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Abstract	

The	acquisition	of	symbolic	fraction	knowledge	is	critical	for	mathematical	

development.	However,	many	young	children	have	struggled	to	learn	the	concept	of	

symbolic	fractions	than	to	learn	the	concept	of	whole	numbers.	One	emerging	approach	to	

investigating	this	challenging	domain	of	math	is	to	understand	neurocognitive	mechanisms	

of	symbolic	fraction	knowledge	that	can	be	leveraged	to	help	support	young	learners.	

Throughout	development,	these	underlying	mechanisms	interact	consistently	with	

different	cortical	networks	and	also	with	educational	environments.	Understanding	

developmental	interactions	between	neural	networks	and	developing	competence	during	

symbolic	fraction	acquisition	may	inform	design	principles	for	more	effective	approaches	

to	instruction.	

With	developmental	cognitive	neuroscience	perspectives,	the	present	dissertation	

aimed	to	explore	developmental	changes	in	functional	specialization	of	the	brains	as	

children	learn	fraction	instructions.	In	particular,	this	dissertation	focuses	on	a	recently	

proposed	neurocognitive	tool,	a	Ratio	Processing	System	(RPS),	a	primitive	ability	to	

process	nonsymbolic	ratio	magnitudes	(e.g.,	ratios	instantiated	by	juxtaposing	two	line-

segments)	that	might	be	used	to	help	build	students’	understanding	of	symbolic	fractions.		

With	Study	1,	I	describe	a	cross-sectional	functional	MRI	study	comparing	functional	

engagement	for	processing	nonsymbolic	ratio	magnitudes	and	symbolic	fractions.	Study	1	

compared	groups	of	children	prior	to	formal	fractions	instruction	and	after	a	few	years	of	

the	instruction.	The	study	reveals	that	shared	functional	substrates	for	nonsymbolic	ratios	

and	symbolic	ratios	emerge	during	the	early	years	of	fractions	instruction.	Second,	using	a	

cross-sequential	approach,	Study	2	investigates	developmental	changes	of	individual	

differences	in	microstructures	that	relates	to	ratio	and	fraction	processing	abilities	during	

early	years	of	fraction	instructions.	Next,	Study	3	investigates	how	nonsymbolic	ratio	

processing	ability	can	contribute	to	early	fraction	instructions	compared	to	other	cognitive	

abilities	important	for	fractions	with	a	special	focus	on	learning.	Tracking	down	fraction	

acquisition	from	the	children’s	brain	to	behavior,	this	dissertation	puts	forward	the	

potential	use	of	nonsymbolic	ratios	as	perceptual	tool	that	might	benefit	children’s	fraction	

learning.
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Chapter	1:	General	Introduction	and	Background	

Important	but	challenging	math	domain	–	fractions		

		 Developing	students’	mathematical	competence	benefits	individuals	themselves	and	

society	via	the	cultivation	of	human	capital	for	Science,	Technology,	Engineering,	and	

Mathematics	(STEM)	fields	(Daempfle,	2003).	So	far,	numerous	developmental,	cognitive,	

and	neuroscience	studies	have	focused	on	investigating	whole	number	knowledge	to	

enhance	students’	overall	mathematical	competence	(Geary,	2007;	Leslie,	Gelman,	&	

Gallistel,	2008).	However,	recently	fractions	knowledge	has	been	more	emphasized	as	a	

critical	factor	for	supporting	mathematical	development	and	mastering	advanced	

mathematics	like	algebra,	which	can	be	a	key	to	accessing	higher	education	(Bailey,	Hoard,	

Nugent,	&	Geary,	2012;	Booth	&	Newton,	2012;	Dewolf,	Bassok,	&	Holyoak,	2015;	Siegler	et	

al.,	2012a).	For	instance,	researchers	have	found	that	early	fractions	ability	in	fifth	and	

sixth	grades	was	uniquely	predictive	of	advanced	mathematical	achievement	in	tenth	grade	

(Siegler	et	al.,	2012a).		

Despite	the	importance	of	fractions	knowledge,	it	has	been	remained	one	of	the	

most	complicated	mathematical	topics	to	grasp	for	children	(e.g.,	Lesh,	Post,	&	Behr,	1987;	

Ni	&	Zhou,	2005;	Vamvakoussi	&	Vosniadou,	2004,	2010).	Even	high	school	and	college	

students	are	often	confused	by	the	concept	of	fractions	(Carpenter,	Corbitt,	&	National	

Council	of	Teachers	of	Mathematics.,	1981;	Lortie-Forgues	et	al.,	2015;	Schneider	&	Siegler,	

2010).	Carpenter	et	al.	(1981)	provided	one	famous	example	of	this:	As	a	part	of	the	

National	Assessment	of	Education	Progress	(NAEP),	8th	graders	and	high	schoolers	were	

asked	to	choose	the	nearest	number	to	the	sum	of	12/13	+	7/8.	Amongst	options	of	1,	2,	19,	

21	and	“I	don’t	know”,	the	most	common	answer	was	“19,”	whereas	the	correct	answer	was	
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“2”.	Only	24	%	of	the	students	chose	of	8th	graders	the	right	answer.		In	the	test,	most	

students	added	numerators	from	the	given	fractions	(“12”	from	12/13	and	“7”	from	7/8),	

instead	of	considering	the	holistic	magnitude	of	each	fraction	(both	fractions	are	about	“1”).	

However,	these	struggles	are	not	similarly	prevalent	with	natural	numbers	(Lortie-Forgues	

et	al.,	2015).	Why	are	fractions	more	challenging	to	learn	compared	to	whole	numbers?		

The	current	dissertation	has	been	motivated	by	explaining	this	discrepancy.	The	

aims	of	this	chapter	are	to	critically	review	existing	perspectives	and	studies	about	fraction	

learning	and	to	explore	what	we	do	not	know	yet.	Another	aim	of	this	chapter	is	to	lay	out	

potential	theoretical	approach	to	better	understand	fraction	learning	and	the	experimental	

studies	in	this	dissertation.	The	aims	of	the	experimental	studies	in	this	dissertation	will	be	

introduced	at	the	end	of	the	chapter.		

The	innate	constraints	account		

Why	fractions	are	hard	is	one	of	the	long-standing	questions	in	children's	

mathematical	development	(Lortie-Forgues	et	al.,	2015;	Ni	&	Zhou,	2005).	Some	prior	work	

answered	this	question	by	suggesting	that	humans	lack	a	perceptual	ground	to	utilize	for	

fraction	acquisition	as	opposed	to	whole	number	acquisition.	Most	prominent	existing	

theories	about	the	foundations	of	number	knowledge	argued	that	the	human	brain	is	

equipped	with	an	innate	ability	to	estimate	and	manipulate	large	numerosities	

approximately,	the	approximate	number	system	(ANS)	(Dehaene,	Dehaene-Lambertz,	&	

Cohen,	1998;	Halberda	&	Feigenson,	2008).	They	suggested	this	preexisting	system	

provides	a	neurocognitive	foundation	for	learning	the	natural	number	system,	a	culturally	

derived	invention	(Dehaene	&	Cohen,	2007;	Feigenson,	Dehaene,	&	Spelke,	2004;	Piazza,	
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2011).	Piazza	(2011)	dubbed	this	system	as	a	neurocognitive	startup	tool	for	symbolic	

numbers.	

Numerosity	representation,	a	number	of	discrete,	individual	elements	can	be	

approximately	mapped	onto	a	single	symbolic	number.	Due	to	this	characteristic,	

nonsymbolic	numerosity	representation	is	more	limited	for	other	types	of	numbers,	such	

as	rational	numbers	(Feigenson	et	al.,	2004;	Gallistel	&	Gelman,	1992;	Wynn,	1995).	

Therefore,	these	theorists	attribute	children’s	struggles	with	fractions	to	a	lack	of	cognitive	

primitive	that	provides	intuitive	access	to	fractions	magnitude	–	which	is	an	“innate	

constraint	account”	(Ni	&	Zhou,	2005).	This	innate	constraint	account	has	been	argued	by	

many	ANS	theorists	along	with	several	experimental	evidence	that	strengthen	the	ANS	

theory.		

The	ANS	theory	posits	logarithmically	spaced,	approximate	analog	representations	

of	discrete	magnitudes	with	a	fixed	amount	of	noise	around	each	numerosity	

representation	(Izard	&	Dehaene,	2008;	Nieder	&	Dehaene,	2009;	Piazza,	Izard,	Pinel,	Le	

Bihan,	&	Dehaene,	2004).	Thus,	the	discrimination	between	numerosities	follows	Weber’s	

law,	i.e.,	discriminability	decreases	as	the	ratio	between	magnitudes	approaches	1	

(Cantrell,	Boyer,	Cordes,	&	Smith,	2015;	Odic,	2018;	Odic	&	Starr,	2018;	Xu	&	Spelke,	2000).	

In	other	words,	the	performance	on	numerosity	discrimination	is	likely	to	show	a	distance	

effect	(Buckley	&	Gillman,	1974).	As	two	numerosities	are	farther	away	from	each	other,	

the	sizes	of	numbers	can	be	compared	more	rapidly	and	accurately.	For	example,	3	dots	vs.	

8	dots	is	much	easier	than	3	dots	vs.	2	dots	since	the	distance	between	3	and	8	is	farther	

than	3	and	2.	The	minimum	ratio	or	distance	between	magnitudes	that	an	individual	can	

discriminate	can	indicate	one’s	acuity	for	the	ANS	(Pica,	Lemer,	Izard,	&	Dehaene,	2004).	
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Moreover,	there	are	numerous	supporting	results	indicating	that	the	ANS	is	a	

phylogenetically	conserved	system	as	hypothesized.	For	example,	even	newborn	infants	

(e.g.,	Izard,	Sann,	Spelke,	&	Streri,	2009)	and	nonhuman	primates	(e.g.,	Nieder	&	Miller,	

2004)	can	discriminate	numerosities.	Also,	ANS	acuity	sharpens	over	the	course	of	

development.	ANS	acuity	was	reported	to	be	1:3	in	newborns	(Izard	et	al.,	2009),	1:2	in	6-

month	old	infants	(Xu	&	Spelke,	2000),	3:4~5:6	in	preschoolers	(Halberda	&	Feigenson,	

2008;	Odic,	2018;	Odic,	Libertus,	Feigenson,	&	Halberda,	2013),	6:7	at	6	years	(Halberda	&	

Feigenson,	2008;	Odic,	2018;	Odic	et	al.,	2013)	and	9:10~10:11	in	adults	(Halberda,	Ly,	

Wilmer,	Naiman,	&	Germine,	2012;	Halberda,	Mazzocco,	&	Feigenson,	2008;	Odic	et	al.,	

2013).	

In	addition	to	this,	individual	differences	in	the	ANS	acuity	have	measured	its	

concurrent	or	predictive	relationships	with	formal	math	achievement	have	documented	

(for	review,	see	Chen	&	Li,	2014;	but	see	De	Smedt,	Noël,	Gilmore,	&	Ansari,	2013).	Even	a	

retrospective	predictive	relationship	has	been	found	by	Halberda	et	al.	(2008).	They	found	

that	the	ANS	acuities	measured	at	14	years-old	retrospectively	predicted	children’s	past	

math	achievement	scores	extending	all	the	way	back	to	kindergarten	(Halberda	et	al.,	

2008).	Beyond	predictions,	a	few	studies	showed	that	the	ANS	training	result	in	improved	

math	achievement	(Kim,	Jang,	&	Cho,	2018;	Park	&	Brannon,	2013,	2014;	But	see;		Bugden,	

Szkudlarek,	&	Brannon,	2021;	Szkudlarek,	Park,	&	Brannon,	2021).	

This	ANS	theory	has	also	been	supported	by	neural	evidence.	Several	functional	

neuroimaging	and	electrophysiological	studies	supported	the	hypothesis	on	the	preexisting	

neural	system	for	numbers.	Functional	neuroimaging	studies	with	humans	revealed	that	

both	nonsymbolic	and	symbolic	number	processing	recruit	a	fronto-parietal	network,	
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especially	the	intraparietal	Sulcus	(IPS)	(Ansari,	2008;	Cantlon	et	al.,	2011;	Dehaene,	2011;	

Dehaene	&	Cohen,	2007;	Nieder	&	Dehaene,	2009;	Piazza,	2011;	Piazza	&	Izard,	2009;	

Piazza	et	al.,	2004).	Even	the	data	from	diffusion	tensor	imaging	(DTI)	suggested	that	the	

microstructures	underneath	fronto-parietal	areas	are	related	to	whole	number	competence		

(Matejko	&	Ansari,	2015;	Matejko,	Price,	Mazzocco,	&	Ansari,	2013;	Rykhlevskaia,	Uddin,	

Kondos,	&	Menon,	2009;	van	Eimeren,	Niogi,	McCandliss,	Holloway,	&	Ansari,	2008).	Not	

just	with	humans,	even	single-neuron	recordings	in	monkeys	found	that	individual	neurons	

are	tuned	to	specific	numerosity	(Brannon,	1998;	Nieder	&	Dehaene,	2009).	

With	these	various	strands	of	supporting	evidence,	the	ANS	has	been	theorized	and	

serves	as	a	good	explanation	that	this	innate	system	exists	only	for	natural	numbers	(for	

review,	Dehaene,	2011;	Piazza,	2011).	In	other	words,	symbolic	number	acquisition	can	be	

privileged	from	representations	of	numerosities,	but	rational	numbers	cannot	be	

advantaged	by	nonsymbolic	magnitude	representations.	This	innate	constraint	hypothesis	

has	served	as	a	good	explanation	of	the	question	why	fraction	is	hard.		

Possible	neurocognitive	startup	tool:	Ratio	Processing	System	(RPS)	

In	contrast	to	the	innate	constraints	account,	a	new	perspective	on	a	potential	

cognitive	foundation	for	fractions	knowledge	has	emerged.	Lewis,	Matthews	and	Hubbard	

(2015)	proposed	that	a	neurocognitive	foundation	exists	for	fractions,	one	they	dubbed	the	

Ratio	Processing	System	(RPS).	This	RPS	is	mainly	dedicated	to	processing	nonsymbolic	

ratios,	such	as	ratios	instantiated	by	juxtaposing	two	line-segments	as	Figure	1.	This	

nonsymbolic	ratio	magnitude	is	classified	differently	from	other	nonsymbolic	magnitudes	

such	as	numerosity	that	represents	the	ANS.	While	the	raw	amount	of	substance	(e.g.,	line-

lengths,	numerosity,	or	area)	can	be	classified	as	simple	magnitudes,	nonsymbolic	ratio	
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magnitudes	can	be	classified	as	relational	magnitudes,	which	emerge	from	comparative	

relations	between	two	simple	magnitudes.		

	

Figure	1.	The	example	stimuli	of	simple	(left	panel)	and	ratio	magnitudes	(right	panel):	(A)	

line,	(B)	circle,	(C)	blob,	and	(D)	dot	formats.	In	each	example,	the	right	side	of	each	

stimulus	indicates	a	larger	magnitude	(Park	et	al.,	2020).		

	

With	these	relationally	defined	magnitudes,	the	RPS	theory	hypothesizes	that	the	

RPS	enables	a	perceptual	mapping	between	nonsymbolic	ratios	and	symbolic	fractions	and	

eventually	helps	learners	acquire	understanding	of	symbolic	fractions	by	representing	

them	as	a	form	of	holistic	magnitudes	(see	Figure	2).	Even	though	nonsymbolic	ratios	are	

constructed	from	two	simple	magnitudes,	the	RPS	helps	to	process	it	as	an	analog	

magnitude.		

Based	on	the	arguments	of	the	RPS	hypothesis,	fractions	can	be	challenging	largely	

due	to	children’s	lack	of	experience	in	using	nonsymbolic	ratio	magnitudes	with	the	specific	

intent	of	grounding	symbolic	representations.	In	turn,	enough	experience	with	

nonsymbolic	ratios	may	facilitate	the	RPS	to	function	and	may	eventually	help	children	

learn	fractions.	A	specific	intent	of	using	nonsymbolic	ratio	magnitude	as	a	perceptual	tool	
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to	represent	symbolic	fraction	as	analog	magnitudes	might	aid	children’s	fraction	

acquisition.	

	
Figure	2.	A	conceptual	model	of	how	the	RPS	moderates	the	link	between	nonsymbolic	and	

symbolic	fractions	link	and	how	it	eventually	influences	algebra	(Lewis,	Matthews,	&	

Hubbard,	2016).	

	

Several	studies	have	supported	the	existence	of	the	RPS.	Evidence	suggests	the	RPS	

exists	early	in	development	and	across	different	species.	Studies	have	observed	the	ability	

to	discriminate	ratio	magnitudes	in	6	months	infants	(McCrink	&	Wynn,	2007),	non-human	

as	monkeys	(Drucker,	Rossa,	&	Brannon,	2016;	Vallentin	&	Nieder,	2008),	and	even	parrots	

(Bastos	&	Taylor,	2020).	Furthermore,	RPS	acuity	sharpens	with	development	(Park,	

Viegut,	&	Matthews,	2020).	My	colleagues	and	I	investigated	the	discriminability	of	simple	

and	ratio	magnitudes	in	multiple	formats	among	preschoolers,	2nd	graders,	5th	graders,	and	

adults	(see	Figure	1).	In	the	study,	we	conducted	magnitude	discrimination	tasks	in	four	

different	nonsymbolic	formats:	numerosities,	line-lengths,	circle-areas,	and	irregular	blob-

areas.	Measured	accuracy	patterns	showed	the	RPS	acuity	improves	with	age	regardless	of	

formats	and	the	growth	rate	of	accuracy	was	similar	to	that	of	simple	magnitude	acuity.	

Furthermore,	the	performance	largely	depends	on	the	types	of	magnitude	(simple	vs.	ratio)	
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rather	than	nonsymbolic	formats.	These	results	support	the	RPS	as	an	independent	

processing	system	that	can	be	separate	from	the	simple	magnitude	processing.		

	

The	RPS	and	symbolic	fractions	processing	

Given	the	evidence	supporting	the	existence	of	the	RPS,	researchers	have	sought	to	

investigate	if	symbolic	fractions	can	be	grounded	on	the	RPS.	Some	behavioral	studies	

substantiate	this	possibility	by	showing	co-processing	of	symbolic	and	nonsymbolic	ratios	

through	a	common	system	by	conducting	cross-format	fraction	comparison	tasks	with	

children	(Kalra,	Binzak,	Matthews,	&	Hubbard,	2020)	or	with	adults	(Binzak,	Matthews,	&	

Hubbard,	2019;	Matthews	&	Chesney,	2015).	For	example,	Matthews	&	Chesney	(2015)	had	

participants	compare	which	of	two	ratios	(made	from	pairs	of	circles,	dot	arrays,	or	

number	symbols)	was	larger	(Matthews	&	Chesney,	2015).	They	observed	the	distance	

effect	similar	to	the	findings	with	whole	numbers	and	numerosities	(Buckley	&	Gillman,	

1974;	De	Smedt	et	al.,	2013;	Halberda	&	Feigenson,	2008).	Also,	the	reaction	time	patterns	

suggested	that	participants	completed	cross-format	comparisons	in	1406ms	on	average	

which	is	~300ms	shorter	than	the	simple	numerosity	comparison	task	(Halberda	&	

Feigenson,	2008).	This	reaction	time	was	rapid	enough	to	preclude	the	possibility	that	they	

first	converted	nonsymbolic	ratios	into	symbolic	form	and	to	suggest	the	use	of	perceptual	

pathway	to	access	the	fractional	value	of	nonsymbolic	ratio	representation.	This	finding	

implies	that	both	nonsymbolic	and	symbolic	ratios	were	compared	through	a	common	

system.		

Furthermore,	similar	to	the	ANS,	studies	have	generated	findings	on	the	individual	

differences	in	RPS	acuity	and	its	relation	to	symbolic	fractions	competence	(Hansen	et	al.,	
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2015;	Matthews,	Lewis,	&	Hubbard,	2016;	Möhring,	Newcombe,	Levine,	&	Frick,	2015).	

Matthews	et	al.(2016)	revealed	that	RPS	acuity	could	predict	fractions	knowledge	and	even	

algebra	achievement	in	college	students.	This	novel	result	was	successfully	replicated	by	

Park	and	Matthews	(accepted).	Similar	results	have	also	been	found	with	children	(Hansen	

et	al.,	2015;	Möhring	et	al.,	2015).	These	associations	imply	a	link	between	RPS	and	

symbolic	fraction	understanding,	consistent	with	the	hypothesis	that	the	RPS	may	serve	as	

a	neurocognitive	foundation	for	symbolic	fraction	acquisition.		

	

Shared	neural	substrates	between	the	RPS	and	symbolic	fractions	processing	

In	addition	to	behavioral	evidence,	emerging	findings	suggest	there	is	shared	neural	

circuity	between	nonsymbolic	and	symbolic	ratio	processing	(Jacob,	Vallentin,	&	Nieder,	

2012;	Lewis	et	al.,	2016;	Mock	et	al.,	2018).	These	results	have	converged	to	display	that	

both	symbolic	and	nonsymbolic	ratio	processing	engage	the	IPS	and	a	broader	parietal-

prefrontal	network,	where	adults	are	believed	to	process	analog	magnitude	(ex.	

numerosity	or	single	line-length).	Functional	neuroimaging	studies	have	used	various	

paradigms	to	investigate	the	neural	underpinnings	of	ratio	processing.	Jacob	&	Nieder	

(2009b)	used	an	adaptation	paradigm	to	investigate	the	neural	distance	effect	for	ratios,	in	

which	activation	increases	as	the	distance	between	the	habituated	and	deviant	ratio	

increases.	They	observed	that	both	the	IPS	and	the	PFC	regions	were	sensitive	to	the	

distance	between	nonsymbolic	ratio	magnitudes	(represented	by	line	and	dot	ratios).	The	

neural	distance	effects	in	the	IPS	and	the	PFC	regions	have	also	been	found	in	magnitude	

comparison	and	adaptation	paradigms	using	symbolic	fractions	(Ischebeck,	Schocke,	&	

Delazer,	2009,	Cui	et	al.,	2020,	Worth	et	al.,2020).	These	results	demonstrate	that	adults	
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might	have	overlapping	brain	regions	that	process	both	nonsymbolic	ratios	and	symbolic	

fractions.	However,	except	for	Mock	et	al.	(2018),	most	previous	studies	have	not	

confirmed	the	overlaps	between	nonsymbolic	ratios	and	symbolic	fractions	within	

individuals.	

To	confirm	the	overlaps	across	nonsymbolic	ratios	and	symbolic	fraction	

processing,	two	studies	have	used	a	within-subjects	design	comparing	symbolic	and	non-

symbolic	ratio	processing	in	the	same	participants	(Mock	et	al.,	2018;	Binzak	et	al.,	

submitted).	Binzak	et	al.	(submitted)	investigated	neural	substrates	for	comparing	

nonsymbolic	ratios	and	symbolic	ratios	with	a	within-subject	design	in	adults.	They	used	a	

ratio	comparison	task	that	included	symbolic	fractions,	nonsymbolic	ratios,	and	also	cross-

notation	comparisons.	The	neural	data	showed	overlaps	across	the	neural	distance	effects	

in	different	notations,	particularly	in	the	bilateral	parietal	regions,	including	the	IPS	and	

bilateral	prefrontal	regions.	Along	with	the	capability	of	cross-notation	comparisons,	the	

neural	distance	effects	shown	in	the	same	regions	for	all	notation	comparisons	indicate	the	

possibility	of	a	common	system	across	nonsymbolic	ratios	and	symbolic	fractions	at	the	

neural	level.		

	

Understanding	development	of	functional	specialization	of	fractions	processing			

	 According	to	the	evidence	reviewed	above,	we	now	know	that	there	are	common	

brain	regions	involved	in	nonsymbolic	and	symbolic	fractions	processing.	Given	that	

nonsymbolic	ratio	processing	is	a	phylogenetically	conserved	ability,	it	is	interesting	that	

the	brain	comes	to	use	similar	neural	regions	where	also	process	nonsymbolic	ratio	to	

process	symbolic	fractions,	which	is	one	of	culturally	driven	inventions.	A	question	of	how	
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the	neural	circuits	specialized	for	processing	symbolic	fractions	emerge	still	remains	as	a	

question.	Given	that	we	acquire	symbolic	fractions	later	in	development	it	is	possible	that	

functional	specialization	for	symbolic	fractions	processing	may	be	supported	by	the	RPS.	

One	way	we	can	explore	this	possibility	is	with	the	perspective	of	developmental	

neurocognitive	theories	that	can	smoothly	link	several	pieces	of	evidence.	Looking	into	

existing	neurocognitive	developmental	theories	may	provide	an	explanation	on	how	neural	

functionalization	for	symbolic	fraction	emerges	and	develops.		

Neuronal	Recycling	

		 One	theory	that	can	be	compatible	with	the	RPS	account	is	the	neuronal	recycling	

hypothesis.	This	theory	seeks	to	provide	an	explanation	of	how	fairly	recent	cultural	

inventions,	such	as	symbolic	number	or	reading,	will	be	processed	via	specialized	neural	

circuits	(Dehaene	&	Cohen,	2007).	It	suggests	that	ancient	cortical	systems	originally	

dedicated	to	a	certain	function	which	is	close	enough	to	new	information	can	be	reoriented	

to	support	a	novel	usage.	Thus,	a	partial	alteration	of	cortical	systems	eventually	results	in	

functional	specialization	for	novel	symbolic	inputs.		

For	instance,	functional	specification	in	posterior	parietal	cortex	(PPC)	for	symbolic	

numbers,	one	of	the	recently	invented	concept	could	be	explained	by	the	neuronal	

recycling	hypothesis	(Piazza,	2011).	In	the	human	brain,	the	PPC	region	has	been	known	to	

be	genetically	tuned	to	process	spatial	information,	including	nonsymbolic	magnitudes.	

Numerosity,	the	number	of	individuals	(e.g.,	dot	array)	can	naturally	correspond	to	a	

certain	natural	number	exactly	or	approximately.	Thus,	as	humans	experience	novel	

symbolic	numbers,	the	PPC	can	be	reoriented	to	process	symbolic	numbers	which	is	new	

but	relevant	to	numerosity	information.	This	cortical	recycling	can	be	the	case	of	fractions	
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knowledge	as	proposed	by	Lewis	et	al.	(2016).	As	such,	the	cortical	substrates	for	

nonsymbolic	ratios	can	be	recycled	and	reutilized	for	processing	symbolic	fractions	(Lewis	

et	al.,	2016).		

Interactive	Specialization	

Another	developmental	theory	that	can	account	for	functional	specialization	for	

symbolic	fractions	is	an	interactive	specialization	theory	(IS)	advanced	by	Johnson	(2001).	

(Johnson,	2001,	2011;	Johnson,	Grossmann,	&	Kadosh,	2009).	The	IS	theory	takes	a	

domain-general	framework	for	human	functional	brain	development.	According	to	Johnson	

(2011),	the	IS	framework	complements	the	shortcomings	of	two	other	developmental	

cognitive	neuroscience	theories	(for	review,	Johnson,	2001)	–	the	maturation	and	skill	

learning	perspectives.	One	is	termed	as	the	Maturation	Viewpoint,	which	attempts	to	

interpret	human	brain	development	simply	as	biological	maturation	of	the	brain.	Since	this	

view	seeks	to	explain	all	development	solely	based	on	intrinsic	genetic	and	biochemical	

factors,	it	cannot	explain	the	influence	of	environment,	such	as	experience-dependent	brain	

plasticity.	Another	viewpoint	is	termed	as	Skill	Learning,	which	suggests	that	the	onset	of	

new	perceptual	input	and	newly	acquired	motor	skills	will	result	in	neural	changes	during	

development.	However,	it	also	cannot	explain	genetically	determined	cortical	

displacement,	such	as	the	occipital	lobe	dedicated	to	visual	processing	in	the	first	place.		

By	integrating	these	two	incompatible	views,	the	IS	framework	suggests	the	

integrative	effects	of	the	biological	maturation	and	environment	to	human	brain	

development.	It	also	assumes	that	the	changes	in	connectivity	between	cortical	regions	will	

lead	to	interactive	brain	networks	which	will	eventually	contribute	to	the	emergence	of	

functional	specialization.	Given	that	fractions	are	one	of	the	recent	cultural	inventions	that	
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we	need	to	acquire	from	the	outside	environment,	both	preexisting	ability	and	external	

influence	from	the	environment	will	contribute	to	functional	specialization	for	symbolic	

fractions.		

Biased	connectivity	hypothesis		

If	these	constant	developmental	interactions	between	neural	circuits	and	

experience	assist	functional	specialization	for	symbolic	fractions	processing,	it	is	possible	

that	structural	organization	of	the	brain	contributes	to	the	changes	of	the	brain.	Especially,	

white	matter	connectivity	that	links	different	cortical	regions	with	axon	fibers	is	likely	to	be	

involved	to	functional	brain	changes	as	the	previous	studies	have	shown	(Damoiseaux	&	

Greicius,	2009;	Johansen-Berg	&	Rushworth,	2009;	Zimmermann,	Griffiths,	&	McIntosh,	

2018).	Furthermore,	some	researchers	have	suggested	that	not	just	functional	cortices,	but	

white	matter	microstructure	might	have	initial	biases	toward	a	certain	stimuli	or	

information.	Hannagan	et	al.	(2015)	proposed	the	biased	connectivity	hypothesis,	suggesting	

white	matter	microstructure	may	also	have	preexisting	biases	that	eventually	contribute	to	

a	particular	functional	specialization.	The	theory	proposes	that	higher	structural	

connectivity	will	be	present	between	the	specialized	areas	critical	to	a	target	task.		

