
Enhancing Mobile Security and Privacy through App Splitting

By

Andrew J. Davidson

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2016

Date of final oral examination: 1 Sep. 2016

The dissertation is approved by the following members of the Final Oral
Committee:

Somesh Jha, Professor, Computer Sciences
Thomas Reps, Professor, Computer Sciences
Aws Albarghouthi, Assistant Professor, Computer Sciences
Mihai Christodorescu, Researcher, Qualcomm Research
Xinyu Zhang, Assistant Professor, Electrical & Computer Engineering

© Copyright by Andrew J. Davidson 2016

All Rights Reserved

i

Dedicated to Meghan Davidson

ii

Acknowledgments

Research is what I am doing when I don’t know what I am doing.

— Wernher con Braun (1957)

The work presented in this dissertation is most directly the result of the
insights of Somesh Jha and Mihai Christodorescu. Of course, the indirect
guidance and the support that I received throughout my graduate studies
goes far beyond that. I owe a huge debt of gratitude to the faculty of the
University of Wisconsin, most particularly to my advisor Somesh Jha, who
has been a constant source of support. Thomas Ristenpart and Thomas
Reps have helped me to grasp some of the fundamentals and finer points
of research, and without these three individuals I would certainly have no
idea what I was doing.

I have had the good fortune to have the lessons and examples of a
number of mentors over the course of several internships, including Ben
Livshits at Microsoft Research, Mihai Christodorescu at IBM T.J. Watson,
and Vinod Yegneswaran at SRI, in addition to many others.

My family, friends, and peers have been instrumental in setting ex-
amples of success and providing a huge amount of encouragement and
advice over the course of my studies. Most especially, Meghan Davidson
has been an inspiration and an incredible comfort throughout my graduate
career.

This work was supported, in part, by the National Science Foundation
under grant CCF-0524051; by DARPA and AFRL under contract FA8650-
10-C-7088. Any opinions, findings, recommendations or conclusions ex-

iii

pressed herein material are my own and do not necessarily reflect the
views of DARPA, AFRL, or NSF.

iv

Contents

Contents iv

Figures, Tables, and Listings vii

Abstract xi

1 Introduction 1

2 Background 9
2.1 Android Security Model 9

2.1.1 Android Permissions 9
2.1.2 App Manifest 23
2.1.3 Granting and Revoking Permissions 25

3 Web Isolation Rewriting (WIR) 35
3.1 Introduction 35
3.2 Threat Model 38

3.2.1 Attack Scenarios 39
3.2.2 Exploit Analysis 44

3.3 System Overview 45
3.3.1 System Design 45
3.3.2 Dynamic Access Policies 48

3.4 WIREFrame Technical Details 50
3.5 WIRE Technical Details 56
3.6 Security Analysis 58

v

3.7 Evaluation 59
3.7.1 Methodology 60
3.7.2 Analysis 62

3.8 Related Work 67
3.9 Chapter Summary 69

4 Minionizer 71
4.1 Introduction 71
4.2 Overview 75

4.2.1 Motivation 75
4.2.2 System Design 79

4.3 Splitting Strategies 82
4.3.1 Split Director Implementation Details 88

4.4 Minion App Generation 89
4.4.1 Implementation Details 90
4.4.2 Deployment Details 92

4.5 Minion Support Artifacts 92
4.5.1 Install Script 93
4.5.2 Intent Firewall Rules 94

4.6 Evaluation 94
4.6.1 Correctness 96
4.6.2 Effectiveness 97
4.6.3 Performance 98
4.6.4 Discussion 100

4.7 Related Work 100
4.8 Chapter Summary 102

5 Conclusion 107
5.1 Limitations of App Splitting 107
5.2 Future Work in App Splitting 108

5.2.1 WIR 110

vi

A Appendix A: Android Versions 111

Bibliography 112

vii

Figures, Tables, and Listings

Figure 2.2 XML manifest for declaring the permissions shown in
Figure 2.3. The permissions listed here are each system
permissions and therefore include text descriptions that
are automatically provided by the Android framework. 24

Figure 2.3 An example of how an app manifest is presented in the
Google Play Store. This manifest is a snippet taken from
the the well-known flashlight app Brightest Flashlight
Free. Each permissions is described in plaintext and
grouped according to a broad category. Note that the
permissions shown here correspond to those listed in
Figure 2.2 . 24

Figure 2.4 Dynamic permissions dialog, taken from the official An-
droid documentation. Dialogs of this sort are required
to be approved to access permissions that the system
has tagged as dangerous. 25

Figure 3.1 Workflow of an attack on an SSO client, as represented
by the example app WebRSS. The app waits for the
SSO dialog to appear in the WebView, then scrapes the
username and password from the WebView via intro-
spection, either through reflection or injected JavaScript. 40

viii

Figure 3.2 Code snippet from WebRSS to steal user credentials
malicious app code, enabling the JavaScript code to be
injected and run. 42

Figure 3.3 Code snippet from WebRSS to steal user credentials
from an SSO dialog. This snippet shows the app code
called to exfiltrate user data scraped from the authenti-
cation dialog. 42

Figure 3.4 Code snippets from WebRSS to steal user credentials
from an SSO dialog. This snippet shows how JavaScript
is constructed from within the app and injected into
the authentication site. 43

Figure 3.5 System diagram of WIRE and WIREFrame. WIRE is ap-
plied to a third-party app before install time, ensuring
that it uses the protection mechanisms of WIREFrame
at runtime. 47

Figure 3.6 An illustration of object shadowing 54
Figure 3.7 Table of benign apps rewritten using WIRE. A 3 indi-

cates that the given app uses an overlay over a WebView,
while a 7 indicates that the given app does not. 60

Figure 3.8 Added Runtime Overhead of WIREFrame protection
mechanisms (Thus 0.95 represents a nearly 2x slow-
down). Overhead includes the IPC invocation and pol-
icy checks. Note that the complex object shadowing of
capturePicture includes the time needed to copy an
entire screenshot of a WebView between apps. 62

Figure 3.9 Runtime Overhead of the Load URL API. Note that
loading URLs without origin tagging has a low enough
overhead that it is within the margin or error. 63

ix

Figure 3.10 Resource Utilization of CPU and Memory. WIREFrame
incurs modest overhead, mostly composed of time and
memory in user space. 63

Figure 4.2 Example Minionizer policy, designed to prevent device
identifiers and fine grained location information from
being leaked from the device 78

Table 4.7 Characteristics of the apps used in evaluating the cor-
rectness of Minionizer, and the number of minions
yielded when the app is split according to our example
policy. 93

Table 4.9 Minion partitioning for the DroidBench categories in
which FlowDroid detected leaks. For each of the flows
detected by the underlying FlowDroid analysis, Min-
ionizer correctly separates the permission into its own
minion. Note that for two categories, Aliasing and Im-
plicitFlows, FlowDroid (erroneously) did not detect any
leaks. However, we consider this a limitation of the
underlying system not of Minionizer itself. Any im-
provements to the flow analysis will in turn lead to new
minions. 95

Figure 4.1 Snippet of code from Bright Flashlight demonstrat-
ing limitations of the Android permission model. The
methods that are shown here use an overlapping set of
permissions in different ways that are indistinguishable
to the user . 103

x

Figure 4.3 Workflow of Minionizer. Rounded components indi-
cate code modules, rectangles indicate artifacts. Shaded
components of the diagram indicate can be configured
at runtime; the Split Director can be configured to
use a different splitting strategy for partitioning the
app into minions, and the support generator can be
configured to produce policies and install scripts for
minion apps. The workflow takes a packaged Android
app, such as one downloaded from the Google Play
store. 104

Figure 4.4 Finding vertex multicuts using dominators, post- dom-
inators, and hitting sets. 104

Figure 4.5 Algorithm for creating partitions from vertex multicuts.
Removing a vertex v also means we remove all edges
of the form (w, v) and (v,w). 104

Figure 4.6 Control-Flow Graph (left) Immediate Dominator-tree
(middle) and Postdominator-tree (right) for our sample
app. 105

Figure 4.8 A sample Intent Firewall ruleset that blocks broadcast
intents from the Bright Flashlight core app to a minion. 105

Figure 4.10 Runtime measurements of the Large Flow microbench-
mark. The minion-IPC overhead increases with the
amount of data transferred. 106

xi

Abstract

Mobile computers, especially in the form of smartphones and tablet com-
puters, have rapidly become a major part of the computing landscape.
The inherent portability of these devices enable new means of interaction
with a user: mobile computers are carried and used constantly, for a mix
of personal and professional uses. This continuous mode of interaction
expose a wealth of information to the device. Sensors such as a Global
Positioning Satellite receiver (GPS), Near Field Communication sensor
(NFC), and accelerometer augment this data, allowing for accurate user
tracking. This data is valuable to users, but it also presents a risk of privacy
leakage. While mobile computer operating systems have taken steps to
protect this data, their security model falls short of the needs of many
users.

This dissertation presents several novel techniques for enhancing the
security and privacy of mobile computer users. The primary technique
described in this work is app splitting, whereby a single app is rewritten
into a number of collaborating apps. These collaborating apps together
fulfill the original purpose of the app, but enhance the privacy and security
of the user by isolating functionality into fine-grained principals.

App splitting is a technique with several use cases. This dissertation
discusses two such cases: splitting an app in order to isolate the permis-
sions granted to an app, and splitting an app in order to isolate an app’s
web content from its bytecode.

1

1
Introduction

Mobile computers have emerged as ubiquitous computing devices accom-
panied by unique challenges for security and privacy. Through pervasive
access, users present troves of personal data to these devices, both by
manual interaction and through numerous sensors onboard the device.
The misuse of such data can cause significant harm to a user’s privacy.

One of the most important vectors by which a mobile computer might
subvert the user’s privacy is through applications (or apps) installed via an
online marketplace. Marketplaces such as Google’s Play store, Microsoft’s
Windows Phone App Store, and Apple’s App Store are maintained by the
respective platform distributors, but also host applications provided by
3rd party developers. Additionally, the Android OS allows applications
to be installed from 3rd party marketplaces such as the Amazon Appstore
[sic] and the independent marketplace Getjar. These marketplaces apply
varying levels of scrutiny over the apps that they distribute, but each
market allows apps to embed advertising for the purpose of monetization.

The presence of marketing content within apps is symptomatic of an
important security consideration in apps: a single app may contain func-
tionality representing multiple distinct entities, each with different goals.
For example, the goal of a (benign) app developer is to provide utility to
the user, while the goal of the advertiser is to profile the user. Further-
more, the app may integrate additional frameworks or provide access to
distinct services (such as a single sign on service to allow password-less
authentication) to the app.

2

Despite these distinct functionalities, an app is considered to be a
monolithic security entity for all major mobile OSes: In the best case, a
permission may be granted to a single program point, but the user lacks
the context to understand what entity within the app they have granted
permission. In the common case, a permission is simultaneously granted
to a every entity within the app. Granting permissions coarsely violates
an important security tenet: the principle of least privilege (PLP). The PLP
states that a principal should be given no more permissions than necessary to
fulfill its purpose. The user is given no means to determine how permissions
map to these app-internal principals since the OS treats the app as a single
entity. Previous work has found that intra-app entities may be assigned
different levels of trust for the sake of user privacy [43].

A user may be willing to provide permissions in isolation to an app,
but unwilling to grant capabiltiies allowed by the composition of those
permissions. To illustrate this point, consider two common permissions
used in Android: ACCESS_FINE_LOCATION must be granted to an app in
order to access the location of the user via GPS and INTERNET allows an
app to communicate over the network. Alone, ACCESS_FINE_LOCATION
has little chance of leaking a user’s location, since the GPS coordinates
are isolated to the device. However, if an app is additionally granted
the INTERNET permission, the user has no way to tell whether or not the
additional permission is being used for a purpose other than to exfiltrate
the user’s location.

On Android and Windows Phone OS, a check is performed at runtime
to ensure that an app holds the necessary permission to invoke a function
when that function is invoked. However, the model in which permissions
are assigned to apps is surprisingly coarse. Each app declares the set of
all permissions that it may need in an XML manifest, which is bundled
into the app package, irrespective of the many functionalities within the
app. When the user installs an app, this list of permissions is presented in

3

a human-readable fashion to the user, but they are given no guidance as
to how or when those permissions are used.

The key contribution of this dissertation is a technique called app split-
ting. This technique can improve the security and privacy of the user
by partitioning security-relevant functionalities of a monolithic app into
distinct, isolated apps. To demonstrate the effectiveness of app splitting,
we discuss two instantiations of the technique:

• Minionization is a permission-based instantiation of app splitting,
capable of breaking a single permission into its own app, or inter-
posing on a flow between permissions. This instantiation shows the
value of app splitting for the purpose of empowering the user with
more fine-grained control over how permissions are granted and
used by apps.

• Web Isolation Rewriting (WIR is a instantiation of app splitting for
separating web content from the statically compiled code of the app.
This instantiation shows the value of app splitting for the purpose of
preventing security issues that occur when multiple entities within
the security boundary of a single app are conflated.

App splitting itself has several advantages as a technique for securing
apps. Because it relies on offline rewriting, it is backwards-compatible with
existing mobile operating systems. This is especially important, given that
mobile OSes exhibit a high degree of fragmentation: Android alone has
12 major consumer releases since its introduction in 2009. We also made a
number of contributions in each instantiation of our splitting framework.
We discuss each of these briefly below.
Contributions of Minionization: The core operation of minionization is
to partition an app into a number of smaller, collaborating apps called
minions. Minion apps contain a portion of the original app representing
an action that the user can mediate.

4

The way in which app code is minionized is guided by a policy pro-
vided by the user when the app is downloaded but before the app is in-
stalled. This makes minionization a flexible technique for re-provisioning
the capabilities of an app. For example, Brightest Flashlight Free could be
partitioned into two minions: m1, which includes the core and advertising
functionality, andm2, which includes only the calls that collect the loca-
tion specifically to be sent to the network. The user may then choose to
installm1 only, effectively limiting the flow of their location to the network
without denying the location to the core app.

Minionizing directly addresses the PLP by allowing users to identify
principals within an app, and separate them into distinct entities that can
be mediated and controlled by the OS. Minionizing also better supports the
PLP: the user policy can list permission flows to be partitioned before the
app is installed, thus deauthorizing fine-grained composite permissions.
This policy-based approach to authorization has the benefit that it does
not add to the user’s prompt fatigue: no extra runtime action (such as
approving a prompt) is required of the user. Furthermore, the user can
write (or download from a trusted party) a single policy to apply to many
apps, saving the cognitive overhead of examining the permissions of each
app they use.

We have developed a tool to implement minionizing. In addition to
breaking an app into minions, this tool ensures that the original func-
tionality of the app is maintained when the minions are enabled. The
instrumentation enables minions to communicate with each other via
OS-level interprocess communication (IPC). This allows enforcement of a
desired policy via access-control mechanisms (e.g., permissions on An-
droid intents), with fall-back to unmodified execution faithful to that of
the original app in the absence of any policy. Furthermore, inter-minion
communication leads to graceful degradation of functionality when strict
policies (e.g., absolutely no GPS access) are enforced.

5

Our work on Minionization consists of the following:

• We formalize app splitting as the problem of finding graph partitions
and show how various classes of security policies map to minionizing
strategies. Underlying app splitting is a notion of fine-grained, flow-
based permission addressing the PLP.

• We introduce a tool for performing automatic, optimal app splitting
of Android apps based on a specified security policy. This tool
naturally generalizes the existing work on isolating advertising from
the core functionality of an app [42, 47].

• We demonstrate experimentally that our tool is practical, supports a
variety of app types (from book readers to translation apps to social
networking tools), and incurs low overhead: operations that use
permissions incur a low overhead and the total runtime of the app
does not experience any measurable slowdown.

Contributions of WIR: Web content providers and app code developers
have distinct security requirements that current web-embedding mech-
anisms are incapable of distinguishing or enforcing. As a result, app
developers have no means of controlling the web’s use of app data and
code via the app-web bridge, except choosing to not expose interfaces to
WebView at all and consequently give up app features. Similarly, web
service providers cannot express their needs for isolating their sensitive
web content from apps or only allowing limited access, and often have to
sacrifice security and privacy for mobile integration.

WIR is a novel approach to web-embedding to secure both apps and
web content. The contributions of this instantiation of app splitting are as
follow:

• We demonstrate, through concrete attacks, that web-embedding
mechanisms on mobile platforms provide insufficient protections

6

against malicious web service providers and against malicious local
apps. We show the existence of severe app-to-web and web-to-app
attacks predicated on the lack of configurable, fine-grained security
enforcement.

• We formulate a system of dynamic access policies that allows both
apps and web content to protect themselves from each other while
maintaining the benefits of integrating apps and the web. We provide
complete mediation between apps and their embedded web content.
We create a technique called origin tagging to establish articulated
security principals for app-web interactions.

• We implement a static/dynamic hybrid system, called the Web Isola-
tion Rewriting Engine (WIRE) to deploy our protection mechanisms
without modifying the operating system or requiring the coopera-
tion of developers. Our evaluation shows that this system is effective
in enhancing the security of web-embedding apps while incurring
minimal overhead. Our rewriting tool targets a runtime component,
called WIREFrame, that serves as a trustworthy provider of secure,
isolated WebViews. Web-embedding apps use WIREFrame to render
their embedded web content in decoupled, mediated WebView in-
stances. WIREFrame allows both app developers (or app users) and
web content providers to define their own dynamic access policies,
which regulate the access to their respective resources. WIREFrame
policy enforcement recognizes fine-grained security principals (i.e.,
origins) and controls all app-web interactions. WIRE automates the
adoption of WIREFrame in existing apps by statically rewriting an
app before installation. Each WebView in the app is replaced by a
mediated WebView instance in WIREFrame. In addition to sepa-
rating the app from its WebView, this also separates the individual
WebViews in the same app.

7

A key advantage to the technique is that no rewrites to the OS are
required. The benefit of this approach is that the user does not need
to worry about their modifications being eliminated by updates to the
OS. This is important for Android in particular, because OS updates are
released frequently and occasionally deployed without warning. However,
the changes are, by design, backwards compatible such that a (rewritten)
app that worked on an older Android version will still work on a newer
version. Furthermore, deploying a new OS requires that the bootloader of
the device be unlocked. Many carriers do not allow a way to unlock the
bootloader, thus forcing users to rely on third-party exploits to perform
the unlock in contravention of the OS security model. These exploits have
a number of disadvantages. They require the user to subject their device to
a rootkit-level exploit, the exploits are device-specific, and in many cases
they require the user to have a high level of technical expertise to perform
the unlocking successfully. Should the exploit fail, it may also permanantly
damage the device while simultaneously voiding the warranty.

While the two systems presented in this disseration are intended to
demonstrate the usefulness and feasibilty of app splitting, many other
instantiations are possible beyond what is explored in this dissertation.
App splitting can be applied in many cases in which the user identifies
entities within a single security boundary. However, our work focuses
exclusively on Android for both reasons related to both principle and
implementation:

• Reliable Disassembly. While incorrectly rewriting an app is less catas-
trophic for the system than incorrectly rewriting the OS, it neverthe-
less is unacceptable. Thus, the tool needs to be able to accurately
analyze the app. Android is amenable to disassembly due to the
wide array of existing analysis tools, and the simplicity of the Java
bytecode that make up assembled Android apps.

• Programmatic Splitting Boundaries. In contrast to many other pro-

8

gram parititioning systems, both Minionization and WIR do not
require program annotations to perform splitting effectively. This is
because both systems rely on aspects of the target app that can be
detected programatically: for Minionization, this is the presence of
permission-using methods, while for WIR it is the use of WebViews.
Reducing the burden on the user makes the systems more practical.

Despite the reasons listed above for targeting Android, we believe
that additional implmenentation effort could be leveraged to port our
app-splitting systems to other mobile OSes. Ultimately, the goal of this
thesis is to show the benefits of disentangling priviledged operations
from monolithic entities, even without the cooperation of OS providers or
application developers. By allowing the user to choose an interposition
mechanism (IPC mediation in the case of Minionizer, access policies in the
case of WIRE), this work seeks to empower those users to take advantage
of existing security mechanisms to build more powerful protections. For
Minionizer, users can block permission flows directly, while for WIRE
users can extend the Same Origin Policy.

While the work presented here does use process-style isolation to in-
terpose upon the flow of privleged data (data derived from the web or
permission-using functions in the instances presented here), a basic level
of isolation is present in nearly any practical OS.
Outline: This dissertation is structured as follows: Chapter 2 reviews back-
ground in mobile OS security models, focusing in particular on Android,
and discusses related work in program analysis. Chapter 3 details the
techniques underlying minionization and explains our implementation of
Minionizer. Chapter 4 provides a similar treatment of WIRE. Chapter 5
concludes and explores directions for future work.

9

2
Background

In this chapter, we review the background material relevant to this disser-
tation. Because Android is a quickly-evolving operating system, features
that are newer or have become obsolete will be discussed with regards
to a version number. For reference, a listing of the versions of Android is
presented in Appendix A.

2.1 Android Security Model

We now review the security model and enforcement mechanisms of An-
droid. Note that the focus of this document is on privacy leaks and exploits
that operate within the security model of the OS. Thus, while a complete
discussion of Android security should focus on cases in which the security
model is violated (e.g., through a vulnerable system API, buffer overflow,
or device misconfiguration), such attacks are out of scope for the discus-
sion of this work. It should be further noted that the privacy leaks are of
a less absolute nature than true exploits: while one user may be uncom-
fortable with their device recording their audio on an open microphone,
another user may actually find this behavior desirable. Thus, the privacy
violations discussed in this document cannot truly be called exploits, as
they are not readily fixed by correcting implementation errors.

2.1.1 Android Permissions

10

ACCESS_CHECKIN_PROPERTIES Allows read/write access to the
"properties" table in the checkin
database, to change values that get
uploaded.

