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Abstract

Cyclobutanes are important targets in synthetic chemistry, due to their prominence in a diverse
range of biologically active molecules displaying meaningful therapeutic properites. Among many
methods for the synthesis of these strained rings, the most well-developed involves [2+2]
photocycloaddition reactions of alkenes. To date, neither photoredox nor photosensitization processes
have proven applicable to the activation of simple, unconjugated aliphatic alkenes. My doctoral
research focused on solutions to this synthetic limitation through a range of photochemical tactics.
Building upon early work from Salomon and Kochi on copper (1) catalyzed [2+2] photocycloadditions a
more robust catalyst system for these reactions has been discovered and subsequently employed in

the total synthesis of cyclobutane natural product (+)-sulcatine G.



Acknowledgements

| first would like to give special thanks to my advisor Professor Tehshik Yoon for his crucial role
in my development as a scientist. Your approach to graduate school advising and true passion for the
science has made obtaining my doctorate degree a truly life changing experience. | appreciate your
constant guidance while at the same time allowing me to pursue my ideas and be very independent,
which as an older slightly more mature student was very important to me. | further want to praise your
patience not only with me but all your students, always being the voice of reason during times of high
stress. | appreciate that you had enough confidence in me to have me to pursue research very much

outside the scope of your program even a lengthy total synthesis project.

| want to thank the members of my committee for taking the time to see me off to the next steps.
Professor Jennifer Schomaker, Professor Randal Goldsmith, and Professor Daniel Weix. | appreciate
all of the productive input over the years and playing the parts you did in my scientific development. |
also want to thank our outstanding support staff in the NMR, Mass Spec, and Crystallography facilities.
Dr. Charlie Fry, Dr. Heike Hofstetter, Dr. Martha Vestling, and Dr. llia Guzei. | appreciate all the work

you do and advice you readily give, my time here would not have been the same without all of you.

I want to thank all the past and present Yoon group members for too much to write about. You
all made this experience truly unforgettable and | would not be where | am today without all of you. |
want to give a special thanks to Bjung Joo Lee for being a constant friend and confidant your friendship
made every day of graduate school a bit better. | also want to give special thanks to Andrew Maza of
the Burke/Landis Group for taking so much time to discuss total synthesis, | really learned a lot from

you, and | am a better synthetic chemist for it.

| want to give a special thanks to my ever-supportive family. My parents that listen to me talk
about chemistry for hours even though they don’t know what I’'m saying half the time. However, my wife
Megan is the one that deserves a thanks | can do justice here but has been my rock throughout this

whole process. She has deal with lack of vacations, late nights at work, and me not listening because |



iii
am thinking about chemistry for five years and has not complained once! | would truly not been where |

am today without her constant patience and understanding.

Chris

11/14/2020



Table of Contents

Y 0111 7> Vo PSSR [
ACKNOWIEAGEIMENTS ...ttt Ii
IE=L o] (S )  @] o] (=] o1 £ P \Y
IS A0 ) T USRS viii
LISt OF SCREBIMES ... ittt n e IX
S o) 1= o] = Xil

Chapter 1. A Modern Synthetic Chemists Guide to Copper (l) Mediated [2+2]

PROTOCYCIOAATITIONS ... 1
O R [ [ 0T [ U Tt 1o ] o TP TTTTTT 2
1.2 EAIY DISCOVEIY ...uuiiieeeeeeeee ettt ettt e e et e e e e e e e e e e e et e e e e e e e e eeesaaa s e eeeaeeeennnes 3
1.3 Copper Triflate and the Salomon — Kochi Reaction .................cccoeoiiiiiiiiiiiiiiiiee e, 3

1.3.1 MechanistiC PropOSalS ........ccoouuiiiiiiii e e e 4
1.3.2 Scope and Synthetic ULIILY ..........oooviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 6
1.3.3 Factors Affecting Stereochemical OUICOMES ........ccovvviiiiiiiiiiee e 9
1.4 Application of the Salomon — Kochi Reaction to Total Synthesis..............ccccooeeiieee. 14
1.4.1 Natural Products Containing Bicyclo[2.2.1] Heptyl MOIety .........ccccooevviiiiiiiiiiiiieeeen, 15

1.4.2 Products Derived from Intermediates Containing the Bicyclo[2.2.1] Heptyl Moiety.. 19
1.4.3 Natural Products Accessed via Copper (I) Photodimerization ............ccccoeeevvvviiieenns 23

1.5 MOEIN MEINOAS ... e ettt e e e e e e e e e r e e e reaaeaes 24



1.6 ConcCluSIioN anNd OULIOOK ......cneeeee e e 26
1.7 REFEIENCES CHEA ...eeneeeeee e e e e, 28

Chapter 2. Aryl Vinyl Sulfides as Traceless Removable Redox Auxiliaries for Formal [2+2]

Cycloadditions of Unactivated AIKENES .........cccooiiiiiiiiiiiiie e e e e e 34
P2 A [ 11 7o o [8 [ox 1] o HE TP PP PPPPPPPP 35
2.2 Reaction ConditioNS @nNd SCOPE .....uuuiiiieeeieeeeieiiee e e e e e e e e e e e et e e e e e e e e eaeaan s 37
2.3 ProduCt DerVALIZATIONS .......cceviiiiiiiiiiiiiiiiiieeeeee ettt ettt 40
P o] o[l 11 ] o] o RO PP PP PPPPPPP 42
AR b o =T 11 4= ] v= | PO 43

2.5.1 General Experimental INformation .............cccooiiiiiiiiiiiiiiic e 43
2.5.2 Synthesis of Alkyl Aryl Sulfide Cyclization Substrates ............ccccccvvieeiiiiiceieeeeiiinnn, 43
2.5.3 [4+2] PROtOCYCIOAUUITIONS ......uvviiiiiiiiiiiiiiiitiietieii bbb 51
ARSI 2o I @3V ol [0 T- To [0 111 0 £ TR 58
2.5.5 Removal of the RedOX AUXIIAIY ..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiii e 63
2.5.6 Oxidation of Sulfide CycloaddUuCt ................eiiiiiiiiiiie e 66
2.5.7 Relative Stereochemical Assignments: Representative NOE Data..............cc.c......... 68
2.6 REFEIENCES CHEA ....cooiiiiie ettt e e e e e ee e as 69

Chapter 3. Olefin-Supported Cationic Copper Catalysts for Photochemical Synthesis of

Structurally Complex CyClODULANES...........oooiiiiiiiiiiee e 73
I 0 A [ o1 o o 18 ox 1 o o HO PP 74
3.2 Catalyst Design and Reaction OptimiZation .............ccevviiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee e 77

3.3 Reaction Scope and Stereoselectivity StUdIES .........ccocuviiiiiiiiiiieccii e 85



3.4 Application of Methodology to Complex Natural Product Cores...........cccceeeveevvvineeeennnnn. 89
3.4 Conclusion and OULIOOK ............ooviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 91
R b =T 11 4= ] = | 93
3.5.1 General Experimental INformation .............ccooiiiiiiiiiiieccc e 93
3.5.2 CatalySt SYNNESIS ... e 93
3.5.3 SYyNthesis Of SUDSIIALES .........uuueiiiii e 94
3.5.3 [2+2] PhOtOCYCIOAUUITIONS ......uvvviiiiiiiiiiiiiiiiitieeiiee bbb 103
3.5.4 E/Z ISOMENZALION STUAY .....vvvviiiiiiiiiiiiiiitiiiiieiebiieebe bbb eeseesneeeeeeene 116
3.5.5 UV-VIS STUAIES.....eeiiieieiiiiiei ettt e e e e e e e e e e ennn s 118
3.5.6 Sulcatine G and Perforatol Cores Experimentals..........ccccooeevvvveiiiiiiiiee e, 119
5.7 NOE DAL ...ttt e e e aee 128
3.6 REfEreNCES CIEA .....cooiiiiiiiiiiiiiiiiee ettt 130

Chapter 4. Concise Asymmetric Total Synthesis of (+) — Sulcatine G via Copper(l) Templated

Intramolecular [2+2] CycCloadditioN. .............uuuueuuuuiiiiiiiiiiiiiiii e 135
v I [ a1 oo [ Tox (o] o RO TP PPPPP PRI 136
4.2 SYNNELIC ANAIYSIS ....uiiieeee et e e e e e e e 138
4.3 RESUILS @Nd DISCUSSION ...ttt e ettt e e e e e e a e e e e e 140
L o] o] 11 13 o] 13 154
(01T ] 4[] ] £= 156

4.51 Procedures and CharaCteriZatioN..................uuuuueuruuiiiiiiiiiiiiiiieiiinneieieeeeeseeeeseeeeaeaees 156

4.5.2 NOE DAL ....ccvvviiiiiiiiiiiiiiii ettt 179



4.6 RETEIENCES CILEA ...onieeeeeee e e e e 180

Appendix A. Cu(l) Catalyzed [2+2] Cycloaddition of Electron Deficient 1,6 -Heptadienes and

Progress Towards Enantioselective CatalysSis. ........... ... 184
AL DISCUSSION ..ttt ettt e e e e e ettt e e e e e e s e e et e e e e e e s bbb e e et e e e e e e a e nnnnrees 184
F N (o1 1 1 T=T 1 =1 187
Appendix B 'H and 3C NMR Spectra for New Compounds...........ccccuveeeeiiivreeeeeiiiveeeeeseenveeen. 189
List of Compounds Chapter 2........cooooi i 189
List of Compounds Chapter 3.......ccoooioeeeeeeeee e 227
List of CompPounds Chapler 4..........cco oot e e e e e e e e e e eeeenes 286

List of Compounds APPENTIX A ....... it e et e e e e e e e e e e e e aeeeeane 314



viii

List of Figures

Chapter 1
Figure 1.1 Mechanistic Proposal of the Salomon and Kochi [2+2] Photocycloaddition............ 5
Figure 1.2 Proposed Excitation and Bond Forming Steps via Computation.......................... 5
Chapter 2
Figure 2.1. Traceless redox auxiliary strategy for radical cation reactions.................. 37
Chapter 3
Figure 3.1 General Mechanistic Proposal for Salomon and Kochi [2+2] Cycloaddition.......... 76
Figure 3.2 The Salomon and Kochi Reaction and Total Synthesis.....................oooil. 77
Figure 3.3 Steric Inhibition Problem and Motivation for Catalyst Improvement..................... 77
Figure 3.4 Reaction TimMe COUISE. .. ...t 82
Chapter 4

Figure 4.1: Conformational Analysis Cyclization of 4.14 and Proposed Structure Changes....148

Figure 4.2: Conformational Analysis Cyclization 4.30a and Proposed Structure Changes....152



List of Schemes

Chapter 1

Scheme 1.1 Olefin dimerization Cuprous Chloride.............ooiiiiiiiii e, 3
Scheme 1.2 Dimerization of NOrbornene. ... ..., 4
Scheme 1.3 Limited Scope of Heterodimerizations. ... 8
Scheme 1.4 Limitations of Intramolecular [2+2] Cyclizations..............c.ccooiiiiiiici, 10
Scheme 1.5 Favoring the Least Sterically Hindered Coordination................c.coooiiiiiinannnn. 11

Scheme 1.6 Stereochemical Preferences for Ring Constrained 1,6- Heptadienes (Bach).....12
Scheme 1.7 Allylic Alcohol Chelation Effect on Stereochemical Outcomes........................ 13

Scheme 1.8 Allylic Alcohol Chelation and Diastereoselectivity in Complex Multi-Ring

S S OIS . o e 14
Scheme 1.9 Terminally Substituted olefins and E/Z Isomerization.........................ooni 15
Scheme 1.10 Total Synthesis of Panasinene (McMurray).............ccooiiiiiiiiii i 17
Scheme 1.11 Total Synthesis of Proposed Structure of Robustadiol A (Salomon)............... 18
Scheme 1.12 Total Synthesis of (+/-) — Kelsoene (Bach)...........ccoooiiiiiiiiiiiiii, 19
Scheme 1.13 Synthesis of the Bielschowskysin Core..............coooiiiiiiiiiiiiiii e 20

Scheme 1.14 Total Synthesis of (+/-) — Cedrene and B — Necrodol via Ring Expansion of

Bicyclo[2.2.1] Heptyl Moiety (GhOSN).........oieieiii e 21

Scheme 1.15 Total Synthesis of Grandisol via Ring Cleavage of the Bicyclo[2.2.1] Heptyl



Scheme 1.16 Total Synthesis of 5—Ladderanoic Acid (Burns)..............coooviiiiiiiiiiinn 25

Scheme 1.17 Intermolecular 2 + 2 Carbonyl-Olefin Photocycloadditions Enabled by Cu(l)-

Norbornene MLCT (Schmidt)...... ..o e 26

Scheme 1.18 Olefin-Supported Cationic Copper Catalysts for Photochemical Synthesis of

Structurally Complex Cyclobutanes (YOON).........uuuuuuiiiiiiie e e e e e aa e e e 27
Chapter 2

Scheme 2.1 Optimized Reaction Conditions. ..o 39
Scheme 2.2 Reductive Cleavage of the Redox Auxiliary Group..............ccocoiiiiiiiiiiiinnnn, 41
Scheme 2.3 Oxidation of the Aryl Vinyl Sulfide Auxiliary............c.oooiiii e, 42
Scheme 2.4 Pummerer rearrangement on sulfoxide cyclobutane product.......................... 43
Chapter 3

Scheme 3.1 Copper (1) COD Cyclization Strategy.........cooeieiiiiiii e, 79
Scheme 3.2 Synthesis of Copper (1) COD COMPIEXES........cvuiuiiiiiiiiiiii e, 80
Scheme 3.3 In Situ Chloride Abstraction Strategy.........ccooiiiiiiiii e, 82
Scheme 3.4 Origins of observed diastereoselectivity............oooviiiiiii 89
Scheme 3.5 Synthesis of Sulcatine G Core. .........o.oiiiiii e 91
Scheme 3.6 Synthesis of Perforatol Core...........c.oiiiiiiiii e, 92
Chapter 4

Scheme 4.1 Previous Total Synthesis of Sulcatine G................cooiiiiiiii 138

Scheme 4.2 Previous Model Substrate and Synthetic Analysis.............c.coiiiiiiiiii, 140



Scheme 4.3 Synthesis of Enantiopure cis — Cyclopentane Carboxaldehyde..................... 142

Scheme 4.4 Optimization of Stereoselective Alkyne Addition and Stereochemical

D eMIINAtION. ... e 144
Scheme 4.5 Synthesis of [2+2] Precursor 4.16.........c.oooiiiiiii e 145
Scheme 4.6 Key [2+2] Photocycloaddition of 4.16..........oooiiiii e 146
Scheme 4.7 Synthesis of epi—Sulcatine G...........coooiiiii 147
Scheme 4.8 SynthesisS Of 4.30@. ... e 149
Scheme 4.9 Stereochemical Determination by Spectral Comparison...............c.ocoiiine. 150
Scheme 4.10 Accessing Sulcatine as a Mixture of Diastereomers via Ketohydroxylation...... 151
Scheme 4.11 Reroute Retrosynthetic Analysis. ..o 152
Scheme 4.12 Synthesis Of 4.27 .. ... e 154
Scheme 4.13 Cyclization 0f 4.25. ... ..o 154
Scheme 4.14 Planned Finishing Steps and (+) — Sulcatine G.................ocooiiiiiiiiinn, 155
Scheme 4.15 Other elimination strategies. ... ..., 156

Appendix A

Scheme A.1 Progress Towards Cu(l) Templated Enantioselective Intramolecular [2+2] of

Electron Deficient 1,6-Heptadi€nes ..o 187

Scheme A.2 Expanding Method to Other Electron Deficient 1,6-Heptadienes................... 188



Xii

List of Tables

Chapter 1
Table 1.1 Scope of Alkene Homodimerization...............c.oooiii i, 6
Table 1.2 Scope of Intramolecular Cyclization of 1,6-Heptadienes..............c.cooeciiiiiiiann.. 8
Chapter 2
Table 2.1 Scope studies for aryl vinyl sulfide radical cation Diels—Alder cycloadditions.......... 39
Table 2.2 Scope studies for aryl vinyl sulfide radical cation [2+2] cycloadditions.................. 40
Chapter 3
Table 3.1 Testing Copper (1) COD COMPIEXES.......c.oueiniii i, 79
Table 3.2 Survey of Possible [Cu(Olefin)Cl]2 Dimers as Precatalysts................cccooeiiiiinits 81
Table 3.3 Optimization of Loadings and Concentration In-Situ Chloride Abstraction ............ 82
Table 3.4 In- Situ Chloride Abstraction Strategy Anion Survey and Control Reactions........... 84
Table 3.5 Reaction Scope 1,6- Heptadienes. ..o, 86
Chapter 4

Table 4.1: Key [2+2] Photocycloaddition of 4.5b-d.............ccoiiiiiii e, 148



Chapter 1. A Modern Synthetic Chemists Guide to Copper (I) Mediated [2+2]

Photocycloadditions



1.1 Introduction

Cyclobutanes are important targets in synthetic chemistry.! They feature prominently in
a surprisingly diverse range of bioactive natural products.? Many of the most well-developed
strategies for the synthesis of cyclobutane rings involve photocycloaddition reactions.® The
photoactivation strategies involved in these methods have included (1) direct photoexcitation of
alkene compounds featuring conjugated pi systems with optical transitions in the visible or UV
range* (2) photosensitization of conjugated pi systems with low-energy excited states accessible
through facile energy transfer processes,® and (3) photoredox reactions that involve radical ion
intermediates generated by photoinduced electron transfer.® None of these strategies, however,
are generally applicable to the photoactivation of simple, unconjugated aliphatic alkenes. These
substrates typically absorb only very short wavelengths (180—-220 nm) that are not compatible
with many common organic functional groups.32 They also possess high triplet energies (76—84
kcal/mol).” Simple alkenes possess electrochemical potentials® that lie outside of the range of
most common photoredox catalysts.® The few methods that have been reported to mediate [2+2]

cycloadditions of simple alkenes all involve a transition metal mediated radical redox event.©

The broadest of these methods for [2+2] cycloaddition of simple aliphatic alkenes is the
CuOTf-catalyzed process originally developed by Kochi and Salomon.! This reaction involves
the formation of a key 2:1 alkene—copper complex that absorbs at significantly longer
wavelengths than isolated alkenes themselves. Excitation with UV light (254 nm) results in an
inner-sphere charge transfer, which subsequently triggers cycloaddition. 11 This method has
enabled several total syntheses through [2+2] cycloadditions of aliphatic alkenes that could not
be accomplished using direct photochemistry or through triplet sensitization. This chapter
presents a review of what is known about its mechanism as well as other synthetic
considerations that provide a guide to implementing this powerful reaction in a complex target-

based setting.



1.2 Early Discovery

This initial discovery that copper was capable of catalyzing photochemical [2+2]
cycloadditions came from experiments conducted by Srinivasan and co-workers in the 1960’s
involving irradiation of copper chloride cyclooctadiene dimer 1.1 with UV light.'?2 Appreciable
yields of the crossed [2+2] product 1.2 derived from cyclooctadiene were formed upon prolonged
irradiation. It was also found that this reaction was specific to the copper complex as very
different isomerization products were obtained upon irradiation of rhodium complex 1.4 (Scheme
1.1). Srinivasan and co-workers hypothesized that copper(l) might stabilize an electronic excited
state of 1,5-cyclooctadiene that leads to the [2+2] product. Further investigation of this reaction
conducted by Whitesides and co-workers suggested a different possibility involving initial
formation of a coordination complex between copper(l) and free cis,trans- and trans,trans-1,5-
cyclooctadiene formed during irradiation.'® The authors suggest that this 1:1 complexation shifts
the photoequilibrium towards the isomer that leads to product 1.2. While Whitesides invokes a
copper(l) olefin coordination complex, they hypothesized that the role of the transition metal was

only to shift the position of the equilibrium rather than to act as a photocatalyst.

Scheme 1.1 Olefin dimerization Cuprous Chloride

N \\\\\CL,// SN Pentane -
>Cu Ccuz \_':l - +
7~ \CI/ N hv, 254 nm, 48h.

50% Conversion
1.1 1.2 1.3

30% 10%
P28 \\\“CI",, N Pentane
= Rh Rhi\_.:l - +
g \CI/ RN hv, 254 nm, 48h.
20% Conversion
1.4 1.5 1.6
. 20% 23%

1.3 Copper Triflate and the Salomon — Kochi Reaction
Pioneering studies by Salomon and co-workers demonstrated that intermolecular

dimerization of strained cyclic olefins, particularly norbornene 1.9, could be accomplished by UV
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irradiation in the presence of various copper (I) salts (Scheme 1.2).112 Interestingly, it was found
that copper(l) triflate was a superior catalyst in these reactions giving much higher yields of the
desired dimerization products.'® A thorough investigation of the mechanism of norbornene
dimerization conducted by Salomon and Kochi revealed that the photoactive intermediate in this
process was a 2:1 alkene:copper(l) complex whose absorption spectrum is substantially shifted
to longer wavelengths in comparison with the free olefin.1* This observation also explains the
rate increase when using CuOTf as triflate is far less coordinating than halide anions that would
be more likely to disrupt olefin coordination to the copper(l) center.'2 While this study clearly
indicates the 2:1 complex as the photoactive species, the details of the actual bond-forming
steps are proposed to involve charge transfer between the olefin and the metal center in the
excited state.'® With this far more robust catalyst in hand and a much clearer understanding of
the mechanism, Salomon subsequently reported a range of previously inaccessible [2+2]
cycloadditions, making this a powerful synthetic strategy for synthesis of cyclobutane-containing

products.

Scheme 1.2 Dimerization of Norbornene

dy —=— [dzerp] =

1.9 2:1 Olefin: Cu Complex 1.10
CuBr = 38% Yield
CuOTf * CgHg = 88% Yield

1.3.1 Mechanistic Proposals
The currently accepted mechanism for the transformation involves initial formation of a

2:1 alkene copper complex. This complex is red-shifted to wavelengths that are available using
standard benchtop UV photoreactors (250-270 nm), while unbound simple unconjugated olefins
absorb at much shorter wavelengths. This transition corresponds to an inner-sphere charge

transfer that yields the desired cyclobutane product while regenerating your Cu(l) catalyst for
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further turnovers (Figure 1.1). While this general mechanism is widely accepted, the details of
the bond-forming steps themselves are still somewhat unclear.11?

Figure 1.1 Mechanistic Proposal of the Salomon and Kochi [2+2] Photocycloaddition

“OoTf

[Cu}

Olefln Labile
Complexation Red Shifted 2:1
Complex Complex
[Cu] ot Excitation
"Bare" Anion Stabilized hv = 254 nm

Copper Cation

[ .
@ 7’
mMLCT .
4

Inner Sphere

[2+2] Excited State 2:1
Cycloaddition Complex

¥ "OTf

The most significant question has been whether the productive photochemical process
involves metal-to-ligand charge transfer (MLCT) or ligand-to-metal charge transfer (LMCT).
Computations conducted by Budzeller and co-workers suggest that the first step involves a
3d—1* MLCT. The resulting copper(ll) alkene radical anion pair is then proposed to form a
localized metal—-carbon bond to fill its empty d orbital generating 1,3-biradical. Collapse of this
biradical species by addition into the second alkene results in a net [2+2] cycloaddition and

regeneration of the catalyst (Figure 1.2).14

Figure 1.2 Proposed Excitation and Bond Forming Steps via Computation

.Ccut hv Lo 2¢ .
N s | — ” cu’ CD + o’
W MLCT N A\ e

3don”

Red Shifted Proposed Radical Collapse Steps Product and Cat.
Complex Regeneration

This computational proposal is further supported by flash photolysis experiments
conducted by Ferraudi and co-workers in which spectral transformations associated with
intermediates containing copper-alkyl bonds were observed upon photolysis of copper(l)

ethylene complexes.!® Though these studies support the computed pathway, there is to date no
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direct evidence that provides insight into the nature of the carbon—carbon bond-forming steps

(Figure 1.2).

1.3.2 Scope and Synthetic Utility
Salomon and Kochi’s olefin dimerization conditions are applicable to a range of cyclic

olefins (Table 1.1). Initial reports focused on dimerization of highly coordinating bicyclic alkenes
such as norbornene and dicyclopentadiene, both yielding the exo-trans-exo isomers 1.10 and
1.11 respectively. This stereochemistry placing the bridge head carbons on opposing sides has
been attributed to a preferred coordination geometry in the 2:1 norbornene copper complex.
Less strained cyclopentene 1.12, cyclohexane 1.13, and cycloheptene 1.14 also can give
serviceable yields. Interestingly, different ring sizes yield different stereochemistry: the
cyclopentene dimer 1.12 displays cis stereochemistry while dimers of cyclohexene 1.13 and
cycloheptene 1.14 display trans stereochemistry. It is proposed that copper-catalyzed E/Z
isomerization in these larger rings occurs prior to cycloaddition and that the trans-isomers are
more coordinating to copper.l’® Most examples are symmetric olefins that cannot result in
regioisomers; however, a sole example of dimerization of substituted cyclopentene to give 1.15

suggests that high selectivity for one regioisomer has been reported.’

Table 1.1 Scope of Alkene Homodimerization

Norbornene Dicyclopentadiene Cyclopentene
1.10 1.1 1.12
90% 1% 30%
H %H :Hf ':': Mooz } H H
H H H H H H "—COZMe

Cyclohexene Cycloheptene methyl 2-(cyclopent-2-en-1-yl)acetate
1.13 1.14 1.15
49% 57% 56% 8:1 d.r.
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While a range of homodimerizations can be accomplished using the Salomon—Kochi
reaction, heterodimerizations are rare, and only a few examples have been reported (Scheme
1.3). Both examples use norbornene 1.9 as the limiting coupling partner due to its strong
coordination with copper(l). To prevent the known dimerization reaction, solvent quantities of
the less coordinating coupling partner are employed to favor the mixed 2:1 alkene:copper
complex. This has been accomplished using allyl alcohol to yield stereocisomers 1.17 and 1.18
and using cyclooctene to yield heterodimerization product 1.19. These same reactions are also
applicable to dicyclopentadiene in place of norbornene as the limiting coupling partner.®
Presumably, systems involving two different alkenes with equal propensity to bind to the copper

center would result in a mixture of products or dimerization of the most coordinating olefin.

Scheme 1.3 Limited Scope of Heterodimerizations

OH
50 mol% CuOTf OH
+ /\/OH - +
=
117 1.18

a)

hv, 254 nm
19 Solvent 120 h
76% yield
4:1d.r.
b)
40 mol% CuOTf
+
hv, 254 nm
120 h
Solvent 1.19
40% vyield

While the Salomon and Kochi reaction was originally studied in the context of
intermolecular dimerization reactions, its utility in synthesis has been derived from its application
to the intramolecular cyclization of 1,6-heptadienes. Salomon and co-workers found that a wide
range of dienes displaying a 1,6-diene substitution pattern could be cyclized to the
corresponding bicyclo[3.2.0]heptanes, allowing for construction of complex cyclobutane

containing carbocyclic scaffolds (Table 1.2a 1.20-1.23).2° Furthermore, an exceptionally wide
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range of functional groups are tolerated, including allyic alcohols 1.241% ethers 1.251%,

carbamates 1.26%°, 1,3-dienes 1.27?%%, silanes 1.282%2, 1,3-diols 1.292%, vinyl boronate esters

1.302%, vinyl ethers 1.31%4, styenes 1.32%°, carbohydrates 1.33%¢, and a good selection of

hydroxyl protecting groups?? (Table 1.2b).

Table 1.2 Scope of Intramolecular Cyclization of 1,6-Heptadienes

1,6 - Heptadiene Scaffold
-OTf

OH OH
c hv
Alkenes Aligned 1.19
a) Complex Ring Systems
H
H H
- H [o sl
H HO
OH
(Salomon) (Salomon) (Salomon) (Bach)
1.20 1.21 1.22 1.23

b) Functional Group Tolerance

HoPH H H
A H H

(Salomon) (Salomon) (Salomon)
Allyic Alcohols Ethers Diallyl Carbamates
1.24 1.25 1.26
H H BPin, N
B _Ph - ~—OH LO;Me
R Ph - OH CO,Me
H g H
(Koenig) (Yoon) (Yoon)
Diallyl Silanes 1,3 - Diols Vinyl Boronate Esters
1.30 1.31 1.32
o B
)k n QPG
(0] N H .
Ph B
H A
(Bach) (Ghosh) (Yoon)
Oxazolidinones and Styrenes Carbohydrates Range of Alcohol Protecting

1.34 1.35 Groups

H
»
(Salomon)

1,3 - Dienes
1.27

(Ghosh)
Vinyl Ethers
1.33

Protecting Groups

Ac
Piv
TBS
TES
MOM
Alloc
Bn
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While the scope of intramolecular cycloadditions of 1,6-heptadiene scaffolds is quite
broad, the reaction has some clear limitations. Cyclization of any other substitution patterns has
not been demonstrated in the Salomon and Kochi reaction. It has been proposed that the 1,6-
diene pattern results in alignment of the alkenes thus allowing for unstrained coordination of
both alkenes to the copper center, while other substitution patterns are poorly aligned and
disfavor formation of the intramolecular 2:1 complex red (Scheme 1.4a).1°¢ Also, sterically
hindered substrates react poorly and lead to catalyst decomposition, likely due to inhibition of
complex formation (Scheme 1.4b).1%1%¢

Scheme 1.4 Limitations of Intramolecular [2+2] Cyclizations

a) Other Alkene Substition Patterns are Unreactive

-OTf OH
OH
OH \
\/\/\/Q - o . DE)
/Cu —_——
A S
PpZ
1.36 Alkenes not Aligned 1.37

no rxn

b) Sterically Hindered Substrates React Poorly
OH

Me Me :OH S0H
CuOTf \ CuOTf
Me Et,0, 254 nm, 48 h Et,0, 254 nm, 18 h

OH Me

1.38 1.39 1.40 1.41
40% Conversion >20:1 dr

not observed
(complex mixture of
alkene derived byproducts)

1.3.3 Factors Affecting Stereochemical Outcomes

While a wide range of 1,6-heptdiene scaffolds are readily cyclized using the Salomon and
Kochi protocol, predicting the stereochemical outcomes of these intramolecular cyclization
reactions presents a much more complex problem. Many different factors have been reported
to greatly influence the stereochemistry of the resulting products including conformational strain,
steric clash, and chelation. The stereochemistry is most often proposed to be controlled by the

lowest energy conformation of the 2:1 olefin:copper complex.
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Salomon and co-workers extensively studied many of these effects in their early
publications regarding intramolecular cyclization of 1,6-heptadienes. Early observations
revealed a strong preference for formation of the exo product 1.43, which is easily rationalized
by the fact that exo coordination places the larger alkyl group in the pseudoequatorial position,
making it the thermodynamically preferred geometry (Scheme 1.5).2” This demonstrates that for
simple alkyl ethers and other linear 1,6-heptadienes lacking chelating functional groups, analysis
of steric interactions in the two possible chair-like coordination states should give reliable

predictions of stereochemical outcomes.

Scheme 1.5 Favoring the Least Sterically Hindered Coordination

CuOTf H H
0 gt 0
/\/O\/g hv LR nBuﬁ\//\g’ o ve HA‘\//\&"‘ e
B ———
nBu H H nBu /‘S—/

1.42 1.43 Exo Endo
Single Stereoisomer

While Salomon and co-workers studied the cyclization of a range of scaffolds containing
multiple ring systems, this simplistic analysis based on steric interactions has been heavily relied
upon for rationalization of the stereochemical outcomes observed with this reactivity. Bach and
co-workers later conducted a study in conjunction with their efforts toward the total synthesis of
(+/-)—kelsoene on the stereochemical outcomes of 1-methyl-substituted
tricyclo[6.2.0.02,6]decanes and tricyclo[7.2.0.02,7]Jundecanes formed from [2+2] cycloadditions
of both cis and trans ring-constrained 1,6-heptadienes. 28 They observed high degrees of
selectivity for all these constrained 1,6-heptadienes further demonstrating the power of steric
analysis previously employed by Salomon. Bach observed high selectivity for the trans-anti-cis
products 1.45 and 1.47 in the case of trans substitution across the ring junction. This observation
is easily rationalized by a strong preference for pseudoequatorial orientation of substituents to
give the thermodynamically favored ring conformation when coordinating with copper (Scheme

1.6a). Cis substitution across the ring junction prevents any conformation in which both



11
substituents reside in an equatorial position. However, clear steric clash in orientations that
place the methyl substituent below the ring system are highly disfavored, displaying high
degrees of selectivity for the cis-syn-cis products 1.49 and 1.51 (Scheme 1.6b).

Scheme 1.6 Stereochemical Preferences for Ring Constrained 1,6- Heptadienes (Bach)

a) Trans Ring Fused 1,6- Heptadienes

Favored Conformation Not Observed
H H
CuOTf Ho~=
hv / H
> ; |
R H H 7% |
a L i L
1.45
>20:1 d.r. _ _ _ _
P H H
CuOTf H ™=
hv
, - “ =
‘s, Z H
/\ H H P
1.46 1.47 - - - N
>20:1 d.r.

b) Cis Ring Fused 1,6- Heptadienes

CuOTf H H
hv
- Z
A H =
H
CuOTf H H
hv
H P
N H

1.50 1.51
>20:1 d.r.

While conformation and steric analysis has proven to be a powerful predictor of
stereochemical outcomes in these reactions, they are limited to systems that lack any Lewis
basic functional groups. Early studies conducted by Salomon cyclizing 1,6-heptadien-3-ols
discovered an interesting inversion in preference from the typical exo product 1.54 to in many
cases highly favoring the higher energy endo product 1.53. Salomon rationalized this selectivity

by proposing that copper forms a tridentate complex with the two olefins and the allylic hydroxyl
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group, necessitating the placement of the hydroxyl in the axial position and yielding the endo
product 1.53 (1.7a).1% This suggests that the additional coordination of the hydroxyl group is
stabilizing enough to override the increased steric congestion in the complex. However,
increasing the steric strain in the endo coordination complex results in loss of stereochemical
preference for the endo product (Scheme 1.7b).1°2

Scheme 1.7 Allylic Alcohol Chelation Effect on Stereochemical Outcomes

a) Tridentate Chelation Effect

H H
CuOTf H H
/\(\/\ hv o H + HO%
OH OH H
1.52 1.53 1.54
Endo Exo

86% 9:1 Endo:Exo

H H
H&_ ) Chelation H&
HO%‘ > --Cu - H%
H QH !
T--cu*
Exo Endo

b) Steric Inhibition of Chelation

H H
CuOTf H H
hv H% + HO%
W - | |
OH OH H
1.55 1.56 1.57
Endo Exo

84% 3:4 Endo:Exo

Steric
Inihbition of H
Chelation H&
QH ',
~~Cu
Exo Endo

This chelation effect seems to be most general for allyic alcohols and ethers; however,

more distal effects have been documented.?® Ghosh and co-workers conducted a study on
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complex carbohydrate derived scaffolds 1.58-1.60 demonstrating that both chelation to free
hydroxyl groups and ethers are strong directing groups for the stereochemical outcomes in these
reactions, giving high degrees of stereoselectivity for cyclobutane products 1.61-1.63 (Scheme
1.8). Furthermore, later studies conducted in our group demonstrate that a wide range of

protected alcohols display this same chelating ability to varying degrees.??

Scheme 1.8 Allylic Alcohol Chelation and Diastereoselectivity in Complex Multi-Ring Systems
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OMe g
_ OOMe
1.63

1.60

Until this point the discussion of stereochemistry has centered on endo vs. exo
coordination of the catalyst because most examples employ terminal olefiins in which endo and
exo are the only possible diastereomers. However, terminally substituted alkenes that result in
a new stereocenter on one of the external cyclobutane carbons typically result in more complex

mixture of diastereomers.

Salomon and co-workers observed that terminal substituted 1,6-heptdienes typically
result in a 1:1 mixture of diastereomers. The authors attributed this observation to competitive
copper-catalyzed photochemical E/Z isomerization scrambling the stereochemistry of an

otherwise facially selective cycloaddition (Scheme 1.9).1°2 The authors also noted that



14
cyclization of the trans alkene 1.64 was notably faster and favored one diastereomer over the
other in comparison to cyclization of the cis alkene, which gives a 1:1 mixture of the two
diastereomers. Later studies conducted by our group verified these proposals with NMR time
course experiments observing the isomerization during the cycloaddition that occurs at nearly
the same rate as cycloaddition.?3 This phenomenon is unfortunate because in the absence of
isomerization this reaction would be more modular allowing for selection of the desired

diastereomer based on the alkene geometry displayed in the substrate.

Scheme 1.9 Terminally Substituted olefins and E/Z Isomerization

H
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1:1 syn:anti

1.4 Application of the Salomon — Kochi Reaction to Total Synthesis
Because the Salomon and Kochi reaction is one of the few robust methods for the
formation of complex cyclobutanes, it has been employed in numerous synthetic efforts towards

cyclobutane natural products. Most products are retrosynthetically derived from a [2+2]
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cycloaddition of simple aliphatic alkenes where direct excitation and triplet sensitization methods
are not applicable. While both intramolecular and intermolecular cyclization using CuOTf have
been employed in total synthesis, the vast majority of reports involve intramolecular cyclization
of 1,6-heptadienes to form cores of natural products containing the bicyclo[2.2.1] heptyl moiety
or to form bicyclo[2.2.1] heptyl intermediates that upon cleavage or rearrangement lead to the
desired natural products. While not a common disconnection in total synthesis, the Salomon
and Kochi reaction has been enabling in the synthesis of a range of largely aliphatic terpene

and terpenoid cyclobutane containing natural products.

1.4.1 Natural Products Containing Bicyclo[2.2.1] Heptyl Moiety

The earliest total synthesis employing the Salomon and Kochi reaction was the synthesis
of a and B-panasinsene by McMurray and co-workers (Scheme 1.10).%° [2+2] photocyclization
of diene diastereomers 1.68a and 1.68b using CuOTTf yields the desired core displaying all-cis
stereochemistry. Interestingly this stereochemistry was obtained regardless of the orientation of
the allylic alcohol. This observation suggests that chelation has little impact on the
stereochemistry of the cycloaddition and that conformational bias instead governs the
stereochemical outcomes displayed in cyclobutanes 1.69a and 1.69b. While chelation with the
allylic alcohol had little impact on the stereochemical outcome, the authors report a substantial
rate difference between the two diastereomers, suggesting that chelation in one diastereomer
results in increased rates of reactivity. Oxidation of the two resulting cycloadducts yields ketone
1.70 that was found to be recalcitrant towards Wittig olefination. However, addition of methyl
lithium followed by dehydration with thionyl chloride gave the two isomeric natural products 1.71

and 1.72 in a 2:5 ratio.
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Scheme 1.10 Total Synthesis of Panasinene (McMurray)
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The proposed structure of robustadiol A was synthesized by Salomon and co-workers by
[2+2] cyclization of substituted 1,6-heptadiene scaffold 1.73 to give bicyclo[2.2.1] heptane 1.74
(Scheme 1.11).3! Subsequent selective monodemethylation directed by a remote neighboring
group effect with the tertiary alcohol followed by Lewis acid mediated cyclization gave a 8:1:1
mixture of diastereomers favoring the desired pyran diastereomer 1.75 . Functionalization of the
aromatic ring gives the proposed structure of robustadiol A 1.76. However, the spectral data for
this product did not match those of the reported isolated product. Salomon’s confirmation that
the original structural assignment was incorrect informed the proposal of an alternate structure

1.77 differing only by the connectivity of the bicyclic heptyl fragment.
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Scheme 1.11 Total Synthesis of Proposed Structure of Robustadiol A (Salomon)
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Bach and co-workers employed the Salomon and Kochi reaction as the key step in their
synthesis of (+/-)-kelsoene 1.82 to form the densely substituted tricyclo[6.2.0.0]decane core
(Scheme 1.12).32 Having conducted prior studies on the cyclization of both trans- and cis-
substituted 2-allyl-1-(2-propen- yl)cyclopentanes, it was discovered that while kelsoene features
a cis ring junction between the two cyclopentane rings, copper(l) catalyzed [2+2] cyclization of
the cis-substituted 2-allyl-1-(2-propen-yl)cyclopentanes gives high selectivity for the undesired
cis-syn-cis product.Errort Bookmark not defined. \While these studies show that the cis-anti-cis t
ricyclo[6.2.0.0]decane core cannot be accessed directly, Bach found that [2+2] photocyclization
of trans-substituted cyclopentane scaffold 1.78 allowed the desired anti stereochemistry to be
set on one side of the ring system in cycloadduct 1.79. Subsequent transformation into cyclic
enone 1.80 allowed facially selective hydrogenation, yielding the desired cis-anti-cis core. Acid-

facilitated epimerization of the resulting ketone to its most stable isomer yielded ketone 1.81 as
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a single diastereomer. Ketone 1.81 was then converted to the natural product 1.82 using

previously reported Wittig olefination conditions.

Scheme 1.12 Total Synthesis of (+/-) — Kelsoene (Bach)

anti
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89%
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1) H, [Pd/C]
EtOH
_——
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Chloroform, Reflux
65%

1.82
(+/-) - Kelsoene

Ghosh and co-workers have reported progress toward the total synthesis of
bielschowskyin 1.83, which is potentially the most complex natural product containing the
bicyclo[2.2.1] heptyl moiety (Scheme 1.13).22 There are no known synthesis of this product yet
reported despite its very promising cytotoxicity towards lung cancer and renal cancer cell lines.
Copper-catalyzed cyclization of 1,6-heptadiene 1.84 yields bicyclo[2.2.1]heptyl cycloadduct
1.85. While this scaffold contains the proper connectivity found in the natural product, a
substantial synthetic effort was required to obtain the proper stereochemistry. While a complete
synthesis has yet to be reported, the ability to access bicyclo[2.2.1]heptyl scaffold 1.86
demonstrates the viability of using the Salomon and Kochi reaction as a key step in the synthesis

of the western half of this molecule.
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Scheme 1.13 Synthesis of the Bielschowskysin Core

CuOTf
hv

78%

1.83

1.4.2 Products Derived from Intermediates Containing the Bicyclo[2.2.1] Heptyl Moiety

While the Salomon and Kochi reaction has proven to be a valuable strategy toward the
synthesis of natural products containing the bicyclo[2.2.1] heptyl moiety, other syntheses have
utilized this reactivity to form key intermediates towards other complex natural products. The
cyclization of 1,6-heptadiene scaffolds typically proceeds with high facial selectivity that sets
may stereocenters at once in a relatively reliable manner. This feature has been leveraged to
form other complex carbocyclic scaffolds via cleavage or rearrangement of the rigid

bicyclo[2.2.1] heptyl moiety.

Ghosh and co-workers reported syntheses of both (+/-)-cedrene®* and B-necrodol®®
using a near identical strategy featuring the Salomon and Kochi reaction (Scheme 1.14).
Cyclization of vinyl ether 1,6-heptadiene 1.87 gives ether bridgehead substituted bicyclo[2.2.1]
heptane scaffold 1.88. The authors found that treatment of 1.88 with acid resulted in expansion
of the cyclobutane, furnishing spirocyclic cyclopentanone 1.89. Subsequent synthetic
modifications intercepted an intermediate in Stewart’s previously reported synthesis to complete

the formal synthesis. This same rearrangement strategy was used by Ghosh and coworkers
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towards the synthesis of B—necrodol, accessing substituted cyclopentanone 1.93 as a key

intermediate in the synthesis of 1.94.

Scheme 1.14 Total Synthesis of (+/-) — Cedrene and B — Necrodol via Ring Expansion of
Bicyclo[2.2.1] Heptyl Moiety (Ghosh)
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Probably the most notable application of using the Salomon and Kochi reaction to set
multiple stereocenters by deconstruction of the resulting bicyclo[2.2.1] heptane are the extensive
studies conducted by Mattay and co-workers towards the synthesis of both (+) and (-)-
grandisol,®¢ a cyclobutane natural product that has been extensively studied as a benchmark for
the utility of photochemical cycloaddition methods (Scheme 1.15). Mattay found that copper(l)
catalyzed [2+2] photocycloaddition of (S)-2-heptadien-1-ol 1.94 gave a mixture of endo and exo
diastereomers 1.95 and 1.96 that upon separation and ring opening gave two pure enantiomers
displaying the required cis-stereochemistry across the cyclobutane core. Further elaboration of

these products yields natural products 1.97 and 1.98 respectively (Scheme 1.15a).

While cyclization of the enantiopure 1.94 allowed for simple access to both enantiomers,
the synthesis of 1.94 proved laborious. The authors then underwent an extensive study
attempting to render the Salomon and Kochi reaction enantioselective allowing for employment

of the much easier to access racemic material 1.99. Initial attempts were aimed at employing
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nitrogenous chiral ligands to occupy the other open coordination sites not required for olefin
coordination (Scheme 1.15b). The authors found that using X-type ligand 1.103 resulted in
neutral complexes that were unreactive catalysts for cycloaddition. CD spectral analysis also
revealed that these neutral complexes do not coordinate to olefins as no spectral change was
observed upon addition of diene substrate 1.99. Employing L-type ligand 1.102 results in a
cationic copper complex that shows clear CD-spectral changes upon addition of 1.99 and is
capable of mediating the [2+2] cycloaddition reaction. Unfortunately, the reaction rates were
substantially suppressed, and only low levels of enantioselectivity were observed. The authors
suggest several potential explanations for these results. They proposed that the ligand might
prevent binding, such that the reaction would be catalyzed predominantly by trace unligated
copper(l) in solution. They also suggested that other charge transfer events associated with the
chiral ligand could complete with the copper-to-alkene charge transfer transition necessary for

successful cycloaddition.