In	the	case	of	whole	number	processing,	the	neural	circuits	involved	in	symbolic	

numbers	are	not	limited	to	a	single	region	of	the	brain.	As	reviewed	above,	a	part	of	the	PPC	

area,	the	IPS,	is	specialized	for	numerosity	and	symbolic	numbers.	Adding	on	the	PPC,	it	has	

been	revealed	that	a	part	of	the	temporal	cortex,	the	number	form	area	(NFA)	is	also	

recruited	for	visual	processing	of	symbolic	numbers	(Hannagan,	Amedi,	Cohen,	Dehaene-

Lambertz,	&	Dehaene,	2015;	Yeo,	Wilkey,	&	Price,	2017).	In	turn,	the	IPS	and	the	NFA	

placed	in	the	different	regions	of	the	brain	communicate	each	other	to	process	symbolic	
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fractions.	Previous	work	has	demonstrated	the	underlying	white	matter	between	these	two	

regions	for	number	processing	(Abboud,	Maidenbaum,	Dehaene,	&	Amedi,	2015).	The	

biased	connectivity	theory	holds	the	potential	to	explain	how	particular	interactions	among	

different	brain	regions	have	evolved	to	process	symbolic	numbers	such	as	a	parietal-

temporal	network	between	the	NFA	and	the	IPS	(Abboud	et	al.,	2015).		

Even	though	this	biased	connectivity	theory	has	been	proposed	to	explain	how	the	

NFA	and	the	visual	word	form	area	(VWFA)	for	language	processing	emerge,	it	is	worth	

taking	into	account	one	of	the	possible	scenarios	of	the	brain’s	functional	specialization	for	

fraction	processing.	A	very	recent	study	reported	that	functional	connectivity	from	the	left	

medial	temporal	cortex	to	the	IPS	was	more	robust	when	adults	process	symbolic	fractions	

compared	to	when	they	process	whole	numbers	(Cui,	Li,	Li,	Siegler,	&	Zhou,	2020).	This	

result	may	reflect	a	possible	scenario	of	biased	structural	connectivity	between	the	regions	

of	the	brains	recruited	for	fractions	processing.		

Taken	together,	as	reviewed	above,	current	theories	on	neural	circuits	for	number	

symbols	take	a	neuroconstructivist	viewpoint	on	functional	specialization.	Ontogeny	plays	

a	crucial	role	in	how	the	brain	gradually	becomes	specialized	during	development,	but	an	

interplay	with	outside	inputs	is	also	critical.	Thus,	theories	regarding	the	emergence	of	

numerical	cognition	may	benefit	from	adopting	Karmiloff-Smith’s	(2010,	2015)	domain-

relevant	framework.	This	framework	suggests	that	the	early	brain	is	equipped	with	biases	

relevant	to	processing	certain	information	and	becomes	progressively	specialized	through	

neuronal	competition	throughout	development.		

	 This	framework	may	take	pieces	of	the	neuronal	recycling,	the	IS,	and	the	biased	

connectivity	hypothesis	in	terms	of	postulating	innate	biases	in	the	primitive	brain	
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organization	and	allowing	the	inputs	from	the	environment.	The	RPS	hypothesis	also	very	

much	fits	well	with	these	frameworks.	The	neural	circuit	for	nonsymbolic	ratio	processing	

may	exist	before	fractions	instruction	and	have	a	bias	of	connectivity	with	other	brain	

regions.	With	years	of	educational	instruction,	the	RPS	and	interactions	with	other	brain	

areas	are	reoriented	toward	symbolic	relational	magnitudes,	fractions.		

This	dissertation	takes	the	domain-relevant	theoretical	approach	to	explore	how	the	

functional	specialization	for	fractions	processing	forms	in	the	early	years	and	how	the	

structural	and	functional	brain	change	over	throughout	educational	experiences.		

Main	questions	and	summary	of	current	studies	

	 With	the	domain-relevant	framework,	this	dissertation	explores	how	the	functional	

specialization	for	fractions	processing	forms	in	the	early	years	and	how	it	changes	

throughout	educational	experiences.	Furthermore,	this	dissertation	attempts	to	test	to	

what	extent	the	RPS	is	influential	to	early	fractions	ability	relative	to	other	cognitive	skills.		

	In	Chapter	2,	I	examined	developmental	differences	in	the	functional	activations	for	

the	RPS	and	symbolic	fractions	processing	before	and	after	formal	fractions	instruction.	I	

utilized	functional	magnetic	resonance	imaging	(fMRI)	and	investigated	2nd	graders	who	

have	not	yet	received	formal	fractions	instructions	and	5th	graders	who	have	received	two	

to	three	years	of	fractions	education.	Using	whole-brain	analyses,	I	identifies	brain	regions	

that	were	sensitive	to	ratio	or	fraction	magnitudes	in	2nd	and	5th	graders	and	evaluated	the	

developmental	differences	between	2nd	and	5th	graders.	Furthermore,	with	a	region	of	

interest	(ROI)	approach,	I	focused	on	the	IPS	regions	sensitive	to	magnitude	information.	I	

tested	whether	the	IPS	was	recruited	for	ratio	or	fraction	magnitude	processing	and	

compared	the	engagement	of	the	IPS	between	2nd	and	5th	graders.			
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Chapter	3	further	explored	developmental	changes	in	structural	connectivity	that	

relate	to	nonsymbolic	and	symbolic	fraction	processing.	With	the	same	cohorts	of	2nd	and	

5th	graders	as	Chapter	2,	I	employed	diffusion	tensor	imaging	(DTI)	to	investigate	the	

differences	in	the	relationships	between	white	matter	connectivity	and	nonsymbolic	and	

symbolic	fraction	processing	abilities	between	children	with	and	without	formal	fraction	

instruction.	First,	with	tract-based	spatial	statistics	(TBSS),	I	explored	the	regions	of	white	

matter	that	related	to	nonsymbolic	and	symbolic	fraction	processing	abilities.	Moreover,	I	

examined	how	these	relationships	have	changed	a	year	later.		

The	possibility	that	symbolic	fractions	might	be	grounded	on	the	RPS	was	supported	

by	the	neural	investigations	reported	in	Chapters	2	and	3.	This	motivated	me	to	investigate	

this	possibility	with	a	behavioral	approach.	In	Chapter	4,	I	attempted	to	test	how	influential	

the	RPS,	a	possible	cognitive	start-up	tool	for	fractions,	was	on	early	fraction	ability	

compared	to	other	cognitive	skills.	Among	various	cognitive	skills,	I	focus	on	linguistic	

knowledge,	which	has	been	frequently	reported	as	a	critical	factor	for	children's	fraction	

abilities.	The	Chapter	4	aimed	to	investigate	how	the	RPS	uniquely	contributes	to	early	

fraction	ability.		

Chapter	5	summarizes	the	findings	provided	by	Chapters	2-4:	the	neural	changes	for	

nonsymbolic	and	symbolic	fraction	processing	and	the	possible	efficacy	of	using	

nonsymbolic	representations	in	fraction	instructions.	From	the	brain	to	behavior,	the	

studies	in	this	dissertation	attempt	to	understand	the	early	development	of	neural	

representations	for	ratios	and	fractions	with	various	approaches	and	evaluate	a	possible	

neurocognitive	tool	for	early	fractions	learning.	Furthermore,	this	dissertation	aims	to	

understand	this	neurocognitive	tool	in	the	context	of	the	domain-relevant	framework	to	
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explain	a	flexible	approach	in	promoting	symbolic	fractions	learning.	By	tracking	down	

fractions	acquisition,	this	dissertation	can	serve	as	an	essential	piece	to	provide	the	

scientific	explanation	in	promoting	nonsymbolic	representations	in	formal	fraction	

instructions.			 	
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Chapter	2:	Developmental	Changes	in	Nonsymbolic	and	Symbolic	Fractions	

Processing:	A	Cross-Sectional	fMRI	study	

	Introduction	

As	Chapter	1	has	introduced,	fractions	knowledge	is	considered	to	be	a	critical	

building	block	of	future	mathematical	competence	(Siegler	et	al.,	2012b;	Siegler,	Fazio,	

Bailey,	&	Zhou,	2013;	Siegler,	Thompson,	&	Schneider,	2011).	Fractions	knowledge	is	

fundamental	to	understanding	higher	mathematics	and	is	essential	for	gaining	competence	

in	science,	technology,	engineering	and	mathematics	(STEM)	fields.	Even	though	the	

importance	of	fractions	knowledge	is	well	documented,	there	remains	a	dearth	of	

knowledge	about	how	symbolic	fractions	are	processed	and	how	this	processing	develops	

over	time.	

Recent	studies	suggest	that	there	may	be	a	“neurocognitive	startup	tool”	that	may	

play	a	crucial	role	in	understanding	fractional	magnitudes	and	key	concepts	of	fractions	

(Jacob,	Vallentin,	&	Nieder,	2012;	Lewis,	Matthews,	&	Hubbard,	2016;	Matthews,	Lewis,	&	

Hubbard,	2016;	compare	with	Piazza,	2011).	Previous	studies	showed	the	existence	of	a	

primitive	ability	to	represent	fractions.	Specifically,	both	humans	and	nonhuman	primates	

have	the	ability	to	process	nonsymbolic	ratio	magnitudes	early	in	development	(Jacob	&	

Nieder,	2009a,	2009b;	McCrink	&	Wynn,	2007;	Vallentin	&	Nieder,	2010).	Lewis,	Matthews	

&	Hubbard	(2016)	proposed	that	this	primitive	ability	largely	depends	on	an	ancient	

system	for	symbolic	fraction	learning	and	dubbed	this	system	as	Ratio	Processing	System	

(RPS)	(Jacob	et	al.,	2012;	Lewis	et	al.,	2016;	Matthews	et	al.,	2016).		

	 The	RPS	account	can	be	compatible	with	current	cognitive	developmental	theories.	

For	example,	according	to	Dehaene	&	Cohen	(2007)’s	neuronal	recycling	hypothesis,	
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human	brains	are	equipped	with	some	evolutionary-ancient	systems	that	were	originally	

dedicated	to	certain	functions	with	functionality	that	is	close	enough	to	novel	external	

inputs	that	they	respond	(perhaps	initially	poorly)	to	those	novel	inputs.		Related	cortical	

regions	for	this	system	may	partially	change	during	development	and	reorient	to	process	

novel	information.	This	partial	alteration	of	cortical	systems	may	eventually	help	the	

acquisition	of	recent	cultural	inventions,	such	as	symbolic	numbers	or	language.	Therefore,	

the	RPS	might	represent	an	ancient	system	for	fractions	processing,	and	it	may	be	well-

suited	to	be	“recycled”	for	symbolic	fraction	processing.		

So	far,	the	RPS	account	has	supported	by	several	behavioral	studies.	One	line	of	

research	has	shown	co-processing	of	symbolic,	and	nonsymbolic	ratios	through	the	same	

system	by	using	cross-format	tasks	(Kalra,	Binzak,	et	al.,	2020;	Matthews	&	Chesney,	2015).	

Kalra	et	al.	(2020)	conducted	cross-format	fraction	comparison	tasks,	whereby	participants	

compared	which	of	two	ratios	(comparing	line	ratios	to	symbolic	ratios)	was	larger.	They	

observed	a	classic	distance	effect	in	which	performance	improved	as	the	distance	between	

ratios	compared	increased	(Buckley	&	Gillman,	1974).	The	cross-format	distance	effect	

substantiates	holistic	magnitude	processing	for	both	nonsymbolic	and	symbolic	ratio.	

Additionally,	reaction	times	were	rapid	enough	(mean	=	2043ms	in	2nd	graders)	to	suggest	

that	children	were	able	to	compare	nonsymbolic	line	ratios	and	symbolic	fractions	without	

first	converting	nonsymbolic	to	symbolic	or	vice	versa.	This	finding	implies	the	possibility	

that	nonsymbolic	and	symbolic	ratios	were	compared	through	a	common	system.	

Moreover,	this	RPS	processing	of	nonsymbolic	ratios	seems	to	automatically	affect	

the	processing	of	symbolic	fractions.	Matthews	and	Lewis	(2017)	showed	a	Stroop-like	

interference	effect	demonstrating	the	interference	effect	between	symbolic	fractions	and	a	
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physical	size	of	fractions	by	using	a	simple	symbolic	fraction	comparison	task	(See	Figure	

2.1).	In	the	task,	they	created	numerical	stimuli	for	which	font	sizes	were	manipulated	such	

that	numerical	fractions	simultaneously	represent	congruent	or	incongruent	nonsymbolic	

ratio	magnitudes	(i.e.,	the	font	sizes	of	a	numerically	larger	fraction	present	larger	

nonsybolic	ratio	magnitude).	They	found	a	ratio	size	congruity	effect,	such	that	the	

congruity	of	nonsymbolic	ratio	features	(font	size)	influenced	the	performance	of	symbolic	

fraction	comparison	task.		

	

Figure	2.1.	Example	stimuli	of	Matthews	&	Lewis	(2017).	Both	font	sizes	and	nonsymbolic	

ratios	that	physical	sizes	of	fraction	represent	are	incongruent	with	fraction	values	(Left)	

and	are	congruent	with	fraction	values	(Right).		

	

In	addition	to	these	relations,	there	have	been	several	other	findings	suggesting	a	

correlation	between	RPS	acuity	and	competence	with	fractions	knowledge	and	other	

symbolic	mathematics	domains	(Hansen	et	al.,	2015;	Matthews	et	al.,	2016;	Möhring	et	al.,	

2015).	For	instance,	Matthews	et	al.	(2016)	revealed	that	participant’s	acuity	in	

nonsymbolic	ratio	comparison	tasks	can	predict	fractions	knowledge	and	even	algebra	

achievement	in	college	students	(see	also	Park	&	Matthews,	accepted).	Similar	results	were	

also	reported	with	children	(Hansen	et	al.,	2015;	Möhring	et	al.,	2015).	These	associations	
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imply	a	link	between	the	RPS	and	symbolic	fraction	understanding,	consistent	with	the	

claim	that	the	RPS	serves	as	a	neurocognitive	start-up	tool	for	symbolic	fraction	

acquisition.		

Neuroimaging	studies	have	also	yielded	findings	consistent	with	the	RPS	account.	

Emerging	findings	suggest	a	similar	substrate	between	nonsymbolic	and	symbolic	ratios	

processing	(Ischebeck	et	al.,	2009;	Jacob	&	Nieder,	2009b,	2009a;	Mock	et	al.,	2018).	

Although	most	of	these	studies	looked	into	only	nonsymbolic	or	symbolic	ratios	

specifically,	these	results	have	converged	to	show	that	both	symbolic	and	nonsymbolic	

ratio	processing	engage	the	intraparietal	sulcus	(IPS)	and	a	broader	parietal-prefrontal	

network,	where	adults	are	believed	to	process	analog	magnitude	(e.g.,	numerosity	or	single	

line-length)	(Dehaene	et	al.,	1998;	Nieder	&	Dehaene,	2009;	Piazza	et	al.,	2004).		

Using	single-neuron	recordings	in	rhesus	macaques,	Vallentin	&	Nieder	(2010)	

identified	neurons	in	the	IPS	that	were	tuned	to	nonsymbolic	ratio	information.	Jacob	&	

Nieder	(2009b)	used	a	functional	MRI	adaptation	paradigm	to	investigate	the	neural	

distance	effect	for	nonsymbolic	ratios,	in	which	activation	increases	as	the	distance	

between	the	habituated	ratio	and	deviant	ratio	increases.	Extending	their	findings	in	

macaques,	they	observed	that	both	IPS	and	prefrontal	cortex	(PFC)	regions	exhibited	the	

distance	effects	for	nonsymbolic	ratio	magnitudes	(represented	by	line	and	dot	ratios).			

Neural	distance	effects	in	IPS	and	PFC	regions	have	also	been	found	in	magnitude	

comparison	and	adaptation	paradigms	using	symbolic	fractions	(Ischebeck	et	al.,	2009;	

Jacob	&	Nieder,	2009a;	Mock	et	al.,	2018).	Early	studies	examined	only	nonsymbolic	ratios	

or	nonsymbolic	fractions,	so	functional	overlap	was	only	inferred	based	on	similar	

locations.		A	more	recent	within-subjects	design	comparing	symbolic	and	non-symbolic	
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ratio	processing	in	the	same	participants	has	provided	some	support	for	a	shared	

processing	system.	Mock	et	al.	(2018)	investigated	neural	substrates	for	nonsymbolic	

ratios	(instantiated	by	dots	and	pie	charts)	and	symbolic	ratios	(fractions	and	decimals)	in	

the	same	individual.	Consistent	with	the	prior	work	reviewed	above,	they	observed	a	

shared	system	for	ratio	processing	in	the	bilateral	IPS.	In	addition	to	the	shared	substrate,	

they	also	found	differential	neural	substrates	for	nonsymbolic	and	symbolic	ratios;	

whereas	nonsymbolic	ratios	elicited	greater	activation	in	the	right	ventral	visual	stream,	

insula,	and	superior	frontal	gyrus	compared	to	symbolic	ratios,	symbolic	ratios	showed	

greater	activation	in	the	left	frontal	gyrus,	the	angular	gyrus,	and	the	middle	occipital	gyrus.		

However,	the	results	of	Mock	et	al.	(2018)	need	to	be	carefully	considered	due	to	

potential	confounds	in	the	methodology.	According	to	work	by	Dewolf	and	colleagues	

(2016),	neural	engagement	is	different	for	fractions	and	decimals.	By	conducting	a	

symbolic	comparison	task	using	integers,	fractions	and	decimals	in	fMRI,	DeWolf	et	al.	

found	differences	in	processing	fractions	vs.	decimals	and	fractions	vs.	integers,	but	not	in	

decimals	vs.	integers	(DeWolf,	Chiang,	Bassok,	Holyoak,	&	Monti,	2016).	However,	in	Mock	

et	al.	(2018),	the	“nonsymbolic	ratio”	contrast	included	both	dots	and	pie	charts,	and	the	

“symbolic	ratios”	contrast	included	both	fractions	and	decimals.	This	is	a	problem	if	

fraction	and	decimals	are	indeed	distinctively	processed	in	the	brain.	Therefore,	Mock	et	

al.’s	results	likely	represent	both	fraction	and	decimal	processing,	which	are	different.	

Considering	that	previous	studies	specifically	studied	symbolic	fractions,	it	is	hard	to	say	

Mock	et	al.	(2018)’s	results	are	comparable	to	other	studies.		

Recently,	Binzak	et	al.	(submitted)	addressed	this	issue	by	investigating	fractional	

magnitudes,	specifically.	They	observed	how	nonsymbolic,	symbolic	and	cross-notation	
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ratio	comparisons	were	processed	in	the	same	adults’	brain	by	conducting	a	ratio	

comparison	task.	They	found	overlapping	activation	across	different	notation	conditions,	

particularly	in	the	bilateral	parietal	regions	including	the	IPS	and	the	bilateral	prefrontal	

regions.	Along	with	the	capability	of	cross-notation	comparisons,	the	neural	distance	effect	

shown	in	the	same	regions	for	cross-notation	conditions	suggests	co-processing	between	

nonsymbolic	and	symbolic	at	the	neural	level.		

With	behavioral	and	neural	evidence,	one	remaining	question	would	be	how	these	

similar	substrates	between	nonsymbolic	and	symbolic	fractions	have	developed	and	

emerged.	Studying	exclusively	adult	participants	cannot	unravel	whether	a	cortical	system	

for	nonsymbolic	ratio	magnitude	is	the	basis	for	symbolic	fractions.	To	answer	the	question	

of	how	shared	substrates	for	nonsymbolic	ratios	and	symbolic	ratios	emerge	requires	a	

developmental	approach.	Thus	far,	there	have	been	no	studies	looking	into	the	RPS	in	

young	children	or	how	neural	activations	for	nonsymbolic	and	symbolic	ratios	change	as	a	

function	of	educational	experience	with	fractions.		

We	hypothesized	that	children	have	a	similar,	early	neural	architecture	for	ratio	

processing	-	even	among	those	who	have	received	little	instruction	on	symbolic	fractions.	

Secondly,	if	the	RPS	plays	a	role	as	a	foundation	for	symbolic	fractions,	symbolic	fraction	

processing	will	recruit	the	same	regions	engaged	in	nonsymbolic	ratio	processing	after	

fraction	instruction.	Therefore,	we	predicted	that	older	children	exposed	to	years	of	

fractions	instruction	would	be	likely	to	show	overlapping	activation	for	both	symbolic	and	

nonsymbolic	ratios,	whereas	younger	children	would	be	likely	to	show	activation	only	for	

nonsymbolic	ratios.		
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The	aim	of	current	study	was	two-fold:	1)	to	explore	similarities	and	differences	

between	nonsymbolic	and	symbolic	ratio	processing	in	young	children	at	both	the	

behavioral	and	neural	levels,	and	2)	to	explore	how	behavioral	and	neural	signatures	of	

ratio	processing	change	from	2nd	grade	(prior	to	formal	fractions	instruction)	to	5th	grade	

(after	receiving	fractions	instruction).	To	this	end,	we	used	fMRI	to	investigate	neural	

activation	during	ratio	comparison	in	multiple	formats	in	2nd	and	5th	grade	primary	school	

children.		

	

Methods	

Participants	

We	recruited	47	2nd-	(MAge	=	7.68,	SDAge	=.43)	and	45	5th-grade	(MAge	=	10.68,	SDAge	

=.47)	children	from	several	public	schools	in	a	mid-sized	Midwestern	city.	All	participants	

were	right	handed,	native	English-speakers	with	normal	vision.	Parents	or	guardians	gave	

written	consent,	and	children	gave	verbal	assent.	All	protocols	were	approved	by	the	

biomedical	research	ethics	committee	of	the	University	of	Wisconsin	–	Madison	(IRB	

#2013-1346)	.	Participants	received	monetary	compensation	and	small	gifts	for	their	

participation.	One	2nd	grade	child	was	excluded	due	to	an	ADHD	diagnosis,	and	two	

children	failed	to	complete	the	scan	due	to	excessive	movement	(1	2nd	grade	and	1	5th	

grade).	Another	two	5th	grade	children	were	excluded	due	to	technical	issues	with	scan	

during	acquisition.	In	addition	to	this,	we	also	excluded	children	with	head	movement	

greater	than	2.5	mm	(15	2nd	grade	and	8	5th	grade)	and	children	who	performed	at	chance	

level	behavioral	performance	in	the	scanner	(2	2nd	grade	and	1	5th	grade).		Participants	

were	excluded	if	these	occurred	in	three	or	more	of	the	six	functional	runs.	Therefore,	in	



 25 

the	final	analysis,	28	2nd	graders	and	33	5th	graders	were	included.		

The	Ratio	Comparison	Task	

Participants	completed	a	ratio	comparison	task	in	the	MRI	scanner	(Binzak	et	al.,	

submitted).	Stimuli	were	presented	by	E-prime	software	(Psychology	Software	Tools,	

Shapsburg,	PA).	On	each	trial,	participants	compared	two	ratios	made	either	from	

juxtaposed	pairs	of	nonsymbolic	ratios	made	from	line	segments	or	symbolic	fractions	(see	

Figure	2,	below).	Comparison	pairs	were	presented	in	each	of	three	types:	1)	Fraction	vs.	

Fraction	(Frac-Frac),	2)	Line	ratio	vs.	Fraction	(Line-Frac),	and	3)	Line	ratio	vs.	Line	ratio	

(Line-Line)	comparisons	(Figure	2).	In	all	comparisons,	stimuli	were	presented	side-by-

side	in	a	light	gray	color	on	a	black	background.	Participants	indicated	their	judgments	by	

pressing	a	button	box	with	either	their	index	(indicating	the	left	ratio	was	judged	larger)	or	

middle	finger	(indicating	the	right).	Children	were	trained	outside	the	scanner	before	the	

real	scan.		

To	manipulate	the	difficulty	of	the	tasks,	we	varied	the	numerical	distance	between	

comparison	stimuli	among	trials.	Here,	we	defined	difficulty	as	the	difference	between	the	

magnitude	of	the	compared	ratios	[fraction	A	–	fraction	B].	Although	the	distance	

manipulation	was	designed	continuously,	pairs	were	organized	into	three	distance	bins	for	

the	purposes	of	analysis	(Jacob	&	Nieder,	2009a;	Kalra,	Binzak,	et	al.,	2020):	near	(.048-

.233),	medium	(.262-.446),	and	far	(.514-.750)	(See	Table	1).	We	expected	near	

comparisons	to	be	the	hardest	behaviorally	and	to	elicit	the	greatest	neural	activation.	In	

contrast,	we	expected	the	far	condition	to	be	the	easiest	and	to	elicit	lower	activation.	

Each	participant	completed	six	runs	of	36	trials	per	run	for	a	total	of	216	trials.	Each	

individual	run	included	an	equal	number	of	trials	from	each	notation	condition	(Line-Line,	
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Line-Frac,	and	Frac-Frac),	and	the	trials	in	each	notation	were	evenly	distributed	among	

the	distance	bins	(near,	medium	and	far).	Each	run	was	split	into	two	blocks	of	18	trials	

depending	on	the	way	that	component	line	segment	lengths	of	line	ratios	were	controlled	

(see	Stimuli	section	below).	All	notations	and	distances	were	counterbalanced	across	the	

six	runs.	Within	each	run,	stimulus	presentation	order	was	random	for	each	participant.		

Each	trial	began	with	a	fixation	cross,	presented	for	1250	–	1750	ms	(with	the	range	

corresponding	to	randomly	applied	jitter,	1500ms	± 250ms)	followed	by	presentation	of	

ratio	stimuli.	Participants	could	respond	upon	stimulus	onset,	and	stimuli	remained	on-

screen	until	participants	answered	or	until	the	trial	timed	out	after	4,000ms	(Figure	2).	The	

program	did	not	proceed	to	the	next	trial	until	participants	respond.		
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Figure	2.2	Sample	sequence	of	three	trials	for	the	comparison	task.	Trials	include	a)	the	

symbolic	condition	comparing	fractions,	b)	the	mixed	condition	comparing	fraction	and	

line	ratio,	and	c)	the	nonsymbolic	condition	comparing	line	ratios.	

Table	2.1.	Description	of	Distance	bins	in	the	ratio	comparison	task.		

Distance	Bin	 Mean	 SD	 Min	 Max	

Near	 .144	 .054	 .048	 .233	

Medium	 .341	 .063	 .262	 .446	

Far	 .613	 .069	 .514	 .750	

	
Stimuli	

Symbolic	Fractions.		Symbolic	fractions	were	selected	from	the	set	of	the	27	possible	

irreducible	fractions	composed	from	single	digit	numerators	and	denominators	of	value	1	–	

9.	These	selected	pairs	were	identical	to	Binzak	et	al.	(submitted).	We	selected	36	pairs	

composed	from	those	fractions,	guided	by	the	following	considerations	for	the	variations	of	

fractions	involved.	The	first	consideration	was	the	distance	between	fractions.	Thus,	12	

pairs	of	fractions	were	selected	from	each	distance	bin.	Second,	we	wanted	to	reduce	the	

likelihood	that	participants	might	compare	fractions	based	on	numerator	or	denominator	

component	value	instead	of	on	the	holistic	magnitudes	of	fractions.	To	discourage	the	use	

of	such	componential	strategies,	the	fraction	pairs	were	equally	selected	from	1)	fraction	

pairs	that	had	a	common	denominator,	2)	pairs	where	the	numerically	larger	fraction	had	a	

larger	numerator	and	a	smaller	denominator	than	the	smaller	fraction,	3)	pairs	where	the	

numerically	larger	fraction	had	a	larger	numerator	and	a	larger	denominator,	and	4)	pairs	

where	the	larger	fraction	had	smaller	numerator	and	denominator	than	the	smaller	
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fraction.	However,	in	the	far	distance	bin,	we	did	not	include	the	incongruent	numerator	

pairs	because	no	qualifying	pair	existed	with	distance	greater	than	.306	given	the	set	of	

fractions	to	be	used. 

Nonsymbolic	Ratios.	Nonsymbolic	ratios	were	composed	of	pairs	of	juxtaposed	gray	lines.	

The	line	stimuli	were	created	with	the	intent	to	minimize	the	probability	that	participants	

use	each	line-length	(i.e.,	the	numerator	or	denominator	component)	as	a	cue	to	make	the	

comparison	decision.	Thus,	we	created	two	sets	of	line	ratios	corresponding	to	the	

magnitudes	of	the	symbolic	ratios	described	above.	One	set	was	controlled	to	minimize	the	

correlation	between	the	length	of	numerator	component	and	overall	ratio	magnitude	

(Numerator	controlled,	see	Table	2.2).	For	this	set,	the	length	of	the	numerator	was	first	

randomly	generated	to	be	between	33-336	pixels.	The	length	of	denominator	was	then	

determined	based	on	numerator	line	length.	The	other	set	was	controlled	to	minimize	the	

correlation	between	the	length	of	denominator	component	and	overall	ratio	magnitude	

(Denominator	controlled,	see	Table	2.2).	For	this	set,	the	length	of	denominator	was	

randomly	generated	to	be	between	130-300	pixels.	Correlations	between	line-lengths	of	

components	and	ratio	value	are	described	in	Table	2.2. 

Table	2.2.	Correlations	between	line-lengths	of	components	and	overall	ratio	values	

	 Correlation	coefficient	(r)	with	overall	ratio	values			

	 Numerator	controlled	 Denominator	controlled	

Numerator	line-lengths	 .34	 .83	

Denominator	line-lengths	 -.68	 -.22	

Summed	line-lengths	 -.42	 .38	
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Fraction	Instruction	

Similar	to	Karla	et	al.	(2020),	all	children	received	a	brief	PowerPoint	lesson	

introducing	the	concept	of	ratios/fractions	prior	to	experimental	runs	because	our	sample	

included	children	who	(a)	had	no	prior	formal	fraction	instructions	and	(2)	were	unfamiliar	

with	nonsymbolic	ratio	representations.	For	example,	this	included	instruction	on	the	

notion	that	fractions	get	larger	as	numerator	sizes	increase,	as	denominator	sizes	decrease,	

and	as	the	two	components	become	closer	to	the	same	value.	In	order	to	introduce	

nonsymbolic	and	symbolic	ratio	in	a	kid-friendly	manner,	we	used	cartoon	characters	to	

depict	how	height	comparisons	can	make	a	ratio.	For	instance,	children	were	instructed	

that	“Joey	is	half	as	tall	as	Sara.	When	we	think	Sara’s	and	Joey’s	heights	together,	we	can	

call	it	a	RATIO.	And	we	use	numbers	to	talk	about	ratios.	These	numbers	are	called	

Fractions.”	Cartoon	characters	were	eventually	replaced	by	lines,	so	that	children	could	

gain	some	familiarity	with	the	types	of	line	ratios	that	would	be	presented	as	stimuli.	When	

we	introduced	line	ratios,	the	corresponding	fractions	were	also	presented	simultaneously.		