ACCESS_COARSE_LOCATION Allows an app to access approximate
location.

ACCESS_FINE_LOCATION Allows an app to access precise loca-
tion.

ACCESS_LOCATION_EXTRA_
COMMANDS

Allows an application to access extra
location provider commands.

ACCESS_NETWORK_STATE Allows applications to access infor-
mation about networks.

ACCESS_NOTIFICATION_POLICY Marker permission for applications
that wish to access notification policy.

ACCESS_WIFI_STATE Allows applications to access infor-
mation about Wi-Fi networks.

ACCOUNT_MANAGER Allows applications to call into Ac-
countAuthenticators.

ADD_VOICEMAIL Allows an application to add voice-
mails into the system.

BATTERY_STATS Allows an application to collect bat-
tery statistics

BIND_ACCESSIBILITY_SERVICE Required by an AccessibilityService,
to ensure that only the system can
bind to it.

BIND_APPWIDGET Allows an application to tell the App-
Widget service which application can
access AppWidget’s data.

11

BIND_CARRIER_
MESSAGING_SERVICE

This constant was depre-
cated in API level 23. Use
BIND_CARRIER_SERVICES in-
stead

BIND_CARRIER_SERVICES The system process that is allowed to
bind to services in carrier apps will
have this permission.

BIND_CHOOSER_TARGET_
SERVICE

Must be required by a ChooserTarget-
Service, to ensure that only the sys-
tem can bind to it.

BIND_CONDITION_
PROVIDER_SERVICE

Must be required by a Condition-
ProviderService, to ensure that only
the system can bind to it.

BIND_DEVICE_ADMIN Must be required by device adminis-
tration receiver, to ensure that only
the system can interact with it.

BIND_DREAM_SERVICE Must be required by an DreamSer-
vice, to ensure that only the system
can bind to it.

BIND_INCALL_SERVICE Must be required by a InCallService,
to ensure that only the system can
bind to it.

BIND_INPUT_METHOD Must be required by an InputMeth-
odService, to ensure that only the sys-
tem can bind to it.

BIND_MIDI_DEVICE_SERVICE Must be required by an MidiDevice-
Service, to ensure that only the sys-
tem can bind to it.

12

BIND_NFC_SERVICE Must be required by a HostApduSer-
vice or OffHostApduService to en-
sure that only the system can bind
to it.

BIND_NOTIFICATION_LISTENER_
SERVICE

Must be required by an Notification-
ListenerService, to ensure that only
the system can bind to it.

BIND_PRINT_SERVICE Must be required by a PrintService,
to ensure that only the system can
bind to it.

BIND_QUICK_SETTINGS_TILE Allows an application to bind to third
party quick settings tiles.

BIND_REMOTEVIEWS Must be required by a Remote-
ViewsService, to ensure that only the
system can bind to it.

BIND_SCREENING_SERVICE Must be required by a CallScreen-
ingService, to ensure that only the
system can bind to it.

BIND_TELECOM_CONNECTION_
SERVICE

Must be required by a ConnectionSer-
vice, to ensure that only the system
can bind to it.

BIND_TEXT_SERVICE Must be required by a TextService
BIND_TV_INPUT Must be required by a TvInputService

to ensure that only the system can
bind to it.

BIND_VOICE_INTERACTION Must be required by a VoiceInterac-
tionService, to ensure that only the
system can bind to it.

13

BIND_VPN_SERVICE Must be required by a VpnService, to
ensure that only the system can bind
to it.

BIND_VR_LISTENER_SERVICE Must be required by an VrListen-
erService, to ensure that only the sys-
tem can bind to it.

BIND_WALLPAPER Must be required by a WallpaperSer-
vice, to ensure that only the system
can bind to it.

BLUETOOTH Allows applications to connect to
paired bluetooth devices.

BLUETOOTH_ADMIN Allows applications to discover and
pair bluetooth devices.

BLUETOOTH_PRIVILEGED Allows applications to pair bluetooth
devices without user interaction, and
to allow or disallow phonebook ac-
cess or message access.

BODY_SENSORS Allows an application to access data
from sensors that the user uses to
measure what is happening inside
his/her body, such as heart rate.

BROADCAST_PACKAGE_
REMOVED

Allows an application to broadcast a
notification that an application pack-
age has been removed.

BROADCAST_SMS Allows an application to broadcast
an SMS receipt notification.

BROADCAST_STICKY Allows an application to broadcast
sticky intents.

14

BROADCAST_WAP_PUSH Allows an application to broadcast a
WAP PUSH receipt notification.

CALL_PHONE Allows an application to initiate a
phone call without going through the
Dialer user interface for the user to
confirm the call.

CALL_PRIVILEGED Allows an application to call any
phone number, including emergency
numbers, without going through the
Dialer user interface for the user to
confirm the call being placed.

CAMERA Required to be able to access the cam-
era device.

CAPTURE_AUDIO_OUTPUT Allows an application to capture au-
dio output.

CAPTURE_SECURE_
VIDEO_OUTPUT

Allows an application to capture se-
cure video output.

CAPTURE_VIDEO_OUTPUT Allows an application to capture
video output.

CHANGE_COMPONENT_
ENABLED_STATE

Allows an application to change
whether an application component
(other than its own) is enabled or not.

CHANGE_CONFIGURATION Allows an application to modify the
current configuration, such as locale.

CHANGE_NETWORK_STATE Allows applications to change net-
work connectivity state.

CHANGE_WIFI_
MULTICAST_STATE

Allows applications to enter Wi-Fi
Multicast mode.

15

CHANGE_WIFI_STATE Allows applications to change Wi-Fi
connectivity state.

CLEAR_APP_CACHE Allows an application to clear the
caches of all installed applications on
the device.

CONTROL_LOCATION_UPDATES Allows enabling/disabling location
update notifications from the radio.

DELETE_CACHE_FILES Allows an application to delete cache
files.

DELETE_PACKAGES Allows an application to delete pack-
ages.

DIAGNOSTIC Allows applications to RW to diag-
nostic resources.

DISABLE_KEYGUARD Allows applications to disable the
keyguard if it is not secure.

DUMP Allows an application to retrieve
state dump information from system
services.

EXPAND_STATUS_BAR Allows an application to expand or
collapse the status bar.

FACTORY_TEST Run as a manufacturer test applica-
tion, running as the root user.

GET_ACCOUNTS Allows access to the list of accounts
in the Accounts Service.

GET_ACCOUNTS_PRIVILEGED Allows access to the list of accounts
in the Accounts Service.

GET_PACKAGE_SIZE Allows an application to find out the
space used by any package.

16

GET_TASKS This constant was deprecated in API
level 21. No longer enforced.

GLOBAL_SEARCH This permission can be used on con-
tent providers to allow the global
search system to access their data.

INSTALL_LOCATION_PROVIDER Allows an application to install a loca-
tion provider into the Location Man-
ager.

INSTALL_PACKAGES Allows an application to install pack-
ages.

INSTALL_SHORTCUT Allows an application to install a
shortcut in Launcher.

INTERNET Allows applications to open network
sockets.

KILL_BACKGROUND_PROCESSES Allows an application to call killBack-
groundProcesses(String).

LOCATION_HARDWARE Allows an application to use location
features in hardware, such as the ge-
ofencing api.

MANAGE_DOCUMENTS Allows an application to manage ac-
cess to documents, usually as part of
a document picker.

MASTER_CLEAR Not for use by third-party applica-
tions.

MEDIA_CONTENT_CONTROL Allows an application to know what
content is playing and control its play-
back.

MODIFY_AUDIO_SETTINGS Allows an application to modify
global audio settings.

17

MODIFY_PHONE_STATE Allows modification of the telephony
state - power on, mmi, etc.

MOUNT_FORMAT_FILESYSTEMS Allows formatting file systems for re-
movable storage.

MOUNT_UNMOUNT_
FILESYSTEMS

Allows mounting and unmounting
file systems for removable storage.

NFC Allows applications to perform I/O
operations over NFC.

PACKAGE_USAGE_STATS Allows an application to collect com-
ponent usage statistics. Declaring the
permission implies intention to use
the API and the user of the device
can grant permission through the Set-
tings application.

PERSISTENT_ACTIVITY This constant was deprecated in API
level 9. This functionality will be re-
moved in the future; please do not
use. Allow an application to make its
activities persistent.

PROCESS_OUTGOING_CALLS Allows an application to see the num-
ber being dialed during an outgoing
call with the option to redirect the call
to a different number or abort the call
altogether.

READ_CALENDAR Allows an application to read the
user’s calendar data.

READ_CALL_LOG Allows an application to read the
user’s call log.

18

READ_CONTACTS Allows an application to read the
user’s contacts data.

READ_EXTERNAL_STORAGE Allows an application to read from
external storage.

READ_FRAME_BUFFER Allows an application to take screen
shots and more generally get access
to the frame buffer data.

READ_INPUT_STATE This constant was deprecated in API
level 16. The API that used this per-
mission has been removed.

READ_LOGS Allows an application to read the low-
level system log files.

READ_PHONE_STATE Allows read only access to phone
state, including the phone number of
the device, current cellular network
information, the status of any ongo-
ing calls, and a list of any PhoneAc-
counts registered on the device.

READ_SMS Allows an application to read SMS
messages.

READ_SYNC_SETTINGS Allows applications to read the sync
settings.

READ_SYNC_STATS Allows applications to read the sync
stats.

READ_VOICEMAIL Allows an application to read voice-
mails in the system.

REBOOT Required to be able to reboot the de-
vice.

19

RECEIVE_BOOT_COMPLETED Allows an application to receive the
ACTION_BOOT_COMPLETED that
is broadcast after the system finishes
booting.

RECEIVE_MMS Allows an application to monitor in-
coming MMS messages.

RECEIVE_SMS Allows an application to receive SMS
messages.

RECEIVE_WAP_PUSH Allows an application to receive WAP
push messages.

RECORD_AUDIO Allows an application to record au-
dio.

REORDER_TASKS Allows an application to change the
Z-order of tasks.

REQUEST_IGNORE_
BATTERY_OPTIMIZATIONS

Permission an application
must hold in order to use
ACTION_REQUEST_IGNORE
_BATTERY_OPTIMIZATIONS.

REQUEST_INSTALL_PACKAGES Allows an application to request in-
stalling packages.

RESTART_PACKAGES This constant was deprecated in API
level 8. The restartPackage(String)
API is no longer supported.

SEND_RESPOND_VIA_MESSAGE Allows an application (Phone) to
send a request to other applications
to handle the respond-via-message
action during incoming calls.

SEND_SMS Allows an application to send SMS
messages.

20

SET_ALARM Allows an application to broadcast
an Intent to set an alarm for the user.

SET_ALWAYS_FINISH Allows an application to control
whether activities are immediately
finished when put in the back-
ground.

SET_ANIMATION_SCALE Modify the global animation scaling
factor.

SET_DEBUG_APP Configure an application for debug-
ging.

SET_PREFERRED_APPLICATIONS This constant was deprecated in API
level 7. No longer useful, see ad-
dPackageToPreferred(String) for de-
tails.

SET_PROCESS_LIMIT Allows an application to set the max-
imum number of (not needed) appli-
cation processes that can be running.

SET_TIME Allows applications to set the system
time.

SET_TIME_ZONE Allows applications to set the system
time zone.

SET_WALLPAPER Allows applications to set the wallpa-
per.

SET_WALLPAPER_HINTS Allows applications to set the wallpa-
per hints.

SIGNAL_PERSISTENT_PROCESSES Allow an application to request that
a signal be sent to all persistent pro-
cesses.

21

STATUS_BAR Allows an application to open, close,
or disable the status bar and its icons.

SYSTEM_ALERT_WINDOW Allows an app to create windows us-
ing the type TYPE_SYSTEM_ALERT,
shown on top of all other apps.

TRANSMIT_IR Allows using the device’s IR trans-
mitter, if available.

UNINSTALL_SHORTCUT Allows an application to uninstall a
shortcut in Launcher.

UPDATE_DEVICE_STATS Allows an application to update de-
vice statistics.

USE_FINGERPRINT Allows an app to use fingerprint
hardware.

USE_SIP Allows an application to use SIP ser-
vice.

VIBRATE Allows access to the vibrator.
WAKE_LOCK Allows using PowerManager Wake-

Locks to keep processor from sleep-
ing or screen from dimming.

WRITE_APN_SETTINGS Allows applications to write the apn
settings.

WRITE_CALENDAR Allows an application to write the
user’s calendar data.

WRITE_CALL_LOG Allows an application to write (but
not read) the user’s call log data.

WRITE_CONTACTS Allows an application to write the
user’s contacts data.

WRITE_EXTERNAL_STORAGE Allows an application to write to ex-
ternal storage.

22

WRITE_GSERVICES Allows an application to modify the
Google service map.

WRITE_SECURE_SETTINGS Allows an application to read or
write the secure system settings.

WRITE_SETTINGS Allows an application to read or
write the system settings.

WRITE_SYNC_SETTINGS Allows applications to write the sync
settings.

WRITE_VOICEMAIL Allows an application to modify and
remove existing voicemails in the sys-
tem.

Table 2.1: Android Permissions List [24]

One of the most prominent features of Android is the Permissions Model.
This is a capability system that guards system resources from apps, pro-
hibiting access unless explicitly granted by the user. Table 2.1 contains
a listing of the permissions available as of Android version 7.0 (code-
named Nougat). For an Android app to perform a security-sensitive oper-
ation, it must be granted the corresponding permission. As an example,
the READ_SMS permission allows an app to read text messages sent to the
device. Permissions represent binary flags of functionality, although in
some cases distinct permissions can grant access at different levels to the
same functionality. For example, the ACCESS_FINE_LOCATION permission,
so named because it grants fine-grained location data to an app, is required
to use the GPS receiver on the phone. The ACCESS_COARSE_LOCATION per-
mission uses network information alone to get the device’s location (e.g.,
via user triangulation based on the known location of nearby WiFi and
cellular network resources).

Note that the permissions model changes between versions of An-
droid. While permissions are backwards-compatible, certain permis-

23

sions are introduced as devices, and the OS itself, gain new capabilities.
BIND_SCREENING_SERVICE is one such permission, which grants an app
the ability to selectively drop incoming phone calls (i.e., to block a partic-
ular number or class of numbers). However. call-screening is a feature
of Android 7.0, and thus no previous version of the OS mandated a call
screening permission. Conversely, the capabilities granted by each permis-
sion can change between OS versions. As an example, with API version 19,
the WRITE_EXTERNAL_STORAGE permission was no longer required when
writing to app-specific storage locations (prior to this version the OS did
not distinguish app-specific external storage, and thus all writes to exter-
nal storage required this permission. Surprisingly, there is no canonical
mapping from Android API functions to the permissions that function
requires.

The existence of a permissions mechanism in Android represents the
potential for more nuanced control over an app than what is available on
a traditional desktop OS. However, the permissions model only serves to
protect the user to the extent that he or she can make meaningful decisions
about how permissions are granted to an app. We now describe how
permissions are declared by developers, and presented to the user through
the App’s Manifest.

2.1.2 App Manifest

All permissions used by an Android app must be declared at compile
time by the developer. This is achieved by bundling an XML manifest file,
AndroidManifest.xml. This file allows each permission to be declared
with the uses-permission XML element. Figure 2.2 shows a snippet of an
example manifest file. Note that permissions exist in a namespace, with
each of the system permissions being declared in the android.permission
namespace. In addition to the system-defined permissions, the user may
also choose to declare and use custom permissions in a namespace of

24

Figure 2.2: XML manifest for declaring the permissions shown in Figure 2.3. The
permissions listed here are each system permissions and therefore in-
clude text descriptions that are automatically provided by the Android
framework.

Figure 2.3: An example of how an app manifest is presented in the Google Play
Store. This manifest is a snippet taken from the the well-known flash-
light app Brightest Flashlight Free. Each permissions is described in
plaintext and grouped according to a broad category. Note that the
permissions shown here correspond to those listed in Figure 2.2

25

Figure 2.4: Dynamic permissions dialog, taken from the official Android docu-
mentation. Dialogs of this sort are required to be approved to access
permissions that the system has tagged as dangerous.

their own creation, which allows an app to specify which other apps may
communicate across intercomponent communication (ICC) channels.

Permissions are described differently to developers and to users. The
developer’s reference lists the permissions with the text descriptions pre-
sented in Table 2.1, whereas the Google Play store gives more high-level
descriptions. Figure 2.3 shows a screenshot from the well-known app
Brightest Flashlight Free. Note that this list continues to scroll and ultimately
declares a total of 25 distinct permissions from eight distinct categories,
but the permissions shown here correspond to those declared in Figure 2.2.

2.1.3 Granting and Revoking Permissions

As with many features of the permissions model, the way in which per-
missions are granted and revoked has evolved over time. Here, we discuss
the major steps in this evolution over the history of Android.
Install-Time Permissions: Since the initial release of Android, the pri-
mary way in which permissions are granted to an app has been at install
time. In the typical install-time workflow, the user initiates installation
of an app, and is then presented with the permissions declared in the
app manifest, as shown in Figure 2.3. By approving the dialog the user is
granting each listed permission to the app. For the majority of Android’s
history, the user had no further control over the permission system: instal-

26

lation was tantamount to permanently approving all permissions, with
the user’s only alternative being to forego installation of the app entirely.

Group Name Group Description
In-app purchases An app can ask you to make purchases inside

the app.
Device & app history An app can do one or more of the following:

• Read sensitive log data

• Retrieve system internal state

• Read your web bookmarks and history

• Retrieve running apps

Cellular data settings An app can use settings that control your
mobile data connection and potentially the
data you receive.

Identity An app can use your account and/or profile
information on your device. Identity access
may include the ability to:

• Find accounts on the device

• Read your own contact card (example:
name and contact information)

• Modify your own contact card

• Add or remove accounts

27

Contacts An app can use your device’s contacts, which
may include the ability to read and modify
your contacts.

Calendar An app can use your device’s calendar infor-
mation, which may include the ability to:

• Read calendar events plus confidential
information

• Add or modify calendar events and
send email to guests without owners’
knowledge

Location An app can use your device’s location. Loca-
tion access may include:

• Approximate location (network-based)

• Precise location (GPS and network-
based)

• Access extra location provider com-
mands

• GPS access

28

SMS An app can use your device’s text messaging
(SMS) and/or multimedia messaging service
(MMS). This group may include the ability
to use text, picture, or video messages.
Important: Depending on your plan, you
may be charged by your carrier for text or
multimedia messages. SMS access may in-
clude the ability to:

• Receive text messages (SMS)

• Read your text messages (SMS or
MMS)

• Receive text messages (MMS, like a pic-
ture or video message)

• Edit your text messages (SMS or MMS)

• Send SMS messages; this may cost you
money

• Receive text messages (WAP)

29

Phone An app can use your phone and/or its call
history. Depending on your plan, you may
be charged by your carrier for phone calls.
Phone access may include the ability to:

• Directly call phone numbers; this may
cost you money

• Write call log (example: call history)

• Read call log

• Reroute outgoing calls

• Modify phone state

• Make calls without your intervention

Photos/Media/Files An app can use files or data stored on your
device. Photos/Media/Files access may in-
clude the ability to:

• Read the contents of your USB storage
(example: SD card)

• Modify or delete the contents of your
USB storage

• Format external storage

• Mount or unmount external storage

30

Camera An app can use your device’s camera. Cam-
era access may include the ability to:

• Take pictures and videos

• Record video

Microphone An app can use your device’s microphone.
Microphone access may include the ability
to record audio.

Wi-Fi connection information An app can access your device’s Wi-Fi con-
nection information, like if Wi-Fi is turned on
and the name(s) of connected devices. Wi-Fi
connection information access may include
the ability to view Wi-Fi connections.
Note: Since apps typically access the Inter-
net, you’ll only see the Wi-Fi connection in-
formation permission group on the down-
load screen when installing an app. Apps
no longer display the "full internet access"
permission on the download screen, but you
can always see the full list of permissions by
following the instructions under the "See all
permissions for a specific app" section above.

Bluetooth connection infor-
mation

An app can control Bluetooth on your device,
which includes broadcasting to or getting
information about nearby Bluetooth devices.

31

Wearable sensors / activity
data

Allows the app to access data from wearable
sensors, such as heart rate monitors. Can
receive periodic updates on physical activity
levels.

Device ID & call information An app can access your device ID(s), phone
number, whether you’re on the phone, and
the number connected by a call. Device ID
& call information may include the ability to
read phone status and identity.

Other An app can use custom settings provided
by your device manufacturer or application-
specific permissions.
Important: If an app adds a permission that
is in the "Other" group, you’ll always be
asked to review the change before download-
ing an update.
Other access may include the ability to:

• Read your social stream (on some so-
cial networks)

• Write to your social stream (on some
social networks)

• Access subscribed feeds

You’ll see all permissions from the "Other"
group listed on the Play Store, including
those that weren’t shown on the app down-
load screen.

32

Table 2.5: Android Permissions Groups, along with the tex-
tual descriptions given to the user for each group
when approving an app’s permission manifest [25].

Permissions Groups: As discussed in the previous subsection, permis-
sions are categorized into groups. Table 2.5 provides a list of these groups
as of Android 6.0, though the list is subject to change. When an app is
updated, it requires approval from the user for any permissions that reside
in new groups. However, new permissions that reside in existing groups
do not need to be approved by the user. If the user has set their device to
automatically update their apps, this update will occur silently.
Approval Dialogs: Beginning in Android 6.0, the use of certain permis-
sions that are marked as dangerous require dynamic approval when they
are used via a dialog. Figure 2.4 shows an example dialog taken from the
official Android documentation on permissions [7]
AppOps: In Android 4.3, a developer feature called AppOps was released
to production builds of the operating system. This feature allowed users
to access a hidden permissions manager, which allowed for selectively
revoking (and later re-granting) permissions that were granted at runtime.
However, the feature was not intended for production use, and the feature
was removed in the next major Android release cycle.
System-Level Revocation: Beginning in Android 6.0 (the latest released
version of the OS), the user has the ability to revoke permissions on a per-
app basis through a dialog in the system settings. This change in the OS
largely mirrors the functionality of AppOps, but in an officially-supported
capacity. However, none of these systems give the user any context for how
the permission is being used. When the user disables the permission, they
do so throughout the entire app, in any context in which that permission
is used.