The authors then turned to a chiral auxillary strategy, looking at a range of chiral
protecting groups for the chelating allylic alcohol. The authors proposed that favoring one chiral
tridentate copper(l) coordination geometry over another would result in preferential formation of
one enantiomer over the other. Initial experiments involving chiral carboxylate esters and amino
acid derivatives gave only low levels of enantioenrichment upon ring opening, suggesting that
the chiral information is too distal from the metal center or that esters and amides are poorly
coordinating to copper(l). Upon further exploration of chiral auxiliary options, the authors found
that photocycloaddition of chiral ketal 1.104 yielded cycloadduct 1.105 as a 4:1 mixture of
endo:exo cycloadducts demonstrating clear coordination to the copper center. Acidic cleavage
of the major diastereomer resulted in ketone 1.106 in 60% ee for the (R,R) enantiomer. The
authors envokes two potential endo coordination states, one of which is disfavored due to strong

steric clash with the chiral ketal backbone (Scheme 1.15c). While valuable information was
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gleaned from this study, a viable method for achieving high levels of enantioselectivity in this

reaction has not yet been discovered.

Later studies conducted by Ghosh and co-workers approached this problem using a
chiral relay strategy rather than an auxillary that requires coordination to the metal center
(Scheme 1.15d).3 First, chiral 1,6-heptadiene scaffold 1.107 is easily derived from readily
available (R)-1,4-Dioxaspiro[4.5]decane-2-carboxaldehyde.[2+2] cyclization of chiral substrate
1.107 gives high levels of selectivity for the exo product 1.108 in the absence of allylic
coordination to copper. Subsequent conversion of the chiral relay group to the methyl ester
destroys the relay stereocenter and gives access to 1.109 as a pure enantiomer. Subsequent
steps intercept known intermediate 1.110 of Meijer's synthesis of grandisol, completing the
formal synthesis of 1.98. The authors suggest that the stepwise nature of this reaction allows
for relay of chiral information to neighboring carbons during the first bond forming step and
accounts for the high degree of selectivity observed without employing chiral tridentate

coordination complexes as in Mattay’s studies.
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Scheme 1.15 Total Synthesis of Grandisol via Ring Cleavage of the Bicyclo[2.2.1] Heptyl
Moiety
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1.4.3 Natural Products Accessed via Copper () Photodimerization

While Cu(l) catalyzed intermolecular dimerization of strained alkenes has not been
nearly as widely used in total synthesis as the intramolecular variants of this reaction, Burns

and co-workers more recently reported the first total synthesis using the Salomon and Kochi
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dimerization as the key step in their synthesis of the ionic 5-ladderonic acid (Scheme 1.16).%8
Copper(l) mediated dimerization of bicylcohexene 1.111 furnishes the exotic ladderane core
1.112, the key synthetic challenge in this synthesis. Subsequent steps allowed for a synthesis
of this natural product 1.113 in many fewer steps than previously reported. Interestingly this
modest yielding reaction only gives serviceable yields of the ladderane core in benzene at —
4°C at which the solvent is solid. These are very uncommon conditions for the Salomon and
Kochi reaction as benzene absorbs UV light below 280 nm and usually prevents light
absorption of the complex around 254 nm. More common conditions in ethereal and alkane

solvents result in ring opening of the bicyclohexane rather than dimerization.

Scheme 1.16 Total Synthesis of 5-Ladderanoic Acid (Burns)
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1.5 Modern Methods

Since the advent of this reactivity in the early 1970’s the maijority of work in this field has
focused on application of Salomon’s initial discoveries to complex molecule synthesis. Relatively
little work has been published exploring new reactivity available via this copper olefin MLCT
mechanism. Recently, Schmidt and co-workers reported an elegant solution to a longstanding
limitation of the Paterno—Buchi [2+2] photocycloaddition via copper(l) olefin MLCT (Scheme
1.17).%° The Paterno—Buchi reaction has always been limited to aryl ketones and other ketones
with strong direct absorption of UV light and/or lower triplet energies. Aliphatic ketones such as
acetone have not been documented to undergo a Paterno—Buchi reaction. Schmidt and co-
workers proposed that rather than exciting the ketone, an anionic intermediate generated via
Cu(l) MLCT to a coordinated olefin would productively add to these otherwise inert aliphatic

ketones. Initial studies employing norbornene 1.9 as the alkene coupling partner and CuOTf as
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the catalyst resulted in low yields and a mixture of Paterno—Buchi and dimerization products.
The authors found that excitation of tris(pyrazolyl)borate copper(l) (TpCu) norbornene complex
1.114 in the presence of acetone gave only the desired oxetane product 1.115 likely due to the
tridentate Tp ligand preventing formation of a 2:1 olefin copper complex. While the use of
aliphatic ketones in the Paterno Buchi reaction by this inversion of reactivity is a significant
advance these reactions were found to be entirely limited to norbornene 1.9 as the alkene
coupling partner. This is potentially because norbornene is highly coordinating to copper(l) and
because the increased hinderance of the tridentate ligand prevents complexation with less

coordinating olefins.

Scheme 1.17 Intermolecular 2 + 2 Carbonyl-Olefin Photocycloadditions Enabled by Cu(l)-
Norbornene MLCT (Schmidt)
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Our group has recently developed a new catalyst system that extends the useful scope
of the Cu-catalyzed Salomon—Kochi photocycloaddition reaction, enabling the cycloaddition of
sterically encumbered substituted alkenes.?® Two features are critical to the success of this
strategy. First, the use of a weakly coordinating SbFe~ counteranion increases the reactivity of
the catalyst by favoring the formation of the requisite copper:bis(alkene) complex. Second, while

weakly coordinated cationic Cu(l) salts are prone to decomposition under the reaction
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conditions, a COD ligand can stabilize the Cu(l) center without engendering the unproductive

competitive low-energy LMCT transitions that would be introduced using more traditional

nitrogen or phosphorous ligands. The optimal catalytic complex is capable of engaging hindered

polysubstituted alkene substrates, can be generated from bench-stable precursors, and enjoys

greater stability compared to the standard [Cu(OTf)]2sbenzene precatalyst (Scheme 1.17a). The

preparation of the cores of the natural products sulcatine G and perforatol demonstrate the utility

of this reaction in accessing structurally complex cyclobutane natural products (Scheme 1.17b).

Scheme 1.18 Olefin-Supported Cationic Copper Catalysts for Photochemical Synthesis of

Structurally Complex Cyclobutanes (Yoon)
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The Salomon and Kochi [2+2] photocycloaddition has proven to be a powerful method

for the construction of complex cyclobutanes from simple aliphatic olefins. It has been employed
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in several total syntheses as a key transformation, allowing multiple stereocenters to be setin a
single cycloaddition step. However, this reaction has been explored largely as a potential
synthetic disconnect with little attention being given to catalyst optimization or other forms of
reactivity accessible using this manifold. We believe that the base reactivity associated with this
reaction allowing for generation of alkyl copper biradicals could potentially be exploited to access
many different modes of reactivity. New catalyst design efforts could potentially unlock a broad
array of transformations stemming from this alkyl copper biradical intermediate, as in Schmidt’'s
work.3? Also, research into catalysts that are more strongly coordinating towards alkenes could
broaden the scope of this reaction to intermolecular [2+2] cycloadditions of linear alkenes and

intramolecular cycloadditions of substitution patterns outside the 1,6-heptadiene scaffold.

Another avenue of research that is of great interest to our group is the development of
enantioselective versions of these reactions. Chiral copper catalysts generated either by
incorporation of chiral ligands or chiral counteranions could theoretically impart stereocontrol in
these reactions, as highly organized coordination states with copper are already required for
productive reactivity. A chiral copper catalyst for the Salomon and Kochi reaction would
represent a new paradigm in enantioselective [2+2] photocycloaddition reactions, as chiral
control derived from 1r-acidic metal complexes has yet to be demonstrated in alkene [2+2]

photocycloadditions.
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Chapter 2. Aryl Vinyl Sulfides as Traceless Removable Redox Auxiliaries for

Formal [2+2] Cycloadditions of Unactivated Alkenes

Portions of this work have been previously published:

Lin, S.; Lies, S. D.; Gravatt, C. S.; Yoon, T. P. “Radical Cation Cycloadditions Using Cleavable Redox
Auxiliaries.” Org. Lett. 2017, 19 (2), 368—-371.
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2.1 Introduction

Alkene radical ions are open-shell reactive intermediates that participate in a wide
variety of organic transformations. Many features of these reactions are synthetically
attractive: they often proceed with very low activation barriers, and their regiochemical
outcomes generally complement those involving closed-shell neutral alkenes.! Recently,
there has been a renewed interest in the application of radical ion chemistry to synthesis,
due in part to the recognition that photoredox catalysis offers a convenient means to
access these odd-electron intermediates under relatively mild and convenient conditions,
in comparison with harsh stiochometric single electron oxidants previously employed.?
Recent reports of synthetic transformations involving photogenerated alkene radical
cations via photoredox catalysis have included a variety of cycloaddition reactions® and
anti-Markovnikov hydrofunctionalization reactions,* both of which are challenging to
accomplish using alternate synthetic strategies.

One limitation common to all photoredox reactions is that reactivity is dictated by the
thermodynamic feasibility of the photoinduced electron-transfer steps; substantially
endergonic single-electron transfer (SET) steps result in poor overall reactivity. To
address this, a large number of structurally varied photocatalysts spanning a range of
excited state redox potentials can be exploited to broaden the scope of these reactions.®
Nevertheless, a substrate’s redox potential remains a fundamental thermodynamic
constraint on the success of photoredox methods. For instance, simple mono- and
disubstituted aliphatic alkenes have proven too difficult to oxidize (> +2.5 V vs SCE)® us
with even the most powerfully oxidizing photoredox catalysts in common usage and have
not successfully been engaged in photooxidatively triggered transformations.

We recently described the concept of a “redox auxiliary,” which we defined as an easily

removable moiety that can be temporarily installed on a substrate to enable its activation
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by single-electron transfer processes.” Our initial demonstration of this concept was a
radical anion [2+2] photoredox cycloaddition using 2-acylimidazoles as readily reducible
analogues of enoate esters that would otherwise be resistant towards photoreductive
activation.” We wondered if an analogous redox auxiliary strategy might be applied to
facilitate photooxidatively initiated organic transformations. We hypothesized that the
installation of an electron-rich redox auxiliary onto an otherwise unactivated alkene would
facilitate its one-electron oxidation by lowering the redox potential; the resulting radical
cations could subsequently undergo a number of characteristic alkene radical cation
reactions, including Diels—Alder39 and [2+2] cycloadditions.32d Subsequent cleavage of
the redox auxiliary group would afford the products of formal cycloadditions involving

unactivated alkene substrates (Figure 2.1).

Figure 2.1 Traceless redox auxiliary strategy for radical cation reactions.

« simple alkenes: difficult to oxidize, poor chemoselectivity
l + -~
Me Me hv Me Me

— Aux
e easily oxidized, readily cleavable redox auxiliary T

Aux AN Aux,,,
\l .
Me Me hv Me Me

Very recently, Cooke and co-workers described an intriguing first step towards an

alternate oxidative redox auxiliary strategy, demonstrating that vinyl ferrocene is
powerfully activated towards Diels—Alder and hydrothiolation reactions upon one-
electron chemical oxidation.® This study verified that the incorporation of a reversibly
oxidizable moiety onto an alkene can indeed be used to facilitate redox-promoted

transformations. However, this strategy involves a separate activation step using
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stoichiometric chemical oxidant rather than an in situ redox catalyst, and the requisite
ferrocenyl moiety is not removable in a traceless fashion.

We imagined a different strategy utilizing a reversibly oxidizable sulfide moiety as
a redox auxiliary. We were attracted to the use of vinyl sulfides in this context for a
number of reasons. First, aryl vinyl sulfides generally possess oxidation potentials
ranging from +1.1-1.4 V vs SCE,® which are readily accessible using the well-
characterized Ru(ll) polypyridyl photoredox catalysts that are increasingly being utilized
in synthetic chemistry. Second, Bauld has studied chemically induced radical cation
Diels—Alder cycloadditions of aryl vinyl sulfides using triarylaminium salts as chemical
oxidants.®1° This valuable precedent demonstrates that vinyl sulfide radical cations are
indeed activated towards cycloaddition reactions. Finally, C—S bonds are relatively weak,
and a variety of mild, operationally facile methods for their cleavage have been utilized
in the synthesis of complex molecules.!! We imagined that successful development of
this sequence would enable the preparation of formal cycloaddition products of simple
alkenes that are not amenable to direct activation by photoredox catalysis and would also

be challenging to engage in classical thermal cycloaddition methods.

2.2 Reaction Conditions and Scope

Optimal conditions were previously devised by colleague Dr. Shishi Lin for the [4+2]
cycloaddition of aryl vinyl sulfide 2.1 with isoprene 2.2 utilizing highly oxidizing
Ru(bpz)s(BArF):z as the photocatalyst. The reaction was found to be sensitive to oxygen,
requiring rigorous degassing by freeze-pump-thaw cycles to obtain optimal results. We
hypothesize that this is due to the sensitivity of aryl vinylsulfides to oxygen-centered radical
species. The reaction was also found to be highly water-sensitive, and addition of a dessicant

MgSOs resulted in substantially higher yields (Scheme 2.1).
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Scheme 2.1 Optimized Reaction Conditions

5 mol %
Ru(bpz)3(BArF),
PhS PhS,
™ + >\ MgSO, "
Me MeCN (degassed), Me
Blue LED, 15 h
21 Spp, 2.2 Ph 2.3
(3 equiv) 89% 8:1 d.r.

Studies examining the scope of the radical cation Diels—Alder cycloaddition of vinyl
sulfides under optimized photocatalytic conditions are summarized in Figure 2.2. A range of
simple cyclic and acyclic dienes participate readily in this process (2.3-2.8), though sterically
bulky dienes require longer reaction times (2.5), and electron-rich dienes provide somewhat
lower yields (2.6). Simple cyclic dienes (2.7), however, work well in this reaction. The structure
of the vinyl sulfide partner can also be modified. An examination of simple alkyl-substituted
dienophiles reveals a sensitivity to steric bulk; larger vinyl substituents result in substantially
slower Diels—Alder reactions (2.10 and 2.11), and 3,B-disubstituted vinyl sulfides do not provide
any observable cycloadducts. On the other hand, the reaction tolerates various functional
groups including esters, silyl ethers, and phthalimides (2.12—-2.14). These conditions were also

found to be applicable to intramolecular cycloadditions (2.15).

Table 2.1 Scope studies for aryl vinyl sulfide radical cation Diels—Alder cycloadditions

OAc
Me Me PhS,,
PhS PhS Me Phs PhS @
AN AN N K
Ph Me Ph Me pp N Me pr” N\

2.3, 89% yield 2.4, 90% vyield 2.5, 54% yield 2.6, 60% yield 2.7, 89% yield
15 h, 8:1dr 15 h, 4:1 dr 24 h 24 h, 3:1dr 15 h, 3:1dr
PhS PhS
PhS PhS PhS
U\ O\ Me w Me o Me \
Met" Me Ph Me W Me Meh AcO” N
Me Me
2.8, 89% yield 2.9, 67% yield 2.10, 46% yield 2.11, 19% yield 2.12, 63% yield
15 h, 5:1 dr 20 h, 7:1dr 48 h, >10:1 dr 48 h,>10:1dr 20 h, >10:1dr
PhS
PhS H
\ \\‘\
TBSO” Me NN Me Lo
A
2.13, 74% yield O 2.14,70% yield 2.15, 73% yield

20 h, >10:1 dr 24 h, 5:1dr 20 h, 3:1dr
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The goal of this project was to demonstrate that sulfide redox auxiliaries might be
broadly applicable not only to Diels—Alder cycloadditions but also to a range of useful
transformations involving alkene radical cations. To expand the scope beyond Deils-
Alder cycloadditions, we next studied the use of vinyl sulfides in intermolecular [2+2]
cycloaddition reactions. We had previously investigated the factors controlling the
crossed selectivity of such reactions involving electron-rich styrenes and were pleased
to observe that similar considerations are applicable to [2+2] radical cation cycloadditions
of vinyl sulfides.®d Thus, when 2.1 is irradiated in the presence of electron rich
monosubstituted alkenes, the corresponding unsymmetrical cyclobutanes are produced
in good yield. Vinyl ethers were excellent reaction partners in this reaction, affording good
yields and excellent selectivities regardless of the steric bulk of the ether substituent
(2.16-2.20). An enamide also provided synthetically useful yields of the corresponding
acetamide-substituted cyclobutane (2.21). Finally, although simple aliphatic olefins and
vinyl esters did not participate in this reaction, styrenes are successful reaction partners
(2.22 and 2.23), consistent with the stepwise radical mechanism expected for this
cycloaddition.

Table 2.2 Scope studies for aryl vinyl sulfide radical cation [2+2] cycloadditions

PhS, OFEt

Ph
2.16, 71% yield
15 h, 15:1 dr

PhS, OtBu

Ph
2.20, 88% yield
8h, 15:1dr

PhS, OBn

Ph
2.17, 76% yield
15 h, 20:1 dr

PhS, NHAc

Ph
2.21, 46% yield
8 h, 15:1dr

Ph

Ph

PhS, OnBu

2.18, 83% yield
8 h,15:1dr

PhS,

2.22, 48% vyield
15 h, 3:1dr

Ph
2.19, 92% yield

8h,15:1dr Me

PhS,

Ph
2.23, 72% yield
15 h, 2:1dr
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2.3 Product Derivatizations
To fully demonstrate the utility of this redox auxiliary strategy, we intended to showcase
the cleavage of the sulfide moiety, which was readily accomplished using various
reductive protocols (Scheme 2.2). First, treatment of [4+2] cycloadduct 2.3 with freshly
prepared lithium naphthalenide rapidly affords the corresponding desulfurized product
without competitive reduction of the alkene moiety (eq 1). Importantly, the resulting
cyclohexene 25 would not be directly accessible using alternate thermal or redox-
promoted Diels—Alder methods. Similarly, cycloadduct 14 bearing a TBS-protected
primary alcohol undergoes desulfurization to afford 26 without cleavage of the silyl
protecting group (eq 2). The reduction of [2+2] cycloadduct 24 can readily be
accomplished by treatment with Raney nickel (eq 3), and the diastereomer ratio of the
resulting cyclobutane (27) is identical to that of the starting material, indicating that
epimerization does not occur under these conditions. The desulfurization of
functionalized cycloadduct 17 occurs without observable cleavage or elimination of the
alkoxy substituent. Thus, removal of these sulfide auxiliary groups can be accomplished
under relatively mild conditions that tolerate a variety of common functional groups.

Scheme 2.2 Reductive Cleavage of the Redox Auxiliary Group

L|Np
LiN
U\ THF 1h @\ (1) : U\ — @\ (2)
h/\ /\\‘\ Me E TBSO/\ THF, 1 h TBSO/\\\‘\ Me

2.24, 67% yield 5 2.25, 74% yield

Me Me

OEt
PhS,,, Raney Ni 3) Raney Ni 4)
B —
EtOH, 2 h EtOH 2h
Ph Ph

Ph 2.23 2.26, 86% yield 2.27, 85% yield
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Beyond reductive cleavage of the sulfide, oxidation of to the corresponding sulfoxides or
sulfone derivatives could unlock other means of further functionalizing these products. Reaction
of 2.16 with meta-chloroperoxybenzoic acid (mCPBA) was found to yield either the sulfoxide
(2.28) or sulfone (2.29) selectively depending on the conditions applied. Synthetically useful
yields of the sulfoxide could be obtained at low temperatures and very short reaction times.
Longer reaction times with 2.2 equivalents of mMCPBA were found to give the sulfone as the sole

product.

Scheme 2.3 Oxidation of the Aryl Vinyl Sulfide Auxiliary

(e}
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Inspecting the structure of sulfoxide 2.28 we hypothesized it would be poised to undergo
Pummerer rearrangement to yield a-substituted sulfide derivatives (Scheme 2.4). This
transformation would open many synthetic routes to diverse cyclobutane based products, given
the broad scope of the Pummerer rearrangement. A range of reported procedures were
attempted with 2.28; however, these largely resulted in decomposition. Utilizing a mixture of
acetic and trifluoroacetic anhydrides in the presence of 2,6-lutidine as an exogenous base
resulted in modest yields of only one of the two expected diastereomers 2.30 (Scheme 2.4a).
Utilizing trifluoroacetic anhydride as the sole nucleophile as gave nearly identical results yielding
2.31 (Scheme 2.4b). These results suggested that only one of the two sulfoxide diastereomers

was reactive towards the rearrangement. This could be due to an unfavourable deprotonation
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event in one of the diastereomers and not the other. The harsh conditions required and the fact
that only one of the sulfoxide diastereomers seemed to react resulted in abandoning furthers

reaction development efforts.

Scheme 2.4 Pummerer rearrangement on sulfoxide cyclobutane product
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2.4 Conclusion

These studies indicate that vinyl sulfides are easily activated by catalytic
photooxidation and subsequently undergo cycloddition reactions characteristic of alkene
radical cations. The activating sulfide moiety can be tracelessly removed after the
photoredox reaction to afford cycloadducts that could not be directly synthesized by
reactions of simple unfunctionalized alkenes. These results, along with the reductive
redox auxiliary strategy our group reported several years ago,’ suggest that the use of
redox auxiliary groups present a practical strategy to circumvent a fundamental limitation
on the feasibility of photoredox reactions and could be used to significantly increase the

scope of products that are available using this powerful mode of activation.
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2.5 Experimentals
2.5.1 General Experimental Information
All organic reagents were purified prior to use. Styrenes were purified by basic extraction
followed by distillation to remove trace radical inhibitors. Ru(bpz)s(BArF). was prepared
according to our previously reported procedure.*> MeCN, THF, Et2O and CH2Clz> were purified
by elution through alumina as described by Grubbs.'® A 23 W (1200 lumens) SLI Lighting Mini-
Lynx compact fluorescent light bulb was used for the photoredox thiol-ene synthesis of the vinyl
sulfide substrates. A 16 W (500 lumens) EagleLight blue PAR38 LED flood light was used for
the Diels—Alder and [2+2] cycloadditions, unless otherwise stated. Flash column
chromatography was performed with Silicycle 40-63 A silica (230-400 mesh). Diastereomer
ratios for all compounds were determined by *H NMR analysis of the unpurified reaction mixture.
'H and *3C NMR data for all previously uncharacterized compounds were obtained using Bruker
Avance-500 spectrometer and are referenced to TMS (0.0 ppm) and CDCls (77.0 ppm)
respectively unless otherwise stated. IR spectral data was obtained using a Bruker Vector 22
spectrometer (thin film on NaCl). Mass spectrometry was performed with a Thermo Q Exactive
Plus. These facilities are funded by the NSF (CHE-9974839, CHE-9304546), NIH (1S10

0OD020022-1), and the University of Wisconsin.

2.5.2 Synthesis of Alkyl Aryl Sulfide Cyclization Substrates

Se A (E)-Phenyl(prop-1-enyl)sulfane. Prepared according to a modification of a
©/ previously reported procedure.'* A flame-dried Schlenk tube was evacuated
and charged with i-PraNEt (474 uL, 2.72 mmol), Pdz(dba)s (31 mg, 0.034 mmol), xantphos (39
mg, 0.068 mmol), and 1,4-dioxane (5 mL). The reaction mixture was degassed by three freeze-
pump-thaw cycles and backfilled with nitrogen. Thiophenol (140 pL, 1.36 mmol) and trans-1-

bromo-1-propene (94 pL, 1.09 mmol) were added under nitrogen. The reaction was heated at
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110 °C for 16 h before being cooled to room temperature and subsequently passed through a
plug of Celite with ether. Flash column chromatography (50:1 hexanes/EtOAc with 2% EtsN)
afforded 140 mg (0.93 mmol, 69% vyield) of (E)-phenyl(prop-1-enyl)sulfane as a clear oil. All
spectroscopic data were consistent with previously

reported values.'®

J (2)-Phenyl(prop-1-enyl)sulfane. Prepared according to a modification of a
©/S ~ previously reported procedure.** A flame-dried Schlenk tube was evacuated and
charged with i-PraNEt (285 pL, 1.64 mmol), Pdz(dba)s (19 mg, 0.021 mmol), xantphos (24 mg,
0.042 mmol) and 1,4-dioxane (3 mL). The reaction mixture was degassed by three freeze-pump-
thaw cycles and backfilled with nitrogen. Thiophenol (90 pL, 0.87 mmol) and cis-1-bromo-1-
propene (56 pL, 0.70 mmol) were added under nitrogen. The reaction was heated at 110 °C for
16 h before being cooled to room temperature and subsequently passed through a plug of celite
with ether. Flash column chromatography (50:1 hexanes/EtOAc with 2% triethylamine) afforded
65 mg (0.433 mmol, 50% yield) of (Z)-phenyl(prop-1-enyl)sulfane as a clear oil. All spectroscopic

data were consistent with previously reported values.®

S P, Phenyl(4-phenylbut-1-enyl)sulfane. Prepared according to a
©/ /\© modification of a previously reported procedure.'” A reaction vial was
charged with Ru(bpz)3(PFs)2 (4 mg 0.005 mmol), MeCN (4.5 mL), 4-phenyl-1-butyne (547 pL,
4.54 mmol) and thiophenol (467 pL, 4.54 mmol). The reaction mixture was stirred in front of a
23 W CFL bulb for 12 h and subsequently passed through a plug of silica with ether. Flash
column chromatography (gradient 50:1 to 9:1 hexanes/CH2ClI2) afforded 700 mg (2.91 mmol,
64% yield) of phenyl(4-phenylbut-1-enyl)sulfane as a clear oil. tH NMR (500 MHz, CDClz) 5 7.28

(m, 4H), 7.20 (m, 6H), 6.21 (d, J = 9.2 Hz, 1H), 6.10 (d, J = 15.0 Hz, 1H), 6.00 (m, 1H), 5.83 (df,
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J=9.1, 7.2 Hz, 1H), 2.76 (m, 2H), 2.59 (q, J = 7.5 Hz, 2H), 2.49 (g, J = 7.4 Hz, 2H). 13C NMR
(126 MHz, CDCls) & 141.41, 141.22, 136.32, 136.25, 136.01, 132.22, 128.93, 128.88, 128.52,
128.50, 128.46, 128.38, 128.33, 126.20, 126.04, 125.95, 125.92, 123.60, 121.90, 35.35, 35.08,

34.76, 30.65. HRMS (EI) calculated for [C16H16S]* requires m/z 240.0968, found m/z 240.0966.

Phenyl(3-phenylprop-1-enyl)sulfane. Prepared according to a
©/SV/% modification of a previously published procedure.'’” A reaction vial was
charged with Ru(bpz)s(PFs2 (4 mg, 0.005 mmol), MeCN (4.5 mL), 3-phenyl-1-propyne (564 pL,
4.54 mmol) and thiophenol (467 pL, 4.54 mmol). The reaction mixture was stirred in front of a
23 W CFL bulb for 12 h and subsequently passed through a plug of silica with ether. Flash
column chromatography (gradient 50:1 to 9:1 hexanes/CH2Cl2) afforded 658 mg (2.91 mmol,
65% yield) of phenyl(3-phenylprop-1-enyl)sulfane as a clear oil. *H NMR (500 MHz, CDCI3) &
7.31 (m, 6H), 7.22 (m, 4H), 6.34 (d, J = 9.2 Hz, 1H), 6.21 (d, J = 14.9 Hz, 1H), 6.10 (dt, J = 14.7,
6.8 Hz, 1H), 5.99 (dt, J = 9.1, 7.4 Hz, 1H), 3.62 (d, J = 7.3 Hz, 2H), 3.50 (d, J = 6.8 Hz, 2H). 13C
NMR (126 MHz, CDCI3) & 139.89, 139.28, 136.07, 135.98, 134.39, 131.55, 129.03, 128.99,
128.90, 128.55, 128.44, 126.37, 126.33, 126.32, 126.18, 123.95, 123.00, 39.30, 35.40. HRMS

(El) calculated for [C1sH14S]* requires m/z 226.0811, found m/z 226.0813.

©/SV/%© Phenyl(styryl)sulfane. Prepared according to a modification of a

previously published procedure.l” A reaction vial was charged with
Ru(bpz)s(PFs)2 (4 mg, 0.005 mmol), MeCN (4.5 mL), phenylacetylene (500 pL, 4.54 mmol) and
thiophenol (467 pL, 4.54 mmol). The reaction mixture was stirred in front of a 23 W CFL bulb for
12 h and subsequently passed through a plug of silica with ether. Flash column

chromatography(gradient 50:1 to 9:1 hexanes/CH2Cl2) afforded 172 mg (0.81 mmol, 18% yield)
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of phenyl(styryl)sulfane as a clear oil. All spectroscopic data were consistent with previously

reported values.®

©/SV/%( (3-Methylbut-1-enyl)(phenyl)sulfane. Prepared according to a modification

of a previously published procedure.'” A reaction vial was charged with
Ru(bpz)s(PFs)2 (4 mg, 0.005 mmol), MeCN (4.5 mL), 3-methyl-1-butyne (603 pL, 5.90 mmol)
and thiophenol (467 pL, 4.54 mmol). The reaction mixture was stirred in front of a 23 W CFL
bulb for 12 h and subsequently passed through a plug of silica with ether. Flash column
chromatography (gradient 50:1 to 25:1 hexanes/CH2Cl2) afforded 789 mg (4.42 mmol, 97%
yield) of (3-methylbut-1-enyl)(phenyl)sulfane as a clear oil. *H NMR (500 MHz, CDClz) & 7.34
(d, J = 7.3 Hz, 2H), 7.30 (d, J = 7.4 Hz, 2H), 7.19 (t, J = 7.25 Hz, 1H), 6.08 (d, J = 9.1 Hz, 1H),
5.67 (t, J = 9.2 Hz, 1H), 2.82 (m, 1H), 2.45 (m, 1H), 1.05 (s, 3H), 1.04 (s, 3H). 13C NMR (126
MHz, CDCls) © 144.18, 140.75, 136.56, 128.93, 128.67, 128.36, 126.07, 120.27, 118.41, 77.01,
76.75, 31.94, 28.76, 22.43, 22.15. HRMS (EI) calculated for [C11H14S]" requires m/z 178.0811,

found m/z 178.0808.

©/SV/«%’< (3,3-Dimethylbut-1-enyl)(phenyl)sulfane. Prepared according to a

modification of a previously published procedure.l” A reaction vial was
charged with Ru(bpz)3(PFs)2 (4 mg, 0.005 mmol), MeCN (4.5 mL), 3,3-dimethyl- 1-butyne (727
pL, 5.90 mmol) and thiophenol (467 pL, 4.54 mmol). The reaction mixture was stirred in front of
a 23 W CFL bulb for 12 h and subsequently passed through a plug of silica with ether. Flash
column chromatography (gradient 50:1 to 25:1 hexanes/CH2Cl2) afforded 681 mg (3.54 mmol,
78% yield) of (3,3-dimethylbut-1-enyl)(phenyl)sulfane as a clear oil. All spectroscopic data were

consistent with previously reported values.*®
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Me (2-Methylprop-1-enyl)(phenyl)sulfane.  Prepared according to a

©/S 7 e modification of a previously published procedure.* A flame-dried Schlenk
tube was evacuated and charged with i-Pr2NEt (632 pL, 3.63 mmol), Pdz(dba)s (42 mg, 0.045
mmol), xantphos (53 mg, 0.091 mmol) and 1,4-dioxane (7.3 mL). The reaction mixture was
degassed by three freeze-pump-thaw cycles and backfilled with nitrogen. Thiophenol (186 uL ,
1.82 mmol) and 1-bromo-2-methyl-1-propene (150 pL, 1.45 mmol) were added under nitrogen.
The reaction was heated at 110 °C for 16 h before being cooled to room temperature and
subsequently passed through a plug of Celite with ether. Flash column chromatography (50:1
hexanes/EtOAc with 2% EtsN) afforded 215 mg (1.31 mmol, 72% yield) of (2-methylprop-1-
enyl)(phenyl)sulfane as a clear oil. All spectroscopic data were consistent with previously

reported values.*®

©/SV/“%/\OH 4-(Phenylthio)but-3-en-1-ol. Prepared according to a modification of a

previously published procedure.l” A reaction vial was charged with
Ru(bpz)s(PFe)2 (4 mg, 0.005 mmol), MeCN (4.5 mL), 3-butyn-1-ol (343 uL, 4.54 mmol) and
thiophenol (467 pL, 4.54 mmol). The reaction mixture was stirred in front of a 23 W CFL bulb for
12 h and subsequently passed through a plug of silica with ether. Flash column chromatography
(gradient 25:1 to 2:1 hexanes/EtOAc) afforded 650 mg (3.61 mmol, 79% vyield) of 4-
(phenylthio)but-3-en-1-ol as an oil. *H NMR (500 MHz, CDClz) & 7.33 (m, 4H), 7.21 (m, 1H),
6.36 (d, J = 9.3 Hz,1H), 6.28 (d, J = 15.0 Hz, 1H), 5.92 (dd, J = 14.9, 7.4 Hz, 1H), 5.85 (m, 1H),
3.75 (t, J =6.4 Hz, 2H), 3.70 (t, J = 6.3 Hz, 2H), 2.54 (q, J = 6.8 Hz, 2H), 2.43 (g, J = 6.6 Hz, 2H).
13C NMR (126 MHz, CDCls) & 135.88, 135.65, 132.68, 131.29, 129.85, 129.05, 129.02, 128.98,
128.46,126.47,126.43, 126.03, 124.71, 77.28, 77.02, 76.77, 61.87, 61.73, 36.40, 32.66. HRMS

(El) calculated for [C10H120S]* requires m/z 180.0604, found m/z 180.0606.
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4-(Phenylthio)but-3-enyl acetate. A 25 mL round-bottomed flask was
SN0

©/ charged with 4-(phenylthio)but-3-en-1-ol (650 mg, 3.61 mmol), acetic
anhydride (1.7 mL, 18.0 mmol) and pyridine (5.8 mL, 72 mmol). The reaction mixture was stirred
under reflux for 14 h and subsequently poured onto water and extracted three times with Et20.
The combined organic layers were washed with brine, dried over Na2S0Oa4, and concentrated by
rotary evaporation. Flash column chromatography (gradient 50:1 to 6:1 hexanes/EtOAc)
afforded 441 mg (1.99 mmol, 55% yield) of 4-(phenylthio)but-3-enyl acetate as an oil. *H NMR
(500 MHz, CDCl3) 5 7.36 — 7.28 (m, 4H), 7.24 — 7.19 (m, 1H), 6.34 (dt, J = 9.3, 1.4 Hz, 1H), 5.80
(dt, 3 =9.3, 7.2 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 2.60 (qd, J = 6.8, 1.4 Hz, 2H), 2.07 (s, 3H). 13C
NMR (126 MHz, CDCI3) & 171.09, 135.83, 129.05, 127.79, 126.46, 126.11, 63.10, 28.66,

20.99.HRMS (El) calculated for [C12H1402S]* requires m/z 222.0710, found m/z 222.0710.

S F . grps  tErt-Butyldimethyl(4-(phenylthio)but-3-enyloxy)silane. A 10 mL
©/ round-bottomed flask was charged with 4-(phenylthio)but-3-en-1-ol
(1.35 g, 7.49 mmol), tert-butyldimethylsilyl chloride (1.69 mg, 11.23 mmol), imidazole (1.02 mg,
14.98 mmol) and 4.5 mL DMF. After 10 h, the reaction was diluted with water and Et20. The
phases were separated, and the aqueous phase was extracted two additional times with Et20.
The combined organic layers were washed with brine, dried over MgSOa4, and concentrated by
rotary evaporation. Flash column chromatography (gradient, 50:1 to 4:1 hexanes/CH2Cl2)
afforded 1.96 g (6.67 mmol, 89% yield) of tert-butyldimethyl(4-(phenylthio)but-3-enyloxy)silane
as an oil. *H NMR (500 MHz, CDCls) 6 7.23 (m, 4H), 7.12 (m, 1H), 6.20 (d, J = 9.3 Hz, 1H), 6.13
(d, J = 15.0 Hz, 1H), 5.88 (m, 1H), 5.80 (m, 1H), 3.62 (m, 2H), 2.41 (g, J = 6.5 Hz, 2H), 2.30 (q,
J=6.5Hz, 2H), 0.83 (s, 9H), 0.82 (s, 9H), 0.00 (s, 6H), -0.02 (s, 6H). 13C NMR (126 MHz, CDCls)

0 136.31, 136.18, 133.20, 129.74, 128.93, 128.92, 128.84, 128.74, 126.18, 124.47, 123.01,
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77.26, 77.01, 76.75, 62.40, 62.14, 36.61, 32.83, 25.95, 18.36, -5.25. HRMS (EI) calculated for

[C16H260SSi]* requires m/z 294.1469, found m/z 294.1464.

2-(But-3-ynyl)isoindoline-1,3-dione. Phthalic anhydride (1.07 g, 7.20

="

° mmol) was placed in a 50 mL round-bottomed flask with CH2Cl2 (8.0 mL)

and stirred to dissolve. After 15 min, 1l-amino-3-butyne (500 mg, 7.20 mmol) was added
dropwise, and the mixture stirred for 1 h more. The solvent was removed in vacuo. Acetic
anhydride (2.4 mL, 25.3 mmol) and NaOAc (237 mg, 2.9 mmol) were added to the round-
bottomed flask, which was then equipped with a reflux condenser. The reaction mixture was
refluxed for 3 h. After cooling to room temperature, the reaction mixture was diluted with water
and extracted three times with ethyl acetate. The organic layer was washed with brine and dried
over Na2SO4. The solvent was removed by rotary evaporation and the crude product
recrystallized from EtOH to afford 951 mg (4.77 mmol, 52% vyield) of the title compound as a
white solid. H NMR (500 MHz, CDCls) & 7.86 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.0
Hz, 2H), 3.89 (t, J = 7.1 Hz, 2H), 2.62 (td, J = 7.1, 2.6 Hz, 2H), 1.96 (t, J = 2.6 Hz, 1H). 13C NMR
(126 MHz, CDCls) & 168.03, 134.04, 131.98, 123.37, 80.26, 70.25, 36.53, 18.36. HRMS (El)

calculated for [C12H9NO2]* requires m/z 199.0628, found m/z 199.0634.

0 2-(4-(Phenylthio)but-3-enyl)isoindoline-1,3-dione.  Prepared
@\S&WN according to a modification of a previously published procedure.®
A reaction vial was charged with Ru(bpz)3(PFs)2 (4 mg, 0.005

mmol), MeCN (4.5 mL), 2-(but-3-ynyl)isoindoline-1,3-dione (994 mg, 4.99 mmol) and thiophenol
(467 pL, 4.54 mmol). The reaction mixture was stirred in front of a 23 W CFL bulb for 12 h and
subsequently passed through a plug of silica with ether. Flash column chromatography (gradient

50:1 to 4:1 hexanes/EtOAc) afforded the crude product, which was recrystallized from EtOAc
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and hexanes to afford 350 mg (1.41 mmol, 31% vyield) of 2-(4-(phenylthio)but-3-enyl)isoindoline-
1,3-dione as a white solid. *H NMR (500 MHz, CDCI3) & 7.86 (dd, J = 5.4, 3.1 Hz, 2H), 7.83 (dd,
J=5.4,3.1Hz, 2H), 7.73 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J = 5.4, 3.0 Hz, 2H), 7.18 (m, 5H),
6.27 (d, J = 9.3 Hz, 1H), 6.20 (d, J = 15.0 Hz, 1H), 5.86 (m, 1H), 5.81 (m, 1H), 3.84 (t, J = 6.7
Hz, 2H), 3.79 (t, J = 7.1 Hz, 2H), 2.67 (q, J = 7.0 Hz, 2H), 2.55 (q, J = 7.1 Hz, 2H). 13C NMR
(126 MHz, CDCls) 6 168.37, 168.20, 135.69, 133.98, 133.84, 132.04, 130.37, 129.28, 128.93,
128.86, 128.09, 126.51, 126.28, 125.14, 123.29, 123.21, 37.23, 36.86, 32.06, 28.42. HRMS (EI)

calculated for [C1sH2sNO2S]* requires m/z 309.0819, found m/z 309.0819.
©/SV/“H¢/\OW\MG

(4-((2E,4E)-Hexa-2,4-dienyloxy)but-1-enyl)(phenyl)sulfane. A flame-dried 50 mL round-
bottomed flask was charged with 60% NaH (213 mg, 5.33 mmol) and 5 mL of dry THF. 4-
(Phenylthio)but-3-en-1-ol (640 mg, 3.55 mmol) was added dropwise in 1 mL of THF, and the
reaction was stirred for 30 min. The flask was cooled to 0 °C, and (2E,4E)-1-bromohexa-2,4-
diene (686 mg, 4.26 mmol) was added dropwise in 1 mL THF. The mixture was gradually
warmed to room temperature. After 12 h, the reaction was quenched by slow addition of
saturated NH4Cl. The phases were separated, and the agueous phase was extracted two
additional times with Et20. The combined organic layers were washed with brine, dried over
MgSO4, and concentrated by rotary evaporation. Flash column chromatography (gradient, 50:1
to 10:1 hexanes/EtOAc) afforded 425 mg (1.63 mmol, 46% yield) of the title compound as an
oil. *H NMR (500 MHz, CDCI3) & 7.32 (m, 4H), 7.21 (m, 1H), 6.21 (t, J = 16.4 Hz, 2H), .06 (m,
1H), 5.97 (dt, J = 14.8, 7.0 Hz, 1H), 5.67 (m, 2H), 4.00 (t, J = 7.2 Hz, 2H), 3.50 (dt, J = 13.3, 6.7
Hz, 2H), 2.45 (q, J = 6.8 Hz, 2H), 1.75 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCls) & 136.17,
133.18, 133.12, 132.85, 132.46, 130.82, 130.77, 130.05, 129.93, 129.44, 128.96, 128.94,

128.90, 128.71, 126.74, 126.62, 126.25, 126.18, 124.70, 123.18, 71.30, 71.18, 69.05, 68.80,
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33.53, 29.72, 18.10. HRMS (EI) calculated for [C16H200S]" requires m/z 260.1230, found m/z

260.1233.

2.5.3 [4+2] Photocycloadditions

General Procedure: Ru(bpz)s(BArF)2 was dried over phosphrous pentoxide for 48 h in vacuo
and stored under inert atmosphere prior to use. A dry 25 mL Schlenk tube was charged with
anhydrous MgSOa (2 wt eq) and flame-dried under in vacuo. After cooling to room temperature,
Ru(bpz)s(BArF)2 (0.05 eq), diene (3 eq), MeCN (0.05M) and a stock solution containing the
dienophile (1 eq) in MeCN were added. The reaction was degassed by three freeze/pump/thaw
cycles under nitrogen in the dark before back filling with nitrogen. The reaction was then allowed
to stir while being irradiated by a 15 W (500 lumen) blue LED lamp. After a pre-determined time
point, the reaction was eluted through a short pad of silica using Et2O or EtOAc. After
concentration by rotary evaporation, the pure cycloadduct was isolated by flash column
chromatography. Structures and NMR data provided are representative of the major

diastereomer.

PhS (4-Methyl-6-phenethylcyclohex-3-enyl)(phenyl)sulfane. (2.3)
ph”” Me Prepared according to the General Procedure using 80 mg (0.333 mmol)
phenyl(4-phenylbut-1-enyl)sulfane, 100 pL (0.999 mmol) isoprene, 38 mg (0.0165 mmol)
Ru(bpz)3(BArF)2, 160 mg MgSO4, 6.7 mL MeCN and an irradiation time of 15 h. Purification by
flash column chromatography (gradient, 50:1 t010:1 hexanes/CH2Cl2) and concentration by
rotary evaporation afforded 92.5 mg of analytically pure cycloadduct as a clear oil (0.300 mmol,
90% vyield, dr: 8:1). *H NMR (500 MHz, CDCls) 8 7.36 (d, J = 6.9 Hz, 1H),7.26 (m, 4H), 7.19 (m,
4H), 5.28 (s, 1H), 3.25 (g, J = 6.7 Hz, 1H), 2.73 (ddd, J = 15.7,10.4, 5.5 Hz, 1H), 2.59 (m, 1H),

2.39 (M, 2H), 2.13 (d, J = 19.9 Hz, 1H), 2.03 (m, 1H), 1.83 (m, 2H), 1.67 (s, 3H), 1.64 (m, 1H);
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13C NMR (126 MHz, CDCls) 6 142.31, 135.39,132.60, 131.84, 131.53, 128.83, 128.78, 128.38,
128.36, 128.30, 126.59, 125.74,118.49, 47.38, 36.58, 35.38, 34.03, 32.91, 30.85, 23.61. HRMS

(El) calculated for [C21H24S]* requires m/z 308.1594, found m/z 308.1590.

PhS Me (3,4-Dimethyl-6-phenethylcyclohex-3-enyl)(phenyl)sulfane.(2.4)
P Me  Prepared according to the General Procedure using 80 mg (0.333 mmol)
phenyl(4-phenylbut-1-enyl)sulfane, 113 pL (0.999 mmol) 2,3- dimethyl-1,3-butadiene, 38 mg
(0.0165 mmol) Ru(bpz)3(BArF)2, 160 mg MgSQOa4, 6.7 mL MeCN and an irradiation time of 15 h.
Purification by flash column chromatography (gradient, 50:1 to 10:1 hexanes/CH2Clz) and
concentration by rotary evaporation afforded 97 mg (0.300 mmol, 91% vyield, dr: 4:1).of
analytically pure cycloadduct as a clear oil. *H NMR (500MHz, CDCI3) & 7.37 (d, J = 6.9 Hz, 2H),
7.26 (m, 4H), 7.18 (m, 4H), 3.24 (m, 1H), 2.73 (m, 1H), 2.58 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H),
2.34 (m, 2H), 2.09 (m, 2H), 1.95 (m, 1H), 1.81 (m, 2H), 1.62 (s, 3H), 1.56 (s, 3H); 13C NMR (126
MHz, CDCI3) 6 142.41,135.44,131.84, 131.57, 128.77, 128.40, 128.38, 126.55, 125.70, 124.21,

123.46, 49.25, 48.47, 37.57, 37.12, 36.10, 35.42, 32.92, 18.92, 18.69. HRMS (EI) calculated for

[C22H26S]* requires m/z 322.1750, found m/z 322.1746.

