the 2-D and 3-D specimens to be as

comparable as possible, a maximum initial packing density was sought for both specimens by

the following preparation procedure. First, randomly placed DEM elements were generated

between the upper and lower bounding surfaces in both specimens. Then the friction between

the DEM elements was turned off, and the upper and lower bounding surfaces were brought

together with a prescribed compressive force, after which the bounding surfaces were vibrated

until no further increase in packing density (or decrease in void ratio) was observed in either

the 2-D specimen or the 3-D specimen. Finally, the friction between the DEM elements was

turned back on, the lower bounding surface was fixed, and a constant compressive force was

applied to the upper bounding surface. In the 3-D simulation, both the x and z boundaries
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Figure 9.2: Portions of the initial specimens for the 2-D (left) and 3-D (right) DEM direct
(ring) shear simulations.

were periodic. In the 2-D simulation, the x boundary was periodic, and the elements were

constrained to move only in the x-y plane (i.e., no motion was allowed in the z direction).

Elements of four different sizes were used, with diameters of 0.3 mm, 0.4 mm, 0.6 mm, and

0.8 mm. The distribution of the elements was chosen to match the particle size distribution

of standard graded (Ottawa) sand, as specified in ASTM standard C 778-06. The particle

size distribution is shown in Figure 9.3. Note that the particle size distribution is percent

by weight (or volume), rather than percent by number of particles. Also note that when

computing individual element weights for the 2-D simulation, the elements were treated as

spheres rather than rods, so that the same number of elements of each size were used in both

the 2-D and 3-D simulations. After preparation, the initial void ratio of the 3-D specimen

was approximately e = 0.43, which corresponds to densely packed sand. While the void

ratio of a 2-D specimen is generally not geometrically comparable to that of real sand, it is

possible to calculate a “pseudo 3-D” void ratio for the 2-D specimen (Di Maio and Di Renzo,

2007), where the elements in the 2-D specimen are treated as spheres and the thickness of
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Figure 9.3: Particle size distribution for the 2-D and 3-D DEM direct (ring) shear simulations,
corresponding to the particle size distribution of standard graded (Ottawa) sand, as specified
in ASTM standard C 778-06.

the 2-D specimen is taken to be the average diameter of the elements. Using this approach,

the initial “pseudo 3-D” void ratio of the 2-D specimen after preparation was approximately

e = 0.45.

The direct shear test DEM simulations were carried out under constant normal-stress

conditions in both 2-D and 3-D. The lower bounding surface was fixed, and a uniform

normal compressive stress of 1 MPa was applied to the upper bounding surface. A constant

shear displacement velocity of 100 mm/s in the horizontal (x) direction was applied to the

upper bounding surface. It may be noted that, while a normal compressive stress of 1 MPa is

typical for direct shear tests on sand, a shear displacement velocity of 100 mm/s is somewhat

higher than those typically used for quasi-static direct shear tests. However, an exploration

of the effect of using different displacement velocities performed by the authors showed that

increasing the prescribed velocity by an order of magnitude had no significant effect on the

results of the DEM simulations, other than to introduce some high frequency vibrations

during fully developed (critical state) shear, primarily in the 3-D simulation. In particular,

increasing the prescribed displacement velocity by an order of magnitude had no effect on
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the peak or residual friction angles predicted by the DEM simulations. The dimensions of

the 3-D specimen were h = 8.7 mm (initially) by 30 mm in the x direction by 10 mm in the

z direction. The dimensions of the 2-D specimen were h = 8.7 mm (initially) by 850 mm in

the x direction. Note that, because of the periodic boundary conditions in the x direction,

both the 2-D and 3-D DEM simulations model a direct ring shear test more closely than a

direct box shear test, where the y direction corresponds to the radial direction, and the x

direction corresponds to the θ direction. The use of periodic boundary conditions in the x

and z directions in the simulations allows us to assume that the physical dimensions of the

specimens in the x and z directions are both much larger than the diameter of the largest

DEM element. This is important, since the experimental results of Cerato and Lutenegger

(2006) suggest that to obtain a value of the residual friction angle that is independent of

specimen size, the horizontal dimension of a direct shear test specimen must be at least 50

times larger than the largest particle diameter.

Inter-element DEM contact forces were modeled by linear springs, as described in an

earlier section. The normal spring stiffness was taken to be Kn = 109 N/mm, and the tan-

gential spring stiffness was taken to be Kt = 8(108) N/mm. The normal spring stiffness Kn

was chosen to be on the order of magnitude corresponding to the normal stiffness predicted

by nonlinear Hertz-Mindlin theory for quartz spheres of diameter d ≈ 0.5 mm if a radial

strain of εr = 0.001 at the point of contact is assumed, where the modulus of elasticity for

quartz is taken to be E = 8(1010) Pa; see equation (9.5). The tangential spring stiffness is

obtained from the relationship expressed in equation (9.6), which is obtained from Hertz-

Mindlin contact theory (Elata and Berryman, 1996). When using equations (9.5) and (9.6),

we have taken Poisson’s ratio for quartz to be ν = 0.3.

Kn = Ed

√
εr

(1− ν2)
(9.5)
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Kt =
2 (1− ν)

2− ν
Kn (9.6)

As we mentioned earlier, the shearing behavior of a granular medium does not appear to be

very sensitive to the exact values of Kn and Kt. The damping coefficients in equations (9.1)

and (9.2) were taken to be γn = 40 s−1 and γt = 20 s−1. This damping was included only

to smooth the (otherwise somewhat noisy) numerical output. An exploration of different

damping coefficients performed by the authors showed that they had no effect on the peak

or residual friction angles predicted by the DEM simulations. The coefficient of sliding fric-

tion between the elements was taken to be µ = 0.5 (or φµ = 26◦), which corresponds to

the coefficient of sliding friction between quartz surfaces, wet or dry (Mitchell and Soga,

2005). The minimum element mass in both the 2-D and the 3-D simulations was approx-

imately mmin = 4(10−5) g, which is based on a density of 0.003 g/mm3 for quartz. From

equations (9.3) and (9.4), this led to our choices of time step sizes of ∆t(2-D) = 6(10−8) s and

∆t(3-D) = 4(10−8) s for the 2-D and 3-D simulations, respectively.

9.5 Results

One of the greatest advantages of the discrete element method over experimental methods for

exploring the behavior of particulate media is the amount of information that can be obtained

at the micro-scale. In addition to measuring the average shear force on the upper bounding

surface and the overall dilation of the 2-D and 3-D specimens as functions of horizontal (x

direction) displacement, we were also able to track the displacements of individual particles

in different regions of the shear flow. Thus, in the 3-D simulation, we were able to measure

the motion of particles in the “out-of-plane” (z) direction throughout the shear test.

The normalized average shear stress as a function of the displacement of the upper sur-

face in the horizontal (x) direction for both the 2-D and 3-D DEM simulations is shown in
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Figure 9.4, along with dilation as a percent of the initial thickness of the specimen in the y di-

rection. Note that, despite qualitative similarity, there is a significant quantitative difference

Figure 9.4: The normalized average shear stress and dilation as functions of the horizontal
(x direction) displacement of the upper surface of the specimens for the 2-D and 3-D DEM
direct (ring) shear simulations.

between the peak and residual friction angles predicted by the 2-D and 3-D simulations. We

will return to this point in the analysis section that follows. Also note that the normalized

average shear stress, which is the ratio of the average shear stress to the applied normal

stress, is identical to the ratio of the average shear force to the applied normal force in each

simulation. Since the average shear force and the applied normal force are known unambigu-

ously for both the 2-D and 3-D simulations, we are able to avoid ambiguities regarding how

stress is calculated in 2-D versus 3-D.

For the 3-D DEM simulation, the maximum displacement of elements in the “out-of-

plane” (z) direction within different vertically stratified regions of the 3-D specimen is shown

in Figure 9.5. Each of the vertically stratified regions, which are designated in Figure 9.5
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at the right with dashed lines, is approximately 2 mm thick. The maximum “out-of-plane”

(z) displacement of the elements in each of these regions is graphed in Figure 9.5 at the left

as a function of the horizontal displacement of the upper bounding surface of the specimen

during the shear test. Note that in the 2-D simulation, no element displacement was allowed

Figure 9.5: Maximum displacement in the “out-of-plane” (z) direction for elements in the 3-D
DEM simulation (left) within different vertical strata of the specimen (right) as functions of
the horizontal (x direction) displacement of the upper surface of the specimen.

in the “out-of-plane” (z) direction. However, Figure 9.5 shows that in the 3-D simulation,

elements near the center of the specimen travelled more than 1.2 mm in the “out-of-plane”

(z) direction during the shear test. Thus, in a 3-D shear test simulation, a single element

can move a distance in the “out-of-plane” direction that is more than 10% of the distance

it moves in the direction of shear. We will return to this point in the analysis section that

follows. The final accumulated shear displacement in the x direction within the 3-D specimen

is also shown by the color of the elements in Figure 9.5 at the right, where the boundary

between the black and the white elements was vertical at the start of the simulation. Note

from Figure 9.5 that the shear zone comprises a vertical span of approximately 4 mm near
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the center of the specimen, and that particle motion in the “out-of-plane” (z) direction is

greatest within this shear zone. We will track the motion of individual particles within the

shear zone in the analysis section that follows.

9.6 Analysis

The first point to note is that the overall appearance of both the 2-D and the 3-D DEM results

is correct for densely packed sand, as described in Mitchell and Soga (2005). In particular,

for densely packed sand, we expect the peak friction angle φp to be significantly higher than

the residual (or critical state) friction angle φr. According to Bardet (1997), typical values of

the peak friction angle and the residual friction angle for densely packed well-graded sands

are 38◦ < φp < 46◦ and 30◦ < φr < 34◦, respectively. The peak and residual friction angles

predicted by our simulations are easily computed from Figure 9.4 as the inverse tangent of

the ratio of shear stress to normal stress. Thus, our 2-D DEM simulation predicts φp ≈ 34◦

and φr ≈ 24◦, and the 3-D DEM simulation predicts φp ≈ 42◦ and φr ≈ 30◦. Since the

peak friction angle depends on the initial packing of the specimen, we will concentrate on

comparing the residual friction angle φr with experimentally determined values. For ASTM

standard graded Ottawa sand with D50 = 0.35 mm and Cu = 1.7, which corresponds to

the specimens used in both our 2-D and 3-D DEM simulations, Cho et al. (2006) report a

residual friction angle of φr = 30◦. For the particles of the ASTM standard graded Ottawa

sand used in their experiments, Cho et al. (2006) report an average roundness of 0.8 and

sphericity of 0.9. These are lower than the values for the perfectly spherical particles used

in our 2-D and 3-D DEM simulations, which have a roundness and sphericity of 1.0 exactly.

Despite this fact, we note that the value of the residual friction angle φr ≈ 30◦ predicted by

the 3-D DEM simulation is identically the same as the experimentally determined value for

ASTM standard graded (Ottawa) sand. On the other hand, the value of φr ≈ 24◦ predicted
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by the 2-D DEM simulation is substantially low.

If we form a ratio of the values of tanφr predicted by the 3-D and 2-D DEM simulations,

as shown in equation (9.7),

α =
tanφ

(3-D)
r

tanφ
(2-D)
r

, (9.7)

we find that α ≈ 1.3. To explain the reason why α 6= 1.0 (i.e., why the 2-D and 3-D DEM

simulations disagree in their prediction of φr), we first consider the equilibrium of forces in

the y-z plane for the 2-D simulation versus the 3-D simulation, as illustrated in Figure 9.6. In

Figure 9.6: Forces in the y-z plane for a hypothetical packing of uniform spheres in the 2-D
DEM simulation (left) and in the 3-D DEM simulation (right).

the following discussion, we will call forces that have a component in the z direction “out-of-

plane forces”. Obviously, there can be no out-of-plane forces in a 2-D simulation. However, it

is equally obvious that for an arbitrary packing of elements, there will be out-of-plane forces

in a 3-D simulation. This is illustrated in Figure 9.6 for a particular packing of elements.