33

Inter-Component Communication

Android components are partitioned into Components. While components
themselves do not represent a security boundary within an app, commu-
nication between components, called Inter-Component Communication
(ICC), is the primary mechanism by which we connect apps that have
been separated via app splitting. There are four types of components in
Android:

1. Activities are the most common type of component, as they represent
the entrypoint of an app that a user can launch, usually representing
a UI screen which with the user is expected to interact.

2. Services are used to perform background processing. This component
is particularly important given that Android will automatically kill
an app if its UI is unresponsive after a timeout. Thus, any long-
running action that the app needs to take is usually contained in a
service.

3. Broadcast Receivers run in the background, but unlike services they
are triggered by system events. Broadcast receivers subscribe to a
list of system events of their own choosing, and are activated upon
receipt of such an event. For example, a Broadcast Receiver might
subscribe to the event of the system startup (thus allowing the app
to be launched when the device is powered up) or to the receipt of a
text message, or both.

4. Content Providers are used to store data and allow a passive means
for multiple apps to get structured data from one another.

Much like permissions, the Activities, Services, and Content Providers of
an app must be declared in the app’s manifest (Broadcast Receivers can
be created and registered at runtime).

34

The primary mechanism by which components (both within and be-
tween apps) communicate is through Intents. Intents are based on a com-
plete reimplementation of traditional Linux Inter-Process Communication
(IPC), specifically designed to be fast on Android. Intents can be sent in
two ways:

1. Explicit Intents are addressed to a single component of a single app.
The system enforces that the intent cannot be intercepted by other
apps, and the package-signing system ensures that an app cannot
impersonate the intended target of the intent.

2. Implicit Intents specify a class of data or functionality that will sat-
isfy the intent. For example, an Implicit Intent may specify that it
should be received by any application that can handle text messages.
This allows any Broadcast Receiver that handles text messages to be
notified of the message. While Implicit Intents offer a unique way
to extend the functionality of an intent, they are not used in app
splitting.

Android also supports automatic Parcelization of primitive data types
and Objects, which allows apps to easily marshal data into (and out of)
Intents in the form of key/value pairs. The Intent system helps to support
a distributed workflow when using the Android OS: apps can specify
particular components (particularly components of other apps) to satisfy
particular functionality, and effectively “stub out” the implementation.

Chapter Summary

The Android OS, and even the security architecture of the alone, is a
complicated software system that goes well beyond the scope of this dis-
sertation. The purpose of this chapter is simply to introduce the concepts
necessary for a complete understanding of the chapters to follow.

35

3
Web Isolation Rewriting (WIR)

3.1 Introduction

A common app-design paradigm is to embed web content directly in an
app’s UI. Apps that follow this paradigm, which we call web-embedding
apps, combine the advantages of both the mobile web and native apps:
web content is highly portable across platforms, and native app code
can leverage the full power of the device. Unfortunately, these apps also
introduce unique attack vectors in the interactions between web content
and app code.

All major mobile platforms offer web-embedding support. The WebView
class in Android and UIWebView class in iOS are UI widgets that display
remote web elements or entire web pages natively within an app.1 Web
content and the embedding app can programmatically manipulate each
other’s data and behavior via the so-called app-web bridge APIs. For in-
stance, an app can programmatically configure embedded WebViews and
inject scripts. Conversely, JavaScript loaded in a WebView may call ex-
ported app code to access local resources, such as the file system, the
camera, or GPS.

The popularity of web-embedding apps makes the app-web bridge an
attractive target for attacks from both sides: a malicious app may seek to
subvert or leak sensitive web content (i.e., app-to-web attacks); malicious web

1Though we focus on the security of Android WebViews, we believe that our obser-
vations and techniques are largely applicable to iOS.

36

content may attempt to misuse the app’s permissions and local resources
(i.e., web-to-app attacks). Both types of attacks are increasingly observed in
the wild [39, 45].

Malicious apps can embed and manipulate web content from sensitive
domains. Well-established web-security policies, such as the same-origin
policy (SOP), are not enforced upon app-web interactions, largely due
to the simplistic security design of WebView, which presumes apps al-
ways own embedded web content. As a result, web-embedding apps can
easily disturb or spy on third-party web services, such as single sign-on
(SSO) and in-app payment. Furthermore, apps can undermine inter-frame
sandboxing by retrieving scripts from one page and injecting them into
another. This means that a malicious app is not restricted by the SOP and
can introspect on sensitive, third-party web content.

Conversely, malicious web content embedded in benign apps can abuse
the app’s resources. The permissions granted to an app are implicitly in-
herited by its embedded web content: the privileges meant for a trusted
domain are universally available to sub-frames or elements loaded from
untrusted domains in the WebView, allowing malicious web content from
one domain to leverage permissions intended for a different domain. More-
over, the app-web bridge allows app developers to make portions of their
app code invocable by JavaScript loaded in WebViews. This feature greatly
facilitates web content’s access to local data and resources such as the GPS
location of the device. Unfortunately, this access is not restricted to a given
origin. Therefore, developers are often forced to ignore attacks, such as
those reported in [31, 45], in favor of adding app functionalities.

The key commonality amongst the attacks above is an intermingling
of the privileges of separate security principals. Web content providers
and app code developers have distinct security requirements that current
web-embedding mechanisms are incapable of distinguishing or enforcing.
As a result, app developers have no means of controlling the web’s use

37

of app data and code via the app-web bridge, except choosing to not
expose interfaces to WebView at all and consequently give up app features.
Similarly, web service providers cannot express their needs for isolating
their sensitive web content from apps or only allowing limited access, and
often have to sacrifice security and privacy for mobile integration.

In this chapter, we introduce a novel and backward-compatible ap-
proach to web-embedding that is trustworthy for both apps and web
content. The contributions of our work are as follow:

• We demonstrate, through concrete attacks, that web-embedding
mechanisms on mobile platforms provide insufficient protections
against malicious web service providers and against malicious local
apps. We show the existence of severe app-to-web and web-to-app
attacks predicated on the lack of configurable, fine-grained security
enforcement.

• We formulate a system of dynamic access policies that allows both
apps and web content to protect themselves from each other while
maintaining the benefits of integrating apps and the web. We provide
complete mediation between apps and their embedded web content.
We create a technique called origin tagging to establish articulated
security principals for app-web interactions.

• We introduce a static/dynamic hybrid technqiue to deploy our pro-
tection mechanisms without modifying the operating system or
requiring the cooperation of developers. We call this technique web
isolation rewriting (WIR). Our evaluation shows that this system is
effective in enhancing the security of web-embedding apps while
incurring minimal overhead.

We implemented WIR using a static, offline app rewriting tool called
WIRE (for Web Isolation Rewriting Engine) and a secure, isolated Web-
View provider called WIREFrame. Web-embedding apps use WIREFrame

38

to render their embedded web content in decoupled, mediated WebView
instances. WIREFrame allows both app developers (or app users) and
web content providers to define their own dynamic access policies, which
regulate the access to their respective resources. WIREFrame’s policy en-
forcement recognizes fine-grained security principals (i.e., origins) and
controls all app-web interactions. WIRE automates the adoption of WIRE-
Frame in existing apps by statically rewriting an app before installation.
Each WebView in the app is replaced by a mediated WebView instance
in WIREFrame. In addition to separating the app from its WebView, this
also separates the individual WebViews in the same app.

The rest of this chapter is organized as follows: In § 3.2, we introduce
our threat model, discuss the security limitations of current WebView, and
present example attacks. In § 4.2, we outline the designs of WIREFrame
and WIRE, followed by their technical details in § 3.4 and § 3.5. We provide
a security analysis of our system in § 3.6 and evaluate our prototype
implementation of WIREFrame and WIRE in § 3.7. We compare our system
with related work in § 4.7 and conclude in § 4.8.

3.2 Threat Model

Our system adopts a threat model that considers two separate classes of
attacks exploiting the current WebView design:

• App-to-Web Attacks: an app may spy on or manipulate its embed-
ded web content sourced from a third-party provider causing such
harms as stealing passwords from forms or rewriting pages to aid in
phishing attacks. In this case, the app, which controls the WebView,
is the attacker; the embedded web content (and its provider) is the
victim. To perform the attack, the malicious app may use the Web-
View inspection APIs or directly manipulate the WebView’s data in
memory. Moreover, the malicious app may employ obfuscation tech-

39

niques, including reflection and native code, to obscure its (ab)use
of the WebView.

• Web-to-App Attacks: an embedded web page from a third-party
may attack its host app, causing such harms as leaking personally
identifiable information such as the device’s unique identifiers or
the user’s contact list. Contrasting the previous class of attacks, in
this case, the content embedded in a WebView (and its provider)
is the attacker; the app that hosts the WebView is the victim. In
such attacks, the malicious web content may exploit any web-facing
interfaces exposed by the WebView and the host app, including the
exported Java methods. However, the malicious web content is not
expected to exploit arbitrary code execution vulnerabilities in the
WebView. These vulnerabilities are extremely rare and out of the
scope of this work, which addresses the insecure design, rather than
implementation vulnerabilities, of WebView.

In either case, we assume that the OS is trusted, which is reasonable
given that a compromised OS would obviate the need for launching the
attacks studied in this chapter. We note that attacks in which an adversary
controls both web content and app code simultaneously are out of the
scope of this work.

3.2.1 Attack Scenarios

To illustrate the types of attacks that fall under our threat model, we
introduce three representative examples. We use these examples to discuss
the security limitations of WebView and the app-web bridge that make
the exploits possible.

40

App
Code

User

Display
WebView

Login

SSO
Provider

OAuth
handshake

Android App

WebView

Build WebView1

Inject JavaScript2

Trigger Exfiltration7

3

4

6

connect5

Figure 3.1: Workflow of an attack on an SSO client, as represented by the example
app WebRSS. The app waits for the SSO dialog to appear in the Web-
View, then scrapes the username and password from the WebView
via introspection, either through reflection or injected JavaScript.

SSO Credential Stealing

As one instance of an app-to-web attack, we implemented a malicious
web-embedding RSS reader app, WebRSS. RSS readers are widely used
on Android, with popular apps such as Feedly and Flipboard boasting
hundreds of thousands of installs. WebRSS requires no additional permis-
sions besides the INTERNET permission, which allows the app to access the
network and is necessary for any legitimate RSS reader.

Like many account-based apps, WebRSS allows users to authenticate
themselves using a third-party SSO service. SSO allows users to forgo
the creation of a separate username and password combination for each
account that they maintain. SSO services are popular precisely because
they identify users without directly exposing secret credentials. Instead,
users authenticate (by entering a username and password) to a dialog
(inside a WebView) controlled by the SSO provider. Upon a successful
login, the service passes an opaque authentication token back to the app,
which attests to the user’s identity without revealing credentials.

The security of an SSO dialog relies on the SOP to prevent web content
of other origins from accessing the credential values. However, a mali-
cious app like WebRSS can indirectly obtain these credentials by injecting
JavaScript into the authentication WebView to scrape the username and

41

password from the text fields, even when the password field is blinded.
Figure 3.1 illustrates the workflow of this attack at a high level. WebRSS
goes through three steps in the attack (relevant snippets of code from
WebRSS are shown in Figure 3.2, Figure 3.3, and Figure 3.4):
Construct WebView: The first step, shown in Figure 3.2, builds a Web-
View to load the authentication dialog. Note that the app code enables
JavaScript on the WebView and interacts with a real SSO library, in this
case LinkedIn. From the perspective of the library, no malicious behavior
occurs as the app code is allowed to call getRequestToken() to get the
opaque SSO token.
Attach JavaScript Bridge: Figure 3.3 shows the app code that will exfiltrate
the user credentials. For the purpose of demonstration, this code outputs
the username and password to a log file, but could send the values to an
adversary over the internet using the permissions already granted to the
app for legitimate RSS functionality.
Inject JavaScript Code: To complete the attack, the malicious app reg-
isters for a callback when the authentication dialog is loaded, as shown
in Figure 3.4. When the callback is fired, the app injects the JavaScript
code on Lines 8-15, which is stored as a string as part of the app. The
script scrapes the credentials from the dialog and passes it to the code of
Figure 3.3 through the app-web bridge. The JavaScript can extract the con-
tents of the password field (Line 12) even though it is blinded to the user
(i.e. it displays a series of dots on-screen rather than the literal characters
that the user types in). To ensure that the characters of the username and
password are exfiltrated after the user has completed the form, the code
triggers when the user clicks the "Allow Access" button.

The use of a WebView in WebRSS also enables a web-to-app attack.
For example, an iframe containing third-party content (e.g., an ad banner
outside of the SSO provider’s domain) may exist on the user login page
or the redirection page following a successful login. Although the same-

42

1 public void setWebView(){
2 WebView v = (WebView)findViewById(R.id.w);
3 v.getSettings().setJavaScriptEnabled(true);
4 v.setWebViewClient(new WebClient());
5 v.addJavascriptInterface(new JS(), "js");
6 LinkedInRequestToken t = getRequestToken();
7 v.loadUrl(t.getAuthorizationUrl());
8 }

Figure 3.2: Code snippet from WebRSS to steal user credentials malicious app
code, enabling the JavaScript code to be injected and run.

1 public class JS{
2 void harvest(String name, String pass){
3 Log.e("NAME", name);
4 Log.e("PASS", pass);
5 }
6 }

Figure 3.3: Code snippet from WebRSS to steal user credentials from an SSO
dialog. This snippet shows the app code called to exfiltrate user data
scraped from the authentication dialog.

origin policy prevents the third-party website from viewing web data from
the SSO provider’s domain, the third-party iframe can invoke, without
restrictions, the Java interfaces exported by the local app and the SSO
library. This includes sensitive interfaces solely intended for the web login
(e.g., for retrieving user location or login history data). As a result, without
breaking any existing web or app security policy, the malicious iFrame
can steal sensitive data by abusing the unmediated app-web bridge.

Local Storage Inference

A powerful web-to-app attack involves web content loaded in WebView
stealing content from the host app. Most recently, Son et al. observed
several such attacks, including one where web content can infer the ex-

43

1 public class WebClient extends WebViewClient{
2
3 public void onLoadResource(WebView v, String url){
4 super.onLoadResource(v, url);
5
6 String tgtURL = "linkedin.com/uas/oauth/";
7 if (url.contains(tgtURL)){
8 v.loadUrl("javascript:function hack(){"
9 + "var f = document.getElementById("

10 + "’session_key-oauthAuthorizeForm’);"
11 + "var g = document.getElementById("
12 + "’session_password-oauthAuthorizeForm’);"
13 + "js.harvest(f.value, g.value);};"
14 + "document.getElementById("
15 + "’Allow Access’).onclick=hack()");
16 }
17 }
18 }

Figure 3.4: Code snippets from WebRSS to steal user credentials from an SSO
dialog. This snippet shows how JavaScript is constructed from within
the app and injected into the authentication site.

istence of local files and in some cases can completely read the contents
of such files [45]. Such attacks have a severe privacy impact. Son et al.
found instances in which the host app contains information on the user’s
medications, dating gender preference, social circle, and identity. The
host app may contain credentials used to authenticate the user, allowing
malicious web content to breach the user’s security. The attack relies on
specific configurations of the WebView. However, Son et al. found that
such configurations are required and used in legitimate circumstances.
Unfortunately, the current design of WebView and the app-web bridge
cannot allow apps to selectively expose local resources to web content
based on web content’s origins or trust levels. Therefore, when an app
needs to permit any trusted web content to access local files or other re-
sources, the same level of access is given to all web content despite their

44

origins.

User Impersonation

Another abuse of the app-web bridge is for a malicious app to trick an
embedded WebView and impersonate a user through JavaScript actions.
Websites are largely defenseless against such actions: even if they require
users to manually input credentials and prevent malicious credential steal-
ing (e.g., through a use of a properly salted and encrypted password with
every login), a malicious app can simply wait for the credentials to be
input and then send surreptitious requests to the authenticated page in
the guise of the user.

Such attacks are not just realistic but likely. For instance, attackers
often repackage popular websites’ official companion apps, which are
usually thin wrappers around WebViews. The rogue companion apps
can stealthily impersonate users, which is difficult for web servers or
average users to detect. Furthermore, apps that allow for general-purpose
browsing can include specific triggers on particular websites to launch
user impersonation attacks.

3.2.2 Exploit Analysis

The common cause of the above attacks lies in two assumptions implicit
to the design of WebViews: (1) apps always own web content embedded
in them; (2) web content in a WebView is always from a single origin.
Android provides only a weak form of isolation between the app and
web content: the app loads the web content, and can cede coarse-grained
control. Since both run in the same process, the app is expected to protect
the user from malicious web content. Unfortunately, the weak isolation
between apps and web content is insufficient to prevent attacks between
apps and embedded web content. In the next section, we show how our

45

system improves upon this isolation while still allowing sharing when
appropriate.

3.3 System Overview

In this section, we describe our system and show how it addresses the
threats listed in §3.2. The key capability of the system is that it provides
a secure service that runs web-content in a decoupled app. The most
obvious benefit of this approach is that it places app and process bound-
aries between the web-content and embedding app, leveraging existing
isolation mechanisms without modifying the underlying OS or framework.
However, the true power of our approach is that it provides an opportunity
for both the app and web-content to express dynamic access policies over
their interactions. The secure service mediates all interactions between
app code and web-content over an inter-process communication (IPC)
interface subject to these policies.

3.3.1 System Design

As introduced in §3.1, our system consists of two components: (1) a run-
time component, WIREFrame, that runs the secure WebView service. This
component is distributed as a standalone Android app. (2) a static, of-
fline rewriting tool, WIRE, that retargets apps to use WIREFrame. This
component injects the protection mechanisms of WIREFrame without
requiring apps to be redesigned. Thus, it ensures that the policies of each
security principal are enforced. We describe the operation of this system
by walking through the design diagram shown in Figure 3.5.
WIREFrame App: At runtime, WIREFrame registers a background service
that waits for connections from client apps (i.e., third-party apps using
WIREFrame). When a connection is created, the service binds a new IPC
Agent to the client app and establishes a stateful connection via Android’s

46

Binder mechanism. If the client app is allowed to display WebViews, the
IPC Agent constructs a floating window that contains an actual WebView
instance, called the Concrete WebView. The IPC Agent maintains an internal
mapping between each WebView instance rendered by WIREFrame and its
counterpart in the client app. Throughout the lifecycle of the WebView, the
IPC Agent handles the client app’s requests for WebView functionalities.
For a given request, it first queries the Policy Checker, which serves as a
security oracle. The Checker has a default configuration, but can also
load policies from the client app side (i.e., defined by developers or app
users) as well as policies from the web side (i.e., defined by the web-
content provider). If allowed by the policies, the IPC Agent invokes the
corresponding WebView API. The IPC Agent also forwards invocation
results or callbacks back to the client app.

WIREFrame places mediated WebViews in individual Service com-
ponents running in isolated processes [4], and therefore strictly separates
them from each other and the embedding app. Process separation pre-
vents reflection, memory mapping and other means of stealthy cross-origin
memory introspection. This separation applies to not only WebViews’ exe-
cutions, but also their access to local storage, including the cookie database
and the accessible paths in the file system, which prevents WebViews
housed in WIREFrame, often from different apps, from influencing each
other.
In-app WebView Proxy: The WebView Proxy, loaded inside the client
app, initiates and maintains the connection to the IPC Agent. It also
handles client-side data marshalling and unmarshalling. To maintain a
correspondence to the look and feel of an embedded WebView, the Proxy
builds an empty view component (called the proxy view) in the client app
and registers callbacks to visual changes to the proxy view. Whenever
these callbacks fire, the Proxy forwards them to the WIREFrame app to
propagate the corresponding view change in the concrete WebView. The

47

Android OS

 WIREframeWIRE

Offline
Rewriting

Runtime

Unpackaging

WebView
Identification &

Retargeting

IPC Synthesis

Repackaging

ReWritten
APK

Original.
APK

IPC
Agent

Policy
Checker

Client App

WebView
Proxy

Policy
Checker

Concrete
WebView

App
Code

Figure 3.5: System diagram of WIRE and WIREFrame. WIRE is applied to a
third-party app before install time, ensuring that it uses the protection
mechanisms of WIREFrame at runtime.

proxy maintains the same syntactic interface as an Android WebView. For
example, the typical way that a page is loaded in a WebView is by invoking
the loadUrl method. Thus, the WebView proxy exposes a loadUrl method,
which it translates into IPC, ultimately resulting in a concrete call to the
Concrete WebView within the WIREFrame service. We discuss technical
details of how this interaction works in §3.4.
WIREFrame Tool: Although app developers can interface with the Web-
View Proxy manually, our threat model assumes that developers can be
malicious. As such, WIRE is needed to help app users and IT adminis-
trators automatically retarget WebViews in (untrusted) apps into proxy
connections to WIREFrame. WIRE unpackages a given Android APK,
and identifies all uses of WebViews. If any such WebViews exist, WIRE
injects the WebView Proxy library and replaces all instances of WebViews
with instances of the WebView Proxy. This process is aided by the fact
that the Proxy has the same interface as the generic WebView. Finally,
the app is repackaged, and can be installed on a device, where it will use
WIREFrame. We discuss the implementation of WIRE in §3.5.