Me Me Phenyl(2,2,4-trimethyl-6-phenethylcyclohex-3-enyl)sulfane. (2.5)
N " Prepared according to the General Procedure using 80 mg (0.333 mmol)
phenyl(4-phenylbut-1-enyl)sulfane, 129 pL (0.999 mmol) 2,4-dimethyl-1,3-pantadiene, 38 mg
(0.0165 mmol) Ru(bpz)3(BArF)2, 160 mg MgSQOa4, 6.7 mL MeCN and an irradiation time of 24 h.
Purification by flash column chromatography (gradient, 50:1 to 10:1 hexanes/CH2Clz2) and
concentration by rotary evaporation afforded 56% (0.168 mmol) of cycloadduct as a clear oil. 1H

NMR (500 MHz, CDCls) 57.40 (d, J = 7.3 Hz, 1H), 7.23 (m, 4H), 7.12 (m, 4H), 5.20 (s, 1H), 2.93

(d, J = 11.9 Hz, m1H), 2.65 (m, 1H), 2.56 (m, 2H), 2.22 (dd, J = 17.2, 5.3 Hz, 1H), 1.93 (m, 1H),
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1.81 (dd, J = 16.9, 10.9 Hz, 1H), 1.64 (s, 3H), 1.37 (m, 1H), 1.23 (s, 3H), 1.03 (s, 3H). 3C NMR
(126 MHz, CDCls) & 142.45, 139.45, 132.35, 130.15, 129.93, 128.77, 128.27, 128.19,125.67,
125.54, 64.09, 38.01, 37.61, 36.89, 36.09, 33.02, 30.03, 24.52, 23.15. HRMS (EI) calculated for

[C23H2s8S]* requires m/z 336.1907, found m/z 336.1897.

OoAc  5-Phenethyl-6-(phenylthio)cyclohex-2-enyl  acetate. (2.6) Prepared
PhS

P according to the General Procedure using 71 mg (0.300 mmol) phenyl(4-
;F\enylbut-l-enyl)sulfane, 101 mg (0.900 mmol) 1,3-acetoxybutadiene, 36 mg (0.015 mmol)
Ru(bpz)3(BArF)2, 142 mg MgSO4, 6.0 mL MeCN and an irradiation time of 24 h. Purification by
flash column chromatography (gradient, 50:1 to 10:1 hexanes/EtOAc) and concentration by
rotary evaporation afforded 70 mg (0.198 mmol, 66% vyield, dr: 3:1) of analytically pure
cycloadduct as a pale yellow oil. *H NMR (500 MHz, Chloroform-d) & 7.41 — 7.37 (m, 2H), 7.34
—7.14 (m, 8H), 5.92 (dt, J = 10.0, 3.3 Hz, 1H), 5.73 (ddt, J = 10.0, 4.2, 2.2 Hz, 1H), 5.41 (td, J =
4.1, 1.8 Hz, 1H), 3.50 (dd, J = 8.8, 4.0 Hz, 1H), 2.74 (ddd, J = 13.7, 10.3, 5.6 Hz, 1H), 2.62 (ddlt,
J=12.2,10.4, 5.0 Hz, 1H), 2.53 (dddt, J = 18.6, 5.8, 3.9, 2.0 Hz, 1H), 2.23 — 2.09 (m, 2H), 2.01
(s, 3H), 1.97 — 1.89 (m, 1H), 1.72 — 1.61 (m, 1H). 3C NMR (126 MHz, CDCI3) 5 170.61, 141.94,
135.58, 132.05, 131.22, 129.00, 128.40, 128.36, 127.02, 125.86, 124.39, 68.57, 53.36, 35.19,

34.62, 32.84, 30.20, 21.00. HRMS (EI) calculated for [C22H2402S]* requires m/z 352.1492, found

m/z 352.1480.

PRS.,, @ Bicyclo[2.2.1]hept-5-en-2-yl(phenyl)sulfane. (2.7) Prepared according to the

General Procedure using 41 mg (0.300 mmol) phenyl vinyl sulfide, 75 uL (0.900
mmol) 1,3-cyclopentadiene, 36 mg (0.015 mmol) Ru(bpz)s(BArF)2, 82 mg MgSOa4, 6.0 mL MeCN
and an irradiation time of 15 h. Purification by flash column chromatography (gradient, 50:1 to

10:1 hexanes/CH2Cl2) and concentration by rotary evaporation afforded 50.4 mg (0.249 mmol,
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83%, dr: 3:1) of analytically pure cycloadduct as a clear oil. *H NMR (500 MHz, CDCls) & 7.37
(d, 3 = 7.5 Hz, 2H), 7.28 (d, J = 7.5 Hz, 2H), 7.17 (m, 1H), 6.27 (dd, J = 5.6, 3.0 Hz, 1H), 6.11
(dd, J=5.7, 2.9 Hz, 1H), 3.69 (m, 1H), 3.09 (s, 1H), 2.92 (s, 1H), 2.29 (m, 1H), 1.56 (dd, J = 8.6,
2.4 Hz, 1H), 1.33 (d, J = 8.6 Hz, 1H), 0.97 (dt, J = 12.2, 3.5 Hz, 1H). 13C NMR (126 MHz, CDCls)
O 138.25, 137.68, 137.47, 134.83, 132.97, 129.51, 129.25, 128.80, 128.77, 125.76, 48.87,
47.43, 46.48, 45.97, 45.70, 44.47, 42.61, 41.82, 34.53, 33.86. HRMS (EI) calculated for

[C13H14S]* requires m/z 202.0811, found m/z 202.0817.

PhS (4,6-Dimethylcyclohex-3-enyl)(phenyl)sulfane. (2.8) Prepared according to
Me‘D\Me

the General Procedure using 45 mg (0.300 mmol) phenyl(prop-1-enyl)sulfane,
90 pL (0.900 mmol) isoprene, 36 mg (0.015 mmol) Ru(bpz)s(BArF)2, 90 mg MgSOa4, 6.0 mL
MeCN and an irradiation time of 15 h. Purification by flash column chromatography (gradient,
50:1 to 10:1 hexanes/CH2Cl2) and concentration by rotary evaporation afforded 62 mg (0.282
mmol, 94%yield, dr: 5:1) of analytically pure cycloadduct as a clear oil. *H NMR (500 MHz,
CDCl3) 5 7.41 (d, J = 7.4 Hz, 2H), 7.28 (d, J = 7.4 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H), 5.27 (s, 1H),
3.07 (td, J = 8.4, 5.3 Hz, 1H), 2.39 (d, J = 17.0 Hz, 1H), 2.22 (m, 1H), 2.12 (m, 1H), 1.88 (dq, J
=14.4, 6.7, 6.3 Hz, 1H), 1.73 (dd, J = 17.5, 7.9 Hz, 1H), 1.64 (s, 3H), 1.12 (d, J = 6.7 Hz, 3H).
13C NMR (126 MHz, CDClIs) & 135.49, 133.01, 131.96, 131.12, 128.79, 128.74, 126.57, 126.24,
118.93, 118.50, 49.45, 48.83, 37.79, 36.76, 33.01, 31.96, 31.54, 30.43, 23.60, 23.34, 20.21.

HRMS (EI) calculated for [C14H18S]* requires m/z 218.1124, found m/z 218.1122.

PhSO\ (6-Benzyl-4-methylcyclohex-3-enyl)(phenyl)sulfane.(2.9) Prepared
T Me according to the General Procedure using 68 mg (0.300 mmol) phenyl(3-
phenylprop-1-enyl)sulfane, 90 uL (0.900 mmol) isoprene, 36 mg (0.015 mmol) Ru(bpz)s(BArF)2,

136 mg MgSO4, 6.0 mL MeCN and an irradiation time of 20 h. Purification by flash column
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chromatography (gradient, 50:1 to 10:1 hexanes/CH2Cl2) and concentration by rotary
evaporation afforded 60 mg (0.204 mmol, 68% yield, dr: 7:1). of analytically pure cycloadduct
as a clear oil. *H NMR (500 MHz, CDCls) 8 7.35 (d, J = 7.3 Hz, 2H), 7.27 (m, 4H), 7.21 (d, J =
7.2 Hz, 2H), 7.15 (d, J = 7.1 Hz, 2H), 5.30 (s, 1H), 3.25 (q, J = 5.9 Hz, 1H), 3.06 (dd, J = 13.6,
5.5 Hz, 1H), 2.50 (dd, J = 13.6, 8.8 Hz, 2H), 2.16 (m, 3H), 1.70 (dd, J = 13.0, 2.9 Hz, 1H), 1.62
(s, 3H). 13C NMR (126 MHz, CDCls) & 140.34, 135.47, 132.45, 131.40, 131.27, 129.10, 128.80,
128.27, 126.49, 125.98, 118.10, 46.35, 39.86, 38.77, 33.21, 30.35, 23.57. HRMS (EI) calculated

for [C20H22S]* requires m/z 294.1437, found m/z 294.1441.

PhS (6-1sopropyl-4-methylcyclohex-3-enyl)(phenyl)sulfane. (2.10) Prepared

W‘:O\Me according to the General Procedure using 54 mg (0.300 mmol) (3-methylbut-1-
enyl)(phenyl)sulfane, 90 pL (0.900 mmol) isoprene, 36 mg (0.015 mmol) Ru(bpz)s(BArF)2, 108
mg MgSO4, 6.0 mL MeCN and an irradiation time of 48 h. Purification by flash column
chromatography (gradient, 50:1 to 20:1 hexanes/CH2Clz) and concentration by rotary
evaporation afforded 34 mg (0.138 mmol, 46%, dr: >10:1) of analytically pure cycloadduct as a
clear oil. IH NMR (500 MHz, CDCls) & 7.41 (d, J = 7.2 Hz, 2H), 7.27 (dd, J = 7.3, 7.2 Hz, 2H),
7.20 (t, J = 7.3 Hz, 1H), 5.26 (s, 1H), 3.28 (td, J = 8.6, 5.3 Hz, 1H), 2.36 (m, 1H), 2.21 (m, J =
6.8 Hz, 1H), 2.10 (m, 2H), 1.88 (dd, J = 17.6, 8.3 Hz, 1H), 1.69 (dd, J = 8.6, 5.3 Hz, 1H), 1.65
(s, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H). 3C NMR (126 MHz, CDCI3) d 134.34,
132.27,131.09, 127.73, 125.60, 117.92, 45.49, 42.03, 31.54, 28.19, 26.80, 22.51, 19.86, 15.68.

HRMS (El) calculated for [C16H22S] M*HI* requires m/z 247.1515, found m/z 247.1511.

PhS\O\ (6-tert-Butyl-4-methylcyclohex-3-enyl)(phenyl)sulfane. (2.11) Prepared
ﬁ \\\\\\ Me according to the General Procedure using 58 mg (0.300 mmol) (3,3-dimethylbut-

1-enyl)(phenyl)sulfane, 90 pL (0.900 mmol) isoprene, 36 mg (0.015 mmol) Ru(bpz)s(BArF)z2, 116
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mg MgSO4, 6.0 mL MeCN and an irradiation time of 48 h. Purification by flash column
chromatography (gradient, 50:1 to 20:1 hexanes/CH2Clz) and concentration by rotary
evaporation afforded 15 mg (0.057 mmol,19%, dr: >10:1) of analytically pure cycloadduct as a
clear oil. 'H NMR (500 MHz, CDCIz) 8 7.39 (dd, J = 8.2, 1.1 Hz, 2H), 7.28 (m, 2H), 7.20 (m, 1H),
5.31 (s, 1H), 3.73 (m, 1H), 2.45 (ddt, J = 18.2, 5.4, 3.0 Hz, 1H), 2.36 (dd, J = 16.9, 7.1 Hz, 1H),
2.22 (m, 1H), 1.85 (d, J = 18.0 Hz, 1H), 1.71 (s, 3H), 1.68 (dd, J = 5.9, 3.5 Hz, 1H), 0.91 (s, 9H).
13C NMR (126 MHz, CDCI3) & 136.59, 133.99, 131.02, 128.83, 126.35, 117.55, 45.08, 44.14,
34.30, 29.03, 28.53, 27.87, 23.79. HRMS (EI) calculated for [C17H24S]* requires m/z 260.1600,

found m/z 260.1594.

2-(3-Methyl-6-(phenylthio)cyclohex-3-enyl)ethyl  acetate. (2.12)
Prepared according to the General Procedure using 67 mg (0.300 mmol)
4-(phenylthio)but-3-enyl acetate, 90 pL (0.900 mmol) isoprene, 36 mg
(0.015 mmol) Ru(bpz)3(BArF)2, 134 mg MgSOa4, 6.0 mL MeCN and an irradiation time of 20 h.
Purification by flash column chromatography (gradient, 50:1 to 7:1 hexanes/EtOAc) and
concentration by rotary evaporation afforded 56 mg (0.192 mmol, 64% vyield, dr: >10:1) of
analytically pure cycloadduct as an oil. *H NMR (500 MHz, CDClz) 6 7.41 (dd, J = 8.2, 1.1 Hz,
2H), 7.28 (m, 2H), 7.22 (m, 1H), 5.30 (s, 1H), 4.14 (m, 2H), 3.21 (q, J = 6.3 Hz, 1H), 2.42 (m,
1H), 2.34 (m, 1H), 2.12 (m, 2H), 2.03 (s, 3H), 1.92 (m, 1H), 1.74 (dd, J = 19.2, 7.5 Hz, 1H), 1.66
(s, 3H), 1.60 (m, 1H). 3C NMR (126 MHz, CDCI3) & 171.13, 135.10, 132.23, 131.94, 131.48,
128.83, 126.78, 118.47, 62.38, 47.18, 34.01, 33.70, 32.34, 30.61, 23.54, 21.00. HRMS (EI)

calculated for [C17H2202S]* requires m/z 290.1336, found m/z 290.1329.

PhS tert-Butyldimethyl(2-(3-methyl-6-(phenylthio)cyclohex-3-

tBSO” " Me
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enyl)ethoxy)silane. (2.13) Prepared according to the General Procedure using 88 mg (0.300
mmol) tert-butyldimethyl (4-(phenylthio)but-3-enyloxy)silane, 90 pL (0.900 mmol) isoprene, 36
mg (0.015 mmol) Ru(bpz)3(BArF)2, 176 mg MgSOa4, 6.0 mL MeCN and an irradiation time of 20
h. Purification by flash column chromatography (gradient, 50:1 to 25:1 hexanes/EtOAc) and
concentration by rotary evaporation afforded 83 mg (0.228 mmol, 76%, dr: >10:1) of analytically
pure cycloadduct as an oil. *H NMR (500 MHz, CDCIs3) & 7.37 (m, 2H), 7.23 (m, 2H), 7.16 (m,
1H), 5.25 (s, 1H), 3.65 (m, 2H), 3.23 (m, 1H), 2.36 (m, 2H), 2.10 (m, 1H), 1.97 (m, 1H), 1.88
(dtd, J = 13.9, 7.1, 4.7 Hz, 1H), 1.70 (dd, J = 17.4, 4.1 Hz, 1H), 1.62 (s, 3H), 1.44 (m, 1H), 0.85
(s, 9H), 0.03 (s, 6H). *C NMR (126 MHz, CDCl3) d 134.61, 131.42, 131.26, 130.58, 128.99,
127.87,127.74,125.44, 125.24, 117.17, 60.08, 46.20, 35.52, 32.76, 32.49, 29.22, 24.94, 22.64,
17.27, -6.32. HRMS (El) calculated for [C21H34OSSi]* requires m/z 362.2095, found m/z

362.2084.

o PhS\O\ 2-(2-(3-Methyl-6-(phenylthio)cyclohex-3-enyl)ethyl)isoindoline-
NN Me 1,3-dione. (2.14) Prepared according to the General Procedure using

° 93 mg (0.300 mmol) 2-(4-(phenylthio)but-3-enyl)isoindoline-1,3-

dione, 90 pL (0.900 mmol) isoprene, 36 mg (0.015 mmol) Ru(bpz)3(BArF)2, 186 mg MgSO4, 6.0
mL MeCN and an irradiation time of 24 h. Purification by flash column chromatography (gradient,
50:1 to 2:1 hexanes/EtOAc) and concentration by rotary evaporation afforded 79 mg (0.210
mmol, 70%, dr: 5:1) of analytically pure cycloadduct as an oil. *H NMR (500 MHz, CDClz) 5 7.83
(dd, J=5.3, 3.1 Hz, 2H), 7.71 (dd, J = 5.3, 3.1 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.20 (t, J = 7.4
Hz, 2H), 7.15 (d, J = 8.1 Hz, 1H), 5.29 (s, 1H), 3.75 (m, 2H), 3.23 (q, J = 6.0 Hz, 1H), 2.43 (t, J
= 14.3 Hz, 2H), 2.12 (m, 2H), 1.84 (m, 2H), 1.69 (s, 3H), 1.64 (dd, J = 13.8, 5.8 Hz, 1H). 13C

NMR (126 MHz, CDCIs) 6 168.32, 134.84, 133.88, 132.25, 132.13, 131.45, 128.76, 126.80,
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123.21, 118.34, 47.17, 35.84, 34.47, 33.40, 32.32, 30.35, 23.63. HRMS (EIl) calculated for

[C23H23NO2S]* requires m/z 377.1445, found m/z 377.1449.

me  6-Methyl-5-(phenylthio)hexahydro-1H-isochromene. (2.15) Prepared according

to the General Procedure using 78 mg (0.300 mmol) (4-((2E,4E)-hexa-2,4-

dienyloxy)but-1-enyl)(phenyl)sulfane, 36 mg (0.015 mmol) Ru(bpz)3(BArF)2, 156 mg
MgSOs4, 6.0 mL MeCN and an irradiation time of 20 h. Purification by flash column
chromatography (gradient, 50:1 to 20:1 hexanes/EtOAc) and concentration by rotary
evaporation afforded 58 mg (0.222 mmol, 74% yield, dr: 3:1) of analytically pure cycloadduct as
an oil. IH NMR (500 MHz, CDCls) & 7.43 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.24 (d, J
= 7.3 Hz, 1H), 5.75 (m, 1H), 5.56 (d, J = 10.0 Hz, 1H), 3.98 (dd, J = 11.4, 3.3 Hz, 1H), 3.91 (d,
J = 11.6 Hz, 1H), 3.70 (dd, J = 7.2, 3.5 Hz, 1H), 3.53 (dd, J = 11.5, 3.3 Hz, 1H), 3.22 (td, J =
11.6, 2.1 Hz, 1H), 2.66 (m, 1H), 2.24 (s, 1H), 2.12 (dg, J = 12.3, 4.0 Hz, 1H), 1.86 (qd, J = 12.5,
4.4 Hz, 1H), 1.74 (m, 1H), 1.20 (d, J = 7.6 Hz, 3H). 13C NMR (126 MHz, CDCls) & 133.62, 131.45,
129.01, 127.36, 126.72, 72.15, 68.81, 52.30, 38.13, 36.33, 32.48, 29.70, 24.02, 17.40. HRMS

(El) calculated for [C16H200S]* requires m/z 260.1230, found m/z 260.1232.

2.5.4 [2+2] Cycloadditions

General Procedure: A dry 25 mL Schlenk tube was charged with anhydrous MgSO4 (2 wt eq)
which was flame dried under in vacuo. After cooling to room temperature, Ru(bpz)z(BArF)2 (0.05
eq), terminal alkene (3 eq), and a stock solution of vinyl sulfide (1 eq) were added. The solution
was then diluted with MeCN to give a 0.05 M solution with respect to the vinyl sulfide. The
reaction was then degassed by three freeze/pump/thaw cycles under nitrogen in the dark before
back filling with nitrogen. The reaction was then allowed to stir while being irradiated with a 15

W (500 lumen) blue LED lamp. After a pre-determined time point, the reaction was eluted
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through a short pad of silica using Et20. After concentration by rotary evaporation, the pure

cycloadduct was isolated by flash column chromatography.

PhS, o— 2-Ethoxy-4-phenethylcyclobutyl)(phenyl)sulfane. (2.16) Prepared
/\)j according to the General Procedure using 24 mg (0.1 mmol) phenyl(4-

Ph
phenylbut-1-enyl)sulfane, 28.9 uL (0.3 mmol) ethyl vinyl ether, 11.5 mg (0.005 mmol)

Ru(bpz)s(BArF)2, 48 mg MgSOa4, 2 mL MeCN and an irradiation time of 15 h. Purification by flash
column chromatography (gradient, 10:1 to 4:1 hexanes/EtOAc) and concentration by rotary
evaporation afforded 22.2 mg of analytically pure cycloadduct as a clear oil (0.071 mmol, 71%
yield, dr: 15:1). *H NMR (500 MHz, CDCls) 8 7.45 — 7.39 (m, 2H), 7.30 — 7.11 (m, 8H), 3.63 (q,
J = 7.5 Hz, 1H), 3.47 (qq, J = 9.3, 7.0 Hz, 2H), 3.23 (dd, J = 8.1, 7.5 Hz 1H), 2.66 — 2.52 (m,
2H), 2.39 (dt, J= 15.1, 7.5 Hz, 1H), 1.98-1.89 (m,1H), 1.79 — 1.64 (m, 2H), 1.44 (ddd, J = 10.7,
9.3, 8.2 Hz, 1H), 1.17 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl3) & 141.93, 135.31, 131.47,
128.78, 128.35, 128.30, 126.63, 125.76, 77.16, 64.45, 53.74, 36.93, 33.73, 33.62, 33.39, 15.38.

HRMS (ESI) calculated for [C20H240S] M*H* requires m/z 313.1621, found m/z 313.1611.

Phs, o " 2-(Benzyloxy)-4-phenethylcyclobutyl)(phenyl)sulfane. (2.17)

/\)j Prepared according to the General Procedure using 72 mg (0.3 mmol)
phenyl(4-phenylbut-1-enyl)sulfane, 124 yL (0.9 mmol) benzyl vinyl ether,

Ph

34.5 mg (0.015 mmol) Ru(bpz)3(BArF)2, 144 mg MgSOs4, 6.0 mL MeCN and an irradiation time
of 15 h. Purification by flash column chromatography (gradient, 10:1 to 4:1 hexanes/CH2Cl2) and
concentration by rotary evaporation afforded 85.5 mg of analytically pure cycloadduct as a clear
oil (0.23 mmol, 76% yield, dr: >20:1). *H NMR (500 MHz, CDCI3) 6 7.47-7.11 (m, 15H), 4.46 (s,

2H), 3.75 (g, J = 7.4 Hz, 1H), 3.32 (dd, J = 8.4, 6.9 Hz, 1H), 2.68 — 2.53 (m, 2H), 2.38 (dt, J =
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10.9, 7.3 Hz, 1H), 2.06 — 1.86 (m, 1H), 1.78-1.66 (m, 2H), 1.59 — 1.43 (m, 1H). 3C NMR (126
MHz, CDCls) & 141.89, 138.04, 135.26, 131.53, 128.82, 128.36, 128.35, 128.30, 127.70, 127.62,
126.68, 125.77, 77.08, 70.87, 53.75, 36.94, 33.55, 33.51, 33.37. HRMS (ESI) calculated for

[C25H260S] M*NH4I* requires m/z 392.2043, found m/z 392.2033.

PhS, ongu 2-N-Butoxy-4-phenethylcyclobutyl)(phenyl)sulfane. (2.18) Prepared
according to the General Procedure using 72.1 mg (0.3 mmol) phenyl(4-

" phenylbut-1-enyl)sulfane, 120 pL (0.9 mmol) n-butyl vinyl ether, 34.5 mg
(0.015 mmol) Ru(bpz)3(BArF)2, 144 mg MgSOas, 6 mL MeCN and an irradiation time of 15 h.
Purification by flash column chromatography (gradient, 10:1 to 4:1 hexanes/EtOAc) and
concentration by rotary evaporation afforded 84.9 mg of analytically pure cycloadduct as a clear
oil (0.25 mmol, 83% yield, dr: 15:1).*H NMR (500 MHz, CDCIl3) & 7.45 — 7.39 (m, 2H), 7.29 —
7.11 (m, 8H), 3.63 (q, J = 7.5 Hz, 1H), 3.38 (t, J = 6.6 Hz, 2H), 3.23 (dd, J = 8.4, 7.0 Hz, 1H),
2.67 — 2.52 (m, 2H), 2.40 (dt, J = 11.0, 7.3 Hz, 1H), 1.98 — 1.88 (m, 1H), 1.78 — 1.64 (m, 2H),
1.57- 1.48 (m, 2H), 1.47-1.39 (m, 1H), 1.33 (dqd, J = 14.5, 7.3, 1.8 Hz 2H), 0.89 (t, J = 7.4 Hz,
3H). 13C NMR (126 MHz, CDCls) & 141.94, 135.50, 131.30, 128.76, 128.35, 128.29, 126.53,
125.75, 77.55, 68.80, 53.69, 36.97, 33.59, 33.57, 33.39, 31.89, 19.27, 13.89. HRMS (ESI)

calculated for [C22H280S] M*HI* requires m/z 341.1934, found m/z 341.1929.

PhS, ocy 2-(Cyclohexyloxy)-4-phenethylcyclobutyl)(phenyl)sulfane. (2.19)
/\)j Prepared according to the General Procedure using 72 mg (0.3 mmol)

Ph
phenyl(4-phenylbut-1-enyl)sulfane, 128 pL (0.9 mmol) cyclohexyl vinyl ether,

34.5 mg (0.015 mmol) Ru(bpz)s(BArF)2, 144 mg MgSOa4, 6.0 mL MeCN and an irradiation time
of 15 h. Purification by flash column chromatography (gradient, 10:1 to 4.1 hexanes/EtOAc) and

concentration by rotary evaporation afforded 109.2 mg of analytically pure cycloadduct as a
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clear oil (0.276 mmol, 92% yield, dr: 15:1). *H NMR (500 MHz, CDCl3) & 7.47 — 7.40 (m, 2H),
7.29 —7.23 (m, 4H), 7.22 — 7.12 (m, 4H), 3.73 (q, J = 7.5 Hz, 1H), 3.31 — 3.21 (m, 2H), 2.59 (dq,
J=9.2, 3.0 Hz, 2H), 2.40 (dt, J = 10.8, 7.3 Hz, 1H), 2.01 — 1.88 (m, 1H), 1.88 — 1.78 (m, 2H),
1.78 — 1.64 (m, 4H), 1.53 — 1.43 (m, 2H), 1.32 — 1.11 (m, 5H). 3C NMR (126 MHz, CDCls) &
141.99, 135.79, 131.01, 128.72, 128.36, 128.29, 126.35, 125.74, 76.85, 75.76, 54.13, 36.95,
35.04, 33.68, 33.44, 32.81, 32.77, 25.68, 24.15, 24.08. HRMS (ESI) calculated for

[C24H300S]MNHA+ requires m/z 384.2356, found m/z 384.2347.

PhS, oBu 2-(tert-Butoxy)-4-phenethylcyclobutyl)(phenyl)sulfane. (2.20) Prepared

/\):r according to the General Procedure using 72 mg (0.3 mmol) phenyl(4-

Ph

phenylbut-1-enyl)sulfane, 118 pL (0.9 mmol) tert-butyl vinyl ether, 34.5 mg (0.015 mmol)
Ru(bpz)s(BArF)2, 144 mg MgSOa4, 6.0 mL MeCN and an irradiation time of 15 h. Purification by
flash column chromatography (gradient, 10:1 to 4:1 hexanes/EtOAc) and concentration by rotary
evaporation afforded 96.0 mg of analytically pure cycloadduct as a clear oil (0.264 mmol, 88%
yield, dr: 15:1).2H NMR (500 MHz, CDCls) 8 7.45 — 7.42 (m, 2H), 7.28 — 7.20 (m, 4H), 7.19 —
7.11 (m, 4H), 3.76 (q, J = 7.5 Hz, 1H), 3.26 (dd, J = 8.6, 7.3 Hz, 1H), 2.66 — 2.50 (m, 2H), 2.36
(dt, J = 10.7, 7.3 Hz, 1H), 1.98 — 1.89 (m, 1H), 1.77-1.66 (m, 2H), 1.47 (ddd, J = 10.8, 9.4, 8.0
Hz, 1H), 1.16 (s, 9H). 13C NMR (126 MHz, CDClI3) d 142.00, 135.99, 130.67, 128.56, 128.34,
128.26, 126.07, 125.70, 73.88, 71.02, 54.14, 37.43, 36.87, 34.01, 33.47, 28.36. HRMS (ESI)

calculated for [C22H280S] M*HI* requires m/z 341.1934, found m/z 341.1925.

PhS, nHAc  N-3-Phenethyl-2-(phenylthio)cyclobutyl)acetamide. (2.21) Prepared
according to the General Procedure using 24 mg (0.1 mmol) phenyl(4-
Ph

phenylbut-1-enyl)sulfane, 85 mg (1.0 mmol, 10 eq) N-vinylacetamide,11.5 mg (0.005 mmol)

Ru(bpz)3(BArF)2, 48 mg MgSOa, 2 mL MeCN and an irradiation time of 15 h. Purification by flash
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column chromatography (gradient, 1:1 hexanes/Et2O to 100% Et20) and concentration by rotary
evaporation afforded 13.6 mg of analytically pure cycloadduct as a clear oil (0.04 mmol, 46%
yield, dr: 20:1). *H NMR (500 MHz, CDCl3) & 7.50 — 7.05 (m, 10H), 5.66 (d, J = 8.1 Hz, 1H), 4.07
(p, J = 8.7 Hz, 1H), 3.08 (t, J = 8.9 Hz, 1H), 2.60 (t, J = 7.8 Hz, 2H), 2.40 (dt, J = 10.4, 8.1 Hz,
1H), 1.91 (s, 3H), 1.80 (dq, J = 17.3, 8.9 Hz, 1H), 1.67 (dq, J = 13.3, 7.6 Hz, 1H), 1.35(q, J =
9.8 Hz, 1H). 13C NMR (126 MHz, CDCls) & 169.36, 141.79, 134.20, 132.89, 128.86, 128.34,
128.31, 127.84, 125.84, 77.28, 77.23, 77.03, 76.77, 54.70, 48.41, 36.68, 36.00, 34.12, 33.38,

23.32. HRMS (EI) calculated for [C20H23NOS] M*HI* requires m/z 326.1573, found m/z 326.1571.

PhS, ph  2-Phenethyl-4-phenylcyclobutyl)(phenyl)sulfane. (2.22) Prepared
according to the General Procedure using 24 mg (0.1 mmol) phenyl(4-

" phenylbut-1-enyl)sulfane, 34.3 pL (0.3 mmol) styrene, 11.5 mg (0.005 mmol)
Ru(bpz)s(BArF)2, 48 mg MgSOa4, 2 mL MeCN and an irradiation time of 15 h. Purification by flash
column chromatography (gradient, 10:1 to 4:1 hexanes/CH2Cl2) and concentration by rotary
evaporation afforded 6.6 mg of analytically pure cycloadduct as a clear oil (0.048 mmol, 48%
yield, dr: 3:1).2H NMR (500 MHz, CDCls) & 7.41 — 7.07 (m, 15H), 3.32 (t, J = 9.2 Hz, 1H), 3.19
(0, J = 9.4 Hz, 1H), 2.62 (tg, J = 13.8, 7.2 Hz, 2H), 2.44 (dt, J = 10.3, 8.4 Hz, 1H), 2.21 (dtd, J =
17.2, 8.9, 5.6 Hz, 1H), 1.96 (ddt, J = 12.8, 9.3, 6.8 Hz 1H), 1.81 — 1.61 (m, 2H). 13C NMR (126
MHz, CDCI3) 8 142.92, 142.08, 134.24, 133.01, 128.71, 128.37, 128.35, 128.32, 127.12, 126.71,

126.42, 125.76, 54.82, 44.88, 40.13, 36.77, 33.26, 31.96. HRMS (ESI) calculated for

[C24H24S]|M*HI* requires m/z 345.1672, found m/z 345.1669.

PhS,  p-Tovl - 2-Phenethyl-4-(p-tolyl)cyclobutyl)(phenyl)sulfane. (2.23)  Prepared

according to the General Procedure using 24 mg (0.1 mmol) phenyl(4-
Ph

phenylbut-1-enyl)sulfane, 39.6 pL (0.3 mmol) 4-methylstyrene, 11.5 mg (0.005 mmol)
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Ru(bpz)3(BArF)z2, 48 mg MgSOa4, 2 mL MeCN and an irradiation time of 15 h. Purification by flash
column chromatography (gradient, 10:1 to 4:1 hexanes/CH2Cl2) and concentration by rotary
evaporation afforded 26.0 mg of analytically pure cycloadduct as a clear oil (0.072 mmol, 72%
yield, dr: 2:1).2H NMR (500 MHz, CDClz) 8 7.39 — 6.99 (m, 14H), 3.29 (t, J = 9.2 Hz, 1H), 3.14
(9, J = 9.3 Hz, 1H), 2.61 (tg, J = 14.0, 7.3 Hz, 2H), 2.41 (dt, J = 10.2, 8.4 Hz, 1H), 2.32 (s, 3H),
2.20 (qd, J = 8.9, 5.7 Hz, 1H), 1.95 (ddt, J = 12.8, 9.3, 6.5 Hz, 1H), 1.78 — 1.58 (m, 2H). 13C
NMR (126 MHz, CDCls) & 142.11, 139.90, 135.95, 134.33, 133.01, 129.01, 128.69, 128.37,
128.30, 127.07, 126.60, 125.74, 54.88, 44.50, 40.13, 36.78, 33.26, 32.08, 21.05. HRMS (ESI)

calculated for [C2sH26S]M*H* requires m/z 359.1828, found m/z 359.1825.

2.5.5 Removal of the Redox Auxiliary

/\/@\ (2-(3-Methylcyclohex-3-en-1-yl)ethyl)benzene. (2.24) Prepared according
Ph to a modification of a previously published procedure.?® An oven-dried 10 mL
round bottom flask was charged with (4-ethyl-6-phenethylcyclohex-3-enyl)(phenyl)sulfane (26.8
mg, 0.087 mmol) and placed under N2. 1 mL of a freshly prepared 0.5 M solution of lithium
naphthalenide in THF (0.5 mmol) was added via syringe. The resulting dark brown solution was
allowed to stir at room temperature. After one hour the reaction was quenched with NaHCOs,
then extracted with Et2O (3 x 10mL). The combined organic layers were then washed with 10
mL of brine solution, dried with MgSOs4, and concentrated by rotary evaporation. Purification by
flash column chromatography (100% pentane) and concentration by rotary evaporation afforded
11.7 mg of analytically pure cycloadduct as a clear oil (0.058 mmol, 67% vyield). *H NMR (500
MHz, CDCls) & 7.27 (t, J = 7.6 Hz, 2H), 7.22 — 7.14 (m, 3H), 5.38 (s, 1H), 2.66 (t, J = 7.7 Hz,
2H), 2.08 — 1.94 (m, 3H), 1.75 (ddt, J = 12.3, 4.1, 2.3 Hz, 1H), 1.70 — 1.55 (m, 6H), 1.17 (dtd, J

=12.5, 9.9, 6.3 Hz, 1H). 13C NMR (126 MHz, CDCls) & 143.00, 133.45, 128.35, 128.27, 125.56,
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120.97, 38.55, 36.86, 33.58, 33.32, 28.63, 25.24, 23.80. HRMS (ASAP) calculated for [C15H20]

M+HI+ requires m/z 201.1638, found m/z 201.1635.

/\/@\ tert-Butyldimethyl(2-(3-methylcyclohex-3-en-1-yl)ethoxy)silane.
TBSO Me

(2.25) Prepared according to a modification of a previously published
procedure.?® An oven-dried 10 mL round bottom flask was charged with, tert-Butyldimethyl(2-
(3-methyl-6-(phenylthio)cyclohex-3-enyl)ethoxy)silane (70.8 mg, 0.195 mmol) and placed under
N2. 2 mL of a freshly prepared 0.5 M solution of lithium naphthalenide in THF (1 mmol) was
added via syringe. The resulting dark brown solution was allowed to stir at room temperature.
After 1 h the reaction was quenched with NaHCOs, then extracted with Et2O (3 x 10mL). The
combined organic layers were then washed with 10 mL of brine solution, dried with MgSO4, and
concentrated by rotary evaporation. Purification by flash column chromatography (100:0 — 50:1
pentane/Et20 gradient) and concentration by rotary evaporation afforded 37.1 mg of analytically
pure cycloadduct as a clear oil (0.146 mmol, 74% yield) *H NMR (500 MHz, CDClz) & 5.40 —
5.34 (m, 1H), 3.68 (t, J = 6.8 Hz, 2H), 2.06 — 1.91 (m, 3H), 1.69 (m, 1H), 1.66 — 1.58 (m, 4H),
1.50 (qd, J = 6.7, 1.5 Hz, 2H), 1.14 (ddg, J = 11.4, 7.2, 2.4 Hz, 1H), 0.90 (s, 9H), 0.05 (s, 6H).
13C NMR (126 MHz, CDCIs) & 133.47, 120.88, 77.26, 77.21, 77.00, 76.75, 61.25, 39.55, 36.91,
30.63, 28.64, 25.99, 25.17, 23.78, 18.37, -5.26. HRMS (ASAP) calculated for [C15H300Si] M*HI*

requires m/z 255.2139, found m/z 255.2134.

1-Methyl-4-(3-phenethylcyclobutyl)benzene. (2.26) Prepared according

to a modification of a previously reported procedure.*2 A 25 mL round

bottom flask was charged with 2-phenethyl-4-(p-
Ph

tolyl)cyclobutyl)(phenyl)sulfane, 111.6 mg (0.31 mmol) in 6 mL of EtOH. The stirring solution

was then treated with 4 mL of Raney Nickel solution and let stir at room temperature for 2 h.
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The resulting reaction mixture was diluted with 4 mL of distilled water and passed through a
short Celite plug. The filtered reaction mixture was then extracted with CH2Cl2 (3 x 10 mL). The
combined organic layers were then washed with 10 mL of brine solution, dried with MgSOa, and
concentrated by rotary evaporation. Purification by flash column chromatography (10:1 pentane/
DCM) and concentration by rotary evaporation afforded 66.7 mg of analytically pure cycloadduct
as a clear oil (0.27 mmol, 86% vyield, dr: 2:1). *H NMR (500 MHz, Chloroform-d) 3 7.30 — 7.22
(m, 2H), 7.21 — 7.13 (m, 3H), 7.09 (s, 4H), 3.29 (tt, J = 10.0, 7.9 Hz, 1H), 2.58 — 2.53 (m, 2H),
2.51 — 2.43 (m, 2H), 2.31 (s, 3H), 2.23 (tt, J = 9.6, 7.4 Hz, 1H), 1.77 — 1.64 (m, 4H). 13C NMR
(126 MHz, CDCIs) 6 143.09, 142.59, 135.09, 128.83, 128.37, 128.23, 126.25, 125.59, 38.84,
36.08, 35.99, 33.51, 31.26, 20.98. HRMS (ASAP) calculated for [CioH22] * requires m/z

250.1716, found m/z 250.1715.

o—” (2-(3-Ethoxycyclobutyl)ethyl)benzene. (2.27) Prepared according to a

/\)j modification of a previously published procedure.® A 25 mL round bottom

Ph
flask was charged with 2-ethoxy-4-phenethylcyclobutyl) (phenyl)sulfane (93.8 mg, 0.3 mmol) in

6 mL of EtOH. The stirring solution was then treated with 3 mL of Raney Nickel solution and let
stir at room temperature for 30 min. The resulting reaction mixture was diluted with 2 mL of
distilled water and passed through a short Celite plug. The filtered reaction mixture was then
extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were then washed with 10 mL
of brine solution, dried with MgSO4, and concentrated by rotary evaporation. Purification by flash
column chromatography (10:1 hexanes/ EtOAc) and concentration by rotary evaporation
afforded 52.3 mg of analytically pure cycloadduct as a clear oil (0.26 mmol, 85% yield, dr: 14:1)
IH NMR (500 MHz, CDCI3) & 7.30 — 7.12 (m, 5H), 3.81 — 3.71 (m, 1H), 3.38 (g, J = 7.0 Hz, 2H),
2.53 (t, J = 7.4 Hz, 2H), 2.38 (dddd, J = 11.6, 9.6, 5.6, 2.9 Hz, 2H), 1.79 — 1.68 (m, 3H), 1.53

(qd, J = 8.6, 2.8 Hz, 2H), 1.18 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCls) & 142.39, 128.35,
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128.24, 125.63, 69.53, 63.04, 38.82, 36.56, 33.70, 25.76, 15.36. HRMS (ESI) calculated for

[C14H200] M*HI* requires m/z 205.1587, found m/z 205.1587.

2.5.6 Oxidation of Sulfide Cycloadduct

o (2-(3-ethoxy-2-(phenylsulfinyl)cyclobutyl)ethyl)benzene (2.28) An oven
/\):r ~ dried 25 mL round bottom flask was charged with 43.9 mg (0.141 mmol,
Ph leq) 2-ethoxy-4-phenethylcyclobutyl)(phenyl) in 3 mL of anhydrous CH2Cl>.
The reaction solution was then cooled to -78 C under N2 atmosphere. The reaction solution was
then treated with 34.7 mg (.155 mmol, 1.1 eq) mCPBA in 2.6 mL of anhydrous CH2Cl2 dropwise
over twenty minutes. Five minutes post full addition of the oxidant the reaction was diluted with
10 mL CH2Cl2 and quenched with 10 mL of saturated NaHCOs. The aqueous layer was then
extracted with a further 20 mL of CH2Cl.. The pooled organic layers were dried with MgSOa4, and
reconstituted. Purification by flash chromatography (2:1 Hex:EtOAc) and concentration by rotary
evaporation afforded 35.5 mg of analytically pure oxidized cycloadduct as a clear oil (0.108
mmol, 77% vyield, dr: 1:1). H NMR (500 MHz, Chloroform-d) & 7.65 — 7.41 (m, 4H), 7.37 — 7.09
(m, 4H), 6.94 — 6.83 (m, 1H), 4.12 (dqg, J = 19.1, 7.5 Hz, 1H), 3.68 — 3.47 (m, 1H), 3.21 — 2.93
(m, 2H), 2.59 (td, J = 8.6, 6.7 Hz, 1H), 2.45 (ddt, J = 21.6, 10.7, 8.0 Hz, 1H), 2.30 (ddt, J = 12.9,
9.0, 4.3 Hz, 1H), 2.24 — 2.15 (m, 1H), 1.77 — 1.68 (m, 1H), 1.52 (dddd, J = 24.3, 10.6, 9.5, 7.7
Hz, 1H), 1.23 (t, J = 7.0 Hz, 2H), 1.21 — 1.13 (m, 1H), 0.87 (t, J = 7.0 Hz, 2H), 0.78 — 0.69 (m,
1H). 13C NMR (126 MHz, CDCls) & 141.95, 141.59, 141.39, 141.31, 130.71, 130.66, 129.08,
128.98, 128.40, 128.37, 128.33, 128.22,128.17, 125.97, 125.80, 124.22,124.18, 123.63, 70.34,
69.19, 68.74, 66.68, 64.50, 64.35, 36.80, 36.68, 33.88, 33.33, 32.99, 32.85, 27.57, 22.62, 15.32,

15.00. HRMS (EI) calculated for [C20H2402S] M*H* requires m/z 329.1570, found m/z 329.1566.
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(2-(3-ethoxy-2-(phenylsulfonyl)cyclobutyl)ethyl)benzene (2.29) An

NV
Phs., o~/ oven dried 50 mL round bottom flask was charged with 156 mg (0.5 mmol,
/\):r leq) 2-ethoxy-4-phenethylcyclobutyl)(phenyl) in 2 mL of anhydrous CH2Cl>.

The reaction solution was then cooled to -78 C under N2 atmosphere. The reaction solution was
then treated with 336 mg (1.5 mmol, 3 eq) MCPBA in 3 mL of anhydrous CH2Cl2 dropwise over
five minutes. One hour post full addition of oxidant the reaction was diluted with 15 mL CH2Cl2
and quenched with 15 mL of saturated NaHCOs. The aqueous layer was then extracted with a
further 20 mL of CH2Cl2. The pooled organic layers were dried with MgSOa4, and reconstituted.
Purification of crude by flash chromatography (2:1 Hex:EtOAc) and concentration by rotary
evaporation afforded 127.4 mg of analytically pure oxidized cycloadduct as a clear oil (0.37
mmol, 74% yield, dr: 15:1).*H NMR (500 MHz, Chloroform-d) 6 7.86 — 7.80 (m, 2H), 7.66 — 7.61
(m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.27 — 7.21 (m, 2H), 7.20 — 7.14 (m, 1H), 7.04 — 6.98 (m, 2H),
4.20 (td, J = 7.8, 6.4 Hz, 1H), 3.48 (dq, J = 9.3, 7.0 Hz, 1H), 3.43 — 3.32 (m, 2H), 2.55 — 2.44 (m,
2H), 2.39 (dt, J = 13.8, 8.0 Hz, 1H), 2.23 (pd, J = 9.0, 5.2 Hz, 1H), 1.62 — 1.40 (m, 3H), 1.09 (t,
J=7.0 Hz, 3H). 13C NMR (126 MHz, CDCIs) & 141.11, 138.85, 133.69, 129.27, 129.24, 129.22,
128.53, 128.43, 128.38, 128.34, 128.31, 128.29, 125.99, 70.48, 70.18, 64.81, 36.73, 33.20,
32.77,28.93, 15.10. HRMS (EI) calculated for [C20H2403S] M*NH4l* requires m/z 362.1784, found

m/z 362.1776.