Data	Acquisition			

Participants	were	scanned	in	a	General	Electric	3-Tesla	scanner	(GE	Medical	Systems,	

Waukesha,	WI)	equipped	with	a	32-channel	array	head	coil	(Nova	Medical)	at	Waisman	

Center	of	University	of	Wisconsin-Madison.	Foam	padding	was	used	to	limit	head	motion.	

Structural	images	were	collected	by	using	motion-corrected	3D	T1-weighted	(T1w)	

MPnRAGE	with	1mm	isotropic	resolution	(TR	=	4.876ms,	TE	=	1.82ms,	Flip	angle	=	4°,	FOV	

=	224mm	X	224mm,	in	plane	resolution:	256	X	256	pixels,	the	number	of	axial	slices	=	176)	

(Kecskemeti	et	al.,	2016).	Functional	images	were	acquired	with	a	3D	T2-weighted	(T2w)	

echo-planar	imaging	sequence	(TR	=	2000ms,	TE	=	22ms,	Slice	thickness	=	3mm,	Flip	angle	
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=	75°,	FOV	=	224mm	X	224mm,	128X128	matrix).	Each	volume	consisted	of	38	slices	

(1.75mm	X	1.75mm	voxel	size)	with	a	52ms	inter	slice	interval.	The	first	5	volumes	of	each	

functional	run,	during	which	participants	waited	for	the	task	to	begin,	were	also	collected	

to	allow	for	T2	equilibrium	effects.	In	total,	120	volumes	were	acquired	for	each	functional	

run.	

Imaging	analysis	

All	images	were	analyzed	using	Brain	Voyager	QX	2.8.2	(Brain	Innovation,	

Maastricht,	Netherlands).	Each	individual’s	data	were	preprocessed	using	the	following	

procedure.	The	first	five	volumes	of	each	functional	run	were	discarded	to	account	for	the	

stabilization	of	magnetic	saturation.	Functional	images	were	corrected	for	differences	in	

slice	time	acquisition	by	using	sinc	interpolation	with	ascending	and	interleaved	order	and	

3D	motion	by	using	trilinear	sinc	interpolation,	followed	by	high-pass	temporal	filtering	

(GLM-Fourier	with	a	cut-off	of	2	sines/cosines	per	cycle).	The	preprocessed	functional	

images	were	co-registered	to	the	T1	anatomical	images	through	initial	alignment	followed	

by	fine	tuning.	These	co-registered	data	were	transformed	into	Talairach	Space	(Talairach	

&	Tournoux,	1988).	These	co-registration	and	Talairach	transformation	processes	were	

visually	inspected	by	the	analysis	team	and	problematic	cases	were	rerun	and	resolved	by	

the	team.		Functional	images	were	smoothed	by	applying	an	8mm	full	width	at	half	

maximum	(FWHM)	Gaussian	kernel.	A	hemodynamic	response	function	was	used	to	model	

the	expected	BOLD	signal	for	each	distance	condition	and	notation	(near,	medium,	and	

far/LL,	LF,	and	FF).		

We	then	performed	a	random	effects	GLM	for	each	2nd	and	5th	grader	groups.	Whole	

brain	contrast	was	thresholded	at	an	uncorrected	p-value	of	.01,	then	corrected	for	
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multiple-comparisons	using	BV’s	cluster	level	statistical	threshold	estimator	which	

resulted	in	a	false	positive	rate	(a)	below	0.05	(Goebel,	Esposito,	&	Formisano,	2006).	The	

procedure	uses	Monte	Carlo	Simulations	to	identify	the	minimum	cluster	threshold	size	

(Forman	et	al.,	1995;	Goebel	et	al.,	2006),	considering	spatial	smoothness	and	spatial	

correlations	of	the	data	(see	detailed	mathematical	explanation	in	Forman	et	al.,	1995).	

Critically,	this	approach	avoids	false	positive	results	due	to	invalid	cluster	inferences	

(Eklund,	Nichols,	&	Knutsson,	2016).		

We	first	investigated	the	brain	regions	that	were	sensitive	to	the	changes	in	the	

holistic	distance	between	compared	magnitudes.	We	contrasted	near	and	far	distance	

conditions	to	identify	the	regions	of	the	brain	showing	greater	activity	in	near	distances	

relative	to	far	distances	–	that	is,	those	exhibiting	neural	distance	effects.	Next,	to	isolate	the	

regions	involved	in	each	notation,	we	conducted	the	same	random	effects	analysis	

contrasting	near	and	far	distances	for	nonsymbolic,	mixed,	and	symbolic	notations.	To	

identify	the	overlapping	regions	across	the	neural	distance	effects	in	different	notations,	we	

then	conducted	conjunction	analysis	on	the	brain	across	different	notations	in	each	grade,	

for	example,	[(FF	notation	with	near	distance	–	FF	notation	with	far	distance)	Ç		(LL	

notation	with	near	distance	–	LL	notation	with	far	distance)].		

Additionally,	we	conducted	a	two	factor	random	effects	ANOVA	(1	between:	grade	

levels,	1	within:	near	vs.	far)	to	identify	the	regions	showing	significant	interactions	

between	the	distance	effects	in	2nd	vs.	5th	graders.	Significant	regions	were	identified	by	

whole	brain	analysis,	and	then	the	mean	beta	values	for	each	subject	were	extracted	from	

each	cluster.	Next,	we	confirmed	the	clusters	where	5th	graders	showed	larger	distance	
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effects	than	2nd	graders	did	and	vice	versa.	To	unpack	the	results,	we	ran	the	same	analysis	

for	each	notation	(LL,	LF,	and	FF).	

Moreover,	we	performed	a	priori	regions	of	interest	(ROI)	analysis	on	the	bilateral	

IPS,	the	region	most	consistently	implicated	in	processing	numerical	magnitudes	in	the	

extant	literature	(e.g.,	Dehaene,	Piazza,	Pinel,	&	Cohen,	2003;	Piazza,	Izard,	Pinel,	Le	Bihan,	

&	Dehaene,	2004).	We	used	a	coordinate	set	based	on	Houdé	et	al.’s	(2010)	meta-analysis	

of	number	processing	in	children.	We	centered	a	10	mm	X	10	mm	X	10	mm	cube	around	

each	IPS	coordinate	identified	by	Houdé	et	al.	(2010)	and	extracted	the	average	beta	values	

for	each	subject	at	each	cross	section	of	3	notations	(FF,	LF,	LL)	X	3	distance	bins	(near,	

medium,	far).	With	these	extracted	beta	values,	we	conducted	a	mixed-effects	regression	in	

order	to	evaluate	the	distance	effects	in	the	IPS.		

Results		

Behavioral	analysis	

Behavioral	distance	effects	and	format	effects		

Children	in	both	grades	were	capable	of	discriminating	ratio	magnitude	accurately	

(2nd:	Merr	=	.11,	SD	err	=.31;	5th:	Merr	=	.08,	SD	err	=.27)	and	rapidly	(2nd:	Mrt	=	1619.07	ms,	SDrt	

=	636.23;	5th:	Mrt	=	1515.32	ms,	SDrt	=623.53)	across	all	notations	(See	Table	2.3	for	each	

notation).	We	conducted	mixed	effects	logistic	regression	models	to	account	for	within-

subject	correlation	among	trials	using	the	‘gImer’	function	of	lme4	package	in	R	software	

(Bates,	Mächler,	Bolker,	&	Walker,	2015).	We	regressed	error	rate	(0	or	1)	against	

notations	(3	levels,	FF	=	0,	LF	=	1,	LL	=	2),	age	groups	(2	levels,	2nd	graders	=	0,	5th	graders	=	

1),	and	absolute	distance	(Table	2.4;	Figure	2.3).	Since	we	had	hypotheses	regarding	the	

change	of	performance	between	levels	(i.e.,	2nd	graders	<	5th	graders	and	FF	<	LF	<	LL)	
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(Kalra,	Binzak,	et	al.,	2020),	to	facilitate	analysis,	we	used	a	backward	difference	coding	

scheme	so	that	we	could	compare	adjacent	levels	of	variables	(each	level	minus	prior	level).	

The	fixed	effect	results	showed	a	significant	distance	effect;	as	absolute	distance	between	

two	fractions	increased,	error	rate	decreased	(OR	=	.002,	p	<	.001).	A	main	effect	of	grade	

showed	that	5th	graders	were	.793	times	less	likely	to	make	errors	than	2nd	graders	(p	

=	.040).	As	we	expected,	the	liklihood	of	making	an	error	in	nonsymbolic	comparsons	was	

lower	than	that	of	mixed	notation	(OR	=	.408	,	p<.001).	However,	the	liklihood	of	making	an	

error	in	symbolic	notation	was	not	statistically	higher	than	that	of	mixed	notation	(OR	

=	.901	,	p	=.152).		

	 For	reaction	times,	we	conducted	linear	mixed	effects	regression	models	to	account	

for	within-subject	correlation	among	trials	using	the	‘lmer’	function	of	lme4	package	in	R	

software	(Bates	et	al.,	2015).	As	with	the	analysis	for	error	rate,	we	regressed	reaction	

times	against	notations	(3	levels,	FF	=	0,	LF	=	1,	LL	=	2),	age	groups	(2	levels,	2nd	graders	=	

0,	5th	graders	=	1),	and	absolute	distance	(Table	2.5;	Figure	2.4).	We	used	a	backward	

difference	coding	scheme	so	that	we	could	compare	adjacent	levels	of	variables.	The	results	

were	consistent	with	the	analyses	of	error	rate.	There	was	a	significant	distance	effect	(β	=	-

791.37,	p<.001).	Also,	5th-graders	responded	significantly	faster	than	2nd-graders	(β	=	-

167.34,	p	<.005).	In	terms	of	notations,	children	reponded	faster	on	nonsymbolic	

comparisons	than	on	mixed	ones	(β	=	-265.69,	p	<.001),	and	reponded	faster	on	mixed	

comparisons	than	on	fractions	comparisons	(β	=	-217.40,	p	<.001).			
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Table	2.3.		Descriptive	statistics	for	the	ratio	comparison	task	

grade	 2nd	graders	 5th	graders	

notation	 FF	 FL	 LL	 FF	 FL	 LL	

	 err	 RT	 err	 RT	 err	 RT	 err	 RT	 err	 RT	 err	 RT	

mean	 .14	 1907	 .13	 1630	 .06	 1347	 .10	 1717	 .09	 1535	 .04	 1306	

Sd	 .35	 662	 .34	 606	 .23	 509	 .30	 637	 .29	 623	 .21	 540	

	

Table	2.4.	Logistic	mixed	effects	that	regressed	err	against	notations,	distance,	and	age	

groups.	

	 β	 Odds	Ratio	 p	

Intercept	 -.676	 .509	 <.001**	

FL	-	FF	 -.105	 .901	 .152	

LL	-FL	 -.914	 .408	 <.001**	

5th	–	2nd	graders	 -.231	 .793	 	.040*	

distance	 -6.471	 .002	 <.001**	
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Table	2.5.	Linear	mixed	effects	that	regressed	RT	against	notations,	distance,	and	age	groups.	

	 β	 t	 p	

Intercept	 1885.11	 46.852	 <.001**	

FL	-	FF	 -217.40	 -17.896	 <.001**	

LL	-FL	 -265.69	 -22.266	 <.001**	

5th	–	2nd	graders	 -167.34	 -2.948	 <.005**	

distance	 -791.37	 -22.664	 <.001**	
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Figure	2.3.	Describing	logistic	mixed	effects	of	error	of	2nd	graders	(left)	and	5th	grader	

(right)’s	performance.		

	

Figure	2.4.	Describing	linear	mixed	effects	of	reaction	times	of	2nd	graders	(left)	and	5th	

grader’s	(right)	performance.			
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The	Effects	of	Gap	strategy	in	Symbolic	and	Nonsymbolic	Fractions	Comparisons	

Previous	studies	suggested	the	possible	use	of	heuristic	strategies	while	comparing	

the	magnitudes.	One	such	incorrect	strategy	that	recently	has	been	highlighted	is	the	gap	

strategy	(Morales,	Dartnell,	&	Gómez,	2020).	This	strategy	is	based	on	an	assumption	that	a	

larger	fraction	has	a	smaller	difference	between	its	numerator	and	denominator	

(Denominator	–	Numerator	=	Gap)	(Morales	et	al.,	2020).	Take,	for	example,	the	

comparison	2/9	vs.	3/5.	3/5	has	a	gap	of	2	and	2/9	has	a	gap	of	7,	so	a	participant	using	the	

gap	strategy	would	choose	3/5	because	of	the	smaller	gap.	This	strategy	often	yields	the	

right	answer	but	there	are	many	cases	in	which	it	is	invalid,	such	as	2/3	vs.	6/8.	Still,	it	is	

important	to	exclude	the	possibility	of	this	gap	strategy	usage	to	validate	the	distance	effect	

as	an	evidence	of	holistic	processing	of	ratio	or	fraction	information.		

To	evaluate	the	gap	strategy	effects,	we	calculated	the	gap	distances	between	each	

fraction	pair	(|fraction	1’s	gap	–	fraction	2’	gap|)	and	conducted	linear	mixed	effects	

regression	examining	fixed	effects	by	regressing	reaction	times	against	the	distance	and	the	

gap	distance.	Thus,	we	evaluated	whether	the	distance	effect	observed	in	RTs	depends	on	

the	gap	distance.	We	observed	significant	distance	effects	in	both	2nd	and	5th	graders	even	

after	controlling	for	the	gap	distances	(See	Figure	2.5,	Table	2.6).	The	data	showed	that	2nd	

graders’	reaction	times	were	significantly	explained	only	by	the	holistic	distance	between	

compared	fractions	(b	=	-127.97,	p	<	.001),	but	not	by	the	gap	distance	(b	=	-15.73p	=	.324).	

On	the	contrary,	5th	graders’	reaction	times	were	significantly	explained	by	both	holistic	

distance	(b	=	-204.09,	p	<	.001)	and	gap	distance	(b	=	53.72,	p	<	.001).	These	results	clearly	

showed	that,	children	did	process	holistic	distances	to	choose	a	larger	ratio	even	though	5th	

graders	also	used	gap	strategies.		
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	 We	also	evaluated	the	gap	distance	effects	in	the	nonsymbolic	ratio	comparisons.	In	

parallel	to	the	analysis	with	the	symbolic	fraction	comparisons,	we	calculated	the	distances	

between	two	line-lengths	of	each	line	ratio	pair	(line	ratio	1’s	gap	–line	ratio	2’	gap	in	

pixels).	Our	line	ratio	stimuli	included	the	pairs	with	incongruent	(negative)	gap	distance	

(n=3)	in	which	a	larger	ratio	had	a	larger	gap,	and	the	pairs	with	positive	gap	distances	

(n=69,	max	0-275	pixels).	With	these	line	gap	distances,	we	performed	linear	mixed	effects	

regression	examining	fixed	effects	by	regressing	reaction	times	against	the	distance	and	the	

line	gap	distance.	Similar	to	the	analysis	with	symbolic	fractions,	we	observed	significant	

distance	effects	in	both	2nd	and	5th	graders	even	after	controlling	for	the	gap	distances	(See	

Figure	2.6,	Table	2.6).	The	holistic	distance	was	a	significant	predictor	of	reaction	times	in	

both	2nd	(b	=-724.25,	p	<	.001)	and	5th	graders	(b	=-883.37,	p	<	.001).	Moreover,	the	gap	

distance	was	not	a	significant	predictor	for	reaction	times	for	either	2nd	(p	=	.669)	or	5th	

graders	(p	=	.862).	These	results	clearly	stated	that	when	it	comes	to	comparing	

nonsymbolic	line	ratios,	children	did	not	rely	on	the	gap	distance	to	choose	a	larger	ratio.		

	

Figure	2.5.	Distance	effect	slopes	across	gap	distance	for	symbolic	fractions	in	2nd	(left	

panel)	and	5th	graders	(right	panel).		
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Figure	2.6.		Distance	effect	slopes	across	gap	distance	for	nonsymbolic	ratios	in	2nd	(left	

panel)	and	5th	graders	(right	panel).	To	make	parallel	graph	as	Figure	4,	Line	ratio	stimuli	

were	classified	into	the	pairs	with	negative	gap	distance	in	which	a	larger	ratio	had	a	larger	

gap	and	the	pairs	with	near	(0-50	pixels),	medium-near	(50-100	pixels),	far-medium	(100-

150)	and	far	(>150)	distances.		
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Table	2.6.	Linear	mixed	effects	that	regressed	RTs	for	symbolic	fraction	or	nonsymbolic	ratio	

comparisons	against	holistic	distance	and	gap	distance.	

Symbolic	

fractions		

	 2nd	graders		 5th	graders		

	 β	 t	 p	 β	 t	 p	

intercept	 1920.82	 58.30	 <.001	 1736.48	 30.087	 <.001	

Distance	 -127.97	 16.20	 <.001	 -204.09	 -15.211	 <.001	

Gap	distance	 -15.74	 15.95	 .324	 53.72	 4.043	 <.001	

Distance*Gap	

distance	

-8.61	 14.30	 .547	 13.79	 1.153	 .249	

Nonsymbolic	

Ratios	

	 2nd	graders		 5th	graders		

	 β	 t	 p	 β	 t	 p	

intercept	 1356.99	 41.618	 <.001	 1323.953	 28.152	 <.001	

Distance	 -724.252	 -13.565	 <.001	 -883.37	 -18.734	 <.001	

Gap	distance	 .055	 .428	 .669	 -.020	 -.174	 .862	

Distance*Gap	

distance	

-.416	 -.778	 .437	 .418	 .880	 .379	

	

Neuroimaging	analysis	

Neural	distance	effects	in	whole-brain	analysis.		

To	explore	the	regions	of	the	brain	that	are	sensitive	to	the	holistic	distance	

between	compared	stimuli	in	each	grade,	we	performed	a	random	effects	GLM	contrasting	

near	and	far	distances	for	2nd-graders	vs.	5th-graders.	Results	of	whole	brain	analysis	

showed	the	brain	regions	with	significant	neural	distance	effects	when	collapsing	across	all	

notations	in	both	2nd	and	5th	graders.	The	contrast	near	>	far	in	2nd-graders	revealed	a	

several	set	of	regions	that	included	bilateral	superior	parietal	lobules	including	the	IPS,	the	
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medial	frontal	cortex,	the	insula,	the	precentral	gyrus	and	left	lingual	gyrus	(p	<.05;	see	

Figure	2.7	and	Table	2.7).	Similar	regions	were	found	in	5th	graders’	brains.	The	regions	

showing	the	neural	distance	effects	in	5th	graders	included	bilateral	superior	and	inferior	

parietal	lobules,	medial	prefrontal	cortex,	insula,	and	other	frontal	regions	(p	<.05;	see	

Figure	2.7	and	Table	2.7).			

As	a	follow-up	test,	to	see	the	neural	distance	effects	for	each	notation,	we	used	the	

contrast	near	>	far	within	each	notation.	We	found	that	2nd	graders’	neural	distance	effects	

were	mainly	from	nonsymbolic	and	mixed	notations	(LL	and	LF)	but	not	from	symbolic	

fraction	(FF)	notation	(p	<	.05;	see	Figure	2.8	and	Table	2.8).	For	the	neural	distance	effect	

for	symbolic	fraction	comparison,	we	found	a	small	cluster	in	the	inferior	frontal	gyrus	

(IFG)	is	engaged	only	with	uncorrected	statistical	analysis	at	a	threshold	p	<	.05	level.	

Neural	distance	effects	in	mixed	notation	were	found	in	broader	regions	relative	to	the	

nonsymbolic	notation,	including	more	frontal	and	parietal	regions	of	the	brain.	On	the	

other	hand,	we	found	overlapping	regions	across	the	neural	distance	effects	from	all	

notations	in	case	of	5th	graders	(p	<	.05;	see	Figure	2.8	and	Table	2.9).	All	notations	

recruited	both	fronto-parietal	regions,	although	LL	and	LF	comparisons	recruited	broader	

areas.	As	these	results	show,	there	is	a	developmental	difference	between	2nd	and	5th	

graders	that	functional	engagement	of	symbolic	fraction	starts	after	2nd	year	of	the	primary	

school	years.		
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Figure	2.7.	Significant	neural	distance	effect	across	all	notations	in	2nd	graders	(left)	and	5th	

grader	(right)’	brains.	The	brains	are	inflated	to	allow	visualization	of	activations	in	the	

sulci	(dark	gray)	and	gyri	(light	gray).	Each	brain	is	viewed	from	the	back	right,	with	hot	

colors	indicating	the	strength	of	activation	(see	color	bar).	

	

	

Figure	2.8.	Significant	neural	distance	effect	in	each	notation	in	2nd	graders	(left)	and	5th	

grader	(right)’	brains.	The	regions	colored	by	red	indicate	the	neural	distance	effects	in	

nonsymbolic	(LL)	notation,	the	regions	colored	by	magenta	indicate	the	neural	distance	
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effects	in	mixed	(LF),	and	the	regions	colored	by	blue	indicate	the	neural	distance	effects	in	

symbolic	(FF)	notations.	The	brains	are	inflated	to	allow	visualization	of	activations	in	the	

sulci	(dark	gray)	and	gyri	(light	gray).		

	

Figure	2.9.	Conjunction	analysis	across	the	neural	distance	effect	in	each	notation	in	

2nd	graders	(upper)	and	5th	grader	(below)’	brains.	The	regions	colored	by	light	blue	

indicate	conjunction	of	the	distance	effects	across	nonsymbolic	(LL)	and	mixed	(LF)	

notations,	the	regions	colored	by	green	indicate	conjunction	of	the	distance	effects	across	

mixed	and	symbolic	(FF)	notations,	and	the	regions	colored	by	purple	indicate	conjunction	
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of	the	distance	effects	across	all	three	notations.	Due	to	overlaps,	green	color	is	mixed	with	

other	colors	and	is	indicated	with	dark	blue	color.		

	

Conjunction	analyses	across	the	neural	distance	effects	in	different	notation	

To	examine	the	regions	that	overlapped	across	the	neural	distance	effects	from	

different	notations,	we	performed	conjunction	analyses.	The	conjunction	analyses	on	the	

distance	effects	between	LL	and	LF	in	2nd	graders	identified	bilateral	parietal	lobules,	

bilateral	insula,	right	precentral	and	lingual	gyrus,	and	medial	frontal	gyrus.	In	5th	graders,	

the	same	conjunction	analysis	on	the	distance	effects	between	LL	and	LF	identified	similar	

regions	including	bilateral	parietal	lobules,	right	insula,	left	supplementary	motor	area,	and	

a	few	parts	of	right	frontal	gyrus	(p	<	.05;	see	Figure	2.9	and	Table	2.10).	As	an	extension,	

when	FF	was	added	to	conjunction	analysis,	we	still	identified	bilateral	parietal	lobules,	

right	insula,	right	precentral	gyrus	and	a	part	of	frontal	gyrus	(p	<	.05;	see	Table	2.9).	These	

results	show	overlaps	of	the	distance	effects	across	different	notations	of	ratios	similar	to	

the	results	with	adults	(Mock	et	al.,	2018;	Binzak	et	al.,	submitted).		
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Table	2.7.	Distance	effect	collapsing	across	all	notations	
Anatomical	Region	 TAL	coordinates	(x,y,z)	 Mean	t-score	 Number	of	Voxels	
2nd	Graders:	Near	>	Far	
Right	precentral	gyrus	 44	 4	 30	 4.647	 4331	
Right	medial	frontal	cortex	 35	 43	 12	 3.945	 6512	
Right	superior	occipital	cortex		 23	 -59	 42	 4.570	 26044	
Right	insula	 29	 16	 12	 4.075	 3517	
Right	medial	frontal	cortex	 23	 58	 -15	 2.280	 334	
Right	superior	frontal	gyrus	 23	 -5	 51	 2.928	 897	
Right	hippocampus	 23	 -26	 -3	 2.738	 1903	
Left	supplementary	motor	area	 -1	 7	 51	 5.026	 12596	
Left	superior	parietal	gyrus	 -25	 -65	 42	 3.824	 8194	
Left	lingual	gyrus	 -22	 -92	 -9	 3.070	 4495	
Left	parahippocampal	gyrus	 -19	 -35	 -3	 2.694	 341	
Left	medial	frontal	cortex	 -22	 46	 -15	 4.165	 2196	
Left	superior	occipital	gyrus	 -25	 -71	 24	 2.554	 293	
Left	insula	 -31	 16	 12	 5.089	 4262	
Left	precentral	gyrus	 -40	 -2	 30	 2.985	 903	
5th	Graders:	Near	>	Far	
Right	insula	 29	 16	 9	 7.641	 39312	
Right	posterior	cerebellum	 14	 -95	 -18	 4.576	 13828	
Right	inferior	parietal	cortex	 41	 -47	 48	 5.342	 26891	
Right	medial	frontal	cortex	 29	 55	 -15	 5.983	 6969	
Right	superior	frontal	gyrus	 23	 -5	 51	 3.771	 2878	
Left	supplementary	motor	area	 2	 16	 45	 6.946	 25151	
Left	posterior	cingulum	 -1	 -29	 21	 2.757	 663	
Left	lingual	gyrus	 -13	 -98	 -15	 5.359	 11286	
Left	inferior	parietal	cortex	 -28	 -62	 42	 4.755	 18456	
Left	medial	frontal	cortex	 -31	 59	 -15	 4.682	 2510	
Left	insula	 -34	 16	 6	 6.141	 18248	
Left	inferior	frontal	gyrus,	
triangular	part	 -43	 37	 9	 3.454	 2227	
	

Table	2.8.	Distance	effect	in	each	notation	in	2nd	graders	
Anatomical	Region	 TAL	coordinates	(x,y,z)	 Mean	t-score	 Number	of	Voxels	

nonsymbolic	notations	Near	>	Far	
Right	precentral	gyrus	 44	 4	 27	 3.568	 1871	
Left	inferior	frontal	gyrus,	triangular	part		 53	 34	 15	 2.689	 796	
Right	inferior	temporal	gyrus	 44	 -53	 -9	 2.635	 606	
Right	superior/inferior	lobule	 21	 -66	 44	 4.801	 15150	
Right	fusiform	gyrus	 29	 -74	 6	 2.467	 631	
Right	insula	 29	 16	 15	 3.161	 393	
Right	lingual	gyrus	 23	 -86	 -6	 2.523	 519	
Right	superior	frontal	gyrus	 23	 -5	 51	 2.686	 1025	
Right	supplementary	motor	area	 5	 16	 45	 3.030	 2526	
Left	medial	occipital	gyrus	 -22	 -89	 3	 2.262	 291	
Left	superior	parietal	lobule/IPS	 -22	 -65	 42	 3.028	 2325	
Left	insula	 -34	 13	 12	 3.353	 476	
Left	inferior	parietal	lobule	 -37	 -41	 39	 3.161	 1516	

	cross-notations:	Near	>	Far	
Right	precentral	gyrus	 38	 1	 30	 3.141	 3073	
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Right	middle	frontal	gyrus	 38	 43	 6	 3.657	 14562	
Right	superior	parietal	lobule	 44	 -41	 55	 2.471	 267	
Right	inferior	parietal	lobule/superior	
occipital	lobule	 27	 -61	 37	 2.675	 11884	
Right	medial	frontal	cortex	 17	 46	 -18	 2.833	 329	
Right	cerebellum	 32	 -53	 -33	 2.604	 434	
Right	lingual	gyrus	 20	 -93	 -12	 3.497	 2774	
Right	precentral	gyrus	 23	 -8	 51	 2.437	 434	
Right	thalamus	 8	 -14	 9	 2.856	 1787	
Left	supplementary	motor	area	 -1	 22	 42	 3.342	 11301	
Left	cerebellum	 -7	 -26	 -37	 2.953	 1366	
Left	thalamus	 -13	 -20	 0	 2.530	 547	
Left	superior	parietal	lobule	 -25	 -65	 42	 3.747	 6846	
Left	lingual	gyrus	 -22	 -92	 -9	 3.220	 2582	
Left	medial	frontal	cortex	 -21	 46	 -18	 3.886	 1883	
Left	insula	 -28	 22	 3	 3.662	 4839	
Left	precentral	gyrus	 -46	 1	 33	 2.902	 2744	
Left	inferior	parietal	lobule	 -56	 -38	 51	 2.671	 1466	
Left	inferior	frontal	gyrus,	triangular	part		 -40	 37	 6	 2.562	 420	
Left	Inferior	frontal	gyrus,	opercular	part	 -64	 13	 10	 3.026	 479	
	

Table	2.9.	Distance	effect	in	each	notation	in	5th	graders	

Anatomical	Region	

TAL	
coordinates	

(x,y,z)	

Mean	
t-

score	

Number	
of	

Voxels	
Anatomical	

Region	
TAL	coordinates	

(x,y,z)	
nonsymbolic	notations	Near	>	Far	

Right	inferior	frontal	gyrus,	triangular	
part		 50	 28	 30	 4.784	 12229	
Right	superior/inferior	parietal	lobule	 14	 -77	 48	 5.340	 85575	
Right	medial	frontal	cortex	 23	 52	 -12	 3.785	 3186	
Right	insula	 32	 19	 9	 2.489	 415	
Left	supplementary	motor	area	 -1	 22	 48	 2.481	 340	
Left	medial	frontal	cortex	 -22	 49	 -19	 2.871	 1326	
Left	superior/inferior	parietal	lobule	 -46	 -44	 57	 2.658	 1646	

cross	notations	Near	>	Far	
Left	supplementary	motor	area	 2	 19	 45	 6.694	 93351	
Right	superior/inferior	parietal	lobule	 25	 -66	 49	 3.753	 27866	
Right	medial	frontal	cortex	 17	 40	 -18	 3.455	 910	
Left	lingual	gyrus	 -13	 -98	 -12	 3.645	 6130	
Left	caudate	nucleus	 -13	 4	 9	 3.126	 718	
Left	superior/inferior	parietal	lobule	 -31	 -65	 42	 4.507	 18699	
Left	superior	frontal	cortex	 -25	 -5	 54	 2.657	 660	
Left	precentral	gyrus	 -46	 1	 33	 5.550	 32010	

symbolic	notations	Near	>	Far	
Left	inferior	frontal	gyrus,	triangular	part		 35	 25	 27	 3.426	 7736	
Right	inferior	parietal	lobule/superior	
occipital	lobule	 30	 -60	 37	 3.388	 7024	
Right	insula	 29	 19	 9	 2.903	 1774	
Right	medial	frontal	cortex	 23	 49	 -15	 3.214	 2806	
Left	supplementary	motor	area	 -4	 4	 51	 5.403	 9646	
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Left	medial	frontal	cortex	 -25	 37	 -22	 3.837	 925	
Left	angular	gyrus/inferior	parietal	lobule	 -34	 -47	 33	 3.476	 6736	
Left	insula	 -31	 13	 15	 3.630	 2297	
Left	precentral	gyrus	 -46	 1	 33	 4.068	 5380	
	

Table	2.10.	Conjunction	analyses	across	distance	effect	for	different	notations	

Anatomical	Region	 TAL	coordinates	(x,y,z)	 Mean	t-score	
Number	of	
Voxels	

2nd	Grader:	(Near	>	Far	in	LL)	Ç	(Near	>	Far	in	LF)	
Right	medial	frontal	gyrus	 47	 31	 24	 2.422	 386	
Right	precentral	gyrus	 41	 1	 30	 2.958	 1038	
Right	superior/inferior	parietal	lobule	 23	 -61	 42	 2.732	 6343	
Right	insula	 29	 16	 15	 2.924	 374	
Right	medial	occipital	gyrus	 29	 -74	 12	 2.249	 261	
Right	lingual	gyrus	 23	 -86	 -6	 2.523	 471	
Left	supplementary	motor	area	 -4	 13	 48	 2.837	 2427	
Left	superior	parietal	lobule	 -22	 -65	 42	 3.028	 2185	
Left	insula	 -31	 16	 12	 2.749	 211	
Left	inferior	parietal	lobule	 -37	 -44	 36	 2.496	 576	
5th	Grader:	(Near	>	Far	in	LL)	Ç	(Near	>	Far	in	LF)	
Right	inferior	frontal	gyrus,	triangular	part	 44	 25	 30	 4.563	 10506	
Right	superior/inferior	parietal	lobule/IPS	 17	 -74	 45	 4.736	 20002	
Right	insula	 32	 19	 9	 2.489	 415	
Left	supplementary	motor	area	 -1	 22	 48	 2.481	 340	
Left	superior	parietal	lobule/IPS	 -25	 -71	 48	 3.274	 4681	
Left	inferior	parietal	lobule	 -46	 -44	 57	 2.658	 1581	
5th	Grader	(Near	>	Far	in	LL)	Ç	(Near	>	Far	in	LF)	Ç	(Near	>	Far	in	FF)	
Right	inferior	frontal	gyrus,	triangular	part	 44	 28	 30	 3.392	 3397	
Right	precentral	gyrus	 41	 -2	 30	 2.852	 692	
Right	superior/inferior	parietal	lobule	 32	 -58	 44	 2.177	 5316	
Right	insula	 32	 19	 9	 2.489	 378	
Left	supplementary	motor	area	 -1	 22	 48	 2.481	 272	
Left	superior	parietal	lobule/IPS	 -30	 -69	 42	 2.039	 346	
Left	inferior	parietal	lobule/IPS	 -37	 -47	 36	 2.598	 831	
	
The	difference	in	the	neural	distance	effects	between	2nd	vs.	5th	graders.		