48

3.3.2 Dynamic Access Policies

As mentioned above, WIREFrame enforces access policies to protect web-
content and app code from one another. By virtue of running each We-
bView in an isolated process, a web-embedding app can defeat many of
the attacks listed in §3.2: web-content can no longer read files from the
host app, thereby mitigating local storage inference. The app is disallowed
from injecting JavaScript into the WebView, preventing SSO credential
stealing and user impersonation.

In the remainder of this section, we discuss additional details of the
policy mechanisms and introduce how these policies can be refined dy-
namically for fine-grained control by each side within a web-embedding
app.
Web Protections: The effect of WIREFrame is to extend the SOP to treat
the app code as a distinct origin. A web-embedding app can launch a We-
bView, but cannot inspect its content. Furthermore, the app is completely
disallowed from injecting JavaScript in the WebView. This policy is safe,
but it can limit the capabilities of web-embedding apps. For instance, a
common behavior of web-embedding apps is to source web-content from a
remote origin belonging to the app developer, which should be considered
as a single origin.

To support this use case, WIREFrame allows web-content owners to
declare exceptions via a dynamic policy-update mechanism. When the
WIREFrame connects to a remote website, it makes a request for a special
set of WIREFrame specific headers. If the headers are absent, the default
policy is employed. If the headers exist, they contain a list of policy objects
〈A1,A2, . . . ,An〉. Each policy object Ai specifies a pair (Si,Pi) where Si is
a security principal and Pi is a policy to enforce over Si. In our implemen-
tation of WIREFrame, the security principal Si is an app, identified by its
unique app signature and developer’s certificate. WIREFrame verifies the
principal identity using the existing signature-checking mechanism pro-

49

vided by the OS. A website can also use the ANY principal as Si, which will
apply Pi to all embedding apps. The policy Pi is a set of WebView APIs
that Si is allowed to access. For example, if Pi = { setJavascriptEnabled },
then Si is allowed to inject JavaScript. There is also a special LOCKDOWN pol-
icy object, which puts the WebView into a high-security mode: JavaScript
injection is disabled for the remainder of the session.

WIREFrame and its dynamic policy-update mechanism allows web
providers to protect their sensitive content or services that are embedded
in untrusted apps. For instance, by defining a simple policy that restricts
embedding apps’ control over the WebViews, web-content providers can
easily prevent the currently unstoppable app-to-web attacks discussed in
§3.2.1. Note that more complicated policies or more granular principals
could be enforced by WIREFrame (e.g., a policy automaton to prohibit
certain sequences of API calls), but our current implementation is sufficient
for common use cases. Note that policies are reloaded per-page. Thus, if
the user navigates to a new page, policies for previous pages are no longer
enforced.
App Protections: A key enhancement that WIREFrame uses to protect
apps from malicious web-content (e.g., remote JavaScript calling an ex-
ported local Java method) is to regulate requests to the client app on a
per web-origin basis. Note that identifying the web origin of a remote
request for local resources is not trivial because current WebView design
does not provide such information explicitly via its APIs. We obtain the
origin information without modifying WebView using a technique called
origin tagging. By using existing WebView callback interfaces, WIREFrame
rewrites JavaScript invocations of WebView interfaces in the web page be-
ing rendered. It extends the parameter list of such a invocation to include
a string that indicates the origin of the JavaScript (more details in § 3.4).
The integrity and confidentiality is guaranteed by the enforcement of the
same-origin policy inside WebView. Besides enabling origin-based policy

50

enforcement, origin tagging also ensures that distinct WebViews within
WIREFrame cannot introspect on each other. For example, WIREFrame
intercepts WebViews’ access to the local file system (via URI loading over-
ride) and transparently redirects such access to per-origin private paths,
unless a client app defines a less restrictive policy.

Developers can take advantage of origin tagging to define custom
policies, placed in the app’s manifest. An app-defined policy object follows
the same format as that of a web-defined policy object: (Si,Pi). But in this
case, the security principal Si is a web origin and the policy Pi is a list
of local interfaces that the app exposes to Si. For example, a legitimate
location-service app can define a policy whose Si is the app’s own domain
and Pi contains a local Java interface getGpsLocation, which returns the
GPS location. This policy informs WIREFrame that only web elements
from origin Si are allowed to invoke getGpsLocation via the app-web
bridge, whereas web elements from other origins, even if loaded inside
the same WebView, are disallowed.

Such policies enable app developers to expose sensitive interfaces solely
to intended web origins, which is a missing capability in today’s WebView
that allows the web-to-app attacks discussed in §3.2.1. With this capability,
app developers no longer have to bear high-security risk while adding
local support to their own or trusted web services.

3.4 WIREFrame Technical Details

In the previous section, we described the high-level protection mecha-
nisms of our system. We now discuss the implementation of the runtime
component, WIREFrame, and show how it achieves the security goals in-
troduced above. WIREFrame is implemented as a standalone third-party
app that acts as a secure and trusted provider of WebView for regular apps.
WIREFrame completely mediates all interactions between an app and its

51

embedded web content while enforcing fine-grained security policies.
Internally, WIREFrame wraps one or more default WebView instances

and use them to service apps requests for WebView features. Apps make
such requests and receive results via well-defined IPC interfaces exposed
by WIREFrame. Each IPC interface corresponds to a public WebView
API and provides the equivalent functionality, except that it performs
comprehensive security checks and enables policy enforcement. When in
operation, WIREFrame overlaps its WebView UI on top of the invoking
app’s UI in the exact area where the original WebView is expected, provid-
ing a consistent and seamless user experience (i.e., the user is not aware
that a web-embedded UI is in fact composed and supported by two sepa-
rate apps). To keep the UIs of both apps synchronized, WIREFrame and
the client app collaborate to captures user-interaction events (i.e., touches)
and ensure that the proper UI receives the event based on its position.

App developers may directly interface with the WIREFrame service by
making IPC calls in place of WebView APIs. However, doing so adds an
additional level of complexity to using WIREFrame: the developer needs
to manage the IPC channel on top of embedding WebViews. To enable easy
adoption, we developed a proxy library that developers can easily import
into their apps. This proxy includes a WebViewProxy class that has the
same interface as the default Android WebView. When the WebViewProxy
is started it establishes an IPC connection to the WIREFrame app. The
developer can simply call the methods of the WebViewProxy, which will
translate each call into an IPC operation on the connected WIREFrame.
Furthermore, we developed WIRE to automatically patch the proxy library
into legacy apps and refactor the usage of WebView into IPC invocations
to WIREFrame without any developer assistance (WIRE is discussed in
§3.5). Therefore, our system can be easily and quickly adopted in practice.
An advantage of this deployment is that a developer or an end user can
transition an app from using WebViews to using WIREFrame mediation

52

easily. It also allows for deploying regular WebViews and WIREFrame
side-by-side. We discuss the security implications of this deployment
further in §3.6.

In the remainder of this section, we discuss the implementation of
WIREFrame by discussing how it handles the key challenges in its design.
Serialization: Android requires that objects passed via IPC have methods
to handle their internal data marshalling and unmarshalling by imple-
menting the Parcelable or Serializable interface. A few complex class
types referenced in the WebView APIs do not implement these interfaces,
and therefore, cannot be passed via IPC. Although data marshaling for
IPC is a well studied problem, the unique constraints that we faced in
designing WIREFrame make the existing solutions non-applicable. For
instance, adding serialization support to complex class types is not feasible
without changing WebView or Android middleware. Furthermore, even
if serialization methods could be added, a type may have volatile state that
prevents if from being fully serialized or passed across app boundaries.
In other words, such objects are inherently bound to their app contexts.

We handle unserializable types using a technique we call object shadow-
ing. The intuition behind object shadowing is that, if an object cannot be
moved to, or duplicated in, the remote process, we keep it in the original
program context while creating a shadow copy of the object in the remote
process. The shadow object acts as a transparent proxy for the original
object: it only contains the public interfaces of the original object. The
shadow copy’s implementation of these interfaces simply invokes the cor-
responding interface exposed by the original object via IPC. As a result, the
shadow object allows code in the remote process to invoke public methods
or access public fields as if the original object were passed to the remote
process. At the same time, when its methods are invoked, the original
object functions properly without suffering from broken dependencies
that would otherwise occur if the object had been copied or duplicated

53

in the remote process. Figure 3.6 shows an example of applying object
shadowing to the second parameter of WebView.evaluateJavascript, a
ValueCallback object. In the example, the original object, callback is
kept at the client app side while a shadow object, shadowCallback, is au-
tomatically created in the WebView instance in WIREFrame. The shadow
object forwards calls to the public interface, onReceiveValue, back to the
original object via the IPC channel provided by WIREFrame.

Object shadowing can be recursive when a shadow interface takes or
returns complex objects. The recursion is bounded due to the fact that
object interfaces always converge to primitive types that can be directly
transferred over IPC. The generation of these objects and classes is straight-
forward and automated. Thanks to object shadowing, non-serializable
objects involved in WIREFrame IPC interfaces are invoked in their origi-
nal app context, rather than copied across app boundaries, which allows
IPC-unfriendly objects to be used in a cross-app fashion.
Visual Fidelity: WebViews running in WIREFrame need to appear and
function as native UIs of their embedding apps. This includes not only
displaying at the same scales and locations as native WebViews but also
responding to events, for instance, indicating device rotation from land-
scape mode to portrait mode, in which case the content rendered in the
WebView should automatically rotate and resize. Simply using the float-
ing UI feature of Android does not enable synchronization among the UIs
belonging to two apps. For instance, when the device is rotated, a series of
events is sent down the view hierarchy of the embedding app, updating
the layout of each element. This context is not available to the WIREFrame
and is necessary to calculate the final position and size that the WebView
would have occupied.

To achieve visual fidelity, the Proxy WebView maintains an invisible
view (i.e., a transparent placeholder) that takes the size and shape of the
original WebView and forwards all view events to the WIREFrame via

54

Figure 3.6: An illustration of object shadowing

IPC. Android supports several types of floating UI, by which an app in the
background can draw UI elements on top of the currently foregrounded
app. We leverage the floating UI feature to place the trusted WebView
managed by WIREFrame over the rewritten app while the latter is running
in the foreground. The WIREFrame WebView occupies the exact screen
area where the original WebView would have been rendered had the app
not been rewritten or WIREFrame not deployed. To avoid marshaling
all of the necessary context, the invisible element inserted by the proxy
(i.e., a transparent placeholder) is placed in the client app’s view hierarchy
where the WebView would be. This element responds to layout events
and automatically forwards its new size and position to the WIREFrame,
which mirrors these updates appropriately.
Origin-based Policy Enforcement: To achieve fine granularity, our policy
enforcement needs to track the origins of web content and the origins of

55

web-initiated calls to the app-web bridge. Without this capability, WIRE-
Frame cannot enforce useful policies such as allowing only a particular
origin to invoke the GPS-reading method exposed by a client app. How-
ever, realizing this capability in WIREFrame is challenging because none
of the WebView APIs are aware of the notion of web origins (i.e., their
parameters and return values do not carry information about origins).

To retain the origin information for each web-to-app data access or
code invocation, WIREFrame employs a dynamic HTML rewriting tech-
nique, which we call origin tagging. This technique is built on the standard
WebView callbacks that the embedding app (WIREFrame in this case)
can register to handle web-navigation events. Upon each page (re)load
or DOM element refresh event, WIREFrame receives a callback from We-
bView’s rendering-event inspector. During this callback, WIREFrame
rewrites every Javascript-to-WebView invocation in the to-be-loaded page
by appending an origin label to the parameter list (i.e., as a new final pa-
rameter). WIREFrame then resumes processing the page. Using the origin
tagging technique, WIREFrame attaches origin labels to the invocations of
the app-web bridge in a webpage before the page is loaded. Any obscured
invocation that is not labeled will be rejected by the Policy Checking dur-
ing invocation. Note that an origin label is an encoded string that can only
be decoded into a plain origin string with the secret key for the current
webpage. The encrypted labels prevent malicious web content from faking
or tampering with their origin labels. Later on when a rewritten invocation
is triggered, the Policy Checker retrieves the origin label by inspecting the
last parameter of the call. It decodes the label, verifies its integrity, and
then checks the invocation against the origin-based policy.
Complete Mediation: An important guarantee that our system provides
is that all app-web interactions are subject to policy enforcement. How-
ever, there is an inherent difficulty in maintaining this guarantee without
modifying the Android framework: An adaptive adversary may attempt

56

to hide the use of a default WebView from rewriting by WIRE, or may
re-implement web-embedding features in third-party code. To address
these scenarios, we imbue WIREFrame with the ability to intercept all
packets coming to and from a client app. Thus, a sensitive website can
require that it must be accessed from WIREFrame, in which case, WIRE-
Frame disallows packets originating from the client app destined for that
website.

We realize this feature using the VpnService class, which allows an
app to act as a VPN client without requiring root privilege. While the
intended usage of the class is for building a tunnel interface, we repurpose
it for packet inspection on selected apps. By implementing a per-app VPN,
WIREFrame can force the client apps to send all traffic through it while
not affecting other app’s network connections.

Note that using a mediated tunnel in this way leverages a key advantage
of our approach: the static analysis of WIRE mandates that the secure
service is set up at the entry points and torn down at the exits of a client
app. The complete mediation enforced by the secure service ensures that
any WebViews missed by the static analysis are detected at runtime.

3.5 WIRE Technical Details

The security mechanisms discussed in §3.4 only take effect if WIREFrame
is used by a web-embedding app in place of its regular WebViews. While
benign developers might choose to deploy our mechanisms, malicious
developers have no incentive to do so. Our offline rewriting tool, WIRE,
addresses this concern by replacing all uses of WebView with uses of the
secure WIREFrame proxy. This section provides details on the design and
implementation of WIRE.
Packaged App Analysis: One of the key advantages of our approach is
that it does not require assistance from developers. Without developer

57

support, the tool can rely only on the packaged app (.apk file) and com-
piled bytecode. To handle this challenge, WIRE leverages previous work
on reverse-engineering and re-compiling Dalvik bytecode. In particular,
we use the open source Apktool to unpackage and repackage code and re-
sources from an apk [8]. We use the Soot Java Optimization Framework [48]
and Dexpler [11] to extract Dalvik to an intermediate representation and
recompile the rewritten code.

Furthermore, WIRE is designed as a modular pipeline, with the rewrit-
ing phase decoupled from unpackaging and repackaging the app. Thus,
improvements to the underlying tools can be easily integrated into our
workflow.
Identifying WebView Usage: Because WIREFrame prevents the use of
the default WebView, it is crucial for the proper operation of the client app
that all legitimate uses of WebViews are identified and replaced. Unfor-
tunately, this identification can be challenging. In addition to WebViews
that are programmatically constructed and configured at runtime, an app
can define the WebView UI and its layout using an XML manifest that
the system loads at runtime. Thus, WIRE introspects and modifies the
applications code, resources, and XML metadata files.
Satisfying Lifecycle Constraints: Android apps run in an event-driven
lifecycle managed by the system. Events are fired by the Operating System
in response to events or system notifications. An implicit ordering exists
between the lifecycle events: one event cannot happen until the compo-
nent’s lifecycle has gone through preceding events. Without considering
component lifecycle and the implicit constraints, app rewriting can cause
erroneous or interrupted app execution. Thus, WIRE includes a model of
the Android lifecycle, ensuring that the WIREFrame is properly running
and bound before each invocation.

58

3.6 Security Analysis

We now discuss the security and robustness of our system against evasion.
Our discussion concerns attacks launched by either a malicious client app
or a malicious webpage—two types of adversaries allowed in our threat
model. We explain how our design addresses each adversary, and discuss
limitations of our approach.
Malicious client apps: Adversarial apps may attempt to evade our byte-
code rewriting process to maintain the usage of an unprotected WebView,
and in turn preserve an attack on the WebView’s content. A sufficiently
advanced adversary may be able to evade WIRE through obfuscation (e.g.,
using Java reflections), native code, or dynamically loaded code. However,
the per-app VPNService implemented in WIREFrame would intercept the
traffic coming from the elicit WebView and block it. This behavior high-
lights the fail-safe nature of our system: if a hidden web connection avoids
WIRE, it will cause the app to break rather than allowing unmediated web
access.

Malicious apps may hijack the IPC channel through which the client-
side proxy and WIREFrame communicate, leading to unchecked or forged
WebView API calls. The adversary may employ IPC spoofing (i.e., commu-
nicating to WIREFrame directly without going through the local proxy)
or compromise the local proxy. The client app is considered as a single,
untrusted entity from the perspective of the web content, and all calls to
the IPC interface are mediated on the WIREFrame side. In other words,
the WIREFrame treats all apps as if they were under the control of an
adversary spoofing the local proxy.
Malicious web content: When rendered inside WIREFrame, a malicious
web page may attempt to break the isolation and security checks enforced
by the trusted WebView. Since the web origin plays a central role in regulat-
ing untrusted web content, the origin-tagging mechanism of WIREFrame
can be an obvious target for attackers. For example, malicious JavaScript

59

can either obfuscate its invocation of Java interfaces to avoid tagging, or
spoof its origin by stealing a tag assigned to scripts from other domains. Al-
though it is possible to hide Java invocations, such invocations are rejected
by WIREFrame because they are not tagged. Stealing tags is impossible
because reading tags of scripts from other domains is prevented by the
SOP. Moreover, origin tags cannot be forged or reused because they are
randomly generated on a per-session basis. In very rare cases, attack-
ers may successfully exploit vulnerabilities in the web-rendering engine,
and possibly compromise the TCB of WIREFrame. While not designed
to mitigate such low-level attacks, our system does significantly reduce
the potential damage that such attacks can cause to either client apps
or WIREFrame thanks to the process-based separation of each WebView
instance.

3.7 Evaluation

Our evaluation seeks to answer the following questions:

1. Correctness: Do apps have the same appearances and functionalities
after adopting WIREFrame?

2. Effectiveness: Does WIREFrame enforcement effectively prevent at-
tacks on the app-web bridge?

3. Efficiency: What is the performance impact of replacing in-app Web-
Views with WIREFrame?

Experimental Highlights: Our experiments validate our approach and
show encouraging results. All 20 popular apps of different categories
continued to run correctly after being rewritten using WIRE to use WIRE-
Frame, with 90% showing no visual differences at all. We found that
WIREFrame effectively prevents both web-to-app and app-to-web attacks:

60

App Name Category Functional Visual
Dictionary.com Reference 3 7

Flappy Bird Entertainment 3 3

Facebook Social 3 3

LinkedIn Social 3 3

The Hindu News 3 3

NY Times News 3 3

The Economic Times News 3 3

Groupon Social 3 3

IMDB Reference 3 3

Amazon Shopping Shopping 3 3

Ebay Shopping 3 3

Textgram Social 3 3

Jewels Saga Entertanment 3 3

Ask.fm Social 3 7

Photodirector Media 3 3

Angry Birds Entertainment 3 3

Instant Inventory Shopping 3 3

Fun Run Entertainment 3 3

LivingSocial Social 3 3

QuickPic Media 3 3

Figure 3.7: Table of benign apps rewritten using WIRE. A 3 indicates that the
given app uses an overlay over a WebView, while a 7 indicates that
the given app does not.

WIREFrame successfully stopped the attacks against four popular third-
party WebView libraries that were otherwise vulnerable, and prevented
real web exploits targeting apps found in the wild.

In the remainder of this Section, we describe our methodology for
arriving at these conclusions, and provide a more in-depth analysis of our
results.

3.7.1 Methodology

We used four sets of apps to evaluate our system: a set of correctness apps
found in the wild, gathered to ensure that our system can handle the wide

61

variety of apps available, a set of attack apps that we designed to mount
attacks against 4 popular third-party WebView libraries, a set of benign
apps that use WebViews and are popular in the Google Play market, and
a set of benchmark apps for precisely measuring the performance of our
approach. All experiments were run on devices running Android 5.0.
Correctness Apps: To ensure the external validity of WIRE, we applied it
to a collection of 7166 apps downloaded from Google Play and 3rd party
markets. Given the size of this sample, running each app manually is
infeasible. Our goal with this sample is to ensure that the transformations
applied by WIRE are correct and produce valid bytecode even on apps
found in the wild.
Attack Apps: Our set of attack apps exploits WebViews used in four
popular third-party libraries: LinkedIn, Facebook, Twitter, and Foursquare.
The basic flow of the attack is very similar to that of our example attack
discussed in Section 4.2. Each attack app creates a WebView and uses the
API of the third-party library to get a sign-on URL from the associated
provider. The attack app then injects JavaScript into the login page to read
the username and password fields on that page.

To apply the extra security protection of a login page, WIREFrame
needs to know when it is on a secure login site. In a production system,
the secure web page would provide a dynamic policy to indicate to WIRE-
Frame that the page should selectively allow JavaScript to be injected or
any web content to be introspected upon. However, in our experiment,
instead of altering the HTML headers of the login page and installing a
dynamic policy on behalf of the SSO providers, we simply rely on the
default and the most restrictive policy of WIREFrame: by default, without
cooperation from the site, WIREFrame does not allow apps to inject scripts
to or inspect on an embedded WebView.
Benign Apps: Our suite of benign apps is composed of 20 popular apps
off of the Google Play store. The apps come from a variety of categories

62

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Tested API
API Invocation Time (in milliseconds) API Invocation

Overhead (relative) w/ WebHarbor w/o WebHarbor

Name Type Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

clearCache basic 2.38 2.23 1.22 0.82 0.95 1.72
getTitle basic 0.58 0.183 0.30 0.11 0.93 0.72
capturePicture complex 6.08 6.97 1.16 1.64 4.25 3.24

!