2.5.7 Relative Stereochemical Assignments: Representative NOE Data
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Chapter 3. Olefin-Supported Cationic Copper Catalysts for Photochemical

Synthesis of Structurally Complex Cyclobutanes
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“Olefin-Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex
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3.1 Introduction
Cyclobutane rings feature in more than 2600 known natural products,* and the challenge
of synthesizing these compounds has motivated the development of photochemical [2+2]
cycloaddition reactions for many decades, as photochemical activation is considered the most
direct access to these thermally forbidden processes. Numerous mechanistically distinct
strategies for [2+2] photocycloadditions are known.? The most well-developed of these involve:
(1) direct photoexcitation of olefinic compounds featuring optical transitions in the visible or near-
UV range;3 (2) triplet photosensitization of substrates with triplet state energies sufficiently low
enough to enable Dexter energy transfer;* and (3) photoredox reactions of alkene radical ions
generated via photoinduced electron transfer.®> Notably, each of these activation modes is only
amenable to alkene substrates with extended 1T conjugation, that have lower energy barriers to
excitation and sensitization. Unconjugated aliphatic alkenes generally have short-wavelength
optical transitions (<200 nm)?2 that are not accessible with commercial UV photoreactors. They
also feature high-energy triplet excited states (76—84 kcal/mol)® and electrochemical potentials’
that lie outside of the range of most common photoredox catalysts.8
The sole method suitable for the [2+2] photocycloaddition of aliphatic alkenes is the
Cu(OTf)-catalyzed process originally reported by Kochi and Salomon in 1973.° The key
intermediate in this reaction, a 2:1 alkene-copper complex, absorbs at wavelengths that are
accessible using standard benchtop UV reactors (ca. 270 nm). This absorbance corresponds to
a metal-to-ligand charge transfer (MLCT) transition,'® which initiates an inner-sphere bond-
forming cascade that can convert simple aliphatic alkenes into cyclobutanes that are not
accessible using any of the well-established direct, sensitized, or electron-transfer

photochemistry (Figure 3.1).
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Figure 3.1 General Mechanistic Proposal for Salomon and Kochi [2+2] Cycloaddition
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Although the Salomon—Kochi photocycloaddition has featured in several total
syntheses (Figure 3.2),! the conditions for this reaction have not been significantly
reinvestigated since its early reports, and the utility of this method has been hampered
by its narrow scope. A successful cycloaddition requires the formation of a Cu(l)-
bis(alkene) complex that is relatively unstable, and a variety of common substrate
structural features can destabilize the formation of this complex, thereby preventing the
reaction from occurring. Most critically, sterically bulky alkenes disfavour the formation of
the requisite 2:1 complex and thus are poor substrates for this strategy.'? Consequently,
many of the most interesting complex cyclobutane natural products bearing highly
substituted cyclobutane cores (3.10-3.12) cannot be efficiently synthesized using the
Salomon—Kochi protocol or indeed by any known photocycloaddition methodology
(Figure 3.3). This represents a significant gap in chemists’ ability to synthesize the

diverse family of cyclobutane-containing natural products.



76

Figure 3.2 The Salomon and Kochi Reaction and Total Synthesis

g OH H oTf
| N HO © e "Bare” copper source stabilized by anion
CuOTf L’ . . . e
= - e Highly moisture and air sensitive precatalyst
Et,O. 254 nm. 18 h Cur--z o Sterically hindered substrates leads to both
OH 2 ’ ’ H @ F substrate and catalyst decomposition
31 32 Anion Stabilized
86% Yield'?®
HO CHO
M H
e =
HO OHC o .
HO Sg- -
Me Me* =
H Me
Me
Me
3.3 3.4 3.5
Grandisol'"? Proposed Structure Kelsoene'®
Robustadiol A"®

Figure 3.3 Steric Inhibition Problem and Motivation for Catalyst Improvement

OH
M me OF ey
© CuOTf 2 CuOTf N
Me  Et,0,254 nm, 48 h Et,0, 254 nm, 18 h
OH Me
3.6 3.7 3.8 3.9
40% Conversion >20:1 dr not observed
(complex mixture of alkene
derived byproducts)
OH
X \\\Me
Me ¢ /
e /Me
Br
3.10 3.11 3.12
(+)-Sulcatine G Nemoralisin-type Diterpeniod Perforatol

A notable consequence of the relative instability of the cationic copper bis(alkene)
intermediate is a strong dependence on the coordinating ability of the counteranion. Salomon
reported that photocycloadditions catalyzed by CuOTf occur at least an order of magnitude
faster than those conducted using CuCl.° This observation was attributed to the ability of more
nucleophilic counteranions to displace the labile olefin ligands. Considering this trend, we

hypothesized that complexes bearing even more weakly coordinating counteranions (WCAS)
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than triflate would result in a more electrophilic Cu(l) metal center that could productively engage
bulky alkenes in this reaction.

It has been recently demonstrated that triflate anions are intimately coordinated to the
Cu(l) center in 1,5,9-cyclododecatriene complexes in the solid state.'® We imagined that
improvement of this catalyst system could be achieved by developing Cu(l) catalysts
bearing even more weakly coordinating anions (WCA’s). However, generating such a
“‘bare” copper center presents significant challenges. In exploratory studies, we
attempted to synthesize CuXe<benzene complexes featuring a range of WCAs and
observed rapid oxidative decomposition upon attempts to isolate them. One obvious
solution is to employ the wide range of ligands that have been developed for Cu(l)
catalysis to generate a stabilized cationic Cu(l) species; however nitrogen based ligands
have been shown to substantially inhibit this reaction.* Furthermore, phosphine and
nitrogen based ligands bound to Cu(l) have well documented charge transfer states upon
UV irradiation that would potentially undermine the desired MLCT to the olefin
substrate.'>16 This presented a unique challenge of how to generate a catalytically
stable, coordinatively unsaturated copper center in situ that rapidly binds weakly
coordinating olefins without disruption from either the anion or ancillary precatalyst

ligands.

3.2 Catalyst Design and Reaction Optimization

The CuOTfebenzene catalyst has many advantages in this transformation. First, it bears
a relatively weakly coordinating anion, preventing unwanted anion disruption during formation
of the alkene copper complex.® Furthermore, the ancillary supporting benzene ligands are highly
labile and are easily replaced by an alkene substrate.® These two properties render this complex

as highly active catalyst for alkene [2+2] cycloaddition reactions. However, these same
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properties result in a very unstable catalyst prone to decomposition both during storage and
during the reaction. To develop a catalyst that more strongly coordinates olefins due to a less
stabilizing anion, a new strategy must be devised for opening coordination sites on the copper
center in situ from a more stable precatalyst that could be easily manipulated on the benchtop

under ambient conditions.

Whitesides demonstrated that irradiation of Cu(l) 1,5-cyclooctadiene (COD) complexes
with 254 nm light results in a crossed [2+2] cycloaddition of COD, liberating it from the
coordination sphere of copper.l” We wondered if a copper(l) COD complex bearing a weakly
coordinating anion would catalyze the Salomon—Kochi [2+2] reaction after the initial cyclization
the ancillary COD ligand (Scheme 3.1). We further wondered if COD might stabilize the resulting
highly electron-deficient Cu(l) center without engendering competitive low-energy charge-
transfer states.

Scheme 3.1 Copper (I) COD Cyclization Strategy
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Prior to our work, Cu(l) COD complexes bearing anions less coordinating then triflate
were generally unknown. Thus, a synthetic procedure had to be devised to access the desired
catalyst bearing different anions from a common inexpensive intermediate. It was found that
[Cu(COD)CI]2, in the presence of excess COD, was prone to chloride abstraction salt metathesis

with Ag(l) salts of various weakly coordinating anions. This dimer is easily obtained in high purity
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by reduction of Cu(ll) chloride with triphenylphosphite in the presence of COD.'® The
tetracoordinate Cu(l) COD complexes are isolated as bench-stable white solids in typically high
yield (Scheme 3.4). Characterization of Cu(l) bis(COD) hexafluoroantimonate complex 3.16c by
NMR and MS confirmed the proposed structure and analogous complexes bearing different

anions were assumed to have the same general structure.

Scheme 3.2 Synthesis of Copper (I) COD Complexes

2.0 equiv AgX

Triphenylphosphite 20 equiv COD
CuCl, + Cu,(COD),Cl, Cu(COD),X
0.1M MeOH 0.025M DCM

3.15 3.16a-d
61% yield Up to 82% yield

Next, these complexes were tested in a model reaction previously reported by Salomon.
All complexes were found to be competent catalysts; however, different reaction rates were
observed depending on the counterion (Table 3.1). To our delight, less coordinating anions, as
denoted by the calculated gas phase acidity constants, result in increased reaction rates, with
SbFs~being superior anion in this reaction compared to triflate (entries 2-4). The only result that
devated from this trend was B(CsFs)4~ (entry 5). This anion can directly absorb light at the
reaction wavelength. This may result in competitive light absorption, which could lead to catalyst
decomposition. Shortening the reaction time to 1 h showed that Cu(COD)2SbFe had only slightly

faster reaction rates in comparison with CuOTf (entries 6 and 7).
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Table 3.1 Testing Copper (I) COD Complexes

OTBS

OTBS
2 mol% Cu(COD),X
= 0.1M Et,0, 254nm

H

3.13 3.14
Entry Copper Cat. Time (h) Conversion. % yielda'b
1 [CuOTf],*CgHg 3 100% 74%
2 3.16a Cu(COD),OTf (299.5)° 3 50% 46%
3 3.16b Cu(COD),N(Tf), (286.5)° 3 80% 53%
4 3.16c Cu(COD),SbFg (255.5)° 3 100% 73%
5  3.16d Cu(COD),B(C¢Fs)s (<250.0)° 3 50% 35%
6 Cu(COD),SbFg 1 50% 47%
7 [CuOTf]y CgHg 1 40% 35%

[a] Reactions conducted in quartz tubes equipped with a cold finger. Irradiation took place in a Rayonet RP-100
photoreactor with 254 nm bulbs. [b] NMR yields taken with TMS-Ph as internal standard [c] Gas phase acidity

constants(AGacid) of anions corresponding acid.

A direct comparison between the reactivity of [Cu(OTf)]2(CeHs) and [Cu(COD)2]OTf
revealed a second important factor to consider for catalyst design: the ancillary ligand. We
expected that the COD ligand would undergo cyclization to open coordination sites for alkene
binding. However, the time scale for cyclization of COD demonstrated by Whitesides is much
longer than the reaction times required for cyclization of 1,6-heptadienes, due to COD
undergoing unproductive isomerization reactions that do not result in cyclization.!” A time course
study of this reaction was found to be linear and lacked an induction phase feature that would
otherwise be expected if COD was cyclizing to open coordination sites (Figure 3.4). It was clear
from this study that the hypothesized anion effect is likely operative, but the rate of the reaction
is substantially retarded by the ancillary ligand. This could be due to several possible effects:
(1) the benzene complex may be poorly soluble, and only a small portion of the catalyst is active,
(2) the COD ligand may not be undergoing cyclization on the reaction time scale, and catalysis
is inhibited by the unfavorable ligand exchange between COD and substrate. Because SbFe
was found to be a superior anion to triflate, further optimization of the catalyst focused around

Cu(l) SbFs complexes.
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Because displacement of a COD ligand by a less conformationally rigid bis(alkene)

substrate was found to be thermodynamically unfavorable, Cu(COD)2* complexes were deemed

unsuitable precatalysts. Alternatively, we hypothesized that coordinatively unsaturated Cu(l)

complexes could be generated in situ by anion metathesis of dimeric [Cu(COD)Cl]2 with Ag(l)

salts of WCAs (Scheme 3.3). This strategy would enable use of bench-stable catalyst precursors

instead of the air- and moisture-sensitive [Cu(OTf)]2ebenzene complex that has been the catalyst

of choice for this reaction for decades.

Scheme 3.3 In Situ Chloride Abstraction Strategy
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Indeed, initial experiments using the [Cu(COD)CI]2 dimer togetehr with AgSbFs gave very

promising results, affording 54% conversion in 1 h (Table 3.2, entry 1). While dimeric

[Cu(COD)CI]2 was an obvious initial choice for precatalyst as it is highly bench stable and is both

commercially and easily prepared from CuClz, we wondered if similar dimers bearing different
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olefin supporting ligands would potentially be more reactive catalysts. It was found that a wide
range of copper chloride olefin dimers could be isolated using Cooke’s previously reported
procedure.'® While the structures of these complexes were not characterized, we assumed that
they would likely have copper coordination spheres analogous to the well-characterized
[Cu(COD)CI]2 dimer. Testing these complexes revealed that all complexes were viable catalysts
giving similar conversions (Entries 2—-8). Many of them, however, proved to be air sensitive and
prone to decomposition. For these reasons, we elected to continue using the more robust

[Cu(COD)CI]2 dimer as the optimal catalyst for further study.
Table 3.2 Survey of Possible [Cu(Olefin)Cl]2 Dimers as Precatalysts
OTBS

OTBS 2 mol% [Cu(olefin),_,Cl],
4 mol% AgSbFg
= 0.1M Et,0, 254nm, 1 h

H

3.13 3.14
Entry Copper Dimer Conversion.

1 [Cu(1,5-Cyclooctadiene)Cl], 54%
2 [Cu(1,5-Dimethyl-1,5-cyclooctadiene)Cl], 46%
3 [Cu(Cyclooctene),Cl], 58%
4 [Cu(Cyclohexene),Cl], 43%
5 [Cu(1,1,3,3-Tetramethyl-1,3-divinyldisiloxane)Cl], 29%
6 [Cu(Benzene)Cl], 41%
7 [Cu(Diallyl Ether)Cl], 32%
8 [Cu(Pentamethylcyclopentadiene)Cl], 37%

[a] Reactions conducted in quartz tubes equipped with a cold finger. Irradiation took place in a Rayonet RP-100
photoreactor with 254 nm bulbs.

Initial reaction concentrations and catalyst loadings we optimized first. It was found that
both copper and silver loadings have little effect on reactivity as long as sufficient equivalencies
of silver are present to ensure full abstraction of chloride (entries 1-3). A slightly excess of silver
relative to Cu was beneficial, as the reactions are found to be more reproducible. The rate of
the reaction proved to be highly concentration-dependent, which is typical of photoreactions

requiring high photonic input: increasing the concentration resulted in substantially slower rates
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of cyclization (entry 4). The rate improved linearly with decreasing concentration, and 0.025 M
was selected as optimal, giving full conversion to the desired product in 80% yield in 30 min
(entries 5—7). With simple reaction conditions developed, we next tested this methodology on
a more sterically hindered scaffold to test the original motivations for the development of this

catalyst system (i.e., to generate a catalyst with greater steric tolerance).
Table 3.3 Optimization of Loadings and Concentration In-Situ Chloride Abstraction
OTBS

X mol% [Cu(COD)Cl,
| X mol% AgSbFg
OTBS

X M Et,0, 254nm

3.13 3.14
Entry [Cu(cOD)CI], AgSbFg Conc. Time (h) % yield®P
1 1 mol%g . 4 mol% 01 M 1 47%
2 2.5 mol% 10 mol% 0.1M 1 29%
3 1 mol% 10 mol% 0.1M 1 49%
4 1 mol% 10 mol% 0.25M 1 18%
5 1 mol% 10 mol% 0.05 M 1 57%
6 1 mol% 10 mol% 0.025 M 1 7%
7 1 mol% 10 mol% 0.025 M 0.5 80%

[a] Reactions conducted in quartz tubes equipped with a cold finger. Irradiation took place in a Rayonet RP-100
photoreactor with 254 nm bulbs. [b] NMR vyields taken with TMS-Ph as internal standard

We thus examined the photocycloaddition of diene 3.17, which Salomon had reported is
a poor substrate under his conditions.1?2 126 Consistent with this precedent, standard Salomon-
Kochi conditions (1 mol% [Cu(OTf)]2*benzene) afforded only 28% of cyclobutane product (Table
1, entry 1). This reaction does not proceed to completion upon extended irradiation times, and
the observation of Cu® depositing in the reaction vessel indicated significant catalyst
decomposition (entry 2). As a control, we first treated [Cu(COD)CI]2 with AgOTTf in situ, and the
resulting complex performed similarly to the standard [Cu(OTf)]z*benzene catalyst (entry 3).
However, extended irradiation results in complete conversion, demonstrating that diene ligands
are indeed able to stabilize the highly electron-deficient cationic Cu(l) center without attenuating

its photoactivity (entry 4). We next examined the use of a series of WCAs in this reaction and
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were delighted to observe increased reactivity, with a correlation between the calculated gas-
phase acidities'® of the WCA conjugate acids and the yield of the cycloaddition (entries 5-8),
with exception of carborane CBiiHi2>~ (entry 7). As before with the BArF anion, this can be
attributed to competitive absorption by the anion, which inhibits the reaction (See Experimental
3.5.5). The optimal SbFs~ complex afforded 94% vyield of the [2+2] cycloadduct in just 1 h.
Indeed, the reaction proceeds essentially to completion in only 30 min (entry 8), highlighting the
substantial rate improvement using this optimal catalyst over the canonical triflate salt.
Interestingly nearly all catalysts tested gave near identical diastereoselectivity for the endo
product except for the carborane and trifimide anions both displaying an increase in
diastereoselectivity for the endo product albeit at slower reactions rates in comparison to the
optimal hexafluoroantimonate catalyst (entries 6 and 7).

To test the importance of the Cu(l):COD stoichiometry, we next independently prepared
[Cu(COD)2]SbFs and found it to be a less effective catalyst (entry 10), consistent with the
expected slow rate of exchange of the COD ligand with substrate. Presumably the two active
catalysts are identical barring the necessity for ligand exchange based on the
diastereoselectivity observed. To further demonstrate the deleterious effects of excess strongly
chelating olefin ligand, addition of 50 mol% of COD resulted in complete loss of reactivity (entry
11). However, 1:1 copper:COD stoichiometry is also important as the use of CuCl as a
precatalyst in the absence of COD ligand proved ineffective (entry 12). In this experiment, we
observed the formation of Cu® precipitate, consistent with the propensity of the unstabilized
cationic CuSbFes complex to decompose. Finally, control experiments excluding the Cu catalyst,
silver salt, or light source resulted in no observable consumption of the substrate (entries 13—

15), demonstrating the necessity of each of these reaction components.
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Table 3.4 In- Situ Chloride Abstraction Strategy Anion Survey and Control Reactions

X mol% [Cu(COD)CI], _ OTBS
10X mol% AgX

0.025 M Et,0, 254 nm, 0.5-1 h.

oTBS :
3.17 3.18

Entry Copper Cat. Ag Salt (Gas Phase Acidity) Time (h) % yield®P

1 1 mol%[CuOTf], * CgHg ; 1 28% 4:1d.r.
2 1 mol%[CuOTf], * CgHg ; 18 42% 4:1 d.r.
3 1 mol% [Cu(COD)CI], AgOTf (299.5 kcal/mol)® 1 33% 4:1d.r.
4 1 mol% [Cu(COD)CI], AgOTf 18 91% 4:1d.r.
5 1 mol% [Cu(COD)CI], AgBF, (288 kcal/mol)© 1 52% 4:1 d.r.
6 1 mol% [Cu(COD)CI], AgNTf, (286.5 kcal/mol)° 1 57% 8:1 d.r.
7 1 mol% [Cu(COD)CI], AgCB41H45 (260.4 kcal/mol)© 1 14% 6:1 d.r.
8 1 mol% [Cu(COD)CI], AgSbFg (255.5 kcal/mol)© 1 94% 4:1 d.r.
9 1 mol% [Cu(COD)CI], AgSbFg 0.5 81% 4:1d.r.
10 2 mol% Cu(COD),SbFg ; 0.5 18% 4:1d.r.
1% 1 mol% [Cu(COD)CI], AgSbFg 0.5 0%

12 2 mol% CuCl AgSDbFg 0.5 9%

13 1 mol% [Cu(COD)CI], ; 0.5 0%

14 . AgSbFg 0.5 0%

15% 1 mol% [Cu(COD)CI], AgSbFg 0.5 0%

[a] Reactions conducted in quartz tubes equipped with a cold finger. Irradiation took place in a Rayonet RP-100
photoreactor with 254 nm bulbs. [b] NMR yields taken with TMS-Ph as internal standard. [c] Gas phase acidity
constants (AGacig) of corresponding acid. [d] Addition of 50 mol% 1,6-cyclooctadiene (COD) [e] No UV irradiation
3.3 Reaction Scope and Stereoselectivity Studies

Studies examining the scope of the photocycloaddition using this new catalyst system are
summarized in Table 3.5. We first examined the reactivity of variously substituted 1,6-
heptadienes (3.18-3.23). As expected, the optimized [Cu(COD)CI]2/AgSbFe catalyst system
outperforms the standard [Cu(OTf)]2*benzene catalyst in all cases examined. This advantage
became more evident with greater steric bulk on the alkene, consistent with our catalyst design
strategy. Cyclization of naturally occurring terpenes linalool and nerolidol demonstrate tolerance
both for a free hydroxyl group and pendant substituted olefins (3.24-3.25). Interestingly,

nerolidol cycloadduct 3.25 was isolated as a 1:1 mixture of diastereomers, despite the well-

defined geometry of the starting alkene. Even with the increased Lewis acidity of the reactive
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Cu(l) center, a range of Lewis basic functional groups including amides, ethers, and alcohols
are readily tolerated (3.26-3.30). The rate of reaction slowed using a chelating 1,3-diol-
containing substrate (3.31), which required longer reaction time and higher catalyst loading.
Protection of the diol, however, fully restores reactivity (3.32). Vinyl boronate esters also cyclize
in good yield (3.33) without any observed unproductive deborylation, providing a synthetic
handle for further derivatization. A range of common alcohol protecting groups were also
investigated (3.34-3.38). A base-sensitive pivalate protecting group (3.34) is well tolerated. An
acid-sensitive TES group can be utilized in place of TBS (3.35), albeit with somewhat diminished
endo diastereoselectivity. Highly chelating MOM protecting groups are well tolerated (3.36).
Furthermore, allyl carbonate with a third alkene binding site gives good yields without
decomposition of the protecting group (3.37). Interestingly, benzyl protecting groups are
uniquely tolerated by the new catalyst system; we observed complete decomposition of this
substrate when the reaction was conducted using CuOTTf (3.38). For ease of synthesis, many of
the substrates examined bear oxygen substituents in the allylic position. Regardless of the
alkene substitution or the identity of the allylic coordinating functional group, the cycloaddition
preferentially results in the formation of the thermodynamically less favourable anti-cycloadduct.
This result is consistent with Salomon’s observations using allylic alcohol substrates, suggesting
a chelating interaction with the Cu(l) center in the reactive complex.?® Finally, these reaction
conditions were found to be readily scalable: a batch reaction conducted on gram-scale afforded

3.14 in 89% yield after 5 h of irradiation.
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X mol% [Cu(COD)ClI], Me OTBS
oTBS 10X mol% AgSbFg N
W 0.025 M Et,0, rt, 254 nm
Me Me
Me

3.17 3.18

Me :OTBS EOTBS H :OTBS Me PTBS H :OTBS
Me H Me H H
3.18 3.14 3.19 3.20 3.21
1mol% 1h, 1 mol% 30 min, 1 mol% 30 min, 1 mol% 30 min, 1mol% 1 h,

yield = 89% >20:1 dr?

yield = 91% >20:1 d.r.2
CuOTf yield = 85% >20:12

yield = 94% >20:1 d.r.2
CuOTf yield = 17% >20:1 d.r.2

yield = 95%2, 89%°°
CuOTf yield = 43% >20:1 d.r.2

CuOTf yield = 39%?

yield = 94% 4:1 d.r.2

CuOTf yield = 28% 4:1 d.r.2

H H VoH H ¥°oH H
LCO,Me 8 B o
/,
o OMe Mer,, W '):b
H Me  H Me H H Me
3.22 3.23 3.24 3.25 3.26
1 mol% 6 h, 1mol% 1 h, 1 mol% 3 h, 1mol% 3 h, 1 mol% 8 h,
yield = 42%* yield = 90%? yield = 68%P yield = 87% 1:1 d.r.° yield = 48%?2
CuOTfyield = 4% CuOTf yield = 51%?2 CuOTf yield = 28 1.5:1 d.r.%? CuOTf yield = 16%?2
H H H H
HO™~, 0 0 o) <~—OH
o] [Ii>N—< N N X\
OEt OEt OtBu OH
H H Me H H
3.27 3.28 3.29 3.30 3.31
1mol% 1 h, 2.5 mol% 20 h, 2.5 mol% 20 h, 2.5 mol% 20 h, 2.5mol% 7 h,
yield = 84% 1.5:1 d.r.b yield = 74%?2 yield = 97%?2 yield = 64%? yield = 86%°
CuOTf yield = 62% 1:1 d.r.2 CuOTf yield = 23%?
H ) H OPG
—o0 PinB COMe N PG= Piv 3.34 5 h, 97% 5:1 d.r.P
9 ><:> 3 TES 3.352 h, 80% 2:1 d.r.2¢
o Co,Me MOM 3.36 3 h, 77% 6:1 d.r.2
H H H Alloc 3.37 5 h, 85% 5:1 d.r.
3.32 3.33 19-23 Bn 3.38 5 h, 64% >20:1 d.r. (CuOTf <5%)?
1 mol% 1 h, 1mol% 3 h, 1 mol%
yield = 92% 2 yield = 76% 2.5:1 d.r.

[a] NMR Yields based on TMS-Ph internal standard; [Cu(OTf)]z*benzene yields at same catalyst loading,

concentration and timepoint; [b] Isolated yields; [c] gram-scale reaction;. [d] 2.5 mol% AgSbFse, 0.0125 M in Et20.
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Given the observation that geometrically well-defined alkene substrates result in the
formation of diastereomeric products, we became interested in the origin of the loss of
stereochemical integrity. To assess this, we prepared the trans and cis isomers of O-allyl but-2-
ene-1,4-diol (3.39 and 3.41) and irradiated them under the optimized reaction conditions. Both
afford a mixture of diastereomers in good yields. However, the identity of the major diastereomer
differs (Scheme 3.4). To gain deeper insight, we conducted a time-course experiment using cis
isomer 3.41. We observed the formation of trans alkene 3.39 over the course of this experiment,
and the rate of its formation is competitive with the production of the cycloadducts. Furthermore,
the alkene isomerization occurs only upon irradiation. We conclude, therefore, that the
cycloaddition itself is stereospecific, and that the loss of stereochemical fidelity is due to an
alternate Cu-catalyzed photoreaction that scrambles the geometry of the starting alkene. Time
course data and NMR analysis can be found in experimental section 3.5.4.

Scheme 3.4 Origins of observed diastereoselectivity

syn Major
1 mol% [Cu(COD)Cll, H
O 10 mol% AgSbF HO
o o)
A 0.025M EtZO 254 nm,
3.39 3.40, 84%281dr

2T

trans isomer

Background photochemical
E/Z isomerization

Hicu)
N
X

OH
cis isomer

OH anti Major

HO— 7

1 mol% [Cu(COD)CI], “,
Pz 10 mol% AgSbFg E/\o
o i~
\/\ 0.025 M Et,0, 254 nm, H

1h
3.41 3.27,83% 1.4:1d.r.
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3.4 Application of Methodology to Complex Natural Product Cores
The enhanced reactivity of this new catalyst system, particularly towards substituted alkene
substrates, significantly expands the applicability of photocycloaddition methodology to the
synthesis of a broader class of complex cyclobutane natural products. To highlight this potential,
we used this new method to prepare the core of the natural product sulcatine G, a tricyclic
sesquiterpene isolated from cultures of the Basidiomycetes fungus Laurilia sulcate (Scheme
3.6).2° Synthesis of this began with a known 4 step sequence to prepare anhydride 3.46 from
4,4-dimethylcyclohexanone.?* While a known process conditions for the Favorski rearrangement
of 3.44 and the dehydration of 3.45 were optimized substantially to give this precursor in high
yield. Reduction of anhydride 3.46 gave lactone 3.47 which was then ring-opened to give cis-
Weinreb amide 3.48. Oxidation with pyridine-buffered Dess—Martin periodate yielded aldehyde
3.49. Grignard addition with isopropenyl magnesium bromide resulted in a 1:1.5 mixture of
diastereomers in modest yield. The minor diastereomer was determined to be the desired
stereochemistry via NOE analysis of the cyclized lactone of the major diastereomer resulting
from prolonged storage. TBS protection of the minor diastereomer with TBSOTf and 2,6-lutidine
gave protected allylic alcohol 3.51 no longer prone to spontaneous lactonization. Methylation of
the amide with methyl magnesium bromide gave ketone 3.52 in high yield. Lombardo olefination
of ketone 3.52 gave diene cycloaddition precursor 3.53 without any epimerization as was
observed under Wittig type conditions. Cyclization of 3.53 under the newly developed conditions
gave the desired sulcatine core 3.54 in 98% vyield. As expected, the improved method provides
significantly superior results compared to [Cu(OTf)]*benzene. Importantly, this reaction favors
formation of the highly sterically disfavored anti configuration of the bridgehead substituents due

to allylic hydroxyl coordination, a key structural feature of this molecule.
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Scheme 3.5 Synthesis of Sulcatine G Core

Br, Br KOH

NaH OMe OMe

1M Et,0, rt, 30 min 0.3 M EtOH/ H,0, 70°C, 2h

3 steps 79% overall
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> - Me
Me = Y 0-2M Ph“’;ez‘(;‘m C. 8oh 2) Conc. HCI M 1% 0.2MDCM, it, 1.5 h
MS ° 63% 90%
3.45 3.47

1.5 eq TBSOTf
Dess Martin Perididane 2.0 eq 2,6-Lutidine

Pyridine Me™  MgBr

D —

0.2MDCM, 0°C—rt,3 h

92%

2.3 eq MeMgBr

0.2 M THF, 0°C 0.5h
44% 1:1.5d.r.

TiCl4,CHaly
Zn, PbCl,

0.5M CH,Cly, 0°C—rt, 1h
75%

2.5 mol% [Cu(COD)CI],
10 mol% AgSbFg

0.2M THF, 50°C, 30 min
92%

0.0125 M Et,0,
254 nm, 1h

0.2 M THF, 0°C— rt, 2h
99%

3.54
98% 3:1d.r.
CuOTf48% 2:1 d.r.

(+)-Sulcatine G

The densely functionalized core of another natural product perforatol, a compound isolated
from the toxic sea hare Aplysia punctate could also be readily accessed using this new
methodology. Synthesis of the perforatol (Scheme 3.7)?? core began by alkylation of cyclohexyl
N,N dimethylhydrazone 3.55 with alkylbromide 3.56. Subsequent acidic cleavage of the
hydrazone furnished 2-substituted cyclohexanone 3.57. A enolate trapping procedure using
Fe(0) as an in situ generated base gave the highest selectivity for the more substituted silyl enol

ether 3.58.2% This proved crucially important as purification of the regioisomeric products in the
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proceeding step was very challenging. A second alkylation using Mel was achieved from TMS
enolate 3.58 furnishing 2,2-disubstituted cyclohexanone 3.59. It is important to note that the
order of the two alkylation steps is key to this synthesis as efforts to engage alkyl bromide 3.56
in this reaction failed. Lombardo olefination gives diene [2+2] precursor 3.60, that upon
cyclization under optimal conditions gave the perforatol core 3.61 in high yield as a single
diastereomer, again giving higher yields in comparison with CuOTf.

Scheme 3.6 Synthesis of Perforatol Core

1) LDA0°C — Rt
| 075MTHF 20 h

N
7S OTMS
N| Br FeCls, MeMgBr oTMS
TMSCI, EtzN, HMPA +
2) 2M H,S0y, rt 0.1 M Et,0,0°C — 1t
two steps 78% 82% 9 . 1
Me Me
MeLi Zn, PbCl,
Mel/ HMPA o Me ‘0\ CH2|2, TiC|4 Me, s\\
0.16 M THF -78°C— 0°C 0.1 M THF 0°C— 50°C
69% 83%

3.55
3.58

3.59 3.60
1 mol% [Cu(COD)Cl], \\Me
2.5 mol% AgSbFg
0.025 M Et,0,
254 nm, 1h Me Me
3.61 Perforatol

97%
CuOTf 44%

3.4 Conclusion and Outlook

In summary, we have developed a new catalyst system that extends the useful scope of the
Cu-catalyzed Salomon—Kochi photocycloaddition reaction, enabling the cycloaddition of
sterically encumbered substituted alkenes. Key features of this strategy include the in situ
generation of a COD-supported cationic Cu(l) complex bearing a weakly coordinating SbFe~
counteranion. This more reactive complex is capable of engaging hindered polysubstituted

alkene substrates, can be generated from bench-stable precursors, and enjoys greater stability
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compared to the standard [Cu(OTf)]2sbenzene precatalyst. The preparation of the cores of the
natural products sulcatine G and perforatol demonstrate the utility of this reaction in accessing

structurally complex cyclobutane natural products.
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3.5 Experimental

3.5.1 General Experimental Information

All organic reagents were purified prior to use. [Cu(COD)CI]2 was prepared according to the
previously reported procedure by Cooke.'® CuOTf was obtained from Sigma Aldrich. THF, Et20,
DMF and CH2Cl2 were purified by elution through alumina as described by Grubbs.?* UV
irradiation was conducted using a Rayonet RP-200 Photoreactor with 2540 A bulbs. Flash
column chromatography was performed with Silicycle 40-63 A silica (230-400 mesh).
Diastereomer ratios for all compounds were determined by 'H NMR analysis of the unpurified
reaction mixture. *H and *C NMR data for all previously uncharacterized compounds were
obtained using Bruker Avance-500 spectrometer and are referenced to TMS (0.0 ppm) and
CDCls (77.0 ppm) respectively unless otherwise stated. Mass spectrometry was performed with
a Thermo Q Exactive Plus. These facilities are funded by the NSF (CHE-1048642), NIH (1S10

0DO020022-1), and a generous gift from the Paul J. and Margaret M. Bender Fund.

3.5.2 Catalyst Synthesis
Cu(cod)2SbFs [Cu(COD)CI]2 (1 mmol, 414.4 mg) was dispensed into a flame-dried 100 mL

round-bottomed flask and suspended in CH2Clz (40 mL). The reaction was placed under Nz, and
1,5-cyclooctadiene (40 mmol, 4.9 mL) was added via syringe resulting in clearing of the solution
to a translucent yellow. AgSbFe (2 mmol, 687.2 mg) was then added as a solution in CH2Cl2and
acetone (5 mL, 3 mL), and the reaction was stirred at room temperature for 1 h. The reaction
was filtered to remove AgCl, and the filtrate was reconstituted to approximately 10 mL of CH2Cl-.
Addition of hexane (40 mL) resulted in formation of a white powder precipitate, which was then
collected on a filter frit to yield 466 mg (0.90 mmol, 90%) of desired productfter drying under
high vac. *H NMR (500 MHz, CD2Cl2) 5 5.84 (t, J = 3.4 Hz, 8H), 2.47 (d, J = 130.0 Hz, 16H). 13C

NMR (126 MHz, CD2CI2) d 123.34, 28.47. *°®F NMR (377 MHz, CD2Cl2) 5 -111.2, -114.3, -116.4,
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-120.0, -121.7, -122.9, -125.6, -126.9, -128.7, -132.1, -134.2, -137.3. HRMS (El) calculated for

[C16H24Cu]* requires m/z 279.1169 , found m/z 279.1167.

3.5.3 Synthesis of Substrates
General procedure for synthesis of 3-Hydroxy-1,6-heptadienes.

3-Hydroxy-1,6-heptadienes were prepared according to Salomon’s previously reported
procedure.?® Aldehyde was dispensed into a flame-dried round-bottomed flask and dissolved
in THF to give a 0.5 M solution. The solution was placed under nitrogen, cooled to —78 °C, and
treated dropwise with Grignard reagent (1.5 eq). The reaction was warmed to room temperature
and stirred until TLC (KMnOa4 stain) indicated completion. The reaction was then quenched with
saturated NH4Cl solution, extracted with Et20, dried over MgSOa, filtered, and concentrated to

give crude desired product. This was carried on without further purification.
General TBS protection procedure.

3-Hydroxy-1,6-heptadiene was dispensed into a flame-dried round-bottomed flask and
dissolved in dimethylformamide to give a 0.5 M solution. The solution was then treated with 2
equiv of imidazole and 1.5 equiv of TBS-CI, then placed under nitrogen. The reaction was then
stirred 18—-48 h at room temperature until TLC indicated completion. The reaction was then
guenched with water and extracted with diethyl ether. The organic layer was then washed with
water and brine, dried with MgSOa4, and concentrated to give a crude oil. Purification via flash

chromatography gave analytically pure TBS protected 3-hydroxy-1,6- heptadienes as clear oils.

tert-Butyl((2,6-dimethylhepta-1,6-dien-3-yl)oxy)dimethylsilane(3.17)

otes  Prepared according to the general procedure with 2,6-dimethyl-1,6-heptadien-
3-olError! Bookmark not defined. (3.1 mmol, 434.7 mg), TBS-CI (4.7 mmol, 708.3 mg), i
midazole (6.2 mmol, 422.1 mg), and DMF (6 mL). Purification on silica gel (9:1 pentanes:CH2Cl>)

afforded 761.3 mg of product (2.99 mmol, 97%) as a clear oil. *H NMR (500 MHz, Chloroform-
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d) 8 4.84 (s, 1H), 4.75 (t, J = 1.8 Hz, 1H), 4.70 — 4.67 (m, 1H), 4.67 — 4.64 (m, 1H), 4.02 (t, J =
6.2 Hz, 1H), 1.96 (dddd, J = 44.9, 15.1, 10.4, 5.7 Hz, 2H), 1.70 (s, 3H), 1.66 (s, 3H), 1.65 — 1.52
(m, 2H), 0.88 (s, 9H), 0.03 (s, 3H), -0.01 (s, 3H). 3C NMR (126 MHz, CDCls) & 147.7, 146.0,
110.7, 109.5, 76.4, 34.3, 33.6, 25.9, 22.7, 18.2, 17.1, -4.7, -5.0. HRMS (El) calculated for

[C15H300Si + H]* requires m/z 255.2139, found m/z 255.2135.

tert-Butyldimethyl((2-methylenehept-6-en-1-yl)oxy)silane (3.13)

/\/\)JVOTBS Prepared according to the general procedure with 2-(hydroxymethyl)-
1,6-heptadiene?® (7.2 mmol, 907.8 mg), TBS-CI (10.8 mmol, 1.62 g), imidazole (14.4 mmol, 980
mg), and DMF (14 mL) Purification on silica gel (9:1 pentanes:CH2Cl2) afforded 1.48 g of product
(6.2 mmol, 86%) as a clear oil. *H NMR (500 MHz, Chloroform-d)  5.81 (ddt, J = 16.9, 10.2, 6.7
Hz, 1H), 5.05 — 4.98 (m, 2H), 4.96 (ddt, J = 10.1, 2.2, 1.3 Hz, 1H), 4.82 (s, 1H), 4.07 (d, J=1.5
Hz, 2H), 2.12 — 1.97 (m, 4H), 1.55 (p, J = 7.7 Hz, 2H), 0.92 (s, 9H), 0.07 (s, 6H). 13C NMR (126
MHz, CDCIs) 6 148.5, 138.7, 114.6, 108.5, 65.9, 33.5, 32.1, 27.1, 25.9, 18.4, -5.4. HRMS (EI)

calculated for [C14H280Si + H]* requires m/z 241.1982, found m/z 241.1979.

| tert-Butyldimethyl((6-methylhepta-1,6-dien-3-yl)oxy)silane (S1) Prepared
M according to the general procedure with 6-methyl-1,6-heptadien-3-0l*?° (2.0
mmol, 250 mg), TBS-CI (3.0 mmol, 447.6 mg), imidazole (4.0 mmol, 269.6 mg), and DMF (4
mL) Purification on silica gel (9:1 pentanes:CH2Cl2) afforded 390 mg of product (1.62 mmol,
82%) as a clear oil. 'H NMR (500 MHz, Chloroform-d) & 5.80 (ddd, J = 16.7, 10.4, 6.1 Hz, 1H),
5.15 (dt, J = 17.1, 1.6 Hz, 1H), 5.03 (dt, J = 10.4, 1.5 Hz, 1H), 4.68 (ddd, J = 13.6, 2.5, 1.4 Hz,
2H), 4.10 (q, J = 6.2 Hz, 1H), 2.03 (qdd, J = 14.9, 9.9, 5.9 Hz, 2H), 1.72 (s, 3H), 1.69 — 1.56 (m,
2H), 0.90 (s, 9H), 0.04 (d, J = 10.6 Hz, 6H). 13C NMR (126 MHz, CDCl3) & 145.9, 141.6, 113.7,
109.6, 73.5, 36.1, 33.3, 25.9, 22.6, 18.3, -4.3, -4.8. HRMS (EI) calculated for [C14H280Si + H]*

requires m/z 241.1982, found m/z 241.1980.
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tert-Butyldimethyl((2-methylhepta-1,6-dien-3-yl)oxy)silane (S2) Prepared

ores  according to the general procedure with 2-methyl-1,6-heptadien-3-ol'?® (1.98
mmol, 250 mg), TBS-CI (3.0 mmol, 452 mg), imidazole (4.0 mmol, 269 mg), and DMF (4 mL).
Purification on silica gel (9:1 pentanes:CH2Cl2) afforded 328.9 mg of product (1.36 mmol, 69%)
as a clear oil. *H NMR (500 MHz, Chloroform-d) & 5.82 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.00
(dg, J = 17.2, 1.8 Hz, 1H), 4.94 (ddt, J = 10.2, 2.3, 1.4 Hz, 1H), 4.85 (dt, J = 2.1, 1.0 Hz, 1H),
4.76 (p, J = 1.7 Hz, 1H), 4.06 — 4.01 (m, 1H), 2.12 — 1.95 (m, 2H), 1.67 (s, 3H), 1.61 (dddd, J =
13.2, 9.6, 7.2, 5.9 Hz, 1H), 1.56 — 1.48 (m, 1H), 0.89 (s, 9H), 0.02 (d, J = 18.2 Hz, 6H). 13C NMR
(126 MHz, CDCls) 6 147.7, 138.8, 114.3, 110.7, 76.2, 35.4, 29.8, 25.9, 18.2, 17.1, -4.7, -5.0.

HRMS (ElI) calculated for [C14H280Si + H]" requires m/z 241.1982, found m/z 241.1975.

tert-Butyl(hepta-1,6-dien-3-yloxy)dimethylsilane (S3) Prepared according to

|
M the general procedure with 1,6-heptadien-3-o0l'2® (2.23 mmol, 250 mg), TBS-CI

OoTBS
(3.35 mmol, 504.9 mg), imidazole (4.46 mmol, 303.6 mg), and DMF (4.6 mL). Purification on

silica gel (9:1 pentanes:CH2Cl2) afforded 412.6 mg of product (1.82 mmol, 82%) as a clear oil.
IH NMR (500 MHz, Chloroform-d) 5 5.88 — 5.74 (m, 2H), 5.14 (dt, J = 17.1, 1.6 Hz, 1H), 5.06 —
4.97 (m, 2H), 4.95 (dq, J = 10.2, 1.5 Hz, 1H), 4.11 (q, J = 6.1 Hz, 1H), 2.16 — 2.01 (m, 2H), 1.66
— 1.49 (m, 2H), 0.90 (s, 9H), 0.04 (d, J = 10.6 Hz, 6H). 13C NMR (126 MHz, CDCl3) d 141.6,
138.7,114.4,113.7,73.3, 37.3, 29.4, 25.9, 18.3, -4.3, -4.8. HRMS (EI) calculated for [C13H260Si
+ H]* requires m/z 227.1826, found m/z 227.1823.

MeO,C CO,Me Dimethyl 2,2-bis(3-methylbut-2-en-1-yl) malonate (S4) was prepared
~ according to a previously reported procedure.?® TH NMR (500 MHz,
Chloroform-d) 8 4.94 (t, J = 7.4 Hz, 2H), 3.70 (s, 6H), 2.58 (d, J = 7.4 Hz, 4H), 1.68 (s, 6H), 1.59
(s, 6H). *C NMR (126 MHz, CDCI3) 5 171.9, 135.5, 117.8, 57.8, 52.3, 30.9, 26.0, 17.8. Spectral

data matched those previously reported.
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Meo,c co,Me Diallylmalonate (S5) was prepared according to previously reported
~ procedure.?’” 'H NMR (500 MHz, Chloroform-d) & 5.65 (ddt, J = 18.9, 9.4, 7.4
Hz, 2H), 5.13 — 5.11 (m, 2H), 5.09 (d, J = 1.1 Hz, 2H), 3.72 (s, 6H), 2.64 (dt, J = 7.4, 1.2 Hz,
4H). 3C NMR (126 MHz, CDCI3) 6 171.2, 132.2, 119.3, 57.6, 52.4, 36.9. Spectral data matched

those previously reported.

. 3-((2-Methylallyl)oxy)cyclohex-1-ene (S6) A flame-dried 50 mL round-bottomed
Q/\’/ flask was charged with NaHCO3 (20 mmol, 1.71 g) and B-methallyl alcohol (40 mmol,
3.4 mL). The reaction was placed under N2, cooled to 0 °C, and stirred vigorously.
3-bromocyclohexene (10 mmol, 1.15 mL) was added dropwise via a syringe, and the reaction
was warmed to room temperature and stirred for 36 h under N2. The reaction was then filtered,
and the filtrate was extracted with Et2O (3 x 30 mL), dried with MgSOa4, and concentrated to give
the crude product. Purification on silica gel (20:1 pentanes: Et20) afforded 1.28 g of product (8.4
mmol, 84%) as a pale yellow oil. *H NMR (500 MHz, Chloroform-d) & 5.85 (dtd, J = 10.2, 3.6,
1.2 Hz, 1H), 5.78 (dq, J = 10.1, 2.4 Hz, 1H), 4.99 — 4.97 (s, 1H), 4.89 — 4.86 (s, 1H), 3.94 (q, J
=12.6 Hz, 2H), 3.87 (tdt, J = 4.9, 3.2, 1.5 Hz, 1H), 2.05 (ddddd, J = 16.3, 7.5, 5.6, 3.7, 2.0 Hz,
1H), 1.95 (dddd, J = 18.0, 9.7, 3.7, 1.6 Hz, 1H), 1.85 — 1.74 (m, 5H), 1.69 (dtd, J = 11.9, 6.3, 3.4
Hz, 1H), 1.55 (dddd, J=17.4, 7.1, 5.9, 2.2 Hz, 1H). 3C NMR (126 MHz, CDCIz) d 142.9, 130.8,
127.9,111.8,72.1,71.9,28.4, 25.2,19.6, 19.3. HRMS (EI) calculated for [C10H160 + H]* requires

m/z 153.1274, found m/z 153.1274.