	 To	examine	the	regions	showing	a	difference	between	2nd	and	5th	graders	in	terms	of	

the	neural	distance	effects,	we	conducted	a	two-way	random	effects	ANOVA	(1	within:	near	

vs.	far	distances	and	1	between:	2nd	vs.	5th)	on	the	whole	brain.	Next,	we	extracted	the	

average	beta	values	for	each	distance	bin	individually	from	each	significant	cluster.	By	
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doing	so,	we	identified	the	clusters	where	5th	graders	showed	larger	distance	effects	than	

2nd	graders	and	vice	versa.	5th	graders	showed	larger	distance	effects	in	bilateral	frontal	

cortex	including	right	IFG,	right	inferior	parietal	lobule,	and	left	precentral	gyrus	(Table	

2.11).	The	regions	where	2nd	graders	showed	larger	distance	effects	included	clusters	in	

right	rolandic	operculum,	left	fusiform	gyrus	and	left	inferior	frontal	gyrus	(Table	2.10).	

When	we	unpack	the	results	by	notation,	5th	graders	showed	larger	distance	effects	in	the	

symbolic	notations,	especially	in	the	right	inferior	parietal	lobule	and	left	precentral	gyrus,	

whereas	the	interaction	found	in	the	frontal	cortex	was	mostly	from	the	nonsymbolic	and	

cross	notations	(Table	2.10).	Also,	the	frontal	area	where	2nd	graders	showed	larger	

distance	effect	was	mainly	from	symbolic	fraction	notations	(Table	2.11).			
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Table	2.11.		The	regions	showing	significant	interactions	between	2nd	and	5th	graders	
distance	effects.	

Notation	 Anatomical	Region	 x	 y	 z	
Mean	t-
score	

Number	
of	Voxels	

5th	>	2nd	distance	effects	

collapsing	
across	all	
notations	

Right	Inferior	frontal	gyrus,	opercular	
part	 44	 16	 33	 12.46	 3821	
Right	inferior	parietal	lobule	 41	 -44	 45	 8.18	 1046	
Right	superior	frontal	gyrus	 14	 46	 -12	 5.44	 97	
left	anterior	cingulum	 -4	 16	 21	 6.15	 157	
left	mid	frontal	gyrus	 -50	 46	 3	 9.06	 3770	
left	precentral	gyrus	 -55	 2	 42	 7.83	 2636	

symbolic	
fractions	(FF)	

Right	precentral	gyrus	 54	 13	 39	 7.36	 319	
Right	inferior	parietal	cortex	 43	 -47	 45	 5.43	 385	
Right	superior	occipital	cortex	 29	 -62	 33	 5.58	 222	
Right	mid	frontal	gyrus	 26	 37	 -24	 7.01	 293	
Left	supplementary	motor	cortex	 -7	 1	 50	 6.58	 308	
Left	mid	frontal	gyrus	 -25	 37	 -22	 8.34	 2537	
Left	anterior	cingulum	 -10	 1	 27	 5.22	 264	
Left	pallidum	 -18	 -2	 6	 5.31	 95	
Left	superior	frontal	cortex	 -22	 25	 -9	 6.10	 578	
Left	angular	gyrus	 -34	 -47	 33	 7.19	 627	
Left	mid	occipital	gyrus	 -34	 -69	 36	 5.21	 247	
Left	precentral	gyrus	 -49	 1	 33	 8.95	 3054	

cross	notations	
(LF)	

Right	inferior	frontal	gyrus,	triangular	
part	 38	 19	 27	 4.83	 98	
Right	superior	occipital	gyrus	 14	 -89	 39	 6.38	 128	
Right	mid	cingulum	 2	 4	 39	 9.15	 811	
Left	anterior	cingulum	 -1	 16	 21	 9.23	 447	
Left	superior	frontal	cortex	 -22	 49	 -12	 7.83	 724	

Nonsymbolic	
notation	(LL)	

Right	inferior	frontal	gyrus,	triangular	
part	 32	 16	 27	 7.79	 1144	
Left	lingual	gyrus	 -24	 -92	 -9	 5.17	 305	
Left	mid	frontal	cortex	 -31	 31	 -21	 6.72	 110	
Left	inferior	frontal	gyrus,	triangular	part	 -50	 43	 3	 10.46	 5027	

2nd	>	5th	distance	effects	
collapsing	
across	all	
notations	

Right	ronlandic	operculum	 41	 -17	 21	 6.71	 435	
Left	fusiform	gyrus	 -22	 -68	 -6	 5.65	 218	
Left	inferior	frontal	gyrus	 -64	 14	 9	 8.51	 1247	

symbolic	
fractions	(FF)	

right	inferior	frontal	cortex	 32	 28	 -21	 7.33	 534	
Left	inferior	temporal	cortex	 -61	 -65	 -15	 12.75	 847	

Nonsymbolic	
notation	(LL)	 Left	insula	 -37	 1	 12	 9.32	 1045	
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ROI	analysis.		

To	examine	whether	our	a	priori	region	of	interest	–	the	IPS	–	is	also	sensitive	to	the	

ratio	and	fraction	magnitudes,	we	tested	the	neural	distance	effects	in	the	IPS	coordinates	

from	Houde	et	al.	(2010)	sing	three	distance	bins	in	each	notation.	We	first	conducted	a	

linear	mixed-effect	regression	examining	fixed	effects	by	regressing	extracted	mean	beta	

values	against	grade	(2nd	=	0,	5th	=	1),	hemisphere	(left	=	0,	right	=	1),	the	distance	bins	(far	

=	0,	medium	=	1,	near	=	2)	and	the	notations	(Nonsymbolic-LL=0,	Mixed-LF	=1,	Symbolic-

FF=2).	Based	on	the	performance,	we	had	hypotheses	regarding	the	change	of	brain	

engagement	between	levels	(i.e.,	2nd	graders	>	5th	graders,	FF	>	LF	>	LL,	and	near	>	med	>	

far).	To	facilitate	analysis,	we	used	a	backward	difference	coding	scheme	so	that	we	could	

compare	adjacent	levels	of	variables.	The	fixed	effects	results	showed	that	the	beta	values	

increased	as	the	distance	bins	becomes	nearer,	especially	between	far	and	medium	

(p<.001;	Table	2.12).	We	also	found	that	engagement	of	the	IPS	increased	with	notation	in	

the	order	predicted	although	LL	<	LF	shows	marginal	significance	(LL	<	LF;	p	=	.055,	LF	<	

FF;	p	=	.014).	However,	there	were	no	significant	differences	due	to	hemisphere	or	to	grade	

level		

To	better	understand	the	results,	we	tested	the	main	effect	of	distance	in	the	IPS	at	

each	notation,	hemisphere,	and	grade.	We	used	the	‘anova’	function	from	the	‘car’	package	

in	R	that	performs	the	Wald	chisquare	test	which	shows	the	main	effect	across	different	

levels	of	distance	(near,	med,	and	far)	(see	Figure	2.10).	We	found	that	in	2nd	graders,	only	

the	right	IPS	showed	significant	distance	effects	in	LL	(𝜒!	=7.27,	p=.026)	and	LF	(𝜒!	=7.27,	

p=.026)	notations.	In	5th	graders,	with	the	exception	of	the	left	IPS,	which	did	not	show	

significant	distance	effects	in	LL	notation	(𝜒!	=2.88,	p=.236),	bilateral	IPS	showed	
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significant	distance	effects	for	all	notations	(left:	𝜒!	=8.21,	p=.017	for	LF,	𝜒!	=8.20,	p=.017	

for	LF;	right:	𝜒!	=6.91,	p=.031	for	LL,		𝜒!	=17.80,	p<.001	for	LF,		𝜒!	=14.31,	p<.001	for	FF).		

	

	

Figure	2.10.	Mean	beta	values	from	the	left/right	IPS	of	2nd	(left	panel)	and	5th	(right	panel)	

graders.		*p<.05,	**p<.001.	Nonsymbolic	(LL),	mixed	(LF),	and	symbolic	(FF)	notations	were	

presented.		
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Table	2.12.	Fixed	effects	that	regressed	beta	values	against	grade,	hemisphere,	notations,	and	

distance	bins.	

	 β	 t	 p	

Intercept	 .117	 3.300	 .002**	

Distance:	medium-far		 .060	 5.700	 <.001***	

Distance:	near-medium	 .017	 1.660	 .097	

Notation:	LL	-LF	 .020	 1.921	 .055+	

Notation:	LF	-FF	 .026	 2.450	 .014*	

Hemisphere:	Right-Left	 .006	 .325	 .746	

Grade:	5th	–	2nd	graders	 -.036	 -.785	 .436	

	

Discussion			

With	a	growing	interest	in	fractions	learning,	we	aimed	to	understand	

developmental	changes	in	the	underlying	neural	mechanism	for	fraction	processing.	

Specifically,	the	present	study	put	the	RPS	hypothesis	to	the	test	to	unravel	the	possible	use	

of	primitive	cognitive	architecture	for	supporting	acquisition	of	symbolic	fractions	

competence.	By	taking	cross-sectional	approach,	we	compared	the	neural	activations	

between	the	children	who	have	not	yet	received	formal	fractions	instruction	(2nd	graders)	

and	children	who	have	received	a	few	years	of	fractions	instruction	(5th	graders).	The	

current	study	demonstrated	the	similarities	and	differences	in	both	behavioral	and	neural	

activity	when	processing	ratio	magnitudes	between	2nd	and	5th	graders.		

Behaviorally,	as	expected,	5th	graders	were	more	accurate	and	faster	than	2nd	

graders	in	all	notations	as	found	in	the	previous	work	using	an	identical	task	in	a	purely	
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behavioral	experiment	(Kalra,	Binzak,	et	al.,	2020).	However,	we	found	similar	behavioral	

trends	between	2nd	and	5th	graders.	Both	groups	of	children	were	capable	of	comparing	

rational	number	magnitudes	accurately	and	rapidly	with	nonsymbolic	ratios,	symbolic	

fractions	and	even	cross-notation	representations.	Consistent	with	the	previous	reports	

with	children	and	adults,	our	results	also	showed	the	behavioral	distance	effects	in	all	

notations	in	both	2nd	and	5th	graders.	(Kalra,	Binzak,	et	al.,	2020;	Matthews	&	Chesney,	

2015),	even	after	controlling	for	children’s	use	of	a	gap	strategy.	These	results	indicate	that	

children	can	process	ratios	and	fractions	as	holistic	magnitudes.		

Additionally,	we	found	significant	differences	across	different	notations.	Within-

notation	comparison	with	nonsymbolic	ratio	magnitudes	was	the	most	accurate	and	the	

fastest,	and	the	comparison	with	symbolic	fractions	was	the	least	accurate	and	the	slowest	

for	both	groups.	The	fact	that	nonsymbolic	ratio	comparison	was	the	easiest	is	well-aligned	

with	the	RPS	theory	implicating	nonsymbolic	ratio	processing	as	a	cognitive	primitive.	In	

addition	to	this,	the	findings	showing	the	comparison	of	mixed	notation	ratios	is	easier	

than	that	of	symbolic	fractions	substantiate	the	suggestion	of	co-processing	across	

nonsymbolic	ratios	and	symbolic	fractions	(Kalra,	Binzak,	et	al.,	2020;	Matthews	&	Chesney,	

2015)	

Consistent	with	the	behavioral	results,	the	whole-brain	analysis	contrasting	near	

and	far	distances	in	2nd	and	5th	graders	showed	similarities	and	differences.	As	we	

hypothesized,	both	groups	showed	significant	distance	effects	in	a	bilateral	frontal-parietal	

network	including	the	IPS,	the	medial	frontal	gyrus,	the	left	precentral	gyrus	and	the	

bilateral	insula.	The	frontal-parietal	network	including	the	IPS	and	medial	frontal	gyrus	

were	similar	to	previous	studies	with	nonsymbolic	and	symbolic	fraction	processing	and	
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number	processing	(e.g.,	Houdé	et	al.,	2010;	Ischebeck	et	al.,	2009;	Jacob	&	Nieder,	2009b,	

2009a;	Mock	et	al.,	2018;	Wortha	et	al.,	2020).	The	precentral	gyrus	and	insula	were	also	

frequently	reported	to	be	related	magnitude	processing	generally	(e.g.,	Ansari,	Garcia,	

Lucas,	Hamon,	&	Dhitalm,	2005;	Mock	et	al.,	2018;	Pinel,	Dehaene,	Rivière,	&	LeBihan,	

2001;	Rosenberg-Lee,	Barth,	&	Menon,	2011).	These	results	support	the	RPS	hypothesis	

that	children	could	process	nonsymbolic	ratio	and	symbolic	fractions	as	holistic	magnitude.		

On	the	other	hand,	neural	results	between	2nd	and	5th	graders	were	different	in	two	

aspects.	First,	broader	regions	of	parietal-prefrontal	areas	showed	neural	distance	effects	

in	5th	graders	compared	to	2nd	graders.	Whereas	the	neural	distance	effect	in	2nd	graders	

was	found	more	right	lateralized	fronto-parietal	lobule,	the	neural	distance	effect	in	5th	

graders	was	more	balanced	bilaterally.	Secondly,	the	patterns	of	the	neural	distance	effect	

by	each	notation	were	different	for	2nd	and	5th	graders.	The	neural	distance	effect	in	2nd	

graders	was	mainly	due	to	nonsymbolic	ratio	and	cross-notation	comparison,	but	the	

distance	effect	in	5th	graders	were	observed	in	all	notations.	Given	that	2nd	graders	have	not	

received	formal	fraction	instructions,	it	is	reasonable	that	2nd	graders	showed	no	effect	on	

symbolic	fractions.	Critically,	these	results	are	consistent	with	the	RPS	theory	predicting	

the	neurocognitive	architecture	for	nonsymbolic	ratio	likely	exists	prior	to	exposure	to	

fractions	instruction.		

However,	it	should	still	be	noted	that	2nd	graders	were	able	to	complete	the	task	

accurately	and	rapidly	for	all	notations.	It	should	be	considered	that	we	observed	the	small	

neural	distance	effect	for	symbolic	fraction	comparison	in	the	uncorrected	data	in	the	IFG,	

where	relates	to	orientation	toward	stimuli,	inhibition,	and	other	higher	order	cognition	

(for	review	see	Aron,	Robbins,	&	Poldrack,	2004;	for	meta-nalaysis	see	Levy	&	Wagner,	
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2011).	Furthermore,	the	between	group	ANOVA	test	revealed	that	2nd	grader	showed	a	

greater	distance	effect	in	the	right	IFG	for	processing	symbolic	fractions.	Even	though	we	

did	not	find	any	clusters	that	remained	statistically	significant	after	correction	for	multiple	

comparisons	in	2nd	graders,	the	aforementioned	findings	indicate	the	possibility	of	neural	

engagement	of	the	frontal	gyrus.	If	2nd	graders	recruited	the	frontal	gyrus	for	symbolic	

fractions,	the	results	would	have	been	well	aligned	with	the	previous	work	investigating	

symbolic	number	processing	with	children	and	adults	(Ansari	&	Dhital,	2006;	Ansari	et	al.,	

2005;	Cantlon	et	al.,	2009;	Rivera,	Reiss,	Eckert,	&	Menon,	2005).	In	their	result,	children	

showed	greater	BOLD	response	in	the	IFG,	while	adults	showed	greater	BOLD	response	in	

the	bilateral	parietal	cortex.	As	the	previous	work	proposed	for	symbolic	number	learning,	

the	functional	neuroanatomy	underlying	symbolic	fractions	processing	undergoes	an	

ontogenetic	shift	toward	greater	parietal	engagement	starting	from	frontal	lobe	and	less	

reliance	to	frontal	areas.		

Compared	to	2nd	graders,	5th	graders’	neural	distance	effect	for	each	notation	

overlapped	in	right	prefrontal	and	bilateral	parietal	lobule	including	bilateral	IPS.	These	

results	from	5th	graders	are	in	line	with	the	previous	reports	on	adults’	nonsymbolic	ratio	

processing	(Jacob	&	Nieder,	2009b,	2009a;	Mock	et	al.,	2018),	and	symbolic	fraction	

processing	(Cui	et	al.,	2020;	Ischebeck	et	al.,	2009;	Mock	et	al.,	2018;	Wortha	et	al.,	2020).	

Moreover,	adding	to	these	observable	differences,	statistical	differences	between	2nd	and	

5th	graders	exhibited	interesting	developmental	trends.	For	symbolic	fraction	processing,	

older	children	presented	increased	BOLD	signal	in	the	right	parietal	lobule	and	left	

precentral	gyrus,	regions	critical	for	magnitude	processing	(for	meta-analysis,	Sokolowski,	

Fias,	Bosah	Ononye,	&	Ansari,	2017).	In	turn,	it	demonstrates	older	children	can	process	
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symbolic	fractions	as	magnitude.	Additionally,	older	children	exhibited	a	greater	

engagement	in	the	frontal	gyrus	for	nonsymbolic	and	cross	notations,	which	indicates	a	

more	adult-like	fronto-parietal	network	for	ratio	magnitudes	(Cui,	Li,	Li,	Siegler,	&	Zhou,	

2020;	Ischebec	k	et	al.,	2009;	Mock	et	al.,	2018;	Wortha	et	al.,	2020).	Taken	together,	our	

results	demonstrate	that	the	neurocognitive	architecture	for	ratio	magnitude	becomes	

more	adult-like	as	children	progress	through	the	primary	school	years	followed	by	years	of	

exposure	to	symbolic	fractions.		

Subsequent	region	of	interest	(ROI)	analysis	further	revealed	the	differences	in	

neural	activations	in	response	to	ratio	tasks	between	2nd	and	5th	graders.	A	significant	

distance	effect	in	the	bilateral	IPS	was	observed	in	5th	graders	(except	for	left	IPS	for	

nonsymbolic	ratios),	but	in	2nd	graders,	only	right	IPS	was	found	to	be	engaged	for	

nonsymbolic	and	cross-notation	ratio	comparisons.	Thus,	the	ROI	analysis	indicates	that	

the	right	IPS	is	more	sensitive	to	ratios	compared	to	the	left	IPS.	These	differential	

activations	between	hemispheres	might	imply	a	right-to-bilateral	developmental	model	

that	has	previously	been	suggested	by	Ansari	(Ansari,	2016;	Ansari	&	Dhital,	2006;	Ansari	

et	al.,	2005;	Holloway	&	Ansari,	2010).	Prior	to	fractions	instruction,	the	neurocognitive	

architecture	for	ratio	processing	may	be	tuned	only	to	nonsymbolic	ratio,	and	it	may	

initially	localize	to	the	right	hemisphere,	especially	the	right	IPS.	However,	years	of	

instruction	on	symbolic	fractions	may	help	develop	the	RPS	sensitivity	toward	symbolic	

fractions	as	well.	That	is,	consistent	practice	on	processing	ratio	magnitudes	may	lead	to	a	

developmental	shift	whereby	the	IPS	plays	an	increasingly	important	role	in	ratio	

processing.		
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In	conclusion,	the	present	study	offers	the	first	evidence	demonstrating	the	

existence	of	primitive	cognitive	architecture	for	ratio	processing	in	young	children	at	

neural	level.	Furthermore,	by	taking	cross-sectional	approach,	our	study	suggests	the	

developmental	shift	in	ratio	processing	during	the	early	stages	of	fraction	instructions.	

Future	study	should	work	on	how	this	ratio	processing	ability	can	support	fraction	

acquisition	with	longitudinal	or	training	designs.		
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Chapter	3:	Developmental	Changes	in	the	Relationships	between	White	Matter	

Integrity	and	Nonsymbolic	and	Symbolic	Fractions	Processing	

Introduction		

Chapter	2	showed	how	functional	specialization	for	symbolic	fractions	changes	

during	early	years	of	fractions	instruction	and	substantiated	the	possibility	of	grounding	

symbolic	fractions	in	the	RPS.	However,	this	developmental	change	is	not	simply	a	matter	

of	functional	recruitment	of	the	brain.	The	functional	engagement	can	also	be	depend	on	

changes	in	underlying	white	matter	microstructure	that	connects	different	cortical	regions	

(Damoiseaux	&	Greicius,	2009;	Johansen-Berg	&	Rushworth,	2009;	Zimmermann	et	al.,	

2018).	Thus,	it	is	possible	that	white	matter	microstructure	may	also	relate	to	fraction	

processing.	In	turn,	if	regions	of	the	fronto-parietal	network	are	engaged	for	processing	

fraction	magnitude	information,	it	is	likely	that	the	degree	of	structural	connectivity	linking	

these	different	regions	of	the	brain	are	also	involved	in	fraction	processing.	Moreover,	

studying	its	early	development	may	contribute	to	understanding	the	development	of	neural	

circuits	for	fraction	processing.		

The	same	logic	has	already	prompted	investigations	into	the	relations	between	

whole	number	competence	and	white	matter	microstructures.	By	employing	a	diffusion	

tensor	imaging	(DTI)	(for	review,	Matejko	&	Ansari,	2015)	that	measures	diffusion	of	water	

in	the	white	matter	(Alexander,	Lee,	Lazar,	&	Field,	2007;	Beaulieu,	2002),	the	studies	have	

measured	fractional	anisotropy	(FA),	a	measure	of	white	matter	microstructure	derived	

from	DTI.	The	previous	studies	have	found	that	FA	values	were	related	to	various	

numerical	skills	in	different	age	ranges.	Individual	differences	in	FA	were	associated	with	

nonsymbolic	and	symbolic	number	processing	in	6-year-old	(Cantlon	et	al.,	2011),	whole	
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number	operations	in	ages	7-15	years		(Jolles	et	al.,	2016;	Tsang,	Dougherty,	Deutsch,	

Wandell,	&	Ben-Shachar,	2009;	Van	Beek,	Ghesquière,	Lagae,	&	De	Smedt,	2014;	van	

Eimeren	et	al.,	2010,	2008),	and	even	advanced	math	achievement	as	Preliminary	

Scholastic	Aptitude	Test	(PSAT)	performance	in	17-18	years-old	(Matejko	et	al.,	2013).		

These	previous	studies	reported	the	involvement	of	various	tracts,	but	consistently	

highlighted	frontoparietal	and	temporal	white	matter	tracts	as	being	associated	with	

nonsymbolic	and	symbolic	number	competence,	compatible	with	functional	studies	(e.g.,	

Dehaene	et	al.,	2004;	Piazza	et	al.,	2004;	Peters	&	De	Smedt,	2017	for	review).	The	reported	

tracts	included	the	corpus	callosum	(CC)	(Cantlon	et	al.,	2011;	Hu	et	al.,	2011;	Till	et	al.,	

2011),	the	inferior	fronto-occipital	fasciculus	(IFOF)	(Li,	Wang,	Hu,	Liang,	&	Chen,	2013;	

Rykhlevskaia	et	al.,	2009),	the	superior	longitudinal	fasciculus	(SLF)	(Kucian	et	al.,	2014;	

Rykhlevskaia	et	al.,	2009;	van	Eimeren	et	al.,	2010),	and	the	inferior	longitudinal	fasciculus	

(ILF)	(Li	et	al.,	2013;	Tsang	et	al.,	2009;	van	Eimeren	et	al.,	2008).	

	 Similar	to	the	case	with	whole	numbers,	it	is	possible	that	the	white	matter	tracts	

underneath	parietal	and	frontal	lobe	are	also	related	to	fractions	processing.	Considering	

the	similarities	in	functional	engagement	between	whole	number	and	fraction	processing,	

the	regions	in	the	SLF,	the	ILF,	the	SCR,	or	the	IFOF	may	relate	to	the	performance	of	the	

fraction/ratio	comparison	tasks.	Furthermore,	the	relation	between	white	matter	and	

fraction	processing	may	change	over	the	course	of	development	similar	to	the	case	with	

cortical	functioning	as	revealed	in	Chapter	2.	Yet,	little	is	known	about	the	relationship	

between	the	microstructure	and	ratio	processing	ability	as	investigations	into	the	neural	

underpinnings	of	fractions	processing	have	only	recently	emerged.		
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Therefore,	the	present	study	of	Chapter	3	aimed	to	investigate	white	matter	

microstructure	and	its	relation	to	fractions	processing	in	children	with	a	cross-sequential	

approach.	Furthermore,	to	capture	developmental	changes	in	the	relationship,	we	

investigated	the	same	cohorts	of	children	as	in	Chapter	2;	2nd	graders	with	little	symbolic	

fractions	knowledge	and	5th	graders	who	have	learned	symbolic	fractions	in	school.	

Chapter	3’s	study	was	divided	into	Experiment	1	and	2.	In	Experiment	1,	we	conducted	a	

whole	brain	analysis	using	tract-based	spatial	statistics	(TBSS)	to	explore	regions	

correlated	with	fractions	processing	ability.	As	an	extension	of	the	cross-sectional	

approach,	Experiment	2	additionally	analyzed	the	data	one	year	after	the	first	scan,	when	

2nd	and	5th	graders	in	Experiment	1	became	3rd	and	6th	graders,	and	looked	at	the	

longitudinal	changes	between	grades.	In	Experiment	2,	since	we	narrowed	down	the	

regions	of	interest	in	Experiment	1,	we	employed	a	region	of	interest	(ROI)	analysis	to	

investigate	each	region’s	development	separately.	Thus,	we	explored	differential	

development	of	each	tract	and	how	its	change	related	to	the	development	of	ratio	and	

fraction	processing	ability.		