Consider the simple geometry of forces depicted in Figure 9.6. If the projection of the

normal contact force between two elements onto the y-z plane in the 2-D simulation is

(Fn)y,z = N , where N is the force that is transferred to the elements from the upper and

lower boundaries, then the projection of the analogous normal contact force onto the y-z
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plane in the 3-D simulation is (Fn)y,z = 0.5N(cos θ)−1. If we ignore particle rotation, for

the purposes of theoretical comparison only, then the shear force in the x direction during

sliding in the 2-D case will be simply (Ft)x = µ(Fn)y,z = µN . In the 3-D case, however, the

shear force will be (Ft)x = 2µ(Fn)y,z = µN(cos θ)−1 (where the factor of 2 accounts for the

fact that in the 3-D packing there are two contacts where there is only one in 2-D). This

gives α = (cos θ)−1. The minimum possible value of θ for a packing of uniform spheres is

θ = 30◦, which gives α ≈ 1.2. For a cubic close packing of uniform spheres, θ = 45◦, which

gives α ≈ 1.4. While these two values cannot be viewed as strict lower and upper bounds on

α, it is interesting to note that the observed value of α ≈ 1.3 falls exactly between the two.

In our DEM simulations, the elements are not uniform in size, and the geometry of

the inter-element contacts is not regular. Figure 9.7 shows a y-z cross section of the 3-D

DEM specimen within the shear zone during fully developed shear flow, with normal inter-

element contact forces shown. It is clear from Figure 9.7 that the true situation regarding the

Figure 9.7: Normal contact forces in the y-z plane for a section of the shear zone during
fully developed shear flow in the 3-D DEM simulation.
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inter-element contact forces is much more complicated than the simplified picture given in

Figure 9.6. In an attempt to quantify the true situation, we have summed the magnitudes of

the normal contact forces projected onto the y-z plane between all pairs of elements during

fully developed shear flow for both the 2-D and the 3-D DEM simulations, and we have

computed the time-average of these values. We found that

〈∑
(Fn)

(2-D)
y,z

〉
N (2-D) ≈ 36, and

〈∑
(Fn)

(3-D)
y,z

〉
N (3-D) ≈ 58, (9.8)

where the sums in equation (9.8) are computed over all inter-element contacts in either

specimen, and N is the total normal force applied to the upper surface of either specimen.

Under certain assumptions, the ratio of the values given in equation (9.8) may be expected

to provide an estimate of α. This results in an estimate of α ≈ 1.6. We note that this

estimate is somewhat higher than the observed value of α ≈ 1.3.

Another important factor that influences the behavior of the 2-D DEM simulation is that

the motion of elements as well as the inter-element contact forces is constrained to lie entirely

in the x-y plane. However, tracking individual elements in the 3-D simulation reveals that

there is, in fact, significant motion in the z direction, as was shown in Figure 9.5. The

paths of seven such elements within the shear zone of the 3-D DEM simulation are shown

in Figure 9.8. Note that elements within the shear zone of the 3-D simulation can move

as much as four times their own diameter in the “out-of-plane” direction (z) during the

course of the direct shear simulation, during which time the same elements move less than

approximately thirty times their own diameter in the direction of shear (x). This represents a

significant difference when compared to the behavior of elements in the 2-D DEM simulation,

since in the 3-D DEM simulation the displacement of elements within the shear zone in the

“out-of-plane” direction can be more than 10% of their displacement in the direction of the

(nominally two-dimensional) shearing motion. This observation agrees with experimental
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Figure 9.8: Particle trajectories in an x-z planar cross-section within the shear zone of the
3-D DEM simulation, viewed from above.

observations made by Guler et al. (1999) using image analysis techniques, in which sand

particles were seen to periodically “disappear” and “reappear” during direct shear tests when

the medium was viewed from the side (i.e., a cross-section in the x-y plane). The motion

of elements in the z direction in the 3-D DEM simulation may provide one reason why the

observed value of α ≈ 1.3 is lower than the value of α ≈ 1.6 that is predicted by summing

the magnitudes of the normal inter-element contact forces in the y-z plane. Since elements

in the 3-D simulation have an additional degree of freedom in which to move, the system is

thereby “softened”.

9.7 Conclusion

We have shown a 3-D DEM simulation of nominally two-dimensional shear flow can predict

the residual friction angle φr of ASTM standard graded sand with quantitative accuracy.

On the other hand, a 2-D DEM simulation, while predicting the qualitative behavior of a

particulate material correctly, fails to predict the residual friction angle with quantitative
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accuracy. There appear to be several factors that cause the results obtained from 3-D DEM

simulations to differ from those obtained from 2-D DEM simulations, and which cause the

3-D DEM results to predict more accurately the true behavior of a particulate material. We

have attempted to explain some of the micro-mechanisms that contribute to the discrepancy

between the residual friction angle predicted by the 2-D and the 3-D simulations. These

micro-mechanisms include an increase in apparent friction in the 3-D simulation caused by

the presence of forces in the “out-of-plane” (z) direction, which is similar to the increase

in apparent friction between a “v-belt” and pulley compared to a flat belt and pulley. At

the same time, there appear to be “softening” effects present in the 3-D simulation that are

lacking in the 2-D simulation, such as “out-of-plane” particle motion, which are caused by

the added degree of freedom. Although our micro-mechanical considerations provide some

quantitative explanation of the difference in the residual friction angles predicted by the

2-D and 3-D DEM simulations, it is difficult to predict the error in the results obtained

from a 2-D DEM simulation in a reliable way. If quantitatively correct predictions of the

behavior of a particulate material are desired, then a 3-D DEM analysis is probably required.

If qualitatively correct results are all that is needed, then a 2-D DEM simulation may be

acceptable. For related studies, see Chen et al. (2007), Ng (2009), and Dang and Meguid

(2010).
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Chapter 10

Conclusion

In this thesis, we obtain a number of significant relationships between the micromechanical

properties of particulate materials, such as the ratio of the tangential to normal inter-particle

contact stiffnesses α = Kt/Kn, which for spherical particles is related to Poisson’s ratio ν

of the material constituting the spheres by α = 2(1 − ν)/(2 − ν), and the inter-particle

friction coefficient µ; and the macroscopic properties of the particulate materials, such as the

macroscopic Poisson’s ratio ν (Chapters 3, 4) and the material friction angle φ (Chapters 5, 6,

7, 8). All of our theoretical relationships have been validated by the discrete element method,

or DEM (Sections 3.5, 4.5, and Chapters 5, 6, 9). Using a numerical method such as the

discrete element method to validate theoretical results of the kind derived in this thesis has

several advantages over using experimental data. First, the properties of the particles on the

microscale are known exactly in the numerical simulations, thus reducing variables that in

experiments might affect the results in unexpected ways that are difficult to control. Second,

the discrete element method allowed us to perform numerical simulations in which particles

could have their rotational velocities artificially restrained. Performing DEM simulations

with particle rotation either allowed or prohibited proved to be very advantageous. First, it

provided an extra control to test theoretical results against, which has resulted in virtually
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all of our analyses being split into two parts: “Part I: No Particle Rotation” and “Part

II: Particle Rotation”. Second, by comparing our theoretical results with particle rotation

either prohibited or allowed to results published by other researchers, we discovered that

many researchers had implicitly ignored the effects of particle rotation without realizing

it, particularly in the elastic range, leading to theoretical results that match our DEM

simulations and corresponding theoretical results with particle rotation prohibited, but fail

to match our DEM simulations and corresponding theoretical results with particle rotation

allowed.

This discovery has already lead to the publication of two papers: Fleischmann et al.

(2013a) (Part I) and Fleischmann et al. (2013b) (Part II) in the Journal of the Mechanics

and Physics of Solids, appearing as Chapters 3 and 4 in this thesis, which show that local

shearing mechanisms or zero-energy energy modes due to particle rotation can alter the rela-

tionship between the local ratio of the inter-particle tangential to normal contact stiffnesses

α = Kt/Kn and the macroscopic Poisson’s ratio ν in a statistically isotropic particulate

material. We found that the degree to which these local shearing mechanisms can affect

the macroscopic Poisson’s ratio can be characterized by a single internal parameter ξ, which

appears to be strongly correlated to the average number of contacts per unit volume β in

the particulate material via equation (4.20), which can in turn be related to the void ratio

e via equations (2.8)–(2.12). We have followed up on the success of our published analyses

of the elastic range with derivations of the relationship between the inter-particle friction

coefficient µ and the material friction angle φ for a statistically isotropic non-cohesive partic-

ulate material, which appear in Chapters 5–8. In Chapter 8, we show that again the ratio of

the inter-particle tangential to normal contact stiffnesses α = Kt/Kn comes into play, along

with the internal parameter ξ∗ ≈ 0.1ξ.

Essentially, all of the results of this thesis have one common theme: A detailed microme-

chanical analysis of specific anisotropic local packing geometries can lead to general models
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for statistically isotropic particulate materials based on standard homogenization methods

that significantly improve the current state of the art. This is because the models in the

literature are almost exclusively based on the assumption of local isotropy in a particulate

material, which for example can eliminate mechanisms caused by asymmetry in inter-particle

contacts. However, statistical or global isotropy in a particulate material does not require

local isotropy, since a locally anisotropic material (or packing geometry) can occur in equally

represented randomly oriented subportions in a statistically isotropic particulate material,

analogous to “grains” in a statistically isotropic metal. As a result, the micromechanical be-

havior of locally asymmetric packing geometries can significantly affect the overall properties

of a statistically isotropic particulate material, as we saw for Poisson’s ratio in Chapters 3

and 4 [Fleischmann et al. (2013a,b)].

In addition to directly validating the theoretical results of Chapters 3, 4, 7, and 8, we

performed a number of exploratory DEM simulations for their own sake, such as those of

Chapters 5, 6, and 9 [Fleischmann et al. (2013c)]. In Chapters 5 and 6, in addition to

obtaining the relationship between the inter-particle friction coefficient µ or φµ = tan−1 µ

and the material friction angle φ used the validate the results of Chapters 7 and 8, we also

obtained complete yield surfaces for six DEM specimens of 3 430–29 660 randomly packed

uniform spheres on the π-plane for a full range of Lode angles, and we found that the Lade-

Duncan yield criterion performed very well for all specimens at all values of the Lode angle,

in particular that of 60◦ (extension). We also used DEM to visually examine failure modes

in the DEM specimens due to particle rotation and inter-particle friction (local force-chain

buckling at strains prior to that of the peak friction angle followed by particle rotation

on global slip planes after the peak friction angle has been achieved), and we measured the

average rate of friction work in the DEM specimens as a function of the inter-particle friction

coefficient µ. In Chapter 9 [Fleischmann et al. (2013c)], we showed that three-dimensional

(3-D) DEM simulations of direct (ring) shear tests are capable of predicting the material
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friction angle of dense ASTM standard C 778-06 (Ottawa) sand with quantitative accuracy

(φp ≈ 42◦ and φr ≈ 30◦), while two-dimensional (2-D) DEM simulations fail to predict the

material friction angle due to a combination of factors including softening effects caused by

particle motion in the “out-of-plane” direction offset by a simple increase in apparent friction

in the 3-D simulations due to a so-called “v-belt” effect.