PN 1,4-Bis(allyloxy)-trans-2-butene (3.39) was prepared according to a

previously reported procedure.?® 'H NMR (500 MHz, Chloroform-d) &
5.97 — 5.87 (m, 2H), 5.83 (dtt, J = 15.5, 5.7, 1.3 Hz, 1H), 5.29 (dq, J = 17.2, 1.7 Hz, 1H), 5.19
(dg, J = 10.4, 1.4 Hz, 1H), 4.17 (dd, J = 5.2, 1.2 Hz, 2H), 4.00 (dq, J = 5.7, 1.5 Hz, 4H), 1.53 (s,
1H). 3C NMR (126 MHz, CDCI3) d 134.6, 132.1, 127.8, 117.1, 71.3, 70.0, 63.0. Spectral data

matched those previously reported.
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O 1,4-Bis(allyloxy)-cis-2-butene (3.41) was prepared according to a

\/\LOH previously reported procedure.?® 'H NMR (500 MHz, Chloroform-d) & 5.92

(ddt, J=17.2, 10.4, 5.7 Hz, 1H), 5.81 (dtt, J = 11.2, 6.3, 1.5 Hz, 1H), 5.70 (dtt, J = 11.2, 6.3, 1.4

Hz, 1H), 5.29 (dqg, J = 17.2, 1.6 Hz, 1H), 5.21 (dq, J = 10.4, 1.4 Hz, 1H), 4.19 (dd, J = 6.6, 1.2

Hz, 2H), 4.06 (dd, J = 6.3, 1.3 Hz, 2H), 4.00 (dt, J = 5.8, 1.4 Hz, 2H), 2.31 (s, 1H). 13C NMR (126

MHz, CDClIs) & 134.4, 132.3, 128.2, 117.5, 71.4, 65.7, 58.7. Spectral data matched those
previously reported.

o Ethyl diallylcarbamate (S7) was prepared according to a previously reported

/\O)J\N/v/ procedure.'?¢ 'H NMR (500 MHz, Chloroform-d) & 5.77 (ddt, J = 16.4, 11.4,

ﬁ 5.7 Hz, 2H), 5.18 — 5.08 (m, 4H), 4.15 (q, J = 7.1 Hz, 2H), 3.85 (m, 4H), 1.25

(t, J = 7.1 Hz, 3H). *C NMR (126 MHz, CDClz) 5 156.3, 133.7, 117.0, 116.5, 61.4, 48.9, 48.4,

14.7. Spectral data matched those previously reported.

o Ethyl allyl(2-methylallyl)carbamate (S8) was prepared according to a
/\O)J\N/Y previously reported procedure.'?* 'TH NMR (500 MHz, Chloroform-d) & 5.87 —
ﬁ 5.66 (m, 1H), 5.12 (m, 2H), 4.86 (s, 1H), 4.77 (m , 1H), 4.16 (q, J = 7.1 Hz,

2H), 3.82 (m, 4H), 1.68 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). 3C NMR (126 MHz, CDCls) & 156.5,
141.1, 133.5, 116.8 (d, J = 56.3 Hz), 111.9 (d, J = 42.5 Hz), 61.4, 51.6 (d, J = 59.4 HZ), 48.3 (d,

J =58.8), 19.9, 14.7. Spectral data matched those previously reported.

.0 tert-Butyl diallylcarbamate (S9) was prepared according to a previously
>:\OJ\N/\/ reported procedure.?® 'H NMR (500 MHz, Chloroform-d) 8 5.76 (ddt, J = 16.8,

ﬁ 11.7, 6.0 Hz, 2H), 5.17 — 5.02 (m, 4H), 3.80 (d, J = 26.0 Hz, 4H), 1.46 (s, 8H).
13C NMR (126 MHz, CDCl3) & 155.4, 134.0, 116.4 (d, J = 51.9 Hz), 79.6, 48.7, 28.4. Spectral

data matched those previously reported.
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HO on 2,2-Diallylpropane-1,3-diol (S10) A flame-dried 25 mL round-bottomed flask
= X was charged with Et20 (5 mL) and LiAlH4 (5 mmol, 190 mg), then placed under
N2. The reaction was then cooled to 0 °C, and diallylmalonate (2 mmol, 424.5 mg) was added
dropwise as a solution in Et20 (3 mL) over 15 min. The resulting suspension was stirred 1 h at
room temperature. The reaction was then poured into Et20 (30 mL), quenched sequentially
dropwise with H20 (0.19 mL), 15% NaOH solution (0.19 mL), and H20 (0.57 mL), and dried over
MgSOa. Concentration of the filtrate gave crude product. Purification on silica gel (100% Et20)
afforded 271.7 mg of product (1.74 mmol, 87%) as a clear oil. *H NMR (500 MHz, Chloroform-
d) 8 5.93 — 5.77 (m, 2H), 5.15 — 5.08 (m, 4H), 3.59 (d, J = 3.7 Hz, 4H), 2.38-2.26 (m, 2H), 2.09
(dt, 3 = 7.5, 1.2 Hz, 4H). 3C NMR (126 MHz, CDCIlz) 6 133.9, 118.1, 68.3, 42.1, 36.1. HRMS

(El) calculated for [CoH1602 + Na]* requires m/z 179.0143 , found m/z 179.0143.

Q 3,3-Diallyl-1,5-dioxaspiro[5.5]undecane (S11) was prepared according to a

<o modification of a previously reported procedure.*° A flame-dried 25 mL round-

M bottomed flask was charged with 2,2-diallylpropane-1,3-diol (3 mmol, 468.7

mg), cyclohexanone (2 mmol, 0.2 mL), (EtO)sCH (2 mmol, 0.33 mL), and CH2Cl> (6 mL). The
vessel was flushed with N2, and ZrCls (0.06 mmol, 14 mg) was added in one portion. The
reaction was quickly placed back under N2 and stirred at room temperature for 18 h. The reaction
was quenched with 10% NaOH (10 mL) and extracted with CH2Cl2 (3 X 10 mL). The combined
organic layers where washed with brine, dried over Na2S0O4, and concentrated to give crude
product. Purification on silica gel (9:1 pentanes: Et20) afforded 428.1 mg of product (1.82 mmol,
91%) as a clear oil. *H NMR (500 MHz, Chloroform-d) & 5.84 — 5.73 (m, 2H), 5.11 (s, J = 2H),
5.10 — 5.07 (m, 2H), 3.58 (s, 4H), 2.14 (dt, J = 7.6, 1.1 Hz, 4H), 1.74 (t, J = 6.0 Hz, 4H), 1.51 (p,
J = 6.0 Hz, 4H), 1.40 (it, J = 8.8, 4.4 Hz, 2H). 13C NMR (126 MHz, CDCls) & 133.2, 118.3, 98.0,
66.4, 36.8, 35.6, 32.6, 25.7, 22.6. HRMS (EI) calculated for [CisH2402 + H]* requires m/z

237.1849 , found m/z 237.1848.
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MeO,C CO,Me Dimethyl  (E)-2-allyl-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

X _BPin
ylhallyl) malonate (S12) A flame-dried 25 mL round-bottomed flask was

=
charged with dimethyl 2-allyl-2-(prop-2-ynyl)malonate3! (3.47 mmol, 827 mg) and neat
pinacolborane (3.82 mmol, 0.55 mL), then placed under N2. Cp2ZrHCI (1.04 mmol, 268.1 mg)
was then added in one portion followed by triethylamine (1.04 mmol, 0.15 mL). The reaction was
quickly placed back under N2, wrapped in tin foil to exclude light, and heated to 60 °C for 18 h.
Upon completion, the reaction was diluted with hexanes and filtered through celite to remove
solids. Concentration of the filtrate yielded crude product. Purification on boron doped silica gel
(9:1 Hexanes: EtOAc) afforded 1.04 g of product (3.1 mmol, 89%) as a pale yellow oil. *H NMR
(500 MHz, Chloroform-d) & 6.39 (dt, J = 17.7, 7.3 Hz, 1H), 5.65 (ddt, J = 17.5, 10.2, 7.4 Hz, 1H),
5.52 (dt, J = 17.7, 1.4 Hz, 1H), 5.15 — 5.04 (m, 2H), 3.71 (s, 6H), 2.75 (dd, J = 7.3, 1.4 Hz, 2H),
2.64 (dt, J=7.5, 1.2 Hz, 2H), 1.25 (s, 12H). 13C NMR (126 MHz, CDCI3) 5 171.0, 146.8, 132.2,

124.1, 119.4, 83.2, 57.5, 52.4, 39.0, 37.0, 24.8. 1B NMR (128 MHz, CDCl3) & 29.7. HRMS (EI)

calculated for [C17H27BOs + H]* requires m/z 339.1974, found m/z 339.1972.

Hepta-1,6-dien-3-yl pivalate (S13) A flame-dried 100 mL round-bottomed flask

/\/\O&V was charged with1,6-heptadien-3-0l*?° (4.46 mmol, 500 mg), DMAP (0.22 mmol,
27.2 mg), and 10 mL of CH2Cl2. The solution was placed under N2, cooled to 0 °C, treated with
triethylamine (44.6 mmol, 6.2 mL), stirred 15 min at O °C, and then treated with pivoyl chloride
(5.4 mmol, 0.66 mL) dropwise via syringe. The reaction was then warmed to room temperature
and stirred for 18 h. Upon completion, the reaction was quenched with MeOH (6 mL) and H20
(20 mL) and then extracted with Et20 (3 x 30 mL). The organic layer was washed with 1 M HCI
(50 mL), 1 M NaOH (50 mL), and brine (50 mL), and then dried with MgSO4 and concentrated

to give the crude product. Purification on silica gel (9:1 pentanes: Et20) afforded 806 mg of

product (2.27 mmol, 92%) as a pale yellow oil. *H NMR (500 MHz, Chloroform-d) & 5.86 — 5.73
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(m, 2H), 5.27 — 5.19 (m, 2H), 5.15 (dt, J = 10.6, 1.2 Hz, 1H), 5.02 (dq, J = 17.1, 1.7 Hz, 1H),
4.98 (dg, J = 10.2, 1.5 Hz, 1H), 2.18 — 1.98 (m, 2H), 1.81 — 1.63 (m, 2H), 1.22 (s, 9H). 3C NMR
(126 MHz, CDCls) & 177.7, 137.6, 136.6, 116.2, 115.1, 73.6, 38.9, 33.5, 29.3, 27.2. HRMS (El)

calculated for [C12H2002 + H]* requires m/z 197.1536, found m/z 197.1532.

|| Triethyl(hepta-1,6-dien-3-yloxy)silane (S14) A flame-dried 50 mL round-

otes bottomed flask was charged with1,6-heptadien-3-0l*?* (2 mmol, 224 mg) and
dissolved into 8 mL CH2Cl2. The reaction was placed under N2, cooled to 0 °C, and treated with
2,6-lutidine (4 mmol, 0.5 mL). The reaction was then treated dropwise with TESOTf (3 mmol,
0.7 mL) and stirred 1 h at 0 °C. The reaction was then diluted with CH2Cl2, quenched with H20,
and extracted with CH2Cl2. The organic layers where washed with saturated NaHCOg3 solution,
dried over MgSOg, filtered, and concentrated to give the crude product. Purification on silica gel
(50:1 pentanes: CH2Cl2) afforded 312 mg of product (1.4 mmol, 70%) as a clear oil. *H NMR
(500 MHz, Chloroform-d) & 5.82 (dddd, J = 16.8, 12.1, 10.2, 6.4 Hz, 2H), 5.14 (dt, J = 17.3, 1.6
Hz, 1H), 5.06 — 4.98 (m, 2H), 4.95 (ddt, J = 10.2, 2.0, 1.3 Hz, 1H), 4.10 (q, J = 6.3 Hz, 1H), 2.16
—2.02 (m, 2H), 1.68 — 1.50 (m, 2H), 0.95 (t, J = 7.9 Hz, 9H), 0.60 (q, J = 7.7 Hz, 6H). 3C NMR
(126 MHz, CDCl3) & 141.6, 138.7, 114.4, 113.9, 73.3, 37.3, 29.4, 6.9, 5.0. HRMS (EI) calculated

for [C13H260Si + H]* requires m/z 227.1826, found m/z 227.1825.

/\/\J 3-(Methoxymethoxy)hepta-1,6-diene (S15). A flame-dried 50 mL round-
=

bottomed flask was charged with1,6-heptadien-3-0l*?® (2.5 mmol, 280.4 mg)
and dissolved into 25 mL CH2Cl2. The reaction was placed under N2, cooled to 0 °C, and treated
sequentially with Hunig’s base (5 mmol, 0.9 mL) and MOMCI (3.75 mmol, 0.3 mL). Reaction
was then warmed to room temperature and stirred for 48 h. The reaction was then quenched

with aqueous NH4Cl, extracted with CH2Cl2, dried with MgSOa, filtered and concentrated to give
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the crude product. Purification on silica gel (20:1 pentanes: Et20) afforded 355 mg of product
(2.27 mmol, 91%) as a clear oil. *H NMR (500 MHz, Chloroform-d) & 5.83 (ddt, J = 16.9, 10.1,
6.6 Hz, 1H), 5.68 (ddd, J = 17.7, 10.3, 7.6 Hz, 1H), 5.25 — 5.16 (m, 2H), 5.08 — 4.93 (m, 2H),
4.71 (d, J = 6.7 Hz, 1H), 4.54 (d, J = 6.7 Hz, 1H), 4.01 (q, J = 7.0 Hz, 1H), 3.38 (s, 3H), 2.23 —
2.04 (m, 2H), 1.77 — 1.57 (m, 2H). 3C NMR (151 MHz, CDCIl3) d 138.2, 138.2, 117.4, 114.8,
93.8, 76.8, 55.5, 34.6, 29.6. HRMS (EI) calculated for [CoH1602 + H]* requires m/z 157.1223,

found m/z 157.1224.

/\/\J Allyl hepta-1,6-dien-3-yl carbonate (S16). A flame-dried 50 mL round-
=
5. o bottomed flask was charged with1,6-heptadien-3-0l*?* (2.23 mmol, 253.6
X
0 mg) and in 5 mL CH2Cl.. The reaction solution was placed under Nz,

cooled to 0 °C and treated with pyridine (4.46 mmol, 0.36 mL). Reaction was stirred 15 min at 0
°C and then treated with allyl chloroformate (3.66 mmol, 0.39 mL) dropwise via syringe. The
reaction was warmed to room temperature and stirred for 18 h. Upon completion, the reaction
was diluted with CH2ClI2 (15 mL), quenched with H20, and extracted with CH2Cl2. The organic
layer was washed with brine, dried with MgSO4, and concentrated to give the crude product.
Purification on silica gel (18:1 pentanes: Et20) afforded 333.6 mg of product (1.7 mmol, 76%)
as a clear oil. *H NMR (500 MHz, Chloroform-d) & 5.94 (ddt, J =17.2, 10.4, 5.7 Hz, 1H), 5.85 -
5.75 (m, 2H), 5.36 (dq, J = 17.2, 1.5 Hz, 1H), 5.32 (dt, J= 17.2, 1.2 Hz, 1H), 5.27 (dq, J = 10.5,
1.3 Hz, 1H), 5.23 (dt, J = 10.5, 1.2 Hz, 1H), 5.08 (qd, J = 6.5, 6.0, 1.1 Hz, 1H), 5.03 (dg, J =
17.1, 1.7 Hz, 1H), 4.99 (dg, J = 10.2, 1.4 Hz, 1H), 4.62 (dt, J = 5.8, 1.4 Hz, 2H), 2.13 (dtq, J =
8.2, 6.7, 1.5 Hz, 2H), 1.82 (ddd, J = 14.2, 8.2, 6.9 Hz, 1H), 1.75 — 1.67 (m, 1H). 13C NMR (126
MHz, CDCls) & 154.4, 137.3, 135.8, 131.7, 118.8, 117.7, 115.3, 78.5, 68.3, 33.3, 29.2. HRMS

(El) calculated for [C11H1603 + NH4]* requires m/z 214.1438, found m/z 214.1434
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| ((Hepta-1,6-dien-3-yloxy)methyl)benzene (S17). A flame-dried 50 mL round-
M bottomed flask was charged with NaH (8.2 mmol, 328 mg) and THF (8 mL). The
reaction was placed under Nz, 1,6-heptadien-3-ol*?** (6.28 mmol, 704.8 mg) was added as a
solution in THF (5 mL), and the reaction was allowed to stir 30 min at room temperature. Benzyl
bromide (12.6 mmol, 1.49 mL) was added, and the reaction was refluxed at 80 °C for 14 h. Upon
completion, the reaction was diluted with Et2O (20 mL), quenched with H2O (5 mL), and
extracted with Et20. The organic layer was washed with brine, dried with MgSO4, and
concentrated to give the crude product. Purification on silica gel (6:1 pentanes:CH2Cl2) afforded
969.3 mg of product (4.79 mmol, 76%) as a yellow oil. *H NMR (500 MHz, Chloroform-d) & 7.33
(d, J = 4.4 Hz, 4H), 7.30 — 7.23 (m, 1H), 5.86 — 5.69 (m, 2H), 5.27 — 5.17 (m, 2H), 4.99 (dq, J =
17.1, 1.7 Hz, 1H), 4.94 (ddt, J = 10.2, 2.3, 1.3 Hz, 1H), 4.59 (d, J = 11.8 Hz, 1H), 4.34 (d, J =
11.9 Hz, 1H), 3.75 (td, J = 7.5, 5.9 Hz, 1H), 2.23 — 2.03 (m, 2H), 1.76 (dddd, J = 13.4, 9.0, 7.3,
6.1 Hz, 1H), 1.63 — 1.54 (m, 1H). 13C NMR (126 MHz, CDCls) & 138.9, 138.8, 138.4, 128.3,
127.8, 127.4, 117.2, 114.7, 79.9, 70.1, 34.7, 29.6. HRMS (EI) calculated for [C14H180 + HJ*

requires m/z 203.1430, found m/z 203.1429.

3.5.3 [2+2] Photocycloadditions

General Procedure:

A quartz reaction tube is charged with [Cu(COD)CI]2 (1-2.5 mol%), and the 1,6-heptadiene
substrate is then added as a solution in Et2O (1 mL/ 0.2 mmol). The reaction is then sonicated
1 min, diluted to 0.05 M and stirred under N2 for 5 min. AgSbFs (10—25 mol%) is then added as
a solution in Et20 to give a 0.025 M solution, and the reaction is further stirred for 15 min under
N2. Once the reaction has cleared and AgCl has fully precipitated, the reaction is fit with a water-
recirculating coldfinger and irradiated at 254 nm in a Rayonet RPR-200 photoreactor. After the

indicated time point, the reaction is treated with 7 M NH3z in MeOH (1 mL) and eluted through a
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plug of silica with Et2O. Concentration on rotovap gives crude product mixtures. Sensitive
substrates can be passed thru silica without the NH3 quench and Cu(l) impurities can be
removed during further purification. Products were purified via flash chromatography; however,
the yields of products that were very difficult to quantitatively isolate either due to visualization
difficulty or volatility were determined using Quantitative 'H NMR using TMS-Ph or 1-

methylnapthalene as an internal standard.
CuOTf Comparison Procedure

In an inert-atmosphere glovebox, CuOTf was weighed into a vial and dissolved in Et20. This
was transferred to a quartz vessel containing a solution of diene substrate under N2. This
solution was diluted to 0.025 M and prestirred for 15 min. The reaction was then fit with a water-
recirculating coldfinger and irradiated at 254 nm in a Rayonet photoreactor for the indicated

time. Workup is identical to the general procedure above.

oTes tert-Butyl((1,5-dimethylbicyclo[3.2.0]heptan-2-yl)oxy)dimethylsilane  (3.18).

\ Prepared according to the general procedure with 3.17 (0.2 mmol, 50.9 mg),
[Cu(COD)CI]2 (0.002 mmol, 0.8 mg), AgSbFs (0.02 mmol, 6.9 mg), and Et20 (8 mL).

Irradiation time = 1 h, NMR yield (94%, 0.188 mmol, 5:1 dr), internal standard (17.0 mg TMS-
Ph). Purification on silica gel (20:1 pentanes:CH2Cl2, I2 stain) afforded product for

characterization as a clear oil.

Prepared according to CuOTf comparison procedure with 3.17 (0.2 mmol, 50.9 mg), [CuOTf]2
CesHs (0.002 mmol, 1 mg), and Et20 (8 mL). Experiment 1, Irradiation time = 1 h, NMR vyield
(28%, 0.056 mmol, 5:1 dr), internal standard (18.5 mg TMS-Ph). Experiment 2, Irradiation time
= 18 h, NMR vyield (44%, 0.088 mmol, 5:1 dr), internal standard (19.9 mg TMS-Ph). 'H NMR
(500 MHz, Chloroform-d) & 3.59 (t, J = 8.3 Hz, 1H), 2.04 (ddd, J = 12.6, 10.4, 6.8 Hz, 1H), 1.80

(dtd, J=9.2, 5.1, 4.6, 2.7 Hz, 2H), 1.68 (tdd, J = 11.8, 6.9, 1.1 Hz, 1H), 1.54 (ddd, J = 11.9, 10.4,
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6.3 Hz, 1H), 1.45—-1.40 (m, 1H), 1.33-1.17 (m, 2H), 0.98 (d, J = 0.9 Hz, 6H), 0.88 (s, 9H), 0.03
(s, 3H), 0.01 (s, 3H). 13C NMR (126 MHz, CDCls) 5 81.0, 46.9, 43.1, 36.7, 32.4, 29.6, 25.7, 23.3,
21.5,20.7, 18.1, -4.31, -4.80. HRMS (EI) calculated for [C1sH300Si + H]* requires m/z 255.2139,

found m/z 255.2137.

omes ((Bicyclo[3.2.0]heptan-1-yl)methoxy)(tert-butyl)dimethylsilane (3.14). Prepared
according to the general procedure with 3.13 (0.2 mmol, 48.0 mg), [Cu(COD)CI]z

H (0.002 mmol, 0.8 mg), AgSbFs (0.02 mmol, 6.9 mg), and Et20 (8 mL). Irradiation time
= 30 min, NMR yield (95%, 0.19 mmol), internal standard (17.7 mg TMS-Ph). Purification on
silica gel (20:1 pentanes:CH2Clz, Iz stain) afforded product for characterization as a clear oil. *H
NMR (500 MHz, Chloroform-d) & 3.54 (d, J = 9.8 Hz, 1H), 3.48 (d, J = 9.8 Hz, 1H), 2.46 — 2.38
(m, 1H), 2.06 — 1.89 (m, 3H), 1.81 (dddd, J = 12.3, 7.5, 5.0, 2.4 Hz, 1H), 1.55 — 1.44 (m, 3H),
1.39 — 1.25 (m, 4H), 0.91 (s, 9H), 0.05 (s, 6H). 13C NMR (126 MHz, CDCls) & 68.7, 50.5, 39.2,
35.7,33.4,25.9, 25.6, 21.1, 18.3, -5.4, -5.4. HRMS (EI) calculated for [C14H280Si + H]* requires

m/z 241.1982, found m/z 241.1981.

Scale-up: Prepared according to the general procedure in a 500 mL quartz round bottom
instead of tube. S1 (4.16 mmol, 1.0 g), [Cu(COD)CI]2 (0.042 mmol, 17.4 mg), AgSbFs (0.21
mmol, 72.2 mg), and Et2O (166 mL). Irradiation time = 5 h. Purification on silica gel (20:1

pentanes:CH2Cl2) afforded 887.4 mg of product (3.7 mmol, 89%) as a clear oil.

Comparison: Prepared according to CuOTf comparison procedure with 3.13 (0.2 mmol, 50.9
mg), [CuOTf]2 CsHs (0.002 mmol, 1 mg), and Et20 (8 mL). Irradiation time = 30 min, NMR yield

(39%, 0.078 mmol), internal standard (16.8 mg TMS-Ph).

oes tert-Butyldimethyl((5-methylbicyclo[3.2.0]heptan-2-yl)oxy)silane (3.129).
H <

EI:> Prepared according to the general procedure with S1 (0.2 mmol, 48.0 mg),

[Cu(COD)CI]2 (0.002 mmol, 0.8 mg), AgSbFe (0.02 mmol, 6.9 mg), and Et20 (8 mL).
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Irradiation time = 30 min, NMR yield (94%, 0.188 mmol, >20:1 dr), internal standard (17.0 mg
TMS-Ph). Purification on silica gel (20:1 pentanes:CH2Cl2, I2 stain) afforded product for
characterization as a clear oil. *H NMR (500 MHz, Chloroform-d) & 4.18 (dt, J = 10.1, 6.8 Hz,
1H), 2.17 (dg, J = 9.6, 5.9, 5.0 Hz, 1H), 1.96 (m, 1H), 1.91 — 1.85 (m, 2H), 1.80 — 1.65 (m, 3H),
1.40 (dd, J = 12.7, 6.5 Hz, 1H), 1.23 (td, J = 12.9, 6.3 Hz, 1H), 1.15 (s, 3H), 0.87 (s, 9H), 0.02
(s, 3H), -0.01 (s, 3H). 3C NMR (126 MHz, CDCls) & 75.0, 46.6, 43.1, 37.1, 33.8, 31.3, 27.3,
25.9, 18.2, 12.4, -4.8. HRMS (EI) calculated for [C14H280Si + H]" requires m/z 241.1982, found

m/z 241.1983.

Comparison: Prepared according to CuOTf comparison procedure with S1 (0.2 mmol, 48 mg),
[CuOTf]2 CsHs (0.002 mmol, 1 mg), and Et20 (8 mL). Irradiation time = 30 min, NMR yield (45%,

0.09 mmol), internal standard (10 pyL of 1-methylnapthalene).

otes tert-Butyldimethyl((1-methylbicyclo[3.2.0]heptan-2-yl)oxy)silane (3.20).
\ Prepared according to the general procedure with S2 (0.2 mmol, 48 mg),

[Cu(COD)CI]2 (0.002 mmol, 0.8 mg), AgSbFs (0.02 mmol, 6.9 mg), and Et20 (8
mL). Irradiation time = 30 min, NMR yield (91%, 0.182 mmol, 7:1 dr), internal standard (23.3 mg
TMS-Ph). Purification on silica gel (20:1 pentanes:CH2Clz, 2 stain) afforded product for
characterization as a clear oil. *H NMR (500 MHz, Chloroform-d) & 3.62 (dd, J = 10.0, 6.2 Hz,
1H), 2.22 — 2.08 (m, 3H), 1.95 — 1.87 (m, 1H), 1.87 — 1.81 (m, 1H), 1.59 (tt, J = 13.2, 6.7 Hz,
1H), 1.40 — 1.28 (m, 3H), 1.13 (s, 3H), 0.87 (s, 9H), 0.03 (s, 3H), 0.01 (s, 3H).13C NMR (126
MHz, CDCI3) & 80.9, 46.2, 41.4, 33.4, 28.5, 25.9, 24.9, 23.4, 21.3, 18.1, -4.4, -4.8. HRMS (EI)

calculated for [C14H280Si + H]* requires m/z 241.1982, found m/z 241.1980.

Comparison: Prepared according to CuOTf comparison procedure with S2 (0.2 mmol, 48 mg),
[CuOTf]2 CsHs (0.002 mmol, 1 mg), and Et20 (8 mL). Irradiation time = 30 min, NMR yield (17%,

0.03 mmol), internal standard (10 yL of 1-methylnapthalene).



107

L oTBS ((Bicyclo[3.2.0]heptan-2-yl)oxy)(tert-butyl)dimethylsilane (3.21). Prepared

X according to the general procedure with S3 (0.2 mmol, 45.3 mg), [Cu(COD)CI]2

H (0.002 mmol, 0.8 mg), AgSbFs (0.02 mmol, 6.9 mg), and Et20 (8 mL). Irradiation
time = 1 h, NMR yield (89%, 0.178 mmol, 20:1 dr), internal standard (15.8 mg TMS-Ph).
Purification on silica gel (20:1 pentanes:CH2Clz, |2 stain) afforded product for characterization
as a clear oil. *H NMR (500 MHz, Chloroform-d) d 4.13 (dt, J = 10.1, 6.4 Hz, 1H), 2.62 (dtd, J =
8.8, 4.5, 2.1 Hz, 2H), 2.29 — 2.18 (m, 1H), 2.05 — 1.91 (m, 2H), 1.89 — 1.74 (m, 2H), 1.60 — 1.43
(m, 2H), 1.39 (dd, J = 12.9, 6.7 Hz, 1H), 0.88 (s, 9H), 0.03 (s, 3H), -0.00 (s, 3H). 3C NMR (126
MHz, CDCI3) 6 75.6, 40.8, 36.1, 32.1, 29.6, 25.9, 24.9, 18.2, 16.2, -4.8. HRMS (EI) calculated

for [C13H260Si + H]* requires m/z 227.1826, found m/z 227.1823.

Comparison: Prepared according to CuOTf comparison procedure with S3 (0.2 mmol, 45 mg),
[CuOTf]2 CsHs (0.002 mmol, 1 mg), and Et20 (8 mL). Irradiation time = 30 min, NMR yield (85%,

0.17 mmol), internal standard (10 pL of 1-methylnapthalene).

H Dimethyl-6,6,7,7-tetramethylbicyclo[3.2.0]heptane-3,3-dicarboxylate
““j. I: LO:Me

oMo (3.22). Prepared according to the general procedure with S4 (0.2 mmol, 53.6
2

< H

mg), [Cu(COD)CI]z (0.002 mmol, 0.8 mg), AgSbFs (0.02 mmol, 6.9 mg), and
Et20 (4 mL). Irradiation time = 6 h, NMR yield (42%, 0.084 mmol), internal standard (16.8 mg
TMS-Ph). Note: 0.05 M instead of 0.025 M. Purification on silica gel (100% CH2Clz, |2 stain)
afforded product for characterization as a clear oil. *H NMR (500 MHz, Chloroform-d) & 3.73 (s,
3H), 3.70 (s, 3H), 2.41 — 2.27 (m, 4H), 2.14 (dd, J = 13.1, 4.8 Hz, 2H), 1.00 (s, 6H), 0.88 (s, 6H).
13C NMR (126 MHz, CDCls) 6 173.0, 172.5, 64.3, 52.6, 52.5, 45.5, 37.4, 35.3, 27.1, 21.7. HRMS

(El) calculated for [C11H1604 + H]" requires m/z 269.1747, found m/z 269.1742.
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Comparison: Prepared according to CuOTf comparison procedure with S4 (0.2 mmol, 53.6
mg), [CuOTf]2 CeHe (0.002 mmol, 1 mg), and Et20 (4 mL). Irradiation time = 30 min, NMR yield

(4 %, 0.007 mmol), internal standard (16.6 mg TMS-Ph).

H outne Dimethyl-bicyclo[3.2.0]heptane-3,3-dicarboxylate (3.23) Prepared according
I:li>{COZMe to the general procedure with S5 (0.3 mmol, 63.7 mg), [Cu(COD)CI]2 (0.003

" mmol, 1.3 mg), AgSbFs (0.03 mmol, 10.3 mg), and Et20 (12 mL). Irradiation time
=1 h, NMR yield (90%, 0.27 mmol), internal standard (16.8 mg TMS-Ph). Purification on silica
gel (20:1 pentanes: Et20, |2 stain) afforded product for characterization as a clear oil. *H NMR
(500 MHz, Chloroform-d) & 3.77 (d, J = 0.8 Hz, 3H), 3.70 (d, J = 0.8 Hz, 3H), 2.83 (dp, J = 7.6,
3.7 Hz, 2H), 2.43 — 2.37 (m, 2H), 2.32 (dd, J = 13.3, 3.0 Hz, 2H), 2.20 — 2.12 (m, 2H), 1.60
(dddd, J = 8.7, 6.4, 4.7, 2.0 Hz, 2H). 3C NMR (126 MHz, CDCls) & 173.0, 172.9, 63.8, 52.7,
52.5, 41.7, 38.6, 24.3. HRMS (ElI) calculated for [C11H1604 + H]" requires m/z 213.1121, found

m/z 213.1120.

Comparison: Prepared according to CuOTf comparison procedure with S5 (0.2 mmol, 43 mg),
[CuOTf]2 CsHs (0.002 mmol, 1 mg), and Et20 (8 mL). Irradiation time = 30 min, NMR yield (51%,

0.1 mmol), internal standard (10 pL of 1-methylnapthalene).

H ?\\\OH (1S,2R,5S5)-2,6,6-Trimethylbicyclo[3.2.0]heptan-2-ol (3.24). Prepared

according to the general procedure with L-linalool (0.75 mmol, 115.7 mg),

<

H
[Cu(COD)Cl]2 (0.0075 mmol, 3.1 mg), AgSbFs (0.075 mmol, 25.8 mg), and Et20

(30 mL). Irradiation time = 5 h. Purification on silica gel (4:1 pentanes: Et2O, KMnO4 stain)
afforded 55 mg of product (0.51 mmol, 68%) as a white crystalline solid, giving a full spectral
match with the previous report.? HRMS (El) calculated for [C10H180 + H]* requires m/z

155.1430, found m/z 155.1428.
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2,6-Dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.2.0]heptan-2-ol

(3.25). Prepared according to the general procedure with nerolidol (0.3

mmol, 66.7 mg), [Cu(COD)CI]2 (0.003 mmol, 1.3 mg), AgSbFs (0.03
mmol, 10.3 mg), and Et2O (12 mL). Irradiation time = 3 h. Purification on silica gel (4:1 pentanes:
Et20, KMnOg stain) afforded 55 mg of product (0.25 mmol, 82%, 1:1 dr) as a yellow oil. Mixture
of diastereomers matched previously reported spectra®? and were not separated. HRMS (El)

calculated for [C15H260 + H]* requires m/z 223.2056, found m/z 223.2052.

Prepared according to CuOTf comparison procedure with nerolidol (0.3 mmol, 66.7 mg),
[CuOTf]2 CeHs (0.003 mmol, 1.5 mg), and Et20 (12 mL). Irradiation time = 3 hr NMR yield (28%,

0.084 mmol, 1:1 dr), internal standard (18.3 mg TMS-Ph).

o 2a-Methyloctahydro-2H-cyclobuta[cd]benzofuran (3.26). Prepared according to
the general procedure with S6 (0.3 mmol, 45.7 mg), [Cu(COD)CI]z2 (1 mol%, 0.003

mmol, 1.3 mg), AgSbFe (10 mol% 0.03 mmol, 10.3 mg), and Et2O (12 mL). Irradiation time = 8
h, NMR vyield (48%, 0.14 mmol), internal standard (15.9 mg TMS-Ph). Purification on silica gel
(4:1 pentanes:Et20, I2 stain) afforded product for characterization as a clear oil. *H NMR (500
MHz, Chloroform-d) & 4.05 (dt, J = 6.5, 2.9 Hz, 1H), 3.63 (d, J = 8.6 Hz, 1H), 3.23 (d, J = 8.6 Hz,
1H), 2.45 (dddd, J = 11.6, 9.9, 6.5, 1.7 Hz, 1H), 2.09 (td, J = 7.8, 3.1 Hz, 1H), 2.02 — 1.93 (m,
2H), 1.92 — 1.83 (m, 1H), 1.62 (ddd, J = 11.3, 10.1, 3.1 Hz, 1H), 1.46 — 1.26 (m, 4H), 1.24 (s,
3H). 13C NMR (126 MHz, CDCIlz) d 78.6, 76.5, 43.8, 43.2, 31.9, 27.5, 26.2, 23.0, 20.0, 14.3.

HRMS (EI) calculated for [C10H160 + H]* requires m/z 153.1274, found m/z 153.1273.

Comparison: Prepared according to CuOTf comparison procedure with S6 (0.3 mmol, 45.7
mg), [CuOTf]2 CeHe (0.003 mmol, 1.5 mg), and Et20 (12 mL). Irradiation time = 8 hr, NMR yield

(16%, 0.048 mmol), internal standard (15.7 mg TMS-Ph).
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o M (3-Oxabicyclo[3.2.0]heptan-6-yl)methanol (3.27). Prepared according to the
//l:Ii>0 general procedure with 3.41 (0.3 mmol, 38.5 mg), [Cu(COD)CI]2 (0.003 mmol,

1.3 mg), AgSbFe (0.03 mmol, 10.3 mg), and Et20 (12 mL). Irradiation time = 1

h. Purification on silica gel (100 % Et-0O, KMnOa4 stain) afforded 32.5 mg of product (0.252 mmol,
84 %, 1.4:1 dr) as a yellow oil. Diastereomers were separated on silica gel (4:1
pentanes:acetone) with the major diastereomer eluting first. Major Diastereomer: *H NMR (500
MHz, Chloroform-d) & 4.16 (d, J = 10.1 Hz, 1H), 3.80 (d, J = 9.1 Hz, 1H), 3.70 — 3.62 (m, 2H),
3.41 (dt, J=10.1, 6.3 Hz, 2H), 3.01 (g, J = 7.7 Hz, 1H), 2.91 (tt, J = 8.1, 5.4 Hz, 1H), 2.63 — 2.53
(m, 1H), 2.24 (dddd, J = 12.3, 10.4, 8.7, 1.5 Hz, 1H), 1.77 (s, 1H), 1.49 (ddd, J = 12.9, 7.4, 6.0
Hz, 1H). 13C NMR (126 MHz, CDCls) & 74.2, 69.2, 62.4, 39.8, 35.7, 33.8, 26.4. Minor
Diastereomer: *H NMR (500 MHz, Chloroform-d) & 3.88 (dd, J = 12.5, 9.2 Hz, 2H), 3.66 (tt, J =
10.8, 7.9 Hz, 2H), 3.50 (ddd, J = 9.1, 5.4, 3.4 Hz, 2H), 2.86 (ddd, J = 13.4, 8.3, 5.3 Hz, 1H), 2.68
(dt, J = 8.5, 5.0 Hz, 1H), 2.20 — 2.11 (m, 1H), 1.88 — 1.75 (m, 2H), 1.32 (s, 1H). 13C NMR (126
MHz, CDCls) 6 74.5, 74.0, 66.8, 41.7, 39.1, 35.8, 26.4. HRMS (EI) calculated for [C7H1202 + H]*

requires m/z 129.0910, found m/z 129.0910.

Comparison: Prepared according to CuOTf comparison procedure with 3.41 (0.2 mmol, 25.6
mg), [CuOTf]2 CeHes (0.002 mmol, 1.0 mg), and Et20 (8 mL). Irradiation time = 1 h, NMR yield

(62%, 0.12 mmol), internal standard (19.6 mg TMS-Ph).

Ethyl 3-azabicyclo[3.2.0]heptane-3-carboxylate (3.28). Prepared according

m¢

OEt

0.0075 mmol, 3.1 mg), AgSbFe (25 mol% 0.075 mmol, 25.8 mg), and Et20 (12 mL). Irradiation

to the general procedure with S7 (0.3 mmol, 50.8 mg), [Cu(COD)CI]z (2.5 mol%,

time = 20 hr, NMR yield (74%, 0.22 mmol), internal standard (19.2 mg TMS-Ph). *H NMR (500
MHz, Chloroform-d) 6 4.15 (q, J = 7.1 Hz, 2H), 3.56 (d, J = 32.5 Hz, 2H), 3.27 (s, 2H), 2.90 (dt,
J =8.4, 4.5 Hz, 2H), 2.18 (ddd, J = 8.8, 6.0, 3.3 Hz, 2H), 1.71 (dqg, J = 10.8, 7.0, 6.2 Hz, 2H),

1.27 (t, J = 7.1 Hz, 3H). 3C NMR (126 MHz, Chloroform-d) & 155.9, 60.9, 53.0 (d, J = 35.4 Hz),
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37.6 (d, J = 117.5 Hz), 24.6, 14.9. HRMS (EI) calculated for [CoH1sNO2 + H]* requires m/z

170.1176, found m/z 170.1175.

Comparison: Prepared according to CuOTf comparison procedure with S7 (0.2 mmol, 33.8
mg), [CuOTf]2 CeHs (0.005 mmol, 2.5 mg), and Et20 (8 mL). Irradiation time = 20 h, NMR vyield

(23%, 0.046 mmol), internal standard (19.2 mg TMS-Ph).

5 Ethyl-1-methyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (3.29). Prepared
qi)%oa according to the general procedure with S8 (0.2 mmol, 37 mg), [Cu(cod)Cl]2 (2.5
mol%, 0.0075 mmol, 3.1 mg), AgSbFes (10 mol% 0.02 mmol, 25.8 mg), and Et20 (12 mL).
Irradiation time = 20 h, NMR vyield (97%, 0.19 mmol), internal standard (10 upL of 1-
methylnapthalene). *H NMR (500 MHz, Chloroform-d) & 4.16 (q, J = 7.1 Hz, 2H), 3.72 — 3.47
(m, 2H), 3.37 (d, J = 9.7 Hz, 1H), 2.97 (d, J = 14.1 Hz, 1H), 2.40 (g, J = 7.0 Hz, 1H), 2.15 (dddd,
J=12.1,10.4, 8.5, 6.6 Hz, 1H), 1.94 (g, J = 10.2, 9.8 Hz, 1H), 1.86 — 1.78 (m, 1H), 1.59 (dp, J
=11.3, 5.4 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.24 (s, 3H). 3C NMR (126 MHz, CDCl3) & 155.6,
60.9, 59.1 (d, J = 30.97 Hz), 53.0 (d, J = 40.67 Hz), 44.9 (d, J = 121.7 HZ), 43.1 (d, J = 123.11Hz),
30.8, 24.1, 21.3, 14.8.HRMS (ElI) calculated for [C10H17NO2 + H]* requires m/z 184.1332, found

m/z 184.1332.

tert-Butyl 3-azabicyclo[3.2.0]heptane-3-carboxylate (3.30). Prepared
ECN%OBU according to the general procedure with S9 (0.3 mmol, 59.1 mg), [Cu(COD)Cl]2
(2.5 mol%, 0.0075 mmol, 3.1 mg), AgSbFs (25 mol% 0.075 mmol, 25.8 mg), and Et20 (12 mL).
Irradiation time = 20 h, NMR yield (64%, 0.19 mmol), internal standard (17.1 mg TMS-Ph). H
NMR (500 MHz, Chloroform-d) & 3.53 (d, J = 39.5 Hz, 2H), 3.24 (s, 1H), 2.88 (p, J = 3.2 Hz, 2H),
2.18 (it, J = 6.2, 3.4 Hz, 2H), 1.72 (m, 2H), 1.49 (s, 9H). 13C NMR (126 MHz, CDCls) & 155.4,
79.1, 53.1, 52.8, 38.1, 37.2, 28.6, 24.6. HRMS (EI) calculated for [C11H19NO2 + H]* requires m/z

198.1489, found m/z 198.1487.
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H o (Bicyclo[3.2.0]heptane-3,3-diyl)dimethanol (3.31) . Prepared according to
o the general procedure with S10 (0.3 mmol, 46.9 mg), [Cu(COD)CI]2 (0.003
mmol, 3.1 mg), AgSbFs (0.03 mmol, 25.7 mg), and Et2O (12 mL). Irradiation

time = 7 h, NMR vyield (86%, 0.258 mmol), internal standard (18.1 mg TMS-Ph). 'H NMR (500
MHz, Chloroform-d) & 3.84 (d, J = 4.0 Hz, 2H), 3.46 (d, J = 4.3 Hz, 2H), 2.73 (ddd, J = 10.6, 5.3,
3.1 Hz, 2H), 2.33 — 2.14 (m, 4H), 1.95 — 1.85 (m, 2H), 1.67 — 1.60 (m, 2H), 1.48 — 1.38 (m, 2H).
13C NMR (126 MHz, CDCI3) d 71.9, 69.3, 54.3, 39.7, 38.2, 26.0. HRMS (EI) calculated for

[CoH1602 + H]* requires m/z 157.1223 , found m/z 157.1224.

9y Dispiro[bicyclo[3.2.0]heptane-3,5'-[1,3]dioxane-2',1"-cyclohexane]
I:Ii>i:><:> (3.32). Prepared according to the general procedure with S11 (0.3 mmol,

; 70.9 mg), [Cu(COD)CI]2 (0.003 mmol, 1.3 mg), AgSbFs (0.03 mmol, 10.3
mg), and Et20 (12 mL). Irradiation time = 1 h, NMR yield (93%, 0.279 mmol), internal standard
(16.7 mg TMS-Ph). Purification on silica gel (20:1 pentanes:Et20, Iz stain) afforded product for
characterization as a clear oil. *H NMR (500 MHz, Chloroform-d) & 3.85 (s, 2H), 3.46 (s, 2H),
2.78 — 2.66 (m, 2H), 2.22 (dg, J = 10.0, 6.1 Hz, 2H), 1.96 — 1.84 (m, 2H), 1.76 (t, J = 6.0 Hz,
4H), 1.67 — 1.55 (m, 2H), 1.55 — 1.45 (m, 6H), 1.41 (p, J = 5.9 Hz, 2H). 13C NMR (126 MHz,
CDCl3) 6 97.8, 68.8, 68.0, 47.4, 41.6, 38.0, 32.7, 25.9, 22.6. HRMS (EI) calculated for [C15H2402

+ H]* requires m/z 237.1849 , found m/z 237.1847.

Dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[3.2.0]

BPin
\\COQMG
m\ heptane-3,3-dicarboxylate (3.33). Prepared according to the general

CO,Me

" procedure with S12 (0.3 mmol, 63.7 mg), [Cu(COD)CI]2 (0.003 mmol, 1.3

mg), AgSbFs (0.03 mmol, 10.3 mg), and Et2O (12 mL). Irradiation time = 2 h. Purification on
boron doped silica gel (4:1 pentanes: Et20) afforded 77.9 mg of product (0.23 mmol, 76%, 2.5:1

dr) as a yellow oil. Separation of diastereomers was performed on CombiFlash Rf 200 equipped
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with 340CF ELSD detector (Teledyne Isco). The first round of purification was performed on a
silica 24 g gold column with a gradient of 0—20% hexane/EtOAc to afford the pure major isomer.
The semi-pure minor obtained was further purified on a silica 12g gold column with a gradient
of 0-15% hexane/EtOAc to get the pure minor diastereomer. Note under these conditions the
minor diastereomer elutes first. Major Diastereomer: *H NMR (400 MHz, Chloroform-d) & 3.76
(s, 3H), 3.70 (s, 3H), 2.83 (m, 2H), 2.45 (dd, J = 13.8, 7.5 Hz, 1H), 2.39 — 2.33 (m, 3H), 2.21 —
2.08 (m, 1H), 1.75 (ddd, J = 12.2, 10.7, 4.0 Hz, 1H), 1.48 (ddd, J = 10.9, 7.3, 4.7 Hz, 1H), 1.25
(s, 12H). 3C NMR (126 MHz, CDCls) & 173.0, 172.8, 83.1, 63.5, 52.7, 52.6, 42.5, 41.7, 39.9,
38.2,25.9, 24.7. 1B NMR (128 MHz, CDClI3) & 34.3. Minor Diastereomer: *H NMR (400 MHz,
Chloroform-d) & 3.73 (s, 3H), 3.68 (s, 3H), 2.85 (tdd, J = 16.5, 8.4, 6.2 Hz, 2H), 2.57 — 2.46 (m,
2H), 2.41 (dd, J = 13.8, 7.6 Hz, 1H), 2.35 — 2.25 (m, 1H), 2.09 — 1.97 (m, 2H), 1.80 (ddd, J =
11.8, 9.3, 6.1 Hz, 1H), 1.26 (d, J = 3.4 Hz, 12H). 3C NMR (126 MHz, CDCl3) 5 172.7, 172.4,
83.2, 76.8, 64.3, 52.6, 52.5, 41.7, 40.0, 39.3, 38.5, 28.0, 25., 24.9. B NMR (128 MHz, CDClz3)

0 33.1. HRMS (ElI) calculated for [C17H27BOs + H]* requires m/z 339.1974, found m/z 339.1973.

piv Bicyclo[3.2.0]heptan-2-yl pivalate (3.34). Prepared according to the general

e)

H

procedure with S13 (0.6 mmol, 117.7 mg), [Cu(COD)CI]2 (0.006 mmol, 2.5 mg),

g

AgSbFs (0.06 mmol, 20.6 mg), and Et20 (24 mL). Irradiation time = 4 h. Purification
on silica gel (25:1 pentanes: Et2O, KMnOa4 stain) afforded 113.7 mg of product (0.51 mmol, 85%)
as a yellow oil. *H NMR (500 MHz, Chloroform-d) 6 4.93 (q, J = 7.8 Hz, 1H), 2.97 — 2.89 (m,
1H), 2.77 — 2.67 (m, 1H), 2.32 — 2.22 (m, 1H), 2.11 — 2.04 (m, 2H), 1.93 — 1.80 (m, 2H), 1.70 —
1.59 (m, 1H), 1.53 (dddt, J = 17.3, 12.8, 8.5, 4.8 Hz, 2H), 1.19 (s, 9H). 13C NMR (126 MHz,
CDCIl3) 6 178.4, 77.1, 38.8, 38.5, 36.1, 29.6, 28.7, 27.2, 24.7, 16.3. HRMS (EI) calculated for

[C12H2002 + H]* requires m/z 197.1536, found m/z 197.1536.
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y OTES
I:: ((Bicyclo[3.2.0]heptan-2-yl)oxy)triethylsilane (3.35). Prepared according to the

h! general procedure with S14 (0.2 mmol, 45 mg), [Cu(COD)CIl]2 (0.002 mmol, 1 mg),
AgSbFs (0.005mmol, 45 mg), and Et20 (8 mL). Irradiation time = 1 h. NMR yield (80%, 2:1 d.r.,
0.279 mmol), internal standard (10 uL of 1-methylnapthalene). Purification on silica gel (20:1
pentanes:CH2Cl2, 12 stain) afforded product for characterization as a clear oil. Major
Diastereomer *H NMR (500 MHz, Chloroform-d)  4.13 (dt, J = 10.2, 6.4 Hz, 1H), 2.68 — 2.55
(m, 2H), 2.30 — 2.16 (M, 1H), 2.07 — 1.93 (m, 2H), 1.91 — 1.75 (m, 2H), 1.61 — 1.42 (m, 2H), 1.39
(dd, J = 13.0, 6.7 Hz, 1H), 0.94 (t, J = 7.9 Hz, 9H), 0.56 (qd, J = 7.9, 2.2 Hz, 6H). 3C NMR (126
MHz, CDCls) & 75.4, 40.8, 36.1, 32.0, 29.6, 24.9, 16.3, 6.8, 4.8. HRMS (El) calculated for
[C13H260Si + H]* requires m/z 227.1826, found m/z 227.1825. Purification of minor diastereomer
away from the mixed proved to be challenging, and only the major diastereomer was fully

characterized.

OMOM
HI :: 2-(Methoxymethoxy)bicyclo[3.2.0]heptane (3.36). Prepared according to the

. general procedure with S15 (0.3 mmol, 47 mg), [Cu(COD)CI]2 (0.003 mmol, 1.2
mg), AgSbFe (0.03 mmol, 10.3 mg), and Et20 (12 mL). Irradiation time = 3 h. NMR yield (77%,
6:1 d.r., 0.279 mmol), internal standard (10 yL of 1-methylnapthalene). Purification on silica gel
(20:1 pentanes:Et20, Iz stain) afforded product for characterization as a clear oil. *H NMR (500
MHz, Chloroform-d) & 4.62 (d, J = 6.6 Hz, 1H), 4.57 (d, J = 6.6 Hz, 1H), 4.01 (dt, J = 9.7, 7.1 Hz,
1H), 3.35 (s, 3H), 2.87 — 2.78 (m, 1H), 2.72 — 2.64 (m, 1H), 2.33 — 2.21 (m, 1H), 2.09 — 1.84 (m,
4H), 1.64 — 1.42 (m, 4H). 3C NMR (126 MHz, CDCIs) & 95.8, 80.2, 55.3, 38.6, 35.9, 29.5, 29.3,

24.9, 16.5. HRMS (EI) calculated for [CoH1602 + H]* requires m/z 157.1223, found m/z 157.1224.
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N Allyl-(bicyclo[3.2.0]heptan-2-yl) carbonate (3.37). Prepared according to the

0HJ< general procedure with S16 (0.6 mmol, 117.6 mg), [Cu(COD)CI]2 (0.006 mmol, 2.5

/,O

mg), AgSbFs (0.06 mmol, 20.6 mg), and Et2O (24 mL). Irradiation time = 4 h,

g

Purification on silica gel (25:1 pentanes: Et2O, KMnOa4 stain) afforded 100.2 mg of
product (0.51 mmol, 85%) as a clear oil. *H NMR (500 MHz, Chloroform-d) & 5.94 (ddt, J = 16.5,
10.2, 5.7 Hz, 1H), 5.35 (dq, J = 17.2, 1.5 Hz, 1H), 5.26 (dq, J = 10.4, 1.3 Hz, 1H), 4.91 (dt, J =
9.1, 7.5 Hz, 1H), 4.61 (dd, J = 5.7, 1.5 Hz, 2H), 2.96 (p, J = 7.1 Hz, 1H), 2.72 (ddd, J = 11.5, 9.4,
5.7 Hz, 1H), 2.29 (dq, J = 12.6, 9.2 Hz, 1H), 2.16 (ddd, J = 11.3, 9.2, 5.4 Hz, 2H), 1.93 (td, J =
9.1, 8.5, 7.1 Hz, 2H), 1.66 (tt, J = 12.1, 7.5 Hz, 1H), 1.60 — 1.49 (m, 2H). 13C NMR (126 MHz,
CDCls) & 154.8, 131.7, 118.8, 81.0, 68.2, 38.3, 35.9, 29.5, 28.6, 24.6, 16.4. HRMS (El)

calculated for [C11H1603 + H]* requires m/z 197.1172, found m/z 197.1171.

o8 2-(Benzyloxy)bicyclo[3.2.0]heptane (3.38). Prepared according to the general
H n

procedure with S17 (0.3 mmol, 61.3 mg), [Cu(COD)Cl]2 (0.003 mmol, 1.3 mg),

H AgSbFs ( 0.03 mmol, 10.3 mg), and Et20 (12 mL). Irradiation time = 5 h, NMR yield
(65%, 0.188 mmol), internal standard (19.2 mg TMS-Ph). Purification on silica gel (20:1
pentanes:CH2Clz, |2 stain) afforded product for characterization as a clear oil. *H NMR (500
MHz, Chloroform-d) 6 7.37 — 7.30 (m, 4H), 7.30 — 7.23 (m, 1H), 4.39 (q, J = 11.7 Hz, 2H), 3.91
(dt, J = 10.1, 6.9 Hz, 1H), 2.84 (ddd, J = 12.1, 9.7, 5.9 Hz, 1H), 2.73 — 2.65 (m, 1H), 2.27 (tdd, J
=11.8, 9.3, 6.7 Hz, 1H), 2.09-1.99 (m, 3H), 1.88 (tdd, J = 11.9, 9.1, 6.2 Hz, 1H), 1.61 — 1.48 (m,
2H), 1.48 — 1.41 (m, 1H). 13C NMR (126 MHz, CDCls) 5 138.9, 128.3, 127.7, 127.4, 81.8, 71.4,
38.1, 36.1, 29.6, 29.4, 24.8, 16.0. HRMS (El) calculated for [C14H180 + H]* requires m/z

203.1430, found m/z 203.1428.

Comparison: Prepared according to CuOTf comparison procedure with S15 (0.3 mmol, 61.3
mg), [CuOTf]2 CseHs (0.003 mmol, 1.5 mg), and Et20 (12 mL). Irradiation time =5 h, NMR yield

(No product; only alkene-based decomposition products), internal standard (22.9 mg TMS-Ph).
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3.5.4 E/Z Isomerization Study

1 mol% Cu,(Cod),Cl H
O 10 moI%Z/(\ng)FZG ’ HO/\:Ii>
(e} > o)
A 0.025 M Et,0, 254 nm,
1h H
3.39 3.40

1 hr: 84% 2.8:1dr
30 min: 61% 3.4:1 dr RSM: E= 19% Z=9%

Prepared according to the general procedure with 26 (0.2 mmol, 25.6 mg), [Cu(COD)Cl]2 (0.002
mmol, 0.8 mg), AgSbFs (0.02 mmol, 6.9 mg), and Et2O (12 mL). Experiment 1: Irradiation time
=1 h. NMR yield (84%, 0.14 mmol, 2.8:1 dr), internal standard (22.6 mg TMS-Ph). Experiment
2: Irradiation time = 0.5 h. NMR yield (61%, 0.14 mmol, 3.4:1 dr), internal standard (22.6 mg
TMS-Ph). 'H NMR (500 MHz, Chloroform-d). Diastereomers were separated on silica gel (4:1
Pentanes: Acetone) with the major diastereomer eluting second. Major Diastereomer: 'H NMR
(500 MHz, Chloroform-d) & 3.88 (dd, J = 12.5, 9.2 Hz, 2H), 3.66 (tt, J = 10.8, 7.9 Hz, 2H), 3.50
(ddd, J =9.1, 5.4, 3.4 Hz, 2H), 2.86 (ddd, J = 13.4, 8.3, 5.3 Hz, 1H), 2.68 (dt, J = 8.5, 5.0 Hz,
1H), 2.20 — 2.11 (m, 1H), 1.88 — 1.75 (m, 2H), 1.32 (s, 1H). 3C NMR (126 MHz, CDCl3) & 74.5,
74.0, 66.8, 41.7, 39.1, 35.8, 26.4. Minor Diastereomer: 'H NMR (500 MHz, Chloroform-d) &
4.16 (d, J = 10.1 Hz, 1H), 3.80 (d, J = 9.1 Hz, 1H), 3.70 — 3.62 (m, 2H), 3.41 (dt, J = 10.1, 6.3
Hz, 2H), 3.01 (g, J = 7.7 Hz, 1H), 2.91 (tt, J = 8.1, 5.4 Hz, 1H), 2.63 — 2.53 (m, 1H), 2.24 (dddd,
J=12.3,10.4, 8.7, 1.5 Hz, 1H), 1.77 (s, 1H), 1.49 (ddd, J = 12.9, 7.4, 6.0 Hz, 1H). 3C NMR
(126 MHz, CDCl3) 6 74.2, 69.2, 62.4, 39.8, 35.7, 33.8, 26.4. HRMS (EI) calculated for [C7H1202

+ HJ* requires m/z 129.0910, found m/z 129.0910.
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Reaction Progress: Cyclization of 1,4-bis(allyloxy)-cis-2-butene
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3.5.6 Sulcatine G and Perforatol Cores Experimentals

(0]
H
féio 5,5-Dimethyltetrahydro-1H-cyclopentalc]furan-1,3(3aH)-dione (3.46)
Y, ‘o Prepared using previously known procedures via a 4-step protocol from 4,4-
dimethylcyclohexanone involving a Favorskii rearrangement and dehydration of the resulting

diacid. All spectral data matched those previously reported.?*

H 5,5-Dimethylhexahydro-1H-cyclopentalc]furan-1-one (3.47) NaBHs (48.3
(6]
mmol, 1.83g) was dispensed into a flame-dried 250 mL round-bottomed flask

" containing THF (10 mL). The reaction was placed under Nz, cooled to 0 °C, and
treated slowly via syringe with a solution of anhydride 3.46 in THF (40 mL). The reaction was
warmed to rt and stirred under Nz for 6 h. The reaction was then cooled back to 0 °C and treated
dropwise with 6 M HCI (20 mL). Once quenched, the reaction mixture was partially concentrated
in vaccuo, then extracted with Et2O. The extracted organics were washed sequentially with H20,
NaHCOs (aq), and brine. The organics were then dried over MgSOg, filtered, and concentrated
to yield lactone (4.67g, 63%) as a clear yellow oil that was taken on to the next step without
further purification. *H NMR (500 MHz, Chloroform-d) & 4.43 (dd, J = 9.3, 7.1 Hz, 1H), 4.10 (dd,
J=09.3, 2.1 Hz, 1H), 3.11 — 3.01 (m, 2H), 1.93 (ddd, J = 13.3, 9.7, 1.6 Hz, 1H), 1.87 — 1.81 (m,
1H), 1.79 (dd, J = 13.4, 4.8 Hz, 1H), 1.40 (dd, J = 12.8, 7.8 Hz, 1H), 1.08 (s, 3H), 1.00 (s, 3H).
13C NMR (126 MHz, CDClz) d 181.4, 72.7, 47.4, 44.3, 43.7, 41.7, 39.6, 28.3, 28.1. IR (cm™)

2954, 2868, 1758, 1464, 1369, 1306, 1164, 1124. HRMS (EI) calculated for [CoH1402 + H]*

requires m/z 155.1067, found m/z 155.1065.

2-(Hydroxymethyl)-N-methoxy-N,4,4-trimethylcyclopentane-1-

carboxamide (3.48). A solution of 3.47 (4.61g, 30.3mmol) and N,O-

dimethylhydroxylamine hydrochloride (4.73 g, 48.5 mmol) in DCM (150 mL) was

/
0} . .
\ placed under N2 and cooled to 0 °C. The reaction was then treated dropwise
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with 2 M solution i-propylmagnesium chloride in THF (45.5 mL, 53.2 mmol) over approx. 15 min.
The reaction was stirred a further 45 min at rt then quenched with saturated NH4ClI solution,
extracted with CH2Cl2, dried over Na2SOa, filtered and reconstituted to give crude desired
product. Purification on silica gel (1:1 Hexane: EtOAc) afforded 3.48 (5.88g, 90%) as a clear
yellow oil. *H NMR (500 MHz, Chloroform-d) & 3.73 (s, 3H), 3.56-3.48 (m, 3H), 3.21 (s, 3H), 2.88
(t, J = 6.2 Hz, 1H), 2.56 (qt, J = 8.3, 5.0 Hz, 1H), 1.91 (t, J = 11.8 Hz, 1H), 1.59 — 1.52 (m, 2H),
1.14 (s, 3H), 1.01 (s, 3H). 13C NMR (126 MHz, CDCI3) 5 177.2, 63.9,61.7, 44.5, 43.8, 43.0, 41.3,
38.3, 32.4, 29.4, 28.6. HRMS (EI) calculated for [C11H21NO3 + H]* requires m/z 216.1594, found

m/z 216.1593.

2-Formyl-N-methoxy-N,4,4-trimethylcyclopentane-1-carboxamide (3.49).

To a solution of 3.48 (1.09 g, 5.1 mmol) in CH2Cl2 (30 mL) was added pyridine

\ (3.3 mL, 40.5 mmol) followed by addition of Dess—Martin periodinane (2.57g,

O/\ 6.07 mmol) in one portion. The reaction was placed under N2 and stirred for 3 h
at room temperature. The reaction was then concentrated removing all DCM and some pyridine.
Passing through a celite plug with hexanes removed DMP byproducts. Concentration in vaccuo
gave largely clean desired product (995mg, 92%) that was used without further purification due
to this compound’s sensitivity to acid catalyzed epimerization on silica. *H NMR (500 MHz,
Benzene-ds) 8 9.76 (d, J = 2.4 Hz, 1H), 3.51 — 3.42 (m, 1H), 3.03 (s, 3H), 2.81 (s, 3H), 2.72 (q,
J =8.9, 8.3 Hz, 1H), 1.98 — 1.93 (m, 1H), 1.91 (dd, J = 12.9, 10.0 Hz, 1H), 1.55 (dd, J = 12.9,
8.5 Hz, 1H), 1.36 (ddt, J = 12.8, 7.8, 1.2 Hz, 1H), 0.98 (s, 3H), 0.74 (s, 3H). 3C NMR (126 MHz,
CeD6) 0 201.0, 174.5, 128.0, 71.3, 60.4, 52.7, 44.4, 42.8, 41.1, 38.7, 28.7, 28.0. HRMS (El)

calculated for [C11H19NOs3 + H]* requires m/z 214.1438 found m/z 214.1437.



121
2-(1-Hydroxy-2-methylallyl)-N-methoxy-N,4,4-trimethyl-

cyclopentane-1-carboxamide (3.50) A solution of 3.49

(995 mg, 4.7 mmol) in THF (50 mL) was placed under N2,

cooled to 0 °C and treated dropwise over 10 min with 0.5 M

Major

isopropenyl magnesium bromide solution (9.7 mL, 4.9
mmol). The reaction was monitored by TLC until full consumption of aldehyde (approx. 30 min).
Upon completion, the reaction was quenched with saturated NH4Cl solution, extracted with Et20,
dried with MgSO4, filtered and concentrated to give a crude mixture of diastereomers (1.5:1 d.r.).
Purification on silica gel (4:1 Hexane: EtOAc) afforded 3.50 (202.3 mg (17% minor): 323.9 mg
(27% major), Overall 44%) as a clear yellow oil, eluting the desired minor diastereomer first.
Minor Diastereomer *H NMR (500 MHz, Chloroform-d) & 5.02 (dt, J = 2.3, 1.2 Hz, 1H), 4.82
(dt, J = 2.6, 1.4 Hz, 1H), 4.05 (s, 1H), 3.83 (d, J = 2.6 Hz, 1H), 3.73 (s, 3H), 3.61 (td, J = 11.3,
6.9 Hz, 1H), 3.24 (s, 3H), 2.64 (q, J = 10.4 Hz, 1H), 1.89 (t, J = 12.0 Hz, 1H), 1.83 (dd, J = 13.0,
9.2 Hz, 1H), 1.70 — 1.67 (m, 3H), 1.53 (ddd, J = 12.2, 7.1, 1.8 Hz, 1H), 1.34 (ddd, J = 13.0, 8.3,
1.8 Hz, 1H), 1.14 (s, 3H), 0.99 (s, 3H). **C NMR (126 MHz, CDCI3) d 177.5, 145.3, 110.6, 74.1,
61.6, 45.4, 44.4, 41.6, 38.9, 38.2, 32.3, 29.0, 28.3, 20.0. Major Diastereomer *H NMR (500
MHz, Chloroform-d) 6 4.91 (dt, J = 2.0, 0.9 Hz, 1H), 4.81 (p, J = 1.6 Hz, 1H), 4.09 (dd, J = 8.5,
4.9 Hz, 1H), 3.72 (s, 3H), 3.53 (d, J = 9.4 Hz, 1H), 3.16 (s, 3H), 2.65 — 2.54 (m, 2H), 1.86 (dd, J
=12.8, 9.2 Hz, 1H), 1.71 (t, J = 1.2 Hz, 3H), 1.64 (ddd, J = 12.7, 7.9, 1.7 Hz, 1H), 1.54 (t, J =
11.8 Hz, 1H), 1.34 (ddd, J = 12.6, 7.2, 1.7 Hz, 1H), 1.12 (s, 3H), 1.01 (s, 3H). 13C NMR (126
MHz, CDCIlz) 5 177.89, 146.46, 112.64, 76.81, 61.64, 45.30, 45.20, 44.24, 39.64, 38.53, 32.54,
29.32, 28.46, 17.21. IR (cm™) 3431, 2951, 2866, 1770, 1644, 1463, 1445, 1385, 1368, 1328,
1251, 1183, 1117 HRMS (EI) calculated for [C1aH2sNOs + H]* requires m/z 256.1907, found m/z
256.1903. (Note: Trace peaks in the carbon spectra are a result of lactonization of the NMR

sample prior to acquiring 13C)
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Stereochemistry Determination NOE on Cyclized Lactone

2.01%

5,5-Dimethyl-3-(prop-1-en-2-yl)hexahydro-1H-cyclopenta[c]furan-1-one

(S18). !H NMR (500 MHz, Chloroform-d) 6 5.00 (d, J = 1.4 Hz, 1H),

4.88 (d, J = 1.7 Hz, 1H), 4.58 (d, J = 2.9 Hz, 1H), 3.12 (td, J = 9.9, 6.1 Hz, 1H),
2.78 (qd, J = 8.2, 3.0 Hz, 1H), 1.95 — 1.85 (m, 2H), 1.78 (dd, J = 13.4, 6.1 Hz, 1H), 1.74 (t, J =
1.1 Hz, 3H), 1.48 (dd, J = 12.9, 8.1 Hz, 1H), 1.10 (s, 3H), 1.00 (s, 3H). 3C NMR (126 MHz,
CDCls) & 180.8, 143.1, 111.6, 87.6, 47.7, 44.8, 44.4, 43.7, 41.7, 28.2, 28.0, 17.6. HRMS (El)

calculated for [C12H1802 + H]* requires m/z 195.1380, found m/z 195.1380.

TBSO 2-(1-((tert-Butyldimethylsilyl)oxy)-2-methylallyl)-N-methoxy-N,4,4-

trimethyl-cyclopentane-1-carboxamide (3.51) A solution of 3.50 (190.2 mg,

H n— 0.74 mmol) in CH2Cl2 (1.5 mL) was placed under N2, cooled to 0 °C, and treated

\ sequentially with 2,6-lutadine (0.17 mL, 1.49 mmol) then TBSOTf (0.26 mL, 1.12
mmol). The reaction was then warmed to rt and stirred for 30 min. Upon completion, the reaction
was quenched with saturated NaHCOs3, extracted with CH2Clz2, dried with Na2SOa, filtered and
concentrated. Purification on silica gel (9:1 Hexane:EtOAc) afforded 3.51 (204.2 mg, 75%) as a
clear oil. 'H NMR (500 MHz, Chloroform-d) & 4.75 — 4.67 (m, 2H), 4.39 (d, J = 9.6 Hz, 1H), 3.58
(s, 3H), 3.22-3.12 (m, 1H), 2.45 (dtd, J = 12.2, 9.1, 6.7 Hz, 1H), 1.84 (t, J = 12.1 Hz, 1H), 1.76

(ddd, J = 13.2, 9.0, 1.3 Hz, 1H), 1.71 — 1.63 (m, 5H), 1.11 (s, 3H), 1.03 (s, 3H), 0.86 (s, 9H),
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0.05 (s, 3H), -0.02 (s, 3H). 3C NMR (126 MHz, CDCls) 5 177.1, 146.8, 112.8, 78.0, 61.2, 47.0,
46.3, 45.9, 39.4, 38.3, 31.8, 30.2, 30.0, 25.9, 18.2, 16.3, -4.6, -4.8. IR (cm?) 2953,
2930,2897,2858, 1775, 1719, 1662, 1462,1415,1385,1323, 1250,1175, 1108. HRMS (EI)

calculated for [C20H39NOs3Si + H]* requires m/z 370.2772, found m/z 370.2769.

2-(1-((tert-Butyldimethylsilyl)oxy)-2-methylallyl)-4,4-

dimethylcyclopentyl)ethan-1-one (3.52). A solution of 3.51 (400.5 mg, 1.08
mmol) in THF (10 mL) was placed under N2, cooled to 0 °C, and treated dropwise with 3.0 M
methyl magnesium bromide (0.83 mL, 2.49 mmol). The reaction was then warmed to rt and
stirred for 3 h until complete by TLC. Upon completion, the reaction was quenched with saturated
NH4Cl solution , extracted with Et20, dried with MgSOa, filtered and concentrated to afford 3.52
(345.5 mg, 99%) as a clear oil without further purification necessary. 'H NMR (500 MHz,
Chloroform-d) 6 4.73 (dq, J = 2.9, 1.5 Hz, 1H), 4.66 (g, J = 1.1 Hz, 1H), 4.36 (d, J = 9.6 Hz, 1H),
2.85 (td, J = 8.4, 4.4 Hz, 1H), 2.35 (ddt, J = 12.1, 9.6, 7.2 Hz, 1H), 2.00 (s, 3H), 1.83 — 1.72 (m,
2H), 1.69 (dd, J = 1.5, 0.8 Hz, 3H), 1.65 (dd, J = 12.1, 6.9 Hz, 1H), 1.53 (dd, J = 13.4, 4.5 Hz,
1H), 1.05 (s, 3H), 1.02 (s, 3H), 0.86 (s, 9H), 0.05 (s, 3H), -0.02 (s, 3H). 3C NMR (126 MHz,
CDClIs) 6 212.2, 147.2, 113.0, 77.5, 51.6, 47.6, 45.2, 44.9, 38.2, 32.1, 30.8, 30.6, 25.9, 18.2,
16.2, -4.6, -4.8. IR (cm™) 2953, 2929, 2857, 1711, 1462, 1364, 1250, 1118, 1103. HRMS (EI)

calculated for [C19H3602Si+ H]* requires m/z 325.2557, found m/z 325.2555.

tert-Butyl((1-(4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)-2-methylallyl)oxy)

dimethylsilane (3.53). To a suspension of Zn powder (333.5 mg, 5.1 mmol) and
PbCl2 (14.1mg, 0.051 mmol) in degassed THF (2.5 mL) under N2 was added CHal2 (0.21 mL,

2.55 mmol), and the reaction mixture was stirred at rt for 1 h. The reaction was then cooled to 0
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°C and treated with a solution of TiCls (1.0 M in CH2Cl2, 0.51 mL, 0.51 mmol). The reaction was
then warmed to rt and stirred for 2 h. The reaction was again cooled to 0 °C and treated with a
solution of 3.52 (165 mg, 0.51 mmol) in degassed THF (2.5 mL), and the resulting solution was
heated at 50 °C for 1 h. Upon completion, the reaction was quenched with saturated NaHCO3
(6 mL) and filtered through a pad of Celite. To the filtrate was added saturated aqueous Na2S20s3
solution (6 mL), and this mixture was extracted with Et20, dried with MgSOa, filtered and
concentrated. Purification on silica gel (100:1 Pentane: Et20) to afford product (151 mg, 92%)
as a clear oil. *H NMR (500 MHz, Chloroform-d) & 4.79 (d, J = 2.0 Hz, 1H), 4.78 (t, J = 1.8 Hz,
1H), 4.70 (q, J = 1.7 Hz, 2H), 4.05 (d, J = 5.0 Hz, 1H), 2.67 — 2.58 (m, 1H), 2.29 (qd, J = 8.3, 5.0
Hz, 1H), 1.82 (dd, J = 13.0, 7.9 Hz, 1H), 1.76 — 1.71 (s, 3H), 1.71 — 1.63 (m, 4H), 1.54 — 1.42
(m, 2H), 1.12 (s, 3H), 1.00 (s, 3H), 0.89 (s, 9H), 0.01 (s, 3H), -0.04 (s, 3H). 13C NMR (126 MHz,
CDCls) 6 148.0, 146.0, 111.8, 111.6, 76.3, 48.4, 45.4, 45.2, 41.8, 36.9, 30.6, 30.2, 26.1, 23.6,

18.3, 17.9, -4.1, -4.5. HRMS (EI) calculated for [C20H38OSi+ H]* requires m/z 323.2765, found

m/z 323.2761.

tert-Butyldimethyl((2a,4,4,6a-
tetramethyldecahydrocyclobuta-[a]pentalen-6-

yl)oxy)silane (3.54). Prepared according to the general

procedure with S16 (0.25 mmol, 81 mg), [Cu(COD)CI]2 (2.5 mol%, 0.0075 mmol, 3.1 mg),
AgSbFs (25 mol% 0.075 mmol, 25.8 mg), and Et20 (12 mL). Irradiation time = 1 h. Analysis of
the crude reaction showed full conversion to a 3:1 mixture of diastereomers. Purification of the
crude on silica gel (100% Pentane) afforded 30 (76.7 mg, 3:1 d.r., 95%). Major Diastereomer
1H NMR (500 MHz, Chloroform-d) & 3.90 (d, J = 4.3 Hz, 1H), 2.78 (ddt, J = 10.7, 7.2, 3.8 Hz,
2H), 2.38 — 2.30 (m, 1H), 2.29 — 2.20 (m, 1H), 1.65 — 1.59 (m, 1H), 1.52 — 1.47 (m, 1H), 1.43 —
1.38 (m, 1H), 1.33 (dd, J = 13.1, 6.8 Hz, 1H), 1.27 — 1.19 (m, 5H), 1.07 (s, 3H), 1.05 (s, 3H),

0.91 (s, 3H), 0.88 (s, 9H), 0.00 (s, 6H). 13C NMR (126 MHz, CDCls) & 80.3, 58.2, 55.3, 47.7,
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45.1, 44.7, 39.0, 34.5, 34.3, 29.4, 28.7, 26.0, 23.9, 21.3, 18.3, -4.7, -4.9. Minor Diastereomer
'H NMR (500 MHz, Chloroform-d) & 3.97 (d, J = 6.9 Hz, 1H), 2.58 — 2.47 (m, 1H), 2.31 (ddd, J
=11.6, 10.0, 8.4 Hz, 1H), 1.88 (dt, J = 11.5, 8.7 Hz, 1H), 1.71 (ddd, J = 12.4, 8.3, 1.6 Hz, 1H),
1.66 — 1.57 (m, 2H), 1.33 — 1.23 (m, 4H), 1.09 (s, 3H), 1.00 (s, 3H), 0.92 (s, 3H), 0.88 (s, 9H),
0.82 (s, 3H), 0.03 (s, 3H), 0.01 (s, 3H). 13C NMR (126 MHz, CDCI3) d 90.2, 54.8, 54.0, 51.8,
49.6, 47.7, 43.6, 41.3, 29.3, 28.2, 28.0, 26.9, 25.9, 23.5, 18.1, 15.7, -4.3, -4.4. HRMS (EIl)

calculated for [C20H3sOSi+ H]* requires m/z 323.2765, found m/z 323.2764.

Comparison: Prepared according to CuOTf comparison procedure with 3.53 (0.1 mmol, 31
mg), [CuOTf]2 CsHs (0.0025 mmol, 1.5 mg), and Et20 (8 mL). Irradiation time = 1 h, NMR yield

3.54 (49%, 2:1 d.r., 0.05 mmol), internal standard (17.9 mg TMS-Ph).
See Section 3.5.7 for NOE Analysis

o) 2-(3-Methylbut-3-en-1-yl)cyclohexan-1-one (3.57). n-Buli (2.5 M in hexanes,
é/\/g 9.5 mL, 23.7 mmol) was added dropwise to a solution of diisopropylamine (3.6
mL, 25.7 mmol) in THF (30 mL) at 0 °C. The reaction was stirred 10 min, then warmed to rt and
stirred for 20 min. The reaction was cooled back to 0 °C, 2-cyclohexylidene-1,1-
dimethylhydrazine 3.55 (3.0 g, 21.5 mmol) was added, and the reaction was stirred 3 h more at
rt. The reaction was then cooled back to 0 °C, 4-bromo-2-methylbut-1-ene 3.56 (3.8 g, 25.7
mmol) was added, and the reaction was stirred for 18 h slowly warming to rt. Upon completion,
the reaction was diluted with Et2O (20 mL) and poured into 40 mL of 2 M H2SO4 and 40 mL of
Et20. The reaction was stirred 1 h, then extracted with Et2O. The organics were washed with
brine, dried over MgSOQg, filtered and reconstituted to yield crude product. Purification on silica
gel (20:1 hexane:Et20) afforded 3.57 (2.79 g, 78%) as a pale yellow clear oil. *H NMR (500
MHz, Chloroform-d) 5 4.70 (t, J = 1.8 Hz, 1H), 4.68 — 4.65 (m, 1H), 2.39 (dtd, J = 13.5, 4.1, 1.4

Hz, 1H), 2.35 — 2.22 (m, 2H), 2.17 — 2.07 (m, 1H), 2.08 — 1.92 (m, 4H), 1.91 — 1.80 (m, 1H), 1.71
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(d, J=1.2 Hz, 3H), 1.70 — 1.61 (m, 2H), 1.45 — 1.35 (m, 1H), 1.35 — 1.24 (m, 1H).23C NMR (126
MHz, CDCls) & 213.2, 145.7, 110.0, 50.0, 42.1, 35.2, 34.0, 28.1, 27.2, 25.0, 22.4. HRMS (EI)

calculated for [C11H180+ H]* requires m/z 167.1430, found m/z 167.1429.

2-Methyl-2-(3-methylbut-3-en-1-yl)cyclohexan-1-one (3.59). FeCls

(1.44 g, 8.9 mmol) was dispensed into a dry 250 mL round-bottomed flask in a

glovebox then capped under N2 atmosphere. Solid was suspended in Et20 (65

mL), cooled to O °C, treated with 3.0 M MeMgBr solution in Et20 (8.9 mL, 26.7 mmol), then
warmed to rt and stirred 1 h under N2. 3.57 (1.34 g, 8.04 mmol) was then added as a solution in
Et2O (15 mL), and the reaction was stirred 15 min at rt. The reaction was then treated
sequentially with TMSCI (3.4 mL, 26.7 mmol), EtsN (3.8 mL, 27.6 mmol), and HMPA (1.55 mL,
8.9 mmol). The reaction was then stirred for 22 h at rt. Upon completion, the reaction was diluted
with Et20, washed with NaHCOs3 (aq), dried over MgSOu, filtered and concentrated to give crude
silyl enol ether 3.58 (1.58 g, 82%) as a 9:1 mixture of regioisomers favoring the thermodynamic

enolate, which was bought forward without further purification.

Silyl enol ether 3.58 (1.58¢g, 6.6 mmol) was dispensed into a 250 mL flame-dried round-
bottomed flask with 45 mL of THF. The reaction was placed under N2, cooled to 0 °C, and treated
rapidly with 1.25 M MeLi (5.3 mL, 6.6 mmol). The reaction was stirred 15 min at 0 °C then cooled
to —78 °C. Reaction was then treated rapidly with a solution of Mel (2.05 mL, 33 mmol) in 5.85
mL of HMPA. The reaction was then stirred at -78°C for 30 min until complete by TLC. Reaction
was then diluted with Et2O and poured into DI H20 and extracted with Et2O. Organics were
washed with brine, dried over MgSOau, filtered, and reconstituted to give crude alkylation product.
Purification on silica gel (40:1 pentane:Et20) afforded 3.59 (824.2 mg, 69%) as a clear colorless
oil. *H NMR (500 MHz, Chloroform-d) & 4.70 (d, J = 2.0 Hz, 1H), 4.69 — 4.66 (m, 1H), 2.46 —

2.30 (m, 2H), 2.05 — 1.64 (m, 11H), 1.56 (dtd, J = 22.3, 12.9, 12.2, 4.7 Hz, 2H), 1.07 (s, 3H). 13C
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NMR (126 MHz, CDCls) & 215.8, 146.0, 109.7, 48.4, 39.4, 38.8, 35.7, 31.9, 27.5, 22.7, 22.5,

21.1. HRMS (EI) calculated for [C12H200+ H]* requires m/z 181.1587, found m/z 181.1586.

1-Methyl-1-(3-methylbut-3-en-1-yl)-2-methylenecyclohexane) (3.60)

To a suspension of Zn powder (2.16 g, 33 mmol) and PbCl2 (61 mg, 0.22 mmol)

in degassed THF (11 mL) under N2 was added CHzl2 (1.33 mL, 16.5 mmol),

and the reaction mixture was stirred at rt for 1 h. The reaction was then cooled to 0 °C and
treated with a solution of TiCls (1.0 M in CH2Cl2, 3.3 mL, 3.3 mmol). The reaction was then
warmed to rt and stirred for 1 h. The reaction was again cooled to 0 °C and treated with a
solution of 2-methyl-2-(3-methylbut-3-en-1-yl)cyclohexan-1-one 3.59 (400 mg, 2.2 mmol) in
degassed THF (11 mL), and the resulting solution was heated at 50 °C for 1 h. Upon completion,
the reaction was quenched with saturated NaHCOs (6 mL) and filtered through a pad of Celite.
To the filtrate was added saturated aqueous Na2S20s3 solution (6 mL), this mixture was extracted
with Et20, dried with MgSOa, filtered and concentrated. Purification on silica gel (100% pentane)
afforded 1-methyl-1-(3-methylbut-3-en-1-yl)-2-methylenecyclohexane) (327 mg, 83%) as a clear
oil. H NMR (500 MHz, Chloroform-d) & 4.83 (dt, J = 2.2, 1.1 Hz, 1H), 4.81 (d, J = 1.8 Hz, 2H),
4.71 — 4.68 (m, 1H), 2.14 — 2.02 (m, 2H), 1.99 — 1.80 (m, 3H), 1.68 (t, J = 1.0 Hz, 3H), 1.63 —
1.46 (m, 2H), 1.44-1.36 (m, 2H), 1.34 — 1.20 (m, 3H), 1.01 (s, 3H). 13C NMR (126 MHz, CDCl5)
0 154.8, 146.7, 109.8, 107.5, 41.0, 39.5, 35.8, 33.5, 32.7, 28.9, 25.7, 22.9, 22.3. HRMS (EI)

calculated for [CizH22+ H]* requires m/z 179.1794, found m/z 179.1793.

. 2a,4a-Dimethyldecahydrocyclobutac]indene (3.61) Prepared according to the

\ general procedure with 3.60 (0.2 mmol, 18 mg), [Cu(COD)CI]2 (1 mol%, 0.002

mmol, 1.0 mg), AgSbFs (5 mol% 0.075 mmol, 25.8 mg), and Et20 (8 mL). Irradiation

time = 1 h. NMR vyield (93%, 0.186 mmol), internal standard (10 yL 1-methylnapthalene 0.07

mmol). Purification of this product proved very difficult with both normal and reverse phase silica.

A second experiment was run to complete conversion and NMR vyield was not taken to give
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analytically clean product for characterization as a white solid single diastereomer after silica
plug work up. *H NMR (500 MHz, Benzene-ds) & 1.87 — 1.73 (m, 3H), 1.71 — 1.59 (m, 2H), 1.51
(dd, J = 13.0, 7.8 Hz, 1H), 1.47 — 1.07 (m, 13H), 0.88 (s, 3H). 13C NMR (126 MHz, CsD6) & 50.3,
45.0, 42.2, 38.1, 38.0, 34.2, 29.7, 28.1, 24.7, 24.3, 23.6, 21.1, 18.0. HRMS (EI) calculated for

[CisH22+ H]* requires m/z 179.1794, found m/z 179.1794.

Comparison: Prepared according to CuOTf comparison procedure with 3.60 (0.2 mmol, 36
mg), [CuOTf]2 CeHe (0.002 mmol, 1 mg), and Et20 (8 mL). Irradiation time = 1 hr, NMR vyield

3.61 (46%, 0.09 mmol), internal standard (10 yL 1-methylnapthalene 0.07 mmol).

3.5.7: NOE Data
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Chapter 4. Progress Toward a Concise Asymmetric Total Synthesis of (+) —

Sulcatine G via Copper(l) Templated Intramolecular [2+2] Cycloaddition.
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4.1 Introduction

Sulcatine G is a tricyclic sesquiterpene isolated from cultures of the Basidiomycetes fungus
Laurilia sulcata.! Sulcatine G possesses an unusual cis-anti-cis-tricyclo[6.2.0.02,6]decane
skeleton, which has drawn attention from the total synthesis community for the synthetic
challenge of constructing this densely substituted multicyclic scaffold. A key feature of sulcatine
G is the highly functionalized cyclobutane ring containing adjacent quaternary carbons. Previous
syntheses have heavily relied on distinct cycloaddition strategies to individually form each ring
of the core individually, requiring multiple steps and preinstallation of functional groups not
present in the natural product (Scheme 4.1). Mehta and co-workers’ synthesis of (—)—sulcatine
G employed an enzymatic resolution of endo,endo-cis-bicyclo[3.3.0]octane-2,6-diol 4.1 to obtain
the enantiopure core 4.2, which was further elaborated to substrate 4.3 that would allow for
installation of the cyclobutane. Intermolecular [2+2] cycloaddition with dichloroethylene
stereoselectively forms the final cyclobutane ring, giving the fully formed core 4.4 which could
be further elaborated to give the unnatural enantiomer (—)-sulcatine G 4.5 and confirming the
absolute stereochemistry of the natural product.?

While [2+2] cycloaddition is an obvious disconnect, a very different approach was later taken
by Taber and co-workers starting from (S)-(+)-citronellyl bromide 4.6. Cyclopentane 4.7 can be
accessed utilizing Taber’s previously developed Rh-mediated intramolecular C—-H insertion
strategy. Intermolecular enolate alkylation of 4.7 forms the key cyclobutane core 4.8,
constructing the second of the three fused rings. Ensuing steps install the second cyclopentane
ring by way of exo-face-selective Trost annulation between elimination product 4.9 and
functionalized alkene 4.10, giving the desired cis-anti-cis-tricyclo[6.2.0.02,6]decane skeleton
4.11. Subsequent functional group conversions of 4.11 furnished natural product 4.12. While
relatively low yielding overall, Taber’s synthesis is far more concise and is the sole report

accessing the natural enantiomer (+)—sulcatine G.
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Scheme 4.1 Previous Total Synthesis of Sulcatine G
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While both syntheses represent elegant solutions for formation of the core of this natural
product, a common feature of these two strategies is the sequential formation of each ring of
the core, requiring the presence of functional groups to enable the key ring forming-steps that
are not present in the natural product. Both assemble the core skeleton at an early phase of the
synthesis, and most of the subsequent steps are redox manipulations required to furnish the

peripheral functional groups of 4.5 and 4.12. For example, in both synthesis the key full formed
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cores 4.4 and 4.11 are accessed as ketones, requiring reduction to the secondary alcohol
displayed in the natural product. This reduction is not selective, as bulky reductants favor the
incorrect diastereomer preventing steric control. Furthermore, both syntheses require multiple

steps to access the a-hydroxy ketone moiety from a common ester intermediate.

4.2 Synthetic Analysis

We proposed a substantially different strategy towards (+)—sulcatine G involving a copper(l)
catalyzed intramolecular [2+2] cycloaddition that would form two ring systems simultaneously in
a stereoselective manner (Scheme 4.2). This strategy also requires no prefunctionalization as
the cycloaddition occurs on simple olefin substrates.

One challenge of an intramolecular [2+2] cyclization strategy using the Salomon—Kochi
reaction is the formation of the quaternary carbon centers at the C6-C7 cyclobutane ring
junction.? Previously, this steric encumbrance would have prevented the use of the Salomon-
Kochi intramolecular [2+2] cycloaddition as a key step, due to CuOTf’s poor catalytic efficiency
with sterically hindered substrates.® Recently, our group reported a new, more reactive catalyst
system for the Salomon and Kochi [2+2] cycloaddition that displays greater steric tolerance due
to the employment of a more weakly coordinating anion. This allowed for the cyclization of 4.13
to furnish the core of sulcatine G 4.14 in high yield favoring the desired cis-anti-cis

stereochemistry, demonstrating the viability of the key cycloaddition (Scheme 4.2a).*
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Scheme 4.2 Previous Model Substrate and Synthetic Analysis
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Retrosynthetically, we proposed that copper-mediated [2+2] cycloaddition of 2-vinyl
substituted 1,6-heptadiene 4.16 would yield endo diastereomer 4.15 (Scheme 4.2B). The
stereochemistry in this step would be controlled by copper complexation with the allylic alcohol.
This chelation favors the sterically disfavored endo coordination geometry that yields the desired
cis-anti-cis-tricyclo[6.2.0.02,6]decane skeleton (Scheme 4.2C).%* Chelation control of the
stereochemical outcome is the crux of this synthetic strategy, as it not only sets the
stereochemistry of the ring system but simultaneously sets the hydroxyl stereocenter at position
C8. With the core of the natural product assembled, subsequent oxidation of the resulting 1,1-
disubstituted 4.15 olefin by either ozonolysis or known dihydroxylation—elimination procedures

to its corresponding ketone followed by global deprotection would give the natural product 4.12
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in just 2-3 steps after successful cyclization. We imagined 4.16 could be derived from ring-
opening of enantiopure lactone 4.17 to obtain the required cis-stereochemistry on the

cyclopentane ring.