Time
Relative Overhead

w/ WebHarbor w/o WebHarbor

Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

Load URL w/ origin
tagging (ms) 13.24 15.16 12.63 14.30 0.05 0.06

Load URL w/o origin
tagging (ms) 12.38 14.43 12.63 14.30 -0.02 0.01

Average app boot
and load (s) 5.37! 6.12! 5.09! 4.68! 0.05 0.08

w/ WebHarbor w/o WebHarbor
N5 S5 N5 S5

Client – Kernel time (s) 0.6 0.3 0.8 7.6
Client – User time (s) 1.8 1.1 8.7 3.7
WHbr – Kernel time (s) 0.7 2.4 - -
WHbr – User time (s) 3.7 9.6 - -

Client – VSS (KB) 945 965 1021 1061
Client – RSS (KB) 66.6 37.4 72.7 100
WHbr – VSS (KB) 947 952 - -
WHbr – RSS (KB) 46.7 47.1 - -
WHbr = WebHarbor App!

Figure 3.8: Added Runtime Overhead of WIREFrame protection mechanisms
(Thus 0.95 represents a nearly 2x slowdown). Overhead includes
the IPC invocation and policy checks. Note that the complex object
shadowing of capturePicture includes the time needed to copy an
entire screenshot of a WebView between apps.

including reference (for reference material, such as a dictionary), entertain-
ment (for games), Social (for social content such as Facebook), and Media
(for traditional media apps such as image viewers). Figure 3.7 shows the
full table of apps in our suite, along with their categories.
Benchmark Apps: To characterize per-operation overheads associated
with WIREFrame, we manually insert timing checks into a set of syn-
thetic apps. We are broadly interested in three measures of overhead:
the space cost of having an additional app on the device, the per-launch
overhead of establishing the communication channel between client apps
and the WIREFrame services, and the per-use overhead of the IPC-based
interaction between a client app and its embedded WebView.

3.7.2 Analysis

Correctness

We performed two experiments to ensure the correctness of our approach.
In the first, we ensured that the app rewriting performed by WIRE pro-
duced valid bytecode. In total, we found that 46 of our 7166 apps (approx-
imately 0.6% of apps) failed to complete the rewriting successfully. We
note that all of these apps also fail to complete a null transformation in

63
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Tested API
API Invocation Time (in milliseconds) API Invocation

Overhead (relative) w/ WebHarbor w/o WebHarbor

Name Type Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

clearCache basic 2.38 2.23 1.22 0.82 0.95 1.72
getTitle basic 0.58 0.183 0.30 0.11 0.93 0.72
capturePicture complex 6.08 6.97 1.16 1.64 4.25 3.24

!

Time
Relative Overhead

w/ WebHarbor w/o WebHarbor

Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

Load URL w/ origin
tagging (ms) 13.24 15.16 12.63 14.30 0.05 0.06

Load URL w/o origin
tagging (ms) 12.38 14.43 12.63 14.30 -0.02 0.01

Average app boot
and load (s) 5.37! 6.12! 5.09! 4.68! 0.05 0.08

w/ WebHarbor w/o WebHarbor
N5 S5 N5 S5

Client – Kernel time (s) 0.6 0.3 0.8 7.6
Client – User time (s) 1.8 1.1 8.7 3.7
WHbr – Kernel time (s) 0.7 2.4 - -
WHbr – User time (s) 3.7 9.6 - -

Client – VSS (KB) 945 965 1021 1061
Client – RSS (KB) 66.6 37.4 72.7 100
WHbr – VSS (KB) 947 952 - -
WHbr – RSS (KB) 46.7 47.1 - -
WHbr = WebHarbor App!

Figure 3.9: Runtime Overhead of the Load URL API. Note that loading URLs
without origin tagging has a low enough overhead that it is within
the margin or error.

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!

Tested API
API Invocation Time (in nanosecond) API Invocation

Overhead (relative) w/ WebHarbor w/o WebHarbor

Name Type Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

clearCache basic 2378334 2234271 1216876 820417 0.95 1.72
getTitle basic 575521 183770 298750 106718 0.93 0.72
capturePicture complex 6075365 6966343 1156302 1644187 4.25 3.24

!

URL Loading Time (in nanosecond) URL Loading
Overhead (relative) w/ WebHarbor w/o WebHarbor

Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

Load w/ origin
tagging 13243428 15155291 12630833 14297445 0.05 0.06

Load w/o
origin tagging 12378216! 14426122! 12630833! 14297445! -0.02 0.01

w/ WebHarbor w/o WebHarbor
N5 S5 N5 S5

Client – Kernel time (s) 0.6 0.3 0.8 7.6
Client – User time (s) 1.8 1.1 8.7 3.7
WHbr – Kernel time (s) 0.7 2.4 - -
WHbr – User time (s) 3.7 9.6 - -

Client – VSS (KB) 945 965 1021 1061
Client – RSS (KB) 66.6 37.4 72.7 100
WHbr – VSS (KB) 947 952 - -
WHbr – RSS (KB) 46.7 47.1 - -
WHbr = WebHarbor App!

Figure 3.10: Resource Utilization of CPU and Memory. WIREFrame incurs mod-
est overhead, mostly composed of time and memory in user space.

64

Soot (our underlying analysis engine). Thus, we believe these limitations
are not intrinsic to our technique.

In our second correctness experiment, we tested that the apps in our
benign sample of apps continued to perform correctly when run manually.
Figure 3.7 shows the results of this experiment on our 20 web-embedding
apps.
Functional Correctness: The Functional column indicates that the func-
tionality of the app was preserved: no crashes were detected in a manual
session of operating the app, and all web and app tasks completed using
the WIREFrame just as using a plain WebView.
Visual Fidelity: The Visual column of Figure 3.7 indicates if the app using
WIREFrame versus the in-app WebView appeared to be identical. We
discovered none but two apps that did not meet this criteria, which were
expected corner cases. As a security feature, WIREFrame does not allow
client apps to overlay UI over any part of WebView, and therefore, prevents
clickjacking and other UI confusion attacks. The 2 apps failed the visual
fidelity test because of this deliberate security restriction of WIREFrame.
In the Ask.fm app, a loading widget from the app is placed over the
WebView while it loads, and is thus not visible in the rewritten app. In
the Dictionary.com app, a widget from the app displays an advertising
message for a premium version of the app over web content. In both
cases, the workflows of the apps remain undistorted. Furthermore, these
offending overlays could have been embedded directly into the web content
or displayed elsewhere in the apps.

Effectiveness

For each of the four attack apps that we tested, we found that WIREFrame
was effective in preventing the malicious behavior that we inserted.
Effective Enforcement: The attack apps import and exploit the authen-
tication libraries from Facebook, Foursquare, LinkedIn, and Twitter, all

65

of which use WebViews. To exploit the library, the attack apps inject
JavaScript into the login window for each service according to the tech-
niques described in Section 4.2. For all four libraries, we successfully
extracted the username and password when the app used a default in-
app WebView. We then rewrote each app using WIRE, and replayed the
attacks. In each case, WIREFrame successfully prevented exfiltration of
credentials.

In addition, we simulated the web-to-app attacks and examined WIRE-
Frame’s origin-based policy enforcement. We created a test app which,
employing dynamic policies, exports a range of sensitive Java interfaces
exclusively to web content from a trusted origin. We also composed a
mash-up page with multiple iFrames and scripts from different origins
that all try to access the exported app-web interfaces. During the test,
the app first loads the mash-up page using a regular in-app WebView
and then does the same using WIREFrame. Our results show that the
sensitive interfaces were universally accessible to all web content loaded
in the regular WebView but were only accessible to the trusted domain
from within WIREFrame.

Those tests show that WIREFrame’s enforcement is effective at isolating
the threats that apps and embedded web content may impose on each
other.

Efficiency

The extra security protections afforded by our approach have overheads
in terms of resource utilization (CPU and memory) and runtime overhead.
While correctness and effectiveness are the primary concerns of our system,
we also evaluate if the mechanism is efficient enough to use.
Resource Utilization: Figure 3.10 lists the resources used by an app with
and without WIREFrame. VSS lists the virtual set size (VSS), which is
a measure of the maximum utilization of virtual memory. RSS lists the

66

resident set size, which measures the maximum footprint in resident
memory. An app using WIREFrame has a smaller memory footprint across
both metrics, because web content is now being loaded in the WIREFrame
process. There is also a constant overhead of less than 1 MB for running
the additional process, but given that modern Android devices such as
the S5 are equipped with 2GB of RAM, we consider this overhead to be
negligible.
Runtime Overhead: Rewritten apps incur overhead from the extra book-
keeping performed for WIREFrame protection mechanisms. We measured
the runtime increase across representative web APIs of both types.

Figure 3.8 shows the runtime of invocations of two basic APIs, in which
the arguments to the call do not require object shadowing and complex
APIs which do. These functions measure the additional overhead of app
to-web protections, which is accounted for by the actual IPC invocation
and related marshalling. For basic APIs, we experience an approximately
2x overhead. For complex APIs, we experience a 3-4x increase.

Figure 3.9 shows the overhead of loads with and without origin tagging.
This overhead is accounted for by building and inspecting the web origin.
As expected, we experience negligible overhead without origin tagging
(within the margin of error of our timing tool, DDMS).

Although these overheads are high in relative terms, they are miti-
gated by the fact that the absolute overheads are small. Given that these
WebView APIs are called infrequently in an app, the runtime overhead
accounts for a negligible factor of the total runtime of the app. We have
found these latencies to be acceptable in use, but we note that there is
room to optimize our techniques, especially with regards to object shad-
owing. Furthermore, interacting with web content is especially amenable
to absorbing the overheads introduced by IPC, runtime of such operations
will often by dominated by network latency.

67

3.8 Related Work

Studying WebView-related Attacks: Previous studies have reported sev-
eral types of WebView attacks that exploit the app-web bridge. Luo et
al. [31] demonstrated that, using WebView APIs, apps may inject malicious
scripts into embedded web content, and at the same time, unauthorized
web code may invoke app-exported Java methods. Roesner et al. have
noted that apps can read passwords from the embedded WebViews [40].
Many works have noted the scope and severity of malicious web content on
benign apps (web-to-app attacks, in our terminology: Chin et al. [13] studied
two types of WebView attacks whereby malicious JavaScript scripts per-
form unauthorized Java invocations and file system access in vulnerable
apps. Neugschwandtner et al. [35] showed that WebViews can serve as a
powerful attack vector when the server is compromised. Thomas et al. [46]
formulated a model for determining the lifetime of a vulnerabilities in
Android using Javascript attacks on WebView as a case study. This model
notes the slow deployment of patches in Android, a point that supports
our technique of app rewriting rather than patching the system-provided
WebView. Wang et al. [49] demonstrated the origin-confusion attacks and
provided a mitigation that requires OS modifications. More recently, Son et
al. [45] found that untrusted advertisements rendered in WebViews may
infer user profiles by testing the mere existence of certain files, an oper-
ation that the current WebView design cannot forbid. Motivated by the
findings of those previous studies, our work solves an open and pressing
issue—generalizing and preventing WebView-related attacks.
Isolating External Web in Apps: There is a rich body of work [19, 37,
44, 54] on mobile ads isolation. The proposed solutions isolate ads from
hosting app by placing ads in a separate process or app. NativeWrap [34]
performs a similar kind of isolation to cover web applications in WebViews.
Our work also uses process boundaries to separate apps and web content,
but is compatible with all kinds of WebView usages and considers both

68

web-to-app and app-to-web attacks. Unlike previous work, our system
allows for policy-driven and origin-based security, and includes a static
rewriting tool, WIRE, to help app users conveniently apply WIREFrame
to existing apps that use WebView.
Securing Sensitive Web Content in Untrusted Apps: Web-based logins
are a common embedded web element that previous research set to se-
cure [12, 28, 41] by means of trusted devices, verified UI, and scrutinized
implementation of authentication protocols. In contrast, WIREFrame
prevents the web content manipulations unique to WebView. Such manip-
ulations are caused by the faulty security assumptions of WebView and
the coarse security control over the app-web bridge. LayerCake [40] is a
modified version of Android that prevents UI confusion and clickjacking
attacks. It supplies secure user interfaces elements, including SecureWe-
bView that can be embedded in an app but run in a separate process.
SecureWebView statically disallows the use of JavaScript and the app-web
bridge. Therefore, it can prevent the SSO attacks that partly motivated our
work. However, SecureWebView only aims to protect sensitive web con-
tent whereas WIREFrame protects both apps and web content as per the
policies from both sides. In addition, WIREFrame is backward compatible
with the existing Android architecture While the goals of our systems are
different, it would be interesting to combine the systems: LayerCake could
enable the app-web bridge but enforce the policies that we describe in
this chapter, and WIRE could retarget legacy apps to use the OS-provided
SecureWebView. An alternative approach used by Mutchler et al. [33]
and Hassanshahi et al. [22] is to scan web-embedding applications offline
for possible web-app bridge vulnerabilities. While these chapters do not
specifically mention SSO credential stealing, they share a similar threat
model to our own in that they consider malicious apps as well as malicious
web traffic. Unlike our work, these techniques do not propose defenses
other than reporting the possibile vulnerabilities.

69

Hybrid Frameworks: Frameworks such as PhoneGap / Cordova [2] al-
low developers to write apps in web languages, including HTML and
JavaScript. The abstractions provided by such frameworks could imple-
ment some of the protections against malicious web content that we de-
scribe. For example, Cordova can hook URL loading and inject filtering.
However, it is the responsibility of the developer to use the framework cor-
rectly, and thus enforcement is not mandatory. Some recent works [18, 26]
attacked hybrid apps via local-code injection or remote-resource abuse.
They proposed mitigations that are specific to hybrid apps and require
changes to the frameworks. In comparison, WIREFrame does not directly
protect hybrid apps and instead focuses on native apps that embed web
content. However, since the hybrid frameworks all use WebView as their
building blocks, they may in principle adopt WIREFrame’s policy-driven,
origin-based security model to govern web elements in hybrid apps.

3.9 Chapter Summary

As discussed in this work and previous work, Web-embedding apps in-
creasingly attract attacks from different angles. Several current threat
vectors they remain unprotected, due to the lack of practical security
mechanisms that can meet security requirements of all parties, including
app developers, app users and web content providers.

We propose the use of a secure, third-party app called WIREFrame to
provide trustworthy web-embedding while enforcing configurable and
origin-based security policies on the interactions between Android apps
and embedded web content. Both apps and web content can define policies
to secure their own resources at fine-granularities. We have shown that
our solution is effective in preventing abuses of the app-web bridge by
either malicious web content or malicious apps. At the same time, our
system maintains the appearance and functionality of client apps.

70

Our solution is easy to deploy. It requires no modification to the An-
droid operating system or framework. Furthermore, through the use of
our offline app-rewriting tool, WIRE, we can retarget legacy apps to benefit
from the enhanced security of WIREFrame without requiring developers’
cooperation.

71

4
Minionizer

Note that for typographical reasons, several figures appear at the end of this chapter

4.1 Introduction

Smartphones have emerged as ubiquitous computing devices accompa-
nied by unique challenges for security and privacy. Through pervasive
access, users present troves of personal data to these devices, both by
manual interaction and through numerous sensors onboard the device.
The misuse of such data can cause significant harm to a user’s privacy.
Mobile-operating-system (OS) providers have increasingly integrated priv-
iledge mechanisms to lock down the use of privacy-sensitive operations.
iOS presents permission requests dynamically while the app runs and
when it needs them, in the hope that the UI context hints to the purpose
of the permission request. Windows Phone 8 requires the user to ap-
prove an app’s full set of permissions at install-time. Android recently
adopted a hybrid permissions model where permissions are granted at
install time, but the user can revoke permissions dynamically through
prompts or by disallowing a single permission to an app. We believe that
many of our findings can be applied to many mobile OSes, including the
Windows Phone and iOS. However, we focus our exclusively on Android.
While these mechanisms mitigate some of the most egregious abuses of
permissions, they fail to satisfy a number of important privacy needs.

To describe these needs, we introduce an example that we will use

72

throughout this chapter, Brightest Flashlight Free. Brightest Flashlight Free
is a popular Android flashlight app, downloaded from the Google Play
store over 1.2 million times and carrying a 5-star rating. We consider
mobile-OS-privacy mechanisms for this app in the context of two best-
practice security tenets: the principle of least priviledge (PLP) and the principle
of informed authorization (PIA).
1) PLP: The PLP states that a principal should be given no more permis-
sions than necessary to fulfill its purpose. However, multiple principals of
diverse provenance and trust levels can exist within a single app. Brightest
Flashlight Free includes code for the core flashlight functionality and for
several advertising libraries. The user is given no means to determine how
permissions map to these app-internal principals because the OS treats
the app as a single entity. As such, should the install-time permissions
to use the camera be granted to the core, the advertising library would
also be able to use it. Previous work has emphasized the importance of
recognizing different levels of trust for these entities [43].
2) PIA: The PIA states that authorization should be supported by enough
context to make an informed decision. Implementing this principle is
difficult, because the composite effect of multple permissions may have
a greater impact than each permission in isolation. The user might feel
comfortable letting the advertising library of Brightest Flashlight Free
use the network (to fetch ads), and use their location (to light up at local
sundown), the two permissions in tandem can be used to leak the user’s
location to the Internet. Even when dynamic permission prompts are
presented to the user, they are not accompanied by enough context to tell
whether permissions are being used together or in isolation. Further com-
plicating matters, the inclusion of such information in dynamic prompts
can exacerbate prompt fatigue, in which users become overwhelmed by
authorization dialogs and simply begin accepting them [30].

Some previous work has attempted to address these challenges by

73

identifying undesirable behavior through static analysis [9, 15]. These
approaches do not provide any way for users to determine if a flow is
actually occurring at runtime. Other previous work has attempted to
rewrite the Android permissions model entirely [17]. However, such
approaches require updates to the OS itself. At best, such updates are slow
to reach users. Historically, handset manufacturers have taken as much as
several years to apply upstream patches. At worst, legacy device support
may be discontinued entirely and changes to the permission model may
require the explicit cooperation of app developers [21].

In this chapter, we introduce a technique called minionizing that ad-
dresses the problems listed above without incurring the limitations of
these previous approaches. This technique works by partitioning an app
into a number of smaller, collaborating apps called minions. Minion apps
contain a portion of the original app representing an action that the user
can mediate. The key insight behind minionization is that splitting the ap-
plication into smaller pieces converts sensitive code and data flows from intra-app
(indistinct to the user and to the OS) to inter-app (distinguishable by the user and
the OS).

The way in which app code is minionized is guided by a policy pro-
vided by the user when the app is downloaded but before the app is
installed. The policy-driven nature of minionization makes it a flexible
technique for re-provisioning the capabilities of an app. For example,
Brightest Flashlight Free could be partitioned into two minions: m1, which
includes the core and advertising functionality, andm2, which includes
only the calls that collect the location specifically to be sent to the network.
The user may then choose to installm1 only, effectively limiting the flow of
their location to the network without denying the location to the core app.

Minionizing directly addresses the PLP by allowing users to identify
principals within an app, and separate them into distinct entities that can
be mediated and controlled by the OS. Minionizing also better supports the

74

PIA: the user policy can list permission flows to be partitioned before the
app is installed, thus deauthorizing fine-grained composite permissions.
This policy-based approach to authorization has the benefit that it does
not add to the user’s prompt fatigue: no extra runtime action (such as
approving a prompt) is required of the user. Furthermore, the user can
write (or download from a trusted party) a single policy to apply to many
apps, saving the cognitive overhead of examining the permissions of each
app they use.

We have developed a tool called Minionizer to implement minionizing.
In addition to breaking an app into minions, this tool ensures that the orig-
inal functionality of the app is maintained when the minions are enabled.
The instrumentation enables minions to communicate with each other
via OS-level interprocess communication (IPC). By exposing operations
as IPC, a desired policy can be enforced using IPC access-control mecha-
nisms (e.g., permissions on Android intents), with fall-back to unmodified
execution faithful to that of the original app in the absence of any policy.
Furthermore, inter-minion communication leads to graceful degradation
of functionality when strict policies (e.g., absolutely no GPS access) are
enforced.

This chapter makes the following contributions:

• We formalize app splitting as the problem of finding graph partitions
and show how various classes of security policies map to minionizing
strategies. Underlying app splitting is a notion of fine-grained, flow-
based permission addressing the PLP and PIA.

• We introduce a tool, Minionizer, for performing automatic, optimal
app splitting of Android apps based on a specified security pol-
icy. Minionizer naturally generalizes the existing work on isolating
advertising from the core functionality of an app [42, 47].

• We demonstrate experimentally that Minionizer is practical, sup-

75

ports a variety of app types (from book readers to translation apps to
social networking tools), and incurs low overhead: operations that
use permissions incur a low overhead of less than 3% and the total
runtime of the app does not experience any measurable slowdown.

The remainder of the chapter is structured as follows:
Section 4.2 overviews and motivates our approach by focusing on the

concepts of our running example. In Section 4.3 we detail our technique
for choosing strategies to implement minionization policies. Sections 4.4
and 4.5 discuss the technical details of how Minionizer preserves app
functionality across minions, allowing minion apps to collaborate. In
Section 4.6, we evaluate how applications split with Minionizer perform
against their monolithic counterparts. We review related work in Sec-
tion 4.7 and conclude in Section 4.8.

4.2 Overview

In this section, we motivate the need for fine-grained permission con-
trols in accordance with the PLP and PIA. We then present the design
of Minionizer, and introduce how each component of the system uses
minionizing to sharpen the permission mediation of an app.

4.2.1 Motivation

To illustrate the permission problems identified in Section 4.1, we present
an example app, Bright Flashlight, that demonstrates the challenges
users face in the current Android ecosystem. This app is a synthentic
example designed to present the concepts of Brightest Flashlight Free
in a simplified manner. The source code presented here is distinct from
that of Brightest Flashlight Free, but requires the same (commonly used)
permissions. Unless otherwise specified, behavior is shared by both apps.