As we said in the Introduction (Chapter 1) of this thesis, the final aim of our microme-

chanical analyses has been to create complete, quantitative links between the micromechan-

ical properties of particulate materials and their macroscopic material properties, in order

to facilitate predictive elastoplastic continuum constitutive models of particulate materials

based on their micromechanical properties. We have succeeded in creating such a quan-

titative link for the elastic range, evidenced by the success of the model of Chapter 4 in

capturing the effect of particle rotation to accurately predict the macroscopic Poisson’s ratio

ν in six dense randomly packed DEM specimens of 3 430–29 660 uniform spheres tested in

Chapter 4. This model also allows us to obtain a theoretical justification for the experimen-

tally measured macroscopic Poisson’s ratio for quartz sand and glass beads, which cannot

be explained by either the model of Chapter 3 with particle rotation prohibited or previous

models in the published literature (e.g., Chang et al., 1995, Chang and Gao, 1995, Suiker

and de Borst, 2005). In particular, for α near 1.0, these models exhibit error in excess of

several hundred percent when compared either to glass beads (for which α ≈ 0.9) or to our

DEM specimens. We have shown that the error relative to our DEM specimens is due to the

effect of particle rotation, but is not due to inter-particle slip as assumed by Bachrach et al.

(2000) and Trentadue (2004). While Cambou et al. (1995) propose a model that includes an

internal parameter “µ” (renamed ζ by us in Section 2.1), which is somewhat analogous to our

internal parameter ξ, for no value of their internal parameter can the relationship between

α and ν be made to match our DEM results as closely as our model with an appropriate

choice of ξ, as shown in Figure 4.11.
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We have succeeded in creating a quantitative link between macroscopic and microme-

chanical properties in a statistically isotropic non-cohesive particulate material at the point

of yield, evidenced by the success of the constant volume model of Chapter 8 in accurately

predicting the material friction angle φ in six dense randomly packed DEM specimens of

3 430–29 660 uniform spheres tested in Chapter 6. In particular, with appropriate choices of

initial dilation angle ψ and internal parameter ξ∗ ≈ 0.1ξ, our constant volume model of the

relationship between φ and φµ = tan−1 µ, where µ is the inter-particle friction coefficient,

matches our DEM results more closely than the model of Emeriault et al. (1996), which is

based on the model of Cambou et al. (1995), for any value of their internal parameter ζ (or

“µ”), as shown in Figure 8.8. To test the accuracy of the constant normal stress model of

Chapter 8, we may use the results from the 3-D DEM simulation performed for Chapter 9

under constant normal stress conditions. Since the particle size distribution is not uniform,

we will not use equation 8.12, but rather we will use equation 8.9 with θ1 = θ1 ≈ 53◦, which

corresponds to a simple average of the bounds on θ1 for the particle size distribution used

in Chapter 9. Figure 9.4 shows that the initial dilation angle in the 3-D DEM simulation is

θ2 = ψ ≈ tan−1(0.03h) ≈ 14.63◦. Thus, with the inter-particle friction coefficient µ = 0.5

used in Chapter 9, equation 8.9 predicts that φp = tan−1 µmacro ≈ 49◦, which is within 20%

of the measured value of φp ≈ 42◦.

Future work includes (1) obtaining a theoretical (micromechanics-based) derivation of the

yield surface for all values of the Lode angle that improves the Mohr-Coulomb yield surface

and explains the success of the Lade-Duncan surface in describing yield surfaces obtained

from DEM simulations for the six specimens in Chapters 5 and 6, (2) extending our theo-

retical (micromechanics-based) model to include plastic deformation beyond the initiation

of yield, for which we already have a large amount of DEM data from the simulations of

Chapters 5 and 6, and (3) exploring more local packing geometries, and obtaining quan-

titative relationships between the material fabric (i.e., packing geometry) and the internal
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parameters ξ and ξ∗ used in the models of Chapters 3, 4, 7, and 8. We intend to address

all three of these points in the near future, as we continue to build on the results of this

thesis, employing DEM to inform and validate elastoplastic continuum constitutive models

for statistically isotropic particulate materials based on micromechanical analyses of specific

local packing geometries.
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Appendix A

Stiffness Analysis of FCC, SC, and BCC

Elementary Cells with Particle Rotation

Prohibited

In this appendix, we derive the cubic elastic moduli C1, C2, and C3 given in equations (3.11),

(3.15), and (3.16) for FCC, SC, and BCC elementary cells, respectively, with particle rotation

prohibited. We do so by assuming constant normal and tangential contact stiffnesses (Kn

and Kt, respectively) between the uniform spheres of diameter D = 2R, and calculating the

deformation of the elementary cells subjected to pure uniaxial compression and pure shear

in directions parallel to the principal axes.

A.1 Face-Centered Cubic (FCC) Elementary Cell

To determine C1 and C2, we apply a state of pure uniaxial normal strain

ε11 = − 2δ√
2D

, ε22 = ε33 = ε12 = ε13 = ε23 = 0, (A.1)
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to a single FCC elementary cell as shown in Figure A.1 (left), where the 3-axis is positive

out of the page. The dashed lines represent the inter-particle contacts on the face of the

cube, and the dotted lines represent the inter-particle contacts on the interior of the cube.

Only the contacts for the upper half of the cube are shown. The forces F1 and F2 (and F3,

Figure A.1: A single FCC elementary cell in a state of pure uniaxial normal strain (left) and
pure shear strain (right), viewed from the (0, 0, 1)-direction.

which is not shown) are determined from the normal and tangential displacements of the

inter-particle contacts, in terms of the normal and tangential spring stiffnesses Kn and Kt.

Summing the forces from the contacts in the cube, and noting that the spring stiffnesses on

the four faces have one half their regular values because each is shared by two cubes, we

have

F1 = 4(Kn +Kt)δ, F2 = F3 = 2(Kn −Kt)δ. (A.2)

From these and the cubic Hooke’s law for the elementary cell, we have

σ11 = − F1

2D2
= C1ε11, σ22 = σ33 = − F2

2D2
= − F3

2D2
= C2ε11. (A.3)
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Combining equations (A.1), (A.2), and (A.3), we find

C1 =
1√
2R

(Kn +Kt), C2 =
1

2
√

2R
(Kn −Kt). (A.4)

To determine C3, we apply a state of pure shear strain

ε12 = − δ√
2D

, ε11 = ε22 = ε33 = ε13 = ε23 = 0, (A.5)

to a single FCC elementary cell as shown in Figure A.1 (right). The shear force F12 is

obtained from a similar procedure as that employed above for the normal forces:

F12 = 2(Kn +Kt)δ. (A.6)

From this and the cubic Hooke’s law for the elementary cell, we have

σ12 = − F12

2D2
= 2C3ε12. (A.7)

Combining equations (A.5), (A.6), and (A.7), we find

C3 =
1

2
√

2R
(Kn +Kt). (A.8)

Equations (A.4) and (A.8) reproduce equation (3.11) of Section 3.3.1.

A.2 Simple Cubic (SC) Elementary Cell

To determine C1 and C2, we apply a state of pure uniaxial normal strain

ε11 = −2δ

D
, ε22 = ε33 = ε12 = ε13 = ε23 = 0, (A.9)
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to a single SC elementary cell as shown in Figure A.2 (left), where the 3-axis is positive out

of the page. The dashed lines represent the contacts on the edges of the cube. Proceeding

Figure A.2: A single SC elementary cell in a state of pure uniaxial normal strain (left) and
a cube built from eight SC elementary cells in a state of pure shear strain (right), viewed
from the (0, 0, 1)-direction.

as before, but noting that the spring stiffnesses on the edges have one fourth their regular

values because each is shared by four cubes, we have

F1 = 2Knδ, F2 = F3 = 0. (A.10)

Combining equations (A.9), (A.10), and the cubic Hooke’s law for the elementary cell: σ11 =

−F1/D
2 = C1ε11 and σ22 = σ33 = −F2/D

2 = −F3/D
2 = C2ε11, we find

C1 =
1

2R
Kn, C2 = 0. (A.11)

To determine C3, we apply a state of pure shear strain

ε12 = − δ

2D
, ε11 = ε22 = ε33 = ε13 = ε23 = 0, (A.12)

to a cube built from eight SC cells as shown in Figure A.2 (right), where the 3-axis is positive
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out of the page. The dashed lines represent the contacts on the edges of the cells. Only the

contacts for the upper half of the cube are shown. Proceeding as before, and noting that the

spring stiffnesses on the front and back faces have one half their regular values because each

is shared by two cubes, we have

F12 = 2Ktδ. (A.13)

Combining equations (A.12), (A.13), and the cubic Hooke’s law for the elementary cell:

σ12 = −F12/(4D
2) = 2C3ε12, we find

C3 =
1

4R
Kt. (A.14)

Equations (A.11) and (A.14) reproduce equation (3.15) of Section 3.3.2.

A.3 Body-Centered Cubic (BCC) Elementary Cell

To determine C1 and C2, we apply a state of pure uniaxial normal strain

ε11 = −2δ
√

3

2D
, ε22 = ε33 = ε12 = ε13 = ε23 = 0, (A.15)

to a single BCC elementary cell as shown in Figure A.3, viewed from the (0, 0, 1)-direction

(left), and viewed from the (0, 1, 1)-direction (right). The dotted lines represent the inter-

particle contacts on the interior of the cube. Only the contacts for the upper half of the cube

are shown. Proceeding as before, we find

F1 =
4

3
(Kn + 2Kt)δ, F2 = F3 =

4

3
(Kn −Kt)δ. (A.16)
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Figure A.3: A single BCC elementary cell in a state of pure uniaxial normal strain, viewed
from the (0, 0, 1)-direction (left), and viewed from the (0, 1, 1)-direction (right).

Combining equations (A.15), (A.16), and the cubic Hooke’s law for the elementary cell:

σ11 = −3F1/(4D
2) = C1ε11 and σ22 = σ33 = −3F2/(4D

2) = −3F3/(4D
2) = C2ε11, we find

C1 =
1

2
√

3R
(Kn + 2Kt), C2 =

1

2
√

3R
(Kn −Kt). (A.17)

To determine C3, we apply a state of pure shear strain

ε12 = −δ
√

3

2D
, ε11 = ε22 = ε33 = ε13 = ε23 = 0, (A.18)

to a single BCC elementary cell as shown in Figure A.4, viewed from the (0, 0, 1)-direction

(left), and viewed from the (1,−1, 0)-direction (right). Proceeding as before, we find

F12 =
2

3
(2Kn +Kt)δ. (A.19)

Combining equations (A.18), (A.19), and the cubic Hooke’s law for the elementary cell:

σ12 = −3F12/(4D
2) = 2C3ε12, we find

C3 =
1

4
√

3R
(2Kn +Kt). (A.20)
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Figure A.4: A single BCC elementary cell in a state of pure shear strain, viewed from the
(0, 0, 1)-direction (left), and viewed from the (1,−1, 0)-direction (right).

Equations (A.17) and (A.20) reproduce equation (3.16) of Section 3.3.3.
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Appendix B

Stiffness Analysis of an FCC Elementary

Cell with Unrestrained Particle Rotation

In this appendix, we consider the stiffness of a single FCC elementary cell with unrestrained

particle rotation subjected to a state of pure uniaxial compression along one of its principal

axes: −δ11, δ22 = δ33 = 0. In Section 4.3.1, we reported that an analysis of the inter-particle

normal and tangential contact forces within a single FCC cell with no particle rotation for

this state of deformation gives F11 = −2(Kn + Kt)δ11 and F22 = F33 = −(Kn −Kt)δ11 for

the forces normal to the cell faces, and we noted that the normal and tangential stiffnesses

of the contacts on the cell faces must contribute only half of their full values if the FCC cell

is considered to be a constitutive material element of a larger material array. We also note,

however, that if a single FCC cell is considered alone, then all of the contact forces must be

included with their full values, and the measured forces normal to the cell faces will actually

be F11 = −3(Kn + Kt)δ11 and F22 = F33 = −(3/2)(Kn − Kt)δ11. This is verified by DEM

simulations.