This proposed cycloaddition would be a further challenge of our newly developed
methodology. Not only is this the most hindered, conformationally constrained substrate
attempted with this system, this would be the first instance of employing this method on a
substrate containing an internal 1,3-diene that will undergo direct absorption at 254 nm.
Furthermore, formation of the required ring system requires that the cycloaddition gives some
amount of the endo product to obtain the unique cis-anti-cis stereochemistry. Previous studies
conducted by Bach using CuOTf showed that without the allyic alcohol moiety cis-2-allyl-1-(2-
propenyl)-substituted cyclopentanes proceed with high facial diastereoselectivities yielding the
cis-syn-cis product.> However, the less hindered model substrate 4.13 bearing the coordinating
allylic alcohol favoured the desired stereoisomer, suggesting that oxygen complexation can

overcome the intrinsic steric bias against the desired diastereomer.*

One potential concern initially overlooked when designing 4.16 as the cycloaddition
precursor is the presence of a less hindered primary alcohol lacking in model substrate 4.13,
installed early in the synthesis to easy late stage access to the a-hydroxy ketone, could
preferentially bind with the metal. This could potentially impact the rate Salomon previously
demonstrated; coordination at that position should not result in productive reactivity because
[2+2] cycloadditions of 1,7-octadienes are outside the scope of this reaction, due to

misalignment of the alkenes preventing formation of the 2:1 alkene copper complex.3®

4.3 Results and Discussion
The first challenge of the synthesis was envisioned to be setting the unfavourable cis-

stereochemistry displayed across the C3—C4 positions of the cyclopentane ring in 4.16 (Scheme
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4.3). We began the synthesis from cis-anhydride 4.18, easily prepared on 50 g scale using a
Favorskii rearrangement sequence from 4,4-dimethyl cyclohexanone.® Asymmetric ring opening
using Bolm’s cinchona alkaloid desymmetrization’ procedure yields hemiacetal 4.19, which can
be reduced with LiBHEt3 followed by acid promoted cyclization® to furnish enantiopure (S,R)-
lactone 4.17 in high yield and enantioselectivity (92% yield, 99% ee). Catalytic procedures for
desymmetrization developed by Deng and coworkers were also attempted but resulted in lower
enantioselectivity.® Ring-opening of lactone 4.17 with the Weinreb amine as a soft nucleophile
gave alcohol 4.20, setting the unfavorable cis stereochemistry about the cyclopentane ring.°
Subsequent pyridine-buffered Dess-Martin oxidation affords aldehyde 4.21, which is primed for
further elaboration. Non-buffered Dess—Martin conditions result in substantial epimerization to
the trans product. It is important to note that aldehyde 4.21 is highly sensitive to both acid and
base catalysed epimerization, which prevented silica chromatography purification and highly

limited the reaction conditions that could be tolerated in the subsequent steps.

Scheme 4.3 Synthesis of Enantiopure cis — Cyclopentane Carboxaldehyde
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With the first challenge of setting the cis-stereochemistry on the first cyclopentane ring
completed, we next explored strategies for installation of the 1,3-diene motif via aldehyde

addition. We saw this motif as a retron for an intermolecular enyne metathesis from a
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propargylic alcohol, as direct addition of a 1,3-diene coupling partner is far less developed in
comparison with addition of terminal alkynes to aldehydes. However, a range of asymmetric
alkyne addition conditions were attempted on aldehyde 4.21 to achieve selectivity for the
desired Felkin—Anh diastereomer. Carreira’s asymmetric alkyne addition using Zn(OTf)2
seemed like a promising avenue as it has been shown to be highly selective for a single
diastereomer in complex settings.'® Unfortunately, these even mildly basic conditions led to
complete epimerization to the trans cyclopentane ring prior to addition to give 4.22 (Scheme
4.4A).11 Epimerization under Carriera conditions was later found to have been documented on
a similar cis-cyclopentane carboxaldehyde scaffold.*? Several BINOL-derived asymmetric
conditions were also attempted, all either resulting in epimerization prior to addition or no

addition to the aldehyde.*®

With asymmetric conditions exhausted, we turned to traditional organometallic alkynyl
nucleophiles with hopes of achieving the desired selectivity by finding conditions favouring the
Felkin—Anh product. Grignard-type nucleophiles were found to favor the undesired chelate
control product 4.23a (Scheme 4.4B). It was found the LIHMDS at low temperatures gave the
desired addition product in modest yield favouring the requisite Felkin—Anh product 4.23b
2.5:1(Scheme 4.4C). This product was found to be sensitive to lactonization upon storage;
however, this enabled determination of the stereochemistry of the alkyne addition using NOE
analysis on the rigidified lactone derived from the minor diastereomer (See section 4.5.2 for

NOE Analysis).



Scheme 4.4 Optimization of Stereoselective Alkyne Addition and Stereochemical
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With conditions for a modestly selective alkyne addition yielding the correct diastereomer,

the construction of cycloaddition precursor 4.16 proceeded as follows (Scheme 4.5). TBS

protection of 4.23b prevents lactonization and allows for clean methylation of the Weinreb amide

with MeMgBFr to give disubstituted alkyne 4.24, which is poised to undergo enyne metathesis to

generate the requisite 1,3-diene moiety. Being a very sterically hindered substrate for

intermolecular enyne metathesis, this reaction required some optimization. Initial trials involving

less reactive catalysts (Gl, Gll) showed little promise.'* It was found that 1,3-diene 4.23 could

be cleanly generated with the more activated Hoveyda—Grubbs second-generation catalyst!® in

toluene at elevated temperatures. Finally, non-basic Lombardo olefination yielded the proposed

scaffold 4.16 without epimerization to trans as was observed with Wittig type procedures. With

4.16 in hand, we next tested the validity of the proposed key [2+2] cycloaddition step.
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Scheme 4.5 Synthesis of [2+2] Precursor 4.16
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Cyclization of 4.16 under the previously developed conditions revealed some clear
problems with the design of this scaffold (Scheme 4.6). Under typical ethereal conditions, large
amounts of decomposition occurred resulting in low yields. This could be attributed to two
different factors. Direct absorption by the 1,3-diene moiety may be leading to excited-state
intermediates that result in substrate decomposition. Secondly, we proposed that silver-
catalyzed processes, either thermal or photochemical in nature, could also be leading to the
observed decomposition. Changing reaction conditions through substantial optimization, it was
found that the overall yield could be increased by using benzene as the solvent to absorb short
wavelengths (< 280 nm) and NaSbFe in place of the AgSbFe to eliminate the reactive silver

cation in solution.

However, the more intractable issue was the selectivity of these reactions when
compared to the model substrate. Ethereal conditions previously employed give almost solely
the exo product 4.26. Interestingly formation of the six-membered ring product 4.27 was
observed. This was extremely surprising as Salomon has previously proposed that 1,6-
heptadiene substitution patterns are required due to conformational alignment of the alkenes
and other substitution patterns are too constraned to form the 2:1 alkene copper complex.®®

Switching to the latter developed benzene/NaSbFs conditions, this unexpected six-membered

OTBS
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cycloadduct becomes the dominant product in much higher yield. One can only speculate as to
the reason for this inversion in selectivity, but it may be related to an increased propensity for
coordination with the allylic alcohols in less polar solvent, and coordination to the primary alcohol
leads to unexpected six-membered ring product 4.27. All conditions attempted on this scaffold

resulted in at most trace yield of the desired endo product 4.15.

Scheme 4.6 Key [2+2] Photocycloaddition of 4.16
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While the [2+2] cycloaddition reactions conducted on this scaffold were unsuccessful
oxidation/ deprotection conditions were developed to access epi— Sulcatine G 4.29 (Scheme
4.7). One pot dihydroxylation/ elimination of 4.26 using Nicolaou’s procedure?® yielded protected
a-hydroxy ketone 4.28 that could be globally deprotected using buffered TBAF conditions
developed during Taber’s synthesis of (+)-Sulcatinef'ror Bookmark notdefined. gjying epi — sulcatine G
4.29 which was confirmed as the cis-syn-cis product by NOE analysis (See 4.5.2 for NOE

analysis).
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Scheme 4.7 Synthesis of epi — Sulcatine G
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The results of this initially devised route lead us to believe that two major factors were
inhibiting formation of the endo product. Steric bulk on the internal position of the 1,3-diene
leads to substantial clash with the cyclopentane ring in the desired endo conformation. This
overrides the stabilization arising from coordination with the secondary allylic alcohol, thus
favoring the exo conformation. Second, the less sterically hindered primary allylic alcohol might
preferentially coordinate and could be the reason the six membered ring is the favored
conformation involving alcohol coordination rather than the endo conformation. With these
hypotheses in mind, we proposed that removal of the CH20TBS group from the 1,3-diene would
solve both problems by decreasing steric bulk in the transition state and removing the
problematic coordinating alcohol (Figure 4.1). We then proposed a very similar retrosynthesis
strategy to the generation one synthesis to access the new cycloaddition precursor 4.28a.
However, deprotection and ketohydroxylation of the resulting terminal alkene would furnish 4.12

from cycloadduct 4.29a.

OH
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Figure 4.1 Conformational Analysis Cyclization of 4.14 and Proposed Structure Changes
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Synthesis of 4.30a could be achieved using an almost identical strategy as employed
for the synthesis of its counterpart 4.16 from aldehyde 4.21 (Scheme 4.8). Alkyne addition
using the previously developed Felkin-selective conditions with TMS acetylene gave similar
selectivity yielding 4.32 after in-situ TBS protection in modest yield and d.r. as an inseparable
mixture of diastereomers. The free alcohol is substantially more prone to lactonization upon
work up and purification than 4.23b, and high yields were obtained via this in situ protection
method. Methylation of the amide followed by silver mediated TMS cleavage!’ gave terminal
alkyne 4.33. It is worth noting here that standard K2CO3s conditions for TMS cleavage result in
complete epimerization of the a—keto stereocenter, while TBAF conditions resulted in
unselective cleavage of both silyl-protecting groups. Isolation of the major diastereomer and
submitting to already optimized conditions for the enyne metathesis on 4.24 worked equally
well on the terminal alkyne giving 1,3-diene 4.32 in high yield. Lombardo olefination furnishes

4.30a in good yield again without any epimerization.



148

Scheme 4.8 Synthesis of 4.30a
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With [2+2] precursor 4.30a constructed, we next tested the cycloaddition under the two
previously utilized systems studied with 4.14 (Table 4.1). Cyclization of 4.30a under ethereal
conditions, unfortunately, gave a low yield of the undesired exo product 4.35a was the sole
product (entry 1). The alternate benzene/NaSbFs conditions showed only slightly more positive
results, yielding 8% of the desired product 4.31a; however, exo product 4.35a and six-
membered cycloadduct 4.36a are still the dominant products (entry 2). We proposed that
increasing the coordinating ability of the allylic alcohol could enhance selectivity for the endo
product. The more coordinating free alcohol 4.30b and benzyl protected 4.30c were found to be
lower yielding and displayed similar diastereoselectivity favoring the undesired cycloadducts

(entries 3 and 4).
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Table 4.1 Key [2+2] Photocycloaddition of 4.5b-d

RO\\

\
™

[Cu(COD)CI], H

R AgSbFg or NaSbFg o
Me\< Me\( + +
SO\ 0.0125 M Solvent S\
M g Me
©H M 254 nm, 16 h H Me
4.30a R=TBS 4.31a-c
4.30bR=H
4.30c R=Bn
Entry Sub. [Cu] Loading Anion Source Solvent 4.29a-c 4.33a-c 4.34a-c
1 4.30a 10 mol % 10 mol % AgSbF6 Et,O N.D. 20% N.D.
2 4.30a 10 mol % 40 mol % NaSbF6 CeHe 8% 41% 25% > 20:1 d.r.
3 4.30b 10 mol % 40 mol % NaSbF6 CeHe 8% 20% 9% > 20:1 d.r.
4 4.30c 10 mol % 40 mol % NaSbF6 CeHe 2% 22% 20% > 20:1 d.r.

[a] Reactions conducted in quartz tubes equipped with a cold finger. Irradiation took place in a Rayonet RP-100
photoreactor with 254 nm bulbs. [b] NMR yields taken with TMS-Ph as internal standard.

Confirmation of the stereochemistry of the products 4.31a and 4.35a was achieved by
spectral comparison with 4.38, a previously reported intermediate in Mehta’s synthesis of (+/-)—
sulcatine (Scheme 4.9).2> TBAF deprotection of the major diastereomer 4.35a followed by
acetate protection with acetic anhydride furnished compound 4.37, which upon comparison with
known intermediate 4.38 displayed clear differences in coupling constants and chemical shifts
confirming that 4.35a is not the desired endo product. Furthermore, comparison of the spectra
of 4.36 with 4.31b gave a near-perfect spectral match for diagnostic downfield alkene protons

suggesting 4.31a-c are the desired endo products.

Scheme 4.9 Stereochemical Determination by Spectral Comparison

1) TBAF, THF

2) Ac,0, DMAP
CH,Cl,

4.37 4.38
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(+/-) - Sulcatine
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The hypothesis about the stereochemistry of 4.31a-c and 4.35a-c was further confirmed

by submitting a 2:1 mixture of the diastereomers 4.31b and 4.35b to KMnOs-mediated
ketohydroxylation'® conditions resulting in a 2:1 mixture of 4.12 and 4.29. The major
diastereomer from this reaction gave a full NMR spectral match with the natural product

(Scheme 4.10).

Scheme 4.10 Accessing Sulcatine as a Mixture of Diastereomers via Ketohydroxylation
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While scaffold 4.30a successfully allowed for access to sulcatine G, the key cycloaddition
step does not give synthetically useful enough yields of the desired diastereomer for this to be
a viable route to the natural product in comparison to other strategies. With the initial strategy of
cyclization of a 1,3-diene being unsuccessful, we decided that installation of the terminal olefin
could potentially be achieved post-cyclization. This would remove the problematic 1,3-diene
moiety, the key difference between model substrate 4.13 and 4.30a. This could be
advantageous for a number of reasons (Figure 4.2). (1) 1,3-dienes are conjugated, more rigid,
and prefer the trans configuration in the absence of other substituents. This inhibits
conformational changes required to adopt different coordination states with copper(l). (2)
Without the 1,3-diene, previously observed issues with direct excitation related decomposition
are prevented as simple alkenes are UV inactive. (3) Deletion of the 1,3-diene motif entirely
prevents the formation of the six-membered ring product. We proposed that scaffold 4.37a would
provide a UV-inactive scaffold with increased stability under the reaction conditions that would

more easily adopt the requisite endo coordination state as observed in the model substrate 4.10.
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Furthermore, a range of well-developed strategies for elimination of primary alcohols in complex

settings can be employed to access the desired terminal olefin intermediate 4.29b post

cyclization of 4.37a.

Figure 4.2 Conformational Analysis Cyclization 4.30a and Proposed Structure Changes
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e Endo coordination potentially less hindered
* Prevents six membered ring formation

Primary Alcohol
Eliminating Group

Retrosynthetically, we already knew that natural product 4.12 could be accessed by

ketohydroxylation of 4.31b. Key intermediate 4.31b we envisioned deriving from 4.38 by a global

deprotection followed by primary alcohol selective Grieco—Sharpless elimination. We imagined

that [2+2] precursor 4.39a could be constructed using a similar strategy ring involving opening

of enantiopure lactone 4.17 (Scheme 4.11).

Scheme 4.11 Reroute Retrosynthetic Analysis
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Synthesis of [2+2] precursor 4.39a permitted a different route involving early installation

of 1,1-disubstituted alkene prior to the aldehyde addition (Scheme 4.12). In previous routes this
moiety was incompatible with the enyne metathesis step as HG Il unlike less active metathesis
catalysts can interact with sterically hindered olefins an would likely result in intramolecular
cyclization over intermolecular enyne metathesis.’® MeLi addition to lactone 4.17 resulted in
formation of the corresponding methyl lactol in quantitative yield. Wittig olefination at high
loadings of ylide gave alcohol 4.41 as a 3:1 mixture of cis and trans isomers that could be
separated using flash chromatography to obtain pure cis product. Oxidation using previously
employed pyridine-buffered Dess—Martin periodinane conditions gives aldehyde 4.42 in high
yield with no observed epimerization. Kishi coupling?® conditions were employed to affect the
addition of vinyl iodide 4.43 to aldehyde 4.42 furnishing 4.44 as a 2:1 mixture of diastereomers
with the minor component consisting of a combination of three diastereomers (one cis and two
trans) resulting from epimerization of the aldehyde during the reaction. Kishi conditions were
chosen for this transformation as they are known to favor the desired Felkin—Ahn product as
diastereoselectivity is purely sterically driven.?! Attempting this coupling under more typical tert-
butyl lithium conditions results in a complex mixture of products producing only trace amounts
of the desired diastereomer. While surprisingly some epimerization occurs under these typically
very mild conditions, the addition as expected favors the correct diastereomer and gives
serviceable yields of the desired [2+2] precursor. Further optimization of these reaction
conditions are underway to improve the yield and selectivity of this reaction. TBS protection of

4.42 with TBSOTT gives 4.37a to test in the key [2+2] cycloaddition step.
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Scheme 4.12 Synthesis of 4.27
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Cyclization of 4.39a under the optimal conditions developed for cyclization of model
substrate 4.13 gave 4.40 in high yield as a 3:1 ratio of diastereomers favoring the desired cis-
anti-cis configuration. The current stereochemical assignments of these diastereomers is based
on spectral comparison with the model substrate. Attempts to increase the endo selectivity by
way of cyclization of free hydroxyl 4.44 resulted in significant decomposition suggesting that
TBS protection of the allylic alcohol prevents unwanted elimination and fragmentation pathways

(Scheme 4.13).

Scheme 4.13 Cyclization of 4.25
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With optimal conditions for the photocycloaddition in hand furnishing the required cis-anti-
cis-tricyclo[6.2.0.02,6]decane skeleton in good yield, several steps are required to complete the
synthesis of (+)-sulcatine G (Scheme 4.14). Global TBS deprotection of 4.40 reveals

unprotected diol 4.45 cleanly. Subsequent dehydration of the primary alcohol via a two-step
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Grieco—Sharpless elimination protocol®? failed to give previously isolated sulcatine precursor
4.31b resulting in substrate decomposition. If a protocol for the elimination of 4.45 was
developed subsequent ketohydroxylation of 4.31b should give (+) — Sulcatine G in much higher

projected overall yield in fewer linear steps, than previous synthesis.

Scheme 4.14 Planned Finishing Steps and (+) — Sulcatine G
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The Greico elimination seemed to be the most likely avenue towards a high yielding
elimination as it has been used to mediate eliminations of primary alcohols in complex settings
containing other more hindered free hydroxyl groups.?® However, a wide array of different
elimination protocols have been reported to give the desired product.?* Selective deprotection
of the primary alcohol has proven unsuccessful under many standard conditions so an

elimination ideally needs to take place from the globally deprotected diol 4.45.

4.4 Conclusions

Upon successful completion of this synthesis, this route would constitute the first total
synthesis of natural enantiomer 4.12 not leveraging the chiral pool, and the projected overall
yield should be much higher than previous syntheses. More importantly this study uniquely
demonstrates that structural optimization of the diene precursor can have substantial impact on
the stereoselectivity of this key cycloaddition. Through structural analysis and substrate

optimization the intrinsic bias of these scaffolds towards the exo product can be overridden by
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chelation to the allylic alcohol to give the previously deemed inaccessible cis-anti-cis tricyclo

[6.2.0.02,6] decane core.



156
4.5 Experimentals

4 .51 Procedures and Characterization
Synthesis of [2+2] Precurser

o (1R,2S)-2-(methoxycarbonyl)-4,4-dimethylcyclopentane-1-carboxylic acid
N\—o0

oy (4.19) A solution of Anhydride S1 (8.2 g, 48.7 mmol) in 1:1 Toluene/CCls (200

—Q \o mL) and Quinidine (17.4 g, 53.6 mmol) was placed under argon, and cooled to -

55 °C in a controlled temperature chiller. Reaction was then treated dropwise with dry methanol
(5.9 mL, 146.1 mmol) and stirred for 87 hr at -55 °C. Upon completion the reaction was
reconstituted in vacu to dryness. The resulting crude was dissolved in Et2O and washed with
2M HCI to extract Quinidine for recycling. The aqueous HCI layer was extracted with Et20 (2 x
40 mL). The organic phase was extracted with saturated NaHCOs3 (3 x 50 mL). The basic
aqueous layer was then acidified with conc. HCI then extracted with CH2Cl2 (3 x 100 mL).
Organics were dried with Na2SOu, filtered, and reconstituted to afford 32 (9.2 g, 95%) as a clear
oil without further purification necessary. 'H NMR (500 MHz, Chloroform-d) & 3.66 (s, 3H), 3.30
—3.16 (m, 2H), 1.92 (ddd, J = 13.5, 8.4, 5.1 Hz, 2H), 1.83 — 1.76 (m, 2H), 1.13 (s, 3H), 1.00 (s,
3H). 13C NMR (126 MHz, CDCls) & 179.96, 174.48, 51.76, 45.98, 43.45, 38.64, 29.38, 28.72.
HRMS (El) calculated for [C10H1604 - H] requires m/z 199.0976, found m/z 199.0979. IR (cm™)
2953, 2869, 1734, 1702, 1436, 1368, 1317, 1279, 1201, 1159, 1121, 1041. [a]?*?p + 8.2° (¢ 0.73,

CH2Cl).

C;O 5,5-dimethylhexahydro-1H-cyclopentalc]furan-1-one NaBHa4(48.3 mmol, 1.83

o Q) was dispensed into a flame dried 250 mL roundbottom flask containing THF
(10 mL). Reaction was placed under N2, cooled to 0C, and treated slowly via syringe with a
solution of anhydride S1 (48.3 mmol, 8.12 g) in THF (40 mL). Reaction was warmed to rt and
stirred under N2 for 6h. Reaction was then cooled back to 0°C and treated dropwise with 6 M

HCI (20 mL). Once quenched reaction was partially concentrated in vacu then extracted with
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Et20. Extracted organics where washed sequentially with H20, NaHCOz(agq), and brine. Organics
were then dried over MgSOu, filtered and reconstituted to yield lactone S2 (4.67g, 63%) as a
clear yellow oil which was brought on to the next step without further purification. *H NMR (500
MHz, Chloroform-d) & 4.43 (dd, J = 9.3, 7.1 Hz, 1H), 4.10 (dd, J = 9.3, 2.1 Hz, 1H), 3.11 — 3.01
(m, 2H), 1.93 (ddd, J = 13.3, 9.7, 1.6 Hz, 1H), 1.87 — 1.81 (m, 1H), 1.79 (dd, J = 13.4, 4.8 Hz,
1H), 1.40 (dd, J = 12.8, 7.8 Hz, 1H), 1.08 (s, 3H), 1.00 (s, 3H). 13C NMR (126 MHz, CDCl3) &
181.38, 72.71, 47.42, 44.26, 43.70, 41.68, 39.56, 28.25, 28.10. IR (cm™) 2954, 2868, 1758,

1464, 1369, 1306, 1164, 1124. HRMS (EI) calculated for [CoH1402 + H]* requires m/z 155.1067,

found m/z 155.1065.

Auto-Scaled Chromatogram
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50 (3aS,6aR)-5,5-dimethylhexahydro-1H-cyclopentalc]furan-1-one(4.17) A

_:Q()%}‘\O flame dried roundbottom flask was charged with 1 M LiBHEts in THF (100 mL,

100 mmol) under argon. The reaction was cooled to 0 °C and treated dropwise with a solution
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of 32 (5.0 g, 25 mmol) in THF (35 mL) via an addition funnel over 20 min. Upon complete addition
reaction was stirred 1 hr at 0 °C then warmed to rt, and stirred a further 4 hr. Reaction was then
cooled back to 0 °C and slowly quenched with 6 M HCI (120 mL) and the resulting mixture was
stirred overnight then extracted with Et2O. Combined organics were washed with 10% H202,
water, and brine then dried with MgSOa, filtered and reconstituted to give crude lactone 30.
Purification on silica gel (4:1 Hexane: Et20) afforded 30 (3.55 g, 92 %) as a clear light yellow oil.
I1H NMR (500 MHz, Chloroform-d) & 4.43 (dd, J = 9.3, 7.1 Hz, 1H), 4.10 (dd, J = 9.3, 2.1 Hz,
1H), 3.11 — 3.01 (m, 2H), 1.93 (ddd, J = 13.3, 9.7, 1.6 Hz, 1H), 1.87 — 1.81 (m, 1H), 1.79 (dd, J
= 13.4, 4.8 Hz, 1H), 1.40 (dd, J = 12.8, 7.8 Hz, 1H), 1.08 (s, 3H), 1.00 (s, 3H). 13C NMR (126
MHz, CDCIz) 6 181.38, 72.71, 47.42, 44.26, 43.70, 41.68, 39.56, 28.25, 28.10. IR (cm™) 2954,
2868, 1758, 1464, 1369, 1306, 1164, 1124. HRMS (EI) calculated for [CoH1402 + H]* requires

m/z 155.1067, found m/z 155.1065. [a]?% - 99.6° ( 0.55, CH2Cl2)
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(1R,2S)-2-(hydroxymethyl)-N-methoxy-N,4,4-trimethylcyclopentane-1-
HO

"///

\N_o/ carboxamide (4.20) To a solution of 4.17 (3.19 g, 20.7 mmol) in DCM (100

_E>\<O mL) was added N,O-dimethylhydroxylamine hydrochloride (3.2 g, 33.1 mmol)

was placed under N2, and cooled to 0 °C. Reaction was then treated dropwise with 2M in THF
i-propylmagnesium chloride solution (31 mL, 62.1 mmol), when the addition was completed, all
the solids dissolved and the solution turned light yellow (1h). Reaction was then quenched with
saturated NHa4Cl solution, extracted with CH2Clz2, dried over Na2SOs4, filtered and reconstituted
to give crude desired product. Purification on silica gel (2:1 Hexane: EtOAc) afforded 4.20 (6.36
4.02 g, 90%) as a white amorphous solid. *H NMR (500 MHz, Chloroform-d) & 3.73 (s, 3H),
3.56-3.48 (m, 3H), 3.21 (s, 3H), 2.88 (t, J = 6.2 Hz, 1H), 2.56 (qt, J = 8.3, 5.0 Hz, 1H), 1.91 (t, J
= 11.8 Hz, 1H), 1.59 — 1.52 (m, 3H), 1.14 (s, 3H), 1.01 (s, 3H). 3C NMR (126 MHz, CDCls) &
177.15, 63.87, 61.69, 44.48, 43.84, 42.98, 41.25, 38.29, 32.41, 29.36, 28.64. IR (cm™) 3425,
2952, 2866, 1639, 1463, 1422, 1386, 1366, 1326, 1178, 1116 HRMS (El) calculated for

[C11H21NOs + H]* requires m/z 216.1594, found m/z 216.1593. [a]??p - 14.8° (¢ 0.61, CH2Cl>)

(1R,2S)-2-formyl-N-methoxy-N,4,4-trimethylcyclopentane-1-

(0]
N\ .
\ \N_O/ carboxamide (4.21) To a solution of 33 (2.03 g, 9.4 mmol) in CH2Cl2 (100 mL)

.—:Q""\<O was added pyridine (6.1 mL, 75.2 mmol). To this solution was added Dess-

Martin Periodate (DMP) portionwise. Reaction was then placed under nitrogen and stirred at rt
for 3 h. Upon completion reaction was partially concentrated to approximately 25 mL and diluted
with 1:1 Pentane: Et20 (200 mL) and stirred for 15 min. Solution was then filtered thru a plug of
celite and filtrate was washed with 1 M CuSO4 solution (3 X 50 mL) and brine (2 X 50 mL).
Washed organics were then dried with MgSOy, filtered and reconstituted to afford crude 34 (2.00
g, 100%) as a clear yellow oil. Product is extremely sensitive to both acid and base catalyzed
epimerization so is carried on crude to next reaction. Store under nitrogen at -4 °C. *H NMR (500

MHz, Benzene-ds) & 9.76 (d, J = 2.4 Hz, 1H), 3.51 — 3.42 (m, 1H), 3.03 (s, 3H), 2.81 (s, 3H),
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2.72(q, J = 8.9, 8.3 Hz, 1H), 1.98 — 1.93 (m, 1H), 1.91 (dd, J = 12.9, 10.0 Hz, 1H), 1.55 (dd, J =
12.9, 8.5 Hz, 1H), 1.36 (ddt, J = 12.8, 7.8, 1.2 Hz, 1H), 0.98 (s, 3H), 0.74 (s, 3H). 13C NMR (126
MHz, CeD6) & 200.97, 174.47, 127.98, 71.30, 60.41, 52.73, 44.41, 42.80, 41.05, 38.66, 28.67,

27.99. HRMS (EI) calculated for [C11H19NO3 + H]* requires m/z 214.1438 found m/z 214.1437.

OTBS oTBS (1R,2S)-2-(4-((tert-butyldimethylsilyl)oxy)-
1-hydroxybut-2-yn-1-yl)-N-methoxy-N,4,4-

trimethylcyclopentane-1-carboxamide

(4.23a and 4.23b) LIHMDS (1.46 g, 8.5 mmol)
was weighed out in a glovebox into a dry 250 mL roundbottom flask. Reaction was then removed
from the glovebox and placed under a stream of nitrogen and 45 mL of dry THF was added.
Reaction was then cooled to -78 °C and tert-butyldimethyl(prop-2-yn-1-yloxy)silane was added
as a solution in 45 mL of THF. Reaction was stirred for 5 minutes then warmed to — 40 °C and
a solution of aldehyde 4.21 was added dropwise and the reaction was stirred for 45 min and —
40 °C until complete consumption of the aldehyde by TLC. Reaction was then quenched with
NH4Cl, diluted with 100 mL H20. and extracted with Et2O (3 X 50 mL). The organic layer was
dried with MgSOa4, filtered and concentrated to give crude mixture of diastereomers. Purification
on silica gel (4:1 Hexane: EtOAc) afforded 4.23a and 4.23b (1.6 g, 64% 2:1 d.r.) as a viscous
clear yellow oil. Major 4.23b *H NMR (500 MHz, Chloroform-d) & 4.52 (td, J = 3.7, 1.9 Hz, 1H),
4.32 (d, J = 1.8 Hz, 2H), 3.83 (d, J = 3.7 Hz, 1H), 3.72 (s, 3H), 3.59 (q, J = 10.0 Hz, 1H), 3.23
(s, 3H), 2.70 — 2.57 (m, 1H), 2.02 (dd, J = 13.0, 9.1 Hz, 1H), 1.85 (t, J = 11.9 Hz, 1H), 1.69 (ddd,
J=12.9,8.1,1.7 Hz, 1H), 1.56 (ddd, J = 12.3, 7.2, 1.6 Hz, 1H), 1.16 (s, 3H), 1.01 (s, 3H), 0.90
(s, 9H), 0.11 (s, 6H). 13C NMR (126 MHz, CDCl3) 5 176.86, 84.89, 82.37, 63.20, 61.73, 51.78,
47.85, 45.63, 41.34, 40.49, 38.28, 32.35, 28.97, 28.36, 25.82, 18.29, -5.14, -5.16. IR (cm™)

3404, 2954, 2931, 2900, 2859, 1634, 1422, 1388, 1367, 1330, 1254, 1179, 1127. HRMS (EI)
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calculated for [C20H37NO4Si + H]* requires m/z 384.2565 found m/z 384.2561. [a]?%0 + 17.1° (c

0.7, CH2Cl2)

Minor 4.23a *H NMR (500 MHz, Chloroform-d) 3 4.41 (t, J = 7.7 Hz, 1H), 4.32 (d, J=1.9
Hz, 2H), 3.98 (d, J = 8.5 Hz, 1H), 3.74 (s, 3H), 3.60 (g, J = 9.4 Hz, 1H), 3.20 (s, 3H), 2.64 (ddd,
J=17.2,10.2, 7.3 Hz, 1H), 1.85 - 1.75 (m, 2H), 1.63 (dddd, J = 28.9, 12.7, 7.6, 1.8 Hz, 3H),
1.13 (s, 3H), 1.01 (s, 3H), 0.90 (s, 10H), 0.10 (s, 7H). 3C NMR (126 MHz, CDCls) & 177.66,
85.80, 82.84, 63.24, 61.65, 51.77,48.13, 45.91, 43.85, 39.82, 38.58, 32.53, 29.17, 28.04, 25.83,

18.31, -5.13, -5.15.

OTBS (1R,2S)-N-methoxy-N,4,4-trimethyl-2-((R)-2,2,3,3,10,10,11,11-
octamethyl-4,9-dioxa-3,10-disiladodec-6-yn-5-yl)cyclopentane-1-

carboxamide A solution of crude propargyl alcohol 4.23b (1.05 g, 2.75

mmol) in CH2Cl2 (10 mL) was placed under N2, cooled to 0 C, and
treated sequentially with 2,6-Lutadine (0.63 mL, 5.5 mmol) then TBSOTf ( 0.94 mL, 4.1 mmol).
Reaction was then stirred for 30 min at 0 C until complete by TLC. Upon completion reaction
was quenched with saturated NaHCOs, extracted with CH2Clz, dried with Na2SO4, filtered and
reconstituted. Purification on silica gel (25:1 Hexane: EtOAc) afforded TBS protected propargyl
alcohol (1.34 g, 98 %) as a clear oil. 'H NMR (500 MHz, Chloroform-d) 3 4.62 (dt, J=9.2, 1.5
Hz, 1H), 4.28 (d, J = 1.5 Hz, 2H), 3.68 (d, J = 1.4 Hz, 3H), 3.56 — 3.41 (m, 1H), 3.15 (s, 3H),
2.58 (p, 3= 9.1 Hz, 1H), 1.72 (d, J = 8.2 Hz, 2H), 1.67 (d, J = 9.1 Hz, 2H), 1.10 (s, 3H), 1.00 (s,
3H), 0.89 (m, 18H), 0.13 (s, 3H), 0.10 — 0.08 (m, 9H). 13C NMR (126 MHz, CDCI3) & 176.42,
86.40, 82.64, 64.26, 61.31, 51.74, 49.47, 45.78, 45.10, 40.29, 38.58, 32.28, 29.68, 28.86,
25.87, 25.79, 18.25, 18.18, -4.29, -4.91, -5.20. IR (cm™) 2953, 2929, 2896, 2857, 1661, 1463,
1413, 1386, 1363, 1327, 1252, 1176 HRMS (EI) calculated for [C20H37NO4Si + H]* requires

m/z found m/z. [a]??p +25.7 ° (¢ 1.075, CH2Cl2)
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oTES 1-((1R,2S)-4,4-dimethyl-2-((R)-2,2,3,3,10,10,11,11-octamethyl-4,9-

dioxa-3,10-disiladodec-6-yn-5-yl)cyclopentyl)ethan-1-one (4.24) A

solution of (1R,2S)-N-methoxy-N,4,4-trimethyl-2-((R)-

2,2,3,3,10,10,11,11-octamethyl-4,9-dioxa-3,10-disiladodec-6-yn-5-
yl)cyclopentane-1-carboxamide (1.34 g, 2.69 mmol) in THF (27 mL) was placed under N2,
cooled to 0 C, and treated dropwise with 3.0 M methyl magnesium bromide (2.06 mL, 6.2 mmol).
Reaction was then warmed to rt and stirred for 2 hr until complete by TLC. Upon completion
reaction was quenched with saturated NH4Cl solution (40 mL), extracted with Et20, dried with
MgSOsa, filtered and reconstituted to afford 4.25 (1.19 g, 98%) as a clear oil without further
purification necessary. Major *H NMR (500 MHz, Chloroform-d) & 4.57 (dt, J = 8.4, 1.7 Hz, 1H),
4.30 (d, J = 1.7 Hz, 2H), 3.21 (q, J = 8.3 Hz, 1H), 2.62 — 2.51 (m, 1H), 2.19 (s, 3H), 1.75 — 1.58
(m, 4H), 1.08 (s, 3H), 0.98 (s, 3H), 0.89 (d, J = 4.2 Hz, 18H), 0.12 (s, 3H), 0.10 (d, J = 3.0 Hz,
6H), 0.08 (s, 3H). ¥*C NMR (126 MHz, CDCls) & 212.19, 86.27, 83.27, 63.81, 51.90, 51.67,
49.73, 44.95, 44.25, 38.43, 32.04, 29.76, 29.21, 25.85, 25.78, 18.25, 18.19, -4.32, -4.92, -5.20,
-5.24. IR (cml) 2953, 2929, 2858, 1709, 1472, 1463, 1362, 1252. HRMS (El) calculated for

[C25H4803Si2 + H]* requires m/z 453.3215 found m/z 453.32109.

oTBS
1-((1R,2S)-4,4-dimethyl-2-((R)-2,2,3,3,10,10,11,11-octamethyl-6, 7-

dimethylene-4,9-dioxa-3,10-disiladodecan-5-yl)cyclopentyl)ethan-1-one

(4.25) A 100 mL pressure vessel was charged with HGII (82.3 mg, 0.13 mmol)

z o)

and 4.24 (1.19 g, 2.63 mmol) in toluene (20 mL). Reaction was sparged for 5 min with nitrogen
and fit with a pressure head. Vessel was then pressurized with ethlyene to 60 PSI and vented
back to atmospheric pressure. This process was repeated 5 times with rapid stirring of the
solution to saturate with ethylene. Reaction was then vented to 10 PSI of ethylene and heated at

75 °C for 20 h. Reaction was then cooled to rt, opened to air, and isocyanate was added (0.1
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mL). Reaction was stirred for 15 minutes then reconstituted in vacu. The crude reaction mixture
was then dissolved in 4:1 Hexane:Et2O and passed thru a silica plug to remove ruthenium
isocyanate adducts. Purification on silica gel (50:1 Hexane: EtOAc) afforded 4.25 (1.20 g, 95%)
as a clear pale yellow oil. 'TH NMR (500 MHz, Chloroform-d) & 5.40 (t, J = 1.8 Hz, 1H), 5.34 (q, J
=2.0 Hz, 1H), 5.03 (d, J = 1.7 Hz, 1H), 4.94 (d, J = 1.6 Hz, 1H), 4.63 (d, J = 8.5 Hz, 1H), 4.38 (dt,
J=14.7,1.7 Hz, 1H), 4.20 (dt, J = 14.8, 1.7 Hz, 1H), 2.90 — 2.83 (m, 1H), 2.46 (ddt, J = 11.7, 8.6,
7.3 Hz, 1H), 2.02 (s, 3H), 1.81 (t, J = 11.9 Hz, 1H), 1.71 (ddd, J = 13.2, 8.8, 0.9 Hz, 1H), 1.62 —
1.54 (m, 2H), 1.05 (s, 3H), 0.99 (s, 3H), 0.93 (s, 9H), 0.88 (s, 9H), 0.08 (s, 6H), 0.06 (s, 3H), -
0.04 (s, 3H). **C NMR (126 MHz, CDClI3) 5 211.94, 148.93, 145.44, 114.43, 112.59, 64.74, 52.02,
48.15, 44.85, 44.05, 37.72, 31.57, 30.76, 30.53, 25.95, 18.44, 18.12, -4.14, -4.85, -5.34, -5.36.
IR (cm™) 2954, 2929, 2895, 2857, 1710, 1664, 1471, 1463, 1408, 1387, 1363, 1252, 1167 HRMS
(El) calculated for [C27H5203Si2 + H]* requires m/z 481.3528 found m/z 481.3530. [a]??p +34.7 °

(c 0.905, CH2Cl2)

OTBS

(R)-5-((1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)-

2,2,3,3,10,10,11,11-octamethyl-6,7-dimethylene-4,9-dioxa-3,10-

disiladodecane (4.16) To a suspension of Zn powder (1.35 ¢,20.7 mmol) and
PbCl2 (78 mg, 0.28 mmol) in degassed THF( sparge with N2) (7 mL) under N2 was added
diiodomethane (0.84 mL, 10.4 mmol), and the reaction mixture was stirred at rt for 1h. The
reaction was then cooled to 0 C and treated with a solution of TiCls 1.0 M in CH2Cl2 (2.1 mL, 2.1
mmol). Reaction was then warmed to rt and stirred for 2 h. Reaction was again cooled to 0 'C
and treated with a solution of 4.25 ( 661.4 mg, 1.38 mmol) in degassed THF (7mL) and the
resulting solution was heated at 50 C for 1h until complete by TLC. Reaction was quenched
slowly with saturated NaHCO3 (6 mL) and filtered thru a pad of celite. To the filtrate was added

saturated aqueous Na2S203 solution (10 mL) and this mixture was extracted with Et20, dried
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with MgSOa, filtered and reconstituted. Purification on silica gel (200:1 Hexane: EtOAc) to afford
571.5 mg of 4.16 (571.5 mg, 87%) as a clear oil. *H NMR (500 MHz, Chloroform-d) & 5.31 (q, J
= 1.9 Hz, 1H), 5.17 (g, J = 1.7 Hz, 1H), 5.08 (d, J = 1.3 Hz, 1H), 5.00 (d, J = 1.5 Hz, 1H), 4.81
(dt, J = 2.4, 1.1 Hz, 1H), 4.73 (d, J = 1.7 Hz, 1H), 4.44 — 4.35 (m, 1H), 4.28 — 4.17 (m, 2H), 2.67
— 2.57 (m, 1H), 2.31 (tdd, J = 8.8, 7.1, 3.8 Hz, 1H), 1.80 — 1.71 (m, 4H), 1.43 — 1.30 (m, 2H),
1.12 (s, 3H), 0.96 (s, 3H), 0.92 (d, J = 7.1 Hz, 18H), 0.08 (s, 6H), 0.02 (s, 3H), -0.07 (s, 3H). 13C
NMR (126 MHz, CDCls) 6 148.93, 145.91, 145.18, 112.62, 111.84, 110.63, 73.36, 64.59, 48.29,
45.04, 44.46, 40.29, 36.45, 30.41, 30.19, 26.24, 25.94, 23.52, 18.42, 18.22, -3.15, -4.29, -5.37
HRMS (El) calculated for [C2s8H5402Si2 + H]* requires m/z 479.3735 found m/z 479.3738. [a]?%p

+35.3° (c 0.64, CH2Cl)

Key [2+2] Cycloaddition
OTBS

TBSO TBSO TBSO OTBS
10 mol% CUQ(COD)QClz

40 mol% NaSbFg

Tive 1ree Tiee
\4 \< OTBS + \<
SO\ 0.0125 M CgHg (degassed) SO\ SO\

X 254 nm, 16h

49% 17%

TBSO \X_/oms
SENG8,

) 6%

A quartz reaction vial was charged with [Cu(COD)CIl]2 (2.1 mg, 0.005 mmol) and NaSbFs

(6 mg, 0.01 mmol) placed under N2. 4.16 (24.5 mg, 0.05 mmol) was then added as a solution in
4 mL of degassed Et20 (degassed by 30 min N2 sparge). The reaction was then sonicated for 1
min then prestirred for 25 minutes under nitrogen. Reaction was then fit with a cold finger and
irradiated at 254 nm for 16 h. Reaction was then passed through a pad of silica with Et2O and
reconstituted in vacu to give crude mixture of cycloadducts as a clear oil. NMR analysis of the

crude reaction mixture gave yields of 49% 4.27, 17% 4.26, and 6% 4.15 with TMSPh (8.9 mg)
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as an internal standard. Scaling this reaction up to 0.375 mmol and purification on silica gel

(50:1 Hexane: CH2Cl2) allowed for isolation of each product for characterization.

tert-butyl(((2aS,4R,4aS,7aR,7bR)-4-((tert-butyldimethylsilyl)oxy)-6,6,7b-trimethyl-3-

methylenedecahydro-2aH-cyclobuta[e]inden-2a-yl)methoxy)dimethylsilane (4.27) H
NMR (500 MHz, Chloroform-d) & 5.15 (t, J = 1.8 Hz, 1H), 4.83 (t, J = 1.6 Hz, 1H), 4.49 (dt, J =
9.0, 1.6 Hz, 1H), 3.80 (g, J = 10.3 Hz, 2H), 2.18 (tdd, J = 11.4, 9.0, 7.2 Hz, 1H), 2.06 (ddd, J =
11.7,10.1, 7.9 Hz, 1H), 1.88 — 1.76 (m, 3H), 1.64 — 1.54 (m, 1H), 1.50 — 1.41 (m, 2H), 1.22 (t, J
= 11.7 Hz, 1H), 1.14 (s, 3H), 1.06 (s, 4H), 0.94 (s, 9H), 0.90 (s, 3H), 0.86 (s, 9H), 0.08 (s, 3H),
0.07 — 0.02 (m, 9H). 13C NMR (126 MHz, CDCI3) 5 152.09, 103.31, 74.52, 64.03, 47.97, 47.93,
47.89, 44.39, 43.98, 42.24, 37.06, 28.26, 27.43, 26.06, 24.97, 24.82, 23.63, 23.11, 17.36, 17.05,

-5.38, -5.74, -6.62, -6.74.

tert-butyl((2-((2aR,2bR,5aS,6R,6aR)-6-((tert-butyldimethylsilyl)oxy)-2a,4,4-

trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)allyl)oxy)dimethylsilane (4.26) *H NMR
(500 MHz, Chloroform-d) & 5.27 (q, J = 2.1 Hz, 1H), 4.70 (g, J = 1.9 Hz, 1H), 4.35 (dt, J = 14.3,
2.0 Hz, 1H), 4.17 (d, J = 7.2 Hz, 1H), 3.93 (dt, J = 14.3, 1.6 Hz, 1H), 2.58 (ddt, J = 12.5, 9.7, 7.9
Hz, 1H), 2.44 (ddd, J = 12.3, 9.7, 8.2 Hz, 1H), 2.14 (td, J = 10.6, 9.1 Hz, 1H), 1.91 — 1.77 (m,
2H), 1.69 — 1.61 (m, 1H), 1.32 (ddd, J = 12.4, 8.2, 1.9 Hz, 1H), 1.28 — 1.17 (m, 3H), 1.09 (s, 3H),
0.98 (s, 3H), 0.94 (s, 3H), 0.92 (s, 9H), 0.82 (s, 9H), 0.06 (d, J = 2.1 Hz, 6H), -0.02 (s, 3H), -0.06
(s, 3H). *C NMR (126 MHz, CDCI3) 5 148.48, 107.89, 90.15, 63.21, 62.78, 54.99, 52.27, 51.58,
48.37, 43.61, 39.88, 27.95, 26.60, 26.01, 25.00, 24.83, 23.86, 21.76, 17.41, 16.94, -5.22, -5.52,

-6.30, -6.33.

tert-butyl((2-((2aS,2bR,5aS,6R,6aS)-6-((tert-butyldimethylsilyl)oxy)-2a,4,4-
trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)allyl)oxy)dimethylsilane (4.15) H

NMR (500 MHz, Chloroform-d) 5 5.37 (q, J = 1.8 Hz, 1H), 4.89 (q, J = 1.5 Hz, 1H), 4.13 (dt, J =
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13.9, 1.6 Hz, 1H), 4.05 (dt, J = 14.1, 1.7 Hz, 1H), 3.92 (d, J = 8.4 Hz, 1H), 2.64 — 2.56 (m, 1H),

2.23 —2.10 (m, 2H). Diagnostic downfield signals only.