76

Bright Flashlight is a flashlight app that works by placing the cam-
era’s flash into torch mode. It has the distinct functionality that it tracks
the local time of sunset, using the system date and time (which requires
no permission), a built-in timetable, and the user’s current location.

There are three functions of Bright Flashlight that use permissions,
as shown in Figure 4.1. These functions illustrate different ways in which
the same permissions can be used. The sendLoc method uses the per-
mission ACCESS_FINE_LOCATION to collect location information at pro-
gram point P0 which is sent to the network using INTERNET permission
at P1. The sunsetLight method also gets location information using
ACCESS_FINE_LOCATION, at P2. The data flows to P3 which uses the location
to light the flash using CAMERA. The getAd method also uses INTERNET
to download an advertisement from the network at P4, which it returns.
The app can execute all three of the above methods by declaring the use
of permissions INTERNET, ACCESS_FINE_LOCATION, and CAMERA in its
manifest.

Consider a policy of a user who wants to ensure that their location is
never leaked to the network. By installing the app, the user grants per-
mission to the app to send data to the network, and read from the contact
list, as it does in getAd. Android does not expose sufficient information
to determine if such a flow actually exists in the program or not. If the
user wanted to ensure that no such flow occurred at runtime, they could
completely shut down the network, but doing so stops all content from
reaching the device.

The user’s desire to ensure that their location does not use the network,
without completely disallowing use of the network, cannot be expressed in
Android. The OS does not allow the user to view the interactions between
permissions, only the static set of permissions that the app might use.
Even if the user could determine that such a flow was possible, they have
no recourse but to shut down the entire permission.

77

Fine-grained permission control

At the most basic level, the user’s goal is to mediate the ways in which
an app uses its permissions in a fine-grained way. This mediation must
use existing OS mechanisms and user interfaces for security, in order to
simplify the overall user experience. Because Android supports mediation
of operations and enforcement of security only at the app level, the best
approach is to separate the app into multiple minions, each containing
one permission, that collaboratively operate to achieve the original func-
tionality of the app. Once the app is separated into minions, each one
installable by itself, the user can effectively express any security policy on
flows inside the original app in terms of the minions that she chooses to
install.

Separating each use of any permission into a distinct entity that can be
independently addressed by the user is thus the fundamental operation
supported by Minionizer. In the case of Bright Flashlight, Minionizer
can isolate each of the program points P0, P1, P2, P3, and P4 into distinct
minions, and replace their invocations with inter-process communication
code to retrieve the original behavior of these program points.

The goal of the user can be expressed as a list of instruction pairs 〈s, t〉,
where s is an instruction that is a source of sensitive information and t is a
sink instruction, each such pair written as s !

 t. For example, a user may
have a general policy of the form shown in Figure 4.2.

78

1ACCESS_FINE_LOCATION !
 INTERNET

2READ_PHONE_STATE !
 INTERNET

3READ_PHONE_STATE !
 INTERNET

4GET_ACCOUNTS !
 INTERNET

5ACCESS_FINE_LOCATION !
 SEND_SMS

6READ_PHONE_STATE !
 SEND_SMS

7GET_ACCOUNTS !
 SEND_SMS

8ACCESS_FINE_LOCATION !
 WRITE_EXTERNAL_STORAGE

9READ_PHONE_STATE !
 WRITE_EXTERNAL_STORAGE

10GET_ACCOUNTS !
 WRITE_EXTERNAL_STORAGE

Figure 4.2: Example Minionizer policy, designed to prevent device identifiers and
fine grained location information from being leaked from the device

Note that the policy listed here does not map to a single program point.
Instead, it requires that every flow that meets these criteria must be medi-
ated. In effect, this policy prevents the exfiltration of the user’s location
(ACCESS_FINE_LOCATION), account data (GET_ACCOUNTS), or phone identi-
fiers (READ_PHONE_STATE) from being leaked via the internet (INTERNET),
text message (SEND_SMS), or SD card (WRITE_EXTERNAL_STORAGE).

In practice, a user is likely to employ a much larger policy than pre-
sented above. However, the user need only build (or obtain from a trusted
3rd party) a policy once, after which it can be reused for any app. For
example, this policy can be applied to Bright Flashlight, in which case
only the first rule will apply. For Bright Flashlight, this means that the
flow from the source P0 to the sink P1 will be subject to minionization.
However, since the policy does not concern any permission involving the
camera, the flow from P2 to P3 remains untouched, as does the isolated
permission use at P4.

79

4.2.2 System Design

For Minionizer to work, we need to solve two fundamental problems: 1)
given a policy of the form described in Section 4.2.1, what region of code
should be extracted to minion apps? The task of partitioning the app in
this way requires careful consideration to ensure that the policy is satisfied,
while at the same time mitigating performance impact. 2) How should the
minion apps communicate to collaboratively maintain the functionality of
the original app? In the remainder of this section, we provide an overview
to our solutions to these problems by walking through the workflow of
Minionizer.

The Unpackager

In order to operate on compiled Android apps, Minionizer takes a .apk
file as input, and uses the dexpler [11] frontend to construct a Jimple repre-
sentation of the app’s code, denoted Soot IR in Figure 4.3. The component
responsible for this operation is called the Unpackager. This intermediate
code is then forwarded to two custom components: the Split Director
and the Splitter.

The Split Director

App splitting enables diverse security or functionality modifications to an
app, which can be realized though different methods of selecting minion
apps. We refer to such methods as splitting strategies. A Split Director
implements a single such splitting strategy. While we focus on enhancing
the Android permission model in this paper, Minionizer allows the user
to drop in a new Split Director at runtime. Splitting strategies are
implemented as plaintext XML files that identify how instructions should
be partitioned amongst the minion apps. As such, it is possible for a user
to create a splitting strategy by hand, or to manually modify the output

80

of a director. To demonstrate the modularity of this component, we have
implemented directors for two distinct strategies in Minionizer:

• The Isolation strategy ensures that every permission-using instruction
is split into its own minion. This strategy provides support for legacy
devices to effectively toggle which permissions an app can use at
runtime, giving them the ability to select the exact set of permissions
points in the program to remove. However, the strategy does not
account for runtime performance when it places split points, and it
will split permissions that the user may not care about.

• The Flow strategy ensures that data flows are paritioned into minions.
Most method calls that require a permissions can be categorized as
either a source that can gather sensitive data on the device, or a sink
that can send data to a potentially-untrusted entity. As discussed
in Section 4.1, a user may be comfortable with the independent
operation of a source and sink method, but unwilling to allow data
to travel from a source to a sink. The Flow strategy ensures that for
every source/sink pair (s, t) of method calls, data cannot flow from
s to twithout passing through a minion. This strategy addresses the
limitations of the isolation strategy: the director attempts to finds
program points at which a split has a small performance impact.
Furthermore, the user can express which permissions that they care
about splitting, and the Director will ignore other permissions.

Note that in contrast to previous work, the goal of Minionizer is not to
identify data flows within apps, but rather to mediate flows. In keeping
with this focus, we require the user to provide permission points (i.e.
individual method calls that they would like to split). In the case of the
Isolation strategy, this is a list of permission points that the app should
split. In the case of the Flow strategy, this is a list of pairs of permission
points to separate. This requirement allows the split directors to be more

81

flexible, as the user may only care about a subset of the permissions that
an app uses. By default, the split directors automatically wrap calls to
Flowdroid [9], an existing data flow tool, to identify permission points
and identify flows.

We explore the algorithm used by our split directors in Section 4.3.
Although both of the directors that we have defined are based on the
notion of permissions, a split director could just as easily be built that will
split based on application package, or accept regions of the program that
perform some action that the user cares about mediating but does not
require an explicit permission. For example, one could easily imagine a
Split Director that partitions all native code into minions, though this is
not a direction that we have explored.

The Splitter

The Splitter takes the intermediate representation of the app and uses
the splitting strategy to create a collection of new, collaborating apps,
called minions. This component of Minionizer represents the bulk of
our implementation effort, because it must ensure that splitting the app
does not alter its behavior when all minions are present. Thus, the splitter
ensures that all minions have enough program state to perform their task
while accounting for Android-specific concepts such as app lifecycle and
callbacks.

The Support Generator

In addition to performing the actual partitioning of a monolithic app into
minions, Minionizer also generates a number of additional artifacts. The
Support Generator is responsible for building these artifacts. The Support
Generator outputs an install script that assists the user in installing minion
apps en masse, and also outputs information on the provenance of each

82

minion, such as the package from which the code was partitioned and the
permissions required.

A key advantage of minionizing, as discussed in Section 4.1, is that
opaque functionality within the original app is exposed to OS-level security
mechanisms. The support generator can interface with such mechanisms
to enable policies that cannot currently be expressed on a monolithic app.
The support generator can serve as a framework upon which configuration
for these tools is generated in tandem with the minion partitions. As an
example of this behavior, we have built an example support generator
module to configure Android’s Intent Firewall, which allows the user to
blacklist communication between apps [3, 52]. Creating Intent Firewall
rules in this way also lightens the burden on the user. Rather than having
to manually pick and choose which minion apps to install, the user can
install all minions and let the automatically-generated Intent Firewall
policy mediate communication between minions. This approach also has
the advantage of allowing runtime configuration of the permissions that
an app can use: if a user decides to allow a flow post facto, they need only
tweak the Intent Firewall rules.

The Repackager

The final step of the tool is to package each minion into its own executable
Android app. The backend of Minionizer, called the Repackager is built
upon the Soot dex compiler, but also uses apktool [8] to recover resources
from the original app.The compiler also rewrites a new manifest for each
minion, constraining it to the reduced set of permissions that it needs.

4.3 Splitting Strategies

In this section, we discuss our algorithm for building the splitting strategies
used by the Split Director, which are described in Section 4.2.

83

Recall that a program dependence graph (PDG) has two kinds of edges:
data-dependence and control-dependence edges [32]. First, we formalize
the problem in terms of a labeled program-dependence graph (LPDG) of an
application. LPDGs are essentially PDGs whose nodes are labeled with
permissions. Let G = (V ,E,L) be a LPDG of an A, where V is the set of
nodes, E ⊆ V×V is the set of edges, and L : V → P is a function that labels
each node with an element (called permission) from a set P). We assume
that there is a special element ⊥ ∈ P which represents the null permission.
Intuitively L(v) = ⊥ means that the statement corresponding to node
v ∈ V does not need any special permissions. Formally, the problem,
which we call the permission separation problem (PSP) can be defined as
follows:

Problem 4.1. Given a LPDG G = (V ,E,L) and a relation X ⊆ P × P. The
problem is to find a partition Π = {V1,V2, · · · ,Vk} of V , which satisfies the
following condition: for all pairs of nodes (v1, v2), if (LA(v1),LA(v2)) ∈ X, then
v1 and v2 are in different sets of the partition Π.

Our definitions and algorithms also work for other graphs related to an
application. For example, all the algorithms work equally well for control-
flow graphs (CFGs). However, partitioning based on CFGs provide weaker
guarantees than partitioning based on PDGs because PDGs are semanti-
cally richer than CFGs (i.e., PDGs capture data and control dependences
of programs/applications). Given a partition Π = {V1,V2, · · · ,Vk}, we can
create k applications {A1, · · · ,Ak} such that Ai consists of all instructions
corresponding to nodes in Vi. We call applications Ai (1 6 i 6 k) minions.
A naive algorithm for solving PSP creates a partition as follows: each
v ∈ V such that L(v) 6= ⊥ is put in its own set and there is a set that
consists of all nodes w such that L(w) = ⊥. We call this naive algorithm
permission isolation splitting. Of course, our naive algorithm can create a
lot of minions. Our goal is to construct as few minions as possible and

84

also minimize data transfer between the minions. Next we present our
algorithm to accomplish these goals.

Our Algorithm

Our algorithm works in two stages: (1) We compute a vertex multicut
using dominators and post-dominators. (2) We use the vertex multicut
found in step (1) to find a solution to the PSP. The two steps of the algorithm
are described below.
(Step 1) An algorithm for finding vertex multicuts. The vertex multicut
problem (VMP) is defined below.

Problem 4.2. We are given a graph G = (V ,E), where V is the set of nodes,
E ⊆ V × V is the set of edges and a collection of k pairs of vertices H =

{(s1, t1), · · · , (sk, tk)}. The problem is to remove the minimum number of ver-
tices V ′ ⊆ V such that in the resulting graph there is no path from si to ti for all
1 6 i 6 k. In other words, every path from si to ti (for 1 6 i 6 k) goes through
at least one vertex in V ′. This problem is called the directed graph vertex multicut
problem (VMP).

Although the problem of computing optimal vertex and edge multi-
cuts isNP-complete, there exist approximation algorithms to solve these
problems [5, 20]. However, these existing algorithms ignore the structure
of the program (i.e., the PDGs and CFGs resulting from an application
have a very special structure). We present an algorithm that is based on
the structure of the program. Specifically, we present here an algorithm
for computing vertex multicuts that is based on the concept of pre- and
post-dominators. Recall that dominators and post-dominators are used to
find control dependences in programs [32] and there are efficient algorithms
to compute dominators and post-dominators [27].

Assume that we are given a graph G = (V ,E), where V is the set of
nodes, E ⊆ V × V is the set of edges and a collection of k pairs of vertices

85

H = {(s1, t1), · · · , (sk, tk)}. We present an algorithm which demonstrates
that an algorithm for finding hitting sets can be used to find a vertex
multicut. With each pair (si, ti) we associate a setMi with the following
property: for all v ∈Mi, every path from si to ti passes through v. The
collection of k pairs of vertices H = {(s1, t1), · · · , (sk, tk)} corresponds
to a collection of sets M = {M1, · · · ,Mk}. Let U be a universe and
C = {S1, · · · ,Sk} be a collection of sets such that Si ⊆ U for all 1 6 i 6 k.
Z ⊆ U is called a hitting set for C iff Z ∩ Si 6= ∅ for all 1 6 i 6 k.

The problem now is to associate with a pair of nodes (s, t) a setM such
that all vertices inM appear on all paths from s to t. For this, we use the
concept of dominators and post-dominators. We assume that the graph
G = (V ,E) has two distinguished vertices r ∈ V (called the start node) and
e ∈ V (called the exit node) such that every vertex in V is reachable from r

and e is reachable from every vertex in V .
Dominators and post-dominators: A vertex v dominates w (denoted using
v dom w) iff every path from r to w passes through v. A vertex z post-
dominates w (denoted as z pdom w) iff every path from w to e passes
through z. The set of dominators and post-dominators of a vertex w are
denoted by DOM(w) and PDOM(w), respectively. Consider a path π from
s to t. Since s is reachable from the start node r ∈ V , π can be extended to
a path from r to t. Similarly, since the exit node e is reachable from the
node t ∈ V , π can be extended to a path from s to e. These observations
lead to the following proposition:

Proposition 4.3. Let (s, t) be a pair of vertices and let M = DOM(t) ∩
PDOM(s). Every path from s to t passes through every vertex inM.

Based on the proposition given above we can formulate an algorithm
for finding a vertex multicut, which is based on the dominator and post-
dominator structure. (see Figure 4.4).

(Step 2) From Vertex Multicut to Partitions

86

An algorithm for solving VMP can be used to solve PSP. The description
is as follows:

• Assume that we are given an application A whose (LPDG) is G =

(V ,E,L), where V is the set of nodes, E ⊆ V × V is the set of edges,
and L : V → P is a labeling function. We are also given a relation
X ⊆ P× P.

• Relation X corresponds to a collection H(X) of pairs of vertices as
follows: (v1, v2) ∈ H(X) iff (L(v1),L(v2)) ∈ X.

• Now consider the graph G1 = (V ,E) and set H(X). Let V ′ ⊆ V

be a vertex cut for G1 and H(X). Let G ′ be the graph obtained
from G1 where outgoing edges from all vertices in V ′ have been
removed. G ′ induces a partition as shown in Figure 4.5. It is not
hard to see that the partition P = {V1,V2, · · · ,Vk,Vk+1} solves the
corresponding PSP problem, i.e., for all pairs of nodes (v1, v2) such
that (LA(v1),LA(v2)) ∈ X, then v1 and v2 are in different sets of the
partition P.

Discussion

Our algorithm based on dominators and post-dominators allows a de-
signer to have control over how the split is performed. First, we introduce
some notation from [27]. Vertex v is the immediate dominator ofw (denoted
by v i-dom w), if v dominates w and every other dominator of w domi-
nates v. Similarly, vertex v is the immediate post-dominator ofw (denoted by
v i-pdom w), if v post-dominates w and every other post-dominator of w
post-dominates v. The relations i-dom and i-pdom each form a directed
rooted tree. Intuitively, a node "higher" up in the tree corresponding to
i-dom represents a statement closer to the entry point of an application
(similar intuition can be applied to the tree corresponding to the relation

87

i-pdom). Therefore, if there are two nodes v andw in a set in the collection
Z (see Figure 4.4) and v is an ancestor of w in the tree corresponding to
i-dom, then v can be preferred overwwhile constructing the hitting set for
Z. Similarly, a designer can specify other conditions. For example, some
vertices from the collectionZ can be eliminated based on certain conditions
before computing the hitting set. Examples of some of these conditions
are given below (there are several other domain-specific possibilities).

• Eliminate vertices that correspond to statements in some specific
functions (e.g., belonging to a third-party library).

• Eliminate vertices from Z that belong to loops (having the split point
in the loop might result in expensive IPC calls because of marshaling
and un-marshaling of arguments).

Figure 4.6 shows the CFG for the Bright Flashlight code of Figure 4.1,
with line numbers preserved from the original figure. Although simplistic,
this example shows the importance of picking good split points: consider
the naive solution of including blocks 1 and 2 for a partition: since the
variable buffer is live across the boundary from block 2 to 3, making the
call to the minion corresponding to the partition will require copying the
entire buffer. While this behavior might be acceptable for a single transfer
to a minion, but altering the minions in this way causes a transfer on every
iteration of the loop that begins on line 32. Thus, the heuristics presented
above places blocks 1, 2, and 3 into the minion.

Our algorithm to solve an instance of PSP does not take the weight
of an edge into account (i.e., we solve an unweighted version of PSP). The
above-mentioned example highlighted the ramifications of this limitation
of our algorithm. In the future, we will investigate the weighted version
of PSP, which can be defined as follows: given a LPDG G = (V ,E,L), X,
and a function w : E → <+ find a partition Π = {V1,V2, · · · ,Vk} of V ,
which satisfies the following conditions: for all pairs of nodes (v1, v2), if

88

(LA(v1),LA(v2)) ∈ X, then v1 and v2 are in different sets of the partition
Π, and the weight w(Π) of the partition is minimized. The weight of the
partition Π = {V1,V2, · · · ,Vk} is defined as sum of weights of the cross
edges E(Π) defined as follows: (u, v) is in E(Π) iff (u, v) ∈ E and u and v
are in different sets in Π (i.e., these edges cross two different partitions).
Intuitively, a weight of an edge corresponds to the amount of data that
needs to be marshaled. The weighted version of PSP tries to find a partition
that minimizes the amount of data transferred between minions.

4.3.1 Split Director Implementation Details

Edge Repair

An important goal of the split director is preserving the original function-
ality of the app across cut points. This is a non-trivial task, especially in the
case of a PDG-directed split, in which case nodes in the same partition may
not even be contiguous. or most instructions, its uses will be generated
by a previous instruction in the same parititon and its definitions will be
consumed by a following instruction in the same partition. However, if a
use is generated outside of the partition, it must be marshalled in and it a
definition is required outside of the parition it must be marshalled out.

The Split Director passes over every instruction in the partition to
ensure that the its use/def relations will be satisfied by collecting values to
be marshalled in and out. In the common case, marshalling in can occur in
a single batch at the entry to the partition and marshalling out can occur in
a single exit from the partition. However, if the partition is not contiguous
the minion may be specialized and split into multiple methods, allowing
marshalling to occur in stages where control returns to the core, and is
then re-established in the minion with another round of marshalling.

89

Permission Mapping

Both of the split directors that we present above rely on a permission
labeling function L that maps nodes of the app’s CFG to a permission. For
simplicity, we assumed L : V → P, so a node is only mapped to a single
permission. In practice, a node may require a finite set of permissions.
Extending the strategies support this behavior is trivial, and in practice our
labeling function does not assume any structure on the set of permissions
P.

Previous work has noted that the Android Open Source Project does
not maintain a canonical “permissions map” of the permissions required
to invoke each Android function [16]. Fortunately, a number of previous
systems have been built to infer a permissions map. In the spirit of the mod-
ular nature of the Split Director, Minionizer uses an external permissions
map, and provides parsers for the formats of PScout [10], Stowaway [16],
and Flowdroid [9]. By default, our splitter uses the permission map pro-
vided by Flowdroid.

4.4 Minion App Generation

In the previous section, we explained how Minionizer defines points at
which to split a monolithic input app into disconnected regions. This
information is used by the splitter to induce new minion apps based on
the split points. Although the split points that the Split Director provides
attain a security goal, the task of the Splitter to automatically refactor an
Android app based into multiple collaboration apps, is a useful goal in and
of itself. For this reason, we plan to release the Splitter as a stand-alone tool.
In this section, we explore the implementation details of how Minionizer
rewrites apps, beginning with a brief discussion of the background of
Android IPC, and then explain how Minionizer uses it to perform inter-
app computation.

90

This level of app rewriting is non-trivial to implement, and relies on a
number of unique circumstances that are fortunately present for Android
apps. In particular, there needs to be an efficient IPC mechanism that
allows for objects to be quickly moved from one app to another, and a way
to ensure that the semantics of an application are not altered when those
objects are mutated in a remote minion. Fortunately, Android provides
such a mechanism in Binder [1].