If a single FCC elementary cell in which particle rotation is unrestrained is subjected to the

state of pure uniaxial compression described in the last paragraph, then due to the symmetry
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of the loading only the spheres at the eight corners of the cell will experience rotation, and

we can simplify our analysis by considering only the four spheres in contact at one corner

of the FCC cell where only the corner sphere has rotational degrees of freedom. Figure B.1

shows the four spheres that we will analyze. These four spheres are in the configuration

of a tetrahedron. For the state of pure uniaxial compression in the ê1 direction: −δ11,

Figure B.1: The four numbered spheres that we analyze, which are in the configuration of a
tetrahedron, and the principal directions for a single FCC elementary cell.

δ22 = δ33 = 0, Spheres 1 and 4 in Figure B.1 experience a displacement of −δ11/2 in the ê1

direction, and Spheres 2 and 3 remain fixed. If we denote the force contribution in the êi

direction from the contact between Spheres a and b as (fab)ii (no sum), then we have

(f12)11 = (f13)11 = −(1/4)(Kn +Kt)δ11, (B.1)

(f12)22 = (f13)33 = −(1/4)(Kn −Kt)δ11, (B.2)

(f12)33 = (f13)22 = 0. (B.3)

Because Spheres 2 and 3 remain fixed, we have

(f23)11 = (f23)22 = (f23)33 = 0. (B.4)

If Sphere 4 has rotational degrees of freedom δθ1, δθ2, and δθ3 about the principal axes ê1,
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ê2, and ê3, respectively, then for small rotations we have

(f24)11 = −(1/4)(Kn +Kt)δ11 −Rδθ2Kt/
√

2, (B.5)

(f24)22 = 0, (B.6)

(f24)33 = −(1/4)(Kn −Kt)δ11 +Rδθ2Kt/
√

2, (B.7)

(f34)11 = −(1/4)(Kn +Kt)δ11 +Rδθ3Kt/
√

2, (B.8)

(f34)22 = −(1/4)(Kn −Kt)δ11 −Rδθ3Kt/
√

2, (B.9)

(f34)33 = 0, (B.10)

where R is the radius of the spheres. By symmetry, it is clear that δθ1 = 0. While the

rotational degrees of freedom δθ2 and δθ3 do result in a relative tangential displacement at

the point of contact between Spheres 1 and 4, this displacement results in equal and opposite

contributions to the total force in the ê1 direction, and so we have

(f14)11 = (f14)22 = (f14)33 = 0. (B.11)

Moment equilibrium for Sphere 4 requires that Rδθ2 = −Rδθ3 = −δ11/(5
√

2). Thus, it

follows that

(f24)11 = (f34)11 = −(1/4)(Kn + (3/5)Kt)δ11, (B.12)

(f24)33 = (f34)22 = −(1/4)(Kn − (3/5)Kt)δ11. (B.13)

Due to the symmetry of the FCC elementary cell, the total forces in the principal direc-
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tions ê1, ê2, and ê3 normal to cell faces are

F11 = 2(f12)11 + 2(f13)11 + 4(f24)11 + 4(f34)11, (B.14)

F22 = 2(f12)22 + 2(f23)22 + 4(f24)22 + 4(f34)22, (B.15)

F33 = 2(f13)33 + 2(f23)33 + 4(f24)33 + 4(f34)33. (B.16)

From equations (B.14) – (B.16), it follows that F11 = −3(Kn + ξKt)δ11 and F22 = F33 =

−(3/2)(Kn−ξKt)δ11, with ξ = 11/15 ≈ 0.733. This is the value of ξ reported in Section 4.3.1.

Note that the value of ξ = 11/15 ≈ 0.733 is only valid when the FCC elementary cell

is considered alone. If the FCC cell is considered to be a constitutive material element of

a larger material array, then the stiffnesses of the inter-particle contacts on the faces of the

cell should contribute only half of their full values, as described for the case of no particle

rotation at the beginning of this appendix. For the case of unrestrained particle rotation,

this leads to F11 = −2(Kn + ξKt)δ11 and F22 = F33 = −(Kn − ξKt)δ11, with ξ = 4/5 = 0.8.

The DEM simulations described in Section 4.3.1 performed on a single FCC elementary

cell were performed on a single FCC cell in which the inter-particle contact stiffnesses at all

contact points were the same. Thus, the value of ξ = 11/15 ≈ 0.733 and not the value of

ξ = 4/5 = 0.8 was observed in the DEM measurement of Poisson’s ratio for a single FCC

elementary cell in Section 4.3.1, which is shown in Figure 4.2. We also saw in Section 4.3.1

that when an FCC elementary cell becomes a part of a larger FCC array, particle rotation

becomes partially restrained, and this leads immediately to ξ > 0.8 (even for a 2 × 2 × 2

array). Thus, for consistency of presentation, we reported F11 = −2(Kn + ξKt)δ11 and

F22 = F33 = −(Kn − ξKt)δ11, with ξ = 11/15 ≈ 0.733 in Section 4.3.1 for a single FCC

elementary cell with unrestrained particle rotation subjected to a state of pure uniaxial strain

in the ê1 direction, in analogy to the case of no particle rotation where the FCC elementary

cell is considered to be a constitutive material element of a larger material array.
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Appendix C

Derivation of the Voigt Estimates of the

Isotropic Effective Elastic Moduli for a

Locally Cubic Material

In this appendix, we derive the Voigt estimates of the isotropic effective elastic moduli for

a statistically isotropic aggregate material composed of randomly oriented (non-isotropic)

material subportions. The method employed by Voigt (1928), sometimes called the kine-

matic method, is the earliest example of the so-called “homogenization” methods commonly

employed in the study of composite materials, which include the static method of Reuss

(1929) and the self-consistent method of Hershey (1954) and Kröner (1958).

Voigt (1928) assumed that when an aggregate material is subjected to a state of uniform

strain, the individual components of the aggregate will be in the same state of strain. It

follows that the isotropic fourth-order tensor of effective elastic moduli Cijkl of an isotropic

aggregate is simply the orientational average of the elastic modulus tensor of the components:

Cijkl =
1

8π2

∫
Ω

Cijkl dΩ, (C.1)
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where dΩ = sinθ dϕ dθ dψ is the differential solid angle of the unit sphere Ω, and ϕ, θ, and

ψ are the Euler angles (e.g., Lubarda, 2002).

Note that a linear elastic material is isotropic if its behavior does not depend on its

orientation. In other words, a linear elastic material is isotropic if its fourth-order tensor of

second-order elastic moduli Cijkl is invariant under coordinate rotations. If a linear elastic

material possessed cubic symmetry, then that material is characterized by only three elastic

constants C1 = C1111, C2 = C1122, and C3 = C1212. A necessary and sufficient condition for

a linear elastic material to be isotropic is that the material possesses cubic symmetry and

that

C1 − C2 = 2C3. (C.2)

It follows that an isotropic linear elastic material is characterized by the two elastic constants

C1 and C2 (or C2 and C3). Note that the elastic constants obtained in Appendix A indicate

that the cubic Bravais lattices are not isotropic, except in some special cases such asKt = Kn

for an FCC or SC particulate material.

In the following Sections C.1 and C.2, we present our own alternative derivation of the

homogenization method first derived by Voigt (1928). We apply this technique to find the

isotropic effective elastic constants C1 and C2 for a statistically isotropic aggregate material

composed of randomly oriented subportions having locally cubic symmetry with cubic elastic

constants C1, C2, and C3. In fact, the author derived the results of this appendix before he

was aware of the results of Voigt (1928), Reuss (1929), or Hershey (1954) and Kröner (1958).

The derivation is included here partly for the sake of curiosity, but also as an example of an

alternative derivation of one of the standard homogenization methods.
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C.1 Averaging Pure Uniaxial Strain

Consider the state of pure uniaxial strain in which the only nonzero component of the strain

tensor is ε11. Let aij be the transformation tensor between the 123 and 1′2′3′ coordinate

systems, where the direction of 1′ relative to the 123 coordinate system is given by the

unit vector ni = a1i. Then the rotated strain tensor representing a single normal strain

component in the 1′ direction is given by:

ε′ij = amianjεmn = a1ia1jε11 = ninjε11. (C.3)

To obtain the corresponding stress in the same direction as the strain, we compute

σ′11 = ninjσij = ninjCijklε
′
kl. (C.4)

If the tensor Cijkl were invariant under rotation, then we would have σ′11 = C1111ε11 = σ11.

In any case, we have

σ′11 = ninjCijklε
′
kl = ninjnknlCijklε11 = C ′1111ε11. (C.5)

and so

C ′1111 = ninjnknlCijkl. (C.6)

We propose to obtain an isotropic effective elastic constant C1 = C1111 by averaging C ′1111

over all unit vectors ni, assuming that the average stress σ11 over all unit vectors ni is given

by

σ11 = 〈σ′11〉‖~n‖=1 = 〈ninjnknlCijkl〉‖~n‖=1ε11 = C1111ε11. (C.7)

This assumption is equivalent to the Voigt hypothesis. If we further assume that the tensor
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Cijkl possesses cubic symmetry, then

ninjnknlCijkl = n1n1n1n1C1111+2n1n1n2n2C1122+2n1n1n3n3C1133

+ n2n2n2n2C2222+2n2n2n3n3C2233+ n3n3n3n3C3333

+ 4n2n3n2n3C2323+4n1n3n1n3C1313+4n1n2n1n2C1212

= C1(n4
1 + n4

2 + n4
3)

+ (2C2 + 4C3)(n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3). (C.8)

If we let

n1 = cos θ, n2 = sin θ cosφ, and n3 = sin θ sinφ, (C.9)

then

C1 = 〈ninjnknlCijkl〉‖~n‖=1

=
1

4π

∫ 2π

0

∫ π

0

[
C1(n4

1 + n4
2 + n4

3) + (2C2 + 4C3)(n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3)
]

sin θ dθdφ

=
1

4π

∫ 2π

0

∫ π

0

C1

[
cos4 θ sin θ + (sin4 φ+ cos4 φ) sin5 θ

]
+ (2C2 + 4C3)

[
cos2 θ sin3 θ + cos2 φ sin2 φ sin5 θ

]
dθdφ

=
3

5
C1 +

2

5
C2 +

4

5
C3. (C.10)

Thus we have obtained our first isotropic effective elastic constant:

C1 =
3

5
C1 +

2

5
C2 +

4

5
C3. (C.11)
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C.2 Averaging Pure Volumetric Strain

Consider the state of pure volumetric strain εij = εδij. Let aij be the transformation tensor

between the 123 and 1′2′3′ coordinate systems, where the direction of 1′ relative to the 123

coordinate system is given by the unit vector ni = a1i. This time, we have

ε′ij = amianjεmn = amianjεδmn = anianjε = εδij. (C.12)

As expected, εij is invariant under rotation. So

σ′11 = ninjCijklεδkl = ninjCijkkε = (C ′1111 + C ′1122 + C ′1133)ε. (C.13)

If we apply the Voigt hypothesis, then

σ11 = 〈σ′11〉‖~n‖=1 = 〈ninjCijkk〉‖~n‖=1ε = (C1111 + C1122 + C1133)ε. (C.14)

If we further assume that the tensor Cijkl possesses cubic symmetry, then

ninjCijkk = n1n1(C1111 + C1122 + C1133)

+ n2n2(C2211 + C2222 + C2233)

+ n3n3(C3311 + C3322 + C3333)

= (n2
1 + n2

2 + n2
3)(C1 + 2C2)

= (C1 + 2C2). (C.15)

So if we denote our second isotropic effective elastic constant as C2 = C1122 = C1133, then
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we have

C1 + 2C2 = C1 + 2C2. (C.16)

Using equations (C.11) and (C.16), we can solve for our second isotropic effective elastic

constant:

C2 =
1

5
C1 +

4

5
C2 −

2

5
C3. (C.17)

Since there are only two independent elastic constants for an isotropic linear elastic material,

we are done.