	

Experiment	1	

Specific	Introduction	

Unlike	fraction	processing,	the	relation	between	white	matter	microstructure	and	

whole	number	processing	ability	has	been	extensively	studied.	However,	even	in	the	realm	

of	whole	number	processing,	few	studies	have	investigated	developmental	differences.	

Only	Cantlon	et	al.	(2011)	compared	children’s	and	adults’	structural	differences	and	

reported	different	individual	differences	in	FA	in	the	CC.	In	their	results,	while	children’s	FA	
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from	left	isthmus	of	the	CC	was	correlated	with	number	processing	ability,	adult’s	FA	from	

the	CC	did	not	show	any	correlation	with	their	abilities.		

Furthermore,	even	though	FA	is	the	most	representative	diffusion	parameter	

measuring	microstructure,	but	it	is	also	important	to	look	at	other	features	of	

microstructure	such	as	the	degree	of	myelination	or	axonal	coherence	to	better	grasp	the	

results	with	FA.	Therefore,	other	diffusion	parameters	should	be	looked	into,	including	1)	

mean	diffusivity	(MD),	an	average	of	water	diffusion,	which	indicates	the	microstructure	

properties,	such	as	tissue	organization	(e.g.,	closely	arrayed	cellular	structures	in	tissues	

assumed	to	have	lower	MD)	(Beaulieu,	2002;	Takeuchi	et	al.,	2015;	Winklewski	et	al.,	

2018),	2)	radial	diffusivity	(RD),	a	magnitude	of	water	diffusion	that	is	perpendicular	to	

axons	which	indicates	the	degree	of	myelination	(e.g.,	demyelinated	white	matter	regions	

assumed	to	have	lower	RD),	and	3)	axial	diffusivity	(AD),	a	magnitude	of	water	diffusion	

that	is	parallel	to	axons	which	indicates	the	degree	of	axonal	propagation	(e.g.,	higher	

axonal	integrity	assumed	to	have	higher	AD)	(Beaulieu,	2002;	Song	et	al.,	2002,	2005;	

Winklewski	et	al.,	2018).		

Especially,	given	that	each	aspect	of	white	matter	microstructures	differentially	

develops	(Tamnes	et	al.,	2010),	other	diffusion	parameters	should	be	investigated	to	better	

understand	developmental	differences.	To	date,	few	studies	have	looked	at	which	white	

matter	structural	characteristic	drives	the	relation	by	using	DTI	parameters	beyond	FA	

(e.g.,	Hu	et	al.,	2011;	Kucian	et	al.,	2014;	Matejko	et	al.,	2013).	Matejko	et	al.	(2013)	

investigated	whether	white	matter	microstructure	was	correlated	with	the	math	subtest	in	

preliminary	scholastic	aptitude	test	(PSAT)	in	adults	through	a	tract	based	spatial	statistics	

(TBSS)	approach	(Matejko,	Price,	Mazzocco,	&	Ansari,	2013).	They	found	that	FA	and	RD	
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were	correlated	with	the	PSAT	score	in	the	intersection	of	the	left	superior	corona	radiata	

(SCR),	the	corticospinal	tract	(CST),	and	the	SLF	underneath	left	parietal	lobule.	These	

observations	of	overlaps	between	FA	and	RD	enables	researchers	to	suggest	that	the	

degree	of	myelination	of	the	left	parietal	cortex	contributes	individual	differences	in	

connectivity	and	it	may	relate	to	advanced	math	performance.		

In	the	present	study,	we	investigated	children’s	white	matter	microstructure	in	

relation	to	their	nonsymbolic	and	symbolic	fraction	processing.	Unlike	whole	number	

instruction,	which	begins	from	preschool	period,	formal	fractions	instruction	starts	in	2nd	

grade.	Thus,	we	aimed	to	investigate	two	cohorts	of	children,	2nd	graders	who	have	not	

received	formal	fraction	instructions	and	5th	graders	who	have	received	a	few	years	of	

fraction	instructions,	so	that	we	could	look	into	a	developmental	difference	in	the	relation	

between	microstructure	and	nonsymbolic	and	symbolic	fraction	competence.	Considering	

the	fact	that	the	ability	to	process	nonsymbolic	ratios	emerges	earlier	than	symbolic	

fractions	knowledge	(Y.	Park	et	al.,	2020),	the	white	matter	microstructure	may	suggest	a	

developmental	change	in	the	relation	with	nonsymbolic	and	symbolic	fractions	processing.	

Based	on	the	findings	of	Chapter	2	with	fMRI,	we	expect	that	2nd	graders’	white	matter	

connectivity	may	relate	only	to	nonsymbolic	ratio	processing	abilities	while	5th	graders’	

white	matter	connectivity	may	relate	to	both	nonsymbolic	ratio	and	symbolic	fractions.		

We	utilized	a	whole	brain	approach,	TBSS,	to	explore	the	association	between	white	

matter	microstructure	and	nonsymbolic	ratio	and	symbolic	fractions	processing	ability.	In	

addition	to	FA,	we	investigated	DTI	parameters	of	AD,	RD,	and	MD	to	better	understand	

observed	associations	with	the	white	matter	microstructure.	Ratio	processing	ability	was	

measured	using	nonsymbolic	ratio	and	symbolic	fraction	comparison	tasks	conducted	
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during	our	functional	MRI	scan.	Since	this	was	a	computer-based	task,	children’s	abilities	to	

identify	and	process	information	efficiently	may	influence	their	task	performance.	Thus,	we	

additionally	measure	children’s	processing	speed	as	controls.		

	

Methods	and	Measures		

Participants		

The	same	participants	from	Chapter	2	also	took	part	in	the	diffusion	imaging.		Forty-

seven	2nd	graders	and	forty-five	5th	graders	were	recruited	from	several	public	schools	in	

Madison,	WI.	All	participants	were	right-handed	native	English-speakers	with	normal	

vision.	Parents	or	guardians	gave	written	consent,	and	children	gave	verbal	assent.	All	

protocols	were	approved	by	the	research	ethics	committee	of	the	University.	Participants	

received	monetary	compensation	and	small	gifts	for	their	participation.	Among	the	

participants,	data	acquisition	for	one	2nd	grader	and	one	5th	grader	was	stopped	due	to	

excessive	movements,	3	children	were	excluded	due	to	movement	artifacts	in	diffusion	

weighted	images	(DWI),	and	1	child	was	excluded	due	to	an	ADHD	diagnosis.	Overall,	44	

2nd	graders	and	42	5th	graders	were	included	in	the	final	analysis.	Two	2nd	graders	showing	

below	chance	performance	in	the	behavioral	task	in	the	scanner	were	excluded	from	the	

correlation	analyses.	

The	multiple	notation	ratio	comparison	task		

	 We	used	the	same	data	collected	from	the	ratio	comparison	task	in	Chapter	2.	Mean	

accuracy	(ACC)	and	reaction	times	(RT)	of	each	notation	were	used	as	outcome	variables.		



 64 

Processing	speed	measure		

We	used	the	pair	cancellation	subtest	from	the	WISC-IV	to	measure	children’s	global	

processing	speed	(Kaufman,	Flanagan,	Alfonso,	&	Mascolo,	2006;	Vaughn-Blount	et	al.,	

2011).	This	test	is	a	paper	and	pencil	test.	Children	were	given	a	single	standardized	

response	sheet	with	a	sequence	of	pictures	(a	mix	of	the	ball,	the	dog,	or	a	cup	pictures	in	a	

row)	and	were	required	to	circle	as	many	target	pairs	(	a	dog	followed	by	a	ball)	as	they	

could	in	three	minutes.	Each	item	pair	was	scored	as	1	point	if	the	child	circled	both	items	

when	they	appeared	in	the	correct	order	(dog-ball,	but	not	ball-dog).	The	total	score	was	69	

(item	pairs).		

Diffusion	MRI	acquisition	and	analysis		

Participants	were	scanned	on	a	3T	GE	Discovery	MR750	MRI	scanner	using	a	32-

channel	array	head	coil	(Nova	Medical).	Foam	padding	was	placed	around	the	participants’	

heads	to	prevent	head	motion.	Diffusion	weighted	images	(DWIs)	were	acquired	as	a	part	

of	a	larger,	comprehensive	scan	protocol	with	the	following	scan	acquisition	parameters:	

TR=	6000ms,	TE	=	68.8ms,	multiple	b-values	(b	=	0	s/mm2	with	6	directions,	500	s/mm2	

with	24	directions,	1500	s/mm2	with	24	directions),	and	2.5mm	isotropic	voxel	resolution.	

Additional	b	=	0	s/mm2	images	were	acquired	with	reverse	phase	encoding	directions.	The	

total	acquisition	time	was	8	min.		

All	DWIs	images	were	manually	inspected	for	motion	artifacts,	and	images	

determined	to	contain	artifacts	were	removed	prior	to	processing.	DWI	processing	was	

performed	using	an	in-house	processing	pipeline	that	utilizes	the	DIPY	toolkit	(Garyfallidis	

et	al.,	2014),	MRtrix	(Tournier,	Calamante,	&	Connelly,	2012),	FMRIB	Software	Library	

(FSL)	(Jenkinson,	Beckmann,	Behrens,	Woolrich,	&	Smith,	2012),	and	Analysis	of	Functional	
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Neuroimages	(AFNI)	(Cox,	1996)	software	packages.	Following	the	manual	inspection,	

images	were	corrected	for	Rician	noise	(Veraart	et	al.,	2016)	and	Gibbs	ringing	(Kellner,	

Dhital,	Kiselev,	&	Reisert,	2016).	Artifacts	from	field	inhomogeneities	and	eddy	currents	

were	corrected	using	TOPUP	and	Eddy	tools	from	FSL	(Andersson	&	Sotiropoulos,	2016;	

Smith	et	al.,	2004).	Non-parenchyma	signals	were	removed	using	the	3dSkullStrip	tool	

from	AFNI,	and	diffusion	tensors	were	estimated	using	the	robust	estimation	of	tensors	by	

outlier	rejection	(RESTORE)	(Chang,	Jones,	&	Pierpaoli,	2005)	algorithm	implemented	in	

the	DIPY	toolkit	(Garyfallidis	et	al.,	2014).	Maps	of	fractional	anisotropy	(FA)	were	

subsequently	constructed	from	the	diffusion	tensors	(Basser	&	Pierpaoli,	1996).	A	

population-specific	FA	template	was	generated	separately	for	2nd	and	5th	graders	using	the	

buildtemplateparallel.sh	from	Advanced	Normalization	Tools	(ANTs)	(Avants	et	al.,	2014),	

which	utilizes	iterative	diffeomorphic	registration	methods.	A	single,	overall	template	was	

then	constructed	from	the	2nd	and	5th	grade	templates.	Each	individual’s	FA	map	was	then	

nonlinearly	aligned	to	the	final	overall	population	template	using	ANTs.	Along	with	FA,	the	

computed	ANTs	transformations	were	applied	to	the	axial	diffusivity	(AD),	radial	diffusivity	

(RD),	and	mean	diffusivity	(MD)	maps	to	align	these	complementary	measures	to	the	

template.		

Tract	based	spatial	statistics	(TBSS)	was	employed	for	statistical	analysis	(Smith	et	

al.,	2006).	An	FA	skeleton	was	first	created	from	the	mean	FA	map	of	all	participants,	and	

the	FA	of	each	subject	was	projected	onto	this	skeleton.	This	FA	skeleton	map	was	reused	

for	testing	MD,	AD,	and	RD	maps.	General	linear	models	were	constructed	to	examine	the	

differences	between	2nd	and	5th	graders	and	the	correlations	between	ratio	processing	

ability	and	DTI	parameters	in	each	grade.	The	model	tested	each	voxel	within	the	FA	
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skeleton	using	nonparametric	permutation	testing	(FSL	randomise	tool;	(Winkler,	

Ridgway,	Webster,	Smith,	&	Nichols,	2014)	and	5000	permutations.	Age	in	months,	gender	

of	participants	and	a	total	motion	index	calculated	from	the	eddy-current	correction	were	

controlled	for	in	the	analyses.	Results	were	corrected	for	multiple	comparisons	using	

Threshold-Free	Cluster	Enhancement	(TFCE)	(Smith	&	Nichols,	2009),	which	is	similar	to	

cluster-extent	thresholding,	but	does	not	require	an	initial	arbitrary	setting	for	cluster-

forming	threshold.	All	correlation	results	are	reported	at	alpha	levels	of	p	<	.05,	TFCE-

corrected.	Regions	found	to	be	significant	were	identified	using	the	JHU	ICBM-DTI	White	

Matter	Atlas	and	JHU	White	Matter	Tractography	Atlas.	

	

Results		

	Behavioral	differences	between	2nd	and	5th	graders		

	 Children	in	both	grades	were	capable	of	discriminating	ratio	magnitude	accurately	

(2nd:	Macc	=	.88,	SD	=.33;	5th:	Macc	=	.92,	SD	=.27)	and	rapidly	(2nd:	Mrt	=	1642ms,	SD	=	655;	

5th:	Mrt	=	1480ms,	SD	=629).	We	conducted	mixed	effects	logistic	regression	and	mixed	

effects	linear	regression	models	for	the	accuracies	and	reaction	times	(RTs)	analysis		to	

account	for	within-subject	correlation	among	trials	using	the	‘lmer’	function	of	the	lme4	

package	in	R	software	(Bates	et	al.,	2015).	To	analyze	accuracies	and	RTs,	we	regressed	

each	dependent	variable	against	notations	(3	levels,	FF	=	0,	LF	=	1,	LL	=	2),	age	groups	(2	

levels,	2nd	graders	=	0,	5th	graders	=	1),	and	their	interactions.	We	used	a	backward	

difference	coding	scheme	so	that	we	could	compare	adjacent	levels	of	variables	(i.e.,	each	

level	minus	prior	level).	We	found	that	5th	graders	offered	significantly	more	accurate	(β	

=	.502,	p	<	.001)	and	rapid	(β	=	-171.54,	p	=	.003)	responses	than	did	2nd	graders	(Table	3.1	
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and	3.2;	Figure	3.1).	Furthermore,	we	also	found	significant	notation	effects.	Children	

reponded	more	accurately	(β	=	.788,	p	<.	001)	and	more	rapidly	(β	=		-250.8,	p	<	.001)	in	

nonsymbolic	trials	than	on	mixed	trials,	and	more	accurately	(β	=	.143,	p	=	.013)	and	more	

rapidly	(β	=	-238.88,	p	<	.001)	on	mixed	trials	than	on	trials	involving	only	symbolic	

fractions.	Significant	interactions	were	found	between	notations	and	grades	with	RT;	2nd	

and	5th	graders	showed	larger	differences	in	symbolic	fraction	trials	than	mixed	trials	(β	=	

43.6,	p	=	.046),	while	the	differences	between	graders	were	larger	in	mixed	trials	compared	

to	nonsymbolic	trials	(β	=	56.01,	p	=	.009).	

	

Figure	3.1.	Box	plots	with	individual	values	for	mean	accuracy	(left)	and	for	mean	reaction	

times	(right)	for	the	comparison	task	in	each	grade.		

	

	

	

	

	

	



 68 

Table	3.1.		Descriptive	statistics		
notation\grade	 2nd	graders	 5th	graders		

	 accuracy	 RT	 accuracy	 RT	

	 m	 sd	 m	 sd	 m	 sd	 m	 sd	

FF	 .84	 .37	 1921	 673	 .90	 .30	 1701	 652	

LF	 .86	 .34	 1656	 633	 .91	 .29	 1486	 622	

LL	 .93	 .25	 1379	 544	 .95	 .21	 1266	 535	

	

Table	3.2.	Linear	mixed	effects,	regressing	ACC	and	RT	against	notation	and	grade.	

	 ACC	 RT	

	 β	 Odds	
Ratio	

p	 β	 t	 p	

Intercept	 2.348	 10.465	 <.001***	 1571.640	 56.345	 <.001***	
FL	-	FF	 .143	 1.154	 .013*	 -238.880	 -21.842	 <.001***	
LL	-FL	 		.788	 2.199	 <.001***	 -250.800	 -23.417	 <.001***	

5th	graders-2nd	graders	 .502	 1.651	 <.001***	 -171.540	 -3.075	 	.003**	
|FL	–	FF|*|5th	graders-

2nd	graders|	
-.091	 0.913	 .426	 43.600	 1.993	 				.046*	

|LL	–	FL|*|5th	graders-
2nd	graders|	

.012	 1.012	 .932	 56.010	 2.615	 .009**	

Note,	p<.05*,	p<.01**,	p<.001***	

Developmental	differences	between	2nd	vs.	5th	graders	with	FA	

To	see	developmental	difference	in	white	matter	connectivity,	we	first	tested	the	

group	difference	in	FA	between	2nd	and	5th	graders.	In	this	analysis,	5th	graders	showed	

significantly	higher	FA	compared	to	2nd	graders	in	broad	white	matter	regions	when	

controlling	for	gender	and	head	motions	(p	<	.01,	TFCE	corrected;	Figure	3.	

2).	The	regions	included	the	bilateral	splenium	of	the	corpus	callosum,	the	IFOF	and	

the	ILF	in	the	occipital	cortex,	the	posterior	and	superior	corona	radiata,	the	CST,	the	

frontal	and	the	temporal	part	of	the	SLF,	the	forceps	major,	and	the	cingulum.	The	right	

temporal	part	of	the	IFOF	and	the	ILF	were	also	found	to	be	significantly	different	between	
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5th	and	2nd	graders.	Except	for	the	frontal	area	of	the	brain,	most	regions	showed	greater	

white	matter	connectivity	in	5th	graders	compared	with	2nd	graders.	On	the	other	hand,	the	

opposite	contrasts	(2nd	graders	>	5th	graders)	did	not	yield	any	significant	results.		

	

Figure	3.2.	Differences	between	2nd	and	5th	graders	in	FA.	The	statistical	map	was	

superimposed	onto	the	mean	of	FA	skeleton	(green)	and	mean	FA	map	registered	from	a	

population-based	template	(gray	scale).	The	red-yellow	colored	statistical	map	indicates	

higher	value	in	5th	graders	than	2nd	graders.		No	significant	difference	was	found	in	the	

opposite	contrasts	(2nd	graders	>	5th	graders).	L,	left	and	R,	right.		

	

In	subsequent	analyses	we	explored	which	white	matter	regions	were	correlated	

with	nonsymbolic	ratio	and	symbolic	fraction	processing	abilities.	We	used	both	mean	

accuracy	and	mean	reaction	times	(RT)	in	each	notations.	(FF,	LF,	and	LL)	as	explanatory	

factors.	In	all	correlational	analyses,	we	controlled	for	age	in	months,	gender,	head	motion	

and	children’s	processing	speed.	We	first	tested	correlations	with	FA	maps.	With	2nd		

graders,	we	did	not	find	any	significant	correlations	with	accuracy	or	RT.	However,	for	5th		

graders,	we	found	a	significant	negative	correlation	between	mean	RT	in	FF	and	FA	in	the	
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bilateral	parietal-temporal	regions	of	the	brain	when	controlling	for	age,	gender,	head	

motion,	and	processing	speed	(p	<	.05,	TFCE	corrected;	Figure	3.3).	In	other	words,	

children	with	better	processing	abilities,	indicated	by	faster	response	times,	showed	higher	

FA.	Voxels	in	these	clusters	spanned	bilateral	sagittal	stratum	including	the	ILF	and	IFOF	

and	left	SLF	including	its	temporal	part.		

	

Figure	3.3.	Correlations	in	5th	graders	between	FA	values	and	mean	comparison	RT	in	

symbolic	fraction	notation	(FF)	when	age,	gender,	head	motion	and	processing	speed	were	

corrected.	Higher	FA	values	were	associated	with	faster	participant	responses.*			

The	statistical	map	was	superimposed	onto	the	mean	of	FA	skeleton	(green)	and	mean	FA	

map	registered	from	a	population-based	template	(gray	scale).	The	red-yellow	colored	

statistical	map	indicates	a	significant	correlation	(p	<.05).	P,	posterior	and	A,	anterior.	L,	

left,	and	R,	right.		

*Note,	because	faster	response	indicates	better	fraction	processing	ability,	we	indicate	the	regions	

with	red-yellow	color.		
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Developmental	differences	between	2nd	vs.	5th	graders	with	other	diffusion	parameters	

Next,	to	better	understand	FA	results,	we	also	looked	into	other	diffusion	

parameters	(MD,	RD,	and	AD). When	regard	to	MD	and	RD,	2nd	graders	showed	

significantly	higher	MD	and	RD	compared	to	5th	graders	in	broad	white	matter	regions	(p	

<.01	TFCE	corrected;	Figure	3.4).	The	regions	included	most	of	the	IFOF	and	the	ILF	

connecting	the	frontal-temporal	regions.	Also,	the	region	included	a	part	of	the	SLF	

connecting	the	frontal-parietal	and	parietal-temporal	regions.	Additionally,	we	found	that	a	

part	of	corticospinal	tracts	and	body	of	corpus	callosum	were	also	included.	Since	we	did	

not	find	any	significant	differences	with	AD,	the	significant	differences	found	in	MD	and	RD	

suggests	increased	density	of	cellular	structure	and	the	degree	of	demyelination	may	have	

mainly	contributed	to	developmental	differences	in	structural	connectivity	between	2nd	

and	5th	graders.	
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Figure	3.4.	Differences	between	2nd	and	5th	graders	in	a)	MD,	and	b)	RD.	The	statistical	map	

was	superimposed	onto	the	mean	of	FA	skeleton	(green)	and	each	mean	MD	and	RD	maps	

registered	from	a	population-based	template	(gray	scale).	The	blue-light	colored	statistical	

map	indicates	higher	value	in	2nd	graders	than	5th	graders	(p	<.01).	P,	posterior	and	A,	

anterior.	L,	left	and	R,	right	

	

To	examine	the	questions	of	which	white	matter	characteristics	were	particularly	

related	to	performance	with	nonsymbolic	or	symbolic	fractions,	we	explored	correlations	

between	accuracies	and	RTs	and	other	diffusion	parameters.	We	did	not	find	any	

significant	correlations	between	diffusion	parameters	and	either	accuracy	or	RT	among	2nd	

graders.	However,	with	5th	graders,	we	found	that	MD	and	RD	parameters	were	positively	
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correlated	with	RT	measures	of	symbolic	fraction	processing	ability	when	accounting	for	

age	in	months,	gender,	head	motion	and	processing	speed	(p	<	.05,	TFCE	corrected;	Figures	

3.5	and	3.6).	We	also	found	that	5th	graders’	AD	parameter	was	positively	correlated	with	

accuracy	of	nonsymbolic	ratio	processing	ability	when	age	in	months,	gender,	head	motion	

and	processing	speed	were	accounted	for	(p	<	.05,	TFCE	corrected;	Figure	3.7).		

Diffusion	parameters	that	relate	to	the	cellular	structure	of	white	matter,	MD,	and	

the	degree	of	myelination	of	axons,	RD,	showed	significant	correlations	with	symbolic	

fraction	processing	in	broader	regions	compared	to	the	correlations	between	FA	and	that	

processing	(Beaulieu,	2002;	Sen	&	Basser,	2005;	Song	et	al.,	2002,	2005).	With	MD,	children	

with	faster	RTs	in	FF	showed	lower	MD	mostly	in	the	right	hemisphere	(p	<	.05,	TFCE	

corrected;	Figure	3.6).	The	significant	regions	included	right	IFOF	spanning	from	frontal-

posterior	regions,	right	ILF,	right	SLF	which	also	includes	its	temporal	part,	the	frontal	part	

of	right	anterior	thalamic	radiation	and	forceps	minor.	Adding	to	this,	we	found	bilateral	

CST	and	anterior	thalamic	radiation.	The	results	with	MD	showed	5th	graders	with	higher	

density	of	cellular	structure	in	these	white	matter	regions	had	higher	symbolic	fraction	

processing	abilities.		

With	RD,	children	with	faster	RT	in	FF	and	across	all	notations	showed	lower	RD	(p	

<	.05,	TFCE	corrected;	Figure	3.7).	Whereas	mean	RT	across	all	notations	showed	

significant	correlations	only	in	the	right	superior	CST,	mean	RT	in	FF	was	significantly	

correlated	with	broad	regions.	The	regions	included	bilateral	SLF	including	temporal	part,	

the	IFOF,	the	ILF,	the	CST,	and	anterior	thalamic	radiation.	However,	the	frontal	part	and	

mid-superior	part	of	the	SLF,	right	under	the	fronto-parietal	regions,	were	only	found	in	
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the	right	hemisphere.	That	means,	the	degree	of	demyelination	in	the	major	tracts	in	the	

right	hemisphere	is	related	with	higher	symbolic	fraction	processing	ability.	

Lastly,	diffusion	parameters	that	relate	to	the	degree	of	axonal	propagation	showed	

significant	correlation	only	with	nonsymbolic	ratio	processing,	but	not	with	symbolic	

fractions	processing	(Kumar,	Nguyen,	Macey,	Woo,	&	Harper,	2012;	Song	et	al.,	2003,	

2005).	Children	with	higher	accuracy	in	LL	showed	higher	AD	mostly	in	the	left	hemisphere	

which	was	contrary	to	the	results	of	MD	and	RD	(p	<	.05,	TFCE	corrected;	Figure	3.8).	The	

significant	regions	included	a	large	portion	of	left	SLF	in	the	parietal	and	temporal	lobes,	

left	body	of	corpus	callosum,	left	ILF	and	IFOF	in	both	occipital	and	temporal	lobes,	and	left	

CST.		Children	with	higher	axonal	propagation	in	these	tracts	in	the	left	hemisphere	seemed	

to	have	higher	nonsymbolic	ratio	processing	ability.		
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Figure	3.5.	Positive	correlations	between	MD	values	and	mean	RT	in	symbolic	fraction	

notation	(FF)	when	age,	gender,	head	motion,	and	processing	speed	were	corrected.	As	MD	

values	were	lower,	participants’	responses	were	faster.	The	statistical	map	was	

superimposed	onto	the	mean	of	FA	skeleton	(green)	and	mean	MD	map	registered	from	a	

population-based	template	(gray	scale)	for	visualization	purpose.	The	blue-light	colored	

statistical	map	indicates	a	significant	correlation	(p<.05).	P,	posterior	and	A,	anterior.	L,	left	

and	R,	right.	
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Figure	3.6.	Positive	correlations	between	RD	values	and	a)	mean	RT	across	all	notations	

and	b)	mean	RT	in	symbolic	fraction	notation	(FF)	when	age,	gender,	head	motion,	and	

processing	speed	were	corrected.	As	RD	values	were	lower,	participants’	responses	were	

faster.		The	statistical	map	was	superimposed	onto	the	mean	of	FA	skeleton	(green)	and	

mean	RD	map	registered	from	a	population-based	template	(gray	scale)	for	visualization	

purpose.	The	blue-light	colored	statistical	map	indicates	a	significant	correlation	(p<.05).	P,	

posterior	and	A,	anterior.	L,	left	and	R,	right.	
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Figure	3.7.	Positive	correlations	between	AD	values	and	mean	ACC	in	nonsymbolic	fraction	

notation	(LL)	when	age,	gender,	head	motion,	and	processing	speed	were	corrected.	As	AD	

values	were	higher,	participants’	responses	were	more	accurate.	The	statistical	map	was	

superimposed	onto	the	mean	of	FA	skeleton	(green)	and	mean	AD	map	registered	from	a	

population-based	template	(gray	scale)	for	visualization	purpose.	The	red-yellow	colored	

statistical	map	indicates	a	significant	correlation	(p<.05).	P,	posterior	and	A,	anterior.	L,	left	

and	R,	right.	

	

Discussion	

The	current	experiment	explored	neural	signatures	for	nonsymbolic	ratio	and	

symbolic	fraction	processing	abilities	in	relation	to	white	matter	microstructure.	By	testing	

2nd	and	5th	graders,	our	results	revealed	developmental	differences	in	the	relations	

between	white	matter	and	nonsymbolic	ratio	and	symbolic	fraction	processing	abilities.	

Also,	our	results	demonstrate	differential	relations	between	diffusion	parameters	and	

notations	(nonsymbolic	ratio	or	symbolic	fractions).		

We	found	significant	developmental	differences	at	a	group-level	in	both	behavioral	

and	neural	analyses.	Behaviorally,	5th	graders	showed	significantly	better	nonsymbolic	
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ratio	and	symbolic	fraction	processing	abilities	compared	to	2nd	graders,	but	with	the	

similar	notation	effects,	exhibiting	the	best	performance	in	nonsymbolic	notation.	These	

results	are	consistent	with	those	of	a	prior	study	using	the	identical	task	(Kalra,	Binzak,	et	

al.,	2020).	In	the	neural	analysis,		5th	graders	showed	significantly	increased	FA,	decreased	

RD	and	MD	in	broad	regions	of	the	brain	even	when	controlling	for	gender	and	head	

motion,	consistent	with	previous	developmental	DTI	studies	(e.g.,	Barnea-Goraly	et	al.,	

2005;	Kumar,	Nguyen,	Macey,	Woo,	&	Harper,	2012;	Mukherjee	et	al.,	2001,	2002;	Qiu,	Tan,	

Zhou,	&	Khong,	2008).	The	significant	differences	in	RD	and	MD	between	2nd	and	5th	

graders	are	potentially	associated	with	an	increase	of	myelin	or	axonal	density	during	

primary	school	years	in	most	of	the	white	matter	regions	(Beaulieu,	2002;	Sen	&	Basser,	

2005;	Song	et	al.,	2002,	2005).	The	regions	showing	higher	FA	in	5th	graders	were	limited	

to	the	parietal-temporal	regions,	but	the	regions	found	in	FA	overlapped	with	the	regions	

showed	differences	in	RD	and	MD.	Given	that	we	did	not	find	differences	in	AD	

corresponding	to	diffusion	parallel	to	the	microstructure,	but	did	observe	significant	

differences	in	RD	indicative	of	perpendicular	diffusion	(Kumar	et	al.,	2012;	Song	et	al.,	

2003,	2005),	the	significant	differences	in	FA	may	be	associated	with	increased	

myelination.		