4.4.1 Implementation Details

The primary concern for a minion is to preserve the app’s functionality
because the splitting strategies that our tool uses yield regions in which
the entry block to the region dominates the exit of the block, and the exit
postdominates the entry, there is no need to worry about relocating control
flow transfers1. However, Minionizer needs to ensure that dataflow that
passes through a minion is preserved. While Minionizer could simply
instrument an app to copy out all variables that the minion defines, and
copy in all variables that the minion uses, doing so would unnecessarily
copy data that is not live. Instead, we perform a simple reaching definition
analysis to only copy uses that are live at the beginning minion region and
only copy definitions that are live at the end of the minion.
Parcelling Objects: Android has a mechanism for cross-app communica-
tion, called Binder, which allows for performant transfer of file descriptors
and “active” objects across process boundaries. This mechanism provides
a means for transferring use-values into a minion and def-values out of a
minion. Unfortunately Binder achieves its fast IPC by expecting that the
communicated objects specify how they will be packed and unpacked (ev-
ery such object must inherit from a class that implements the Parcelable
interface). This additional constraint is a challenge for Minionizer, as it

1We believe that supporting regions that do not have this property is a feasible
implementation detail that we leave to future work

91

is unlikely that every object that must be transferred to the minion will
implement this interface. Fortunately, we can again use the object shad-
owing presented in Chapter 3. While object shadowing incurs additional
overhead, it allows the proper transfer of state from the core application
to a minion and back.
Minion Lifecycle: Android apps operate according to a lifecycle, dictated
by environmental events. To ensure that the services exposed by min-
ion apps are available to the app as it is launched, Minionizer calls the
bindService function to binds each minion field at the entry point lifecycle
functions of the app. In response to the bindService call, the system will
invoke the onServiceConnected callback of the app (added by Minionizer,
as appropriate), where the service is connected. While this works well
for most apps, consider the case in which an entrypoint function itself
requires the use of a minion: the onServiceConnected callback cannot be
invoked until the app returns from the function, but the function uses
minions initialized in onServiceConnected. We resolve this paradox in the
following way: For each such callback C that uses a minion, we create a
new function C ′. The body of C is replaced with code that checks if the
service is available, and if so calls C ′. If it is not, C raises a global flag
fC indicating that a call to C is necessary, and assigns all arguments of
C to newly-added instance fields argsC of the app. When the service is
available, onServiceConnected checks fC, and calls C ′ with argsC.

In effect, this modification of the app results in services being con-
nected before any entrypoint function of the app takes effect. Note that
because the C ′ are all called at entry to onServiceConnected, any user code
in onServiceConnected will not run until the entrypoint functions are run.
This handles any dependencies in the original body of onServiceConnected
to data touched in C.

92

4.4.2 Deployment Details

A potential concern of using Minionizer is that it requires the user to
manage more apps than they would otherwise. For example, it would
severely hurt usability of the system if each minion app cluttered the home
screen. To avoid this circumstance, Minionizer modifies the manifest
of each minion app (except for the core), so that it does not subscribe
to the intent android.intent.category.LAUNCHER. As such, the system
recognizes that the minion cannot be launched directly from the home
screen, and will only display the core minion, which will maintain the title
and icon of the original, monolithic app. Thus, the user’s home screen
launcher is unchanged by Minionizer.
Installation: Although launching and running split apps is identical to the
monolithic version from the perspective of the user, the goal of Minionizer
is to give extra control over installation of apps. To this end, we supply a
number of scripts that ease the installation and uninstallation of minion
apps, which we have made available as part of the Minionizer distribution.
In particular, the script allows a user to install all minions associated with
an app, uninstall all minions associated with the app, or selectively install
individual minions.
App-Store Integration: While the scripts that we provide are sufficient for
Minionizer to work, a useful deployment scenario would be to integrate
the tool directly into the app download and installation. It would be
relatively straightforward to implement a browser extension that splits an
app according to a policy written by the user, thus guaranteeing that all
apps that the user installs are safe according to that policy.

4.5 Minion Support Artifacts

The key advantage of minionization is that opaque, internal functionality
of a single app can be exposed to app-centric security mechanisms. How-

93

Display Name # Instructions # Permissions # Minions
Bible 575472 16 1
CNN 440211 13 1
Duolingo 562020 14 1
Facebook 272534 17 4
Job Search 153580 8 2
Original Borders 54 0 0
MyFitnessPal 859176 13 2
Pandora 296037 13 1
Pocket Manga 150417 4 0
Ringtone Maker 135487 9 1
Zillow 788544 16

Table 4.7: Characteristics of the apps used in evaluating the correctness of Min-
ionizer, and the number of minions yielded when the app is split
according to our example policy.

ever, the resultant set of minion apps can be more complicated to manage
than a single app. To address this complexity, and to fully take advantage
of minionization, Minionizer generates several management artifacts. In
this section, we describe the artifacts generated by our current implemen-
tation of Minionizer. We focus on the artifacts that are created to assist in
the mediation of interactions between multiple permissions. However, we
note that our approach is suitable to generating minion artifacts to support
other types of minionization goals or mediation mechanisms.

4.5.1 Install Script

The most immediate drawback of app splitting is that a user needs to man-
age multiple apps instead of one. Previous work on static app rewriting
does not address this consideration, as users can reasonably expect to
sideload a single app after rewriting. However, as the number of minion
apps increase, the task of sideloading each minion separately becomes
daunting. To address this concern, the policy generator outputs a script

94

that can be invoked to install minion apps en masse.
The support generator can be configured to build two types of install

scripts. By default, each of the minions generated by Minionizer are
included in the install script. Alternatively, the user may specify a set of
constraints that preclude a minion from the install script. Our current
implementation allows constraints to specify a permission or package from
which minions should not be installed. For example, in the case of Bright
Flashlight, the user may specify that no minions with the READ_CONTACTS
permission should be installed.

4.5.2 Intent Firewall Rules

An important goal of deploying apps rewritten with Minionizer is to
ensure that policies applied at rewriting time are obeyed at runtime. To
meet this goal, we leverage the Intent Firewall, an integrated feature of
the Android framework. The Intent Firewall accepts an XML-based set of
rules that are enforced at runtime and prevent Intents from being passed
from one component to another. Figure 4.8 shows an example of an intent
firewall XML file for the example app, NetDialer, of Section 4.2. In this
case, the firewall enforces, from within the OS, the policy that the core
app may not send any intent to minion1, which corresponds to GPS use.

4.6 Evaluation

In this Section, we present the results of our evaluation on Minionizer.
We performed several experiments to characterize three key aspects of our
technique:

1. Correctness: Can apps rewritten with Minionizer continue to provide
their desired functionality?

95

Category # Apps # Minions
(Avg)

AndroidSpecific 12 1.25
ArraysAndLists 7 1.57
Callbacks 15 1.47
EmulatorDetection 3 2.33
FieldAndObjectSensitivity 7 2.14
GeneralJava 23 1.65
InterComponentCommunication 18 1.0
Lifecycle 17 1.35
Reflection 4 2.0
Threading 5 1.2

Table 4.9: Minion partitioning for the DroidBench categories in which FlowDroid
detected leaks. For each of the flows detected by the underlying Flow-
Droid analysis, Minionizer correctly separates the permission into its
own minion. Note that for two categories, Aliasing and ImplicitFlows,
FlowDroid (erroneously) did not detect any leaks. However, we con-
sider this a limitation of the underlying system not of Minionizer itself.
Any improvements to the flow analysis will in turn lead to new minions.

2. Effectiveness: Are apps rewritten with Minionizer prohibited from
performing disallowed functionality?

3. Performance: Does the rewriting process of Minionizer incur man-
ageable overhead on apps?

We begin by briefly presenting the highlights of these experiments
before discussing our methodology and results in greater depth. Each of
our experiments used its own collection of Android apps, suitably selected
for the question at hand as described in the following sections.
Experimental Highlights: We find that Minionizer ensures utility by
preserving the desired functionality of apps while blocking the disallowed
functionality, thus providing the security guarantees. Minionized apps
exhibit an average runtime overhead of 3% over their original variants and
use a trivial amount of additional disk space.

96

4.6.1 Correctness

We evaluated the correctness of our system in two ways. First, we tested
that our rewriting is valid to a wide variety to apps found in the wild. Sec-
ond, we tested that apps rewritten using Minionizer continue to function
as expected. Our set of apps for these tests is a collection of 7000 apps
collected from the Google Play store and 3rd-party markets.

The most basic test of correctness that we performed is to pass each
of our 7000 apps to Minionizer and use the dexopt tool to verify that the
bytecode of each minion is correct. We find that of the total set, 46 fail to
complete the rewriting process (approximately 0.7%). We note that these
apps also fail to pass through the unmodified Soot engine upon which
our tool is built. We believe that these limitations are an artifact of the
infrastructure we used and not a failure of our approach.

While dexopt shows that the code output by Minionizer is valid, it does
not guarantee that runtime behavior is being preserved by minionization.
However, our sample set is too large to dynamically exercise each app in
a meaningful way. Previous work has noted that testing Android apps
is challenging [6, 50]. Apps are frequently interactive, with significant
functionality triggered by user interaction with a GUI. In the absence of a
comprehensive testing tool to explore an app’s behavior, one must employ
either human-generated or semi-random event sequences. Both of these
options have disadvantages. Scalability quickly becomes a problem for
human users, while semi-random input sequences can be shallow in the
functionality they elicit from the app [38]. As the purpose of this test is
to determine whether the user experiences the same behavior from an
app in both its original and minionized versions, we opted for a manual
evaluation approach where a human interacts and observes with the apps.
This necessarily limited the number of apps in this experiment.

For our manual test, we built a subsample of apps by randomly select-
ing eleven top apps (one for each Google Play appstore category) from

97

the collection of 7000. These apps are listed in Table 4.7. By focusing on
this subsample, we could evaluate the effects of minionization in depth.
To ensure that minionization did not cause any errors or changes in the
functionality of the app, we executed the two app variants (original and
minionized) on the same sequence of user interactions, and then manually
inspected the resulting user interface (UI) states. We noted any differences
in functionality caused by the Minionizer transformation in a side-by-side
comparison.

In practice, we executed and manually interacted with the original
variants of these apps while recording all interactions in trace files with
the help of the Robotium tool [53]. These interaction traces were later
replayed using the instrumentation framework built into the Android OS.
To ensure that the replay mechanism does not introduce any side effects,
we replayed the interaction sequence on both the original and the rewritten
app and used these executions to make Minionizer-utility determinations.
For each app in the experiment we collected two interaction traces, each
sufficiently long to perform a logical task in the corresponding app. On
average a logical task took 5 seconds to complete. Our experiments did
not show any change in behavior in the minionized apps compared to
their original variants. A number of statistics about each app are shown
in Table 4.7.

4.6.2 Effectiveness

We evaluated the effectiveness of minionization by testing if Minionizer
properly mediates permission flows. An important consideration for this
experiment is to have a reliable ground truth on the set of possible permis-
sion flows as determined by a system other than our own. For this reason,
we built our sample from the 119 applications of DroidBench 2, a test suite
originally developed as part of FlowDroid [9]. DroidBench 2 was built
specifically for the purpose of evaluating static analyses for information-

98

flow tracking. As such, apps in DroidBench are crafted by authors from a
variety of institutions to provide challenging data flows. We used these
applications to test the security of Minionizer, with the expectation that
every flow in every DroidBench app should be mediated by a split.

The DroidBench apps are deterministic, thus not depending on phone
state. In our experiments, we used the information flows statically reported
by FlowDroid as input to Minionizer, with the goal of minionizing the
DroidBench apps such that all of the FlowDroid-discovered flows are me-
diated by a cross-minion IPC. The results of our effectivness experiments
showed all of the statically detected information flows (as discovered by
FlowDroid) were split such that permission-requesting operations were
separated by an IPC call into a minion. For each of the 119 programs that
we tested, Minionizer was able to successfully expose each flow to OS-level
mediation. As shown in Table 4.9, the number of minions varied between
apps, with some apps having no unwanted information flows (and thus
no minions in the split version), while others having two or more.

4.6.3 Performance

The primary overhead introduced by Minionizer is due to the cost of each
IPC call when data is transferred back and worth among minions. While
the cumulative cost of Minionizer IPC over the lifetime of an app execution
is low enough to be invisible to the user, mostly because apps typically do
not cross cut boundaries frequently, we also wanted a precise estimate of
the overhead for isolated instructions at cut points. To isolate the overhead,
we crafted a number of apps that only create permission-to-permission
flows and do nothing else. These apps do not represent the behavior and
performance of a useful app, but provide a worst-case analysis and thus
an upper bound on the performance impact of minionization.

The apps chosen for performance evaluation are fully deterministic,
do not depend on user input or any environment settings, and behave as

99

follows.

• Direct Flow: In this app, we measure the performance penalty of
minionizing the most common form of permission leak on Android,
a flow of a device-specific identifier (IMEI) to the network. This
microbenchmark measures the cost of a single IPC call to a minion.
Our measurements were averaged over 12 runs and compared the
original app versus the minionized app.

• Loop Flow: Here we modify the direct-flow experiment so that source
data is repeatedly queried in a loop. Once the loop is finished, the
results of the final query is leaked to the network. The purpose of
this microbenchmark is to determine if the mechanism can properly
identify good candidate regions for including in a single minion:
Minionizer should include the entire loop in the minion and perform
a single transfer, rather than performing a per-iteration transfer.

• Large Flow: This app tests the overhead of moving a large amount of
data into the minion. While a typical minion app will only include a
snippet of code and the small amount of data that the snippet uses,
in this app we ensure that a large, user-defined class is tainted with
source data. We measured the overhead of transferring progressively
larger classes.

Our first set of findings deal with the Direct Flow microbenchmark.
We found that transferring IMEI to and from a minion is inexpensive,
costing an average of 3% more in a minionized app. Given that the actual
copy operation of the IMEI value is nearly negligable, this overhead is
dominated by the cost of the IPC mechanism itself.

For the Loop Flow microbenchmark, we observed overheads that were
similar to those of the Direct Flow microbenchmark. Since we are evaluating

100

Minionizer using the flow strategy, this is an unsurprising result, as the
only difference between the minionized Loop Flow and the minionized
Direct Flow is the extra instructions placed in the minion due to looping.

The Large Flow microbenchmark showed that the runtime overhead
scaled with the size of the data being transferred to the minions, as cap-
tured by Figure 4.6.3.

4.6.4 Discussion

The results of our experiments show that the app-splitting approach that
we propose in Minionizer offers security from permission leaks while still
maintaining the usability of apps with reasonable performance overheads.
Our performance microbenchmarks show that our basic splitting mecha-
nism does not introduce an excessive overhead, while our correctness tests
show that in practice the cost is amortized over the runtime of the app.
Furthermore, we have found that splitting does not encounter significant
usability issues while still mitigating permission leaks. Finally, our tests
show that Minionizer is usable over a large corpus of commonly available
applications.

4.7 Related Work

The goal of giving programs the least privilege necessary to fulfill their
desired functionality is well studied. We note the most closely related
work to Minionizer regarding several considerations:
Program Partitioning: Several systems exist to partition applications. In
general, the Android permissions model allows our system to bootstrap
simple policies without the cooperation of the developer which is a benefit
of our domain that much previous work did not have available. Chong et
al. propose a system for splitting web applications [29]. Unlike that
work, Minionizer does not require the placement of annotations, nor does

101

it require source code, or any effort on the part of the app’s developer.
However, granting such conditions could potentially improve the perfor-
mance of Minionizer, though it would require a different threat model.
Zheng et al. propose a system to partition applications across multiple,
mutually distrusting hosts [55]. This scheme also requires annotations to
the program source.
Advertising Isolation: There has been a line of work in isolating advertis-
ing from the rest of an application, such as [42, 47]. special-case operation
of Minionizer [36, 42, 47]. The most closely related work to our own is Ad-
Split, which automatically rewrites an app to use an isolated advertising
library [42]. Unlike Minionizer, AdSplit uses Quire [14], which requires
modifications to Android itself. Minionizer runs on an unmodified An-
droid device, and thus has no presence on the actual device. Although
the approach of Minionizer is similar to AdSplit, the goals of the systems
are different and both users may benefit from using both tools in parallel.
Android Rewriting: Aurasium [51] rewrites apps to specify policies by
hooking system calls, and employing a runtime security monitor. Unlike
Minionizer, Aurasium does not separate apps into multiple pieces, and
does not give the user the chance to control permissions in any way.
Android Isolation: Previous work has explored advantages of application
level isolation. In particular, Roesner et al. developed a modified version
of the Android OS, called LayerCake, that allows entities of different trust
levels to be embedded into a single app [40]. At a high level, the goal of
this work is similar to that of app splitting in that it sharpens the bound-
aries of security principals. However, the approach taken by Roesner et
al. differs from our own in that it requires action on the part of the de-
velopers to employ new programming practices to comply with a new
version of Android. In constrast, our work focuses on enabling existing
security mechanisms to work within the current Android security model.
Furthermore, the goal of LayerCake is to enable trusted UI components,

102

whereas the goal of our work is to isolate fine-grained functionality of
apps.

4.8 Chapter Summary

The Android operating system enables misbehaving apps to violate the
user’s privacy, yet lacks mechanisms for finer-grained control over how
apps can use their privileges. Minionizer presents an opportunity to
leverage the full potential of the privilege system, while putting control
back into the hands of users. Minionizer provides a practical enforcement
strategy that does not require modification to the Android OS, and can be
used as a framework to enhance or enable other application enforcement
mechanisms.

In this chapter, we have presented a concrete application of app split-
ting for this purpose. We believe that our approach can be used for a
variety of security and functionality purposes beyond permission isola-
tion and permission-flow mediation.

103

1 // Flow location to the network
2 public void sendLoc(){
3 LocationManager lm = (LocationManager)

getSystemService(LOCATION_SERVICE);
4 Location l = lm.getLastKnownLocation("gps"); // P0
5 URL url = new URL(urlBase + l.toString());
6 Object content = url.getContent(); // P1
7 }

9 // Flow location to camera
10 public void sunsetLight(){
11 LocationManager lm = (LocationManager)

getSystemService(LOCATION_SERVICE);
12 Location l = lm.getLastKnownLocation("gps"); // P2
13 Calendar sunset = timetable.sundown(location);
14 if (sunset < currentTime()){
15 Camera cam = Camera.open(); // P3
16 Parameters p = cam.getParameters();
17 p.setFlashMode("torch");
18 cam.setParameters(p);
19 cam.startPreview();
20 }
21 }

23 // Pull information from the network
24 public byte[] getAd(){
25 URL url = new URL(urlContactIcon + strurl);
26 Object content = url.getContent(); // P4
27 InputStream is = (InputStream) content;
28 byte[] buffer = new byte[8192];
29 ByteArrayOutputStream bkg = new ByteArrayOutputStream();
30 int bytesRead;
31 while ((bytesRead = is.read(buffer)) != -1) {

bkg.write(buffer, 0, bytesRead); }
32 return bkg.toByteArray();
33 }

Figure 4.1: Snippet of code from Bright Flashlight demonstrating limitations
of the Android permission model. The methods that are shown here
use an overlapping set of permissions in different ways that are indis-
tinguishable to the user

104

Split

Director

Soot

IR
UnpackagerApp

Minion

IR
Minion

IR
Minion

IR
Repackager

Minion

IR
Minion

IR
Minion

Apps

Support

Generator

Auxiliary

Artifacts

Splitter

Splitting

Strategy

Figure 4.3: Workflow of Minionizer. Rounded components indicate code mod-
ules, rectangles indicate artifacts. Shaded components of the diagram
indicate can be configured at runtime; the Split Director can be
configured to use a different splitting strategy for partitioning the
app into minions, and the support generator can be configured to
produce policies and install scripts for minion apps. The workflow
takes a packaged Android app, such as one downloaded from the
Google Play store.

Input: A graph G = (V ,E, r, e),
set H of k pairs of vertices {(s1, t1), · · · , (sk, tk)}.
ComputeMi (for 1 6 i 6 k) as DOM(ti) ∩ PDOM(si)
Compute hitting set Z for the collection {M1, · · · ,Mk}

Output: The hitting set Z.

Figure 4.4: Finding vertex multicuts using dominators, post- dominators, and
hitting sets.

Inputs: A collection H(X) = {(s1, t1), · · · , (sk, tk)},
a graph G ′ such that there is no path from si to ti
(for all 1 6 i 6 k).
Consider the sequence s1, s2, · · · , sk of source vertices
and let G0 = G

′.
For 1 6 i 6 k,

define Vi as all vertices reachable from si in Gi−1.
To construct Gi, remove all vertices in Vi from Gi−1.

Let Vk+1 be the set V \
⋃k

i=1 Vk.

Output: {V1,V2, · · · ,Vk+1}

Figure 4.5: Algorithm for creating partitions from vertex multicuts. Removing a
vertex v also means we remove all edges of the form (w, v) and (v,w).

105

30-36	

37	

38	 40	 30-36	

40	

37	 38	

30-36	

37	

38	 40	

Figure 4.6: Control-Flow Graph (left) Immediate Dominator-tree (middle) and
Postdominator-tree (right) for our sample app.

1 <rules>
2 <activity block="true" log="false">
3 <component-filter name="com.brightflashlight.core/" />
4 </activity>
5 <broadcast block="true" log="true">
6 <intent-filter>
7 <action name="com.brightflashlight.minion1" />
8 </intent-filter>
9 </broadcast>

10 </rules>

Figure 4.8: A sample Intent Firewall ruleset that blocks broadcast intents from
the Bright Flashlight core app to a minion.

106

0 5 10 15 20
10

15

20

25

30

Fields per parcelled object

Ru
nt

im
e

(m
s)

Split App

Figure 4.10: Runtime measurements of the Large Flow microbenchmark. The
minion-IPC overhead increases with the amount of data transferred.