See section 4.5.2 for NOE analysis of 4.26 and 4.27

T80 0 otes 2-((tert-butyldimethylsilyl)oxy)-1-((2aR,2bR,5aS,6R,6aS)-6-((tert-

butyldimethylsilyl)oxy)-2a,4,4-

H trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)ethan-1-one
(4.28) Cycloadduct 36 (105 mg, 0.22 mmol) was dispensed into a 25 mL roundbottom and
dissolved in 4.5 mL of a 10:1 Acetone: H20. This solution was treated with N-
methylmorpholine oxide NMO (38.8 mg, 0.33 mmol) then 2,6-Lutidine (0.05 mL, 0.44 mmol)
followed by OsO4 4wt% in H20 (0.05 mL, 0.01 mmol) and allowed to stir for 12 hours.
PhI(OAc)2 (106.3 mg, 0.33 mmol) was then added in one portion and the reaction was stirred
for 1 hour. The reactions was then quenched with aqueous Na2S203 and extracted with ethyl
acetate. The organic layer was washed with CuSO4 and brine, dried with Na2SOa, filtered and
concentrated to give crude product. Purification on silica gel (50:1 Hex:EtOAc) gave ketone
4.28 (81 mg, 76%) as a clear oil. 'H NMR (500 MHz, Acetone-ds) & 4.57 (d, J = 17.2 Hz, 1H),
4.43 (d, J = 7.2 Hz, 1H), 4.33 (d, J = 17.3 Hz, 1H), 2.96 (dddd, J = 12.3, 9.7, 8.2, 7.1 Hz, 1H),
2.40 (ddd, J=11.1, 10.2, 8.9 Hz, 1H), 1.84 (ddd, J =12.3, 8.3, 1.8 Hz, 1H), 1.68 (ddd, J =
11.1,8.2,1.7 Hz, 1H), 1.43 (dd, J =12.3, 9.6 Hz, 1H), 1.37 (ddd, J = 12.3, 8.3, 1.8 Hz, 1H),
1.35—1.25 (m, 3H), 1.12 (s, 3H), 1.06 (s, 3H), 0.98 (s, 3H), 0.92 (s, 11H), 0.85 (s, 9H), 0.10
(s, 3H), 0.09 (s, 3H), 0.07 (s, 3H). 13C NMR (126 MHz, Acetone) & 205.88, 90.73, 69.18,
68.89, 55.97, 53.90, 53.44, 48.31, 44.70, 40.49, 28.28, 26.99, 26.31, 25.42, 25.33, 22.57,

21.95, 18.21, 17.56, -5.18, -5.63, -5.78.
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2-hydroxy-1-((2aR,2bR,5aS,6R,6aS)-6-hydroxy-2a,4,4-
trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)ethan-1-one (4.29) A solution of 4.28 (
22.9 mg, 0.05 mmol) was dissolved in 0.4 mL of THF. Solid NH4Cl (25 mg) was added
followed by treatment with 1.0 M TBAF solution in THF (0.2 mmol, 0.2 mL). The reaction was
stirred for 3 hours then quenched with 2 M HCI and extracted with EtOAc. The organic layers
were washed with aqueous NH4Cl and brine, filtered and concentrated to give crude product.
Purification on silica gel (2:1 Hexanes:EtOAc) gave clean desired product for characterization.

As this was a probe scale reaction no isolated yield was obtained.

IH NMR (500 MHz, Chloroform-d) & 4.42 (dd, J = 19.1, 4.0 Hz, 1H), 4.29 (d, J = 6.9 Hz, 1H),
4.17 (dd, J = 19.1, 4.0 Hz, 1H), 3.20 (t, J = 4.8 Hz, 1H), 2.86 (dg, J = 12.0, 8.4 Hz, 1H), 2.63
(ddd, J = 12.0, 10.2, 8.1 Hz, 1H), 2.35 (dt, J = 11.3, 9.3 Hz, 1H), 2.09 (dt, J = 11.6, 8.9 Hz,
1H), 1.92 (ddd, J = 10.8, 8.3, 2.1 Hz, 1H), 1.86 (ddd, J = 12.7, 8.3, 1.9 Hz, 1H), 1.43 (ddd, J =
11.4,9.1, 2.1 Hz, 1H), 1.35 (ddg, J = 11.8, 9.0, 3.5, 2.7 Hz, 2H), 1.26 (t, J = 11.3 Hz, 1H), 1.12
(s, 3H), 1.09 (s, 3H), 0.96 (s, 3H). 13C NMR (126 MHz, CDCls) 5 211.39, 90.47, 68.52, 67.68,
56.20, 55.38, 52.94, 47.58, 44.96, 40.86, 29.11, 27.75, 26.67, 23.54, 21.61. See section 4.5.2

for NOE analysis

(1R,2S)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-3-(trimethylsilyl)prop-2-

TBSO _— —TMS
\"g yn-1-yI)-N-methoxy-N,4,4-trimethylcyclopentane-1-carboxamide (4.32)

=z N\O

S /N TMS Acetylene (9.0 mmol, 1.25 mL) was added to a dry 200 mL roundbottom
flask and diluted in 50 mL of THF. Reaction was placed under nitrogen, cooled to -20 °C, and
treated with LIHMDS 1.0 M in THF (8.3 mmol, 8.3 mL). Reaction was stirred for 15 min at -20

°C, then cooled to -78°C followed by addition of aldehyde 4.10 (7.5 mmol, 1.61 g) as a solution



168
in 25 mL of THF. Reaction was then stirred for 45 minutes until complete by TLC. The reaction
was then treated with 2,6-Lutidine (15.0mmol, 1.74 mL) followed by TBSOTf (11.27 mmol, 2.6
mL) then stirred for 30 minutes allowing to warm to room temperature. Reaction was then
guenched with saturated NaHCOs3 then extracted with EtOAc (3 X 30 mL). Organic layer was
then washed with saturated CuSOa4 (25 mL) and Brine (25 mL), filtered, dried with Na2SO4 and
concentrated to yield crude mixture of diastereomers. Purification on silica gel (25:1 Hex: EtOACc)
gave 4.32 as a 2.5:1 mixture of diastereomers (1.59 g, 50% 2.5:1 d.r.) Major *H NMR (500 MHz,
Chloroform-d) 8 4.61 (d, J = 9.3 Hz, 1H), 3.68 (s, 3H), 3.15 (s, 3H), 2.57 (p, J = 9.2 Hz, 1H), 1.79
—1.65 (m, 4H), 1.10 (s, 3H), 1.00 (s, 3H), 0.90 (s, 9H), 0.13 (s, 3H), 0.12 (s, 8H), 0.10 (s, 3H).
Minor *H NMR (500 MHz, Chloroform-d) & 4.80 (d, J = 9.5 Hz, 1H), 3.66 (s, 3H), 3.41 (s, 1H),
3.11 (s, 3H), 2.62 — 2.50 (m, 1H), 1.81 — 1.65 (m, 3H), 1.59 (ddd, J = 12.4, 7.0, 1.3 Hz, 1H), 1.09
(s, 3H), 1.03 (s, 3H), 0.88 (s, 9H), 0.18 (s, 3H), 0.15 (s, 9H), 0.05 (s, 3H). Stereochemistry was
determined by NOE analysis of the lactonization product derived from storage of the unprotected

free hydroxyl major diastereomer (see 4.5.2).

850, __ _qws 1-((1R,2S5)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-3-(trimethylsilyl)prop-

o 2-yn-1-yl)-4,4-dimethylcyclopentyl)ethan-1-one A solution of
diastereomers 4.32 (3.52 g, 8.3 mmol) in THF (80 mL) was placed under
N2, cooled to 0 C, and treated dropwise with 3.0 M methyl magnesium bromide (6.35 mL,
19.05 mmol). Reaction was then warmed to rt and stirred for 2 hr until complete by TLC. Upon
completion reaction was quenched with saturated NH4Cl solution (40 mL), extracted with Et20,
dried with MgSOQa, filtered and reconstituted to afforded ketone (3.0 g, 96%) as a mixture of
diastereomers without further purification necessary. Major *H NMR (500 MHz, Chloroform-d)
54.51 (d, J = 8.8 Hz, 1H), 3.22 (q, J = 8.3 Hz, 1H), 2.54 (dtd, J = 11.0, 8.7, 7.2 Hz, 1H), 2.18

(s, 3H), 1.75 — 1.58 (m, 4H), 1.08 (s, 3H), 0.98 (s, 3H), 0.89 (s, 9H), 0.14 (s, 9H), 0.12 (s, 3H),
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0.09 (s, 3H). *C NMR (126 MHz, CDCls) 5 212.18, 107.82, 89.31, 64.34, 51.84, 49.69, 45.05,

44.41, 38.55, 32.24, 29.76, 29.21, 25.85, 18.26, -0.24, -4.40, -4.86.

80, __ 1-((1R,25)-2-((R)-1-((tert-butyldimethylsilyl)oxy)prop-2-yn-1-yl)-4,4-

o dimethylcyclopentyl)ethan-1-one (4.33) In a 500 mL round bottom flask 1-

S ((1R,2S5)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-3-(trimethylsilyl)prop-2-yn-1-yl)-
4,4-dimethylcyclopentyl)ethan-1-one (3.0 g, 7.95 mmol) was dissolved in 100 mL of THF.
Reaction was then treated with H20 (100 mL), EtOH (100 mL) and 2,6-Lutidine (10 mL).
AgNOs was then added in a single portion (13.5 g, 79.5 mmol) and the resulting white
suspension was stirred for 4 hours at room temperature. Reaction was then quenched by
addition of 100 mL of saturated NazPOas stirring for 15 minutes. The quenched reaction mixture
was then filtered through celite and extracted with Et2O (3 X 50 mL). Organic layer was then
washed with sat. CuSOa, Brine, dried with MgSOa, filtered and concentrated to give compound
4.33 as a mixture of diastereomers (2.28 g, 93%). Diastereomers could be separated via flash
chromatography (75:1 Hex: EtoAc) allowing for isolation of pure major and minor
diastereomers of 4.33. Major *H NMR (500 MHz, Chloroform-d) & 4.60 (dd, J = 8.5, 2.1 Hz,
1H), 3.23 (g, J = 8.3 Hz, 1H), 2.56 (dtd, J = 10.9, 8.6, 7.3 Hz, 1H), 2.37 (d, J = 2.1 Hz, 1H),
2.18 (s, 3H), 1.74 (ddd, J = 12.8, 8.4, 1.3 Hz, 1H), 1.71 — 1.59 (m, 4H), 1.08 (s, 3H), 0.99 (s,
3H), 0.90 (s, 9H), 0.14 (s, 3H), 0.10 (s, 3H). Minor *H NMR (400 MHz, Chloroform-d) & 4.63
(dd, J =9.0, 2.1 Hz, 1H), 3.17 (q, J = 8.0 Hz, 1H), 2.58 (dg, J = 10.8, 8.1 Hz, 1H), 2.39 (d, J =
2.1 Hz, 1H), 2.17 (s, 3H), 1.76 — 1.57 (m, 4H), 1.08 (s, 3H), 1.01 (s, 3H), 0.88 (s, 9H), 0.14 (s,

3H), 0.07 (s, 3H).

1-((1R,2S)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-2-methylenebut-3-en-1-

yl)-4,4-dimethylcyclopentyl)ethan-1-one (4.34) A 100 mL pressure vessel

was charged with HGII (100 mg, 0.16 mmol) and 37 (510 mg, 1.65 mmol) in

toluene (16 mL). Reaction was sparged for 5 min with nitrogen and fit with a pressure head.
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Vessel was then pressurized with ethlyene to 60 PSI and vented back to 10 PSI pressure. This
process was repeated 5 times with rapid stirring of the solution to saturate with ethylene.
Reaction was then vented to 10 PSI of ethylene and heated at 80 °C for 20 h. Reaction was
then cooled to rt, opened to air, and isocyanate was added (0.1 mL). Reaction was stirred for
15 minutes then reconstituted in vacu. The crude reaction mixture was then dissolved in 4:1
Hexane:Et20 and passed thru a silica plug to remove ruthenium isocyanate adducts.
Purification on silica gel (50:1 Hexane: EtOAc) afforded 36 (523 mg, 94%) as a clear pale
yellow oil. *H NMR (500 MHz, Chloroform-d) & 6.30 (ddd, J = 17.6, 11.1, 0.8 Hz, 1H), 5.56 (dd,
J=17.7,1.7 Hz, 1H), 5.12 — 5.08 (m, 2H), 4.85 (d, J = 1.9 Hz, 1H), 4.58 (d, J = 8.8 Hz, 1H),
2.84 (ddd, J = 9.0, 7.6, 5.1 Hz, 1H), 2.47 (ddt, J = 11.6, 8.8, 7.3 Hz, 1H), 2.01 (s, 3H), 1.81 (t, J
=12.0 Hz, 1H), 1.73 (ddd, J = 13.3, 9.0, 1.0 Hz, 1H), 1.64 (dd, J =12.3, 7.1 Hz, 1H), 1.60 —
1.54 (m, 1H), 1.05 (s, 3H), 1.01 (s, 3H), 0.87 (s, 9H), 0.04 (s, 3H), -0.04 (s, 3H). 13C NMR (126
MHz, CDClz) 6 212.07, 148.90, 135.13, 115.65, 114.70, 75.35, 51.95, 48.26, 44.94, 44.36,

37.94, 31.66, 30.76, 30.56, 25.88, 18.15, -4.44, -4.85.

tert-butyl(((R)-1-((1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)-2-

methylenebut-3-en-1-yl)oxy)dimethylsilane (4.30a) To a suspension of Zn

: powder (1.42 g, 21.8 mmol) and PbCl2 (81 mg, 0.29 mmol) in degassed THF(
sparge with N2) (7.5 mL) under N2 was added diiodomethane (0.88 mL, 10.9 mmol), and the
reaction mixture was stirred at rt for 1h. The reaction was then cooled to 0 C and treated with a
solution of TiCls 1.0 M in CH2Clz (2.2 mL, 2.2 mmol). Reaction was then warmed to rt and
stirred for 2 h. Reaction was again cooled to 0 'C and treated with a solution of 4.34 ( 487.2
mg, 1.45 mmol) in degassed THF (7.5 mL) and the resulting solution was heated at 50 C for
1h until complete by TLC. Reaction was quenched slowly with saturated NaHCOs3 (6 mL) and
filtered thru a pad of celite. To the filtrate was added saturated aqueous Na2S20s solution (10

mL) and this mixture was extracted with Et2O, dried with MgSOa, filtered and reconstituted.
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Purification on silica gel (200:1 Hexane: EtOAc) to afford 29 (377.7 mg, 78%) as a clear oil. *H
NMR (500 MHz, Chloroform-d) & 6.27 (ddd, J=17.7, 11.1, 0.9 Hz, 1H), 5.34 (dd, J=17.8,1.4
Hz, 1H), 5.09 — 5.05 (m, 2H), 5.07 — 5.00 (m, 1H), 4.82 (dg, J = 2.3, 1.1 Hz, 1H), 4.74 (dt, J =
2.2,1.2 Hz, 1H), 4.37 (dd, J = 4.4, 0.8 Hz, 1H), 2.64 (dt, J = 9.9, 7.4 Hz, 1H), 2.35 (tdd, J =
8.5, 7.3, 4.4 Hz, 1H), 1.81 (dd, J = 13.3, 7.3 Hz, 1H), 1.79 — 1.77 (m, 3H), 1.74 (dd, J = 12.2,
10.8 Hz, 1H), 1.48 — 1.39 (m, 2H), 1.12 (s, 3H), 0.98 (s, 3H), 0.90 (s, 9H), 0.01 (s, 3H), -0.08
(s, 3H). 13C NMR (126 MHz, CDCls) & 149.27, 145.41, 136.62, 115.01, 113.72, 111.83, 72.53,

48.29, 45.24, 40.91, 36.55, 30.44, 30.28, 26.16, 23.75, 18.22, -3.50, -4.42.

(R)-1-((1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)-2-

HO

e
l R
< N

with 1.0 M TBAF in THF (0.6 mL, 0.6 mmol) then stirred for 8 hours at room temperature.

methylenebut-3-en-1-ol (4.30b) A 10 mL roundbottom flask was charged

with 4.30a (100.4 mg, 0.3 mmol) in 1.5 mL of THF. Reaction was then treated

Reaction was then quenched with 2 M HCI and extracted with Et20. The organic layer was
then washed with aqueous NH4Cl and brine, dried with MgSOy, filtered and reconstituted to
give crude deprotected product. Purification on silica gel (50:1 Hexanes: EtOAc) gave 4.30b
(63.6 mg, 96%) as a clear oil. *H NMR (500 MHz, Chloroform-d)  6.27 (dd, J =17.8, 11.2 Hz,
1H), 5.24 (g, J = 1.6 Hz, 1H), 5.16 (dd, J = 17.9, 0.9 Hz, 1H), 5.14 — 5.10 (m, 1H), 5.04 (dq, J =
11.1, 1.0 Hz, 1H), 4.99 (h, J = 1.4 Hz, 1H), 4.93 (d, J = 1.9 Hz, 1H), 4.56 — 4.51 (m, 1H), 2.85
(ddd, J =14.1,9.7, 6.1 Hz, 1H), 2.54 (tdd, J =9.3, 7.1, 2.2 Hz, 1H), 1.96 — 1.90 (m, 3H), 1.84
(d, J = 3.5 Hz, 1H), 1.77 — 1.69 (m, 1H), 1.64 (dd, J = 13.3, 7.2 Hz, 1H), 1.37 (ddd, J = 11.8,
6.1, 1.7 Hz, 1H), 1.26 (ddd, J = 13.3, 9.0, 1.7 Hz, 1H), 1.12 (s, 3H), 0.96 (s, 3H). 13C NMR
(126 MHz, CDCls) & 147.99, 147.40, 137.13, 114.72, 113.03, 110.37, 69.55, 47.50, 45.00,

42.73, 38.46, 36.74, 29.67, 28.77, 24.65.
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((((R)-1-((1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)-2-

methylenebut-3-en-1-yl)oxy)methyl)benzene (4.30c) A 10 mL roundbottom

3 flask containing 0.5 mL of THF was charged with NaH 60 wt% (9.6 mg, 0.24
mmol). A solution of 4.30b (40 mg, 0.18 mmol) in 1.2 mL of THF was added and the reaction
was stirred for 30 minutes under N2 at room temperature. Benzyl bromide (0.04 mL, 0.36 mmol)
was then added and the reaction was refluxed at 80°C for 48 hours. The reaction was then
guenched with H20 and extracted with Et2O. The organic layer was washed with brine, dried
with MgSOQa, filtered and reconstituted to give crude benzyl protected product. Purification on
silica gel (100% Hexanes — 100:1 Hexanes: EtOAc) gave 4.30c (26 mg, 47%) as a clear oil. *H
NMR (500 MHz, Chloroform-d) & 7.34 — 7.31 (m, 5H), 6.35 (dd, J = 17.9, 11.2 Hz, 1H), 5.29 —
5.21 (m, 2H), 5.17 (d, J = 2.0 Hz, 1H), 5.06 (d, J = 11.2 Hz, 1H), 4.90 (t, J = 1.8 Hz, 1H), 4.80 —
4.74 (m, 1H), 4.37 (d, J = 11.3 Hz, 1H), 4.20 (d, J = 11.3 Hz, 1H), 4.14 — 4.08 (m, 1H), 2.84 —
2.74 (m, 1H), 2.44 (tdd, J = 8.9, 6.0, 2.3 Hz, 1H), 1.93 (t, J = 12.2 Hz, 1H), 1.83 (s, 3H), 1.79
(dd, J = 13.4, 6.0 Hz, 1H), 1.33 (ddd, J = 16.7, 12.6, 7.7 Hz, 2H), 1.08 (s, 3H), 0.97 (s, 3H). 13C
NMR (126 MHz, CDCI3) d 145.78, 145.13, 139.33, 137.67, 128.44, 128.32, 128.08, 127.09,

126.93, 115.29, 113.28, 110.98, 77.70, 69.83, 48.59, 44.86, 44.06, 39.58, 36.83, 30.03, 23.88.

Table 4.1, entry 2 (4.35a and 4.31a): A quartz reaction

TBSO \\
H% vessel was charged with [Cu(COD)Cl)2 (8.3 mg, 0.02

mmol) and NaSbFe (20.7 mg, 0.08 mmol) and placed

Major 4.35a Minor 4.31a . i
under N2. A solution of 4.31a in 16 mL of benzene was

added and the reaction was sonicated for 1 minute, then prestirred for 15 minutes. Reaction was
fit with a coldfinger and irradiated and 254 nm for 17 hours. The reaction was then flush through
a pad of silica with Et2O and concentrated to give crude mixture of products that upon NMR

analysis with TMSPh (28.2 mg) as an internal standard gave a 50% yield as a 5:1 mixture of
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diastereomers. Diastereomers were separated for clean characterization by purification of silica

gel (100% Hexane).

tert-butyldimethyl(((2aR,2bR,5aS,6R,6aS)-2a,4,4-trimethyl-6a-
vinyldecahydrocyclobuta[a]pentalen-6-yl)oxy)silane Major 'H NMR (400 MHz,
Chloroform-d) & 5.89 (dd, J = 17.4, 10.7 Hz, 1H), 5.09 (dd, J = 10.8, 2.1 Hz, 1H), 4.87 (dd, J =
17.4, 2.1 Hz, 1H), 4.09 (d, J = 7.3 Hz, 1H), 2.78 — 2.63 (m, 1H), 2.40 (ddd, J = 11.9, 10.0, 8.3
Hz, 1H), 2.13 (dt, J = 11.0, 9.2 Hz, 1H), 2.01 — 1.88 (m, 1H), 1.80 — 1.71 (m, 2H), 1.33 — 1.24

(m, 4H), 1.10 (s, 3H), 0.93 (s, 3H), 0.89 (s, 3H), 0.84 (s, 9H), -0.00 (s, 3H), -0.05 (s, 3H).

tert-butyldimethyl(((2aS,2bR,5aS,6R,6aR)-2a,4,4-trimethyl-6a-
vinyldecahydrocyclobuta[a]pentalen-6-yl)oxy)silane Minor *H NMR (500 MHz, Chloroform-
d) 85.75 (dd, J = 17.3, 10.6 Hz, 1H), 5.13 (dd, J = 10.6, 1.6 Hz, 1H), 4.97 (dd, J = 17.3, 1.6 Hz,
1H), 3.78 (d, J = 8.6 Hz, 1H), 2.61 (q, J = 8.1 Hz, 1H), 2.21 — 2.04 (m, 2H), 1.87 — 1.59 (m, 5H),
1.55 (dd, J = 13.8, 2.3 Hz, 1H), 1.34 (dd, J = 12.4, 7.0 Hz, 1H), 1.06 (d, J = 9.9 Hz, 1H),1.12 (s,
3H), 0.96 (s, 3H), 0.89 (s, 3H), 0.83 (s, 9H), 0.01 (s, 3H), -0.08 (s, 3H).

AcO \ (2aR,2bR,5aS,6R,6aS)-2a,4,4-trimethyl-6a-

H

vinyldecahydrocyclobuta[a]pentalen-6-yl acetate (4.37) A 10 mL round
H bottom flask was charged with 4.31a (33.5 mg, 0.1 mmol) in 0.5 mL of THF. The
reaction was then treated with 1.0 M TBAF in THF (0.4 mL, 0.4 mmol) then stirred at 60°C for 8
hours. The reaction was then cooled to room temperature and quenched with 2M HCI and
extracted with EtOAc. The organic layer was washed with agueous NH4Cl and brine, dried over
Naz2SO04, filtered and reconstituted to give crude TBS deprotected product. This crude product
was then dissolved in 1 mL of DCM and treated with DMAP (18.3 mg, 0.15 mmol) and Ac20 (14
ML, 0.15 mmol) and allowed to stir at room temperature for 13 hours. The reaction was then
guenched with 2M HCI and extracted with DCM. The organic layer was washed with brine, dried

over Na2SO0y, filtered and concentrated to give crude acetate protected product. Purification on
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silica gel (50:1 Hexanes: EtOAc) gave 4.37 (10.4 mg, 40%) as a clear oil. *H NMR (500 MHz,
Chloroform-d) § 5.78 (dd, J = 17.4, 10.7 Hz, 1H), 5.11 (dd, J = 10.7, 1.9 Hz, 1H), 5.07 (d, J =
7.5 Hz, 1H), 4.91 (dd, J = 17.3, 1.9 Hz, 1H), 2.97 (dt, J = 12.5, 4.4 Hz, 1H), 2.87 (dddd, J = 11.9,
9.2, 8.3, 7.5 Hz, 1H), 2.55 — 2.44 (m, 1H), 2.14 (dt, J = 10.7, 9.1 Hz, 1H), 1.96 (s, 3H), 1.79 —
1.73 (m, 2H), 1.42 — 1.27 (m, 5H), 1.11 (s, 3H), 0.94 (d, J = 2.7 Hz, 6H), 0.07 (s, 6H). Does not

match Mehta’s intermediate.2?

MePPh3Br S
\\\ N
- Ty,

~ OH

N MelLi S KHMDS

SO - SO O
(0] HO

((1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)methanol (4.41) A dry 250 mL
roundbottom flask was charged with lactone 4.17 ( 3.83 g, 24.9 mmol) in 125mL of dry THF.
The reaction was placed under N2, cooled to -78°C, and treated dropwise with a 1.1 M solution
of MeLi in THF ( 22.6 mL, 24.9 mmol). The reaction was then allowed to warm to 0°C and stir
for 45 minutes then was quenched with aqueous NH4Cl solution. The reaction mixture was
then extracted with Et2O, washed with brine, dried with MgSOQOa, filtered and concentrated to
yield 3.27 g methyl lactol as an opaque white semi solid (79%, 19.7 mmol). Further purification

was not necessary, and this material was bought forward crude.

A dry 500 mL roundbottom was charged with methyltriphenylphosphonium bromide
(55.4 g, 155 mmol) in 300 mL of THF. The reaction was cooled to 0°C and treated with
potassium tert-butoxide (14.1 g, 126 mmol) as a solid in one portion, then placed under
nitrogen. The reaction was then stirred for 2 hours slowly warming to room temperature. The
reaction was then fit with an addition funnel and a solution of methyl lactol (3.27 g, 19.4 mmol)
in 100 mL THF was added dropwise over 30 minutes. The reaction was then stirred a further
30 minutes at room temperature until complete by TLC. Upon completion reaction was

guenched with H20 and extracted with Et20. Organic layers where washed with brine, dried
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over MgSOQau, filtered and concentrated to give crude alcohol product. Purification on silica gel
(9:1 Hexane: EtOAc) afforded 4.41 (2.42 g, 76%, 3.5:1 cis : trans) as a clear pale yellow oil.
Further purification on silica gel (4:1 Chloroform: Hexane) allowed for separation of pure cis

isomer to bring forward.

CIS Major *H NMR (500 MHz, Chloroform-d) & 4.85 (d, J = 2.1 Hz, 1H), 4.79 (s, 1H), 3.55 (ddd,
J =11.6, 6.8, 5.0 Hz, 1H), 3.34 (dt, J = 11.2, 6.9 Hz, 1H), 2.75 (dt, J = 13.5, 7.2 Hz, 1H), 2.42
(dddd, J = 14.9, 8.1, 6.9, 4.8 Hz, 1H), 1.84 (d, J = 1.0 Hz, 3H), 1.69 — 1.61 (m, 2H), 1.52 (dd, J =
7.0, 5.3 Hz, 1H), 1.44 (dd, J = 12.4, 6.3 Hz, 1H), 1.38 (dd, J = 13.4, 4.9 Hz, 1H), 1.11 (s, 3H),
1.02 (s, 3H). 13C NMR (126 MHz, CDCI3) & 146.99, 110.17, 64.68, 47.42, 43.81, 43.72, 43.38,
36.97, 31.13, 30.23, 23.80. HRMS (ElI) calculated for [C11H200 + H]* requires m/z 169.1587 found
m/z 169.1587. [a]?’p +27.9 ° (c 0.58, CH2Cl2)

5 (1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentane-1-carbaldehyde (4.42)

\\ A dry 100 mL round bottom flask was charged with alcohol 4.41 (613.2 mg, 3.67
Q( mmol) in 18 mL of DCM. Reaction was then treated with pyridine (1.3 mL, 14.7
mmol) then des-martin periodate ( 2.33 g, 5.5 mmol). The reaction was stirred 1h at room
temperature then concentrated in vac. The crude was then dissolved in 2:1 pentanes: Et20
and flushed thru a plug of silica. Eluent was then washed with CuSO4 (2 X 15 mL) and brine,
dried over MgSOy, filtered and reconstituted to give g of pure aldehyde 4.42 (560 mg, 92%)
with no further purification necessary. *H NMR (500 MHz, Chloroform-d) & 9.53 (d, J = 3.2 Hz,
1H), 4.85 (q, J = 1.4 Hz, 1H), 4.81 (t, J = 1.3 Hz, 1H), 3.06 — 2.93 (m, 2H), 1.84 (dd, J = 13.7,
5.1 Hz, 1H), 1.78 (t, J = 1.0 Hz, 3H), 1.69 — 1.53 (m, 4H), 1.16 (s, 3H), 1.04 (s, 3H). 3C NMR
(126 MHz, CDCls) & 204.19, 143.53, 111.47, 52.57, 47.89, 44.45, 40.20, 38.05, 30.07, 29.45,

22.97. HRMS (EI) calculated for [C11H180 + H]* requires m/z 167.1430 found m/z 167.1431.
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HO (R)-4-((tert-butyldimethylsilyl)oxy)-1-((1S,2R)-4,4-dimethyl-2-(prop-1-
~&<\:§—\ en-2-yl)cyclopentyl)-2-methylenebutan-1-ol (4.44) A dry 250 mL
o roundbottom was charged with CrCl2 (1.12 g, 9.0 mmol) and NiCl2 (1.1
mgq) in a nitrogen filled glovebox. Reaction was sealed and removed from the glovebox and
placed under argon, then 25mL of dry DMSO was added followed by a mixture of aldehyde
4.42 (248 mg, 1.5 mmol) and tert-butyl((3-iodobut-3-en-1-yl)oxy)dimethylsilaneRef 4.43 ( 1.42g,
4.5 mmol) in 12.5 mL of DMSO. The reaction was then stirred for 16 hours at room
temperature then quenched by addition of chloroform and aqueous NH4Cl. The mixture was
then extracted with Et2O, washed with H20 and brine, dried over MgSOa, filtered and
concentrated to give crude mixture of diastereomers. Purification on silica (50:1 Hexanes:
EtOAC) yields the pure desired major diastereomer 4.44 (173mg, 33%), remaining aldehyde
4.42 (52 mg, 21%) and an inseparable mixture of 3 diastereomers one the cis minor the other
two resulting from epimerization of aldehyde prior to addition (79mg, 15%). H NMR (500
MHz, Chloroform-d) 6 5.06 (t, J = 1.7 Hz, 1H), 4.92 (d, J = 2.1 Hz, 1H), 4.88 — 4.83 (m, 2H),
4.11 (d, J = 3.3 Hz, 1H), 3.76 — 3.66 (m, 2H), 2.82 (ddd, J = 12.6, 9.1, 6.3 Hz, 2H), 2.52 (tdd, J
=9.6, 7.2, 2.8 Hz, 1H), 2.25 (dt, J = 14.5, 7.3 Hz, 1H), 2.21 (d, J = 3.7 Hz, 1H), 2.14 (dt, J =
14.3, 6.9 Hz, 1H), 1.86 (t, J = 0.9 Hz, 3H), 1.72 (t, J = 12.3 Hz, 1H), 1.62 (dd, J = 13.2, 7.2 Hz,
1H), 1.45 — 1.30 (m, 2H), 1.11 (s, 3H), 0.99 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H). 13C NMR (126
MHz, CDCl3) 6 147.78, 147.55, 110.76, 110.45, 73.00, 63.18, 47.47, 44.84, 42.23, 38.98,
36.86, 36.62, 29.70, 29.17, 25.94, 24.42, 18.37, -5.34. HRMS (EI) calculated for [C21H4002Si +

H]* requires m/z 353.2870 found m/z 353.2865. [a]?%p

TBSO (R)-5-((1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)cyclopentyl)-

i
5& R OTBS
B

(234 mg, 0.66 mmol) in 4 mL DCM. Reaction was placed under N2, cooled to 0°C, and treated

2,2,3,3,10,10,11,11-octamethyl-6-methylene-4,9-dioxa-3,10-

disiladodecane (4.39a) A 50 mL roundbottom flask was charged with 4.44
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with 2,6- lutidine (0.15 mL, 1.3 mmol). The reaction was then treated with TBSOTf (0.23mL, 0.99
mmol) dropwise. The reaction was then stirred for 30 minutes at 0°C before being quenched with
aqueous sodium bicarbonate. The mixture was then extracted with DCM, washed with brine,
dried over Na2SO0u, filtered and concentrated. Purification on silica gel (10:1 Hexanes: DCM)
yielded 4.39a (248.1 mg, 81%) as a clear colorless oil. *H NMR (500 MHz, Chloroform-d) 5 4.92
(s, 1H), 4.77 (s, 1H), 4.75 (d, J = 1.7 Hz, 1H), 4.69 (s, 1H), 4.05 (d, J = 5.2 Hz, 1H), 3.74 (t, J =
7.5 Hz, 2H), 2.62 (g, J = 8.5 Hz, 1H), 2.35 — 2.23 (m, 2H), 2.18 (dt, J = 15.1, 7.5 Hz, 1H), 1.79 —
1.72 (m, 4H), 1.67 (dd, J = 12.4, 9.8 Hz, 1H), 1.47 (ddd, J = 12.0, 7.8, 3.1 Hz, 2H), 1.11 (s, 3H),
0.99 (s, 3H), 0.89 (d, J = 7.4 Hz, 18H), 0.06 (s, 6H), 0.00 (s, 3H), -0.06 (s, 3H). *C NMR (126
MHz, CDCI3) 6 148.48, 145.88, 111.74, 76.39, 62.61, 48.21, 45.56, 44.87, 41.68, 36.81, 34.54,
30.51, 30.19, 26.13, 25.99, 23.65, 18.38, 18.23, -3.56, -4.45, -5.24. HRMS (El) calculated for

[C11H180 + H]* requires m/z 467.3735 found m/z 467.3734. [a]??0 +21.6° (c 0.73, CH2Cl2)

OTBS
tert-butyl(2-((2aS,2bR,5aS,6R)-6-((tert-

butyldimethylsilyl)oxy)-2a,4,4-

trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)ethoxy)dimethylsilane (4.40) A quartz
vessel was charged with [Cu(COD)CI]2 (1 mg, 0.0025 mmol) and placed under N2. Diene 4.39a
(47.8 mg, 0.1 mmol) was then added as a solution in 3.25 mL of Et2O and the reaction was
sonicated 1 minute and stirred for 5 minutes. A solution of AgSbFe (3.4 mg, 0.01 mmol) in 3.25
mL of Et20 and the reaction was stirred for 20 minutes under N2. The reaction was then fit with
a coldfinger and irradiated at 254 nm for 6 hours. The reaction was then flushed through a pad
of silica with Et2O and concentrated to give a crude mixture of diastereomers 3.5:1 d.r.
Purification on silica (10:1 Hexanes:DCM) allowed for isolation of 4.40 Major (29.7 mg, 62%)

and 4.40 Minor (8.7 mg, 18%).



178
440 Major tert-butyl(2-((2aS,2bR,5aS,6R,6aR)-6-((tert-butyldimethylsilyl)oxy)-2a,4,4-

trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)ethoxy)dimethylsilane

IH NMR (600 MHz, Chloroform-d) & 4.20 (td, J = 9.4, 6.4 Hz, 1H), 3.96 (d, J = 4.1 Hz, 1H), 3.60
(td, J = 9.7, 3.9 Hz, 1H), 2.85 (td, J = 7.5, 3.5 Hz, 2H), 2.36 (td, J = 9.1, 6.5 Hz, 1H), 2.29 — 2.17
(m, 2H), 1.88 (ddd, J = 10.2, 6.6, 1.2 Hz, 1H), 1.83 (dddd, J = 13.1, 9.2, 4.0, 1.0 Hz, 1H), 1.60
(dd, J = 12.6, 6.8 Hz, 1H), 1.54 (s, 3H), 1.38 (ddd, J = 9.8, 6.4, 1.2 Hz, 1H), 1.34 (dd, J = 13.0,
6.9 Hz, 1H), 1.25 — 1.19 (m, 1H), 1.11 (d, J = 1.1 Hz, 3H), 1.05 (s, 3H), 0.91 (s, 4H), 0.90 (s,
8H), 0.88 (s, 9H), 0.06 (s, 6H), 0.01 (d, J = 2.6 Hz, 6H). 3C NMR (151 MHz, CDCl3) & 81.19,
62.44,57.96,57.19, 48.67, 46.77, 45.29, 44.83, 38.74, 37.59, 34.14, 29.99, 29.71, 29.35, 28.66,

26.16, 26.10, 24.86, 18.41, -4.59, -4.60, -5.00, -5.12. [a]?’p +34.1° (c 1.49, CH2Cl2)

440 Minor tert-butyl(2-((2aR,2bR,5aS,6R,6aS)-6-((tert-butyldimethylsilyl)oxy)-2a,4,4-
trimethyloctahydrocyclobuta[a]pentalen-6a(1H)-yl)ethoxy)dimethylsilane *H NMR (600
MHz, Chloroform-d) & 4.03 (d, J = 6.8 Hz, 1H), 3.77 — 3.70 (m, 1H), 3.63 — 3.55 (m, 1H), 2.45
(dddd, J = 12.2, 9.6, 8.1, 6.8 Hz, 1H), 2.34 (ddd, J = 12.1, 9.8, 8.2 Hz, 1H), 1.83 (dt, J = 11.5,
8.7 Hz, 1H), 1.75 — 1.63 (m, 5H), 1.54 — 1.50 (m, 1H), 1.32 — 1.27 (m, 2H), 1.21 (q, J = 11.8,
11.3 Hz, 3H), 1.08 (s, 6H), 0.92 (s, 3H), 0.89 (d, J = 0.9 Hz, 18H), 0.04 — 0.03 (m, 9H), 0.02 (s,
3H). 33C NMR (151 MHz, CDClz) 6 90.27, 60.71, 56.93, 54.95, 52.59, 50.53, 48.53, 43.91, 40.97,

35.40, 29.71, 29.10, 27.19, 27.11, 26.06, 25.95, 23.28, 18.37, 18.02, -4.23, -4.28, -5.12, -5.15.
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4.5.2 NOE Data
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Appendix A. Cu(l) Catalyzed [2+2] Cycloaddition of Electron Deficient 1,6 -
Heptadienes and Progress Towards Enantioselective Catalysis.

A.1 Discussion

While exploring the scope of the racemic Salomon—Kochi reaction, we wondered if it might
be applicable to substrates that decompose upon direct irradiation at 254 nm if simply a longer
wavelength were to be employed. UV-vis experiments revealed that enones and other electron-
deficient olefins undergo a similar red shift when coordinated to copper, giving compounds that
can be photoexcited at longer wavelengths (300 nm). Irradiation at 300 nm under typical
Salomon—-Kochi conditions gave the desired product in good yield without the decomposition
observed at 254 nm (Scheme A.1). With this result in hand, we wondered if electron-deficient
olefins would better tolerate a more electron rich ligated copper catalyst than the previous
neutral olefins. We hypothesized that = backdonation from the metal to the electron deficient
olefin could be a much larger component of olefin coordination in this system, leading us to
believe that chiral BOX type ligands could be employed where they have previously failed on

electron-neutral alkenes.
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Scheme A.1 Progress Towards Cu(l) Templated Enantioselective Intramolecular [2+2] of

Electron Deficient 1,6-Heptadienes
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We were delighted to see that not only did BOX type ligands not shut down the reaction, they
also resulted in substantial enantioenrichment of cycloadducts. NMR analysis of the 1:1 Cu(l)
chiral ligand complexes suggests that the dominant interaction is still olefin coordination
because of the disappearance of the terminal olefin carbon signals upon coordination with the
catalyst. If this is true this chemistry should not only be limited to enones, but rather a wide
variety of electron deficient olefin coupling partners. This is demonstrated by cyclization of vinyl
boronate ester using this same strategy. While no enantiomeric excess was obtained for this
experiment, the fact the diastereoselectivity is much different in the presence of the chiral ligand
suggests the ligand has an impact on the stereochemistry-determining steps of the reaction.
These results are highly preliminary, but they represent a potentially new mode of catalysis in
asymmetric [2+2] photocycloadditions, using the m-system itself to coordinate to the chiral

catalyst.



Scheme A.2 Expanding Method to Other Electron Deficient 1,6-Heptadienes
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A.2 Experimental
0 benzyl (E)-octa-2,7-dienoate (A.1) A 25 mL roundbottom was charged

/\/\/\)J\
~ o with benzyl 2-(triphenyl-I5-phosphaneylidene)acetate (2.5 g, 6.1 mmol)
in 5 mL of DCM. Reaction was placed under N2 and treated with a solution of hex-5-enal (402
mg, 4.1 mmol). The reaction was then stirred for 24 hours then concentrated to give crude
product. Purification on silica gel (9:1 Pentanes: Et20) gave A.1 (562 mg, 60%) as a clear pale
yellow oil. *H NMR (500 MHz, Chloroform-d) & 7.40 — 7.30 (m, 5H), 7.01 (dt, J = 15.6, 6.9 Hz,
1H), 5.88 (dt, J = 15.6, 1.6 Hz, 1H), 5.78 (ddt, J = 16.9, 10.2, 6.8 Hz, 1H), 5.30 (s, 1H), 5.18 (s,
2H), 5.05 — 4.94 (m, 2H), 2.27 — 2.18 (m, 2H), 2.12 — 2.04 (m, 3H), 1.62 — 1.51 (m, 2H). 13C
NMR (126 MHz, CDCI3) d 166.47, 149.69, 137.97, 136.13, 128.54, 128.19, 128.16, 121.18,

115.13, 66.03, 33.07, 31.56, 27.09.

O

I/

BnO

benzyl-bicyclo[3.2.0]lheptane-6-carboxylate (A.2)
Racemic Procedure

A quartz vessel was charged with A.1 (46.1 mg, 0.2 mmol) in 4 mL of Et20. The reaction
was placed under N2 and treated with a solution of CuOTf (5 mg, 0.01 mmol) in 4 mL of Et20.
After stirring for 15 minutes the reaction was fit with a coldfinger and irradiated at 300 nm for 18
hours. The reaction was then flushed through a pad of silica with Et2O and concentrated to give
crude cycloadducts (75% NMR Yield with 16.7 mg of TMSPh internal standard, 3.5:1 d.r.).
Purification on silica gel (40:1 Pentanes: Et20) allowed for characterization of the major
diastereomer. *H NMR (400 MHz, Chloroform-d) 8 7.41 — 7.28 (m, 5H), 5.13 (s, 2H), 2.98 — 2.89

(m, 1H), 2.79 — 2.67 (m, 1H), 2.59 (dddd, J = 9.7, 6.0, 4.9, 1.0 Hz, 1H), 2.49 — 2.40 (m, 1H), 1.88
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—1.78 (m, 2H), 1.66 (dddd, J = 14.8, 7.2, 4.3, 1.7 Hz, 2H), 1.60 — 1.38 (m, 2H), 1.35 — 1.21 (m,
1H). 3C NMR (101 MHz, CDCls) & 176.10, 136.32, 132.84, 128.51, 128.06, 128.02, 66.06,

42.07, 40.61, 34.94, 32.91, 26.95, 24.67, 22.34, 14.06.

Asymmetric General Procedure

A quartz vessel was charged with chiral ligand (0.01 mmol) and A.1 (46.1 mg, 0.2 mmol)
in 4 mL of Et2O. The reaction was placed under N2 and treated with a solution of CuOTf (5 mg,
0.01 mmol) in 4 mL of Et20. After stirring for 15 minutes the reaction was fit with a coldfinger
and irradiated at 300 nm for 18 hours. The reaction was then flushed through a pad of silica with
Et2O and concentrated to give crude cycloadducts (75% NMR Yield with 16.7 mg of TMSPh
internal standard, 3.5:1 d.r.). Purification on silica gel (40:1 Pentanes: Et20) allowed for

characterization of the major diastereomer. HPLC Method: OJ-H, Gradient_10_30MTBE
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Appendix B 'H and *C NMR Spectra for New Compounds
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