Along	with	the	group-level	differences,	we	observed	developmental	differences	in	

white	matter	microstructure	at	a	subject-level.	The	significant	relations	between	diffusion	

parameters	and	nonsymbolic	ratio	and	symbolic	fraction	processing	abilities	were	only	

found	in	5th	graders,	but	not	in	2nd	graders.	Contrary	to	our	prediction,	2nd	graders’	white	

matter	did	not	show	significant	correlations	with	nonsymbolic	ratio	processing	ability.	

Since	nonsymbolic	ratio	processing	has	been	revealed	as	a	primitive	ability	that	even	
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monkeys	and	infants	have	(Jacob	et	al.,	2012;	McCrink	&	Wynn,	2007),	we	expected	for	2nd	

graders’	white	matter	microstructure	to	relate	to	their	nonsymbolic	ratio	processing	under	

fronto-parietal	areas	even	without	any	formal	instructions.  

This	may	be	because	the	period	that	individual	differences	in	white	matter	reflect	

individual	differences	in	nonsymbolic	processing	may	need	more	consistent	experience	as	

other	training	studies	have	showed	(Huber,	Donnelly,	Rokem,	&	Yeatman,	2018;	Jolles	et	al.,	

2016).	It	should	be	noted	that	Chapter	2	explored	a	group-level	differences	not	their	

individual	differences.	Furthermore,	even	though	there	are	some	previous	studies	that	

argue	that	functional	engagement	can	be	associated	with		changes	in	underlying	white	

matter	microstructure	(Damoiseaux	&	Greicius,	2009;	Johansen-Berg	&	Rushworth,	2009;	

Zimmermann	et	al.,	2018),	it	is	also	true	that	it	is	not	always	the	case	(Damoiseaux,	2017;	

Hirsiger	et	al.,	2016;	Zimmermann	et	al.,	2016).	To	better	understand	these	results,	

following	studies	should	investigate	individual	differences	in	functional	engagement	and	

connectivity	between	the	fronto-parietal	regions	and	how	those	individual	differences	

correlate	to	ratio	or	symbolic	fraction	processing.	

	 Unlike	with	2nd	graders,	for	5th	graders,	we	found	that	each	diffusion	parameter	was	

differentially	correlated	with	nonsymbolic	vs.	symbolic	fractions	processing.	FA,	RD,	and	

MD	were	particularly	correlated	with	symbolic	fraction	ability	even	when	controlling	for	

age,	gender,	head	motion,	and	global	processing	speed.	On	the	other	hand,	AD	was	

correlated	with	nonsymbolic	ratio	processing	ability	when	controlling	for	the	same	

covariates.	These	results	may	suggest	that	different	aspects	of	white	matter	microstructure	

differentially	relate	to	nonsymbolic	ratio	and	symbolic	fraction	processing.	
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In	terms	of	correlations	with	symbolic	fractions,	overlapping	regions	across	the	

results	with	FA,	MD,	and	RD	were	localized,	especially	in	the	occipito-temporal	areas	of	

white	matter.	The	regions	spanned	a	small	part	of	bilateral	ILF	and	IFOF,	and	part	of	left	

SLF,	tracts	whose	integrities	has	previously	reported	to	correlate	with	whole	numbers	(for	

review,	see	Matejko	&	Ansari,	2015;	Moeller,	Willmes,	&	Klein,	2015;	Peters	&	De	Smedt,	

2018).	The	occipito-temporal	cortex	has	not	been	frequently	reported	in	earlier	fMRI	

studies	with	ratio	and	fractions	(Ischebeck,	Schocke,	&	Delazer,	2009;	Jacob	&	Nieder,	

2009;	Mock	et	al.,	2018;	but	see	Cui	et	al.,	2020),	but	it	has	been	emphasized	well	enough	

with	symbolic	numbers	in	regards	to	its	visual	or	verbal	representations	(for	review,	Yeo,	

Wilkey,	&	Price,	2017).	Our	results	may	indicate	the	importance	of	processing	visual	or	

verbal	features	of	symbolic	fractions.		

	 Additionally,	we	found	that	RD	and	MD	were	correlated	with	symbolic	fractions	

processing	ability	in	broader	regions	than	was	FA.	The	regions	covered	most	of	the	tracts	

linking	parietal-frontal	regions	of	the	brain	that	we	predicted	but	also	covered	tracts	

linking	the	temporal-occipital	regions,	as	well	as	the	IFOF	that	links	the	frontal-occipital	

regions,	which	has	also	been	reported	in	previous	studies	(e.g.,	Hu	et	al.,	2011;	

Rykhlevskaia	et	al.,	2009).	This	result	may	demonstrate	that	the	degree	of	myelination	

(Song	et	al.,	2002,	2005)	and	density	of	axonal	membranes	(Beaulieu,	2002;	Sen	&	Basser,	

2005)	are	particularly	sensitive	to	children’s	fraction	processing	abilities	in	larger	regions.	

Given	the	developmental	differences	are	shown	in	larger	areas	in	MD	and	RD	between	2nd	

and	5th	graders	compared	to	FA,	the	increased	axonal	membranes	density	and	

demyelination	may	contribute	to	a	broader	sensitivity	to	symbolic	fractions	compared	to	

the	case	of	FA.		
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On	the	contrary,	regions	where	AD	was	significantly	correlated	with	nonsymbolic	

ratios	in	left	hemisphere	included	the	fronto-parietal	tracts	in	line	with	previous	studies	

(e.g.,	Cantlon	et	al.,	2011;	Matejko,	Price,	Mazzocco,	&	Ansari,	2013;	van	Eimeren	et	al.,	

2008).	Even	though	we	did	not	find	developmental	differences	in	AD	between	2nd	and	5th	

graders	in	these	regions	at	the	group	level,	the	axonal	organizations	and	orientations	in	

white	matter	may	have	changed	at	the	individual-level	and	contributed	to	the	correlations	

with	nonsymbolic	ratios	(Kumar	et	al.,	2012;	Song	et	al.,	2003,	2005).	Future	studies	are	

needed	to	chart	the	developmental	trajectories	between	2nd	and	5th	grade	to	better	

understand	the	white	matter	microstructural	changes	contributing	to	the	relationship	with	

nonsymbolic	ratio	and	symbolic	fraction	processing.		

	 One	interesting	aspect	of	these	results	is	that	different	lateralization	was	observed	

depending	on	the	diffusion	parameter	of	interest.	Whereas	significant	associations	in	FA	

and	MD	were	mostly	bilateral,	RD	and	AD	associations	were	found	right	or	left	lateralized.	

Previous	DTI	studies	investigating	the	relations	with	number	processing	and	its	operation	

have	not	provided	consistent	results	regarding	this	lateralization	(Moeller	et	al.,	2015).	

Some	studies	with	children	have	reported	bilateral	or	right-hemispheric	results	(e.g.,	Hu	et	

al.,	2011;	Klein,	Moeller,	&	Willmes,	2013;	Rykhlevskaia	et	al.,	2009),	while	a	number	of	

studies	have	also	observed	left	lateralized	results	(e.g.,	Cantlon	et	al.,	2011;	Van	Beek,	

Ghesquière,	Lagae,	&	De	Smedt,	2014;	van	Eimeren	et	al.,	2008).	Developmental	fMRI	

studies	have	suggested	that	asymmetrical	activations	for	numerical	processing	in	early	

years	eventually	become	bilateral	during	maturation.	Some	showed	left	lateralized	

activations	in	children	(Ansari	&	Dhital,	2006;	Ansari	et	al.,	2005;	Holloway	&	Ansari,	2010)	
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and	some	showed	right	lateralization	(Cantlon,	Brannon,	Carter,	&	Pelphrey,	2006;	Cantlon	

et	al.,	2009;	Rivera	et	al.,	2005).		

However,	regardless	of	the	direction	of	lateralization,	this	asymmetrical	

hemispheric	involvement	may	simply	be	due	to	immature	numerical	processing	in	early	

years	or	immature	interhemispheric	connections	(Cantlon	et	al.,	2011).	Even	though	5th	

graders	have	received	formal	fractions	instruction	for	2-3	years,	children	often	have	a	hard	

time	learning	about	fractions	(e.g.	Lesh,	Post,	&	Behr,	1987;	Ni	&	Zhou,	2005;	Vamvakoussi	

&	Vosniadou,	2004,	2010).	It	is	also	possible	that	immature	interhemispheric	connections	

that	are	largely	controlled	via	the	corpus	callosum	might	play	a	role.	Even	though	5th	

graders	showed	higher	FA	in	the	corpus	callosum,	immature	integrity	in	corpus	callosum	in	

early	years	of	development	may	cause	asymmetric	involvement	of	the	brain.	Future	work	

should	investigate	how	the	proficiency	matters	for	bilateral	engagement	by	comparing	

different	age	ranges	such	as	children	vs.	adults.	It	may	further	examine	the	role	of	corpus	

callosum	to	better	understand	the	lateralization	of	structural	and	functional	brain.	

	

 

Experiment	2	

 

Specific	Introduction	

	 Experiment	1	showed	the	association	between	white	matter	microstructure	and	

nonsymbolic	ratio	and	symbolic	fraction	processing	abilities	and	how	the	relations	change	

during	early	fraction	instructions	using	a	cross-sectional	design.	In	Experiment	1,	we	

identified	multiple	tracts	that	related	with	ratio	and	fraction	processing.	However,	since	we	
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took	a	whole-brain	approach,	we	could	not	narrow	down	the	results	into	a	few	specific	

tracts.	Also,	use	of	a	cross-sectional	design	limited	our	understanding	on	developmental	

changes.	

Therefore,	as	an	extension	of	the	cross-sectional	approach,	Experiment	2	aimed	to	

investigate	the	changes	in	the	microstructures	one	year	after	the	first	scan	and	how	each	

tract	differentially	relates	to	the	changes	of	ratio	and	fraction	processing.	We	specifically	

examined	the	changes	in	white	matter	connectivity	in	the	bilateral	SLF,	the	bilateral	ILF,	

and	each	part	of	the	CC	(genu,	splenium,	and	body).	These	tracts	have	been	frequently	

reported	as	related	to	numerical	processing	(Matejko	&	Ansari,	2015;	Peters	&	De	Smedt,	

2018).		

By	looking	into	differential	development	of	white	matter	connectivity	in	different	

tracts	and	how	it	relates	to	development	of	fraction	processing,	Experiment	2	aimed	to	help	

understand	how	the	brain	changes	during	early	years	of	fraction	instruction.	

	

Methods	and	Measures		

Participants		

We	analyzed	DWI	images	acquired	a	year	after	the	first	scan.	For	year	2	scans,	41	(of	

47)	2nd	graders	and	38	(of	45)	5th	graders	returned	to	the	lab	and	took	part	in	the	same	

scan	procedure	one	year	after	their	initial	scan.		

	

The	multiple	notation	ratio	comparison	task			

 We	used	the	identical	test	as	Experiment	1.		
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	Diffusion	MRI	acquisition	and	analysis		

Participants	were	scanned	on	the	same	scanner	as	Experiment	1	using	the	same	

protocol.	DWI	acquisition	parameters	were	also	identical	to	those	of	the	first	time	point	

(Experiment	1).		As	in	Experiment	1,	all	DWI	images	at	both	time	points	were	preprocessed	

by	using	the	identical	in-house	processing	pipeline	(see	Experiment	1’s	methods).	After	

constructing	FA	maps	from	the	diffusion	tensors	(Basser	&	Pierpaoli,	1996),	a	population-

specific	FA	template	was	generated	for	longitudinal	analysis	using	the	

buildtemplateparallel.sh	from	ANTs	(Avants	et	al.,	2014).	First,	an	individual	template	was	

generated	from	the	FA	maps	of	both	time	points,	and	then	overall	templates	for	each	

younger	(2nd-3rd	grades)	and	older	(5th-6th	grades)	child	groups	were	constructed.	Lastly,	a	

single,	final	template	was	then	generated	from	the	younger	and	older	children	templates.	

Each	individual’s	FA	map	at	each	time	point	was	then	nonlinearly	aligned	to	the	final	

overall	population	template	using	ANTs.		

To	examine	the	changes	in	different	regions	of	white	matter,	we	employed	an	atlas-

based	ROI	approach.	We	used	JHU	ICBM-DTI	White	Matter	Atlas	map	to	identify	the	ROIs:	

the	SLF,	the	ILF,	and	three	parts	of	the	CC	(body,	splenium,	and	genu),	major	tracts	

underneath	fronto-parietal	and	temporal-occipital	regions	of	the	brain	that	have	frequently	

been	reported	in	the	field	of	numerical	processing	(Matejko	&	Ansari,	2015;	Peters	&	De	

Smedt,	2018).	Moreover,	these	tracts	were	found	to	have	significant	correlations	with	

fractions	processing	in	Experiment	1.	The	ROI	from	the	atlas	was	registered	to	the	template	

space.	Once	registered,	we	extracted	individual	mean	FA	from	each	ROI	(Figure	3.8).		
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Figure	3.8.	ROIs	registered	from	a	population-based	template.	Mean	FA	map	registered	

from	a	population-based	template	(gray	scale)	for	visualization	purpose.	Red:	the	Genu	of	

the	CC,	Green:	the	splenium	of	the	CC,	Blue:	the	body	of	the	CC,	Yellow:	the	SLFs,	Light	blue:	

the	ILFs.	P,	posterior	and	A,	anterior.	L,	left	and	R,	right.	

	

Results		

Behavioral	analysis		

Since	Experiment	2	used	longitudinal	data	investigating	Experiment	1’s	participants	

a	year	later,	we	divided	the	participants	into	a	Younger	group	who	transitioned	to	3rd	grade	

from	2nd	grade	and	an	Older	group	who	transitioned	to	6th	grade	from	5th	grade.	Also,	we	

named	each	time	point	as	Time	1	for	the	first	scan	and	Time	2	for	the	second	scan	a	year	

later.	To	explore	behavioral	changes,	we	conducted		mixed	effects	logistic	and	linear	

regression	models	for	accuracy	and	reaction	time	(RT)	analysis		to	account	for	within-

subject	correlation	among	trials	using	the	‘lmer’	function	of	the	lme4	package	in	R	software	

(Bates	et	al.,	2015).	To	analyze	accuracy	and	RT,	we	regressed	each	dependent	variable	

against	notations	(3	levels,	FF	=	0,	LF	=	1,	LL	=	2),	age	groups	(2	levels,	Younger	(2nd	-3rd)	=	
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0,	Older	(5th	–	6th)	=	1),	time	points	(2	levels,	Time	1	=	0,	Time	2=	1)	and	their	interactions	

including	all	three	way	interactions.	We	used	a	backward	difference	coding	scheme	so	that	

we	could	compare	adjacent	levels	of	variables	(i.e.,	each	level	minus	prior	level).	For	

accuracy,	as	in	Experiment	1,	we	found	that	the	older	group	responded	significantly	more	

accurately	(β	=	.46,	p	<	.001)	and	rapidly	(β	=	-164.77,	p	<	.001)	than	the	younger	group	

(Table	3.3;	Figure	3.9).	Also,	we	found	significant	notation	effects	similar	to	the	results	of	

Experiment	1.	Children	were	more	accurate	(β	=	.15,	p	<.	001)	and	faster	(β	=	-245.06,	p	

<	.001)	in	nonsymbolic	trials	than	on	mixed	trials,	and	more	accurate	(β	=	.78,	p	=	<.001)	

and	faster	(β	=	-245.11,	p	<	.001)	on	mixed	trials	than	on	trials	involving	only	symbolic	

fractions.	A	year	later,	children	did	not	show	improvement	in	accuracy	(	β	=	.083,	p	=	.438),	

but	their	reponse	times	became	more	rapid	(β	=	-.90.678,	p	=.024).	In	addition	to	this,	we	

found	significant	interactions	between	notations	and	age	groups	with	RT:	Younger	group	

showed	larger	differences	between	mixed	and	nonsymbolic	trials	(β	=-50.17,	p	=	.002)	than	

Older	group.	Also,	Younger	group	showed	larger	difference	between	mixed	and	symbolic	

fraction	trials	(β	=	=	-	45.7,	p	=	.003)	than	Older	group.	Other	than	these	interactions,	we	did	

not	find	any	signifiicant	interactitons	with	time	points.		
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Table	3.3.	Mixed	effects,	regressing	ACC	and	RT	against	notation,	age	group,	and	time	point.	

	 ACC	 RT	

	 β	 Odds	
Ratio	 p	 β	 t	 p	

Intercept	 2.401	 11.032	 <.001***	 1526.296	 76.726	 <.001***	
FL	-	FF	 .146	 1.157	 .001	 -245.063	 -30.774	 <.001***	
LL	-FL	 .776	 2.172	 <.001***	 -245.109	 -31.415	 <.001***	

Older	-Younger	 -.460	 .631	 <.001***	 164.765	 4.141	 <.001***	
Time	2	–	Time	1	 .083	 1.086	 .438	 -90.675	 -2.279	 .024*	

|FL	–	FF|*|	Older	-Younger	
|	 .155	 1.167	 .070	 -50.170	 -3.150	 .002**	

|LL	–	FL|*|	Older	-Younger	
|	 -.001	 .999	 .989	 -45.699	 -2.929	 .003**	

|FL	–	FF|*|	Time	2-Time1	|	 .005	 1.005	 .957	 -12.372	 -.777	 .437	
|LL	–	FL|*|	Time	2-Time1	|	 -.028	 .973	 .789	 11.373	 .729	 .466	
|	Older	-Younger	|*|	Time	

2-Time1	|	 .099	 1.104	 .644	 -13.526	 -.170	 .865	

|FL	–	FF|*|*|	Older	-
Younger	|*|	Time	2-Time1	

|	
.126	 1.135	 .460	 -13.129	 -.412	 .680	

|LL	–	FL|*|*|	Older	-
Younger	|*|	Time	2-Time1	

|	
.022	 1.022	 .917	 20.631	 .661	 .509	

Note,	p<.05*,	p<.01**,	p<.001**	

	

Figure	3.9.	Box	plots	with	individual	values	for	mean	accuracies	(left	panel)	and	for	mean	

reaction	times	(right	panel)	for	the	comparison	task	in	each	age	group.		
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ROI	analysis		

	 First,	we	analyzed	differences	across	different	age	groups	and	also	the	changes	

within	each	age	group	over	time	from	Time	1	to	Time	2.	To	test	for	these	changes,	we	

conducted	linear	mixed	effects	regressions	for	FA	in	each	ROI	by	using	the	‘lmer’	function	

of	the	lme4	package	in	R	software	(Bates	et	al.,	2015).	To	analyze	changes	in	FA,	we	

regressed	FA	against	age	groups	(2	levels,	Younger	=	0,	5th	Older	=	1)	and	time	points	(2	

levels,	Time	1	=	0,	Time	2=	1),	and	their	interactions.	We	used	a	backward	difference	

coding	scheme	so	that	we	could	compare	adjacent	levels	of	variables	(i.e.,	each	level	minus	

prior	level).	We	found	significant	increases	in	FA	in	the	bilateral	SLF	(left:	β	=	.002,	.	p	<.001,	

right:	β	=	.006,	.p	<.001),	bilatteral	ILF	(left:	β	=	.009,	p	<.001,	right:	β	=	.011,	.	p	<.001)	and	

genu	of	the	CC	(β	=	.007,	.	p	<.001)	(see	Table	3.4	and	3.5).	We	did	not	find	a	significnat	

increase	in	FA	of	the	splenium	of	the	CC	(β	=	.001,	p	=.618).	In	the	body	of	the	CC,	we	rather	

found	a	significant	decrease	in	FA	(β	=-	.002,	p	=.009).	In	terms	of	age	groups,	the	older	

group	showed	significnantly	higher	FA	in	the	body	(β	=	.009,	p	<.004)	and	the	splenium	(β	

=	.011,	p	<.005)	of	the	CC,	the	right	SLF	(β	=	.007,	p	<.001)	and	the	right	ILF	(β	=	.008,	p	

<.004).	We	did	not	find	any	significant	differences	in	the	left	SLF	and	ILF,	and	the	genu	of	

the	CC	between	the	age	groups.	Except	for	the	body	of	CC,	more	than	50%	of	children	

showed	increases	in	FA	in	other	ROIs	(the	bilateral	ILF,	SLF	and	splenium	and	genu	of	CC)	

(Figure	3.10).	See	Figure	3.11	and	3.12	for	the	changes	of	FA	by	age	in	months.	
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Table	3.4.	Mixed	effects,	regressing	FA	in	the	SLF	and	the	ILF	against	age	group	and	time	

point.	

	 R	SLF	 L	SLF	 R	ILF	 L	ILF	

	 β	 t	 p	 β	 t	 p	 β	 t	 p	 β	 t	 p	
Intercept	 .282	 313.332	 <.001	 .253	 225.533	 <.001	 .272	 234.542	 <.001	 .245	 214.614	 <.001	
Older	-
Younger	 .007	 4.009	 <.001	 .002	 .956	 .343	 .008	 3.509	 .001	 .004	 1.808	 .075	

Time	2	–	
Time	1	 .006	 5.232	 <.001	 .006	 5.012	 <.001	 .011	 6.594	 <.001	 .009	 5.851	 <.001	

|Older	-
Younger|	
*|Time	2	
–	Time	
1|	

.001	 .493	 .624	 .001	 0.242	 .809	 .002	 .582	 0.562	 .003	 .984	 .328	

	

Table	3.5.	Mixed	effects,	regressing	FA	in	the	CC	against	age	group	and	time	point.	

	 GCC	 BCC	 SCC	

	 β	 t	 p	 β	 t	 p	 β	 t	 p	

Intercept	 .294	 217.420	 <.001	 .355	 227.934	 <.001	 .480	 258.516	 <.001	
Older	-
Younger	 -.001	 -.523	 .602	 .009	 3.020	 .004	 .011	 2.928	 .005	

Time	2	–	
Time	1	 .007	 4.669	 <.001	 -.002	 -2.658	 .010	 .001	 0.501	 .618	

|Older	-
Younger|	
*|Time	2	–	
Time	1|	

.003	 1.197	 .236	 .001	 .742	 .460	 .000	 -0.211	 .834	

	

	

Figure	3.10.	Percentage	of	children	who	showed	increased	(green)	and	decreased	(orange)	

FA	in	each	ROI.		
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Figure	3.11.	Individual	changes	in	FA	from	the	SLF	and	the	ILF	by	age	in	months.	

	

Figure	3.12.	Individual	changes	in	FA	from	the	CC	(splenium,	body	and	genu)	by	age	in	

months.	
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Next,	we	explored	the	relations	across	the	changes	of	white	matter	connectivity	

within	different	ROIs	and	the	changes	of	children’s	ratio	and	fraction	processing	ability.	

The	changes	of	FA	and	ratio	and	fraction	processing	abilities	were	normalized	by	dividing	

the	difference	between	the	values	from	two	timepoints	by	the	value	from	Time	1	((Time	2-

Time	1)/Time	1).	The	change	of	ratio	and	fraction	processing	ability	was	calculated	by	

using	accuracy	(ACC)	and	reaction	time	(RT)	of	each	individual	at	each	timepoint	and	each	

notation	(LL,	LF,	and	FF).	Furthermore,	to	see	the	developmental	differences	between	the	

younger	and	the	older	groups,	we	conducted	bivariate	correlation	analyses	separately.		

We	found	that	changes	in	FA	in	each	ROI	were	differentially	related	with	different	

notations.	Also,	there	were	differences	in	those	relations	between	the	two	age	groups.	In	

the	younger	group,	we	found	the	changes	in	the	performance	of	all	three	notations	were	

correlated	with	most	ROIs	(See	Table	3.6	and	Figure	3.13).	The	changes	in	accuracy	in	LL	

notation	were	positively	correlated	with	the	changes	in	FA	in	the	bilateral	ILFs	(L:	r	=	.436,	

p	=	.011,	R:	r	=	.409,	p	=	.018)	and	the	genu	of	the	CC	(r	=	.417,	p	=	.016).	In	terms	of	LF	

notation,	the	changes	in	the	performance	were	positively	correlated	with	the	changes	in	FA	

in	the	splenium	of	the	CC	(ACC:	r	=	.357,	p	=	.041,	RT:	r	=	-.418,	p	=	.016)	and	the	left	ILF	

(ACC:	r	=	.343,	p	=	.050).	Lastly,	the	changes	in	RT	of	FF	notation	were	negatively	correlated	

with	the	changes	in	FA	in	the	splenium	of	the	CC	(r	=	-.350,	p	=	.046).		

On	the	other	hand,	in	the	older	group,	significant	correlations	were	found	with	the	

changes	in	the	performance	with	LF	and	LL	notations,	but	positive	and	also	negative	

correlations	unlike	the	younger	group	(See	Table	3.7	and	Figure	3.14).	We	found	the	RT	

changes	in	LF	notation	were	negatively	correlation	with	FA	changes	in	the	body	of	the	CC	

and	(RT:	r	=	-.390,	p	=	.023),	while	the	RT	changes	of	LL	notation	were	positively	correlated	
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with	changes	in	FA	in	the	bilateral	ILFs	and	the	left	SLF	(L	ILF	r	=.411.,	p	=	.016;	R	ILF:	r	

=.358,	p	=	.038;	L	SLF:	r	=.351,	p	=	.042).		

	

Table	3.6.	Correlations	across	the	changes	of	FA	from	the	ROIs	and	efficiency	score	in	the	

younger	group	(n=34).		

	
LF	

(ACC)	

LL	

(ACC)	
FF	(RT)	 LF	(RT)	 LL	(RT)	 L	SLF	 R	SLF	 L	ILF	 R	ILF	 BCC	 SCC	 GCC	

FF	(ACC)	 .457**	 .201	 -.076	 .079	 -.054	 .060	 .135	 .123	 .015	 .156	 .227	 .142	

LF	(ACC)	 	 .220	 -.214	 -.137	 -.168	 .255	 .312+	 .343*	 .295+	 .183	 .357*	 .316+	

LL	(ACC)	 	 	 .161	 .093	 .017	 .293+	 .276	 .436*	 .409*	 .179	 .141	 .417*	

FF	(RT)	 	 	 	 .777***	 .805***	 -.238	 -.034	 -.146	 -.242	 -.078	 -.350*	 -.225	

LF	(RT)	 	 	 	 	 .852***	 -.231	 -.065	 -.088	 -.243	 -.184	 -.418*	 -.222	

LL	(RT)	 	 	 	 	 	 -.171	 .047	 -.071	 -.192	 -.040	 -.288	 -.144	

L	SLF	 	 	 	 	 	 	 .879***	 .891***	 .885***	 .535***	 .662***	 .837***	

R	SLF	 	 	 	 	 	 	 	 .877***	 .854***	 .652***	 .746***	 .806***	

L	ILF	 	 	 	 	 	 	 	 	 .924***	 .494**	 .562***	 .913***	

R	ILF	 	 	 	 	 	 	 	 	 	 .460**	 .591***	 .869***	

BCC	 	 	 	 	 	 	 	 	 	 	 .732***	 .590***	

SCC	 	 	 	 	 	 	 	 	 	 	 	 .631***	

*each	column	value	indicates	the	change	of	FA	and	the	fraction/ratio	processing	ability;	LL	=	Line	vs.	Line,	LF	

=	line	vs.	fraction,	FF	=	fraction	vs.	fraction,	ACC	=accuracies,	RT	=	reaction	times,	BCC	=	Body	of	the	CC,	SCC=	

Splenium	of	the	CC,	GCC	=	Genu	of	the	CC.	p<.1+,	p<.05*,	p<.001***	
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Figure	3.13.	Correlations	between	the	changes	of	FA	in	ROIs	and	the	changes	in	the	

performance	in	each	notation	in	the	younger	group.		

	

	

	

	

	

	

	

	

	



 94 

Table	3.7.	Correlations	across	the	changes	of	FA	from	the	ROIs	and	efficiency	score	in	the	

older	group	(n=35).		

	
LF	

(ACC)	

LL	

(ACC)	
FF	(RT)	 LF	(RT)	 LL	(RT)	 L	SLF	 R	SLF	 L	ILF	 R	ILF	 BCC	 SCC	 GCC	

FF	(ACC)	 .462**	 -.069	 .200	 .217	 .379*	 .407*	 .210	 .167	 .191	 .261	 .184	 .091	

LF	(ACC)	
	

.114	 .016	 .030	 .036	 .094	 .069	 -.011	 .078	 .272	 .205	 -.029	

LL	(ACC)	
	 	

.196	 .068	 -.025	 -.210+	 -.231	 -.119	 -.038	 -.094	 -.028	 -.215	

FF	(RT)	
	 	 	

.718***	 .663***	 .302	 .175	 .265	 .277	 -.093	 .047	 .149	

LF	(RT)	
	 	 	 	

.829***	 .183	 .050	 .332+	 .323+	 -.390*	 -.318+	 .094	

LL	(RT)	
	 	 	 	 	

.351*	 .218	 .411*	 .358*	 -.315+	 -.132	 .234	

L	SLF	
	 	 	 	 	 	

.788***	 .787***	 .678***	 .182	 .355*	 .747***	

R	SLF	
	 	 	 	 	 	 	

.736***	 .726***	 .137	 .392*	 .766***	

L	ILF	
	 	 	 	 	 	 	 	

.847***	 -.225	 -.047	 .877***	

R	ILF	
	 	 	 	 	 	 	 	 	

-.115	 .046	 .829***	

BCC	
	 	 	 	 	 	 	 	 	 	

.735***	 .009	

SCC	
	 	 	 	 	 	 	 	 	 	 	

.162	

*each	column	value	indicates	the	change	of	FA	and	the	fraction/ratio	processing	ability;	LL	=	Line	vs.	Line,	LF	

=	line	vs.	fraction,	FF	=	fraction	vs.	fraction,	ACC	=accuracies,	RT	=	reaction	times,	BCC	=	Body	of	the	CC,	SCC=	

Splenium	of	the	CC,	GCC	=	Genu	of	the	CC.	p<.1+,	p<.05*,	p<.01**,	p<.001***	
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Figure	3.14.	Correlations	between	the	changes	of	FA	in	ROIs	and	the	changes	in	the	

performance	in	each	notation	in	the	older	group.		