107

5
Conclusion

In this chapter, we conclude by discussing limitations of the techniques
described in this thesis, and explore directions for future work. In §5.1,
we discuss limitations of app splitting. In §5.2 we discuss future work.

5.1 Limitations of App Splitting

Applicability: There are some programs, in principle, for which app
splitting will not apply. This prevents app splitting from being a general
mechanism by which any patch to a program can be applied. There are
two cases in which app splitting broadly does not apply:

1. For some program properties, particularly those that are distributed
across the program, app splitting becomes impractical. To illustrate
this point via a thought experiment, consider implementing a Java
Security Manager via app splitting. In a workstation implementation
of Java, the Java Security Manager can be used to examine call chains
and implement program-wide policies. However, the Java Security
Manager is not implemented in Android. While it would, in theory,
be possible create an app-splitting instance to replicate the checks
performed by the Java Security Manager, the aggressive rewriting
necessary to perform the checks would mean that nearly all method
calls would be replaced by IPC. The penalties of transferring so much

108

state into the minions, both in terms of complexity and overhead of
the split app, would quickly become untenable.

2. Some programs include behavior that cannot be supported in a split
app. As an example, an app could, in principle, create a device-wide
singleton object and prohibit any references to be copied. An object
that can neither copied nor referenced in the minion is, by definition,
inapplicable to app splitting. While it is difficult to imagine that such
an object would be present in a practical program and actually re-
quired to be referenced in a minion, it nevertheless represents a case
beyond the powers of the app splitting technique. A more realistic
scenario is that an app contains features beyond the capabilities of
our current app-splitter implementation. For example, Minionizer
cannot disassemble native code and therefore cannot split native
functionality.

Overhead: Both WIRE and Minionizer introduce overhead in the rewrit-
ing process. We believe that the amount of overhead is acceptable, as
detailed in Chapters 3 and 4. However, optimization to reduce the time
taken in transferring context between an app and its split pieces (whether
a minion or a WIREFrame) is still an important goal. A natural direction in
this regard is to use shared memory or other mechanisms to avoid the full
overhead of copying context. However, care must be taken to ensure that
shared memory is still isolated enough that no implicit channel is opened.

5.2 Future Work in App Splitting

As discussed in chapter 1, app splitting as a technique has potential beyond
the instantiations discussed in this dissertation. Some of the most obvious
directions for future work lie in addressing the implementation limita-
tions described in the previous section, and in extending the technique

109

to additional platforms. Improvements to the core techniques will also
benefit the instantiations of the technique. In the remainder of this chap-
ter, we discuss future work for the minionization and WIR instantiations
described in this dissertation.

Minionization

Partial-object reconstruction: Currently, when an object is passed be-
tween minions, a Parcel Wrapper handles each field of the object, so that
it can be rebuilt in the same state as it was on transfer. Many of these
fields can be shown statically to hold dead values that are never used in
the minion. A useful extension to Minionizer would be to specialize the
Parcelization process to only propagate live fields across the minion object.
Inline mediation: Minion boundaries form natural “choke points” in
the app, across which all data between a source/sink pair is mediated.
Minionizer takes advantage of these choke points by empowering the user
to turn functionality of the app on or off statically, before the app is run.
This is certainly a useful feature, but we note that minion boundaries also
form a convenient point to enforce dynamic policies. For example, a user
may wish to check if a URL conforms to a certain domain, and then only
allow transfer to the minion if it falls within an acceptable subnet.
Privacy-enhanced minions: The goal of Minionizer is to ensure that the
app’s behavior remains consistent through the splitting process as long as
the relevant minions are installed on the device. However, Minionizer pro-
vides a opportunity to alter the behavior of the app by installing minions
that expose the same interface to the core app, but behave differently. For
example, consider the case of an app that connects to a hard-coded HTTP
URL to send data. The user might split the URL connection operation into
a minion, and distribute different minions that connect to proxy URLs.

110

5.2.1 WIR

App Updates: A consequence of using offline rewriting to induce enforce-
ment mechanisms on apps is that apps can no longer be automatically
updated on the device. Users are inconvenienced by having to re-apply
the WIRE rewriting at each update. However, this inconvenience can be
justified by the much enhanced security of web-embedding apps without
requiring OS changes. Furthermore, we expect that WIRE will mostly be
applied to legacy apps (which are updated less frequently) and untrusted
apps that benefit from additional static checking before install time in any
case. Apps that do not include WebViews or adopt WIREFrame during
development do not need to be rewritten. In cases where app markets
can adopt WIRE and perform app rewriting before app release, such as
in an enterprise app store, app users can enjoy the security benefits of
WIREFrame without facing app-update inconvenience.
WebView State Sharing: As shown by the attack in §3.2, allowing multi-
ple WebViews to run in the same process enables implicit sharing of states,
such as history and cookies. WIREFrame runs each mediated WebView
in a separate process to disable cross-WebView attacks. It also restricts
each WebView’s file system access to a per-origin private path by default.
However, sharing states among WebView instances created by a same app
may be required for legitimate functionalities. While we did not encounter
any such cases in our experiments, WIREFrame could be extended to al-
low multiple WebViews to share a process. We leave this implementation
detail, and the design of when to allow sharing, to future work.

111

A
Appendix A: Android Versions

The Android OS refers to a number of production versions. Due to the
rapid release of versions and the role of OEMs in restricting smartphones
to particular versions, many of these versions are still in wide use. The
below table is due to [23].

Note that since several non-production versions of the OS were re-
leased internally for development, the version history does not start at 1.0.
However, since the focus of this dissertation is in security, these versions
are omitted from the table presented here.

Code name Version Number Release Date API level(s)
Cupcake 1.5 4/27/2009 3

Donut 1.6 2/9/2009 4
Eclair 2.0 - 2.1 10/26/2009 5-7
Froyo 2.2 - 2.2.3 5/20/2010 8

Gingerbread 2.3 - 2.3.7 12/6/2010 9-10
Honeycomb 3.0 - 3.2.6 2/22/2011 11-13

Ice Cream Sandwich 4.0 - 4.0.4 10/18/2011 14-15
Jelly Bean 4.1 - 4.3.1 6/9/2012 16-18

KitKat 4.4 - 4.4.4 10/31/2013 19-20
Lollipop 5.0 - 5.1.1 11/12/2014 21-22

Marshmallow 6.0 - 6.0.1 10/5/2015 23
Nougat 7.0 TBA 24

Table A.1: Android versions

112

Bibliography

[1] Android Developers: Binder.
http://developer.android.com/reference/android/os/Binder.
html. Last Accessed: 04/19/2016.

[2] Apache cordova. https://cordova.apache.org. URL https://
cordova.apache.org/.

[3] IntentFirewall Source Code.
https://android.googlesource.com/platform/frameworks/
base/+/633dc9b/services/java/com/android/server/firewall/
IntentFirewall.java. Last Accessed: 11/11/2015.

[4] Android isolated service.

[5] Amit Agarwal, Noga Alon, and Moses Charikar. Improved Approxi-
mation for Directed Cut Problems. In STOC, 2007.

[6] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
Salvatore De Carmine, and Atif M. Memon. Using gui ripping
for automated testing of android applications. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, pages 258–261, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1204-2. doi: 10.1145/2351676.2351717. URL
http://doi.acm.org/10.1145/2351676.2351717.

[7] Android Open Source Project. Requesting permissions at run
time. https://developer.android.com/training/permissions/
requesting.html.

http://developer.android.com/reference/android/os/Binder.html
http://developer.android.com/reference/android/os/Binder.html
https://cordova.apache.org
https://cordova.apache.org/
https://cordova.apache.org/
https://android.googlesource.com/platform/frameworks/base/+/633dc9b/services/java/com/android/server/firewall/IntentFirewall.java
https://android.googlesource.com/platform/frameworks/base/+/633dc9b/services/java/com/android/server/firewall/IntentFirewall.java
https://android.googlesource.com/platform/frameworks/base/+/633dc9b/services/java/com/android/server/firewall/IntentFirewall.java
http://doi.acm.org/10.1145/2351676.2351717
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html

113

[8] APKTool. Android apktool: A tool for Reengineering Android
apk files. code.google.com/p/android-apktool/. Last Accessed:
11/11/2015.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In Proceedings of
the 35th ACM SIGPLAN conference on Programming language design and
implementation (PLDI). ACM, June 2014.

[10] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:
Analyzing the android permission specification. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 217–228, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1651-4. doi: 10.1145/2382196.2382222. URL http://doi.acm.org/
10.1145/2382196.2382222.

[11] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves
Le Traon. Dexpler: Converting Android Dalvik Bytecode to Jimple for
Static Analysis with Soot. In Proceedings of the International Workshop
on the State Of the Art in Java Program Analysis (SOAP’2012), 2012. doi:
10.1145/2259051.2259056. URL http://hal.archives-ouvertes.
fr/hal-00697421/PDF/article.pdf.

[12] Elie Bursztein, Chinmay Soman, Dan Boneh, and John C Mitchell.
Sessionjuggler: secure web login from an untrusted terminal using
session hijacking. In Proceedings of the 21st international conference on
World Wide Web, pages 321–330. ACM, 2012.

[13] Erika Chin and David Wagner. Bifocals: Analyzing webview vulner-
abilities in android applications. In Yongdae Kim, Heejo Lee, and
Adrian Perrig, editors, Information Security Applications, Lecture Notes
in Computer Science, pages 138–159. Springer International, 2014.
ISBN 978-3-319-05148-2. doi: 10.1007/978-3-319-05149-9_9. URL
http://dx.doi.org/10.1007/978-3-319-05149-9_9.

code.google.com/p/android-apktool/
http://doi.acm.org/10.1145/2382196.2382222
http://doi.acm.org/10.1145/2382196.2382222
http://hal.archives-ouvertes.fr/hal-00697421/PDF/article.pdf
http://hal.archives-ouvertes.fr/hal-00697421/PDF/article.pdf
http://dx.doi.org/10.1007/978-3-319-05149-9_9

114

[14] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S.
Wallach. Quire: Lightweight provenance for smart phone operating
systems. In 20th USENIX Security Symposium, San Francisco, CA,
August 2011.

[15] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid:
An Information-flow Tracking System for Realtime Privacy Mon-
itoring on Smartphones. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’10, pages
1–6, Berkeley, CA, USA, 2010. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=1924943.1924971.

[16] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and
David Wagner. Android permissions demystified. In Proceedings of
the 18th ACM Conference on Computer and Communications Security,
CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0948-6. doi: 10.1145/2046707.2046779. URL http://doi.acm.
org/10.1145/2046707.2046779.

[17] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. Modeling
and Enhancing Android’s Permission System. In Computer Security
- ESORICS 2012 - 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10-12, 2012. Proceedings, pages 1–18,
2012. doi: 10.1007/978-3-642-33167-1_1. URL http://dx.doi.org/
10.1007/978-3-642-33167-1_1.

[18] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Breaking and
fixing origin-based access control in hybrid web/mobile application
frameworks. Sat, 2014.

[19] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe exposure analysis of mobile in-app advertisements. In Pro-
ceedings of the fifth ACM conference on Security and Privacy in Wireless
and Mobile Networks, pages 101–112. ACM, 2012.

[20] Anupam Gupta. Improved Results for Directed Multicut. In SODA,
2003.

http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://dx.doi.org/10.1007/978-3-642-33167-1_1
http://dx.doi.org/10.1007/978-3-642-33167-1_1

115

[21] Dan Han, Chenlei Zhang, Xiaochao Fan, A. Hindle, K. Wong, and
E. Stroulia. Understanding android fragmentation with topic analysis
of vendor-specific bugs. In Reverse Engineering (WCRE), 2012 19th
Working Conference on, pages 83–92, Oct 2012. doi: 10.1109/WCRE.
2012.18.

[22] Behnaz Hassanshahi, Yaoqi Jia, Roland HC Yap, Prateek Saxena,
and Zhenkai Liang. Web-to-application injection attacks on android:
Characterization and detection. In European Symposium on Research in
Computer Security, pages 577–598. Springer, 2015.

[23] Google Inc. Android Developers: History.
https://www.android.com/history, .

[24] Google Inc. Android Developers: Permissions.
https://developer.android.com/reference/android/Manifest.
permission.html, .

[25] Google Inc. Android Developers: Permission Groups.
https://developer.android.com/guide/topics/security/
permissions.html#perm-groups, .

[26] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and
Gautam Nagesh Peri. Code injection attacks on html5-based mobile
apps: Characterization, detection and mitigation. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 66–77. ACM, 2014.

[27] T. Lengauer and R.E. Tarjan. A fast algorithm for finding dominators
in a flowgraph. ACM TOPLAS, 1997.

[28] Dongtao Liu and Landon P Cox. Veriui: attested login for mobile de-
vices. In Proceedings of the 15th Workshop on Mobile Computing Systems
and Applications, page 7. ACM, 2014.

[29] Benjamin Livshits and Stephen Chong. Towards Fully Automatic
Placement of Security Sanitizers and Declassifiers. In Proceedings of
the Symposium on Principles of Programming Languages (POPL), January
2013.

https://www.android.com/history
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/topics/security/permissions.html#perm-groups
https://developer.android.com/guide/topics/security/permissions.html#perm-groups

116

[30] Benjamin Livshits and Jaeyeon Jung. Automatic mediation of privacy-
sensitive resource access in smartphone applications. In Proceedings
of the Usenix Conference on Security, 2013.

[31] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin.
Attacks on webview in the android system. In Proceedings of the 27th
Annual Computer Security Applications Conference, pages 343–352. ACM,
2011.

[32] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Academic Press, 1997.

[33] Patrick Mutchler, Adam Doupé, John Mitchell, Chris Kruegel, and
Giovanni Vigna. A large-scale study of mobile web app security. In
Proceedings of the Mobile Security Technologies Workshop (MoST), 2015.

[34] Adwait Nadkarni, Vasant Tendulkar, and William Enck. Nativewrap:
Ad hoc smartphone application creation for end users. In Proceedings
of the 2014 ACM Conference on Security and Privacy in Wireless &
Mobile Networks, WiSec ’14, pages 13–24, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2972-9. doi: 10.1145/2627393.2627412. URL
http://doi.acm.org/10.1145/2627393.2627412.

[35] Matthias Neugschwandtner, Martina Lindorfer, and Christian
Platzer. A view to a kill: Webview exploitation. In 6th USENIX
Workshop on Large-Scale Exploits and Emergent Threats, Berkeley,
CA, 2013. USENIX. URL https://www.usenix.org/conference/
leet13/workshop-program/presentation/Neugschwandtner.

[36] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wag-
ner. Addroid: Privilege separation for applications and advertis-
ers in android. In Proceedings of the 7th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS ’12, pages
71–72, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1648-4.
doi: 10.1145/2414456.2414498. URL http://doi.acm.org/10.1145/
2414456.2414498.

[37] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner.
Addroid: Privilege separation for applications and advertisers in
android. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, pages 71–72. ACM, 2012.

http://doi.acm.org/10.1145/2627393.2627412
https://www.usenix.org/conference/leet13/workshop-program/presentation/Neugschwandtner
https://www.usenix.org/conference/leet13/workshop-program/presentation/Neugschwandtner
http://doi.acm.org/10.1145/2414456.2414498
http://doi.acm.org/10.1145/2414456.2414498

117

[38] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen,
and Mika Mäntylä. Benefits and Limitations of Automated Soft-
ware Testing: Systematic Literature Review and Practitioner Sur-
vey. In 7th International Workshop on Automation of Software Test, AST
2012, Zurich, Switzerland, June 2-3, 2012, pages 36–42, 2012. doi:
10.1109/IWAST.2012.6228988. URL http://dx.doi.org/10.1109/
IWAST.2012.6228988.

[39] Vaibhav Rastogi, Rui Shao, Yan Chen, Xiang Pan, Shihong Zou, and
Ryan Riley. Are these ads safe: Detecting hidden attacks through the
mobile app-web interfaces. In NDSS, 2016.

[40] Franziska Roesner and Tadayoshi Kohno. Securing Embedded User
Interfaces: Android and Beyond. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, pages 97–112, Berkeley, CA, USA, 2013.
USENIX Association. ISBN 978-1-931971-03-4. URL http://dl.acm.
org/citation.cfm?id=2534766.2534776.

[41] Mohamed Shehab and Fadi Mohsen. Towards enhancing the security
of oauth implementations in smart phones. In Mobile Services (MS),
2014 IEEE International Conference on, pages 39–46. IEEE, 2014.

[42] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit: Sep-
arating Smartphone Advertising from Applications. In Proceedings
of the 21st USENIX Conference on Security Symposium, Security’12,
pages 28–28, Berkeley, CA, USA, 2012. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2362793.2362821.

[43] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. Adsplit: Sep-
arating smartphone advertising from applications. In Proceedings
of the 21st USENIX Conference on Security Symposium, Security’12,
pages 28–28, Berkeley, CA, USA, 2012. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2362793.2362821.

[44] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Adsplit: Separat-
ing smartphone advertising from applications. In USENIX Security
Symposium, pages 553–567, 2012.

[45] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads
know about mobile users. In NDSS, 2016.

http://dx.doi.org/10.1109/IWAST.2012.6228988
http://dx.doi.org/10.1109/IWAST.2012.6228988
http://dl.acm.org/citation.cfm?id=2534766.2534776
http://dl.acm.org/citation.cfm?id=2534766.2534776
http://dl.acm.org/citation.cfm?id=2362793.2362821
http://dl.acm.org/citation.cfm?id=2362793.2362821

118

[46] Daniel R. Thomas, Alastair R. Beresford, Thomas Coudray, Tom
Sutcliffe, and Adrian Taylor. Security Protocols XXIII: 23rd Interna-
tional Workshop, Cambridge, UK, March 31 - April 2, 2015, Revised
Selected Papers, chapter The Lifetime of Android API Vulnerabili-
ties: Case Study on the JavaScript-to-Java Interface, pages 126–138.
Springer International, Cham, 2015. ISBN 978-3-319-26096-9. doi:
10.1007/978-3-319-26096-9_13. URL http://dx.doi.org/10.1007/
978-3-319-26096-9_13.

[47] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nis-
senbaum, and Solon Barocas. Adnostic: Privacy preserving targeted
advertising. In NDSS, 2010.

[48] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a java bytecode optimization
framework. In Proceedings of the 1999 Conference of the Centre for Ad-
vanced Studies on Collaborative Research, pages 13–. IBM Press, 1999.
URL http://dl.acm.org/citation.cfm?id=781995.782008.

[49] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. Unautho-
rized origin crossing on mobile platforms: Threats and mitigation.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security, pages 635–646. ACM, 2013.

[50] Anthony I. Wasserman. Software Engineering Issues for Mobile
Application Development. In Proceedings of the FSE/SDP Workshop
on Future of Software Engineering Research, FoSER ’10, pages 397–
400, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0427-6.
doi: 10.1145/1882362.1882443. URL http://doi.acm.org/10.1145/
1882362.1882443.

[51] Rubin Xu, Hassen Saïdi, and Ross Anderson. Aurasium: Practical
Policy Enforcement for Android Applications. In Proceedings of the
21st USENIX Conference on Security Symposium, Security’12, pages
27–27, Berkeley, CA, USA, 2012. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=2362793.2362820.

[52] Carter Yagemann. Intent Firewall. http://www.cis.syr.edu/~wedu/
android/IntentFirewall/. Last Accessed: 11/11/2015.

http://dx.doi.org/10.1007/978-3-319-26096-9_13
http://dx.doi.org/10.1007/978-3-319-26096-9_13
http://dl.acm.org/citation.cfm?id=781995.782008
http://doi.acm.org/10.1145/1882362.1882443
http://doi.acm.org/10.1145/1882362.1882443
http://dl.acm.org/citation.cfm?id=2362793.2362820
http://dl.acm.org/citation.cfm?id=2362793.2362820
http://www.cis.syr.edu/~wedu/android/IntentFirewall/
http://www.cis.syr.edu/~wedu/android/IntentFirewall/

119

[53] Hrushikesh Zadgaonkar. Robotium Automated Testing for Android.
Packt Publishing, 2013. ISBN 178216801X, 9781782168010.

[54] Xiao Zhang, Amit Ahlawat, and Wenliang Du. Aframe: isolating
advertisements from mobile applications in android. In Proceedings of
the 29th Annual Computer Security Applications Conference, pages 9–18.
ACM, 2013.

[55] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. Using Replication and Partitioning to Build Secure
Distributed Systems. In Proceedings of the 2003 IEEE Symposium
on Security and Privacy, SP ’03, pages 236–, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1940-7. URL http:
//dl.acm.org/citation.cfm?id=829515.830549.

http://dl.acm.org/citation.cfm?id=829515.830549
http://dl.acm.org/citation.cfm?id=829515.830549

	Contents
	Figures, Tables, and Listings
	Abstract
	Introduction
	Background
	Android Security Model
	Android Permissions
	App Manifest
	Granting and Revoking Permissions

	Web Isolation Rewriting (WIR)
	Introduction
	Threat Model
	Attack Scenarios
	Exploit Analysis

	System Overview
	System Design
	Dynamic Access Policies

	WIREFrame Technical Details
	WIRE Technical Details
	Security Analysis
	Evaluation
	Methodology
	Analysis

	Related Work
	Chapter Summary

	Minionizer
	Introduction
	Overview
	Motivation
	System Design

	Splitting Strategies
	Split Director Implementation Details

	Minion App Generation
	Implementation Details
	Deployment Details

	Minion Support Artifacts
	Install Script
	Intent Firewall Rules

	Evaluation
	Correctness
	Effectiveness
	Performance
	Discussion

	Related Work
	Chapter Summary

	Conclusion
	Limitations of App Splitting
	Future Work in App Splitting
	WIR

	Appendix A: Android Versions
	Bibliography