C.3 Isotropic Effective Elastic Constants

To summarize, given a statistically isotropic aggregate material composed of randomly ori-

ented subportions having locally cubic symmetry with cubic elastic constants

C1 = C1111 = C2222 = C3333, (C.18)

C2 = C1122 = C1133 = C2233, (C.19)

C3 = C1212 = C1313 = C2323, (C.20)

then the isotropic effective elastic constants C1, C2, and C3 for the statistically isotropic

aggregate material are:

C1 =
3

5
C1 +

2

5
C2 +

4

5
C3, (C.21)

C2 =
1

5
C1 +

4

5
C2 −

2

5
C3, (C.22)

C3 =
1

5
C1 −

1

5
C2 +

3

5
C3, (C.23)
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with C1−C2 = 2C3. Notice from equations (C.21), (C.22), and (C.23) that if C1−C2 = 2C3

(that is, if the cubic material in the aggregate is already isotropic) then

C1 = C1, C2 = C2, and C3 = C3. (C.24)

We also note that while the derivation of this appendix was performed for a statistically

isotropic material with locally cubic symmetry, the same technique could have been applied

to find the isotropic effective elastic constants for any locally non-isotropic linear elastic

material. We can use equations (C.21), (C.22), and (C.23) to determine Poisson’s ratio ν

and the bulk modulus κ for the statistically isotropic material as follows:

ν =
C2

C1 + C2

=
C2

2
(
C2 + C3

) =
C1 + 4C2 − 2C3

4C1 + 6C2 + 2C3

, (C.25)

κ =
1

3

(
C1 + 2C2

)
=

1

3

(
3C2 + 2C3

)
=

1

3
(C1 + 2C2). (C.26)



314



315

Appendix D

Derivation of the Mohr-Coulomb Yield

(Failure) Criterion for an Isotropic

Particulate Material

In this appendix, we derive the Mohr-Coulomb yield (or failure) criterion for an isotropic

non-cohesive particulate material. Consider an arbitrarily oriented plane in an isotropic

particulate material with unit normal vector n. The stress vector acting on the plane is

given by

tn = σn, (D.1)

where σ is the (Cauchy) stress tensor, as shown in Figure D.1. Let e1, e2, and e3 be the

pricipal directions of σ and let σ1, σ2, and σ3 be the principal stress. So, in matrix form,

[σ] =


σ1 0 0

0 σ2 0

0 0 σ3

 with respect to (e1, e2, e3). (D.2)
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Figure D.1: Stress vector tn acting on a plane with unit normal vector n.

If n = n1e1 + n2e2 + n3e3 then tn = n1σ1e1 + n2σ2e2 + n3σ3e3. The magnitude of the

component of tn normal to the plane is

σn = n · tn = n · σn = n2
1σ1 + n2

2σ2 + n2
3σ3 (D.3)

and the magnitude of tn is

σ = |tn| =
√

σn · σn =
√
n2

1σ
2
1 + n2

2σ
2
2 + n2

3σ
2
3. (D.4)

The magnitude of the component of tn tangent to the plane is then

σt =
√
σ2 − σ2

n, (D.5)

as shown in Figure D.2.

The “Coulomb friction” criterion for sliding on the plane with unit normal n is simply:

σt < µσn ⇒ no sliding, and σt = µσn ⇒ sliding = failure, (D.6)

where µ is the the constant coefficient of (Coulomb) friction on the plane. According to this

criterion, an isotropic particulate material will not slide (i.e., yield) on a plane with unit
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Figure D.2: Components of the stress vector tn acting normal and tangent to the plane with
unit normal vector n.

normal n if and only if

σt
σn

< µ ⇔
√
σ2 − σ2

n

σn
< µ ⇔ σ2 − σ2

n

σ2
n

< µ2 ⇔ σ2

σ2
n

< 1 + µ2. (D.7)

Since 1 +µ2 is a constant, it follows that sliding (i.e., yielding) will occur on the plane where

σ2/σ2
n is maximum. If the principal stresses σ1, σ2, and σ3 are known, then

σ2

σ2
n

= f(n1, n2, n3) =
σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3

(σ1n2
1 + σ2n2

2 + σ3n2
3)

2 . (D.8)

We wish to find the triple (n1, n2, n3) for which the function f attains its maximum value,

subject to the constraint

n2
1 + n2

2 + n2
3 = 1. (D.9)

So we have

d(n2
1 + n2

2 + n2
3) = n1dn1 + n2dn2 + n3dn3 = 0 (D.10)

and we set

df = d

(
σ2

σ2
n

)
=

∂

∂n1

(
σ2

σ2
n

)
dn1 +

∂

∂n2

(
σ2

σ2
n

)
dn2 +

∂

∂n3

(
σ2

σ2
n

)
dn3 = 0. (D.11)
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By the method of Lagrange Multipliers, if we let

∂

∂n1

(
σ2

σ2
n

)
= λn1,

∂

∂n2

(
σ2

σ2
n

)
= λn2, and

∂

∂n3

(
σ2

σ2
n

)
= λn3, (D.12)

then equation (D.11) is satisfied if equation (D.10) is enforced. Computing the partial

derivatives in equation (D.12) gives:

∂

∂n1

(
σ2

σ2
n

)
=

2n1 [σ2
1 (σ1n

2
1 + σ2n

2
2 + σ3n

2
3)− 2σ1 (σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3)]

(σ1n2
1 + σ2n2

2 + σ3n2
3)

3 , (D.13)

∂

∂n2

(
σ2

σ2
n

)
=

2n2 [σ2
2 (σ1n

2
1 + σ2n

2
2 + σ3n

2
3)− 2σ2 (σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3)]

(σ1n2
1 + σ2n2

2 + σ3n2
3)

3 , (D.14)

∂

∂n3

(
σ2

σ2
n

)
=

2n3 [σ2
3 (σ1n

2
1 + σ2n

2
2 + σ3n

2
3)− 2σ3 (σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3)]

(σ1n2
1 + σ2n2

2 + σ3n2
3)

3 . (D.15)

Equations (D.12) – (D.15) can be solved simultaneously with the constraint equation (D.9)

to obtain the following stationary points (n1, n2, n3) in terms of σ1, σ2, and σ3:

(±1, 0, 0), (0,±1, 0), (0, 0,±1), (D.16)(
±
√

σ2

σ1 + σ2

,±
√

σ1

σ1 + σ2

, 0

)
, (D.17)(

±
√

σ3

σ1 + σ3

, 0,±
√

σ1

σ1 + σ3

)
, (D.18)(

0,±
√

σ3

σ2 + σ3

,±
√

σ2

σ2 + σ3

)
. (D.19)

The first (six) stationary points given by equation (D.16) are obviously minimal, since they

result in no tangential stress. Thus, the maximal stationary points are given by equations

(D.17) – (D.19). Substituting the maximal stationary points back into the yield criterion
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(D.7) gives:

|σ1 − σ2|
2
√
σ1σ2

< µ,
|σ1 − σ3|
2
√
σ1σ3

< µ, and
|σ2 − σ3|
2
√
σ2σ3

< µ. (D.20)

Equation (D.20) defines the interior of the Mohr-Coulomb yield surface in three-dimensional

principal stress space, where it is assumed that the principal stresses are in compression.

The Mohr-Coulomb yield surface is shown in Figure D.3 on the constant pressure plane

σ1 + σ2 + σ3 = 3p.

Figure D.3: The Mohr-Coulomb yield surface on the constant pressure plane (the π-plane)
σ1 + σ2 + σ3 = 3p, with the principal stresses σ1, σ2, and σ3 labeled positive in compression.
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Appendix E

Discrete Element Method Critical Time

Step Size

In this appendix, we obtain sharp lower bounds on the critical time step size for the dis-

crete element method (DEM), in 2-D and in 3-D, using a method known as Gerschgorin’s

bound. The critical time step is the largest stable time step that can be used during a DEM

simulation, based on the standard stability criterion for the central difference explicit time

integration scheme applied to an undamped linear system, ∆tcrit = 2/ωmax, where ωmax is

the maximum natural frequency of the stiffness and mass matrices associated with the sys-

tem (Cook et al., 2002). This stability criterion is also valid for other common second-order

explicit time integration schemes, such as “Velocity Verlet” or “leapfrog” (Frenkel and Smit,

2002, Strang, 2007). During a DEM simulation, internal forces are evaluated on an element-

by-element basis, and hence the stiffness matrix for the system is never formed. However,

stiffness matrices can be constructed for specific arrangements of DEM elements in contact,

in 2-D and in 3-D, and these stiffness matrices can be used to determine ωmax for the specific

arrangements. In larger systems of DEM elements containing these specific arrangements,

the imposition of constraints raises the natural frequencies of the subsystems, so ωmax for
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the entire system should be bounded by ωmax for the specific (unconstrained) arrangements

of DEM elements in contact, as noted by Tavarez and Plesha (2007).

If the governing equations for a system of DEM elements in contact (having a specific

geometric arrangement and assuming linear elastic response) is written in matrix form as

Mü + Ku = f (E.1)

then the natural frequencies ω of the system are obtained from the following standard eigen-

value problem: (
M−1/2KM−1/2 − ω2I

)
x = 0. (E.2)

While this eigenvalue problem may not be easy to solve a priori in terms of system parameters

such as the inter-element normal and tangential contact stiffnesses kn and kt and the element

radius r, an upper bound on the eigenvalue λmax = ω2
max can be obtained analytically by a

theorem known as Gerschgorin’s bound (Isaacson and Keller, 1966).

Gerschgorin’s bound states that for the standard eigenvalue problem

(A− λI) x = 0 (E.3)

where A is an N ×N matrix, the eigenvalues λ are bounded by λmax ≤ max(Gii), where

Gii = Aii +
N∑

j=1,j 6=i

|Aij| i = 1, . . . , N (no sum on i). (E.4)

E.1 Critical Time Step Size for 2-D DEM

First we determine a lower bound on the critical time step size for several different arrange-

ments of 2-D DEM elements based on the Gerschgorin bound. For earlier treatments of this
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problem, see Tavarez and Plesha (2007) and O’Sullivan and Bray (2004). Contact forces

between DEM elements are modeled by linear springs of stiffness kn and kt in the direc-

tions normal and tangent to the contacting surfaces, as shown in Figure E.1 at the left. In

Figure E.1: Left: Linear spring contact model for spherical DEM elements. Center: Geom-
etry of two 2-D DEM elements i and j in contact. Right: DOF ui, vi, and θi, forces pi and
qi, and moment (torque) ti for a single 2-D DEM element i.