	

Discussion	

 With	a	cross-sequential	approach,	Experiment	2	explored	how	each	ROI	changes	

over	a	year	and	how	those	changes	are	related	with	the	changes	in	nonsymbolic	ratio	and	

symbolic	fraction	processing	ability.	The	results	revealed	different	changes	of	connectivity	

in	the	bilateral	SLF	and	ILF,	and	the	CC	and	the	changes	of	each	ROI	was	differentially	

related	with	the	improvement	of	ratio	and	fraction	processing.		

	 First,	we	observed	both	consistent	and	inconsistent	changes	in	white	matter	

connectivity	with	our	two	age	groups.	Similar	to	the	previous	studies,	we	found	significant	
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increases	in	FA	in	the	bilateral	SLF	and	ILF,	and	the	genu	of	the	CC	in	both	the	younger	and	

the	older	groups	(for	review,	Hermoye	et	al.,	2006;	Lebel	&	Deoni,	2018).	These	increases	

were	not	shown	in	every	child,	but	rather	a	main	effect	emerged	from	a	mix	of	individuals	

who	showed	increase	in	FA	and	who	showed	decrease	in	FA	in	each	ROI	as	in	the	previous	

work	(Catherine	Lebel	&	Beaulieu,	2011).		

Most	regions	showed	the	main	effect	showing	increased	FA,	only	with	the	exception	

of	the	body	of	the	CC	(Barnea-Goraly	et	al.,	2005;	Bonekamp	et	al.,	2007).	This	is	somewhat	

different	from	the	prevalent	notion	that	FA	increases	as	age	increases,	especially	in	

children	(Bonekamp	et	al.,	2007;	Lebel	et	al.,	2012;	Lebel	&	Beaulieu,	2011).	However,	a	

similar	report	showing	a	negative	correlation	between	age	and	FA	in	the	isthmus	of	the	CC	

(9-24	years-old)	also	exists	(Muetzel	et	al.,	2008).	One	possible	account	for	these	results	

can	be	underestimated	FA	due	to	a	partial	volume	effect	(Alexander,	Hasan,	Lazar,	Tsuruda,	

&	Parker,	2001;	Alexander	et	al.,	2007;	Assaf	&	Pasternak,	2008).	The	partial	volume	effects	

happens	when	some	voxels	do	not	exhibit	Gaussian	diffusion	behavior	typical	of	DTI	

models,	due	to	factors	such	as	crossing	fibers	or	cerebrospinal	fluid	(CSF)	contamination.	

Since	DTI	measures	the	diffusion	of	water,	around	CSF,	the	outer	white	matter	voxel	with	

its	surrounding	tissue	for	the	genu	and	splenium	of	the	CC	which	consists	mostly	of	CSF	can	

easily	show	the	partial	volume	effect.	Studies	have	consistently	showed	underestimated	

diffusion	parameters	in	the	corpus	callosum	(Oouchi	et	al.,	2007;	Pfefferbaum	&	Sullivan,	

2003).	Considering	the	intricacy	of	the	CC	(Aboitiz,	Scheibel,	Fisher,	&	Zaidel,	1992b,	

1992a),	follow-up	investigation	using	some	techniques	such	as	a	free-water	estimation	to	

remove	the	CSF	contamination	during	tensor	estimation	would	be	necessary	to	better	

understand	these	discrepancies	(Hoy,	Kecskemeti,	&	Alexander,	2015;	Hoy,	Koay,	
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Kecskemeti,	&	Alexander,	2014;	Pasternak,	Sochen,	Gur,	Intrator,	&	Assaf,	2009;	Pierpaoli	&	

Jones,	2004).		

	 We	also	observed	different	relationships	between	longitudinal	changes	in	the	ROIs	

and	ratio	and	fraction	processing	abilities	and	also	developmental	differences	between	the	

younger	and	the	older	groups.	In	the	younger	group,	the	changes	in	processing	ability	each	

measured	with	different	notation	(symbolic,	mixed,	and	nonsymbolic)	were	differentially	

related	with	the	changes	in	white	matter	connectivity	in	each	ROI.	As	expected,	the	changes	

of	connectivity	in	ILFs	were	associated	with	changes	of	comparing	nonsymbolic	ratios	and	

mixed	notations.	Within	the	CC,	the	genu	and	splenium	parts	were	related	with	all	

notations.	Considering	we	did	not	find	any	correlations	between	white	matter	connectivity	

and	nonsymbolic	or	symbolic	ratio	processing	in	2nd	graders	at	Experiment	1,	it	might	be	

possible	that	the	associations	may	start	between	2nd	–	3rd	years	of	the	primary	school.		

On	the	other	hand,	in	the	older	group,	we	found	fewer	associations	between	

microstructures	and	ratio	processing	ability.	One	positive	association	we	found	was	

between	changes	of	the	body	of	the	CC	and	ratio	processing	ability	with	the	mixed	

notations.	We	rather	found	that	the	changes	of	microstructures	were	negatively	associated	

with	the	changes	in	nonsymbolic	ratio	processing	ability,	especially	in	the	ILF	and	the	SLF.		

One	possibility	may	be	a	decreased	involvement	of	the	tracts	with	ratio	processing.	

Considering	that	these	regions	connect	the	fronto-parietal	and	the	temporal-occipital	areas,	

these	associations	may	imply	decreasing	importance	of	connections	between	the	areas.	As	

Chapter	2	mentioned,	several	fMRI	studies	indicate	a	frontal	to	parietal	shift	happens	as	

children	gain	experience	with	symbolic	number	processing	(Ansari	&	Dhital,	2006;	Ansari	

et	al.,	2005).	Similar	to	this	logic,	a	functional	response	shift	toward	greater	parietal	



 98 

engagement	to	process	nonsymbolic	ratios	might	occur	and	might	result	in	less	reliance	to	

frontal	areas.	If	this	is	the	case,	it	may	imply	decreased	involvement	of	white	matter	

connectivity	in	processing	nonsymbolic	ratios.		

 

General	Discussion		

A	number	of	studies	have	investigated	the	relations	between	white	matter	

connectivity	and	numerical	competence	with	different	assessments,	but	these	previous	

studies	have	been	largely	limited	to	whole	number	knowledge	and	its	operation	(but	see	

Matejko	&	Ansari,	2013	with	higher-level	mathematics).	With	the	growing	interest	in	

fraction	learning,	the	present	study	explored	neural	signatures	for	nonsymbolic	ratio	and	

symbolic	fraction	processing	abilities	in	relation	to	white	matter	microstructure.	By	taking	

a	cross-sequential	approach,	testing	2nd	and	5th	graders,	we	further	explored	how	the	

relation	changes	during	the	ages	that	mark	the	early	stages	of	fractions	instruction.		

Experiment	1’s	results	revealed	the	developmental	differences	in	the	relations	

between	white	matter	and	nonsymbolic	ratio	and	symbolic	fraction	processing	abilities	

with	2nd	and	5th	graders.	The	results	also	demonstrated	that	different	aspects	of	

microstructure	were	differently	related	with	nonsymbolic	ratio	and	symbolic	fraction	

processing,	especially	in	5th	graders.	As	an	extension,	Experiment	2	demonstrated	how	

different	regions	of	white	matter	microstructures	develop	longitudinally	and	how	those	

changes	that	happen	over	the	course	of	one	year	are	associated	with	ratio	and	fraction	

processing,	especially	in	2nd	graders.	With	these	results,	the	current	study	indicates	that	

white	matter	microstructure	may	start	to	involve	with	ratio	and	fraction	processing	
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between	2nd	and	3rd	grade	period	and	may	eventually	reflect	individual	differences	of	

fraction	processing	later	in	primary	school.		

Furthermore,	our	results	highlight	the	tracts	under	temporal	lobe,	the	ILF,	may	be	

important	for	symbolic	fractions	processing	ability.	As	discussed	in	Experiment	1,	our	

results	may	simply	indicate	the	importance	of	processing	visual	or	verbal	features	of	

symbolic	fractions.	In	the	field	of	number	cognition,	a	handful	of	numerical	cognition	

studies	have	already	repeatedly	suggested	the	importance	of	the	ventral	occipital	temporal	

cortex	(vOTC),	with	a	proposal	of	a	triple-code	model	(Dehaene,	1992;	Dehaene	&	Cohen,	

1995)	that	suggests	three	distinct	but	necessary	components	for	representing	symbolic	

numbers.	In	addition	to	the	IPS,	which	represents	analog	magnitude	(for	review,	Ansari,	

2008;	Arsalidou	&	Taylor,	2011;	Houdé,	Rossi,	Lubin,	&	Joliot,	2010;	Jacob	et	al.,	2012;	

Lewis,	Matthews,	&	Hubbard,	2016),	the	model	proposed	a	verbal	word	frame	and	a	visual	

Arabic	number	form.	The	verbal	word	frame	represents	number	words	and	has	been	

suggested	to	lie	in	the	left	perisylvian	language	areas	and	angular	gyrus	(for	review,	

Moeller	et	al.,	2015;	Zamarian,	Ischebeck,	&	Delazer,	2009).		

This	visual	Arabic	number	form	can	be	represented	internally,	and	it	is	believed	to	

be	processed	at	a	‘number	form	area’	in	the	inferior	temporal	gyrus	(ITG)	(for	review,	Yeo	

et	al.,	2017)	Given	these	two	components,	it	is	likely	that	white	matter	tracts	that	propagate	

to	language	or	number	form	areas	(e.g.	ILF),	are	involved	with	fractions	processing.	

Children	may	engage	verbally	naming	each	fraction	or	visually	processing	the	form	of	

fraction	symbols	during	the	task	more,	resulting	in	the	involvement	of	the	occipto-temporal	

regions.		
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On	the	other	hand,	another	interpretation	would	be	possible.	As	a	recent	work	of	Cui	

et	al.	(2020)	noted,	fraction	processing	may	require	more	involvement	of	temporal	regions	

of	the	brain	since	it	requires	more	semantic	knowledge	than	whole	numbers	(Cui	et	al.,	

2020;	Liu	et	al.,	2019;	Zhou	et	al.,	2018).	However,	since	this	account	assumes	that	

understanding	fraction	magnitude	is	harder	than	understanding	whole	number	

magnitudes,	further	behavioral	and	neural	understanding	on	fractions	vs.	whole	number	

processing	would	be	needed.			

Conclusion	

The	current	study	is	the	first	to	examine	the	association	between	white	matter	

microstructure	and	nonsymbolic	ratio	and	symbolic	fraction	processing	abilities	and	how	

the	relations	change	during	early	fraction	instructions.	Our	results	demonstrate	that	

different	aspects	of	microstructure	were	differentially	related	with	nonsymbolic	ratio	and	

symbolic	fraction	processing.	Yet,	these	correlations	may	depend	on	the	amount	of	

experience	with	nonsymbolic	and	symbolic	fractions.	Future	studies	should	explore	the	

mechanism	under	the	relations	between	white	matter	structures	and	educational	

experiences.	
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Chapter	4:	The	Effect	of	Nonsymbolic	Ratio	Processing	on	Early	Fraction	Ability-	

Investigating	the	Effect	of	Linguistic	vs.	Non-linguistic	Contributors	to	Fractions	

Ability	

Introduction	

Chapter	2	and	Chapter	3	helped	understand	neural	development	of	fraction	

processing	and	suggested	the	possibility	that	nonsymbolic	ratio	processing	may	be	used	as	

a	potential	neurocognitive	tool	for	acquisition	of	symbolic	fraction	knowledge	(Matthews	et	

al.,	2016).	Building	on	the	understanding	of	the	RPS	with	neural	investigations,	the	study	of	

Chapter	4	takes	a	behavioral	approach	to	confirm	the	associations	between	the	RPS	and	

actual	symbolic	fraction	abilities.	Chapter	4	investigates	how	much	the	RPS	uniquely	

contributes	to	early	fraction	abilities	compared	other	cognitive	abilities	such	as	language	

ability	which	has	been	emphasized	to	be	important	to	learn	fraction	(e.g.,	Miura,	Okamoto,	

Vlahovic-Stetic,	Kim,	&	Han,	1999;	Seethaler,	Fuchs,	Star,	&	Bryant,	2011).		

A	possible	link	between	nonsymbolic	ratio	processing	and	higher	mathematics	has	

been	shown	by	a	few	previous	studies	in	both	adults	(Matthews,	Lewis,	&	Hubbard,	2016;	

Park	&	Matthews,	accepted)	and	children	(Hansen	et	al.,	2015;	Möhring,	Newcombe,	

Levine,	&	Frick,	2015;	but	see	Bhatia	et	al.,	2020).	However,	unlike	studies	with	adults,	the	

studies	with	children	did	not	measure	RPS	acuity	explicitly.	Their	tasks	were	not	designed	

for	measuring	acuity	of	participants.	Also,	the	stimuli	presented	were	a	mix	of	discretized	

and	continuous	lines	so	the	task	cannot	preclude	the	possibility	of	counting	(Figure	4.1).	

Thus,	even	though	Hansen	et	al	(2015)	measured	several	cognitive	abilities	including	

working	memory,	attention,	reading	fluency,	and	multiplication	fact	fluency,	it	is	hard	to	
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conclude	that	these	previous	studies	showed	the	influence	of	the	RPS	to	early	fraction	

ability	over	other	cognitive	abilities.		

	

Figure	4.1.		The	example	of	a	proportional	reasoning	match-to-sample	task	with	continuous	

magnitude	(left)	and	the	discretized	line	(right)	(Newcombe,	Levine,	&	Mix,	2015).																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														

	

Therefore,	the	main	aim	of	current	study	was	to	examine	the	relative	contributions	

of	the	RPS	and	other	cognitive	abilities.	Among	several	cognitive	abilities	that	have	been	

investigated	as	relatable	to	fractions	knowledge,	Chapter	4	focused	on	the	linguistic	

abilities.	Language	ability	has	been	consistently	reported	as	a	factor	that	contributes	to	

early	fraction	learning	(Fuchs	et	al.,	2013;	Miura	et	al.,	1999;	Namkung	&	Fuchs,	2016;	

Seethaler	et	al.,	2011)	among	several	possible	cognitive	factors		including	relational	

reasoning,	verbal	ability,	or	working	memory	(e.g.,	Hansen	et	al.,	2015;	Kalra,	Hubbard,	&	

Matthews,	2020;	Paik	&	Mix,	2003;	Ye	et	al.,	2016).		

Being	proficient	in	naming	fractions	is	crucial	for	understanding	fractions	concepts	

(Mix,	Levine,	&	Huttenlocher,	1999;	Paik	&	Mix,	2003).	Because	fractions	are	constructed	

from	concatenated	whole	number	symbols,	they	require	more	complex	naming	compared	
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to	whole	numbers.	How	quickly	children	learn	fraction-specific	words	such	as	numerator	or	

denominator	may	also	depend	on	their	language	ability.	Indeed,	several	behavioral	studies	

have	investigated	whether	development	of	whole	number	vs.	fraction	knowledge	would	

rely	on	the	same	or	distinct	cognitive	abilities	put	emphasis	on	language	competence	

(Namkung	&	Fuchs,	2016;	Paik	&	Mix,	2003).	Some	demonstrated	a	significance	of	language	

especially	in	fractions	by	showing	that	cultural	difference	in	naming	fractions	affect	

fraction	ability	(Miura	et	al.,	1999;	Paik	&	Mix,	2003).		

Recent	neuroimaging	data	also	indirectly	support	this	argument.	In	the	results	of	

Study	2	above,	a	strong	correlation	with	fraction	processing	ability	was	found	in	the	

bilateral	ILF	linking	the	temporal-parietal	regions.	Given	that	prior	work	studying	language	

ability	has	also	consistently	reported	the	involvement	of	ILF	(Wandell,	Rauschecker,	&	

Yeatman,	2012;	Yeatman,	Dougherty,	Ben-Shachar,	&	Wandell,	2012),	the	findings	are	

consistent	with	the	hypothesis	that	linguistic	ability	plays	an	important	role	on	fraction	

processing.	Furthermore,	a	recent	fMRI	study	revealed	that	the	medial	temporal	lobe	was	

particularly	engaged	for	fractions	processing	as	opposed	to	whole	numbers	(Cui	et	al.,	

2020).	Considering	these	reports,	linguistic	factors	might	explain	why	the	ILF	is	

differentially	related	to	fractions	and	whole	numbers.	However,	this	question	has	yet	to	be	

investigated	behaviorally.		

Another	aim	of	the	current	study	was	to	unravel	the	mechanisms	underlying	the	

relationship	between	RPS	acuity	and	fraction	ability,	which	still	remains	in	question.	

Although	previous	work	concluded	the	existence	of	this	perceptual	ability	that	may	affect	

symbolic	mathematics,	it	is	not	clear	which	part	of	mathematical	ability	the	RPS	

contributes.	Fractions	knowledge	tests	so	far	included	several	aspects	of	knowledge	such	
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as	fractions	arithmetic,	conceptual	understanding,	and	algebraic	thinking	(Matthews	et	al.,	

2016;	Möhring	et	al.,	2015).	However,	no	study	has	investigated	which	aspect	of	fractions	

knowledge	is	that	the	RPS	specifically	associates	with.		

	In	the	domains	of	whole	number	learning,	the	same	question	about	the	relationship	

between	nonsymbolic	magnitude	and	symbolic	math	was	raised	for	the	ANS	acuity	

(Dehaene,	2011;	Feigenson,	Libertus,	&	Halberda,	2013).		One	possible	account	was	that	

nonsymbolic	magnitude	processing	may	contribute	to	the	ability	to	detect	errors	in	

symbolic	arithmetic	and	that	eventually	contributes	to	the	link	between	nonsymbolic	

magnitude	and	symbolic	mathematics	(Feigenson	et	al.,	2013;	Lourenco,	Bonny,	Fernandez,	

&	Rao,	2012;	Szkudlarek	&	Brannon,	2017;	Wong	&	Odic,	2020).	For	example,	when	

children	solve	a	symbolic	equation	(e.g.,	11	+	17	=	42),	they	can	map	each	operand	(11	and	

17)	onto	a	number	line	and	perform	addition	approximately	and	compare	with	the	answer	

they	calculated	(see	Figure	4.2).	If	there	is	a	difference	between	expected	and	observed	

answers,	they	can	go	back	to	the	problem	and	try	to	solve	it	again.	Thus,	by	helping	this	

error	detection	process,	the	nonsymbolic	magnitude	processing	ability	can	be	linked	to	

symbolic	math	knowledge	according	to	the	account.		

To	explore	this	hypothesis,	Wong	&	Odic	(2020)	developed	a	novel	symbolic	

equation	error	detection	task.	The	task	presents	a	whole	number	equation	(85	+	64	=	128)	

with	an	incorrect	answer,	and	participants	determine	whether	the	given	incorrect	answer	

is	larger	or	smaller	than	it	should	be.	Wong	and	Odic	showed	that	ANS	acuity	significantly	

predicted	the	error	detection	task	performance,	consistent	with	the	error	detection	

hypothesis.	Similar	to	this	logic,	it	might	be	possible	that	the	RPS	acuity	may	contribute	to	
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the	error	detection	of	fraction	arithmetic	and	eventually	elicit	the	link	with	formal	fraction	

knowledge.	

With	these	aims,	Chapter	4’s	study	examined	the	relative	contributions	of	linguistic	

ability	and	the	RPS	to	early	symbolic	fraction	ability.	We	also	measured	the	ANS	as	control.	

We	recruited	5th	and	6th	graders	who	have	recently	started	to	receive	formal	arithmetic	

training	on	fractions.	Investigating	these	age	ranges	is	likely	to	capture	individual	

differences	in	early	fraction	processing	and	fraction	arithmetic	ability.		

First	of	all,	we	measured	the	RPS	acuity	by	using	a	nonsymbolic	ratio	comparison	

task.	We	chose	to	use	line	ratios	over	other	formats	for	comparison	because	in	our	prior	

work,	lines	yielded	less	noisy	data	compared	to	other	nonsymbolic	ratio	formats	such	as	

dots	or	circles	(Park	et	al.,	2020).	Also,	recent	work	has	shown	that	the	line	ratio	format	is	

the	most	predictive	of	symbolic	math	achievement	in	adults	(Park	&	Matthews,	accepted).	

Additionally,	the	ANS	was	measured	by	using	a	nonsymbolic	dot	comparison	tasks	that	

have	used	in	Park	et	al.	(2020).		

Another	independent	variable,	linguistic	ability,	was	assessed	by	whole	number	and	

fraction	transcoding	tasks	as	well	as	a	math	vocabulary	test.	Children’s	ability	to	transcode	

from	number	words	to	symbolic	numbers	or	fractions	has	been	deemed	as	an	important	

ability	for	formal	math	achievement	(Barrouillet,	Thevenot,	&	Fayol,	2010;	Lopes-Silva,	

Moura,	Júlio-Costa,	Haase,	&	Wood,	2014;	Lopes-Silva	et	al.,	2016;	Seron	&	Fayol,	1994)	and	

also	can	be	used	as	a	screening	tool	for	mathematics	learning	difficulty	(Moura	et	al.,	2015,	

2013).	The	ability	to	flexibly	translate	number	words	to	symbolic	numbers	may	eventually	

contribute	to	symbolic	fraction	acquisition	given	that	fractions	require	more	complex	

naming	skills	than	whole	numbers.	For	assessing	children’s	math	vocabulary	knowledge,	
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we	used	Powell	(2015)’s	Mathematics	Vocabulary	Grades	3	and	5.	The	test	was	developed	

to	assess	children’s	understanding	of	particular	math	vocabulary	spanning	from	simple	

arithmetic	to	geometry	(e.g.,	addend,	isosceles	triangle,	or	improper	fraction).	Some	

researchers	suggested	that	children	who	show	difficulty	learning	new	concepts	and	

corresponding	vocabularies	are	likely	to	show	low	performance	on	formal	math	test	

(Forsyth	&	Powell,	2017;	Purpura,	Hume,	Sims,	&	Lonigan,	2011;	Purpura	&	Logan,	2015).		

Next,	to	explore	a	mechanism	underlying	the	relation	between	the	RPS	and	formal	

fractions	knowledge,	we	measured	symbolic	fraction	processing	ability	by	using	symbolic	

fraction	comparison	tasks	similar	to	Chapter	2	and	3	and	newly	developed	symbolic	

fraction	equation	error	detection	task	(adpted	from	Wong	&	Odic,	2020).		

Lastly,	since	working	memory	capacity	can	influence	performance	on	the	outcomes	

of	the	transcoding	test	or	other	computerized	tasks,	we	used	digit	span	to	control	

children’s	working	memory	per	Wong	&	Odic	(2020).			
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Figure	4.2.	An	example	diagram	that	shows	theorized	process	of	error	detection	from	Wong	

&	Odic	(2020).	The	process	allows	participants	to	use	their	ANS	to	determine	the	direction	

and	magnitude	of	the	error.	(a)	Participants	observe	the	equation	that	presents	incorrect	

answer	(28,	not	42).	(b)	the	participants	map	each	operand	(11	and	17)	to	the	ANS	

internally	and	each	digit	is	represented	with	noisy	Gaussian	curve,	centered	on	the	number	

that	corresponds	to	each	operand	(11,	17)	with	a	noise.	The	noise	distribution	is	

proportioned	to	individual’s	ANS	acuity	(c)	the	participants	perform	approximate	addition.	

(d)	the	participants	can	compare	the	expected	answer	generated	by	approximate	addition	

(approximately	28)	to	observed	answer	(42).	

	

Method		

Preregistration		

The	experiment	was	fully	preregistered	at	the	Open	Science	Framework	(OSF,	

https://osf.io/6hs5u).	We	planned	to	regress	the	fractions	abilities	against	four	variables	(the	
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RPS,	language	ability	as	IVs,	WM	and	the	ANS	as	covariates).	To	detect	the	medium	effect	

size	.15	with	an	α	=	.05	and	power	of	.80,	an	analysis	using	the	‘pwr’	package	in	R	showed	

that	we	need	83	participants	at	minimum.	 

 

Participants	

As	of	March	14,	2021,	54	5th	and	6th	grade	children	(meanage	=	10.89,	sdage=	.78)	were	

recruited	via	contacting	families	in	our	existing	database	and	campus	mass	emails	sent	to	

faculty	and	staff	at	a	major	university	in	a	medium	sized	Midwestern	city.	

	

Non-linguistic	cognitive	factors	

Nonsymbolic	ratio	comparison	task		

In	the	ratio	comparison	task,	trials	began	with	a	fixation	cross	appearing	for	200ms	

which	was	followed	by	a	4000ms	presentation	of	comparison	stimuli	(line-ratios)	which	

disappeared	leaving	a	blank	screen.	Participants	compared	pairs	of	line	ratios,	indicating	

their	judgments	via	key	press	–	pressing	“d”	if	the	larger	ratio	was	on	the	left	or	pressing	

“k”	if	the	larger	ratio	was	on	the	right.	Stimulus	display	time	was	6000ms	as	in	Park	et	al.	

(2020).		

Line-ratios	were	constructed	by	juxtaposing	yellow	and	blue	line-segments.	The	

yellow	line	(numerator)	always	appeared	on	the	left,	and	the	blue	line	(denominator)	

appeared	on	the	right	(see	Figures	4.2).	The	yellow	line	was	given	a	random	vertical	jitter	

relative	to	the	blue	line.	The	numerator	segment	ranged	from	approximately	35	to	228	

pixels	in	length,	and	the	denominator	segment	ranged	from	50	to	304	pixels.	To	control	for	

the	possibility	that	participants	might	make	their	judgments	based	on	the	summed	lengths	
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of	components	for	each	stimulus,	the	larger	ratio	had	greater	summed	length	in	half	of	all	

trials,	and	the	larger	ratio	had	lesser	summed	length	in	the	other	half.	The	ratio	of	two	

summed	lengths	was	always	approximately	1.3.			

Task	difficulty	was	determined	by	varying	the	ratio	between	each	pair	of	

magnitudes	–	in	this	case	indicating	a	ratio	of	ratios.	Each	pair	fell	into	one	of	five	distance	

bins:	3:1,	2:1,	2:3,	3:4,	and	5:6,	with	difficulty	increasing	as	the	distance	became	closer	to	1.	

The	magnitude	of	individual	ratio	stimuli	was	distributed	in	the	range	from	0.2	to	0.8.	The	

small	pair	always	included	0.2,	the	large	pair	always	included	0.8,	and	the	medium	pair	was	

always	midway	between	the	other	two	other	conditions.	For	example,	for	the	2:1	ratio	bin,	

0.4	vs.	0.8,	and	0.4	vs.	0.8	were	representative	comparisons	for	the	small	and	large	pairs,	

respectively		

Each	pair	was	presented	twice,	once	with	the	larger	stimulus	on	the	left,	and	once	

with	the	larger	on	the	right.	Children	completed	60	trials	(5	ratio	distance	x	3	size	x	2	

congruity	x	2	left/right,	see	stimuli	descriptions	below).	These	trials	were	presented	in	

random	order	within	each	block.	Participants	were	prompted	by	the	software	to	take	a	

break	after	30	trials.		

Numerosity	comparison	task	(the	ANS	task)	

On	each	trial,	a	fixation	cross	appeared	for	200ms	followed	by	comparison	stimuli	

(dot	arrays)	which	remained	visible	for	a	1500ms	before	disappearing,	leaving	a	blank	

screen.	Participants	determined	which	of	two	stimuli	had	the	larger	number	of	dots.	

Stimulus	display	time	was	adjusted	to	1500ms	as	in	Park	et	al.	(2020)	(Halberda	&	

Feigenson,	2008;	Park	et	al.,	2020).	The	computer	did	not	proceed	to	the	next	trial	until	
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participants	made	a	choice.	Participants	indicated	their	judgment	of	which	stimulus	was	

larger	via	keystroke	–	“k”	for	right	and	“d”	for	left.		

For	the	comparison	stimuli,	boxes	of	yellow	and	blue	dot	arrays	were	presented	

against	gray	backgrounds	on	each	side	of	the	screen	(see	Figure	4.3).	Dots	were	randomly	

placed	so	that	they	evenly	covered	the	area	of	each	box.	The	number	of	dots	in	each	array	

ranged	from	16	to	118.	Task	difficulty	was	determined	by	varying	the	ratio	distance	

between	each	pair	of	numerosity,	defined	as	the	ratio	between	compared	numerosities	

(M1:M2	where	M1	is	the	smaller	of	the	two	magnitudes).	We	varied	difficulty	using	five	ratio	

distance	bins	based	on	Odic	(2017):	1:2,	2:3,	5:6,	7:8	and	15:16,	with	difficulty	increasing	as	

ratio	distance	approached	1.	For	example,	the	15:16	bin	(e.g.,	30	vs.	32	dots)	was	expected	

to	be	more	difficult	than	the	1:2	bin	(e.g.,	16	vs.	32	dots).		

Each	distance	bin	contained	three	classes	of	arrays	to	be	compared:	small,	medium,	

and	large,	which	used	three	different	numerosity	ranges,	spanning	arrays	as	small	as	16	

and	as	large	as	118.	For	example,	for	the	1:2	distance	bin,	16	vs.	32,	37	vs.	74,	and	59	vs.	

118	represented	small,	medium,	and	large	pairs,	respectively.		