Figure E.1 at the right, the geometry and degrees of freedom (DOF) of two contacting 2-D

DEM elements are shown. The stiffness matrix K for two 2-D DEM elements i and j in

contact is given in block matrix form by

K =

 Kij −Kij

−Kij Kij

 (E.5)

where

Kij =


(knc

2 + kts
2) (kn − kt)cs −ktsr

(kn − kt)cs (kns
2 + ktc

2) ktcr

−ktsr ktcr ktr
2

 (E.6)

where s = sinφ and c = cosφ, where φ is given in Figure E.1, r is the radius of both DEM

elements, and kn and kt are the normal and tangential stiffnesses at the contact point. The

vector of DOF and the vector of forces and moments on the two DEM elements shown in
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Figure E.1 are related by

K



ui

vi

θi

uj

vj

θj



=



pi

qi

ti

pj

qj

tj



. (E.7)

E.1.1 Single Pair of DEM Elements (2-D)

Figure E.2: A single pair of 2-D DEM elements in contact.

If we consider a single pair of contacting DEM elements with radius r labelled 1 and 2 as

shown in Figure E.2, then the stiffness matrix for the system is given in block matrix form

by

K =

 K12 −K12

−K12 K12

 (E.8)

where

K12 =


kn 0 0

0 kt ktr

0 ktr ktr
2

 . (E.9)

If the diagonal mass matrix for the pair of DEM elements is given by

M =

 M1 0

0 M2

 , M1 = M2 =


m 0 0

0 m 0

0 0 I

 , (E.10)
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then the standard eigenvalue problem associated with the natural frequencies ω of the system

is (
M−1/2KM−1/2 − ω2I

)
x = 0. (E.11)

If we let A = M−1/2KM−1/2, then from equation (E.4) we obtain the following Gerschgorin

bound on ω2, with I = (2/5)mr2:

G11 = G44 =
2kn
m

(E.12)

G22 = G55 =
2kt
m

+
2ktr√
m
√
I

=
5.162kt
m

(E.13)

G33 = G66 =
2ktr

2

I
+

2ktr√
m
√
I

=
8.162kt
m

(E.14)

If 0.245kn ≤ kt, then max(Gii) = G33 = G66, and we have

Pair: ωmax ≤ 2.857

√
kt
m

⇒ ∆tcrit =
2

ωmax
≥ 0.7

√
m

kt
. (E.15)

Note that the condition 0.245kn ≤ kt is not at all unusual. Indeed, assuming Hertz-Mindlin

contact between spheres composed of a stable elastic material with positive Poisson’s ratio,

the ratio kt/kn must lie between 2/3 and 1, or roughly 0.667kn ≤ kt ≤ kn.

E.1.2 Triangular Configuration of DEM Elements

If we consider a triangular configuration of three contacting DEM elements with radius r

labelled 1, 2, and 3 as shown in Figure E.3, then the stiffness matrix for the system is given
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Figure E.3: A triangular configuration of three 2-D DEM elements in contact.

in block matrix form by

K =


K12 + K13 −K12 −K13

−K12 K12 + K23 −K23

−K13 −K23 K23 + K13

 (E.16)

where

K12 =


kn 0 0

0 kt ktr

0 ktr ktr
2

 , (E.17)

K13 =


1
4
(kn + 3kt)

√
3

4
(kn − kt) −

√
3

2
ktr

√
3

4
(kn − kt) 1

4
(3kn + kt)

1
2
ktr

−
√

3
2
ktr

1
2
ktr ktr

2

 , (E.18)

K23 =


1
4
(kn + 3kt) −

√
3

4
(kn − kt) −

√
3

2
ktr

−
√

3
4

(kn − kt) 1
4
(3kn + kt) −1

2
ktr

−
√

3
2
ktr −1

2
ktr ktr

2

 , (E.19)
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K12 + K13 =


1
4
(5kn + 3kt)

√
3

4
(kn − kt) −

√
3

2
ktr

√
3

4
(kn − kt) 1

4
(3kn + 5kt)

3
2
ktr

−
√

3
2
ktr

3
2
ktr 2ktr

2

 , (E.20)

K12 + K23 =


1
4
(5kn + 3kt) −

√
3

4
(kn − kt) −

√
3

2
ktr

−
√

3
4

(kn − kt) 1
4
(3kn + 5kt)

1
2
ktr

−
√

3
2
ktr

1
2
ktr 2ktr

2

 , (E.21)

K23 + K13 =


1
2
(kn + 3kt) 0 −

√
3ktr

0 1
2
(3kn + kt) 0

−
√

3ktr 0 2ktr
2

 . (E.22)

If the diagonal mass matrix for this configuration of DEM elements is given by

M =


M1 0 0

0 M2 0

0 0 M3

 , M1 = M2 = M3 =


m 0 0

0 m 0

0 0 I

 , (E.23)

then the standard eigenvalue problem associated with the natural frequencies ω of the system

is (
M−1/2KM−1/2 − ω2I

)
x = 0. (E.24)
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If we let A = M−1/2KM−1/2, and if we assume that kt ≤ kn (so that |kn−kt| = kn−kt), then

from equation (E.4) we obtain the following Gerschgorin bound on ω2, with I = (2/5)mr2:

G11 = G44 =
3.366kn + 3.373kt

m
(E.25)

G22 =
2.366kn + 6.377kt

m
(E.26)

G33 =
17.482kt

m
(E.27)

G55 =
2.366kn + 4.796kt

m
(E.28)

G66 =
15.901kt

m
(E.29)

G77 =
1.866kn + 7.611kt

m
(E.30)

G88 =
3.866kn + 1.715kt

m
(E.31)

G99 =
17.058kt

m
(E.32)

Once again, if 0.245kn ≤ kt then max(Gii) = G33, and so for 0.245kn ≤ kt ≤ kn we have

Triangular: ωmax ≤ 4.181

√
kt
m

⇒ ∆tcrit =
2

ωmax
≥ 0.478

√
m

kt
. (E.33)

Note that the condition 0.245kn ≤ kt ≤ kn is not unusual, since assuming Hertz-Mindlin

contact between spheres composed of a stable elastic material with positive Poisson’s ratio,

the ratio kt/kn must lie between 2/3 and 1, or roughly 0.667kn ≤ kt ≤ kn.

E.1.3 Hexagonal Close-Packing of DEM Elements (2-D)

If we consider a 2-D hexagonal close-packed configuration of seven contacting 2-D DEM

elements with radius r labelled 1 through 7 as shown in Figure E.4, then the stiffness matrix
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Figure E.4: A hexagonal close-packed configuration of seven 2-D DEM elements in contact.

for the system is given in block matrix form by

K =



K12 + K16 + K17 −K12 0 0

−K12 K12 + K23 + K27 −K23 0

0 −K23 K23 + K34 + K37 −K34

0 0 −K34 K34 + K45 + K47

0 0 0 −K45

−K16 0 0 0

−K17 −K27 −K37 −K47

0 −K16 −K17

0 0 −K27

0 0 −K37

−K45 0 −K47

K45 + K56 + K57 −K56 −K57

−K56 K56 + K16 + K67 −K67

−K57 −K67 K17 + K27 + K37 + K47 + K57 + K67



(E.34)



330

where

K12 = K37 = K45 = K67 =


kn 0 0

0 kt ktr

0 ktr ktr
2

 , (E.35)

K17 = K23 = K47 = K56 =


1
4
(kn + 3kt)

√
3

4
(kn − kt) −

√
3

2
ktr

√
3

4
(kn − kt) 1

4
(3kn + kt)

1
2
ktr

−
√

3
2
ktr

1
2
ktr ktr

2

 , (E.36)

K27 = K34 = K57 = K16 =


1
4
(kn + 3kt) −

√
3

4
(kn − kt) −

√
3

2
ktr

−
√

3
4

(kn − kt) 1
4
(3kn + kt) −1

2
ktr

−
√

3
2
ktr −1

2
ktr ktr

2

 , (E.37)

K12 + K16 + K17 =

K12 + K23 + K27 =

K23 + K34 + K37 =

K34 + K45 + K47 =

K45 + K56 + K57 =

K56 + K16 + K67 =


3
2
(kn + kt) 0 −

√
3ktr

0 3
2
(kn + kt) ktr

−
√

3ktr ktr 3ktr
2

 , (E.38)

K17 + K27 + K37 + K47 + K57 + K67 =


3(kn + kt) 0 −2

√
3ktr

0 3(kn + kt) 2ktr

−2
√

3ktr 2ktr 6ktr
2

 . (E.39)
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If the diagonal mass matrix for this configuration of DEM elements is given as before, then

the standard eigenvalue problem associated with the natural frequencies ω of the system is

(
M−1/2KM−1/2 − ω2I

)
x = 0. (E.40)

If we let A = M−1/2KM−1/2, and if we assume that kt ≤ kn (so that |kn−kt| = kn−kt), then

from equation (E.4) we obtain the following Gerschgorin bound on ω2, with I = (2/5)mr2:

G1,1 = G4,4 = G7,7 = G10,10 = G13,13 = G16,16 =
3.866kn + 9.298kt

m
(E.41)

G2,2 = G5,5 = G8,8 = G11,11 = G14,14 = G17,17 =
3.866kn + 6.877kt

m
(E.42)

G3,3 = G6,6 = G9,9 = G12,12 = G15,15 = G18,18 =
25.221kt

m
(E.43)

G19,19 =
7.732kn + 15.222kt

m
(E.44)

G20,20 =
7.732kn + 13.754kt

m
(E.45)

G21,21 =
50.441kt

m
(E.46)

If 0.22kn ≤ kt then max(Gii) = G21,21, and so for 0.22kn ≤ kt ≤ kn we have

Hexagonal: ωmax ≤ 7.102

√
kt
m

⇒ ∆tcrit =
2

ωmax
≥ 0.282

√
m

kt
. (E.47)

E.1.4 Discussion (2-D)

Note that, although the result given in equation (E.47) is only a lower bound on the critical

time step, meaning that the true critical time step could be larger than the value predicted

by equation (E.47), this value is significantly lower than the result of Tavarez and Plesha

(2007), who obtained

∆tT&P
crit = 0.5

√
m

kn
, (E.48)
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for the same hexagonal close-packing that we have considered, assuming that kn = kt.

(Tavarez and Plesha (2007) use the mass moment of inertia of a disk rather than that of

a sphere in their calculations, which makes a slight difference, but does not remove the

discrepancy – see below.) The estimate given in equation (E.47) is also lower than the result

of O’Sullivan and Bray (2004), who obtained

∆tO’S&B
crit ≈ 0.4

√
m

k
, (E.49)

again assuming that kn = kt = k. What is perhaps most striking about our result is

the fact that equation (E.47) does not depend on kn at all for a very large range of kt/kn

(0.22 ≤ kt/kn ≤ 1.0). Of course, as the authors point out in Tavarez and Plesha (2007),

the assumption that kn = kt only leads to a more conservative estimate of ∆tcrit in any

particular equation, since generally kt ≤ kn. Also note that equations (E.15), (E.33), and

(E.47) are increasingly restrictive on the critical time step size. This increasing restriction

on the critical time step size follows the increase in the largest coordination number of any

element in each assembly. This suggests that the critical time step size will be further reduced

if a configuration of close-packed DEM elements of different sizes is considered in which the

largest coordination number for an element is larger than that of a hexagonal close-packing.

The same observation was made by O’Sullivan and Bray (2004).

It is worth pointing out that the stability condition ∆tcrit = 2/ωmax is usually associated

with the central difference explicit time integration scheme. However, many DEM codes

today (e.g., the open source code LAMMPS developed at Sandia National Laboratories,

described in Section 9.3) do not use the central difference time integration scheme, but rather

follow molecular dynamics codes in using the so-called “Velocity Verlet” time integration

scheme, which is really just a form of the “leapfrog” scheme. Luckily, it can be shown (e.g.,

Strang, 2007) that the stability condition for the leapfrog scheme is the same as that for the
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central difference scheme: ∆tcrit = 2/ωmax.