We	also	controlled	for	the	possibility	that	participants	might	choose	based	solely	on	

the	summed	area	or	average	size	of	dots	throughout	the	task	(Fazio,	Bailey,	Thompson,	&	

Siegler,	2014;	Halberda	et	al.,	2008;	Libertus,	Feigenson,	&	Halberda,	2011).	In	half	of	all	

dot	trials,	the	summed	area	of	dots	was	equivalent	across	the	two	arrays	on	any	given	trial,	

meaning	average	dot	size	decreased	with	numerosity.	In	the	other	half	of	trials,	average	dot	

size	was	the	same	across	the	two	arrays	compared,	meaning	that	the	summed	area	of	an	

array	increased	with	numerosity.	The	size	of	each	dot	in	a	given	array	was	allowed	to	vary	

from	80%	-	120%	of	the	average	size	of	dots	in	that	array.	



 111 

Each	stimulus	pair	was	presented	twice,	once	with	the	larger	stimulus	on	the	left,	

and	once	with	the	larger	on	the	right.	Participants	completed	a	total	of	60	trials	(5	distance	

bins	x	3	pairs	per	bin	x	2	control	conditions	x	2	sides	for	presentation	of	the	correct	

response).	Trials	were	presented	in	random	order.	Participants	were	prompted	by	the	

software	to	take	a	break	after	30	trials.	

	

Figure	4.3.		Example	stimuli	for	nonsymbolic	ratio	comparison	(left	panel)	with	line	ratios	

and	nonsymbolic	numerosity	comparison	(right	panel)	tasks.	Both	figures	present	a	larger	

magnitude	on	the	right	side.		

	

Linguistic	cognitive	factors	

Whole	Number	transcoding	ability	

To	evaluate	whole	number	transcoding,	the	experimenter	read	numbers	aloud,	and	

children	were	instructed	to	write	the	corresponding	symbolic	numerical	representations	

(Barrouillet	et	al.,	2010;	Lopes-Silva	et	al.,	2014;	Moura	et	al.,	2013).	The	internal	

consistency	of	this	task	has	been	reported	to	be	as	high	as	0.96	(KR-20)	(Lopes-Silva	et	al.,	

2014,	2016;	Moura	et	al.,	2013).	This	task	consisted	of	40	items	including	3	one-digit	

numbers,	9	two-digit	numbers,	10	three-digit	numbers	and	18	four-digit	numbers	

(Barrouillet	et	al.,	2010).	The	sample	of	whole	numbers	is	in	Appendix	A.			
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Fraction	transcoding	ability	

Along	with	whole	number	transcoding,	children	were	instructed	to	transcode	

symbolic	fractions.	This	task	consisted	of	40	items,	including	16	irreducible	fractions,	12	

improper	fractions,	and	12	mixed	fractions.	The	sampled	fractions	ranged	from	0	to	5	

based	on	the	previous	studies	using	the	fractions	number	(e.g.,	Hansen	et	al.,	2015).	Their	

number	lines	were	bounded	from	0	to	5,	so	we	used	fractions	within	this	range.	There	were	

16	fractions	ranged	0-1,	9	fractions	ranged	1-2,	5	fractions	in	each	2-3,	3-4	and	4-5	ranges.	

The	full	sample	of	fractions	used	is	in	Appendix	A.			

Math	Vocabulary	Test		

	 To	measure	children’s	math	specific	vocabulary,		we	used	Mathematics	Vocabulary	

Grades	3	and	5	(Powell,	2015;	Powell	et	al.,	2017).	The	math	vocabulary	terms	on	the	test	

were	selected	from	three	common	3rd-	and	5th-grade	mathematics	textbooks	and	textbook	

glossaries.	Those	included	the	student-level	glossaries	of	enVisonMATH	by	Pearson	

(Charles	et	al.,	2014a,	2014b),	Everyday	Math	by	McGraw-Hill	(Bell	et	al.,	2015)	and	Go	

Math!	by	Houghton	Mifflin	Harcourt	(Dixon,	Larson,	Burger,	&	Sandoval-Martinez,	2014b,	

2014a),	which	were	largely	used	across	the	United	States.	In	addition	to	this,	math	

vocabulary	terms	from	the	Common	Core	State	Standards	(National	Governors	Association	

Center	for	Best	Practices	&	Council	of	Chief	State	School	Officers,	2010)	were	also	selected.	

The	questions	included	naming	parts	of	various	equations	(e.g.,	augend	in	an	addition	

equation),	as	well	as	geometry	(e.g.,	regular	polygon	or	intersecting	lines),	or	place-value	

terms	(e.g.,	negative	integer).	Assessment	items	took	various	formats,	including	selecting	a	

correct	term	by	using	multiple-choice	selection,	drawing	a	figure,	or	labeling	parts	of	the	
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given	figure	(see	Powell	et	al.,	2017	for	the	examples).	Children	had	30	min	to	answer	as	

many	questions	as	possible.	Each	problem	scored	1	point	with	a	total	raw	score	of	129.		

Symbolic	fraction	ability	

Symbolic-Fraction	Comparison	

The	symbolic-fraction	comparison	task	required	participants	to	decide	which	of	two	

fractions	was	larger.	We	used	the	fraction	stimuli	selected	by	Morales	et	al.	(2020)	

(Morales	et	al.,	2020).	Among	the	stimuli,	we	excluded	pairs	with	common	components	

(Appendix	B)	to	minimize	the	dependency	on	componential	strategies	(e.g.,	judgment	

based	on	numerator	or	denominator	comparisons	rather	than	overall	value).	Selected	pairs	

were	consisted	of	irreducible	double-digit	fractions	with	varied	numerical	distance	

between	two	fractions.	Numerical	distance	was	divided	into	small	(about	0.1),	medium	

(about	0.17)	and	large	(about	0.24).	The	total	of	72	fraction	pairs	was	presented	in	a	

random	order.		

	On	each	trial,	a	fixation	cross	appeared	for	500ms	followed	by	10s	presentation	of	

comparisons	as	Morales	et	al.	(2020).	Even	after	the	stimuli	disappeared	after	10s,	the	

computer	did	not	proceed	to	the	next	trial	until	participants	made	a	choice.	Participants	

indicated	their	judgment	of	which	stimulus	was	larger	via	keystroke	–	“k”	for	right	and	“d”	

for	left.	The	side	of	the	larger	fraction	(left/right)	was	counterbalanced	across	trials.	

Participants	were	prompted	by	the	software	to	take	a	break	every	20	trials.	

Symbolic	Fraction	Equation	Error	detection		

	 On	each	trial,	participants	were	presented	with	solved	fraction	arithmetic	equations	

in	the	center	of	the	screen	(e.g.,	"
#
	+	!

$
	="$
%#
	)	featuring	incorrect	answers.	Participants	

determined	whether	the	given	answer	was	smaller	or	larger	than	the	correct	answer.	
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Participants	indicated	their	choices	via	key	press	–	pressing	“d”	if	the	given	answer	is	

smaller	than	the	correct	answer	and	pressing	“k”	if	the	given	answer	is	larger	than	the	

correct	answer.		

To	vary	the	difficulty	of	the	error	detection	task,	we	varied	the	ratio	between	the	

given	answer	and	the	correct	answer	using	a	method	corresponding	to	that	of	the	

nonsymbolic	ratio	comparison	task.	Thus,	the	ratio	difficulty	fell	into	one	of	5	distance	bins:	

3:1	("
#
	+	!

$
	=&
%
,		where	the	actual	correct	answer	is	"&

%'
),	2:1	(!

$
	-	"
#
	= &
#'
,		where	the	actual	correct	

answer	is	 &
%'
	),	2:3,	3:4,	and	5:6.	Participants	completed	a	total	of	100	trials	(5	ratio	bins	X	2	

possible	answers	(lower/higher)	X	2	operations	(addition/subtraction))	X	5	different	trials	

within	the	same	condition.	Participants	were	prompted	by	the	software	to	take	a	break	

every	10	trials.	

Trials	began	with	a	fixation	cross	appearing	for	500ms	followed	by	the	equation	

presentations	on	the	center	of	the	screen.	The	given	equation	remained	on	screen	until	

participants	responded,	consistent	with	prior	administrations	of	the	arithmetic	verification	

task	with	children	(e.g.,	Rousselle	&	Noël,	2008).	First	two	terms	of	equation	("
#
	+	!

$
	)	were	

presented	with	single	digit	or	double	digits	proper	fractions	and	the	last	terms	of	equation	

(i.e.,	given	answer)	were	sometimes	presented	with	fractions	with	single	digit	or	fractions	

with	double	digits.		The	equation	did	not	involve	common	numerators	or	denominators.		

General	Cognitive	Measures		

Digit	span	

	To	measure	verbal	working	memory,	we	used	the	digit	span	subtest	from	the	WISC	

-IV	(Kaufman,	Flanagan,	Alfonso,	&	Mascolo,	2006;	Wechsler,	2003).	The	test	was	divided	
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into	two	subsections:	1)	Digit	Span	Forward,	in	which	participants	were	asked	to	repeat	

numbers	in	the	same	order	as	presented	aloud	by	the	experimenter,	and	2)	Digit	Span	

Backward,	in	which	participants	were	asked	numbers	in	the	reverse	order	of	that	

presented	aloud	by	the	experimenter.	Each	test	consisted	of	eight	items,	and	each	item	had	

two	trials.	For	each	trial,	the	experimenter	scored	1	point	for	a	correct	response	or	0	point	

for	an	incorrect	response	or	no	response.	The	experimenter	discontinued	the	test	after	

participant	scores	of	0	on	both	trials	of	an	item.		The	total	possible	score	combining	both	

Digit	Span	Forward	and	Backward	subtests	was	32	points.		

	

Experimental	procedures		

		 Due	to	COVID-19,	the	data	collection	for	the	current	study	has	been	delayed.	

Therefore,	Chapter	4	only	presented	the	hypotheses	and	future	significance.	The	data	

collection	is	still	in	progress	and	all	data	will	be	uploaded	to	the	OSF	

(https://osf.io/6hs5u).	The	experimental	sessions	were	conducted	in	a	video-chat	

environment	via	Zoom	(https://zoom.us).	The	experiment	was	divided	into	two	sessions,	

each	on	a	different	day.	In	session	1,	children	completed	the	numerosity	and	ratio	

comparisons,	the	symbolic	fraction	comparison,	and	the	fraction	equation	tasks.	The	

computerized	tasks	including	nonsymbolic	comparisons,	symbolic	fraction	comparison,	

and	the	fraction	equation	task	were	presented	via	Gorilla	(https://gorilla.sc).	Each	task	had	

its	own	link.	The	experimenter	gave	the	link	to	children	so	that	they	could	open	the	link	on	

their	laptop	or	desktop.	After	the	experiment	started,	children	shared	their	screen	so	that	

the	experimenter	could	observe	and	monitor	how	children	performed	the	task.		
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In	session	2,	children	completed	the	whole	number	and	fraction	transcoding	tests	

and	the	math	vocabulary	test.	For	the	vocabulary	test,	we	used	an	online	platform	called	

JotForm	(https://jotform.com)	to	present	the	assessment.	This	online	platform	allows	

children	to	draw	and	write	their	answers	by	using	mouse	click,	trackpad	or	keyboard	press.		

Hypotheses		

Hypothesis1:	As	previous	studies	have	shown	(Matthews	et	al.,	2016),	RPS	acuity	will	be	

associated	with	symbolic	fractions	comparison	task	performance	even	after	controlling	for	

ANS	acuity	and	verbal	WM.	

Hypothesis	2:	If	the	error	detection	theory	with	the	ANS	is	applicable	to	the	link	between	

the	RPS	acuity	and	fraction	competence,	RPS	acuity	will	be	associated	with	the	ability	to	

detect	errors	in	fractions	arithmetic	even	after	controlling	for	the	ANS	acuity	and	verbal	

WM.	

Hypothesis	3:	If	language	ability	is	important	for	fraction	learning,	language	competence	

might	also	be	associated	with	the	fraction	comparisons	or	the	ability	to	detect	error	in	

fractions	arithmetic	or	both	after	controlling	for	verbal	WM.			

Exploration:	How	influential	is	the	RPS	acuity	to	fraction	comparison	performance	and	the	

ability	to	detect	error	in	fractions	arithmetic	compared	to	the	language	ability?		

	

Future	significance		

The	described	study	examines	how	the	RPS	contributes	to	early	fraction	ability.	

Starting	from	the	finding	of	Chapter	3	which	implied	the	association	of	language	ability	and	

fractions	processing,	we	also	investigate	the	association	between	language	ability	specific	

to	mathematics	and	early	fraction	knowledge	with	a	behavioral	approach.	Furthermore,	the	
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present	study	will	put	the	error	detection	hypothesis	to	the	test	to	better	understand	

mechanisms	underlying	the	relation	between	the	RPS	and	early	fraction	ability.	I	believe	

that	these	studies	will	broaden	our	understanding	on	cognitive	factors	contributing	to	early	

fraction	ability.	 	
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Chapter	5:	Conclusion	

 

Summary	of	Findings	and	significance	

From	the	brain	to	human	behavior,	the	studies	in	this	dissertation	aimed	to	better	

understand	the	nature	of	fraction	acquisition	by	exploring	both	behavioral	and	neural	

developmental	factors	that	may	contribute.	Findings	of	these	studies	suggested	the	ability	

to	process	nonsymbolic	ratios	(the	RPS)	might	serve	as	a	neurocognitive	startup	tool	for	

fraction	acquisition	during	the	period	of	early	fraction	instructions.	Starting	from	the	

question	of	why	fractions	are	hard,	this	dissertation	ponders	over	the	under-researched	

neurocognitive	startup	tool	that	can	possibly	make	fraction	learning	less	challenging.		

Chapter	2’s	study	broadened	our	understanding	of	how	shared	functional	substrates	

for	nonsymbolic	ratios	and	symbolic	ratios	emerge	by	investigating	differences	between	

groups	of	children	prior	to	formal	fractions	instruction	(2nd	graders)	and	after	a	few	years	

of	instruction	(5th	graders).	The	results	showed	that	after	a	few	years	of	formal	instruction,	

the	substrates	associated	with	processing	symbolic	fractions	emerge	in	fronto-parietal	

cortex	that	overlaps	with	the	substrate	for	the	RPS.	In	turn,	regions	of	the	brain	that	were	

sensitive	to	nonsymbolic	ratios	also	become	sensitive	to	symbolic	fractions	with	increasing	

age.		

Adding	to	the	functional	brain	investigation,	Chapter	3’s	study	explored	how	

individual	differences	in	the	structural	connectivity	relate	to	nonsymbolic	ratio	and	

symbolic	fraction	processing	ability	in	the	same	cohorts	of	children	as	Chapter	2.	The	

results	of	Chapter	3’s	study	showed	that	the	relation	between	white	matter	connectivity	

and	nonsymbolic	ratio	and	symbolic	fraction	processing	ability	start	to	emerge	during	the	
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period	of	early	fraction	instructions.	By	taking	a	cross-sequential	approach,	the	study	in	

Chapter	3	marked	the	first	year	of	fraction	instruction,	from	2nd	grade	to	3rd	grade,	as	when	

structural	connectivity	starts	to	reflect	the	ratio	and	fraction	processing	abilities.	

Especially,	this	study	emphasized	the	potential	importance	of	visuo-	or	verbal-	processing	

for	symbolic	fraction	processing.		

Lastly,	the	behavioral	study	in	Chapter	4	tested	how	influential	the	measured	RPS	

sensitivity	is	to	early	fraction	ability.	To	confirm	the	results	better,	we	compared	the	

contributions	of	RPS	acuity	and	other	factors	contributing	to	fraction	ability.	We	especially	

compared	the	RPS	and	language	ability	because	it	is	one	of	the	most	consistently	reported	

abilities	associated	with	fraction	learning.	Also,	it	was	the	ability	Chapter	3’s	study	

indirectly	implicated	by	showing	the	importance	of	the	ILF,	which	is	known	to	be	integrally	

involved	with	verbal-	and	visuo-	processing(e.g.,	Yeatman,	Dougherty,	Ben-Shachar,	&	

Wandell,	2012).	The	results	of	this	experimental	study	will	provide	another	path	forward	

to	advance	children’s	fraction	knowledge	by	suggesting	an	easily	accessible	perceptual	tool	

that	can	be	leveraged.		

By	investigating	the	development	of	fraction	acquisition	in	early	years,	I	believe	that	

these	studies	stand	to	broaden	our	understanding	of	early	fraction	learning	by	looking	at	

the	interaction	between	brain	and	behavior	during	development.	In	the	long	run,	this	

interplay	of	neural	and	behavioral	studies	on	fraction	acquisition	may	provide	insight	into	

how	to	efficiently	leverage	fraction	learning	by	emphasizing	neurocognitive	factors	that	are	

particularly	associated	early	fraction	ability.	Future	studies	might	put	the	RPS’s	

effectiveness	to	test	regarding	whether	it	is	usable	as	an	educational	tool	with	training	and	

longitudinal	approaches.	As	such,	I	believe	this	dissertation’s	findings	can	appeal	to	a	broad	
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audience	in	numerical	cognition	encompassing	researchers	and	practitioners	in	the	fields	

of	neuroscience,	psychology,	and	education.		

	

Taking	a	domain-relevant	approach	to	investigate	fraction	learning		

	 Ever	since	Dehaene’s	proposal	of	the	triple-code	model	(Dehaene,	1992;	Dehaene	&	

Cohen,	1995),	developmental	cognitive	neuroscience	theories	have	become	more	flexible	

(Dehaene	&	Cohen,	2007;	Hannagan	et	al.,	2015;	Johnson,	2011;	Kanwisher,	2010)	in	terms	

of	understanding	neural	development	of	reading	and	mathematics.	Compared	to	strong	

modularity	views	that	argue	a	specific	region	of	the	brain	is	highly	specialized	for	a	certain	

cognitive	process	alone,	current	theories	have	evolved	to	recognize	the	interactive	network	

across	different	brain	regions	for	processing	a	certain	sort	of	cognitive	information,	and	to	

recognized	the	active	interactions	between	biological	traits	of	the	brain	and	external	

environment.		

This	dissertation	took	a	domain-relevant	approach	which	postulates	the	existence	of	

biases	in	the	early	brain	and	following	changes	in	certain	regions	that	become	sensitive	to	

particular	inputs	(Karmiloff-Smith,	2015).	This	theory	also	hypothesizes	that	progressive	

functional	specialization	and	specialized	connectivity	are	shaped	by	continuous	

interactions	between	biological	maturation	and	the	external	environment.	Thus,	the	

domain-relevant	framework	can	incorporate	the	neuronal	recycling	hypothesis	(Dehaene	&	

Cohen,	2007),	the	biased	connectivity	hypothesis	(Hannagan	et	al.,	2015)	and	even	the	

interactive	specialization	hypotheses	(Johnson,	2011).		

The	first	two	neuroimaging	studies	in	this	dissertation	focused	on	the	period	of	

early	fraction	instruction	and	attempted	to	capture	progressive	functional	and	structural	
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brain	changes	as	children	go	through	fractions	instruction.	Results	from	Chapter	2	revealed	

that	functional	biases	for	nonsymbolic	ratio,	the	RPS,	exist	even	before	fraction	instruction	

and	that	functional	specialization	for	symbolic	fractions	develops	later	on	in	overlapping	

substrates.	Along	with	the	changes	in	functional	activations	of	the	brain,	individual	

differences	in	white	matter	connectivity	start	to	reflect	ratio	and	fraction	processing	ability	

as	children	experience	fractions	instruction.	Symbolic	fractions	are	one	set	of	cultural	

inventions	that	humans	need	to	acquire	from	external	environments,	but	nonsymbolic	

ratios	magnitudes	can	be	processed	early	in	development	(McCrink	&	Wynn,	2007).	

Considering	these	differences,	the	neural	findings	of	this	dissertation	suggest	that	fraction	

instructions	might	orient	the	regions	that	originally	process	nonsymbolic	ratios.	Therefore,	

the	findings	of	this	dissertation	support	the	domain-relevant	framework	that	inputs	from	

outside	can	orient	the	cortical	regions	where	its	original	functionality	is	similar	to	the	novel	

output	to	new	information.		

In	terms	of	connectivity,	Chapter	3’s	study	did	not	find	existing	biases	of	structural	

connectivity	for	nonsymbolic	ratio	magnitudes	before	fraction	instruction.	This	result	is	

somewhat	different	from	the	biased	connectivity	hypothesis	that	postulates	that	there	

might	be	functional	and	structural	connectivity	initially	biased	toward	a	certain	stimuli	or	

information.	However,	our	findings	are	limited	to	structural	connectivity.	It	should	be	

noted	that	prior	work	has	observed	functional	coactivity	among	distant	brain	regions	such	

as	the	temporal-parietal-frontal	areas	of	the	brain	(e.g.,	the	ITG-the	IPS-the	IFG)	to	process	

fractions	(Cui,	Li,	Li,	Siegler,	&	Zhou,	2020;	DeWolf,	Chiang,	Bassok,	Holyoak,	&	Monti,	

2016).	To	better	understand	how	this	cooperation	happens	and	when	it	starts,	we	should	

look	into	functional	connectivity	in	addition	to	structural	connectivity	and	how	both	
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functional	and	structural	connectivity	are	coupled.	Future	neuroimaging	studies	should	

additionally	investigate	resting	state	or	dynamic	functional	connectivity	if	there	is	any	

preexisting	connectivity	among	the	regions	that	involve	with	processing	symbolic	fractions	

or	function.	As	such,	the	domain-relevant	framework	can	still	be	useful	to	understand	these	

brain	networks	that	progressively	become	co-active	and	cooperative	to	process	symbolic	

fraction	processing.	Furthermore,	investigating	functional	specialization,	functional	

reorganization	of	the	brain	as	a	function	of	learning	with	intervention	designs	could	offer	

new	insight	into	brain	plasticity’s	role	in	fraction	learning.		

	

Tapping	into	perceptual	routes	to	fractions		

As	introduced	in	Chapter	1,	learning	fractions	is	challenging	compared	to	learning	

whole	numbers.	Considering	the	RPS-based	argument,	learning	fractions	is	hard	likely	due	

to	a	lack	of	experience	with	nonsymbolic	ratio	magnitudes.	For	whole	number	learning,	

current	curriculum	starts	from	mapping	symbolic	number	to	approximately	corresponding	

number	of	objects,	visual	representations	helpful	to	imbue	whole	number	with	

nonsymbolic	analog	magnitudes.	In	case	of	fractions,	however,	formal	curricula	sometimes	

use	these	visual	representations	such	as	a	certain	location	of	a	number	line	that	ranges	0-1	

or	some	shaded	areas	in	a	circle	(Figure	5.1)	without	specific	intent	of	helping	children	

represent	fractions	as	analog	magnitude.	This	limited	experience	with	nonsymbolic	ratio	

magnitude	that	imbue	fractions	with	analog	magnitudes	may	interrupt	the	use	of	the	RPS	

for	fractions	representations.		
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Figure	5.1.	Representations	of	fractions	with	(a)	number	line	and	(b)	circle.		 	

	

Given	Goldstone	&	Barsalou’s	(1998)	suggestion	that	perceptual	representations	

can	be	helpful	to	acquire	symbol	system,	the	best	way	to	support	children’s	understanding	

on	symbolic	fractions	might	be	using	various	perceptual	representations.	For	example,	with	

a	part-part	visual	representation,	children	might	have	better	concept	on	different	types	of	

fractions	including	improper	and	proper	fractions	(Figure	2).	One	of	the	most	interesting	

predictions	of	RPS-based	theories	is	that	nonsymbolic	ratio	processing	ability	might	be	

effectively	leveraged	to	improve	intuitions	about	symbolic	fractions,	thereby	improving	

math	performance.	Although	this	dissertation	attempted	to	confirm	an	association	between	

perceptual-based	ratio	processing	abilities	and	symbolic	fraction	ability,	the	designs	of	the	

studies	were	not	appropriate	for	testing	the	efficacy	of	the	use	of	perceptual	ratio	

representations	for	instructional	purposes.	Therefore,	future	studies	need	to	explore	RPS-

based	interventions	to	see	its	practical	potential	to	enhance	children’s	developing	

mathematical	competence.	Also,	examining	following	neural	changes	with	a	multi-modal	

imaging	will	substantiate	the	prediction	of	the	RPS.			
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From	developmental	cognitive	neuroscience	to	education.		

	 As	Bruer	(1997)	wrote,	the	fields	of	neuroscience	and	education	might	still	be	a	

bridge	too	far	(Bruer,	1997).	I	also	agree	that	the	neural	level	of	understanding	is	hard	to	

be	directly	linked	to	human’s	behavioral	and	cognition,	and,	definitely,	to	educational	

outcomes	given	current	technology.	However,	Bruer’s	argument	never	indicated	that	

neuroscience	and	education	cannot	be	directly	bridged.	Developmental	cognitive	

neuroscience	has	enough	potential	to	make	better	educational	environment.		

First,	it	can	broaden	our	understanding	of	neural	mechanisms	underlying	children’s	

learning,	such	as	neural	representations	that	underpin	language	and	math	(Gabrieli,	2016).	

Also,	it	helps	identify	neural	markers	of	learning	disabilities	by	studying	children	at	

educational	risk.	For	example,	researchers	can	study	dyscalculia	and	can	identify	causal	

drivers	of	cognitive	development	such	as	the	impaired	IPS.	Researchers	may	be	able	to	find	

early	neural	markers	for	dyscalculia	and	intervene	early	in	development.	Lastly,	these	

endeavors	can	lead	to	intervention	studies	that	might	help	children	with	learning	difficulty.	

Moreover,	the	studies	can	compare	the	neural	effects	of	different	educational	cognitive	

trainings	and	may	eventually	recommend	the	most	effective	training	to	children.			

A	recent	review	by	Goswami	(2020)	supported	these	potential	impact	of	

developmental	cognitive	neuroscience	studies	to	early	educations	and	pointed	out	to	

improve	experimental	design	–	i.e.,	longitudinal	and	intervention	designs	(Goswami,	2020).	

Beyond	simply	looking	at	the	pattern	of	brain	activations	and	behavior	that	correlates	with	

the	brain	activations,	developmental	cognitive	neuroscience	can	provide	better	

understanding	on	the	interactions	between	children’s	behavior	and	biological	changes	in	

different	developmental	stages.	Furthermore,	the	field	can	show	how	those	interactions	
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will	affect	children’s	educational	outcomes.	By	pursuing	longitudinal	and	intervention	

designs	(Rosenberg-Lee,	2018),	the	field	can	offer	knowledge	about	how	children	learn	and	

may	suggest	the	most	effective	way	to	enhance	children’s	educational	outcomes	

appropriate	to	their	developmental	stage.	
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Appendix	

Appendix	A.	Transcoding	stimuli		

Item	 Number	to	be	
dictated	 Fraction	to	be	dictated	

1	 4	 4	
2	 7	 7	
3	 1	 1	
4	 11	 11	
5	 40	 40	
6	 16	 16	
7	 30	 30	
8	 73	 73	
9	 13	 13	
10	 68	 68	
11	 80	 80	
12	 25	 25	
13	 200	 200	
14	 109	 109	
15	 150	 150	
16	 101	 101	
17	 700	 7/6	
18	 643	 6/5	
19	 8000	 4/3	
20	 190	 11/7	
21	 1002	 13/8	
22	 951	 1	3/4	
23	 1015	 1	4/5	
24	 2609	 1	5/6	
25	 1300	 1	11/12	
26	 3791	 13/6	
27	 1060	 7/3	
28	 4701	 1	9/17	
29	 1100	 2	3/5	
30	 215	 2	17/20	
31	 2140	 22/7	
32	 1107	 13/4	
33	 902	 10/3	
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34	 7013	 3	17/26	
35	 3112	 3	47/50	
36	 5147	 4	3/13	
37	 6513	 4	3/7	
38	 7105	 9/2	
39	 4870	 93/20	
40	 8844	 4	3/4	
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Appendix	B.	Fraction	stimuli		

Fractions	compared	

	34/65	 	57/74	 	13/18	 	45/76	

	49/65	 	76/87	 	23/94	 	16/33	

	59/70	 	23/39	 	43/56	 	51/94	

	68/81	 	37/55	 	53/65	 	71/99	

	11/31	 	43/92	 	28/39	 	48/85	

	43/95	 	20/67	 	62/91	 	57/73	

	11/43	 	38/77	 	23/36	 	42/79	

	18/55	 	41/99	 	45/58	 	51/77	

	45/64	 	75/94	 	43/54	 	59/93	

	11/72	 	37/98	 	31/44	 	61/99	

	11/36	 	22/47	 	13/18	 	45/88	

	17/32	 	46/61	 	35/99	 	24/53	

	17/87	 	29/92	 	35/58	 	46/85	

	51/76	 	83/98	 	52/99	 	36/47	

	23/59	 	11/53	 	37/50	 	56/97	

	64/91	 	76/97	 	31/42	 	47/93	

	16/31	 	59/79	 	40/51	 	46/83	

	36/77	 	19/53	 	15/43	 	26/97	

	73/94	 	17/32	 	49/95	 	32/43	

	47/95	 	15/56	 	27/73	 	17/36	

	26/79	 	40/93	 	23/74	 	18/37	

	72/97	 	32/57	 	62/97	 	55/69	

	35/68	 	50/83	 	42/79	 	26/37	

	74/95	 	26/47	 	26/43	 	49/94	

	83/96	 	56/89	 	25/88	 	18/41	

	86/99	 	62/81	 	53/98	 	37/48	

	67/95	 	45/83	 	55/98	 	31/43	

	80/93	 	41/66	 	35/46	 	41/79	

	51/71	 	22/35	 	28/41	 	55/94	

	63/94	 	24/47	 	41/57	 	46/81	
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	33/73	 	13/46	 	46/91	 	30/41	

	21/32	 	73/89	 	62/99	 	45/56	

	21/68	 	43/90	 	52/93	 	47/58	

	46/97	 	16/67	 	21/79	 	15/34	

	73/89	 	39/55	 	58/85	 	39/50	

	29/46	 	62/79	 	51/98	 	34/45	

	

 