It is also worth pointing out that most DEM codes today (e.g., the open source code

LAMMPS) model 2-D discrete elements as spheres rather than disks, because these codes

model a 2-D DEM simulation as a constrained 3-D simulation, which is why we have used

the value of I = (2/5)mr2 for the mass moments of inertia of the discrete elements in the

calculations of the preceding subsections. If we had used a value of I = (1/2)mr2 for the

mass moments of inertia of the discrete elements, assuming that the discrete elements were

modeled as disks, then the resulting Gerschgorin bounds on the critical time step derived in

the preceding subsections would have been:

Pair (disks): G33 = G66 =
6.828kt
m

⇒ ∆tcrit =
2

ωmax
≈ 0.765

√
m

kt
. (E.50)

Triangular (disks): G33 =
14.692kt

m
⇒ ∆tcrit =

2

ωmax
≈ 0.522

√
m

kt
. (E.51)

Hexagonal (disks): G21,21 =
42.283kt

m
⇒ ∆tcrit =

2

ωmax
≈ 0.308

√
m

kt
. (E.52)

For comparison, we repeat the Gerschgorin bounds on the critical time step derived in the

preceding subsections for spherical discrete elements, which are slightly more restrictive

(the critical time steps for 2-D arrangements of spheres are about 10% smaller than the

corresponding critical time steps for 2-D arrangements of disks):

Pair (spheres): G33 = G66 =
8.162kt
m

⇒ ∆tcrit =
2

ωmax
≈ 0.7

√
m

kt
. (E.53)

Triangular (spheres): G33 =
17.482kt

m
⇒ ∆tcrit =

2

ωmax
≈ 0.478

√
m

kt
. (E.54)

Hexagonal (spheres): G21,21 =
50.441kt

m
⇒ ∆tcrit =

2

ωmax
≈ 0.282

√
m

kt
. (E.55)

Equations (E.50) – (E.55) are valid for 0.25kn ≤ kt ≤ kn, where kn and kt are the normal

and tangential contact spring stiffnesses, respectively, andm is the element mass. Note again
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that the condition 0.25kn ≤ kt ≤ kn is not unusual. Indeed, assuming Hertz-Mindlin contact

between spheres composed of a stable elastic material with positive Poisson’s ratio, the ratio

kt/kn must lie between 2/3 and 1, or roughly 0.667kn ≤ kt ≤ kn.

E.2 Critical Time Step Size for 3-D DEM

We now turn our attention to determining the Gerschgorin bounds on the critical time step

size for various arrangements of 3-D DEM elements in contact. We begin by developing

the stiffness matrix for two arbitrarily oriented 3-D DEM elements in contact, where the

contact forces between the DEM elements are modeled by linear springs of stiffness kn and

kt in the directions normal and tangent to the plane of contact, as shown in Figure E.5 at

the left. In Figure E.5 at the center and right, the geometry and degrees of freedom (DOF)

Figure E.5: Left: Linear spring contact model for spherical DEM elements. Center: Geom-
etry of two 3-D DEM elements i and j in contact. Right: Translational DOF ux, uy, uz,
rotational DOF θx, θy, θz, forces fx, fy, fz, and moments (torques) tx, ty, tz for a single 3-D
DEM element.

of two contacting 3-D DEM elements are shown. There are three translational DOF for

each element: ux, uy, uz, and there are three rotational DOF for each element: θx, θy, θz,

which correspond to small rotations about each of the axes relative to an initial reference

position. Corresponding to the translational DOF, each element experiences three forces: fx,

fy, fz, and corresponding to the rotational DOF, each element experiences three moments
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or torques: tx, ty, tz.

To obtain the stiffness matrix for two 3-D DEM elements in contact, we must determine

the relationships between the translational and rotational DOF and the forces and moments

on the elements. For elements i and j in contact, let the unit vector in the direction from

the center of element i to the center of element j be written as

en = cxi + cyj + czk (E.56)

where cx, cy, and cz are the direction cosines, given by cx = (xj−xi)/(2r), cy = (yj−yi)/(2r),

and cz = (zj − zi)/(2r), where (xi, yi, zi) and (xj, yj, zj) are the coordinates of the elements

i and j, respectively, and where r is the radius of both DEM elements.

The displacement vector ui of element i is given in terms of that element’s translational

DOF as

ui = uixi + uiyj + uizk (E.57)

and the rotation vector Θi of element i is given in terms of that element’s rotational DOF

as

Θi = θixi + θiyj + θizk (E.58)

Let element j be fixed. Then the relative displacement vector un normal to the plane of

contact between elements i and j is given by

un = (ui · en)en = (c2
xu

i
x + cxcyu

i
y + cxczu

i
z)i

+ (cxcyu
i
x + c2

yu
i
y + cyczu

i
z)j

+ (cxczu
i
x + cyczu

i
y + c2

zu
i
z)k (E.59)

and the relative displacement vector ut tangent to the plane of contact due to translational
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DOF only is given by

ut = ui − un = ((c2
y + c2

z)u
i
x − cxcyuiy − cxczuiz)i

+ (−cxcyuix + (c2
x + c2

z)u
i
y − cyczuiz)j

+ (−cxczuix − cyczuiy + (c2
x + c2

y)u
i
z)k (E.60)

where we have used the fact that c2
x + c2

y + c2
z = 1.

The position vector r from the center of element i to the point of contact between elements

i and j is given by

r = ren = rcxi + rcyj + rczk (E.61)

and the relative displacement vector uθt at the point of contact due to rotational DOF is

given by

uθt = Θi × r = (rczθ
i
y − rcyθiz)i

+ (rcxθ
i
z − rczθix)j

+ (rcyθ
i
x − rcxθiy)k (E.62)

The total relative tangential displacement vector at the point of contact between elements i

and j is given by utotal
t = ut + uθt .

Thus, the contact force vector f between elements i and j is

f = fn + ft = knun + ktu
total
t (E.63)

and the contact moment vector t between elements i and j is

t = r× ft = r× ktutotal
t (E.64)
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It follows that the stiffness matrix K for two 3-D DEM elements i and j in contact can

be written in block matrix form by

K =

 Kij −Kij

−Kij Kij

 (E.65)

where

Kij =

 Kuu
ij Kuθ

ij

−Kuθ
ij Kθθ

ij

 (E.66)

with

Kuu
ij =


knc

2
x + kt(c

2
y + c2

z) (kn − kt)cxcy (kn − kt)cxcz

(kn − kt)cxcy knc
2
y + kt(c

2
x + c2

z) (kn − kt)cycz

(kn − kt)cxcz (kn − kt)cycz knc
2
z + kt(c

2
x + c2

y)

 (E.67)

Kuθ
ij =


0 ktrcz −ktrcy

−ktrcz 0 ktrcx

ktrcy −ktrcx 0

 (E.68)

Kθθ
ij =


ktr

2(c2
y + c2

z) −ktr2cxcy −ktr2cxcz

−ktr2cxcy ktr
2(c2

x + c2
z) −ktr2cycz

−ktr2cxcz −ktr2cycz ktr
2(c2

x + c2
y)

 (E.69)

where cx = (xj − xi)/(2r), cy = (yj − yi)/(2r), cz = (zj − zi)/(2r), r is the radius of both

DEM elements, and kn and kt are the normal and tangential stiffnesses at the contact point.

The vector of DOF and the vector of forces and moments on the two DEM elements
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shown in Figure E.5 are related by

K



ui

Θi

uj

Θj


=



f i

ti

f j

tj


(E.70)

E.2.1 Single Pair of DEM Elements (3-D)

Figure E.6: A single pair of 3-D DEM elements in contact.

If we consider a single pair of contacting 3-D DEM elements with radius r labelled 1 and

2 as shown in Figure E.6, then the stiffness matrix for the system is given in block matrix

form by

K =

 K12 −K12

−K12 K12

 (E.71)

where

K12 =



kn 0 0 0 0 0

0 kt 0 0 0 ktr

0 0 kt 0 −ktr 0

0 0 0 0 0 0

0 0 −ktr 0 ktr
2 0

0 ktr 0 0 0 ktr
2


. (E.72)
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If the diagonal mass matrix for the pair of DEM elements is given by

M =

 M1 0

0 M2

 , M1 = M2 =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I


, (E.73)

then the standard eigenvalue problem associated with the natural frequencies ω of the system

is (
M−1/2KM−1/2 − ω2I

)
x = 0. (E.74)

If we let A = M−1/2KM−1/2, then from equation (E.4) we obtain the following Gerschgorin

bound on ω2, with I = (2/5)mr2:

G1,1 = G7,7 =
2kn
m

(E.75)

G2,2 = G3,3 = G8,8 = G9,9 =
2kt
m

+
2ktr√
m
√
I

=
5.162kt
m

(E.76)

G5,5 = G6,6 = G11,11 = G12,12 =
2ktr

2

I
+

2ktr√
m
√
I

=
8.162kt
m

(E.77)

If 0.245kn ≤ kt, then max(Gii) = G5,5 = G6,6 = G11,11 = G12,12, and we have

Pair: ωmax ≤ 2.857

√
kt
m

⇒ ∆tcrit =
2

ωmax
≥ 0.7

√
m

kt
, (E.78)

which is the same as the result for a single pair of DEM elements in 2-D, given by equation
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(E.15).

E.2.2 Tetrahedral Configuration of DEM Elements

Figure E.7: A tetrahedral configuration of four 3-D DEM elements in contact.

If we consider a tetrahedral configuration of four contacting DEM elements with radius r

labelled 1, 2, 3, and 4 with coordinates

1 : (
√

2r, 0, 0) 2 : (0,
√

2r, 0) 3 : (0, 0,
√

2r) 4 : (
√

2r,
√

2r,
√

2r) (E.79)

as shown in Figure E.7, then the stiffness matrix for the system is given in block matrix form

by

K =



K12 + K13 + K14 −K12 −K13 −K14

−K12 K12 + K23 + K24 −K23 −K24

−K13 −K23 K13 + K23 + K34 −K34

−K14 −K24 −K34 K14 + K24 + K34


(E.80)
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where

K12 =



1
2
(kn + kt) −1

2
(kn − kt) 0 0 0 −

√
2

2
ktr

−1
2
(kn − kt) 1

2
(kn + kt) 0 0 0 −

√
2

2
ktr

0 0 kt
√

2
2
ktr

√
2

2
ktr 0

0 0
√

2
2
ktr

1
2
ktr

2 1
2
ktr

2 0

0 0
√

2
2
ktr

1
2
ktr

2 1
2
ktr

2 0

−
√

2
2
ktr −

√
2

2
ktr 0 0 0 ktr

2


(E.81)

K13 =



1
2
(kn + kt) 0 −1

2
(kn − kt) 0

√
2

2
ktr 0

0 kt 0 −
√

2
2
ktr 0 −

√
2

2
ktr

−1
2
(kn − kt) 0 1

2
(kn + kt) 0

√
2

2
ktr 0

0 −
√

2
2
ktr 0 1

2
ktr

2 0 1
2
ktr

2

√
2

2
ktr 0

√
2

2
ktr 0 ktr

2 0

0 −
√

2
2
ktr 0 1

2
ktr

2 0 1
2
ktr

2


(E.82)

K14 =



kt 0 0 0
√

2
2
ktr −

√
2

2
ktr

0 1
2
(kn + kt)

1
2
(kn − kt) −

√
2

2
ktr 0 0

0 1
2
(kn − kt) 1

2
(kn + kt)

√
2

2
ktr 0 0

0 −
√

2
2
ktr

√
2

2
ktr ktr

2 0 0
√

2
2
ktr 0 0 0 1

2
ktr

2 −1
2
ktr

2

−
√

2
2
ktr 0 0 0 −1

2
ktr

2 1
2
ktr

2


(E.83)
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K23 =



kt 0 0 0
√

2
2
ktr

√
2

2
ktr

0 1
2
(kn + kt) −1

2
(kn − kt) −

√
2

2
ktr 0 0

0 −1
2
(kn − kt) 1

2
(kn + kt) −

√
2

2
ktr 0 0

0 −
√

2
2
ktr −

√
2

2
ktr ktr

2 0 0
√

2
2
ktr 0 0 0 1

2
ktr

2 1
2
ktr

2

√
2

2
ktr 0 0 0 1

2
ktr

2 1
2
ktr

2


(E.84)

K24 =



1
2
(kn + kt) 0 1

2
(kn − kt) 0

√
2

2
ktr 0
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√

2
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√
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2
ktr
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√
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√
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√
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√
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2
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(E.85)

K34 =



1
2
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2
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2

2
ktr
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√
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√
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√
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√
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√
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√
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2


(E.86)
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If the diagonal mass matrix for the tetrahedral configuration of DEM elements is given by

M =



M1 0 0 0

0 M2 0 0

0 0 M3 0

0 0 0 M4


, M1 = M2 = M3 = M4 =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I


,

(E.87)

then the standard eigenvalue problem associated with the natural frequencies ω of the system

is (
M−1/2KM−1/2 − ω2I

)
x = 0. (E.88)

If we let A = M−1/2KM−1/2, and if we assume that kt ≤ kn (so that |kn−kt| = kn−kt), then

from equation (E.4) we obtain the following Gerschgorin bound on ω2, with I = (2/5)mr2:

G1,1 = G2,2 = G3,3 = G19,19 = G20,20 = G21,21 =
4kn + 2kt

m
+

4
√

2ktr√
m
√
I

=
4kn + 10.944kt

m
(E.89)

G7,7 = G8,8 = G13,13 = G14,14 =
4kn + 2kt

m
+

3
√

2ktr√
m
√
I

=
4kn + 8.708kt

m
(E.90)

G9,9 = G15,15 =
4kn + 2kt

m
+

2
√

2ktr√
m
√
I

=
4kn + 6.472kt

m
(E.91)
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G4,4 = G5,5 = G6,6 = G22,22 = G23,23 = G24,24 =
6ktr

2

I
+

4
√

2ktr√
m
√
I

=
23.944kt

m
(E.92)

G10,10 = G11,11 = G16,16 = G17,17 =
6ktr

2

I
+

3
√

2ktr√
m
√
I

=
21.708kt

m
(E.93)

G12,12 = G18,18 =
6ktr

2

I
+

2
√

2ktr√
m
√
I

=
19.472kt

m
(E.94)

If 0.308kn ≤ kt then max(Gii) = G6,6 = G24,24, and so for 0.308kn ≤ kt ≤ kn we have

Tetrahedral: ωmax ≤ 4.893

√
kt
m

⇒ ∆tcrit =
2

ωmax
≥ 0.409

√
m

kt
. (E.95)

Note that the condition 0.308kn ≤ kt ≤ kn is not unusual, since assuming Hertz-Mindlin

contact between spheres composed of a stable elastic material with positive Poisson’s ratio,

the ratio kt/kn must lie between 2/3 and 1, or roughly 0.667kn ≤ kt ≤ kn.

E.2.3 Hexagonal Close-Packing of DEM Elements (3-D)

Figure E.8: A hexagonal close-packed configuration of thirteen 3-D DEM elements in contact.

If we consider a 3-D hexagonal close-packed configuration of thirteen contacting 3-D DEM
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elements with radius r labelled 1 – 13 with coordinates

1 : (−r,−
√

3r, 0) 2 : (r,−
√

3r, 0) 3 : (2r, 0, 0)

4 : (r,
√

3r, 0) 5 : (−r,
√

3r, 0) 6 : (−2r, 0, 0)

7 : (−r,−
√

3r

3
,
2
√

6r

3
) 8 : (r,−

√
3r

3
,
2
√

6r

3
) 9 : (0,

2
√

3r

3
,
2
√

6r

3
)

10 : (−r,−
√

3r

3
,−2
√

6r

3
) 11 : (r,−

√
3r

3
,−2
√

6r

3
) 12 : (0,

2
√

3r

3
,−2
√

6r

3
)

13 : (0, 0, 0) (E.96)

as shown in Figure E.8, then the stiffness matrix for the system will be a 78 × 78 matrix,

which even in block matrix form would be unwieldy to write. However, in analogy to the

2-D case we strongly expect the critical natural frequencies of the system to be associated

with the central element 13, which is in contact with every other element in the system.

Thus, for the purposes of the Gerschgorin bound, we need only analyze the six rows of the

thirteenth (and final) row of the 13× 13 block stiffness matrix:

K(13,∗) =

[
−K1,13 −K2,13 . . . −K12,13 K1,13 + K2,13 + . . .+ K12,13

]
(E.97)

where

K3,13 = K6,13 =



kn 0 0 0 0 0

0 kt 0 0 0 ∓ktr

0 0 kt 0 ±ktr 0

0 0 0 0 0 0

0 0 ±ktr 0 ktr
2 0

0 ∓ktr 0 0 0 ktr
2


, (E.98)
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K1,13 = K4,13 =



1
4
(kn + 3kt)

√
3

4
(kn − kt) 0 0 0 ∓

√
3

2
ktr

√
3

4
(kn − kt) 1

4
(3kn + kt) 0 0 0 ±1

2
ktr

0 0 kt ±
√

3
2
ktr ∓1

2
ktr 0

0 0 ±
√

3
2
ktr

3
4
ktr

2 −
√

3
4
ktr

2 0

0 0 ∓1
2
ktr −

√
3

4
ktr

2 1
4
ktr

2 0

∓
√

3
2
ktr ±1

2
ktr 0 0 0 ktr

2


,
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K2,13 = K5,13 =



1
4
(kn + 3kt) −

√
3

4
(kn − kt) 0 0 0 ∓

√
3

2
ktr

−
√

3
4

(kn − kt) 1
4
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2
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√

3
2
ktr ±1

2
ktr 0

0 0 ±
√

3
2
ktr

3
4
ktr

2
√

3
4
ktr

2 0

0 0 ±1
2
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√
3

4
ktr

2 1
4
ktr

2 0

∓
√

3
2
ktr ∓1

2
ktr 0 0 0 ktr

2


,
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K7,13 =



1
4
(kn + 3kt)
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3

12
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√
6

6
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6
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√
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6

3
ktr 0 1

2
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√
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√

6
3
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√
3

12
ktr

2 11
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√

2
6
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3
6
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1
2
ktr 0

√
6

6
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2
√

2
6
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2 1
3
ktr

2
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,

(E.101)
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K8,13 =
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K10,13 =


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K11,13 =
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K9,13 = K12,13 =


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and the sum is (surprisingly):

K1,13 + K2,13 + . . .+ K12,13 =



4kn + 8kt 0 0 0 0 0

0 4kn + 8kt 0 0 0 0

0 0 4kn + 8kt 0 0 0

0 0 0 8ktr
2 0 0

0 0 0 0 8ktr
2 0

0 0 0 0 0 8ktr
2


.

(E.106)

If the diagonal mass matrix for the 3-D hexagonal close-packed configuration of thirteen

DEM elements shown in Figure E.8 is given by

M =


M1 0

. . .

0 M13

 , M1 = . . . = M13 =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I


, (E.107)

then the standard eigenvalue problem associated with the natural frequencies ω of the system
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is (
M−1/2KM−1/2 − ω2I

)
x = 0. (E.108)

If we let A = M−1/2KM−1/2, and if we assume that kt ≤ kn (so that |kn−kt| = kn−kt), then

from equation (E.4) we obtain the following Gerschgorin bound on ω2, with I = (2/5)mr2:

G73,73 =
11.942kn + 12.058kt

m
+

10.672ktr√
m
√
I

=
11.942kn + 28.932kt

m
(E.109)

G74,74 =
12.195kn + 11.805kt

m
+

10.899ktr√
m
√
I

=
12.195kn + 29.038kt

m
(E.110)

G75,75 =
11.519kn + 12.481kt

m
+

11.774ktr√
m
√
I

=
11.519kn + 31.097kt

m
(E.111)

G76,76 =
19.942ktr

2

I
+

10.672ktr√
m
√
I

=
66.729kt

m
(E.112)

G77,77 =
20.195ktr

2

I
+

10.899ktr√
m
√
I

=
67.720kt

m
(E.113)

G78,78 =
19.519ktr

2

I
+

11.774ktr√
m
√
I

=
67.414kt

m
(E.114)

If 0.315kn ≤ kt then max(Gii) = G77,77, and so for 0.315kn ≤ kt ≤ kn we have

Hexagonal: ωmax ≤ 8.229

√
kt
m

⇒ ∆tcrit =
2

ωmax
≥ 0.243

√
m

kt
. (E.115)



350

E.2.4 Discussion (3-D)

In summary, we have found that for 3-D DEM, the critical time step size is bounded by

Gerschgorin’s Theorem for the following configurations

Pair (3-D): G6,6 = G12,12 =
8.162kt
m

⇒ ∆tcrit =
2

ωmax
≈ 0.7

√
m

kt
. (E.116)

Tetrahedral (3-D): G6,6 = G24,24 =
23.944kt

m
⇒ ∆tcrit =

2

ωmax
≈ 0.409

√
m

kt
. (E.117)

Hexagonal (3-D): G77,77 =
67.720kt

m
⇒ ∆tcrit =

2

ωmax
≈ 0.243

√
m

kt
. (E.118)

Equations (E.116) – (E.118) are valid for 0.32kn ≤ kt ≤ kn, where kn and kt are the

normal and tangential contact spring stiffnesses, respectively, and m is the element mass.

Note that the condition 0.32kn ≤ kt ≤ kn is not unusual, since assuming Hertz-Mindlin

contact between spheres composed of a stable elastic material with positive Poisson’s ratio,

the ratio kt/kn must lie between 2/3 and 1, or roughly 0.667kn ≤ kt ≤ kn. Moreover, since

the hexagonal close-packing is the tightest attainable packing for uniform spheres in 3-D, it

is reasonable to conjecture that the critical time step size given in equation (E.118) is safe

for any 3-D DEM simulation. Also note that the Gerschgorin bound provides a conservative

estimate for the critical time step size, and the actual maximum critical time step may be

larger than the estimates derived here.

For comparison, we note that O’Sullivan and Bray (2004) obtained the following estimate

for the critical time step size in 3-D DEM simulations:

∆tO’S&B
crit ≈ 0.3

√
m

k
, (E.119)

where it was assumed that kn = kt = k. Note that the value of the critical time step size

given in equation (E.118) is lower than the result of O’Sullivan and Bray (2004). Thus,
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our result is more conservative than theirs. It is also noteworthy that, in the presence of

velocity dependent damping, the critical time step size may be further reduced. Interestingly,

since the method used by O’Sullivan and Bray (2004) to obtain their critical time step was

approximate, they recommended applying a “factor of safety” to the value given in equation

(E.119), and thus they recommended using a critical time step size of ∆tcrit ≈ 0.2
√
m/k,

which corresponds roughly to our result. The justification for their “factor of safety”, however,

was heuristic, and it was not proven to provide a strictly conservative bound on the critical

time step size. Thus, our result (E.118) is both significant and original. What is perhaps

most striking about our result is the fact that equation (E.118) does not depend on kn for

a very large range of kt/kn (0.32 ≤ kt/kn ≤ 1.0). Also, anecdotal evidence suggests that a

time step size of ∆t ≈ 0.2
√
mmin/kmax is indeed necessary to run (reliably) stable 3-D DEM

simulations using the open source code LAMMPS, described in Section 9.3.
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